The Java™ Web'
Services Tutorial

For Java Web Services Developer’s Pack, v1.6

June 14, 2005

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercia software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Naming
and Directory Interface, EJB, JSP, J2EE, J2SE and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals listsis
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de laFAR [(Federal Acquisition Regulations) et des suppléments a celles-ci.

Cette distribution peut comprendre des composants dével oppés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Enterprise JavaBeans, Java Naming and
Directory Interface, EJB, JSP, J2EE, J2SE et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’ autres pays.

A moins qu’ autrement autorisé, le code de logiciel en tous |es matériaux techniques dans le présent (arti-
clesy compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font I’ objet de ce manuel d’ entretien et les informations qu’il contient sont régis par la
|égislation américaine en matiére de controle des exportations et peuvent étre soumis au droit d’ autres
pays dans |e domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’ exclusion d’ exportation américaines,
y compris, mais de maniére non exclusive, laliste de personnes qui font objet d’' un ordre de ne pas partic-
iper, d’une fagon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
|égislation américaine en matiére de contréle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cialy Designated Nationals and Blocked Persons"),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L' ABSENCE DE CONTREFACON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

Chapter 1:

Contents'

About ThisTutorial. Xi
Who Should Use This Tutorial Xi
Prerequisites Xi
How to Use This Tutorial Xii
About the Examples Xiii
Required Software xiv
Building the Examples xiv
Further Information XV
How to Print This Tutorial XV
Typographical Conventions XVi
Feedback XVi
Binding XML Schema to Java Classes with JAXB . . 1
JAXB Architecture 2
Architectural Overview 2
The JAXB Binding Process 5
JAXB Binding Framework 6
More About javax.xml.bind 7
More About Unmarshalling 8
More About Marshalling 9
More About Validation 11
XML Schemas 13
Representing XML Content 17
Binding XML Namesto Java ldentifiers 17
Java Representation of XML Schema 17
Binding XML Schemas 18
Simple Type Definitions 18
Default Data Type Bindings 19

Default Binding Rules Summary 20

Chapter 2:

Chapter 3:

CONTENTS

Customizing JAXB Bindings
Scope
Scope Inheritance
What is Not Supported
JAXB APIsand Tools

USINgJAXB. ... o

General Usage I nstructions
Description
Using the Examples
Configuring and Running the Samples
JAXB Compiler Options
About the Schema-to-Java Bindings
Schema-Derived JAXB Classes

Basic Examples
Unmarsha Read Example
Modify Marsha Example
Create Marsha Example
Unmarsha Validate Example
Validate-On-Demand Example

Customizing JAXB Bindings
Why Customize?
Customization Overview
Customize Inline Example
Datatype Converter Example
External Customize Example
Fix Collides Example
Bind Choice Example

Streaming APIfor XML

Why StAX?

Streaming Versus DOM

Pull Parsing Versus Push Parsing

StAX Use Cases

Comparing StAX to Other JAXP APIs
StAX API

Cursor AP

Iterator API

Choosing Between Cursor and Iterator APIs

21
22
22
23
23

26
26
28
28
30
32
35
43
43
45
47
51
52

55
56
69
74
75
79
83

87
88
89
89
90
91
91
92
97

Chapter 4:

CONTENTS

Using StAX
StAX Factory Classes
Resources, Namespaces, and Errors
Reading XML Streams
Writing XML Streams
Sun’s Streaming Parser Implementation
SISXP JAR Files
Reporting CDATA Events
SISXP Factories Implementation
Sample Code
Configuring Y our Environment for Running the Samples
Running the Samples
Sample XML Document
CursorParse.java
CursorApproachEventObject.java
EventParsejava
CursorWriter.java
MyStreamFilter.java
EventProducerConsumer.java
Further Information

99

99
101
102
105
107
107
108
108
109
109
110
111
112
114
115
118
119
122
125

Introduction to XML and Web Services Security . 127

Overview
Does XWS-Security mplement Any Specifications?
On Which Technologies Is XWS-Security Based?
Interoperability with Other Web Services
What isthe XWS-Security Framework?
Configuring Security Configuration Files
Understanding Security Configuration Files
XWS-Security Configuration File Schema
Semantics of Security Configuration File Elements
How Do | Specify the Security Configuration for the Build Files?

128
130
132
133
134
135
135
139
145
171

Are There Any Sample Applications Demonstrating XWS-Security?174

Writing SecurityEnvironmentHandlers
Using the SubjectAccessor API

Useful XWS-Security Command-Line Tools
pkcsl2import
keyexport
wscompile

Troubleshooting XW S-Security Applications

177
196
197
197
199
200
200

Vi

CONTENTS

Further Information 202

Chapter 5: Understanding and Running the XWS-Security Sam-
ple Applications205

Setting Up To Use XWS-Security With the Sample Applications 206

Setting System Properties 207
Configuring a JCE Provider 207
Setting Up the Application Server For the Examples 209
Setting Build Properties 210
Simple Security Configurations Sample Application 211
Plugging in Security Configurations 212
Simple Sample Security Configuration Files 213
Running the Simple Sample Application 225
JAAS Sample Application 226
JAAS Sample Security Configuration Files 227
Setting Up For the JAAS-Sample 229
Running the JAAS-Sample Application 230
XWS-Security APIs Sample Application 232
The XWSSProcessor Interface 233
API-Sample Client Code 234
The API Sample Security Configuration Files 236
Building and Running the APl Sample Application 241
Soap With Attachments Sample Application 242
The SwA Interop Scenarios 242
SwA Sample Configuration Files 244
Running the SwA Sample Application 247
SAML Sample Application 249
SAML Interop Scenarios 249
SAML Interop Sample Configuration Files 251
Running the SAML Interop Sample 254
Dynamic Policy Sample Application 255
Security Configuration Files for Enabling Dynamic Policy 256
Setting Security Policies at Runtime 257
Running the Dynamic Policy Sample Application 258
Dynamic Response Sample Application 260
Security Configuration Files for Enabling Dynamic Response 260
Using the CallbackHandler to Enable Dynamic Response 261
Running the Dynamic Response Sample Application 262

Further Information 263

Chapter 6:

Chapter 7:

CONTENTS

Java XML Digital Signature API.

How XWS-Security and XML Digital Signature APl Are Related 266

XML Security Stack

Package Hierarchy

Service Providers

Introduction to XML Signatures

Example of an XML Signature

XML Digital Signature APl Examples
validate Example
genenveloped Example

Using the Service Registry Web Console

Getting Started With the Web Console
Starting the Web Console
Changing the Default Language

Searching the Registry
Using the Search Menu
Selecting a Query
Searching by Object Type
Searching by Name and Description
Searching by Classification
Viewing Search Results
Viewing Object Details
Using the Explore Menu

Publishing and Managing Registry Objects
Publishing Objects
Adding a Classification to an Object
Adding an External Identifier to an Object
Adding an External Link to an Object
Adding Custom Information to an Object Using Slots
Adding a Postal Address to an Organization or User
Adding a Telephone Number to an Organization or User
Adding an Email Addressto an Organization or User
Adding a User to an Organization
Adding a Child Organization to an Organization
Adding a Service Binding to a Service
Adding a Specification Link to a Service Binding
Adding a Child Concept to a Classification Scheme or Concept
Changing the State of Objects
Removing Objects

267
268
269
270
270
273
273
278

283
284
284
286
286
287
287
288
288
291
291
293
294
294
295
296
296
297
298
298
299
299
300
301
301
302
302
303

vii

viii

Chapter 8:

CONTENTS

Creating Rel ationships Between Objects

Developing Clients for the Service Registry

Overview of JAXR
About Registries and Repositories
About JAXR
JAXR Architecture
About the Examples
Setting Up a JAXR Client
Starting the Registry
Getting Access to the Registry
Establishing a Connection to the Registry
Obtaining and Using a RegistryService Object
Querying a Registry
Basic Query Methods
JAXR Information Model Interfaces
Finding Objects by Name
Finding Objects by Type
Finding Objects by Classification
Finding Objects by External Identifier
Finding Objects by External Link
Finding Objects by Unique Identifier
Finding Objects Y ou Published
Retrieving Information About an Object
Using Declarative Queries
Using Iterative Queries
Invoking Stored Queries
Querying a Registry Federation
Publishing Objectsto the Registry
Creating Objects
Saving Objectsin the Registry
Managing Objectsin the Registry

Creating Relationships Between Objects: Associations

Storing Items in the Repository
Organizing Objects Within Registry Packages
Changing the State of Objectsin the Registry

Removing Objects From the Registry and Repository

Further Information

O N~NNNOTWN PP

mmmgmmmmbbwwwwmmmmmr—w—w—\HH»—\
0 N Ol ON~NODNPOOOOOUPR~ANNPEPONOPMPE OO

CONTENTS

Chapter 9: Administering the Service Registry. 69
About the Admin Tool 69
Starting the Admin Tool 70

Batch Mode 70
Interactive Mode 71
Admin Tool Command-line Options 71
Using the Admin Tool 73
Permissions 73
Displaying Exceptions 74
I dentifying Registry Objects 74
The Effect of Locale on Specifying Names 75
Case Sensitivity 75
Using Admin Tool Commands 75
add association 76
add user 78
cd 86
chown 87
cp 88
echo 90
help 91
lcd 92
Is 92
pwd 94
quit 94
rm 95
select 97
set 97
show 99
users 100
Other Administration Tasks 101
Backing Up and Restoring the Database 101

Appendix A: A
XWS-Security Formal Schema Definition103

Formal Schema Definition 103
Appendix B: SISXPJARFiles 115
g sxp.jar 115

jsr173 api.jar 119

CONTENTS

About This Tutorial

T HE Java™ Web Services Tutorial is a guide to developing Web applications
with the Java Web Services Devel oper Pack (Java WSDP). The JavaWSDPisan
all-in-one download containing key technologies to simplify building of Web
services using the Java 2 Platform. Thistutorial requires afull installation (Typi-
cal, not Custom) of the Java WSDP, v1.6 with the Sun Java System Application
Server Platform Edition 8.1 2005Q2 UR2 (hereafter called the Application
Server). Here we cover all the things you need to know to make the best use of
thistutorial.

Who Should Use This Tutorial

This tutorial is intended for programmers who are interested in developing and
deploying Web services and Web applications on the Sun Java System Applica-
tion Server Platform Edition 8.1.

Prerequisites

Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
al the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et al., (Addison-Wedley, 2000). In particular, you should be familiar

Xi

Xii

ABOUT THIS TUTORIAL

with relational database and security features described in the trails listed in
Table 1.

Table1l Prerequisite Trailsin The Java™ Tutorial

Trail URL
JDBC http://java.sun.com/docs/books/tutorial/jdbc
Security http://java.sun.com/docs/books/tutorial/securityl.2

How to Use This Tutorial

The Java Web Services Tutorial is an adjunct to the J2EE 1.4 Tutorial, which
you can download from the following location:

http://java.sun.com/j2ee/1.4/download.html#tutorial

The Java Web Services Tutorial addresses the following technology areas, which
are not covered in the J2EE 1.4 Tutorial:
» The Java Architecture for XML Binding (JAXB)
» The StAX APlIsand the Sun Java Streaming XML Parser implementation
» XML and Web Services Security (XWS Security)
XML Digital Signature
» Service Registry
All of the examplesfor thistutorial are installed with the Java WSDP 1.6 bundle
and can be found in the subdirectories of the <JWSDP_HOME>/<technol-

ogy>/samples directory, where JWSDP_HOME is the directory where you installed
the Java WSDP 1.6 bundle.

The J2EE 1.4 Tutorial opens with three introductory chapters that you should
read before proceeding to any specific technology area. Java WSDP users should
look at Chapters 2 and 3, which cover XML basics and getting started with Web
applications.

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/security1.2
http://java.sun.com/j2ee/1.4/download.html#tutorial

ABOUT THIS TUTORIAL

When you have digested the basics, you can delve into one or more of the fol-
lowing main XML technology areas:

« TheJavaXML chapters cover the technol ogiesfor devel oping applications
that process XML documents and implement Web services components:

The Java API for XML Processing (JAXP)
The Java APl for XML-based RPC (JAX-RPC)
SOAP with Attachments API for Java (SAAJ)
The Java APl for XML Registries (JAXR)

» The Web-tier technology chapters cover the components used in devel op-
ing the presentation layer of a J2EE or stand-alone Web application:

Java Servlet

JavaServer Pages (JSP)

JavaServer Pages Standard Tag Library (JSTL)
JavaServer Faces

Web application internationalization and localization

» The platform services chapters cover system services used by all the J2EE
component technologies. Java WSDP users should look at the Web-tier
section of the Security chapter.

After you have become familiar with some of the technology areas, you are
ready to tackle a case study, which ties together several of the technologies dis-
cussed in the tutorial. The Coffee Break Application (Chapter 35) describes an
application that uses the Web application and Web services APls.

Finaly, the following appendixes contain auxiliary information helpful to the
Web Services application devel oper:

Java encoding schemes (Appendix A)
XML Standards (Appendix B)
HTTP overview (Appendix C)

About the Examples

This section tells you everything you need to know to install, build, and run the
examples.

Xiii

Xiv

ABOUT THIS TUTORIAL

Required Software

Java WSDP 1.6 Bundle

The example source for the technologies in this tutorial is contained in the Java
WSDP 1.6 bundle. If you are viewing this online, you need to download the Java
WSDP 1.6 bundle from:

http://java.sun.com/webservices/download/webservicespack.html

After you have installed the Java WSDP 1.6 bundle, the example source code is
in the subdirectories of the <JWSDP_HOME>/<technology>/samples/ directory.
For example, the examples for JAXB are included in the Java WSDP in the sub-
directories of the <JWSDP_HOME>/jaxb/samples directory.

Application Server

Sun Java System Application Server Platform Edition 8.1 2005Q2 UR2 is the
build and runtime environment for the tutorial examples. To build, deploy, and
run the examples, you need a copy of the Application Server and the Java 2 Soft-
ware Development Kit, Standard Edition (J2SE SDK) 1.4.2 or higher (J2SE 5.0
is recommended). The Application Server and J2SE SDK are contained in the
J2EE 1.4 SDK. If you aready have a copy of the J2SE SDK, you can download
the Application Server from:

http://java.sun.com/j2ee/1.4/downToad.html#sdk

You can also download the J2EE 1.4 SDK—which contains the Application
Server and the J2SE SDK—from the same site.

Building the Examples

Most of the examplesin the Java WSDP are distributed with a build file for Ant,
a portable build tool contained in the Java WSDP. For information about Ant,
visit http://ant.apache.org/. Directions for building the examples are pro-
vided in each chapter. Most of the tutorial examplesin the J2EE 1.4 Tutorial are
distributed with a configuration file for asant, a portable build tool contained in
the Application Server. Thistool isan extension of the Ant tool developed by the
Apache Software Foundation (http://ant.apache.org). The asant utility

http://java.sun.com/webservices/download/webservicespack.html
http://java.sun.com/j2ee/1.4/download.html#sdk
http://ant.apache.org/
http://ant.apache.org/

ABOUT THIS TUTORIAL

contains additional tasks that invoke the Application Server administration util-
ity asadmin. Directions for building the examples are provided in each chapter.

In order to run the Ant scripts, you must configure your environment and proper-
tiesfiles asfollows:

e Add the bin directory of your J2SE SDK installation to the front of your
path.

e Add <JWSDP_HOME>/jwsdp-shared/bin to the front of your path so the
Java WSDP 1.6 scripts that are shared by multiple components override
other installations.

* Add <JWSDP_HOME>/apache-ant/bin to the front of your path so that the
Java WSDP 1.6 Ant script overrides other installations.

Further Information

This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

For reference information on the tools distributed with the Application Server,
seethe man pagesat http://docs.sun.com/db/doc/819-0082.

See the Sun Java™ System Application Server Platform Edition 8.1 2005Q1
Developer’s Guide at http://docs.sun.com/db/doc/819-0079 for informa-
tion about devel oper features of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8.1 2005Q1
Administration Guide at http://docs.sun.com/db/doc/819-0076 for informa-
tion about administering the Application Server.

For information about the PointBase database included with the Application
Server, see the PointBase Web site at www . pointbase. com.

How to Print This Tutorial

To print thistutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader isinstalled on your system.
2. Open the PDF version of this book.
3. Click the printer icon in Adobe Acrobat Reader.

http://www.pointbase.com
JavaWSTutorial.pdf
http://docs.sun.com/db/doc/819-0076
http://docs.sun.com/db/doc/819-0082
http://docs.sun.com/db/doc/819-0079

XVi ABOUT THIS TUTORIAL

Typographical Conventions

Table 2 lists the typographical conventions used in this tutorial.

Table2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

URLSs, code examples, file names, path names, tool names,
monospace application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variablesin code, file paths, and URLs

<italic monospace> User-selected file path components

Feedback

Please send comments, broken link reports, errors, suggestions, and questions
about thistutorial to the tutorial team at users@jwsdp.dev.java.net.

mailto:users@jwsdp.dev.java.net

1

Binding XML Schema
to Java Classes with
JAXB

T HE Java™ Architecture for XML Binding (JAXB) provides afast and conve-
nient way to bind XML schemas to Java representations, making it easy for Java
developers to incorporate XML data and processing functions in Java applica-
tions. As part of this process, JAXB provides methods for unmarshalling XML
instance documents into Java content trees, and then marshalling Java content
trees back into XML instance documents.

What this all means is that you can leverage the flexibility of platform-neutral
XML datain Java applications without having to deal with or even know XML
programming techniques. Moreover, you can take advantage of XML strengths
without having to rely on heavyweight, complex XML processing models like
SAX or DOM. JAXB hides the details and gets rid of the extraneous relation-
ships in SAX and DOM—qgenerated JAXB classes describe only the relation-
ships actually defined in the source schemas. The result is highly portable XML
data joined with highly portable Java code that can be used to create flexible,
lightweight applications and Web services.

This chapter describes the JAXB architecture, functions, and core concepts. You
should read this chapter before proceeding to Chapter 2, which provides sample
code and step-by-step procedures for using JAXB.

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

JAXB Architecture

This section describes the components and interactions in the JAXB processing
model. After providing a general overview, this section goes into more detail
about core JAXB features. The topics in this section include:

 Architectural Overview

e The JAXB Binding Process

» JAXB Binding Framework

* More About javax.xml.bind

» More About Unmarshalling

* More About Marshalling

* More About Validation

Architectural Overview

Figure 1-1 shows the components that make up a JAXB implementation.

Application Code

XML

Schema P e ——
Interfaces package

unmarshal

and Object iz ay xmi.bind XuL
: put
ﬁdi ng Document

Compiler
Implementation

marshal
Classes of

javax.xml.bind

Binding

. . XML
Customizations Application Output
(optional) Document

Figure1-1 JAXB Architectural Overview

ARCHITECTURAL OVERVIEW

As shown in Figure 1-1, a JAXB implementation comprises the following eight
core components.

Table1-1 Core Componentsin a JAXB Implementation

Component Description

XML Schema An XML schemauses XML syntax to describe the rel ationships among
elements, attributes and entitiesin an XML document. The purpose of an
XML schemaisto define aclass of XML documents that must adhere to
aparticular set of structural rules and data constraints. For example, you
may want to define separate schemas for chapter-oriented books, for an
online purchase order system, or for a personnel database. In the context
of JAXB, an XML document containing data that is constrained by an
XML schemaisreferred to as a document instance, and the structure and
data within a document instance is referred to as a content tree.

Binding By default, the JAXB binding compiler binds Java classes and packages
Customizations to asource XML schema based on rules defined in Section 5, “Binding
XML Schemato Java Representations,” in the JAXB Specification. In
most cases, the default binding rules are sufficient to generate a robust
set of schema-derived classes from awide range of schemas. There may
be times, however, when the default binding rules are not sufficient for
your needs. JAXB supports customizations and overrides to the default
binding rules by means of binding customizations made either inline as
annotations in a source schema, or as statements in an external binding
customization file that is passed to the JAXB binding compiler. Note that
custom JAXB binding customizations also alow you to customize your
generated JAXB classes beyond the XM L-specific constraintsin an
XML schemato include Java-specific refinements such as class and

package name mappings.
Binding The JAXB binding compiler isthe core of the JAXB processing model.
Compiler Its function is to transform, or bind, a source XML schemato a set of

JAXB content classes in the Java programming language. Basically, you
run the JAXB binding compiler using an XML schema (optionally with
custom hinding declarations) as input, and the binding compiler gener-
ates Java classes that map to constraints in the source XML schema.

Implementation | The JAXB binding framework implementation isaruntime API that pro-
of vides interfaces for unmarshalling, marshalling, and validating XML
javax.xml.bind | contentinaJavaapplication. The binding framework comprisesinter-
facesin the javax.xm1.bind package.

Schema-Derived | These are the schema-derived classes generated by the binding JAXB
Classes compiler. The specific classes will vary depending on the input schema.

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

Table 1-1 Core Componentsin a JAXB Implementation (Continued)

Component

Description

Java
Application

In the context of JAXB, aJavaapplication isaclient application that uses
the JAXB binding framework to unmarshal XML data, validate and mod-
ify Java content objects, and marshal Java content back to XML data.
Typically, the JAXB binding framework is wrapped in alarger Java
application that may provide Ul features, XML transformation functions,
data processing, or whatever elseis desired.

XML Input
Documents

XML content that is unmarshalled as input to the JAXB binding frame-
work -- that is, an XML instance document, from which a Java represen-
tation in the form of a content tree is generated. In practice, the term
“document” may not have the conventional meaning, asan XML
instance document does not have to be acompletely formed, selfstanding
document file; it can instead take the form of streams of data passed
between applications, or of sets of database fields, or of XML infosets, in
which blocks of information contain just enough information to describe
where they fit in the schema structure.

In JAXB, the unmarshalling process supports validation of the XML
input document against the constraints defined in the source schema.
This validation processis optional, however, and there may be casesin
which you know by other means that an input document isvalid and so
you may choose for performance reasons to skip validation during
unmarshalling. In any case, validation before (by means of athird-party
application) or during unmarshalling isimportant, because it assures that
an XML document generated during marshalling will also be valid with
respect to the source schema. Validation is discussed more later in this
chapter.

XML Output
Documents

XML content that is marshalled out to an XML document. In JAXB,
marshalling involves parsing an XML content object tree and writing out
an XML document that is an accurate representation of the original XML
document, and is valid with respect the source schema. JAXB can mar-
shal XML datato XML documents, SAX content handlers, and DOM
nodes.

THE JAXB BINDING PROCESS

The JAXB Binding Process

Figure 1-2 shows what occurs during the JAXB binding process.

Je o
Schema compile
validate
follows instances of
unmarshal
XML
Document Obie

marshal

Figure1-2 Stepsinthe JAXB Binding Process

The general stepsin the JAXB data binding process are:

1

2.

Generate classes. An XML schemais used as input to the JAXB binding
compiler to generate JAXB classes based on that schema.

Compile classes. All of the generated classes, source files, and application
code must be compiled.

. Unmarshal. XML documents written according to the constraints in the

source schema are unmarshalled by the JAXB binding framework. Note
that JAXB also supports unmarshalling XML datafrom sources other than
files/documents, such as DOM nodes, string buffers, SAX Sources, and so
forth.

. Generate content tree. The unmarshalling process generates a content tree

of data objects instantiated from the generated JAXB classes; this content
tree represents the structure and content of the source XML documents.

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

5. Validate (optional). The unmarshalling process optionally involves valida-
tion of the source XML documents before generating the content tree.
Note that if you modify the content treein Step 6, below, you can also use
the JAXB Validate operation to validate the changes before marshalling the
content back to an XML document.

6. Process content. The client application can modify the XML data repre-
sented by the Java content tree by means of interfaces generated by the
binding compiler.

7. Marshal. The processed content treeis marshalled out to one or more XML
output documents. The content may be validated before marshalling.

To summarize, using JAXB involves two discrete sets of activities:

» Generate and compile JAXB classes from a source schema, and build an
application that implements these classes

* Run the application to unmarshal, process, validate, and marshal XML
content through the JAXB binding framework

These two steps are usualy performed at separate times in two distinct phases.
Typicaly, for example, there is an application development phase in which
JAXB classes are generated and compiled, and abinding implementation is built,
followed by a deployment phase in which the generated JAXB classes are used
to process XML content in an ongoing “live” production setting.

Note: Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of con-
tent trees by direct invocation of the appropriate factory methods. Once created, a
content tree may be revalidated, either in whole or in part, at any time. See Create
Marshal Example (page 47) for an example of using the ObjectFactory classto
directly add content to a content tree.

JAXB Binding Framework

The JAXB binding framework isimplemented in three Java packages:

+ The javax.xml.bind package defines abstract classes and interfaces that
are used directly with content classes.
The javax.xml.bind package defines the Unmarshaller, Validator,
and Marshaller classes, which are auxiliary objects for providing their
respective operations.

MORE ABOUT JAVAX.XML.BIND

The JAXBContext class is the entry point for a Java application into the
JAXB framework. A JAXBContext instance manages the binding relation-
ship between XML element names to Java content interfaces for a JAXB
implementation to be used by the unmarshal, marshal and validation oper-
ations.

The javax.xm1.bind package also defines a rich hierarchy of validation
event and exception classes for use when marshalling or unmarshalling
errors occur, when constraints are violated, and when other types of errors
are detected.

e The javax.xml.bind.uti1 package contains utility classes that may be
used by client applications to manage marshalling, unmarshalling, and val-
idation events.

e Thejavax.xml.bind.helper package provides partial default implemen-
tations for some of the javax.xml.bind interfaces. Implementations of
JAXB can extend these classes and implement the abstract methods. These
APIs are not intended to be directly used by applications using JAXB
architecture.

The main package in the JAXB binding framework, javax.xml.bind, is
described in more detail below.

More About javax.xml.bind

The three core functions provided by the primary binding framework package,
javax.xml.bind, are marshalling, unmarshalling, and validation. The main cli-
ent entry point into the binding framework isthe JAXBContext class.

JAXBContext provides an abstraction for managing the XML/Java binding infor-
mation necessary to implement the unmarshal, marshal and validate operations.
A client application obtains new instances of this class by means of the
newInstance(contextPath) method; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

The contextPath parameter contains a list of Java package names that contain
schema-derived interfaces—specifically the interfaces generated by the JAXB
binding compiler. The value of this parameter initializes the JAXBContext object
to enable management of the schema-derived interfaces. To this end, the JAXB

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

provider implementation must supply an implementation class containing a
method with the following signature:

public static JAXBContext createContext(String contextPath,
ClassLoader classlLoader)

throws JAXBException;

Note: The JAXB provider implementation must generate a jaxb.properties file
in each package containing schema-derived classes. This property file must contain
a property named javax.xml.bind.context.factory whose value is the name of
the class that implements the createContext API.

The class supplied by the provider does not have to be assignable to
javax.xml.bind.JAXBContext, it Simply hasto provide aclassthat implementsthe
createContext API. By allowing for multiple Java packages to be specified, the
JAXBContext instance allows for the management of multiple schemas at onetime.

More About Unmarshalling

The Unmarshaller class in the javax.xml.bind package provides the client
application the ability to convert XML data into a tree of Java content objects.
The unmarshal method for a schema (within a namespace) allows for any global
XML element declared in the schema to be unmarshalled as the root of an
instance document. The JAXBContext object allows the merging of global ele-
ments across a set of schemas (listed in the contextPath). Since each schemain
the schema set can belong to distinct namespaces, the unification of schemas to
an unmarshalling context should be namespace-independent. This means that a
client application is able to unmarshal XML documents that are instances of any
of the schemas listed in the contextPath; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

Unmarshaller u = jc.createUnmarshaller();

FooObject fooObj =
(FooObject)u.unmarshal(new File("foo.xm1")); // ok

BarObject barObj =
(BarObject)u.unmarshal(new File("bar.xml")); // ok

MORE ABOUT MARSHALLING

BazObject bazObj =
(BazObject)u.unmarshal(new File("baz.xm1"));
// error, "com.acme.baz" not in contextPath

A client application may also generate Java content trees explicitly rather than
unmarshalling existing XML data. To do so, the application needs to have access
and knowledge about each of the schema-derived ObjectFactory classes that
exist in each of Java packages contained in the contextPath. For each schema-
derived Java class, there will be a static factory method that produces objects of
that type. For example, assume that after compiling a schema, you have a pack-
age com.acme. foo that contains a schema-derived interface named Purchase-
Order. To create objects of that type, the client application would use the
following factory method:

ObjectFactory objFactory = new ObjectFactory();

com.acme.foo.PurchaseOrder po =
objFactory.createPurchaseOrder();

Note: Because multiple ObjectFactory classes are generated when there are mul-
tiple packages on the contextPath, if you have multiple packages on the contex-
tPath, you should use the complete package name when referencing an
ObjectFactory classin one of those packages.

Once the client application has an instance of the schema-derived object, it can
use the mutator methods to set content on it.

Note: The JAXB provider implementation must generate a class in each package
that contains all of the necessary aobject factory methods for that package named
ObjectFactory aswell asthe newInstance(javaContentInterface) method.

More About Marshalling

TheMarshaller classinthe javax.xm1.bind package provides the client appli-
cation the ability to convert a Java content tree back into XML data. Thereis no
difference between marshalling a content tree that is created manually using the
factory methods and marshalling a content tree that is the result an unmarshal
operation. Clients can marshal a Java content tree back to XML data to a

10

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

java.io.OutputStream Or a java.io.Writer. The marshalling process can
aternatively produce SAX2 event streams to a registered ContentHandler or
produce a DOM Node object.

A simple example that unmarshals an XML document and then marshals it back
outisafollows:

JAXBContext jc = JAXBContext.newInstance("com.acme.foo");

// unmarshal from foo.xml
Unmarshaller u = jc.createUnmarshaller();
FooObject fooObj =

(FooObject)u.unmarshal(new File("foo.xm1"));

// marshal to System.out
Marshaller m = jc.createMarshaller();
m.marshal(fooObj, System.out);

By default, theMarshaller uses UTF-8 encoding when generating XML datato
a java.io.OutputStream Or a java.io.Writer. Use the setProperty APl to
change the output encoding used during these marshal operations. Client appli-
cations are expected to supply avalid character encoding name as defined in the
W3C XML 1.0 Recommendation (http://www.w3.0rg/TR/2000/REC-xm1-
20001006#charencoding) and supported by your Java Platform.

Client applications are not required to validate the Java content tree prior to call-
ing one of the marshal APIs. There is also no requirement that the Java content
tree be valid with respect to its original schema in order to marshal it back into
XML data. Different JAXB Providers can support marshalling invalid Java con-
tent trees at varying levels, however all JAXB providers must be able to marshal
avalid content tree back to XML data. A JAXB provider must throw aMarshal-
Exception when it is unable to complete the marshal operation due to invalid
content. Some JAXB providers will fully allow marshalling invalid content, oth-
erswill fail on thefirst validation error.

http://www.w3.org/TR/2000/REC-xml-20001006#charencoding
http://www.w3.org/TR/2000/REC-xml-20001006#charencoding

MORE ABOUT VALIDATION

Table 1-2 shows the properties that the Marshaller class supports.

Table1-2 Marshaller Properties

Property

Description

jaxb.encoding

Value must be ajava.lang.String; the output
encoding to use when marshalling the XML data.
TheMarshaller will use“UTF-8" by default if
this property is not specified.

jaxb.formatted.output

Value must bea java.lang.Boolean; controls
whether or not theMarshaller will format the
resulting XML data with line breaks and indenta-
tion. A true valuefor this property indicates
human readable indented XML data, while a
false vaueindicates unformatted XML data. The
Marshaller defaultsto false (unformatted) if
this property is not specified.

jaxb.schemalocation

Value must bea java.lang.String; alowsthe
client application to specify an xsi : schemaLoca-
tion attribute in the generated XML data. The for-
mat of the schemalLocation attribute valueis
discussed in an easy to understand, non-normative
formin Section 5.6 of the W3C XML Schema Part
0: Primer and specified in Section 2.6 of the W3C
XML Schema Part 1: Structures.

jaxb.noNamespaceSchemalocation

Value must bea java.lang.String; allowsthe
client application to specify an xsi :noNamespac-
eSchemalocation attribute in the generated
XML data.

More About Validation

Thevalidator classin the javax.xm1.bind packageis responsible for control-
ling the validation of content trees during runtime. When the unmarshalling pro-
cess incorporates validation and it successfully completes without any validation
errors, both the input document and the resulting content tree are guaranteed to
be valid. By contrast, the marshalling process does not actually perform valida-
tion. If only validated content trees are marshalled, this guarantees that generated

XML documents are always valid with respect to the source schema.

11

12

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

Some XML parsers, like SAX and DOM, alow schema validation to be dis-
abled, and there are casesin which you may want to disable schemavalidation to
improve processing speed and/or to process documents containing invalid or
incomplete content. JAXB supports these processing scenarios by means of the
exception handling you choose implement in your JAXB-enabled application. In
generd, if a JAXB implementation cannot unambiguously complete unmarshal-
ling or marshalling, it will terminate processing with an exception.

Note: The validator class is responsible for managing On-Demand Validation
(seebelow). TheUnmarshaller classisresponsible for managing Unmarshal-Time
Validation during the unmarshal operations. Although there is no formal method of
enabling validation during the marshal operations, the Marshaller may detect
errors, which will be reported to the validationEventHandler registered onit.

A JAXB client can perform two types of validation:

* Unmarshal-Timevalidation enables aclient application to receive informa-
tion about validation errors and warnings detected while unmarshalling
XML data into a Java content tree, and is completely orthogona to the
other types of validation. To enable or disable it, use the Unmar-
shaller.setValidating method. All JAXB Providers are required to
support this operation.

» On-Demand validation enables a client application to receive information
about validation errors and warnings detected in the Java content tree. At
any point, client applicationscan cal thevalidator.validate method on
the Java content tree (or any sub-tree of it). All JAXB Providers are
required to support this operation.

If the client application does not set an event handler on its validator, Unmar-
shaller, or Marshaller prior to caling the validate, unmarshal, or marshal
methods, then a default event handler will receive notification of any errors or
warnings encountered. The default event handler will cause the current operation
to halt after encountering the first error or fatal error (but will attempt to continue
after receiving warnings).

There are three ways to handle events encountered during the unmarshal, vali-
date, and marshal operations:

» Usethedefault event handler.

XML SCHEMAS

The default event handler will be used if you do not specify one via the
setEventHandler APIson Validator, Unmarshaller, or Marshaller.

* Implement and register a custom event handler.
Client applications that require sophisticated event processing can imple-
ment the validationEventHandler interface and register it with the
Unmarshaller and/or Validator.

» UsetheVvalidationEventCollector utility.

For convenience, a specialized event handler is provided that ssmply col-
lects any validationEvent objects created during the unmarshal, vali-
date, and marshal operations and returns them to the client application as
ajava.util.Collection.

Validation events are handled differently, depending on how the client applica-
tion is configured to process them. However, there are certain cases where a
JAXB Provider indicates that it is no longer able to reliably detect and report
errors. In these cases, the JAXB Provider will set the severity of the valida-
tionEvent to FATAL_ERROR to indicate that the unmarshal, validate, or marshal
operations should be terminated. The default event handler and validation-
EventCollector utility class must terminate processing after being notified of a
fatal error. Client applications that supply their own ValidationEventHandler
should also terminate processing after being notified of afatal error. If not, unex-
pected behavior may occur.

XML Schemas

Because XML schemas are such an important component of the JAXB process-
ing model—and because other data binding facilities like JAXP work with DTDs
instead of schemas—it is useful to review here some basics about what XML
schemas are and how they work.

XML Schemas are a powerful way to describe alowable elements, attributes,
entities, and relationships in an XML document. A more robust alternative to
DTDs, the purpose of an XML schemais to define classes of XML documents
that must adhere to a particular set of structural and data constraints—that is, you
may want to define separate schemas for chapter-oriented books, for an online
purchase order system, or for a personnel database. In the context of JAXB, an
XML document containing data that is constrained by an XML schema is
referred to as a document instance, and the structure and data within a document
instance is referred to as a content tree.

13

14 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

Note: In practice, theterm “document” is not always accurate, as an XML instance
document does not have to be a completely formed, selfstanding document file; it
can instead take the form of streams of data passed between applications, or of sets
of database fields, or of XML infosets in which blocks of information contain just
enough information to describe where they fit in the schema structure.

The following sample code is taken from the W3C's Schema Part 0: Primer
(http://www.w3.0rg/TR/2001/REC-xmlschema-0-20010502/), and illustrates
an XML document, po.xm1, for asimple purchase order.

<?xml version="1.0"7>
<purchaseOrder orderDate="1999-10-20">
<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>MiT1 Valley</city>
<state>CA</state>
<zip>90952</zip>
</shipTo>
<bi11To country="US">
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>01d Town</city>
<state>PA</state>
<zip>95819</zip>
</bi11To>
<comment>Hurry, my Tawn is going wild!</comment>
<items>
<item partNum="872-AA">
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>
</item>
<item partNum="926-AA">
<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>
</item>
</items>
</purchaseOrder>

The root element, purchaseOrder, contains the child elements shipTo, bi11To,
comment, and items. All of these child elements except comment contain other

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

XML SCHEMAS

child elements. The leaves of the tree are the child elements like name, street,
city, and state, which do not contain any further child elements. Elements that
contain other child elements or can accept attributes are referred to as complex
types. Elementsthat contain only PCDATA and no child elements are referred to as
simple types.

The complex types and some of the simple types in po.xm1 are defined in the
purchase order schema below. Again, this example schema, po.xsd, is derived
from the W3C's Schema Part 0: Primer (http://www.w3.0rg/TR/2001/REC-
xmlschema-0-20010502/).

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="bil1To" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>
</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:complexType name="USAddress'">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN"
fixed="US"/>
</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="1item" minOccurs="1"
max0Occurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName"
type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">

15

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type='"xsd:date"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU"
use="required"/>
</xsd:compTlexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

In this example, the schema comprises, similar toaDTD, amain or root schema
element and severa child elements, element, complexType, and simpleType.
Unlike a DTD, this schema also specifies as attributes data types like decimal,
date, fixed, and string. The schema also specifies constraints like pattern
value, minOccurs, and positiveInteger, among others. In DTDs, you can
only specify data types for textual data (PCDATA and CDATA); XML schema sup-
ports more complex textual and numeric data types and constraints, all of which
have direct analogsin the Javalanguage.

Note that every element in this schema has the prefix xsd:, which is associated
with the W3C XML Schema namespace. To this end, the namespace declaration,
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema", is declared as an
attribute to the schema €lement.

Namespace support is another important feature of XML schemas because it
provides a means to differentiate between elements written against different
schemas or used for varying purposes, but which may happen to have the same
name as other elements in a document. For example, suppose you declared two
namespaces in your schema, one for foo and another for bar. Two XML docu-
ments are combined, one from a billing database and another from an shipping
database, each of which was written against a different schema. By specifying

REPRESENTING XML CONTENT

namespaces in your schema, you can differentiate between, say, foo:address
and bar:address.

Representing XML Content

This section describes how JAXB represents XML content as Java objects. Spe-
cifically, the topicsin this section are as follows:

« Binding XML Namesto Javaldentifiers
» Java Representation of XML Schema

Binding XML Names to Java ldentifiers

XML schema languages use XML names—strings that match the Name produc-
tion defined in XML 1.0 (Second Edition) (http://www.w3.org/XML/) to label
schema components. This set of strings is much larger than the set of valid Java
class, method, and constant identifiers. To resolve this discrepancy, JAXB uses
several name-mapping algorithms.

The JAXB name-mapping agorithm maps XML names to Java identifiers in a
way that adheres to standard Java APl design guidelines, generates identifiers
that retain obvious connections to the corresponding schema, and is unlikely to
result in many collisions.

Refer to Chapter 2 for information about changing default XML name map-
pings. See Appendix C in the JAXB Specification for complete details about the
JAXB naming algorithm.

Java Representation of XML Schema

JAXB supports the grouping of generated classes and interfaces in Java pack-
ages. A package comprises.

* A name, which is either derived directly from the XML namespace URI,
or specified by a binding customization of the XML namespace URI

« A set of Java content interfaces representing the content models declared
within the schema

» A Set of Java element interfaces representing element declarations occur-
ring within the schema

17

http://java.sun.com/xml/downloads/jaxb.html
http://www.w3.org/XML/

18

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

* AnoObjectFactory class containing:

* Aninstancefactory method for each Java content interface and Javaele-
ment interface within the package; for example, given a Java content
interface named Foo, the derived factory method would be:

public Foo createFoo() throws JAXBException;

» Dynamic instance factory allocator; creates an instance of the specified
Java content interface; for example:

public Object newInstance(Class javaContentInterface)
throws JAXBException;

» getProperty and setProperty APIs that alow the manipulation of
provider-specified properties
» Set of typesafe enum classes
» Package javadoc

Binding XML Schemas

This section describes the default XM L-to-Java bindings used by JAXB. All of
these bindings can be overridden on global or case-by-case levels by means of a
custom binding declaration. The topics in this section are as follows:

» Simple Type Definitions

» Default Data Type Bindings

» Default Binding Rules Summary

See the JAXB Specification for complete information about the default JAXB
bindings.

Simple Type Definitions

A schema component using a simple type definition typicaly binds to a Java
property. Since there are different kinds of such schema components, the follow-
ing Java property attributes (common to the schema components) include:

* Basetype

» Collection type, if any

http://java.sun.com/xml/downloads/jaxb.html

DEFAULT DATA TYPE BINDINGS 19

* Predicate

The rest of the Java property attributes are specified in the schema component
using the simple type definition.

Default Data Type Bindings

The Javalanguage provides aricher set of datatype than XML schema. Table 1-
3 lists the mapping of XML data types to Java datatypesin JAXB.

Table 1-3 JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type | Java Data Type
xsd:string java.lang.String
xsd:integer java.math.BigInteger
xsd:int int

xsd.Tong Tong

xsd:short short

xsd:decimal java.math.BigDecimal
xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName
xsd:dateTime java.util.Calendar
xsd:base64Binary byte[]

xsd:hexBinary bytel[]
xsd:unsignedInt Tong
xsd:unsignedShort | int

xsd:unsignedByte short

20

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

Table1-3 JAXB Mapping of XML Schema Built-in Data Types (Continued)

XML Schema Type | Java Data Type

xsd:time java.util.Calendar

xsd:date java.util.Calendar

xsd:anySimpleType | java.lang.String

Default Binding Rules Summary
The JAXB binding model follows the default binding rules summarized below:

Bind the following to Java package:

¢ XML Namespace URI

Bind the following XML Schema components to Java content interface:
» Named complex type

» Anonymousinlined type definition of an element declaration

Bind to typesafe enum class:

* A named simple type definition with a basetype that derives from
“xsd:NCName” and has enumeration facets.

Bind thefollowing XML Schema componentsto a Java Element interface:

» A global element declaration to a Element interface.

» Loca element declaration that can beinserted into ageneral content list.

Bind to Java property:

» Attribute use

» Particlewith aterm that is an element reference or local element decla-
ration.

Bind model group with a repeating occurrence and complex type defini-

tions with mixed {content type} to:

» A genera content property; a List content-property that holds Java
instances representing element information items and character data
items.

CusToMIZING JAXB BINDINGS

Customizing JAXB Bindings

The default JAXB bindings can be overridden at a global scope or on a case-by-
case basis as needed by using custom binding declarations. As described previ-
ously, JAXB uses default binding rules that can be customized by means of bind-
ing declarations made in either of two ways.

* Asinline annotationsin a source XML schema

¢ Asdeclarationsin an external binding customizations file that is passed to
the JAXB binding compiler

Custom JAXB binding declarations also allow you to customize your generated
JAXB classes beyond the XML-specific constraints in an XML schema to
include Java-specific refinements such as class and package name mappings.

You do not need to provide a binding instruction for every declaration in your
schemato generate Java classes. For example, the binding compiler uses a gen-
eral name-mapping algorithm to bind XML names to names that are acceptable
in the Java programming language. However, if you want to use a different nam-
ing scheme for your classes, you can specify custom binding declarations to
make the binding compiler generate different names. There are many other cus-
tomizations you can make with the binding declaration, including:

» Name the package, derived classes, and methods
» Assign types to the methods within the derived classes
» Choose which elements to bind to classes

» Decide how to bind each attribute and element declaration to a property in
the appropriate content class

» Choose the type of each attribute-value or content specification

Note: Relying onthedefault JAXB binding behavior rather than requiring abinding
declaration for each XML Schemacomponent bound to a Javarepresentation makes
it easier to keep pace with changes in the source schema. In most cases, the default
rules are robust enough that a usabl e binding can be produced with no custom bind-
ing declaration at all.

Code examples showing how to customize JAXB bindings are provided in Chap-
ter 2.

21

22

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

Scope

When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.

Table 1-4 lists the four scopes for custom bindings.

Table 1-4 Custom Binding Scopes

Scope Description

Global A customization value defined in <globa1Bindings> has global scope. A
global scope covers all the schema elementsin the source schema and (recur-
sively) any schemas that are included or imported by the source schema.

Schema A customization value defined in <schemaB1indings> has schema scope. A
schema scope covers all the schema elements in the target name space of a
schema.

Definition A customization value in binding declarations of atype definition and global
declaration has definition scope. A definition scope covers all schema elements
that reference the type definition or the global declaration.

Component | A customization value in a binding declaration has component scope if the
customization value applies only to the schema element that was annotated
with the binding declaration.

Scope Inheritance

The different scopes form a taxonomy. The taxonomy defines both the inherit-
ance and overriding semantics of customization values. A customization value
defined in one scope is inherited for use in a binding declaration covered by
another scope as shown by the following inheritance hierarchy:

» A schemaelement in schema scope inherits a customization value defined
in global scope.

* A schema element in definition scope inherits a customization value
defined in schema or global scope.

* A schema element in component scope inherits a customization value
defined in definition, schema or global scope.

WHAT 1S NOT SUPPORTED

Similarly, a customization value defined in one scope can override a customiza-
tion value inherited from another scope as shown below:

« Valuein schema scope overrides a value inherited from global scope.
» Valuein definition scope overrides a val ue inherited from schema scope or
global scope.

* Value in component scope overrides a value inherited from definition,
schema or global scope.

What is Not Supported

See Section E.2, “Not Required XML Schema Concepts,” in the JAXB Specifica-
tion for the latest information about unsupported or non-required schema con-

cepts.

JAXB APIs and Tools

The JAXB APIs and tools are shipped in the jaxb subdirectory of the Java
WSDP. This directory contains sample applications, a JAXB binding compiler
(xjc), and implementations of the runtime binding framework APIs contained in
the javax.xml.bind package. For instructions on using the JAXB, see Chapter
2.

23

http://java.sun.com/xml/downloads/jaxb.html

24

BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

2
Using JAXB

T HIS chapter provides instructions for using several of the sample Java appli-
cations that were included in the Java WSDP. These examples demonstrate and
build upon key JAXB features and concepts. It is recommended that you follow
these procedures in the order presented.

After reading this chapter, you should feel comfortable enough with JAXB that
you can:

* Generate JAXB Java classes from an XML schema

¢ Use schema-derived JAXB classes to unmarshal and marshal XML con-
tent in a Java application

» Create a Java content tree from scratch using schema-derived JAXB
classes

» Validate XML content during unmarshalling and at runtime

e Customize JAXB schema-to-Java bindings

The primary goals of the basic examples are to highlight the core set of JAXB
functions using default settings and bindings. After familiarizing yourself with
these core features and functions, you may wish to continue with Customizing
JAXB Bindings (page 54) for instructions on using five additional examples that
demonstrate how to modify the default JAXB bindings.

Note: The Purchase Order schema, po.xsd, and the Purchase Order XML file,
po.xm1, used in these samples are derived from the W3C XML Schema Part O:
Primer (http://www.w3.0rg/TR/xmlschema-0/), edited by David C. Fallside.

25

http://www.w3.org/TR/xmlschema-0/

26

UsING JAXB

General Usage Instructions

This section provides general usage instructions for the examples used in this
chapter, including how to build and run the applications using the Ant build tool,
and provides details about the default schema-to-JAXB bindings used in these
examples.

Description

This chapter describes ten examples; the basic examples (Unmarshal Read,
Modify Marshal, Create Marshal, Unmarshal Validate, Validate-On-Demand)
demonstrate basic JAXB concepts like ummarshalling, marshalling, and validat-
ing XML content, while the customize examples (Customize Inline, Datatype
Converter, External Customize, Fix Collides, Bind Choice) demonstrate various
ways of customizing the binding of XML schemas to Java objects. Each of the
examplesin this chapter is based on a Purchase Order scenario. With the excep-
tion of the Bind Choice and the Fix Collides examples, each uses an XML docu-
ment, po.xm1, written against an XML schema, po. xsd.

Table2-1 Sample JAXB Application Descriptions

Example Name Description

Unmarshal Read Exam- Demonstrates how to unmarshal an XML document into a Java
ple content tree and access the data contained within it.

Modify Marshal Exam-

ple Demonstrates how to modify a Java content tree.

Demonstrates how to usethe ObjectFactory classto create a

Create Marshal Example Java content tree from scratch and then marshal it to XML data.

Unmarshal Validate

Demonstrates how to enable validation during unmarshalling.
Example

Vaidate-On-Demand

Demonstrates how to validate a Java content tree at runtime.
Example

Customize Inline Exam- Demonstrates how to customize the default JAXB bindings by
ple means of inline annotationsin an XML schema.

DESCRIPTION

Table2-1 Sample JAXB Application Descriptions

Example Name Description

Similar to the Customize Inline example, this exampleillustrates
Datatype Converter T , o
Example aternate, moreterse bindings of XML simpleType definitionsto

Java datatypes.

Ilustrates how to use an external binding declarations file to pass
binding customizations for a read-only schemato the JAXB bind-
ing compiler.

External Customize
Example

Illustrates how to use customizations to resolve name conflicts
reported by the JAXB binding compiler. It is recommended that
you first runant fail inthe application directory to seethe
Fix Collides Example errors reported by the JAXB binding compiler, and then look at
binding.xjb to see how the errors were resolved. Running ant
aone uses the binding customizations to resolve the name con-
flicts while compiling the schema.

Bind Choice Example Illustrates how to bind a choice model group to a Javainterface.

Note: These examplesare al located in the $JWSDP_HOME/jaxb/samples direc-
tory.

Each example directory contains several base files:

* po.xsd isthe XML schema you will use as input to the JAXB binding
compiler, and from which schema-derived JAXB Javaclasses will be gen-
erated. For the Customize Inline and Datatype Converter examples, this
file contains inline binding customizations. Note that the Bind Choice and
Fix Collides examples use example. xsd rather than po. xsd.

* po.xml isthe Purchase Order XML file containing sample XML content,

and isthefile you will unmarshal into a Java content tree in each example.
Thisfile is aimost exactly the same in each example, with minor content

27

28

UsING JAXB

differences to highlight different JAXB concepts. Note that the Bind
Choice and Fix Collides examples use example.xm1 rather than po.xm1.

* Main.java isthe main Java class for each example.

* build.xml isan Ant project file provided for your convenience. Use Ant
to generate, compile, and run the schema-derived JAXB classes automati-
cally. The build.xm1 file varies across the examples.

* MyDatatypeConverter.javaintheinline-customize exampleisaJava
class used to provide custom datatype conversions.

* binding.xjb in the External Customize, Bind Choice, and Fix Collides
examplesisan external binding declarationsfilethat is passed to the JAXB
binding compiler to customize the default JAXB bindings.

» example.xsd in the Fix Collides example is a short schema file that con-
tains deliberate naming conflicts, to show how to resolve such conflicts
with custom JAXB bindings.

Using the Examples

As with all applications that implement schema-derived JAXB classes, as
described above, there are two distinct phasesin using JAXB:

1. Generating and compiling JAXB Java classes from an XML source
schema
2. Unmarshalling, validating, processing, and marshalling XML content

In the case of these examples, you perform these steps by using Ant with the
build.xm1 project file included in each example directory.

Configuring and Running the Samples

Thebuild.xm1 fileincluded in each example directory isan Ant project file that,
when run, automatically performs the following steps:

1. Updates your CLASSPATH to include the necessary schema-derived JAXB
classes.

2. Runsthe JAXB binding compiler to generate JAXB Java classes from the
XML source schema, po.xsd, and puts the classes in a package named
primer.po.

3. Generates APl documentation from the schema-derived JAXB classes
using the Javadoc toal.

CONFIGURING AND RUNNING THE SAMPLES

4. Compiles the schema-derived JAXB classes.
5. RunstheMain class for the example.

Solaris/Linux

1. Set the following environment variables:

export JAVA_HOME=<your J2SE installation directory>
export JWSDP_HOME=<your JWSDP installation directory>

2. Change to the desired example directory.
For example, to run the Unmarshal Read example:
cd <JWSDP_HOME>/jaxb/samples/unmarshal-read

(<JwsDP_HOME> is the directory where you installed the Java WSDP bun-
die)

3. Run ant:
$IWSDP_HOME/apache-ant/bin/ant -emacs
4. Repest these steps for each example.

Windows NT/2000/XP

1. Set the following environment variables:

set JAVA_HOME=<your J2SE installation directory>
set JWSDP_HOME=<your JWSDP installation directory>

2. Change to the desired example directory.
For example, to run the Unmarshal Read example:
cd <JWSDP_HOME>\jaxb\samples\unmarshal-read

(<JwWSDP_HOME> is the directory where you installed the Java WSDP bun-
die)
3. Run ant:

%JWSDP_HOME%\apache-ant\bin\ant -emacs
4. Repeat these steps for each example.

The schema-derived JAXB classes and how they are bound to the source schema
is described in About the Schema-to-Java Bindings (page 32). The methods used
for building and processing the Java content tree are described in Basic
Examples (page 43).

30

UsING JAXB

JAXB Compiler Options

The JAXB schema binding compiler is located in the <JWSDP_HOME>/jaxb/bin
directory. There are two scripts in this directory: xjc.sh (Solaris/Linux) and

xjc.bat (Windows).

Both xjc.sh and xjc.bat take the same command-line options. You can display
quick usage instructions by invoking the scripts without any options, or with the
-help switch. The syntax is as follows:

xjc [-options

...] <schema>

The xjc command-line options are listed in Table 2-2.

Table2—2 xjc Command-Line Options

Option or
Argument

Description

<schema>

One or more schema filesto compile.

-hv

Do not perform strict validation of the input schema(s). By defaullt,
xjc performs strict validation of the source schema before process-
ing. Note that this does not mean the binding compiler will not per-
form any validation; it ssimply means that it will perform less-strict

validation.

-extension

By default, xjc strictly enforces the rules outlined in the Compati-
bility chapter of the JAXB Specification. Specifically, Appendix E.2
defines a set of W3C XML Schema features that are not completely
supported by JAXB v1.0. In some cases, you may be able to use
these extensions with the -extens1ion switch. In the default (strict)
mode, you are also limited to using only the binding customizations
defined in the specification. By using the -extension switch, you
can enable the JAXB Vendor Extensions.

http://java.sun.com/xml/downloads/jaxb.html

JAXB CoMPILER OPTIONS

Table 2-2 xjc Command-Line Options (Continued)

Option or
Argument

Description

-b <file>

Specify one or more external binding files to process (each binding
file must haveit's own -b switch). The syntax of the external bind-
ing filesis extremely flexible. You may have asingle binding file
that contains customizations for multiple schemas, or you can break
the customizations into multiple bindings files; for example:

xjc schemal.xsd schema2.xsd schema3.xsd -b
bindings123.xjb

xjc schemal.xsd schema2.xsd schema3.xsd -b
bindingsl.xjb -b bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the com-
mand line does not matter.

-d <dir>

By default, xjc will generate Java content classes in the current
directory. Use this option to specify an alternate output directory.
The directory must already exist; xjc will not create it for you.

-p <pkg>

Specifiesthe target package for schema-derived classes. Thisoption
overrides any binding customization for package name as well as
the default package name algorithm defined in the JAXB Specifica-
tion.

-host <proxyHost>

Set http.proxyHost to <proxyHost>.

-port <proxyPort>

Set http.proxyPort to <proxyPort>.

-classpath <arg>

Specify where to find client application class files used by the
<jxb:javaType> and <xjc:superClass> customizations.

-catalog <file>

Specify catalog files to resolve external entity references.Supports
TR9401, XCatalog, and OASIS XML Catalog format.

-readOnly

Generated source files will be marked read-only. By default, xjc
does not write-protect the schema-derived source filesit generates.

-use-runtime <pkg>

Suppress the generation of the imp1. runtime package and refer to
another existing runtime in the specified package. This option is
useful when you are compiling multiple independent schemas.
Because the generated impl.runtime packages are identical, except
for their package declarations, you can reduce the size of your gen-
erated codebase by telling the compiler to reuse an existing
imp1.runtime package.

31

32

UsING JAXB

Table 2—2 xjc Command-Line Options (Continued)

Option or
Argument Description
Treat input schemas as W3C XML Schema (default). If you do not
-xmlschema specify this switch, your input schemas will be treated as W3C
XML Schema.
Treat input schemas as RELAX NG (experimental, unsupported).
-relaxng Support for RELAX NG schemasis provided as a JAXB Vendor
Extension.
Treat input schemas as XML DTD (experimental, unsupported).
-dtd Support for RELAX NG schemasis provided as a JAXB Vendor
Extension.
-help Display this help message.

The command invoked by the xjc.sh and xjc.bat scripts is equivalent to the

Java command:

$JAVA_HOME/bin/java -jar $JAXB_HOME/T1ib/jaxb-xjc.jar

About the Schema-to-Java Bindings

When you run the JAXB binding compiler against the po.xsd XML schema
used in the basic examples (Unmarshal Read, Modify Marshal, Create Marshal,
Unmarsha Validate, Validate-On-Demand), the JAXB binding compiler gener-
ates a Java package named primer. po containing eleven classes, making atotal
of twelve classes in each of the basic examples:

Table 2-3 Schema-Derived JAXB Classes in the Basic Examples

Comment.java

Class Description
Public interface extending javax.xm1.bind.Element;
primer/po/ binds to the global schema element named comment. Note

that JAXB generates element interfaces for all global element
declarations.

primer/po/
Items.java

Public interface that binds to the schema comp1exType
named Items.

ABOUT THE SCHEMA-TO-JAVA BINDINGS

Table 2-3 Schema-Derived JAXB Classes in the Basic Examples (Continued)

ObjectFactory.java

Class Description
Public class extending com.sun.xm1.bind.DefaultJAXB-
primer/po/ ContextImpl; used to create instances of specified inter-

faces. For example, theObjectFactory createComment ()
method instantiates a Comment object.

primer/po/
PurchaseOrder.java

Public interface extending javax.xm1.bind.ETement, and
PurchaseOrderType; bindsto the global schemaelement
named PurchaseOrder.

primer/po/
PurchaseOrderType.java

Public interface that binds to the schema complexType
named PurchaseOrderType.

primer/po/
USAddress.java

Public interface that binds to the schema complexType
named USAddress.

primer/po/impl/
CommentImpl.java

Implementation of Comment. java.

primer/po/impl/
ItemsImpl.java

Implementation of Items.java

primer/po/impl/
PurchaseOrderImpl.java

Implementation of PurchaseOrder. java

primer/po/impl/
PurchaseOrderType-
ImpTl.java

Implementation of PurchaseOrderType. java

primer/po/impl/
USAddressImpl.java

Implementation of USAddress . java

Note: You should never directly use the generated implementation classes—that is,
*ImpT.java in the <packagename>/imp1 directory. These classes are not directly
referenceabl e because the class namesin this directory are not standardized by the
JAXB specification. The ObjectFactory method isthe only portable meansto cre-
ate an instance of a schema-derived interface. There is also an ObjectFac-

tory.newInstance(Class

instances of interfaces.

JAXBinterface) method that enables you to create

33

UsING JAXB

These classes and their specific bindingsto the source XML schemafor the basic
examples are described below.

Table 24 Schema-to-Java Bindings for the Basic Examples

XML Schema

JAXB Binding

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

PurchaseOrder.java

<xsd:element name="comment" type='"xsd:string"/>

Comment. java

<xsd:complexType
<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element
</xsd:sequence

>

name="PurchaseOrderType">

name="shipTo" type="USAddress"/>
name="bi11To" type="USAddress"/>
ref="comment" minOccurs="0"/>
name="1items" type="Items"/>

<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

PurchaseOrder-
Type.java

<xsd:complexType
<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
</xsd:sequence

>

name="USAddress">

name="name" type="xsd:string"/>
name="street" type="xsd:string"/>
name="city" type="xsd:string"/>
name="state" type="xsd:string"/>
name="zip" type="xsd:decimal"/>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAddress.java

<xsd:complexType
<xsd:sequence>
<xsd:element
curs="unbounded"

>

name="Items">

name="1item" minOccurs="1" maxOc-

Items.java

SCHEMA-DERIVED JAXB CLASSES

Table 24 Schema-to-Java Bindings for the Basic Exampl es (Continued)

XML Schema

JAXB Binding

<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU" use="required"/>
</xsd:complexType>

Items.ItemType

</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Schema-Derived JAXB Classes

The code for the individual classes generated by the JAXB binding compiler for
the basic examples is listed below, followed by brief explanations of its func-

tions. The classes listed here are:

o Comment.java

e« Items.java

¢« ObjectFactory.java

e PurchaseOrder.java

e PurchaseOrderType.java
e USAddress.java

36

UsING JAXB

Comment.java

In Comment. java:

The Comment. java classis part of the primer.po package.
Comment isapublic interface that extends javax.xm1.bind.Element.

Content in instantiations of this class bind to the XML schema element named
comment.

The getvalue() and setValue() methods are used to get and set strings repre-
senting XML comment elementsin the Java content tree.

The Comment. java code looks like this:

package primer.po;

public interface Comment

extends javax.xml.bind.Element

{
String getValue(Q);
void setValue(String value);
}
ltems.java

InItems.java, below:

The Items.java classispart of the primer.po package.
The class provides public interfaces for ITtems and ItemType.

Content in instantiations of this class bind to the XML ComplexTypes Items and
its child element ItemType.

Item providesthe getItem() method.

ItemType provides methodsfor:

o getPartNum(Q);

o setPartNum(String value);

o getComment();

o setComment(java.lang.String value);

o getUSPrice();

o setUSPrice(java.math.BigDecimal value);
o getProductName();

o setProductName(String value);

o getShipDate();

SCHEMA-DERIVED JAXB CLASSES

o setShipDate(java.util.Calendar value);
e getQuantity(Q);
e setQuantity(java.math.BigInteger value);

The Items.java codelookslikethis:
package primer.po;

public interface Items {
java.util.List getItem();

public interface ItemType {
String getPartNum();
void setPartNum(String value);
java.lang.String getComment();
void setComment(java.lang.String value);
java.math.BigDecimal getUSPrice();
void setUSPrice(java.math.BigDecimal value);
String getProductName();
void setProductName(String value);
java.util.Calendar getShipDate();
void setShipDate(java.util.Calendar value);
java.math.BigInteger getQuantity();
void setQuantity(java.math.BigInteger value);

ObjectFactory.java

In ObjectFactory.java, below:

e TheoObjectFactory classis part of the primer.po package.

e ObjectFactory providesfactory methods for instantiating Java interfaces
representing XML content in the Java content tree.

* Method names are generated by concatenating:
e Thestring constant create

« |f the Java content interface is nested within another interface, then the
concatenation of all outer Java class names

« The name of the Java content interface
« JAXB implementation-specific code was removed in this example to
make it easier to read.

For example, in this case, for the Java interface primer.po.Items.ItemType,
ObjectFactory creates the method createItemsItemType().

37

UsING JAXB

TheObjectFactory.java codelookslikethis:
package primer.po;

public class ObjectFactory
extends com.sun.xml.bind.DefaultJAXBContextImpl {

/-.': £3
* Create a new ObjectFactory that can be used to create
* new instances of schema derived classes for package:
* primer.po
-.':/
public ObjectFactory() {
super(new primer.po.ObjectFactory.GrammarInfoImpl());

}
/ Yol

* Create an instance of the specified Java content
* interface.
-.':/
public Object newInstance(Class javaContentInterface)
throws javax.xml.bind.JAXBException
{

}

/7': %
* Get the specified property. This method can only be
* used to get provider specific properties.
* Attempting to get an undefined property will result
* in a PropertyException being thrown.
-.':/
public Object getProperty(String name)
throws javax.xml.bind.PropertyException
{

}

/ ek
* Set the specified property. This method can only be
* used to set provider specific properties.

* Attempting to set an undefined property will result
* in a PropertyException being thrown.
*/

public void setProperty(String name, Object value)

throws javax.xml.bind.PropertyException

{

return super.newInstance(javaContentInterface);

return super.getProperty(name);

super.setProperty(name, value);

SCHEMA-DERIVED JAXB CLASSES

}
/:‘c *

* Create an instance of PurchaseOrder
7‘:/
public primer.po.PurchaseOrder createPurchaseOrder()
throws javax.xml.bind.JAXBException
{

return ((primer.po.PurchaseOrder)
newInstance((primer.po.PurchaseOrder.class)));

}
/:': %

* Create an instance of ItemsItemType

-.‘c/

public primer.po.Items.ItemType createltemsItemType()
throws javax.xml.bind.JAXBException

{
return ((primer.po.Items.ItemType)
newInstance((primer.po.Items.ItemType.class)));
}
/7‘: %
* Create an instance of USAddress
:':/

public primer.po.USAddress createUSAddress()
throws javax.xml.bind.JAXBException

{
return ((primer.po.USAddress)
newInstance((primer.po.USAddress.class)));
3
/-.‘c %
* Create an instance of Comment
7‘:/

public primer.po.Comment createComment()
throws javax.xml.bind.JAXBException
{

return ((primer.po.Comment)
newInstance((primer.po.Comment.class)));

}
/:‘: %

* Create an instance of Comment

-.‘c/

public primer.po.Comment createComment(String value)
throws javax.xml.bind.JAXBException

{

39

40

UsING JAXB

return new primer.po.impl.CommentImpl(value);

}
/-,':-.“:

* Create an instance of Items
-,':/
public primer.po.Items createltems()
throws javax.xml.bind.JAXBException
{

return ((primer.po.Items)
newInstance((primer.po.Items.class)));

}
/ Yol

* Create an instance of PurchaseOrderType
-,':/
public primer.po.PurchaseOrderType
createPurchaseOrderType()
throws javax.xml.bind.JAXBException

{
return ((primer.po.PurchaseOrderType)
newInstance((primer.po.PurchaseOrderType.class)));
}
3
PurchaseOrder.java

In PurchaseOrder. java, below:

e ThePurchaseOrder classis part of the primer.po package.

* PurchaseOrder isapublic interface that extends javax.xm1.bind.Ele-
ment and primer.po.PurchaseOrderType

e Content in instantiations of this class bind to the XML schema element
named purchaseOrder.

The PurchaseOrder. java code looks like this;
package primer.po;
public interface PurchaseOrder

extends javax.xml.bind.Element, primer.po.PurchaseOrderType{

}

SCHEMA-DERIVED JAXB CLASSES

PurchaseOrderType.java

In PurchaseOrderType.java, below:

e ThePurchaseOrderType classis part of the primer.po package.

+ Content in instantiations of this class bind to the XML schema child ele-
ment named PurchaseOrderType.

* PurchaseOrderType is a public interface that provides the following
methods:

o« getItems();

e setItems(primer.po.Items value);

e getOrderDate();

¢ setOrderDate(java.util.Calendar value);
o getComment();

« setComment(java.lang.String value);

e getBillTo(Q);

e setBillTo(primer.po.USAddress value);

e getShipTo(Q;

e setShipTo(primer.po.USAddress value);

The PurchaseOrderType.java code looks like this:
package primer.po;

public interface PurchaseOrderType {
primer.po.Items getItems();
void setItems(primer.po.Items value);
java.util.Calendar getOrderDate();
void setOrderDate(java.util.Calendar value);
java.lang.String getComment();
void setComment(java.lang.String value);
primer.po.USAddress getBil1To(Q);
void setBillTo(primer.po.USAddress value);
primer.po.USAddress getShipTo(Q);
void setShipTo(primer.po.USAddress value);

4

42

UsING JAXB

USAddress.java

In USAddress. java, below:

e TheUSAddress classis part of the primer. po package.

e Content in instantiations of this class bind to the XML schema element
named USAddress.

* USAddress isapublic interface that provides the following methods:

o getState();

o setState(String value);

« getZip(Q;

o setZip(java.math.BigDecimal value);
o getCountry();

o setCountry(String value);
« getCity(Q;

o setCity(String value);

o getStreet();

o setStreet(String value);
o getName();

o setName(String value);

The USAddress. java code looks like this:
package primer.po;

public interface USAddress {
String getState();
void setState(String value);
java.math.BigDecimal getZip(Q);
void setZip(java.math.BigDecimal value);
String getCountry();
void setCountry(String value);
String getCity(Q;
void setCity(String value);
String getStreet();
void setStreet(String value);
String getName();
void setName(String value);

BAsIC EXAMPLES

Basic Examples

This section describes five basic examples (Unmarshal Read, Modify Marshal,
Create Marshal, Unmarshal Validate, Validate-On-Demand) that demonstrate
how to:

Unmarshal an XML document into a Java content tree and access the data
contained within it

Modify a Java content tree

UsetheObjectFactory classto create aJavacontent treefrom scratch and
then marshal it to XML data

Perform validation during unmarshalling
Validate a Java content tree at runtime

Unmarshal Read Example

The purpose of the Unmarshal Read example is to demonstrate how to unmar-
shal an XML document into a Java content tree and access the data contained
within it.

1. The <JWSDP_HOME>/jaxb/samples/unmarshal-read/

Main.java class declaresimportsfor four standard Java classes plusthree
JAXB binding framework classes and the primer. po package:

import java.io.FileInputStream
import java.io.IOException

import java.util.Iterator

import java.util.List

import javax.xml.bind.JAXBContext
import javax.xml.bind.JAXBException
import javax.xml.bind.Unmarshaller
import primer.po.*;

. A JAXBContext instance is created for handling classes generated in

primer.po

JAXBContext jc = JAXBContext.newInstance("primer.po");

. An Unmarshaller instanceis created.

Unmarshaller u = jc.createUnmarshaller();

. po.xm1 isunmarshalled into a Java content tree comprising objects gener-

ated by the JAXB binding compiler into the primer. po package.

UsING JAXB

PurchaseOrder po =
(PurchaseOrder)u.unmarshal(
new FileInputStream("po.xml"));

5. A simplestring is printed to system. out to provide a heading for the pur-
chase order invoice.

System.out.printin("Ship the following items to: ");

6. get and display methods are used to parse XML content in preparation
for outpuit.

USAddress address = po.getShipTo();
displayAddress(address);

Items items = po.getItems();
displayItems(items);

7. Basic error handling isimplemented.

} catch(JAXBException je) {
je.printStackTrace();

} catch(IOException ioe) {
ioe.printStackTrace();

8. TheUSAddress branch of the Javatreeiswalked, and address information
isprinted to system.out.

public static void displayAddress(USAddress address) {

// display the address
System.out.println("\t" + address.getName());
System.out.println("\t" + address.getStreet());
System.out.printIn("\t" + address.getCity() +

", " + address.getState() +

" " + address.getZip(Q);
System.out.printIn("\t" + address.getCountry() + "\n");

3
9. The Items list branch is walked, and item information is printed to sys-
tem.out.

public static void displayItems(Items items) {
// the items object contains a List of
//primer.po.ItemType objects
List itemTypelList = items.getItem();

10.Walking of the Items branch isiterated until al items have been printed.

for(Iterator iter = itemTypelList.iterator();
iter.hasNext();) {

MoDIFY MARSHAL EXAMPLE

Items.ItemType item = (Items.ItemType)iter.next();
System.out.printin("\t" + item.getQuantity() +
" copies of \ + item.getProductName() +

\")5

Sample Output

Running java Main for this example produces the following outpult:

Ship the following items to:
Alice Smith
123 Maple Street
Cambridge, MA 12345
us

5 copies of "Nosferatu - Special Edition (1929)"

3 copies of "The Mummy (1959)"

3 copies of "Godzilla and Mothra: Battle for Earth/Godzilla
vs. King Ghidora"

Modify Marshal Example

The purpose of the Modify Marshal example is to demonstrate how to modify a
Java content tree.

1. The <IWSDP_HOME>/jaxb/samples/modify-marshal/
Main.java class declaresimportsfor three standard Java classes plus four
JAXB hinding framework classes and primer.po package:

import java.io.FileInputStream;

import java.io.IOException;

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import primer.po.¥*;
2. A JAXBContext instance is created for handling classes generated in

primer.po

JAXBContext jc = JAXBContext.newInstance("primer.po");
3. AnUnmarshaller instanceis created, and po.xm1 is unmarshalled.

UsING JAXB

Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =
(PurchaseOrder)u.unmarshal(
new FileInputStream("po.xm1"));

4. set methods are used to modify information in the address branch of the
content tree.

USAddress address = po.getBillTo(Q);
address.setName("John Bob");
address.setStreet("242 Main Street");
address.setCity("Beverly Hills");
address.setState("CA");

address.setZip(new BigDecimal("90210"));

5. A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty APl is used to specify output
encoding; in this case formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();

m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
Boolean.TRUE);

m.marshal(po, System.out);

Sample Output

Running java Main for this example produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="1999-10-20-05:00">
<shipTo country="US">

<name>Alice Smith</name>

<street>123 Maple Street</street>
<city>Cambridge</city>

<state>MA</state>

<zip>12345</zip>

</shipTo>

<biT1To country="US">

<name>John Bob</name>

<street>242 Main Street</street>
<city>Beverly Hills</city>

<state>CA</state>

<zip>90210</zip>

</bil1To>

<items>

<item partNum="242-NO">

CREATE MARSHAL EXAMPLE 47

<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity>

<USPrice>19.99</USPrice>

</1item>

<item partNum="242-MU">

<productName>The Mummy (1959)</productName>
<quantity>3</quantity>

<USPrice>19.98</USPrice>

</item>

<item partNum="242-GZ">

<productName>

Godzilla and Mothra: Battle for Earth/Godzilla vs. King Ghidora
</productName>

<quantity>3</quantity>
<USPrice>27.95</USPrice>
</1item>

</items>
</purchaseOrder>

Create Marshal Example

The Create Marshal example demonstrates how to use the ObjectFactory class
to create a Java content tree from scratch and then marshal it to XML data.

1. The <JWSDP_HOME>/jaxb/samples/create-marshal/
Main.java class declaresimportsfor four standard Java classes plusthree
JAXB binding framework classes and the primer. po package:

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Calendar;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import primer.po.¥*;
2. A JAXBContext instance is created for handling classes generated in
primer.po
JAXBContext jc = JAXBContext.newInstance("primer.po");

3. TheObjectFactory classisused to instantiate anew empty PurchaseOr-
der object.

// creating the ObjectFactory
ObjectFactory objFactory = new ObjectFactory();

48

UsING JAXB

// create an empty PurchaseOrder
PurchaseOrder po = objFactory.createPurchaseOrder();

. Per the congtraints in the po.xsd schema, the PurchaseOrder object

requires avalue for the orderDate attribute. To satisfy this constraint, the
orderDate is set using the standard Calendar.getInstance() method
from java.util.Calendar.

po.setOrderDate(Calendar.getInstance());

. The ObjectFactory is used to instantiate new empty USAddress objects,

and the required attributes are set.

USAddress shipTo = createUSAddress("Alice Smith",
"123 Maple Street",
"Cambridge",
"MA",
"12345");
po.setShipTo(shipTo);

USAddress biTl1To = createUSAddress("Robert Smith",
"8 Oak Avenue",
"Cambridge",
"MA",
"12345");
po.setBil1To(billTo);

. TheObjectFactory classisused to instantiate a new empty Items object.

Items items = objFactory.createltems();

7. A get method is used to get areference to the ItemType list.

List itemList = items.getItem();

. ItemType objects are created and added to the Items list.

itemList.add(createltemType(
"Nosferatu - Special Edition (1929)",
new BigInteger("5"),
new BigDecimal("19.99"),
null,
null,
"242-N0"));
itemList.add(createltemType("The Mummy (1959)",
new BigInteger("3"),
new BigDecimal("19.98"),

CREATE MARSHAL EXAMPLE

null,
null,
"242-MU"));

itemList.add(createltemType(

"Godzilla and Mothra: Battle for Earth/Godzilla
vs. King Ghidora",

new BigInteger("3"),

new BigDecimal("27.95"),

null,

null,

"242-GZ"));

9. The1tems object now containsalist of ItemType objectsand can be added
to the po object.
po.setItems(items);

10.A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty API is used to specify output
encoding; in this case formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
Boolean.TRUE);
m.marshal(po, System.out);
11.An empty USAddress object is created and its properties set to comply
with the schema constraints.

public static USAddress createUSAddress(

ObjectFactory objFactory,
String name, String street,
String city,

String state,

String zip)

throws JAXBException {

// create an empty USAddress objects
USAddress address = objFactory.createUSAddress();

// set properties on it

address

.setName(name);
address.
address.
address.
address.

setStreet(street);

setCity(city);

setState(state);

setZip(new BigDecimal(zip));

// return it

49

UsING JAXB

return address;

}
12.Similar to the previous step, an empty ItemType object is created and its
properties set to comply with the schema constraints.

public static Items.ItemType createltemType(ObjectFactory
objFactory,
String productName,
BigInteger quantity,
BigDecimal price,
String comment,
Calendar shipDate,
String partNum)
throws JAXBException {

// create an empty ItemType object
Items.ItemType itemType =
objFactory.createItemsItemType();

// set properties on it
itemType.setProductName(productName);
itemType.setQuantity(quantity);
itemType.setUSPrice(price);
itemType.setComment(comment);
itemType.setShipDate(shipDate);
itemType.setPartNum(partNum);

// return it
return itemType;

Sample Output

Running java Main for this example produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="2002-09-24-05:00">
<shipTo>

<name>Alice Smith</name>

<street>123 Maple Street</street>
<city>Cambridge</city>

<state>MA</state>

<zip>12345</zip>

</shipTo>

<bi11To>

<name>Robert Smith</name>

<street>8 0Oak Avenue</street>

UNMARSHAL VALIDATE EXAMPLE

<city>Cambridge</city>

<state>MA</state>

<zip>12345</zip>

</billTo>

<items>

<item partNum="242-NO">
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity
<USPrice>19.99</USPrice>

</1item>

<item partNum="242-MU">

<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>

</item>

<item partNum="242-GZ">
<productName>Godzilla and Mothra: Battle for Earth/Godzilla vs.
King Ghidora</productName>
<quantity>3</quantity>
<USPrice>27.95</USPrice>

</item>

</items>

</purchaseOrder>

Unmarshal Validate Example

The Unmarshal Validate example demonstrates how to enable validation during
unmarshalling (Unmarshal-Time Validation). Note that JAXB provides functions
for validation during unmarshalling but not during marshalling. Validation is
explained in more detail in More About Validation (page 11).

1. The <IJWSDP_HOME>/jaxb/samples/unmarshal-validate/Main.java
class declares imports for three standard Java classes plus seven JAXB
binding framework classes and the primer. po package:

import java.io.FileInputStream;

import java.io.IOException;

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;

import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.*;

52

UsING JAXB

2. A JAXBContext instance is created for handling classes generated in
primer.po.
JAXBContext jc = JAXBContext.newInstance("primer.po");

3. AnUnmarshaller instanceis created.
Unmarshaller u = jc.createUnmarshaller();

4, The default JAXB Unmarshaller validationEventHandler isenabled to
send to validation warnings and errorsto system. out. The default config-

uration causes the unmarshal operation to fail upon encountering the first
validation error.

u.setValidating(true);

5. An attempt is made to unmarshal po.xm1 into a Java content tree. For the
purposes of this example, the po.xm1 contains adeliberate error.

PurchaseOrder po =
(PurchaseOrder)u.unmarshal(
new FileInputStream("po.xm1"));

6. Thedefault validation event handler processes avalidation error, generates
output to system. out, and then an exception is thrown.

} catch(UnmarshalException ue) {
System.out.println("Caught UnmarshalException");
} catch(JAXBException je) {
je.printStackTrace();
} catch(IOException ioe) {
ioe.printStackTrace();

Sample Output

Running java Main for this example produces the following output:

DefaultValidationEventHandler: [ERROR]: "-1" does not satisfy
the "positivelnteger" type
Caught UnmarshalException

Validate-On-Demand Example

The Validate-On-Demand example demonstrates how to validate a Java content
tree at runtime (On-Demand Validation). At any point, client applications can
call thevalidator.validate method on the Java content tree (or any subtree of

VALIDATE-ON-DEMAND EXAMPLE

it). All JAXB Providers are required to support this operation. Validation is
explained in more detail in More About Validation (page 11).

1. The <JWSDP_HOME>/jaxb/samples/ondemand-validate/Main.java
class declares imports for five standard Java classes plus nine JAXB Java
classes and the primer. po package:

import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.ValidationException;
import javax.xml.bind.Validator;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.¥*;
2. A JAXBContext instance is created for handling classes generated in
primer.po
JAXBContext jc = JAXBContext.newInstance("primer.po");
3. An Unmarshaller instance is created, and a valid po.xm1 document is
unmarshalled into a Java content tree. Note that po.xm1 is valid at this
point; invalid data will be added later in this example.

Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =
(PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"

) s
4. A reference is obtained for the first item in the purchase order.

Items items = po.getltems();

List itemTypelList = items.getItem();

Items.ItemType item = (Items.ItemType)itemTypelList.get(@);
5. Next, the item quantity is set to an invalid number. When validation is

enabled later in thisexample, thisinvalid quantity will throw an exception.

item.setQuantity(new BigInteger("-5"));

Note: If @enableFailFastCheck was "true" and the optional FailFast validation
method was supported by an implementation, a TypeConstraintException would
be thrown here. Note that the JAXB implementation does not support the FailFast

UsING JAXB

feature. Refer to the JAXB Specification for more information about FailFast val-
idation.

6. A validator instance is created, and the content tree is validated. Note
that the validator classis responsible for managing On-Demand valida-
tion, whereasthe Unmarshaller classisresponsible for managing Unmar-
shal-Time validation during unmarshal operations.

Validator v = jc.createValidator();
boolean valid = v.validateRoot(po);
System.out.printin(valid);

7. The default validation event handler processes avalidation error, generates

output to system. out, and then an exception is thrown.

} catch(ValidationException ue) {
System.out.println("Caught ValidationException");
} catch(JAXBException je) {
je.printStackTrace();
} catch(IOException ioe) {
ioe.printStackTrace();
3

Sample Output
Running java Main for this example produces the following outpuit:

DefaultValidationEventHandler: [ERROR]: "-5" does not satisfy
the "positivelnteger" type
Caught ValidationException

Customizing JAXB Bindings

The remainder of this chapter describes several examples that build on the con-
cepts demonstrated in the basic examples.

The goa of this section is to illustrate how to customize JAXB bindings by
means of custom binding declarations made in either of two ways:

» Asannotations made inlinein an XML schema

» Asstatementsin an external file passed to the JAXB binding compiler

Unlike the examples in Basic Examples (page 43), which focus on the Java code
in the respective Main. java class files, the examples here focus on customiza-

http://java.sun.com/xml/downloads/jaxb.html

WHY CUSTOMIZE?

tions made to the XML schema before generating the schema-derived Java bind-
ing classes.

Note: Although JAXB binding customizations must currently be made by hand, it
isenvisioned that atool/wizard may eventually be written by Sun or athird party to
make this process more automatic and easier in general. One of the goals of the
JAXB technology isto standardize the format of binding declarations, thereby mak-
ing it possible to create customization tools and to provide a standard interchange
format between JAXB implementations.

This section just begins to scratch the surface of customizations you can make to
JAXB bindings and validation methods. For more information, please refer to
the JAXB Soecification (http://java.sun.com/xml1/downloads/jaxb.htm1).

Why Customize?

In most cases, the default bindings generated by the JAXB binding compiler will
be sufficient to meet your needs. There are cases, however, in which you may
want to modify the default bindings. Some of these include:

e Creating APl documentation for the schema-derived JAXB packages,
classes, methods and constants; by adding custom Javadoc tool annota-
tionsto your schemas, you can explain concepts, guidelines, and rules spe-
cific to your implementation.

» Providing semantically meaningful customized names for cases that the
default XML name-to-Java identifier mapping cannot handle automati-
cally; for example:

» Toresolve name collisions (as described in Appendix C.2.1 of the JAXB
Soecification). Note that the JAXB binding compiler detects and reports
al name conflicts.

» To provide names for typesafe enumeration constants that are not legal
Javaidentifiers; for example, enumeration over integer values.

« To provide better names for the Java representation of unnamed model
groups when they are bound to a Java property or class.

e To provide more meaningful package names than can be derived by
default from the target namespace URI.
» Overriding default bindings; for example:
» Specify that amodel group should be bound to a class rather than alist.

55

http://java.sun.com/xml/downloads/jaxb.html

56

UsING JAXB

» Specify that afixed attribute can be bound to a Java constant.

* Override the specified default binding of XML Schema built-in
datatypes to Java datatypes. |n some cases, you might want to introduce
an alternative Java class that can represent additional characteristics of
the built-in XML Schema datatype.

Customization Overview

This section explains some core JAXB customization concepts.

* Inline and External Customizations
» Scope, Inheritance, and Precedence
» Customization Syntax

» Customization Namespace Prefix

Inline and External Customizations

Customizations to the default JAXB bindings are made in the form of binding
declarations passed to the JAXB binding compiler. These binding declarations
can be made in either of two ways.

* Asinline annotationsin asource XML schema
» Asdeclarationsin an external binding customizationsfile

For some people, using inline customizations is easier because you can see your
customizations in the context of the schema to which they apply. Conversely,
using an external binding customization file enables you to customize JAXB
bindings without having to modify the source schema, and enables you to easily
apply customizations to several schemafiles at once.

Note: You can combine the two types of customizations—for example, you could
include a reference to an external binding customizations file in an inline annota-
tion—but you cannot declare both an inline and external customization on the same
schema element.

Each of these types of customization is described in more detail below.

CUSTOMI ZATION OVERVIEW

Inline Customizations

Customizations to JAXB bindings made by means of inline binding declarations
in an XML schema file take the form of <xsd:appinfo> elements embedded in
schema <xsd:annotation> elements (xsd: isthe XML schema namespace pre-
fix, as defined in W3C XML Schema Part 1. Structures). The general form for
inline customizations is shown below.

<xs:annotation>
<xs:appinfo>

binding declarations

</xs:appinfo>
</Xs:annotation>

Customizations are applied at the location at which they are declared in the
schema. For example, a declaration at the level of a particular element would
apply to that element only. Note that the XML Schema namespace prefix must be
used with the <annotation> and <appinfo> declaration tags. In the example
above, xs: is used as the namespace prefix, so the declarations are tagged
<xs:annotation> and <xs:appinfo>.

External Binding Customization Files
Customizations to JAXB bindings made by means of an external file containing
binding declarations take the general form shown bel ow.

<jxb:bindings schemalLocation = "xs:anyURI">
<jxb:bindings node = "xs:string">*
<binding declaration>
<jxb:bindings>
</jxb:bindings>

* schemalLocation isaURI reference to the remote schema

* node is an XPath 1.0 expression that identifies the schema node within
schemalLocation to which the given binding declaration is associated.

For example, thefirst schemalLocation/node declarationin a JAXB binding dec-
larations file specifies the schema name and the root schema node:

<jxb:bindings schemalLocation="po.xsd" node="/xs:schema">

57

58

UsING JAXB

A subsequent schemaLocation/node declaration, say for asimpleType element
named Z1ipCodeType in the above schema, would take the form:

<jxb:bindings node="//xs:simpleType[@nrame="ZipCodeType’]”>

Binding Customization File Format

Binding customization files should be straight ASCII text. The name or exten-
sion does not matter, although atypical extension, used in this chapter, is. xjb.

Passing Customization Files to the JAXB Binding
Compiler

Customization files containing binding declarations are passed to the JAXB
Binding compiler, xjc, using the following syntax:

xjc -b <file> <schema>

where <fiTe> is the name of binding customization file, and <schema> is the
name of the schema(s) you want to pass to the binding compiler.

You can have asingle binding file that contains customizations for multiple sche-
mas, or you can break the customizations into multiple bindings files; for exam-
ple:

xjc schemal.xsd schema2.xsd schema3.xsd -b bindings123.xjb

xjc schemal.xsd schema2.xsd schema3.xsd -b bindingsl.xjb -b
bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the command line
does not matter, although each binding customization file must be preceded by
its own -b switch on the command line.

For more information about xjc compiler options in general, see JAXB Com-
piler Options (page 30).

CUSTOMI ZATION OVERVIEW

Restrictions for External Binding Customizations

There are several rules that apply to binding declarations made in an external
binding customization file that do not apply to smilar declarations made inline
in a source schema:

« The binding customization file must begin with the jxb:bindings

version attribute, plus attributes for the JAXB and XMLSchema

namespaces:

<jxb:bindings version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema'">

The remote schemato which the binding declaration applies must be iden-
tified explicitly in X Path notation by meansof ajxb:bindings declaration
specifying schemaLocation and node attributes:

* schemalLocation —URI reference to the remote schema

* node — XPath 1.0 expression that identifies the schema node within
schemalLocation to which the given binding declaration is associated,;
in the case of theinitial jxb:bindings declaration in the binding cus-
tomization file, this nodeistypically " /xs:schema"

For information about XPath syntax, see XML Path Language, James
Clark and Steve DeRose, eds.,, W3C, 16 November 1999. Available at
http://www.w3.0rg/TR/1999/REC-xpath-19991116.

Similarly, individual nodes within the schemato which customizations are
to be applied must be specified using X Path notation; for example:
<jxb:bindings node="//xs:complexType[@nrame="'USAddress']">

In such cases, the customization is applied to the node by the binding

compiler as if the declaration was embedded inline in the node’'s
<xs:appinfo> element.

To summarize these rules, the external binding element <jxb:bindings> isonly
recognized for processing by a JAXB binding compiler in three cases:

When its parent is an <xs :appinfo> element
When it is an ancestor of another <jxb:bindings> element

When it is root element of a document—an XML document that has a
<jxb:bindings> element asitsroot is referred to as an external binding
declaration file

59

http://www.w3.org/TR/1999/REC-xpath-19991116

60

UsING JAXB

Scope, Inheritance, and Precedence

Default JAXB bindings can be customized or overridden at four different levels,
or scopes, as described in Table 24.

Figure 2—-1 illustrates the inheritance and precedence of customization declara-
tions. Specifically, declarations towards the top of the pyramid inherit and super-
sede declarations below them. For example, Component declarations inherit
from and supersede Definition declarations; Definition declarations inherit and
supersede Schema declarations; and Schema declarations inherit and supersede
Global declarations.

Component
Scope

Definition Scope

Schema Scope

Global Scope

Figure2-1 Customization Scope Inheritance and Precedence

CUSTOMI ZATION OVERVIEW

Customization Syntax

The syntax for the four types of JAXB binding declarations, as well asthe syntax
for the XM L-to-Java datatype binding declarations and the customization name-
space prefix are described below.

¢ Globa Binding Declarations

» Schema Binding Declarations

¢ ClassBinding Declarations

* Property Binding Declarations

e <javalype> Binding Declarations

» Typesafe Enumeration Binding Declarations
¢ <javadoc> Binding Declarations

* Customization Namespace Prefix

Global Binding Declarations

Global scope customizations are declared with <globalBindings>. The syntax
for global scope customizationsis as follows:

<globalBindings>
[collectionType = "collectionType"]
[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"]
[generateIlsSetMethod= "true" | "false" | "1" | "@"]
[enableFailFastCheck = "true" | "false" | "1" | "0"]
[choiceContentProperty = "true" | "false" | "1" | "0"]
[underscoreBinding = "asWordSeparator" | "asCharInWord"]
[typesafeEnumBase = "typesafeEnumBase"]
[typesafeEnumMemberName = "generateName" | "generateError"]
[enableJavaNamingConventions = "true" | "false"™ | "1" | "@"]
[bindingStyle = "elementBinding" | "modelGroupBinding"]
[<javaType> ... </javaType> 1*
</globalBindings>

e collectionType can be either indexed or any fully qualified class name
that implements java.util.List.

* fixedAttributeAsConstantProperty canbeeither true, false, 1, Or 0.
The default value is false.

* generatelsSetMethod can be either true, false, 1, or 0. The default
valueis false.

* enableFailFastCheck can beeither true, false, 1, 0r 0. If enableFail-
FastCheck is true or 1 and the JAXB implementation supports this
optional checking, type constraint checking is performed when setting a

62

UsING JAXB

property. The default valueis false. Please note that the JAXB implemen-
tation does not support failfast validation.

choiceContentProperty can be either true, false, 1, or 0. The default
value is false. choiceContentProperty IS not relevant when the
bindingStyle iselementBinding. Therefore, if bindingStyle is Speci-
fied aselementBinding, then the choiceContentProperty must resultin
an invalid customization.

underscoreBinding can be either aswWordSeparator or asCharInWord.
The default valueis asWordSeparator.

enableJavaNamingConventions can be either true, false, 1, or 0. The
default valueis true.

typesafeEnumBase can be alist of QNames, each of which must resolve
to a simple type definition. The default value is xs : NCName. See Typesafe
Enumeration Binding Declarations (page 66) for information about local-
ized mapping of simpleType definitionsto Java typesafe enum classes.

typesafeEnumMemberName can be either generateError Or generate-
Name. The default value is generateError.

bindingStyle can be either elementBinding, Or model1GroupBinding.
The default value is elementBinding.

<javaType> can be zero or more javaType binding declarations. See
<javalype> Binding Declarations (page 64) for more information.

<globalBindings> declarations are only valid in the annotation element of the
top-level schema element. There can only be a single instance of a
<globalBindings> declaration in any given schema or binding declarationsfile.
If one source schema includes or imports a second source schema, the
<globalBindings> declaration must be declared in the first source schema.

Schema Binding Declarations

Schema scope customizations are declared with <schemaBindings>. The syntax
for schema scope customizationsis.

<schemaBindings>

[<package> package </package> 1]
[<nameXm1Transform> ... </nameXm1Transform>]*

</schemaBindings>

<package [name = "packageName"]

[<javadoc> ... </javadoc>]

</package>

CUSTOMI ZATION OVERVIEW

<nameXmlTransform>
[<typeName [suffix="suffix"]
[prefix="prefix" 1 /> 1]
[<eTementName [suffix="suffix"]
[prefix="prefix"] /> 1]
[<modelGroupName [suffix="suffix"]
[prefix="prefix"] />]
[<anonymousTypeName [suffix="suffix"]
[prefix="prefix" 1 /> 1]
</nameXm1Transform>

As shown above, <schemaBinding> declarations include two subcomponents:

e <package>...</package> specifies the name of the package and, if
desired, the location of the APl documentation for the schema-derived
classes.

e <nameXmlTransform>...</nameXmITransform> specifies customiza-
tions to be applied.

Class Binding Declarations

The <class> binding declaration enables you to customize the binding of a
schema element to a Java content interface or a JavaElement interface. <class>
declarations can be used to customize;

* A namefor a schema-derived Javainterface
» Animplementation class for a schema-derived Java content interface.

The syntax for <class> customizationsis:

<class [name = "className"]
[imp1Class= "implClass"] >
[<javadoc> ... </javadoc> 1]
</class>

 name isthe name of the derived Javainterface. It must be alegal Javainter-
face name and must not contain a package prefix. The package prefix is
inherited from the current value of package.

e 1implClass is the name of the implementation class for className and
must include the complete package name.

e The <javadoc> element specifies the Javadoc tool annotations for the
schema-derived Javainterface. The string entered here must use CDATA or
< to escape embedded HTML tags.

63

64

UsING JAXB

Property Binding Declarations

The <property> binding declaration enables you to customize the binding of an
XML schema element to its Java representation as a property. The scope of cus-
tomization can either be at the definition level or component level depending
upon where the <property> binding declaration is specified.

The syntax for <property> customizationsis:

<property[name = "propertyName"]
[collectionType = "propertyCollectionType"]
[fixedAttributeAsConstantProperty = "true" | "false" | "1" | "0"]
[generateIsSetMethod = "true" | "false" | "1" | "@0"]
[enableFailFastCheck ="true" | "false"™ | "1" | "0"]
[<baseType> ... </baseType>]
[<javadoc> ... </javadoc>]

</property>

<baseType>
<javaType> ... </javaType>

</baseType>

» name defines the customization value propertyName; it must be a lega
Javaidentifier.

* collectionType defines the customization value propertyCollection-
Type, whichisthe collection typefor the property. propertyCollection-
Type if specified, can be either indexed or any fully-qualified class name
that implements java.util.List.

e fixedAttributeAsConstantProperty defines the customization value
fixedAttributeAsConstantProperty. The value can be either true,
false, 1, Or 0.

* generateIsSetMethod defines the customization value of generatels-
SetMethod. The value can be either true, false, 1, or 0.

e enableFailFastCheck defines the customization value enableFail-
FastCheck. The value can be either true, false, 1, or 0. Please note that
the JAXB implementation does not support failfast validation.

* <javadoc> customizesthe Javadoc tool annotations for the property’s get-
ter method.

<javaType> Binding Declarations

The <javaType> declaration provides a way to customize the trandation of
XML datatypes to and from Java datatypes. XML provides more datatypes than

CUSTOMI ZATION OVERVIEW

Java, and so the <javaType> declaration lets you specify custom datatype bind-
ings when the default JAXB binding cannot sufficiently represent your schema.

Thetarget Java datatype can be a Java built-in datatype or an application-specific
Java datatype. If an application-specific datatype is used as the target, your
implementation must also provide parse and print methods for unmarshalling
and marshalling data. To this end, the JAXB specification supports a
parseMethod and printMethod:

e TheparseMethod is called during unmarshalling to convert a string from
the input document into a value of the target Java datatype.

e TheprintMethod iscalled during marshalling to convert avalue of thetar-
get type into alexical representation.

If you prefer to define your own datatype conversions, JAXB defines a static
class, DatatypeConverter, to assist in the parsing and printing of valid lexical
representations of the XML Schema built-in datatypes.

The syntax for the <javaType> customization is:

<javaType name= "javaType"
[xm1Type= "xmlType"]
[hasNsContext = “true” | “false”]
[parseMethod= "parseMethod"]
[printMethod= "printMethod" 1>

 name isthe Java datatype to which xm1Type isto be bound.

* xm1Type isthe name of the XML Schema datatype to which javaType is
to bound; this attribute is required when the parent of the <javaType> dec-
laration is <globalBindings>.

* parseMethod is the name of the parse method to be called during unmar-
shalling.

* printMethod isthe name of the print method to be called during marshal-
ling.

* hasNsContext alows a namespace context to be specified as a second
parameter to a print or a parse method; can be either true, false, 1, or 0.
By default, this attribute is false, and in most cases you will not need to
changeit.

65

66

UsING JAXB

The <javaType> declaration can be used in:

* A <globalBindings> declaration

» An annotation element for simple type definitions, Globa1Bindings, and
<basetype> declarations.

* A <property> declaration.

See MyDatatypeConverter Class (page 73) for an example of how <javaType>
declarations and the DatatypeConverterInterface interface are implemented
in a custom datatype converter class.

Typesafe Enumeration Binding Declarations

The typesafe enumeration declarations provide a localized way to map XML
simpleType elements to Java typesafe enum classes. There are two types of
typesafe enumeration declarations you can make:

» <typesafeEnumClass> letsyou map an entire simpleType classto type-
safe enum classes.

* <typesafeEnumMember> letsyou map just selected membersof asimple-
Type classto typesafe enum classes.

In both cases, there are two primary limitations on this type of customization:

* Only simpleType definitions with enumeration facets can be customized
using this binding declaration.

» This customization only applies to a single simpleType definition at a
time. To map sets of similar simpleType definitions on aglobal level, use
the typesafeEnumBase attribute in a <globalBindings> declaration, as
described Global Binding Declarations (page 61).

The syntax for the <typesafeEnumClass> customizationis:

<typesafeEnumClass[name = "enumClassName"]
[<typesafeEnumMember> ... </typesafeEnumMembers>]*
[<javadoc> enumClassJavadoc </javadoc>]
</typesafeEnumClass>

* name must be alegal Javaldentifier, and must not have a package prefix.

* <javadoc> customizes the Javadoc tool annotations for the enumeration
class.

* You can have zero or more <typesafeEnumMember> declarations embed-
ded in a<typesafeEnumClass> declaration.

CUSTOMI ZATION OVERVIEW

The syntax for the <typesafeEnumMember> customization is:

<typesafeEnumMember name = "enumMemberName">
[value = "enumMemberValue"]
[<javadoc> enumMemberJavadoc </javadoc>]
</typesafeEnumMember>

» name must always be specified and must be alegal Javaidentifier.
* value must be the enumeration value specified in the source schema.

e <javadoc> customizes the Javadoc tool annotations for the enumeration
constant.

For inline annotations, the <typesafeEnumClass> declaration must be specified
in the annotation element of the <simpleType> element. The <typesafeEnum-
Member> must be specified in the annotation element of the enumeration mem-
ber. This allows the enumeration member to be customized independently from
the enumeration class.

For information about typesafe enum design patterns, see the sample chapter of
Joshua Bloch'’s Effective Java Programming on the Java Devel oper Connection.

<javadoc> Binding Declarations

The <javadoc> declaration lets you add custom Javadoc tool annotations to
schema-derived JAXB packages, classes, interfaces, methods, and fields. Note
that <javadoc> declarations cannot be applied globally—that is, they are only
valid as a sub-elements of other binding customizations.

The syntax for the <javadoc> customization is:

<javadoc>
Contents in Javadoc<\b> format.
</javadoc>

or

<javadoc>
<< ! [CDATAT
Contents in Javadoc<\b> format
11>

</javadoc>

67

68

UsING JAXB

Note that documentation strings in <javadoc> declarations applied at the pack-
age level must contain <body> open and close tags, for example:

<jxb:package name="primer.myPo'">

<jxb:javadoc><! [CDATA[<body>Package level documentation
for generated package primer.myPo.</body>]]>
</jxb:javadoc>

</jxb:package>

Customization Namespace Prefix

All standard JAXB binding declarations must be preceded by a namespace prefix
that maps to the JAXB namespace URI (http://java.sun.com/xml1/ns/jaxb).
For example, in this sample, jxb: is used. To this end, any schema you want to
customize with standard JAXB binding declarations must include the JAXB
namespace declaration and JAXB version number at the top of the schemafile.
For example, in po.xsd for the Customize Inline example, the namespace decla-
rationisasfollows:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml1/ns/jaxb"
jxb:version="1.0">

A binding declaration with the jxb namespace prefix would then take the form:

<xsd:annotation>
<xsd:appinfo>
<jxb:globalBindings binding declarations />
<jxb:schemaBindings>

binding declarations

</jxb:schemaBindings>
</xsd:appinfo>
</xsd:annotation>

Note that in this example, the globalBindings and schemaBindings declara-
tions are used to specify, respectively, global scope and schema scope customi-
zations. These customization scopes are described in more detail in Scope,
Inheritance, and Precedence (page 60).

CUSTOMIZE INLINE EXAMPLE

Customize Inline Example

The Customize Inline example illustrates some basic customizations made by
means of inline annotations to an XML schema named po. xsd. In addition, this
example implements a custom datatype converter class, MyDatatypeCon-
verter.java, which illustrates print and parse methods in the <javaType> cus-
tomization for handling custom datatype conversions.

To summarize this example:

1. po.xsd isan XML schema containing inline binding customizations.

2. MyDatatypeConverter.java isaJavaclassfile that implements print and
parse methods specified by <javaType> customizationsin po. xsd.

3. Main. javaistheprimary classfilein the Customize Inline example, which
uses the schema-derived classes generated by the JAXB compiler.

Key customizationsin this sample, and the custom MyDatatypeConverter.java
class, are described in more detail below.

Customized Schema

The customized schema used in the Customize Inline example is in the file
<JAVA_HOME>/jaxb/samples/inline-customize/po.xsd. The customizations
arein the <xsd:annotation> tags.

Global Binding Declarations

The code below shows the globalBindings declarationsin po.xsd:

<jxb:globalBindings
fixedAttributeAsConstantProperty="true"
collectionType="java.util.Vector"
typesafeEnumBase="xsd:NCName"
choiceContentProperty="false"
typesafeEnumMemberName="generateError"
bindingStyle="elementBinding"
enableFailFastCheck="false"
generatelsSetMethod="false"
underscoreBinding="asCharInWord"/>

In this example, al values are set to the defaults except for collectionType.

69

UsING JAXB

* Setting collectionType to java.util.Vector specifies that all listsin
the generated implementation classes should be represented internally as
vectors. Note that the class name you specify for collectionType must
implement java.util.List and be calable by newInstance.

e Setting fixedAttributeAsConstantProperty to true indicates that all
fixed attributes should be bound to Java constants. By default, fixed
attributes are just mapped to either simple or collection property, which
ever is more appropriate.

» Please note that the JAXB implementation does not support the enable-
FailFastCheck attribute.

* If typesafeEnumBase t0 xsd:string it would be a global way to specify
that all simple type definitions deriving directly or indirectly from
xsd: string and having enumeration facets should be bound by default to
atypesafe enum. If typesafeEnumBase iS Set to an empty string, ", no
simple type definitions would ever be bound to atypesafe enum class by
default. The value of typesafeEnumBase can be any atomic simple type
definition except xsd:boolean and both binary types.

Note: Using typesafe enums enables you to map schema enumeration valuesto Java
constants, which in turn makes it possible to do compares on Java constants rather
than string values.

Schema Binding Declarations

The following code shows the schema binding declarationsin po. xsd:

<jxb:schemaBindings>
<jxb:package name="primer.myPo">
<jxb:javadoc>
<! [CDATA[<body> Package level documentation for
generated package primer.myPo.</body>]]>
</jxb:javadoc>
</jxb:package>
<jxb:nameXmlTransform>
<jxb:elementName suffix="Element"/>
</jxb:nameXm1Transform>
</jxb:schemaBindings>

* <jxb:package name="primer.myPo"/> specifiesthe primer.myPo asthe
package in which the schema-derived classes should be generated.

CUSTOMIZE INLINE EXAMPLE

* <jxb:nameXmlTransform> Specifiesthat all generated Java element inter-

faces should have Element appended to the generated names by default.
For example, when the JAXB compiler is run against this schema, the ele-
ment interfaces CommentElement and PurchaseOrderElement will be
generated. By contrast, without this customization, the default binding
would instead generate Comment and PurchaseOrder.

This customization is useful if a schema uses the same name in different
symbol spaces; for example, in global element and type definitions. In
such cases, this customization enables you to resolve the collision with
one declaration rather than having to individually resolve each collision
with a separate binding declaration.

<jxb:javadoc> specifies customized Javadoc tool annotations for the
primer.myPo package. Notethat, unlike the <javadoc> declarations at the
class level, below, the opening and closing <body> tags must be included
when the <javadoc> declaration is made at the package level.

Class Binding Declarations

The following code shows the class binding declarationsin po . xsd:

<xsd:complexType name="PurchaseOrderType">

<xsd:annotation>
<xsd:appinfo>
<jxb:class name="POType'>
<jxb:javadoc>
A &1t;b>Purchase Order consists of

addresses and items.

</jxb:javadoc>
</jxb:class>
</xsd:appinfo>
</xsd:annotation>

</xsd:compTlexType>

The Javadoc tool annotations for the schema-derived POType class will contain
the description "A &1t;b>Purchase Order consists of addresses
and items." The< isused to escape the opening bracket on the HTML

tags.

71

72 UsING JAXB

Note: When a<class> customization is specified in the appinfo element of acom-
plexType definition, asit ishere, the complexType definition isbound to a Javacon-
tent interface.

Later in po.xsd, another <javadoc> customization is declared at this class level,
but this time the HTML string is escaped with CDATA:

<xsd:annotation>
<xsd:appinfo>
<jxb:class>
<jxb:javadoc>
<! [CDATA[First Tine of documentation for a
USAddress.]1]>
</jxb:javadoc>
</jxb:class>
</xsd:appinfo>
</xsd:annotation>

Note: If you want to include HTML markup tagsin a<jaxb: javadoc> customiza-
tion, you must enclose the data within a CDATA section or escape all |eft angle brack-
ets using &1t;. See XML 1.0 2nd Edition for more information (http://
www.w3.0rg/TR/2000/REC-xm1-20001006#sec-cdata-sect).

Property Binding Declarations

Of particular interest here is the generateIsSetMethod customization, which
causes two additional property methods, isSetQuantity and unsetQuantity, to
be generated. These methods enable a client application to distinguish between
schema default values and values occurring explicitly within an instance docu-
ment.

For example, in po.xsd:

<xsd:complexType name="Items'">
<xsd:sequence>
<xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" default="10">
<xsd:annotation>

http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect
http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect

CUSTOMIZE INLINE EXAMPLE 73

<xsd:appinfo>
<jxb:property generateIsSetMethod="true"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>

The @generateIlsSetMethod applies to the quantity element, which is bound
to a property within the Items.ItemType interface. unsetQuantity and
isSetQuantity methods are generated in the Ttems. ItemType interface.

MyDatatypeConverter Class

The <JWSDP_HOME>/jaxb/samples/inline-customize
/MyDatatypeConverter class, shown below, provides a way to customize the
tranglation of XML datatypes to and from Java datatypes by means of a
<javaType> customization.

package primer;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;

public class MyDatatypeConverter {

public static short parselntegerToShort(String value) {
BigInteger result =
DatatypeConverter.parseInteger(value);
return (short)(result.intValue());
}

public static String printShortToInteger(short value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);

}

public static int parselntegerToInt(String value) {
BigInteger result =
DatatypeConverter.parseInteger(value);

return result.intValue();

}

74

UsING JAXB

public static String printIntToInteger(int value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);
}
};

The following code shows how the MyDatatypeConverter classisreferenced in
a<javaType> declarationin po.xsd:

<xsd:simpleType name="ZipCodeType'>
<xsd:annotation>
<xsd:appinfo>
<jxb:javaType name="1int"
parseMethod="primer.MyDatatypeConverter.parselntegerToInt"
printMethod="primer.MyDatatypeConverter.printIntTo Integer" />
</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

In this example, the jxb:javaType binding declaration overrides the default
JAXB binding of this type to java.math.BigInteger. For the purposes of the
Customize Inline example, the restrictions on ZipCodeType—specificaly that
legal US ZIP codes are limited to five digits—make it so all valid values can eas-
ily fit within the Java primitive datatype int. Note also that, because <jxb: jav-
aType name="int"/> is declared within zipCodeType, the customization
appliesto al JAXB properties that reference this simpleType definition, includ-
ing the getzZip and setZip methods.

Datatype Converter Example

The Datatype Converter example is very similar to the Customize Inline exam-
ple. As with the Customize Inline example, the customizations in the Datatype
Converter example are made by using inline binding declarations in the XML
schemafor the application, po.xsd.

The global, schema, and package, and most of the class customizations for the
Customize Inline and Datatype Converter examples are identical. Where the
Datatype Converter example differs from the Customize Inline exampleisin the

EXTERNAL CUSTOMIZE EXAMPLE 75

parseMethod and printMethod used for converting XML data to the Java int
datatype.

Specificaly, rather than using methods in the custom MyDataTypeConverter
class to perform these datatype conversions, the Datatype Converter example
uses the built-in methods provided by javax.xm1.bind.DatatypeConverter:

<xsd:simpleType name="ZipCodeType">
<xsd:annotation>
<xsd:appinfo>
<jxb:javaType name="int"
parseMethod="javax.xml.bind.DatatypeConverter.parselnt"
printMethod="javax.xml.bind.DatatypeConverter.printInt"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

External Customize Example

The External Customize exampleisidentica to the Datatype Converter example,
except that the binding declarations in the External Customize example are made
by means of an external binding declarations file rather than inline in the source
XML schema.

The binding customization file used in the External Customize example is
<JWSDP_HOME>/jaxb/samples/external-customize/binding.xjb.

This section compares the customization declarationsin bindings.xjb with the
analogous declarations used in the XML schema, po. xsd, in the Datatype Con-
verter example. The two sets of declarations achieve precisely the same results.

« JAXB Version, Namespace, and Schema Attributes

» Global and SchemaBinding Declarations

e Class Declarations

76

UsING JAXB

JAXB Version, Namespace, and Schema
Attributes

All JAXB binding declarations files must begin with:

+ JAXB version number
» Namespace declarations
¢ Schema name and node

The version, namespace, and schema declarations in bindings.xjb are as fol-
lows:

<jxb:bindings version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<jxb:bindings schemalLocation="po.xsd" node="/xs:schema">

<binding_declarations>

</jxb:bindings>
<!-- schemalLocation="po.xsd" node="/xs:schema" -->
</jxb:bindings>

JAXB Version Number

An XML filewith aroot element of <jaxb:bindings> isconsidered an external
binding file. The root element must specify the JAXB version attribute with
which its binding declarations must comply; specifically the root <jxb:bind-
ings> element must contain either a <jxb:version> declaration or a version
attribute. By contrast, when making binding declarations inline, the JAXB ver-
sion number is made as attribute of the <xsd: schema> declaration:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml1/ns/jaxb"
jxb:version="1.0">

Namespace Declarations

As shown in JAXB Version, Namespace, and Schema Attributes (page 76), the
namespace declarations in the external binding declarations file include both the
JAXB namespace and the XML Schema namespace. Note that the prefixes used
in this example could in fact be anything you want; the important thing isto con-
sistently use whatever prefixes you define here in subsequent declarations in the
file.

EXTERNAL CUSTOMIZE EXAMPLE

Schema Name and Schema Node

The fourth line of the code in JAXB Version, Namespace, and Schema
Attributes (page 76) specifies the name of the schema to which this binding dec-
larations file will apply, and the schema node at which the customizations will
first take effect. Subsequent binding declarations in this file will reference spe-
cific nodes within the schema, but this first declaration should encompass the
schemaas awhole; for example, in bindings.xjb:

<jxb:bindings schemalLocation="po.xsd" node="/xs:schema">

Global and Schema Binding Declarations

The global schema binding declarations in bindings.xjb are the same as those
in po.xsd for the Datatype Converter example. The only difference is that
because the declarations in po.xsd are made inline, you need to embed them in
<xs:appinfo> elements, which are in turn embedded in <xs:annotation> €le-
ments. Embedding declarations in this way is unnecessary in the external bind-
ingsfile.

<jxb:globalBindings
fixedAttributeAsConstantProperty="true"
collectionType="java.util.Vector"
typesafeEnumBase="xs:NCName"
choiceContentProperty="false"
typesafeEnumMemberName="generateError"
bindingStyle="elementBinding"
enableFailFastCheck="false"
generateIsSetMethod="false"
underscoreBinding="asCharInWord"/>
<jxb:schemaBindings>
<jxb:package name="primer.myPo">
<jxb:javadoc><![CDATA[<body>Package Tlevel
documentation for generated package primer.myPo.</body>]]>
</jxb:javadoc>
</jxb:package>
<jxb:nameXm1Transform>
<jxb:elementName suffix="Element"/>
</jxb:nameXmlTransform>
</jxb:schemaBindings>

77

78 UsING JAXB

By comparison, the syntax used in po.xsd for the Datatype Converter example
is:

<xsd:annotation>
<xsd:appinfo>
<jxb:globalBindings

<binding_declarations>
<jxb:schemaBindings>
<binding_declarations>

</jxb:schemaBindings>
</xsd:appinfo>
</xsd:annotation>

Class Declarations

The class-level binding declarations in bindings.xjb differ from the analogous
declarationsin po.xsd for the Datatype Converter example in two ways:

» Aswith al other binding declarations in bindings.xjb, you do not need to
embed your customizations in schema <xsd: appinfo> elements.

* You must specify the schema node to which the customization will be
applied. The general syntax for thistype of declaration is:

<jxb:bindings node="//<node_type>[@name="<node_name>"']">

For example, the following code shows binding declarations for the complex-
Type named USAddress.

<jxb:bindings node="//xs:complexType[@name="USAddress']">
<jxb:class>
<jxb:javadoc>
<! [CDATA[First 1line of documentation for a USAddress.]]>
</jxb:javadoc>
</jxb:class>

<jxb:bindings node=".//xs:element[@nhame="name']">
<jxb:property name="toName"/>
</jxb:bindings>

<jxb:bindings node=".//xs:element[@name="zip']">

Fix COLLIDES EXAMPLE

<jxb:property name="zipCode"/>
</jxb:bindings>
</jxb:bindings>
<!-- node="//xs:complexType[@name="'USAddress']" -->

Notein this example that USAddress isthe parent of the child elements name and
zip, and therefore a </jxb:bindings> tag encloses the bindings declarations
for the child elements as well as the class-level javadoc declaration.

Fix Collides Example

The Fix Collides example illustrates how to resolve name conflicts—that is,
places in which a declaration in a source schema uses the same name as another
declaration in that schema (namespace collisions), or places in which a declara-
tion uses a name that does trand ate by default to alegal Java name.

Note: Many name collisions can occur because XSD Part 1 introduces six unique
symbol spaces based on type, while Java only has only one. There is a symbols
space for type definitions, elements, attributes, and group definitions. Asaresult, a
valid XML schema can use the exact same name for both atype definition and aglo-
bal element declaration.

For the purposes of this example, it is recommended that you remove the bind-
ing parameter to the xjc task in the build.xm1 file in the <JWSDP_HOME>/jaxb/
samples/fix-collides directory to display the error output generated by the
xjc compiler. The XML schema for the Fix Collides, example.xsd, contains
deliberate name conflicts.

Like the External Customize example, the Fix Collides example uses an external
binding declarations file, binding.xjb, to define the JAXB binding customiza-
tions.

* The example.xsd Schema

» Looking at the Conflicts

* Output From Running the ant Task Without Using a Binding Declarations

File
* Thebinding.xjb Declarations File
» Resolving the Conflicts in example.xsd

79

80

UsING JAXB

The example.xsd Schema

The XML schema, <JWSDP_HOME>/jaxb/samples/fix-collides
/example.xsd, used in the Fix Collides example illustrates common name con-
flicts encountered when attempting to bind XML names to unique Java identifi-
ers in a Java package. The schema declarations that result in name conflicts are
highlighted in bold below.

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
xmIns:jxb="http://java.sun.com/xml/ns/jaxb”
jxb:version="1.0">

<xs:element name="Class” type="xs:int”/>
<xs:element name="FooBar” type="FooBar”/>
<xs:complexType name="FooBar’>
<XS:sequence>
<xs:element name="foo0” type="xs:int”/>
<xs:element ref="Class”/>
<xs:element name="zip” type="xs:integer”/>
</Xs:sequence>
<xs:attribute name="zip” type="xs:string”’/>
</xs:complexType>
</xs:schema>

Looking at the Conflicts

Thefirst conflict in example.xsd isthe declaration of the elTement name Class:
<xs:element name="Class” type="xs:int”/>

Class isareserved word in Java, and while it is legal in the XML schema lan-
guage, it cannot be used as a name for a schema-derived class generated by
JAXB.

When this schema is run against the JAXB binding compiler with the ant fail
command, the following error message is returned:

[xjc] [ERROR] Attempt to create a property having the same
name as the reserved word "Class".
[xjc] Tine 6 of example.xsd

Fix COLLIDES EXAMPLE 8l

The second conflict isthat there are an element and acomplexType that both use
the name Foobar:

<xs:element name="FooBar” type="FooBar”/>
<xs:complexType name="FooBar”>

In this case, the error messages returned are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.

[xjc] Tine 22 of example.xsd

[xjcl [ERROR] (Relevant to above error) another one is
generated from this schema component.

[xjc] Tine 20 of example.xsd

The third conflict is that there are an element and an attribute both named

zip:

<xs:element name="zip” type="xs:integer”/>
<xs:attribute name="zip” type="xs:string”/>

The error messages returned here are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.

[xjc] Tine 22 of example.xsd

[xjcl [ERROR] (Relevant to above error) another one is
generated from this schema component.

[xjc] Tine 20 of example.xsd

Output From Running the ant Task Without
Using a Binding Declarations File

Here is the output that is returned if you run the ant task in the <JwSDP_HOME> /
jaxb/samples/fix-colTlides directory without specifying the binding param-
eter tothe xjc task inthe build.xm1 file

[echo] Compiling the schema w/o external binding file
(name collision errors expected)...

[xjc] Compiling file:/C:/Sun/jwsdp-1.5/jaxb/samples/
fix-collides/example.xsd

[xjcl [ERROR] Attempt to create a property having the same
name as the reserved word "Class".

[xjc] Tine 14 of example.xsd

82

UsING JAXB

[xjc]l [ERROR] A property with the same name "Zip" is
generated from more than one schema component.

[xjc] Tine 17 of example.xsd

[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.

[xjc] Tine 15 of example.xsd

[xjc] [ERROR] A class/interface with the same name
"generated.FooBar" is already in use.

[xjc] Tine 9 of example.xsd

[xjc] [ERROR] (Relevant to above error) another one is
generated from here.

[xjc] Tine 18 of example.xsd

The binding.xjb Declarations File

The <JWSDP_HOME>/jaxb/samples/fix-collides/binding.xjb binding dec-
larations file resolves the conflictsin examples . xsd by means of several custom-
izations.

Resolving the Conflicts in example.xsd

The first conflict in example.xsd, using the Java reserved name Class for an
element name, is resolved in binding.xjb with the <class> and <property>
declarations on the schema element node Class:

<jxb:bindings node="//xs:element[@name="Class']">
<jxb:class name="Clazz"/>
<jxb:property name="Clazz"/>

</jxb:bindings>

The second conflict in example. xsd, the namespace collision between the ele-
ment FooBar and the complexType FooBar, is resolved in binding.xjb by
using a <nameXmlTransform> declaration at the <schemaBindings> level to
append the suffix ETement to al element definitions.

This customization handles the case where there are many name conflicts due to
systemic collisions between two symbol spaces, usually named type definitions
and global element declarations. By appending a suffix or prefix to every Java

BIND CHOICE EXAMPLE

identifier representing a specific XML symbol space, this single customization
resolves al name collisions:

<jxb:schemaBindings>
<jxb:package name="example"/>
<jxb:nameXmlTransform>
<jxb:elementName suffix="Element"/>
</jxb:nameXm1Transform>
</jxb:schemaBindings>

The third conflict in example.xsd, the namespace collision between the ele-
ment zip and the attribute zip, isresolvedin binding.xjb by mapping the
attribute zip to property named zipAttribute:

<jxb:bindings node=".//xs:attribute[@name="zip']">
<jxb:property name="zipAttribute"/>
</jxb:bindings>

If you add the binding parameter you removed back to the xjc task in the
build.xml file and then run ant in the <JWSDP_HOME>/jaxb/samples/fix-
collides directory, the customizations in binding.xjb will be passed to the
xjc binding compiler, which will then resolve the conflicts in example.xsd in
the schema-derived Java classes.

Bind Choice Example

The Bind Choice example shows how to bind a choice model group to a Java
interface. Like the External Customize and Fix Collides examples, the Bind
Choice example uses an externa binding declarations file, binding.xjb, to
define the JAXB binding customization.

The schema declarations in <JWSDP_HOME>/jaxb/samples/bind-choice
/example.xsd that will be globally changed are highlighted in bold below.

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
xmlns:jxb="http://java.sun.com/xml1/ns/jaxb”
jxb:version="1.0">

<xs:element name="FooBar”>
<xs:complexType>
<XS:sequence>
<xs:element name="fo00” type="xs:int”/>
<xs:element ref="Class”/>
<xs:choice>

83

UsING JAXB

<xs:element name="phoneNumber” type="xs:string”’/>
<xs:element name="speedDial” type="xs:int”/>
</xs:choice>
<xs:group ref="ModelGroupChoice”/>
</Xs:sequence>
<xs:attribute name="zip” type="xs:string”/>
</xs:complexType>
</xs:element>

<xs:group name="ModelGroupChoice”>
<xs:choice>
<xs:element name="bool” type="xs:boolean”’/>
<xs:element name="comment” type="xs:string”’/>
<xs:element name="value” type="xs:int”/>
</xs:choice>
</Xs:group>
</xs:schema>

Customizing a choice Model Group

The <JWSDP_HOME>/jaxb/samples/bind-choice/binding.xjb binding decla-
rations file demonstrates one way to override the default derived names for
choice model groups in example.xsd by means of a <jxb:globalBindings>
declaration:

<jxb:bindings schemalLocation="example.xsd” node="/xs:schema">
<jxb:globalBindings bindingStyle="modelGroupBinding"/>
<jxb:schemaBindings/>
<jxb:package name="example”/>
</jxb:schemaBindings>
</jxb:bindings
</jxb:bindings>

This customization results in the choice model group being bound to its own
content interface. For example, given the following choice model group:

<xs:group name="ModelGroupChoice”>
<xs:choice>
<xs:element name="bool” type="xs:boolean”/>
<xs:element name="comment” type="xs:string”/>
<xs:element name="value” type="xs:int”/>
</xs:choice>
</xs:group>

BIND CHOICE EXAMPLE 85

the globalBindings customization shown above causes JAXB to generate the
following Java class:

/:‘: %*
* Java content class for model group.
'.':/
public interface ModelGroupChoice {
int getValue(Q);
void setValue(int value);
boolean isSetValue();

java.lang.String getComment();
void setComment(java.lang.String value);
boolean isSetComment();

boolean isBool1();
void setBool(boolean value);
boolean isSetBool();

Object getContent();
boolean isSetContent();
void unSetContent();

}

Calling getContent returns the current value of the Choice content. The setters
of this choice are just like radio buttons; setting one unsets the previously set
one. This class represents the data representing the choi ce.

Additionally, the generated Java interface FooBarType, representing the anony-
mous type definition for element FooBar, contains a nested interface for the
choice model group containing phoneNumber and speedDial.

86

UsING JAXB

3
Streaming API for XML

This chapter focuses on the Streaming API for XML (StAX), a streaming
Javarbased, event-driven, pull-parsing API for reading and writing XML docu-
ments. StAX enables you to create bidrectional XML parsers that are fast, rela-
tively easy to program, and have alight memory footprint.

StAX providesisthe latest APl in the JAXP family, and provides an alternative
to SAX, DOM, TrAX, and DOM for developerslooking to do high-performance
stream filtering, processing, and modification, particularly with low memory and
limited extensibility requirements.

Note: To synopsize, StAX provides a standard, bidirectional pull parser interface
for streaming XML processing, offering a simpler programming model than SAX
and more efficient memory management than DOM. StAX enables developers to
parse and modify XML streams as events, and to extend XML information models
to alow application-specific additions. More detailed comparisons of StAX with
several dternative APIs are provided below, in “Comparing StAX to Other JAXP
APIs”

Why StAX?

The StAX project was spearheaded by BEA with support from Sun Microsys-
tems, and the JSR 173 specification passed the Java Community Process final
approva balot in March, 2004 (http://jcp.org/en/jsr/detail?id=173).
The primary goal of the StAX API isto give “parsing control to the programmer

87

88

STREAMING APl FOR XML

by exposing a simple iterator based API. This allows the programmer to ask for
the next event (pull the event) and alows state to be stored in procedural fash-
ion.” StAX was created to address limitations in the two most prevalent parsing
APIs, SAX and DOM.

Streaming Versus DOM

Generally speaking, there are two programming models for working with XML
infosets: document streaming and the document object model (DOM).

The DOM model involves creating in-memory objects representing an entire
document tree and the complete infoset state for an XML document. Once in
memory, DOM trees can be navigated freely and parsed arbitrarily, and as such
provide maximum flexibility for developers. However the cost of this flexibility
is a potentially large memory footprint and significant processor requirements,
as the entire representation of the document must be held in memory as objects
for the duration of the document processing. This may not be an issue when
working with small documents, but memory and processor requirements can
escal ate quickly with document size.

Sreaming refers to a programming model in which XML infosets are transmit-
ted and parsed serially at application runtime, often in real time, and often from
dynamic sources whose contents are not precisely known beforehand. Moreover,
stream-based parsers can start generating output immediately, and infoset ele-
ments can be discarded and garbage collected immediately after they are used.
While providing a smaller memory footprint, reduced processor requirements,
and higher performance in certain situations, the primary trade-off with stream
processing is that you can only see the infoset state at one location at atimein
the document. You are essentially limited to the “ cardboard tube” view of a doc-
ument, the implication being that you need to know what processing you want to
do before reading the XML document.

Streaming models for XML processing are particularly useful when your appli-
cation has strict memory limitations, as with a cellphone running J2ME, or when
your application needs to simultaneously process severa requests, as with an
application server. In fact, it can be argued that the majority of XML business
logic can benefit from stream processing, and does not require the in-memory
maintenance of entire DOM trees.

PuLL PARSING VERSUS PUSH PARSING

Pull Parsing Versus Push Parsing

Streaming pull parsing refersto a programming model in which aclient applica
tion calls methods on an XML parsing library when it needs to interact with an
XML infoset—that is, the client only gets (pulls) XML data when it explicitly
asksfor it.

Streaming push parsing refers to a programming model in which an XML parser
sends (pushes) XML data to the client as the parser encounters elements in an
XML infoset—that is, the parser sends the data whether or not the client is ready
to useit at that time.

Pull parsing provides several advantages over push parsing when working with
XML streams:

« With pull parsing, the client controls the application thread, and can call
methods on the parser when needed. By contrast, with push processing, the
parser controls the application thread, and the client can only accept invo-
cations from the parser.

» Pull parsing libraries can be much smaller and the client code to interact
with those libraries much simpler than with push libraries, even for more
complex documents.

 Pull clients can read multiple documents at one time with a single thread.

* A StAX pull parser can filter XML documents such that elements unnec-
essary to the client can be ignored, and it can support XML views of non-
XML data.

StAX Use Cases

The StAX specification defines a number of uses cases for the API:

« Databinding
e Unmarshalling an XML document
e Marshalling an XML document
* Parallel document processing
* Wireless communication
* SOAP message processing
» Parsing simple predictable structures
 Parsing graph representations with forward references

89

90

STREAMING APl FOR XML

» Parsing WSDL
 Virtual data sources
» Viewing as XML data stored in databases
» Viewing datain Java objects created by XML data binding
* Navigating aDOM tree as a stream of events

e Parsing specific XML vocabularies

» Pipelined XML processing
A complete discussion of all these use cases is beyond the scope of this chapter.
Please refer to the StAX specification for further information.

Comparing StAX to Other JAXP APIs

As an API in the JAXP family, StAX can be compared, among other APIs, to
SAX, TrAX, and IDOM. Of thelatter two, StAX isnot as powerful or flexible as
TrAX or JDOM, but neither does it require as much memory or processor |oad to
be useful, and StAX can, in many cases, outperform the DOM-based APIs. The
same arguments outlined above, weighing the cost/benefits of the DOM model
versus the streaming model, apply here.

With thisin mind, the closest comparisons between can be made between StAX
and SAX, and it is here that StAX offers features that are beneficial in many
cases; some of these include:

» StAX-enabled clientsare generally easier to code than SAX clients. While
it can be argued that SAX parsers are marginally easier to write, StAX
parser code can be smaller and the code necessary for the client to interact
with the parser smpler.

+ StAX isabidirectional API, meaning that it can both read and write XML
documents. SAX isread only, so another APl isneeded if you want to write
XML documents.

» SAXisapush APl, whereas StAX ispull. The trade-offs between push and
pull APIs outlined above apply here.

STAX API

Table 3-1 synopsizes the comparative features of StAX, SAX, DOM, and TrAX
(table adapted from “Does StAX Belong in Your XML Toolbox?’
(http://www.developer.com/xml/article.php/3397691) by Jeff Ryan).

Table3-1 XML Parser APl Feature Summary

Feature StAX SAX DOM TrAX

API Type Pull, streaming | Push, streaming | In memory tree | XSLT Rule
Ease of Use High Medium High Medium
XPath Capability No No Yes Yes

CPU and Memory Efficiency | Good Good Varies Varies
Forward Only Yes Yes No No

Read XML Yes Yes Yes Yes

Write XML Yes No Yes Yes

Create, Read, Update, Delete | No No Yes No

StAX API

The StAX APl exposes methods for iterative, event-based processing of XML
documents. XML documents are treated as a filtered series of events, and infoset
states can be stored in a procedura fashion. Moreover, unlike SAX, the StAX
API isbidirectional, enabling both reading and writing of XML documents.

The StAX API isrealy two distinct APl sets: acursor APl and an iterator API.
Thesetwo API sets explained in greater detail later in this chapter, but their main
features are briefly described below.

Cursor API

As the name implies, the StAX cursor API represents a cursor with which you
can walk an XML document from beginning to end. This cursor can point to one
thing at atime, and always moves forward, never backward, usually one infoset
element at atime.

92

STREAMING APl FOR XML

The two main cursor interfaces are XMLStreamReader and XMLStreamWriter.
XMLStreamReader includes accessor methods for al possible information
retrievable from the XML Information model, including document encoding,
element names, attributes, namespaces, text nodes, start tags, comments, pro-
cessing instructions, document boundaries, and so forth; for example:

public interface XMLStreamReader {
public int next() throws XMLStreamException;
public boolean hasNext() throws XMLStreamException;
public String getText();
public String getLocalName();
public String getNamespaceURI();
// ... other methods not shown

}

You can call methods on XMLStreamReader, such as getText and getName, to
get data at the current cursor location. XMLStreamWriter provides methods that
correspond to StartElement and EndElement event types; for example:

public interface XMLStreamWriter {
public void writeStartElement(String TocalName) \
throws XMLStreamException;
public void writeEndElement() \
throws XMLStreamException;
public void writeCharacters(String text) \
throws XMLStreamException;
// ... other methods not shown

}

The cursor API mirrors SAX in many ways. For example, methods are available
for directly accessing string and character information, and integer indexes can
be used to access attribute and namespace information. As with SAX, the cursor
API methods return XML information as strings, which minimizes object alloca-
tion requirements.

Iterator API

The StAX iterator API represents an XML document stream as a set of discrete
event objects. These events are pulled by the application and provided by the
parser in the order in which they are read in the source XML document.

The base iterator interface is called XMLEvent, and there are subinterfaces for
each event type listed in Table 3-2, below. The primary parser interface for read-

ing iterator eventsis XMLEventReader, and the primary interface for writing iter-
ator events is XMLEventWriter. The XMLEventReader interface contains five
methods, the most important of which is nextEvent(), which returns the next
event in an XML stream. XMLEventReader implements java.util.Iterator,
which means that returns from XMLEventReader can be cached or passed into

I TERATOR API

routines that can work with the standard Java Iterator; for example:

public interface XMLEventReader extends Iterator {
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;

}

Similarly, on the output side of the iterator API, you have:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
public void add(Attribute attribute) \
throws XMLStreamException;

lterator Event Types
Table 3-2 lists the thirteen XMLEvent types defined in the event iterator API.

Table3-2 XMLEvent Types

Event Type Description
StartDocu- Reports the beginning of aset of XML events, including encoding,
ment XML version, and standalone properties.

Reports the start of an element, including any attributes and namespace
StartEle- o .)

declarations; also provides access to the prefix, namespace URI, and
ment

local name of the start tag.

Reports the end tag of an element. Namespaces that have gone out of
EndETement scope can be recalled here if they have been explicitly set on their corre-

sponding StartElement.

93

STREAMING APl FOR XML

Table3-2 XMLEvent Types (Continued)

Event Type Description
Correspondsto XML CData sectionsand CharacterData entities.
Characters Note that ignorable whitespace and significant whitespace are also
reported as Character events.
Character entities can be reported as discrete events, which an applica-
EntitvRef- tion developer can then choose to resolve or pass through unresolved.
e rencz By default, entities are resolved. Alternatively, if you do not want to
report the entity as an event, replacement text can be substituted and
reported as Characters.
Processin-
gInstruc- Reports the target and data for an underlying processing instruction.
tion
Comment Returns the text of a comment
EndDocument | Reportsthe end of aset of XML events.
Reportsas java. lang. String information about the DTD, if any,
DTD associated with the stream, and provides a method for returning custom
objects found in the DTD.
Attributes are generally reported as part of aStartElement event.
. However, there are times when it is desirable to return an attribute as a
Attribute . .)
standalone Attribute event; for example, when a namespaceis
returned as the result of an XQuery or XPath expression.
Aswith attributes, namespaces are usually reported as part of a
Namespace StartElement, but there are timeswhen it is desirable to report a
namespace as adiscrete Namespace event.

Note that the DTD, EntityDeclaration, EntityReference, NotationDeclara-
tion, and ProcessingInstruction events are only created if the document
being processed containsa DTD.

I TERATOR API

Sample Event Mapping

As an example of how the event iterator APl maps an XML stream, consider the

following XML document:

<?xml version="1.0"7>
<BookCatalogue xmlns="http://www.publishing.org">
<Book>

<Title>Yogasana Vijnana: the Science of Yoga</Title>

<ISBN>81-40-34319-4</ISBN>
<Cost currency="INR">11.50</Cost>
</Book>
</BookCatalogue>

This document would be parsed into eighteen primary and secondary events, as
shown below. Note that secondary events, shown in curly braces ({}), are typi-

cally accessed from a primary event rather than directly.

Table 3-3 Sample Iterator APl Event Mapping

Element/Attribute

Event

version="1.0"

StartDocument

isCData = false
data = “\n”
IsWhiteSpace = true

Characters

gname = BookCatalogue:http://www.publishing.org
attributes = null
namespaces = {BookCatalogue” -> http://www.publishing.org”}

StartElement

gname = Book
attributes = null
namespaces = null

StartElement

gname = Title
attributes = null
namespaces = null

StartElement

isCData = false
data = “Yogasana Vijnana: the Science of Yoga\n\t”
IsWhiteSpace = false

Characters

gname = Title
namespaces = null

EndETement

96

STREAMING APl FOR XML

Table 3-3 Sample Iterator APl Event Mapping (Continued)

Element/Attribute

Event

gname = ISBN
attributes = null
namespaces = null

StartElement

isCData = false
data = “81-40-34319-4\n\t”
IsWhiteSpace = false

Characters

10

gname = ISBN
namespaces = null

EndElement

11

gname = Cost
attributes = {“currency” -> INR}
namespaces = null

StartElement

12

isCData = false
data = “11.50\n\t”
IsWhiteSpace = false

Characters

13

gname = Cost
namespaces = null

EndElement

14

isCData = false
data = “\n”
IsWhiteSpace = true

Characters

15

gname = Book
namespaces = null

EndElement

16

isCData = false
data = “\n”
IsWhiteSpace = true

Characters

17

gname = BookCatalogue:http://www.publishing.org
namespaces = {BookCatalogue” -> http://www.publishing.org”}

EndElement

18

EndDocument

There are several important things to note in the above example:

» The events are created in the order in which the corresponding XML ele-
ments are encountered in the document, including nesting of elements,

CHOOSING BETWEEN CURSOR AND | TERATOR APIS

opening and closing of elements, attribute order, document start and doc-
ument end, and so forth.

As with proper XML syntax, all container elements have corresponding
start and end events; for example, every StartElement has a correspond-
ing EndETement, even for empty elements.

Attribute events are treated as secondary events, and are accessed from
their corresponding StartElement event.

Similar to Attribute events, Namespace events are treated as secondary,
but appear twice and are accessible twice in the event stream, first from
their corresponding StartElement and then from their corresponding
EndETement.

Character events are specified for all elements, even if those elements
have no character data. Similarly, Character events can be split across
events.

The StAX parser maintains a namespace stack, which holds information
about all XML namespaces defined for the current element and its ances-
tors. The namespace stack is exposed through the
javax.xml.namespace.NamespaceContext interface, and can be
accessed by namespace prefix or URI.

Choosing Between Cursor and Iterator
APIs

It is reasonable to ask at this point, “What APl should | choose? Should | create
instances of XMLStreamReader or XMLEventReader? Why are there two kinds of
APIsanyway?’

Development Goals

The authors of the StAX specification targeted three types of developers:
e Library and infrastructure developers— Create application servers, JAXM,

JAXB, JAX-RPC and similar implementations; need highly efficient, low-
level APIswith minimal extensibility requirements.

e J2ME developers — Need small, simple, pull-parsing libraries, and have

minimal extensibility needs.

97

98

STREAMING APl FOR XML

J2EE and J2SE developers — Need clean, efficient pull-parsing libraries,
plus need the flexibility to both read and write XML streams, create new
event types, and extend XML document elements and attributes.

Given these wide-ranging development categories, the StAX authors fdt it was
more useful to define two small, efficient APIsrather than overloading one larger
and necessarily more complex API.

Comparing Cursor and Iterator APIs

Before choosing between the cursor and iterator APIs, you should note a few
things that you can do with the iterator API that you cannot do with cursor API:

Objects created from the XMLEvent subclasses are immutable, and can be
usedinarrays, lists, and maps, and can be passed through your applications
even after the parser has moved on to subsequent events.

You can create subtypes of XMLEvent that are either completely new infor-
mation items or extensions of existing items but with additional methods.

You can add and remove events from an XML event stream in much sim-
pler ways than with the cursor API.

Similarly, keep some general recommendations in mind when making your
choice:

If you are programming for a particularly memory-constrained environ-
ment, like 22ME, you can make smaller, more efficient code with the cur-
sor API.

If performance is your highest priority—for example, when creating |ow-
level libraries or infrastructure—the cursor APl is more efficient.

If you want to create XML processing pipelines, use the iterator API.
If you want to modify the event stream, use the iterator API.

If you want to your application to be able to handle pluggable processing
of the event stream, use the iterator API.

In general, if you do not have a strong preference one way or the other,
using the iterator APl is recommended because it is more flexible and
extensible, thereby “future-proofing” your applications.

USING STAX

Using StAX

In general, StAX programmers create XML stream readers, writers, and events
by using the XMLInputFactory, XMLOutputFactory and XMLEventFactory
classes. Configuration is done by setting properties on the factories, whereby
implementation-specific settings can be passed to the underlying implementation
using the setProperty() method on the factories. Similarly, implementation-
specific settings can be queried using the getProperty () factory method.

The XMLInputFactory, XMLOutputFactory and XMLEventFactory classes are
described below, followed by discussions of resource allocation, namespace and
attribute management, error handling, and then finadly reading and writing
streams using the cursor and iterator APIs.

StAX Factory Classes

XMLInputFactory

The XMLInputFactory class lets you configure implementation instances of
XML stream reader processors created by the factory. New instances of the
abstract class XMLInputFactory are created by calling the newInstance()
method on the class. The static method XMLInputFactory.newInstance() iS
then used to create a new factory instance.

Deriving from JAXP, the XMLInputFactory.newInstance() method deter-
mines the specific XMLInputFactory implementation class to load by using the
following lookup procedure:

1. Usethe javax.xml.stream.XMLInputFactory System property.

2. Usethe Tib/xm1.stream.properties filein the JRE directory.

3. Usethe Services AP, if available, to determine the classname by looking
in the META-INF/services/javax.xml.stream.XMLInputFactory files
in jars available to the JRE.

4. Use the platform default XMLInputFactory instance.

After getting areference to an appropriate XML InputFactory, an application can
use the factory to configure and create stream instances. Table 34 lists the prop-

99

STREAMING APl FOR XML

erties supported by XMLInputFactory. See the StAX specification for a more

detailed listing.

Table 3-4 XMLInputFactory Properties

Property

Description

javax.xml.stream.isValidating

Turns on implementation specific validation.

javax.xml.stream.isCoal escing

(Required) Requires the processor to coal esce
adjacent character data.

javax.xml.stream.isNamespaceAware

Turns off namespace support. All implementations
must support namespaces supporting non-
namespace aware documentsis optional.

javax.xml.stream.isReplacingEntityReferences

(Required) Requires the processor to replace inter-
nal entity references with their replacement value
and report them as characters or the set of events
that describe the entity.

javax.xml.stream.isSupportingExternal Entities

(Required) Requires the processor to resolve exter-
nal parsed entities.

javax.xml.stream.reporter

(Required) Sets and gets the implementation of the
XMLReporter

javax.xml.stream.resolver

(Required) Sets and gets the implementation of the
XMLResolver interface

javax.xml.stream.allocator

(Required) Sets/gets the implementation of the
XMLEventAllocator interface

XMLOutputFactory

New instances of the abstract class XMLOutputFactory are created by calling the
newInstance() method on the class. The static method XMLOutputFac-
tory.newInstance() isthen used to create a new factory instance. The ago-
rithm used to obtain the instance is the same as for XMLInputFactory but
referencesthe javax.xm1.stream.XMLOutputFactory System property.

XMLOutputFactory supports only one property, javax.xml.stream.isRepair-
ingNamespaces. This property is required, and its purpose is to create default

RESOURCES, NAMESPACES, AND ERRORS

prefixes and associate them with Namespace URIs. See the StAX specification
for amore information.

XMLEventFactory

New instances of the abstract class XMLEventFactory are created by calling the
newInstance() method on the class. The static method XMLEventFac-
tory.newInstance() isthen used to create anew factory instance. This factory
references the javax.xm1.stream.XMLEventFactory property to instantiate the
factory. The algorithm used to obtain the instance is the same as for XMLInput-
Factory and XMLOutputFactory but referencesthe javax.xml.stream.XMLEv-
entFactory system property.

There are no default properties for XMLEventFactory.

Resources, Namespaces, and Errors

The StAX specification handles resource allocation, attributes and hamespace,
and errors and exceptions as described below.

Resource Resolution

The XMLResolver interface provides a means to set the method that resolves
resources during XML processing. An application sets the interface on XMLIn-
putFactory, which then sets the interface on all processors created by that fac-
tory instance.

Attributes and Namespaces

Attributes are reported by a StAX processor using lookup methods and stringsin
the cursor interface and Attribute and Namespace events in the iterator inter-
face. Note here that namespaces are treated as attributes, athough namespaces
are reported separately from attributes in both the cursor and iterator APIs. Note
also that nhamespace processing is optional for StAX processors. See the StAX
specification for complete information about namespace binding and optional
namespace processing.

101

102

STREAMING APl FOR XML

Error Reporting and Exception Handling

All fatal errors are reported by way of javax.xml.stream.XMLStreamExcep-
tion. All nonfatal errors and warnings are reported using the
javax.xml.stream.XMLReporter interface.

Reading XML Streams

Asdescribed earlier in this chapter, the way you read XML streams with a StAX
processor—and more importantly, what you get back—varies significantly
depending on whether you are using the StAX cursor API or the event iterator
API. Thefollowing two sections describe how to read XML streams with each of
these APIs.

Using XMLStreamReader

The XMLStreamReader interface in the StAX cursor API lets you read XML
streams or documents in a forward direction only, one item in the infoset at a
time. The following methods are available for pulling data from the stream or
skipping unwanted events.

* Get thevalue of an attribute

* Read XML content

» Determine whether an element has content or is empty

» Get indexed accessto a collection of attributes

» Get indexed access to a collection of namespaces

» Get the name of the current event (if applicable)

» Get the content of the current event (if applicable)
Instances of XMLStreamReader have at any one time a single current event on
which its methods operate. When you create an instance of XMLStreamReader on

a stream, the initial current event is the START_DOCUMENT state. The XMLStream-
Reader.next () method can then be used to step to the next event in the stream.

Reading Properties, Attributes, and Namespaces

The XMLStreamReader.next () method loads the properties of the next event in
the stream. You can then access those properties by calling the XMLStream-
Reader.getLocalName() and XMLStreamReader.getText() methods.

READING XML STREAMS 103

When the XMLStreamReader Cursor is over a StartElement event, it reads the
name and any attributes for the event, including the namespace. All attributes for
an event can be accessed using an index value, and can also be looked up by
namespace URI and local name. Note, however, that only the namespaces
declared on the current StartEvent are available; previousy declared
namespaces are not maintained, and redeclared namespaces are not removed.

XMLStreamReader Methods

XMLStreamReader provides the following methods for retrieving information
about namespaces and attributes:

int getAttributeCount();

String getAttributeNamespace(int index);

String getAttributeLocalName(int index);

String getAttributePrefix(int index);

String getAttributeType(int index);

String getAttributeValue(int index);

String getAttributeValue(String namespaceUri,String
TocalName);

boolean isAttributeSpecified(int index);

Namespaces can also be accessed using three additional methods:

int getNamespaceCount();
String getNamespacePrefix(int index);
String getNamespaceURI(int index);

Instantiating an XMLStreamReader

This example, taken from the StAX specification, shows how to instantiate an
input factory, create areader, and iterate over the elements of an XML stream:

XMLInputFactory f

XMLStreamReader r

while(r.hasNext()) {
r.next(Q;

}

XMLInputFactory.newInstance();
f.createXMLStreamReader(...);

Using XMLEventReader

The XMLEventReader API inthe StAX event iterator API provides the means to
map events in an XML stream to allocated event objects that can be freely
reused, and the API itself can be extended to handle custom events.

104 STREAMING APl FOR XML

XMLEventReader provides four methods for iteratively parsing XML streams:

* next() — Returnsthe next event in the stream

* nextEvent() — Returns the next typed XMLEvent

* hasNext() —Returnstrueif there are more eventsto processin the stream
* peek() — Returns the event but does not iterate to the next event

For example, the following code snippet illustrates the XMLEventReader method
declarations:

package javax.xml.stream;

import java.util.Iterator;

public interface XMLEventReader extends Iterator {
public Object next();
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;

To read al events on a stream and then print them, you could use the following:

while(stream.hasNext()) {
XMLEvent event = stream.nextEvent();
System.out.print(event);

}

Reading Attributes

You can access attributes from their associated javax.xml.stream.StartEle-
ment, as follows:

public interface StartElement extends XMLEvent {
public Attribute getAttributeByName(QName name);
public Iterator getAttributes();

}

You can usethe getAttributes() method onthe StartElement interfaceto use
an Iterator over al the attributes declared on that StartElement.

Reading Namespaces

Similar to reading attributes, namespaces are read using an Iterator created by
calling the getNamespaces () method on the StartElement interface. Only the
namespace for the current StartElement isreturned, and an application can get

WRITING XML STREAMS

the current namespace context by using StartElement.getNamespaceCon-
text().

Writing XML Streams

StAX is a bidirectional API, and both the cursor and event iterator APIs have
their own set of interfaces for writing XML streams. As with the interfaces for
reading streams, there are significant differences between the writer APIs for
cursor and event iterator. The following sections describe how to write XML
streams using each of these APIs.

Using XMLStreamWriter

The XMLStreamWriter interface in the StAX cursor API lets applications write
back to an XML stream or create entirely new streams. XML StreamWriter has
methods that let you:

e Write well-formed XML
e Fush or close the output
* Write qualified names

Note that XMLStreamWriter implementations are not required to perform well-
formedness or validity checks on input. While some implementations my per-
form strict error checking, others may not. The rules you choose to implement
are set on properties provided by the XMLOutputFactory class.

ThewriteCharacters(...) method isused to escape characters such as &, <, >,
and “. Binding prefixes can be handled by either passing the actual value for the
prefix, by using the setPrefix() method, or by setting the property for default-
ing namespace declarations.

The following example, taken from the StAX specification, shows how to instan-
tiate an output factory, create awriter and write XML output:

XMLOutputFactory output = XMLOutputFactory.newInstance();
XMLStreamWriter writer = output.createXMLStreamWriter(...);
writer.writeStartDocument();
writer.setPrefix("c","http://c");
writer.setDefaultNamespace("http://c");
writer.writeStartElement("http://c","a");
writer.writeAttribute("b","blah");
writer.writeNamespace("c","http://c");
writer.writeDefaultNamespace("http://c");

105

106

STREAMING APl FOR XML

writer.setPrefix("d","http://c");
writer.writeEmptyElement("http://c","d");
writer.writeAttribute("http://c","chris","fry");
writer.writeNamespace("d","http://c");
writer.writeCharacters("foo bar foo");
writer.writeEndElement();

writer.flush(Q;

This code generates the following XML (new lines are non-normative)

<?xml version='1.0' encoding="utf-8'?>

<d:d d:chris="fry" xmlns:d="http://c"/>foo bar foo

Using XMLEventWriter

The XMLEventWriter interface in the StAX event iterator APl lets applications
write back to an XML stream or create entirely new streams. This API can be
extended, but the main APl isasfollows:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
// ... other methods not shown.

}

Instances of XMLEventWriter are created by an instance of XMLOutputFactory.
Stream events are added iteratively, and an event cannot be modified after it has
been added to an event writer instance.

Attributes, Escaping Characters, Binding Prefixes
StAX implementations are required to buffer the last StartElement until an
event other than Attribute or Namespace isadded or encountered in the stream.
This means that when you add an Attribute or a Namespace to a stream, it is
appended the current StartETement event.

You can use the Characters method to escape characterslike &, <, >, and “.

The setPrefix(...) method can be used to explicitly bind a prefix for use dur-
ing output, and the getPrefix(...) method can be used to get the current pre-
fix. Note that by default, XMLEventWriter adds namespace bindings to its
internal namespace map. Prefixes go out of scope after the corresponding
EndElement for the event in which they are bound.

SUN’S STREAMING PARSER | MPLEMENTATION 107

sSun’s Streaming Parser Implementation

The JWWSDP 1.6 includes an Early Access (EA) release of Sun Microsystem’'s
JSR 173 (StAX) implementation, caled the Sun Java Streaming XML Parser
(SISXP). The SISXP is a high-speed, non-validating, W3C XML 1.0 and
Namespace 1.0-compliant streaming XML pull parser built upon the Xerces2
codebase.

In Sun’s SJISXP implementation, the Xerces2 lower layers, particularly the Scan-
ner and related classes, have been redesigned to behave in apull fashion. In addi-
tion to the changes the lower layers, the SISXP includes additional StAX-related
functionality and many performance-enhancing improvements. The SISXP is
implemented in sjsxp.jar, which is located in the <JWSDP_HOME>/sjsxp/1ib
directory.

Included with this SISXP EA distribution are code samples that illustrate how
the implementation works. These samples are described in the Sample Code sec-
tion, later in this chapter.

Before proceeding with the sample code, there are three important aspects of the
SJISXP about which you should be aware:

o SISXPJAR Files
* Reporting CDATA Events
» SISXP Factories Implementation

These three topics are discussed below.

SJSXP JAR Files

There are two JAR files in the SISXP implementation. Both of these JARs are
located in the <JwSDP_HOME>/sjsxp/11ib directory:

e gsxp.jar — Sun implementation JAR for SISXP
* jsr173 apijar — Standard APl JAR for JSR 173

Complete listings of the contents of these two JARs are provided in Appendix B,
“SISXP JAR Files”

108

STREAMING APl FOR XML

Reporting CDATA Events

The javax.xm1.stream.XMLStreamReader implemented in the SISXP does not
report CDATA events. If you have an application that needs to receive such
events, configure the XMLInputFactory to set the following implementation-
specific “report-cdata-event” property:

XMLInputFactory factory = XMLInptuFactory.newInstance();
factory.setProperty("report-cdata-event", Boolean.TRUE);

SJSXP Factories Implementation

Most applications do not need to know the factory implementation class name.
Just adding the sjsxp. jar file to the classpath is sufficient for most applications
because sjsxp.jar supplies the factory implementation classname for various
SISXP properties under the META-INF/services directory—for example,
javax.xml.stream.XMLInputFactory, javax.xml.stream.XMLOutputFac-
tory, and javax.xm1.stream.XMLEventFactory—which is the third step of a
lookup operation when an application asks for the factory instance. See the java-
doc for the XMLInputFactory.newInstance() method for more information
about the lookup mechanism.

However, there may be scenarios when an application would like to know about
the factory implementation class name and set the property explicitly. These sce-
narios could include cases where there are multiple JSR 173 implementationsin
the classpath and the application wants to choose one, perhaps one that has supe-
rior performance, contains a crucia bug fix, or suchlike.

If an application sets the SystemProperty, it isthe first step in alookup opera-
tion, and so obtaining the factory instance would be fast compared to other
options; for example:

javax.xml.stream.XMLInputFactory -->
com.sun.xml.stream.ZephyrParserFactory
javax.xml.stream.XMLOutputFactory -->
com.sun.xml.stream.ZephyrWriterFactor
javax.xml.stream.XMLEventFactory -->
com.sun.xml.stream.events.ZephyrEventFactory

SamMPLE CODE

Sample Code

This section steps through the sample StAX code included in the JWSDP 1.6
bundle. All sample directories used in this section are located off the
<JWSDP_HOME>/sjsxp/samples directory. The sample XML file used here is
located in the data directory off of samples.

There are seven sample directories distributed with IWSDP 1.6:

cursor contains CursorParse. java, which illustrates how to use the XML -
StreamReader (cursor) APl to read an XML file.

cursor2event contains CursorApproachEventObject.java, which illus-
trates how an application can get information as an XMLEvent object when
using cursor API.

data contains BookCatalogue.xm1, which isthe XML document used by
the sample classes.

event contains EventParse. java, which illustrates how to use the XMLEv-
entReader (event iterator) API to read an XML file.

filter contains MyStreamFilter.java, which illustrates how to use the
Stax Stream Filter APIs. In thisexample, thefilter acceptsonly StartEle-
ment and EndETement events and filters out the remainder of the events.

readnwrite contains EventProducerConsumer.java, which illustrates
how the StAX producer/consumer mechanism can be used to simulta-
neously read and write XML streams.

writer contains CursorWriter.java, which illustrates how to use XML-
StreamWriter to write an XML file programatically.

Configuring Your Environment for
Running the Samples

The instructions for configuring your environment are basically the same as
those required for running the JWSDP in general. In addition to these general
instructions, you should also set the following environment variables:

PATH=<JWSDP_HOME>/apache-ant/bin:$PATH
ANT_HOME=<JWSDP_HOME>/apache-ant
CLASSPATH=<JWSDP_HOME>/sjsxp/1ib/: $CLASSPATH

109

110

STREAMING APl FOR XML

Running the Samples

The samples can be run either manually or by means of several Ant targets,
defined in the <JWSDP_HOME>/sjsxp/samples/build.xm1 file. It is easiest to
run the samples using the Ant targets.

When you run any of the samples, the compiled class files are placed in a direc-
tory named . /buil1d. Thisdirectory is created if it does not exist already.

Running the Samples Using Ant

Use the Ant build file (bui1d.xm1) in the <JWSDP_HOME>/sjsxp/samples direc-
tory to run the SISXP samples. There are eight targets defined in SISXP
build.xml file:

all — Compile and run all classes; default target
compile — Only compile classes; do not run
cursor.Cursor Parse — Compileand run . /cursor/CursorParse. java

cursor 2event.Cur sor ApproachEventObject — Compile and run
./cursor2event/CursorApproachEventObject. java
event.EventPar se — Compile and run . /event/EventParsejava

filter MyStreamFilter — Compile and run ./filter/MyStreamFil-
ter.java

readnwrite.EventProducer Consumer — Compile and run ./readn-
write/EventProducerConsumer.java

writer.CursorWriter —Compileandrun . /writer/CursorWriter.java

To run any of the Ant targets, change to the <JWSDP_HOME>/sjsxp/samples
directory and invoke the target you want; for example:

cd jwsdp.home/sjsxp/samples
ant cursor.CursorParse

Note: If the StAX (JSR 173) APl JAR fileis not named jsr173_api.jar, oris
not inthe same directory asthe sjsxp. jar file, you will get an error when you run
the samples. If this occurs, you should tell Ant the location of the StAX APIs by
overriding the stax.api . jar property as shown:

ant -Dstax.api.jar="<JSR 173 API LOCATION>" cursor.CursorParse

If Ant cannot find the sjsxp. jar file, overridethe sjsxp. jar property as shown:;

SAMPLE XML DOCUMENT

ant -Dsjsxp.jar="sjsxp.jar location" cursor.CursorParse

Running the Samples Manually

You can adso run the samples manualy. To do so, go to the
<JWSDP_HOME/sjsxp/samples directory and change to the directory that con-
tains the sample you want to run. For example, to run the CursorParse.java
sample:

1. Change to the directory containing the CursorParse.javafile:
cd <JWSDP_HOME>/sjsxp/samples/cursor

2. Compile CursorParse.java:
javac -classpath ../1ib/jsrl73_api.jar CursorParse.java

Note that if the jsr173_api.jar isin your CLASSPATH, you do not need
to usethe -classpath option here.

3. Run the CursorParse sample:

java -classpath .:../Tib/sjsxp.jar:../1ib/jsrl73_api.jar
cursor.CursorParse -x 1 ./samples/data/BookCatalogue.xml

Again, if the jsr173_api.jar and sjsxp.jar files are in your CLASS-
PATH, you do not need to use the -classpath option here.

Sample XML Document

The sample XML document, BookCatalogue.xml1, used by most of the SISXP
sample classes is located in the <JWSDP_HOME>/sjsxp/samples/data directory,
and is asimple book catalog based on the common BookCatalogue hamespace.
The contents of BookCatalogue.xml are listed below:

<?xml version="1.0"7>
<BookCatalogue xmlns="http://www.publishing.org">
<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<Author>Dhirendra Brahmachari</Author>
<Date>1966</Date>
<ISBN>81-40-34319-4</ISBN>
<Publisher>Dhirendra Yoga Publications</Publisher>
<Cost currency="INR">11.50</Cost>
</Book>

111

112 STREAMING APl FOR XML

<Book>
<Title>The First and Last Freedom</Title>
<Author>]. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<PubTisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>

</Book>

</BookCatalogue>

CursorParse.java

Located in the <JWSDP_HOME>/sjsxp/samples/cursor directory, Cursor-
Parse.java demonstrates using the StAX cursor API to read an XML docu-
ment.

Stepping Through Events

In this example, the client application pulls the next event in the XML stream by
calling the next () method on the parser; for example:

try
{
for(int i =0 ; i< count ; i++)
{
//pass the file name.. allrelativeentity
//references will be resolved againstthis as
//base URI.
XMLStreamReader xmlr=
xml1if.createXMLStreamReader (filename, new
FileInputStream(filename));
//when XMLStreamReader 1is created, it is positioned
at START_DOCUMENT event.
int eventType = xmlr.getEventType();
//printEventType(eventType);
printStartDocument(xmlr);
//check if there aremore eventsinthe input stream
while(xmlr.hasNext())
{
eventType =xmlr.next();
//printEventType(eventType);
//these functionsprints the information about
theparticular event by calling relevant function
printStartETement(xmlr);
printEndElement(xmlr);

CURSORPARSE.JAVA 113

printText(xmlr);
printPIData(xmlr);
printComment (xmlr);
}
}

Note that next() just returns an integer constant corresponding to the event
underlying the current cursor location. The application calls the relevant function
to get more information related to the underlying event. There are various acces-
sor methods which can be called when the cursor is at particular event.

Returning String Representations

Because the next() method only returns integers corresponding to underlying
event types, you typically need to map these integers to string representations of
the events; for example:

public final staticString getEventTypeString(inteventType)
{
switch(eventType)
{

case XMLEvent.START_ELEMENT:
return "START_ELEMENT";

case XMLEvent.END_ELEMENT:
return "END_ELEMENT";

case XMLEvent.PROCESSING_INSTRUCTION:
return "PROCESSING_INSTRUCTION";

case XMLEvent.CHARACTERS:
return "CHARACTERS";

case XMLEvent.COMMENT:
return "COMMENT";

case XMLEvent.START_DOCUMENT:
return "START_DOCUMENT";

case XMLEvent.END_DOCUMENT:
return "END_DOCUMENT";

case XMLEvent.ENTITY_REFERENCE:
return "ENTITY_REFERENCE";

case XMLEvent.ATTRIBUTE:
return "ATTRIBUTE";

case XMLEvent.DTD:
return "DTD";

case XMLEvent.CDATA:
return "CDATA";

case XMLEvent.SPACE:

114

STREAMING APl FOR XML

return "SPACE";

}
return"UNKNOWN_EVENT_TYPE , "+ eventType;

}

Running the Sample

When you run the CursorParse sample, the class is compiled, and the XML
stream is parsed and returned to STDOUT.

CursorApproachEventObject.java

Located in the <JWSDP_HOME>/sjsxp/samples/cursor2event directory, Cur-
sorApproachEventObject.java demonstrates how to get information returned
by an XMLEvent object even when using the cursor API.

The idea here is that the cursor API’S XMLStreamReader returns integer con-
stants corresponding to particular events, where as the event iterator API's
XMLEventReader returns immutable and persistent event objects. XMLStream-
Reader ismore efficient, but XMLEventReader iseasier to use, asal theinforma
tion related to a particular event is encapsulated in a returned XMLEvent object.
However, the disadvantage of event approach is the extra overhead of creating
objects for every event, which consumes both time and memory.

With this mind, XMLEventAlTocator can be used to get event information as an
XMLEvent object, even when using the cursor API.

Instantiating an XMLEventAllocator

The first step is to create a new XMLInputFactory and instantiate an XMLEven-
tAlTlocator:

XMLInputFactory xmlif = XMLInputFactory.newInstance();
System.out.println("FACTORY: " + xmlif);
xmlif.setEventAllocator(new XMLEventAllocatorImpl());
allocator = xmlif.getEventAllocator();

XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,
new FileInputStream(filename));

EVENTPARSE.JAVA 115

Creating an Event Iterator

The next step isto create an event iterator:

int eventType = xmlr.getEventType(Q);
while(xmlr.hasNext()){
eventType = xmlr.next();
//Get all "Book" elements as XMLEvent object
if(eventType == XMLStreamConstants.START_ELEMENT &&
xmlr.getLocalName() .equals("Book™")) {
//get immutable XMLEvent
StartElement event = getXMLEvent(xmlr).asStartElement();
System.out.printTn("EVENT: " + event.toString());

}
}

Creating the Allocator Method

The final step isto create the XMLEventAlTlocator method:

private static XMLEvent getXMLEvent(XMLStreamReader reader)
throws XMLStreamException{
return allocator.allocate(reader);

}

Running the Sample

When you run the CursorApproachEventObject sample, the class is compiled,
and the XML stream is parsed and returned to STDOUT. Note how the Book events
are returned as strings.

EventParse.java

Located in the <JWSDP_HOME>/sjsxp/samples/event directory, Event-
Parse. java demonstrates how to use the StAX cursor API to read an XML doc-
ument.

116 STREAMING APl FOR XML

Creating an Input Factory

Thefirst step isto create a new instance of XMLInputFactory:

XMLInputFactory factory = XMLInputFactory.newInstance();
System.out.println("FACTORY: " + factory);

Creating an Event Reader

The next step isto create an instance of XMLEventReader:

XMLEventReader r = factory.createXMLEventReader(filename, new
FiTeInputStream(filename));

Creating an Event Iterator

Thethird step isto create an event iterator:

XMLEventReader r = factory.createXMLEventReader(filename, new
FileInputStream(filename));
while(r.hasNext()) {
XMLEvent e = r.nextEvent();
System.out.println(e.toString());

}

Getting the Event Stream
Thefinal step isto get the underlying event stream:

public final static String getEventTypeString(int eventType)
{
switch (eventType)
{
case XMLEvent.START_ELEMENT:
return "START_ELEMENT";
case XMLEvent.END_ELEMENT:
return "END_ELEMENT";
case XMLEvent.PROCESSING_INSTRUCTION:
return "PROCESSING_INSTRUCTION";
case XMLEvent.CHARACTERS:
return "CHARACTERS";
case XMLEvent.COMMENT:
return "COMMENT";
case XMLEvent.START_DOCUMENT:

EVENTPARSE.JAVA

return "START_DOCUMENT";
case XMLEvent.END_DOCUMENT:
return "END_DOCUMENT";
case XMLEvent.ENTITY_REFERENCE:
return "ENTITY_REFERENCE";
case XMLEvent.ATTRIBUTE:
return "ATTRIBUTE";
case XMLEvent.DTD:
return "DTD";
case XMLEvent.CDATA:
return "CDATA";
case XMLEvent.SPACE:
return "SPACE";

}
return "UNKNOWN_EVENT_TYPE " + "," + eventType;

}

Running the Sample

When you run the EventParse sample, the class is compiled, and the XML
stream is parsed as events and returned to STDOUT. For example, an instance of
the Author element isreturned as:

<['"http://www.pubTlishing.org']: :Author>
Dhirendra Brahmachari
</["http://www.publishing.org']: :Author>

Note in this exampl e that the event comprises an opening and closing tag, both of
which include the namespace. The content of the element is returned as a string
within the tags.

Similarly, an instance of the Cost element is returned as:

<["http://www.publishing.org']::Cost currency="INR'>
11.50
</['http://www.publishing.org']::Cost>

In this case, the currency attribute and value are returned in the opening tag for
the event.

See earlier in this chapter, in the “Iterator API” and “Reading XML Streams”
sections, for amore detailed discussion of StAX event parsing.

117

118

STREAMING APl FOR XML

CursorWriter.java

Located in the <JWSDP_HOME>/sjsxp/samples/writer directory, Cursor-
Writer.java demonstrates how to use the StAX cursor APl to write an XML
stream.

Creating the Output Factory

Thefirst step isto create an instance of XMLOutputFactory:

XMLOutputFactory xof = XMLOutputFactory.newInstance();

Creating a Stream Writer

The next step isto create an instance of XMLStreamWriter:

XMLStreamWriter xtw = null;

Writing the Stream

The final step is to write the XML stream. Note that the stream is flushed and
closed after the final EndDocument iswritten:

xtw = xof.createXMLStreamWriter(new FileWriter(fileName));
xtw.writeComment("all elements here are explicitly in the HTML
namespace");

xtw.writeStartDocument("utf-8","1.0");

xtw.setPrefix("html", "http://www.w3.org/TR/REC-htm140");
xtw.writeStartElement("http://www.w3.0rg/TR/REC-
htm140","htm1");

xtw.writeNamespace("html1", "http://www.w3.org/TR/REC-htm140");
xtw.writeStartETement("http://www.w3.0rg/TR/REC-
htm140","head") ;
xtw.writeStartElement("http://www.w3.0org/TR/REC-
htm140","title");

xtw.writeCharacters("Frobnostication");
xtw.writeEndElement();

xtw.writeEndElement();
xtw.writeStartElement("http://www.w3.0org/TR/REC-
htm140","body") ;
xtw.writeStartElement("http://www.w3.0rg/TR/REC-htm140","p");
xtw.writeCharacters("Moved to");
xtw.writeStartETement("http://www.w3.0rg/TR/REC-htm140","a");

Xtw

Xtw

MYSTREAMFILTER.JAVA 119

writeAttribute("href","http://frob.com");
Xtw.
Xtw.
Xtw.
.writeEndETement();
Xtw.
Xtw.
Xtw.
Xtw.

writeCharacters("here");
writeEndETement();
writeEndElement();

writeEndElement();
writeEndDocument();
flush();

close(Q);

Running the Sample

When you run the CursorWriter sample, the class is compiled, and the XML
stream is parsed as events and written to afile named CursorWriter-Output:

<!--all elements here are explicitly in the HTML namespace-->
<?xm1 version="1.0" encoding="utf-8"7>

<html:html xmlns:html="http://www.w3.0rg/TR/REC-htm140">
<html:head>
<html:title>Frobnostication</html:title></html:head>
<htm1:body>

<htm1:p>Moved to

<html:a href="http://frob.com">here</html:a>

</html:p>

</htm1:body>

</html:html>

Note that in the actual CursorWriter-Output file, this stream is written without
any linebreaks; the breaks have been added here to make the listing easier to
read. In this example, aswith the object stream in the EventParse. java sample,
the namespace prefix is added to both the opening and closing HTML tags. This
is not required by the StAX specification, but it is good practice when the final
scope of the output stream is not definitively known.

MyStreamFilter.java

Located in the <JWSDP_HOME>/sjsxp/samples/filter directory, MyStream-
Filter.java demonstrates how to use the StAX stream filter APl to filter out
events not needed by your application. In this example, the parser filters out all
events except StartElement and EndETlement.

120

STREAMING APl FOR XML

Implementing the StreamfFilter Class

The MyStreamFilter implements javax.xm1.stream.StreamFilter:

public class MyStreamFilter implements
javax.xml.stream.StreamFilter{

Creating an Input Factory

The next step is to create an instance of XMLInputFactory. In this case, various
properties are also set on the factory:

XMLInputFactory xmlif = null ;
try{
xmlif = XMLInputFactory.newInstance();
xm1if.setProperty(XMLInputFactory.IS_REPLACING_ENTITY_REFERENC
ES,Boolean.TRUE);
xml1if.setProperty (XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTIT
IES,Boolean.FALSE);
xmlif.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE ,
Boolean.TRUE);
xm1if.setProperty(XMLInputFactory.IS_COALESCING ,
Boolean.TRUE);
}catch(Exception ex){

ex.printStackTrace();

}
System.out.printTn("FACTORY: " + xmlif);
System.out.println("filename = "+ filename);

Creating the Filter

The next step isto instantiate afile input stream and create the stream filter:

FileInputStream fis = new FileInputStream(filename);

XMLStreamReader xmlr =
xmlif.createFilteredReader(xmlif.createXMLStreamReader(fis),
new MyStreamFilter());

int eventType = xmlr.getEventType(Q);
printEventType(eventType);
while(xmlr.hasNext()){
eventType = xmlr.next(Q);
printEventType(eventType);
printName(xmlr,eventType);

MYSTREAMFILTER.JAVA

printText(xmlr);
if(xmlr.isStartETement()){
printAttributes(xmlr);

3
printPIData(xmlr);
System.out.printin("-----—-——---ommm)

Capturing the Event Stream

The next step is to capture the event stream. This is done in basically the same
way asinthe EventParse.java sample.

Filtering the Stream
The final step is the filter the stream:

public boolean accept(XMLStreamReader reader) {
if(!reader.isStartElement() && !reader.isEndElement())
return false;
else
return true;

Running the Sample

When you run the MyStreamFi1ter sample, the classis compiled, and the XML
stream is parsed as events and returned to STDOUT. For example an Author event
isreturned as follows:

EVENT TYPE(1) :START_ELEMENT
HAS NAME: Author

HAS NO TEXT

HAS NO ATTRIBUTES

EVENT TYPE(2) :END_ELEMENT
HAS NAME: Author

HAS NO TEXT

121

122 STREAMING APl FOR XML

Similarly, a Cost event isreturned as follows:

EVENT TYPE(1) :START_ELEMENT
HAS NAME: Cost
HAS NO TEXT

HAS ATTRIBUTES:
ATTRIBUTE-PREFIX:
ATTRIBUTE-NAMESP: null
ATTRIBUTE-NAME: currency
ATTRIBUTE-VALUE: INR
ATTRIBUTE-TYPE: CDATA

EVENT TYPE(2) :END_ELEMENT
HAS NAME: Cost
HAS NO TEXT

See earlier in this chapter, in the “lterator API” and “Reading XML Streams”
sections, for amore detailed discussion of StAX event parsing.

EventProducerConsumer.java

Located in the <JWSDP_HOME>/sjsxp/samples/readnwrite directory, EventPro-
ducerConsumer . java demonstrates how to use a StAX parser simultaneously as
both a producer and a consumer.

The StAX XMLEventWriter APl extends from the XMLEventConsumer interface,
and isreferred to as an event consumer. By contrast, XMLEventReader isan event
producer. StAX supports simultaneous reading and writing, such that it is possi-
ble to read from one XML stream sequentially and simultaneously write to
another stream.

This sample shows how the StAX producer/consumer mechanism can be used to
read and write simultaneously. This sample also shows how a stream can be
modified, and new events can be added dynamically and then written to different
stream.

EVENTPRODUCERCONSUMER.JAVA

Creating an Event Producer/Consumer

The first step is to instantiate an event factory and then create an instance of an
event producer/consumer:

XMLEventFactory m_eventFactory=XMLEventFactory.newInstance();
public EventProducerConsumer() {

}

try{
EventProducerConsumer ms = new EventProducerConsumer();

XMLEventReader reader =
XMLInputFactory.newInstance().createXMLEventReader(new
java.io.FileInputStream(args[0]));

XMLEventWriter writer =
XMLOutputFactory.newInstance().createXMLEventWriter(System.out
);

Creating an Iterator

The next step isto create an iterator to parse the stream:

while(reader.hasNext())
{
XMLEvent event = (XMLEvent)reader.next();
if(event.getEventType() == event.CHARACTERS)
{

writer.add(ms.getNewCharactersEvent(event.asCharacters()));
}
else
{
writer.add(event);
}
}
writer.flush(Q;

123

124 STREAMING APl FOR XML

Creating a Writer

Thefinal step isto create a stream writer in the form of anew Character event:

Characters getNewCharactersEvent(Characters event){
if(event.getData().equalsIgnoreCase("Namel™)) {
return
m_eventFactory.createCharacters(Calendar.getInstance().getTime
Q) .toString();

}
//else return the same event
else return event;

}

Running the Sample

When you run the EventProducerConsumer sample, the class is compiled, and
the XML stream is parsed as events and written back to STDOUT:

<?xml1 version="1.0" encoding="UTF-8"7>
<BookCatalogue xmins="http://www.publishing.org">
<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<Author>Dhirendra Brahmachari</Author>
<Date>1966</Date>
<ISBN>81-40-34319-4</ISBN>
<PubTisher>Dhirendra Yoga Publications</Publisher>
<Cost currency="INR">11.50</Cost>
</Book>

<Book>
<Title>The First and Last Freedom</Title>
<Author>J. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<Publisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>

</Book>

</BookCatalogue>

FURTHER | NFORMATION 125

Further Information

For more information about StAX, see:

Java Community Process page:
http://jcp.org/en/jsr/detail?id=173.

W3C Recommendation “ Extensible Markup Language (XML) 1.0":
http://www.w3.0rg/TR/REC-xm1

XML Information Set:
http://www.w3.0rg/TR/xml-infoset/

JAXB specification:

http://java.sun.com/xml/jaxb

JAX-RPC specification:
http//java.sun.com/xml/jaxrpc

W3C Recommendation “ Document Object Model”:
http://www.w3.0org/DOM/

SAX “Simple API for XML":
http://www.saxproject.org/

DOM “Document Object Model”:
http://www.w3.0rg/TR/2002/WD-DOM-Level-3-Core-
20020409/core.htm1#ID-B63ED1A3

W3C Recommendation “Namespaces in XML
http://www.w3.0rg/TR/REC-xm1-names/

For some useful articles about working with StAX, see:

Jeff Ryan, “Does StAX Belong in Your XML Toolbox?":
http://www.developer.com/xml/article.php/3397691

Elliotte Rusty Harold, “An Introduction to StAX":
http://www.xml.com/pub/a/2003/09/17/stax.html

“More efficient XML parsing with the Streaming API for XML":
http://www-106.1ibm.com/developerworks/xml/Tibrary/x-tipstx/

http://jcp.org/en/jsr/detail?id=173

126 STREAMING APl FOR XML

A

Introduction to XML
and Web Services
Security

THlS addendum discusses using XML and Web Services Security (XWS-
Security) for message-level security. In message-level security, security informa-
tion is contained within the SOAP message and/or SOAP message attachment,
which alows security information to travel along with the message or attach-
ment. For example, a portion of the message may be signed by a sender and
encrypted for a particular receiver. When the message is sent from the initial
sender, it may pass through intermediate nodes before reaching its intended
receiver. In this scenario, the encrypted portions continue to be opaque to any
intermediate nodes and can only be decrypted by the intended receiver. For this
reason, message-level security is also sometimes referred to as end-to-end secu-
rity.

127

128

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Overview

This release includes the following X WS-Security features:
» Support for securing JAX-RPC applications at the service, port, and oper-

ation levels.

» XWS-Security APIs for securing both JAX-RPC applications and stand-

alone applications that make use of SAAJ APIs only for their SOAP mes-
saging.

Note: The XWS-Security EA 2.0 APIsareintended to insulate XWS-Security users
from possible changes in the internal APIs, however, these APIs are subject to
minor changes between 2.0 EA and 2.0 FCS.

A sample security framework within which a JAX-RPC application devel -
oper will be able to secure applications by signing, verifying, encrypting,
and/or decrypting parts of SOAP messages and attachments.

The message sender can also make claims about the security properties by
associating security tokens with the message. An example of a security
claim is the identity of the sender, identified by a user name and pass-
word.

Support for SAML Tokens and the WSS SAML Token Profile (partial).

Support for securing attachments based on the WSS SwA Profile Draft.

Partial support for sending and receiving WS-I Basic Security Profile
(BSP) 1.0 compliant messages. For more information about BSP, read
Interoperability with Other Web Services.

Enhancementsto the SecurityConfiguration Schemafrom the previous
release.

Sample programs that demonstrate using the framework.

Command-linetoolsthat provide specialized utilitiesfor keystore manage-
ment, including pkcs12import and keyexport.

OVERVIEW

The XWS-Security release contents are arranged in the structure shown in Table
4-1 within the Java WSDP rel ease:

Table4-1 XWS-Security directory structure

Directory Name

Contents

<JIWSDP_HOME>/
xws-security/etc/

Keystore files, property files, configuration files used for the exam-
ples.

<JIWSDP_HOME>/
xws-security/docs/

Release documentation for the XWS-Security framework. For the
latest updates to this documentation, visit the web site at http:/
java.sun.com/webservices/docs/1.6/xws-security/index.html.

<JWSDP_HOME>/
xws-security/docs/
api

API documentation for the XWS-Security framework.

<JWSDP_HOME>/
xws-security/Tib/

JAR files containing the XWS-Security framework implementa-
tion and dependent libraries.

<JWSDP_HOME>/
Xws-security/sam-
ples/

Example code. This release includes sample applications. For
more information on the samples, read Are There Any Sample
Applications Demonstrating X WS-Security?

<JWSDP_HOME>/
xws-security/bin/

Command-line tools that provide specialized utilities for keystore
management. For more information on these, read Useful XWS-
Security Command-Line Tools.

Thisimplementation of XWS-Security is based on the Oasis Web Services Secu-
rity (WSS) specification, which can be viewed at the following URL:

http://docs.oasi s-open.org/wss/2004/01/oasi s-200401-wss-soap-message-security-1.0.pdf

Some of the materia in this chapter assumes that you understand basic security
concepts. To learn more about these concepts, we recommend that you explore
the following resources before you begin this chapter.

» The Java 2 Standard Edition discussion of security, which can be viewed
from

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
» TheJ2EE 1.4 Tutorial chapter titled Security, which can be viewed from

http://java.sun.com/j2ee/1.4/docs/tutorial -update2/doc/index.html

129

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update2/doc/index.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://java.sun.com/webservices/docs/1.6/xws-security/index.html
http://java.sun.com/webservices/docs/1.6/xws-security/index.html

130

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Does XWS-Security Implement Any
Specifications?

XWS-Security is an implementation of the Web Services Security (WSS) speci-
fication developed at OASIS. WSS defines a SOAP extension providing quality
of protection through message integrity, message confidentiality, and message
authentication. WSS mechanisms can be used to accommodate a wide variety of
security models and encryption technologies.

The WSS specification defines an end to end security framework that provides
support for intermediary security processing. Message integrity is provided by
using XML Signature in conjunction with security tokens to ensure that mes-
sages are transmitted without modifications. Message confidentiality is granted
by using XML Encryption in conjunction with security tokens to keep portions
of SOAP messages confidential.

In this release, the XWS-Security framework provides the following options for
securing JAX-RPC applications:

» XML Digital Signature (DSig)
This implementation of XML and Web Services Security uses JSR-105
(XML Digital Signature APIs) for signing and verifying parts of a SOAP
message or attachment. JSR-105 can be viewed at http://www.jcp.org/en/jsr/
detail Ad=105

Samples containing code for signing and/or verifying parts of the SOAP
message are included with this release in the directory <JwSDP_HOME>/
xws-security/samples/simple/. Read Simple Security Configurations Sam-
ple Application for more information on these sample applications.

e XML Encryption (XML-ENc)

This implementation of XML and Web Services Security uses Apache's
XML-Enc implementation, which is based on the XML Encryption W3C
standard. This standard can be viewed at http://www.w3.org/TR/
xmlenc-core/.

Samples containing code for encrypting and/or decrypting parts of the
SOAP message are included with this release in the directory
<JWSDP_HOME>/xws-security/samples/simple/. Read Simple Security
Configurations Sample Application for more information on these sample appli-
cations.

» UsernameToken Verification

http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/

DOES XWS-SECURITY IMPLEMENT ANY SPECIFICATIONS?

Username token verification specifies a process for sending UserNameTo-
kens aong with the message. Sending these tokens with a message binds
the identity of the tokens (and any other claims occurring in the security
token) to the message.

This implementation of XML and Web Services Security provides sup-
port for Username Token Profile, which is based on OASIS WSS User-
name Token Profile 1.0 (which can be read a http://docs.oasis-
open.org/wss/2004/01/o0asis-200401-wss-username-token-pro-
file-1.0.pdf) and X.509 Certificate Token Profile, which is based on
OASIS WSS X.509 Certificate Token Profile 1.0 (which can be read at
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
x509-token-profile-1.0.pdf).

Samples containing code for sending user name and X.509 certificate
tokens along with the SOAP message are included with this release in the
directory <JWSDP_HOME>/xws-security/samples/simple/. Read Simple
Security Configurations Sample Application for more information on these sam-
ple applications.

XWS-Security Framework APIs

This implementation of XML and Web Services Security provides APIs
that can be used to secure stand-alone Web services applications as well
as JAX-RPC applications. These new APIs can be used to secure an out-
bound SOAPMessage and verify the security in an inbound SOAPMessage.

Because some of the Java standards for XWS-Security technologies are
currently undergoing definition under the Java Community Process, the
security solution that is provided in Java WSDP 1.6 is based on non-stan-
dard APIs, which are subject to change with new revisions of the technol-
ogy.

To insulate stand a one XWS-Security users from the possible changesin
the internal APIs, this release includes a sample interface definition that
abstracts out some of the interna implementation details.

Samples containing code for using these APIs are included with this
release in the directory <JWSDP_HOME>/xws-security/samples/api-
sample/. Read XWS-Security APIs Sample Application for more information on
this sample application.

131

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

132

INTRODUCTION TO XML AND WEB SERVICES SECURITY

On Which Technologies Is XWS-Security
Based?

XWS-Security APIs are used for securing Web services based on JAX-RPC and
on stand-alone applications based on SAAJ. This release of XWS-Security is
based on standard XML Digital Signature and non-standard XML Encryption
APIs, which are subject to change with new revisions of the technology. As stan-
dards are defined in the Web Services Security space, the non-standard APIs will
be replaced with standards-based APIs.

JSR-105 (XML Digital Signature) APIs are included in this release of the Java
WSDP. JSR 105 isa standard API (in progress, at Proposed Final Draft) for gen-
erating and validating XML Signatures as specified by the W3C recommenda-
tion. It is an API that should be used by Java applications and middleware that
need to create and/or process XML Signatures. It is used by this release of Web
Services Security and can be used by non-Web Services technologies, for exam-
ple, documents stored or transferred in XML. Both JSR-105 and JSR-106 (XML
Digital Encryption) APIsare core-XML security components.

XWS-Security does not use the JSR-106 APIs because, currently, the Java stan-
dards for XML Encryption are undergoing definition under the Java Community
Process. This Java standard is JSR-106-XML Digital Encryption APIs, which
you canread a http://www.jcp.org/en/jsr/detail?id=106.

XWS-Security uses the Apache libraries for XML-Encryption. In future
releases, the goal of XWS-Security isto move toward using the JSR-106 APIs.

Table 4-2 shows how the various technologies are stacked upon one another:

Table4—2 API/Implementation Stack Diagram

XWS-Security

JSR-105 XML Signature and W3C XML Encryption Specifications
(W3C spec. may be replaced with JSR-106 in a future rel ease)

Apache XML Security implementation.

J2SE Security (JCE/JCA APIs)

http://www.jcp.org/en/jsr/detail?id=106

INTEROPERABILITY WITH OTHER WEB SERVICES

The Apache XML Security project is aimed at providing implementation of secu-
rity standards for XML. Currently the focus is on the W3C standards. More
information on Apache XML Security can be viewed at:

http://xml.apache.org/security/

Java security includes the Java Cryptography Extension (JCE) and the Java
Cryptography Architecture (JCA). JCE and JCA form the foundation for public
key technologies in the Java platform. The JCA API specification can be viewed
at http://java.sun.com/j2se/1.5.0/docs/gui de/security/CryptoSpec.html. The JCE documenta-
tion can be viewed at http://java.sun.com/products/jce/reference/docs/index.html .

Interoperability with Other Web Services

One of the goals of XML and Web Services Security technology is to enable
applications to be able to securely interoperate with clients and web service end-
points deployed on other Java application servers and other web services plat-
forms.

To accomplish this interoperability, an open industry organization, Web Ser-
vices-Interoperability (WS-1) Organization, was chartered to promote Web ser-
vices interoperability across platforms, operating systems, and programming
languages. WS-I is developing an interoperability profile, Ws-1 Basic Security Profile
1.0 (BSP), that deal s with transport security, SOAP messaging security, and other
Basic-Profile-oriented Web services security considerations. XWS-Security EA
2.0 provides partial support for BSP (complete support is planned for the FCS
release of 2.0.)

What is Basic Security Profile (BSP)?

In terms of XWS-Security, Basic Security Profile (BSP) support means that
BSP-compliant requests will be generated and BSP-compliant requests will be
accepted.

BSP restrictions and rules are only applicable for those features explicitly sup-
ported by XWS-Security. For outgoing messages, BSP-compliant messages are
created by default. The only instance where BSP-compliant messages are not
created by default isin the case of exclusive canonicalization transform in signa-
tures. For performance reasons, this transform is not added by default, but can be
added explicitly to thelist of transforms.

133

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html
http://www.ws-i.org
http://www.ws-i.org
http://www.ws-i.org
http://xml.apache.org/security/
http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html
http://java.sun.com/products/jce/reference/docs/index.html

134

INTRODUCTION TO XML AND WEB SERVICES SECURITY

For incoming messages, you can set the compTiance attribute to bsp if you want
to check for compliance in messages received from other applications or imple-
mentations. Non-compliant incoming messages are flagged when this option is
Set.

What is the XWS-Security Framework?

The XWS-Security framework is used to secure JAX-RPC and stand-alone
SAAJ applications. Use XWS-Security to secure SOAP messages (requests and
responses) through signing some parts, or encrypting some parts, or sending
username-password authentication info, or some combination of these. Some
example applications that use the technology are discussed in Are There Any Sample
Applications Demonstrating X WS-Security?.

Use the XWS-Security framework to secure JAX-RPC applications by using the
-security option of the wscompile tool. When you create an asant (or ant)
target for JAX-RPC clients and services, the wscompile utility generates stubs,
ties, serializers, and WSDL files.

Note: For the 2.0 release of JAX-RPC, JAX-RPC will be renamed to JAX-WS.
JAX-WS will be part of the XWS-Security 2.0 FCS later this year. When this
renaming occurs, the wscompile tool will be replaced, and these steps and the
build.xm1 filesfor the sample applications will need to be modified accordingly.

XWS-Security has been integrated into JAX-RPC through the use of security
configuration files. The code for performing the security operations on the client
and server is generated by supplying the security configuration files to the JAX-
RPC wscompile tool. Thewscompile tool isinstructed to generate security code
viathe -security option which specifies the security configuration file. See Con-
figuring Security Configuration Files for more information on creating and using secu-
rity configuration files.

To use the XWS-Security framework, set up the client and server-side infrastruc-
ture. A critical component of setting up your system for XWS-Security isto set
up the appropriate database for the type of security (DSig, XML-Enc, UserName
Token) to be used. Depending on the structure of your application, these data-
bases could be any combination of keystore files, truststore files, and username-
password files.

CONFIGURING SECURITY CONFIGURATION FILES

Configuring Security Configuration Files

XWS-Security makes it simple to specify client and server-side configurations
describing security settings using security configuration files. In this tutorial,
build, package, and deploy targets are defined and run using the asant tool. The
asant tool is version of the Apache Ant Java-based build tool used specifically
with the Sun Java System Application Server (Application Server). If you are
deploying to a different container, you can use the Apache Ant tool instead.

To configure a security configuration file, follow these steps:

1. Create a security configuration file. Creating security configuration filesis
discussed in more detail in Understanding Security Configuration Files. Sample
security configuration files are located in the directory <JwSDP_HOME>/
xws-security/samples/simple/config/.

2. Create an asant (or ant) target in the build.xm1 filefor your application
that passes in and uses the security configuration file(s). This step is dis-
cussed in more detail in How Do | Specify the Security Configuration for the Build
Files?

3. Create aproperty inthe build.properties file to specify a security con-
figuration file to be used on the client side and a security configuration file
to be used on the server side. This step is discussed in more detail in How
Do | Specify the Security Configuration for the Build Files?

Understanding Security Configuration
Files

Security configuration files are written in XML. The elements within the XML
file that specify the security mechanism(s) to use for an application are enclosed
within <xwss:SecurityConfiguration></xwss:SecurityConfiguration>
tags. The complete set of child elements along with the attributes that can be
placed within these elements are described informally in Xws-Security Configuration
File Schema. The formal schema definition (XSD) for XWS-Security Configura-
tion can be viewed in the appendix A XWS-Security Formal Schema Definition. Many
example security configuration files, along with descriptions each, are described
in Simple Sample Security Configuration Files. This section describes a few of these
options.

135

136 INTRODUCTION TO XML AND WEB SERVICES SECURITY

If you are using XWS-Security under JAX-RPC, the first set of elements of the
security configuration file contain the declaration that this file is a security con-
figuration file. The elements that provide this declaration ook like this:

<xwss : JAXRPCSecurity xmIns:xwss="http://java.sun.com/xml1/ns/
xwss/config">
<XWSS : Service>
<XWs s : SecurityConfiguration>

Note: If you are using XWS-Security in a stand-alone SAAJ environment, the root
element of the security configuration file is <xwss:SecurityConfiguration>. An
exampl e application that uses XWS-Security in astand-alone SAAJ environment is
described in XWS-Security APIs Sample Application.

Within these declaration elements are elements that specify which type of secu-
rity mechanism is to be applied to the SOAP message. For example, to apply
XML Digital Signature, the security configuration file would include an
xwss:Sign element, along with a keystore alias that identifies the private key/
certificate associated with the sender's signature. A simple client security config-
uration file that requires digital signatures would look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<!--
Note that in the <Sign> operation, a Timestamp is

exported
in the security header and signed by default.
-—>
<Xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-
client"/>
</xwss:Sign>
<l--
Signature requirement. No target is specified,
hence the
soap body is expected to be signed. Also, by
default, a

Timestamp is expected to be signed.
-=>
<xwss:RequireSignature/>
</xwss:SecurityConfiguration>

UNDERSTANDING SECURITY CONFIGURATION FILES

</xwss:Service>

<xwss:SecurityEnvironmentHandler>
com.sun.xml.wss.sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The xwss elements can be listed sequentially so that more than one security
mechanism can be applied to the SOAP message. For example, for a client to
first sign a message and then encrypt it, create an xwss element with the value
Sign (to do the signing first), and then create an xwss element with the value of
Encrypt (to encrypt after the signing). Building on the previous example, to add
encryption to the message after the message has been signed, the security config-
uration file would be written like this example:

<xwss: JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Sign/>
<xwss:Encrypt>
<xwss :X509Token certificateAlias="slas"
keyReferenceType="Identifier"/>
</xwss:Encrypt>
<l--
Requirements on messages received:
-—=>
<xwss:RequireEncryption/>
<xwss:RequireSignature/>
</xwss:SecurityConfiguration>
</Xwss:Service>

<xwss:SecurityEnvironmentHandler>
com.sun.xml.wss.sampTle.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The xwss:RequireSignature element present in the two examples shown is
used by the client to indicate that it expects the Response to be a signed
response. Similarly the xwss :RequireEncryption element in aclient configura-
tion file indicates that the client expects an encrypted response. In the second
example, aRequireEncryption and aRequireSignature element specified in

137

138

INTRODUCTION TO XML AND WEB SERVICES SECURITY

that order implies that the client expects the response to be signed and then
encrypted.

The xwss:RequireSignature and xwss:RequireEncryption elements appear-
ing in a server configuration file similarly indicate that the server expects the
request to be signed and encrypted respectively. The normal behavior of aclient
or server when it specifies a requirement of the form xwss:RequireSignature
or xwss:RequireEncryption isto throw an exception if the requirement is not
met by the received response or reguest.

The xwss:SecurityEnvironmentHandler element appearing under
xwss:SecurityConfiguration is acompulsory child element that needs to be
specified. The value of this element is the name of a Java class that implements
the javax.security.auth.callback.CallbackHandler interface and handles
a set of Callbacks defined by XWS-Security. There are a set of callbacks that
are mandatory and that every CallbackHandler needsto implement. A few call-
backs are optional and can be used to supply some finer-grained information to
the XWS-Security run-time. The SecurityEnvironmentHandler and the Cal1-
backs are described in Writing SecurityEnvironmentHandlers. The SecurityEnviron-
mentHandler is essentially a CallbackHandler which is used by the XWS-
Security run-time to obtain the private-keys, certificates, symmetric keys, etc. to
be used in the signing and encryption operations from the application. For more
information, refer to the APl documentation for the
com.sun.xml.wss.impl.callback package, which is located in the
<JWSDP_HOME>/xws-security/docs/api directory, to find the list of mandatory
and optional callbacks and the details of the Cal1back classes.

When XWS-Security is used in a stand-alone SAAJ environment, the developer
can choose to implement the com.sun.xml.wss.SecurityEnvironment inter-
face instead of a callback handler that handles XWS-Security callbacks. In this
situation, an instance of the SecurityEnvironment implementation can be set
into the ProcessingContext instance. For an example application that demon-
gtrates this, refer to the Xws-Security APIs Sample Application. For more details on
the SecurityEnvironment interface, refer to the javadocs at <JWSDP_HOME>/
xws-security/docs/api/com/sun/xml/wss/SecurityEnvironment.html.

Another type of security mechanism that can be specified in the security config-
uration file is user name authentication. In the case of user name authentication,
the user name and password of a client need to be authenticated against the user/
password database of the server. The xwss element specifies that the security
mechanism to useisUsernameToken. On the server-side, refer to the documenta-
tion for your server regarding how to set up a user/password database for the
server, or read Setting Up To Use XWS-Security With the Sample Applications for a sum-

XWS-SECURITY CONFIGURATION FILE SCHEMA

mary. A client-side security configuration file that specifies UsernameToken
authentication would look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<l--
Default: Digested password will be sent.
-—=>
<xwss:UsernameToken name="Ron" password="noR"/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
com.sun.xml.wss.sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The simple sample application includes a number of example security configu-
ration files. The sample configuration files are located in the directory
<JWSDP_HOME>/xws-security/samples/simple/config/. Further discussion
of the example security configurations can be found in Simple Sample Security Con-
figuration Files.

Other sample configuration files that are provided in this release include:

* Simple Sample Security Configuration Files

* JAAS Sample Security Configuration Files

* SwA Sample Configuration Files

* SAML Interop Sample Configuration Files

* Security Configuration Files for Enabling Dynamic Policy

® Security Configuration Files for Enabling Dynamic Response

XWS-Security Configuration File Schema

When creating a security configuration file, there is a hierarchy within which the
XML elements must be listed. This section contains an abstract sketch of the
schemafor the data for security configuration files. The formal schemadefinition
can be viewed at A XWS-Security Formal Schema Definition.

139

140 INTRODUCTION TO XML AND WEB SERVICES SECURITY

Figure 4-1 shows the XML schema. The tables in Semantics of Security Configuration
File Elements provide more information on the elements contained within the
schema. The following notations are used to describe the schema:

* | means OR

e & means AND

» * means zero or more of these elements allowed
» +means 1 required, more allowed

* 7 means zero or one element alowed

* (value) meansthat thisvalue isthe default value for the element, so spec-
ifying this attribute is optional .

Figure4-1 XWS-Security Abstract Configuration File Schema

<JAXRPCSecurity>
+<Service/>
<SecurityEnvironmentHandler />
</JAXRPCSecurity>

<Service ?name=service_identifier

?id=unique_identifier
?conformance="bsp"
?useCache=("false") | "true">

?<SecurityConfiguration/>

*<Port/>

?<SecurityEnvironmentHandler />

</Service>

<SecurityConfiguration
?dumpMessages=("false") | "true"
?enableDynamicPolicy=("false")|"true">
*SecurityConfigurationElements
</SecurityConfiguration>

*SecurityConfigurationElements =
?<Timestamp/> |
?<SAMLAssertion type="SV"/> |
?<RequireSAMLASssertion type="SV"/> |
?<UsernameToken/> |
?<RequireUsernameToken /> |
?<RequireTimestamp /> |
?<Optiona Targets /> |
<Sign/> |
<Encrypt/> |
<RequireSignature/> |
<RequireEncryption/>

XWS-SECURITY CONFIGURATION FILE SCHEMA 141

<Port name="port-name" ?conformance="bsp">
*<Operation ?name="op-name">
*<SecurityConfiguration/>
</Operation>
</Port>

<SecurityEnvironmentHandler>
handler-classname
</SecurityEnvironmentHandler>

<Operation name="operation_name" >
*<SecurityConfiguration/>
</0Operation>

<Timestamp ?id=unique_policy_identifier
?timeout=("300")/>

<UsernameToken ?id=unique_policy_identifier
?name=user_name // User name and password can also
be
//obtained dynamically from the
//SecurityEnvironment
?password=password
?useNonce=("true")|"false"
?digestPassword=("true")|"false"/>

<RequireUsernameToken
?id=unique_policy_identifier
?nonceRequired=("true")|"false"
?passwordDigestRequired=("true™)|"false"
?maxClockSkew=("60")
?timestampFreshnessLimit=("300")
?maxNonceAge=("900") />

<Encrypt
?id=unique_policy_identifier >
?Key-Bearing-Token
?<KeyEncryptionMethod
algorithm=("http://www.w3.0rg/2001/04/xmlenc#rsa-
oaep-mgflp") |
"http://www.w3.0rg/2001/04/xmlenc#kw-

tripledes”|

"http://www.w3.0rg/2001/04/xmlenc#kw-
aes128" |

"http://www.w3.0rg/2001/04/xmlenc#kw-
aes256" |

"http://www.w3.0rg/2001/04/xmlenc#rsa-

142

INTRODUCTION TO XML AND WEB SERVICES SECURITY

1_5" />
?<DataEncryptionMethod
algorithm=("http://www.w3.0rg/2001/04/
xmlenc#aes128-cbc™) |
"http://www.w3.0rg/2001/04/
xmlenc#tripledes-cbc" |
"http://www.w3.0rg/2001/04/
xmlenc#aes256-cbc" />
*<Target/> // of type Target or EncryptionTarget
</Encrypt>

<EncryptionTarget
?type=("gname") | "uri" | "xpath"
?contentOnly=("true") |"false"
?enforce=("true") |"false"
value=an_appropriate_ target_identifier>
*<Transform/>
</EncryptionTarget>

<RequireEncryption
?id=unique_policy_identifier />
?Key-Bearing-Token
?<KeyEncryptionMethod
algorithm=C"http://www.w3.0rg/2001/04/xmlenc#rsa-
oaep-mgflp™) |
"http://www.w3.0rg/2001/04/xmlenc#kw-

tripledes” |

"http://www.w3.0rg/2001/04/xmlenc#kw-
aes128" |

"http://www.w3.0rg/2001/04/xmlenc#kw-
aes256" |

"http://www.w3.0rg/2001/04/xmlenc#rsa-
1_5" />

?<DataEncryptionMethod

algorithm=C"http://www.w3.0rg/2001/04/

xmlenc#aesl28-cbhc") |

"http://www.w3.0rg/2001/04/
xmlenc#tripledes-cbc" |

"http://www.w3.0rg/2001/04/
xmlenc#aes128-cbc" |

"http://www.w3.0rg/2001/04/
xmlenc#aes256-cbc" />

*<Target/>//of type Target and/or EncryptionTarget

</RequireEncryption>

Key-Bearing-Token=
<X509Token/> |
<SAMLAssertion type="HOK" /> |

XWS-SECURITY CONFIGURATION FILE SCHEMA

<SymmetricKey />

<X509Token
?id=any_Tlegal_id //Must be unique within the resulting
XML
?strid=Tegal_id
?certificateAlias=alias_SecurityEnvironment_understands
?keyReferenceType=("Direct") |"Identifier"|"IssuerSerialN
umber"
?encodingType=("http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-soap-message-security-
1.0#Base64Binary")
?valueType>

<SAMLASsertion
?id=unique_policy_identifier
?authorityId=URI_of_Issuing_Authority}
?strId=unique_policy_identifier
?keyIdentifier=identifier_for_Attester_Key
?keyReferenceType=("Identifier")|"Embedded"
type="HOK" |"SV"

</SAMLAssertion>

<RequireSAMLAssertion
?id=unique_policy_identifier
?authorityld=URI_of_Issuing_Authority>
?strId=unique_policy_identifier
type="SV"
?keyReferenceType=("Identifier")|"Embedded"
</RequireSAMLAssertion>

<SymmetricKey keyAlias= alias/keyname_of_a_shared_key />

keyReferenceType=
"Direct"|"Identifier"|"IssuerSerialNumber"|
"Embedded"

EncodingType=(#Base64Binary |
other-wss-defined-encoding-type

ValueType=token-profile-specific-value-types

<Sign ?id=unique_policy_identifier
?includeTimestamp=("true")|"false">
?Key-Bearing-Token
? <CanonicalizationMethod
algorithm="http://www.w3.0rg/2001/10/xm1-
exc-cl4n#" | others/>

143

144

INTRODUCTION TO XML AND WEB SERVICES SECURITY

?<SignatureMethod
algorithm=("http://www.w3.0rg/2000/09/
xmldsig#rsa-shal") | others/>
*<Target/> //of type Target or SignatureTarget
</Sign>

<SignatureTarget
?type=("gname") | "uri" | "xpath"
?enforce=("true") |"false"
value=an_appropriate_target_identifier>
?<DigestMethod algorithm=C"http://www.w3.0rg/2000/09/
xmldsig#shal") | others/>
*<Transform/>
</SignatureTarget>

<RequireSignature
?id=unique_policy_identifier
?requireTimestamp=("true")|"false">
?Key-Bearing-Token
?<CanonicalizationMethod
algorithm=("http://www.w3.0rg/2001/10/
xml-exc-cl4n#") | others/>
?<SignatureMethod
algorithm=C"http://www.w3.0rg/2000/09/
xmldsig#rsa-shal") | others/>
*<Target/> //of type Target and/or SignatureTarget
</RequireSignature>

<Transform algorithm=supported-algorithms>
*<AlgorithmParameter name="name" value="value" />
</Transform>

<RequireTimestamp
?id=unique_policy_id
?maxClockSkew=("60")
?timestampFreshnessLimit=("300")/>

<RequireUsernameToken
?id=unique_policy_id
?nonceRequired=("true")|"false"
?passwordDigestRequired=("true™) |"false"
?maxClockSkew=("60")
?timestampFreshnessLimit=("300")
?maxNonceAge=("900") >

</RequireUsernameToken>

<Optional Targets>
*<Target>

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 145

</OptionalTargets>

<Target ?type=("gname") |"uri"|"xpath"
?contentOnly=("true") |"false"
?enforce=("true") |"false">
value

</Target>

Semantics of Security Configuration File
Elements

This section contains a discussion regarding the semantics of security configura-
tion file elements.

JAXRPCSecurity

The <JAXRPCSecurity> element is the top-level XML element for XWS-Secu-
rity configuration files for applications that use JAX-RPC. The top-level XML
element for stand-alone SAAJ applications is <SecurityConfiguration>. Table
4-3 provides a description of the sub-elements of <JAXRPCSecurity>.

Table4-3 Sub-elements of JAXRPCSecurity element

Sub-elements of
JAXRPCSecurity Description

Indicates a JAX-RPC service within the XWS-Security
environment for which XWS-Security can be configured.
In this release, multiple services per configuration file are
supported.

Service

Specifies the implementation class name of the security

SecurityEnvironmentHander environment handler (Required).

Service
The <Service> element indicates a JAX-RPC service within the XWS-Security
environment for which XWS-Security can be configured.

146 INTRODUCTION TO XML AND WEB SERVICES SECURITY

Note: Although the XWS-Security configuration schema allows multiple <Ser-
vice> elements to appear under a <JAXRPCSecurity> element, the current release
does not support this feature. The configuration reader will throw an I11egal-
StateException if multiple services are specified.

Table 44 provides adescription of its attributes, Table 4-5 provides a description of
its sub-elements.

Table 4-4 Attributes of Service element

Attributes of Service Description

name The name of the JAX-RPC service (optional).

id Theid of the JAX-RPC service (optional).

Type of conformance. In thisrelease, the choice for this

conformance attribute is restricted to bsp (optional).

Determines whether caching is enabled. Default is false
useCache (optional). Thisflag is unused in the current release and has
been introduced for future enhancements.

Table4-5 Sub-elements of Service element

Sub-elements of Service | Description

Indicatesthat what followsisthe security configuration for the

SecurityConfiguration .
service.

A port within a JAX-RPC service. Any (including zero) num-

Port ber of these elements may be specified.

Specifies the implementation class name of the security envi-
SecurityEnvironmentHandler | ronment handler. If specified, overridesthe SecurityEnvi -
ronmentHandTer specified at the parent level. (Optional)

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 147

Port

The <Port> element represents a port within a JAX-RPC service. Table 4-6 pro-
vides a description of its attributes, Table 4-7 provides a description of its sub-ele-
ments.

Table 46 Attributes of Port element

Attributes of Port Description

name Name of the port as specified in the wsdl (Required).

Type of conformance. In this release, the choice for this
attribute is restricted to bsp. In this release, XWS-Security is
conformant to Basic Security Profile (BSP) for messages that
are created and sent. When conformance is set to bsp, mes-
conformance sages are checked for BSP compliance before being sent. For
more information on BSP, read What is Basic Security Profile
(BSP)?

This EA implementation of thisfeature will be more complete
in the FCS release (optional).

Table 4-7 Sub-elements of Port element

Sub-elements of Port Description
. ' . Indicates that what follows is security configuration for the
SecurityConfiguration port. This over-rides any security configured for the service.
Operation Indicates a port within a JAX-RPC service. Any (including
P zero) number of these elements may be specified.
Operation

The <Operation> element creates a security configuration at the operation level,
which takes precedence over port and service-level security configurations. Table

148

INTRODUCTION TO XML AND WEB SERVICES SECURITY

4-8 provides a description of its attributes, Table 4-9 provides a description of its
sub-elements.

Table 4-8 Attributes of Operation

Attributes of
Operation Description

Name of the operation as specified in the WSDL file, for
name example, name="{http://xmlsoap.org/Ping}Ping0".
(Required)

Table4-9 Sub-elements of Operation

Sub-elements of Description
Operation

This element indicates that what follows is security configura-
SecurityConfiguration tion for the operation. This overrides any security configured
for the port and the service.

SecurityConfiguration

The <SecurityConfiguration> element specifies a security configuration. Table
4-10 provides a description of its attributes, Table 4-11 provides a description of its
sub-elements. The sub-elements of SecurityConfiguration can appear in any
order. The order in which they appear determines the order in which they are
executed, with the exception of the OptionalTargets element.

Table 4-10 Attributes of SecurityConfiguration

Attributes of
SecurityConfiguration Description

If dumpMessages isset to true, al incoming and outgoing
dumpMessages messages are printed at the standard output. The default value
isfalse (Optional).

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

Table 4-10 Attributes of SecurityConfiguration (Continued)

Attributes of
SecurityConfiguration

Description

enableDynamicPolicy

If enableDynamicPolicy issetto true, al incoming and
outgoing messages use a dynamic security policy. The default
valueis false (Optiond). For an example that uses this
attribute, see Dynamic Policy Sample Application.

Table4-11 Sub-elements of SecurityConfiguration

Sub-elements of
SecurityConfiguration

Description

Indicates that a timestamp must be sent in the outgoing mes-

Timestamp

sages.

Indicates that a username token must be sent in the outgoing
UsernameToken

messages.
Sian Indicates that a sign operation needs to be performed on the

9 outgoing messages.

Indicates that an encrypt operation needs to be performed on
Encrypt .

the outgoing messages.

Indicates that a SAML assertion of subject confirmation type
SAMLASssertion Sender-Vouches (SV) must be sent in the security header of

the outgoing messages.

RequireTimestamp

Indicates that a timestamp must be present in the incoming
messages.

RequireUsernameToken

Indicates that a username token must be present in the incom-
ing messages.

RequireSignature

Indicates that the incoming messages must contain a signa-
ture,

RequireEncryption

Indicates that the incoming messages must be encrypted.

RequireSAMLAssertion

Indicates that the incoming message must contain a SAML
assertion of subject confirmation type Sender-Vouches (SV).

149

150

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-11 Sub-elements of SecurityConfiguration

Sub-elements of
SecurityConfiguration Description

Specifies alist of elements on which security operations are

OptionalTargets not required in the incoming messages, but are allowed.

Timestamp

The <Timestamp> element specifies that a timestamp must be sent in outgoing
messages. For a discussion of using the Timestamp element with the inclu-
deTimestamp attribute of Sign, See Using Timestamp and includeTimestamp. Table 4-12
provides a description of its attributes.

Table4-12 Attributes of Timestamp

Attributes of
Timestamp Description

Value in seconds after which the timestamp should be consid-

Timeout ered expired. Default value is 300.

UsernameToken

The <UsernameToken> element is used when a UsernameToken should be sent
with outgoing messages. This UsernameToken contains the sender’s user and
password information. Table 4-13 provides a description of its attributes.

Table4-13 Attributes of UsernameToken

Attributes of
UsernameToken Description

The name of the user. If not specified, security environment

name handler must provide it at runtime.

The password of the user. If not specified, attempt would be
password made to obtain it from the security environment handler at
runtime.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

Table 4-13 Attributes of UsernameToken (Continued)

Attributes of
UsernameToken

Description

digestPassword

Indicates whether to send password in digest form or not.
Default valueis true.

Indicates whether to send a nonce inside the username token

useNonce or not. Sending a nonce helpsin preventing replay attacks.
Default valueis true.
The id to be set on the username token in the message to be
id sent. Thisis also useful in referring to the token from other
places in the security configuration file.
Sign

The <Sign> element is used to indicate that a sign operation needs to be per-
formed on the outgoing messages. Table 4-14 provides a description of its

attributes, Table 4-15 provides a description of its sub-elements.

Table4-14 Attributes of Sign

Attributes of Sign

Description

id

Theid to be set on the signature of the message to be sent.
Thisis also useful in referring to the signature from other
placesin the security configuration file.

includeTimestamp

Indicates whether to also sign atimestamp as part of thissig-
nature or not. Thisis a mechanism useful in preventing replay
attacks. The default valueis true. Note that a true value for
this attribute makes sure that a timestamp will be sent in the
outgoing messages even if the <Timestamp> element has not
been specified. Also note that at most one timestamp is sent in
amessage.

When includeTimestamp istrue, aTimestamp element
with the default value is added and is signed (i.e., Timestamp
is added as one of the targets in the corresponding signature
element.)

151

152

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-15 Sub-elements of Sign

Sub-elements of Sign | Description

Indicates the certificate corresponding to the private key used
for signing. If this element is not present, attempt is made to
X509Token get the default certificate from the security environment han-
dler. Only one of the X509Token, SAMLAssertion, and Sym-
metricKey elements may be present at atime.

Indicates the certificate corresponding to the SAML assertion
SAMLASssertion used for signing. Only one of the X509Token, SAMLAsser-
tion, and SymmetricKey elements may be present at atime.

Indicates the symmetric key corresponding to the private key
used for signing. Only one of the X509Token, SAMLAsser-
SymmetricKey tion, and SymmetricKey elements may be present at atime.
(SymmetricKey signatures are not supported for signaturesin
this release.)

Indicates the canonicalization algorithm applied to the
CanonicalizationM ethod <SignedInfo> element prior to performing signature calcu-
lations.

SignatureMethod Indicates the algorithm used for signature generation and vali-

dation.
Specifies the target message part to be signed. Target has
Target been deprecated and is included only for backward compati-
bility.
SignatureTarget Specifies the target message part to be signed.

Using Timestamp and includeTimestamp

The following configurations of Timestamp and the includeTimestamp attribute
of the Sign element have the following effect:

1. If a<Timestamp> element is configured, a timestamp will be sent in the
message.

2. If theincludeTimestamp attribute on <Sign> hasvalue true and <Times-
tamp> isnot configured, atimestamp (with default timeout value) will be
sent in the message and included in the signature.

3. If theincludeTimestamp attribute on <Sign> hasvalue true and <Times-
tamp> is configured, a timestamp with the properties (e.g, timeout) spec-

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

ified on the <Timestamp> will be sent in the message and a so be included
in the signature.

4. If the includeTimestamp attribute on <Sign> has value false, atimes-

tamp is not included in the signature.

Encrypt

The <Encrypt> element is used to indicate that an encrypt operation needs to be
performed on the outgoing messages. Table 4-16 provides a description of its sub-

elements.

Table4-16 Sub-elements of Encrypt

Sub-elements of
Encrypt

Description

X509Token

Indicates the certificate to be used for encryption. If thisele-
ment is not present, attempt is made to get the default certifi-
cate from the security environment handler. This element must
not be specified if the <SymmetricKey> or <SAMLAssertion>
sub-element of <Encrypt> is specified.

SymmetricKey

Indicates the symmetric key to be used for encryption. This
element must not be specified if the <X509Token> or <SAM-
L Assertion> sub-element of <Encrypt> is present.

SAMLASssertion

Indicates the SAML assertion to be used for encryption. This
element must not be specified if the <X509Token> or <Sym-
metricKey> sub-element of <Encrypt> is present.

KeyEncryptionM ethod

Specifies the public key encryption agorithm to be used for
encrypting and decrypting keys.

DataEncryptionM ethod

Specifies the encryption algorithm to be applied to the cipher
data.

Target

Identifies the resource that needs to be encrypted. The Target
element has been deprecated and is provided only for back-
ward compatibility.

EncryptionTarget

Identifies the resource that needs to be encrypted.

153

154

INTRODUCTION TO XML AND WEB SERVICES SECURITY

SAMLASssertion

The <SAMLAssertion> element is used to define the SAML assertion to be trans-
ferred from identity providers to service providers. These assertions include
statements that service providers use to make access control decisions. The
SAML Sample Application provides some examples of using this element. Table 4-17
provides a description of attributes of the <SAMLAssertion> element.

Table4-17 Attributes of SAMLASssertion

Attributes of

SAMLASssertion Description
id Identifier for an assertion.
authoritvId Definesthe ID that may be used to acquire the identified asser-
y tion at a SAML assertion authority or responder.
Element content of the string identifier for the keyIdenti-
striD .
fier.
kevIdentifier The ID for atoken reference for the key identifier that refer-
y encesalocal SAML assertion.
A parameter used to identify the security reference. When the
encodingType keyIdentifier isused, thisattributeis prohibited. (Prohib-
ited)
Indicates whether the token reference identifies a token by
keyReferenceType URI (Identifier) or by an embedded reference (Embed-

ded). The default valueis Identifier.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

Table4-17 Attributes of SAMLAssertion (Continued)

Attributes of
SAML Assertion

Description

type

Indicates the type of SAML assertion to use. The choices are
Holder-of-Key (HOK) and Sender-Vouches (SV). The SV con-
firmed assertion may not be contained in the message. The
Security Token Reference (STR) identified in strID becomes
aremote reference to the SV confirmed assertion. The HOK
assertion contained in the message identifies the attesting
entity and its signing key.

Whether you choose type HOK or SV depends on where this
token islocated in the configuration file. A standalone <SAM-
LAssertion> element under <SecurityConfiguration>
should be of type SV. An assertion of type HOK can appear asa
child of a<Sign> or <Encrypt> element, indicating the pres-
ence of aconfirmation key that can be used for the operation.
(Required)

RequireTimestamp

If the <RequireTimestamp> element is present, a timestamp, in the form of a
wsu:Timestamp element, must be present in the incoming messages. If the
RequireTimestamp element is not specified, a Timestamp is not required. A
timestamp specifies the particular point in time it marks. You may also want to
consider using a nonce, which is avalue that you should never receive more than

once. Table 4-18 provides a description of its attributes.

Table 4-18 Attributes of RequireTimestamp

Attributes of
RequireTimestamp

Description

id The id assigned to the timestamp.

maxClockSkew The maximum number of seconds the sending clock can devi-
ate from the receiving clock. Default is 60.

timestampFreshness- The maximum number of seconds the time stamp remains

Limit valid. Default is 300.

155

156 INTRODUCTION TO XML AND WEB SERVICES SECURITY

RequireUsernameToken

The <RequireUsernameToken> element is used to specify that a username token
must be present in the incoming messages. Table 4-19 provides a description of its
attributes.

Table 4-19 Attributes of RequireUsernameToken

Attributes of
RequireUsernameToken | Description

id The identifier for the UsernameToken.

Indicates whether the username tokens in the incoming mes-
passwordDigestRe- sages are required to contain the passwords in digest form or
quired not. Default valueis true. (See aso: digestPassword
attribute on <UsernameToken>)

Indicates whether anonceis required to be present in the user-
nonceRequired name tokensin the incoming messages. Default valueis true.
(See dso: useNonce attribute on <UsernameToken>)

The maximum number of seconds the sending clock can devi-

maxClockSkew ate from the receiving clock. Default is 60.
timestampFreshness- The maximum number of seconds the time stamp remains
Limit valid. Default is 300.

The maximum number of seconds the nonce is cached by the
maxNonceAge

server for detecting a nonce replay. Default is 900.

RequireSignature

The <RequireSignature> element is specified when a digital signature is
required for all specified targets. If no signature is present, an exception is
thrown. In thisrelease, the only sub-elements of RequireSignature that are ver-
ified while validating an incoming message are Target and SignatureTarget.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

Table 4-20 provides a description of its attributes, Table 4-21 provides a description

of its sub-elements.

Table 4-20 Attributes of RequireSignature

Attributes of
RequireSignature

Description

id

Theid to be set on the signature of the message to be sent.
Thisis also useful in referring to the signature from other
placesin the security configuration file.

requireTimestamp

Indicates whether atimestamp must be included in the signa-
turesin the incoming messages. Default valueis true. (See
aso: includeTimestamp attribute on <Sign>)

Table4-21 Sub-elements of RequireSignature

Sub-elements of
RequireSignature

Description

X509Token

Indicates the certificate corresponding to the private key used
for signing. If this element is not present, attempt is made to
get the default certificate from the security environment han-
dler. Only one of the X509Token, SAMLAssertion, and Sym-
metricKey elements may be present at atime.

SAMLASsertion

Indicates the certificate corresponding to the SAML assertion
used for signing. Only one of the X509Token, SAMLAsser-
tion, and SymmetricKey elements may be present at atime.

SymmetricKey

Indicates the symmetric key corresponding to the private key
used for signing. Only one of the X509Token, SAMLAsser-
tion, and SymmetricKey elements may be present at atime.

CanonicalizationM ethod

Indicates the canonicalization a gorithm applied to the
<SignedInfo> element prior to performing signature calcu-
lations.

SignatureM ethod

Indicates the algorithm used for signature generation and vali-
dation.

157

158

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-21 Sub-elements of RequireSignature (Continued)

Sub-elements of
RequireSignature Description

Specifies the target message part which was expected to be
Target signed. Target has been deprecated and is only provided for
backward compatibility.

Specifies the target message part which was expected to be

SignatureTarget signed.

RequireEncryption

The <RequireEncryption> element is used when encryption is required for al
incoming messages. |f encryption is not present, an exception is thrown. In this
release, the only sub-elements of RequireEncryption that are verified during
validation of encrypted data in incoming messages are Target and Encryption-
Target. Table 422 provides a description of its attributes, Table 4-23 provides a
description of its sub-elements.

Table 422 Attributes of RequireEncryption

Attributes of
RequireEncryption Description

id Theid to be set on the message to be sent.

Table 423 Sub-elements of RequireEncryption

Sub-elements of
RequireEncryption Description

Indicates the certificate to be used for encryption. If thisele-
ment is not present, attempt is made to get the default certifi-
X509Token cate from the security environment handler. Only one of the
X509Token, SAMLAssertion, and SymmetricKey e ements
may be present at atime.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

Table 4-23 Sub-elements of RequireEncryption (Continued)

Sub-elements of
RequireEncryption

Description

Indicates the certificate corresponding to the SAML assertion
used for encryption. Only one of the X509Token, SAMLAs -

SAMLAssertion sertion, and SymmetricKey elements may be present at a
time.
Indicates the symmetric key corresponding to the private key
SymmetricKey used for encryption. Only one of the X509Token, SAMLAs -

sertion, and SymmetricKey elements may be present at a
time.

CanonicalizationMethod

Indicates the canonicalization algorithm applied to the
<Encrypt> element prior to performing encrypt calculations.

Indicates the encryption algorithm to be applied to the cipher

DataEncryptionMethod data
Identifies the resource that was expected to be encrypted. Tar-
Target get has been deprecated and is only provided for backward
compatibility.
EncryptionTarget Identifies the resource that was expected to be encrypted.

RequireSAMLAssertion

The <RequireSAMLAssertion> element is used when a Sender-Vouches (SV)
SAML assertion is required for all incoming messages. If a SAML assertion is
not present, an exception is thrown. Table 4-24 provides a description of its

attributes.

Table4-24 Attributes of RequireSAMLASssertion

Attributes of
RequireSAM L Assertion

Description

id

Identifier for an assertion. (Optional)

authorityId

Defines an abstract identifier for the assertion-issuing author-
ity.

159

160 INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-24 Attributes of RequireSAMLAssertion (Continued)

Attributes of
RequireSAMLAssertion | Description

Element content of the string identifier for the keyIdenti-

ID .
str fier.

Indicates whether the token reference identifies a token by
keyReferenceType AssertionId (Identifier) or by an embedded reference
(Embedded). The default valueis Identifier.

Indicates to use the SV type of SAML assertion. The SV con-

type firmed assertion is not contained in the message. (Required)

OptionalTargets

The <OptionalTargets> element is used when an operation is optional for a
specific target. Table 4-25 provides a description of its sub-elements.

Table 425 Sub-elements of Optional Targets

Sub-elements of
Optional Targets Description

Indicates that a security operation is allowed to be performed
on thistarget, but it is not required. One or more of these ele-
Target ments can be specified. The augmented cid: * syntax is not
allowed asthe value of the Target when Target isasub-ele-
ment of OptionalTargets.

Transform

The <Transform> element is an optional ordered list of processing steps to be
applied to the resource's content before it is digested. Transforms can include
operations such as canonicalization, encoding/decoding, XSLT, XPath, XML
schema validation, or XInclude. The recommendation that discusses this method
is the W3C XML-Signature Syntax and Processing recommendation, which can
be viewed at http://www.w3.org/ TR/xmldsig-core/#sec-Transforms. The following types
of transform algorithms can be used: canonicalization, Base64, xpath filtering,
envel ope signature transform, and XSLT transform. The XWS-Security APIs Sample
Application provides some examples of configuration files that use this element.

http://www.w3.org/TR/xmldsig-core/#sec-Transforms

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 161

Table 4-26 provides a description of its attributes, Table 4-27 provides a description
of its sub-elements.

Table 426 Attributes of Transform

Attributes of
Transform Description

algorithm The algorithm to be used for signing. (Required)

Table 427 Sub-elements of Transform

Sub-elements of
Transform Description

Identifies the parameters to be supplied to the transform algo-

AlgorithmParameter rithm.

AlgorithmParameter

Algorithms are identified by URIs that appear as an attribute to the element that
identifies the algorithms' role (DigestMethod, Transform, SignatureMethod, OF Canonical-
izationMethod). All algorithms used herein take parameters but in many cases the
parameters are implicit. Explicit additional parametersto an algorithm appear as
content elements within the algorithm role element. Such parameter elements
have a descriptive element name, which is frequently algorithm specific, and
MUST bein the XML Signature namespace or an a gorithm specific namespace.
The XWS-Security APIs Sample Application provides some examples of configuration
files that use this element.

Table 4-28 provides a description of its attributes.

Table 4-28 Attributes of AlgorithmParameter

Attributes of
AlgorithmPar ameter Description

name The name of the algorithm parameter. (Required)

162

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table 428 Attributes of AlgorithmParameter (Continued)

Attributes of
AlgorithmPar ameter

Description

value

The value of the algorithm parameter. (Required)

X509Token

The <X509Token> element is used to specify the certificate to be used for encryp-
tion (for the case of encryption) or the certificate corresponding to the private
key used for signing (for the case of signature). This element must not be speci-
fied if the <SymmetricKey> or <SAMLAssertion> sub-elements are present. Table 4-29
provides a description of its attributes.

Table4-29 Attributes of X509Token

Attributes of

X509Token Description
Theid to be assigned to this token in the message. This
id attribute is useful in referring the token from other placesin
the security configuration file. (Optional)
If specified, it denotesthewsu: Id to be assigned to the Secu-
strID rity Token Reference (STR) to be generated and inserted into

the message. The inserted STR would reference the X509
token.

certificateAlias

The alias associated with the token (certificate).

keyReferenceType

The reference mechanism to be used for referring to the X509
token (certificate) which was involved in the security opera-
tion, in the outgoing messages. The default valueisDirect.
Thelist of allowed values for this attribute and their descrip-
tionisasfollows:

1.Direct - certificateis sent along with the message.

2. Identifier - subject key identifier extension value of
the certificate is sent in the message.

3. IssuerSerialNumber - issuer nameand serial number
of the certificate are sent in the message.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

Table 4-29 Attributes of X509Token (Continued)

Attributes of
X509Token Description

The type of encoding to be used for the token. The default
valueishttp://docs.oasis-open.org/wss/2004/01/

encodingType 0asi15-200401-wss-soap-message-security-
1.0#Base64Binary.
Thetype of value to expect. The valueType can be #X509v3,
valueType #X509PKIPathv1l, or #PKCS7. This release does not support
#PKCS7.
Target

Note: Inthisreleasethe Target sub-element isdeprecated and is supported only for
backward compatibility. The Target sub-element isbeing replaced with Signature-
Target and EncryptionTarget.

The <Target>target_value</Target> Sub-element contains a string that can
be used to identify the resource that needs to be signed or encrypted. If aTarget
sub-element is not specified, the default value is a target that points to the con-
tents of the SOAP body of the message. The value of this element is specified as
atext node inside this element.

You can specify attachments as targets by setting the type attribute to uri and
specifying the target value as cid: <part-name>, which specifies the value of the
Content-ID (CID) header of the attachment. When the Content-ID is not know
until runtime, such as when auto-generated CIDs are run under JAX-RPC, the
attachment can be referenced by setting the type attribute to uri and specifying
the target value as attachmentRef:<part-name>, where part-name is the
WSDL part name of the AttachmentPart. Auto-generated CIDs in JAX-RPC
following the form <partname>=<UUID>@<Domain>. The special value cid:*
can be used to refer to al attachments of a SOAPMessage.

163

INTRODUCTION TO XML AND WEB SERVICES SECURITY

The attributes of the <Target> element are described in Table 4-30.

Table 4-30 Attributes of Target

Attributes of Target Description

Indicates the type of the target value. Default value is gname.
Thelist of allowed values for this attribute and their descrip-
tionisasfollows:

1. gname - If the target element has alocal name Nane and a
namespace URI some-uri, the target valueis { some-
uri}Name.

2. xpath - Indicates that the target value is the xpath of the
target element.

3. uri - If the target element has an id some-1id, then the tar-
get valueis #some-1id.

type

Indicates whether the complete element or only the contents
needs to be encrypted (or is required to be encrypted). The
default valueis true. (Relevant only for <Encrypt> and
<RequireEncryption> targets)

contentOnly

If true, indicates that the security operation on the target ele-
ment is definitely required. Default value is true. (Relevant
only for <RequireSignature> and <RequireEncryption> tar-
gets)

enforce

SignatureTarget

The <SignatureTarget> sub-element is called by the <SignatureMethod> ele-
ment to identify the resource that needs to be signed. If neither the <Signature-
Target> nor <Target> sub-element are specified, the default value is a target
that points to the contents of the SOAP body of the message. The target valueis
astring that specifies the object to be signed, and which is specified between the
<SignatureTarget>target_value</SignatureTarget> elements. The Xws
Security APIs Sample Application provides some examples of configuration files that
use this element.

You can specify attachments as targets by setting the type attribute to uri and
specifying the target value as cid: <part-name>, which specifies the value of the
Content-1D (CID) header of the attachment. When the Content-ID is not know
until runtime, such as when auto-generated CIDs are run under JAX-RPC, the
attachment can be referenced by setting the type attribute to uri and specifying

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

the target value as attachmentRef:<part-name>, where part-name is the
WSDL part name of the AttachmentPart. Auto-generated CIDs in JAX-RPC
following the form <partname>=<UUID>@<Domain>. The special vaue cid:*
can be used to refer to al attachments of a SOAPMessage.

The attributes of <SignatureTarget> are described in Table 4-31, its sub-ele-
ments are described in Table 4-32.

Table4-31 Attributes of SignatureTarget

Attributes of
SignatureTar get

Description

type

Indicates the type of the target value. Default value is gname.
The list of allowed values for this attribute and their descrip-
tionisasfollows:

1. gname - If the target element has alocal name Narre and a
namespace URI some-uri, thetarget valueis {some-
uri}Name

2. xpath - Indicates that the target value is the xpath of the
target element.

3. uri - If the target element has an id some-1id, then the tar-
get valueis#some-1id. Thisisthe option that is used to secure
message attachments.

value

Indicates whether the value needs to be encrypted (or is
required to be encrypted). The default valueis true. (Rele-
vant only for <Encrypt> and <RequireEncryption> targets)

enforce

If true, indicates that the security operation on the target ele-
ment is definitely required. Default valueis true. (Relevant
only for <RequireSignature> and <RequireEncryption> tar-
gets)

Table 4-32 Sub-elements of SignatureTarget

Sub-elements of
SignatureTar get

Description

DigestMethod

Identifies the digest algorithm to be applied for signing the
object.

166

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table 4-32 Sub-elements of SignatureTarget (Continued)

Sub-elements of
SignatureTar get Description

| dentifies the transform algorithm to be applied before signing

Transform the object.

EncryptionTarget

The <EncryptionTarget> sub-element identifies the type of encrypted structure
being described. If neither the <EncryptionTarget> nor <Target> sub-ele-
ments are specified, the default value is atarget that points to the contents of the
SOAP body of the message. The target value is a string that specifies the object
to be encrypted, and which is specified between the <EncryptionTar-
get>target_value</EncryptionTarget> € ements.

You can specify attachments as targets by setting the type attribute to uri and
specifying the target value as cid: <part-name>, which specifies the value of the
Content-1D (CID) header of the attachment. When the Content-ID is not know
until runtime, such as when auto-generated CIDs are run under JAX-RPC, the
attachment can be referenced by setting the type attribute to uri and specifying
the target value as attachmentRef:<part-name>, where part-name is the
WSDL part name of the AttachmentPart. Auto-generated CIDs in JAX-RPC
following the form <partname>=<UUID>@<Domain>. The special value cid:*
can be used to refer to all attachments of a SOAPMessage.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 167

The attributes of <EncryptionTarget> are described in Table 4-33, its sub-ele-
ments are described in Table 4-34.

Table 4-33 Attributes of EncryptionTarget

Attributes of
EncryptionTar get Description

Indicates the type of the target value. Default valueis gname.
The list of alowed values for this attribute and their descrip-
tionisasfollows:

1. gname - If the target element has alocal name Nane and a
namespace URI some-uri, thetarget valueis {some-

type uri}Name

2. xpath - Indicates that the target value is the xpath of the
target element.

3. uri - If thetarget element has an id some-1id, then the tar-
get valueis #some-1id. Thisoption is used to secure message
attachments.

Indicates whether the complete element or only the contents
need to be encrypted (or is required to be encrypted). The
default valueis true. (Relevant only for <Encrypt> and
<RequireEncryption> targets)

contentOnly

Indicates whether the value needs to be encrypted (or is
value required to be encrypted). The default valueis true.
(Required)

If true, indicates that the security operation on the target ele-
ment is definitely required. Default valueis true. (Relevant
only for <RequireSignature> and <RequireEncryption> tar-
gets)

enforce

Table 4-34 Sub-elements of EncryptionTarget

Sub-elements of
EncryptionTar get Description

Identifies the transform algorithm to be applied to the object to

Transform be encrypted.

168

INTRODUCTION TO XML AND WEB SERVICES SECURITY

SymmetricKkey

The <SymmetricKey> element indicates the symmetric key to be used for
encryption. This element must not be specified if the <xX509Token> Or <SAMLAs-
sertion> sub-elements are present. Its attributes are discussed in Table 4-35.

Table 4-35 Attributes of SymmetricKey

Attributes of
SymmetricKey Description

The alias of the symmetric key to be used for encryption. This

keyAlias attribute is required.

CanonicalizationMethod

The <CanonicalizationMethod> element specifies the canonicalization algo-
rithm to be applied to the <SignedInfo> element prior to performing signature
calculations. When specified, the canonical XML [XML-C14N] standard, which
is an algorithm that standardizes the way XML documents should be ordered
and structured, should be applied. The recommendation that discusses this
method is the W3C XML-Signature Syntax and Processing recommendation,
which can be viewed at http://www.w3.org/TR/xmldsig-core/#sec-CanonicalizationM ethod.
Its attributes are discussed in Table 4-36.

Table 4-36 Attributes of CanonicalizationM ethod

Attributes of
CanonicalizationMethod | Description

The agorithm to be used for signing. Thereis no default
value. You must explicitly add
http://www.w3.0rg/2001/10/xm1-exc-cl4n#

to the transforms list in the configuration file if you want to
useit. The prefix list is computed by the implementation and
does not need to be specified in the configuration file. This
transform will be added as the last transform regardless of its
placement in the configuration file.

algorithm

http://www.w3.org/TR/xmldsig-core/#sec-CanonicalizationMethod

SighatureMethod

The <SignatureMethod> element specifies the algorithm used for signature
generation and validation. A SignatureMethod isimplicitly given two parame-
ters: the keying info and the output of CanonicalizationMethod. The recom-
mendation that discusses this method is the W3C XML-Signature Syntax and
Processing recommendation, which can be viewed at http:/imww.w3.org/TR/xmldsig-

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS

corel#sec-SignatureMethod. |ts attributes are discussed in Table 4-37.

Table 4-37 Attributes of SignatureM ethod

Attributes of
SignatureM ethod

Description

algorithm

The algorithm to be used for signing. The default valueis
http://www.w3.0rg/2000/09/xmldsig#rsa-shal.

DigestMethod

The <DigestMethod> element specifies the algorithm used for generating the
digest of the object to be signed. The recommendation that discusses this method
isthe W3C XML-Signature Syntax and Processing recommendation, which can
be viewed at http://www.w3.org/ TR/xmldsig-core/#sec-DigestMethod. The attributes of

<DigestMethod> are discussed in Table 4-38.

Table 4-38 Attributes of DigestMethod

Attributes of
DigestM ethod Description
I dentifies the digest algorithm to be applied to the signed
algorithm object. The default valueis
http://www.w3.0rg/2000/09/xmldsig#shal.
DataEncryptionMethod

The <DataEncryptionMethod> element specifies the encryption algorithm to be
applied to the cipher data. The recommendation that discusses this method is the
W3C XML Encryption Syntax and Processing recommendation, which can be

169

http://www.w3.org/TR/xmldsig-core/#sec-SignatureMethod
http://www.w3.org/TR/xmldsig-core/#sec-SignatureMethod
http://www.w3.org/TR/xmldsig-core/#sec-DigestMethod

170 INTRODUCTION TO XML AND WEB SERVICES SECURITY

viewed at http://www.w3.0rg/TR/2002/REC-xmlenc-core-20021210/#sec-EncryptionM ethod.
The attributes of <DataEncryptionMethod> are discussed in Table 4-39.

Table 4-39 Attributes of DataEncryptionMethod

Attributes of
DataEncryptionMethod | Description

The agorithm to be used for encrypting data. The default
vaueis
"http://www.w3.0rg/2001/04/xmlenc#aes128-cbhc").
algorithm Other options include:

"http://www.w3.0rg/2001/04/xmlenc#aes256-cbc";
and
"http://www.w3.0rg/2001/04/xmlenc#tripledes-
cbhc".

Note: Although the schema indicates that http://www.w3.0rg/2001/04/
xmlenc#aes128-cbc is the default algorithm for <DataEncryptionMethod>, for
backward compatibility this implementation still uses http://www.w3.0rg/2001/
04/xmlenc#tripledes-cbc asthe default.

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/#sec-EncryptionMethod

How Do | SPECIFY THE SECURITY CONFIGURATION FOR THE BUILD FILES?

KeyEncryptionMethod

The <KeyEncryptionMethod> element specifies the public key encryption algo-
rithm to be used for encrypting and decrypting keys. Its attributes are discussed
in Table 4-40.

Table 440 Attributes of KeyEncryptionMethod

Attributes of
KeyEncryptionMethod Description

Specifiesthe KeyTransport/KeyWrap agorithmsto be used
to encrypt/decrypt apublic key or secret key (key used to
encrypt the data) respectively. The default valueis
http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-
mgflp. Other optionsinclude: "http://www.w3.org/
algorithm 2001/04/xmlenc#rsa-1_5";
"http://www.w3.0rg/2001/04/xmlenc#kw-triple-
des";
"http://www.w3.0rg/2001/04/xmlenc#kw-aes128";
and
"http://www.w3.0rg/2001/04/xmlenc#kw-aes256".

SecurityEnvironmentHandler

The <SecurityEnvironmentHandler> element specifies the implementation class
name of the security environment handler. Read Writing SecurityEnvironmentHandlers
for more information on SecurityEnvironmentHandlers.

How Do | Specify the Security
Configuration for the Build Files?

After the security configuration files are created, you can easily specify which of
the security configuration filesto use for your application. Inthe build. proper-
ties filefor your application, create a property to specify which security config-
uration file to use for the client, and which security configuration file to use for
the server. An example from the simple sample application does this by listing

171

172

INTRODUCTION TO XML AND WEB SERVICES SECURITY

all of the alternative security configuration files, and uncommenting only the
configuration to be used. The simp1e sample uses the following properties:

#1ook in config directory for alternate security
configurations

Client Security Config. file
client.security.config=config/dump-client.xm]l
#client.security.config=config/user-pass-authenticate-
client.xml
#client.security.config=config/encrypted-user-pass-client.xml
#client.security.config=config/encrypt-usernameToken-
client.xml

#client.security.config=config/sign-client.xml
#client.security.config=config/encrypt-client.xml
#client.security.config=config/encrypt-using-symmkey-
client.xml
#client.security.config=config/sign-encrypt-client.xml
#client.security.config=config/encrypt-sign-client.xml
#client.security.config=config/sign-ticket-also-client.xml
#client.security.config=config/timestamp-sign-client.xml
#client.security.config=config/flexiblec.xml
#client.security.config=config/method-level-client.xml

Server Security Config. file
server.security.config=config/dump-server.xml
#server.security.config=config/user-pass-authenticate-
server.xml
#server.security.config=config/encrypted-user-pass-server.xml
#server.security.config=config/encrypt-usernameToken-
server.xml

#server.security.config=config/sign-server.xml
#server.security.config=config/encrypt-server.xml
#server.security.config=config/sign-encrypt-server.xml
#server.security.config=config/encrypt-sign-server.xml
#server.security.config=config/sign-ticket-also-server.xml
#server.security.config=config/timestamp-sign-server.xml
#server.security.config=config/flexibles.xml
#server.security.config=config/method-level-server.xml

As you can see from this example, several security scenarios are listed in the
build.properties file. To run a particular security configuration option, simply
uncomment one of the entries for a client configuration file, uncomment the cor-
responding entry for the server configuration file, and comment all of the other
options.

In general, the client and server configuration files should match. However, in
some cases, more than one client configuration can be used with a server config-

How Do | SPECIFY THE SECURITY CONFIGURATION FOR THE BUILD FILES?

uration. For example, either encrypt-using-symmkey-client.xml or
encrypt-client.xml can be used with encrypt-server.xml. This combina
tion works because the server requirement is the same (the body contents must
be encrypted) when the client-side security configuration is either encrypt-
using-symmkey-client.xml Or encrypt-client.xml. The difference in the
two client configurations is the key material used for encryption.

After the property has been defined in the build.properties file, you can refer
to it from thefile that contains the asant (or ant) targets, whichisbuild.xm1.

When you create an asant (or ant) target for JAX-RPC clients and services,
you use the wscompile utility to generate stubs, ties, serializers, and WSDL
files. XWS-Security has been integrated into JAX-RPC through the use of secu-
rity configuration files. The code for performing the security operations on the
client and server is generated by supplying the configuration files to the JAX-
RPC wscompile tool. Thewscompile tool can be instructed to generate security
code by making use of the -security option and supplying the security configu-
ration file.

Note: For the 2.0 release of JAX-RPC, JAX-RPC will be renamed to JAX-WS.
JAX-WS will become part of the XWS-Security 2.0 FCS later this year. When this
renaming occurs, the wscompile tool will be replaced, and these steps and the
build.xm1 filesfor the sample applications will need to be modified accordingly.

An example of the target that runs the wscompile utility with the -security
option pointing to the security configuration file specified in the build.proper-
ties file to generate server artifacts, from the simp1e sample application, |ooks
likethis:

<target name="gen-server" depends="prepare"
description="Runs wscompile to generate server
artifacts">
<echo message="Running wscompile...."/>
<wscompile verbose="${jaxrpc.tool.verbose}"
xPrintStackTrace="true"
keep="true" fork="true"
security="${server.security.config}"
import="true"
mode1="${build.home}/server/WEB-INF/
${model.rpcenc.file}"
base="${build.home}/server/WEB-INF/cTlasses"
classpath="${app.classpath}"
config="${config.rpcenc.file}">

173

174 INTRODUCTION TO XML AND WEB SERVICES SECURITY

<classpath>
<pathelement location="${build.home}/server/WEB-INF/
classes"/>
<path refid="app.classpath"/>
</classpath>
</wscompile>
</target>

An example of the target that runs the wscompile utility with the security
option pointing to the security configuration file specified in the build.proper-
ties file to generate the client-side artifacts, from the simple sample applica-
tion, looks like this:

<target name="gen-client" depends="prepare"
description="Runs wscompile to generate client side
artifacts">

<echo message="Running wscompile...."/>
<wscompile fork="true" verbose="${jaxrpc.tool.verbose}"
keep="true"

client="true"
security="${client.security.config}"
base="${build.home}/client"
features=" "
config="$%${client.config.rpcenc.file}">
<classpath>
<fileset dir="${build.home}/client">
<include name="secenv-handler.jar"/>
</fileset>
<path refid="app.classpath"/>
</classpath>
</wscompile>
</target>

Refer to the documentation for the wscompile utility in Useful XWS-Security Com-
mand-Line Tools for more information on wscomp1ile options.

Are There Any Sample Applications
Demonstrating XWS-Security?

This release of the Java WSDP includes many example applications that illus-
trate how a JAX-RPC or stand-alone SAAJ application developer can use the
XML and Web Services Security framework and APIs. The example applica-
tions can be found in the <JWSDP_HOME>/xws-security/samples/
<sample_name>/ directory. Before you can run the sample applications, you

ARE THERE ANY SAMPLE APPLICATIONS DEMONSTRATING XWS-SECURITY?

must follow the setup instructions in Setting Up To Use XWS-Security With the Sample
Applications.

The sample applications print out both the client and server request and response
SOAP messages. The output from the server may be viewed in the appropriate
container’'s log file. The output from the client is sent to stdout or whichever
stream is used by the configured log handler. Messages are logged at the INFO
level.

Note: In some of the sample security configuration files, no security is specified for
either a request or a response. In this case, the response is a simple JAX-RPC
response. When XWS-Security is enabled for an application by providing the -
security option to wscompile, and a request or response not containing a
wsse:Security Header iSreceived, the messagewsS0202: No Security element
in the message will display in the output to warn that a nonsecure response was
received.

In these examples, the server-side code is found in the <JWSDP_HOME>/xws-
security/samples/<sample_name>/server/src/<sample_name>/ directory.
Client-side code is found in the <JWSDP_HOME>/xws-security/samples/
<sample_name>/client/src/<sample_name>/ directory. The asant (Or ant)
targets build objects under the /build/server/ and /build/client/ directo-
ries.

These examples can be deployed onto any of the following containers. For the
purposes of this tutorial, only deployment to the Sun Java System Application
Server Platform Edition 8.1 will be discussed. The README. txt file for each
example provides more information on deploying to the other containers. The

following containers can be downloaded from http://java.sun.com/webservices/contain-
erslindex.html.

» Sun Java System Application Server Platform Edition 8.1 (Application
Server)
e Sun Java System Web Server 6.1 (Web Server)

If you are using the Java SDK version 5.0 or higher, download service
pack 4 for the Web Server. If you are using version 1.4.2 of the Java SDK,
download service pack 2 or 3.

e Tomcat 5 Container for Java WSDP (Tomcat)

These examples use keystore and truststore files that are included in the
<JWSDP_HOME>/xws-security/etc/ directory. For more information on using

175

http://java.sun.com/webservices/containers/index.html

176 INTRODUCTION TO XML AND WEB SERVICES SECURITY

keystore and truststore files, read the keytoo1 documentation at http:/java.sun.com/
j2se/1.5.0/docs/tool docs/solaris/keytool.html. Refer to the application’s README . txt file
if deploying on the Web Server or Tomcat.

The following list provides the name, a short description, and a link to further
discussion of each of the sample applications available in this release:

e simple

This sample application lets you plug in different client and server-side
configurations describing security settings. This example has support for
digital signatures, XML encryption/decryption, and username token veri-
fication. This example allows and demonstrates combinations of these
basic security mechanisms through configuration files. The section Simple
Security Configurations Sample Application provides examples and descriptions
of configuration files used in the sample application, along with instruc-
tions for compiling and running the application.

o api-sample

This sample application shows how to use the XWS-Security 2.0 APIsin
a stand-alone mode. This sample defines the XwSSProcessor interface,
which is used to insulate the APl user from changes that may occur in
future releases of the API, and provides an implementation for it. The
Client.java file uses the XwSSProcessor APIs to secure a SOAP mes-
sage. The section XWS-Security APIs Sample Application provides further
description of the sample application, along with instructions for compil-
ing and running the application.

e jaas-sample
This sample demonstrates how to plug in a JAAS LoginModule for user-
name-password authentication. Read more about JAAS a http:/
java.sun.com/products/jaas/. The section JAAS Sample Application provides fur-
ther description of the sample application, along with instructions for
compiling and running the application.

e swainterop
This sample application demonstrates the Soap Messages with Attachments
(SwWA\) interoperability scenarios. The section Soap With Attachments Sample Applica-
tion provides further description of the sample application, along with
instructions for compiling and running the application.

e samlinterop
This sample application demonstrates support for OASIS WSS Security Asser-
tion Markup Language (SAML) Token Profile 1.0 in XWS-Security. The section

http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

WRITING SECURITYENVIRONMENTHANDLERS 177

SAML Sample Application provides further description of the sample applica-
tion, along with instructions for compiling and running the application.

e dynamic-policy
This sample application demonstrates how the request and response secu-
rity policies can be set at runtime from the SecurityEnvironmen-
tHandler callback. The section Dynamic Policy Sample Application provides
further description of the sample application, along with instructions for
compiling and running the application.

« dynamic-response
This sample application demonstrates using the certificate that arrived in a
signed request to encrypt the response back to the requester. The section
Dynamic Response Sample Application provides further description of the sam-
ple application, along with instructions for compiling and running the
application.

Writing SecurityEnvironmentHandlers

The signing and encryption operations require private-keys and certificates. An
application can obtain such information in various ways, such as looking up a
keystore with an alias, using the default key-pairs available with the container,
looking up a truststore with an dlias, etc. Similarly if an application wants to
send a username-password in aUsernameToken, it can choose to obtain the user-
name-password pair in various ways, such as reading from afile, prompting the
user on the console, using a popup window, etc. The authentication of the user-
name-password on the receiving application can similarly be done by plugging
into existing authentication infrastructure, using a proprietary username-pass-
word database, etc.

To support these possibilities, XWS-Security defines a set of Cal1Back classes
and requires the application to define a Cal1BackHandler to handle these call-
backs. The xwss: SecurityEnvironmentHandler element is a compulsory child
element that needs to be specified. The value of this element is the class name of
a Java class that implements the javax.security.auth.callback.Callback-
Handler interface and handles the set of callbacks defined by XWS-Security.
There are a set of callbacks that are mandatory and every CallbackHandler
needs to implement them. A few callbacks are optional and can be used to sup-
ply some fine-grained property information to the XWS-Security run-time.

When using the XWS-Security APIs for securing both JAX-RPC applications
and stand-alone applications that make use of SAAJ APIs only for their SOAP

178

INTRODUCTION TO XML AND WEB SERVICES SECURITY

messaging, you have the option of either implementing a CallbackHandler or
implementing the com.sun.xml.wss.SecurityEnvironment interface. Once
implemented, the appropriate instance of the CallbackHandler or SecurityEn-
vironment interface implementation needs to be set into an instance of
com.sun.xml.wss.ProcessingContext. For example code uses the XWS-
Security APIs, refer to XWS-Security APIs Sample Application. The SecurityEnvi-
ronment interfaceis evolving and is subject to refinement in alater release.

Because information such as private keys and certificates for signing and encryp-
tion can be obtained in various ways (looking up a keystore with an alias, using
the default key-pairs available with the container, looking up atruststore with an
aias, etc.), every calback defines a set of Request inner classes and a callback
can be initialized with any of its request inner classes. A tagging Request inter-
face is aso defined within the callback to tag all Request classes. For example,
the XWS-Security configuration schema defines an xwss:X509Token element
containing an optional attribute certificateAlias. When the xwss :X509Token
element embedded inside a xwss : Sign element has a certificateAlias attribute
specified as shown in the following code snippet, the XWS-Security run-time
would invoke the SecurityEnvironmentHandler of the application with aSig-
natureKeyCallback object to obtain the private-key required for the signing
operation.

<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-client"/>
</xwss:Sign>

The SignatureKeyCallback will beinitialized by XWS-Security run-time with
an AliasPrivKeyCertRequest in the following manner:

SignatureKeyCallback sigKeyCallback = new
SignatureKeyCallback(new
SignatureKeyCallback.AliasPrivKeyCertRequest(alias));

The application’s SecurityEnvironmentHandler implementation then needs to
handle the SignatureKeyCallback and use the alias to locate and set the pri-
vate-key and X.509 certificate pair on the A1iasPrivKeyCertRequest. The fol-
lowing code shows how this callback is handled in the handle() method of
SecurityEnvironmentHandler shipped with the simple sample.

} else if (callbacks[i] instanceof SignatureKeyCallback) {
SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];

WRITING SECURITYENVIRONMENTHANDLERS

if (cb.getRequest() instanceof
SignatureKeyCallback.AliasPrivKeyCertRequest) {
SignatureKeyCallback.AliasPrivKeyCertRequest request

(SignatureKeyCallback.AliasPrivKeyCertRequest)
cb.getRequest();
String alias = request.getAlias();
if (keyStore == null)
initKeyStore(Q);
try {
X509Certificate cert = (X509Certificate)
keyStore.getCertificate(alias);
request.setX509Certificate(cert);
// Assuming key passwords same as the keystore
password
PrivateKey privKey =
(PrivateKey) keyStore.getKey(alias,
keyStorePassword.toCharArray());
request.setPrivateKey(privKey);
} catch (Exception e) {
throw new IOException(e.getMessage());
}
} else {
throw new
UnsupportedCallbackException(null, "Unsupported Callback
Type Encountered");
}

}

This handler uses akeystore to locate the private key and certificate pair, and sets
it using AliasPrivKeyCertRequest.

As shown in the sample code, the SecurityEnvironmentHandler should throw
an UnsupportedCallbackException whenever it cannot handleaCallback or a
particular Request type of aCallback.

Thetype of Request with which the Cal1back isinitialized often depends on the
information specified in the security configuration file of the application. For
example if the xwss :X509Token specified under an xwss:Sign element did not
contain the certificateAlias attribute, XWS-Security would invoke the appli-
cation’'s SecurityEnvironmentHandler with SignatureKeyCall-
back.DefaultPrivKeyCertRequest to try and obtain the default private-key
and certificate pair. If the SecurityEnvironmentHandler does not handle this
request and throws an UnsupportedCallbackException, the signature opera-
tion would fail.

179

180

INTRODUCTION TO XML AND WEB SERVICES SECURITY

For more information, read the APl documentation for callbacks from the
<JWSDP_HOME>/xws-security/docs/api/com/sun/xml1/wss/imp1/callback/
package-summary.htm1. This documentation includes the list of mandatory and
optional callbacks and the details of the Callback classes and supported meth-
ods. Table 441 provides a brief summary of al the mandatory Callback classes
and their associated Request types.

Table4-41 Summary of Callback classes and their Request types

Callback can beinitialized.

Request Inner Methodsin the Request

Callback | Description Classes Defined Classes

Used by XWS-Security run-

timeto obtain the privatekey | 1. AliasPrivKeyC-

to be used for signing the ertRequest: A

corresponding X.509 certifi- Callback initialized

cate. There are two waysin with this request

which an application can sup- | should be handled if

ply the private-key and certif- | the private key to be

icate information. used for signing is

1. Lookup akeystore using mapped to an alias. The following four methods are

an alias. 2. Default- present in all Request Classes

2. Obtain the default private- | PrivKeyCertRe- of thisCal1back:

key and certificate from the quest: A Callback public void setPrivateKey(
Signature coqtai ner/envi r_onr_nent_ in initialized with this Pl_"ivatc_eKey privateKey)
Key whlch the application is run- requqﬂ should behan- | public PrivateKey getPri-
Callback ning. died if there's some vateKey ()

3. Obtain the private key and | default private key to .)

o . . . public void

certificate given the public be used for signing. setX509Certificate(

key. Thiskind of requestis 3. Pub1icKey- X509Certificate certifi-

used in scenarioswherethe | BasedPri- ;35?% X509Certi Ficate

public key appearsasaKey- | vateKeyCertReque getX509Certificate()

Value under ads:KeyInfo | st: A callback initial-

and needs to be used for sign- | ized with this request

ing. should be handled if

the private key to be

Accordingly, there are three used for signing isto

Request inner classes with be retrieved given the

which the SignatureKey- public key.

WRITING SECURITYENVIRONMENTHANDLERS

Table4-41 Summary of Callback classes and their Request types (Continued)

the xwss : Sign element.

3. When ds:KeyInfo contains
akey value, use the public
key to obtain the X.509 cer-
tificate.

Accordingly, there are three
Request inner classes with
which aSignatureVeri-
ficationKeyCallbackcan
beinitialized.

Note: Additional Requests
may be defined in afuture
release.

3. PubTicKeyBase-
dRequest: Request
for an X.509 certifi-
cate for agiven public

key.

Request Inner Methodsin the Reguest

Callback | Description Classes Defined Classes

Obtains the certificate

required for signature verifi-

cation. There are currently

two situations in which

XWS-Security would require

this Callback to resolve the

certificate:

1. When the signature to be

verified references the key

using an X.509 Subject- 1

KeyIdentifier. For exam- X509SubjectKeyId

ple, when the sender specifies | entifierBase-

the attribute xwss : keyRef- dRequest: Request

erenceType="Identi- for an X.509 certifi-

fier" onthe cate whose X.509

xwss :X509Token child of SubjectKeyIden- The following two methods are

the xwss : Sign element. tifier vaueis present in al the Request
Signa- 2. When the signature to be given. classes of this Callback:
ture verified references the key 2.
Verifi- using an X.509 IssuerSe- X509IssuerSerial public void
cation rialNumber. For example, BasedRequest: setX509Certificate(
Key when the sender specifiesthe | Reguest for an X.509 X509Certificate cer-
Callback | atribute xwss :keyRefer- certificate whose tificate)

enceType="IssuerSeri- issuer name and serial | public X509Certificate

aTlNumber" on the number values are getX509Certificate()

xwss :X509Token child of given.

181

182

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-41 Summary of Callback classes and their Request types (Continued)

nocertificateAlias
attribute set on it. XWS-
Security triesto obtain a
default certificate from the
Callback to be used for
encrypting the random sym-
metric key.

3. When the xwss: Encrypt
element contains an

xwss : SymmetricKey child
specifying the keyAlias
attribute. This alias indicates
that asymmetric key corre-
sponding to this alias needs
to be located and used for
encryption of the specified
message part.

4. When an X.509 certificate
needs to be obtained for a
given public key.

should be handled if
there'sadefault X.509
certificate to be used
for encryption.

3. AliasSymmet-
ricKeyRequest: A
Callback initialized
with this request
should be handled if
the symmetric key to
be used for encryp-
tion ismapped to an
dlias.

4. Publ1icKeyBase-
dRequest: Request
for an X.509 certifi-
cate for agiven public

key.

Request Inner Methodsin the Request

Callback | Description Classes Defined Classes

Obtains the certificate for

key-encryption or a symmet-

ric-key for data encryption. The following are the

The three situations for Request inner classes

which XWS-Security would | with which an

require this Callback for EncryptionKey-

performing encryption: Callback can beini-

1. When the xwss:Encrypt | tiaized

element contains an 1 The following two methods are

xwss :X509Token childwith | A1iasX509Certifi present in the

certificateAlias cateRequest: A AliasX509CertificateRequ

attribute set to an dlias. The Callback initialized est and

certificateAlias indi- with this request DefaultX509CertificateRe

cates that arandom symmet- | should be handled if quest Request classesof this

ric key isused for encryption | the X.509 certificate Callback:

of the specified message part | to be used for encryp-

and the certificate isthen tion ismapped to an public void

used to encrypt the random dlias. setX509Certificate(

symmetric-key to be sent 2. X509Certificate cer-

along with the message. DefaultX509Certi | tificate) o
E:,'(c)l:yp' 2. Whenthe xwss:Encrypt | ficateRequest:A PUb]TCX)S(ZSECer‘_c::ﬁ cate
Key element contains an Callback initialized get ertificate(
Callback xwss :X509Token childwith | with this request

The following methods are
present in the ATiasSymmet-
ricKeyRequest class of this
Callback:

public void setSymmet-
ricKey(
javax.crypto.SecretKe
y
symmetricKey)
public
javax.crypto.SecretKey
getSymmetricKey ()

WRITING SECURITYENVIRONMENTHANDLERS

Table4-41 Summary of Callback classes and their Request types (Continued)

specifies the attribute key -
ReferenceType="Ident1i-
fier" onthe

Xwss : X509Token child of
the xwss: Encrypt element.
2. When the Encrypted-
Key referencesthekey (used
for encrypting the symmetric
key) using an X.509 Issu-
erSerialNumber. For
example, when the sender
specifies the attribute key -
ReferenceType="Issu-
erSerialNumber" onthe
Xwss : x509Token child of
xwss:Encrypt element.

name and serial num-
ber values for a corre-
sponding X.509
certificate are given.
3.
X509CertificateB
asedRequest:
Request for a private
key when a corre-
sponding X.509 certif-
icate is given.

Request Inner Methodsin the Reguest

Callback | Description Classes Defined Classes

Obtainsthe symmetric key to

be used for decrypting the

encrypted data or obtaining

the private-key for decrypting

the encrypted random sym- 1

metric key that was sent with X.5095ub ectkeyId

the message (along with the entiﬁ'ea‘Base—y

encrypted data). . dRequest: Request

There are currently four situ- for aprivate-key when

dions :In which Xr:_NS' Sect | he X 509 Subject- | Thefollowing two methods are

rity will require this KeyIdentifier present in the

gg;&z;g':] to perform value for acorre- X509SubjectkeyIdentifier

' sponding X.509 certif- | BasedRequest,

1. When the EncryptedKey icate is given. X509IssuerSerialBasedReq

references the key (used for 2 uest. and

enuprngthesynwnanc X509IssuerSerial X509CertificateBasedRequ
Dt?cr‘yp— kW) usngan X509 Sub- BasedRequest: est Request classes of this
tion jectKeyIdentifier. For Reguest for a private Callback
Key example, when the sender K hen the
Callback €y when the Issuer

public void setPri-
vateKey (
PrivateKey pri-
vateKey)
public PrivateKey
getPrivateKey()

183

184

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-41 Summary of Callback classes and their Request types (Continued)

Callback

Description

Request Inner
Classes Defined

Methodsin the Request
Classes

Decryp-
tion

Key
Callback
(contin-
ued)

3. When the EncryptedKey
containsawsse:Direct ref-
erence to the key used for
encrypting the symmetric
key. This means the X.509
certificate is present asa
wsse:BinarySecurityTo-
ken in the message. For
example, when the sender
specifies the attribute key -
Reference-
Type="Direct" onthe
xwss : x509Token child of
xwss:Encrypt e ement.

4. When the Encrypted-
Data containsads:key-
Name reference to the
symmetric key that was used
for encryption. For example,
when the sender specifiesthe
xwss : SymmetricKey child
of xwss:Encrypt and speci-
fiesthe keyAlias attribute
onit.

5. When the EncryptedKey
containsads : KeyInfo with
akey value child.
Accordingly, there are five
Request classes with which
aDecryptionKeyCall-
back can beinitialized.

4. AliasSymmet-
ricKeyRequest: A
Callback initialized
with this request
should be handled if
the symmetric key to
be used for decryp-
tion is mapped to
some dlias.

5. PubTicKey-
BasedPrivateKey-
Request: Request for
aprivate key given the
public key.

The following methods are
present inthe AliasSymmet-
ricKeyRequest class of this
Callback:

public void setSymmet-
ricKey(
javax.crypto.SecretKe
y
symmetricKey)
public
javax.crypto.SecretKey
getSymmetricKey ()

WRITING SECURITYENVIRONMENTHANDLERS

185

Table4-41 Summary of Callback classes and their Request types (Continued)

Callback

Description

Request Inner
Classes Defined

Methodsin the Request
Classes

Password
Valida-
tion
Callback

Username-Password valida
tion. A validator that imple-
ments the
PasswordValidator inter-
face should be set on the call-
back by the callback handler.
There are currently two situa-
tionsinwhich XWS-Security
will requirethisCallback to
perform username-password
validation:

1. When the receiver gets a
UsernameToken with plain-
text user name and password.
2. When the receiver getsa
UsernameToken with a
digested password (as speci-
fied in the WSS Username-
Token Profile).

Accordingly there are two
Request classes with which
the PasswordValidation-
Callback can beinitiaized.
Note: A validator for WSS
Digested Username-Pass-
word is provided as part of
this callback, with classname
PasswordValidation-
Callback.DigestPass-
wordValidator

This classimplements WSS
digest password validation.
The method for computing
password digest is described
inhttp://docs.oasis-
open.org/wss/2004/01/
0asis-200401-wss-user-
name-token-profile-
1.0.pdf

For moreinformation, seethe
ServerSecurityEnviron-
mentHandler in
<JIWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-
ple/src/com/sun/xml/
wss/sample

1. PTainTextPass-
wordRequest: Rep-
resents avalidation
request when the pass-
word in the username
token isin plain text.
2.DigestPasswor-
dRequest: Repre-
sents avalidation
request when the pass-
word in the username
token isin digested
form.

The following methods are
present inthe P1ainText-
PasswordRequest:
public String getUser-
name ()

public String getPass-
word()

The following methods are
present intheDigestPass-
wordRequest:

public void setPass-
word(String password)

Thismethod must be invoked by
the CallbackHandler while
handlingaCallback initialized
with DigestPasswor-
dRequest to set the plain-text
password on the Cal1back.

public java.lang.String
getPassword()

public java.lang.String
getUsername()

public java.lang.String

getDigest()

public java.lang.String

getNonce()

public java.lang.String

getCreated()

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

186

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-41 Summary of Callback classes and their Request types (Continued)

Callback

Description

Request Inner
Classes Defined

Methodsin the Request
Classes

Username
Callback

To supply the user name for
the UsernameToken at run-
time. It contains the follow-
ing two methods:
public void setUser-
name (

String username)
public String getUser-
name ()

Refer to the ClientSecu-
rityEnvironmen-
tHandTer of the
jaas-sample located in
<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-
ple/src/com/sun/xml/
wss/sample for more
details on using the Usern-
ameCallback

Pass-
word-
Callback

To supply the password for
the username token at run-
time. It contains the follow-
ing two methods:

public void setPass-
word(String

password)
public String getPass-
word()
Refer tothe ClientSecu-
rityEnvironmen-
tHandler of the jaas-
sample located in
<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-
ple/src/com/sun/xml/
wss/sample for more
details on using the Pass-
wordCalTback

WRITING SECURITYENVIRONMENTHANDLERS 187

Table4-41 Summary of Callback classes and their Request types (Continued)

com/sun/xml/wss/impl/
callback/PropertyCall-
back.html for alist of con-
figurable properties and
methods supported by this
callback.

Request Inner Methodsin the Reguest

Callback | Description Classes Defined Classes

Optional callback to specify

the values of properties con- This callback has been depre-

figurable with XWS-Secu- cated and disabled in this

rity run-time. release. To get similar function-

Refer to the APl documenta- aity, use the maxClockSkew
Property tionat <JWSDP_HOME>/ andtimegtampFreshness—
Callback xws-security/docs/api/ Lim1it attributes on <Require-

Timestamp>, or the
maxClockSkew, timestamp-
FreshnessLimit, and max-
NonceAge attributes on
<RequireUsernameToken>

188

INTRODUCTION TO XML AND WEB SERVICES SECURITY

Table4-41 Summary of Callback classes and their Request types (Continued)

Callback

Description

Request Inner
Classes Defined

Methodsin the Request
Classes

Prefix
Namespac
e
Mapping
Callback

Optional callback to register
any prefix versus namespace-
uri mappings that the devel-
oper wants to make use of in
the security configuration
(while specifying Targets
as xpaths).

Refer to the APl documenta-
tion at <JWSDP_HOME>/xws -
security/docs/api/com/
sun/xml/wss/impl/call-
back/Prefix-
NamespaceMappingCallba
ck.html for more details.

The PrefixNamespaceMap-
pingCallback has been depre-
cated and disabled in this
release. When specifying XPath
expressions for targetsin XWS-
Security configuration files, you
are required to make use of the
elongated syntax of the form
Tocal-name()="Body" and
namespace-uri()="http://
schemas.xmlsoap.org/
soap/envelope/", etc., if the
prefix involved is anything other
than the following:

1. The prefix of the SOAP enve-
lope in the message.

2. One of the following prefixes:
SOAP-ENV, env, S11 to mean
http://schemas.xml-
soap.org/soap/envelope/.
3. Prefix ds to mean http://
www.w3.0rg/2000/09/xm1d-
sig#

4, Prefix xenc tomean http:/
/www.w3.0rg/2001/04/
xmlenc#

5. Prefix wsse tomean http:/
/docs.oasis-open.org/
wss/2004/01/oasis-
200401-wss-wssecurity-
secext-1.0.xsd

6. Prefix wsu tomean http://
docs.oasis-open.org/wss/
2004/01/0asis-200401-
wss-wssecurity-utility-
1.0.xsd

7.Prefix wsu tomean http://
docs.oasis-open.org/wss/
2004/01/0asis-200401-ws
s-wssecurity-utility-
1.0.xsd

The use of XPath expressionsis
discouraged in XWS-Security
EA 2.0 because it impacts per-
formance. Users are advised to
make use of fragment URI’sand
QNames to identify targets of
signature and encryption.

WRITING SECURITYENVIRONMENTHANDLERS

Table4-41 Summary of Callback classes and their Request types (Continued)

189

Callback

Description

Request Inner
Classes Defined

Methodsin the Request
Classes

Certifi-
cate
Valida-
tion
Callback

This callback isintended for
X.509 certificate validation.
A validator that implements
the Certificatevalida-
tor interface should be set
on the callback by the call-
back handler.

Currently this callback is
invoked by the XWS-Secu-
rity runtime whenever an
X.509 certificateis present in
an incoming message in the
form of aBinarySecuri-
tyToken.

Dynamic
Policy
Callback

This callback isintended for
dynamic policy resolution.
DynamicPolicyCallback
is made by the XWS runtime
to alow the application and/
or handler to decide the
incoming and/or outgoing
SecurityPolicy at runt-
ime.

When the SecurityPolicy
set on the callback isa
DynamicSecurityPolicy
theCallbackHandler is
expected to set a
com.sun.xml.wss.impl.c
onfiguration.Message-
Po1icy instance asthe
resolved policy. TheMes-
sagePol1cy instance can
contain policies generated by
the PolicyGenerator
obtained from the Dynam1i c-
SecurityPolicy.

190

INTRODUCTION TO XML AND WEB SERVICES SECURITY

The following code snippet shows the hand1e () method skeleton for an applica-
tion's SecurityEnvironmentHandler that handles all the mandatory Callbacks
(except UsernameCallback and PasswordCallback) and associated Requests
defined by XWS-Security. A particular application may choose to throw an
UnsupportedCallbackException for any of the Callbacks or itSRequests that
it cannot handle. The UsernameCallback and PasswordCallback are useful for
obtaining a username-password pair at run-time and are explained later in this
section.

Note: In thisrelease of XWS-Security, users will have to ensure that the Securi -
tyEnvironmentHandler implementation they supply isthread safe.

public class SecurityEnvironmentHandler implements
CallbackHandler {

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

for (int i=0; i < callbacks.length; i++) {

if (callbacks[i] instanceof
PasswordValidationCallback) {
PasswordValidationCallback cb =
(PasswordValidationCallback) callbacks[i];
if (cb.getRequest() instanceof
PasswordValidationCallback.PlainTextPasswordReq
uest) {
// setValidator for plain-text password
validation on callback cb
} else if (cb.getRequest() instanceof
PasswordValidationCallback.DigestPassword
Request) {
PasswordValidationCallback.DigestPassw
ordRequest request =
(PasswordValidationCallback.DigestP
asswordRequest) cb.getRequest();
// set plaintext password on request
// setValidator for digest password
validation on cb

} else {
// throw unsupported;
}

} else if (callbacks[i] instanceof

WRITING SECURITYENVIRONMENTHANDLERS 191

SignatureVerificationKeyCallback) {
SignatureVerificationKeyCallback cb =
(SignatureVerificationKeyCallback)call
backs[i];

if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Su
bjectKeyIdentifierBasedRequest) {
// subject keyid request
SignatureVerificationKeyCallback.X509Su
bjectKeyIdentifierBasedRequest
request =
(SignatureVerificationKeyCalTlback.X509S
ubjectKeyIdentifierBasedRequest)
cb.getRequest();
// locate and setX509Certificate on the
request
} else if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X5
09IssuerSerialBasedRequest) {
// 1issuer serial request
SignatureVerificationKeyCallback.X509I
ssuerSerialBasedRequest request =
(SignatureVerificationKeyCallback.X
509IssuerSerialBasedRequest)
cb.getRequest();
// locate and setX509Certificate on the

request
} else {
// throw unsupported;
}

} else if (callbacks[i] instanceof
SignatureKeyCallback) {
SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];
if (cb.getRequest() instanceof
SignatureKeyCallback.DefaultPrivK
eyCertRequest) {
// default priv key cert req

SignatureKeyCallback.DefaultPrivKeyCertRequest request =

(SignatureKeyCallback.DefaultPrivKeyCertRequest)
cb.getRequest();
// locate and set default
privateKey and X509Certificate on request

192

INTRODUCTION TO XML AND WEB SERVICES SECURITY

} else if (cb.getRequest() instanceof

SignatureKeyCallback.AliasPrivKeyCertRequest) {
// Alias priv key cert req

SignatureKeyCallback.AliasPrivKeyCertRequest request =

(SignatureKeyCallback.AliasPrivKeyCertRequest)
cb.getRequest();
// locate and set default
privateKey and X509Certificate on request

} else {
// throw unsupported;
3

} else if (callbacks[i] instanceof
DecryptionKeyCallback) {
DecryptionKeyCallback cb =
(DecryptionKeyCallback)callbacks[i];

if (cb.getRequest() instanceof
DecryptionKeyCallback.X509Subject
KeyIdentifierBasedRequest) {
//ski request
DecryptionKeyCallback.X509Subject
KeyIdentifierBasedRequest request =
(DecryptionKeyCallback.X509Sub
jectKeyIdentifierBasedRequest)
cb.getRequest();
// locate and set the privateKey on
the request

} else if (cb.getRequest() instanceof
DecryptionKeyCallback.X509IssuerS
erialBasedRequest) {
// issuer serial request
DecryptionKeyCallback.X509Issu
erSerialBasedRequest request =
(DecryptionKeyCallback.X509
IssuerSerialBasedRequest)
cb.getRequest();
// locate and set the
privateKey on the request
} else if (cb.getRequest() instanceof
DecryptionKeyCallback.X509Certifi
cateBasedRequest) {
// X509 cert request

WRITING SECURITYENVIRONMENTHANDLERS

DecryptionKeyCallback.X509Cert
ificateBasedRequest request =
(DecryptionKeyCallback.X509C
ertificateBasedRequest)
cb.getRequest();
// Tlocate and set private key
on the request
} else if (cb.getRequest() instanceof
DecryptionKeyCallback.ATiasSymmet
ricKeyRequest) {
DecryptionKeyCallback.ATiasSym
metricKeyRequest request =
(DecryptionKeyCallback.Alia
sSymmetricKeyRequest)
cb.getRequest();
// Tocate and set symmetric key
on request

} else {
// throw unsupported;
}

} else if (callbacks[i] instanceof
EncryptionKeyCallback) {
EncryptionKeyCallback cb =
(EncryptionKeyCallback)callbacks[i];
if (cb.getRequest() instanceof
EncryptionKeyCallback.AliasX50
9CertificateRequest) {
EncryptionKeyCallback.AliasX50
9CertificateRequest request =
(EncryptionKeyCallback.Alia
sX509CertificateRequest)
cb.getRequest();
// locate and set certificate
on request
} else if (cb.getRequest() instanceof
EncryptionKeyCallback.AliasSymme
tricKeyRequest) {
EncryptionKeyCallback.AliasSy
mmetricKeyRequest request =
(EncryptionKeyCallback.AT1
asSymmetricKeyRequest)
cb.getRequest();
// locate and set symmetric
key on request

} else {

193

194

INTRODUCTION TO XML AND WEB SERVICES SECURITY

// throw unsupported;
3

} else if (callbacks[i] instanceof
CertificateValidationCallback) {
CertificateValidationCallback cb

(CertificateValidationCallback
dcallbacks[i];
// set an X509 Certificate
Validator on the callback

} else {
// throw unsupported;
3

}

An application can aso choose not to handle certain callbacks if it knows that
the particular application will never require those callbacks. For example if the
security application only deals with signing the requests and does not deal with
encryption or username tokens, its handl1e () method only needs to worry about
SignatureKeyCallback (with its associated Requests) and SignatureVerifi-
cationKeyCallback (with its associated Requests). It can then throw an
UnsupportedCallbackException for any other callback. The following code
shows the hand1e () method skeleton for such an application:

public class SecurityEnvironmentHandler implements
CallbackHandler {

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

for (int i=0; i < callbacks.length; i++) {
if (callbacks[i] instanceof
SignatureVerificationKeyCallback) {
(SignatureVerificationKeyCallback)calTlbacks[
il;

if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Subj
ectKeyIdentifierBasedRequest) {
// subject keyid request
SignatureVerificationKeyCallback.X509Subj
ectKeyIdentifierBasedRequest
request =
(SignatureVerificationKeyCallback.X50

WRITING SECURITYENVIRONMENTHANDLERS

9SubjectKeyIdentifierBasedRequest)
cb.getRequest();
// locate and setX509Certificate on the
request
} else if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509I
ssuerSerialBasedRequest) {
// issuer serial request
SignatureVerificationKeyCallback.X509I
ssuerSerialBasedRequest request =
(SignatureVerificationKeyCallback.X
509IssuerSerialBasedRequest)
cb.getRequest();
// locate and setX509Certificate on the

request
} else {
// throw unsupported;
3

} else if (callbacks[i] instanceof
SignatureKeyCallback) {
SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];
if (cb.getRequest() instanceof
SignatureKeyCallback.DefaultPrivKey
CertRequest) {
// default priv key cert req
SignatureKeyCallback.DefaultPrivKeyCer
tRequest request =
(SignatureKeyCallback.DefaultPrivKe
yCertRequest) cb.getRequest();
// locate and set default privateKey
and X509Certificate on request
} else if (cb.getRequest() instanceof
SignatureKeyCallback.AliasPrivKeyCertR
equest) {
// Alias priv key cert req
SignatureKeyCallback.AliasPrivKeyCertR
equest request =
(SignatureKeyCallback.ATiasPrivKeyC
ertRequest) cb.getRequest();
// locate and set default privateKey
and X509Certificate on request

} else {
// throw unsupported;
}

195

196

INTRODUCTION TO XML AND WEB SERVICES SECURITY

} else {
// throw unsupported;
}

}

Similarly, an application dealing only with UsernameToken but not signature or
encryption requirements can simply throw UnsupportedCallbackException
for al non-username related callbacks.

The SecurityEnvironmentHandler implementation for the simple sample is
located in the directory <JWSDP_HOME>/xws-security/samples/simple/src/
com/sun/xm1/wss/sample. The simple sample uses the same SecurityEnvi-
ronmentHandler for both the client and server side.

The jaas-sample requires a different set of callbacksto be handled on the client
and server side. The CallbackHandlers for the jaas-sample are located in the
directory <JWSDP_HOME>/xws-security/samples/jaas-sample/src/com/
sun/xml1/wss/sample. The two CallbackHandlers defined for the jaas-sam-
ple are:

* A ClientSecurityEnvironmentHandler that handles only the Usern-
ameCallback and PasswordCallback for retrieving the username and
password to be sent in a WSS UsernameToken.

* A ServerSecurityEnvironmentHandler that handles only the Pass-
wordvalidationCallback to validate the username-password pair that it
received in the WSS UsernameToken.

Using the SubjectAccessor API

XWS-Security applications might require access to the authenticated subject of
the sender from within the SEI implementation methods. The SubjectAccessor
API contains a single method:

public static Subject getRequesterSubject(Object context)
throws XWSSecurityException
public static Subject getRequesterSubject()

The getRequesterSubject(Object context) method returns the Subject if
one is available or else it returns NULL. The context argument to be passed into
this method should either be a ServletEndpointContext, which is available

USEFUL XWS-SECURITY COMMAND-LINE TOOLS 197

with the SEI implementation class, or a com.sun.xml.wss.ProcessingCon-
text. For an example on how the SubjectAccessor isused to obtain the authen-
ticated sender subject, refer to the PingImpl.java class in the jaas-sample
located at <JWSDP_HOME>/xws-security/samples/jaas-sample/server/src/
sample. The API for SubjectAccessor viewed from <JWSDP_HOME>/xws-secu-
rity/docs/api/com/sun/xml/wss/SubjectAccessor.html.

The getRequesterSubject() method returns the requester subject from the
context if available, and returns null if not available. This method should be used
by the receiver response processing to access the subject of the requester. This
method will work only for the Synchronous Reguest-Response Message
Exchange Pattern (SRRMEP). For an example that uses this method, see Dynamic
Response Sample Application.

Useful XWS-Security Command-Line
Tools

In this release, the following command-line tools are included. These tools pro-
vide specialized utilitiesfor keystore management or for specifying security con-
figuration files:

* pkcsl2import

e keyexport

* wscompile

For more information on keystore management, read the Application Server
Administration Guide topic Working with Certificates and SSL.

pkcsl2import

The pkcs12import command allows Public-Key Cryptography Standards ver-
sion 12 (PKCS-12) files (sometimes referred to as PFX files) to be imported into
akeystore, typically akeystore of type Java KeySore (JKS).

When would you want to do this? One example would be a situation where you
want to obtain a new certificate from a certificate authority. In this scenario, one
option isto follow this sequence of steps:

1. Generate a key-pair.

2. Generate a certificate request

http://docs.sun.com/app/docs/doc/819-0076

198

INTRODUCTION TO XML AND WEB SERVICES SECURITY

3. Send the request to the authority for its signature
4. Get the signed certificate and import it into this keystore.

Another option is to let the certificate authority generate a key-pair. The author-
ity would return a generated certificate signed by itself along with the corre-
sponding private key. One way the certificate authority can return this
information is to bundle the key and the certificate in a PKCS-12 formatted file
(generdly pfx extension files). The information in the PKCS-12 file would be
encrypted using a password that would be conveyed to the user by the authority.
After receiving the PK CS-12 formatted file, you would import this key-pair (cer-
tificate/private-key pair) into your private keystore using the pkcs12import tool.
The result of the import is that the private-key and the corresponding certificate
in the PKCS-12 file are stored as a key entry inside the keystore, associated with
some alias.

The pkcs12import tool can be found in the directory <JwSDP_HOME>/xws-secu-
rity/bin, and can be run from the command line by executing
pkcs12import.sh (on Unix systems) or pkcs12import.bat (on Windows sys-
tems). The options for thistool listed in Table 4-42.

Table4-42 Optionsfor pkcs12import tool

Option Description

Required. The location of the PKCS-12 file to be

-file pkcsi2-file imported.,

The password used to protect the PKCS-12 file. The
user is prompted for this password if thisoptionis
omitted.

[-pass pkcsl2-pass-
word]

Location of the keystore file into which to import the

[-keystore keystore- contents of the PKCS-12 file. If no valueis given,

fil

ile] defaultsto ${user-home}/.keystore.
[-storepass store- The password of the keystore. User is prompted for
password] the password of the truststore if this option is omitted.

The password to be used to protect the private key
inside the keystore. The user is prompted for this
password if this option is omitted.

[-keypass key-pass-
word]

The aliasto be used to store the key entry (private key

[-alias alias] and the certificate) inside the keystore.

keyexport

Thistool is used to export a private key in akeystore (typicaly of type Java Key-

store (JK9)) into afile.

keyexport

Note: The exported private key is not secured with a password, so it should be han-
died carefully. For example, you can export a private key from akeystore and use it
to sign certificate requests obtained through any means using other key/certificate
management tools. These certificate requests are then sent to a certificate authority
for validation and certificate generation.

The keyexport tool can be found in the directory <JwSDP_HOME>/xws-secu-
rity/bin/, and can be run from the command line by executing keyexport.sh
(on Unix systems) or keyexport.bat (on Windows systems). The options for

thistool arelisted in Table 4-43.

Table 443 Optionsfor keyexport tool

Option

Description

-keyfile key-file

Required. The location of thefile to which the private key will
be exported.

[-outform output-for-
mat]

This specifies the output format. The options are DER and
PEM. The DER format is the DER encoding (binary format)
of the certificate. The PEM format is the base64-encoding of
the DER encoding with header and footer lines added.

[-keystore keystore-
file]

Location of the keystore file containing the key. If no valueis
given, this option defaultsto ${user-home}/.keystore.

[-storepass store-
password]

Password of the keystore. User is prompted for the password if
this option is omitted.

[-keypass key-pass-
word]

The password used to protect the private key inside the key-
store. User is prompted for the password if this option is omit-
ted.

[-alias alias]

The alias of the key entry inside the keystore.

199

200

INTRODUCTION TO XML AND WEB SERVICES SECURITY

wscompile

Thewscompile tool generates the client stubs and server-side ties for the service
definition interface that represents the Web service interface. Additionally, it
generates the WSDL description of the Web service interface which is then used
to generate the implementation artifacts.

XWS-Security has been integrated into JAX-RPC through the use of security
configuration files. The code for performing the security operations on the client
and server is generated by supplying the configuration files to the JAX-RPC
wscompile tool. ThewscompiTe tool can be instructed to generate security code
by making us of the -security option to specify the location of the security
configuration file that contains information on how to secure the messages to be
sent. An example of using the -security option with wscompile is shown in
How Do | Specify the Security Configuration for the Build Files?.

Note: For the 2.0 release of JAX-RPC, JAX-RPC will be renamed to JAX-WS.
JAX-WS will become part of the XWS-Security 2.0 FCS later this year. When this
renaming occurs, the wscompile tool will be replaced, and these steps and the
build.xm1 filesfor the sample applications will need to be modified accordingly.

The syntax for this option is as follows:

wscompile [-security {Tocation of security configuration
file}]

For more description of the wscompile tool, its syntax, and examples of using
thistool, read:
http://docs.sun.com/source/817-6092/hmanlm/wscompile.1lm.htm]l

Troubleshooting XWS-Security
Applications

This section lists some possible errors and the possible causes for these errors.
For more troubleshooting information, read the online release notes at http://
java.sun.com/webservices/docs/ 1.6/xws-security/Rel easeNotes.html.

http://docs.sun.com/source/817-6092/hman1m/wscompile.1m.html
http://java.sun.com/webservices/docs/1.5/xws-security/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.5/xws-security/ReleaseNotes.html

TROUBLESHOOTING XWS-SECURITY APPLICATIONS

Error: at XMLCipher.getinstance (Unknown Source)

[java]l Exception in thread "main"
java.lang.NullPointerException

[java] at
com.sun.org.apache.xml.security.encryption.XMLCipher.getInstan
ce(Unknown Source)

Solution: Configure a JCE provider as described in Configuring a JCE Provider.

Error: UnsupportedClassVersionError

java.lang.UnsupportedClassVersionError: com/sun/tools/javac/
Main (Unsupported major.minor version 49.0)

Solution: Install version 1.4.2_04 or higher of Java 2 Standard Edition (J2SE). If
you had an older version of the JDK, you will also haveto reinstall the Applica-
tion Server so that it recognizes this as the default version of the JDK.

Error. DeployTask not found

Solution: Verify that the jwsdp . home property inthe build.properties file for
the sample is set correctly to the location where you instaled the Java WSDP
version 1.6, as described in Setting Build Properties. A common error is to not
escape the backslash character when running on the Microsoft Windows plat-
form.

Compiler Errors

If you use aversion of the Application Server prior to 2005Q1 for the container,
you may get compiler errors because this version of the Application Server has
an earlier version of XWS-Security bundled into it. The compilation errors that
you see are because these classes do not exist in the earlier version of XWS-
Security shipped in these earlier versions of the Application Server.

202 INTRODUCTION TO XML AND WEB SERVICES SECURITY

Further Information

» Java 2 Standard Edition, v.1.5.0 security information
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
» Java Servlet specification
http://java.sun.com/products/serviet/
* Information on SSL specifications
http://wp.netscape.com/eng/security/
» OASIS Standard 200401 Web Services Security: SOAP Message Security
10
http://docs.oasi s-open.org/wss/2004/01/oasi s-200401-wss-soap-message-security-1.0.pdf
» XML Encryption Syntax and Processing
http://www.w3.0rg/TR/xmlenc-core/

 Digital Signatures Working Draft
http://www.w3.org/Signature/

e JSR 105-XML Digital Signature APIs
http://www.jcp.org/en/jsr/detail 71d=105

» JSR 106-XML Digital Encryption APIs
http://www.jcp.org/en/jsr/detail 7id=106

» Public-Key Cryptography Standards (PKCS)
http://www.rsasecurity.com/rsal abs/pkcs/index.html

» Java Authentication and Authorization Service (JAAS)
http://java.sun.com/products/jaas/

» WS Basic Security Profile Version 1.0
http://lwww.ws-i.org/Profiles/Basi cSecurity Profile-1.0-2005-01-20.html

» Web Services Security: SOAP Messages with Attachments (SwA) Profile
1.0
http://www.0asi s-open.org/committees/downl oad.php/10090/wss-swa-profil e-1.0-draft-
14.pdf

» Web Services Security: SOAP Messages with Attachments (SwA) Profile
1.0, Interop 1 Scenarios
http://lists.oasi s-open.org/archiveswss/200410/pdf00003. pdf

» Web Services Security: Security Assertion Markup Language (SAML)
Token Profile 1.0
http://docs.oasi s-open.org/wss/oasi s-wss-saml-token-profile-1.0.pdf

» Web Services Security: Security Assertion Markup Language (SAML)
Interop Scenarios

http://wp.netscape.com/eng/security/
http://www.rsasecurity.com/rsalabs/pkcs/index.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/products/servlet/
http://java.sun.com/products/jaas/
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/Signature/
http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=106
http://www.jcp.org/en/jsr/detail?id=106
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

FURTHER | NFORMATION 203

http://www.oasi s-open.org/apps/org/workgroup/wss/downl oad.php/7011/wss-saml -
interopl-draft-11.doc

http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-interop1-draft-11.doc

204

INTRODUCTION TO XML AND WEB SERVICES SECURITY

5

Understanding and
Running the XWS-
Security Sample
Applications

T HIS addendum discusses the XML and Web Services Security (XWS-Secu-
rity) sample applications that are shipped with Java WSDP 1.6. For each of the
sample applications, there is an explanation of what is being demonstrated, how
the application is secured, and how to compile and run the application.

Introduction to XML and Web Services Security provides an introduction to how to use
XWS-Security in this release. Setting Up To Use XWS-Security With the Sample Applica-
tions provides information on how to configure your system to run the sample
applications.

205

206 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

The following sample applications are discussed in this chapter:

¢ Simple Security Configurations Sample Application
e JAAS Sample Application

e XWS-Security APIs Sample Application

e Soap With Attachments Sample Application

e SAML Sample Application

¢ Dynamic Policy Sample Application

¢ Dynamic Response Sample Application

Setting Up To Use XWS-Security With
the Sample Applications

This addendum discusses creating and running applications that use the XWS-
Security framework, and deploying these applications onto the Sun Java System
Application Server Platform Edition 8.1. For deployment onto other containers,
read the README . txt file for the example applications for more information.

Follow these steps to set up your system to compile, run, and deploy the sample
applications included in this release that use the XWS-Security framework.

1. Make sure that you have installed the Java 2 Platform, Standard Edition
version 1.4.2 or higher. If not, you can download the JDK from the follow-
ing URL:
http://java.sun.com/j2se/

If you are using version 1.4.x of the Java SDK, configure a version of a
JCE provider that supports RSA encryption. Information on doing thisis
discussed in Configuring a JCE Provider.

2. Make sure that you have a container installed. For more information on
containers, read http://java.sun.com/webservices/containers/index.html .

3. Make sure that you have installed Java WSDP 1.6. If not, you can down-
load the IWWSDP from the following URL.:
http://java.sun.com/webservices/jwsdp/index.jsp

4. Set system properties as described in Setting System Properties.
5. Read the information in Setting Up the Application Server For the Examples.

http://java.sun.com/webservices/containers/index.html
http://java.sun.com/webservices/jwsdp/index.jsp
http://java.sun.com/j2se/

SETTING SYSTEM PROPERTIES

Setting System Properties

The asant (or ant) build files for the XWS-Security samples shipped with this
release rely on certain environment variables being set correctly. Make sure that
the following environment variables are set to the locations specified in this list.
If you are not sure how to set these environment variables, refer to the file
<JWSDP_HOME>/xws-security/docs/samples.html for more specific informa
tion. This file includes instructions for both the Unix and Microsoft Windows
platforms. Throughout this document, instructions for running on the Unix plat-
form will be provided.

1. Set JAVA_HOME to the location of your J2SE installation directory, for
example, /home/<your_name>/j2sdk1.4.2_04/.

2. Set JWSDP_HOME to the location of your Java WSDP 1.6 installation direc-
tory, for example, /home/<your_name>/jwsdp-1.6/.

3. Set SISAS_HOME to the location of your Application Server installation
directory, for example, /home/<your_name>/SUNWappserver/. If you are
deploying onto a different container, set SJSWS_HOME or TOMCAT_HOME
instead.

4. Set ANT_HOME to the location where the asant (or ant) executable can be
found. If you are running on the Application Server, this will be
<SJSAS_HOME>/bin/. If you are running on a different container, this
location will probably be <JwSDP_HOME>/apache-ant/bin/.

5. Set the PATH variable so that it contains these directories. <JWSDP_HOME>/
jwsdp-shared/bin/, <SJSAS_HOME>/bin/, <ANT_HOME>/, and
<JAVA_HOME>/bin/.

Configuring a JCE Provider

You only need to perform the stepsin this section if you arerunning Java WSDP 1.6
on J2SE 1.4.x.

The Java Cryptography Extension (JCE) provider included with J2SE 1.4.x does
not support RSA encryption. Because the XWS-Security sample applications
use RSA encryption, you must download and install a JCE provider that does
support RSA encryption in order for these sample applications to run, if you are
using encryption, and if you are using a version of the Java SDK prior to version
15.0.

207

208

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

Note: RSA is public-key encryption technology developed by RSA Data Security,
Inc. The acronym stands for Rivest, Shamir, and Adelman, the inventors of the tech-
nology.

If you are running the Application Server on version 1.5 of the Java SDK, the
JCE provider is already configured properly. If you are running the Application
Server on version 1.4.x of the Java SDK, follow these steps to add a JCE pro-
vider statically as part of your JDK environment:

1. Download and install a JCE provider JAR (Java ARchive) file. The follow-
ing URL provides alist of JCE providers that support RSA encryption:

http://java.sun.com/products/jce/jcel4 providers.html
2. Copy the JCE provider JAR file to <JAVA_HOME>/jre/1ib/ext/.

3. Stop the Application Server (or other container). If the Application Server
is not stopped, and restarted later in this process, the JCE provider will not
be recognized by the Application Server.

4. Edit the <JAVA_HOME>/jre/1ib/security/java.security properties
filein any text editor. Add the JCE provider you've just downloaded to this
file. The java. security file contains detailed instructions for adding this
provider. Basically, you need to add a line of the following format in a
location with similar properties:
security.provider.<n>=<provider class name>

In this example, <n> isthe order of preference to be used by the Applica
tion Server when evaluating security providers. Set <n> to 2 for the JCE
provider you've just added.

For example, if you've downloaded ABC JCE provider, and the Java class
name of the ABC provider’'s main class is org.abc.ABCProvider, add
thisline.

security.provider.2=org.abc.ABCProvider
Make sure that the Sun security provider remains at the highest prefer-

ence, with avalue of 1.

security.provider.l=sun.security.provider.Sun

Adjust the levels of the other security providers downward so that thereis
only one security provider at each level.

http://java.sun.com/products/jce/jce14_providers.html

SETTING UP THE APPLICATION SERVER FOR THE EXAMPLES

Thefollowing is an example of ajava.security file that provides the nec-
essary JCE provider and keeps the existing providers in the correct loca-

tions.
security.provider.l=sun.security.provider.Sun
security.provider.2=org.abc.ABCProvider
security.provider.3=com.sun.net.ssl.internal.ss1.P
rovider

security.provider.4=com.sun.rsajca.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider

5. Save and close thefile.
6. Restart the Application Server (or other container).

Setting Up the Application Server For the
Examples

To set up the container for running the XWS-Security sample applications
included with this release, you need to specify on which container you are run-
ning the asant (or ant) build targets (as discussed in Setting Build Properties), and
you must point the container to the keystore and truststore files to be used to run
the XWS-Security sample applications. For the sample applications, these are
the keystore and truststore files included in the /xws-security/etc/ directory.
For further discussion of using keystores and truststores with XWS-Security
applications, read Keystore and Truststore Files with X\WS-Security.

Keystore and Truststore Files with XWS-
Security

For the simple sample, the keystore, truststore, and symmetric-key databases
used by that example are located in the <JWSDP_HOME>/xws-security/etc/
directory. The locations of these files have been configured in the
<JWSDP_HOME>/xws-security/etc/client-security-env.properties and
<JWSDP_HOME>/xws-security/etc/server-security-env.properties files
for the client and server respectively. These property files are used by the Secu-
rityEnvironmentHandler to handlethe Callbacks.

To plug in your own keystores and truststores for an application, make sure that
the certificates are of version 3, and that the client truststore contains the certifi-
cate of the certificate authority that issued the server's certificate, and vice versa.

210

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

XWS-Security requires version 3 (v3) certificates when the keyReferenceType
attribute (specified on a xwss :X509Token element) has a value of Identifier,
which indicates the use of an X.509 SubjectKeyIdentifier extension. For al
other values of the keyReferenceType attribute, a v1 certificate can also be
used. Version 3 includes requirements specified by the WSS X509 Token Profile.

Setting Build Properties

To run the sample applications, you must edit the sample build.properties file
for that sample application and specify information that is unique to your system
and to your installation of Java WSDP 1.6 and the Application Server (or other
container).

To edit thebuild.properties filefor the example you want to run, follow these
steps:
1. Change to the directory for the sample application you want to run:
<JWSDP_HOME>/xws-security/samples/<example>/.
2. Copy thebuild.properties.sample fileto build.properties.

3. Edit the build.properties file, checking that the following properties
(where applicable) are set correctly for your system:

* javahome: Set thisto the directory where J2SE version 1.4.2 or higher
isinstalled.

Note: When running on Microsoft Windows, you must escape any backslashesin
the javahome, jwsdp.home, and sjsas.home properties with another backslash or
use forward dlashes as a path separator. So, for example, if your Application Server
installation is C:\Sun\AppServer, you must set sjsas.home asfollows:
sjsas.home = C:\\Sun\\AppServer

or

sjsas.home=C:/Sun/AppServer

* sjsas.home: To specify that you are running under the Application
Server, set this property to the directory where the Application Server is
installed and make sure there is not acomment symbol (#) to the left of
thisentry. If you are running under adifferent container, set the location
for its install directory under the appropriate property name (tom-

SIMPLE SECURITY CONFIGURATIONS SAMPLE APPLICATION

cat.home Or sjsws.home) and uncomment that entry instead. Only one
of the container home properties should be uncommented at any one
time.

* username, password: Enter the appropriate username and password
valuesfor auser assigned to therole of admin for the container instance
being used for this sample. A user with thisroleis authorized to deploy
applications onto the Application Server.

e endpoint.host, endpoint.port: If you changed the default host and/
or port during installation of the A pplication Server (or other container),
change these properties to the correct values for your host and port. If
you installed the Application Server using the default values, these
properties will already be set to the correct val ues.

e VS.DIR=If you are running under the Sun Java System Web Server,
enter the directory for the virtual server. If you are running under any
other container, you do not need to modify this property.

e jwsdp.home: Set this property to the directory where Java WSDP is
installed. The keystore and truststore URL'sfor the client are configured
relative to this property.

e http.proxyHost, http.proxyPort: If you are using remote endpoints,
set these properties to the correct proxy server address and port. If you
are not using remote endpoints, put a comment character (#) before
these properties. A proxy server will follow the format of myser-
ver.mycompany . com. The proxy port isthe port on which the proxy host
isrunning, for example, 8080.

4, Save and exit the build.properties file.

Simple Security Configurations Sample
Application

The simple sample application is a fully-developed sample application that
demonstrates various configurations that can be used to exercise XWS-Security
framework code. To change the type of security that is being used for the client
and/or the server, smply modify two properties in the build.properties file
for the example. The types of security configurations possible in this example
include XML Digital Signature, XML Encryption, UserNameToken verification,
and combinations thereof. This example allows and demonstrates combinations

211

212

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

of these basic security mechanisms through the specification of the appropriate
security configuration files.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’slog file. The output from the client is sent to stdout or whichever stream
is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side codeisfoundinthe /simple/server/src/simple/
directory. Client-side codeisfound inthe /simple/client/src/simple/ direc-
tory. The asant (or ant) targets build objects under the /build/server/ and /
build/client/ directories.

This example uses keystores and truststores which are included in the /xws-
security/etc/ directory. For more information on using keystore and truststore
files, read the keytoo1 documentation at the following URL :

http://java.sun.com/j 2se/1.5.0/docs/tool docs/sol ari s/keytool .html

Plugging in Security Configurations

This example makes it ssmple to plug in different client and server-side configu-
rations describing security settings. This example has support for digital signa-
tures, XML encryption/decryption, and username/token verification. This
example allows and demonstrates combinations of these basic security mecha
nisms through configuration files. See Simple Sample Security Configuration Files, for
further description of the security configuration options defined for the simple
sample application.

To specify which security configuration option to use when the sample applica-
tion is run (see Running the Simple Sample Application), follow these steps:

1. Open the build.properties file for the example. This file is located at
<JWSDP_HOME>/xws-security/samples/simple/build.properties.

2. To set the security configuration that you want to run for the client, locate
the client.security.config property, and uncomment one of the client
security configuration options. The client configuration options are listed
in Simple Sample Security Configuration Files, and also list which client and
server configurations work together. For example, if you want to use XML
Encryption for the client, you would uncomment this option:

Client Security Config. file
client.security.config=config/encrypt-client.xml

Be sure to uncomment only one client security configuration at atime.

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

SIMPLE SAMPLE SECURITY CONFIGURATION FILES

3. To set the security configuration that you want to run for the server, locate
the server.security.config property, and uncomment one of the server
security configuration options. The server configuration options, and
which server options are valid for agiven client configuration, arelisted in
Simple Sample Security Configuration Files. For example, if you want to use XML
Encryption for the server, you would uncomment this option:

Server Security Config. file
server.security.config=config/encrypt-server.xml

Be sure to uncomment only one client security configuration at atime.

4, Save and exit thebuild.properties file.

5. Run the sample application as described in Running the Simple Sample Applica-
tion.

Simple Sample Security Configuration
Files

The configuration files available for this example are located in the /xws-secu-
rity/samples/simple/config/ directory. The configuration pairs available
under this sample include configurations for both the client and server side.
Some possible combinations are discussed in more detail in the referenced sec-
tions.

Dumping the Request and/or the Response

The security configuration pair dump-client.xm1 and dump-server.xml have
no security operations. These options enable the following tasks:

» Dump the request before it leaves the client.

» Dump the response upon receipt from the server.
The container’s server logs also contain the dumps of the server request and

response. See Running the Simple Sample Application for more information on viewing
the server logs.

213

214

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

Encrypting the Request and/or the Response

The security configuration pair encrypt-client.xml and encrypt-server.xml
enable the following tasks:

 Client encrypts the request body and sendsiit.
» Server decrypts the request and sends back a response.

The encrypt-client.xml filelookslike this:

<xwss :JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<!--
Since no targets have been specified below, the

contents of
the soap body would be encrypted by default.
-—>
<xwss:Encrypt>
<Xwss:X509Token certificateAlias="slas"/>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>

sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss : JAXRPCSecurity>

Signing and Verifying the Signature

The security configuration pair sign-client.xm1 and sign-server.xml enable
the following tasks:

* Client signsthe request body.
» Server verifies the signature and sends its response.

The sign-client.xml filelookslike this:

<xwss:JAXRPCSecurity xmIns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<Xwss:Service>

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 215

<xwss:SecurityConfiguration dumpMessages="true">
<!--
Note that in the <Sign> operation, a Timestamp is

exported
in the security header and signed by default.
-—>
<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-
client"/>
</xwss:Signh>
<l--
Signature requirement. No target is specified,
hence the
soap body is expected to be signed. Also, by
default, a

Timestamp is expected to be signed.
-—>
<xwss:RequireSignature/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Signing then Encrypting the Request,
Decrypting then Verifying the Signature

The security configuration pair sign-encrypt-client.xml and sign-encrypt-
server.xm1 enable the following tasks:

» Client signs and then encrypts and sends the request body.

» Server decrypts and verifies the signature.

» Server signs and then encrypts and sends the response.

The sign-encrypt-client.xml file lookslike this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Sign/>
<xwss:Encrypt>

216 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

<xwss:X509Token certificateAlias="slas'
keyReferenceType="Identifier"/>
</xwss:Encrypt>
<!--
Requirements on messages received:
-=>
<xwss:RequireEncryption/>
<xwss:RequireSignature/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss : JAXRPCSecurity>

Encrypting then Signing the Request, Verifying
then Decrypting the Signature

The security configuration pair encrypt-sign-client.xml and encrypt-sign-
server.xm1 enable the following tasks:

 Client encrypts the request body, then signs and sendsiit.
* Server verifies the signature and then decrypts the request body.
» Server sendsits response.

The encrypt-sign-client.xm1 filelookslike this;

<xwss:JAXRPCSecurity xmlIns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<l--
First encrypt the contents of the soap body
-—>
<xwss:Encrypt>
<xwss:X509Token keyReferenceType="Identifier"
certificateAlias="slas"/>
</xwss:Encrypt>
<l--
Secondly, sign the soap body using some default
private key.
The sample CallbackHandler implementation has code
to handle

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 217

the default signature private key request.
-
<xwss:Sign/>
</xwss:SecurityConfiguration>
</Xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Signing a Ticket

The security configuration pair sign-ticket-also-client.xml and sign-
ticket-also-server.xml enablethe following tasks:

» Client signstheticket element, which isinside the message body.
 Client signs the message body.
» Server verifies signatures.

The sign-ticket-also-client.xml filelookslikethis:

<xwss :JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<l--
Signing multiple targets as part of the same
ds:Signature
element in the security header
-—=>
<xwss:Sign>
<xwss:Target type="qgname">{http://xmlsoap.org/
Ping}ticket</xwss:Target>
<xwss:Target type="xpath">//env:Body</xwss:Target>
</xwss:Sign>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

218

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

Adding a Timestamp to a Signature

The security configuration pair timestamp-sign-client.xm] and timestamp-
sign-server.xml enable the following tasks:

» Client signsthe request, including atimestamp in the request.

The timestamp-sign-client.xm1 filelookslike this;

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<l--
Export a Timestamp with the specified timeout
interval (in sec).
-—>
<xwss:Timestamp timeout="120"/>
<!--
The above Timestamp would be signed by the following
Sign
operation by default.
-—>
<Xwss:Sign>
<xwss:Target type="qgname">{http://xmlsoap.org/
Pingl}ticket</xwss:Target>
</xwss:Sign>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss : JAXRPCSecurity>

Symmetric Key Encryption

The security configuration pair encrypt-using-symmkey-client.xml and
encrypt-server.xml enable the following tasks:

 Client encrypts the request using the specified symmetric key.

This is a case where the client and server security configuration files do not
match. This combination works because the server requirement is the same (the
body contents must be encrypted) when the client-side security configuration is

SIMPLE SAMPLE SECURITY CONFIGURATION FILES

either encrypt-using-symmkey-client.xml Of encrypt-client.xml. The dif-
ference in the two client configurations is the key material used for encryption.

The encrypt-using-symmkey-client.xm]1 filelooks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<l--
Encrypt using a symmetric key associated with the
given alias
-—>
<xwss:Encrypt>
<xwss:SymmetricKey keyAlias="sessionkey"/>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</Xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Adding a Username Password Token

The security configuration pair user-pass-authenticate-client.xml and
user-pass-authenticate-server.xml enable the following tasks:

* Client adds a username-password token and sends a request.

» Server authenticates the username and password against a username-pass-
word database.

» Server sends response.

The user-pass-authenticate-client.xml filelookslike this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<!--
Default: Digested password will be sent.
-—>

219

220

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

<xwss:UsernameToken name="Ron" password="noR"/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss :JAXRPCSecurity>

Encrypt Request Body and a UserNameToken

The security configuration pair encrypt-usernameToken-client.xml and
encrypt-usernameToken-server.xm1 enable the following tasks:

» Client encrypts request body.
* Client encryptsthe UsernameToken as well before sending the request.

» Server decrypts the encrypted message body and encrypted UsernameTo-
ken.

» Server authenticates the user name and password against a username-pass-
word database.

The encrypt-usernameToken-client.xm1 filelookslike this

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<l--
Export a username token into the security header.
Assign it
the mentioned wsu:Id
-—>
<xwss:UsernameToken name="Ron" password="noR"
jd="username-token" />
<xwss:Encrypt>
<Xwss:X509Token certificateAlias="slas"/>
<xwss:Target type="xpath">//SOAP-ENV:Body</
xwss:Target>
<!--
The username token has been refered as an
encryption
target using a URI fragment
-—>
<xwss:Target type="uri'">#username-token</

SIMPLE SAMPLE SECURITY CONFIGURATION FILES

xwss:Target>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</Xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandTler>

</xwss:JAXRPCSecurity>

In this sample, the UsernameToken isassigned an id username-token. Thisidis
used to refer to the token as an encryption target within the <xwss :Encrypt> ele-
ment. The id becomes the actual wsu:id of the UsernameToken in the generated
SOAPMessage.

Adding a UserName Password Token, then
Encrypting the UserName Token

The security configuration pair encrypted-user-pass-client.xml and
encrypted-user-pass-server.xml enable the following tasks:

* Client addsaUsernameToken.
» Client encrypts the UsernameToken before sending the request.
e Server decryptsthe UsernameToken.

» Server authenticates the user name and password against a username-pass-
word database.

The encrypted-user-pass-client.xml filelookslike this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:UsernameToken name="Ron" password="noR"/>
<xwss:Encrypt>
<xwss:X509Token certificateAlias="slas"
keyReferenceType="Identifier"/>
<xwss:Target type="gname">
{http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-
secext-1.0.xsd}UsernameToken
</xwss:Target>

221

222 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

</xwss:Encrypt>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss :JAXRPCSecurity>

Flexibility in Positions of Timestamps and
Tokens

The security configuration pair flexiblec.xm1l and flexibles.xm1 demon-
strate the flexibility in the position of Timestamps and tokens allowed in the
receiver-side processing of a message. The tokens that can be used include
UsernameToken, BinarySecurityToken, SAMLAssertion, and others. The posi-
tion of <Requirexxx> elements for these tokens can vary in the receiver-side
configuration file regardless of the position of the tokens in the incoming mes-
sage.

This flexibility does not apply to the relative position of Signature and
EncryptedData elements in the incoming message, which have to follow the
strict order in which the <RequireSignature> and <RequireEncryption> €le-
ments appear in the configuration file.

The flexiblec.xm1 file looks like this;

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xm1/ns/xwss/config">
<xwss:Sign includeTimestamp="false"/>
<xwss:UsernameToken name="Ron" password="noR"
useNonce="true"
digestPassword="false" />
<xwss:Timestamp timeout="300"/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>

SIMPLE SAMPLE SECURITY CONFIGURATION FILES

sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Adding Security at the Method Level

The security configuration pair method-Tlevel-client.xml and method-Tevel-
server.xml enable the following tasks:

» Configures different security policies for different WSDL methods of the
application and different port instances.

The simple sample’'s WSDL file contains two operations, Ping and Ping0, and
two port instances of type PingPort. The port names are Ping and Ping0. The
method level security configuration file demonstrates how different sets of secu-
rity operations can be configured for the operations Ping and Ping@ under each
of the two Port instances Ping and Pingo.

Themethod-Tevel-client.xml filelooks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
<xwss:Service>
<!--
Service-level security configuration
-
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Encrypt>
<Xwss:X509Token certificateAlias="slas"/>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
<xwss:Port name="{http://xmlsoap.org/Ping}Ping">
<!--
Port-level security configuration. Takes precedence
over the
service-level security configuration
-
<xwss:SecurityConfiguration dumpMessages="true"/>
<xwss:0peration name="{http://xmlsoap.org/Ping}Ping">
<!--
Operation-Tevel security configuration. Takes
precedence
over port-level and service-Tevel security
configurations.
-—>
<xwss:SecurityConfiguration dumpMessages="true">

223

224 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

<xwss:UsernameToken name="Ron"
password="noR"
digestPassword="false"
useNonce="false" />
<xwss:Sign>
<xwss:Target type="gname">{http://
xmlsoap.org/Ping}ticket</xwss:Target>
<xwss:Target type="qgname">{http://
xmlsoap.org/Ping}text</xwss:Target>
</xwss:Sigh>
<xwss:Encrypt>
<Xwss:X509Token certificateAlias="slas'"/>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</xwss:0peration>

<xwss:0peration name="{http://xmlsoap.org/
Ping}Ping0">
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Encrypt>
<Xwss:X509Token certificateAlias="slas"/>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</xwss:0peration>
</xwss:Port>

<xwss:Port name="{http://xmlsoap.org/Ping}Ping0">
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Encrypt>
<XWssS:X509Token certificateAlias="slas"/>
</xwss:Encrypt>
<xwss:RequireSignature/>
</xwss:SecurityConfiguration>
<xwss:0peration name="{http://xmlsoap.org/
Ping}Ping" />
<xwss:0peration name="{http://xmlsoap.org/
Ping}Ping0" />
</xwss:Port>
</xwss:Service>
<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>
</xwss : JAXRPCSecurity>

RUNNING THE SIMPLE SAMPLE APPLICATION

In this example, the following has been configured for the Ping operation under
port instance Ping:

* InsertsaUsernameToken into the request.

» Signstheticket and text child elements of the request body.

« Encrypts the contents of the request body.
The following has been configured for the Ping@ operation under port instance
Ping:

« Encrypt the content of the body of the message.
When the xwss:Encrypt element is specified with no child elements of type
xwss:Target, it implies that the default Target (which is SOAP-ENV:Body) has

to be encrypted. The same rule appliesto xwss : Sign elements with no child ele-
ments of type xwss: Target.

The configuration file in this example also configures the following security for
al the WSDL operations under port instance Pingo:

e Encrypts the request body.

» Expects a signed response from the server.Username

Running the Simple Sample Application

To run the simpT1e sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:
® Setting System Properties
* Configuring a JCE Provider
® Setting Build Properties
2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domainl

b. From a Windows machine, choose Start- Programs- Sun
Microsystems— J2EE 1.4 -, Start Default Server.

3. Modify thebuild.properties fileto set up the security configuration that
you want to run for the client and/or server. See Simple Sample Security Con-
figuration Files for more information on the security configurations options
that are already defined for the sample application.

225

226 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

4. Build and run the application from a terminal window or command
prompt.

» On the Application Server, the command to build and run the applica-
tionis: asant run-sample

* On the other containers, the command to build and run the application
iS: ant run-sample

Note: To run the sample against aremote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost
http.proxyPort, and service.url properties are set correctly inthebuild.prop-
erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see amessage similar to the follow-

ing:

[echo]
[java]

[J :;lva]
[java]

[J a.lva]

Running the client program....
==== Sending Message Start ====

==== Sending Message End ====
==== Received Message Start ====

==== Received Message End ====

You can view similar messagesin the server logs:

<SJSAS_HOME>/domains/<domain-name>/1ogs/server.log
<TOMCAT_HOME>/10gs/Tauncher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

JAAS Sample Application

The Java Authentication and Authorization Service (JAAS) is a set of APIs that
enable services to authenticate and enforce access controls upon users. It imple-
ments a Java technology version of the standard Pluggable Authentication Mod-
ule (PAM) framework, and supports user-based authorization.

JAAS SAMPLE SECURITY CONFIGURATION FILES

The <JWSDP_HOME>/xws-security/samples/jaas-sample application demon-
strates the following functionality:

e Obtaining a user name and password at run-time and sending it in a Web
Services Security (WSS) UsernameToken to the server.

» Using JAAS authentication to authenticate the user name and password in
the server application.

» Accessing the authenticated sender’s subject from within the endpoint
implementation methods.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’slog file. The output from the client is sent to stdout or whichever stream
Is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side code is found in the /jaas-sample/server/src/
jaas-sample/ directory. Client-side code is found in the /jaas-sample/cli-
ent/src/jaas-sample/ directory. The asant (or ant) targets build objects
under the /build/server/ and /build/client/ directories.

JAAS Sample Security Configuration
Files

The security configuration pair user-pass-authenticate-client.xml and
user-pass-authenticate-server.xml enable the following tasks:
* Client adds a username-password token and sends a request.

» Server authenticates the username and password against a username-pass-
word database.

» Server sends response.

The username-password database must be set up before this security configura-
tion pair will run properly. Refer to Setting Up For the JAAS-Sample for instructions
on setting up this database.

The user-pass-authenticate-client.xml filelookslike this;

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">

227

228

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

<xwss:UsernameToken digestPassword="false"/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.ClientSecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss :JAXRPCSecurity>

If you compare this security configuration file to the similar one in the simple
sample, as discussed in Adding a Username Password Token, you'll see that this secu-
rity configuration file does not hard-code the user name and password. In this
example, the username and password are obtained by reading a system property,
username.password, that is configured in the build.xm1 file of the jaas-sam-
ple under the run-sample target asasysproperty. The properties and a section
of the target from this example are configured like this:

<target name="run-sample"
depends="clean, prepare, build-server, deploy-forced,
build-client"
description="Runs the example client">
<echo message="Running the ${client-class} program...."/>
<java fork="on" classname="${client-class}">
<sysproperty key="java.endorsed.dirs"
value="${java.endorsed.dirs}"/>
<sysproperty key="endpoint.host" value="${endpoint.host}"/
>
<sysproperty key="endpoint.port" value="${endpoint.port}"/
>
<sysproperty key="service.url" value="${service.url1}"/>
<sysproperty key="username.password" value="Ron noR"/>

The client-side SecurityEnvironmentHandler of this sample is the entity that
actually reads the system property at run-time and populates the username and
password Callback objects passed to it by the XWS-Security run-time. A differ-
ent SecurityEnvironmentHandler can be plugged into this sampleto obtain the
username and password at run-time from a different source (possibly by popping
up adialog box where the user can enter the username and password).

This sample's server-side SecurityEnvironmentHandler makes use of a JAAS
login module that takes care of authenticating the user name and password. The
sample demonstrates how JAAS authentication can be plugged into applications
that use the XWS-Security framework. The source of the JAAS login module,
UserPasslLoginModule.java, is located at <JWSDP_HOME>/xws-security/

SETTING UP FOR THE JAAS-SAMPLE

samples/jaas-sample/src/com/sun/xml/wss/sample directory. The JAAS-
Validator.java class in the same directory does the actual JAAS authentica-
tion by creating a LoginContext and caling the LoggingContext.login()
method. The UserPassLoginModule makes use of a username-password XML
database located at <JWSDP_HOME>/xws-security/etc/userpasslist.xm]
when performing the actual authentication inits Togin() method.

Setting Up For the JAAS-Sample

Before the sample application will run correctly, you must have completed the
tasks defined in the following sections of this addendum:

e Setting System Properties
e Setting Build Properties

In addition, follow the steps in this section that are specific to the jaas-sample
application.

1. Stop the Application Server.
2. Set the user name and password for the example.

Because the samples are run using ASAnt tasks, the user name and pass-
word for this example are set as a system property. The build.xm1 filefor
the jaas-sample example includes the following line under the run-sam-
ple target that uses a user name and password supplied in the
<JIWSDP_HOME>/xws-security/etc/userpasslist.xml file.

<sysproperty key="username.password” value="Ron noR”/>

The JAAS login module also makes use of the userpass1ist.xml file, so
make sure that this file exists and contains the user name and password
specified in the build.xm1 file.

3. Add the following JAAS policy to the JAAS policy file of the Application
Server. Thisfile can be found at <SJSAS_HOME>/domains/domainl/con-
fig/login.conf. Add the following code near the end of thefile:

/** Login Configuration for the Sample Application **/
XWS_SECURITY_SERVER{com.sun.xml.wss.sample.UserPassLogin-
Module REQUIRED debug=true;

};

4. Add the following permissions to the server policy file of the Application
Server. Thisfile can be found at <SJSAS_HOME>/domains/domainl/con-
fig/server.policy. Add the following code near the end of thefile:

229

230

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

grant codeBase "file:${com.sun.aas.instanceRoot}/applica-
tions/j2ee-modules/jaassample/WEB-INF/-" {
permission javax.security.auth.AuthPermission "modi-
fyPrincipals";
permission javax.security.auth.AuthPermission "modi-
fyPrivateCredentials";
permission javax.security.auth.PrivateCredentialPer-
mission "* * \"*\"" "read";
permission javax.security.auth.AuthPermission "getSub-
ject";
permission javax.security.auth.AuthPermission
"createlLoginContext.XWS_SECURITY_SERVER";
}s

5. Save and exit all files.
6. Restart the Application Server.

Running the JAAS-Sample Application

To run the jaas-sample application, follow these steps:

1. Follow the stepsin Setting Up For the JAAS-Sample.

2. Start the selected container and make sure the server is running. To start

the Application Server,

a. From a Unix machine, enter the following command from a terminal

window: asadmin start-domain domainl

b. From a Windows machine, choose Start » Programs— Sun Microsys-

tems - Application Server - Start Default Server.

3. Build and run the application from a terminal window or command

prompt.

» On the Application Server, the command to build and run the applica

tionis: asant run-sample

* On the other containers, the command to build and run the application

iS: ant run-sample

Note: To run the sample against aremote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,

RUNNING THE JAAS-SAMPLE APPLICATION

http.proxyPort, and service.url propertiesare set correctly in the build.prop-
erties file (as discussed in Setting Build Properties) before running the sample.

If the appl
ing:

ication runs successfully, you will see a message similar to the follow-

[echo] Running the sample.TestClient program....

[java] Service URL=http://localhost:8080/jaassample/Ping
[java] Username read=Ron

[javal Password read=noR

[java] INFO: ==== Sending Message Start ====

[javal <?xml version="1.0" encoding="UTF-8"?7>

[java] <env:Envelope xmlns:env="http://

schemas.xmlsoap.org/soap/envelope/" xmlns:enc="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:ns@="http://
xmlsoap.org/Ping" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

open.

open.

[java] <env:Header>

[java] <wsse:Security xmlns:wsse="http://docs.oasis-
org/wss/2004/01/0asis-200401-
wss-wssecurity-secext-1.0.xsd" env:mustUnderstand="1">
[java]l <wsse:UsernameToken>

[java] <wsse:Username>Ron</wsse:Username>

[java] <wsse:Password>****</wsse:Password>

[java] <wsse:Nonce EncodingType="http://docs.oasis-
org/wss/2004/01/o0asis-
200401-wss-soap-message-security-
1.0#Base64Binary">qdKj8WLOU3r21rcg0iM4H76H</wsse:Nonce>
[java] <wsu:Created xmlns:wsu="http://docs.oasis-open.org/

wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd">2004-11-05T02:07:46Z</

wsu:Created>

[java]l </wsse:UsernameToken>

[javal </wsse:Security>

[java] </env:Header>

[java] <env:Body>

[javal <ns@:Ping>

[java] <ns0:ticket>SUNW</ns0@:ticket>
[java]l <ns@:text>Hello !</ns0:text>
[javal </ns@:Ping>

[java] </env:Body>

[java] </env:Envelope>

[java] ==== Sending Message End ====

[javal INFO: ==== Received Message Start ====
[javal <?xml version="1.0" encoding="UTF-8"7>
[java] <env:Envelope xmlns:env="http://

231

232 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

schemas.xmlsoap.org/soap/envelope/"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns@="http://xmlsoap.org/
Ping" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
[java] <env:Body>
[java] <ns@:PingResponse>
[java]l <ns@:text>Hello !</ns0:text>
[javal </ns@:PingResponse>
[javal </env:Body>
[java]l </env:Envelope>
[java] ==== Received Message End ====

The server code in server/src/sample/PingImpl.java makes use of a Sub-
jectAccessor to access and print the authenticated Subjects principa from
within the business method Ping ().

You can view similar messagesin the server logs:

<SJSAS_HOME>/domains/<domain-name>/1ogs/server.log
<TOMCAT_HOME>/10gs/Tauncher.server.log
<SJISWS_HOME>/<Virtual-Server-Dir>/logs/errors

XWS-Security APIs Sample Application

The focus of api-sample is to demonstrate how to use XWS-Security APIs to
secure and validate SOAP messages in a stand-alone (non-JAX-RPC) SAAJ
application. The XWS-Security APIs can be used to secure JAX-RPC applica
tions, too, but because securing JAX-RPC applications can be easily accom-
plished using the security configuration files, this sample application focuses on
securing stand-alone, non-JAX-RPC applications.

This sample uses configuration files that start with <xwss:SecurityConfigura-
tion> as the root element, as opposed to the other XWS-Security samples that
are based on JAX-RPC and use <xwss : JAXRPCSecurity> asthe root element.

Documentation for XWS-Security 2.0 EA APIs is located in the /xws-secu-
rity/docs/api directory.

THE XWSSPROCESSOR | NTERFACE

The <JWSDP_HOME>/xws-security/samples/api-sample application demon-
strates the following functionality:

* Defines an ease-of -use interface, XWwSSProcessor interface. Thisinterface
is intended to insulate APl users from changes to the APIs in future
rel eases.

* Provides an implementation of XwSSProcessor interface for XWS-Secu-
rity 2.0 EA.

* Theclient (com.sun.wss.sample.Client) code usesthe XwSSProcessor
APIs to secure SOAP messages according to the security policy inferred
from the SecurityConfiguration with which this XWwSSProcessor was
initialized.

» Server verifies the secured message.

The application prints out the client request and response SOAP messages. The
output from the client is sent to stdout or whichever stream is used by the con-
figured log handler. Messages are logged at the INFO level.

The example code is found in the /api-sample/com/sun/wss/sample/ direc-
tory.

The XWSSProcessor Interface

The XwSSProcessor interface defines methods for securing an outbound SOAP-
Message and verifying the security in an inbound SOAPMessage. An XWSSPro-
cessor can add and/or verify security in a SOAPMessage in the ways defined by
the OASIS WSS 1.0 specification.

The XwSSProcessor interface contains the following methods:

« secureOutboundMessage
This method adds security to an outbound SOAPMessage according to the
security policy inferred from the SecurityConfiguration with which
this XWSSProcessor was initialized.

o verifyInboundMessage
This method verifies security in an inbound SOAPMessage according to
the security policy inferred from the SecurityConfiguration with
which thisXwSSProcessor was initialized.

233

234

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

APl-Sample Client Code

The client code (samples/api-sample/com/sun/wss/sample/Client.java)
uses the XwWSSProcessor APIs to secure SOAP messages according to the secu-
rity policy inferred from the SecurityConfiguration with which this XwSSPro-
cessor wasinitialized. The following code demonstrates how thisis done:

public static void main(String[] args) throws Exception {

null;
null;

FileInputStream clientConfig
FileInputStream serverConfig
try {
//read client-side security configuration
clientConfig = new java.io.FileInputStream(
new
java.io.File(System.getProperty("client.configfile")));
//read server-side security configuration
serverConfig = new java.io.FileInputStream(
new
java.io.File(System.getProperty("server.configfile™)));
} catch (Exception e) {
e.printStackTrace();
throw e;

}

//Create a XWSSProcessFactory.
XWSSProcessorFactory factory =
XWSSProcessorFactory.newInstance();

//Create XWSSProcessor to secure outgoing soap messages.
//SampTle SecurityEnvironment is configured to
//use client-side keystores.

XWSSProcessor cprocessor =
factory.createForSecurityConfiguration(
clientConfig, new

SecurityEnvironmentHandTler("client"));

//Create XWSSProcessor to veriy incoming soap messages.
//Sample SecurityEnvironment is configured to
//use server-side keystores.

XWSSProcessor sprocessor =
factory.createForSecurityConfiguration(
serverConfig, new

SecurityEnvironmentHandler("server™));
try{

API-SAMPLE CLIENT CODE 235

clientConfig.close();
serverConfig.close();

}catch(Exception ex){
ex.printStackTrace();
return;

}
for(int i=0;i<1;i++){

// create SOAPMessage
SOAPMessage msg =
MessageFactory.newInstance().createMessage();

SOAPBody body = msg.getSOAPBody();

SOAPBodyElement sbe = body.addBodyETement(
SOAPFactory.newInstance() .createName(
"StockSymbo1",
"tru",
"http://fabrikaml23.com/payloads"));

sbe.addTextNode("QQQ");

//Create processing context and set the soap
//message to be processed.

ProcessingContext context = new ProcessingContext();
context.setSOAPMessage(msg) ;

//secure the message.

SOAPMessage secureMsg = cprocessor.secureOutbound-
Message(context);

//verify the secured message.
context = new ProcessingContext();
context.setSOAPMessage(secureMsg) ;

SOAPMessage verifiedMsg= null;
try{
verifiedMsg= sprocessor.verifyInboundMessage(con-
text);
//System.out.printin("\nRequester Subject " +
SubjectAccessor.getRequesterSubject(context));

}catch(Exception ex){
ex.printStackTrace();

//context.getSOAPMessage() .writeTo(System.out);
}

236

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

The APl Sample Security Configuration
Files

The client (com.sun.wss.sample.Client) code uses the XwSSProcessor APIs
to secure SOAP messages according to the security policy inferred from the
SecurityConfiguration with which this XWSSProcessor was initialized. The
api-sample contains many different example security configuration files. The
following pairs should be used when specifying the client and server configura-
tionfilesin build.properties. Theclient configuration to specify islisted first,
the server configuration second:

* sign-rsign.xml, sign-rsign.xml

e username.xml, username.xml

e encryptvl.xml, encryptvl.xml

* encryptv2.xml, encryptv2.xml

* signvl.xml, signvl.xml

* signv2.xml, signvl.xml

* signv3.xml, signvl.xml

* signv4.xml, signvl.xml

e str_transform.xml, str_transform.xml

Note: The configuration files strid.xm1 and no_security.xml have syntax errors
and should not be used.

Remember, when using the XWS-Security APIs to secure stand-alone applica-
tion, we will use configuration files that start with <xwss:SecurityConfigura-
tion> as the root element, as opposed to the other XWS-Security samples that
are based on JAX-RPC and use <xwss : JAXRPCSecurity> as the root element.

Encrypting the SOAP Message

The security configuration files encryptvl.xml and encryptv2.xm1 enable the
following tasks:

 Client encrypts an outbound SOAPMessage and sendsit.
» Client verifies that the inbound SOAPMessage is encrypted.

THE APl SAMPLE SECURITY CONFIGURATION FILES

The encryptvl.xml filelookslike this:

<xwss:SecurityConfiguration dumpMessages="true"
xmIns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:Encrypt>
<Xwss:X509Token certificateAlias="slas"/>
</xwss:Encrypt>
</xwss:SecurityConfiguration>

The encryptv2.xm1 file does the same thing, but specifies the following:

e The public key encryption agorithm to be used for encrypting and
decrypting keys.

* Theencryption algorithm to be applied to the cipher data.
» Specifically identifies the type of encrypted structure being described.

It lookslikethis:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:Encrypt>
<Xwss:X509Token certificateAlias="slas"/>
<xwss :KeyEncryptionMethod
algorithm="http://www.w3.0rg/2001/04/xml enc#rsa-
oaep-mgflp"/>
<xwss :DataEncryptionMethod
algorithm="http://www.w3.0rg/2001/04/
xmlenc#aes128-cbhc'" />
<xwss:EncryptionTarget type="xpath" value=".//SOAP-
ENV:Body"/>
</xwss:Encrypt>
</xwss:SecurityConfiguration>

Signing the SOAP Message

The security configuration files signvl.xml, signv2.xml1, and signv3.xm1
enable the following tasks:

¢ Client signs an outbound SOAPMessage and sendsiit.
e Client verifies that the inbound SOAPMessage is signed.

237

238 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

The signvl.xml file lookslike this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
<!l--
Note that in the <Sign> operation, a Timestamp is exported
in the security header and signed by default.
-—>
<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-client"/>
</Xwss:Sign>
</xwss:SecurityConfiguration>

The signv2.xm1 file does the same thing, except that it also includes the follow-
ing:
* Specifies the canonicalization algorithm to be applied to the <Sign> ele-
ment prior to performing signature calculations.

» Specifies the algorithm used for signature generation and validation.

» Provides alist of processing steps to be applied to the resource's content
beforeit is digested.

It lookslike this:

<xwss :SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-client"/>
<xwss:CanonicalizationMethod algorithm=
"http://www.w3.0rg/2001/10/xm1-exc-cl4n#" />
<xwss:SignatureMethod
algorithm="http://www.w3.0rg/2000/09/
xmldsig#rsa-shal"/>
<xwss:SignatureTarget type="uri" value="">
<xwss:DigestMethod
algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal" />
<xwss:Transform
algorithm="http://www.w3.0rg/TR/1999/REC-
xpath-19991116">
<xwss:AlgorithmParameter name="XPATH"
value=""./SOAP-ENV:Envelope/SOAP-
ENV:Header/wsse:Security/
ds:Signature[1]/ds:KeyInfo/
wsse:SecurityTokenReference" />
</xwss:Transform>
<xwss:Transform algorithm="http://

THE APl SAMPLE SECURITY CONFIGURATION FILES

docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-soap-message-security-
1.0#STR-Transform">
<xwss:AlgorithmParameter
name="CanonicalizationMethod"
value="http://www.w3.0rg/2001/10/xm1-
exc-cl4n#" />
</xwss:Transform>
</xwss:SignatureTarget>
</xwss:Sign>
</xwss:SecurityConfiguration>

The signv3.xm1 file looks the same as signvl.xm1 file, except that it sends the
subject key identifier extension value of the certificate, instead of the actual cer-
tificate, along with the message. It looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
<!--
Note that in the <Sign> operation, a Timestamp is exported
in the security header and signed by default.
-=>
<xXwss:Sign>
<xwss:X509Token certificateAlias="xws-security-client"
keyReferenceType="Identifier"/>
</xwss:Sign>
</xwss:SecurityConfiguration>

The sign-rsign.xml filelookslikethe signvl.xm1 file, except that it requiresa
signature. It looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
<Xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-client"/>
</xwss:Sign>
<xwss:RequireSignature/>
</xwss:SecurityConfiguration>

The str-transform.xml file uses a Security Token Reference (STR) Derefer-
ence Transform, which is an option for referencing information to be signed.
Other methods for referencing information to be signed include referencing
URIs, IDs and XPaths. Use an STR-Transform when a token format does not
alow tokens to be referenced using URIs or IDs and an XPath is undesirable.

240

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

STR-Transform allows you to create your own unique reference mechanism. It
looks likethis:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-
client"/>
</xwss:Signh>
<Xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-
client"/>
<xwss:Target
type="gname">{http://schemas.xmlsoap.org/
soap/envelope/}Body
</xwss:Target>
<xwss:SignatureTarget type="xpath"
value="/SOAP-ENV:Envelope/SOAP-ENV:Header/
wsse:Security/ds:Signature[1]/
ds:KeyInfo/wsse:SecurityTokenReference">
<xwss:DigestMethod
algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal"/>
<xwss:Transform algorithm="http://
docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-soap-message-secu-
rity-1.0#STR-Transform">
<xwss:AlgorithmParameter
name="CanonicalizationMethod"
value="http://www.w3.0rg/2001/
10/xmT1-exc-cl4n#" />
</xwss:Transform>
</xwss:SignatureTarget>
</xwss:Sign>
</xwss:SecurityConfiguration>

Sending a Username Token with the SOAP
Message

The security configuration username.xm1 enables the following tasks:

» Client adds a username-password token to an outbound SOAPMessage and
sends arequest.

» Client verifies that the inbound SOAPMessage contains aUsernameToken.

BUILDING AND RUNNING THE APl SAMPLE APPLICATION 241

Theusername.xm] filelookslikethis:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
<xwss:UsernameToken name="Ron" password="noR"/>
<xwss:RequireUsernameToken/>
</xwss:SecurityConfiguration>

Building and Running the APl Sample
Application

This sample does not require that a container be running, so there is no need to
start the Application Server for this example.

To run the api-sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:
® Setting System Properties
® Setting Build Properties
2. Modify the client.configfile and server.configfile properties in

the build.properties file so that they pointsto avalid security configu-
ration pair you want to run.
3. Build and run the application from a terminal window or command
prompt.
* On the Application Server, the command to build and run the applica-
tionis: asant run-sample

* On the other containers, the command to build and run the application
IS ant run-sample

Note: To run the sample against aremote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-
erties file (as discussed in Setting Build Properties) before running the sample.

242

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

Soap With Attachments Sample
Application

The swainterop sample application demonstrates the Soap with Attachments
(SwWA) interoperability scenarios. SwA describes how a web service consumer
can secure SOAP attachments using XWS-Security for attachment integrity,
confidentiality and origin authentication, and how areceiver may process such a
message. Read more about SWA at http://www.oasis-open.org/committees/downl oad.php/
10090/wss-swa-profile-1.0-draft-14.pdf.

This sample application was used as Sun’s entry in a virtua interoperability
demonstration sponsored by OASIS. This sample implements a set of interop
scenarios required by the event. The scenarios addressed in this sample are
described in The SwA Interop Scenarios. Read more about the SwA interop scenarios
at http://lists.oasis-open.org/archives/wss/’200410/pdf00003. pdf .

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer'slog file. The output from the client is sent to stdout or whichever stream
is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side code is found in the /swainterop/server/src/
swainterop/ directory. Client-side code is found in the /swainterop/client/
src/swainterop/ directory. The asant (or ant) targets build objects under the
/build/server/ and /build/client/ directories.

The SWA Interop Scenarios

All four SWA interop scenarios use the same, simple application. The Requester
sends a Ping element with a value of a string as the single child to a SOAP
request. The value is the organization that has developed the software and the
number of the scenario, for example, in this application the value is “ Sun Micro-
systems — Scenario #1”. The Responder returns a PingResponse element with a
value of the same string. Each interaction includes a SOAP attachment secured
via one of the content-level security mechanisms described in the wWss SwA Pro-
file.

http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf

THE SWA INTEROP SCENARIOS

The following is a summary of each of the SwA interop scenarios demonstrated
in this sample application. You will need the numbers for the scenarios when you
run the sample application.

1. Scenario #1 - Attachment Signature

Scenario #1 tests the interoperability of a signed attachment using an
X.509 certificate. The certificate used to verify the signature shall be
present in the SOAP header. No security properties are applied to any part
of the SOAP envelope.

2. Scenario #2 - Attachment Encryption

The SOAP request has an attachment that has been encrypted. The
encryption is done using a symmetric cipher. The symmetric encryption
key isfurther encrypted for a specific recipient identified by an X.509 cer-
tificate. The certificate associated with the key encryption is provided to
the requestor out-of-band. No security properties are applied to any part
of the SOAP envelope.

3. Scenario #3 - Attachment Signature and Encryption

The SOAP request contains an attachment that has been signed and then
encrypted. The certificate associated with the encryption is provided out-
of-band to the requestor. The certificate used to verify the signature is pro-
vided in the header. The Response Body is not signed or encrypted. There
are two certificates in the request message. One identifiers the recipient of
the encrypted attachment and one identifies the signer.

4. Scenario #4 - Attachment Signature and Encryption with MIME Headers

The SOAP request contains an attachment that has been signed and then
encrypted. The certificate associated with the encryption is provided out-
of-band to the requestor. The certificate used to verify the signatureis pro-
vided in the header. The Response Body is not signed or encrypted. There
are two certificates in the request message. One identifies the recipient of
the encrypted attachment and one identifies the signer. This scenario dif-
fers from the first three scenarios in that it covers MIME headers in the
signature and encryption. This means that it uses the Attachment-Com-
plete Signature Reference Transform and Attachment-Complete Encrypt-
edData Type.

Aside from these two changes, Scenario #4 isidentical to Scenario #3.

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

SwWA Sample Configuration Files

The security configuration pair swa-client.xml and swa-server.xml are used
to secure message attachments. Each file contains the security configuration for
each of the four scenarios.

You specify attachments as targets by specifying the value of the Content-1D
(CID) header of the attachment. To do this, set the type attribute to uri and
specify the target value as cid:<part-name>, where part-name is the WSDL
part name of the AttachmentPart.

The swa-c1ient.xm1 filelooks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<Xwss:Service>

<!-- Port 1: SwA Scenario 1 Sign Attachment Only-->
<xwss:Port name="{http://xmlsoap.org/Ping}Pingl">
<xwss:SecurityConfiguration dumpMessages="true">
<!--
Note that in the <Sign> operation, a Timestamp is

exported
in the security header and signed by default.
-—>
<xwss:Sign includeTimestamp="false">
<xwss:X509Token certificateAlias="xws-security-
client"/>

<xwss:CanonicalizationMethod
algorithm="http://www.w3.0rg/2001/10/xm1-
exc-cl4n#" />
<xwss:SignatureMethod
algorithm="http://www.w3.0rg/2000/09/
xmldsig#rsa-shal"/>
<xwss:SignatureTarget type="uri"
value="c1id: foobar"s>
<xwss:DigestMethod algorithm="http://
www.w3.0rg/2000/09/xmldsig#shal" />
<xwss:Transform algorithm="http://docs.oasis-
open.org/wss/2004/XX/
oasis-2004XX-wss-swa-profile-
1.0#Attachment-Complete-Transform"/>
</xwss:SignatureTarget>
</xwss:Sign>
</xwss:SecurityConfiguration>
</xwss:Port>

SWA SAMPLE CONFIGURATION FILES 245

<!-- Port 2: SwA Scenario 2 Encrypt Attachment Only -->
<xwss:Port name="{http://xmlsoap.org/Ping}Ping2">
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Encrypt>
<xwss:X509Token certificateAlias="slas"
keyReferenceType="Direct"/>
<xwss:Target type="uri">cid: foobar</xwss:Target>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</xwss:Port>

<!-- Port 3: SwA Scenario 3 Attachment Signature and Encryp-
tion -->
<xwss:Port name="{http://xmlsoap.org/Ping}Ping3">
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Sign includeTimestamp="false">
<xwss:X509Token certificateAlias="xws-security-
client"/>
<xwss:CanonicalizationMethod
algorithm="http://www.w3.0rg/2001/10/xm1-
exc-cl4n#" />
<xwss:SignatureMethod
algorithm="http://www.w3.0rg/2000/09/
xmldsig#rsa-shal"/>
<xwss:SignatureTarget type="uri"
value="cid: foobar">
<xwss:DigestMethod algorithm="http://
www.w3.0rg/2000/09/xmldsig#shal" />
<xwss:Transform algorithm="http://docs.oasis-
open.org/wss/2004/XX/
oasis-2004XX-wss-swa-profile-
1.0#Attachment-Complete-Transform"/>
</xwss:SignatureTarget>
</xwss:Sign>
<xwss:Encrypt>
<xwss:X509Token certificateAlias="slas"
keyReferenceType="Direct"/>
<xwss:Target type="uri">cid:foobar</xwss:Target>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</xwss:Port>

<!-- Port 4: SwA Scenario 4 Attachment Signature and
Encryption
With MIME Headers-->
<xwss:Port name="{http://xmlsoap.org/Ping}Ping4">
<xwss:SecurityConfiguration dumpMessages="true">

246 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

<xwss:Sign includeTimestamp="false">
<xwss:X509Token certificateAlias="xws-security-
client"/>
<xwss:CanonicalizationMethod
algorithm="http://www.w3.0rg/2001/10/xm1-
exc-cl4n#" />
<xwss:SignatureMethod
algorithm="http://www.w3.0rg/2000/09/
xmldsig#rsa-shal"/>
<xwss:SignatureTarget type="uri"
value="cid: foobar">
<xwss:DigestMethod algorithm="http://
www.w3.0rg/2000/09/xmldsig#shal" />
<xwss:Transform algorithm="http://docs.oasis-
open.org/wss/2004/XX/
oasis-2004XX-wss-swa-profile-1.0#
Attachment-Content-Only-Transform"/>
</xwss:SignatureTarget>
</xwss:Sign>
<xwss:Encrypt>
<xwss:X509Token certificateAlias="slas"
keyReferenceType="Direct"/>
<xwss:Target type="uri" conten-
tOnly="false">cid: foobar</xwss:Target>
</xwss:Encrypt>
</xwss:SecurityConfiguration>
</xwss:Port>

</Xwss:Service>
<xwss:SecurityEnvironmentHandler>
com.sun.xml.wss.sample.SecurityEnvironmentHandler

</xwss:SecurityEnvironmentHandler>

</xwss :JAXRPCSecurity>

The security configuration file for the server is swa-server.xml. ldedly, each
scenario would contain a RequireSignature and/or RequireEncryption ee-
ment, but we have not done thisyet. The swa-server.xm1 filelookslike this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<!-- Port 1: SwA Scenario 1 Sign Attachment Only-->

<xwss:Port name="{http://xmlsoap.org/Ping}Pingl">
<xwss:SecurityConfiguration dumpMessages="true">

RUNNING THE SWA SAMPLE APPLICATION

</xwss:SecurityConfiguration>
</xwss:Port>

<!-- Port 2: SwA Scenario 2 Encrypt Attachment Only-->
<xwss:Port name="{http://xmlsoap.org/Ping}Ping2">
<xwss:SecurityConfiguration dumpMessages="true">
</xwss:SecurityConfiguration>
</xwss:Port>

<!-- Port 3: SwA Scenario 3 Attachment Signature and Encryp-
tion-->
<xwss:Port name="{http://xmlsoap.org/Ping}Ping3">
<xwss:SecurityConfiguration dumpMessages="true"/>
</xwss:Port>

<!-- Port 4: SwA Scenario 4 Attachment Signature and Encryp-
tion
With MIME Headers -->
<xwss:Port name="{http://xmlsoap.org/Ping}Ping4">
<xwss:SecurityConfiguration dumpMessages="true"/>
</xwss:Port>

</Xwss:Service>

<xwss:SecurityEnvironmentHandler>
com.sun.xml.wss.sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Running the SWA Sample Application

To run the swainterop sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:
® Setting System Properties
* Configuring a JCE Provider
® Setting Build Properties
2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domainl

247

248 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

b. From a Windows machine, choose Start- Programs- Sun
Microsystems—. J2EE 1.4 - Start Default Server.

3. Make sure that you have modified the /swainterop/build.properties
file for this sample as described in Setting Build Properties.

4. Build and run the application from a terminal window or command
prompt.
» On the Application Server, the command to build and run the applica-
tionis: asant run-sample-<number>

» On the other containers, the command to build and run the application
iS. ant run-sample-<numbers>

Where the <number> variable is the number of the interop scenario you
want to run.

Note: To run the sample against aremote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in thebuild.prop-
erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the foll ow-
ing. The final response will have Sun Microsystems Scenario#<scenario-
numbers>.

[echo] Running the client program....

[java] ==== Sending Message Start ====
[java] ==== Sending Message End ====
[java] ==== Received Message Start ====
[java] ==== Received Message End ====

You will see similar messages in the server log files, which are located in the fol -
lowing files:

<SJSAS_HOME>/domains/<domain-name>/1ogs/server.log
<TOMCAT_HOME>/10gs/Tauncher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

SAML SAMPLE APPLICATION 249

SAML Sample Application

The samlinterop sample application demonstrates support for OASIS WSS
SAML Token Profile 1.0 in XWS-Security. Security Assertion Markup Lan-
guage (SAML) assertions are used as security tokens. SAML provides a means
by which security assertions about messages can be exchanged between commu-
nicating service endpoints. SAML is aso considered important for promoting
interoperable Single-Sign-On (SSO) and Federated Identity. This release,
JWSDP 1.6, adds partial support for SAML Token Profile 1.0.

This sample application was used as Sun’s entry in a virtual interoperability
demonstration sponsored by OASIS. This sample implements three out of the
four interop scenarios required by the event and described in the wss saML
Interop Scenarios document. The scenarios addressed in this interop are described in
SAML Interop Scenarios. Read more about the SAML interop scenarios at the fol-
lowing URL: http://www.oasis-open.org/apps/org/workgroup/wss/downl oad.php/7011/wss-
saml-interopl-draft-11.doc.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer'slog file. The output from the client is sent to stdout or whichever stream
is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side code is found in the /swainterop/server/src/
swainterop/ directory. Client-side code is found in the /swainterop/client/
src/swainterop/ directory. The asant (or ant) targets build objects under the
/build/server/ and /build/cTlient/ directories.

SAML Interop Scenarios

All four SAML interop scenarios invoke the same, simple application. The
Reguester sends a Ping element with a value of a string. The value of the string
should be the name of the organization that has developed the software and the
number of the scenario, e.g. “ Sun Microsystems — Scenario #1”. The Responder
returns a PingResponse element with avalue of the same string. These scenarios
use the Request/Response Message Exchange Pattern (MEP) with no intermedi-
aries. All scenarios use SAML v1.1 Assertions.

To validate and process an assertion, the receiver needs to establish the relation-
ship between the subject of each SAML subject statement and the entity provid-
ing the evidence to satisfy the confirmation method defined for the statements.

http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-interop1-draft-11.doc
http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-interop1-draft-11.doc
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

250

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

The two methods for establishing this correspondence are Holder-of-Key (HOV)
and Sender-Vouches (SV). For more information on these confirmation methods,
read SAML Token Profile 1.0.

The following is a summary of each of the SAML interop scenarios.

» Scenario #1 - Sender-Vouches: Unsigned

The request contains a minimal sender-vouches SAML assertion with no
optional elements included. There are no signatures or certificates
required. The response does not contain a security header.

In this scenario, there is no technical basis for trust because the messages
are sent in the clear with no content or channel protection. Thisscenariois
intended only to demonstrate message structure interoperability and is not
intended for production use.

» Scenario #2 - Sender-Vouches. Unsigned: SSL (sample not provided)

The request contains a sender-vouches SAML assertion. There are no
signatures required. This scenario is tested over SSL, and certificates are
required to support SSL at the transport layer. The response does not con-
tain a security header.

In this scenario, the basis of trust is the Requester’s client certificate used
to establish the SSL link. The Responder relies on the Requester who
vouches for the contents of the User message and the SAML Assertion.

This scenario is not demonstrated in this sample application.

» Scenario #3 - Sender-Vouches. Signed

The request contains a sender-vouches SAML assertion. The Asser-
tion and the Body elements are signed. A reference to the certificate used
to verify the signature is provided in the header. The response does not
contain a security header.

In this scenario, the basis of trust is the Requester’s certificate. The
Requester’s private key is used to sign both the SAML Assertion and the
message Body. The Responder relies on the Requester, who vouches for
the contents of the User message and the SAML Assertion.

e Scenario #4 - Holder-of-Key
The request contains a holder-of-key SAML assertion. The assertion is
signed by the assertion issuer with an enveloped signature. The certificate

used to verify the issuer signature is contained within the assertion signa-
ture. The message body is signed by the Requester. The certificate used to

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

SAML INTEROP SAMPLE CONFIGURATION FILES

verify the Reguester’s signature is contained in the assertion Subject-
Confirmation. The response does not contain a security header.

In this scenario, the basis of trust is the Assertion Issuer’s certificate. The
Assertion Issuer’s private key is used to sign the SAML Assertion for the
User. The Responder relies on the Assertion Issuer to have issued the
assertion to an authorized User.

SAML Interop Sample Configuration Files

The following sections provide the example configuration files for SAML
interop scenarios 1, 3, and 4:

® Sender-Vouches Sample Configuration Files

¢ Holder-Of-Key Sample Configuration Files

Sender-Vouches Sample Configuration Files

The security configuration par sv-saml-client3.xml and sv-saml-
server3.xm1 enable the following tasks, as required by Scenario #3:

+ Client contains a sender-vouches SAML assertion.
* Client signs the assertion and the body el ements.

» Client includes areference to the certificate used to verify the signature in
the header.

 Client sends the request body.

» Server verifiesthat a SAML assertion is received.

« Server verifies the signature.

» Server sends the response, which does not contain a security header.

The sv-sam1-client3.xm1 filelooks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:SAMLAssertion type="SV" strId='"Sv-123"/>
<xwss:Sign includeTimestamp="false">
<xwss :X509Token certificateAlias="xws-security-
client"/>
<xwss:Target type="qgname'">
{http://schemas.xmlsoap.org/soap/

251

252 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

envelope/}Body
</xwss:Target>
<xwss:SignatureTarget type="uri" value="SV-123">
<xwss:Transform algorithm="http://docs.oasis-
open.org/wss/2004/01/
0asis-200401-wss-soap-message-
security-1.0#STR-Transform">
<xwss:AlgorithmParameter
name="CanonicalizationMethod"
value="http://www.w3.0rg/2001/10/
xml-exc-cl4n#" />
</xwss:Transform>
</xwss:SignatureTarget>
</xwss:Sign>
<xwss:Timestamp />
</xwss:SecurityConfiguration>
</Xwss:Service>
<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>
</xwss : JAXRPCSecurity>

The sv-sam1-server3.xml file looks like this;

<xwss :JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:RequireTimestamp />
<xwss:RequireSAMLAssertion type="SV"/>
<xwss:RequireSignature requireTimestamp="false">
<Xwss:X509Token />
<xwss:Target type="qgname'>
{http://schemas.xmlsoap.org/soap/envelope/}Body
</xwss:Target>
<xwss:SignatureTarget type="uri" value="SV-123"/>
</xwss:RequireSignature>
</xwss:SecurityConfiguration>
</Xwss:Service>
<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>
</xwss : JAXRPCSecurity>

The other security configuration files in the /samlinterop/config/ directory
that contain a sender-vouches type of assertion are those in support of Scenario
#1, the sv-sam1-client.xm1 and sv-saml-server.xml pair.

SAML INTEROP SAMPLE CONFIGURATION FILES 253

Holder-Of-Key Sample Configuration Files

The security configuration pair hok-saml-client.xm1 and hok-saml-
server.xm1 enable the following tasks, as required by Scenario #4:

» Client contains a holder-of-key SAML assertion.

« Client has the assertion signed by the assertion issuer with an enveloped
signature.

* Client includes the certificate used to verify the issuer signature in the
assertion signature.

» Client signsthe request body.

» Server verifiesthat a SAML assertion is received.

» Server verifies the signature.

» Server sends the response, which does not contain a security header.

The hok-sam1-client.xm] filelooks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:Sign includeTimestamp="false">
<xwss:SAMLAssertion type="HOK"/>
<xwss:Target type="gname">
{http://schemas.xmlsoap.org/soap/
envelope/}Body
</xwss:Target>
</xwss:Sign>
<xwss:Timestamp />
</xwss:SecurityConfiguration>
</xwss:Service>
<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>
</xwss:JAXRPCSecurity>

The hok-sam1-server.xm] filelooks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:RequireTimestamp />
<xwss:RequireSignature requireTimestamp="false">
<xwss:SAMLAssertion type="HOK"/>

254

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

<xwss:Target type="qgname">
{http://schemas.xmlsoap.org/soap/envelope/}Body
</xwss:Target>
</xwss:RequireSignature>
</xwss:SecurityConfiguration>
</xwss:Service>
<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>
</xwss : JAXRPCSecurity>

Running the SAML Interop Sample

To run the samTinterop sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:
® Setting System Properties
* Configuring a JCE Provider
® Setting Build Properties

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domainl

b. From a Windows machine, choose Start— Programs— Sun
Microsystems— J2EE 1.4 -, Start Default Server.

3. Modify thebuild.properties fileto set up the security configuration that
you want to run for the client and/or server. To do this, remove the com-
ment character (#) from beside the client and server configuration pair to
be used, and make sure the other security configuration files have the com-
ment character beside them. See SAML Interop Sample Configuration Files for
more information on the security configurations options defined for this
sample application.

4. Build and run the application from a terminal window or command
prompt.

* On the Application Server, the command to build and run the applica-
tionis: asant run-sample

* On the other containers, the command to build and run the application
iS: ant run-sample

DYNAMIC POLICY SAMPLE APPLICATION 255

Note: To run the sample against aremote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url propertiesare set correctly in the build.prop-
erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-

ing:
[echo] Running the client program....
[java] ==== Sending Message Start ====
[java] ==== Sending Message End ====
[java] ==== Received Message Start ====
[java] ==== Received Message End ====

[java] Hello to Duke!
You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/1ogs/server.log
<TOMCAT_HOME>/10gs/Tlauncher.server.log
<SJISWS_HOME>/<Virtual-Server-Dir>/logs/errors

Dynamic Policy Sample Application

The dynamic-policy sample application demonstrates how to specify (or
change) the request and/or response security policy at runtime using the XWS-
Security APIs. Another sample that demonstrates using the XWS-Security APIs
isapi-sample, which is discussed in XWs-Security APIs Sample Application.

You would want to dynamically set the security policy for an application at runt-
ime when one of these conditionsis present:

¢ Response policy: When you don’t know who the requester may be, you
want to be able to specify the response security policy after you determine
the identity of the requester.

¢ Request policy: When you don’'t know what the runtime parameters will
be, you want to discover these parameters, such aswhether SSL is enabled
at the transport layer, before you specify your request policy.

256

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer's log file. The output from the client is sent to stdout or to whichever
stream is used by the configured log handler. Messages are logged at the INFO
level.

In this example, server-side code is found in the /dynamic-policy/server/
src/sample/ directory. Client-side code isfound in the /dynamic-policy/c11-
ent/src/sample/ directory. The asant (or ant) targets build objects under the
/build/server/ and /build/client/ directories.

Security Configuration Files for Enabling
Dynamic Policy

To specify the request and/or response security policy dynamically at runtime,
you need to enable Dynami cPol11icyCallback by setting the enableDynamicPol-
icy flag on the <xwss:SecurityConfiguration> element. The application-
defined runtime parameters can then be set by the application and passed into the
ProcessingContext, which is made available to the CallbackHandler as a
DynamicApplicationContext. The CallbackHandler can then modify an
existing policy or set acompletely new policy into the Callback.

Asyou can see, the security configuration files for this example are very simple,
because the actual security policy that will be applied at runtimeis being decided
by SecurityEnvironmentHandler. The SecurityEnvironmentHandler is dis-
cussed in Setting Security Policies at Runtime. The security configuration file for the
client, dynamic-client.xml1, lookslike this:

<xwss: JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml1/ns/
xwss/config">

<xwss:Service>
<!-- the exact policy to apply will be decided by the
SecurityEnvironmentHandler at runtime -->
<xwss:SecurityConfiguration dumpMessages="true" enable-
DynamicPolicy="true'">
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>

SETTING SECURITY POLICIES AT RUNTIME 257

com.sun.xml.wss.sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandTler>

</xwss :JAXRPCSecurity>

The security configuration file for the server, dynamic-server.xml1, looks like
this:

<xwss :JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<!-- the exact policy to apply will be decided by the
SecurityEnvironmentHandler at runtime -->
<xwss:SecurityConfiguration dumpMessages="true" enable-
DynamicPolicy="true">
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
com.sun.xml.wss.sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Setting Security Policies at Runtime

The dynamic-policy sample application demonstrates how the request and
response security policies can be set at runtime from the SecurityEnvironmen-
tHandler callback.

In this sample, the SecurityEnvironmentHandler inserts a SignaturePolicy
at runtime. The SignaturePolicy asksfor asignature over the body of the mes-
sage. For the requesting side, thisis equivalent to using an <xwss: Sign> element
in the configuration file. For the receiving side, this is equivaent to using an
<xwss:RequireSignature> element in the configuration file. Both the request
and response contain a signature over the body.

Note: The APIsused in thissample by the SecurityEnvironmentHandler callback
are evolving and hence are subject to modification prior to the release of XWS
Security FCS 2.0.

258 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

The full code for the SecurityEnvironmentHandler is located in the /
dynamic-policy/src/com/sun/xml1/wss/sample directory. The SecurityEn-
vironmentHandler fileis asample implementation of aCallbackHandler. The
following snippet of that file demonstrates how to handle a DynamicPolicy-
Callback:

} else if (callbacks[i] instanceof DynamicPolicyCallback) {
DynamicPolicyCallback dpCallback =
(DynamicPoTlicyCallback) callbacks[i];
SecurityPolicy policy =
dpCallback.getSecurityPolicy(Q);

if (policy instanceof WSSPolicy) {

try {
hand1eWSSPolicy (dpCallback);
} catch (PolicyGenerationException pge) {
throw new IOException (pge.getMessage());

}

} else if (policy instanceof DynamicSecurityPolicy)

try {
hand1eDynamicSecurityPolicy (dpCallback);
} catch (PolicyGenerationException pge) {
throw new IOException (pge.getMessage());

3
} else {
throw unsupported;

}

Running the Dynamic Policy Sample
Application
To run the dynamic-policy sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:
* Setting System Properties
* Configuring a JCE Provider
® Setting Build Properties
2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domainl

RUNNING THE DYNAMIC PoLICY SAMPLE APPLICATION

b. From a Windows machine, choose Start- Programs- Sun
Microsystems— J2EE 1.4 - Start Default Server.

3. Build and run the application from a termina window or command
prompt.

¢ On the Application Server, the command to build and run the applica-
tionis: asant run-sample

» On the other containers, the command to build and run the application
IS ant run-sample

Note: To run the sample against aremote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url propertiesare set correctly in thebuild.prop-
erties file (asdiscussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-

ing:

[echo]
[java]

tﬁéva]
[javal

[java]

Running the client program....
==== Sending Message Start ====

==== Sending Message End ====
==== Received Message Start ====

==== Received Message End ====

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/1ogs/server.log
<TOMCAT_HOME>/10gs/Tlauncher.server.log
<SJISWS_HOME>/<Virtual-Server-Dir>/logs/errors

259

260

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

Dynamic Response Sample
Application

The dynamic-response sample application demonstrates using the certificate
that arrived in a signed request to encrypt the response back to the requester
using the XWS-Security APIs. To accomplish thistask,

* A CallbackHandler retrievesthe requester Subject and obtainsits certif-
icate.

» The requester certificate is used to encrypt the response back to the
requester.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer's log file. The output from the client is sent to stdout or to whichever
stream is used by the configured log handler. Messages are logged at the INFO
level.

In this example, server-side code is found in the /dynamic-response/server/
src/sample/ directory. Client-side code is found in the /dynamic-response/
client/src/sample/ directory. The asant (or ant) targets build objects under
the /build/server/ and /build/client/ directories.

Security Configuration Files for Enabling
Dynamic Response

For this sample application, the security configuration files are fairly simple. The
security configuration files are used to sign the request and encrypt the response,
but the work of using the requester certificate to encrypt the response back to the
requester is accomplished using the SecurityEnvironmentHandler, which is
discussed in Using the CallbackHandler to Enable Dynamic Response.

The client security configuration file for this example, sign-client.xm1, looks
like this:

<xwss :JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<!--

USING THE CALLBACKHANDLER TO ENABLE DYNAMIC RESPONSE 261

Note that in the <Sign> operation, a Timestamp is

exported
in the security header and signed by default.
-—>
<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-
client"/>

</xwss:Sign>
<xwss:RequireEncryption/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The server security configuration file for this example, encrypt-server.xml,
lookslike this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true">
<xwss:RequireSignature/>
<xwss:Encrypt/>
</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Using the CallbackHandler to Enable
Dynamic Response

In this sample application, the security configuration files sign the request and
encrypt the response, however the work of using the requester certificate to
encrypt the response back to the requester is done in the SecurityEnvironmen-
tHandler. The full source code for the SecurityEnvironmentHandler is

262

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

located in the directory dynamic-response/src/sample. This snippet from that
file demonstrates how to use a CallbackHandler to generate the response
dynamically:

if (cb.getRequest() instanceof
EncryptionKeyCallback.AliasX509CertificateRequest) {

EncryptionKeyCallback.AliasX509CertificateRequest request =

(EncryptionKeyCallback.ATiasX509CertificateRequest)
cb.getRequest();
String alias = request.getAlias();
if ((alias == null) || "".equals(alias)) {
Subject currentSubject =
SubjectAccessor.getRequesterSubject();
Set publicCredentials =
currentSubject.getPublicCredentials();
for (Iterator it =
publicCredentials.iterator(); it.hasNext();) {
Object cred = it.next();
if(cred instanceof
java.security.cert.X509Certificate){
java.security.cert.X509Certificate
cert =
(java.security.cert.X509
Certificate)cred;
request.setX509Certificate(cert)

Running the Dynamic Response Sample
Application

To run the dynamic-response sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:
* Setting System Properties
* Configuring a JCE Provider
® Setting Build Properties
2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domainl

FURTHER | NFORMATION

b. From a Windows machine, choose Start- Programs- Sun
Microsystems— J2EE 1.4 - Start Default Server.

3. Build and run the application from a termina window or command
prompt.

¢ On the Application Server, the command to build and run the applica-
tionis: asant run-sample

» On the other containers, the command to build and run the application
IS ant run-sample

Note: To run the sample against aremote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url propertiesare set correctly in thebuild.prop-
erties file (asdiscussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-

ing:
[echo] Running the client program....
[java] ==== Sending Message Start ====
[java] ==== Sending Message End ====
[java] ==== Received Message Start ====
[java] ==== Received Message End ====

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/1ogs/server.log
<TOMCAT_HOME>/10gs/Tlauncher.server.log
<SJISWS_HOME>/<Virtual-Server-Dir>/logs/errors

Further Information

For links to specifications and other documents relevant to XWS-Security, refer
to the Further Information Section in Introduction to XML and Web Services Security.

263

264

UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

6

Java XML Digital
Sighature API

T HE Java XML Digital Signature API is a standard Java APl for generating
and validating XML Signatures. This APl was defined under the Java Commu-
nity Process as JSR 105 (see http://jcp.org/en/jsr/detail?id=105). This
JSR isfinal and this release of Java WSDP contains an FCS access implementa-
tion of the Final version of the APIs.

XML Signatures can be applied to data of any type, XML or binary (see http:/
/www.w3.0org/TR/xmldsig-core/). The resulting signature is represented in
XML. An XML Signature can be used to secure your data and provide data
integrity, message authentication, and signer authentication.

After providing a brief overview of XML Signatures and the XML Digital Sig-
nature API, this chapter presents two examples that demonstrate how to use the
API to validate and generate an XML Signature. This chapter assumes that you
have a basic knowledge of cryptography and digital signatures.

The API is designed to support all of the required or recommended features of
the W3C Recommendation for XML-Signature Syntax and Processing. The AP
is extensible and pluggable and is based on the Java Cryptography Service Pro-
vider Architecture. The API isdesigned for two types of developers:

» Javaprogrammerswho want to usethe XML Digital Signature API to gen-
erate and validate XML signatures

265

http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

266

JAVA XML DIGITAL SIGNATURE API

» Java programmers who want to create a concrete implementation of the
XML Digital Signature API and register it as a cryptographic service of a
JCA provider (see http://java.sun.com/j2se/1.4.2/docs/guide/
security/CryptoSpec.html#Provider)

How XWS-Security and XML Digital
Sighature APl Are Related

Before getting into specifics, it isimportant to see how XWS-Security and XML
Digital Signature API arerelated. In this release of the Java WSDP, XWS-Secu-
rity is based on non-standard XML Digital Signature APIs.

XML Digital Signature APl is an API that should be used by Java applications
and middleware that need to create and/or process XML Signatures. It can be
used by Web Services Security (the goal for a future release) and by non-Web
Services technologies (for example, signing documents stored or transferred in
XML). Both JSR 105 and JSR 106 (XML Digital Encryption APIs) are core-
XML security components. (See http://www.jcp.org/en/jsr/
detail?id=106 for moreinformation about JSR 106.)

XWS-Security does not currently use the XML Digital Signature APl or XML
Digital Encryption APIs. XWS-Security uses the Apache libraries for XML-
DSig and XML-Enc. The goal of XWS-Security is to move toward using these
APIsin future releases.

http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://www.jcp.org/en/jsr/detail?id=106
http://www.jcp.org/en/jsr/detail?id=106

XML SECURITY STACK

XML Security Stack

Figure 6-1 shows how XML Digital Signature APl (JSR 105) interacts with
security components today and how it will interact with other security compo-
nents, including XML Digital Encryption API (JSR 106), in future releases.

Today...

In the Future...

Fpplications

A

EAlTE S

Ppplications

1

i

JSR 105

I

JER 108 Prowvider

Apache Hil

e g

Security

A

B s

f

i

JER 105

JSR 105

f

)

J5R 105 Prowider

JER 106 Prowvider

Java Cryptography
Frihitecturs

f

JCA Prowider

Sun JCA
Provvider

Pluggable Pluggable
W= Secuorty Security
Prowider Provwider

[

|

Java Cryptography

Frchitecturs

!

JCA Provider

Pluggable JCA
Prowider

Figure6-1 Java WSDP Security Components

XWSS calls Apache XML-Security directly today; in future releases, it should
be able to call other pluggable security providers. The Apache XML-Security
provider and the Sun JCA Provider are both pluggable components. Since JSR
105 isfinal today, the JSR 105 layer is standard now; the JSR 106 layer will be
standard after that JSR becomes final.

267

268

JAVA XML DIGITAL SIGNATURE API

Package Hierarchy

The six packagesin the XML Digital Signature API are:

e javax.xml.crypto

» javax.xml.crypto.dsig

e javax.xml.crypto.dsig.keyinfo
e javax.xml.crypto.dsig.spec

e javax.xml.crypto.dom

e javax.xml.crypto.dsig.dom

The javax.xm1.crypto package contains common classes that are used to per-
form XML cryptographic operations, such as generating an XML signature or
encrypting XML data. Two notable classes in this package are the KeySelector
class, which allows devel opers to supply implementations that |ocate and option-
aly validate keys using the information contained in a KeyInfo object, and the
URIDereferencer class, which allows devel opersto create and specify their own
URI dereferencing implementations.

The javax.xml.crypto.dsig package includes interfaces that represent the
core elements defined in the W3C XML digital signature specification. Of pri-
mary significance is the XMLS1ignature class, which alows you to sign and vali-
date an XML digital signature. Most of the XML signature structures or
elements are represented by a corresponding interface (except for the KeyInfo
structures, which areincluded in their own package and are discussed in the next
paragraph). These interfaces include: SignedInfo, CanonicalizationMethod,
SignatureMethod, Reference, Transform, DigestMethod, XMLObject, Mani -
fest, SignatureProperty, and SignatureProperties. The XMLSignature-
Factory classis an abstract factory that is used to create objects that implement
these interfaces.

The javax.xml.crypto.dsig.keyinfo package contains interfaces that repre-
sent most of the KeyInfo structures defined in the W3C XML digital signature
recommendation, including KeyInfo, KeyName, KeyValue, X509Data,
X509IssuerSerial, RetrievalMethod, and PGPData. The KeyInfoFactory
class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.spec package contains interfaces and classes
representing input parameters for the digest, signature, transform, or canonical-
ization algorithms used in the processing of XML signatures.

Finally, the javax.xml.crypto.dom and javax.xml.crypto.dsig.dom pack-
ages contains DOM-gpecific classes for the javax.xml.crypto and

http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/KeySelector.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/URIDereferencer.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignature.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignedInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/CanonicalizationMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Reference.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Transform.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/DigestMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLObject.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperty.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperties.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyName.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyValue.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509Data.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509IssuerSerial.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/RetrievalMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/PGPData.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/spec/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html

SERVICE PROVIDERS 269

javax.xml.crypto.dsig packages, respectively. Only developers and users
who are creating or using a DOM-based XMLS1ignatureFactory or KeyInfo-
Factory implementation should need to make direct use of these packages.

Service Providers

A JSR 105 cryptographic service is a concrete implementation of the abstract
XMLSignatureFactory and KeyInfoFactory classes and is responsible for cre-
ating objects and algorithms that parse, generate and validate XML Signatures
and KeyInfo structures. A concrete implementation of XMLSignatureFactory
must provide support for each of the required algorithms as specified by the
W3C recommendation for XML Signatures. It may support other algorithms as
defined by the W3C recommendation or other specifications.

JSR 105 leverages the JCA provider model for registering and loading XMLS1g-
natureFactory and KeyInfoFactory implementations.

Each concrete XMLSignatureFactory or KeyInfoFactory implementation sup-
ports a specific XML mechanism type that identifies the XML processing mech-
anism that an implementation uses internally to parse and generate XML
signature and KeyInfo structures. This JSR supports one standard type, DOM.
The XML Digital Signature APl early access provider implementation that is
bundled with Java WSDP supports the DOM mechanism. Support for new stan-
dard types, such as JDOM, may be added in the future.

An XML Digita Signature APl implementation should use underlying JCA
engine classes, such as java.security.Signature and java.security.Mes-
sageDigest, to perform cryptographic operations.

In addition to the XMLS1ignatureFactory and KeyInfoFactory classes, JSR 105
supports a service provider interface for transform and canonicalization algo-
rithms. The TransformService class alows you to develop and plug in an
implementation of a specific transform or canonicalization algorithm for a par-
ticular XML mechanism type. The TransformService class uses the standard
JCA provider model for registering and loading implementations. Each JSR 105
implementation should use the TransformService class to find a provider that
supports transform and canonicalization algorithmsin XML Signatures that it is
generating or validating.

http://java.sun.com/j2se/1.4/docs/api/java/security/Signature.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html
http://java.sun.com/webservices/docs/1.6/api/javax/xml/crypto/dsig/TransformService.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html

270 JAVA XML DIGITAL SIGNATURE API

Introduction to XML Signatures

Asmentioned, an XML Signature can be used to sign any arbitrary data, whether
it is XML or binary. The data is identified via URIs in one or more Reference
elements. XML Signatures are described in one or more of three forms:
detached, enveloping, or enveloped. A detached signature is over data that is
external, or outside of the signature element itself. Enveloping signatures are sig-
natures over data that is inside the signature element, and an enveloped signature
isasignature that is contained inside the data that it is signing.

Example of an XML Signhature

The easiest way to describe the contents of an XML Signature is to show an
actual sample and describe each component in more detail. The following is an
example of an enveloped XML Signature generated over the contents of an XML
document. The contents of the document beforeit is signed are:

<Envelope xmlns="urn:envelope">
</Envelope>

The resulting enveloped XML Signature, indented and formatted for readability,
isasfollows:

<?xml1 version="1.0" encoding="UTF-8"7>
<Envelope xmlns="urn:envelope">
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xm1-cl4n-
20010315#WithComments" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal"/>
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09/
xmldsig#enveloped-signature"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal"/>
<DigestValue>uooqbWYa5VCqcICbhuymBKgml7vY=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>

EXAMPLE OF AN XML SIGNATURE 271

KedJuTob5gtvYx9gM3k3gm7kbLBwVbEQR126S2tmXjgNND7MRGtoew==
</SignatureValue>
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu@ImbzRMqzVDZkVGIXD7nN1kuFw==
</P>
<Q>11i7dzDacuo673g7mtqEm2TRUOMU=</Q>
<G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ@1khpMdLRQNG541Awtx/
XPaF5Bpsy4pNWMOHCBiNUONogpsQW5QvnTMpA==
</G>
<Y>qV38IqrwlGev/
mZQvRVi10Hw9Zj84nDC4j08P0axilgh6d+475yhMjSc/
BrIVC58W3ydbkK+Ri40KbaRZ1YeRA==
</Y>
</DSAKeyValue>
</KeyValue>
</KeyInfo>
</Signature>
</Envelope>

The Signature element has been inserted inside the content that it is signing,
thereby making it an enveloped signature. The required SignedInfo element
contains the information that is actually signed:

<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xm1-cl4n-
20010315#WithComments" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal"/>
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09/
xmldsig#enveloped-signature" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal"/>
<DigestValue>uooqbWYa5VCqcICbhuymBKgml7vY=</DigestValue>
</Reference>
</SignedInfo>

The required CanonicalizationMethod element defines the algorithm used to
canonicalize the SignedInfo element beforeit is signed or validated. Canonical-
ization is the process of converting XML content to a canonical form, to take

272

JAVA XML DIGITAL SIGNATURE API

into account changes that can invalidate a signature over that data. Canonicaliza-
tion is necessary due to the nature of XML and the way it is parsed by different
processors and intermediaries, which can change the data such that the signature
isno longer valid but the signed datais still logically equivaent.

The required SignatureMethod element defines the digital signature algorithm
used to generate the signature, in this case DSA with SHA-1.

One or more Reference elementsidentify the data that is digested. Each Refer-
ence element identifies the data viaa URI. In this example, the value of the URI
is the empty String ("), which indicates the root of the document. The optional
Transforms element contains alist of one or more Transform elements, each of
which describes a transformation algorithm used to transform the data before it
is digested. In this example, there is one Transform element for the enveloped
transform algorithm. The enveloped transform is required for enveloped signa-
tures so that the signature element itself is removed before calculating the signa-
ture value. The required DigestMethod element defines the algorithm used to
digest the data, in this case SHA1. Finaly the required DigestValue €ement
contains the actual base64-encoded digested value.

The required Signaturevalue element contains the base64-encoded signature
value of the signature over the SignedInfo element.

The optional KeyInfo element contains information about the key that is needed
to validate the signature:

<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu@ImbzRMqzVDZkVGIXD7nN1kuFw==
</P>
<Q>11i7dzDacuo673g7mtqEm2TRUOMU=</Q>
<G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ@1khpMdLRQNG541Awtx/
XPaF5Bpsy4pNWMOHCBiNUONogpsQW5QvnTMpA==
</G>
<Y>
qV38IqrwlGaOV/mZQvRVi1lOHw9Zj84nDC4j08P0axilgb6d+475yhMjSc/
BrIVC58W3ydbkK+Ri40KbaRZ1YeRA==
</Y>
</DSAKeyValue>
</KeyValue>
</KeyInfo>

XML DIGITAL SIGNATURE APl EXAMPLES 273

This KeyInfo element contains a KeyvValue element, which in turn contains a
DSAKeyValue element consisting of the public key needed to validate the signa
ture. KeyInfo can contain various content such as X.509 certificates and PGP
key identifiers. See the KeyInfo section of the XML Signature Recommenda-
tion for more information on the different KeyInfo types.

XML Digital Signhature APl Examples

The following sections describe two examples that show how to use the XML
Digital Signature API:

« Validate example

» Signing example
To run the sample applications using the supplied Ant bui1d.xm1 files, issue the
following commands after you installed Java WSDP:

For Solarig/Linux:
1.% export JWSDP_HOME=<your Java WSDP installation directory>
2.% export ANT_HOME=$JWSDP_HOME/apache-ant
3. % export PATH=$ANT_HOME/bin:$PATH
4. % cd $IWSDP_HOME/xmldsig/samples/<sample-name>

For Windows 2000/X P;

1. > set JWSDP_HOME=<your Java WSDP installation directory>

2.> set ANT_HOME=%JIWSDP_HOME%\apache-ant
set PATH=%ANT_HOME%\bin;%PATH%
cd %IWSDP_HOME%\xmldsig\samples\<sample-name>

validate Example

You can find the code shown in this section in the validate.java file in the
<JWSDP_HOME>/xm1dsig/samples/validate directory. The file on which it
operates, envelopedSignature.xml, iSin the same directory.

To run the example, execute the following command from the <JwSDP_HOME>/
xmldsig/samples/validate directory:

$ ant

http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo

274

JAVA XML DIGITAL SIGNATURE API

The sample program will validate the signature in the file envelopedSigna-
ture.xml in the current working directory. To validate a different signature, run
the following command:

$ ant -Dsample.args="signature.xml"

where "signature.xm1" isthe pathname of thefile.

Validating an XML Signature

This example shows you how to validate an XML Signature using the JSR 105
API. The example uses DOM (the Document Object Model) to parse an XML
document containing a Signature element and a JSR 105 DOM implementation
to validate the signature.

Instantiating the Document that Contains the
Signature

First we use a JAXP DocumentBuilderFactory to parse the XML document
containing the Signature. An application obtains the default implementation for
DocumentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:
dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of aDocumentBuilder, which isused
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Specifying the Signature Element to be
Validated

We need to specify the Signature element that we want to validate, since there
could be more than one in the document. We use the DOM method Docu-

VALIDATE EXAMPLE

ment.getElementsByTagNameNS, passing it the XML Signature namespace URI
and the tag name of the Signature element, as shown:

NodeList n1 = doc.getElementsByTagNameNS
(XMLS1ignature.XMLNS, "Signature");

if (n1.getLength() == 0) {
throw new Exception("Cannot find Signature element");

}

Thisreturns alist of al Signature elements in the document. In this example,
thereisonly one Signature element.

Creating a Validation Context

We create an XMLValidateContext instance containing input parametersfor val-
idating the signature. Since we are using DOM, we instantiate aDOMvalidate-
Context instance (a subclass of XMLvalidateContext), and pass it two
parameters, a KeyValueKeySelector object and a reference to the Signature
element to be validated (which is the first entry of the NodeL1ist we generated
earlier):

DOMValidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

The KeyvValueKeySelector is explained in greater detail in Usng
KeySelectors (page 277).

Unmarshaling the XML Signature

We extract the contents of the Signature element into an XMLS1ignature object.
This process is called unmarshalling. The Signature element is unmarshalled
using an XMLSignatureFactory object. An application can obtain a DOM
implementation of XMLS1ignatureFactory by calling the following line of code:

XMLSignatureFactory factory =
XMLSignatureFactory.getInstance(''DOM");

275

276

JAVA XML DIGITAL SIGNATURE API

We then invoke the unmarshalxMLSignature method of the factory to unmar-
shal an XMLSignature object, and pass it the validation context we created ear-
lier:

XMLSignature signature =
factory.unmarshalXMLSignature(valContext);

Validating the XML Signature

Now we are ready to validate the signature. We do this by invoking the validate
method on the XMLSignature object, and pass it the validation context as fol-
lows:

boolean coreValidity = signature.validate(valContext);

The validate method returns “true’ if the signature validates successfully
according to the core validation rules inthew3C XML Signature Recom-
mendation, and false otherwise.

What If the XML Signhature Fails to Validate?

If the XMLSignature.validate method returns false, we can try to narrow down
the cause of thefailure. There are two phasesin core XML Signature validation:

» Signature validation (the cryptographic verification of the signature)

» Reference validation (the verification of the digest of each referencein
the signature)

Each phase must be successful for the signature to be valid. To check if the sig-
nature failed to cryptographically validate, we can check the status, as follows:

boolean sv =
signature.getSignatureValue().validate(valContext);
System.out.println("signature validation status: " + sv);

We can aso iterate over the references and check the validation status of each
one, as follows:

Iterator i =
signature.getSignedInfo().getReferences().iterator();
for (int j=0; i.hasNext(); j++) {
boolean refValid = ((Reference)

VALIDATE EXAMPLE

i.next()).validate(valContext);
System.out.println("ref["+j+"] validity status: " +
refvalid);

Using KeySelectors

KeySelectors are used to find and select keys that are needed to validate an
XMLSignature. Earlier, when we created a DOMvalidateContext object, we
passed aKeySelector object asthe first argument:

DOMVaTlidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

Alternatively, we could have passed a PublicKey as the first argument if we
already knew what key is needed to validate the signature. However, we often
don’t know.

The KeyValueKeySelector isaconcrete implementation of the abstract KeySe-
lector class. The KeyValueKeySelector implementation tries to find an
appropriate validation key using the data contained in Keyvalue elements of the
KeyInfo element of an XMLSignature. It does not determineif the key istrusted.
This is a very simple KeySelector implementation, designed for illustration
rather than real-world usage. A more practical example of aKeySelector isone
that searches a KeyStore for trusted keys that match X509Data information (for
example, X509SubjectName, X509IssuerSerial, X509SKT, or
X509Certificate elements) contained in aKeyInfo.

The implementation of the KeyValueKeySelector isasfollows:

private static class KeyValueKeySelector extends KeySelector {

public KeySelectorResult select(KeyInfo keyInfo,
KeySelector.Purpose purpose,
AlgorithmMethod method,
XMLCryptoContext context)
throws KeySelectorException {

if (keyInfo == null) {
throw new KeySelectorException("Null KeyInfo object!");

}
SignatureMethod sm = (SignatureMethod) method;
List Tist = keyInfo.getContent();

for (int i = 0; i < list.size(); i++) {

277

278 JAVA XML DIGITAL SIGNATURE API

XMLStructure xmlStructure = (XMLStructure) list.get(i);
if (xm1Structure instanceof KeyValue) {
PublicKey pk = null;
try {
pk = ((KeyValue)xmlStructure).getPublicKey(Q;
} catch (KeyException ke) {
throw new KeySelectorException(ke);

}

// make sure algorithm is compatible with method
if (algEquals(sm.getAlgorithm(Q),
pk.getAlgorithm())) {
return new SimpleKeySelectorResult(pk);

}
}
}
throw new KeySelectorException("No KeyValue element

found!");
}

static boolean algEquals(String algURI, String algName) {
if (algName.equalsIgnoreCase("DSA") &&
algURI.equalsIgnoreCase(SignatureMethod.DSA_SHAL1)) {
return true;
} else if (algName.equalsIgnoreCase("RSA™) &&
algURI.equalsIgnoreCase(SignatureMethod.RSA_SHAL1)) {

return true;
} else {

return false;
}

}
}

genenveloped Example

The code discussed in this section is in the GenEnveloped.java file in the
<JWSDP_HOME>/xm1dsig/samples/genenveloped directory. Thefile on which it
operates, envelope.xml, isin the same directory. It generates the file envelo-
pedSignature.xml.

To compile and run this sample, execute the following command from the
<JWSDP_HOME>/xm1dsig/samples/genenveloped directory:

$ ant

GENENVELOPED EXAMPLE

The sample program will generate an envel oped signature of the document in the
file envelope.xml and store it in the file envelopedSignature.xml in the cur-
rent working directory.

Generating an XML Signature

This example shows you how to generate an XML Signature using the XML
Digital Signature API. More specifically, the example generates an enveloped
XML Signature of an XML document. An enveloped signature is a signature that
is contained inside the content that it is signing. The example uses DOM (the
Document Object Model) to parse the XML document to be signed and a JSR
105 DOM implementation to generate the resulting signature.

A basic knowledge of XML Signatures and their different componentsis helpful
for understanding this section. See http://www.w3.org/TR/xmldsig-core/ for
more information.

Instantiating the Document to be Signed

First, we use a JAXP DocumentBuilderFactory to parse the XML document
that we want to sign. An application obtains the default implementation for Doc-
umentBuilderFactory by caling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:
dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of aDocumentBuilder, which isused
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv([0]));

279

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

280

JAVA XML DIGITAL SIGNATURE API

Creating a Public Key Pair

We generate a public key pair. Later in the example, we will use the private key
to generate the signature. We create the key pair with a KeyPairGenerator. In
this example, we will create a DSA KeyPai r with alength of 512 bytes:

KeyPairGenerator kpg = KeyPairGenerator.getInstance('"'DSA");
kpg.initialize(512);
KeyPair kp = kpg.generateKeyPair();

In practice, the private key is usually previously generated and stored in a Key-
Store file with an associated public key certificate.

Creating a Signing Context

We create an XML Digital Signature XMLS1ignContext containing input parame-
tersfor generating the signature. Since we are using DOM, we instantiate aDOM-
SignContext (@ subclass of XMLS1ignContext), and pass it two parameters, the
private key that will be used to sign the document and the root of the document
to be signed:

DOMSignContext dsc = new DOMSignContext
(kp.getPrivate(), doc.getDocumentElement());

Assembling the XML Signature

We assembl e the different parts of the Signature element into an XMLSignature
object. These objects are al created and assembled using an XMLSignatureFac-
tory object. An application obtains a DOM implementation of XMLSignature-
Factory by calling the following line of code:

XMLSignatureFactory fac =
XMLSignatureFactory.getInstance("DOM");

We then invoke various factory methods to create the different parts of the XML -
Signature object as shown below. We create a Reference object, passing to it
the following:

» The URI of the object to be signed (We specify aURI of "", which implies
the root of the document.)

* TheDigestMethod (we use SHA1)

GENENVELOPED EXAMPLE

* A sgingle Transform, the enveloped Transform, which is required for
enveloped signatures so that the signature itself is removed before calcu-
lating the signature value

Reference ref = fac.newReference
("", fac.newDigestMethod(DigestMethod.SHALl, null),
Collections.singletonList
(fac.newTransform(Transform.ENVELOPED,
(TransformParameterSpec) null)), null, null);

Next, we create the SignedInfo object, which is the object that is actualy
signed, as shown below. When creating the SignedInfo, we pass as parameters:

e TheCanonicalizationMethod (we useinclusive and preserve comments)
¢ TheSignatureMethod (we use DSA)
e Alist of References (in this case, only one)

SignedInfo si = fac.newSignedInfo
(fac.newCanonicalizationMethod
(CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
(C14NMethodParameterSpec) null),
fac.newSignatureMethod(SignatureMethod.DSA_SHA1, null),
Collections.singletonList(ref));

Next, we create the optional KeyInfo object, which contains information that
enables the recipient to find the key needed to validate the signature. In this
example, we add aKeyValue object containing the public key. To create KeyInfo
and its various subtypes, we use a KeyInfoFactory object, which can be
obtained by invoking the getKeyInfoFactory method of the XMLSignature-
Factory, asfollows:

KeyInfoFactory kif = fac.getKeyInfoFactory();

We then use the KeyInfoFactory to create the Keyvalue object and add it to a
KeyInfo object:

KeyValue kv = kif.newKeyValue(kp.getPublic());
KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

Finally, we create the XMLSignature object, passing as parameters the Signed-
Info and KeyInfo objectsthat we created earlier:

XMLSignature signature = fac.newXMLSignature(si, ki);

281

282

JAVA XML DIGITAL SIGNATURE API

Notice that we haven't actually generated the signature yet; we'll do that in the
next step.

Generating the XML Signature

Now we are ready to generate the signature, which we do by invoking the sign
method on the XMLSignature object, and passit the signing context as follows:

signature.sign(dsc);

The resulting document now contains a signature, which has been inserted as the
last child element of the root element.

Printing or Displaying the Resulting Document

You can use the following code to print the resulting signed document to afile or
standard output:

OQutputStream os;
if (args.length > 1) {

os = new FileOutputStream(args[1]);
} else {

os = System.out;

}

TransformerFactory tf = TransformerFactory.newInstance();
Transformer trans = tf.newTransformer();
trans.transform(new DOMSource(doc), new StreamResult(os));

v

Using the Service
Registry Web Console

T HIS chapter describes the Web Console for the Service Registry (“the Regis-
try”). It contains the following sections:

» Getting Started With the Web Console

» Searching the Registry

 Publishing and Managing Registry Objects

Getting Started With the Web Console

The Web Console is a web-based user interface that allows you to search the
Registry and to publish content to the Registry and Repository. This section
describes the preliminary steps to follow before you can perform these opera-
tions.

» Starting the Web Console
» Changing the Default Language

283

284 USING THE SERVICE REGISTRY WEB CONSOLE

Starting the Web Console

To start the Web Console, type the following URL into aweb browser:
http://hostname:port/soar/registry/thin/browser.jsp

For example:
http://localhost:8080/soar/registry/thin/browser.jsp

If the Registry is installed on your system, the hostname is Tocalhost. If the
Registry is not installed on your system, use the name of the system where the
Registry isinstalled. The port value is usualy 8080 unless there is a port con-
flict.

The Web Console has the following main sections:
» Top banner, where you can reset the locale, end the current session, and set
the content language
* Menu area on the |eft side of the screen

* Registry Objects area to the right of the menu area, which displays found
objects

» Detail area below the Registry Objects area, which displays the details for
any found object

Note: At thisrelease, the top right corner of the Web Console liststhe Current User
as Registry Guest. In fact, the user is Registry Operator; that is the user identity
under which all objectswill be published.

Changing the Default Language

You can change the default language for the display of two kinds of information:

» Web Console labels and messages
* Registry content

CHANGING THE DEFAULT LANGUAGE 285

Changing the Default Language for Labels
and Messages

The Web Consol€e’s labels and messages can be displayed in the languages listed
in Table 7-1.

Table 7-1 Languages Supported by the Web Console

Language Code
Simplified Chinese (China) zh_CN
Traditional Chinese (Taiwan) zh_Tw
English (United States) en_US
German de
Japanese ja
Korean ko
Spanish es
French (Canada) fr_CA
Finnish fi

To change the language from the default, follow these steps.

1. Add the language to your web browser language preferences by following
the instructions for the web browser.
For most browsers you can find the language settings in the General area
of the Internet Options, Options, or Preferences dialog box.

2. Make the language your preferred language by placing it first in the list of
languages.

3. Click the Reset Locale button.
The labels appear in the appropriate language.

286

USING THE SERVICE REGISTRY WEB CONSOLE

Changing the Default Language for Registry
Content

You can publish content to the registry in any of the languages shown in the Con-
tent Language drop-down list in the top banner area, if the language is supported
on your system. The default is the language setting for your web browser.

To change the language from the default, choose the language from the Content
Language drop-down list.

Searching the Reqistry

The Search and Explore links in the menu area allow you to search the Registry.

» Using the Search Menu

» Selecting a Query

» Searching by Object Type

» Searching by Name and Description
» Searching by Classification

* Viewing Search Results

e Using the Explore Menu

Using the Search Menu

Click Search in the menu area. The Search form opens. It contains the following
components:

» Select Predefined Query drop-down list
* Nametext field

» Description text field

* ClassificationSchemes tree

Click Hide Search Form to close the Search form and clear the results area.

The next few sections describe how to use these components.

SELECTING A QUERY

Selecting a Query

The Select Predefined Query drop-down list contains the items shown in Table
7-2.

Table 7—2 Predefined Queries

Query Name Search Purpose

The default generic query, which allows you to search by

Basic Query object type, name, description, and classification

Basic Query - Case Sensitive Case-sensitive version of Basic Query

Finds all objects owned (published) by the user who makes

FindAlIMyObjects the query; may take along timeif the user owns many
objects
GetCallersUser Finds the User object for the user who makes the query

The default selection is Basic Query. The following sections describe how to
perform basic queries:

e Searching by Object Type
» Searching by Name and Description
« Searching by Classification

Use the FindAlIMyObjects and GetCallersUser queries to search for all the
objects you have published and to view and modify datafor the user you created
when you registered.

Searching by Object Type
The simplest search is by object type only.

The default choice in the Object Type drop-down list is RegistryObject, which
searches all objectsin the Registry. To narrow the search, change the object type.

Follow these steps:
1. Choose an object type from the Object Type drop-down list.

287

288

USING THE SERVICE REGISTRY WEB CONSOLE

2. Click the Search button.

The search returns all objects of the specified type. You can narrow the search by
specifying a name, description, or classification.

Searching by Name and Description

To search by the name or description of an object, follow these steps:
1. From the Select Predefined Query drop-down list, select either Basic
Query or Basic Query -- Case Sensitive.
2. Type astring in the Name or Description field.
3. Click Search.

By default, the search looks for a name or description that matches the entire
string you typed. You can use wildcards to find a range of objects.

The wildcard characters are percent (%) and underscore (_).
The % wildcard matches multiple characters:

» Type%off% to return words that contain the string of f, such as Coffee.

» Type %nor to return words that start with Nor or nor, such as North and
northern.

» Typeica%to return all wordsthat end with 1 ca, such as America.

The underscore wildcard matches a single character. For example, the search
string _us_ would match objects named Aus1 and Bus3.

Searching by Classification

Classification objects classify or categorize objects in the registry using unique
concepts that define valid values within a classification scheme. The classifica
tion scheme isthe parent in atree hierarchy containing generations of child con-
cepts. Table 7-3 describes the classification schemes provided by the Registry

specifications. Many of the terms in this table are defined in the Registry specifi-

cations.

SEARCHING BY CLASSIFICATION

Table 7-3 Classification Scheme Usage

Classification Scheme
Name

Usage

Description or Purpose

AssociationType

Frequently

Defines the types of associations between
RegistryObjects. Used as the value of the
associationType attribute of an Asso-
ciation instance to describe the nature of
the association.

ContentManagementService

Rarely

Defines the types of content management
services. Used in the configuration of a
content management service, such asaval-
idation or cataloging service.

DataType

Frequently

Defines the data types for attributesin
classes defined by this document. Used as
the value of the sTotType attribute of a
Slot instance to describe the data type of
the S1ot value.

DeletionScopeType

Occasionally

Definesthe valuesfor thedeletionScope
attribute of the RemoveObjectsRequest
protocol message.

Email Type

Rarely

Defines the types of email addresses.

ErrorHandlingM odel

Rarely

Defines the types of error handling models
for content management services.

ErrorSeverity Type

Rarely

Defines the different error severity types
encountered by the Registry while process-
ing protocol messages.

EventType

Occasionally

Defines the types of events that can occur
inaregistry.

InvocationM odel

Rarely

Defines the different ways that a content
management service may beinvoked by the
Registry.

289

290 USING THE SERVICE REGISTRY WEB CONSOLE

Table 7-3 Classification Scheme Usage (Continued)

Classification Scheme
Name Usage Description or Purpose
Defines the different waysin which a
. ClassificationScheme may assign the
NodeType Occasionally value of the code attribute for itsClass:i -
ficationNodes.
Defines the different waysin which aclient
NotificationOptionType Rarely may wish to be notified by the registry of
an event within aSubscription.
ObjectType Occasionally De{n nes thg different types of RegistryOb-
jects aregistry may support.
PhoneType Rarely Defines the types of telephone numbers.
Defines the query languages supported b
QueryLanguage Rarely the Regi stry? y languag PP Y
Defines the different types of statusfor a
ResponseStatusType Rarely Regist ryResponse.yp
. Defines the different types of status for a
StatusType Occasionally Regist ryResponse.yp
) Defines the groups that auser can belong to
SubjectGroup Rarely for access control purposes.
SubliectRole Rarel Defines the roles that can be assigned to a
d y user for access control purposes.

In the menu area, the root of the ClassificationScheme tree is below the Descrip-

tion field.

To search by classification, follow these steps:

1. Expand the root node to view the full list of classification schemes.
The number in parentheses after each entry indicates how many concepts

the parent contains.

2. Expand the node for the classification scheme you want to use.

VIEWING SEARCH RESULTS

3. Expand concept nodes beneath the classification scheme until you find the
leaf node (a node with no concepts beneath it) by which you want to
search.

4. Select the leaf node.

5. Optionally, restrict the search by choosing an object type or specifying a
name or description string.

6. Click the Search button.

Viewing Search Results

Objects found by a search appear in the Registry Objects area.

The Registry Objects area consists of the following:

« Buttons labeled Save, Approve, Deprecate, Undeprecate, Relate, and
Delete, which allow you to perform actions on abjects. You must be the
object’s creator to perform any of these actions.

« A found objectsdisplay consisting of asearch resultstable with the follow-
ing columns;

Pick checkbox. Select any two objectsto activate the Relate button. See
Creating Relationships Between Objects (page 303) for details.

Details link. Click thislink to open the Details area directly below the
Registry Objects area (see “Viewing Object Details”).

Object Typefield.

Name field.

Description field.

Version field.

VersionComment field.

Pin checkbox. Select this checkbox to “pin” this object in place while
you perform another search. You can then relate two different objects by
selecting both objects.

Viewing Object Details

In the search results table, click the Details link for an object to open the Details
areaimmediately below the Registry Objects area.

292 USING THE SERVICE REGISTRY WEB CONSOLE

This section has arow of buttons and arow of tabs:
» The buttons are Save, Approve, Deprecate, Undeprecate, and Delete. The
buttons represent actions you can perform on the object.

» Thetabs represent the object’s attributes. The tabs you see vary depending
on the object type. Table 7—4 describes the tabs and the objects they apply
to.

Table 7-4 Attribute Tabsin the Details Area

Tab Name AppliesTo
Object Detall All objects
Classifications All objects
Externalldentifiers All objects
Associations All objects
ExternalLinks All objects

Audit Trail All objects

Postal Addresses Organization, User
TelephoneNumbers Organization, User
Email Addresses Organization, User
Users Organization
Organizations Organization
ServiceBindings Service
SpecificationLinks ServiceBinding
ChildConcepts ClassificationScheme

Click atab to find out if the object has any values for the attribute. If it does,
click the Details link for the attribute value to open a web browser window with
the details for the attribute value.

USING THE EXPLORE MENU

The Audit Trail tab does not produce a table with a Details link. Instead, it pro-
duces a table containing the event type, the date and time of the event, and the
name of the User that caused it.

For every object, the Unique Identifier is an active link. Click this link to view
the XML for the object in aweb browser window. (All registry objects are stored
in XML format.)

If the object is an Externalldentifier, the details panel has a Display Content link.
Click thislink to view the object in aweb browser window.

If the object is an ExtrinsicObject, the details panel has a View Repository Item
Content link. Click this link to view the repository item in a web browser win-
dow.

Using the Explore Menu

The Explore menu allows you to navigate through Registry and Repository con-
tent using the metaphor of a hierarchy of file folders. The root folder, named
root, contains all Registry content, and is similar to the UNIX root directory.

To use the Explore menu, follow these steps:

1. Click the Explorelink.
2. Expand the folder named “root”. It contains two subfolders. userData,
where all user content is placed, and ClassificationSchemes.
To explore the classification schemes, follow these steps:

1. Click the ClassificationSchemes folder (not the node symbol). All the
ClassificationScheme objects appear in the Registry Objects area. Follow
the instructions in Viewing Search Results (page 291) to view the objects.

2. Expand the ClassificationSchemes node to open the Classification-
Schemes tree hierarchy in the menu area.

3. Click any file icon to view that classification scheme in the Registry
Objects area.

4. Expand a classification scheme node to see the Concept folders benesth it.

Not all classification schemes have concepts that are viewable in the
Explore menu. The last seven classification schemes have concepts that
are not viewable here.

5. Click a Concept folder to view that concept in the Registry Objects area.

293

294

USING THE SERVICE REGISTRY WEB CONSOLE

To explore the userData folder, follow these steps:

1. Expand the userData node.

2. Expand the RegistryObject node. Do not click the folder unless you want
to view all registry objects.
(The node named “folderl” has no content.)

3. Click afolder to view the registry objects of that type. Expand a node to
view the object types at the next level.

When you have finished, click Hide Explorer to close the Explore menu and
clear the results area.

Publishing and Managing Registry
Objects

 Publishing Objects

» Adding a Classification to an Object

» Adding an External Identifier to an Object

e Adding an External Link to an Object

* Adding Custom Information to an Object Using Slots
» Changing the State of Objects

» Removing Objects

» Creating Relationships Between Objects

Publishing Objects

Publishing objects to the registry is a two-step process:

1. Create the object.

2. Save the object. The object does not appear in the Registry until after you
saveit.

At this release, ignore the Create User Account menu item. You can publish
objects to the registry without performing any authentication steps.

To create and save a new registry object, follow these steps:

1. Inthe menu area, click Create a New Registry Object.

ADDING A CLASSIFICATION TO AN OBJECT

2. Inthe Registry Objects area, choose an object type from the drop-down list
and click Add.

3. A Details form for the object appears in the Details area.

4. Type aname and description in the fields of the Details form. Type values
for other fields that appear in the Details form.

5. Click Save to save the object.
A status message appears, indicating whether the save was successful.
Either before or after you save the object, you can edit it by adding other objects

to it. Table 7—4 lists the objects you can add. The following sections describe
how to add these objects.

Adding a Classification to an Object

To create a classification, you use an internal classification scheme. An internal
classification scheme contains a set of concepts whose values are known to the
Registry.

To add a Classification to an object, search for the appropriate classification
scheme, then choose a concept within that classification scheme. Follow these

steps:
1. Inthe Details area for the object, click the Classifications button.
The Classifications table (which may be empty) appears.

2. Click Add.
A Details Pandl window opens.

3. Type aname and description for the classification.

4. Click the Select ClassificationScheme or Concept button.
A ClassificationScheme/Concept Selector window opens.

5. Expand the ClassificationSchemes node, then expand concept nodes until
you have selected the leaf node you want to use.

6. Click OK to close the ClassificationScheme/Concept Selector window.
The classification scheme and concept appear in the Details Panel win-
dow.

7. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

8. Click Save in the Details areafor the object.

295

296

USING THE SERVICE REGISTRY WEB CONSOLE

Adding an External Identifier to an
Object

To create an external identifier, you use an external classification scheme, one
whose values are not known to the Registry because the classification scheme
has no concepts.

To add an external identifier to an object, search for the appropriate classification
scheme, then enter avalue. Follow these steps:

1. Inthe Details area for the object, click the Externalldentifiers tab.
The Externalldentifiers table (which may be empty) appears.

2. Click Add.
A Details Panel window opens.

3. Type aname and description for the external identifier.
4. Click the Select ClassificationScheme button.
A ClassificationScheme/Concept Selector window opens.

5. Expand the ClassificationSchemes node, then expand concept nodes until
you have selected the leaf node you want to use.

6. Click OK to close the ClassificationScheme/Concept Selector window.

The classification scheme and concept appear in the Details Panel win-
dow.

7. Click Add to close the Details Panel window.
The new version of the object appearsin the Registry Objects area.

8. Click Save in the Details area for the object.

Adding an External Link to an Object

An external link allows you to associate a URI with aregistry object.
To add an external link to an object, follow these steps:

1. Inthe Details areafor the object, click the External Links tab.
The ExternalLinks table (which may be empty) appears.

2. Click Add.
A Details Panel window opens.

ADDING CUSTOM INFORMATION TO AN OBJECT USING SLOTS 297

3. Type aname for the external link.
. Typethe URL for the external link in the External URI field.

5. Optionaly, click the Select Concept for Object Type button if you want to
specify the type of content to which the URL points.

Expand the ClassificationSchemes node and locate the content type by
expanding the ObjectType, RegistryObject, and ExtrinsicObject nodes.
Select the concept, then click OK. If you do not find a suitable type, click
Cancdl. You can create anew concept for ExtrinsicObjectsif you wish.

6. Click Add to close the Details Panel window.
The new version of the object appears in the Registry Objects area.

7. Click Save in the Details area for the object.

N

Adding Custom Information to an
Object Using Slots

A slot contains extra information that would otherwise not be stored in the Reg-
istry. Slots provide away to add arbitrary attributes to objects.

To add a dlot to an object, follow these steps:

1. Inthe Details area for the object, click the Slots tab.
The Slots table (which may be empty) appears.

2. Click Add.
A Details Pandl window opens.

3. Type aname for the Slot.

4. Optionally, type a value in the Slot Type field. You may use this field to
specify a datatype for the slot or to provide away to group slots together.

5. Typeavauein the Valuesfield.
6. Click Add to close the Details Panel window.
The new version of the object appears in the Registry Objects area.

7. Click Save in the Details area for the object.

298

USING THE SERVICE REGISTRY WEB CONSOLE

Adding a Postal Address to an
Organization or User

An Organization or User can have one or more postal addresses. To add a postal
address to either an Organization or a User, follow these steps:

1. Inthe Details area for the Organization or User, click the Postal Addresses
tab.

The Postal Addresses table (which may be empty) appears.
2. Click Add.
A Details Panel window opens.
3. Typevaluesin thefields. All fields except Street are optional.
o Street Number
» Street (required)
» City
» State or Province
» Country
» Postal Code
4. Click Add to close the Details Panel window.
The new version of the object appearsin the Registry Objects area.

5. Click Save in the Details area for the object.

Adding a Telephone Number to an
Organization or User

An Organization or User can have one or more tel ephone numbers. To add atele-

phone number to either an Organization or a User, follow these steps:

1. Inthe Details area for the Organization or User, click the TelephoneNum-
bers tab.

The TelephoneNumbers table (which may be empty) appears.

2. Click Add.
A Details Panel window opens.

ADDING AN EMAIL ADDRESS TO AN ORGANIZATION OR USER 299

3. Select a value from the Type combo box (Beeper, FAX, HomePhone,
M obilePhone, or OfficePhone).

4. Typevaluesin thefields. All fields except Phone Number are optional.
e Country Code
» AreaCode
« Phone Number (required)
» Extension

5. Click Add to close the Details Panel window.
The new version of the object appears in the Registry Objects area.
6. Click Save in the Details area for the object.

Adding an Email Address to an
Organization or User

An Organization or User can have one or more email addresses. To add an email
address to either an Organization or a User, follow these steps:

1. Inthe Details areafor the Organization or User, click the Email Addresses
tab.

The Email Addresses table (which may be empty) appears.
2. Click Add.
A Details Pandl window opens.

3. Select avalue from the Type combo box (HomeEmail or OfficeEmail).
. Typeavaluein the Email Addressfield.
5. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

6. Click Save in the Details area for the object.

IN

Adding a User to an Organization

An Organization can have one or more users. One user is the primary contact,
which is normally the user that created the organization. To create a new user
and add it to an Organization, follow these steps:

1. Inthe Details area for the Organization, click the Users tab.

300

USING THE SERVICE REGISTRY WEB CONSOLE

The Users table appears.

. Click Add.

A Details Panel window opens.

. In the Name field, type the last name of the user to the left of the comma

and (optionally) the first and middle names to the right of the comma.

. Optionally, type a description of the user in the Description field.
. Inthe First Name, Middle Name, and Last Namefields, typethefirst name,

middle name, and surname of the user. (All fields are optional.)

. Click Add to close the Details Panel window.

The new version of the organization appears in the Registry Objects area,
and the user is created.

. Click Save in the Details areafor the object.

Adding a Child Organization to an
Organization

An Organization can have one or more child organizations. To add a child orga-
nization to an Organization, follow these steps:

1

N

In the Details area for the Organization, click the Organizations tab.
The Organizations table appears.

. Click Add.

A Details Panel window opens.

. Inthe Name field, type a name for the new organization.
. Optionally, type a description in the Description field.
. Type valuesin the address fields. All fields except Street are optional .

» Street Number
» Street (required)
» City

o State or Province
« Country

» Postal Code

. Click Add to close the Details Panel window.

ADDING A SERVICE BINDING TO A SERVICE 301

The new version of the object appears in the Registry Objects area, and
the new Organization is created.

7. Click Save in the Details area for the object.

Adding a Service Binding to a Service

A Service normally has one or more service bindings. To add a service binding
to a Service, follow these steps:

1. Inthe Details areafor the Service, click the ServiceBindings tab.
The ServiceBindings table appears.

2. Click Add.
A Details Panel window opens.

3. Inthe Name field, type a name for the service binding.

4. Optionally, type a description of the service binding in the Description
field.

5. Inthe Access URI field, type the URL for the service binding.
6. Click Add to close the Details Panel window.
The new version of the object appears in the Registry Objects area.

7. Click Save in the Details area for the object.

Adding a Specification Link to a Service
Binding
A ServiceBinding normally has a SpecificationLink object. To add a Specifica-
tionLink to a ServiceBinding, follow these steps:
1. Inthe Detailsareafor the ServiceBinding, click the SpecificationLinkstab.
The SpecificationLinks table appears.

2. Click Add.
A Details Pandl window opens.
3. Inthe Name field, type a name for the SpecificationLink.

4. Optionally, type a description of the SpecificationLink in the Description
field.

302

USING THE SERVICE REGISTRY WEB CONSOLE

5. In the Usage Description field, type a usage description for the usage
parameters, if there are any.

6. In the Usage Parameters field, type the usage parameters, if there are any.
7. Click Add to close the Details Panel window.
The new version of the object appearsin the Registry Objects area.

8. Click Save in the Details area for the object.

Adding a Child Conceptto a
Classification Scheme or Concept

A ClassificationScheme normally has numerous child concepts (which can in
turn have child concepts). To add a child concept to a ClassificationScheme, fol-
low these steps:
1. Inthe Details area for the ClassificationScheme, click the Concepts tab.
The Concepts table appears.
2. Click Add.
A Details Panel window opens.
. Inthe Name field, type a name for the concept.
. Optionally, type a description of the concept in the Description field.
. Inthe Value field, type a value for the concept.
. Click Add to close the Details Panel window.
The new version of the object appearsin the Registry Objects area.

7. Click Save in the Details area for the object.

o U1~ W

Changing the State of Objects

In addition to saving, editing, and removing objects, you can perform the foll ow-
ing actions on them if you are the owner or are otherwise authorized to do so:

* Approval

» Deprecation

» Undeprecation

These features are useful in a production environment if you want to establish a
version control policy for registry objects. For example, you can approve a ver-

REMOVING OBJECTS

sion of an object for general use and deprecate an obsolete version before you
removeit. If you change your mind after deprecating an object, you can undepre-
cateit.

You perform al these actions in the Search Results area.

« To approve an object, select it and click the Approve button. A message
verifying the approval appears, and the event is added to the Audit Trail.

» To deprecate an object, select it and click the Deprecate button. A message
verifying the deprecation appears, and the event is added to the Audit Trail.

» To undeprecate an object, select it and click the Undeprecate button. A
message verifying the undeprecation appears, and the event is added to the
Audit Trail.

Removing Objects

To remove an object you own from the Registry, select the object and click the
Delete button.

If the object is an extrinsic object, you have two choices.

* Choose Delete Object and Repository Item (the default) from the Deletion
Options menu to delete both the ExtrinsicObject registry object and the
repository item to which it refers.

¢ Choose Delete Repository Item Only to delete the repository item and
leave the ExtrinsicObject in the Registry. You can then add another repos-
itory item.

The Deletion Options menu is meaningful only for extrinsic objects.

Creating Relationships Between Objects

There are two kinds of relationships between objects: references and associa-
tions. They are both unidirectional. That is, each has a source object and atarget
object.

The Registry supports references, called ObjectRefs, between certain types of
objects. For example, if you create a Service and a ServiceBinding, you can cre-
ate a ServiceBinding reference from the Service to the ServiceBinding. How-
ever, you cannot create a reference from the ServiceBinding to the Service. A
Reference is not aregistry object.

303

304

USING THE SERVICE REGISTRY WEB CONSOLE

An Association is aregistry object, and you can create an Association from any
registry object to any other. The Registry supports an AssociationType classifica-
tion scheme that includes a number of predefined association types. OffersSer-
vice, RelatedTo, HasMember, and so on. You can also create hew association
types. Associations between registry objects that you own are called intramural
associations. Associations in which you do not own one or both of the objects
are called extramural associations. If you create an Organization and add a Ser-
viceto it, an Association of type OffersService is automatically created from the
Organization to the Service.

If no valid reference exists for the source and target objects, you cannot create a
reference.

You use the Relate button in the Registry Objects areato relate two objects. This
button becomes active when you select two objects in the search results table.

If the two objects are not both visible in the search results table, select the Pin
checkbox to hold one object in the search results table while you find the object
to which you want to relateit.

Creating References

To create a Reference, follow these steps:

1. Inthe Registry Objects area, select two objects and click Relate.

2. Inthe Create Relationship area, select the source object if it is not aready
selected.

The other object becomes the target object.
3. If avalid reference exists for the source and target objects, the Reference
option is selected by default, and the valid reference attribute appears. If

no valid reference exists for the source and target objects, the Reference
radio button is grayed out.

4, Click Save to save the Reference.

Creating Associations

To create an Association, follow these steps.

1. Inthe Registry Objects area, select two objects and click Relate.

2. Inthe Create Relationship area, select the source object if it is not already
selected.

CREATING RELATIONSHIPS BETWEEN OBJECTS

The other object becomes the target object.

3. Select the Association radio button, if it is not already selected.
4. Type aname and description for the Association in the Details area.
The source and target object ID values are already filled in.

5. Choose atype value from the Association Type menu.
6. Click Save to save the Association.

305

306 USING THE SERVICE REGISTRY WEB CONSOLE

8

Developing Clients for
the Service Registry

T HIS chapter describes how to use the Java API for XML Registries (JAXR) to
access the Service Registry (“the Registry”).

After providing a brief overview of JAXR and the examples described in this
chapter, this chapter describes how to implement a JAXR client to query the
Registry and publish content to the Registry and its associated repository.

Overview of JAXR

This section provides a brief overview of JAXR. It covers the following topics:

« About Registries and Repositories
* About AXR

¢ JAXR Architecture

¢ About the Examples

About Registries and Repositories

An XML registry is an infrastructure that enables the building, deployment, and
discovery of web services. It is a neutral third party that facilitates dynamic and

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, normally in the form of a web-based ser-
vice.

Currently there are a variety of specificationsfor XML registries. These include

» The ebXML Registry and Repository standard, which is sponsored by the
Organization for the Advancement of Structured Information Standards
(OASIS) and the United Nations Centre for the Facilitation of Procedures
and Practices in Administration, Commerce and Transport (U.N./
CEFACT). ebXML stands for Electronic Business using eXtensible
Markup Language.

* The Universal Description, Discovery, and Integration (UDDI) project,
which is devel oped by avendor consortium

A registry provider is an implementation of aregistry that conforms to a specifi-
cation for XML registries.

While a UDDI registry stores information about businesses and the services they
offer, an ebXML registry has a much wider scope. It is arepository aswell as a
registry. A repository stores arbitrary content as well as information about that
content. In other words, arepository stores data as well as metadata. The ebXML
Registry standard defines an interoperable Enterprise Content Management
(ECM) API for web services.

An ebXML registry and repository is to the web what arelational database is to
enterprise applications: it provides a means for web services and web applica
tions to store and share content and metadata.

An ebXML registry can be part of a registry federation, an affiliated group of
registries. For example, the health ministry of a country in Europe could operate
aregistry, and that registry could be part of a federation that included the regis-
tries of other European health ministries.

About JAXR

JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are por-
table across various target registries. JAXR al so enables value-added capabilities
beyond those of the underlying registries.

JAXR ARCHITECTURE

The current version of the JAXR specification includes detailed bindings
between the JAXR information model and the ebXML Registry specifications.
You can find the latest version of the JAXR specification at

http://java.sun.com/xml/downloads/jaxr.html

The Service Registry includes a JAXR provider that implements the level 1 capa-
bility profile, which allows full accessto ebXML registries. The ebXML specifi-
cations and the JAXR specification are not in perfect alignment, because the
ebXML specifications have advanced beyond the JAXR specification. For this
reason, the JAXR provider for the Registry includes some additional implemen-
tation-specific methods that implement the ebXML specifications and that are
likely to be included in the next version of the JAXR specification.

JAXR Architecture

The high-level architecture of JAXR consists of the following parts:

* AJAXRclient: Thisisaclient program that uses the JAXR API to access
aregistry through a JAXR provider.

e A JAXR provider: This is an implementation of the JAXR API that pro-
vides accessto aspecific registry provider or to aclassof registry providers
that are based on a common specification. This guide does not describe
how to implement a JAXR provider.

A JAXR provider implements two main packages.

* javax.xml.registry, which consists of the APl interfaces and classes
that define the registry access interface.

e javax.xml.registry.infomodel, which consistsof interfacesthat define
the information model for JAXR. These interfaces define the types of
objectsthat residein aregistry and how they relate to each other. The basic
interface in this package is the RegistryObject interface.

The most basic interfacesin the javax.xm1.registry package are

e Connection. The Connection interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use aregistry.

e RegistryService. Theclient obtains aRegistryService object fromits
connection. The RegistryService object in turn enables the client to
obtain the interfaces it uses to access the registry.

http://java.sun.com/xml/downloads/jaxr.html

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

The primary interfaces, also part of the javax.xm1.registry package, are

* QueryManager and BusinessQueryManager, which allow the client to
search aregistry for information in accordance with the javax.xm1. reg-
istry.infomodel interfaces. An optional interface, DeclarativeQuery-
Manager, alows the client to use SQL syntax for queries. The ebXML
provider for the Registry implements DeclarativeQueryManager.

* LifeCycleManager and BusinessLifeCycleManager, which alow the
client to modify the information in aregistry by either saving it (updating
it) or deleting it.

When an error occurs, JAXR APl methods throw a JAXRException or one of its
subcl asses.

Many methods in the JAXR APl use a Collection object as an argument or a
returned value. Using a Collection object allows operations on several registry
objects at atime.

Figure 8-1 illustrates the architecture of JAXR. For the Registry, a JAXR client
uses the capability level 0 and level 1 interfaces of the JAXR API to access the
JAXR provider, which is an ebXML provider. The JAXR provider in turn
accesses the Registry, an ebXML registry.

JAXR API
Capability-Specific IMerfaces
y R, ' Hmmw-
whEML Provider LD Frendidar Crihar P roulder Specific
JAXA Provices
Diveras
RAagisirias

wh XML

Figure8-1 JAXR Architecture

ABOUT THE EXAMPLES

About the Examples

Many sample client programs that demonstrate JAXR features are available as
part of the Java Web Services Developer Pack (Java WSDP). If you ingtall the
Java WSDP, you will find them in the directory <INSTALL>/registry/samples.
(<INSTALL> isthe directory where you installed the Java WSDP)

Each example or group of examples has a build.xm1 file that allows you to
compile and run each example using the Ant tool. Each build.xm1 file has a
compile target and one or more targets that run the example or examples. Some
of the run targets take command-line arguments.

Before you run the examples, you must edit two files in the directory
<INSTALL>/registry/samples/common. Thefilebuild.properties isused by
the Ant targets that run the programs. The file JAXRExamples.properties isa
resource bundle that is used by the programs themselves.

In addition, a targets.xm1 file in the <INSTALL>/registry/samples/common
directory defines the classpath for compiling and running the examples. It aso
containsaclean target that deletesthe bui1d directory created when each exam-
pleis compiled.

Because Tomcat and the Sun Java System Application Server Platform Edition
8.1 have different file structures, there are two versions of the build.proper-
ties and targets.xml files, with the suffix tomcat for Tomcat and the suffix as
for the Application Server.

Edit thefilebuild.properties.as asfollows:

1. Set the property container.home to the location of Sun Java System
Application Server Platform Edition 8.1.

2. Set the property registry.home to the directory where you installed the
Java WSDP.

3. Set the properties proxyHost and proxyPort to specify your own proxy
settings. The proxy host is the system on your network through which you
access the Internet. You usually specify the proxy host in your web
browser settings.

The proxy port has the value 8080, which is the usual one. Change this
string if your proxy uses a different port. Your entries usually follow this
pattern:

proxyHost=proxyhost.mydomain
proxyPort=8080

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Edit thefilebuild.properties.tomcat asfollows:

1

2.

Set the property tomcat . home to the directory where you installed the Java
WSDP.

Set the properties proxyHost and proxyPort to specify your own proxy
settings. The proxy host is the system on your network through which you
access the Internet. You usualy specify the proxy host in your web
browser settings.

The proxy port has the value 8080, which is the usual one. Change this
string if your proxy uses a different port. Your entries usually follow this
pattern:

proxyHost=proxyhost.mydomain
proxyPort=8080

Copy thefiles asfollows:

1

2.

Copy thefile you edited (build.properties.tomcat Or build.proper-
ties.as)tobuild.properties.

Copy the corresponding targets.xm1 file (targets.xml.tomcat Or tar-
gets.xml.as) to targets.xml.

Edit the file JAXRExamples.properties asfollows:

1

Edit the propertiesquery.url and pubT1ish.ur1 to specify the URL of the
Registry. The file provides a default setting of Tocalhost: 8080 for the
host and port, but you may need to change thisto another host or port if the
Registry isinstalled on aremote server or at a non-default port.

. Edit the following properties to specify the properties required for logging

in to the Registry.

security.keystorePath=

security.storepass=ebxmlrr

security.alias=

security.keypass=

The security.keystorePath property specifies the location of the key-
store file. The security.storepass property has a default setting of
ebxmlrr. The security.alias and security.keypass properties are
the dias and password you specify when you use the User Registration
Wizard of the Java Ul. See Getting Access to the Registry (page 7) for
details.

. Fed freeto change any of the datain the remainder of the file asyou exper-

iment with the examples. The Ant targets that run the client examples
always use the latest version of the file.

SETTING UP A JAXR CLIENT

Setting Up a JAXR Client

This section describes the first steps to follow to implement a JAXR client that
can perform queries and updates to the Service Registry. A JAXR client isacli-
ent program that can access registries using the JAXR API. This section covers
the following topics:

o Starting the Registry

« Getting Accessto the Registry

 Establishing a Connection to the Registry

» Obtaining and Using a RegistryService Object

Starting the Registry

To start the Registry, you start the container into which you installed the Regis-
try: Tomcat or the Sun Java System Application Server.

Getting Access to the Registry

Any user of a JAXR client can perform queries on the Registry for objects that
are not restricted by an access control policy. To perform queries for restricted
objects, to add data to the Registry, or to update Registry data, however, a user
must obtain permission from the Registry to access it. The Registry uses client-
certificate authentication for user access.

To create a user that can submit data to the Registry, use the User Registration
Wizard of the Web Console that is part of the Registry software. You can aso
use an existing certificate obtained from a certificate authority.

You will specify your user name and password for some of the JAXR client
example programs, along with information about the location of your certificate.

Establishing a Connection to the Registry

Thefirst task a JAXR client must complete isto establish aconnection to aregis-
try. Establishing a connection involves the following tasks:

« Creating a Connection Factory
» Creating a Connection

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Creating a Connection Factory

A client creates a connection from a connection factory.

To use JAXR in a stand-alone client program, you must obtainan instance of the
abstract class ConnectionFactory. To do so, call the getConnectionFactory
method in the JAXR provider’s JAXRUt1i 14ty class.

import org.freebxml.omar.client.xml.registry.util.JAXRUtiTity;

ConnectionFactory factory = JAXRUtility.getConnectionFactory();

Creating a Connection

To create a connection, a client first creates a set of properties that specify the
URL or URLs of the registry or registries being accessed. The following code
provides the URL s of the query service and publishing service for the Registry if
the Registry is deployed on the local system. (There should be no line break in
the strings.)

Properties props = new Properties();

props.setProperty("javax.xml.registry.queryManagerURL",
"http://Tocalhost:8080/omar/registry/soap");

props.setProperty("javax.xml.registry.1ifeCycleManagerURL",
"http://1ocalhost:8080/omar/registry/soap");

The client then obtains the connection factory as described in Creating a Con-
nection Factory (page 8), setsits properties, and creates the connection. The fol-
lowing code fragment performs these tasks:

ConnectionFactory factory =
JAXRUti1ity.getConnectionFactory();

factory.setProperties(props);

Connection connection = factory.createConnection();

The makeConnection method in the sample programs shows the steps used to
create a JAXR connection.

OBTAINING AND USING A REGISTRYSERVICE OBJECT

Table 8-1 lists and describes the two properties you can set on a connection.
These properties are defined in the JAXR specification.

Table8-1 Standard JAXR Connection Properties

Data
Property Name and Description Type | Default Value
javax.xml.registry.queryManagerURL
Specifiesthe URL of the query manager service within String | None
the target registry provider.
javax.xml.registry.1ifeCycleManagerURL Same as the specified
Specifies the URL of the life-cycle manager service String q;le ryManagerURL
within the target registry provider (for registry updates). value

Obtaining and Using a RegistryService
Object

After creating the connection, the client uses the connection to obtain aRegis-
tryService object and then the interface or interfacesit will use:

RegistryService rs = connection.getRegistryService();

BusinessQueryManager bgm = rs.getBusinessQueryManager();

BusinessLifeCycleManager blcm =
rs.getBusinessLifeCycleManager();

Typicaly, a client obtains a BusinessQueryManager object and either a Life-
CycleManager Or aBusinessLifeCycleManager object fromtheRegistrySer-
vice object. If it is using the Registry for simple queries only, it may need to
obtain only aBusinessQueryManager object.

10

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Querying a Registry

This section describes the interfaces and methods JAXR provides for querying a
registry. It coversthe following topics:
» Using iterative queries
» Basic Query Methods
* JAXR Information Model Interfaces
» Finding Objects by Name
» Finding Objects by Type
* Finding Objects by Classification
» Finding Objects by External Identifier
 Finding Objects by External Link
 Finding Objects by Unique Identifier
» Finding Objects You Published
» Retrieving Information About an Object
» Using Declarative Queries
* Invoking Stored Queries
» Querying a Registry Federation

Basic Query Methods

The simplest way for aclient to use aregistry isto query it for information about
the objects and datain it. The QueryManager, BusinessQueryManager, and Reg-
istryObject interfaces support a number of finder and getter methods that
alow clientsto search for data using the JAXR information model. Many of the
finder methods return a BuTkResponse (a collection of objects) that meets a set
of criteria specified in the method arguments. The most general of these methods
are asfollows:

* getRegistryObject and getRegistryObjects, QueryManager methods
that return one or more objects based on their type or unique identifier, or
return the objects owned by the caller (for information on unique identifi-
ers, see Finding Objects by Unigue Identifier, page 22)

* findObjects, an implementation-specific BusinessQueryManager
method that returns a list of al objects of a specified type that meet the
specified criteria

JAXR INFORMATION MODEL INTERFACES

Other finder methods allow you to find specific kinds of objects supported by the
JAXR information model. While a UDDI registry supports a specific hierarchy
of objects (organizations, which contain users, services, and service bindings),
an ebXML registry permits the storage of freestanding objects of various types
that can be linked to each other in various ways. Other objects are not freestand-
ing but are always attributes of another object.

The BusinessQueryManager finder methods are useful primarily for searching
UDDI registries. The more general findObjects method and the RegistryOb-
ject getter methods are more appropriate for the Service Registry.

To execute queries, you do not need to log in to the Registry. By default, an
unauthenticated user has the identity of the user named “ Registry Guest.”

JAXR Information Model Interfaces

Table 8-2 lists the main interfaces supported by the JAXR information model.
All these interfaces extend the Regi stryObject interface.

Table8-2 JAXRRegistryObject Subinterfaces

Object Type Description

Defines a relationship between two objects. Getter/finder meth-
ods: RegistryObject.getAssociations, BusinessQue-
ryManager.findAssociations,
BusinessQueryManager.findCallerAssociations.

Association

Provides arecord of achange to an object. A collection of Aud-
AuditableEvent itableEvent objects congtitutes an object’s audit trail. Getter
method: RegistryObject.getAuditTrail.

Classifies an object using aClassificationScheme. Getter

Cl ificati . . A .
assirication method: RegistryObject.getClassifications.

12 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Table8—2 JAXR RegistryObject Subinterfaces (Continued)

Object Type

Description

ClassificationScheme

Represents a taxonomy used to classify objects. Aninterna
ClassificationScheme isonein which all taxonomy ele-
ments (concepts) are defined in the registry. An external Clas-
sificationScheme isonein which the values are not defined
in the registry but are represented using an ExternalIdenti-
fier. Finder methods: BusinessQueryManager.findClas-
sificationSchemes,
BusinessQueryManager.findClassificationScheme-
ByName.

Concept

Represents a taxonomy element and its structural relationship

with other elementsin aninternal ClassificationScheme.

Called aClassificationNode inthe ebXML specifications.
Finder methods: BusinessQueryManager. findConcepts,

BusinessQueryManager.findConceptByPath.

ExternalIdentifier

Provides avalue for the content of an external Classifica-
tionScheme. Getter method: RegistryObject.getExter-
nalIdentifiers.

ExternalLink

Provides aURI for content that may reside outside the registry.
Getter method: RegistryObject.getExternallLinks.

ExtrinsicObject

Provides metadata that describes submitted content whose type
isnot intrinsically known to the registry and therefore must be
described by means of additional attributes (such as mime type).
No specific getter/finder methods.

Organization

Provides information about an organization. May have a parent,
and may have one or more child organizations. Always has a
User object as a primary contact, and may offer Service
objects. Finder method: BusinessQueryManager.findOrga-
nizations.

RegistryPackage

Represents alogical grouping of registry objects. A Registry-
Package may have any number of RegistryObjects. Getter/
finder methods: RegistryObject.getRegistryPackages,
BusinessQueryManager. findRegistryPackages.

Service

Provides information on a service. May have a set of Service-
Binding objects. Finder method: BusinessQueryMan-
ager.findServices.

JAXR INFORMATION MODEL INTERFACES

Table8-2 JAXR RegistryObject Subinterfaces (Continued)

Object Type Description

Represents technical information on how to accessa Service.
ServiceBinding Getter/finder methods; Service.getServiceBindings,
BusinessQueryManager.findServiceBindings.

Provides adynamic way to add arbitrary attributes to Regis-
STot tryObject instances. Getter methods. RegistryOb-
ject.getSlot, RegistryObject.getSlots.

Providesthe linkage between aServiceBinding and one of its
technical specifications that describes how to use the service
using the ServiceBinding. Getter method: ServiceBind-
ing.getSpecificationLinks.

SpecificationLink

Provide information about registered users within the registry.
User objects are affiliated with Organi zation objects. Getter
methods: Organization.getUsers, Organiza-
tion.getPrimaryContact.

User

Table 8-3 lists the other interfaces supported by the JAXR information model.
These interfaces provide attributes for the main registry objects. They do not
themselves extend the RegistryObject interface.

Table 8-3 JAXR Object Types Used as Attributes

Object Type Description

Represents an email address. A User may have an Emai1Ad-

EmailAddress dress. Getter method: User.getEmailAddresses.

Represents a String that has been internationalized into several
locales. ContainsaCollection of LocalizedString objects.
InternationalString | Thenameand description of aRegistryObject are Inter-
nationalString objects. Getter methods: RegistryOb-
ject.getName, RegistryObject.getDescription.

Represents aunique key that identifiesaRegistryObject. Must
Key be a DCE 128 UUID (Universal Unique | Dentifier). Getter
method: RegistryObject.getKey.

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Table8-3 JAXR Object Types Used as Attributes (Continued)

Object Type Description

A component of an InternationalString that associates a
LocalizedString String withits Locale. Getter method: International-
String.getlLocalizedStrings.

Represents a person’s name. A User hasaPersonName. Getter

P N
ersoniame method: User . getPersonName.

Represents a postal address. An Organization or User may
have one or more PostalAddress objects. Getter methods:
PostalAddress Organization.getPostalAddress, Organization-
Impl.getPostalAddresses (implementation-specific),
User.getPostalAddresses.

Represents a telephone number. An Organization or aUser
may have one or more TelephoneNumber objects. Getter meth-
ods: Organization.getTelephoneNumbers,
User.getTelephoneNumbers.

TelephoneNumber

Finding Objects by Name

To search for objects by name, you normally use a combination of find qualifiers
(which affect sorting and pattern matching) and name patterns (which specify
the strings to be searched). The BusinessQueryManagerImpl.findObjects
method takes a collection of FindQualifier objects asits second argument and
takes a collection of name patterns as its third argument. Its method signature is
asfollows:

public BulkResponse findObjects(java.lang.String objectType,
java.util.Collection findQualifiers,
java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection specifications,
java.util.Collection externalIdentifiers,
java.util.Collection externalLinks)

throws JAXRException

You can use wildcards in aname pattern. Use percent signs (%) to specify that the
guery string occurs at the beginning, end, or middle of the object name.

FINDING OBJECTS BY NAME

For example, the following code fragment finds all the organizations in the Reg-
istry whose names begin with a specified string, gString, and sorts them in
aphabetical order.

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
Collection namePatterns = new ArraylList();
namePatterns.add(qString + "%");

// Find organizations with name that starts with gString
BulkResponse response =
bgm.findObjects("Organization”, findQualifiers,
namePatterns, null, null, null, null);
Collection orgs = response.getCollection();

The findObjects method is not case-sensitive, unless you specify FindQuali-
fier.CASE_SENSITIVE_MATCH. In the previous fragment, the first argument
could be either "Organization" or "organization", and the name pattern
matches names regardless of case.

The following code fragment performs a case-sensitive search for al registry
objects whose names contain the string qString and sorts them in alphabetical
order.

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
Collection namePatterns = new ArraylList();
namePatterns.add("%" + qString + "%");

// Find objects with name that contains gString
BulkResponse response =
bgm.findObjects("RegistryObject", findQualifiers,
namePatterns, null, null, null, null);
Collection orgs = response.getCollection();

The percent sign matches any number of charactersin the name. To match asin-
gle character, use the underscore (_). For example, to match both “Argl” and
“Org2” you would specify a name pattern of _rg_.

15

16

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Finding Objects by Name: Example

For an example of finding objects by name, see the example <INSTALL>/regis-
try/samples/query-name/src/JAXRQueryByName.java. TO run the example
follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/query-name.
2. Type the following command, specifying a string value:
ant run -Dname=string
The program performs a case-insensitive search, returning all objects whose

names contain the specified string. It aso displays the object’s classifications,
externa identifiers, externa links, slots, and audit trail.

Finding Objects by Type

To find all objects of a specified type, specify only the first argument of the
BusinessQueryManagerImpl.findObjects method and, optionaly, acollection
of FindQualifier objects. For example, if typeString is a string whose value
iseither "Service" or "service", the following code fragment will find all ser-
vicesin the Registry and sort them in a phabetical order.

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);

BulkResponse response = bgm.findObjects(typeString,
findQualifiers, null, null, null, null, null);

You cannot use wildcardsin the first argument to findObjects.

Finding Objects by Type: Example

For an example of finding objects by type, see the example <INSTALL>/regis-
try/samples/query-object-type/src/JAXRQueryByObjectType.java. ToO
run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-object-
type.

2. Type the following command, specifying a string value:
ant run -Dtype=type_name

FINDING OBJECTS BY CLASSIFICATION

The program performs a case-insensitive search, returning all objects whose type
is type_name and displaying their names, descriptions, and unique identifiers.
Specify the exact name of the type, not awildcard, asin the following command
line:

ant run -Dtype=federation

Finding Objects by Classification

To find objects by classification, you establish the classification within a particu-
lar classification scheme and then specify the classification as an argument to the
BusinessQueryManagerImpl.findObjects method.

To do this, you first find the classification scheme and then createaClassifica-
tion object to be used as an argument to the findObjects method or another
finder method.

The following code fragment finds all organizations that correspond to a particu-
lar classification within the 1SO 3166 country codes classification system main-
tained by the International Organization for Standardization (1SO). See http://
www.iso.org/iso/en/prods-services/iso3166ma/index.html for details
(This classification scheme is provided in the sample database included with the

Registry.)

ClassificationScheme cScheme =
bgm. findClassificationSchemeByName(nulT,
"is0-ch:3166:1999");

Classification classification =
blcm.createClassification(cScheme, "United States", "US"™);

Collection classifications = new ArrayList();

classifications.add(classification);

// perform query

BulkResponse response = bgm.findObjects("Organization", null,
null, classifications, null, null, null);

Collection orgs = response.getCollection();

The ebXML Registry Information Model Specification requires a set of canoni-
cal classification schemesto be present in an ebXML registry. Each scheme also
has a set of required concepts (called ClassificationNodes in the ebXML specifi-
cations). The primary purpose of the canonical classification schemes is not to
classify objects but to provide enumerated types for object attributes. For exam-

17

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

18

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

ple, the Emai1Type classification scheme provides a set of values for the type
attribute of an Email1Address object.

Table 84 lists and describes these canonical classification schemes.

Table8-4 Canonica Classification Schemes

Classification Scheme

Description

AssociationType

Defines the types of associations between RegistryObjects.

ContentManagementSer-
vice

Defines the types of content management services.

Defines the data types for attributes in classes defined by the

DataType specification.
DeletionScopeTybe Defines the values for the deletionScope attribute in the
pelyp RemoveObjectsRequest protocol message.
EmailType Defines the types of email addresses.
ErrorHandlingMode] Defines the types of error handling models for content manage-
ment services.
. Defines the different error severity types encountered bythe
ErrorSeverityType . .
registry during processing of protocol messages.
EventType Defines the types of events that can occur in aregistry.
InvocationModel Defi nes.the different ways'that a content management service
may be invoked by the registry.
Defines the different waysin which aClassification-
NodeType Scheme may assign the value of the code attribute for itsClas-

sificationNodes.

NotificationOption-
Type

Defines the different ways in which a client may wish to be
notified by the registry of an event within aSubscription.

Defines the different types of RegistryObjectsaregistry

ObjectType may Support.
PhoneType Defines the types of telephone numbers.
Querylanguage Defines the query languages supported by aregistry.

FINDING OBJECTS BY CLASSIFICATION

Table 84 Canonical Classification Schemes (Continued)

Classification Scheme Description

ResponseStatusType Defines the different types of status for aRegistryResponse.

StatusType Defines the different types of status for aRegistryObject.

Defines the groups that a User may belong to for access con-

SubjectGroup trol purposss.

Defines the roles that may be assigned to aUser for access

SubjectRole
control purposes.

For a sample program that displays all the canonical classification schemes and
their concepts, see <INSTALL>/registry/samples/classification-schemes/
src/JAXRGetCanonicalSchemes. java. To run this example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-
schemes.

2. Type the following command:
ant get-schemes

Finding Objects by Classification: Examples

For examples of finding objects by classification, see the two examples in
<INSTALL>/registry/samples/query-classification/src. JAXRQueryBy-
Classification.java and JAXRQueryByCountryClassification.java. The
first example searches for objects that use the canonical classification scheme
InvocationModel, while the other example searches for organizations that use a
geographical classification. To run the examples, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/query-classifica-
tion.
2. Type either of the following commands:
ant query-class
ant query-geo
These examples are likely to produce results only after you have published an
object that uses the specified classification (for example, the onein Adding Clas-
sifications: Example, page 48, causes the query-geo target to return an object).

19

20

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Finding Objects by External Identifier

Finding objects by external identifier is similar to finding objects by classifica-
tion. You first find the classification scheme, then create an ExternalIdenti-
fier object to be used a an argument to the
BusinessQueryManagerImpl.findObjects method or another finder method.

The following code fragment finds al registry objects that contain the Sun
Microsystems stock ticker symbol as an external identifier. The sample database
included with the Registry does not have any external classification schemes, so
you would have to create one named NASDAQ for this example to work. See Add-
ing External Identifiersto Objects (page 49) for details on how to do this.

The collection of external identifiers is supplied as the next-to-last argument of
the findObjects method.

ClassificationScheme cScheme = null;
cScheme =
bgm.findClassificationSchemeByName(null, "NASDAQ");

ExternalIldentifier extId =

blcm.createExternalIdentifier(cScheme, "%Sun%",
"SUNW") ;

Collection extIds = new ArraylList();

extIds.add(extId);

// perform query

BulkResponse response = bgm.findObjects("RegistryObject",
null, null, null, null, extIds, null);

Collection objects = response.getCollection();

Finding Objects by External Identifier:
Example

For an example of finding objects by external identifier, see the example
<INSTALL>/registry/samples/query-external-identifier/src/JAXRQue-
ryByExternalIdentifier.java, which searches for objects that use the NAS-
DAQ classification scheme. To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-external-
identifier.

2. Type the following command:
ant run

FINDING OBJECTS BY EXTERNAL LINK

This example is not likely to produce results unless you first run the pub1ish-
object example described in Adding Classifications: Example (page 48).

Finding Objects by External Link

Finding objects by external link does not require the use of a classification
scheme, but it does require you to specify a valid URI. The arguments to the
createExternallLink method are a URI and a description.

If the link you specify is outside your firewall, you also need to specify the sys-
tem properties http.proxyHost and http.proxyPort when you run the pro-
gram so that JAXR can determine the validity of the URI.

The following code fragment finds all organizations that have a specified Exter-
nalLink object.

ExternalLink extLink =
blcm.createExternalLink("http://java.sun.com/",
"Sun Java site");

Collection extLinks = new ArrayList();

extLinks.add(extLink);

BuTlkResponse response = bgm.findObjects("Organization",
null, null, null, null, null, extLinks);

Collection objects = response.getCollection();

Finding Objects by External Link: Example

For an example of finding objects by external link, see the example <INSTALL>/
registry/samples/query-external-Tink/src/JAXRQueryByExternal-
Link.java, which searches for objects that have a specified external link. The
http.proxyHost and http.proxyPort properties are specified in the run target
inthe build.xml file.

To run the example, follow these steps:
1. Go to the directory <INSTALL>/registry/samples/query-external-
Tink.

2. Type the following command:
ant run

This example is not likely to produce results unless you first run the publish-
object example described in Adding Classifications: Example (page 48).

21

22

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Finding Objects by Unique Identifier

Every object in the Registry has two identifiers, a unique identifier (also called a
Key) and a logical identifier. Often the unique and logical identifiers are the
same. However, when an object exists in more than one version, the unique iden-
tifiers are different for each version, but the logical identifier remains the same.
(See Retrieving the Version of an Object, page 34.)

If you know the value of the unique identifier for an object, you can retrieve the
object by calling the QueryManager.getRegistryObject method with the
String value as an argument. For example, if bgm is your BusinessQueryMan-
ager instance and idString is the String vaue, the following line of code
retrieves the object:

RegistryObject obj = bgm.getRegistryObject(idString);

Once you have the object, you can obtain its type, name, description, and other
attributes.

Finding Objects by Unique Identifier. Example

For an example of finding objects by unique identifier, see the example
<INSTALL>/registry/samples/query-id/src/JAXRQueryById.java, which
searches for objects that have a specified unique identifier. To run the example,
follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/query-id.

2. Type the following command:
ant run -Did=urn_value

For example, if you specify the following ID, you retrieve information on the
ObjectType classification scheme.

urn:oasis:names:tc:ebxml-regrep:classificationScheme:0bjectType

Finding Objects You Published

You can retrieve all objectsthat you published to the Registry, or you can narrow
this search to retrieve only the objects you published that are of a particular
object type. To retrieve all the objects you have published, use the no-argument
version of the QueryManager.getRegistryObjects method. The name of this

FINDING OBJECTS YOU PUBLISHED

method is misleading, because it returns only objects you have published, not all
registry objects.

For example, if bgm is your BusinessQueryManager instance, use the following
line of code:

BulkResponse response = bgm.getRegistryObjects();

To retrieve all the objects of a particular type that you published, use
QueryManager.getRegistryObjects with aString argument:

BulkResponse response = bgm.getRegistryObjects("Service");

This method is case-sensitive, so the object type must be capitalized.

The sample programs JAXRGetMyObjects and JAXRGetMyObjectsByType show
how to use these methods.

Finding Objects You Published: Examples

For examples of finding objects by classification, see the two examples in
<INSTALL>/registry/samples/get-objects/src: JAXRGetMyObjects.java
and JAXRGetMyObjectsByType.java. The first example, JAXRGetMyOb-
jects.java, retrieves al objects you have published. The second example,
JAXRGetMyObjectsByType. java, retrieves all the objects you have published of
a specified type. To run the examples, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/get-objects.
2. Type the following command to retrieve all objects you published:
ant get-obj
3. Type the following command to retrieve al objects you have published of

a specified type, where type_name is case-sensitive:
ant get-obj-type -Dtype=type_name

Note: At thisrelease, every user hastheidentity RegistryOperator. Becausethis
user owns al the objects in the Registry, the get-obj target takes along time to
run, and the get-obj-type target may take along timeif the type_name is one
with many objects (ClassificationNode, for example).

23

24

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Retrieving Information About an Object

Once you have retrieved the object or objects you are searching for, you can also
retrieve the object’s attributes and other objects that belong to it: its name,
description, type, ID values, classifications, externa identifiers, external links,
and slots. For an organization, you can also retrieve the primary contact (aUser
object), postal address, telephone numbers, and the services that the organization
offers. For auser, you can retrieve the name, email addresses, postal address, and
telephone numbers. For a service, you can retrieve the service bindings.

For an abject, you can aso retrieve the audit trail, which contains the events that
have changed the object’s state, and the version. You can also retrieve an object’s
version number, which is updated whenever a change is made to one of the
object’s attributes.

This section covers the following topics:
» Retrieving an organization hierarchy
» Retrieving the Name or Description of an Object
» Retrieving the Type of an Object
* Retrieving the ID Values for an Object
» Retrieving the Classifications for an Object
* Retrieving the External Identifiers for an Object
» Retrieving the External Links for an Object
* Retrieving the Slots for an Object
* Retrieving the Attributes of an Organization or User
» Retrieving the Services and Service Bindings for an Organization
* Retrieving an Organization Hierarchy
* Retrieving the Audit Trail of an Object
» Retrieving the Version of an Object

Retrieving the Name or Description of an
Object

The name and description of an object are both InternationalString objects.
An InternationalString object contains a set of LocalizedString objects.
The methods RegistryObject.getName() and RegistryObject.getDescrip-

RETRIEVING | NFORMATION ABOUT AN OBJECT

tion() return the LocalizedString object for the default locale. You can then
retrieve the String value of the LocalizedString object. For example:

String name = ro.getName().getValue();
String description = ro.getDescription().getValue();

Call the getName or getDescription method with a Locale argument to
retrieve the value for a particular locale.

Many of the examples contain private utility methods that retrieve the name,
description, and unique identifier for an object. See, for example, JAXRGetMyOb-
jects.java in Finding Objects You Published: Examples (page 23).

Retrieving the Type of an Object

If you have queried the Registry without specifying a particular object type, you
can retrieve the type of the objects returned by the query. Use the RegistryOb-
ject.getObjectType method, which returns a Concept value. You can then use
the Concept.getValue method to obtain the String value of the object type.
For example:

Concept objType = object.getObjectType();
System.out.println("Object type is " + objType.getValue());

The concept will be one of those in the canonical classification scheme Object-
Type. For an example of this code, see JAXRQueryByName.java in Finding
Objects by Name: Example (page 16).

Retrieving the ID Values for an Object

The unique identifier for an object is contained in aKey object. A Key is a struc-
ture that contains the identifier in the form of an +id attribute that is a String
value. To retrieve the identifier, call the method RegistryObject.get-
Key() .getId(Q).

The JAXR provider aso has an implementation-specific method for retrieving
the logical identifier, called a1id. The 1id isa String attribute of aRegistry-
Object. To retrieve the 11id, call RegistryObjectImpl.getLid(). The method
has the following signature:

public java.lang.String getLid()
throws JAXRException

25

26

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

For an example of the use of this method, see JAXRQueryOrg. java in Retrieving
Organization Attributes: Example (page 30).

Retrieving the Classifications for an Object

Use the RegistryObject.getClassifications method to retrieve a Collec-
tion of the object’s classifications. For each classification, you can retrieve its
name, value, and the classification scheme to which it belongs. The following
code fragment retrieves and displays an object’s classifications.

Collection classifications = object.getClassifications();
Iterator classIter = classifications.iterator(Q);
while (classIter.hasNext()) {
Classification classification =
(Classification) classIter.next();
String name = classification.getName().getValue(Q);
System.out.println(" Classification name is " + name);
System.out.println(" Classification value is " +
classification.getValue());
ClassificationScheme scheme =
classification.getClassificationScheme();
System.out.println(" Classification scheme for " +
name + " is " + scheme.getName().getValue());

}

Some of the examples have a showClassifications method that usesthis code.
See, for example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

Retrieving the External Identifiers for an
Object

Usethe RegistryObject.getExternalIdentifiers method to retrieve aCol-
Tection of the object’s external identifiers. For each identifier, you can retrieve
its name, value, and the classification scheme to which it belongs. For an exter-
na identifier, the method that retrieves the classification scheme is getIdenti-
ficationScheme. The following code fragment retrieves and displays an
object’s external identifiers.

Collection exIds = object.getExternalldentifiers();
Iterator exIdIter = exIds.iterator();
while (exIdIter.hasNext()) {

ExternalIldentifier exId =

}

RETRIEVING | NFORMATION ABOUT AN OBJECT 27

(ExternalIdentifier) exIdIter.next();
String name = exId.getName().getValue();
System.out.printin(" External identifier name is " +
name) ;
String exIdvValue = exId.getValue(Q);
System.out.println(" External identifier value is " +
exIdValue);
ClassificationScheme scheme =
exId.getIdentificationScheme();
System.out.println(" External identifier " +
"classification scheme is " +
scheme.getName() .getValue());

Some of the examples have a showExternalIdentifiers method that uses this
code. See, for example, JAXRQueryByName. java in Finding Objects by Name:
Example (page 16).

Retrieving the External Links for an Object

Use the RegistryObject.getExternallLinks method to retrieve aCollection
of the object’s external links. For each external link, you can retrieve its name,
description, and value. For an externa link, the name is optional. The following
code fragment retrieves and displays an object’s external links.

Collection exLinks = obj.getExternalLinks();
Iterator exLinkIter = exLinks.iterator();
while (exLinkIter.hasNext()) {

}

ExternallLink exLink = (ExternallLink) exLinkIter.next();
String name = exLink.getName().getValue(Q);
if (name != null) {

System.out.println(" External Tink name is

}
String description = exLink.getDescription().getValue();

System.out.println(" External Tink description is " +
description);

String externalURI = exLink.getExternalURIQ);

System.out.println(" External Tink URI 1is " +

externalURI);

+ name);

Some of the examples have a showExternallLinks method that uses this code.
See, for example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

28

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Retrieving the Slots for an Object

Slots are arbitrary attributes that you can create for an object. UsetheRegistry-
Object.getSlots method to retrieve a Collection of the object’s dlots. For
each dot, you can retrieve its name, values, and type. The name of aST1ot object
isaString, not an InternationalString, and aslot hasaCollection of val-
ues. The following fragment retrieves and displays an object’s dots:

Collection slots = object.getSlots();
Iterator slotIter = slots.iterator(Q);
while (slotIter.hasNext()) {
Slot slot = (Slot) slotIter.next();
String name = slot.getName();
System.out.println(" Slot name is " + name);
Collection values = slot.getValues();
Iterator valIter = values.iterator();
int count = 1;
while (valIter.hasNext()) {
String value = (String) valIter.next(Q);
System.out.printin(" Slot value " + count++ +
" " + value);
3
String type = slot.getSlotType(Q);
if (type !'= null) {
System.out.printin(" Slot type is

+ type);
}

Some of the examples have a showSTots method that uses this code. See, for
example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

Retrieving the Attributes of an Organization or
User

Every Organization object can have one postal address and multiple telephone
numbers in addition to the attributes available to all other objects. Every organi-
zation also has a User object as a primary contact, and it may have additional
affiliated User objects.

The attributes for aUser object include a PersonName object, which has a differ-
ent format from the name of an object. A user can have multiple postal addresses
as well as multiple telephone numbers. A user can also have multiple email
addresses.

RETRIEVING | NFORMATION ABOUT AN OBJECT

To retrieve the postal address for an organization, call the Organization.get-
PostalAddress method as follows (org is the organization):

PostalAddress pAd = org.getPostalAddress();
Once you have the address, you can retrieve the address attributes as follows:

System.out.printin(" Postal Address:\n +

pAd.getStreetNumber() + " " + pAd.getStreet() +
"\n " + pAd.getCity(Q) + ", " +
pAd.getStateOrProvince() + " " +

pAd.getPostalCode() + "\n " + pAd.getCountry() +
"(" + pAd.getType() + ")");

To retrieve the primary contact for an organization, call the Organiza-
tion.getPrimaryContact method asfollows (org isthe organization):

User pc = org.getPrimaryContact();

To retrieve the postal addresses for a user, call the User.getPostalAddresses
method and extract the Collection values as follows (pc is the primary con-
tact):

Collection pcpAddrs = pc.getPostalAddresses();

Iterator pcaddIter = pcpAddrs.iterator();

while (pcaddIter.hasNext()) {
PostalAddress pAd = (PostalAddress) pcaddIter.next();
/* retrieve attributes */

}

To retrieve the telephone numbers for either an organization or a user, cal the
getTelephoneNumbers method. In the following code fragment, org isthe orga-
nization. The code retrieves the country code, area code, main number, and type
of the telephone number.

Collection orgphNums = org.getTelephoneNumbers(null);
Iterator orgphlter = orgphNums.iterator();
while (orgphIter.hasNext()) {

TelephoneNumber num = (TelephoneNumber) orgphIter.next();

System.out.printin(" Phone number: +

+" + num.getCountryCode() + +

"(" + num.getAreaCode() + ") " +
num.getNumber() + " (" + num.getType() + ")");

29

30

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

A TelephoneNumber can also have an extension, retrievable through the getEx-
tension method. If the number can be dialed electronically, it can have a url
attribute, retrievable through the getUr1 method.

To retrieve the name of a user, call the User.getPersonName method. A Per-
sonName has three attributes that correspond to the given name, middle name(s),
and surname of a user. In the following code fragment, pc isthe primary contact.

PersonName pcName = pc.getPersonName();

System.out.println(" Contact name: " +
pcName.getFirstName() + " " +
pcName.getMiddleName() + " " +

pcName.getLastName());

To retrieve the email addresses for a user, cal the User.getEmailAddresses
method. An EmaiTAddress hastwo attributes, the address and itstype. In thefol-
lowing code fragment, pc isthe primary contact.

Collection eAddrs = pc.getEmaiTlAddresses();
Iterator ealter = eAddrs.iterator();
while (ealter.hasNext()) {
EmailAddress eAd = (EmailAddress) ealter.next();
System.out.println(" Email address: " +
eAd.getAddress() + " (" + eAd.getType() + ")");
3

The attributes for PostalAddress, TelephoneNumber, PersonName, and Email-
Address objects are al String values. As noted in JAXR Information Model
Interfaces (page 11), these objects do not extend the RegistryObject interface,
so they do not have the attributes of other registry objects.

Retrieving Organization Attributes: Example

For an example of retrieving the attributes of an organization and the User that is
its primary contact, see the example <INSTALL>/registry/samples/organi-
zations/src/JAXRQueryOrg.java, which displays information about an orga
nization whose name contains a specified string. To run the example, follow
these steps:

1. Gotothedirectory <INSTALL>/registry/samples/organizations.
2. Type the following command:
ant query-org -Dorg=string

RETRIEVING | NFORMATION ABOUT AN OBJECT

Retrieving the Services and Service Bindings
for an Organization

Most organizations offer services. JAXR has methods that retrieve the services
and service bindings for an organization.

A Service object has al the attributes of other registry objects. In addition, it
normally has service bindings, which provide information about how to access
the service. A ServiceBinding object, along with its other attributes, normally
has an access URI and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice through the service binding.

In addition to these attributes, you can use the Service.getProvidingOrgani-
zation method to retrieve the organization that provides a service, and you can
use the ServiceBinding.getService method to retrieve the service for a ser-
vice binding. The following code fragment retrieves the services for the organi-
zation org. Then it retrieves the service bindings for each service and, for each
service binding, its access URI and specification links. A specification link in
turn has a specification object (typically an ExtrinsicObject), usage descrip-
tion (an InternationalString object), and a Collection Of usage parameters
that are String values.

Collection services = org.getServices();

Iterator svcIter = services.iterator();

while (svcIter.hasNext()) {
Service svc = (Service) svclter.next();
System.out.println(" Service name: " + getName(svc));

System.out.println(" Service description: +
getDescription(svc));

Collection serviceBindings = svc.getServiceBindings();
Iterator sbIter = serviceBindings.iterator();
while (sbIter.hasNext()) {

ServiceBinding sb = (ServiceBinding) sbIter.next();

System.out.printin(" Binding name: " +
getName(sb));

System.out.println(" Binding description: " +
getDescription(sbh));

System.out.println(" Access URI: " +
sb.getAccessURI());

Collection specLinks = sb.getSpecificationLinks();
Iterator slIter = speclLinks.iterator();
while (s1Iter.hasNext()) {

31

32

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

SpecificationLink s1 =
(SpecificationLink) sTIter.next();
RegistryObject ro = sl.getSpecificationObject();
System.out.println("Specification Tink " +
"object of type " + ro.getObjectType());

System.out.println("Usage description: +
s1.getUsageDescription().getValue());
Collection ups = sTl.getUsageParameters();
Iterator upIter = ups.iterator();
while (upIter.hasNext()) {
String up = (String) upIter.next();
System.out.println("Usage parameter: " +

up);
}

}
}
}

The example Retrieving Organization Attributes: Example (page 30) also dis-
plays the services and service bindings for the organizations it finds.

Retrieving an Organization Hierarchy

JAXR alows you to group organizations into families. One organization can
have other organizations as its children, and these can in turn have children.
Therefore, any given organization may have a parent, children, and descendants.

The Organization.getParentOrganization method retrieves an organiza-
tion’s parent. In the following fragment, chorg isachild organization.

Organization porg = chorg.getParentOrganization();

The Organization.getChildOrganizations method retrieves a Collection of
the organization’s children. In the following fragment, org is a parent organiza-
tion.

Collection children = org.getChildOrganizations();

The Organization.getDescendantOrganizations method retrieves multiple
generations of descendants, while the Organization.getRootOrganization
method retrieves the parentless ancestor of any descendant.

For an example of retrieving an organization hierarchy, see Creating and Retriev-
ing an Organization Hierarchy: Example (page 53).

RETRIEVING | NFORMATION ABOUT AN OBJECT

Retrieving the Audit Trail of an Object

Whenever an object is published to the Registry, and whenever it is modified in
any way, JAXR creates another object, called an AuditableEvent, and adds the
event to the audit trail for the published object. The audit trail contains a list of
al the events for that object. To retrieve the audit trail, call RegistryOb-
ject.getAuditTrail. You can also retrieve the individual events in the audit
trail and find out their event types. JAXR supports the event types listed in Table

8-5.

Table 85 AuditableEvent Types

Event Type

Description

EVENT_TYPE_CREATED

Object was created and published to the registry.

EVENT_TYPE_DELETED

Object was deleted using one of the Li feCycleManager or
BusinessLifeCycleManager deletion methods.

EVENT_TYPE_DEPRECATED

Object was deprecated using the LifeCycleMan-
ager.deprecateObjects method.

EVENT_TYPE_UNDEPRECATED

Object was undeprecated using the LifeCycleMan-
ager.unDeprecateObjects method.

EVENT_TYPE_VERSIONED

A new version of the object was created. This event typically
happens when any of the object’s attributes changes.

EVENT_TYPE_UPDATED

Object was updated.

EVENT_TYPE_APPROVED

Object was approved using the LifeCycleManager-
Imp1.approveObjects method (implementation-spe-
cific).

EVENT_TYPE_DOWNLOADED

Object was downloaded (implementation-specific).

EVENT_TYPE_RELOCATED

Object was rel ocated (implementation-specific).

33

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

The following code fragment retrieves the audit trail for a registry object, dis-
playing the type and timestamp of each event:

Collection events = obj.getAuditTrail(Q);
String objName = obj.getName().getValue();
Iterator eventlter = events.iterator();
while (eventIter.hasNext()) {
AuditableEventImpl ae = (AuditableEventImpl) eventIter.next();
int eType = ae.getEventType(Q);
if (eType == AuditableEvent.EVENT_TYPE_CREATED) {
System.out.print(objName + " created ");
} else if (eType == AuditableEvent.EVENT_TYPE_DELETED) {
System.out.print(objName + " deleted ");
} else if (eType == AuditableEvent.EVENT_TYPE_DEPRECATED) {
System.out.print(objName + " deprecated ");
} else if (eType == AuditableEvent.EVENT_TYPE_UNDEPRECATED) {
System.out.print(objName + " undeprecated ");
} else if (eType == AuditableEvent.EVENT_TYPE_UPDATED) {
System.out.print(objName + " updated ");
} else if (eType == AuditableEvent.EVENT_TYPE_VERSIONED) {
System.out.print(objName + " versioned ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_APPROVED) {
System.out.print(objName + " approved ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_DOWNLOADED) {
System.out.print(objName + " downloaded ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_RELOCATED) {
System.out.print(objName + " relocated ");
} else {
System.out.print("Unknown event for

+ objName + " ");
}

System.out.println(ae.getTimestamp().toString());

}

Some of the examples have a showAuditTrail method that uses this code. See,
for example, JAXRQueryByName.java in Finding Objects by Name
Example (page 16).

See Changing the State of Objects in the Registry (page 65) for information on
how to change the state of registry objects.

Retrieving the Version of an Object

If you modify the attributes of a registry object, the Registry creates a hew ver-
sion of the object. For details on how this happens, see Changing the State of

UsING DECLARATIVE QUERIES

Objects in the Registry (page 65). When you first create an object, it has a ver-
sionof 1.1.

Note: At thisrelease, versioning of objectsis disabled by default. All objects have
aversion of 1.1 even after modification. For details on how to turn versioning on,
see the Release Notes.

To retrieve the version of an object, use the implementation-specific getVer-
sionInfo method for a registry object, which returns a VersionInfoType
object. The method has the following signature:

public VersionInfoType getVersionInfo()
throws JAXRException

For example, to retrieve the version number for the organization org, cast org to
aRegistryObjectImpl when you call the method. Then call the VersionInfo-
Type.getVersionName method, which returnsa String.

import org.oasis.ebxml.registry.bindings.rim.VersionInfoType;

VersionInfoType vInfo =
((RegistryObjectImpl)org).getVersionInfo();
if (vInfo != null) {
System.out.println("Org version: " +
vInfo.getVersionName());

}

Some of the examples use code similar to this. See, for example, JAXRQuery-
ByName . java in Finding Objects by Name: Example (page 16).

Using Declarative Queries

Instead of the BusinessQueryManager interface, you can usetheDeclarative-
QueryManager interface to create and execute queries to the Registry. If you are
familiar with SQL, you may prefer to use declarative queries. The Declara-
tiveQueryManager interface depends on another interface, Query.

The DeclarativeQueryManager interface has two methods, createQuery and
executeQuery. The createQuery method takes two arguments, a query type and
astring containing the query. The following code fragment creates an SQL query

35

36

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

that asksfor alist of al Service objectsin the Registry. Here, rs isaRegistry-
Service object.

DeclarativeQueryManager gm = rs.getDeclarativeQueryManager();
String gString = "select s.* from Service s";
Query query = gm.createQuery(Query.QUERY_TYPE_SQL, qString);

After you create the query, you execute it as follows:

BulkResponse response = gm.executeQuery(query);
Collection objects = response.getCollection();

You then extract the objects from the response just as you do with ordinary que-
ries.

Using Declarative Queries: Example

For an example of the use of declarative queries, see <INSTALL>/registry/
samples/query-declarative/src/JAXRQueryDeclarative.java, which cre-
ates and executes a SQL query.

The SQL query string, which is defined in the JAXRExamples.properties file,
looks like this (all on oneline):

declarative.query=SELECT ro.* from RegistryObject ro, Name nm,
Description d WHERE upper(nm.value) LIKE upper(’%free%’) AND
upper(d.value) LIKE upper(’%freeX%’) AND (ro.id = nm.parent AND
ro.id = d.parent)

This query finds all objects that have the string "free" in both the name and the
description attributes.
To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-declara-
tive.

2. Type the following command:
ant run

Using Iterative Queries

If you expect a declarative query to return avery large result set, you can use the
implementation-specific iterative query feature. The DeclarativeQueryMan-

USING | TERATIVE QUERIES

agerImpl.executeQuery method can take an argument that specifies a set of
parameters. This method has the following signature:

public BulkResponse executeQuery(Query query,
java.util.Map queryParams,
IterativeQueryParams iterativeParams)
throws JAXRException

You can specify parameters that cause each query to request a different subset of
results within the result set. Instead of making one query return the entire result
set, you can make each individual query return a manageable set of results.

Suppose you have a query string that you expect to return up to 100 results. You
can create a set of parameters that causes the query to return 10 results at atime.
First, you create an instance of the class IterativeQueryParams, which is
defined in the package org. freebxml.omar.common. The two fields of the class
are startIndex, the starting index of the array, and maxResults, the maximum
number of results to return. You specify the initial values for these fields in the
constructor.

int maxResults = 10;
int startIndex = 0;
IterativeQueryParams iterativeQueryParams =
new IterativeQueryParams(startIndex, maxResults);

Execute the queries within a for loop that terminates with the highest number of
expected results and advances by the maxResults value for the individual que-
ries. Increment the startIndex field at each loop iteration.

for (int i = 0; i < 100; i += maxResults) {

// Execute query with iterative query params

Query query = dgm.createQuery(Query.QUERY_TYPE_SQL,
queryStr);

iterativeQueryParams.startIndex = 1i;

BulkResponse br = dgm.executeQuery(query, null,
iterativeQueryParams) ;

Collection objects = br.getCollection();

// retrieve individual objects ...

}

The Registry is not required to maintain transactional consistency or state
between iterations of a query. Thusit is possible for new objects to be added or
existing objects to be removed from the complete result set between iterations.

37

38

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Therefore, you may notice that a result set element is skipped or duplicated
between iterations.

Using Iterative Queries: Example

For an example of the use of an iterative query, see <INSTALL>/registry/sam-
ples/query-iterative/src/JAXRQueryIterative.java. This program finds
all registry objects whose names match a given string and then iterates through
thefirst 100 of them. To run the example, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/query-iterative.
2. Type the following command, specifying a string value:
ant run -Dname=string

Invoking Stored Queries

The implementation-specific AdhocQueryImpl class, which extends Registry-
ObjectImpl, alows you to invoke queries that are stored in the Registry. The
Registry has several default AdhocQueryImpl objects that you can invoke. The
most useful are named FindA11MyObjects and GetCallersUser:

* FindAT1MyObjects is equivalent to the
QueryManager.getRegistryObjects() method, described in Finding
Objects You Published (page 22).

* GetCallersUser isequivaent to the question “Who am 1?7 It returns the
User object associated with the client that executed the query. If the caller
isnot logged in to the Registry, thisquery returnsthe user named “ Registry
Guest.”

To invoke a stored query, begin by using the BusinessQueryManager-
Impl.findObjects method to locate the query. The following code searches for
the GetCallersUser query.

Collection namePatterns = new ArraylList();
namePatterns.add("GetCallersUser");

// Find objects with name GetCallersUser
BulkResponse response =
bgm.findObjects("AdhocQuery", null, namePatterns,
null, null, null, null);
Collection queries = response.getCollection();

QUERYING A REGISTRY FEDERATION 39

Then find the query string associated with the AdhocQuery and use it to create
and execute a query, thistime using DeclarativeQueryManager methods.

// get the first (only) query and invoke it
Iterator glter = queries.iterator();
if (!(gIter.hasNext())) {
System.out.println("No objects found");
} else {
AdhocQueryImpl ag = (AdhocQueryImpl) qIter.next();
String gString = aqg.toString(Q);
Query query = dgm.createQuery(qType, gqString);

BuTlkResponse br = dgm.executeQuery(query);
Collection objects = br.getCollection();

Invoking Stored Queries: Example

For an example of the use of a stored query, see <INSTALL>/registry/sam-
ples/query-stored/src/JAXRQueryStored.java. This example returns the
user’sregistry login name. To run the example, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/query-stored.

2. Type the following command:
ant run

Querying a Registry Federation

If the registry you are querying is part of one or more registry federations (see
About Registries and Repositories, page 1), you can perform declarative queries
on all registries in all federations of which your registry is a member, or on all
the registries in one federation.

To perform a query on all registriesin all federations of which your registry isa
member, you call the implementation-specific setFederated method on a Que-
ryImp1 object. The method has the following signature:

public void setFederated(boolean federated)
throws JAXRException

40

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

You call the method as follows:

QueryImpl query = (QueryImpl)
dgm.createQuery(Query.QUERY_TYPE_SQL, gString);
query.setFederated(true);

If you know that your registry isamember of only one federation, this method is
the only one you need to call before you execute the query.

To limit your query to the registries in one federation, you need to call an addi-
tional implementation-specific method, setFederation. This method takes as
its argument the unique identifier of the federation you want to query:

public void setFederation(java.lang.String federationId)
throws JAXRException

Therefore, before you can call this method, you must obtain the unique identifier
value. To do so, first call BusinessQueryManagerImpl.findObjects to locate
the federation by name. In this code, you would substitute the actual name of the
federation for the string "NameOfFederation".

Collection namePatterns = new ArraylList();
namePatterns.add("NameOfFederation");

// Find objects with name NameOfFederation
BulkResponse response =
bgm.findObjects("Federation", null, namePatterns,
null, null, null, null);

Then, iterate through the collection (which should have only one member) and
retrieve the key value:

String fedId = federation.getKey().getId();

Finally, create the query, call setFederated and setFederation, and execute
the query:

QueryImpl query = (QueryImpl)
dgm.createQuery(Query.QUERY_TYPE_SQL, gString);

query.setFederated(true);

query.setFederation(fedId);

response = dgm.executeQuery(query);

PUBLISHING OBJECTS TO THE REGISTRY

Using Federated Queries: Example

For an example of the use of afederated query, see <INSTALL>/registry/sam-
ples/query-federation/src/JAXRQueryFederation.java. This example
performs two queries, adeclarative query and a stored query, on every federation
it finds (the database provided with the Registry contains only one).

The declarative query isthe same query performed in Using Declarative Queries:
Example (page 36). The stored query is the GetCallersUser query, as in the
previous example.

To run the example, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/query-federation.

2. Type the following command:
ant run

Publishing Objects to the Registry

If aclient has authorization to do so, it can submit objects to the Service Regis-
try, modify them, and remove them. A client uses the BusinessLifeCycleMan-
ager interface to perform these tasks.

Registries usually allow a client to modify or remove objects only if the objects
are being modified or removed by the same user who first submitted them.
Access policies can control who is authorized to publish objects and perform
actions on them.

Publishing registry objects involves the following tasks:

» Creating Objects
» Saving Objectsin the Registry

It isimportant to remember that submitting objects is a multi-step task: you cre-
ate the objects and populate them by setting their attributes, then you save them.
The objects appear in the registry only after you save them.

You may remember that when you search for objects by classification, external
identifier, and the like, you create the classification or other abject that you are
using in the search. (For an example, see Finding Objects by
Classification, page 17.) However, you do not save this object. You create the
object only for the purposes of the search, after which it disappears. You do not

4

42

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

need authorization from the Registry to create an object, but you must have
authorization to saveit.

Note: At this release, you do not need authorization from the Registry to save
objects.

Creating Objects

A client creates an object and populatesit with data before publishing it. You can
create and publish any of the following types of RegistryObject:

* AdhocQuery

* Association

* (lassificationScheme

* Concept

* ExternallLink

* ExtrinsicObject

* Federation

* Organization

* RegistryPackage

* Service

* Subscription

e User
The following types of RegistryObject cannot be published separately, but you
can create and save them as part of another object:

* (Classification (any RegistryObject)

* ExternalIdentifier (any RegistryObject)

* ServiceBinding (Service)

* Slot (any RegistryObject)

* SpecificationLink (ServiceBinding)

CREATING OBJECTS

Some objects fall into special categories:

The subsections that follow describe first the tasks common to creating and sav-
ing al registry objects. They then describe some tasks specific to particular

An AuditableEvent is published by the Registry when an object has a

changein state.

A Notification is published by the Registry when an AuditableEvent

that matches a Subscription occurs.

A Registry can be published only by a user with the role Registry-

Administrator.

object types.

Adding names and descriptions to objects
Identifying objects

Adding classifications to objects

Adding external identifiers to objects
Adding external links to objects

Adding slots to objects

Creating organizations

Creating users

Creating services and service bindings

Using Create Methods for Objects

Adding Names and Descriptions to Objects
Identifying Objects

Creating and Using Classification Schemes and Concepts
Adding Classifications to Objects

Adding External Identifiersto Objects
Adding External Linksto Objects

Adding Slotsto Objects

Creating Organizations

Creating Users

Creating Services and Service Bindings

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Using Create Methods for Objects

The LifeCycleManager interface supports create methods for all types of Reg-
istryObject (except AuditableEvent and Notification, which can be cre-
ated only by the Registry itself).

In addition, you can use the LifeCycleManager.createObject factory method
to create an object of aparticular type. This method takes a String argument con-
sisting of one of the static fields supported by the LifeCycleManager interface.
In the following code fragment, b1cm isthe BusinessLifeCycleManager object:

Organization org = (Organization)
blcm.createObject(blcm.ORGANIZATION) ;

The object-specific create methods usually take one or more parameters that set
some of the attributes of the object. For example, the createOrganization
method sets the name of the organization:

Organization org = blcm.createOrganization("MyOrgName");

On the other hand, the createExtrinsicObject method takes a DataHandler
argument that sets the repository item for the extrinsic object.

Adding Names and Descriptions to Objects

For all objects, you can set the name and description attributes by calling setter
methods. These attributes are of type InternationalString. An Inter-
nationalString includes a set of LocalizedString objects that allow users to
display the name and description in one or more locales. By default, the Inter-
nationalString value uses the default locale.

For example, the following fragment creates a description for an organization
that uses two localized strings, one in the language of the default locale and one
in French (Canada).

InternationalString is =
blcm.createlnternationalString("What We Do"));

Locale Toc = new Locale("fr", "CA™);

LocalizedString 1s = blcm.createlLocalizedString(loc,
"ce que nous faisons");

is.addLocalizedString(l1s);

org.setDescription(is);

CREATING OBJECTS

Identifying Objects

As stated in Finding Objects by Unique Identifier (page 22), every object in the
Registry has two identifiers, a unique identifier and alogical identifier. If you do
not set these identifiers when you create the object, the Registry generates a
unique value and assigns that value to both the unique and the logical identifiers.

Whenever anew version of an object is created (see Retrieving the Version of an
Object, page 34, and Changing the State of Objectsin the Registry, page 65), the
logical identifier remains the same as the original one, but the Registry generates
anew unique identifier by adding a colon and the version number to the unique
identifier.

Note: At thisrelease, versioning isdisabled by default. Thelogical and uniqueiden-
tifiers remain the same after the object is modified.

If you plan to use your own identification scheme, you can use APl methods to
set object identifiers. In the JAXR API, the unique identifier is caled a Key
object. You can use the LifeCycleManager.createKey method to create a
unique identifier from a String object, and you can use the RegistryOb-
ject.setKey method to set it. The logical identifier is called a 1id, and the
JAXR provider for the Registry has an implementation-specific method, Regis-
tryObjectImpl.setlLid, which also takes a String argument, for setting this
identifier. The method has the following signature:

public void setLid(java.lang.String Tid)
throws JAXRException

Any identifier you specify must be a valid, globally unique URN (Uniform
Resource Name). When the JAXR API generates a key for an object, the key is
in the form of a DCE 128 UUID (Universal Unique | Dentifier).

Creating and Using Classification Schemes
and Concepts

You can create your own classification schemes and concept hierarchiesfor clas-
sifying registry objects. To do so, follow these steps:

1. Use the LifeCycleManager.createClassificationScheme method to
create the classification scheme.

45

46

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

2. Usethe LifeCycleManager.createConcept method to create concepts.

3. Use the ClassificationScheme.addChildConcept method to add the
concepts to the classification scheme.

4. For adeeper hierarchy, usethe Concept.addChildConcept method to add
child concepts to the concepts.

5. Save the classification scheme.

The LifeCycleManager.createClassificationScheme method has severa
forms. You can specify two arguments, a name and description, as either String
or InternationalString values. For example, to create a classification scheme
to describe how books are shelved in alibrary, you could use the following code
fragment:

ClassificationScheme cs =
blcm.createClassificationScheme("LibraryFloors",
"Scheme for Shelving Books");

An dternate form of the createClassificationScheme method takes one argu-
ment, a Concept, and convertsit to aClassificationScheme.

The createConcept method takes three arguments: a parent, a hame, and a
value. The parent can be either aClassificationScheme or another Concept. It
is acceptabl e to specify avalue but no name.

The following code fragment uses a static String array containing the names of
the floors of the library to create a concept for each floor of the library, and then
adds the concept to the classification scheme.

for (int i = 0; i < floors.length; i++) {
Concept con = blcm.createConcept(cs, floors[i], floors[i]);
cs.addChildConcept(con);

For each concept, you can create more new concepts and cal Con-
cept.addChildConcept to create another level of the hierarchy. When you save
the classification scheme, the entire concept hierarchy is aso saved.

Creating Classification Schemes: Example

For an example of creating a classification scheme, see <INSTALL>/registry/
samples/classification-schemes/src/JAXRPublishScheme.java. This
example creates a classification scheme named LibraryFloors and a concept

CREATING OBJECTS

hierarchy that includes each floor of the library and the subject areas that can be
found there. To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-
schemes.
2. Type the following command:
ant pub-scheme
To display the concept hierarchy, use the program <INSTALL>/registry/sam-
ples/classification-schemes/src/JAXRQueryScheme.java. This example

displays the concept hierarchy for any classification scheme you specify. To run
the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-
schemes.
2. Type the following command:
ant query-scheme -Dname=LibraryFloors
To delete this classification scheme, use the program <INSTALL>/registry/
samples/classification-schemes/src/JAXRQueryScheme.java. To run the
example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-
schemes.

2. Type the following command:
ant del-scheme -Dname=LibraryFloors

Adding Classifications to Objects

Objects can have one or more classifications based on one or more classification
schemes (taxonomies). To establish a classification for an object, the client first
locates the taxonomy it wants to use. The client then creates a classification
using the classification scheme and a concept (a taxonomy element) within the
classification scheme.

For information on creating a new classification scheme with a hierarchy of con-
cepts, see Creating Relationships Between Objects: Associations (page 57). A
classification scheme with a concept hierarchy is called aninternal classification
scheme.

To add a classification that uses an existing classification scheme, you usually
cal the BusinessQueryManager.findClassificationSchemeByName method.
This method takes two arguments, aCollection of FindQualifier objectsand

47

48

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

a String that specifies a name pattern. It is an error for this method to return
more than one result, so you must define the search very precisely. For example,
the following code fragment searches for the classification scheme named Asso-
ciationType:

String schemeName = "AssociationType";
ClassificationScheme cScheme =
bgm.findClassificationSchemeByName(nhull, schemeName);

After you locate the classification scheme, you cal the LifeCycleMan-
ager.createClassification method, specifying three arguments: the classifi-
cation scheme and the name and value of the concept.

Classification classification =
blcm.createClassification(cScheme, "Extends", "Extends");

An alternative method is to call BusinessQueryManager.findConcepts (Or
BusinessQueryManagerImpl.findObjects with a "Concept" argument),
locate the concept you wish to use, and call another form of createClassifi-
cation, with the concept as the only argument:

Classification classification =
blcm.createClassification(concept);

After creating the classification, you call RegistryObject.addClassification
to add the classification to the object.

object.addClassification(classification);

To add multiple classifications, you can create a Collection, add the classifica-
tiontotheCollection, and call RegistryObject.addClassifications toadd
the Collection to the object.

Adding Classifications: Example

For an example of adding classificationsto an object, see <INSTALL>/registry/
samples/publish-object/src/JAXRPublishObject.java. This example cre-
ates an organization and adds a number of objectsto it. To run the example, fol-
low these steps:

1. Gotothedirectory <INSTALL>/registry/samples/publish-object.

2. Type the following command:
ant run

CREATING OBJECTS

Adding External Identifiers to Objects

To add an external identifier to an object, follow these steps:

1. Find or create the classification scheme to be used.
2. Create an externa identifier using the classification scheme.

To create external identifiers, you use an external classification scheme, whichis
a classification scheme without a concept hierarchy. You specify a name and
value for the external identifier.

The database supplied with the Registry does not include any external classifica-
tion schemes, so before you can use one you must create it, using code like the
following:

ClassificationScheme extScheme =
blcm.createClassificationScheme(""NASDAQ",
"OTC Stock Exchange");

To find an existing classification scheme, you typically call the BusinessQuery-
Manager.findClassificationSchemeByName method, as described in Adding
Classifications to Objects (page 47).

For example, the following code fragment finds the external classification
scheme you just created:

ClassificationScheme extScheme =
bgm.findClassificationSchemeByName(null,
"NASDAQ") ;

To add the externa identifier, you call the LifeCycleManager.createExter-
nalIdentifier method, which takes three arguments: the classification scheme
and the name and value of the external identifier. Then you add the external iden-
tifier to the object.

ExternalIldentifier extId =
blcm.createExternalIdentifier(extScheme, "Sun",
"SUNW) ;
object.addExternalIdentifier(extld);

The example <INSTALL>/registry/samples/publish-object/src/JAXRPub-
1ishObject.java, described in Adding Classifications. Example (page 48), also
adds an external identifier to an object.

49

50

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Adding External Links to Objects

To add an external link to an object, you call the LifeCycleManager.createEx-
ternallink method, which takes two arguments: the URI of the link, and a
description of the link. Then you add the external link to the object.

String eiURI = "http://java.sun.com/";

String eiDescription = "Java Technology";

ExternalLink extLink =
blcm.createExternallLink(eiURI, eiDescription);

object.addExternalLink(extLink);

The URI must be avalid URI, and the JAXR provider checks its validity. If the
link you specify is outside your firewall, you need to specify the system proper-
ties http.proxyHost and http.proxyPort when you run the program so that
JAXR can determine the validity of the URI.

To disable URI validation (for example, if you want to specify alink that is not
currently active), call the ExternallLink.setValidateURI method before you
create the link.

extLink.setValidateURI(false);

The example <INSTALL>/registry/samples/publish-object/src/JAXRPub-
TishObject.java, described in Adding Classifications. Example (page 48), also
adds an external link to an object.

Adding Slots to Objects

Slots are arbitrary attributes, so the API provides maximum flexibility for you to
create them. You can provide a name, one or more values, and a type. The name
and type are String objects. The value or values are stored as a Collection of
String objects, but the LifeCycleManager. createSTlot method has aform that
allows you to specify a single String vaue. For example, the following code
fragment creates a slot using a String value, then adds the slot to the object.

String slotName = "Branch";

String slotValue = "Paris";

String slotType = "City";

Slot slot = blcm.createSTot(sTotName, slotValue, slotType);
org.addSTot(slot);

CREATING OBJECTS

The example <INSTALL>/registry/samples/publish-object/src/JAXRPub-
1ishObject.java, described in Adding Classifications. Example (page 48), also
adds aslot to an object.

Creating Organizations

An Organization object is probably the most complex registry object. It nor-
mally includes the following attributes, in addition to those common to all
objects:

e Oneor more PostalAddress objects.

* Oneor more TelephoneNumber Objects.

¢ APrimaryContact object, whichisaUser object. A User object normally
includes a PersonName object and collections of TelephoneNumber,
EmailAddress, and PostalAddress objects.

* One or more Service objects and their associated ServiceBinding
objects.

An organization can aso have one or more child organizations, which canin turn
have children, to form a hierarchy of organizations.

The following code fragment creates an organization and specifies its name,
description, postal address, and telephone number.

// Create organization name and description
Organization org =
blcm.createOrganization("The ebXML Coffee Break");
InternationalString is =
blcm.createInternationalString("Purveyor of " +
"the finest coffees. Established 1905");
org.setDescription(is);

// create postal address for organization

String streetNumber = "99";

String street = "Imaginary Ave. Suite 33";

String city = "Imaginary City";

String state = "NY");

String country = "USA");

String postalCode = "00000";

String type = "Type US";

PostalAddress postAddr =

blcm.createPostalAddress(streetNumber, street, city, state,

country, postalCode, type);

org.setPostalAddress(postAddr) ;

51

52

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

// create telephone number for organization
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setCountryCode("1");

tNum.setAreaCode("100");

tNum.setNumber("100-1000") ;
tNum.setType("OfficePhone™);

Collection tNums = new ArrayList(Q);

tNums.add (tNum) ;

org.setTelephoneNumbers (tNums) ;

The telephone number type isthe value of aconcept in the PhoneType classifica-
tion scheme "OfficePhone", "MobilePhone", "HomePhone", "FAX", oOr
"Beeper".

To create a hierarchy of organizations, use the Organization.addChildOrga-
nization method to add one organization to another, or use the Organiza-
tion.addChildOrganizations methodto add aCollection of organizationsto
another.

Creating an Organization: Examples

For examples of creating an organization, see JAXRPub11ishOrg.java and JAXR-
Pub1ishOrgNoPC.java in the directory <INSTALL>/registry/samples/orga-
nizations/src.

The JAXRPub11ishOrg example creates an organization, its primary contact, and a
service and service binding. It displays the unique identifiers for the organiza-
tion, user, and service so that you can use them later when you del ete the objects.
This example creates a fictitious User as the primary contact for the organiza-
tion.

The other example, JAXRPub11ishOrgNoPC, does not set a primary contact for the
organization. In this case, the primary contact by default is the User who is
authenticated when you run the program.

To run the examples, follow these steps:
1. Gotothedirectory <INSTALL>/registry/samples/organizations.

2. Type the following commands:

ant pub-org
ant pub-org-nopc

CREATING OBJECTS

Creating and Retrieving an Organization Hierarchy:

Example

For examples of publishing and retrieving an organization hierarchy, see the
examples <INSTALL>/registry/samples/organizations/src/JAXRPub-
1ishOrgFamily.java and <INSTALL>/registry/samples/organizations/
src/JAXRQueryOrgFamily. java. To run the examples, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/organizations.
2. Type the following command to publish the organizations:
ant pub-fam

3. Type the following command to retrieve the organizations you published:
ant query-fam

Creating Users

If you create an organization without specifying a primary contact, the default
primary contact is the User object that created the organization (that is, the user
whose credentials you set when you created the connection to the Registry).
However, you can specify a different user as the primary contact. A User isaso
a complex type of registry object. It normally includes the following attributes,
in addition to those common to all objects:

e A PersonName object
¢ Oneor more PostalAddress objects
e Oneor more TelephoneNumber objects
e Oneor more EmailAddress objects
* One or more URL abjects representing the user’s home page
The following code fragment creates a User and then sets that User as the pri-

mary contact for the organization. This User has a telephone number and email
address but no postal address.

// Create primary contact, set name
User primaryContact = blcm.createUser();
String userId = primaryContact.getKey().getId();
System.out.printin("User URN is " + userId);
PersonName pName =

blcm.createPersonName("Jane", "M.", "Doe");
primaryContact.setPersonName(pName) ;

// Set primary contact phone number

53

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

TelephoneNumber pctNum = blcm.createTelephoneNumber();
pctNum.setCountryCode("1");

pctNum.setAreaCode("100");
pctNum.setNumber("100-1001") ;
pctNum.setType("MobilePhone");

Collection phoneNums = new ArrayList();
phoneNums .add (pctNum) ;
primaryContact.setTelephoneNumbers (phoneNums) ;

// Set primary contact email address

EmailAddress emailAddress =
blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com™);
emailAddress.setType("OfficeEmail™));

Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

URL pcUr1l = new URL((bundle.getString("person.url™));
primaryContact.setUrl1(pcUrl);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

The telephone number type for the primary contact is the value of a concept in
the PhoneType classification scheme: "0fficePhone", "MobilePhone", "Home-
Phone", "FAX", or "Beeper". The email address type for the primary contact is
the value of a concept in the Emai1Type classification scheme:; either "0ff1iceE-
mail" or "HomeEmail".

Creating Services and Service Bindings

Most organizations publish themselves to a registry to offer services, so JAXR
has facilities to add services and service bindings to an organization.

You can also create services that are not attached to any organization.

Like an Organization object, aService object has aname, a description, and a
unique key that is generated by the registry when the service isregistered. It may
also have classifications associated with it.

In addition to the attributes common to all objects, a service also commonly has
service bindings, which provide information about how to access the service. A
ServiceBinding object normally has a description, an access URI, and a speci-
fication link, which provides the linkage between a service binding and a techni-

CREATING OBJECTS

cal specification that describes how to use the service by using the service
binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, and then add the services to the organization. It
specifies an access URI but not a specification link. Because the access URI is
not real and because JAXR by default checks for the validity of any published
URI, the binding setsits validateURTI attribute to false.

// Create services and service
Collection services = new ArraylList();
Service service = blcm.createService("My Service Name");
InternationalString is =

blcm.createInternationalString("My Service Description");
service.setDescription(is);

// Create service bindings

Collection serviceBindings = new ArraylList();

ServiceBinding binding =
blcm.createServiceBinding(Q);

is = blcm.createInternationalString("My Service Binding " +
"Name")) ;

binding.setName(is);

is = blcm.createInternationalString("My Service Binding " +
"Description");

binding.setDescription(is);

// allow us to publish a fictitious URI without an error

binding.setValidateURI(false);

binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");

serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

A service binding normally has a technical specification that describes how to
access the service. An example of such a specification isa WSDL document. To
publish the location of a service's specification (if the specification is a WSDL
document), you create a SpecificationLink object that refers to an Extrin-
sicObject. For details, see Storing Items in the Repository (page 60).

55

56

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

(This mechanism is different from the way you publish a specification’s location
to a UDDI registry: for a UDDI registry you create a Concept object and then
add the URL of the WSDL document to the Concept object asan ExternalLink
object.)

Saving Objects in the Registry

Once you have created an object and set its attributes, you publish it to the Reg-
istry by calling the LifeCycleManager.saveObjects method or an object-spe-
cific save method like BusinessLifeCycleManager.saveOrganizations oOr
BusinessLifeCycleManager.saveServices. You aways publish a collection
of objects, not a single object. The save methods return a BulkResponse object
that contains the keys (that is, the unique identifiers) for the saved objects. The
following code fragment saves an organization and retrievesits key:

// Add organization and submit to registry

// Retrieve key if successful

Collection orgs = new ArraylList();

orgs.add(org);

BulkResponse response = blcm.saveOrganizations(orgs);

Collection exceptions = response.getExceptions();

if (exceptions == null) {
System.out.println("Organization saved");

Collection keys = response.getCollection();

Iterator keyIter = keys.iterator();

if (keyIter.hasNext()) {
javax.xml.registry.infomodel.Key orgKey =

(javax.xml.registry.infomodel.Key) keyIter.next();

String id = orgKey.getId();
System.out.println("Organization key is " + 1id);

}

}

If one of the objects exists but some of the data have changed, the save methods
update and replace the data. This normally results in the creation of a new ver-
sion of the object (see Changing the State of Objects in the Registry, page 65).

MANAGING OBJECTS IN THE REGISTRY 57

Managing Objects in the Registry

« Once you have published abjects to the Registry, you can perform opera-
tions on them. This chapter describes these operations.Creating Relation-
ships Between Objects: Associations

« Storing Itemsin the Repository

* Organizing Objects Within Registry Packages

» Changing the State of Objectsin the Registry

« Removing Objects From the Registry and Repository

Creating Relationships Between Objects:
Associations

You can create an Association object and use it to specify a relationship
between any two objects. The ebXML specification specifies an Association-
Type classification scheme that contains a number of canonical concepts you can
use when you create an Association. You can aso create your own concepts
withinthe AssociationType classification scheme, if none of the canonical ones
are suitable.

58

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

The canonical association types are as follows:

AccessControlPolicyFor
Affiliatedwith (which has the subconcepts EmployeeOf and MemberOf)
Contains
ContentManagementServiceFor
EquivalentTo

Extends

ExternallyLinks
HasFederationMember
HasMember

Implements

InstanceOf

InvocationControlFileFor (which has the subconcepts Cataloging-
ControlFileFor and ValidationControlFileFor)

OffersService
OwnerOf
ReTatedTo
Replaces
ResponsibleFor
SubmitterOf
Supersedes

Uses

The Registry uses some of these association types automatically. For example,
when you add a Service to an Organization, the Registry creates an
OffersService association with the Organization as the source and the Ser-
vice asthetarget.

Associations are directional: each Association has a source object and a target
object. Establishing an association between two aobjects is a three-step process:

1. Find the AssociationType concept you wish to use (or create one).
2. Use the LifeCycleManager.createAssociation method to create the

association. This method takes two arguments, the target object and the
concept that identifies the relationship.

3. UsetheRegistryObject.addAssociation method to add the association

to the source object.

CREATING RELATIONSHIPS BETWEEN OBJECTS. ASSOCIATIONS 59

For example, suppose you have two objects, obj1l and obj2, and you want to
establish a RelatedTo relationship between them. (In this relationship, which
object is the source and which is the target is arbitrary.) First, locate the concept
named RelatedTo:

// Find RelatedTo concept for Association

Collection namePatterns = new ArraylList();

namePatterns.add("RelatedTo");

BulkResponse br = bgm.findObjects("Concept", null,
namePatterns, null, null, null, null);

Collection concepts = br.getCollection();

Iterate through the concepts (there should only be one) to find the right one.
Concept relConcept = (Concept) concIter.next();
Create the association, specifying obj2 as the target:

Association relAssoc =
blcm.createAssociation(obj2, relConcept);

Add the association to the source object, obj1:
objl.addAssociation(relAssoc);
Finally, save the association:

Collection associations = new ArraylList();
associations.add(relAssocl);
BuTlkResponse response = blcm.saveObjects(associations);

Associations can be of two types, intramural and extramural. You create an
intramural association when both the source and target object are owned by you.
You create an extramural association when at least one of these objects is not
owned by you. The owner of an object can use an access control policy to restrict
the right to create an extramural association with that object as a source or target.

Creating Associations: Example

For an example of creating an association, see <INSTALL>/registry/samples/
publish-association/src/JAXRPublishAssociation.java. This example
creates aRelatedTo association between any two objects whose unique identifi-
ers you specify. For example, you could specify the identifiers of the two child

60

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

organizations created in Creating and Retrieving an Organization Hierarchy:
Example (page 53). To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/publish-associa-
tion.

2. Type the following command:
ant run -Didl=stringl -Did2=string2

Whether the association is intramural or extramural depends upon who owns the
two objects.

Storing Items in the Repository

As About Registries and Repositories (page 1) explains, the Registry includes a
repository in which you can store electronic content. For every item you storein
the repository, you must first create a type of RegistryObject caled an
ExtrinsicObject. When you save the ExtrinsicObject to the Registry, the
associated repository itemis also saved.

Creating an Extrinsic Object

To create an ExtrinsicObject, you first need to create a javax.activa-
tion.DataHandler object for the repository item. The LifeCycleMan-
ager.createExtrinsicObject method takes aDataHandler argument.

To store afile in the repository, for example, first create a java.io.FiTle object.
From the File object, create a javax.activation.FileDataSource Object,
which you use to instantiate the DataHandler object.

String filename = "./MyFile.xm1";
File repositoryItemFile = new File(filename);
DataHandler repositoryltem =
new DataHandler(new FileDataSource(repositoryItemFile));

Next, call createExtrinsicObject with the DataHandler as argument:

ExtrinsicObject eo =
blcm.createExtrinsicObject(repositoryltem);
eo.setName("My File");

STORING | TEMS IN THE REPOSI TORY

Set the MIME type of the object to make it accessible. The default MIME typeis
application/octet-stream. If thefileisan XML file, set it asfollows:

eo.setMimeType("text/xm1");

Finally, cal the implementation-specific ExtrinsicObjectImpl.setObject-
Type method to store the ExtrinsicObject in an appropriate area of the Regis-
try. This method has the following signature:

public void setObjectType(Concept objectType)
throws JAXRException

The easiest way to find the appropriate concept for afile is to use the Explore
feature of the Web Console. Look under the ObjectType classification scheme
for the various types of ExtrinsicObject concepts. Specify the ID for the con-
cept as the argument to getRegistryObject, then specify the concept as the
argument to setObjectType.

String conceptld =

"urn:oasis:names:tc:ebxml-
regrep:0bjectType:RegistryObject:ExtrinsicObject:XML";
Concept objectTypeConcept =

(Concept) bgm.getRegistryObject(conceptId);
((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);

Finally, you save the ExtrinsicObject to the Registry.

Collection extobjs = new ArraylList(Q);
extobjs.add(eo);
BulkResponse response = blcm.saveObjects(extobjs);

The ExtrinsicObject contains the metadata, and a copy of thefile is stored in
the repository.

If the Registry does not have a concept for the kind of file you want to store
there, you can create and save the concept yourself.

Creating an Extrinsic Object: Example

For an example of creating an extrinsic object, see <INSTALL>/registry/sam-
ples/publish-extrinsic/src/JAXRPublishExtrinsicObject.java. This

61

62

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

example publishes an XML file to the Registry. To run the example, follow these
steps:
1. Go to the directory <INSTALL>/registry/samples/publish-extrin-
sic.
2. Type the following command:
ant run

Using an Extrinsic Object as a Specification
Link

You can publish an ExtrinsicObject by itself, but it is aso very common to
create an ExtrinsicObject to use asthe SpecificationLink object for aSer-
viceBinding object (see Creating Services and Service Bindings, page 54). The
ExtrinsicObject typicaly refersto aWSDL file.

1. Create aSpecificationLink object.

2. Store the WSDL document in the repository and create an ExtrinsicOb-
ject that refersto it. Set the extrinsic object’s type to WSDL and its mime
type to text/xml.

3. Specify the extrinsic object as the speci ficationObject attribute of the
SpecificationLink object.

4. Add the SpecificationLink object tothe ServiceBinding object.
5. Add the ServiceBinding object to the Service object.
6. Save the Service object.

After you create a Service and ServiceBinding, create a SpecificationLink:

SpecificationLink specLink = blcm.createSpecificationLink();
specLink.setName("Spec Link Name");
specLink.setDescription("Spec Link Description™);

STORING | TEMS IN THE REPOSI TORY

Create an ExtrinsicObject as described in Creating an Extrinsic
Object (page 60). Use the ID for the WSDL concept and the text/xm1 MIME

type.

String conceptld =

"urn:oasis:names:tc:ebxml-
regrep:0bjectType:RegistryObject:ExtrinsicObject:WSDL";
Concept objectTypeConcept =

(Concept) bgm.getRegistryObject(conceptId);
((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);
eo.setMimeType("text/xm1");

Set the ExtrinsicObject as the specification object for the Specification-
Link:

specLink.setSpecificationObject(eo);

Add the SpecificationLink to the ServiceBinding, then add the objects to
their collections and save the services.

binding.addSpecificationLink(specLink);
serviceBindings.add(binding);

When you remove a service from the Registry, the service bindings and specifi-
cation links are also removed. However, the extrinsic objects associated with the
specification links are not removed.

Creating an Extrinsic Object as a Specification Link:
Example

For an example of creating an extrinsic object as a specification link, see
<INSTALL>/registry/samples/publish-service/src/JAXRPublishSer-
vice.java. This example publishes a WSDL file to the Registry. To run the
example, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/publish-service.
2. Type the following command:
ant run

63

64

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

Organizing Objects Within Registry
Packages

Registry packages alow you to group a number of logically related registry
objects, even if the individual member objects belong to different owners. For
example, you could create aRegistryPackage object and add to it al objectsin
the Registry whose names shared a particular unique string or that al contained
aSlot with the same name and value.

To create a RegistryPackage object, call the LifeCycleManager.createReg-
istryPackage method, which takes a String or InternationalString argu-
ment. Then call the RegistryPackage.addRegistryObject oOr
RegistryPackage.addRegistryObjects method to add objects to the package.

For example, you could create aRegistryPackage object named “ SunPackage”:

RegistryPackage pkg =
bTcm.createRegistryPackage("SunPackage™);

Then, after finding all objects with the string "Sun" in their names, you could
iterate through the results and add each object to the package:

pkg.addRegistryObject(object);

A common use of packages is to organize a set of extrinsic objects. A registry
administrator can load a file system into the Registry, storing the directories as
registry packages and the files as the package contents. See the Administration
Guide for more information.

Organizing Objects Within Registry Packages:
Examples

For examples of using registry packages, see the two examples in <INSTALL>/
registry/samples/packages/src: JAXRPublishPackage.java and JAXRQue-
ryPackage.java. The first example publishes a RegistryPackage object that
includes all objects in the Registry whose names contain the string "free". The
second example searches for this package and displays its contents. To run the
examples, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/packages.
2. Type the following command:

CHANGING THE STATE OF OBJECTS IN THE REGISTRY

ant pub-pkg
3. Type the following command:
ant query-pkg

Changing the State of Objects in the
Registry

You add an AuditableEvent object to the audit trail of an object when you pub-
lish it to the Registry or when you modify it in any way. See Retrieving the Audit
Trail of an Object (page 33) for details on these events and on how to obtain
information about them. Table 8-5 on page 33 describes the events and how they
are created.

Many events are created as a side effect of some other action:

» Saving an object to the Registry creates an EVENT_TYPE_CREATED event.
» Thefollowing actions create an EVENT_TYPE_VERSIONED event:
» Changing an object’s name or description
e Adding, modifying, or removing a Classification, ExternalIden-
tifier, ExternalLink, or STot

e For an Organization or User, adding, modifying, or removing a
PostalAddress or TelephoneNumber

You can retrieve version information for an object. See Retrieving the
Version of an Object (page 34) for details.

Note: At this release, versioning of objects is disabled. All objects have a version
of 1.1.

You can also change the state of objects explicitly. This feature may be useful in
a production environment where different versions of objects exist and you wish
to use some form of version control. For example, you can approve a version of
an object for general use and deprecate an obsolete version before you removeit.

65

66

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

If you change your mind after deprecating an object, you can undeprecate it. You
can perform these actions only on objects you own.

 You can approve objects by using the Li feCycleManagerImpl.approve-
Objects method. Thisfeature isimplementation-specific.

* You can deprecate abjects by using the LifeCycleManager.depreca-
teObjects method.

* You can undeprecate objects by using the LifeCycleManager.unDepre-
cateObjects method.

The LifeCycleManagerImpl.approveObjects method has the following signa-
ture:

public BulkResponse approveObjects(java.util.Collection keys)
throws JAXRException

It is possible to restrict access to these actions to specific users, such as registry
administrators.

No AuditableEvent iscreated for actions that do not alter the state of aRegis-
tryObject. For example, queries do not generate an AuditableEvent, and no
AuditableEvent is generated for aRegistryObject when it is added to aReg-
istryPackage Or when you create an Association with the object as the source
or target.

Changing the State of Objects in the Registry:
Examples

For examples of approving, deprecating, undeprecating objects, see the exam-
ples in <INSTALL>/registry/samples/auditable-events/src. JAXRAp-
proveObject. java, JAXRDeprecateObject. java, and
JAXRUndeprecateObject.java. Each example performs an action on an object
whose unique identifier you specify, then displays the object’s audit trail so that
you can see the effect of the example. To run the examples, follow these steps:

1. Gotothedirectory <INSTALL>/registry/samples/packages.
2. Type the following command:
ant approve-obj -Did=7d_string
3. Type the following command:
ant deprecate-obj -Did=7d_string
4. Type the following command:

REMOVING OBJECTS FROM THE REGISTRY AND REPOSI TORY

ant undeprecate-obj -Did=id_string
The object you specify should be one that you created.

Removing Objects From the Registry and
Repository

A registry allows you to remove from it any objects that you have submitted to it.
You use the object’s ID as an argument to the LifeCycleManager.deleteOb-
jects method.

The following code fragment deletes the object that corresponds to a specified
key string and then displays the key again so that the user can confirm that it has
deleted the correct one.

String id = key.getId(Q);
Collection keys = new ArrayList();
keys.add(key);
BulkResponse response = blcm.deleteObjects(keys);
Collection exceptions response.getException();
if (exceptions == null) {
System.out.println("Objects deleted");
Collection retKeys = response.getCollection();
Iterator keylIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {
orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();
id = orgKey.getId(Q);
System.out.println("Object key was " + id);
}

}

Deleting an Organization does not delete the Service and User objects that
belong to the Organization. You must delete them separately.

Deleting a Service object deletes the ServiceBinding objects that belong to it,
and also the SpecificationLink objects that belong to the ServiceBinding
objects. Deleting the SpecificationLink abjects, however, does not delete the
associated ExtrinsicObject instances and their associated repository items.
You must delete the extrinsic objects separately.

67

68

DEVELOPING CLIENTS FOR THE SERVICE REGISTRY

AuditableEvent and Association objects are not always deleted when the
objects associated with them are deleted. You may find that as you use the Regis-
try, alarge number of these objects accumulates.

Removing Objects from the Registry: Example

For an example of deleting an object from the Registry, see <INSTALL>/regis-
try/samples/delete-object/src/JAXRDelete.java. This example deletes
the object whose unique identifier you specify. To run the example, follow these
steps:
1. Gotothedirectory <INSTALL>/registry/samples/delete-object.
2. Type the following command:
ant run -Did=7d_string

Further Information

For more information about JAXR, registries, and web services, see the follow-
ing:
* Java Specification Request (JSR) 93: JAXR 1.0:
http://jcp.org/jsr/detail/093.jsp
» JAXR home page:
http://java.sun.com/xml/jaxr/
* ebXML:
http://www.ebxml.org/
» Java 2 Platform, Enterprise Edition:
http://java.sun.com/j2ee/
» Java Technology and XML.:
http://java.sun.com/xml/
» Java Technology and Web Services.
http://java.sun.com/webservices/

http://jcp.org/jsr/detail/093.jsp
http://java.sun.com/xml/jaxr/
http://www.ebxml.org/
http://java.sun.com/j2ee/
http://java.sun.com/xml/
http://java.sun.com/webservices/

9

Administering the
Service Registry

THlS chapter describes how to use the Administration Tool (“the Admin
Tool”) for the Service Registry.

This chapter contains the following sections:

About the Admin Tool

Starting the Admin Tool

Using the Admin Tool

Using Admin Tool Commands
Other Administration Tasks

About the Admin Tool

The Service Registry Administration Tool provides a ssmple command-line
interface for common administration tasks, such as adding associations to the
Registry and removing objects from the Registry.

Thetool can operate in either of two modes:

In batch mode, you specify one or more commands on the tool’s command
line.

In interactive mode, you enter commands in the tool’s interactive shell.

69

70

ADMINISTERING THE SERVICE REGISTRY

In keeping with the “files and folders’ metaphor used for RegistryObject
objects in RegistryPackage objects, several commands, such as 1s and rm,
mimic both the name and the behavior of well-known UNIX® commands that
operate on files and folders. Other commands have no corresponding UNIX
equivalent.

Starting the Admin Tool

To start the Admin Tool, go to the bin directory of the registry and run the reg-
istry-admin script.

On aWindows system:

cd <JWSDP_HOME>\registry\bin
admin-tool [options]...

On aUNIX system:

cd <JWSDP_HOME>/registry/bin
admin-tool.sh [options]...

The <JwWSDP_HOME> |ocation is the directory where you installed the Java WSDP.

To exit the Admin Tool, use the quit command.

Batch Mode

To run the Admin Tool in batch mode, specify the -command option on the com-
mand line when you start the Admin Tool.

For example, the following command executes the 1s command:

java -jar ~/jwsdp-1.6/registry/lib/admin-tool.jar -command "1s
*.html"

The Admin Tool echoes your commands and the tool’s responses to the screen
and then exits after your commands have been executed.

Make sure that you properly escape any characters that are significant to your
shell.

INTERACTIVE MODE 71

Interactive Mode

To run the Admin Tool in interactive mode, start the Admin Tool shell by speci-
fying no options on the command line:

java -jar <JWSDP_HOME>/registry/Tib/admin-tool.jar
The Admin Tool displays the following prompt and waits for your input:

admin>

Admin Tool Command-line Options

The Admin Tool recognizes the command-line options listed in Synopsis and
described in Options.

Synopsis

[-alias alias] [-command commands] [-debug] [-help]
-keypass keypass [-localdir Tocaldir] [-locale Tocale]
[-registry url] [-root Tocator [-create]]

[-sqlselect SQL_statement] [-v | -verbose]

Options
-alias

The aias to use when accessing the user’s certificate in the keystore. At
this release, this option is not meaningful.

-command

The Admin Tool command sequence to run instead of getting commands
from the interactive shell. Use a semicolon (;) to separate multiple com-
mands. It is not necessary to include aquit command in commands. If you
need to use a semicolon that is not a command separator, precede it by a
backslash:

\;

ADMINISTERING THE SERVICE REGISTRY

The shell in which you run the Admin Tool may require you to escape the
backslash with a second backslash:

\\;

If any command contains spaces, enclose the entire command sequencein
single or double quotes so that the tool will treat the sequence as one com-
mand-line parameter instead of several. If your shell also interprets a
semicolon as separating shell commands, you aways have to put
seguences of multiple Admin Tool commands in quotation marks.

-Create

If necessary, create the RegistryPackage specified by the -root option
aswell as any parent RegistryPackage objects as needed. Thisoptionis
valid only if the user running the Admin Tool is authorized to create
objects.

-debug

Outputs extrainformation that is useful when debugging.
-help

Provides alist of these options.
-keypass

The password to use when accessing a user’s certificate in the keystore.
At thisrelease, this option is not meaningful.

-localdir

The base directory in the local file system for commands that relate to
filesin the local file system.

-locale

The locale (for example, en or fr_CA) to use for selecting the resource
bundle to use for error and status messages. The default is determined by
the Java™ Virtual Machine.

-registry

USING THE ADMIN TooL

The URL of the ebXML registry to which to connect. The default is
http://localhost:8080/soar/registry/soap.

-root

The locator (for example, /registry/userData) of the RegistryPack-
age to use as the base for those commands that treat the repository as a
tree of RegistryPackage objects that each contain other RegistryOb-
ject and RegistryPackage objects. The default isthe RegistryPackage
that is defined for all users data: /registry/userData.

-sqglselect

Execute SQL_statement to select registry objects. This should be a com-
plete SQL statement that starts with select. The SQL statement must be
enclosed in quotation marks, but it does not have to be terminated by a
semicolon.

-v | -verbose

Specifies the verbose output of status messages.

Using the Admin Tool

This section covers the following topics:

Permissions

Displaying Exceptions

Identifying Registry Objects

The Effect of Locale on Specifying Names
Case Sengitivity

Permissions

When you use the Admin Tool, you can perform only those actions that are

alowed for the user whose aias and password you specified when you started
the tool. Only a user with the role of administrator can perform certain com-
mands (chown, for example).

73

74

ADMINISTERING THE SERVICE REGISTRY

Displaying Exceptions

The Admin Tool enables you to avoid viewing long stack traces when a com-
mand fails.

When a command fails, the Admin Tool printsthefirst line of the stack trace and
the following message:

An error occurred when executing the function. Use the show
exception command to view messages.

If you need more information, execute the show exception command next to
see the full stack trace.

The show exception command always displays the stack trace of the immedi-
ately preceding command.

Identifying Registry Objects

The primary way to identify registry objects is by name. This extends to identi-
fying RegistryPackage objects by the path from the registry root to the Regis-
tryPackage. For example, /registry/userData is the path to the userData
RegistryPackage.

Some matches for names support wildcards. Use a question mark (?) to match a
single character, and use an asterisk (*) to match zero or more characters.

Some commands (for example, cd and chown) support identifying objects by
their Uniform Resource Name (URN), which must include a leading urn:. For
example, urn:uuid:2702f889-3ced-4d49-82d1-e4cd846ch9e4.

The chown command also supports using %number to refer to aUser listed by a
previous users command.

For some commands, you can enter names that contain spaces by enclosing the
entire name in double quotes or by preceding each space in the name by a back-
slash.

THE EFFECT OF LOCALE ON SPECIFYING NAMES

The Effect of Locale on Specifying
Names

A RegistryObject (Or aRegistryPackage) may have multiple names, each of
which is associated with a different locale.

The paths and object names that you specify are evaluated with respect to the
current locale only. When you attempt to select by name a registry object that
has multiple names, the Registry attempts to match the name that you provide
against only one alternative for the registry object’s name (the choice whose
locale most closely matches the current locale), not against all the multiple
names for the registry object.

For example, suppose the current RegistryPackage has a member object that
has two names, each associated with a different locale: red in the en (English)
locale and rouge in the fr (French) locale. When the current locale is en, the
command 1s rouge does not display that member object, but when the localeis
fr (or one of its variants), then it does.

Case Sensitivity

Command names and literal parameters that are recognized by the Admin Tool
are not case sensitive. For example, 1s, Ls, and LS are equivalent.

Options to which you provide the value are passed literally to the code that uses
the option.

Using Admin Tool Commands

The following sections describe the available commands. For each command,
the synopsis and the descriptions of the options and operands observe the follow-
ing typographical conventions:

e TItalics indicate an option argument or operand that should be replaced
by an actual value when you run the command.

e Curly braces ({ }) delimit achoice of options or operands where you must
include one of the options or operands. The options or operands are sepa-
rated by avertical bar (1).

« Sqguare brackets ([1) delimit an option or operand, or a choice of options
or operands, that may be omitted.

75

76

ADMINISTERING THE SERVICE REGISTRY

» Ellipses(. . .) after an option or operand indicates that you may repeat the
option or operand.

Anything elseisliteral text that you must include when running the command.

add association

Adds an Association object to the Registry.

Synopsis

add association -type association-type sourceURN targetURN

ADD ASSOCIATION

Description

The add association command adds an Association object of the specified
type to the Registry. You can use any of the following types:

AccessControlPolicyFor
Affiliatedwith (which has the subconcepts Emp1oyee0f and MemberQf)
Contains
ContentManagementServiceFor
EquivalentTo

Extends

ExternallyLinks
HasFederationMember
HasMember

Implements

InstanceOf

InvocationControlFileFor (which has the subconcepts Cataloging-
ControlFileFor and ValidationControlFileFor)

OffersService
Owner0f
RelatedTo
Replaces
ResponsibleFor
SubmitterOf
Supersedes

Uses

Options

-type

The type of the Association object.

Operands

sourceURN

77

78

ADMINISTERING THE SERVICE REGISTRY

The URN of the source object.

targetURN

The URN of the target object.

Example

The following command (all on one line) creates a RelatedTo relationship
between the objects with the two specified URNSs.

admin> add association -type RelatedTo \
urn:uuid:ab80d8f7-3bea-4467-ad26-d04a40045446 \
urn:uuid:7a54bbca-2131-4a49-8ecc-e7b4ac86c4fd

add user

Adds a user to the Registry.

Synopsis

add user [-edit] [-Toad file] [-firstName string] [-lastName
string] [-middleName string] [-alias string] [-keypass stringl
[-postl.type string] [-postl.city string] [-postl.country
string] [-postl.postalcode string] [-postl.stateOrProvince
string] [-postl.street string] [-postl.streetNumber string]
[-post2.type string] [-post2.city string] [-post2.country
string] [-post2.postalcode string] [-post2.stateOrProvince
string] [-post2.street string] [-post2.streetNumber string]
[-post3.type string] [-post3.city string] [-post3.country
string] [-post3.postalcode string] [-post3.stateOrProvince
string] [-post3.street string] [-post3.streetNumber string]
[-teTephonel.type string] [-telephonel.areaCode string]
[-telephonel.countryCode string] [-telephonel.extension
string] [-telephonel.number string] [-telephonel.URL string]
[-teTephone2.type string] [-telephone2.areaCode string]
[-teTephone2.countryCode string] [-telephone2.extension
string] [-telephone2.number string] [-telephone2.URL string]
[-teTephone3.type string] [-telephone3.areaCode string]
[-telephone3.countryCode string] [-telephone3.extension

ADD USER

string] [-telephone3.number string] [-telephone3.URL string]
[-emaill.type string] [-emaill.address string] [-email2.type
string] [-email2.address string] [-email3.type string]
[-email3.address string]

Description

The add user command adds aUser object. A User object contains at least one
PostalAddress, TelephoneNumber, and EmailAddress object. The information
that you provide is checked for validity using the same criteria as when you add
anew user using the Web Console or the JAXR API.

Specify the information about the user either on the command line itself or by
using the -Toad option to specify a Java properties file with the information. The
information options and the -Toad option are evaluated in the order they appear
on the command line. For example, you can specify some properties on the com-
mand line, load others from apropertiesfile, and then override information in the
properties file with later command-line options.

Specify at least one postal address, tel egphone number, and email address for the
new user. You can specify up to three of each type. If you need more, you can
add them later using the Web Console or JAXR.

When you specify a postal address, telephone number, or email address, you
must provide avalue for itstype: for example, -emailType OfficeEmail.

You can use shorthand options (such as -fn) on the command line for some of
the common information that is required for every user, but you must use the
longer form when providing the information in a properties file. For example,
you can specify the user’s first email address on the command line using either
-emaill.address, -emailAddress, or -email, but when you specify it in a
properties file, you must use emaill.address=. Because there is only one
option for the user’'s second email address, you must use -email2.address on
the command line and emai12.address= in a propertiesfile.

If you specify the -edit option, the Admin Tool launches an editor so that you
can edit the new user’s information. See the option description for details.

The properties files that you load with -1oad or edit with -edit use the
IS0-8859-1 charset, as do all Java properties files. See the documentation for
java.util.Properties.load(InputStream) for details on how to represent
other characters not in 1SO-8859-1 in propertiesfiles.

79

80

ADMINISTERING THE SERVICE REGISTRY

Options
-edit

Causes the Admin Tool to launch an editor so that you can edit the new
user’s information. The tool launches the editor after evaluating the other
command-line parameters, so editing starts with the result of evaluating
any information specified on the command line or with a properties file.
The editing program must terminate without error before the command
can continue. (At the time of this writing, -edit currently works with
emacsclient and the NetBeans command bin/runide.sh --open (but not
very well), has not been shown to work with vi, and has not been tested
on Windows.)

-load

Specifies a Java properties file whose contents specify properties for the
user. The property names are the same as those of the long form of the
add user command options (for example, TastName and postl.type).

-fn | -firstName
Specifies the first name of a user.
-Tn | -TastName

Specifies the last name of auser. A last name isrequired; it must be spec-
ified either on the command line or in a propertiesfile.

-mn | -middleName

Specifies the middle name of a user.
-alias

The alias to use when accessing the user’s certificate in the keystore.
-keypass

The password to use when accessing a user’s certificate in the keystore.

-postalType | -postl.type

ADD USER

The type of the first PostalAddress. The type is required; it must be
specified either on the command line or in a properties file. It is an arbi-
trary string (for example, 0ffice or Home).

-city | -postl.city
The city of thefirst PostalAddress.
-country | -postl.country
The country of thefirst PostalAddress.
-postalcode | -postcode | -zip | -postl.postalcode
The postal code of the first PostalAddress.
-stateOrProvince | -state | -province | -postl.stateOrProvince
The state or province of the first PostalAddress.
-street | -postl.street

The street name of thefirst PostalAddress. The street is required; it must
be specified either on the command line or in a propertiesfile.

-streetNumber | -number | -postl.streetNumber
The street number of thefirst PostalAddress.
-post2.type

The type of the second PostalAddress. If a second PostalAddress is
specified, the type isrequired; it must be specified either on the command
line or in apropertiesfile. It is an arbitrary string (for example, 0ffice or
Home).

-post2.city
The city of the second PostalAddress.

-post2.country

81

82

ADMINISTERING THE SERVICE REGISTRY

The country of the second PostalAddress.
-post2.postalcode

The postal code of the second PostalAddress.
-post2.stateOrProvince

The state or province of the second PostalAddress.
-post2.street

The street name of the second PostalAddress. If a second Postal-
Address is specified, the street is required; it must be specified either on
the command line or in a propertiesfile.

-post2.streetNumber
The street number of the second PostalAddress.
-post3.type

The type of the third PostalAddress. If athird PostalAddress is Speci-
fied, the type is required; it must be specified either on the command line
or in a properties file. It is an arbitrary string (for example, 0ffice or
Home).

-post3.city

The city of thethird PostalAddress.
-post3.country

The country of the third PostalAddress.
-post3.postalcode

The postal code of the third PostalAddress.
-post3.stateOrProvince

The state or province of the third PostalAddress.

-post3.street

ADD USER

The street name of the third PostalAddress. If athird PostalAddress is
specified, the street is required; it must be specified either on the com-
mand line or in a propertiesfile.

-post3.streetNumber
The street number of the third PostalAddress.
-phoneType | -telephonel.type

The type of the first TelephoneNumber. The type is required; it must be
specified either on the command line or in a properties file. It can have
any of the following values: Beeper, FAX, HomePhone, MobilePhone, oOr
Off1icePhone.

-areaCode | -telephonel.areaCode

The area code of the first TeTephoneNumber.
-countryCode | -telephonel.countryCode

The country code of thefirst TelephoneNumber.
-extension | -telephonel.extension

The extension of thefirst TelephoneNumber.
-number | -telephonel.number

The telephone number suffix, not including the country or area code, of
the first TelephoneNumber. The number is required; it must be specified
either on the command line or in a propertiesfile.

-URL | -telephonel.URL

The URL of thefirst TelephoneNumber (the URL that can dia this num-
ber electronically).

-telephone2. type

The type of the second TelephoneNumber. If a second TelephoneNumber
is specified, the type is required; it must be specified either on the com-

83

ADMINISTERING THE SERVICE REGISTRY

mand line or in a properties file. It can have any of the following values:
Beeper, FAX, HomePhone, MobilePhone, Or OfficePhone.

-telephone2.areaCode

The area code of the second TeTephoneNumber.
-telephone2.countryCode

The country code of the second TelephoneNumber.
-telephone2.extension

The extension of the second TelephoneNumber.
-telephone2.number

The telephone number suffix, not including the country or area code, of
the second TelephoneNumber. If a second TelephoneNumber is specified,
the number is required; it must be specified either on the command line or
in apropertiesfile.

-telephone2.URL

The URL of the second TelephoneNumber (the URL that can dia this
number electronically).

-telephone3. type

The type of the third TelephoneNumber. If a third TelephoneNumber is
specified, the type is required; it must be specified either on the command
line or in apropertiesfile. It can have any of the following values: Beeper,
FAX, HomePhone, MobilePhone, Or OfficePhone.

-telephone3.areaCode

The area code of the third TelephoneNumber.
-telephone3. countryCode

The country code of the third TelephoneNumber.

-telephone3.extension

ADD USER 85

The extension of the third TeTephoneNumber.
-telephone3.number

The telephone number suffix, not including the country or area code, of
the third TeTephoneNumber. If athird TelephoneNumber is specified, the
number is required; it must be specified either on the command line or in
apropertiesfile.

-telephone3.URL

The URL of the third TelephoneNumber (the URL that can dia this num-
ber electronically).

-emailType | -emaill.type

Thetype of the first EmailAddress. Thetypeisrequired; it must be spec-
ified either on the command line or in a properties file. It can have either
of the following values: HomeEmail or OfficeEmail.

-emailAddress | -email | -emaill.address
Thefirst email address. Thefirst email addressis required.
-email2.type

The type of the second Emai1Address. If asecond EmailAddress iS spec-
ified, the type is required; it must be specified either on the command line
or in a properties file. It can have either of the following values:
HomeEmail or OfficeEmail.

-email2.address
The second email address.
-email3.type

The type of the second EmailAddress. If athird EmailAddress is speci-
fied, the typeis required; it must be specified either on the command line
or in a properties file. It can have either of the following values:
HomeEmail or OfficeEmail.

-email3.address

86

ADMINISTERING THE SERVICE REGISTRY

The third email address.

Examples

The following command loads the User properties from the file Jane-
Smith.properties inthe user's home directory.

admin> add user -load ~/JaneSmith.properties

The following command (all on one line) specifies the minimum properties
required to create a User.

admin> add user -1n Smith -postaltype Office \
-street “Smith Street” -phonetype Office \
-number 333-3333 -emailtype OfficeEmail \
-emailaddress JaneSmith@JaneSmith.com

cd

Changesthe RegistryPackage location

Synopsis

cd {locator | URN}

Description

Change directory (metaphorically) to the RegistryPackage at the specified path
or with the specified URN.

Change to a specified URN when there are multiple RegistryPackage objects
with the same path (for the current locale).

Operands

lTocator

The path of names of registry objects from the root of the repository to an
object in the repository, with each name preceded by aforward slash (/).

CHOWN

For example, the locator for the userData RegistryPackage that is a
member of the registry RegistryPackage (whichisnot itself amember
of any RegistryPackage) iS /registry/userData, and the locator for
the folderl RegistryPackage that is amember of the userData Regis-
tryPackage iS /registry/userData/folderl.

If you used the -root option to specify the RegistryPackage locator
when you started the Admin Tool, the locator value isrelative to that root.

URN
The URN of the RegistryPackage, which must be a URN starting with

urn:.

Examples

The following command changes the directory to the RegistryPackage with the
URN urn:uuid:92d3fd01-a929-4eba-a5b4-a3f036733017.

admin> cd urn:uuid:92d3fd01-a929-4eba-a5b4-a3f036733017

The following command changes the directory to the location /registry/user-
Data/myData.

admin> cd /registry/userData/myData

chown

Changes the owner of aRegistryObject.

Synopsis

chown {URN | %index}

Description

The chown command changes the ownership of the objects selected with a pre-
ceding select command to the user specified by either the URN or the reference
to the user’'s URN when listed by a preceding users command.

87

ADMINISTERING THE SERVICE REGISTRY

Only a user with the role of administrator can execute this command success-
fully.

Operands

URN
The User specified by the URN.
%1ndex

A numerical reference to a URN for a user listed in a preceding users

command.
Examples
The following command changes the ownership of the selected objects to the
user specified by the URN

urn:uuid:26aal7e6-d669-4775-bfe8-a3a484d3e079.
admin> chown urn:uuid:26aal7e6-d669-4775-bfe8-a3a484d3e079

The following command changes the ownership of the selected objects to the
user with the number 2 in a preceding users command.

admin> chown %2

Cp
Copies files and folders into the Registry.
Synopsis
cp [-owner {URN | %index}] [-exclude pattern]... pattern...

Description

The cp command copies files and folders into the Registry asRegistryPackage
and ExtrinsicObject objects, respectively.

CP

The local directory on the local file system from which to copy files and folders
defaultsto the current directory from which you started the Admin Tool. You can
use the -Tocaldir option to change the local directory when you start the
Admin Tool, or you can use the 1cd command to change it after the Admin Tool
has started. You can get the absolute path of the current local directory using the
show localdir command.

The command isrecursive. That is, if you specify a directory, the command cop-
ies all the files and folders under the directory.

Options

Sets the owner of the copied registry objects to the user specified by the
URN or %1index argument. See the description of the chown command for a
description of these arguments. You must have the role of administrator to
specify an owner other than yourself.

-exclude

Copies al files except those whose names contain the specified pattern,
where pattern is a pattern comprising literal characters and the special
characters asterisk (*) (representing zero or more characters) and question
mark (?) (representing one and only one character).

You can specify this option more than once.

Operands

pattern

The files or folders to be copied, specified by a pattern comprising literal
characters and the special characters asterisk (*) (representing zero or
more characters) and question mark (?) (representing one and only one
character). You can specify more than one pattern.

89

90

ADMINISTERING THE SERVICE REGISTRY

Examples

The following command copies the directory myd1 r to the Registry, to be owned
by the user with the number 4 in a preceding users command.

admin> cp -owner %4 mydir

The following command copies the directory mydir to the Registry, excluding
files and directories that end with the string .z or .c.

admin> cp mydir -exclude \.z -exclude \.c

echo

Echoes a string.

Synopsis

echo string

Description

The echo command echoes the specified string to the output. It is most useful
when you specify it in the -command option when you run the Admin Tool in
batch mode.

Operand
string

A sequence of characters.

Example

The following command prints the date and the result of the 1s command into a
log file.

1]

registry-admin.sh -command "echo ‘date‘; 1s" > admin.log

HELP 91

help

Displays information about commands.

Synopsis

help [command_name]

Description

The help command displays information about the available commands or a
specified command.

For commands with subcommands, such as add and show, the help command
displays information about the subcommands.

If you do not specify an argument, the help command displays usage informa-
tion for all commands.

Operand

command_name

The name of an Admin Tool command.

Examples

The following command displays usage information for all commands.
admin> help

The following command displays usage information for the 1cd command.
admin> help 1cd

The following command displays usage information for the add subcommands.

admin> help add

92

ADMINISTERING THE SERVICE REGISTRY

lcd

Changes the current directory on the local file system.

Synopsis

lcd [path_name]

Description

The 1cd command changes the current local directory on the local file system.

If you do not specify an argument, the 1cd command changes the current direc-
tory to your default home directory.

Operand

path_name

A directory name, which may be absolute or relative.

Examples

The following command changes the current local directory to the /usr/share
directory.

admin> cd /usr/share

The following command changes the current local directory to your default
home directory on the local file system.

admin> Tcd

Is

Lists the objectsin the current RegistryPackage.

LS

Synopsis

1s [{pattern | URN}...]

Description

The 1s command lists the objects in the current RegistryPackage or, when a
pattern OF URN is provided, list the objects in the current RegistryPackage
whose names (in the current locale) or unique identifiers match pattern or URN.

Operands

pattern

A pattern comprising literal characters and the special characters asterisk
(*) (representing zero or more characters) and question mark (?) (repre-
senting one and only one character). You can specify more than one

pattern.
URN
A URN starting with urn:, for example,

urn:uuid:4a674le7-4bel-4cfb-960a-e5520356c4fd. You can specify
more than one URN.

Examples

The following command lists al the objects in the current Regi stryPackage.
admin> 1s

The following command lists all the objects whose name matches the pattern
urn:bird:poultry:chicken or whoseID isurn:bird:poultry:chicken.

admin> 1s urn:bird:poultry:chicken

93

94

ADMINISTERING THE SERVICE REGISTRY

The following command lists all the objects whose name matches the pattern
pird. (It would also list the objects whose ID is *bird*, if *bird* were a
valid ID.)

admin> 1s *bird*

The following command lists all the objects whose name matches the pattern
pbird or whose name matches the pattern urn:bird:poultry:chicken or
whose ID isurn:bird:poultry:chicken.

admin> 1s *bird* urn:bird:poultry:chicken

pwd

Displays the path to the current RegistryPackage.
Synopsis
pwd

Description

The pwd command displays the path (or paths) to the current RegistryPackage
using the best-matching names for the current locale. Also displaysthe locale for
the path.

Example

admin> pwd
(en_US) /registry/userData

quit

Exits the Admin Tool.

RM

Synopsis

quit

Description

The quit command exits the Admin Tool.

Example

admin> quit

m

Removes objects from aRegistryPackage.

Synopsis

rm [-d] [-r] {pattern | URN}...

Description

The rm command removes the member aobjects of the current RegistryPackage
whose names (in the current locale) match the patterns specified by apattern or
URN.

When a matching RegistryObject is a member of multiple RegistryPackage
objects, this command removes only the association between the current Regis-
tryPackage and the object. The object is removed from the Registry only when
the removal of the association leaves the object with no association with any
other RegistryObject.

When amatching member object isitself aRegistryPackage that contains other
objects, neither the object nor the association between the current Registry-
Package and the member RegistryPackage is removed unless either the -r or
the -d option is specified.

95

96 ADMINISTERING THE SERVICE REGISTRY

When both the -d and -r options are specified, the -d option is applied recur-
sively, so all objects that would be selected by -r (and their associations) are
removed whether or not they have other associations.

Options
-d

Removes the association between the current RegistryPackage and the
specified RegistryPackage. Removes the specified RegistryPackage
only if its only remaining associations are to its member objects. Member
objects of the now-removed RegistryPackage that are not anchored by
being the target of other HasMember associations are now accessible as
members of the root of the Registry.

Removes the specified RegistryPackage object and all its descendant
objects (except when an object has other associations).

Operands

pattern

A pattern comprising literal characters and the special characters asterisk
(*) (representing zero or more characters) and question mark (?) (repre-
senting one and only one character). You can specify more than one

pattern.
URN
A URN starting with urn:, for example,

urn:uuid:4a674le7-4bel-4cfb-960a-e5520356c4fd. You can specify
more than one URN.

SELECT 97

Examples

The following command removes al RegistryPackage objects containing the
string “stat” and all their descendants.

admin> rm -r *stat*

select

Executes an SQL select statement.

Synopsis

select [SQL]

Description

The select command selects and lists the objects specified by evaluating the
entire command as an SQL query. If no argument is specified, the command lists
any objects selected by a preceding select command.

Operand
SQL
An SQL select statement (without the leading select because that is

aready present as the name of the command).

Examples

The following command lists all ClassificationScheme objects in the Regis-
try:

admin> select s.* from ClassificationScheme s

set
Sets a property value.

98 ADMINISTERING THE SERVICE REGISTRY

Synopsis

set property value

Description
The set command sets the value of a property of the Admin Tool shell.

Thetool supports the following properties and values.
set debug {true | on | yes | false | off | no}
Enables or disables output of debugging messages.
set editor string

Sets the command to use when the Admin Tool launches an interactive
editor. The default value is /bin/vi on UNIX and Linux systems, and is
notepad. exe on Windows systems.

set verbose {true | on | yes | false | off | no}
Enables or disables output of more verbose messages when executing

commands.

Operands

property
One of the following properties. debug, edi tor, verbose.
value

A supported value of the specified property. See the Description section
for details.

SHOW 99

Examples

The following command sets the editor to /usr/bin/vi instead of the default /
bin/vi.

admin> set editor /usr/bin/vi

show
Displays a property value.

Synopsis

show [property]

Description
The show command displays the value of a property of the Admin Tool shell.

If no argument is specified, the command displays the values of all properties.

The command supports the following properties.
debug
Whether or not debugging output is enabled.
editor
The editor to use when the Admin Tool launches an interactive editor.
exception

The exception stack trace, if any, from the immediately preceding exe-
cuted command.

locale
The current locale.

verbose

100

ADMINISTERING THE SERVICE REGISTRY

Whether or not verbose output is enabled.

Operands
property

The property whose current value is to be displayed. The properties
exception and locale can be displayed, but you cannot use the set
command to set them.

Example

The following command displays the exceptions from the previous command.

admin> show exception

users

Liststhe current User objects.

Synopsis

users

Description
The users command lists the User objects currently in the Registry.
The output has the following format:

%index: URN lastname, firstname

In the output, the index is a numeric value that you can use, including the percent
sign (%), to refer to a user when you run the chown or cp command. The
Tastname and f1irstname are the first and last names of the user.

OTHER ADMINISTRATION TASKS 101

Examples
The following command displays the current users.

admin> users

%0: urn:uuid:2702f889-3ced-4d49-82d1-e4cd846ch9e4 user, test

%1: urn:uuid:85428d8e-1bd5-473b-a8c8-b9d595f82728 Parker, Miles

%2: urn:uuid:921284f0-bbed-4a4c-9342-ecaf0625f9d7 Operator, Registry
%3: urn:uuid:977d9380-00e2-4ce8-9cdc-d8bf6a4157be Brown, Arthur

%4: urn:uuid:abfa78d5-605e-4dbc-b9ee-a42e99d5f7cf Guest, Registry

Other Administration Tasks

This section describes other tasks you may need to perform for the Registry:
» Backing Up and Restoring the Database

Backing Up and Restoring the Database

The Registry uses the Apache Derby database. By default, the database is
located in the following directory:

$HOME/soar/platform/3.0/data/registry/soar/

where platformiseither tomcat or as8.1.

To learn how to back up and restore the database, consult the Apache Derby doc-
umentation. To locate the documentation, follow these steps:

1. In a web browser, go to the URL http://incubator.apache.org/
derby/.

2. Click the Manuals tab.

3. Locate the Server & Admin Guide.

4. Locate the sections on backing up and restoring databases.

102 ADMINISTERING THE SERVICE REGISTRY

A

XWS-Security Formal
Schema Definition

Formal Schema Definition

This chapter shows the formal schema definition for security configuration files
for XWS-Security EA 2.0. More information on using security configuration
files is described in Introduction to XML and Web Services Security. More
information on each of the schema elementsis described in XWS-Security Con-
figuration File Schema. Sample applications that use these elements are
described in Understanding and Running the XWS-Security Sample Applica-
tions.

<?ml version="1.0"?>
<xs.schema xmlns:xs="http://www.w3.0rg/2001/X ML Schema"
xmins="http://java.sun.com/xml/ns/xwss/config"
targetNamespace="http://java.sun.com/xml/ns/xwss/config"
elementFormDefault="qualified">
<xs.element name="JAX RPCSecurity">
<xs.complexType>
<Xs:.sequence>
<xs.element name="Service" type="Service T" minOccurs="0"
maxOccurs="unbounded"/>
<xs.element name="SecurityEnvironmentHandler"
type="xs:string"/> 103

104 A XWS-SECURITY FORMAL SCHEMA DEFINITION

</xs.sequence>
</xs.complexType>
</xs.element>
<xs.complexType name="Service T">
<Xs:.sequence>
<xs.element ref="SecurityConfiguration" minOccurs="0"/>
<xs:.element name="Port" type="Port_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs.element name="SecurityEnvironmentHandler"
type="xs:string" minOccurs="0"/>
</xs.sequence>
<xs.attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="id" type="id_T" use="optiona"/>
<xs.attribute name="conformance" use="optiona">
<xs.simpleType>
<xs.restriction base="xs:string">
<xs.enumeration value="hsp"/>
</xs:restriction>
</xs:simpleType>
</xs:.attribute>
<xs.attribute name="useCache" type="xs:boolean" use="optiona"
default="false"/>
</xs.complexType>
<xs.complexType name="Port_T" mixed="true">
<xs:sequence>
<xs:.element ref="SecurityConfiguration" minOccurs="0"/>
<xs.element name="0Operation" type="Operation_T"
minOccurs="0" maxOccurs="unbounded"/>
</xs.sequence>
<xs.attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
</xs:restriction>
</xs.simpleType>
</xs.attribute>
<xs:attribute name="conformance" use="optiona">
<xs:.simpleType>
<xs:restriction base="xs:string">
<Xs.enumeration value="hsp"/>
</xs:restriction>

FORMAL SCHEMA DEFINITION 105

</xs:simpleType>
</xs.attribute>
</xs.complexType>
<xs.complexType hame="Operation_T">
<xs.sequence>
<xs.element ref="SecurityConfiguration” minOccurs="0"
maxOccurs="unbounded"/>
</xs.sequence>
<xs.attribute name="name" use="required">
<xs.simpleType>
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
</xsrestriction>
</xs:simpleType>
</xs.attribute>
</xs.complexType>
<xs.element name="SecurityConfiguration"
type="SecurityConfiguration_T"/>
<xs:.complexType name="SecurityConfiguration_T">
<xs:sequence>
<xs.group ref="SecurityConfigurationElements' minOccurs="0"
maxOccurs="unbounded"/>
</xs.sequence>
<xs.attribute name="dumpM essages" type="xs:boolean"
use="optional" default="false"/>
<xs.attribute name="enableDynamicPolicy" type="xs.boolean"
use="optional" default="false"/>
</xs.complexType>
<xs.group name="SecurityConfigurationElements"'>
<xs.choice>
<xs.element name="Timestamp" type="Timestamp_T"
minOccurs="0"/>
<xs.element name="RequireTimestamp"
type="RequireTimestamp_T" minOccurs="0"/>
<xs.element name="UsernameToken" type="UsernameToken T"
minOccurs="0"/>
<xs.element name="RequireUsernameToken"
type="RequireUsernameToken_T" minOccurs="0"/>
<xs.element name="SAMLAssertion" type="SAMLAssertion_T"
minOccurs="0"/>
<xs.element name="RequireSAMLAssertion"

106 A XWS-SECURITY FORMAL SCHEMA DEFINITION

type="RequireSAMLAssertion_T" minOccurs="0"/>
<xs.element name="0Optional Targets" type="Optiona Targets T"
minOccurs="0"/>
<xs.element name="Sign" type="Sign T"/>
<xs.element name="Encrypt" type="Encrypt_T"/>
<xs.element name="RequireSignature"
type="RequireSignature_T"/>
<xs.element name="ReguireEncryption"
type="RequireEncryption_T"/>
</xs:choice>
</xs.group>
<xs.complexType name="Timestamp_T">
<xs:attribute name="id" type="id_T" use="optiona"/>
<xs.attribute name="timeout" type="xs.decimal" use="optiona"
default="300"/>
</xs.complexType>
<xs.complexType name="RequireTimestamp_T">
<xs.attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="maxClockSkew" type="xs.decimal"
use="optiona" default="60"/>
<xs.attribute name="timestampFreshnessLimit" type="xs.decimal"
use="optiona" default="300"/>
</xs.complexType>
<xs.complexType name="UsernameToken T">
<xs:attribute name="id" type="id_T" use="optional"/>
<xs.attribute name="name" type="xs:string" use="optiona"/>
<xs.attribute name="password" type="xs:string" use="optiona"/>
<xs.attribute name="useNonce" type="xs:boolean" use="optiona"
default="true"/>
<xs.attribute name="digestPassword" type="xs.boolean"
use="optional" default="true"/>
</xs.complexType>
<xs.complexType name="RequireUsernameToken_T">
<xs.attribute name="id" type="id_T" use="optiona"/>
<xs.attribute name="nonceRequired" type="xs:boolean"
use="optional" default="true"/>
<xs:attribute name="passwordDigestRequired" type="xs:boolean"
use="optiona" default="true"/>
<xs.attribute name="maxClockSkew" type="xs.decimal"
use="optiona" default="60"/>
<xs.attribute name="timestampFreshnessLimit" type="xs.decimal"

FORMAL SCHEMA DEFINITION 107

use="optional" default="300"/>
<xs.attribute name="maxNonceAge" type="xs.decimal"
use="optional" default="900"/>
</xs.complexType>
<xs.complexType name="Encrypt_T">
<xs:sequence minOccurs="0">
<xs:choice minOccurs="0" maxOccurs="1">
<xs.element name="X509Token" type="X509Token_T"/>
<xs.element name="SAML Assertion"
type="SAMLAssertion_T"/>
<xs.element name="SymmetricKey"
type="Symmetrickey T"/>
</xs:.choice>
<xs.element name="KeyEncryptionM ethod"
type="KeyEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs.element name="DataEncryptionM ethod"
type="DataEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs.element name="Target" type="Target_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs.element name="EncryptionTarget"
type="EncryptionTarget_T" minOccurs="0"
maxOccurs="unbounded"/>
</xs:.choice>
</xs.sequence>
<xs.attribute name="id" type="id_T" use="optional"/>
</xs.complexType>
<xs.complexType name="KeyEncryptionMethod_T">
<xs:attribute name="algorithm" use="optiona"
default="http://mwww.w3.0rg/2001/04/xmlenc#rsa-oaep-mgf1p">
<xs:.simpleType>
<xs.restriction base="xs:string">
<xs.enumeration value=
"http://www.w3.0rg/2001/04/xmlenctrsa-oaep-mgf 1p"/>
<xs.enumeration value=
"http://mww.w3.0rg/2001/04/xmlenctrsa-1_5"/>
<xs.enumeration value=
"http://mww.w3.0rg/2001/04/xmlenctkw-tripledes'/>
<xs.enumeration value=

108 A XWS-SECURITY FORMAL SCHEMA DEFINITION

"http://www.w3.0rg/2001/04/xmlencitkw-aes128" />
<xs.enumeration value=
"http://www.w3.0rg/2001/04/xmlenctkw-aes256" />
</xs:restriction>
</xs.simpleType>
</xs.attribute>
</xs.complexType>
<xs.complexType name="DataEncryptionMethod_T">
<xs.attribute name="algorithm" use="optiona"
default="http://www.w3.0rg/2001/04/xmlencttaes128-cbc" >
<xs.simpleType>
<xs:restriction base="xs:string">
<xs.enumeration value=
"http://www.w3.0rg/2001/04/xmlencttaes128-cbc" />
<Xs.enumeration value=
"http://www.w3.0rg/2001/04/xmlenctaes256-cbc" />
<xs.enumeration value=
"http://mwww.w3.0rg/2001/04/xmlenct#tripledes-cbc" />
</xs:restriction>
</xs.simpleType>
</xs.attribute>
</xs.complexType>
<xs.complexType name="EncryptionTarget T">
<xs:sequence>
<xs:.element name="Transform" type="Transform_T"
minOccurs="0" maxOccurs="unbounded"/>
</xs.sequence>
<xs.attribute name="type" type="xs:string" use="optiona"
default="gname"/>
<xs.attribute name="contentOnly" type="xs:boolean" use="optiona"
default="true"/>
<xs.attribute name="enforce" type="xs:boolean" use="optiona"
default="true"/>
<xs.attribute name="value" type="xs:string" use="required"/>
</xs.complexType>
<xs.complexType name="SymmetricKey T">
<xs:attribute name="keyAlias" use="required">
<xs:.simpleType>
<xs:restriction base="xs:string">
<xs.minLength value="1"/>
</xs:restriction>

FORMAL SCHEMA DEFINITION 109

</xs:simpleType>
</xs.attribute>
</xs.complexType>
<xs.complexType hame="Sign_T">
<xs.sequence>
<xs.choice minOccurs="0" maxOccurs="1">
<xs.element name="X509Token" type="X509Token_T"/>
<xs.element name="SAMLAssertion"
type="SAMLAssertion_T"/>
<xs.element name="SymmetricKey"
type="SymmetricKey T"/>
</xs.choice>
<xs:.element name="CanonicalizationMethod"
type="CanonicalizationMethod_T" minOccurs="0"/>
<xs.element name="SignatureM ethod"
type="SignatureMethod_T"
minOccurs="0"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded" >
<xs.element name="Target" type="Target_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs.element name="SignatureTarget"
type="SignatureTarget T" minOccurs="0"
maxOccurs="unbounded"/>
</xs.sequence>
</xs.sequence>
<xs.attribute name="id" type="id_T" use="optional"/>
<xs.attribute name="includeTimestamp" type="xs.boolean"
use="optional" default="true"/>
</xs.complexType>
<xs.complexType name="CanonicalizationMethod T">
<xs:attribute name="algorithm" type="xs:string" use="optional"
default="http://mww.w3.0rg/2001/10/xml-exc-c14n#"/>
</xs.complexType>
<xs.complexType hame="SignatureMethod T">
<xs.attribute name="algorithm" type="xs:string" use="optiona"
default="http://www.w3.0rg/2000/09/xmlds g#rsa-shal" />
</xs.complexType>
<xs.complexType name="RequireSignature_T">
<xs.sequence minOccurs="0" maxOccurs="1">
<xs:choice minOccurs="0" maxOccurs="1">
<xs.element name="X509Token" type="X509Token_T"/>

110 A XWS-SECURITY FORMAL SCHEMA DEFINITION

<xs.element name="SAMLAssertion"
type="SAMLAssertion_T"/>
<xs.element name="SymmetricKey"
type="SymmetricKey T"/>
</xs.choice>
<xs.element name="CanonicalizationM ethod"
type="CanonicalizationMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs.element name="SignatureM ethod"
type="SignatureMethod T"
minOccurs="0" maxOccurs="1"/>
<xs.choice minOccurs="0" maxOccurs="unbounded">
<xs.element name="Target" type="Target_T" minOccurs="0
maxOccurs="unbounded"/>
<xs.element name="SignatureTarget"
type="SignatureTarget_ T" minOccurs="0"
maxOccurs="unbounded"/>
</xs.choice>
</xs.sequence>
<xs.attribute name="id" type="id_T" use="optiona"/>
<xs.attribute name="requireTimestamp" type="xs:boolean"
use="optiona" default="true"/>
</xs.complexType>
<xs.complexType name="RequireEncryption_T">
<xs.sequence>
<xs:choice minOccurs="0" maxOccurs="1">
<xs.element name="X509Token" type="X509Token_T"/>
<xs.element name="SAMLAssertion"
type="SAMLAssertion_T"/>
<xs.element name="SymmetricKey"
type="SymmetricKey_T"/>
</xs.choice>
<xs.element name="KeyEncryptionM ethod"
type="KeyEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs.element name="DataEncryptionM ethod"
type="DataEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs.choice minOccurs="0" maxOccurs="unbounded">
<xs.element name="Target" type="Target_T"/>
<xs.element name="EncryptionTarget"

"

FORMAL SCHEMA DEFINITION 111

type="EncryptionTarget_T"/>
</xs:.choice>
</xs.sequence>
<xs.attribute name="id" type="id_T" use="optional"/>
</xs.complexType>
<xs.complexType name="Optional Targets T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs.element name="Target" type="Target_T"/>
</xs.choice>
</xs.complexType>
<xs.complexType hame="X509Token T">
<xs.attribute name="id" type="id_T" use="optiona"/>
<xs.attribute name="strld" type="id_T" use="optional"/>
<xs.attribute name="certificateAlias' type="xs.string"
use="optiona"/>
<xs.attribute name="keyReferenceType" use="optional"
default="Direct">
<xs.simpleType>
<xs:restriction base="xs:string">
<xs.enumeration value="Direct"/>
<xs.enumeration value="ldentifier"/>
<xs.enumeration value="1ssuerSerial Number"/>
</xs:restriction>
</xs.simpleType>
</xs:attribute>
<xs.attribute name="encodingType" use="optional">
<xs:.simpleType>
<xs.restriction base="xs:string">
<xs.enumeration value="http://docs.oasis-
open.org/wss/2004/01/oasi s-200401-wss-soap-message-
security-1.0#Base64Binary"/>
</xsrestriction>
</xs:simpleType>
</xs:attribute>
<xs.attribute name="valueType" type="xs.string" use="optional"/>
</xs.complexType>
<xs.complexType name="SAMLAssertion_T">
<xs.attribute name="id" type="id_T" use="optional"/>
<xs.attribute name="authorityld" type="id_T" use="optional"/>
<xs.attribute name="strld" type="id_T" use="optional"/>
<xs.attribute name="keyldentifier" type="id_T" use="optional"/>

112 A XWS-SECURITY FORMAL SCHEMA DEFINITION

<xs.attribute name="encodingType" use="prohibited"/>
<xs.attribute name="keyReferenceType" use="optional"
default="Identifier">
<xs.simpleType>
<xs.restriction base="xs:string">
<xs.enumeration value="ldentifier"/>
<xs:enumeration value="Embedded"/>
</xs.restriction>
</xs.simpleType>
</xs:.attribute>
<xs.attribute name="type" use="required">
<xs.simpleType>
<xs:restriction base="xs:string">
<xs.enumeration value="HOK"/>
<xs.enumeration value="SV"/>
</xs:restriction>
</xs.simpleType>
</xs.attribute>
</xs.complexType>
<xs.complexType name="RequireSAMLAssertion_T">
<xs.attribute name="id" type="id_T" use="optiona"/>
<xs.attribute name="authorityld" type="id_T" use="optional"/>
<xs.attribute name="strld" type="id_T" use="optional"/>
<xs.attribute name="type" type="xs.string" use="required"
fixed="SV"/>
<xs.attribute name="encodingType" use="prohibited"/>
<xs.attribute name="keyReferenceType" use="optional"
default="Identifier">
<xs.simpleType>
<xs:restriction base="xs:string">
<xs.enumeration value="Direct"/>
<xs.enumeration value="Identifier"/>
<xs.enumeration value="Embedded"/>
<xs.enumeration value="1ssuerSerial Number"/>
</xs:restriction>
</xs.simpleType>
</xs.attribute>
</xs.complexType>
<xs.complexType name="Target_T">
<xs.simpleContent>
<xs.extension base="xs.string">

FORMAL SCHEMA DEFINITION 113

<xs:attribute name="type" use="optiona" default="gname">
<xs:.simpleType>
<xs:restriction base="xs:string">
<xs.enumeration value="gname"/>
<xs.enumeration value="uri"/>
<xs.enumeration value="xpath"/>
</xs.restriction>
</xs:simpleType>
</xs.attribute>
<xs.attribute name="contentOnly" type="xs.boolean"
use="optional" default="true"/>
<xs.attribute name="enforce" type="xs.boolean" use="optiona"
default="true"/>
</xs.extension>
</xs.simpleContent>
</xs.complexType>
<xs.complexType name="SignatureTarget T">
<xs:sequence minOccurs="0" maxOccurs="1">
<xs.element name="DigestMethod" type="DigestMethod T"
minOccurs="0" maxOccurs="1"/>
<xs.element name="Transform" type="Transform_T"
minOccurs="0" maxOccurs="unbounded"/>
</xs.sequence>
<xs.attribute name="type" use="optional" default="gname">
<xs:.simpleType>
<xs:restriction base="xs:string">
<xs.enumeration value="gname"/>
<xs.enumeration value="uri"/>
<xs.enumeration value="xpath"/>
</xsrestriction>
</xs:simpleType>
</xs:attribute>
<xs.attribute name="enforce" type="xs:boolean" use="optiona"
default="true"/>
<xs.attribute name="value" type="xs.string" use="optional"
default="true"/>
</xs.complexType>
<xs.complexType name="DigestM ethod_T">
<xs.attribute name="algorithm" type="xs:string" use="optiona"
default="http://mww.w3.0rg/2000/09/xmldsig#shal"/>
</xs.complexType>

114 A XWS-SECURITY FORMAL SCHEMA DEFINITION

<xs.complexType name="Transform_T">
<xs.sequence>
<xs.element name="AlgorithmParameter"
type="AlgorithmParameter T" minOccurs="0"
maxOccurs="unbounded"/>
</xs.sequence>
<xs:attribute name="algorithm" type="xs:string" use="required"/>
</xs.complexType>
<xs.complexType name="AlgorithmParameter_T">
<xs.attribute name="name" type="xs:string" use="required"/>
<xs.attribute name="value" type="xs:string" use="required"/>
</xs.complexType>
<xs:simpleType name="id_T">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
</xs:restriction>
</xs.simpleType>
</xs.schema>

BI
SJSXP JAR Files

There are two JAR filesin the Sun Java System XML Streaming Parser (SISXP)
implementation of JSR 173, Streaming APl for XML (StAX). Both of these
JARs are located in the <JWSDP_HOME>/sjsxp/11ib directory:

e gsxp.jar — Sunimplementation JAR for SISXP
* jsrl73 apijar — Standard APl JAR for JSR 173

The remainder of this appendix lists the contents of these JAR files. Refer to
Chapter 3, "Streaming API for XML," for detailed information about StAX and
Sun’s SISXP implementation.

sjsxp.jar
The sjsxp.jar file contains the following files:

META-INF/services/javax.xml.stream.XMLEventFactory
META-INF/services/javax.xml.stream.XMLInputFactory
META-INF/services/javax.xml.stream.XMLOutputFactory
META-INF/pack.properties
com/sun/xml/stream/xerces/impl/msg/DOMMessages.properties
com/sun/xml/stream/xerces/impl/msg/XMLMessages.properties
com/sun/xml/stream/xerces/impl/msg/XMLSchemaMessages.propertie
s
com/sun/xml/stream/xerces/impl/msg/XMLSerializerMessages.prope
rties

com/sun/xml/stream/BufferManager.class
com/sun/xml/stream/Constants.class

115

116

SISXP JAR FILES

com/sun/xml/stream/Constants$ArrayEnumeration.class
com/sun/xml/stream/Entity.class
com/sun/xml/stream/Entity$ExternalEntity.class
com/sun/xml/stream/Entity$InternalEntity.class
com/sun/xml/stream/Entity$ScannedEntity.class
com/sun/xml/stream/EventFilterSupport.class
com/sun/xml/stream/FileBufferManager.class
com/sun/xml/stream/PropertyManager.class
com/sun/xml/stream/StaxEntityResolverWrapper.class
com/sun/xml/stream/StaxErrorReporter.class
com/sun/xml/stream/StaxErrorReporter$l.class
com/sun/xml/stream/StaxXMLInputSource.class
com/sun/xml/stream/StreamBufferManager.class
com/sun/xml/stream/StreamBufferManager$RewindableInputStream.c
lass

com/sun/xml/stream/XMLBufferListener.class
com/sun/xml/stream/XMLDTDScannerImpl.class
com/sun/xml/stream/XMLDocumentFragmentScannerImpl.class
com/sun/xml/stream/XMLDocumentFragmentScannerImp1$Driver.class
com/sun/xml/stream/XMLDocumentFragmentScannerImpl1$Element.clas
s
com/sun/xml1/stream/XMLDocumentFragmentScannerImpl$ETementStack
.class
com/sun/xml/stream/XMLDocumentFragmentScannerImp1$ETementStack
2.class
com/sun/xml1/stream/XMLDocumentFragmentScannerImp1$FragmentCont
entDriver.class
com/sun/xml/stream/XMLDocumentScannerImpl.class
com/sun/xml1/stream/XMLDocumentScannerImpl$ContentDriver.class
com/sun/xml/stream/XMLDocumentScannerImp1$DTDDriver.class
com/sun/xml/stream/XMLDocumentScannerImpl1$PrologDriver.class
com/sun/xml/stream/XMLDocumentScannerImp1$TrailingMiscDriver.c
lass
com/sun/xml/stream/XMLDocumentScannerImpl$XMLBufferListenerImp
1.class
com/sun/xml/stream/XMLDocumentScannerImp1$XMLDec1Driver.class
com/sun/xml/stream/XMLEntityHandler.class
com/sun/xml/stream/XMLEntityManager.class
com/sun/xml/stream/XMLEntityManager$RewindableInputStream.clas
S

com/sun/xml/stream/XMLEntityReader.class
com/sun/xml/stream/XMLEntityReaderImpl.class
com/sun/xml/stream/XMLEntityStorage.class
com/sun/xml/stream/XMLErrorReporter.class
com/sun/xml/stream/XMLEventReaderImpl.class
com/sun/xml/stream/XMLNSDocumentScannerImpl.class
com/sun/xml1/stream/XMLNSDocumentScannerImp1$NSContentDriver.cl
ass

SISXP.JAR 117

com/sun/xml/stream/XMLNamespaceBinder.class
com/sun/xml/stream/XMLReaderImpl.class
com/sun/xml/stream/XMLReaderImp1$1.class
com/sun/xml/stream/XMLScanner.class
com/sun/xml/stream/XMLStreamFilterImpl.class
com/sun/xml/stream/ZephyrParserFactory.class
com/sun/xml/stream/ZephyrWriterFactory.class
com/sun/xml/stream/dtd/DTDGrammarUtil.class
com/sun/xml/stream/dtd/nonvalidating/DTDGrammar.class
com/sun/xml/stream/dtd/nonvalidating/DTDGrammar$QNameHashtable
.class
com/sun/xml/stream/dtd/nonvalidating/XMLAttributeDecl.class
com/sun/xml/stream/dtd/nonvalidating/XMLETementDecl.class
com/sun/xml/stream/dtd/nonvalidating/XMLNotationDecl.class
com/sun/xml/stream/dtd/nonvalidating/XMLSimpleType.class
com/sun/xml/stream/events/AttributeImpl.class
com/sun/xml/stream/events/CharacterEvent.class
com/sun/xml/stream/events/CommentEvent.class
com/sun/xml/stream/events/DTDEvent.class
com/sun/xml/stream/events/DummyEvent.class
com/sun/xml/stream/events/EndDocumentEvent.class
com/sun/xml/stream/events/EndETementEvent.class
com/sun/xml/stream/events/EntityDeclarationImpl.class
com/sun/xml/stream/events/EntityReferenceEvent.class
com/sun/xml/stream/events/LocationImpl.class
com/sun/xml/stream/events/NamedEvent.class
com/sun/xml/stream/events/NamespaceImpl.class
com/sun/xml/stream/events/NotationDeclarationImpl.class
com/sun/xml/stream/events/ProcessingInstructionEvent.class
com/sun/xml/stream/events/StartDocumentEvent.class
com/sun/xml/stream/events/StartElementEvent.class
com/sun/xml/stream/events/XMLEventAlTocatorImpl.class
com/sun/xml/stream/events/ZephyrEventFactory.class
com/sun/xml/stream/util/ReadOnlyIterator.class
com/sun/xml/stream/writers/WriterUtility.class
com/sun/xml/stream/writers/XMLEventWriterImpl.class
com/sun/xml/stream/writers/XMLStreamWriterImpl.class
com/sun/xml/stream/writers/XMLStreamWriterImpl$Attribute.class
com/sun/xml/stream/writers/XMLStreamwWriterImpl$ETementStack.cl
ass
com/sun/xml/stream/writers/XMLStreamWriterImpl$ElementState.c]
ass
com/sun/xml/stream/writers/XMLStreamWriterImpl$NamespaceContex
tImpl.class
com/sun/xml/stream/xerces/imp1/i0/ASCIIReader.class
com/sun/xml/stream/xerces/imp1/io/UCSReader.class
com/sun/xml/stream/xerces/impl1/io/UTF8Reader.class
com/sun/xml/stream/xerces/impl/msg/XMLMessageFormatter.class

118

SISXP JAR FILES

com/sun/xml/stream/xerces/util/AugmentationsImpl.class
com/sun/xml/stream/xerces/util/AugmentationsImpl$Augmentations
ItemsContainer.class
com/sun/xml/stream/xerces/util/AugmentationsImpl$LargeContaine
r.class
com/sun/xml/stream/xerces/util/AugmentationsImp1$SmallContaine
r.class
com/sun/xml/stream/xerces/util/AugmentationsImpl$SmallContaine
r$SmallContainerKeyEnumeration.class
com/sun/xml/stream/xerces/util/DefaultErrorHandler.class
com/sun/xml/stream/xerces/util/EncodingMap.class
com/sun/xml/stream/xerces/util/IntStack.class
com/sun/xml/stream/xerces/util/MessageFormatter.class
com/sun/xml/stream/xerces/util/NamespaceContextWrapper.class
com/sun/xml/stream/xerces/util/NamespaceSupport.class
com/sun/xml/stream/xerces/util/NamespaceSupport$IteratorPrefix
es.class
com/sun/xml/stream/xerces/util/NamespaceSupport$Prefixes.class
com/sun/xml/stream/xerces/util/ObjectFactory.class
com/sun/xml/stream/xerces/util/ObjectFactory$ConfigurationErro
r.class
com/sun/xml/stream/xerces/util/ParserConfigurationSettings.cla
Ss

com/sun/xml/stream/xerces/util/STAXAttributesImpl.class
com/sun/xml/stream/xerces/util/STAXAttributesImpl1$Attribute.cl
ass

com/sun/xml/stream/xerces/util/SecuritySupport.class
com/sun/xml/stream/xerces/util/SecuritySupportl2.class
com/sun/xml/stream/xerces/util/SecuritySupportl2$l.class
com/sun/xml/stream/xerces/util/SecuritySupportl2$2.class
com/sun/xml/stream/xerces/util/SecuritySupportl2$3.class
com/sun/xml/stream/xerces/util/SecuritySupportl2$4.class
com/sun/xml/stream/xerces/util/ShadowedSymbo1Table.class
com/sun/xml/stream/xerces/util/SymboTHash.class
com/sun/xml/stream/xerces/util/SymbolHash$Entry.class
com/sun/xml/stream/xerces/util/SymbolTable.class
com/sun/xml/stream/xerces/util/SymbolTable$Entry.class
com/sun/xml/stream/xerces/util/SynchronizedSymbolTable.class
com/sun/xml/stream/xerces/util/URI.class
com/sun/xml/stream/xerces/util/URI$MaTlformedURIException.class
com/sun/xml/stream/xerces/util/XMLAttributesImpl.class
com/sun/xml/stream/xerces/util/XMLAttributesImpl1$Attribute.cla
Sss
com/sun/xml/stream/xerces/util/XMLAttributesIteratorImpl.class
com/sun/xml/stream/xerces/util/XMLChar.class
com/sun/xml/stream/xerces/util/XMLResourceIdentifierImpl.class
com/sun/xml/stream/xerces/util/XMLStringBuffer.class
com/sun/xml/stream/xerces/util/XMLSymbols.class

JSR173_API.JAR 119

com/sun/xml/stream/xerces/xni/Augmentations.class
com/sun/xml/stream/xerces/xni/NamespaceContext.class
com/sun/xml/stream/xerces/xni/QName.class
com/sun/xml/stream/xerces/xni/XMLAttributes.class
com/sun/xml/stream/xerces/xni/XMLDTDContentModelHandler.class
com/sun/xml/stream/xerces/xni/XMLDTDHandler.class
com/sun/xml/stream/xerces/xni/XMLDocumentFragmentHandler.class
com/sun/xml/stream/xerces/xni/XMLDocumentHandler.class
com/sun/xml/stream/xerces/xni/XMLLocator.class
com/sun/xml/stream/xerces/xni/XMLResourceIdentifier.class
com/sun/xml/stream/xerces/xni/XMLString.class
com/sun/xml/stream/xerces/xni/XNIException.class
com/sun/xml/stream/xerces/xni/parser/XMLComponent.class
com/sun/xml/stream/xerces/xni/parser/XMLComponentManager.class
com/sun/xml/stream/xerces/xni/parser/XMLConfigurationException
.class
com/sun/xml/stream/xerces/xni/parser/XMLDTDContentModelFilter.
class
com/sun/xml/stream/xerces/xni/parser/XMLDTDContentModelSource.
class

com/sun/xml/stream/xerces/xni/parser/XMLDTDFilter.class
com/sun/xml/stream/xerces/xni/parser/XMLDTDScanner.class
com/sun/xml/stream/xerces/xni/parser/XMLDTDSource.class
com/sun/xml/stream/xerces/xni/parser/XMLDocumentFilter.class
com/sun/xml/stream/xerces/xni/parser/XMLDocumentScanner.class
com/sun/xml/stream/xerces/xni/parser/XMLDocumentSource.class
com/sun/xml/stream/xerces/xni/parser/XMLEntityResolver.class
com/sun/xml/stream/xerces/xni/parser/XMLErrorHandler.class
com/sun/xml/stream/xerces/xni/parser/XMLInputSource.class
com/sun/xml/stream/xerces/xni/parser/XMLParseException.class
com/sun/xml/stream/xerces/xni/parser/XMLParserConfiguration.cl
ass
com/sun/xml/stream/xerces/xni/parser/XMLPul1ParserConfiguratio
n.class

jsrl73_api.jar
The jsr173_api.jar file contains the following files:

META-INF/pack.properties
javax/xm1/XMLConstants.class
javax/xml/namespace/NamespaceContext.class
javax/xml/namespace/QName.class
javax/xml/stream/EventFilter.class
javax/xml/stream/FactoryConfigurationError.class
javax/xml/stream/FactoryFinder.class

120 SISXP JAR FILES

javax/xml/stream/FactoryFinder$l.class
javax/xml/stream/FactoryFinder$ClasslLoaderFinder.class
javax/xml/stream/FactoryFinder$ClassLoaderFinderConcrete.class
javax/xml/stream/Location.class
javax/xml/stream/StreamFilter.class
javax/xml/stream/XMLEventFactory.class
javax/xml/stream/XMLEventReader.class
javax/xml/stream/XMLEventWriter.class
javax/xml/stream/XMLInputFactory.class
javax/xml/stream/XMLOutputFactory.class
javax/xml/stream/XMLReporter.class
javax/xml/stream/XMLResolver.class
javax/xml/stream/XMLStreamConstants.class
javax/xml/stream/XMLStreamException.class
javax/xml/stream/XMLStreamReader.class
javax/xml/stream/XMLStreamWriter.class
javax/xml/stream/events/Attribute.class
javax/xml/stream/events/Characters.class
javax/xml/stream/events/Comment.class
javax/xml/stream/events/DTD.class
javax/xml/stream/events/EndDocument.class
javax/xml/stream/events/EndElement.class
javax/xml/stream/events/EntityDeclaration.class
javax/xml/stream/events/EntityReference.class
javax/xml/stream/events/Namespace.class
javax/xml/stream/events/NotationDeclaration.class
javax/xml/stream/events/ProcessingInstruction.class
javax/xml/stream/events/StartDocument.class
javax/xml/stream/events/StartElement.class
javax/xml/stream/events/XMLEvent.class
javax/xml/stream/util/EventReaderDelegate.class
javax/xml/stream/util/StreamReaderDelegate.class
javax/xml/stream/util/XMLEventAllocator.class
javax/xml/stream/util/XMLEventConsumer.class

Symbols
% (percent sign)
wildcard for searches 288
wildcard in JAXR queries 14
_ (underscore)
wildcard for searches 288
wildcard in JAXR queries 15

A

add association command 76
add user command 78
addAssociation method (Regis-
tryObject interface) 58
addChildConcept method (Classi-
ficationScheme interface) 46
addChildConcept method (Concept
interface) 46
addChildOrganization method
(Organization interface) 52
addChildOrganizations method
(Organization interface) 52
addClassification method (Reg-
istryObject interface) 48
addRegistryObject method (Reg-
istryPackage interface) 64
addRegistryObjects method (Reg-
istryPackage interface) 64
addServiceBindings method (Ser-

Index

vice interface) 55
addServices method (organiza-
tion interface) 55
addSpecificationLink method
(ServiceBinding interface) 63
AdhocQueryManagerImpl class 38
Admin Tool
command-line options 71
introduction 69
starting 70
stopping 94
-alias command-line option 71
Apache 132
approveObjects method (LifeCy-
cleManagerImpl class) 66
approving registry objects 302, 65
example 66
Association interface 11
creating objects 57
associations
adding to registry 76
creating 303
AssociationType
scheme 18, 57
concepts 58
audit trails
generating events 65
retrieving 33
viewing 291

classification

121

122

INDEX

AuditableEvent interface 11
retrieving objects 33

B

backing up Registry database 101
Basic Security Profile (BSP) 133
batch mode 70

BSP 133

build.properties file

JAXR examples 5

BusinessLifeCycleManager inter-

face 4, 9, 41

BusinessQueryManager interface 4,

9

C
Callback 180
Callback classes
summary 180
CallbackHandler interface 177
case sensitivity 75
cd command 86
certificates
obtaining 7
child organizations
adding to organizations 300
chown command 87
Classification interface 11
adding objects 47
retrieving objects 26
using to find objects 17
classification schemes 288
adding child concepts 302
creating with JAXR 45
ebXML specification 17
classifications

adding to registry objects 295

searching by 288
ClassificationScheme
12
clients, JAXR 3

examples 5

Setting up 7
-command command-line option 71
command-line options 71

-alias 71

-command 71

-create 72

-debug 72

-help 72

-keypass 72

-localdir 72

-locale 72

-registry 72

-root 73

-sqlselect 73

-v 73

-verbose 73
commands

add association 76

cd 86

chown 87

cp 88

echo 90

help 91

Tcd 92

1s 92

pwd 94

quit 94

rm 95

select 97

set 97

show 99

users 100

interface

Concept interface 12
concepts

adding to classfication

schemes 302
using to create classifications
with JAXR 47

connection factories, JAXR

creating 8
Connection interface (JAXR) 3, 8
connection properties, JAXR

examples 8
ConnectionFactory class (JAXR)
8
connections, JAXR

creating 8

setting properties 8
ContentManagementService Classi-
fication scheme 18
copying files and foldersto Regis-
try 88
cp command 88
-create command-line option 72
createAssociation method (L1 fe-
CycleManager interface) 58
createClassification method
(LifeCycleManager interface) 17,
48
createClassificationScheme
method (LifeCycleManager inter-
face) 46
createConcept Method (LifeCy-
cleManager interface) 46
createExternalIldentifier meth-
od (LifeCycleManager interface)
20, 49
createExternallink method
(LifeCycleManager interface) 21,
50

INDEX

createExtrinsicObject method
(LifeCycleManager interface) 60
createInternationalString
method (LifeCycleManager inter-
face) 44
createKey method (LifeCycleMan-
ager interface) 45
createlocalizedString method
(LifeCycleManager interface) 44
createObject method (LifeCy-
cleManager interface) 44
createOrganization method
(LifeCycleManager interface) 51
createPersonName method (Life-
CycleManager interface) 53
createPostalAddress method
(LifeCycleManager interface) 51
createQuery method (Declara-
tiveQueryManager interface) 35
createRegistryPackage method
(LifeCycleManager interface) 64
createService method (LifeCy-
cleManager interface) 55
createServiceBinding method
(LifeCycleManager interface) 55
createSTot method (LifeCycleM-
anager interface) 50
createSpecificationLink meth-
od (LifeCycleManager interface)
62
createTelephoneNumber method
(LifeCycleManager interface) 51
createUser method (LifeCycleM-
anager interface) 53
creating registry objects 294
current directory

changing 92

123

124

INDEX

D
database

backing up and restoring 101
DataType Classification scheme 18
-debug command-line option 72
debug property

displaying value 99

setting 97
DeclarativeQueryManager inter-
face 4, 35
DeclarativeQueryManagerImpl
class 36
DecryptionKeyCallback 183
deleteObjects method (LifeCy-
cleManager interface) 67
deleting objects from Registry-
Package 95
deleting registry objects 303
DeletionScopeType classification
scheme 18
deprecateObjects method (Life-
CycleManager interface) 66
deprecating registry objects 302,
65

example 66
descriptions of registry objects

searching by 288
Details area 291
directory

changing 92
displaying

property values 99
DSig 130, 132, 211, 225, 230

security configuration file 136
dumping requests 213

E
ebXML
registries 2
echo command 90
editor property
displaying value 99
setting 97
email addresses
adding to organizations or us-
ers 299
EmaiTlAddress interface 13
retrieving objects 28
EmailType classification scheme
18
Encrypt element 136
EncryptedKeyCallback 182
encrypting
SOAP messages 128
encrypting messages 137
encryption technologies 130
end-to-end security 127
ErrorHand1ingModel
tion scheme 18
ErrorSeverityType classification
scheme 18
EventType classification scheme
18
examples
JAXR
adding classifications to
objects 48
adding external identifiers
to objects 49
adding external linksto ob-
jects 50
adding dlots to objects 51
changing the state of regis-
try objects 66

classifica-

creating an extrinsic object
as a specification
link 63

creating associations 59

creating classification
schemes 46

creating extrinsic objects
61

creating organization hier-
archies 53

creating organizations 52

creating registry packages
64

ctoring itemsin the reposi-
tory 61

declarative queries 36

deleting objects 68

displaying classification
schemes and con-
cepts 19

federated queries 41

finding objects by classifi-
cation 19

finding objects by external
identifier 20

finding objects by external
link 21

finding objects by key 22

finding objects by name 16

finding objects by type 16

finding objects by unique
identifier 22

finding objects you pub-
lished 23

introduction 5

iterative queries 38

publishing a service 63

retrieving organization and

INDEX

user attributes 30
retrieving organization hi-
erarchies 53
stored queries 39
location xiv
required software xiv
exception property
displaying value 99
exceptions
displaying 74
executeQuery method (Declara-
tiveQueryManager interface) 35
executeQuery method (Declara-
tiveQueryManagerImpl class) 36
exiting the Admin Tool 94
Explore menu 293
external classification schemes
definition 49
external identifiers
adding to registry objects 296
external links
adding to registry objects 296
ExternalIdentifier interface 12
adding objects 49
retrieving objects 26
using to find objects 20
ExternalLink interface 12
adding objects 50
retrieving objects 27
using to find objects 21
extramural associations
definition 59
ExtrinsicObject interface 12
creating objects 60
deleting objects 67
using objects as specification
links 62

125

INDEX

F
federations, registry

querying 39
file system, local

base directory 72

changing current directory 92
filesand folders

copying to Registry 88
FindA11MyObjects Stored query 38
findClassificationSchemeByName

method (BusinessQueryManager
interface) 17, 47
findobjects method (Busi-

nessQueryManagerImpl class) 10,
14
framework

XWS-Security 128

G

getAccessURI method (Service-
Binding interface) 31

getAddress method (EmailAddress
interface) 30

getAreaCode method (Telephone-
Number interface) 29
getAuditTrail method (Registry-
Object interface) 33
GetCallersUser stored query 38
getChildOrganizations method
(organization interface) 32
getCity method (PostalAddress
interface) 29

getClassifications method (Reg-
istryObject interface) 26
getConnectionFactory method 8
getCountry method (PostalAd-
dress interface) 29

getCountryCode method (Tele-
phoneNumber interface) 29
getDescendantOrganizations
method (Organization interface)
32

getDescription method (Regis-
tryObject interface) 24
getEmailAddresses method (User
interface) 30

getEventType method (Audit-
ableEvent interface) 34
getExtension method (Telephone-
Number interface) 30
getExternalIdentifiers method
(RegistryObject interface) 26
getExternallLinks method (Regis-
tryObject interface) 27
getFirstName method (PersonName
interface) 30

getId method (Key interface) 25
getIdentificationScheme meth-
od (ExternalIdentifier interface)
26

getkey method (RegistryObject
interface) 25

getLastName method (PersonName
interface) 30

getLlid method (RegistryObjec-
tImp1 class) 25

getMiddleName method (Person-
Name interface) 30

getName method (RegistryObject
interface) 24

getNumber method (TelephoneNum-
ber interface) 29

getObjectType method (Registry-
Object interface) 25
getParentOrganization

method

(Organization interface) 32
getPersonName method (User inter-
face) 30

getPostalAddress method (Orga-
nization interface) 29
getPostalAddresses method (User
interface) 29

getPostalCode method (PostalAd-
dress interface) 29
getPrimaryContact method (Orga-
nization interface) 29
getRegistryObject method (Que-
ryManager interface) 10, 22
getRegistryObjects method (Que-
ryManager interface) 10, 22
getRootOrganization method (Or-
ganization interface) 32
getServiceBindings method (Ser-
vice interface) 31

getServices method (Organiza-
tion interface) 31

getSlots method (RegistryObject
interface) 28

getSlotType method (Slot inter-
face) 28

getSpecificationLinks method
(ServiceBinding interface) 31
getSpecificationObject method
(SpecificationLink interface) 31
getStateOrProvince method
(PostalAddress interface) 29
getStreet method (PostalAddress
interface) 29

getStreetNumber method (Postal-
Address interface) 29
getTelephoneNumbers method (or-
ganization interface or user inter-
face) 29

INDEX 127

getTimeStamp method (Audit-
ableEvent interface) 34

getType method (EmailAddress in-
terface) 30

getType method (PostalAddress
interface) 29

getType method (TelephoneNumber
interface) 29

getUr1 method (TelephoneNumber
interface) 30
getUsageDescription method
(SpecificationLink interface) 31
getUsageParameters method
(SpecificationLink interface) 31
getValues method (S1ot interface)
28

getVersionInfo method (Regis-
tryObjectImpl class) 35
getVersionName method (Version-
InfoType interface) 35

H
-he1p command-line option 72
help command 91

I

information model, JAXR 2-3
interfaces 11

interactive mode 71

internal classification schemes
definition 47

InternationalString interface 13

interoperability
secure 133

intramural associations
definition 59

128

INDEX
InvocationModel classification

scheme 18
IterativeQueryParams class 37

J
jaas-sample application 226
Java Cryptography Architecture
(JCA) 133
Java Cryptography Extension
(JCE) 133
Java KeyStore (KS) 197
javax.xml.registry package 3
javax.xml.registry.infomodel
package 3
javax.xml.registry.1ifeCycleM-
anagerURL connection property 9
javax.xml.registry.queryMan-
agerURL connection property 9
JAXR 1

architecture 3

classification schemes 17

clients3,7

creating connections 8

creating objects 42

definition 2

information model 2, 11

overview 1

provider 3

publishing objectsto aregistry

41

querying aregistry 10

specification 2
JAXRExamples.properties file

JAXR examples 6
JAX-RPC

securing applications 128
JAX-RPC applications

securing 128
JAXRPCSecurity element 136
JAXRUti 19ty class

getConnectionFactory method

8
JCE

JCA 132
JCE provider

configuring 207
JSR-105 132
JSR-106 132

K
Key interface 13

using to find objects 22
keyexport command 128, 199
-keypass command-line option 72
keystorefiles

for XWS-Security samples

209

L
languages
changing default 284
1cd command 92
LifeCycleManager interface 4, 9
-Tocaldir command-line option
72
-Tocale command-line option 72
locale property
displaying value 99
locales
effect on specifying names 75
setting 284
LocalizedString interface 14
logical identifiers

retrieving 25
1s command 92

M
method-level security 223

N

names of registry objects
searching by 288

NodeType classification scheme 18

NotificationOptionType classifi-

cation scheme 18

O
Oasis Web Services Security
See WSS
object types
searching by 287
ObjectType classification scheme
18
Organization interface 12
creating objects 51
deleting objects 67
retrieving object attributes 28
retrieving parent and child ob-
jects 32
retrieving services and service
bindings 31
organizations
adding child organizations 300
adding email addresses 299
adding postal addresses 298
adding telephone numbers 298
adding users 299

INDEX 129

P
PasswordCallback 186
PasswordV alidationCallback 185
PersonName interface 14
PFX files 197
PhoneType classification scheme
18
PKCS-12 files 197
pkcs12import command 128, 197
postal addresses
adding to organizations or us-
ers 298
PostalAddress interface 14
retrieving objects 28
predefined queries 287
PrefixNamespaceM appingCall-
back 188
prerequisites Xi
printing the tutorial xv
property values
displaying 99
setting 97
PropertyCallback 187
providers
JAXR 3
pwd command 94

Q .
queries
basic methods 10
by classification 17
by externa identifier 20
by externa link 21
by name 14
by type 16
by unique identifier 22
declarative 35

130

INDEX

federated 39

iterative 36

predefined 287

stored 38
QuerylLanguage
scheme 18
QueryManager interface 4
quit command 94

classification

R
references
creating 303
registries
definition 1
ebXML 2
federations 39
uUDDI 2
-registry command-line option
72
Registry database
backing up and restoring 101
registry federations
definition 2
registry objects 3
adding classifications 295, 47
adding externa identifiers
296, 49
adding external links 296, 50
adding names and descriptions
44
adding slots 297, 50
approving, deprecating, or un-
deprecating 302, 65
changing owner 87
creating 294, 42
creating associations 303, 57
creating identifiers 45

creating relationships 303

finding by classification 17

finding by external identifier
20

finding by external link 21

finding by key 22

finding by name 14

finding by type 16

finding by unique identifier 22

finding objects you published
22

finding with declarative que-
ries 35

finding with iterative queries
36

finding with stored queries 38

identifying 74

listing 92

organizing as registry packag-
es64

removing 303, 67

retrieving audit trail 33

retrieving classifications 26

retrieving external identifiers
26

retrieving external links 27

retrieving information about
24

retrieving logical identifier 25

retrieving name or description
24

retrieving slots 28

retrieving type 25

retrieving unique identifier 25

retrieving version information
34

saving 294, 56

searching by classification 288

searching by name and de-
scription 288
searching by object type 287
using create methods 44
viewing search results 291
Registry Objects area 291
registry providers
definition 2
RegistryObject interface 3
RegistryPackage interface 12
creating objects 64
RegistryPackage location
changing 86
RegistryPackage Objects
creating 72
displaying path to 94
listing contents 92
removing member objects 95
RegistryService interface 3, 9
removing objects from Registry-
Package 95
removing registry objects 303
repositories
definition 2
storing itemsin 60
request
signing and encrypting 215,
251, 253
request inner classes
methods 180
requests
authenticating 219, 227, 240
decrypting 214, 216
dumping 213
encrypting 214
encrypting and signing 216
signing 214
signing and encrypting 214

INDEX

signing ticket element and
message body 223
username token 219, 227, 240
username token and encrypt
220-221
RequireEncryption element 136
RequireSignature element 136
responses
dumping 213
encrypting 214
signing 214
signing and encrypting 214
ResponseStatusType classifica
tion scheme 19
restoring Registry database 101
rm command 95
-root command-line option 73
RSA encryption 207

S
sample applications
XWS-Security 174
interop 174
simple 130-131, 174
running 211, 225, 229,
247, 254, 258,
262
running against a re-
mote server
226, 230, 241,
248, 255, 259,
263
sample programs
XWS-Security 128
saveObjects method (LifeCycleM-
anager interface) 56
saveOrganizations method (Busi -

131

132

INDEX

nessLifeCycleManager interface)
56
saving registry objects 294, 56
SAX 87
schema
XWS-Security 139, 103
Search menu 286
security
end-to-end 127
message-level 127
XML and Web Services 127
XWS-Security 127
security configuration file
creating 135
security configuration files 135
security tokens 128
SecurityConfiguration
136
SecurityEnvironmentHandler ele-
ment 136
SecurityEnvironmentHandlers
writing 177
select command 97
service bindings
adding specification links 301
adding to services 301
definition 54
Service element 136
Service interface 12
creating objects 54
deleting objects 67
retrieving objects 31
ServiceBinding interface 13
creating objects 54
retrieving objects 31
ServiceBinding Objects
using extrinsic objects as spec-
ification links 62

element

services

adding service bindings 301
set command 97
setAccessURI method (Service-
Binding interface) 55
setAreaCode method (Telephone-
Number interface) 51
setCountryCode method (Tele-
phoneNumber interface) 51
setDescription method (Regis-
tryObject interface) 51
setEmailAddresses method (User
interface) 53
setFederated method (QueryImpl
class) 39
setFederation method (QueryImpl
class) 40
setkey method (RegistryObject
interface) 45
setLid method (RegistryObjec-
tImpl class) 45
setMimeType method (Extrinsi-
cObject interface) 61, 63
setNumber method (TelephoneNum-
ber interface) 51
setObjectType method (Extrinsi-
cObjectImpl class) 61, 63
setPersonName method (User inter-
face) 53
setPostalAddress method (Orga-
nization interface) 51
setSpecificationObject method
(SpecificationLink interface) 63
setTelephoneNumbers method (Or-
ganization interface) 51
setTelephoneNumbers method (Us-
er interface) 53
setting property values 97

setType method (TelephoneNumber
interface) 51
setUr1 method (User interface) 53
setValidateURI method (Exter-
nalLink interface) 50
setValidateURI method (Service-
Binding interface) 55
show command 99
Sign element 136
SignatureKeyCallback 178, 180
signatures

verifying 214, 216
SignatureVerificationK eyCall-
back 181
signing

SOAP messages 128
Slot interface 13

adding objects 50

retrieving objects 28
slots

adding to registry objects 297
SOAP messages

encrypting 128

signing 128

verifying 128
specification links

adding to service bindings 301
SpecificationLink interface 13

using extrinsic objects 62
SQL statements

executing 73, 97
-sqlselect command-line option
73
starting the Admin Tool 70
StatusType Classification scheme
19
stopping the Admin Tool 94
SubjectAccessor AP

INDEX

using 196
SubjectGroup
scheme 19
SubjectRole classification scheme
19
Sun Java System Service Registry

changing the state of objects

65

getting access 7

implementing clients 1

publishing objects with JAXR

41

guerying with JAXR 10

removing objects 67

saving objects 56

starting 7

storing items in the repository

60
symmetric key encryption 218,
244

classification

T
targets.xml file

JAXR examples 5
telephone numbers

adding to organizations or us-

ers 298

TelephoneNumber interface 14

retrieving objects 28
timestamp 155
Timestamp element

discussion 152
tokens

security 128

UsernameT okens 130
truststore files

for XWS-Security samples

133

134

INDEX

209
typographical conventions xvi

U
uUDDI
registries 2
unDeprecateObjects method
(LifeCycleManager interface) 66
undeprecating registry objects
302, 65
example 66
unique identifiers
finding objects by 22
retrieving 25
User interface 13
creating objects 53
retrieving object attributes 28
user name
specifying on command line
71
UserName Token verification 211
Username Token Verification 130
UserName tokens 131
UsernameCallback 186
UsernameTokens 130
users
adding email addresses 299
adding postal addresses 298
adding telephone numbers 298
adding to organizations 299
adding to registry 78
listing 100
users command 100

\%
-v command-line option 73

-verbose command-line option 73
verbose property
displaying value 99
setting 97
verifying
SOAP messages 128
version information
retrieving 34

w
Web Console
starting 284
wildcards
using 74
using in JAXR queries 14
using in searches 288
wscompile command 134, 173
with XWS-Security 200
WSDL files
storing as extrinsic objects 62
WSS
implementation 130

X

XML
digital signatures 130
encryption 130

XML and Web Services Security
security configuration files

135

See XWS-Security

XML Digital Signature 225, 230
See DSig

XML Encryption
See XML-Enc

XML-Enc 130, 132, 137, 211

INDEX 135

XWS-Security 127, 205
framework 128
method level 223
sample applications 174
JAAS 226
sample programs 128
schema 136
fomal 103
security configuration files
135
schema 139
troubleshooting 200

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	Prerequisites
	How to Use This Tutorial
	About the Examples
	Required Software
	Java WSDP 1.6 Bundle
	Application Server

	Building the Examples

	Further Information
	How to Print This Tutorial
	Typographical Conventions
	Feedback

	Binding XML Schema to Java Classes with JAXB
	JAXB Architecture
	Architectural Overview
	The JAXB Binding Process
	JAXB Binding Framework
	More About javax.xml.bind
	More About Unmarshalling
	More About Marshalling
	More About Validation

	XML Schemas
	Representing XML Content
	Binding XML Names to Java Identifiers
	Java Representation of XML Schema

	Binding XML Schemas
	Simple Type Definitions
	Default Data Type Bindings
	Default Binding Rules Summary

	Customizing JAXB Bindings
	Scope
	Scope Inheritance

	What is Not Supported
	JAXB APIs and Tools

	Using JAXB
	General Usage Instructions
	Description
	Using the Examples
	Configuring and Running the Samples
	Solaris/Linux
	Windows NT/2000/XP

	JAXB Compiler Options
	About the Schema-to-Java Bindings
	Schema-Derived JAXB Classes
	Comment.java
	Items.java
	ObjectFactory.java
	PurchaseOrder.java
	PurchaseOrderType.java
	USAddress.java

	Basic Examples
	Unmarshal Read Example
	Sample Output

	Modify Marshal Example
	Sample Output

	Create Marshal Example
	Sample Output

	Unmarshal Validate Example
	Sample Output

	Validate-On-Demand Example
	Sample Output

	Customizing JAXB Bindings
	Why Customize?
	Customization Overview
	Inline and External Customizations
	Scope, Inheritance, and Precedence
	Customization Syntax
	Customization Namespace Prefix

	Customize Inline Example
	Customized Schema
	Global Binding Declarations
	Schema Binding Declarations
	Class Binding Declarations
	Property Binding Declarations
	MyDatatypeConverter Class

	Datatype Converter Example
	External Customize Example
	JAXB Version, Namespace, and Schema Attributes
	Global and Schema Binding Declarations
	Class Declarations

	Fix Collides Example
	The example.xsd Schema
	Looking at the Conflicts
	Output From Running the ant Task Without Using a Binding Declarations File
	The binding.xjb Declarations File
	Resolving the Conflicts in example.xsd

	Bind Choice Example
	Customizing a choice Model Group

	Streaming API for XML
	Why StAX?
	Streaming Versus DOM
	Pull Parsing Versus Push Parsing
	StAX Use Cases
	Comparing StAX to Other JAXP APIs

	StAX API
	Cursor API
	Iterator API
	Iterator Event Types
	Sample Event Mapping

	Choosing Between Cursor and Iterator APIs
	Development Goals
	Comparing Cursor and Iterator APIs

	Using StAX
	StAX Factory Classes
	XMLInputFactory
	XMLOutputFactory
	XMLEventFactory

	Resources, Namespaces, and Errors
	Resource Resolution
	Attributes and Namespaces
	Error Reporting and Exception Handling

	Reading XML Streams
	Using XMLStreamReader
	Using XMLEventReader

	Writing XML Streams
	Using XMLStreamWriter
	Using XMLEventWriter

	Sun’s Streaming Parser Implementation
	SJSXP JAR Files
	Reporting CDATA Events
	SJSXP Factories Implementation

	Sample Code
	Configuring Your Environment for Running the Samples
	Running the Samples
	Running the Samples Using Ant
	Running the Samples Manually

	Sample XML Document
	CursorParse.java
	Stepping Through Events
	Returning String Representations
	Running the Sample

	CursorApproachEventObject.java
	Instantiating an XMLEventAllocator
	Creating an Event Iterator
	Creating the Allocator Method
	Running the Sample

	EventParse.java
	Creating an Input Factory
	Creating an Event Reader
	Creating an Event Iterator
	Getting the Event Stream
	Running the Sample

	CursorWriter.java
	Creating the Output Factory
	Creating a Stream Writer
	Writing the Stream
	Running the Sample

	MyStreamFilter.java
	Implementing the StreamFilter Class
	Creating an Input Factory
	Creating the Filter
	Capturing the Event Stream
	Filtering the Stream
	Running the Sample

	EventProducerConsumer.java
	Creating an Event Producer/Consumer
	Creating an Iterator
	Creating a Writer
	Running the Sample

	Further Information

	Introduction to XML and Web Services Security
	Overview
	Does XWS-Security Implement Any Specifications?
	On Which Technologies Is XWS-Security Based?
	Interoperability with Other Web Services
	What is Basic Security Profile (BSP)?

	What is the XWS-Security Framework?
	Configuring Security Configuration Files
	Understanding Security Configuration Files
	XWS-Security Configuration File Schema
	Semantics of Security Configuration File Elements
	How Do I Specify the Security Configuration for the Build Files?
	Are There Any Sample Applications Demonstrating XWS-Security?

	Writing SecurityEnvironmentHandlers
	Using the SubjectAccessor API

	Useful XWS-Security Command-Line Tools
	pkcs12import
	keyexport
	wscompile

	Troubleshooting XWS-Security Applications
	Further Information

	Understanding and Running the XWS- Security Sample Applications
	Setting Up To Use XWS-Security With the Sample Applications
	Setting System Properties
	Configuring a JCE Provider
	Setting Up the Application Server For the Examples
	Keystore and Truststore Files with XWS- Security

	Setting Build Properties

	Simple Security Configurations Sample Application
	Plugging in Security Configurations
	Simple Sample Security Configuration Files
	Dumping the Request and/or the Response
	Encrypting the Request and/or the Response
	Signing and Verifying the Signature
	Signing then Encrypting the Request, Decrypting then Verifying the Signature
	Encrypting then Signing the Request, Verifying then Decrypting the Signature
	Signing a Ticket
	Adding a Timestamp to a Signature
	Symmetric Key Encryption
	Adding a Username Password Token
	Encrypt Request Body and a UserNameToken
	Adding a UserName Password Token, then Encrypting the UserName Token
	Flexibility in Positions of Timestamps and Tokens
	Adding Security at the Method Level

	Running the Simple Sample Application

	JAAS Sample Application
	JAAS Sample Security Configuration Files
	Setting Up For the JAAS-Sample
	Running the JAAS-Sample Application

	XWS-Security APIs Sample Application
	The XWSSProcessor Interface
	API-Sample Client Code
	The API Sample Security Configuration Files
	Encrypting the SOAP Message
	Signing the SOAP Message
	Sending a Username Token with the SOAP Message

	Building and Running the API Sample Application

	Soap With Attachments Sample Application
	The SwA Interop Scenarios
	SwA Sample Configuration Files
	Running the SwA Sample Application

	SAML Sample Application
	SAML Interop Scenarios
	SAML Interop Sample Configuration Files
	Sender-Vouches Sample Configuration Files
	Holder-Of-Key Sample Configuration Files

	Running the SAML Interop Sample

	Dynamic Policy Sample Application
	Security Configuration Files for Enabling Dynamic Policy
	Setting Security Policies at Runtime
	Running the Dynamic Policy Sample Application

	Dynamic Response Sample Application
	Security Configuration Files for Enabling Dynamic Response
	Using the CallbackHandler to Enable Dynamic Response
	Running the Dynamic Response Sample Application

	Further Information

	Java XML Digital Signature API
	How XWS-Security and XML Digital Signature API Are Related
	XML Security Stack
	Package Hierarchy
	Service Providers
	Introduction to XML Signatures
	Example of an XML Signature
	XML Digital Signature API Examples
	validate Example
	Validating an XML Signature
	Instantiating the Document that Contains the Signature
	Specifying the Signature Element to be Validated
	Creating a Validation Context
	Unmarshaling the XML Signature
	Validating the XML Signature
	What If the XML Signature Fails to Validate?
	Using KeySelectors

	genenveloped Example
	Generating an XML Signature
	Instantiating the Document to be Signed
	Creating a Public Key Pair
	Creating a Signing Context
	Assembling the XML Signature
	Generating the XML Signature
	Printing or Displaying the Resulting Document

	Using the Service Registry Web Console
	Getting Started With the Web Console
	Starting the Web Console
	Changing the Default Language
	Changing the Default Language for Labels and Messages
	Changing the Default Language for Registry Content

	Searching the Registry
	Using the Search Menu
	Selecting a Query
	Searching by Object Type
	Searching by Name and Description
	Searching by Classification
	Viewing Search Results
	Viewing Object Details
	Using the Explore Menu

	Publishing and Managing Registry Objects
	Publishing Objects
	Adding a Classification to an Object
	Adding an External Identifier to an Object
	Adding an External Link to an Object
	Adding Custom Information to an Object Using Slots
	Adding a Postal Address to an Organization or User
	Adding a Telephone Number to an Organization or User
	Adding an Email Address to an Organization or User
	Adding a User to an Organization
	Adding a Child Organization to an Organization
	Adding a Service Binding to a Service
	Adding a Specification Link to a Service Binding
	Adding a Child Concept to a Classification Scheme or Concept
	Changing the State of Objects
	Removing Objects
	Creating Relationships Between Objects
	Creating References
	Creating Associations

	Developing Clients for the Service Registry
	Overview of JAXR
	About Registries and Repositories
	About JAXR
	JAXR Architecture
	About the Examples

	Setting Up a JAXR Client
	Starting the Registry
	Getting Access to the Registry
	Establishing a Connection to the Registry
	Creating a Connection Factory
	Creating a Connection

	Obtaining and Using a RegistryService Object

	Querying a Registry
	Basic Query Methods
	JAXR Information Model Interfaces
	Finding Objects by Name
	Finding Objects by Name: Example

	Finding Objects by Type
	Finding Objects by Type: Example

	Finding Objects by Classification
	Finding Objects by Classification: Examples

	Finding Objects by External Identifier
	Finding Objects by External Identifier: Example

	Finding Objects by External Link
	Finding Objects by External Link: Example

	Finding Objects by Unique Identifier
	Finding Objects by Unique Identifier: Example

	Finding Objects You Published
	Finding Objects You Published: Examples

	Retrieving Information About an Object
	Retrieving the Name or Description of an Object
	Retrieving the Type of an Object
	Retrieving the ID Values for an Object
	Retrieving the Classifications for an Object
	Retrieving the External Identifiers for an Object
	Retrieving the External Links for an Object
	Retrieving the Slots for an Object
	Retrieving the Attributes of an Organization or User
	Retrieving the Services and Service Bindings for an Organization
	Retrieving an Organization Hierarchy
	Retrieving the Audit Trail of an Object
	Retrieving the Version of an Object

	Using Declarative Queries
	Using Declarative Queries: Example

	Using Iterative Queries
	Using Iterative Queries: Example

	Invoking Stored Queries
	Invoking Stored Queries: Example

	Querying a Registry Federation
	Using Federated Queries: Example

	Publishing Objects to the Registry
	Creating Objects
	Using Create Methods for Objects
	Adding Names and Descriptions to Objects
	Identifying Objects
	Creating and Using Classification Schemes and Concepts
	Adding Classifications to Objects
	Adding External Identifiers to Objects
	Adding External Links to Objects
	Adding Slots to Objects
	Creating Organizations
	Creating Users
	Creating Services and Service Bindings

	Saving Objects in the Registry

	Managing Objects in the Registry
	Creating Relationships Between Objects: Associations
	Creating Associations: Example

	Storing Items in the Repository
	Creating an Extrinsic Object
	Using an Extrinsic Object as a Specification Link

	Organizing Objects Within Registry Packages
	Organizing Objects Within Registry Packages: Examples

	Changing the State of Objects in the Registry
	Changing the State of Objects in the Registry: Examples

	Removing Objects From the Registry and Repository
	Removing Objects from the Registry: Example

	Further Information

	Administering the Service Registry
	About the Admin Tool
	Starting the Admin Tool
	Batch Mode
	Interactive Mode
	Admin Tool Command-line Options
	Synopsis
	Options

	Using the Admin Tool
	Permissions
	Displaying Exceptions
	Identifying Registry Objects
	The Effect of Locale on Specifying Names
	Case Sensitivity

	Using Admin Tool Commands
	add association
	Synopsis
	Description
	Options
	Operands
	Example

	add user
	Synopsis
	Description
	Options
	Examples

	cd
	Synopsis
	Description
	Operands
	Examples

	chown
	Synopsis
	Description
	Operands
	Examples

	cp
	Synopsis
	Description
	Options
	Operands
	Examples

	echo
	Synopsis
	Description
	Operand
	Example

	help
	Synopsis
	Description
	Operand
	Examples

	lcd
	Synopsis
	Description
	Operand
	Examples

	ls
	Synopsis
	Description
	Operands
	Examples

	pwd
	Synopsis
	Description
	Example

	quit
	Synopsis
	Description
	Example

	rm
	Synopsis
	Description
	Options
	Operands
	Examples

	select
	Synopsis
	Description
	Operand
	Examples

	set
	Synopsis
	Description
	Operands
	Examples

	show
	Synopsis
	Description
	Operands
	Example

	users
	Synopsis
	Description
	Examples

	Other Administration Tasks
	Backing Up and Restoring the Database

	A XWS-Security Formal Schema Definition
	Formal Schema Definition

	SJSXP JAR Files
	sjsxp.jar
	jsr173_api.jar

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

