
The Java™ Web
Services Tutorial

For Java Web Services Developer’s Pack, v1.6

June 14, 2005

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Naming
and Directory Interface, EJB, JSP, J2EE, J2SE and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Enterprise JavaBeans, Java Naming and
Directory Interface, EJB, JSP, J2EE, J2SE et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
cles y compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres
pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines,
y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas partic-
iper, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
législation américaine en matière de contrôle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cially Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

iii

Contents

About This Tutorial. .xi

Who Should Use This Tutorial xi
Prerequisites xi
How to Use This Tutorial xii
About the Examples xiii

Required Software xiv
Building the Examples xiv

Further Information xv
How to Print This Tutorial xv
Typographical Conventions xvi
Feedback xvi

Chapter 1: Binding XML Schema to Java Classes with JAXB . . 1

JAXB Architecture 2
Architectural Overview 2
The JAXB Binding Process 5
JAXB Binding Framework 6
More About javax.xml.bind 7
More About Unmarshalling 8
More About Marshalling 9
More About Validation 11

XML Schemas 13
Representing XML Content 17

Binding XML Names to Java Identifiers 17
Java Representation of XML Schema 17

Binding XML Schemas 18
Simple Type Definitions 18
Default Data Type Bindings 19
Default Binding Rules Summary 20

iv CONTENTS
Customizing JAXB Bindings 21
Scope 22
Scope Inheritance 22

What is Not Supported 23
JAXB APIs and Tools 23

Chapter 2: Using JAXB .25

General Usage Instructions 26
Description 26
Using the Examples 28
Configuring and Running the Samples 28
JAXB Compiler Options 30
About the Schema-to-Java Bindings 32
Schema-Derived JAXB Classes 35

Basic Examples 43
Unmarshal Read Example 43
Modify Marshal Example 45
Create Marshal Example 47
Unmarshal Validate Example 51
Validate-On-Demand Example 52

Customizing JAXB Bindings 54
Why Customize? 55
Customization Overview 56
Customize Inline Example 69
Datatype Converter Example 74
External Customize Example 75
Fix Collides Example 79
Bind Choice Example 83

Chapter 3: Streaming API for XML .87

Why StAX? 87
Streaming Versus DOM 88
Pull Parsing Versus Push Parsing 89
StAX Use Cases 89
Comparing StAX to Other JAXP APIs 90

StAX API 91
Cursor API 91
Iterator API 92
Choosing Between Cursor and Iterator APIs 97

CONTENTS v
Using StAX 99
StAX Factory Classes 99
Resources, Namespaces, and Errors 101
Reading XML Streams 102
Writing XML Streams 105

Sun’s Streaming Parser Implementation 107
SJSXP JAR Files 107
Reporting CDATA Events 108
SJSXP Factories Implementation 108

Sample Code 109
Configuring Your Environment for Running the Samples 109
Running the Samples 110
Sample XML Document 111
CursorParse.java 112
CursorApproachEventObject.java 114
EventParse.java 115
CursorWriter.java 118
MyStreamFilter.java 119
EventProducerConsumer.java 122

Further Information 125

Chapter 4: Introduction to XML and Web Services Security . 127

Overview 128
Does XWS-Security Implement Any Specifications? 130

On Which Technologies Is XWS-Security Based? 132
Interoperability with Other Web Services 133

What is the XWS-Security Framework? 134
Configuring Security Configuration Files 135
Understanding Security Configuration Files 135
XWS-Security Configuration File Schema 139
Semantics of Security Configuration File Elements 145
How Do I Specify the Security Configuration for the Build Files? 171
Are There Any Sample Applications Demonstrating XWS-Security? 174

Writing SecurityEnvironmentHandlers 177
Using the SubjectAccessor API 196

Useful XWS-Security Command-Line Tools 197
pkcs12import 197
keyexport 199
wscompile 200

Troubleshooting XWS-Security Applications 200

vi CONTENTS
Further Information 202

Chapter 5: Understanding and Running the XWS-Security Sam-
ple Applications205

Setting Up To Use XWS-Security With the Sample Applications 206
Setting System Properties 207
Configuring a JCE Provider 207
Setting Up the Application Server For the Examples 209
Setting Build Properties 210

Simple Security Configurations Sample Application 211
Plugging in Security Configurations 212
Simple Sample Security Configuration Files 213
Running the Simple Sample Application 225

JAAS Sample Application 226
JAAS Sample Security Configuration Files 227
Setting Up For the JAAS-Sample 229
Running the JAAS-Sample Application 230

XWS-Security APIs Sample Application 232
The XWSSProcessor Interface 233
API-Sample Client Code 234
The API Sample Security Configuration Files 236
Building and Running the API Sample Application 241

Soap With Attachments Sample Application 242
The SwA Interop Scenarios 242
SwA Sample Configuration Files 244
Running the SwA Sample Application 247

SAML Sample Application 249
SAML Interop Scenarios 249
SAML Interop Sample Configuration Files 251
Running the SAML Interop Sample 254

Dynamic Policy Sample Application 255
Security Configuration Files for Enabling Dynamic Policy 256
Setting Security Policies at Runtime 257
Running the Dynamic Policy Sample Application 258

Dynamic Response Sample Application 260
Security Configuration Files for Enabling Dynamic Response 260
Using the CallbackHandler to Enable Dynamic Response 261
Running the Dynamic Response Sample Application 262

Further Information 263

CONTENTS vii
Chapter 6: Java XML Digital Signature API 265

How XWS-Security and XML Digital Signature API Are Related 266
XML Security Stack 267
Package Hierarchy 268
Service Providers 269
Introduction to XML Signatures 270
Example of an XML Signature 270
XML Digital Signature API Examples 273

validate Example 273
genenveloped Example 278

Chapter 7: Using the Service Registry Web Console 283

Getting Started With the Web Console 283
Starting the Web Console 284
Changing the Default Language 284

Searching the Registry 286
Using the Search Menu 286
Selecting a Query 287
Searching by Object Type 287
Searching by Name and Description 288
Searching by Classification 288
Viewing Search Results 291
Viewing Object Details 291
Using the Explore Menu 293

Publishing and Managing Registry Objects 294
Publishing Objects 294
Adding a Classification to an Object 295
Adding an External Identifier to an Object 296
Adding an External Link to an Object 296
Adding Custom Information to an Object Using Slots 297
Adding a Postal Address to an Organization or User 298
Adding a Telephone Number to an Organization or User 298
Adding an Email Address to an Organization or User 299
Adding a User to an Organization 299
Adding a Child Organization to an Organization 300
Adding a Service Binding to a Service 301
Adding a Specification Link to a Service Binding 301
Adding a Child Concept to a Classification Scheme or Concept 302
Changing the State of Objects 302
Removing Objects 303

viii CONTENTS
Creating Relationships Between Objects 303

Chapter 8: Developing Clients for the Service Registry1

Overview of JAXR 1
About Registries and Repositories 1
About JAXR 2
JAXR Architecture 3
About the Examples 5

Setting Up a JAXR Client 7
Starting the Registry 7
Getting Access to the Registry 7
Establishing a Connection to the Registry 7
Obtaining and Using a RegistryService Object 9

Querying a Registry 10
Basic Query Methods 10
JAXR Information Model Interfaces 11
Finding Objects by Name 14
Finding Objects by Type 16
Finding Objects by Classification 17
Finding Objects by External Identifier 20
Finding Objects by External Link 21
Finding Objects by Unique Identifier 22
Finding Objects You Published 22
Retrieving Information About an Object 24
Using Declarative Queries 35
Using Iterative Queries 36
Invoking Stored Queries 38
Querying a Registry Federation 39

Publishing Objects to the Registry 41
Creating Objects 42
Saving Objects in the Registry 56

Managing Objects in the Registry 57
Creating Relationships Between Objects: Associations 57
Storing Items in the Repository 60
Organizing Objects Within Registry Packages 64
Changing the State of Objects in the Registry 65
Removing Objects From the Registry and Repository 67

Further Information 68

CONTENTS ix
Chapter 9: Administering the Service Registry 69

About the Admin Tool 69
Starting the Admin Tool 70

Batch Mode 70
Interactive Mode 71
Admin Tool Command-line Options 71

Using the Admin Tool 73
Permissions 73
Displaying Exceptions 74
Identifying Registry Objects 74
The Effect of Locale on Specifying Names 75
Case Sensitivity 75

Using Admin Tool Commands 75
add association 76
add user 78
cd 86
chown 87
cp 88
echo 90
help 91
lcd 92
ls 92
pwd 94
quit 94
rm 95
select 97
set 97
show 99
users 100

Other Administration Tasks 101
Backing Up and Restoring the Database 101

Appendix A: A
XWS-Security Formal Schema Definition103

Formal Schema Definition 103

Appendix B: SJSXP JAR Files . 115

sjsxp.jar 115
jsr173_api.jar 119

x CONTENTS
Index .121

About This Tutorial

THE Java™ Web Services Tutorial is a guide to developing Web applications
with the Java Web Services Developer Pack (Java WSDP). The Java WSDP is an
all-in-one download containing key technologies to simplify building of Web
services using the Java 2 Platform. This tutorial requires a full installation (Typi-
cal, not Custom) of the Java WSDP, v1.6 with the Sun Java System Application
Server Platform Edition 8.1 2005Q2 UR2 (hereafter called the Application
Server). Here we cover all the things you need to know to make the best use of
this tutorial.

Who Should Use This Tutorial
This tutorial is intended for programmers who are interested in developing and
deploying Web services and Web applications on the Sun Java System Applica-
tion Server Platform Edition 8.1.

Prerequisites
Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
all the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et al., (Addison-Wesley, 2000). In particular, you should be familiar
xi

xii ABOUT THIS TUTORIAL
with relational database and security features described in the trails listed in
Table 1.

How to Use This Tutorial
The Java Web Services Tutorial is an adjunct to the J2EE 1.4 Tutorial, which
you can download from the following location:

http://java.sun.com/j2ee/1.4/download.html#tutorial

The Java Web Services Tutorial addresses the following technology areas, which
are not covered in the J2EE 1.4 Tutorial:

• The Java Architecture for XML Binding (JAXB)

• The StAX APIs and the Sun Java Streaming XML Parser implementation

• XML and Web Services Security (XWS Security)

• XML Digital Signature

• Service Registry

All of the examples for this tutorial are installed with the Java WSDP 1.6 bundle
and can be found in the subdirectories of the <JWSDP_HOME>/<technol-

ogy>/samples directory, where JWSDP_HOME is the directory where you installed
the Java WSDP 1.6 bundle.

The J2EE 1.4 Tutorial opens with three introductory chapters that you should
read before proceeding to any specific technology area. Java WSDP users should
look at Chapters 2 and 3, which cover XML basics and getting started with Web
applications.

Table 1 Prerequisite Trails in The Java™ Tutorial

Trail URL

JDBC http://java.sun.com/docs/books/tutorial/jdbc

Security http://java.sun.com/docs/books/tutorial/security1.2

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/security1.2
http://java.sun.com/j2ee/1.4/download.html#tutorial

ABOUT THIS TUTORIAL xiii
When you have digested the basics, you can delve into one or more of the fol-
lowing main XML technology areas:

• The Java XML chapters cover the technologies for developing applications
that process XML documents and implement Web services components:

• The Java API for XML Processing (JAXP)

• The Java API for XML-based RPC (JAX-RPC)

• SOAP with Attachments API for Java (SAAJ)

• The Java API for XML Registries (JAXR)

• The Web-tier technology chapters cover the components used in develop-
ing the presentation layer of a J2EE or stand-alone Web application:

• Java Servlet

• JavaServer Pages (JSP)

• JavaServer Pages Standard Tag Library (JSTL)

• JavaServer Faces

• Web application internationalization and localization

• The platform services chapters cover system services used by all the J2EE
component technologies. Java WSDP users should look at the Web-tier
section of the Security chapter.

After you have become familiar with some of the technology areas, you are
ready to tackle a case study, which ties together several of the technologies dis-
cussed in the tutorial. The Coffee Break Application (Chapter 35) describes an
application that uses the Web application and Web services APIs.

Finally, the following appendixes contain auxiliary information helpful to the
Web Services application developer:

• Java encoding schemes (Appendix A)

• XML Standards (Appendix B)

• HTTP overview (Appendix C)

About the Examples
This section tells you everything you need to know to install, build, and run the
examples.

xiv ABOUT THIS TUTORIAL
Required Software

Java WSDP 1.6 Bundle
The example source for the technologies in this tutorial is contained in the Java
WSDP 1.6 bundle. If you are viewing this online, you need to download the Java
WSDP 1.6 bundle from:

http://java.sun.com/webservices/download/webservicespack.html

After you have installed the Java WSDP 1.6 bundle, the example source code is
in the subdirectories of the <JWSDP_HOME>/<technology>/samples/ directory.
For example, the examples for JAXB are included in the Java WSDP in the sub-
directories of the <JWSDP_HOME>/jaxb/samples directory.

Application Server
Sun Java System Application Server Platform Edition 8.1 2005Q2 UR2 is the
build and runtime environment for the tutorial examples. To build, deploy, and
run the examples, you need a copy of the Application Server and the Java 2 Soft-
ware Development Kit, Standard Edition (J2SE SDK) 1.4.2 or higher (J2SE 5.0
is recommended). The Application Server and J2SE SDK are contained in the
J2EE 1.4 SDK. If you already have a copy of the J2SE SDK, you can download
the Application Server from:

http://java.sun.com/j2ee/1.4/download.html#sdk

You can also download the J2EE 1.4 SDK—which contains the Application
Server and the J2SE SDK—from the same site.

Building the Examples
Most of the examples in the Java WSDP are distributed with a build file for Ant,
a portable build tool contained in the Java WSDP. For information about Ant,
visit http://ant.apache.org/. Directions for building the examples are pro-
vided in each chapter. Most of the tutorial examples in the J2EE 1.4 Tutorial are
distributed with a configuration file for asant, a portable build tool contained in
the Application Server. This tool is an extension of the Ant tool developed by the
Apache Software Foundation (http://ant.apache.org). The asant utility

http://java.sun.com/webservices/download/webservicespack.html
http://java.sun.com/j2ee/1.4/download.html#sdk
http://ant.apache.org/
http://ant.apache.org/

ABOUT THIS TUTORIAL xv
contains additional tasks that invoke the Application Server administration util-
ity asadmin. Directions for building the examples are provided in each chapter.

In order to run the Ant scripts, you must configure your environment and proper-
ties files as follows:

• Add the bin directory of your J2SE SDK installation to the front of your
path.

• Add <JWSDP_HOME>/jwsdp-shared/bin to the front of your path so the
Java WSDP 1.6 scripts that are shared by multiple components override
other installations.

• Add <JWSDP_HOME>/apache-ant/bin to the front of your path so that the
Java WSDP 1.6 Ant script overrides other installations.

Further Information
This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

For reference information on the tools distributed with the Application Server,
see the man pages at http://docs.sun.com/db/doc/819-0082.

See the Sun Java™ System Application Server Platform Edition 8.1 2005Q1
Developer’s Guide at http://docs.sun.com/db/doc/819-0079 for informa-
tion about developer features of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8.1 2005Q1
Administration Guide at http://docs.sun.com/db/doc/819-0076 for informa-
tion about administering the Application Server.

For information about the PointBase database included with the Application
Server, see the PointBase Web site at www.pointbase.com.

How to Print This Tutorial
To print this tutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader is installed on your system.

2. Open the PDF version of this book.

3. Click the printer icon in Adobe Acrobat Reader.

http://www.pointbase.com
JavaWSTutorial.pdf
http://docs.sun.com/db/doc/819-0076
http://docs.sun.com/db/doc/819-0082
http://docs.sun.com/db/doc/819-0079

xvi ABOUT THIS TUTORIAL
Typographical Conventions
Table 2 lists the typographical conventions used in this tutorial.

Feedback
Please send comments, broken link reports, errors, suggestions, and questions
about this tutorial to the tutorial team at users@jwsdp.dev.java.net.

Table 2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

monospace
URLs, code examples, file names, path names, tool names,
application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variables in code, file paths, and URLs

<italic monospace> User-selected file path components

mailto:users@jwsdp.dev.java.net

1

1

Binding XML Schema
to Java Classes with

JAXB

THE Java™ Architecture for XML Binding (JAXB) provides a fast and conve-
nient way to bind XML schemas to Java representations, making it easy for Java
developers to incorporate XML data and processing functions in Java applica-
tions. As part of this process, JAXB provides methods for unmarshalling XML
instance documents into Java content trees, and then marshalling Java content
trees back into XML instance documents.

What this all means is that you can leverage the flexibility of platform-neutral
XML data in Java applications without having to deal with or even know XML
programming techniques. Moreover, you can take advantage of XML strengths
without having to rely on heavyweight, complex XML processing models like
SAX or DOM. JAXB hides the details and gets rid of the extraneous relation-
ships in SAX and DOM—generated JAXB classes describe only the relation-
ships actually defined in the source schemas. The result is highly portable XML
data joined with highly portable Java code that can be used to create flexible,
lightweight applications and Web services.

This chapter describes the JAXB architecture, functions, and core concepts. You
should read this chapter before proceeding to Chapter 2, which provides sample
code and step-by-step procedures for using JAXB.

2 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
JAXB Architecture
This section describes the components and interactions in the JAXB processing
model. After providing a general overview, this section goes into more detail
about core JAXB features. The topics in this section include:

• Architectural Overview

• The JAXB Binding Process

• JAXB Binding Framework

• More About javax.xml.bind

• More About Unmarshalling

• More About Marshalling

• More About Validation

Architectural Overview
Figure 1–1 shows the components that make up a JAXB implementation.

Figure 1–1 JAXB Architectural Overview

ARCHITECTURAL OVERVIEW 3
As shown in Figure 1–1, a JAXB implementation comprises the following eight
core components.

Table 1–1 Core Components in a JAXB Implementation

Component Description

XML Schema An XML schema uses XML syntax to describe the relationships among
elements, attributes and entities in an XML document. The purpose of an
XML schema is to define a class of XML documents that must adhere to
a particular set of structural rules and data constraints. For example, you
may want to define separate schemas for chapter-oriented books, for an
online purchase order system, or for a personnel database. In the context
of JAXB, an XML document containing data that is constrained by an
XML schema is referred to as a document instance, and the structure and
data within a document instance is referred to as a content tree.

Binding
Customizations

By default, the JAXB binding compiler binds Java classes and packages
to a source XML schema based on rules defined in Section 5, “Binding
XML Schema to Java Representations,” in the JAXB Specification. In
most cases, the default binding rules are sufficient to generate a robust
set of schema-derived classes from a wide range of schemas. There may
be times, however, when the default binding rules are not sufficient for
your needs. JAXB supports customizations and overrides to the default
binding rules by means of binding customizations made either inline as
annotations in a source schema, or as statements in an external binding
customization file that is passed to the JAXB binding compiler. Note that
custom JAXB binding customizations also allow you to customize your
generated JAXB classes beyond the XML-specific constraints in an
XML schema to include Java-specific refinements such as class and
package name mappings.

Binding
Compiler

The JAXB binding compiler is the core of the JAXB processing model.
Its function is to transform, or bind, a source XML schema to a set of
JAXB content classes in the Java programming language. Basically, you
run the JAXB binding compiler using an XML schema (optionally with
custom binding declarations) as input, and the binding compiler gener-
ates Java classes that map to constraints in the source XML schema.

Implementation
of
javax.xml.bind

The JAXB binding framework implementation is a runtime API that pro-
vides interfaces for unmarshalling, marshalling, and validating XML
content in a Java application. The binding framework comprises inter-
faces in the javax.xml.bind package.

Schema-Derived
Classes

These are the schema-derived classes generated by the binding JAXB
compiler. The specific classes will vary depending on the input schema.

4 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Java
Application

In the context of JAXB, a Java application is a client application that uses
the JAXB binding framework to unmarshal XML data, validate and mod-
ify Java content objects, and marshal Java content back to XML data.
Typically, the JAXB binding framework is wrapped in a larger Java
application that may provide UI features, XML transformation functions,
data processing, or whatever else is desired.

XML Input
Documents

XML content that is unmarshalled as input to the JAXB binding frame-
work -- that is, an XML instance document, from which a Java represen-
tation in the form of a content tree is generated. In practice, the term
“document” may not have the conventional meaning, as an XML
instance document does not have to be a completely formed, selfstanding
document file; it can instead take the form of streams of data passed
between applications, or of sets of database fields, or of XML infosets, in
which blocks of information contain just enough information to describe
where they fit in the schema structure.

In JAXB, the unmarshalling process supports validation of the XML
input document against the constraints defined in the source schema.
This validation process is optional, however, and there may be cases in
which you know by other means that an input document is valid and so
you may choose for performance reasons to skip validation during
unmarshalling. In any case, validation before (by means of a third-party
application) or during unmarshalling is important, because it assures that
an XML document generated during marshalling will also be valid with
respect to the source schema. Validation is discussed more later in this
chapter.

XML Output
Documents

XML content that is marshalled out to an XML document. In JAXB,
marshalling involves parsing an XML content object tree and writing out
an XML document that is an accurate representation of the original XML
document, and is valid with respect the source schema. JAXB can mar-
shal XML data to XML documents, SAX content handlers, and DOM
nodes.

Table 1–1 Core Components in a JAXB Implementation (Continued)

Component Description

THE JAXB BINDING PROCESS 5
The JAXB Binding Process
Figure 1–2 shows what occurs during the JAXB binding process.

Figure 1–2 Steps in the JAXB Binding Process

The general steps in the JAXB data binding process are:

1. Generate classes. An XML schema is used as input to the JAXB binding
compiler to generate JAXB classes based on that schema.

2. Compile classes. All of the generated classes, source files, and application
code must be compiled.

3. Unmarshal. XML documents written according to the constraints in the
source schema are unmarshalled by the JAXB binding framework. Note
that JAXB also supports unmarshalling XML data from sources other than
files/documents, such as DOM nodes, string buffers, SAX Sources, and so
forth.

4. Generate content tree. The unmarshalling process generates a content tree
of data objects instantiated from the generated JAXB classes; this content
tree represents the structure and content of the source XML documents.

6 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
5. Validate (optional). The unmarshalling process optionally involves valida-
tion of the source XML documents before generating the content tree.
Note that if you modify the content tree in Step 6, below, you can also use
the JAXB Validate operation to validate the changes before marshalling the
content back to an XML document.

6. Process content. The client application can modify the XML data repre-
sented by the Java content tree by means of interfaces generated by the
binding compiler.

7. Marshal. The processed content tree is marshalled out to one or more XML
output documents. The content may be validated before marshalling.

To summarize, using JAXB involves two discrete sets of activities:

• Generate and compile JAXB classes from a source schema, and build an
application that implements these classes

• Run the application to unmarshal, process, validate, and marshal XML
content through the JAXB binding framework

These two steps are usually performed at separate times in two distinct phases.
Typically, for example, there is an application development phase in which
JAXB classes are generated and compiled, and a binding implementation is built,
followed by a deployment phase in which the generated JAXB classes are used
to process XML content in an ongoing “live” production setting.

Note: Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of con-
tent trees by direct invocation of the appropriate factory methods. Once created, a
content tree may be revalidated, either in whole or in part, at any time. See Create
Marshal Example (page 47) for an example of using the ObjectFactory class to
directly add content to a content tree.

JAXB Binding Framework
The JAXB binding framework is implemented in three Java packages:

• The javax.xml.bind package defines abstract classes and interfaces that
are used directly with content classes.

The javax.xml.bind package defines the Unmarshaller, Validator,
and Marshaller classes, which are auxiliary objects for providing their
respective operations.

MORE ABOUT JAVAX.XML.BIND 7
The JAXBContext class is the entry point for a Java application into the
JAXB framework. A JAXBContext instance manages the binding relation-
ship between XML element names to Java content interfaces for a JAXB
implementation to be used by the unmarshal, marshal and validation oper-
ations.

The javax.xml.bind package also defines a rich hierarchy of validation
event and exception classes for use when marshalling or unmarshalling
errors occur, when constraints are violated, and when other types of errors
are detected.

• The javax.xml.bind.util package contains utility classes that may be
used by client applications to manage marshalling, unmarshalling, and val-
idation events.

• The javax.xml.bind.helper package provides partial default implemen-
tations for some of the javax.xml.bind interfaces. Implementations of
JAXB can extend these classes and implement the abstract methods. These
APIs are not intended to be directly used by applications using JAXB
architecture.

The main package in the JAXB binding framework, javax.xml.bind, is
described in more detail below.

More About javax.xml.bind
The three core functions provided by the primary binding framework package,
javax.xml.bind, are marshalling, unmarshalling, and validation. The main cli-
ent entry point into the binding framework is the JAXBContext class.

JAXBContext provides an abstraction for managing the XML/Java binding infor-
mation necessary to implement the unmarshal, marshal and validate operations.
A client application obtains new instances of this class by means of the
newInstance(contextPath) method; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

The contextPath parameter contains a list of Java package names that contain
schema-derived interfaces—specifically the interfaces generated by the JAXB
binding compiler. The value of this parameter initializes the JAXBContext object
to enable management of the schema-derived interfaces. To this end, the JAXB

8 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
provider implementation must supply an implementation class containing a
method with the following signature:

public static JAXBContext createContext(String contextPath,
ClassLoader classLoader)

 throws JAXBException;

Note: The JAXB provider implementation must generate a jaxb.properties file
in each package containing schema-derived classes. This property file must contain
a property named javax.xml.bind.context.factory whose value is the name of
the class that implements the createContext API.

The class supplied by the provider does not have to be assignable to
javax.xml.bind.JAXBContext, it simply has to provide a class that implements the
createContext API. By allowing for multiple Java packages to be specified, the
JAXBContext instance allows for the management of multiple schemas at one time.

More About Unmarshalling
The Unmarshaller class in the javax.xml.bind package provides the client
application the ability to convert XML data into a tree of Java content objects.
The unmarshal method for a schema (within a namespace) allows for any global
XML element declared in the schema to be unmarshalled as the root of an
instance document. The JAXBContext object allows the merging of global ele-
ments across a set of schemas (listed in the contextPath). Since each schema in
the schema set can belong to distinct namespaces, the unification of schemas to
an unmarshalling context should be namespace-independent. This means that a
client application is able to unmarshal XML documents that are instances of any
of the schemas listed in the contextPath; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

Unmarshaller u = jc.createUnmarshaller();

FooObject fooObj =
(FooObject)u.unmarshal(new File("foo.xml")); // ok

BarObject barObj =
(BarObject)u.unmarshal(new File("bar.xml")); // ok

MORE ABOUT MARSHALLING 9
BazObject bazObj =
(BazObject)u.unmarshal(new File("baz.xml"));
// error, "com.acme.baz" not in contextPath

A client application may also generate Java content trees explicitly rather than
unmarshalling existing XML data. To do so, the application needs to have access
and knowledge about each of the schema-derived ObjectFactory classes that
exist in each of Java packages contained in the contextPath. For each schema-
derived Java class, there will be a static factory method that produces objects of
that type. For example, assume that after compiling a schema, you have a pack-
age com.acme.foo that contains a schema-derived interface named Purchase-

Order. To create objects of that type, the client application would use the
following factory method:

ObjectFactory objFactory = new ObjectFactory();

com.acme.foo.PurchaseOrder po =
objFactory.createPurchaseOrder();

Note: Because multiple ObjectFactory classes are generated when there are mul-
tiple packages on the contextPath, if you have multiple packages on the contex-

tPath, you should use the complete package name when referencing an
ObjectFactory class in one of those packages.

Once the client application has an instance of the schema-derived object, it can
use the mutator methods to set content on it.

Note: The JAXB provider implementation must generate a class in each package
that contains all of the necessary object factory methods for that package named
ObjectFactory as well as the newInstance(javaContentInterface) method.

More About Marshalling
The Marshaller class in the javax.xml.bind package provides the client appli-
cation the ability to convert a Java content tree back into XML data. There is no
difference between marshalling a content tree that is created manually using the
factory methods and marshalling a content tree that is the result an unmarshal
operation. Clients can marshal a Java content tree back to XML data to a

10 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
java.io.OutputStream or a java.io.Writer. The marshalling process can
alternatively produce SAX2 event streams to a registered ContentHandler or
produce a DOM Node object.

A simple example that unmarshals an XML document and then marshals it back
out is a follows:

JAXBContext jc = JAXBContext.newInstance("com.acme.foo");

// unmarshal from foo.xml
Unmarshaller u = jc.createUnmarshaller();
FooObject fooObj =

(FooObject)u.unmarshal(new File("foo.xml"));

// marshal to System.out
Marshaller m = jc.createMarshaller();
m.marshal(fooObj, System.out);

By default, the Marshaller uses UTF-8 encoding when generating XML data to
a java.io.OutputStream or a java.io.Writer. Use the setProperty API to
change the output encoding used during these marshal operations. Client appli-
cations are expected to supply a valid character encoding name as defined in the
W3C XML 1.0 Recommendation (http://www.w3.org/TR/2000/REC-xml-
20001006#charencoding) and supported by your Java Platform.

Client applications are not required to validate the Java content tree prior to call-
ing one of the marshal APIs. There is also no requirement that the Java content
tree be valid with respect to its original schema in order to marshal it back into
XML data. Different JAXB Providers can support marshalling invalid Java con-
tent trees at varying levels, however all JAXB providers must be able to marshal
a valid content tree back to XML data. A JAXB provider must throw a Marshal-

Exception when it is unable to complete the marshal operation due to invalid
content. Some JAXB providers will fully allow marshalling invalid content, oth-
ers will fail on the first validation error.

http://www.w3.org/TR/2000/REC-xml-20001006#charencoding
http://www.w3.org/TR/2000/REC-xml-20001006#charencoding

MORE ABOUT VALIDATION 11
Table 1–2 shows the properties that the Marshaller class supports.

More About Validation
The Validator class in the javax.xml.bind package is responsible for control-
ling the validation of content trees during runtime. When the unmarshalling pro-
cess incorporates validation and it successfully completes without any validation
errors, both the input document and the resulting content tree are guaranteed to
be valid. By contrast, the marshalling process does not actually perform valida-
tion. If only validated content trees are marshalled, this guarantees that generated
XML documents are always valid with respect to the source schema.

Table 1–2 Marshaller Properties

Property Description

jaxb.encoding Value must be a java.lang.String; the output
encoding to use when marshalling the XML data.
The Marshaller will use “UTF-8” by default if
this property is not specified.

jaxb.formatted.output Value must be a java.lang.Boolean; controls
whether or not the Marshaller will format the
resulting XML data with line breaks and indenta-
tion. A true value for this property indicates
human readable indented XML data, while a
false value indicates unformatted XML data. The
Marshaller defaults to false (unformatted) if
this property is not specified.

jaxb.schemaLocation Value must be a java.lang.String; allows the
client application to specify an xsi:schemaLoca-
tion attribute in the generated XML data. The for-
mat of the schemaLocation attribute value is
discussed in an easy to understand, non-normative
form in Section 5.6 of the W3C XML Schema Part
0: Primer and specified in Section 2.6 of the W3C
XML Schema Part 1: Structures.

jaxb.noNamespaceSchemaLocation Value must be a java.lang.String; allows the
client application to specify an xsi:noNamespac-
eSchemaLocation attribute in the generated
XML data.

12 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Some XML parsers, like SAX and DOM, allow schema validation to be dis-
abled, and there are cases in which you may want to disable schema validation to
improve processing speed and/or to process documents containing invalid or
incomplete content. JAXB supports these processing scenarios by means of the
exception handling you choose implement in your JAXB-enabled application. In
general, if a JAXB implementation cannot unambiguously complete unmarshal-
ling or marshalling, it will terminate processing with an exception.

Note: The Validator class is responsible for managing On-Demand Validation
(see below). The Unmarshaller class is responsible for managing Unmarshal-Time
Validation during the unmarshal operations. Although there is no formal method of
enabling validation during the marshal operations, the Marshaller may detect
errors, which will be reported to the ValidationEventHandler registered on it.

A JAXB client can perform two types of validation:

• Unmarshal-Time validation enables a client application to receive informa-
tion about validation errors and warnings detected while unmarshalling
XML data into a Java content tree, and is completely orthogonal to the
other types of validation. To enable or disable it, use the Unmar-

shaller.setValidating method. All JAXB Providers are required to
support this operation.

• On-Demand validation enables a client application to receive information
about validation errors and warnings detected in the Java content tree. At
any point, client applications can call the Validator.validate method on
the Java content tree (or any sub-tree of it). All JAXB Providers are
required to support this operation.

If the client application does not set an event handler on its Validator, Unmar-
shaller, or Marshaller prior to calling the validate, unmarshal, or marshal
methods, then a default event handler will receive notification of any errors or
warnings encountered. The default event handler will cause the current operation
to halt after encountering the first error or fatal error (but will attempt to continue
after receiving warnings).

There are three ways to handle events encountered during the unmarshal, vali-
date, and marshal operations:

• Use the default event handler.

XML SCHEMAS 13
The default event handler will be used if you do not specify one via the
setEventHandler APIs on Validator, Unmarshaller, or Marshaller.

• Implement and register a custom event handler.

Client applications that require sophisticated event processing can imple-
ment the ValidationEventHandler interface and register it with the
Unmarshaller and/or Validator.

• Use the ValidationEventCollector utility.

For convenience, a specialized event handler is provided that simply col-
lects any ValidationEvent objects created during the unmarshal, vali-
date, and marshal operations and returns them to the client application as
a java.util.Collection.

Validation events are handled differently, depending on how the client applica-
tion is configured to process them. However, there are certain cases where a
JAXB Provider indicates that it is no longer able to reliably detect and report
errors. In these cases, the JAXB Provider will set the severity of the Valida-

tionEvent to FATAL_ERROR to indicate that the unmarshal, validate, or marshal
operations should be terminated. The default event handler and Validation-

EventCollector utility class must terminate processing after being notified of a
fatal error. Client applications that supply their own ValidationEventHandler

should also terminate processing after being notified of a fatal error. If not, unex-
pected behavior may occur.

XML Schemas
Because XML schemas are such an important component of the JAXB process-
ing model—and because other data binding facilities like JAXP work with DTDs
instead of schemas—it is useful to review here some basics about what XML
schemas are and how they work.

XML Schemas are a powerful way to describe allowable elements, attributes,
entities, and relationships in an XML document. A more robust alternative to
DTDs, the purpose of an XML schema is to define classes of XML documents
that must adhere to a particular set of structural and data constraints—that is, you
may want to define separate schemas for chapter-oriented books, for an online
purchase order system, or for a personnel database. In the context of JAXB, an
XML document containing data that is constrained by an XML schema is
referred to as a document instance, and the structure and data within a document
instance is referred to as a content tree.

14 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Note: In practice, the term “document” is not always accurate, as an XML instance
document does not have to be a completely formed, selfstanding document file; it
can instead take the form of streams of data passed between applications, or of sets
of database fields, or of XML infosets in which blocks of information contain just
enough information to describe where they fit in the schema structure.

The following sample code is taken from the W3C's Schema Part 0: Primer
(http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/), and illustrates
an XML document, po.xml, for a simple purchase order.

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">

<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country="US">

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment>

<items>
<item partNum="872-AA">

<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum="926-AA">

<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>

</purchaseOrder>

The root element, purchaseOrder, contains the child elements shipTo, billTo,
comment, and items. All of these child elements except comment contain other

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

XML SCHEMAS 15
child elements. The leaves of the tree are the child elements like name, street,
city, and state, which do not contain any further child elements. Elements that
contain other child elements or can accept attributes are referred to as complex
types. Elements that contain only PCDATA and no child elements are referred to as
simple types.

The complex types and some of the simple types in po.xml are defined in the
purchase order schema below. Again, this example schema, po.xsd, is derived
from the W3C's Schema Part 0: Primer (http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/).

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN"

fixed="US"/>
</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="productName"
type="xsd:string"/>

<xsd:element name="quantity">
<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

16 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
<xsd:maxExclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU"

use="required"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

In this example, the schema comprises, similar to a DTD, a main or root schema
element and several child elements, element, complexType, and simpleType.
Unlike a DTD, this schema also specifies as attributes data types like decimal,
date, fixed, and string. The schema also specifies constraints like pattern

value, minOccurs, and positiveInteger, among others. In DTDs, you can
only specify data types for textual data (PCDATA and CDATA); XML schema sup-
ports more complex textual and numeric data types and constraints, all of which
have direct analogs in the Java language.

Note that every element in this schema has the prefix xsd:, which is associated
with the W3C XML Schema namespace. To this end, the namespace declaration,
xmlns:xsd="http://www.w3.org/2001/XMLSchema", is declared as an
attribute to the schema element.

Namespace support is another important feature of XML schemas because it
provides a means to differentiate between elements written against different
schemas or used for varying purposes, but which may happen to have the same
name as other elements in a document. For example, suppose you declared two
namespaces in your schema, one for foo and another for bar. Two XML docu-
ments are combined, one from a billing database and another from an shipping
database, each of which was written against a different schema. By specifying

REPRESENTING XML CONTENT 17
namespaces in your schema, you can differentiate between, say, foo:address
and bar:address.

Representing XML Content
This section describes how JAXB represents XML content as Java objects. Spe-
cifically, the topics in this section are as follows:

• Binding XML Names to Java Identifiers

• Java Representation of XML Schema

Binding XML Names to Java Identifiers
XML schema languages use XML names—strings that match the Name produc-
tion defined in XML 1.0 (Second Edition) (http://www.w3.org/XML/) to label
schema components. This set of strings is much larger than the set of valid Java
class, method, and constant identifiers. To resolve this discrepancy, JAXB uses
several name-mapping algorithms.

The JAXB name-mapping algorithm maps XML names to Java identifiers in a
way that adheres to standard Java API design guidelines, generates identifiers
that retain obvious connections to the corresponding schema, and is unlikely to
result in many collisions.

Refer to Chapter 2 for information about changing default XML name map-
pings. See Appendix C in the JAXB Specification for complete details about the
JAXB naming algorithm.

Java Representation of XML Schema
JAXB supports the grouping of generated classes and interfaces in Java pack-
ages. A package comprises:

• A name, which is either derived directly from the XML namespace URI,
or specified by a binding customization of the XML namespace URI

• A set of Java content interfaces representing the content models declared
within the schema

• A Set of Java element interfaces representing element declarations occur-
ring within the schema

http://java.sun.com/xml/downloads/jaxb.html
http://www.w3.org/XML/

18 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
• An ObjectFactory class containing:

• An instance factory method for each Java content interface and Java ele-
ment interface within the package; for example, given a Java content
interface named Foo, the derived factory method would be:

public Foo createFoo() throws JAXBException;

• Dynamic instance factory allocator; creates an instance of the specified
Java content interface; for example:

public Object newInstance(Class javaContentInterface)
 throws JAXBException;

• getProperty and setProperty APIs that allow the manipulation of
provider-specified properties

• Set of typesafe enum classes

• Package javadoc

Binding XML Schemas
This section describes the default XML-to-Java bindings used by JAXB. All of
these bindings can be overridden on global or case-by-case levels by means of a
custom binding declaration. The topics in this section are as follows:

• Simple Type Definitions

• Default Data Type Bindings

• Default Binding Rules Summary

See the JAXB Specification for complete information about the default JAXB
bindings.

Simple Type Definitions
A schema component using a simple type definition typically binds to a Java
property. Since there are different kinds of such schema components, the follow-
ing Java property attributes (common to the schema components) include:

• Base type

• Collection type, if any

http://java.sun.com/xml/downloads/jaxb.html

DEFAULT DATA TYPE BINDINGS 19
• Predicate

The rest of the Java property attributes are specified in the schema component
using the simple type definition.

Default Data Type Bindings
The Java language provides a richer set of data type than XML schema. Table 1–
3 lists the mapping of XML data types to Java data types in JAXB.

Table 1–3 JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime java.util.Calendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

20 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Default Binding Rules Summary
The JAXB binding model follows the default binding rules summarized below:

• Bind the following to Java package:

• XML Namespace URI

• Bind the following XML Schema components to Java content interface:

• Named complex type

• Anonymous inlined type definition of an element declaration

• Bind to typesafe enum class:

• A named simple type definition with a basetype that derives from
“xsd:NCName” and has enumeration facets.

• Bind the following XML Schema components to a Java Element interface:

• A global element declaration to a Element interface.

• Local element declaration that can be inserted into a general content list.

• Bind to Java property:

• Attribute use

• Particle with a term that is an element reference or local element decla-
ration.

• Bind model group with a repeating occurrence and complex type defini-
tions with mixed {content type} to:

• A general content property; a List content-property that holds Java
instances representing element information items and character data
items.

xsd:time java.util.Calendar

xsd:date java.util.Calendar

xsd:anySimpleType java.lang.String

Table 1–3 JAXB Mapping of XML Schema Built-in Data Types (Continued)

XML Schema Type Java Data Type

CUSTOMIZING JAXB BINDINGS 21
Customizing JAXB Bindings
The default JAXB bindings can be overridden at a global scope or on a case-by-
case basis as needed by using custom binding declarations. As described previ-
ously, JAXB uses default binding rules that can be customized by means of bind-
ing declarations made in either of two ways:

• As inline annotations in a source XML schema

• As declarations in an external binding customizations file that is passed to
the JAXB binding compiler

Custom JAXB binding declarations also allow you to customize your generated
JAXB classes beyond the XML-specific constraints in an XML schema to
include Java-specific refinements such as class and package name mappings.

You do not need to provide a binding instruction for every declaration in your
schema to generate Java classes. For example, the binding compiler uses a gen-
eral name-mapping algorithm to bind XML names to names that are acceptable
in the Java programming language. However, if you want to use a different nam-
ing scheme for your classes, you can specify custom binding declarations to
make the binding compiler generate different names. There are many other cus-
tomizations you can make with the binding declaration, including:

• Name the package, derived classes, and methods

• Assign types to the methods within the derived classes

• Choose which elements to bind to classes

• Decide how to bind each attribute and element declaration to a property in
the appropriate content class

• Choose the type of each attribute-value or content specification

Note: Relying on the default JAXB binding behavior rather than requiring a binding
declaration for each XML Schema component bound to a Java representation makes
it easier to keep pace with changes in the source schema. In most cases, the default
rules are robust enough that a usable binding can be produced with no custom bind-
ing declaration at all.

Code examples showing how to customize JAXB bindings are provided in Chap-
ter 2.

22 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Scope
When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.

Table 1–4 lists the four scopes for custom bindings.

Scope Inheritance
The different scopes form a taxonomy. The taxonomy defines both the inherit-
ance and overriding semantics of customization values. A customization value
defined in one scope is inherited for use in a binding declaration covered by
another scope as shown by the following inheritance hierarchy:

• A schema element in schema scope inherits a customization value defined
in global scope.

• A schema element in definition scope inherits a customization value
defined in schema or global scope.

• A schema element in component scope inherits a customization value
defined in definition, schema or global scope.

Table 1–4 Custom Binding Scopes

Scope Description

Global A customization value defined in <globalBindings> has global scope. A
global scope covers all the schema elements in the source schema and (recur-
sively) any schemas that are included or imported by the source schema.

Schema A customization value defined in <schemaBindings> has schema scope. A
schema scope covers all the schema elements in the target name space of a
schema.

Definition A customization value in binding declarations of a type definition and global
declaration has definition scope. A definition scope covers all schema elements
that reference the type definition or the global declaration.

Component A customization value in a binding declaration has component scope if the
customization value applies only to the schema element that was annotated
with the binding declaration.

WHAT IS NOT SUPPORTED 23
Similarly, a customization value defined in one scope can override a customiza-
tion value inherited from another scope as shown below:

• Value in schema scope overrides a value inherited from global scope.

• Value in definition scope overrides a value inherited from schema scope or
global scope.

• Value in component scope overrides a value inherited from definition,
schema or global scope.

What is Not Supported
See Section E.2, “Not Required XML Schema Concepts,” in the JAXB Specifica-
tion for the latest information about unsupported or non-required schema con-
cepts.

JAXB APIs and Tools
The JAXB APIs and tools are shipped in the jaxb subdirectory of the Java
WSDP. This directory contains sample applications, a JAXB binding compiler
(xjc), and implementations of the runtime binding framework APIs contained in
the javax.xml.bind package. For instructions on using the JAXB, see Chapter
2.

http://java.sun.com/xml/downloads/jaxb.html

24 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB

2

25
Using JAXB

THIS chapter provides instructions for using several of the sample Java appli-
cations that were included in the Java WSDP. These examples demonstrate and
build upon key JAXB features and concepts. It is recommended that you follow
these procedures in the order presented.

After reading this chapter, you should feel comfortable enough with JAXB that
you can:

• Generate JAXB Java classes from an XML schema

• Use schema-derived JAXB classes to unmarshal and marshal XML con-
tent in a Java application

• Create a Java content tree from scratch using schema-derived JAXB
classes

• Validate XML content during unmarshalling and at runtime

• Customize JAXB schema-to-Java bindings

The primary goals of the basic examples are to highlight the core set of JAXB
functions using default settings and bindings. After familiarizing yourself with
these core features and functions, you may wish to continue with Customizing
JAXB Bindings (page 54) for instructions on using five additional examples that
demonstrate how to modify the default JAXB bindings.

Note: The Purchase Order schema, po.xsd, and the Purchase Order XML file,
po.xml, used in these samples are derived from the W3C XML Schema Part 0:
Primer (http://www.w3.org/TR/xmlschema-0/), edited by David C. Fallside.

http://www.w3.org/TR/xmlschema-0/

26 USING JAXB
General Usage Instructions
This section provides general usage instructions for the examples used in this
chapter, including how to build and run the applications using the Ant build tool,
and provides details about the default schema-to-JAXB bindings used in these
examples.

Description
This chapter describes ten examples; the basic examples (Unmarshal Read,
Modify Marshal, Create Marshal, Unmarshal Validate, Validate-On-Demand)
demonstrate basic JAXB concepts like ummarshalling, marshalling, and validat-
ing XML content, while the customize examples (Customize Inline, Datatype
Converter, External Customize, Fix Collides, Bind Choice) demonstrate various
ways of customizing the binding of XML schemas to Java objects. Each of the
examples in this chapter is based on a Purchase Order scenario. With the excep-
tion of the Bind Choice and the Fix Collides examples, each uses an XML docu-
ment, po.xml, written against an XML schema, po.xsd.

Table 2–1 Sample JAXB Application Descriptions

Example Name Description

Unmarshal Read Exam-
ple

Demonstrates how to unmarshal an XML document into a Java
content tree and access the data contained within it.

Modify Marshal Exam-
ple

Demonstrates how to modify a Java content tree.

Create Marshal Example
Demonstrates how to use the ObjectFactory class to create a
Java content tree from scratch and then marshal it to XML data.

Unmarshal Validate
Example

Demonstrates how to enable validation during unmarshalling.

Validate-On-Demand
Example

Demonstrates how to validate a Java content tree at runtime.

Customize Inline Exam-
ple

Demonstrates how to customize the default JAXB bindings by
means of inline annotations in an XML schema.

DESCRIPTION 27
Note: These examples are all located in the $JWSDP_HOME/jaxb/samples direc-
tory.

Each example directory contains several base files:

• po.xsd is the XML schema you will use as input to the JAXB binding
compiler, and from which schema-derived JAXB Java classes will be gen-
erated. For the Customize Inline and Datatype Converter examples, this
file contains inline binding customizations. Note that the Bind Choice and
Fix Collides examples use example.xsd rather than po.xsd.

• po.xml is the Purchase Order XML file containing sample XML content,
and is the file you will unmarshal into a Java content tree in each example.
This file is almost exactly the same in each example, with minor content

Datatype Converter
Example

Similar to the Customize Inline example, this example illustrates
alternate, more terse bindings of XML simpleType definitions to
Java datatypes.

External Customize
Example

Illustrates how to use an external binding declarations file to pass
binding customizations for a read-only schema to the JAXB bind-
ing compiler.

Fix Collides Example

Illustrates how to use customizations to resolve name conflicts
reported by the JAXB binding compiler. It is recommended that
you first run ant fail in the application directory to see the
errors reported by the JAXB binding compiler, and then look at
binding.xjb to see how the errors were resolved. Running ant
alone uses the binding customizations to resolve the name con-
flicts while compiling the schema.

Bind Choice Example Illustrates how to bind a choice model group to a Java interface.

Table 2–1 Sample JAXB Application Descriptions

Example Name Description

28 USING JAXB
differences to highlight different JAXB concepts. Note that the Bind
Choice and Fix Collides examples use example.xml rather than po.xml.

• Main.java is the main Java class for each example.

• build.xml is an Ant project file provided for your convenience. Use Ant
to generate, compile, and run the schema-derived JAXB classes automati-
cally. The build.xml file varies across the examples.

• MyDatatypeConverter.java in the inline-customize example is a Java
class used to provide custom datatype conversions.

• binding.xjb in the External Customize, Bind Choice, and Fix Collides
examples is an external binding declarations file that is passed to the JAXB
binding compiler to customize the default JAXB bindings.

• example.xsd in the Fix Collides example is a short schema file that con-
tains deliberate naming conflicts, to show how to resolve such conflicts
with custom JAXB bindings.

Using the Examples
As with all applications that implement schema-derived JAXB classes, as
described above, there are two distinct phases in using JAXB:

1. Generating and compiling JAXB Java classes from an XML source
schema

2. Unmarshalling, validating, processing, and marshalling XML content

In the case of these examples, you perform these steps by using Ant with the
build.xml project file included in each example directory.

Configuring and Running the Samples
The build.xml file included in each example directory is an Ant project file that,
when run, automatically performs the following steps:

1. Updates your CLASSPATH to include the necessary schema-derived JAXB
classes.

2. Runs the JAXB binding compiler to generate JAXB Java classes from the
XML source schema, po.xsd, and puts the classes in a package named
primer.po.

3. Generates API documentation from the schema-derived JAXB classes
using the Javadoc tool.

CONFIGURING AND RUNNING THE SAMPLES 29
4. Compiles the schema-derived JAXB classes.

5. Runs the Main class for the example.

Solaris/Linux
1. Set the following environment variables:

export JAVA_HOME=<your J2SE installation directory>

export JWSDP_HOME=<your JWSDP installation directory>

2. Change to the desired example directory.

For example, to run the Unmarshal Read example:

cd <JWSDP_HOME>/jaxb/samples/unmarshal-read

(<JWSDP_HOME> is the directory where you installed the Java WSDP bun-
dle.)

3. Run ant:

$JWSDP_HOME/apache-ant/bin/ant -emacs

4. Repeat these steps for each example.

Windows NT/2000/XP
1. Set the following environment variables:

set JAVA_HOME=<your J2SE installation directory>

set JWSDP_HOME=<your JWSDP installation directory>

2. Change to the desired example directory.

For example, to run the Unmarshal Read example:

cd <JWSDP_HOME>\jaxb\samples\unmarshal-read

(<JWSDP_HOME> is the directory where you installed the Java WSDP bun-
dle.)

3. Run ant:

%JWSDP_HOME%\apache-ant\bin\ant -emacs

4. Repeat these steps for each example.

The schema-derived JAXB classes and how they are bound to the source schema
is described in About the Schema-to-Java Bindings (page 32). The methods used
for building and processing the Java content tree are described in Basic
Examples (page 43).

30 USING JAXB
JAXB Compiler Options
The JAXB schema binding compiler is located in the <JWSDP_HOME>/jaxb/bin

directory. There are two scripts in this directory: xjc.sh (Solaris/Linux) and
xjc.bat (Windows).

Both xjc.sh and xjc.bat take the same command-line options. You can display
quick usage instructions by invoking the scripts without any options, or with the
-help switch. The syntax is as follows:

xjc [-options ...] <schema>

The xjc command-line options are listed in Table 2–2.

Table 2–2 xjc Command-Line Options

Option or
Argument Description

<schema> One or more schema files to compile.

-nv

Do not perform strict validation of the input schema(s). By default,
xjc performs strict validation of the source schema before process-
ing. Note that this does not mean the binding compiler will not per-
form any validation; it simply means that it will perform less-strict
validation.

-extension

By default, xjc strictly enforces the rules outlined in the Compati-
bility chapter of the JAXB Specification. Specifically, Appendix E.2
defines a set of W3C XML Schema features that are not completely
supported by JAXB v1.0. In some cases, you may be able to use
these extensions with the -extension switch. In the default (strict)
mode, you are also limited to using only the binding customizations
defined in the specification. By using the -extension switch, you
can enable the JAXB Vendor Extensions.

http://java.sun.com/xml/downloads/jaxb.html

JAXB COMPILER OPTIONS 31
-b <file>

Specify one or more external binding files to process (each binding
file must have it's own -b switch). The syntax of the external bind-
ing files is extremely flexible. You may have a single binding file
that contains customizations for multiple schemas, or you can break
the customizations into multiple bindings files; for example:

xjc schema1.xsd schema2.xsd schema3.xsd -b
bindings123.xjb
xjc schema1.xsd schema2.xsd schema3.xsd -b
bindings1.xjb -b bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the com-
mand line does not matter.

-d <dir>
By default, xjc will generate Java content classes in the current
directory. Use this option to specify an alternate output directory.
The directory must already exist; xjc will not create it for you.

-p <pkg>

Specifies the target package for schema-derived classes. This option
overrides any binding customization for package name as well as
the default package name algorithm defined in the JAXB Specifica-
tion.

-host <proxyHost> Set http.proxyHost to <proxyHost>.

-port <proxyPort> Set http.proxyPort to <proxyPort>.

-classpath <arg>
Specify where to find client application class files used by the
<jxb:javaType> and <xjc:superClass> customizations.

-catalog <file>
Specify catalog files to resolve external entity references.Supports
TR9401, XCatalog, and OASIS XML Catalog format.

-readOnly
Generated source files will be marked read-only. By default, xjc
does not write-protect the schema-derived source files it generates.

-use-runtime <pkg>

Suppress the generation of the impl.runtime package and refer to
another existing runtime in the specified package. This option is
useful when you are compiling multiple independent schemas.
Because the generated impl.runtime packages are identical, except
for their package declarations, you can reduce the size of your gen-
erated codebase by telling the compiler to reuse an existing
impl.runtime package.

Table 2–2 xjc Command-Line Options (Continued)

Option or
Argument Description

32 USING JAXB
The command invoked by the xjc.sh and xjc.bat scripts is equivalent to the
Java command:

$JAVA_HOME/bin/java -jar $JAXB_HOME/lib/jaxb-xjc.jar

About the Schema-to-Java Bindings
When you run the JAXB binding compiler against the po.xsd XML schema
used in the basic examples (Unmarshal Read, Modify Marshal, Create Marshal,
Unmarshal Validate, Validate-On-Demand), the JAXB binding compiler gener-
ates a Java package named primer.po containing eleven classes, making a total
of twelve classes in each of the basic examples:

-xmlschema
Treat input schemas as W3C XML Schema (default). If you do not
specify this switch, your input schemas will be treated as W3C
XML Schema.

-relaxng
Treat input schemas as RELAX NG (experimental, unsupported).
Support for RELAX NG schemas is provided as a JAXB Vendor
Extension.

-dtd
Treat input schemas as XML DTD (experimental, unsupported).
Support for RELAX NG schemas is provided as a JAXB Vendor
Extension.

-help Display this help message.

Table 2–3 Schema-Derived JAXB Classes in the Basic Examples

Class Description

primer/po/
Comment.java

Public interface extending javax.xml.bind.Element;
binds to the global schema element named comment. Note
that JAXB generates element interfaces for all global element
declarations.

primer/po/
Items.java

Public interface that binds to the schema complexType
named Items.

Table 2–2 xjc Command-Line Options (Continued)

Option or
Argument Description

ABOUT THE SCHEMA-TO-JAVA BINDINGS 33
Note: You should never directly use the generated implementation classes—that is,
*Impl.java in the <packagename>/impl directory. These classes are not directly
referenceable because the class names in this directory are not standardized by the
JAXB specification. The ObjectFactory method is the only portable means to cre-
ate an instance of a schema-derived interface. There is also an ObjectFac-

tory.newInstance(Class JAXBinterface) method that enables you to create
instances of interfaces.

primer/po/
ObjectFactory.java

Public class extending com.sun.xml.bind.DefaultJAXB-
ContextImpl; used to create instances of specified inter-
faces. For example, the ObjectFactory createComment()
method instantiates a Comment object.

primer/po/
PurchaseOrder.java

Public interface extending javax.xml.bind.Element, and
PurchaseOrderType; binds to the global schema element
named PurchaseOrder.

primer/po/
PurchaseOrderType.java

Public interface that binds to the schema complexType
named PurchaseOrderType.

primer/po/
USAddress.java

Public interface that binds to the schema complexType
named USAddress.

primer/po/impl/
CommentImpl.java

Implementation of Comment.java.

primer/po/impl/
ItemsImpl.java

Implementation of Items.java

primer/po/impl/
PurchaseOrderImpl.java

Implementation of PurchaseOrder.java

primer/po/impl/
PurchaseOrderType-
Impl.java

Implementation of PurchaseOrderType.java

primer/po/impl/
USAddressImpl.java

Implementation of USAddress.java

Table 2–3 Schema-Derived JAXB Classes in the Basic Examples (Continued)

Class Description

34 USING JAXB

ava
These classes and their specific bindings to the source XML schema for the basic
examples are described below.

Table 2–4 Schema-to-Java Bindings for the Basic Examples

XML Schema JAXB Binding

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/> PurchaseOrder.j

<xsd:element name="comment" type="xsd:string"/> Comment.java

<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

PurchaseOrder-
Type.java

<xsd:complexType name="USAddress">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAddress.java

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="item" minOccurs="1" maxOc-

curs="unbounded">

Items.java

SCHEMA-DERIVED JAXB CLASSES 35
Schema-Derived JAXB Classes
The code for the individual classes generated by the JAXB binding compiler for
the basic examples is listed below, followed by brief explanations of its func-
tions. The classes listed here are:

• Comment.java

• Items.java

• ObjectFactory.java

• PurchaseOrder.java

• PurchaseOrderType.java

• USAddress.java

<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxExclusive value="100"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>

<xsd:attribute name="partNum" type="SKU" use="required"/>
</xsd:complexType>

Items.ItemType

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Table 2–4 Schema-to-Java Bindings for the Basic Examples (Continued)

XML Schema JAXB Binding

36 USING JAXB
Comment.java
In Comment.java:

• The Comment.java class is part of the primer.po package.

• Comment is a public interface that extends javax.xml.bind.Element.

• Content in instantiations of this class bind to the XML schema element named
comment.

• The getValue() and setValue() methods are used to get and set strings repre-
senting XML comment elements in the Java content tree.

The Comment.java code looks like this:

package primer.po;

public interface Comment
 extends javax.xml.bind.Element
{

 String getValue();
 void setValue(String value);
}

Items.java
In Items.java, below:

• The Items.java class is part of the primer.po package.

• The class provides public interfaces for Items and ItemType.

• Content in instantiations of this class bind to the XML ComplexTypes Items and
its child element ItemType.

• Item provides the getItem() method.

• ItemType provides methods for:
• getPartNum();

• setPartNum(String value);

• getComment();

• setComment(java.lang.String value);

• getUSPrice();

• setUSPrice(java.math.BigDecimal value);

• getProductName();

• setProductName(String value);

• getShipDate();

SCHEMA-DERIVED JAXB CLASSES 37
• setShipDate(java.util.Calendar value);

• getQuantity();

• setQuantity(java.math.BigInteger value);

The Items.java code looks like this:

package primer.po;

public interface Items {
 java.util.List getItem();

 public interface ItemType {
 String getPartNum();
 void setPartNum(String value);
 java.lang.String getComment();
 void setComment(java.lang.String value);
 java.math.BigDecimal getUSPrice();
 void setUSPrice(java.math.BigDecimal value);
 String getProductName();
 void setProductName(String value);
 java.util.Calendar getShipDate();
 void setShipDate(java.util.Calendar value);
 java.math.BigInteger getQuantity();
 void setQuantity(java.math.BigInteger value);
 }
}

ObjectFactory.java
In ObjectFactory.java, below:

• The ObjectFactory class is part of the primer.po package.

• ObjectFactory provides factory methods for instantiating Java interfaces
representing XML content in the Java content tree.

• Method names are generated by concatenating:

• The string constant create

• If the Java content interface is nested within another interface, then the
concatenation of all outer Java class names

• The name of the Java content interface

• JAXB implementation-specific code was removed in this example to
make it easier to read.

For example, in this case, for the Java interface primer.po.Items.ItemType,
ObjectFactory creates the method createItemsItemType().

38 USING JAXB
The ObjectFactory.java code looks like this:

package primer.po;

public class ObjectFactory
 extends com.sun.xml.bind.DefaultJAXBContextImpl {

 /**
 * Create a new ObjectFactory that can be used to create
 * new instances of schema derived classes for package:
 * primer.po
 */
 public ObjectFactory() {
 super(new primer.po.ObjectFactory.GrammarInfoImpl());
 }

 /**
 * Create an instance of the specified Java content
 * interface.
 */
 public Object newInstance(Class javaContentInterface)
 throws javax.xml.bind.JAXBException
 {
 return super.newInstance(javaContentInterface);
 }

 /**
 * Get the specified property. This method can only be
 * used to get provider specific properties.
 * Attempting to get an undefined property will result
 * in a PropertyException being thrown.
 */
 public Object getProperty(String name)
 throws javax.xml.bind.PropertyException
 {
 return super.getProperty(name);
 }

 /**
 * Set the specified property. This method can only be
 * used to set provider specific properties.
 * Attempting to set an undefined property will result
 * in a PropertyException being thrown.
 */
 public void setProperty(String name, Object value)
 throws javax.xml.bind.PropertyException
 {
 super.setProperty(name, value);

SCHEMA-DERIVED JAXB CLASSES 39
 }

 /**
 * Create an instance of PurchaseOrder
 */
 public primer.po.PurchaseOrder createPurchaseOrder()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.PurchaseOrder)
 newInstance((primer.po.PurchaseOrder.class)));
 }

 /**
 * Create an instance of ItemsItemType
 */
 public primer.po.Items.ItemType createItemsItemType()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Items.ItemType)
 newInstance((primer.po.Items.ItemType.class)));
 }

 /**
 * Create an instance of USAddress
 */
 public primer.po.USAddress createUSAddress()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.USAddress)
 newInstance((primer.po.USAddress.class)));
 }

 /**
 * Create an instance of Comment
 */
 public primer.po.Comment createComment()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Comment)
 newInstance((primer.po.Comment.class)));
 }

 /**
 * Create an instance of Comment
 */
 public primer.po.Comment createComment(String value)
 throws javax.xml.bind.JAXBException
 {

40 USING JAXB
 return new primer.po.impl.CommentImpl(value);
 }

 /**
 * Create an instance of Items
 */
 public primer.po.Items createItems()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Items)
 newInstance((primer.po.Items.class)));
 }

 /**
 * Create an instance of PurchaseOrderType
 */
 public primer.po.PurchaseOrderType
createPurchaseOrderType()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.PurchaseOrderType)
 newInstance((primer.po.PurchaseOrderType.class)));
 }
}

PurchaseOrder.java
In PurchaseOrder.java, below:

• The PurchaseOrder class is part of the primer.po package.

• PurchaseOrder is a public interface that extends javax.xml.bind.Ele-

ment and primer.po.PurchaseOrderType.

• Content in instantiations of this class bind to the XML schema element
named purchaseOrder.

The PurchaseOrder.java code looks like this:

package primer.po;

public interface PurchaseOrder
extends javax.xml.bind.Element, primer.po.PurchaseOrderType{
}

SCHEMA-DERIVED JAXB CLASSES 41
PurchaseOrderType.java
In PurchaseOrderType.java, below:

• The PurchaseOrderType class is part of the primer.po package.

• Content in instantiations of this class bind to the XML schema child ele-
ment named PurchaseOrderType.

• PurchaseOrderType is a public interface that provides the following
methods:

• getItems();

• setItems(primer.po.Items value);

• getOrderDate();

• setOrderDate(java.util.Calendar value);

• getComment();

• setComment(java.lang.String value);

• getBillTo();

• setBillTo(primer.po.USAddress value);

• getShipTo();

• setShipTo(primer.po.USAddress value);

The PurchaseOrderType.java code looks like this:

package primer.po;

public interface PurchaseOrderType {
 primer.po.Items getItems();
 void setItems(primer.po.Items value);
 java.util.Calendar getOrderDate();
 void setOrderDate(java.util.Calendar value);
 java.lang.String getComment();
 void setComment(java.lang.String value);
 primer.po.USAddress getBillTo();
 void setBillTo(primer.po.USAddress value);
 primer.po.USAddress getShipTo();
 void setShipTo(primer.po.USAddress value);
}

42 USING JAXB
USAddress.java
In USAddress.java, below:

• The USAddress class is part of the primer.po package.

• Content in instantiations of this class bind to the XML schema element
named USAddress.

• USAddress is a public interface that provides the following methods:

• getState();

• setState(String value);

• getZip();

• setZip(java.math.BigDecimal value);

• getCountry();

• setCountry(String value);

• getCity();

• setCity(String value);

• getStreet();

• setStreet(String value);

• getName();

• setName(String value);

The USAddress.java code looks like this:

package primer.po;

public interface USAddress {
 String getState();
 void setState(String value);
 java.math.BigDecimal getZip();
 void setZip(java.math.BigDecimal value);
 String getCountry();
 void setCountry(String value);
 String getCity();
 void setCity(String value);
 String getStreet();
 void setStreet(String value);
 String getName();
 void setName(String value);
}

BASIC EXAMPLES 43
Basic Examples
This section describes five basic examples (Unmarshal Read, Modify Marshal,
Create Marshal, Unmarshal Validate, Validate-On-Demand) that demonstrate
how to:

• Unmarshal an XML document into a Java content tree and access the data
contained within it

• Modify a Java content tree

• Use the ObjectFactory class to create a Java content tree from scratch and
then marshal it to XML data

• Perform validation during unmarshalling

• Validate a Java content tree at runtime

Unmarshal Read Example
The purpose of the Unmarshal Read example is to demonstrate how to unmar-
shal an XML document into a Java content tree and access the data contained
within it.

1. The <JWSDP_HOME>/jaxb/samples/unmarshal-read/

Main.java class declares imports for four standard Java classes plus three
JAXB binding framework classes and the primer.po package:

import java.io.FileInputStream

import java.io.IOException

import java.util.Iterator

import java.util.List

import javax.xml.bind.JAXBContext

import javax.xml.bind.JAXBException

import javax.xml.bind.Unmarshaller

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created.

Unmarshaller u = jc.createUnmarshaller();

4. po.xml is unmarshalled into a Java content tree comprising objects gener-
ated by the JAXB binding compiler into the primer.po package.

44 USING JAXB
PurchaseOrder po =

(PurchaseOrder)u.unmarshal(

new FileInputStream("po.xml"));

5. A simple string is printed to system.out to provide a heading for the pur-
chase order invoice.

System.out.println("Ship the following items to: ");

6. get and display methods are used to parse XML content in preparation
for output.

USAddress address = po.getShipTo();

displayAddress(address);

Items items = po.getItems();

displayItems(items);

7. Basic error handling is implemented.

} catch(JAXBException je) {

je.printStackTrace();

} catch(IOException ioe) {

ioe.printStackTrace();

8. The USAddress branch of the Java tree is walked, and address information
is printed to system.out.

public static void displayAddress(USAddress address) {

// display the address

System.out.println("\t" + address.getName());

System.out.println("\t" + address.getStreet());

System.out.println("\t" + address.getCity() +

", " + address.getState() +

" " + address.getZip());

System.out.println("\t" + address.getCountry() + "\n");

}

9. The Items list branch is walked, and item information is printed to sys-

tem.out.

public static void displayItems(Items items) {

// the items object contains a List of

//primer.po.ItemType objects

List itemTypeList = items.getItem();

10.Walking of the Items branch is iterated until all items have been printed.

for(Iterator iter = itemTypeList.iterator();

iter.hasNext();) {

MODIFY MARSHAL EXAMPLE 45
Items.ItemType item = (Items.ItemType)iter.next();

System.out.println("\t" + item.getQuantity() +

" copies of \"" + item.getProductName() +

"\"");

}

Sample Output
Running java Main for this example produces the following output:

Ship the following items to:
 Alice Smith
 123 Maple Street
 Cambridge, MA 12345
 US

 5 copies of "Nosferatu - Special Edition (1929)"
 3 copies of "The Mummy (1959)"
 3 copies of "Godzilla and Mothra: Battle for Earth/Godzilla
 vs. King Ghidora"

Modify Marshal Example
The purpose of the Modify Marshal example is to demonstrate how to modify a
Java content tree.

1. The <JWSDP_HOME>/jaxb/samples/modify-marshal/

Main.java class declares imports for three standard Java classes plus four
JAXB binding framework classes and primer.po package:

import java.io.FileInputStream;

import java.io.IOException;

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created, and po.xml is unmarshalled.

46 USING JAXB
Unmarshaller u = jc.createUnmarshaller();

PurchaseOrder po =

(PurchaseOrder)u.unmarshal(

new FileInputStream("po.xml"));

4. set methods are used to modify information in the address branch of the
content tree.

USAddress address = po.getBillTo();

address.setName("John Bob");

address.setStreet("242 Main Street");

address.setCity("Beverly Hills");

address.setState("CA");

address.setZip(new BigDecimal("90210"));

5. A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty API is used to specify output
encoding; in this case formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();

m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

Boolean.TRUE);

m.marshal(po, System.out);

Sample Output
Running java Main for this example produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="1999-10-20-05:00">
<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</shipTo>
<billTo country="US">
<name>John Bob</name>
<street>242 Main Street</street>
<city>Beverly Hills</city>
<state>CA</state>
<zip>90210</zip>
</billTo>
<items>
<item partNum="242-NO">

CREATE MARSHAL EXAMPLE 47
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity>
<USPrice>19.99</USPrice>
</item>
<item partNum="242-MU">
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>
</item>
<item partNum="242-GZ">
<productName>
Godzilla and Mothra: Battle for Earth/Godzilla vs. King Ghidora
</productName>
<quantity>3</quantity>
<USPrice>27.95</USPrice>
</item>
</items>
</purchaseOrder>

Create Marshal Example
The Create Marshal example demonstrates how to use the ObjectFactory class
to create a Java content tree from scratch and then marshal it to XML data.

1. The <JWSDP_HOME>/jaxb/samples/create-marshal/

Main.java class declares imports for four standard Java classes plus three
JAXB binding framework classes and the primer.po package:

import java.math.BigDecimal;

import java.math.BigInteger;

import java.util.Calendar;

import java.util.List;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. The ObjectFactory class is used to instantiate a new empty PurchaseOr-

der object.

// creating the ObjectFactory

ObjectFactory objFactory = new ObjectFactory();

48 USING JAXB
// create an empty PurchaseOrder

PurchaseOrder po = objFactory.createPurchaseOrder();

4. Per the constraints in the po.xsd schema, the PurchaseOrder object
requires a value for the orderDate attribute. To satisfy this constraint, the
orderDate is set using the standard Calendar.getInstance() method
from java.util.Calendar.

po.setOrderDate(Calendar.getInstance());

5. The ObjectFactory is used to instantiate new empty USAddress objects,
and the required attributes are set.

USAddress shipTo = createUSAddress("Alice Smith",

"123 Maple Street",

"Cambridge",

"MA",

"12345");

po.setShipTo(shipTo);

USAddress billTo = createUSAddress("Robert Smith",

"8 Oak Avenue",

"Cambridge",

"MA",

"12345");

po.setBillTo(billTo);

6. The ObjectFactory class is used to instantiate a new empty Items object.

Items items = objFactory.createItems();

7. A get method is used to get a reference to the ItemType list.

List itemList = items.getItem();

8. ItemType objects are created and added to the Items list.

itemList.add(createItemType(

"Nosferatu - Special Edition (1929)",

new BigInteger("5"),

new BigDecimal("19.99"),

null,

null,

"242-NO"));

itemList.add(createItemType("The Mummy (1959)",

new BigInteger("3"),

new BigDecimal("19.98"),

CREATE MARSHAL EXAMPLE 49
null,

null,

"242-MU"));

itemList.add(createItemType(

"Godzilla and Mothra: Battle for Earth/Godzilla

vs. King Ghidora",

new BigInteger("3"),

new BigDecimal("27.95"),

null,

null,

"242-GZ"));

9. The items object now contains a list of ItemType objects and can be added
to the po object.
po.setItems(items);

10.A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty API is used to specify output
encoding; in this case formatted (human readable) XML format.
Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

Boolean.TRUE);
m.marshal(po, System.out);

11.An empty USAddress object is created and its properties set to comply
with the schema constraints.
public static USAddress createUSAddress(

ObjectFactory objFactory,
String name, String street,
String city,
String state,
String zip)

throws JAXBException {

// create an empty USAddress objects
USAddress address = objFactory.createUSAddress();

// set properties on it
address.setName(name);
address.setStreet(street);
address.setCity(city);
address.setState(state);
address.setZip(new BigDecimal(zip));

// return it

50 USING JAXB
return address;
}

12.Similar to the previous step, an empty ItemType object is created and its
properties set to comply with the schema constraints.

public static Items.ItemType createItemType(ObjectFactory
objFactory,

String productName,
BigInteger quantity,
BigDecimal price,
String comment,
Calendar shipDate,
String partNum)

throws JAXBException {

// create an empty ItemType object
Items.ItemType itemType =
objFactory.createItemsItemType();

// set properties on it
itemType.setProductName(productName);
itemType.setQuantity(quantity);
itemType.setUSPrice(price);
itemType.setComment(comment);
itemType.setShipDate(shipDate);
itemType.setPartNum(partNum);

// return it
return itemType;

}

Sample Output
Running java Main for this example produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="2002-09-24-05:00">
<shipTo>
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</shipTo>
<billTo>
<name>Robert Smith</name>
<street>8 Oak Avenue</street>

UNMARSHAL VALIDATE EXAMPLE 51
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</billTo>
<items>
<item partNum="242-NO">
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity
<USPrice>19.99</USPrice>
</item>
<item partNum="242-MU">
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>
</item>
<item partNum="242-GZ">
<productName>Godzilla and Mothra: Battle for Earth/Godzilla vs.
King Ghidora</productName>
<quantity>3</quantity>
<USPrice>27.95</USPrice>
</item>
</items>
</purchaseOrder>

Unmarshal Validate Example
The Unmarshal Validate example demonstrates how to enable validation during
unmarshalling (Unmarshal-Time Validation). Note that JAXB provides functions
for validation during unmarshalling but not during marshalling. Validation is
explained in more detail in More About Validation (page 11).

1. The <JWSDP_HOME>/jaxb/samples/unmarshal-validate/Main.java

class declares imports for three standard Java classes plus seven JAXB
binding framework classes and the primer.po package:
import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.*;

52 USING JAXB
2. A JAXBContext instance is created for handling classes generated in
primer.po.
JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created.
Unmarshaller u = jc.createUnmarshaller();

4. The default JAXB Unmarshaller ValidationEventHandler is enabled to
send to validation warnings and errors to system.out. The default config-
uration causes the unmarshal operation to fail upon encountering the first
validation error.

u.setValidating(true);

5. An attempt is made to unmarshal po.xml into a Java content tree. For the
purposes of this example, the po.xml contains a deliberate error.

PurchaseOrder po =

(PurchaseOrder)u.unmarshal(

new FileInputStream("po.xml"));

6. The default validation event handler processes a validation error, generates
output to system.out, and then an exception is thrown.

} catch(UnmarshalException ue) {

System.out.println("Caught UnmarshalException");

} catch(JAXBException je) {

je.printStackTrace();

} catch(IOException ioe) {

ioe.printStackTrace();

Sample Output
Running java Main for this example produces the following output:

DefaultValidationEventHandler: [ERROR]: "-1" does not satisfy
the "positiveInteger" type
Caught UnmarshalException

Validate-On-Demand Example
The Validate-On-Demand example demonstrates how to validate a Java content
tree at runtime (On-Demand Validation). At any point, client applications can
call the Validator.validate method on the Java content tree (or any subtree of

VALIDATE-ON-DEMAND EXAMPLE 53
it). All JAXB Providers are required to support this operation. Validation is
explained in more detail in More About Validation (page 11).

1. The <JWSDP_HOME>/jaxb/samples/ondemand-validate/Main.java

class declares imports for five standard Java classes plus nine JAXB Java
classes and the primer.po package:
import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.ValidationException;
import javax.xml.bind.Validator;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.
JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created, and a valid po.xml document is
unmarshalled into a Java content tree. Note that po.xml is valid at this
point; invalid data will be added later in this example.
Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =

(PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"
));

4. A reference is obtained for the first item in the purchase order.
Items items = po.getItems();
List itemTypeList = items.getItem();
Items.ItemType item = (Items.ItemType)itemTypeList.get(0);

5. Next, the item quantity is set to an invalid number. When validation is
enabled later in this example, this invalid quantity will throw an exception.
item.setQuantity(new BigInteger("-5"));

Note: If @enableFailFastCheck was "true" and the optional FailFast validation
method was supported by an implementation, a TypeConstraintException would
be thrown here. Note that the JAXB implementation does not support the FailFast

54 USING JAXB
feature. Refer to the JAXB Specification for more information about FailFast val-
idation.

6. A Validator instance is created, and the content tree is validated. Note
that the Validator class is responsible for managing On-Demand valida-
tion, whereas the Unmarshaller class is responsible for managing Unmar-
shal-Time validation during unmarshal operations.
Validator v = jc.createValidator();
boolean valid = v.validateRoot(po);
System.out.println(valid);

7. The default validation event handler processes a validation error, generates
output to system.out, and then an exception is thrown.

} catch(ValidationException ue) {
System.out.println("Caught ValidationException");

} catch(JAXBException je) {
je.printStackTrace();

} catch(IOException ioe) {
ioe.printStackTrace();

}

Sample Output
Running java Main for this example produces the following output:

DefaultValidationEventHandler: [ERROR]: "-5" does not satisfy
the "positiveInteger" type
Caught ValidationException

Customizing JAXB Bindings
The remainder of this chapter describes several examples that build on the con-
cepts demonstrated in the basic examples.

The goal of this section is to illustrate how to customize JAXB bindings by
means of custom binding declarations made in either of two ways:

• As annotations made inline in an XML schema

• As statements in an external file passed to the JAXB binding compiler

Unlike the examples in Basic Examples (page 43), which focus on the Java code
in the respective Main.java class files, the examples here focus on customiza-

http://java.sun.com/xml/downloads/jaxb.html

WHY CUSTOMIZE? 55
tions made to the XML schema before generating the schema-derived Java bind-
ing classes.

Note: Although JAXB binding customizations must currently be made by hand, it
is envisioned that a tool/wizard may eventually be written by Sun or a third party to
make this process more automatic and easier in general. One of the goals of the
JAXB technology is to standardize the format of binding declarations, thereby mak-
ing it possible to create customization tools and to provide a standard interchange
format between JAXB implementations.

This section just begins to scratch the surface of customizations you can make to
JAXB bindings and validation methods. For more information, please refer to
the JAXB Specification (http://java.sun.com/xml/downloads/jaxb.html).

Why Customize?
In most cases, the default bindings generated by the JAXB binding compiler will
be sufficient to meet your needs. There are cases, however, in which you may
want to modify the default bindings. Some of these include:

• Creating API documentation for the schema-derived JAXB packages,
classes, methods and constants; by adding custom Javadoc tool annota-
tions to your schemas, you can explain concepts, guidelines, and rules spe-
cific to your implementation.

• Providing semantically meaningful customized names for cases that the
default XML name-to-Java identifier mapping cannot handle automati-
cally; for example:

• To resolve name collisions (as described in Appendix C.2.1 of the JAXB
Specification). Note that the JAXB binding compiler detects and reports
all name conflicts.

• To provide names for typesafe enumeration constants that are not legal
Java identifiers; for example, enumeration over integer values.

• To provide better names for the Java representation of unnamed model
groups when they are bound to a Java property or class.

• To provide more meaningful package names than can be derived by
default from the target namespace URI.

• Overriding default bindings; for example:

• Specify that a model group should be bound to a class rather than a list.

http://java.sun.com/xml/downloads/jaxb.html

56 USING JAXB
• Specify that a fixed attribute can be bound to a Java constant.

• Override the specified default binding of XML Schema built-in
datatypes to Java datatypes. In some cases, you might want to introduce
an alternative Java class that can represent additional characteristics of
the built-in XML Schema datatype.

Customization Overview
This section explains some core JAXB customization concepts:

• Inline and External Customizations

• Scope, Inheritance, and Precedence

• Customization Syntax

• Customization Namespace Prefix

Inline and External Customizations
Customizations to the default JAXB bindings are made in the form of binding
declarations passed to the JAXB binding compiler. These binding declarations
can be made in either of two ways:

• As inline annotations in a source XML schema

• As declarations in an external binding customizations file

For some people, using inline customizations is easier because you can see your
customizations in the context of the schema to which they apply. Conversely,
using an external binding customization file enables you to customize JAXB
bindings without having to modify the source schema, and enables you to easily
apply customizations to several schema files at once.

Note: You can combine the two types of customizations—for example, you could
include a reference to an external binding customizations file in an inline annota-
tion—but you cannot declare both an inline and external customization on the same
schema element.

Each of these types of customization is described in more detail below.

CUSTOMIZATION OVERVIEW 57
Inline Customizations
Customizations to JAXB bindings made by means of inline binding declarations
in an XML schema file take the form of <xsd:appinfo> elements embedded in
schema <xsd:annotation> elements (xsd: is the XML schema namespace pre-
fix, as defined in W3C XML Schema Part 1: Structures). The general form for
inline customizations is shown below.

<xs:annotation>
 <xs:appinfo>
 .
 .

binding declarations
 .
 .
 </xs:appinfo>
</xs:annotation>

Customizations are applied at the location at which they are declared in the
schema. For example, a declaration at the level of a particular element would
apply to that element only. Note that the XMLSchema namespace prefix must be
used with the <annotation> and <appinfo> declaration tags. In the example
above, xs: is used as the namespace prefix, so the declarations are tagged
<xs:annotation> and <xs:appinfo>.

External Binding Customization Files
Customizations to JAXB bindings made by means of an external file containing
binding declarations take the general form shown below.

<jxb:bindings schemaLocation = "xs:anyURI">
 <jxb:bindings node = "xs:string">*
 <binding declaration>
 <jxb:bindings>
</jxb:bindings>

• schemaLocation is a URI reference to the remote schema

• node is an XPath 1.0 expression that identifies the schema node within
schemaLocation to which the given binding declaration is associated.

For example, the first schemaLocation/node declaration in a JAXB binding dec-
larations file specifies the schema name and the root schema node:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

58 USING JAXB
A subsequent schemaLocation/node declaration, say for a simpleType element
named ZipCodeType in the above schema, would take the form:

<jxb:bindings node=”//xs:simpleType[@name=’ZipCodeType’]”>

Binding Customization File Format
Binding customization files should be straight ASCII text. The name or exten-
sion does not matter, although a typical extension, used in this chapter, is.xjb.

Passing Customization Files to the JAXB Binding
Compiler
Customization files containing binding declarations are passed to the JAXB
Binding compiler, xjc, using the following syntax:

xjc -b <file> <schema>

where <file> is the name of binding customization file, and <schema> is the
name of the schema(s) you want to pass to the binding compiler.

You can have a single binding file that contains customizations for multiple sche-
mas, or you can break the customizations into multiple bindings files; for exam-
ple:

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings123.xjb

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings1.xjb -b
bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the command line
does not matter, although each binding customization file must be preceded by
its own -b switch on the command line.

For more information about xjc compiler options in general, see JAXB Com-
piler Options (page 30).

CUSTOMIZATION OVERVIEW 59
Restrictions for External Binding Customizations
There are several rules that apply to binding declarations made in an external
binding customization file that do not apply to similar declarations made inline
in a source schema:

• The binding customization file must begin with the jxb:bindings

version attribute, plus attributes for the JAXB and XMLSchema
namespaces:

<jxb:bindings version="1.0"

xmlns:jxb="http://java.sun.com/xml/ns/jaxb"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

• The remote schema to which the binding declaration applies must be iden-
tified explicitly in XPath notation by means of a jxb:bindings declaration
specifying schemaLocation and node attributes:

• schemaLocation – URI reference to the remote schema

• node – XPath 1.0 expression that identifies the schema node within
schemaLocation to which the given binding declaration is associated;
in the case of the initial jxb:bindings declaration in the binding cus-
tomization file, this node is typically "/xs:schema"

For information about XPath syntax, see XML Path Language, James
Clark and Steve DeRose, eds., W3C, 16 November 1999. Available at
http://www.w3.org/TR/1999/REC-xpath-19991116.

• Similarly, individual nodes within the schema to which customizations are
to be applied must be specified using XPath notation; for example:

<jxb:bindings node="//xs:complexType[@name='USAddress']">

In such cases, the customization is applied to the node by the binding
compiler as if the declaration was embedded inline in the node’s
<xs:appinfo> element.

To summarize these rules, the external binding element <jxb:bindings> is only
recognized for processing by a JAXB binding compiler in three cases:

• When its parent is an <xs:appinfo> element

• When it is an ancestor of another <jxb:bindings> element

• When it is root element of a document—an XML document that has a
<jxb:bindings> element as its root is referred to as an external binding
declaration file

http://www.w3.org/TR/1999/REC-xpath-19991116

60 USING JAXB
Scope, Inheritance, and Precedence
Default JAXB bindings can be customized or overridden at four different levels,
or scopes, as described in Table 2–4.

Figure 2–1 illustrates the inheritance and precedence of customization declara-
tions. Specifically, declarations towards the top of the pyramid inherit and super-
sede declarations below them. For example, Component declarations inherit
from and supersede Definition declarations; Definition declarations inherit and
supersede Schema declarations; and Schema declarations inherit and supersede
Global declarations.

Figure 2–1 Customization Scope Inheritance and Precedence

CUSTOMIZATION OVERVIEW 61
Customization Syntax
The syntax for the four types of JAXB binding declarations, as well as the syntax
for the XML-to-Java datatype binding declarations and the customization name-
space prefix are described below.

• Global Binding Declarations
• Schema Binding Declarations
• Class Binding Declarations
• Property Binding Declarations
• <javaType> Binding Declarations
• Typesafe Enumeration Binding Declarations
• <javadoc> Binding Declarations
• Customization Namespace Prefix

Global Binding Declarations
Global scope customizations are declared with <globalBindings>. The syntax
for global scope customizations is as follows:

<globalBindings>
[collectionType = "collectionType"]
[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"]
[generateIsSetMethod= "true" | "false" | "1" | "0"]
[enableFailFastCheck = "true" | "false" | "1" | "0"]
[choiceContentProperty = "true" | "false" | "1" | "0"]
[underscoreBinding = "asWordSeparator" | "asCharInWord"]
[typesafeEnumBase = "typesafeEnumBase"]
[typesafeEnumMemberName = "generateName" | "generateError"]
[enableJavaNamingConventions = "true" | "false" | "1" | "0"]
[bindingStyle = "elementBinding" | "modelGroupBinding"]
[<javaType> ... </javaType>]*

</globalBindings>

• collectionType can be either indexed or any fully qualified class name
that implements java.util.List.

• fixedAttributeAsConstantProperty can be either true, false, 1, or 0.
The default value is false.

• generateIsSetMethod can be either true, false, 1, or 0. The default
value is false.

• enableFailFastCheck can be either true, false, 1, or 0. If enableFail-
FastCheck is true or 1 and the JAXB implementation supports this
optional checking, type constraint checking is performed when setting a

62 USING JAXB
property. The default value is false. Please note that the JAXB implemen-
tation does not support failfast validation.

• choiceContentProperty can be either true, false, 1, or 0. The default
value is false. choiceContentProperty is not relevant when the
bindingStyle is elementBinding. Therefore, if bindingStyle is speci-
fied as elementBinding, then the choiceContentProperty must result in
an invalid customization.

• underscoreBinding can be either asWordSeparator or asCharInWord.
The default value is asWordSeparator.

• enableJavaNamingConventions can be either true, false, 1, or 0. The
default value is true.

• typesafeEnumBase can be a list of QNames, each of which must resolve
to a simple type definition. The default value is xs:NCName. See Typesafe
Enumeration Binding Declarations (page 66) for information about local-
ized mapping of simpleType definitions to Java typesafe enum classes.

• typesafeEnumMemberName can be either generateError or generate-

Name. The default value is generateError.

• bindingStyle can be either elementBinding, or modelGroupBinding.
The default value is elementBinding.

• <javaType> can be zero or more javaType binding declarations. See
<javaType> Binding Declarations (page 64) for more information.

<globalBindings> declarations are only valid in the annotation element of the
top-level schema element. There can only be a single instance of a
<globalBindings> declaration in any given schema or binding declarations file.
If one source schema includes or imports a second source schema, the
<globalBindings> declaration must be declared in the first source schema.

Schema Binding Declarations
Schema scope customizations are declared with <schemaBindings>. The syntax
for schema scope customizations is:

<schemaBindings>
[<package> package </package>]
[<nameXmlTransform> ... </nameXmlTransform>]*

</schemaBindings>

<package [name = "packageName"]
[<javadoc> ... </javadoc>]

</package>

CUSTOMIZATION OVERVIEW 63
<nameXmlTransform>
[<typeName [suffix="suffix"]
 [prefix="prefix"] />]
[<elementName [suffix="suffix"]
 [prefix="prefix"] />]
[<modelGroupName [suffix="suffix"]
 [prefix="prefix"] />]
[<anonymousTypeName [suffix="suffix"]
 [prefix="prefix"] />]

</nameXmlTransform>

As shown above, <schemaBinding> declarations include two subcomponents:

• <package>...</package> specifies the name of the package and, if
desired, the location of the API documentation for the schema-derived
classes.

• <nameXmlTransform>...</nameXmlTransform> specifies customiza-
tions to be applied.

Class Binding Declarations
The <class> binding declaration enables you to customize the binding of a
schema element to a Java content interface or a Java Element interface. <class>
declarations can be used to customize:

• A name for a schema-derived Java interface

• An implementation class for a schema-derived Java content interface.

The syntax for <class> customizations is:

<class [name = "className"]
 [implClass= "implClass"] >
 [<javadoc> ... </javadoc>]
</class>

• name is the name of the derived Java interface. It must be a legal Java inter-
face name and must not contain a package prefix. The package prefix is
inherited from the current value of package.

• implClass is the name of the implementation class for className and
must include the complete package name.

• The <javadoc> element specifies the Javadoc tool annotations for the
schema-derived Java interface. The string entered here must use CDATA or
< to escape embedded HTML tags.

64 USING JAXB
Property Binding Declarations
The <property> binding declaration enables you to customize the binding of an
XML schema element to its Java representation as a property. The scope of cus-
tomization can either be at the definition level or component level depending
upon where the <property> binding declaration is specified.

The syntax for <property> customizations is:

<property[name = "propertyName"]
[collectionType = "propertyCollectionType"]
[fixedAttributeAsConstantProperty = "true" | "false" | "1" | "0"]
[generateIsSetMethod = "true" | "false" | "1" | "0"]
[enableFailFastCheck ="true" | "false" | "1" | "0"]
[<baseType> ... </baseType>]
[<javadoc> ... </javadoc>]

</property>

<baseType>
<javaType> ... </javaType>

</baseType>

• name defines the customization value propertyName; it must be a legal
Java identifier.

• collectionType defines the customization value propertyCollection-

Type, which is the collection type for the property. propertyCollection-
Type if specified, can be either indexed or any fully-qualified class name
that implements java.util.List.

• fixedAttributeAsConstantProperty defines the customization value
fixedAttributeAsConstantProperty. The value can be either true,
false, 1, or 0.

• generateIsSetMethod defines the customization value of generateIs-
SetMethod. The value can be either true, false, 1, or 0.

• enableFailFastCheck defines the customization value enableFail-

FastCheck. The value can be either true, false, 1, or 0. Please note that
the JAXB implementation does not support failfast validation.

• <javadoc> customizes the Javadoc tool annotations for the property’s get-
ter method.

<javaType> Binding Declarations
The <javaType> declaration provides a way to customize the translation of
XML datatypes to and from Java datatypes. XML provides more datatypes than

CUSTOMIZATION OVERVIEW 65
Java, and so the <javaType> declaration lets you specify custom datatype bind-
ings when the default JAXB binding cannot sufficiently represent your schema.

The target Java datatype can be a Java built-in datatype or an application-specific
Java datatype. If an application-specific datatype is used as the target, your
implementation must also provide parse and print methods for unmarshalling
and marshalling data. To this end, the JAXB specification supports a
parseMethod and printMethod:

• The parseMethod is called during unmarshalling to convert a string from
the input document into a value of the target Java datatype.

• The printMethod is called during marshalling to convert a value of the tar-
get type into a lexical representation.

If you prefer to define your own datatype conversions, JAXB defines a static
class, DatatypeConverter, to assist in the parsing and printing of valid lexical
representations of the XML Schema built-in datatypes.

The syntax for the <javaType> customization is:

<javaType name= "javaType"
 [xmlType= "xmlType"]
 [hasNsContext = “true” | “false”]
 [parseMethod= "parseMethod"]
 [printMethod= "printMethod"]>

• name is the Java datatype to which xmlType is to be bound.

• xmlType is the name of the XML Schema datatype to which javaType is
to bound; this attribute is required when the parent of the <javaType> dec-
laration is <globalBindings>.

• parseMethod is the name of the parse method to be called during unmar-
shalling.

• printMethod is the name of the print method to be called during marshal-
ling.

• hasNsContext allows a namespace context to be specified as a second
parameter to a print or a parse method; can be either true, false, 1, or 0.
By default, this attribute is false, and in most cases you will not need to
change it.

66 USING JAXB
The <javaType> declaration can be used in:

• A <globalBindings> declaration

• An annotation element for simple type definitions, GlobalBindings, and
<basetype> declarations.

• A <property> declaration.

See MyDatatypeConverter Class (page 73) for an example of how <javaType>

declarations and the DatatypeConverterInterface interface are implemented
in a custom datatype converter class.

Typesafe Enumeration Binding Declarations
The typesafe enumeration declarations provide a localized way to map XML
simpleType elements to Java typesafe enum classes. There are two types of
typesafe enumeration declarations you can make:

• <typesafeEnumClass> lets you map an entire simpleType class to type-

safe enum classes.

• <typesafeEnumMember> lets you map just selected members of a simple-
Type class to typesafe enum classes.

In both cases, there are two primary limitations on this type of customization:

• Only simpleType definitions with enumeration facets can be customized
using this binding declaration.

• This customization only applies to a single simpleType definition at a
time. To map sets of similar simpleType definitions on a global level, use
the typesafeEnumBase attribute in a <globalBindings> declaration, as
described Global Binding Declarations (page 61).

The syntax for the <typesafeEnumClass> customization is:

<typesafeEnumClass[name = "enumClassName"]
[<typesafeEnumMember> ... </typesafeEnumMember>]*
[<javadoc> enumClassJavadoc </javadoc>]

</typesafeEnumClass>

• name must be a legal Java Identifier, and must not have a package prefix.

• <javadoc> customizes the Javadoc tool annotations for the enumeration
class.

• You can have zero or more <typesafeEnumMember> declarations embed-
ded in a <typesafeEnumClass> declaration.

CUSTOMIZATION OVERVIEW 67
The syntax for the <typesafeEnumMember> customization is:

<typesafeEnumMember name = "enumMemberName">
[value = "enumMemberValue"]

[<javadoc> enumMemberJavadoc </javadoc>]
</typesafeEnumMember>

• name must always be specified and must be a legal Java identifier.

• value must be the enumeration value specified in the source schema.

• <javadoc> customizes the Javadoc tool annotations for the enumeration
constant.

For inline annotations, the <typesafeEnumClass> declaration must be specified
in the annotation element of the <simpleType> element. The <typesafeEnum-

Member> must be specified in the annotation element of the enumeration mem-
ber. This allows the enumeration member to be customized independently from
the enumeration class.

For information about typesafe enum design patterns, see the sample chapter of
Joshua Bloch’s Effective Java Programming on the Java Developer Connection.

<javadoc> Binding Declarations
The <javadoc> declaration lets you add custom Javadoc tool annotations to
schema-derived JAXB packages, classes, interfaces, methods, and fields. Note
that <javadoc> declarations cannot be applied globally—that is, they are only
valid as a sub-elements of other binding customizations.

The syntax for the <javadoc> customization is:

<javadoc>
Contents in Javadoc<\b> format.

</javadoc>

or

<javadoc>
<<![CDATA[
Contents in Javadoc<\b> format
]]>

</javadoc>

68 USING JAXB
Note that documentation strings in <javadoc> declarations applied at the pack-
age level must contain <body> open and close tags; for example:

<jxb:package name="primer.myPo">
<jxb:javadoc><![CDATA[<body>Package level documentation

for generated package primer.myPo.</body>]]>
</jxb:javadoc>
 </jxb:package>

Customization Namespace Prefix
All standard JAXB binding declarations must be preceded by a namespace prefix
that maps to the JAXB namespace URI (http://java.sun.com/xml/ns/jaxb).
For example, in this sample, jxb: is used. To this end, any schema you want to
customize with standard JAXB binding declarations must include the JAXB
namespace declaration and JAXB version number at the top of the schema file.
For example, in po.xsd for the Customize Inline example, the namespace decla-
ration is as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="1.0">

A binding declaration with the jxb namespace prefix would then take the form:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:globalBindings binding declarations />
 <jxb:schemaBindings>
 .
 .

binding declarations
 .
 .
 </jxb:schemaBindings>
 </xsd:appinfo>
</xsd:annotation>

Note that in this example, the globalBindings and schemaBindings declara-
tions are used to specify, respectively, global scope and schema scope customi-
zations. These customization scopes are described in more detail in Scope,
Inheritance, and Precedence (page 60).

CUSTOMIZE INLINE EXAMPLE 69
Customize Inline Example
The Customize Inline example illustrates some basic customizations made by
means of inline annotations to an XML schema named po.xsd. In addition, this
example implements a custom datatype converter class, MyDatatypeCon-

verter.java, which illustrates print and parse methods in the <javaType> cus-
tomization for handling custom datatype conversions.

To summarize this example:

1. po.xsd is an XML schema containing inline binding customizations.

2. MyDatatypeConverter.java is a Java class file that implements print and
parse methods specified by <javaType> customizations in po.xsd.

3. Main.java is the primary class file in the Customize Inline example, which
uses the schema-derived classes generated by the JAXB compiler.

Key customizations in this sample, and the custom MyDatatypeConverter.java

class, are described in more detail below.

Customized Schema
The customized schema used in the Customize Inline example is in the file
<JAVA_HOME>/jaxb/samples/inline-customize/po.xsd. The customizations
are in the <xsd:annotation> tags.

Global Binding Declarations
The code below shows the globalBindings declarations in po.xsd:

<jxb:globalBindings
 fixedAttributeAsConstantProperty="true"
 collectionType="java.util.Vector"
 typesafeEnumBase="xsd:NCName"
 choiceContentProperty="false"
 typesafeEnumMemberName="generateError"
 bindingStyle="elementBinding"
 enableFailFastCheck="false"
 generateIsSetMethod="false"
 underscoreBinding="asCharInWord"/>

In this example, all values are set to the defaults except for collectionType.

70 USING JAXB
• Setting collectionType to java.util.Vector specifies that all lists in
the generated implementation classes should be represented internally as
vectors. Note that the class name you specify for collectionType must
implement java.util.List and be callable by newInstance.

• Setting fixedAttributeAsConstantProperty to true indicates that all
fixed attributes should be bound to Java constants. By default, fixed
attributes are just mapped to either simple or collection property, which
ever is more appropriate.

• Please note that the JAXB implementation does not support the enable-

FailFastCheck attribute.

• If typesafeEnumBase to xsd:string it would be a global way to specify
that all simple type definitions deriving directly or indirectly from
xsd:string and having enumeration facets should be bound by default to
a typesafe enum. If typesafeEnumBase is set to an empty string, "", no
simple type definitions would ever be bound to a typesafe enum class by
default. The value of typesafeEnumBase can be any atomic simple type
definition except xsd:boolean and both binary types.

Note: Using typesafe enums enables you to map schema enumeration values to Java
constants, which in turn makes it possible to do compares on Java constants rather
than string values.

Schema Binding Declarations
The following code shows the schema binding declarations in po.xsd:

<jxb:schemaBindings>
 <jxb:package name="primer.myPo">
 <jxb:javadoc>
 <![CDATA[<body> Package level documentation for
generated package primer.myPo.</body>]]>
 </jxb:javadoc>
 </jxb:package>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
 </jxb:schemaBindings>

• <jxb:package name="primer.myPo"/> specifies the primer.myPo as the
package in which the schema-derived classes should be generated.

CUSTOMIZE INLINE EXAMPLE 71
• <jxb:nameXmlTransform> specifies that all generated Java element inter-
faces should have Element appended to the generated names by default.
For example, when the JAXB compiler is run against this schema, the ele-
ment interfaces CommentElement and PurchaseOrderElement will be
generated. By contrast, without this customization, the default binding
would instead generate Comment and PurchaseOrder.

This customization is useful if a schema uses the same name in different
symbol spaces; for example, in global element and type definitions. In
such cases, this customization enables you to resolve the collision with
one declaration rather than having to individually resolve each collision
with a separate binding declaration.

• <jxb:javadoc> specifies customized Javadoc tool annotations for the
primer.myPo package. Note that, unlike the <javadoc> declarations at the
class level, below, the opening and closing <body> tags must be included
when the <javadoc> declaration is made at the package level.

Class Binding Declarations
The following code shows the class binding declarations in po.xsd:

<xsd:complexType name="PurchaseOrderType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:class name="POType">
 <jxb:javadoc>
 A Purchase Order consists of
addresses and items.
 </jxb:javadoc>
 </jxb:class>
 </xsd:appinfo>
 </xsd:annotation>
 .
 .
 .
</xsd:complexType>

The Javadoc tool annotations for the schema-derived POType class will contain
the description "A Purchase Order consists of addresses

and items." The < is used to escape the opening bracket on the HTML
tags.

72 USING JAXB
Note: When a <class> customization is specified in the appinfo element of a com-

plexType definition, as it is here, the complexType definition is bound to a Java con-
tent interface.

Later in po.xsd, another <javadoc> customization is declared at this class level,
but this time the HTML string is escaped with CDATA:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:class>
 <jxb:javadoc>
 <![CDATA[First line of documentation for a
USAddress.]]>
 </jxb:javadoc>
 </jxb:class>
 </xsd:appinfo>
 </xsd:annotation>

Note: If you want to include HTML markup tags in a <jaxb:javadoc> customiza-
tion, you must enclose the data within a CDATA section or escape all left angle brack-
ets using <. See XML 1.0 2nd Edition for more information (http://
www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect).

Property Binding Declarations
Of particular interest here is the generateIsSetMethod customization, which
causes two additional property methods, isSetQuantity and unsetQuantity, to
be generated. These methods enable a client application to distinguish between
schema default values and values occurring explicitly within an instance docu-
ment.

For example, in po.xsd:

<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity" default="10">
 <xsd:annotation>

http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect
http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect

CUSTOMIZE INLINE EXAMPLE 73
 <xsd:appinfo>
 <jxb:property generateIsSetMethod="true"/>
 </xsd:appinfo>
 </xsd:annotation>
 .
 .
 .
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The @generateIsSetMethod applies to the quantity element, which is bound
to a property within the Items.ItemType interface. unsetQuantity and
isSetQuantity methods are generated in the Items.ItemType interface.

MyDatatypeConverter Class
The <JWSDP_HOME>/jaxb/samples/inline-customize

/MyDatatypeConverter class, shown below, provides a way to customize the
translation of XML datatypes to and from Java datatypes by means of a
<javaType> customization.

package primer;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;

public class MyDatatypeConverter {

public static short parseIntegerToShort(String value) {
BigInteger result =

DatatypeConverter.parseInteger(value);
return (short)(result.intValue());

}

public static String printShortToInteger(short value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);

}

public static int parseIntegerToInt(String value) {
BigInteger result =
DatatypeConverter.parseInteger(value);

return result.intValue();
}

74 USING JAXB
public static String printIntToInteger(int value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);

}
};

The following code shows how the MyDatatypeConverter class is referenced in
a <javaType> declaration in po.xsd:

<xsd:simpleType name="ZipCodeType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:javaType name="int"
parseMethod="primer.MyDatatypeConverter.parseIntegerToInt"
printMethod="primer.MyDatatypeConverter.printIntTo Integer" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

In this example, the jxb:javaType binding declaration overrides the default
JAXB binding of this type to java.math.BigInteger. For the purposes of the
Customize Inline example, the restrictions on ZipCodeType—specifically that
legal US ZIP codes are limited to five digits—make it so all valid values can eas-
ily fit within the Java primitive datatype int. Note also that, because <jxb:jav-

aType name="int"/> is declared within ZipCodeType, the customization
applies to all JAXB properties that reference this simpleType definition, includ-
ing the getZip and setZip methods.

Datatype Converter Example
The Datatype Converter example is very similar to the Customize Inline exam-
ple. As with the Customize Inline example, the customizations in the Datatype
Converter example are made by using inline binding declarations in the XML
schema for the application, po.xsd.

The global, schema, and package, and most of the class customizations for the
Customize Inline and Datatype Converter examples are identical. Where the
Datatype Converter example differs from the Customize Inline example is in the

EXTERNAL CUSTOMIZE EXAMPLE 75
parseMethod and printMethod used for converting XML data to the Java int

datatype.

Specifically, rather than using methods in the custom MyDataTypeConverter

class to perform these datatype conversions, the Datatype Converter example
uses the built-in methods provided by javax.xml.bind.DatatypeConverter:

<xsd:simpleType name="ZipCodeType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:javaType name="int"
 parseMethod="javax.xml.bind.DatatypeConverter.parseInt"
 printMethod="javax.xml.bind.DatatypeConverter.printInt"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

External Customize Example
The External Customize example is identical to the Datatype Converter example,
except that the binding declarations in the External Customize example are made
by means of an external binding declarations file rather than inline in the source
XML schema.

The binding customization file used in the External Customize example is
<JWSDP_HOME>/jaxb/samples/external-customize/binding.xjb.

This section compares the customization declarations in bindings.xjb with the
analogous declarations used in the XML schema, po.xsd, in the Datatype Con-
verter example. The two sets of declarations achieve precisely the same results.

• JAXB Version, Namespace, and Schema Attributes

• Global and Schema Binding Declarations

• Class Declarations

76 USING JAXB
JAXB Version, Namespace, and Schema
Attributes
All JAXB binding declarations files must begin with:

• JAXB version number

• Namespace declarations

• Schema name and node

The version, namespace, and schema declarations in bindings.xjb are as fol-
lows:

<jxb:bindings version="1.0"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <jxb:bindings schemaLocation="po.xsd" node="/xs:schema">
 .

<binding_declarations>
 .
 </jxb:bindings>
<!-- schemaLocation="po.xsd" node="/xs:schema" -->
</jxb:bindings>

JAXB Version Number
An XML file with a root element of <jaxb:bindings> is considered an external
binding file. The root element must specify the JAXB version attribute with
which its binding declarations must comply; specifically the root <jxb:bind-
ings> element must contain either a <jxb:version> declaration or a version

attribute. By contrast, when making binding declarations inline, the JAXB ver-
sion number is made as attribute of the <xsd:schema> declaration:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="1.0">

Namespace Declarations
As shown in JAXB Version, Namespace, and Schema Attributes (page 76), the
namespace declarations in the external binding declarations file include both the
JAXB namespace and the XMLSchema namespace. Note that the prefixes used
in this example could in fact be anything you want; the important thing is to con-
sistently use whatever prefixes you define here in subsequent declarations in the
file.

EXTERNAL CUSTOMIZE EXAMPLE 77
Schema Name and Schema Node
The fourth line of the code in JAXB Version, Namespace, and Schema
Attributes (page 76) specifies the name of the schema to which this binding dec-
larations file will apply, and the schema node at which the customizations will
first take effect. Subsequent binding declarations in this file will reference spe-
cific nodes within the schema, but this first declaration should encompass the
schema as a whole; for example, in bindings.xjb:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

Global and Schema Binding Declarations
The global schema binding declarations in bindings.xjb are the same as those
in po.xsd for the Datatype Converter example. The only difference is that
because the declarations in po.xsd are made inline, you need to embed them in
<xs:appinfo> elements, which are in turn embedded in <xs:annotation> ele-
ments. Embedding declarations in this way is unnecessary in the external bind-
ings file.

<jxb:globalBindings
 fixedAttributeAsConstantProperty="true"
 collectionType="java.util.Vector"
 typesafeEnumBase="xs:NCName"
 choiceContentProperty="false"
 typesafeEnumMemberName="generateError"
 bindingStyle="elementBinding"
 enableFailFastCheck="false"
 generateIsSetMethod="false"
 underscoreBinding="asCharInWord"/>
<jxb:schemaBindings>
 <jxb:package name="primer.myPo">
 <jxb:javadoc><![CDATA[<body>Package level
documentation for generated package primer.myPo.</body>]]>
 </jxb:javadoc>
 </jxb:package>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
</jxb:schemaBindings>

78 USING JAXB
By comparison, the syntax used in po.xsd for the Datatype Converter example
is:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:globalBindings
 .

<binding_declarations>
 .
 <jxb:schemaBindings>
 .

<binding_declarations>
 .
 </jxb:schemaBindings>
 </xsd:appinfo>
</xsd:annotation>

Class Declarations
The class-level binding declarations in bindings.xjb differ from the analogous
declarations in po.xsd for the Datatype Converter example in two ways:

• As with all other binding declarations in bindings.xjb, you do not need to
embed your customizations in schema <xsd:appinfo> elements.

• You must specify the schema node to which the customization will be
applied. The general syntax for this type of declaration is:

<jxb:bindings node="//<node_type>[@name='<node_name>']">

For example, the following code shows binding declarations for the complex-

Type named USAddress.

<jxb:bindings node="//xs:complexType[@name='USAddress']">
 <jxb:class>
 <jxb:javadoc>
<![CDATA[First line of documentation for a USAddress.]]>
 </jxb:javadoc>
 </jxb:class>

 <jxb:bindings node=".//xs:element[@name='name']">
 <jxb:property name="toName"/>
 </jxb:bindings>

 <jxb:bindings node=".//xs:element[@name='zip']">

FIX COLLIDES EXAMPLE 79
 <jxb:property name="zipCode"/>
 </jxb:bindings>
</jxb:bindings>
<!-- node="//xs:complexType[@name='USAddress']" -->

Note in this example that USAddress is the parent of the child elements name and
zip, and therefore a </jxb:bindings> tag encloses the bindings declarations
for the child elements as well as the class-level javadoc declaration.

Fix Collides Example
The Fix Collides example illustrates how to resolve name conflicts—that is,
places in which a declaration in a source schema uses the same name as another
declaration in that schema (namespace collisions), or places in which a declara-
tion uses a name that does translate by default to a legal Java name.

Note: Many name collisions can occur because XSD Part 1 introduces six unique
symbol spaces based on type, while Java only has only one. There is a symbols
space for type definitions, elements, attributes, and group definitions. As a result, a
valid XML schema can use the exact same name for both a type definition and a glo-
bal element declaration.

For the purposes of this example, it is recommended that you remove the bind-

ing parameter to the xjc task in the build.xml file in the <JWSDP_HOME>/jaxb/

samples/fix-collides directory to display the error output generated by the
xjc compiler. The XML schema for the Fix Collides, example.xsd, contains
deliberate name conflicts.

Like the External Customize example, the Fix Collides example uses an external
binding declarations file, binding.xjb, to define the JAXB binding customiza-
tions.

• The example.xsd Schema

• Looking at the Conflicts

• Output From Running the ant Task Without Using a Binding Declarations
File

• The binding.xjb Declarations File

• Resolving the Conflicts in example.xsd

80 USING JAXB
The example.xsd Schema
The XML schema, <JWSDP_HOME>/jaxb/samples/fix-collides
/example.xsd, used in the Fix Collides example illustrates common name con-
flicts encountered when attempting to bind XML names to unique Java identifi-
ers in a Java package. The schema declarations that result in name conflicts are
highlighted in bold below.

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:jxb=”http://java.sun.com/xml/ns/jaxb”
 jxb:version=”1.0”>

 <xs:element name=”Class” type=”xs:int”/>
 <xs:element name=”FooBar” type=”FooBar”/>
 <xs:complexType name=”FooBar”>
 <xs:sequence>
 <xs:element name=”foo” type=”xs:int”/>
 <xs:element ref=”Class”/>

 <xs:element name=”zip” type=”xs:integer”/>
 </xs:sequence>

<xs:attribute name=”zip” type=”xs:string”/>
 </xs:complexType>
</xs:schema>

Looking at the Conflicts
The first conflict in example.xsd is the declaration of the element name Class:

<xs:element name=”Class” type=”xs:int”/>

Class is a reserved word in Java, and while it is legal in the XML schema lan-
guage, it cannot be used as a name for a schema-derived class generated by
JAXB.

When this schema is run against the JAXB binding compiler with the ant fail

command, the following error message is returned:

[xjc] [ERROR] Attempt to create a property having the same
name as the reserved word "Class".
[xjc] line 6 of example.xsd

FIX COLLIDES EXAMPLE 81
The second conflict is that there are an element and a complexType that both use
the name Foobar:

<xs:element name=”FooBar” type=”FooBar”/>
<xs:complexType name=”FooBar”>

In this case, the error messages returned are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.
[xjc] line 22 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.
[xjc] line 20 of example.xsd

The third conflict is that there are an element and an attribute both named
zip:

<xs:element name=”zip” type=”xs:integer”/>
<xs:attribute name=”zip” type=”xs:string”/>

The error messages returned here are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.
[xjc] line 22 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.
[xjc] line 20 of example.xsd

Output From Running the ant Task Without
Using a Binding Declarations File
Here is the output that is returned if you run the ant task in the <JWSDP_HOME>/

jaxb/samples/fix-collides directory without specifying the binding param-
eter to the xjc task in the build.xml file:

[echo] Compiling the schema w/o external binding file
(name collision errors expected)...
[xjc] Compiling file:/C:/Sun/jwsdp-1.5/jaxb/samples/
fix-collides/example.xsd
[xjc] [ERROR] Attempt to create a property having the same
name as the reserved word "Class".
[xjc] line 14 of example.xsd

82 USING JAXB
[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.
[xjc] line 17 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.
[xjc] line 15 of example.xsd
[xjc] [ERROR] A class/interface with the same name
"generated.FooBar" is already in use.
[xjc] line 9 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is
generated from here.
[xjc] line 18 of example.xsd

The binding.xjb Declarations File
The <JWSDP_HOME>/jaxb/samples/fix-collides/binding.xjb binding dec-
larations file resolves the conflicts in examples.xsd by means of several custom-
izations.

Resolving the Conflicts in example.xsd
The first conflict in example.xsd, using the Java reserved name Class for an
element name, is resolved in binding.xjb with the <class> and <property>

declarations on the schema element node Class:

<jxb:bindings node="//xs:element[@name='Class']">
 <jxb:class name="Clazz"/>
 <jxb:property name="Clazz"/>
</jxb:bindings>

The second conflict in example.xsd, the namespace collision between the ele-

ment FooBar and the complexType FooBar, is resolved in binding.xjb by
using a <nameXmlTransform> declaration at the <schemaBindings> level to
append the suffix Element to all element definitions.

This customization handles the case where there are many name conflicts due to
systemic collisions between two symbol spaces, usually named type definitions
and global element declarations. By appending a suffix or prefix to every Java

BIND CHOICE EXAMPLE 83
identifier representing a specific XML symbol space, this single customization
resolves all name collisions:

<jxb:schemaBindings>
 <jxb:package name="example"/>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
</jxb:schemaBindings>

The third conflict in example.xsd, the namespace collision between the ele-

ment zip and the attribute zip, is resolved in binding.xjb by mapping the
attribute zip to property named zipAttribute:

<jxb:bindings node=".//xs:attribute[@name='zip']">
 <jxb:property name="zipAttribute"/>
</jxb:bindings>

If you add the binding parameter you removed back to the xjc task in the
build.xml file and then run ant in the <JWSDP_HOME>/jaxb/samples/fix-

collides directory, the customizations in binding.xjb will be passed to the
xjc binding compiler, which will then resolve the conflicts in example.xsd in
the schema-derived Java classes.

Bind Choice Example
The Bind Choice example shows how to bind a choice model group to a Java
interface. Like the External Customize and Fix Collides examples, the Bind
Choice example uses an external binding declarations file, binding.xjb, to
define the JAXB binding customization.

The schema declarations in <JWSDP_HOME>/jaxb/samples/bind-choice

/example.xsd that will be globally changed are highlighted in bold below.

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:jxb=”http://java.sun.com/xml/ns/jaxb”
 jxb:version=”1.0”>

 <xs:element name=”FooBar”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”foo” type=”xs:int”/>
 <xs:element ref=”Class”/>
 <xs:choice>

84 USING JAXB
 <xs:element name=”phoneNumber” type=”xs:string”/>
 <xs:element name=”speedDial” type=”xs:int”/>
 </xs:choice>
 <xs:group ref=”ModelGroupChoice”/>
 </xs:sequence>
 <xs:attribute name=”zip” type=”xs:string”/>
 </xs:complexType>
</xs:element>

 <xs:group name=”ModelGroupChoice”>
 <xs:choice>
 <xs:element name=”bool” type=”xs:boolean”/>
 <xs:element name=”comment” type=”xs:string”/>
 <xs:element name=”value” type=”xs:int”/>
 </xs:choice>
 </xs:group>
</xs:schema>

Customizing a choice Model Group
The <JWSDP_HOME>/jaxb/samples/bind-choice/binding.xjb binding decla-
rations file demonstrates one way to override the default derived names for
choice model groups in example.xsd by means of a <jxb:globalBindings>

declaration:

<jxb:bindings schemaLocation="example.xsd” node=”/xs:schema">
 <jxb:globalBindings bindingStyle="modelGroupBinding"/>
 <jxb:schemaBindings/>
 <jxb:package name=”example”/>
 </jxb:schemaBindings>
 </jxb:bindings
</jxb:bindings>

This customization results in the choice model group being bound to its own
content interface. For example, given the following choice model group:

 <xs:group name=”ModelGroupChoice”>
 <xs:choice>
 <xs:element name=”bool” type=”xs:boolean”/>
 <xs:element name=”comment” type=”xs:string”/>
 <xs:element name=”value” type=”xs:int”/>
 </xs:choice>
 </xs:group>

BIND CHOICE EXAMPLE 85
the globalBindings customization shown above causes JAXB to generate the
following Java class:

/**
 * Java content class for model group.
 */
 public interface ModelGroupChoice {
 int getValue();
 void setValue(int value);
 boolean isSetValue();

 java.lang.String getComment();
 void setComment(java.lang.String value);
 boolean isSetComment();

 boolean isBool();
 void setBool(boolean value);
 boolean isSetBool();

 Object getContent();
 boolean isSetContent();
 void unSetContent();
 }

Calling getContent returns the current value of the Choice content. The setters
of this choice are just like radio buttons; setting one unsets the previously set
one. This class represents the data representing the choice.

Additionally, the generated Java interface FooBarType, representing the anony-
mous type definition for element FooBar, contains a nested interface for the
choice model group containing phoneNumber and speedDial.

86 USING JAXB

3

87
Streaming API for XML

This chapter focuses on the Streaming API for XML (StAX), a streaming
Java-based, event-driven, pull-parsing API for reading and writing XML docu-
ments. StAX enables you to create bidrectional XML parsers that are fast, rela-
tively easy to program, and have a light memory footprint.

StAX provides is the latest API in the JAXP family, and provides an alternative
to SAX, DOM, TrAX, and DOM for developers looking to do high-performance
stream filtering, processing, and modification, particularly with low memory and
limited extensibility requirements.

Note: To synopsize, StAX provides a standard, bidirectional pull parser interface
for streaming XML processing, offering a simpler programming model than SAX
and more efficient memory management than DOM. StAX enables developers to
parse and modify XML streams as events, and to extend XML information models
to allow application-specific additions. More detailed comparisons of StAX with
several alternative APIs are provided below, in “Comparing StAX to Other JAXP
APIs.”

Why StAX?
The StAX project was spearheaded by BEA with support from Sun Microsys-
tems, and the JSR 173 specification passed the Java Community Process final
approval ballot in March, 2004 (http://jcp.org/en/jsr/detail?id=173).
The primary goal of the StAX API is to give “parsing control to the programmer

88 STREAMING API FOR XML
by exposing a simple iterator based API. This allows the programmer to ask for
the next event (pull the event) and allows state to be stored in procedural fash-
ion.” StAX was created to address limitations in the two most prevalent parsing
APIs, SAX and DOM.

Streaming Versus DOM
Generally speaking, there are two programming models for working with XML
infosets: document streaming and the document object model (DOM).

The DOM model involves creating in-memory objects representing an entire
document tree and the complete infoset state for an XML document. Once in
memory, DOM trees can be navigated freely and parsed arbitrarily, and as such
provide maximum flexibility for developers. However the cost of this flexibility
is a potentially large memory footprint and significant processor requirements,
as the entire representation of the document must be held in memory as objects
for the duration of the document processing. This may not be an issue when
working with small documents, but memory and processor requirements can
escalate quickly with document size.

Streaming refers to a programming model in which XML infosets are transmit-
ted and parsed serially at application runtime, often in real time, and often from
dynamic sources whose contents are not precisely known beforehand. Moreover,
stream-based parsers can start generating output immediately, and infoset ele-
ments can be discarded and garbage collected immediately after they are used.
While providing a smaller memory footprint, reduced processor requirements,
and higher performance in certain situations, the primary trade-off with stream
processing is that you can only see the infoset state at one location at a time in
the document. You are essentially limited to the “cardboard tube” view of a doc-
ument, the implication being that you need to know what processing you want to
do before reading the XML document.

Streaming models for XML processing are particularly useful when your appli-
cation has strict memory limitations, as with a cellphone running J2ME, or when
your application needs to simultaneously process several requests, as with an
application server. In fact, it can be argued that the majority of XML business
logic can benefit from stream processing, and does not require the in-memory
maintenance of entire DOM trees.

PULL PARSING VERSUS PUSH PARSING 89
Pull Parsing Versus Push Parsing
Streaming pull parsing refers to a programming model in which a client applica-
tion calls methods on an XML parsing library when it needs to interact with an
XML infoset—that is, the client only gets (pulls) XML data when it explicitly
asks for it.

Streaming push parsing refers to a programming model in which an XML parser
sends (pushes) XML data to the client as the parser encounters elements in an
XML infoset—that is, the parser sends the data whether or not the client is ready
to use it at that time.

Pull parsing provides several advantages over push parsing when working with
XML streams:

• With pull parsing, the client controls the application thread, and can call
methods on the parser when needed. By contrast, with push processing, the
parser controls the application thread, and the client can only accept invo-
cations from the parser.

• Pull parsing libraries can be much smaller and the client code to interact
with those libraries much simpler than with push libraries, even for more
complex documents.

• Pull clients can read multiple documents at one time with a single thread.

• A StAX pull parser can filter XML documents such that elements unnec-
essary to the client can be ignored, and it can support XML views of non-
XML data.

StAX Use Cases
The StAX specification defines a number of uses cases for the API:

• Data binding

• Unmarshalling an XML document

• Marshalling an XML document

• Parallel document processing

• Wireless communication

• SOAP message processing

• Parsing simple predictable structures

• Parsing graph representations with forward references

90 STREAMING API FOR XML
• Parsing WSDL

• Virtual data sources

• Viewing as XML data stored in databases

• Viewing data in Java objects created by XML data binding

• Navigating a DOM tree as a stream of events

• Parsing specific XML vocabularies
• Pipelined XML processing

A complete discussion of all these use cases is beyond the scope of this chapter.
Please refer to the StAX specification for further information.

Comparing StAX to Other JAXP APIs
As an API in the JAXP family, StAX can be compared, among other APIs, to
SAX, TrAX, and JDOM. Of the latter two, StAX is not as powerful or flexible as
TrAX or JDOM, but neither does it require as much memory or processor load to
be useful, and StAX can, in many cases, outperform the DOM-based APIs. The
same arguments outlined above, weighing the cost/benefits of the DOM model
versus the streaming model, apply here.

With this in mind, the closest comparisons between can be made between StAX
and SAX, and it is here that StAX offers features that are beneficial in many
cases; some of these include:

• StAX-enabled clients are generally easier to code than SAX clients. While
it can be argued that SAX parsers are marginally easier to write, StAX
parser code can be smaller and the code necessary for the client to interact
with the parser simpler.

• StAX is a bidirectional API, meaning that it can both read and write XML
documents. SAX is read only, so another API is needed if you want to write
XML documents.

• SAX is a push API, whereas StAX is pull. The trade-offs between push and
pull APIs outlined above apply here.

STAX API 91
Table 3–1 synopsizes the comparative features of StAX, SAX, DOM, and TrAX
(table adapted from “Does StAX Belong in Your XML Toolbox?”
(http://www.developer.com/xml/article.php/3397691) by Jeff Ryan).

StAX API
The StAX API exposes methods for iterative, event-based processing of XML
documents. XML documents are treated as a filtered series of events, and infoset
states can be stored in a procedural fashion. Moreover, unlike SAX, the StAX
API is bidirectional, enabling both reading and writing of XML documents.

The StAX API is really two distinct API sets: a cursor API and an iterator API.
These two API sets explained in greater detail later in this chapter, but their main
features are briefly described below.

Cursor API
As the name implies, the StAX cursor API represents a cursor with which you
can walk an XML document from beginning to end. This cursor can point to one
thing at a time, and always moves forward, never backward, usually one infoset
element at a time.

Table 3–1 XML Parser API Feature Summary

Feature StAX SAX DOM TrAX

API Type Pull, streaming Push, streaming In memory tree XSLT Rule

Ease of Use High Medium High Medium

XPath Capability No No Yes Yes

CPU and Memory Efficiency Good Good Varies Varies

Forward Only Yes Yes No No

Read XML Yes Yes Yes Yes

Write XML Yes No Yes Yes

Create, Read, Update, Delete No No Yes No

92 STREAMING API FOR XML
The two main cursor interfaces are XMLStreamReader and XMLStreamWriter.
XMLStreamReader includes accessor methods for all possible information
retrievable from the XML Information model, including document encoding,
element names, attributes, namespaces, text nodes, start tags, comments, pro-
cessing instructions, document boundaries, and so forth; for example:

public interface XMLStreamReader {
public int next() throws XMLStreamException;
public boolean hasNext() throws XMLStreamException;
public String getText();
public String getLocalName();
public String getNamespaceURI();
// ... other methods not shown

}

You can call methods on XMLStreamReader, such as getText and getName, to
get data at the current cursor location. XMLStreamWriter provides methods that
correspond to StartElement and EndElement event types; for example:

public interface XMLStreamWriter {
public void writeStartElement(String localName) \

throws XMLStreamException;
public void writeEndElement() \

throws XMLStreamException;
public void writeCharacters(String text) \

throws XMLStreamException;
// ... other methods not shown
}

The cursor API mirrors SAX in many ways. For example, methods are available
for directly accessing string and character information, and integer indexes can
be used to access attribute and namespace information. As with SAX, the cursor
API methods return XML information as strings, which minimizes object alloca-
tion requirements.

Iterator API
The StAX iterator API represents an XML document stream as a set of discrete
event objects. These events are pulled by the application and provided by the
parser in the order in which they are read in the source XML document.

The base iterator interface is called XMLEvent, and there are subinterfaces for
each event type listed in Table 3–2, below. The primary parser interface for read-

ITERATOR API 93
ing iterator events is XMLEventReader, and the primary interface for writing iter-
ator events is XMLEventWriter. The XMLEventReader interface contains five
methods, the most important of which is nextEvent(), which returns the next
event in an XML stream. XMLEventReader implements java.util.Iterator,
which means that returns from XMLEventReader can be cached or passed into
routines that can work with the standard Java Iterator; for example:

public interface XMLEventReader extends Iterator {
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;
...

}

Similarly, on the output side of the iterator API, you have:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
public void add(Attribute attribute) \

throws XMLStreamException;
...

}

Iterator Event Types
Table 3–2 lists the thirteen XMLEvent types defined in the event iterator API.

Table 3–2 XMLEvent Types

Event Type Description

StartDocu-
ment

Reports the beginning of a set of XML events, including encoding,
XML version, and standalone properties.

StartEle-
ment

Reports the start of an element, including any attributes and namespace
declarations; also provides access to the prefix, namespace URI, and
local name of the start tag.

EndElement
Reports the end tag of an element. Namespaces that have gone out of
scope can be recalled here if they have been explicitly set on their corre-
sponding StartElement.

94 STREAMING API FOR XML
Note that the DTD, EntityDeclaration, EntityReference, NotationDeclara-
tion, and ProcessingInstruction events are only created if the document
being processed contains a DTD.

Characters
Corresponds to XML CData sections and CharacterData entities.
Note that ignorable whitespace and significant whitespace are also
reported as Character events.

EntityRef-
erence

Character entities can be reported as discrete events, which an applica-
tion developer can then choose to resolve or pass through unresolved.
By default, entities are resolved. Alternatively, if you do not want to
report the entity as an event, replacement text can be substituted and
reported as Characters.

Processin-
gInstruc-
tion

Reports the target and data for an underlying processing instruction.

Comment Returns the text of a comment

EndDocument Reports the end of a set of XML events.

DTD
Reports as java.lang.String information about the DTD, if any,
associated with the stream, and provides a method for returning custom
objects found in the DTD.

Attribute

Attributes are generally reported as part of a StartElement event.
However, there are times when it is desirable to return an attribute as a
standalone Attribute event; for example, when a namespace is
returned as the result of an XQuery or XPath expression.

Namespace
As with attributes, namespaces are usually reported as part of a
StartElement, but there are times when it is desirable to report a
namespace as a discrete Namespace event.

Table 3–2 XMLEvent Types (Continued)

Event Type Description

ITERATOR API 95
Sample Event Mapping
As an example of how the event iterator API maps an XML stream, consider the
following XML document:

<?xml version="1.0"?>
<BookCatalogue xmlns="http://www.publishing.org">

<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<ISBN>81-40-34319-4</ISBN>
<Cost currency="INR">11.50</Cost>

</Book>
</BookCatalogue>

This document would be parsed into eighteen primary and secondary events, as
shown below. Note that secondary events, shown in curly braces ({}), are typi-
cally accessed from a primary event rather than directly.

Table 3–3 Sample Iterator API Event Mapping

Element/Attribute Event

1 version="1.0" StartDocument

2
isCData = false
data = “\n”
IsWhiteSpace = true

Characters

3
qname = BookCatalogue:http://www.publishing.org
attributes = null
namespaces = {BookCatalogue” -> http://www.publishing.org”}

StartElement

4
qname = Book
attributes = null
namespaces = null

StartElement

5
qname = Title
attributes = null
namespaces = null

StartElement

6
isCData = false
data = “Yogasana Vijnana: the Science of Yoga\n\t”
IsWhiteSpace = false

Characters

7
qname = Title
namespaces = null

EndElement

96 STREAMING API FOR XML
There are several important things to note in the above example:

• The events are created in the order in which the corresponding XML ele-
ments are encountered in the document, including nesting of elements,

8
qname = ISBN
attributes = null
namespaces = null

StartElement

9
isCData = false
data = “81-40-34319-4\n\t”
IsWhiteSpace = false

Characters

10
qname = ISBN
namespaces = null

EndElement

11
qname = Cost
attributes = {“currency” -> INR}
namespaces = null

StartElement

12
isCData = false
data = “11.50\n\t”
IsWhiteSpace = false

Characters

13
qname = Cost
namespaces = null

EndElement

14
isCData = false
data = “\n”
IsWhiteSpace = true

Characters

15
qname = Book
namespaces = null

EndElement

16
isCData = false
data = “\n”
IsWhiteSpace = true

Characters

17
qname = BookCatalogue:http://www.publishing.org
namespaces = {BookCatalogue” -> http://www.publishing.org”}

EndElement

18 EndDocument

Table 3–3 Sample Iterator API Event Mapping (Continued)

Element/Attribute Event

CHOOSING BETWEEN CURSOR AND ITERATOR APIS 97
opening and closing of elements, attribute order, document start and doc-
ument end, and so forth.

• As with proper XML syntax, all container elements have corresponding
start and end events; for example, every StartElement has a correspond-
ing EndElement, even for empty elements.

• Attribute events are treated as secondary events, and are accessed from
their corresponding StartElement event.

• Similar to Attribute events, Namespace events are treated as secondary,
but appear twice and are accessible twice in the event stream, first from
their corresponding StartElement and then from their corresponding
EndElement.

• Character events are specified for all elements, even if those elements
have no character data. Similarly, Character events can be split across
events.

• The StAX parser maintains a namespace stack, which holds information
about all XML namespaces defined for the current element and its ances-
tors. The namespace stack is exposed through the
javax.xml.namespace.NamespaceContext interface, and can be
accessed by namespace prefix or URI.

Choosing Between Cursor and Iterator
APIs
It is reasonable to ask at this point, “What API should I choose? Should I create
instances of XMLStreamReader or XMLEventReader? Why are there two kinds of
APIs anyway?”

Development Goals
The authors of the StAX specification targeted three types of developers:

• Library and infrastructure developers – Create application servers, JAXM,
JAXB, JAX-RPC and similar implementations; need highly efficient, low-
level APIs with minimal extensibility requirements.

• J2ME developers – Need small, simple, pull-parsing libraries, and have
minimal extensibility needs.

98 STREAMING API FOR XML
• J2EE and J2SE developers – Need clean, efficient pull-parsing libraries,
plus need the flexibility to both read and write XML streams, create new
event types, and extend XML document elements and attributes.

Given these wide-ranging development categories, the StAX authors felt it was
more useful to define two small, efficient APIs rather than overloading one larger
and necessarily more complex API.

Comparing Cursor and Iterator APIs
Before choosing between the cursor and iterator APIs, you should note a few
things that you can do with the iterator API that you cannot do with cursor API:

• Objects created from the XMLEvent subclasses are immutable, and can be
used in arrays, lists, and maps, and can be passed through your applications
even after the parser has moved on to subsequent events.

• You can create subtypes of XMLEvent that are either completely new infor-
mation items or extensions of existing items but with additional methods.

• You can add and remove events from an XML event stream in much sim-
pler ways than with the cursor API.

Similarly, keep some general recommendations in mind when making your
choice:

• If you are programming for a particularly memory-constrained environ-
ment, like J2ME, you can make smaller, more efficient code with the cur-
sor API.

• If performance is your highest priority—for example, when creating low-
level libraries or infrastructure—the cursor API is more efficient.

• If you want to create XML processing pipelines, use the iterator API.

• If you want to modify the event stream, use the iterator API.

• If you want to your application to be able to handle pluggable processing
of the event stream, use the iterator API.

• In general, if you do not have a strong preference one way or the other,
using the iterator API is recommended because it is more flexible and
extensible, thereby “future-proofing” your applications.

USING STAX 99
Using StAX
In general, StAX programmers create XML stream readers, writers, and events
by using the XMLInputFactory, XMLOutputFactory and XMLEventFactory

classes. Configuration is done by setting properties on the factories, whereby
implementation-specific settings can be passed to the underlying implementation
using the setProperty() method on the factories. Similarly, implementation-
specific settings can be queried using the getProperty() factory method.

The XMLInputFactory, XMLOutputFactory and XMLEventFactory classes are
described below, followed by discussions of resource allocation, namespace and
attribute management, error handling, and then finally reading and writing
streams using the cursor and iterator APIs.

StAX Factory Classes

XMLInputFactory
The XMLInputFactory class lets you configure implementation instances of
XML stream reader processors created by the factory. New instances of the
abstract class XMLInputFactory are created by calling the newInstance()

method on the class. The static method XMLInputFactory.newInstance() is
then used to create a new factory instance.

Deriving from JAXP, the XMLInputFactory.newInstance() method deter-
mines the specific XMLInputFactory implementation class to load by using the
following lookup procedure:

1. Use the javax.xml.stream.XMLInputFactory system property.

2. Use the lib/xml.stream.properties file in the JRE directory.

3. Use the Services API, if available, to determine the classname by looking
in the META-INF/services/javax.xml.stream.XMLInputFactory files
in jars available to the JRE.

4. Use the platform default XMLInputFactory instance.

After getting a reference to an appropriate XMLInputFactory, an application can
use the factory to configure and create stream instances. Table 3–4 lists the prop-

100 STREAMING API FOR XML

s

r-

r-

e

e

erties supported by XMLInputFactory. See the StAX specification for a more
detailed listing.

XMLOutputFactory
New instances of the abstract class XMLOutputFactory are created by calling the
newInstance() method on the class. The static method XMLOutputFac-

tory.newInstance() is then used to create a new factory instance. The algo-
rithm used to obtain the instance is the same as for XMLInputFactory but
references the javax.xml.stream.XMLOutputFactory system property.

XMLOutputFactory supports only one property, javax.xml.stream.isRepair-
ingNamespaces. This property is required, and its purpose is to create default

Table 3–4 XMLInputFactory Properties

Property Description

javax.xml.stream.isValidating Turns on implementation specific validation.

javax.xml.stream.isCoalescing
(Required) Requires the processor to coalesce
adjacent character data.

javax.xml.stream.isNamespaceAware
Turns off namespace support. All implementation
must support namespaces supporting non-
namespace aware documents is optional.

javax.xml.stream.isReplacingEntityReferences

(Required) Requires the processor to replace inte
nal entity references with their replacement value
and report them as characters or the set of events
that describe the entity.

javax.xml.stream.isSupportingExternalEntities
(Required) Requires the processor to resolve exte
nal parsed entities.

javax.xml.stream.reporter
(Required) Sets and gets the implementation of th
XMLReporter

javax.xml.stream.resolver
(Required) Sets and gets the implementation of th
XMLResolver interface

javax.xml.stream.allocator
(Required) Sets/gets the implementation of the
XMLEventAllocator interface

RESOURCES, NAMESPACES, AND ERRORS 101
prefixes and associate them with Namespace URIs. See the StAX specification
for a more information.

XMLEventFactory
New instances of the abstract class XMLEventFactory are created by calling the
newInstance() method on the class. The static method XMLEventFac-

tory.newInstance() is then used to create a new factory instance. This factory
references the javax.xml.stream.XMLEventFactory property to instantiate the
factory. The algorithm used to obtain the instance is the same as for XMLInput-
Factory and XMLOutputFactory but references the javax.xml.stream.XMLEv-

entFactory system property.

There are no default properties for XMLEventFactory.

Resources, Namespaces, and Errors
The StAX specification handles resource allocation, attributes and namespace,
and errors and exceptions as described below.

Resource Resolution
The XMLResolver interface provides a means to set the method that resolves
resources during XML processing. An application sets the interface on XMLIn-

putFactory, which then sets the interface on all processors created by that fac-
tory instance.

Attributes and Namespaces
Attributes are reported by a StAX processor using lookup methods and strings in
the cursor interface and Attribute and Namespace events in the iterator inter-
face. Note here that namespaces are treated as attributes, although namespaces
are reported separately from attributes in both the cursor and iterator APIs. Note
also that namespace processing is optional for StAX processors. See the StAX
specification for complete information about namespace binding and optional
namespace processing.

102 STREAMING API FOR XML
Error Reporting and Exception Handling
All fatal errors are reported by way of javax.xml.stream.XMLStreamExcep-

tion. All nonfatal errors and warnings are reported using the
javax.xml.stream.XMLReporter interface.

Reading XML Streams
As described earlier in this chapter, the way you read XML streams with a StAX
processor—and more importantly, what you get back—varies significantly
depending on whether you are using the StAX cursor API or the event iterator
API. The following two sections describe how to read XML streams with each of
these APIs.

Using XMLStreamReader
The XMLStreamReader interface in the StAX cursor API lets you read XML
streams or documents in a forward direction only, one item in the infoset at a
time. The following methods are available for pulling data from the stream or
skipping unwanted events:

• Get the value of an attribute

• Read XML content

• Determine whether an element has content or is empty

• Get indexed access to a collection of attributes

• Get indexed access to a collection of namespaces

• Get the name of the current event (if applicable)

• Get the content of the current event (if applicable)

Instances of XMLStreamReader have at any one time a single current event on
which its methods operate. When you create an instance of XMLStreamReader on
a stream, the initial current event is the START_DOCUMENT state.The XMLStream-

Reader.next() method can then be used to step to the next event in the stream.

Reading Properties, Attributes, and Namespaces
The XMLStreamReader.next() method loads the properties of the next event in
the stream. You can then access those properties by calling the XMLStream-

Reader.getLocalName() and XMLStreamReader.getText() methods.

READING XML STREAMS 103
When the XMLStreamReader cursor is over a StartElement event, it reads the
name and any attributes for the event, including the namespace. All attributes for
an event can be accessed using an index value, and can also be looked up by
namespace URI and local name. Note, however, that only the namespaces
declared on the current StartEvent are available; previously declared
namespaces are not maintained, and redeclared namespaces are not removed.

XMLStreamReader Methods
XMLStreamReader provides the following methods for retrieving information
about namespaces and attributes:

int getAttributeCount();
String getAttributeNamespace(int index);
String getAttributeLocalName(int index);
String getAttributePrefix(int index);
String getAttributeType(int index);
String getAttributeValue(int index);
String getAttributeValue(String namespaceUri,String
localName);
boolean isAttributeSpecified(int index);

Namespaces can also be accessed using three additional methods:

int getNamespaceCount();
String getNamespacePrefix(int index);
String getNamespaceURI(int index);

Instantiating an XMLStreamReader
This example, taken from the StAX specification, shows how to instantiate an
input factory, create a reader, and iterate over the elements of an XML stream:

XMLInputFactory f = XMLInputFactory.newInstance();
XMLStreamReader r = f.createXMLStreamReader(...);
while(r.hasNext()) {

r.next();
}

Using XMLEventReader
The XMLEventReader API in the StAX event iterator API provides the means to
map events in an XML stream to allocated event objects that can be freely
reused, and the API itself can be extended to handle custom events.

104 STREAMING API FOR XML
XMLEventReader provides four methods for iteratively parsing XML streams:

• next() – Returns the next event in the stream

• nextEvent() – Returns the next typed XMLEvent

• hasNext() – Returns true if there are more events to process in the stream

• peek() – Returns the event but does not iterate to the next event

For example, the following code snippet illustrates the XMLEventReader method
declarations:

package javax.xml.stream;
import java.util.Iterator;
public interface XMLEventReader extends Iterator {

public Object next();
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;

...
}

To read all events on a stream and then print them, you could use the following:

while(stream.hasNext()) {
XMLEvent event = stream.nextEvent();
System.out.print(event);
}

Reading Attributes
You can access attributes from their associated javax.xml.stream.StartEle-

ment, as follows:

public interface StartElement extends XMLEvent {
public Attribute getAttributeByName(QName name);
public Iterator getAttributes();

}

You can use the getAttributes() method on the StartElement interface to use
an Iterator over all the attributes declared on that StartElement.

Reading Namespaces
Similar to reading attributes, namespaces are read using an Iterator created by
calling the getNamespaces() method on the StartElement interface. Only the
namespace for the current StartElement is returned, and an application can get

WRITING XML STREAMS 105
the current namespace context by using StartElement.getNamespaceCon-

text().

Writing XML Streams
StAX is a bidirectional API, and both the cursor and event iterator APIs have
their own set of interfaces for writing XML streams. As with the interfaces for
reading streams, there are significant differences between the writer APIs for
cursor and event iterator. The following sections describe how to write XML
streams using each of these APIs.

Using XMLStreamWriter
The XMLStreamWriter interface in the StAX cursor API lets applications write
back to an XML stream or create entirely new streams. XMLStreamWriter has
methods that let you:

• Write well-formed XML

• Flush or close the output

• Write qualified names

Note that XMLStreamWriter implementations are not required to perform well-
formedness or validity checks on input. While some implementations my per-
form strict error checking, others may not. The rules you choose to implement
are set on properties provided by the XMLOutputFactory class.

The writeCharacters(...) method is used to escape characters such as &, <, >,
and “. Binding prefixes can be handled by either passing the actual value for the
prefix, by using the setPrefix() method, or by setting the property for default-
ing namespace declarations.

The following example, taken from the StAX specification, shows how to instan-
tiate an output factory, create a writer and write XML output:

XMLOutputFactory output = XMLOutputFactory.newInstance();
XMLStreamWriter writer = output.createXMLStreamWriter(...);
writer.writeStartDocument();
writer.setPrefix("c","http://c");
writer.setDefaultNamespace("http://c");
writer.writeStartElement("http://c","a");
writer.writeAttribute("b","blah");
writer.writeNamespace("c","http://c");
writer.writeDefaultNamespace("http://c");

106 STREAMING API FOR XML
writer.setPrefix("d","http://c");
writer.writeEmptyElement("http://c","d");
writer.writeAttribute("http://c","chris","fry");
writer.writeNamespace("d","http://c");
writer.writeCharacters("foo bar foo");
writer.writeEndElement();
writer.flush();

This code generates the following XML (new lines are non-normative)

<?xml version='1.0' encoding='utf-8'?>

<d:d d:chris="fry" xmlns:d="http://c"/>foo bar foo

Using XMLEventWriter
The XMLEventWriter interface in the StAX event iterator API lets applications
write back to an XML stream or create entirely new streams. This API can be
extended, but the main API is as follows:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
// ... other methods not shown.

}

Instances of XMLEventWriter are created by an instance of XMLOutputFactory.
Stream events are added iteratively, and an event cannot be modified after it has
been added to an event writer instance.

Attributes, Escaping Characters, Binding Prefixes
StAX implementations are required to buffer the last StartElement until an
event other than Attribute or Namespace is added or encountered in the stream.
This means that when you add an Attribute or a Namespace to a stream, it is
appended the current StartElement event.

You can use the Characters method to escape characters like &, <, >, and “.

The setPrefix(...) method can be used to explicitly bind a prefix for use dur-
ing output, and the getPrefix(...) method can be used to get the current pre-
fix. Note that by default, XMLEventWriter adds namespace bindings to its
internal namespace map. Prefixes go out of scope after the corresponding
EndElement for the event in which they are bound.

SUN’S STREAMING PARSER IMPLEMENTATION 107
Sun’s Streaming Parser Implementation
The JWSDP 1.6 includes an Early Access (EA) release of Sun Microsystem’s
JSR 173 (StAX) implementation, called the Sun Java Streaming XML Parser
(SJSXP). The SJSXP is a high-speed, non-validating, W3C XML 1.0 and
Namespace 1.0-compliant streaming XML pull parser built upon the Xerces2
codebase.

In Sun’s SJSXP implementation, the Xerces2 lower layers, particularly the Scan-
ner and related classes, have been redesigned to behave in a pull fashion. In addi-
tion to the changes the lower layers, the SJSXP includes additional StAX-related
functionality and many performance-enhancing improvements. The SJSXP is
implemented in sjsxp.jar, which is located in the <JWSDP_HOME>/sjsxp/lib

directory.

Included with this SJSXP EA distribution are code samples that illustrate how
the implementation works. These samples are described in the Sample Code sec-
tion, later in this chapter.

Before proceeding with the sample code, there are three important aspects of the
SJSXP about which you should be aware:

• SJSXP JAR Files

• Reporting CDATA Events

• SJSXP Factories Implementation

These three topics are discussed below.

SJSXP JAR Files
There are two JAR files in the SJSXP implementation. Both of these JARs are
located in the <JWSDP_HOME>/sjsxp/lib directory:

• sjsxp.jar – Sun implementation JAR for SJSXP

• jsr173_api.jar – Standard API JAR for JSR 173

Complete listings of the contents of these two JARs are provided in Appendix B,
“SJSXP JAR Files.”

108 STREAMING API FOR XML
Reporting CDATA Events
The javax.xml.stream.XMLStreamReader implemented in the SJSXP does not
report CDATA events. If you have an application that needs to receive such
events, configure the XMLInputFactory to set the following implementation-
specific “report-cdata-event” property:

XMLInputFactory factory = XMLInptuFactory.newInstance();
factory.setProperty("report-cdata-event", Boolean.TRUE);

SJSXP Factories Implementation
Most applications do not need to know the factory implementation class name.
Just adding the sjsxp.jar file to the classpath is sufficient for most applications
because sjsxp.jar supplies the factory implementation classname for various
SJSXP properties under the META-INF/services directory—for example,
javax.xml.stream.XMLInputFactory, javax.xml.stream.XMLOutputFac-

tory, and javax.xml.stream.XMLEventFactory—which is the third step of a
lookup operation when an application asks for the factory instance. See the java-
doc for the XMLInputFactory.newInstance() method for more information
about the lookup mechanism.

However, there may be scenarios when an application would like to know about
the factory implementation class name and set the property explicitly. These sce-
narios could include cases where there are multiple JSR 173 implementations in
the classpath and the application wants to choose one, perhaps one that has supe-
rior performance, contains a crucial bug fix, or suchlike.

If an application sets the SystemProperty, it is the first step in a lookup opera-
tion, and so obtaining the factory instance would be fast compared to other
options; for example:

javax.xml.stream.XMLInputFactory -->
com.sun.xml.stream.ZephyrParserFactory
javax.xml.stream.XMLOutputFactory -->
com.sun.xml.stream.ZephyrWriterFactor
javax.xml.stream.XMLEventFactory -->
com.sun.xml.stream.events.ZephyrEventFactory

SAMPLE CODE 109
Sample Code
This section steps through the sample StAX code included in the JWSDP 1.6
bundle. All sample directories used in this section are located off the
<JWSDP_HOME>/sjsxp/samples directory. The sample XML file used here is
located in the data directory off of samples.

There are seven sample directories distributed with JWSDP 1.6:

• cursor contains CursorParse.java, which illustrates how to use the XML-

StreamReader (cursor) API to read an XML file.

• cursor2event contains CursorApproachEventObject.java, which illus-
trates how an application can get information as an XMLEvent object when
using cursor API.

• data contains BookCatalogue.xml, which is the XML document used by
the sample classes.

• event contains EventParse.java, which illustrates how to use the XMLEv-

entReader (event iterator) API to read an XML file.

• filter contains MyStreamFilter.java, which illustrates how to use the
Stax Stream Filter APIs. In this example, the filter accepts only StartEle-

ment and EndElement events and filters out the remainder of the events.

• readnwrite contains EventProducerConsumer.java, which illustrates
how the StAX producer/consumer mechanism can be used to simulta-
neously read and write XML streams.

• writer contains CursorWriter.java, which illustrates how to use XML-

StreamWriter to write an XML file programatically.

Configuring Your Environment for
Running the Samples
The instructions for configuring your environment are basically the same as
those required for running the JWSDP in general. In addition to these general
instructions, you should also set the following environment variables:

• PATH=<JWSDP_HOME>/apache-ant/bin:$PATH

• ANT_HOME=<JWSDP_HOME>/apache-ant

• CLASSPATH=<JWSDP_HOME>/sjsxp/lib/:$CLASSPATH

110 STREAMING API FOR XML
Running the Samples
The samples can be run either manually or by means of several Ant targets,
defined in the <JWSDP_HOME>/sjsxp/samples/build.xml file. It is easiest to
run the samples using the Ant targets.

When you run any of the samples, the compiled class files are placed in a direc-
tory named ./build. This directory is created if it does not exist already.

Running the Samples Using Ant
Use the Ant build file (build.xml) in the <JWSDP_HOME>/sjsxp/samples direc-
tory to run the SJSXP samples. There are eight targets defined in SJSXP
build.xml file:

• all – Compile and run all classes; default target

• compile – Only compile classes; do not run

• cursor.CursorParse – Compile and run ./cursor/CursorParse.java

• cursor2event.CursorApproachEventObject – Compile and run
./cursor2event/CursorApproachEventObject.java

• event.EventParse – Compile and run ./event/EventParse.java

• filter.MyStreamFilter – Compile and run ./filter/MyStreamFil-

ter.java

• readnwrite.EventProducerConsumer – Compile and run ./readn-
write/EventProducerConsumer.java

• writer.CursorWriter – Compile and run ./writer/CursorWriter.java

To run any of the Ant targets, change to the <JWSDP_HOME>/sjsxp/samples

directory and invoke the target you want; for example:

cd jwsdp.home/sjsxp/samples
ant cursor.CursorParse

Note: If the StAX (JSR 173) API JAR file is not named jsr173_api.jar, or is
not in the same directory as the sjsxp.jar file, you will get an error when you run
the samples. If this occurs, you should tell Ant the location of the StAX APIs by
overriding the stax.api.jar property as shown:

ant -Dstax.api.jar="<JSR 173 API LOCATION>" cursor.CursorParse

If Ant cannot find the sjsxp.jar file, override the sjsxp.jar property as shown:

SAMPLE XML DOCUMENT 111
ant -Dsjsxp.jar="sjsxp.jar location" cursor.CursorParse

Running the Samples Manually
You can also run the samples manually. To do so, go to the
<JWSDP_HOME/sjsxp/samples directory and change to the directory that con-
tains the sample you want to run. For example, to run the CursorParse.java

sample:

1. Change to the directory containing the CursorParse.java file:

cd <JWSDP_HOME>/sjsxp/samples/cursor

2. Compile CursorParse.java:
javac -classpath ../lib/jsr173_api.jar CursorParse.java

Note that if the jsr173_api.jar is in your CLASSPATH, you do not need
to use the -classpath option here.

3. Run the CursorParse sample:

java -classpath .:../lib/sjsxp.jar:../lib/jsr173_api.jar

cursor.CursorParse -x 1 ./samples/data/BookCatalogue.xml

Again, if the jsr173_api.jar and sjsxp.jar files are in your CLASS-

PATH, you do not need to use the -classpath option here.

Sample XML Document
The sample XML document, BookCatalogue.xml, used by most of the SJSXP
sample classes is located in the <JWSDP_HOME>/sjsxp/samples/data directory,
and is a simple book catalog based on the common BookCatalogue namespace.
The contents of BookCatalogue.xml are listed below:

<?xml version="1.0"?>
<BookCatalogue xmlns="http://www.publishing.org">

<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<Author>Dhirendra Brahmachari</Author>
<Date>1966</Date>
<ISBN>81-40-34319-4</ISBN>
<Publisher>Dhirendra Yoga Publications</Publisher>
<Cost currency="INR">11.50</Cost>

</Book>

112 STREAMING API FOR XML
<Book>
<Title>The First and Last Freedom</Title>
<Author>J. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<Publisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>

</Book>
</BookCatalogue>

CursorParse.java
Located in the <JWSDP_HOME>/sjsxp/samples/cursor directory, Cursor-

Parse.java demonstrates using the StAX cursor API to read an XML docu-
ment.

Stepping Through Events
In this example, the client application pulls the next event in the XML stream by
calling the next() method on the parser; for example:

try
{

for(int i =0 ; i< count ; i++)
{

//pass the file name.. allrelativeentity
//references will be resolved againstthis as
//base URI.
XMLStreamReader xmlr=

xmlif.createXMLStreamReader(filename, new
FileInputStream(filename));

//when XMLStreamReader is created, it is positioned
at START_DOCUMENT event.

int eventType = xmlr.getEventType();
//printEventType(eventType);
printStartDocument(xmlr);
//check if there aremore eventsinthe input stream
while(xmlr.hasNext())

{
eventType =xmlr.next();
//printEventType(eventType);
//these functionsprints the information about

theparticular event by calling relevant function
printStartElement(xmlr);
printEndElement(xmlr);

CURSORPARSE.JAVA 113
printText(xmlr);
printPIData(xmlr);
printComment(xmlr);

}
}

Note that next() just returns an integer constant corresponding to the event
underlying the current cursor location. The application calls the relevant function
to get more information related to the underlying event. There are various acces-
sor methods which can be called when the cursor is at particular event.

Returning String Representations
Because the next() method only returns integers corresponding to underlying
event types, you typically need to map these integers to string representations of
the events; for example:

public final staticString getEventTypeString(inteventType)
{

switch(eventType)
{

case XMLEvent.START_ELEMENT:
return "START_ELEMENT";

case XMLEvent.END_ELEMENT:
return "END_ELEMENT";

case XMLEvent.PROCESSING_INSTRUCTION:
return "PROCESSING_INSTRUCTION";

case XMLEvent.CHARACTERS:
return "CHARACTERS";

case XMLEvent.COMMENT:
return "COMMENT";

case XMLEvent.START_DOCUMENT:
return "START_DOCUMENT";

case XMLEvent.END_DOCUMENT:
return "END_DOCUMENT";

case XMLEvent.ENTITY_REFERENCE:
return "ENTITY_REFERENCE";

case XMLEvent.ATTRIBUTE:
return "ATTRIBUTE";

case XMLEvent.DTD:
return "DTD";

case XMLEvent.CDATA:
return "CDATA";

case XMLEvent.SPACE:

114 STREAMING API FOR XML
return "SPACE";
}

return"UNKNOWN_EVENT_TYPE , "+ eventType;
}

Running the Sample
When you run the CursorParse sample, the class is compiled, and the XML
stream is parsed and returned to STDOUT.

CursorApproachEventObject.java
Located in the <JWSDP_HOME>/sjsxp/samples/cursor2event directory, Cur-
sorApproachEventObject.java demonstrates how to get information returned
by an XMLEvent object even when using the cursor API.

The idea here is that the cursor API’s XMLStreamReader returns integer con-
stants corresponding to particular events, where as the event iterator API’s
XMLEventReader returns immutable and persistent event objects. XMLStream-
Reader is more efficient, but XMLEventReader is easier to use, as all the informa-
tion related to a particular event is encapsulated in a returned XMLEvent object.
However, the disadvantage of event approach is the extra overhead of creating
objects for every event, which consumes both time and memory.

With this mind, XMLEventAllocator can be used to get event information as an
XMLEvent object, even when using the cursor API.

Instantiating an XMLEventAllocator
The first step is to create a new XMLInputFactory and instantiate an XMLEven-

tAllocator:

XMLInputFactory xmlif = XMLInputFactory.newInstance();
System.out.println("FACTORY: " + xmlif);
xmlif.setEventAllocator(new XMLEventAllocatorImpl());
allocator = xmlif.getEventAllocator();
XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,
new FileInputStream(filename));

EVENTPARSE.JAVA 115
Creating an Event Iterator
The next step is to create an event iterator:

int eventType = xmlr.getEventType();
while(xmlr.hasNext()){

eventType = xmlr.next();
//Get all "Book" elements as XMLEvent object
if(eventType == XMLStreamConstants.START_ELEMENT &&

xmlr.getLocalName().equals("Book")){
//get immutable XMLEvent
StartElement event = getXMLEvent(xmlr).asStartElement();
System.out.println("EVENT: " + event.toString());

}
}

Creating the Allocator Method
The final step is to create the XMLEventAllocator method:

private static XMLEvent getXMLEvent(XMLStreamReader reader)
throws XMLStreamException{

return allocator.allocate(reader);
}

Running the Sample
When you run the CursorApproachEventObject sample, the class is compiled,
and the XML stream is parsed and returned to STDOUT. Note how the Book events
are returned as strings.

EventParse.java
Located in the <JWSDP_HOME>/sjsxp/samples/event directory, Event-

Parse.java demonstrates how to use the StAX cursor API to read an XML doc-
ument.

116 STREAMING API FOR XML
Creating an Input Factory
The first step is to create a new instance of XMLInputFactory:

XMLInputFactory factory = XMLInputFactory.newInstance();
System.out.println("FACTORY: " + factory);

Creating an Event Reader
The next step is to create an instance of XMLEventReader:

XMLEventReader r = factory.createXMLEventReader(filename, new
FileInputStream(filename));

Creating an Event Iterator
The third step is to create an event iterator:

XMLEventReader r = factory.createXMLEventReader(filename, new
FileInputStream(filename));
while(r.hasNext()) {

XMLEvent e = r.nextEvent();
System.out.println(e.toString());

}

Getting the Event Stream
The final step is to get the underlying event stream:

public final static String getEventTypeString(int eventType)
{

switch (eventType)
{

case XMLEvent.START_ELEMENT:
return "START_ELEMENT";

case XMLEvent.END_ELEMENT:
return "END_ELEMENT";

case XMLEvent.PROCESSING_INSTRUCTION:
return "PROCESSING_INSTRUCTION";

case XMLEvent.CHARACTERS:
return "CHARACTERS";

case XMLEvent.COMMENT:
return "COMMENT";

case XMLEvent.START_DOCUMENT:

EVENTPARSE.JAVA 117
return "START_DOCUMENT";
case XMLEvent.END_DOCUMENT:

return "END_DOCUMENT";
case XMLEvent.ENTITY_REFERENCE:

return "ENTITY_REFERENCE";
case XMLEvent.ATTRIBUTE:

return "ATTRIBUTE";
case XMLEvent.DTD:

return "DTD";
case XMLEvent.CDATA:

return "CDATA";
case XMLEvent.SPACE:

return "SPACE";
}

return "UNKNOWN_EVENT_TYPE " + "," + eventType;
}

Running the Sample
When you run the EventParse sample, the class is compiled, and the XML
stream is parsed as events and returned to STDOUT. For example, an instance of
the Author element is returned as:

<['http://www.publishing.org']::Author>
Dhirendra Brahmachari
</['http://www.publishing.org']::Author>

Note in this example that the event comprises an opening and closing tag, both of
which include the namespace. The content of the element is returned as a string
within the tags.

Similarly, an instance of the Cost element is returned as:

<['http://www.publishing.org']::Cost currency='INR'>
11.50
</['http://www.publishing.org']::Cost>

In this case, the currency attribute and value are returned in the opening tag for
the event.

See earlier in this chapter, in the “Iterator API” and “Reading XML Streams”
sections, for a more detailed discussion of StAX event parsing.

118 STREAMING API FOR XML
CursorWriter.java
Located in the <JWSDP_HOME>/sjsxp/samples/writer directory, Cursor-

Writer.java demonstrates how to use the StAX cursor API to write an XML
stream.

Creating the Output Factory
The first step is to create an instance of XMLOutputFactory:

XMLOutputFactory xof = XMLOutputFactory.newInstance();

Creating a Stream Writer
The next step is to create an instance of XMLStreamWriter:

XMLStreamWriter xtw = null;

Writing the Stream
The final step is to write the XML stream. Note that the stream is flushed and
closed after the final EndDocument is written:

xtw = xof.createXMLStreamWriter(new FileWriter(fileName));
xtw.writeComment("all elements here are explicitly in the HTML
namespace");
xtw.writeStartDocument("utf-8","1.0");
xtw.setPrefix("html", "http://www.w3.org/TR/REC-html40");
xtw.writeStartElement("http://www.w3.org/TR/REC-
html40","html");
xtw.writeNamespace("html", "http://www.w3.org/TR/REC-html40");
xtw.writeStartElement("http://www.w3.org/TR/REC-
html40","head");
xtw.writeStartElement("http://www.w3.org/TR/REC-
html40","title");
xtw.writeCharacters("Frobnostication");
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeStartElement("http://www.w3.org/TR/REC-
html40","body");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","p");
xtw.writeCharacters("Moved to");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","a");

MYSTREAMFILTER.JAVA 119
xtw.writeAttribute("href","http://frob.com");
xtw.writeCharacters("here");
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeEndDocument();
xtw.flush();
xtw.close();

Running the Sample
When you run the CursorWriter sample, the class is compiled, and the XML
stream is parsed as events and written to a file named CursorWriter-Output:

<!--all elements here are explicitly in the HTML namespace-->
<?xml version="1.0" encoding="utf-8"?>
<html:html xmlns:html="http://www.w3.org/TR/REC-html40">
<html:head>
<html:title>Frobnostication</html:title></html:head>
<html:body>
<html:p>Moved to
<html:a href="http://frob.com">here</html:a>
</html:p>
</html:body>
</html:html>

Note that in the actual CursorWriter-Output file, this stream is written without
any linebreaks; the breaks have been added here to make the listing easier to
read. In this example, as with the object stream in the EventParse.java sample,
the namespace prefix is added to both the opening and closing HTML tags. This
is not required by the StAX specification, but it is good practice when the final
scope of the output stream is not definitively known.

MyStreamFilter.java
Located in the <JWSDP_HOME>/sjsxp/samples/filter directory, MyStream-

Filter.java demonstrates how to use the StAX stream filter API to filter out
events not needed by your application. In this example, the parser filters out all
events except StartElement and EndElement.

120 STREAMING API FOR XML
Implementing the StreamFilter Class
The MyStreamFilter implements javax.xml.stream.StreamFilter:

public class MyStreamFilter implements
javax.xml.stream.StreamFilter{

Creating an Input Factory
The next step is to create an instance of XMLInputFactory. In this case, various
properties are also set on the factory:

XMLInputFactory xmlif = null ;
try{
xmlif = XMLInputFactory.newInstance();
xmlif.setProperty(XMLInputFactory.IS_REPLACING_ENTITY_REFERENC
ES,Boolean.TRUE);
xmlif.setProperty(XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTIT
IES,Boolean.FALSE);
xmlif.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE ,
Boolean.TRUE);
xmlif.setProperty(XMLInputFactory.IS_COALESCING ,
Boolean.TRUE);
}catch(Exception ex){

ex.printStackTrace();
}
System.out.println("FACTORY: " + xmlif);
System.out.println("filename = "+ filename);

Creating the Filter
The next step is to instantiate a file input stream and create the stream filter:

FileInputStream fis = new FileInputStream(filename);

XMLStreamReader xmlr =
xmlif.createFilteredReader(xmlif.createXMLStreamReader(fis),
new MyStreamFilter());

int eventType = xmlr.getEventType();
printEventType(eventType);
while(xmlr.hasNext()){

eventType = xmlr.next();
printEventType(eventType);
printName(xmlr,eventType);

MYSTREAMFILTER.JAVA 121
printText(xmlr);
if(xmlr.isStartElement()){

printAttributes(xmlr);
}
printPIData(xmlr);
System.out.println("-----------------------------");

}

Capturing the Event Stream
The next step is to capture the event stream. This is done in basically the same
way as in the EventParse.java sample.

Filtering the Stream
The final step is the filter the stream:

public boolean accept(XMLStreamReader reader) {
if(!reader.isStartElement() && !reader.isEndElement())

return false;
else

return true;
}

Running the Sample
When you run the MyStreamFilter sample, the class is compiled, and the XML
stream is parsed as events and returned to STDOUT. For example an Author event
is returned as follows:

EVENT TYPE(1):START_ELEMENT
HAS NAME: Author
HAS NO TEXT
HAS NO ATTRIBUTES

EVENT TYPE(2):END_ELEMENT
HAS NAME: Author
HAS NO TEXT

122 STREAMING API FOR XML
Similarly, a Cost event is returned as follows:

EVENT TYPE(1):START_ELEMENT
HAS NAME: Cost
HAS NO TEXT

HAS ATTRIBUTES:
ATTRIBUTE-PREFIX:
ATTRIBUTE-NAMESP: null
ATTRIBUTE-NAME: currency
ATTRIBUTE-VALUE: INR
ATTRIBUTE-TYPE: CDATA

EVENT TYPE(2):END_ELEMENT
HAS NAME: Cost
HAS NO TEXT

See earlier in this chapter, in the “Iterator API” and “Reading XML Streams”
sections, for a more detailed discussion of StAX event parsing.

EventProducerConsumer.java
Located in the <JWSDP_HOME>/sjsxp/samples/readnwrite directory, EventPro-
ducerConsumer.java demonstrates how to use a StAX parser simultaneously as
both a producer and a consumer.

The StAX XMLEventWriter API extends from the XMLEventConsumer interface,
and is referred to as an event consumer. By contrast, XMLEventReader is an event
producer. StAX supports simultaneous reading and writing, such that it is possi-
ble to read from one XML stream sequentially and simultaneously write to
another stream.

This sample shows how the StAX producer/consumer mechanism can be used to
read and write simultaneously. This sample also shows how a stream can be
modified, and new events can be added dynamically and then written to different
stream.

EVENTPRODUCERCONSUMER.JAVA 123
Creating an Event Producer/Consumer
The first step is to instantiate an event factory and then create an instance of an
event producer/consumer:

XMLEventFactory m_eventFactory=XMLEventFactory.newInstance();
public EventProducerConsumer() {
}
.
.
.
try{

EventProducerConsumer ms = new EventProducerConsumer();

XMLEventReader reader =
XMLInputFactory.newInstance().createXMLEventReader(new
java.io.FileInputStream(args[0]));

XMLEventWriter writer =
XMLOutputFactory.newInstance().createXMLEventWriter(System.out
);

Creating an Iterator
The next step is to create an iterator to parse the stream:

while(reader.hasNext())
{

XMLEvent event = (XMLEvent)reader.next();
if(event.getEventType() == event.CHARACTERS)

{

writer.add(ms.getNewCharactersEvent(event.asCharacters()));
}

else
{

writer.add(event);
}

}
writer.flush();

124 STREAMING API FOR XML
Creating a Writer
The final step is to create a stream writer in the form of a new Character event:

Characters getNewCharactersEvent(Characters event){
if(event.getData().equalsIgnoreCase("Name1")){

return
m_eventFactory.createCharacters(Calendar.getInstance().getTime
().toString());

}
//else return the same event
else return event;

}

Running the Sample
When you run the EventProducerConsumer sample, the class is compiled, and
the XML stream is parsed as events and written back to STDOUT:

<?xml version="1.0" encoding="UTF-8"?>
<BookCatalogue xmlns="http://www.publishing.org">

<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<Author>Dhirendra Brahmachari</Author>
<Date>1966</Date>
<ISBN>81-40-34319-4</ISBN>
<Publisher>Dhirendra Yoga Publications</Publisher>
<Cost currency="INR">11.50</Cost>

</Book>

<Book>
<Title>The First and Last Freedom</Title>
<Author>J. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<Publisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>

</Book>
</BookCatalogue>

FURTHER INFORMATION 125
Further Information
For more information about StAX, see:

• Java Community Process page:
http://jcp.org/en/jsr/detail?id=173.

• W3C Recommendation “Extensible Markup Language (XML) 1.0”:
http://www.w3.org/TR/REC-xml

• XML Information Set:
http://www.w3.org/TR/xml-infoset/

• JAXB specification:
http://java.sun.com/xml/jaxb

• JAX-RPC specification:
http//java.sun.com/xml/jaxrpc

• W3C Recommendation “Document Object Model”:
http://www.w3.org/DOM/

• SAX “Simple API for XML”:
http://www.saxproject.org/

• DOM “Document Object Model”:
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-

20020409/core.html#ID-B63ED1A3

• W3C Recommendation “Namespaces in XML”:

http://www.w3.org/TR/REC-xml-names/

For some useful articles about working with StAX, see:

• Jeff Ryan, “Does StAX Belong in Your XML Toolbox?”:
http://www.developer.com/xml/article.php/3397691

• Elliotte Rusty Harold, “An Introduction to StAX”:
http://www.xml.com/pub/a/2003/09/17/stax.html

• “More efficient XML parsing with the Streaming API for XML”:
http://www-106.ibm.com/developerworks/xml/library/x-tipstx/

http://jcp.org/en/jsr/detail?id=173

126 STREAMING API FOR XML

4

127
Introduction to XML
and Web Services

Security

THIS addendum discusses using XML and Web Services Security (XWS-
Security) for message-level security. In message-level security, security informa-
tion is contained within the SOAP message and/or SOAP message attachment,
which allows security information to travel along with the message or attach-
ment. For example, a portion of the message may be signed by a sender and
encrypted for a particular receiver. When the message is sent from the initial
sender, it may pass through intermediate nodes before reaching its intended
receiver. In this scenario, the encrypted portions continue to be opaque to any
intermediate nodes and can only be decrypted by the intended receiver. For this
reason, message-level security is also sometimes referred to as end-to-end secu-
rity.

128 INTRODUCTION TO XML AND WEB SERVICES SECURITY
Overview
This release includes the following XWS-Security features:

• Support for securing JAX-RPC applications at the service, port, and oper-
ation levels.

• XWS-Security APIs for securing both JAX-RPC applications and stand-
alone applications that make use of SAAJ APIs only for their SOAP mes-
saging.

Note: The XWS-Security EA 2.0 APIs are intended to insulate XWS-Security users
from possible changes in the internal APIs, however, these APIs are subject to
minor changes between 2.0 EA and 2.0 FCS.

• A sample security framework within which a JAX-RPC application devel-
oper will be able to secure applications by signing, verifying, encrypting,
and/or decrypting parts of SOAP messages and attachments.

The message sender can also make claims about the security properties by
associating security tokens with the message. An example of a security
claim is the identity of the sender, identified by a user name and pass-
word.

• Support for SAML Tokens and the WSS SAML Token Profile (partial).

• Support for securing attachments based on the WSS SwA Profile Draft.

• Partial support for sending and receiving WS-I Basic Security Profile
(BSP) 1.0 compliant messages. For more information about BSP, read
Interoperability with Other Web Services.

• Enhancements to the SecurityConfiguration Schema from the previous
release.

• Sample programs that demonstrate using the framework.

• Command-line tools that provide specialized utilities for keystore manage-
ment, including pkcs12import and keyexport.

OVERVIEW 129
The XWS-Security release contents are arranged in the structure shown in Table

4–1 within the Java WSDP release:

This implementation of XWS-Security is based on the Oasis Web Services Secu-
rity (WSS) specification, which can be viewed at the following URL:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Some of the material in this chapter assumes that you understand basic security
concepts. To learn more about these concepts, we recommend that you explore
the following resources before you begin this chapter.

• The Java 2 Standard Edition discussion of security, which can be viewed
from
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

• The J2EE 1.4 Tutorial chapter titled Security, which can be viewed from

http://java.sun.com/j2ee/1.4/docs/tutorial-update2/doc/index.html

Table 4–1 XWS-Security directory structure

Directory Name Contents

<JWSDP_HOME>/
xws-security/etc/

Keystore files, property files, configuration files used for the exam-
ples.

<JWSDP_HOME>/
xws-security/docs/

Release documentation for the XWS-Security framework. For the
latest updates to this documentation, visit the web site at http://
java.sun.com/webservices/docs/1.6/xws-security/index.html.

<JWSDP_HOME>/
xws-security/docs/
api

API documentation for the XWS-Security framework.

<JWSDP_HOME>/
xws-security/lib/

JAR files containing the XWS-Security framework implementa-
tion and dependent libraries.

<JWSDP_HOME>/
xws-security/sam-
ples/

Example code. This release includes sample applications. For
more information on the samples, read Are There Any Sample
Applications Demonstrating XWS-Security?

<JWSDP_HOME>/
xws-security/bin/

Command-line tools that provide specialized utilities for keystore
management. For more information on these, read Useful XWS-
Security Command-Line Tools.

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update2/doc/index.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://java.sun.com/webservices/docs/1.6/xws-security/index.html
http://java.sun.com/webservices/docs/1.6/xws-security/index.html

130 INTRODUCTION TO XML AND WEB SERVICES SECURITY
Does XWS-Security Implement Any
Specifications?

XWS-Security is an implementation of the Web Services Security (WSS) speci-
fication developed at OASIS. WSS defines a SOAP extension providing quality
of protection through message integrity, message confidentiality, and message
authentication. WSS mechanisms can be used to accommodate a wide variety of
security models and encryption technologies.

The WSS specification defines an end to end security framework that provides
support for intermediary security processing. Message integrity is provided by
using XML Signature in conjunction with security tokens to ensure that mes-
sages are transmitted without modifications. Message confidentiality is granted
by using XML Encryption in conjunction with security tokens to keep portions
of SOAP messages confidential.

In this release, the XWS-Security framework provides the following options for
securing JAX-RPC applications:

• XML Digital Signature (DSig)

This implementation of XML and Web Services Security uses JSR-105
(XML Digital Signature APIs) for signing and verifying parts of a SOAP
message or attachment. JSR-105 can be viewed at http://www.jcp.org/en/jsr/

detail?id=105

Samples containing code for signing and/or verifying parts of the SOAP
message are included with this release in the directory <JWSDP_HOME>/

xws-security/samples/simple/. Read Simple Security Configurations Sam-

ple Application for more information on these sample applications.

• XML Encryption (XML-Enc)

This implementation of XML and Web Services Security uses Apache's
XML-Enc implementation, which is based on the XML Encryption W3C
standard. This standard can be viewed at http://www.w3.org/TR/

xmlenc-core/.

Samples containing code for encrypting and/or decrypting parts of the
SOAP message are included with this release in the directory
<JWSDP_HOME>/xws-security/samples/simple/. Read Simple Security

Configurations Sample Application for more information on these sample appli-
cations.

• UsernameToken Verification

http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/

DOES XWS-SECURITY IMPLEMENT ANY SPECIFICATIONS? 131
Username token verification specifies a process for sending UserNameTo-

kens along with the message. Sending these tokens with a message binds
the identity of the tokens (and any other claims occurring in the security
token) to the message.

This implementation of XML and Web Services Security provides sup-
port for Username Token Profile, which is based on OASIS WSS User-
name Token Profile 1.0 (which can be read at http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-username-token-pro-

file-1.0.pdf) and X.509 Certificate Token Profile, which is based on
OASIS WSS X.509 Certificate Token Profile 1.0 (which can be read at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

x509-token-profile-1.0.pdf).

Samples containing code for sending user name and X.509 certificate
tokens along with the SOAP message are included with this release in the
directory <JWSDP_HOME>/xws-security/samples/simple/. Read Simple

Security Configurations Sample Application for more information on these sam-
ple applications.

• XWS-Security Framework APIs

This implementation of XML and Web Services Security provides APIs
that can be used to secure stand-alone Web services applications as well
as JAX-RPC applications. These new APIs can be used to secure an out-
bound SOAPMessage and verify the security in an inbound SOAPMessage.

Because some of the Java standards for XWS-Security technologies are
currently undergoing definition under the Java Community Process, the
security solution that is provided in Java WSDP 1.6 is based on non-stan-
dard APIs, which are subject to change with new revisions of the technol-
ogy.

To insulate stand alone XWS-Security users from the possible changes in
the internal APIs, this release includes a sample interface definition that
abstracts out some of the internal implementation details.

Samples containing code for using these APIs are included with this
release in the directory <JWSDP_HOME>/xws-security/samples/api-

sample/. Read XWS-Security APIs Sample Application for more information on
this sample application.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

132 INTRODUCTION TO XML AND WEB SERVICES SECURITY
On Which Technologies Is XWS-Security
Based?
XWS-Security APIs are used for securing Web services based on JAX-RPC and
on stand-alone applications based on SAAJ. This release of XWS-Security is
based on standard XML Digital Signature and non-standard XML Encryption
APIs, which are subject to change with new revisions of the technology. As stan-
dards are defined in the Web Services Security space, the non-standard APIs will
be replaced with standards-based APIs.

JSR-105 (XML Digital Signature) APIs are included in this release of the Java
WSDP. JSR 105 is a standard API (in progress, at Proposed Final Draft) for gen-
erating and validating XML Signatures as specified by the W3C recommenda-
tion. It is an API that should be used by Java applications and middleware that
need to create and/or process XML Signatures. It is used by this release of Web
Services Security and can be used by non-Web Services technologies, for exam-
ple, documents stored or transferred in XML. Both JSR-105 and JSR-106 (XML
Digital Encryption) APIs are core-XML security components.

XWS-Security does not use the JSR-106 APIs because, currently, the Java stan-
dards for XML Encryption are undergoing definition under the Java Community
Process. This Java standard is JSR-106-XML Digital Encryption APIs, which
you can read at http://www.jcp.org/en/jsr/detail?id=106.

XWS-Security uses the Apache libraries for XML-Encryption. In future
releases, the goal of XWS-Security is to move toward using the JSR-106 APIs.

Table 4–2 shows how the various technologies are stacked upon one another:

Table 4–2 API/Implementation Stack Diagram

XWS-Security

JSR-105 XML Signature and W3C XML Encryption Specifications
(W3C spec. may be replaced with JSR-106 in a future release)

Apache XML Security implementation.

J2SE Security (JCE/JCA APIs)

http://www.jcp.org/en/jsr/detail?id=106

INTEROPERABILITY WITH OTHER WEB SERVICES 133
The Apache XML Security project is aimed at providing implementation of secu-
rity standards for XML. Currently the focus is on the W3C standards. More
information on Apache XML Security can be viewed at:

http://xml.apache.org/security/

Java security includes the Java Cryptography Extension (JCE) and the Java
Cryptography Architecture (JCA). JCE and JCA form the foundation for public
key technologies in the Java platform. The JCA API specification can be viewed
at http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html. The JCE documenta-
tion can be viewed at http://java.sun.com/products/jce/reference/docs/index.html.

Interoperability with Other Web Services
One of the goals of XML and Web Services Security technology is to enable
applications to be able to securely interoperate with clients and web service end-
points deployed on other Java application servers and other web services plat-
forms.

To accomplish this interoperability, an open industry organization, Web Ser-
vices-Interoperability (WS-I) Organization, was chartered to promote Web ser-
vices interoperability across platforms, operating systems, and programming
languages. WS-I is developing an interoperability profile, WS-I Basic Security Profile

1.0 (BSP), that deals with transport security, SOAP messaging security, and other
Basic-Profile-oriented Web services security considerations. XWS-Security EA
2.0 provides partial support for BSP (complete support is planned for the FCS
release of 2.0.)

What is Basic Security Profile (BSP)?
In terms of XWS-Security, Basic Security Profile (BSP) support means that
BSP-compliant requests will be generated and BSP-compliant requests will be
accepted.

BSP restrictions and rules are only applicable for those features explicitly sup-
ported by XWS-Security. For outgoing messages, BSP-compliant messages are
created by default. The only instance where BSP-compliant messages are not
created by default is in the case of exclusive canonicalization transform in signa-
tures. For performance reasons, this transform is not added by default, but can be
added explicitly to the list of transforms.

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html
http://www.ws-i.org
http://www.ws-i.org
http://www.ws-i.org
http://xml.apache.org/security/
http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html
http://java.sun.com/products/jce/reference/docs/index.html

134 INTRODUCTION TO XML AND WEB SERVICES SECURITY
For incoming messages, you can set the compliance attribute to bsp if you want
to check for compliance in messages received from other applications or imple-
mentations. Non-compliant incoming messages are flagged when this option is
set.

What is the XWS-Security Framework?
The XWS-Security framework is used to secure JAX-RPC and stand-alone
SAAJ applications. Use XWS-Security to secure SOAP messages (requests and
responses) through signing some parts, or encrypting some parts, or sending
username-password authentication info, or some combination of these. Some
example applications that use the technology are discussed in Are There Any Sample

Applications Demonstrating XWS-Security?.

Use the XWS-Security framework to secure JAX-RPC applications by using the
-security option of the wscompile tool. When you create an asant (or ant)
target for JAX-RPC clients and services, the wscompile utility generates stubs,
ties, serializers, and WSDL files.

Note: For the 2.0 release of JAX-RPC, JAX-RPC will be renamed to JAX-WS.
JAX-WS will be part of the XWS-Security 2.0 FCS later this year. When this
renaming occurs, the wscompile tool will be replaced, and these steps and the
build.xml files for the sample applications will need to be modified accordingly.

XWS-Security has been integrated into JAX-RPC through the use of security
configuration files. The code for performing the security operations on the client
and server is generated by supplying the security configuration files to the JAX-
RPC wscompile tool. The wscompile tool is instructed to generate security code
via the -security option which specifies the security configuration file. See Con-

figuring Security Configuration Files for more information on creating and using secu-
rity configuration files.

To use the XWS-Security framework, set up the client and server-side infrastruc-
ture. A critical component of setting up your system for XWS-Security is to set
up the appropriate database for the type of security (DSig, XML-Enc, UserName
Token) to be used. Depending on the structure of your application, these data-
bases could be any combination of keystore files, truststore files, and username-
password files.

CONFIGURING SECURITY CONFIGURATION FILES 135
Configuring Security Configuration Files
XWS-Security makes it simple to specify client and server-side configurations
describing security settings using security configuration files. In this tutorial,
build, package, and deploy targets are defined and run using the asant tool. The
asant tool is version of the Apache Ant Java-based build tool used specifically
with the Sun Java System Application Server (Application Server). If you are
deploying to a different container, you can use the Apache Ant tool instead.

To configure a security configuration file, follow these steps:

1. Create a security configuration file. Creating security configuration files is
discussed in more detail in Understanding Security Configuration Files. Sample
security configuration files are located in the directory <JWSDP_HOME>/

xws-security/samples/simple/config/.

2. Create an asant (or ant) target in the build.xml file for your application
that passes in and uses the security configuration file(s). This step is dis-
cussed in more detail in How Do I Specify the Security Configuration for the Build

Files?

3. Create a property in the build.properties file to specify a security con-
figuration file to be used on the client side and a security configuration file
to be used on the server side. This step is discussed in more detail in How

Do I Specify the Security Configuration for the Build Files?

Understanding Security Configuration
Files
Security configuration files are written in XML. The elements within the XML
file that specify the security mechanism(s) to use for an application are enclosed
within <xwss:SecurityConfiguration></xwss:SecurityConfiguration>

tags. The complete set of child elements along with the attributes that can be
placed within these elements are described informally in XWS-Security Configuration

File Schema. The formal schema definition (XSD) for XWS-Security Configura-
tion can be viewed in the appendix A XWS-Security Formal Schema Definition. Many
example security configuration files, along with descriptions each, are described
in Simple Sample Security Configuration Files. This section describes a few of these
options.

136 INTRODUCTION TO XML AND WEB SERVICES SECURITY
If you are using XWS-Security under JAX-RPC, the first set of elements of the
security configuration file contain the declaration that this file is a security con-
figuration file. The elements that provide this declaration look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration>

Note: If you are using XWS-Security in a stand-alone SAAJ environment, the root
element of the security configuration file is <xwss:SecurityConfiguration>. An
example application that uses XWS-Security in a stand-alone SAAJ environment is
described in XWS-Security APIs Sample Application.

Within these declaration elements are elements that specify which type of secu-
rity mechanism is to be applied to the SOAP message. For example, to apply
XML Digital Signature, the security configuration file would include an
xwss:Sign element, along with a keystore alias that identifies the private key/
certificate associated with the sender's signature. A simple client security config-
uration file that requires digital signatures would look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Note that in the <Sign> operation, a Timestamp is
exported
 in the security header and signed by default.
 -->
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-
client"/>
 </xwss:Sign>
 <!--
 Signature requirement. No target is specified,
hence the
 soap body is expected to be signed. Also, by
default, a
 Timestamp is expected to be signed.
 -->
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>

UNDERSTANDING SECURITY CONFIGURATION FILES 137
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The xwss elements can be listed sequentially so that more than one security
mechanism can be applied to the SOAP message. For example, for a client to
first sign a message and then encrypt it, create an xwss element with the value
Sign (to do the signing first), and then create an xwss element with the value of
Encrypt (to encrypt after the signing). Building on the previous example, to add
encryption to the message after the message has been signed, the security config-
uration file would be written like this example:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Sign/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Identifier"/>
 </xwss:Encrypt>
 <!--
 Requirements on messages received:
 -->
 <xwss:RequireEncryption/>
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The xwss:RequireSignature element present in the two examples shown is
used by the client to indicate that it expects the Response to be a signed
response. Similarly the xwss:RequireEncryption element in a client configura-
tion file indicates that the client expects an encrypted response. In the second
example, a RequireEncryption and a RequireSignature element specified in

138 INTRODUCTION TO XML AND WEB SERVICES SECURITY
that order implies that the client expects the response to be signed and then
encrypted.

The xwss:RequireSignature and xwss:RequireEncryption elements appear-
ing in a server configuration file similarly indicate that the server expects the
request to be signed and encrypted respectively. The normal behavior of a client
or server when it specifies a requirement of the form xwss:RequireSignature

or xwss:RequireEncryption is to throw an exception if the requirement is not
met by the received response or request.

The xwss:SecurityEnvironmentHandler element appearing under
xwss:SecurityConfiguration is a compulsory child element that needs to be
specified. The value of this element is the name of a Java class that implements
the javax.security.auth.callback.CallbackHandler interface and handles
a set of Callbacks defined by XWS-Security. There are a set of callbacks that
are mandatory and that every CallbackHandler needs to implement. A few call-
backs are optional and can be used to supply some finer-grained information to
the XWS-Security run-time. The SecurityEnvironmentHandler and the Call-

backs are described in Writing SecurityEnvironmentHandlers. The SecurityEnviron-

mentHandler is essentially a CallbackHandler which is used by the XWS-
Security run-time to obtain the private-keys, certificates, symmetric keys, etc. to
be used in the signing and encryption operations from the application. For more
information, refer to the API documentation for the
com.sun.xml.wss.impl.callback package, which is located in the
<JWSDP_HOME>/xws-security/docs/api directory, to find the list of mandatory
and optional callbacks and the details of the Callback classes.

When XWS-Security is used in a stand-alone SAAJ environment, the developer
can choose to implement the com.sun.xml.wss.SecurityEnvironment inter-
face instead of a callback handler that handles XWS-Security callbacks. In this
situation, an instance of the SecurityEnvironment implementation can be set
into the ProcessingContext instance. For an example application that demon-
strates this, refer to the XWS-Security APIs Sample Application. For more details on
the SecurityEnvironment interface, refer to the javadocs at <JWSDP_HOME>/

xws-security/docs/api/com/sun/xml/wss/SecurityEnvironment.html.

Another type of security mechanism that can be specified in the security config-
uration file is user name authentication. In the case of user name authentication,
the user name and password of a client need to be authenticated against the user/
password database of the server. The xwss element specifies that the security
mechanism to use is UsernameToken. On the server-side, refer to the documenta-
tion for your server regarding how to set up a user/password database for the
server, or read Setting Up To Use XWS-Security With the Sample Applications for a sum-

XWS-SECURITY CONFIGURATION FILE SCHEMA 139
mary. A client-side security configuration file that specifies UsernameToken

authentication would look like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Default: Digested password will be sent.
 -->
 <xwss:UsernameToken name="Ron" password="noR"/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The simple sample application includes a number of example security configu-
ration files. The sample configuration files are located in the directory
<JWSDP_HOME>/xws-security/samples/simple/config/. Further discussion
of the example security configurations can be found in Simple Sample Security Con-

figuration Files.

Other sample configuration files that are provided in this release include:

• Simple Sample Security Configuration Files

• JAAS Sample Security Configuration Files

• SwA Sample Configuration Files

• SAML Interop Sample Configuration Files

• Security Configuration Files for Enabling Dynamic Policy

• Security Configuration Files for Enabling Dynamic Response

XWS-Security Configuration File Schema
When creating a security configuration file, there is a hierarchy within which the
XML elements must be listed. This section contains an abstract sketch of the
schema for the data for security configuration files. The formal schema definition
can be viewed at A XWS-Security Formal Schema Definition.

140 INTRODUCTION TO XML AND WEB SERVICES SECURITY
Figure 4–1 shows the XML schema. The tables in Semantics of Security Configuration

File Elements provide more information on the elements contained within the
schema. The following notations are used to describe the schema:

• | means OR

• & means AND

• * means zero or more of these elements allowed

• + means 1 required, more allowed

• ? means zero or one element allowed

• (value) means that this value is the default value for the element, so spec-
ifying this attribute is optional.

Figure 4–1 XWS-Security Abstract Configuration File Schema

<JAXRPCSecurity>
+<Service/>
<SecurityEnvironmentHandler/>

</JAXRPCSecurity>

 <Service ?name=service_identifier
?id=unique_identifier
?conformance="bsp"
?useCache=("false") | "true">

?<SecurityConfiguration/>
*<Port/>
?<SecurityEnvironmentHandler/>

</Service>

<SecurityConfiguration
?dumpMessages=("false")|"true"
?enableDynamicPolicy=("false")|"true">

*SecurityConfigurationElements
</SecurityConfiguration>

*SecurityConfigurationElements =
?<Timestamp/> |
?<SAMLAssertion type="SV"/> |
?<RequireSAMLAssertion type="SV"/> |
?<UsernameToken/> |
?<RequireUsernameToken /> |
?<RequireTimestamp /> |
 ?<OptionalTargets /> |
<Sign/> |
<Encrypt/> |
<RequireSignature/> |
<RequireEncryption/>

XWS-SECURITY CONFIGURATION FILE SCHEMA 141
<Port name="port-name" ?conformance="bsp">
*<Operation ?name="op-name">

*<SecurityConfiguration/>
</Operation>

</Port>

<SecurityEnvironmentHandler>
handler-classname

</SecurityEnvironmentHandler>

<Operation name="operation_name" >
*<SecurityConfiguration/>

</Operation>

<Timestamp ?id=unique_policy_identifier
?timeout=("300")/>

<UsernameToken ?id=unique_policy_identifier
?name=user_name // User name and password can also

be
//obtained dynamically from the

 //SecurityEnvironment
?password=password
?useNonce=("true")|"false"
?digestPassword=("true")|"false"/>

 <RequireUsernameToken
?id=unique_policy_identifier
?nonceRequired=("true")|"false"
?passwordDigestRequired=("true")|"false"
?maxClockSkew=("60")
?timestampFreshnessLimit=("300")
?maxNonceAge=("900")/>

<Encrypt
?id=unique_policy_identifier >
?Key-Bearing-Token
?<KeyEncryptionMethod

algorithm=("http://www.w3.org/2001/04/xmlenc#rsa-
oaep-mgf1p")|

"http://www.w3.org/2001/04/xmlenc#kw-
tripledes"|

"http://www.w3.org/2001/04/xmlenc#kw-
aes128" |

"http://www.w3.org/2001/04/xmlenc#kw-
aes256" |

"http://www.w3.org/2001/04/xmlenc#rsa-

142 INTRODUCTION TO XML AND WEB SERVICES SECURITY
1_5" />
?<DataEncryptionMethod

algorithm=("http://www.w3.org/2001/04/
xmlenc#aes128-cbc")|

"http://www.w3.org/2001/04/
xmlenc#tripledes-cbc"|

"http://www.w3.org/2001/04/
xmlenc#aes256-cbc" />

*<Target/> // of type Target or EncryptionTarget
</Encrypt>

<EncryptionTarget
?type=("qname")|"uri"|"xpath"
?contentOnly=("true")|"false"
?enforce=("true")|"false"
value=an_appropriate_ target_identifier>

*<Transform/>
</EncryptionTarget>

<RequireEncryption
?id=unique_policy_identifier />

?Key-Bearing-Token
?<KeyEncryptionMethod

algorithm=("http://www.w3.org/2001/04/xmlenc#rsa-
oaep-mgf1p") |

"http://www.w3.org/2001/04/xmlenc#kw-
tripledes" |

"http://www.w3.org/2001/04/xmlenc#kw-
aes128" |

"http://www.w3.org/2001/04/xmlenc#kw-
aes256" |

"http://www.w3.org/2001/04/xmlenc#rsa-
1_5" />

?<DataEncryptionMethod
algorithm=("http://www.w3.org/2001/04/

xmlenc#aes128-cbc") |
"http://www.w3.org/2001/04/

xmlenc#tripledes-cbc" |
"http://www.w3.org/2001/04/

xmlenc#aes128-cbc" |
"http://www.w3.org/2001/04/

xmlenc#aes256-cbc" />
*<Target/>//of type Target and/or EncryptionTarget

</RequireEncryption>

Key-Bearing-Token=
<X509Token/> |
<SAMLAssertion type="HOK"/> |

XWS-SECURITY CONFIGURATION FILE SCHEMA 143
<SymmetricKey/>

<X509Token
?id=any_legal_id //Must be unique within the resulting

XML
?strId=legal_id
?certificateAlias=alias_SecurityEnvironment_understands
?keyReferenceType=("Direct")|"Identifier"|"IssuerSerialN

umber"
?encodingType=("http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-
1.0#Base64Binary")

?valueType>

<SAMLAssertion
?id=unique_policy_identifier
?authorityId=URI_of_Issuing_Authority}
?strId=unique_policy_identifier
?keyIdentifier=identifier_for_Attester_Key
?keyReferenceType=("Identifier")|"Embedded"
type="HOK"|"SV"

</SAMLAssertion>

<RequireSAMLAssertion
?id=unique_policy_identifier
?authorityId=URI_of_Issuing_Authority>
?strId=unique_policy_identifier
type="SV"
?keyReferenceType=("Identifier")|"Embedded"

</RequireSAMLAssertion>

<SymmetricKey keyAlias= alias/keyname_of_a_shared_key />

keyReferenceType=
 "Direct"|"Identifier"|"IssuerSerialNumber"|
"Embedded"

EncodingType=(#Base64Binary |
other-wss-defined-encoding-type

ValueType=token-profile-specific-value-types

<Sign ?id=unique_policy_identifier
?includeTimestamp=("true")|"false">
?Key-Bearing-Token
?<CanonicalizationMethod

algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#" | others/>

144 INTRODUCTION TO XML AND WEB SERVICES SECURITY
?<SignatureMethod
algorithm=("http://www.w3.org/2000/09/

xmldsig#rsa-sha1") | others/>
*<Target/> //of type Target or SignatureTarget

</Sign>

<SignatureTarget
?type=("qname")|"uri"|"xpath"
?enforce=("true")|"false"
value=an_appropriate_target_identifier>

?<DigestMethod algorithm=("http://www.w3.org/2000/09/
xmldsig#sha1") | others/>

*<Transform/>
</SignatureTarget>

<RequireSignature
?id=unique_policy_identifier
?requireTimestamp=("true")|"false">

?Key-Bearing-Token
?<CanonicalizationMethod

algorithm=("http://www.w3.org/2001/10/
xml-exc-c14n#") | others/>

?<SignatureMethod
algorithm=("http://www.w3.org/2000/09/

xmldsig#rsa-sha1") | others/>
*<Target/> //of type Target and/or SignatureTarget

</RequireSignature>

<Transform algorithm=supported-algorithms>
*<AlgorithmParameter name="name" value="value"/>

</Transform>

<RequireTimestamp
?id=unique_policy_id
?maxClockSkew=("60")
?timestampFreshnessLimit=("300")/>

<RequireUsernameToken
?id=unique_policy_id
?nonceRequired=("true")|"false"
?passwordDigestRequired=("true")|"false"
?maxClockSkew=("60")
?timestampFreshnessLimit=("300")
?maxNonceAge=("900") >

</RequireUsernameToken>

<OptionalTargets>
*<Target>

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 145
</OptionalTargets>

<Target ?type=("qname")|"uri"|"xpath"
?contentOnly=("true")|"false"
?enforce=("true")|"false">
value

</Target>

Semantics of Security Configuration File
Elements
This section contains a discussion regarding the semantics of security configura-
tion file elements.

JAXRPCSecurity
The <JAXRPCSecurity> element is the top-level XML element for XWS-Secu-
rity configuration files for applications that use JAX-RPC. The top-level XML
element for stand-alone SAAJ applications is <SecurityConfiguration>. Table

4–3 provides a description of the sub-elements of <JAXRPCSecurity>.

Service
The <Service> element indicates a JAX-RPC service within the XWS-Security
environment for which XWS-Security can be configured.

Table 4–3 Sub-elements of JAXRPCSecurity element

Sub-elements of

JAXRPCSecurity Description

Service

Indicates a JAX-RPC service within the XWS-Security
environment for which XWS-Security can be configured.
In this release, multiple services per configuration file are
supported.

SecurityEnvironmentHandler
Specifies the implementation class name of the security
environment handler (Required).

146 INTRODUCTION TO XML AND WEB SERVICES SECURITY
Note: Although the XWS-Security configuration schema allows multiple <Ser-

vice> elements to appear under a <JAXRPCSecurity> element, the current release
does not support this feature. The configuration reader will throw an Illegal-

StateException if multiple services are specified.

Table 4–4 provides a description of its attributes, Table 4–5 provides a description of
its sub-elements.

Table 4–4 Attributes of Service element

Attributes of Service Description

name The name of the JAX-RPC service (optional).

id The id of the JAX-RPC service (optional).

conformance
Type of conformance. In this release, the choice for this
attribute is restricted to bsp (optional).

useCache
Determines whether caching is enabled. Default is false
(optional). This flag is unused in the current release and has
been introduced for future enhancements.

Table 4–5 Sub-elements of Service element

Sub-elements of Service Description

SecurityConfiguration
Indicates that what follows is the security configuration for the
service.

Port
A port within a JAX-RPC service. Any (including zero) num-
ber of these elements may be specified.

SecurityEnvironmentHandler
Specifies the implementation class name of the security envi-
ronment handler. If specified, overrides the SecurityEnvi-
ronmentHandler specified at the parent level. (Optional)

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 147
Port
The <Port> element represents a port within a JAX-RPC service. Table 4–6 pro-
vides a description of its attributes, Table 4–7 provides a description of its sub-ele-
ments.

Operation
The <Operation> element creates a security configuration at the operation level,
which takes precedence over port and service-level security configurations. Table

Table 4–6 Attributes of Port element

Attributes of Port Description

name Name of the port as specified in the wsdl (Required).

conformance

Type of conformance. In this release, the choice for this
attribute is restricted to bsp. In this release, XWS-Security is
conformant to Basic Security Profile (BSP) for messages that
are created and sent. When conformance is set to bsp, mes-
sages are checked for BSP compliance before being sent. For
more information on BSP, read What is Basic Security Profile
(BSP)?
This EA implementation of this feature will be more complete
in the FCS release (optional).

Table 4–7 Sub-elements of Port element

Sub-elements of Port Description

SecurityConfiguration
Indicates that what follows is security configuration for the
port. This over-rides any security configured for the service.

Operation
Indicates a port within a JAX-RPC service. Any (including
zero) number of these elements may be specified.

148 INTRODUCTION TO XML AND WEB SERVICES SECURITY
4–8 provides a description of its attributes, Table 4–9 provides a description of its
sub-elements.

SecurityConfiguration
The <SecurityConfiguration> element specifies a security configuration. Table

4–10 provides a description of its attributes, Table 4–11 provides a description of its
sub-elements. The sub-elements of SecurityConfiguration can appear in any
order. The order in which they appear determines the order in which they are
executed, with the exception of the OptionalTargets element.

Table 4–8 Attributes of Operation

Attributes of

Operation Description

name
Name of the operation as specified in the WSDL file, for
example, name="{http://xmlsoap.org/Ping}Ping0".
(Required)

Table 4–9 Sub-elements of Operation

Sub-elements of

Operation
Description

SecurityConfiguration
This element indicates that what follows is security configura-
tion for the operation. This overrides any security configured
for the port and the service.

Table 4–10 Attributes of SecurityConfiguration

Attributes of
SecurityConfiguration Description

dumpMessages
If dumpMessages is set to true, all incoming and outgoing
messages are printed at the standard output. The default value
is false (Optional).

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 149
enableDynamicPolicy

If enableDynamicPolicy is set to true, all incoming and
outgoing messages use a dynamic security policy. The default
value is false (Optional). For an example that uses this
attribute, see Dynamic Policy Sample Application.

Table 4–11 Sub-elements of SecurityConfiguration

Sub-elements of

SecurityConfiguration Description

Timestamp
Indicates that a timestamp must be sent in the outgoing mes-
sages.

UsernameToken
Indicates that a username token must be sent in the outgoing
messages.

Sign
Indicates that a sign operation needs to be performed on the
outgoing messages.

Encrypt
Indicates that an encrypt operation needs to be performed on
the outgoing messages.

SAMLAssertion
Indicates that a SAML assertion of subject confirmation type
Sender-Vouches (SV) must be sent in the security header of
the outgoing messages.

RequireTimestamp
Indicates that a timestamp must be present in the incoming
messages.

RequireUsernameToken
Indicates that a username token must be present in the incom-
ing messages.

RequireSignature
Indicates that the incoming messages must contain a signa-
ture.

RequireEncryption Indicates that the incoming messages must be encrypted.

RequireSAMLAssertion
Indicates that the incoming message must contain a SAML
assertion of subject confirmation type Sender-Vouches (SV).

Table 4–10 Attributes of SecurityConfiguration (Continued)

Attributes of
SecurityConfiguration Description

150 INTRODUCTION TO XML AND WEB SERVICES SECURITY
Timestamp
The <Timestamp> element specifies that a timestamp must be sent in outgoing
messages. For a discussion of using the Timestamp element with the inclu-

deTimestamp attribute of Sign, see Using Timestamp and includeTimestamp. Table 4–12

provides a description of its attributes.

UsernameToken
The <UsernameToken> element is used when a UsernameToken should be sent
with outgoing messages. This UsernameToken contains the sender’s user and
password information. Table 4–13 provides a description of its attributes.

OptionalTargets
Specifies a list of elements on which security operations are
not required in the incoming messages, but are allowed.

Table 4–12 Attributes of Timestamp

Attributes of

Timestamp Description

timeout
Value in seconds after which the timestamp should be consid-
ered expired. Default value is 300.

Table 4–13 Attributes of UsernameToken

Attributes of

UsernameToken Description

name
The name of the user. If not specified, security environment
handler must provide it at runtime.

password
The password of the user. If not specified, attempt would be
made to obtain it from the security environment handler at
runtime.

Table 4–11 Sub-elements of SecurityConfiguration

Sub-elements of

SecurityConfiguration Description

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 151
Sign
The <Sign> element is used to indicate that a sign operation needs to be per-
formed on the outgoing messages. Table 4–14 provides a description of its
attributes, Table 4–15 provides a description of its sub-elements.

digestPassword
Indicates whether to send password in digest form or not.
Default value is true.

useNonce
Indicates whether to send a nonce inside the username token
or not. Sending a nonce helps in preventing replay attacks.
Default value is true.

id
The id to be set on the username token in the message to be
sent. This is also useful in referring to the token from other
places in the security configuration file.

Table 4–14 Attributes of Sign

Attributes of Sign Description

id
The id to be set on the signature of the message to be sent.
This is also useful in referring to the signature from other
places in the security configuration file.

includeTimestamp

Indicates whether to also sign a timestamp as part of this sig-
nature or not. This is a mechanism useful in preventing replay
attacks. The default value is true. Note that a true value for
this attribute makes sure that a timestamp will be sent in the
outgoing messages even if the <Timestamp> element has not
been specified. Also note that at most one timestamp is sent in
a message.
When includeTimestamp is true, a Timestamp element
with the default value is added and is signed (i.e., Timestamp
is added as one of the targets in the corresponding signature
element.)

Table 4–13 Attributes of UsernameToken (Continued)

Attributes of

UsernameToken Description

152 INTRODUCTION TO XML AND WEB SERVICES SECURITY
Using Timestamp and includeTimestamp
The following configurations of Timestamp and the includeTimestamp attribute
of the Sign element have the following effect:

1. If a <Timestamp> element is configured, a timestamp will be sent in the
message.

2. If the includeTimestamp attribute on <Sign> has value true and <Times-

tamp> is not configured, a timestamp (with default timeout value) will be
sent in the message and included in the signature.

3. If the includeTimestamp attribute on <Sign> has value true and <Times-

tamp> is configured, a timestamp with the properties (e.g, timeout) spec-

Table 4–15 Sub-elements of Sign

Sub-elements of Sign Description

X509Token

Indicates the certificate corresponding to the private key used
for signing. If this element is not present, attempt is made to
get the default certificate from the security environment han-
dler. Only one of the X509Token, SAMLAssertion, and Sym-
metricKey elements may be present at a time.

SAMLAssertion
Indicates the certificate corresponding to the SAML assertion
used for signing. Only one of the X509Token, SAMLAsser-
tion, and SymmetricKey elements may be present at a time.

SymmetricKey

Indicates the symmetric key corresponding to the private key
used for signing. Only one of the X509Token, SAMLAsser-
tion, and SymmetricKey elements may be present at a time.
(SymmetricKey signatures are not supported for signatures in
this release.)

CanonicalizationMethod
Indicates the canonicalization algorithm applied to the
<SignedInfo> element prior to performing signature calcu-
lations.

SignatureMethod
Indicates the algorithm used for signature generation and vali-
dation.

Target
Specifies the target message part to be signed. Target has
been deprecated and is included only for backward compati-
bility.

SignatureTarget Specifies the target message part to be signed.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 153
ified on the <Timestamp> will be sent in the message and also be included
in the signature.

4. If the includeTimestamp attribute on <Sign> has value false, a times-
tamp is not included in the signature.

Encrypt
The <Encrypt> element is used to indicate that an encrypt operation needs to be
performed on the outgoing messages. Table 4–16 provides a description of its sub-
elements.

Table 4–16 Sub-elements of Encrypt

Sub-elements of
Encrypt Description

X509Token

Indicates the certificate to be used for encryption. If this ele-
ment is not present, attempt is made to get the default certifi-
cate from the security environment handler. This element must
not be specified if the <SymmetricKey> or <SAMLAssertion>
sub-element of <Encrypt> is specified.

SymmetricKey
Indicates the symmetric key to be used for encryption. This
element must not be specified if the <X509Token> or <SAM-
LAssertion> sub-element of <Encrypt> is present.

SAMLAssertion
Indicates the SAML assertion to be used for encryption. This
element must not be specified if the <X509Token> or <Sym-
metricKey> sub-element of <Encrypt> is present.

KeyEncryptionMethod
Specifies the public key encryption algorithm to be used for
encrypting and decrypting keys.

DataEncryptionMethod
Specifies the encryption algorithm to be applied to the cipher
data.

Target
Identifies the resource that needs to be encrypted. The Target
element has been deprecated and is provided only for back-
ward compatibility.

EncryptionTarget Identifies the resource that needs to be encrypted.

154 INTRODUCTION TO XML AND WEB SERVICES SECURITY
SAMLAssertion
The <SAMLAssertion> element is used to define the SAML assertion to be trans-
ferred from identity providers to service providers. These assertions include
statements that service providers use to make access control decisions. The
SAML Sample Application provides some examples of using this element. Table 4–17

provides a description of attributes of the <SAMLAssertion> element.

Table 4–17 Attributes of SAMLAssertion

Attributes of
SAMLAssertion Description

id Identifier for an assertion.

authorityId
Defines the ID that may be used to acquire the identified asser-
tion at a SAML assertion authority or responder.

strID
Element content of the string identifier for the keyIdenti-
fier.

keyIdentifier
The ID for a token reference for the key identifier that refer-
ences a local SAML assertion.

encodingType
A parameter used to identify the security reference. When the
keyIdentifier is used, this attribute is prohibited. (Prohib-
ited)

keyReferenceType
Indicates whether the token reference identifies a token by
URI (Identifier) or by an embedded reference (Embed-
ded). The default value is Identifier.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 155
RequireTimestamp
If the <RequireTimestamp> element is present, a timestamp, in the form of a
wsu:Timestamp element, must be present in the incoming messages. If the
RequireTimestamp element is not specified, a Timestamp is not required. A
timestamp specifies the particular point in time it marks. You may also want to
consider using a nonce, which is a value that you should never receive more than
once. Table 4–18 provides a description of its attributes.

type

Indicates the type of SAML assertion to use. The choices are
Holder-of-Key (HOK) and Sender-Vouches (SV). The SV con-
firmed assertion may not be contained in the message. The
Security Token Reference (STR) identified in strID becomes
a remote reference to the SV confirmed assertion. The HOK
assertion contained in the message identifies the attesting
entity and its signing key.

Whether you choose type HOK or SV depends on where this
token is located in the configuration file. A standalone <SAM-
LAssertion> element under <SecurityConfiguration>
should be of type SV. An assertion of type HOK can appear as a
child of a <Sign> or <Encrypt> element, indicating the pres-
ence of a confirmation key that can be used for the operation.
(Required)

Table 4–18 Attributes of RequireTimestamp

Attributes of

RequireTimestamp Description

id The id assigned to the timestamp.

maxClockSkew
The maximum number of seconds the sending clock can devi-
ate from the receiving clock. Default is 60.

timestampFreshness-
Limit

The maximum number of seconds the time stamp remains
valid. Default is 300.

Table 4–17 Attributes of SAMLAssertion (Continued)

Attributes of
SAMLAssertion Description

156 INTRODUCTION TO XML AND WEB SERVICES SECURITY
RequireUsernameToken
The <RequireUsernameToken> element is used to specify that a username token
must be present in the incoming messages. Table 4–19 provides a description of its
attributes.

RequireSignature
The <RequireSignature> element is specified when a digital signature is
required for all specified targets. If no signature is present, an exception is
thrown. In this release, the only sub-elements of RequireSignature that are ver-
ified while validating an incoming message are Target and SignatureTarget.

Table 4–19 Attributes of RequireUsernameToken

Attributes of

RequireUsernameToken Description

id The identifier for the UsernameToken.

passwordDigestRe-
quired

Indicates whether the username tokens in the incoming mes-
sages are required to contain the passwords in digest form or
not. Default value is true. (See also: digestPassword
attribute on <UsernameToken>)

nonceRequired
Indicates whether a nonce is required to be present in the user-
name tokens in the incoming messages. Default value is true.
(See also: useNonce attribute on <UsernameToken>)

maxClockSkew
The maximum number of seconds the sending clock can devi-
ate from the receiving clock. Default is 60.

timestampFreshness-
Limit

The maximum number of seconds the time stamp remains
valid. Default is 300.

maxNonceAge
The maximum number of seconds the nonce is cached by the
server for detecting a nonce replay. Default is 900.

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 157
Table 4–20 provides a description of its attributes, Table 4–21 provides a description
of its sub-elements.

Table 4–20 Attributes of RequireSignature

Attributes of

RequireSignature Description

id
The id to be set on the signature of the message to be sent.
This is also useful in referring to the signature from other
places in the security configuration file.

requireTimestamp
Indicates whether a timestamp must be included in the signa-
tures in the incoming messages. Default value is true. (See
also: includeTimestamp attribute on <Sign>)

Table 4–21 Sub-elements of RequireSignature

Sub-elements of
RequireSignature Description

X509Token

Indicates the certificate corresponding to the private key used
for signing. If this element is not present, attempt is made to
get the default certificate from the security environment han-
dler. Only one of the X509Token, SAMLAssertion, and Sym-
metricKey elements may be present at a time.

SAMLAssertion
Indicates the certificate corresponding to the SAML assertion
used for signing. Only one of the X509Token, SAMLAsser-
tion, and SymmetricKey elements may be present at a time.

SymmetricKey
Indicates the symmetric key corresponding to the private key
used for signing. Only one of the X509Token, SAMLAsser-
tion, and SymmetricKey elements may be present at a time.

CanonicalizationMethod
Indicates the canonicalization algorithm applied to the
<SignedInfo> element prior to performing signature calcu-
lations.

SignatureMethod
Indicates the algorithm used for signature generation and vali-
dation.

158 INTRODUCTION TO XML AND WEB SERVICES SECURITY
RequireEncryption
The <RequireEncryption> element is used when encryption is required for all
incoming messages. If encryption is not present, an exception is thrown. In this
release, the only sub-elements of RequireEncryption that are verified during
validation of encrypted data in incoming messages are Target and Encryption-

Target. Table 4–22 provides a description of its attributes, Table 4–23 provides a
description of its sub-elements.

Target
Specifies the target message part which was expected to be
signed. Target has been deprecated and is only provided for
backward compatibility.

SignatureTarget
Specifies the target message part which was expected to be
signed.

Table 4–22 Attributes of RequireEncryption

Attributes of

RequireEncryption Description

id The id to be set on the message to be sent.

Table 4–23 Sub-elements of RequireEncryption

Sub-elements of
RequireEncryption Description

X509Token

Indicates the certificate to be used for encryption. If this ele-
ment is not present, attempt is made to get the default certifi-
cate from the security environment handler. Only one of the
X509Token, SAMLAssertion, and SymmetricKey elements
may be present at a time.

Table 4–21 Sub-elements of RequireSignature (Continued)

Sub-elements of
RequireSignature Description

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 159
RequireSAMLAssertion
The <RequireSAMLAssertion> element is used when a Sender-Vouches (SV)
SAML assertion is required for all incoming messages. If a SAML assertion is
not present, an exception is thrown. Table 4–24 provides a description of its
attributes.

SAMLAssertion

Indicates the certificate corresponding to the SAML assertion
used for encryption. Only one of the X509Token, SAMLAs-
sertion, and SymmetricKey elements may be present at a
time.

SymmetricKey

Indicates the symmetric key corresponding to the private key
used for encryption. Only one of the X509Token, SAMLAs-
sertion, and SymmetricKey elements may be present at a
time.

CanonicalizationMethod
Indicates the canonicalization algorithm applied to the
<Encrypt> element prior to performing encrypt calculations.

DataEncryptionMethod
Indicates the encryption algorithm to be applied to the cipher
data.

Target
Identifies the resource that was expected to be encrypted. Tar-
get has been deprecated and is only provided for backward
compatibility.

EncryptionTarget Identifies the resource that was expected to be encrypted.

Table 4–24 Attributes of RequireSAMLAssertion

Attributes of
RequireSAMLAssertion Description

id Identifier for an assertion. (Optional)

authorityId
Defines an abstract identifier for the assertion-issuing author-
ity.

Table 4–23 Sub-elements of RequireEncryption (Continued)

Sub-elements of
RequireEncryption Description

160 INTRODUCTION TO XML AND WEB SERVICES SECURITY
OptionalTargets
The <OptionalTargets> element is used when an operation is optional for a
specific target. Table 4–25 provides a description of its sub-elements.

Transform
The <Transform> element is an optional ordered list of processing steps to be
applied to the resource's content before it is digested. Transforms can include
operations such as canonicalization, encoding/decoding, XSLT, XPath, XML
schema validation, or XInclude. The recommendation that discusses this method
is the W3C XML-Signature Syntax and Processing recommendation, which can
be viewed at http://www.w3.org/TR/xmldsig-core/#sec-Transforms. The following types
of transform algorithms can be used: canonicalization, Base64, xpath filtering,
envelope signature transform, and XSLT transform. The XWS-Security APIs Sample

Application provides some examples of configuration files that use this element.

strID
Element content of the string identifier for the keyIdenti-
fier.

keyReferenceType
Indicates whether the token reference identifies a token by
AssertionId (Identifier) or by an embedded reference
(Embedded). The default value is Identifier.

type
Indicates to use the SV type of SAML assertion. The SV con-
firmed assertion is not contained in the message. (Required)

Table 4–25 Sub-elements of OptionalTargets

Sub-elements of
OptionalTargets Description

Target

Indicates that a security operation is allowed to be performed
on this target, but it is not required. One or more of these ele-
ments can be specified. The augmented cid:* syntax is not
allowed as the value of the Target when Target is a sub-ele-
ment of OptionalTargets.

Table 4–24 Attributes of RequireSAMLAssertion (Continued)

Attributes of
RequireSAMLAssertion Description

http://www.w3.org/TR/xmldsig-core/#sec-Transforms

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 161
Table 4–26 provides a description of its attributes, Table 4–27 provides a description
of its sub-elements.

AlgorithmParameter
Algorithms are identified by URIs that appear as an attribute to the element that
identifies the algorithms' role (DigestMethod, Transform, SignatureMethod, or Canonical-

izationMethod). All algorithms used herein take parameters but in many cases the
parameters are implicit. Explicit additional parameters to an algorithm appear as
content elements within the algorithm role element. Such parameter elements
have a descriptive element name, which is frequently algorithm specific, and
MUST be in the XML Signature namespace or an algorithm specific namespace.
The XWS-Security APIs Sample Application provides some examples of configuration
files that use this element.

Table 4–28 provides a description of its attributes.

Table 4–26 Attributes of Transform

Attributes of

Transform Description

algorithm The algorithm to be used for signing. (Required)

Table 4–27 Sub-elements of Transform

Sub-elements of

Transform Description

AlgorithmParameter
Identifies the parameters to be supplied to the transform algo-
rithm.

Table 4–28 Attributes of AlgorithmParameter

Attributes of

AlgorithmParameter Description

name The name of the algorithm parameter. (Required)

162 INTRODUCTION TO XML AND WEB SERVICES SECURITY
X509Token
The <X509Token> element is used to specify the certificate to be used for encryp-
tion (for the case of encryption) or the certificate corresponding to the private
key used for signing (for the case of signature). This element must not be speci-
fied if the <SymmetricKey> or <SAMLAssertion> sub-elements are present. Table 4–29

provides a description of its attributes.

value The value of the algorithm parameter. (Required)

Table 4–29 Attributes of X509Token

Attributes of

X509Token Description

id
The id to be assigned to this token in the message. This
attribute is useful in referring the token from other places in
the security configuration file. (Optional)

strID

If specified, it denotes the wsu:Id to be assigned to the Secu-
rity Token Reference (STR) to be generated and inserted into
the message. The inserted STR would reference the X509
token.

certificateAlias The alias associated with the token (certificate).

keyReferenceType

The reference mechanism to be used for referring to the X509
token (certificate) which was involved in the security opera-
tion, in the outgoing messages. The default value is Direct.
The list of allowed values for this attribute and their descrip-
tion is as follows:
 1. Direct - certificate is sent along with the message.
 2. Identifier - subject key identifier extension value of
the certificate is sent in the message.
3. IssuerSerialNumber - issuer name and serial number
of the certificate are sent in the message.

Table 4–28 Attributes of AlgorithmParameter (Continued)

Attributes of

AlgorithmParameter Description

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 163
Target

Note: In this release the Target sub-element is deprecated and is supported only for
backward compatibility. The Target sub-element is being replaced with Signature-

Target and EncryptionTarget.

The <Target>target_value</Target> sub-element contains a string that can
be used to identify the resource that needs to be signed or encrypted. If a Target

sub-element is not specified, the default value is a target that points to the con-
tents of the SOAP body of the message. The value of this element is specified as
a text node inside this element.

You can specify attachments as targets by setting the type attribute to uri and
specifying the target value as cid:<part-name>, which specifies the value of the
Content-ID (CID) header of the attachment. When the Content-ID is not know
until runtime, such as when auto-generated CIDs are run under JAX-RPC, the
attachment can be referenced by setting the type attribute to uri and specifying
the target value as attachmentRef:<part-name>, where part-name is the
WSDL part name of the AttachmentPart. Auto-generated CIDs in JAX-RPC
following the form <partname>=<UUID>@<Domain>. The special value cid:*

can be used to refer to all attachments of a SOAPMessage.

encodingType

The type of encoding to be used for the token. The default
value is http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-
1.0#Base64Binary.

valueType
The type of value to expect. The valueType can be #X509v3,
#X509PKIPathv1, or #PKCS7. This release does not support
#PKCS7.

Table 4–29 Attributes of X509Token (Continued)

Attributes of

X509Token Description

164 INTRODUCTION TO XML AND WEB SERVICES SECURITY
The attributes of the <Target> element are described in Table 4–30.

SignatureTarget
The <SignatureTarget> sub-element is called by the <SignatureMethod> ele-
ment to identify the resource that needs to be signed. If neither the <Signature-
Target> nor <Target> sub-element are specified, the default value is a target
that points to the contents of the SOAP body of the message. The target value is
a string that specifies the object to be signed, and which is specified between the
<SignatureTarget>target_value</SignatureTarget> elements. The XWS-

Security APIs Sample Application provides some examples of configuration files that
use this element.

You can specify attachments as targets by setting the type attribute to uri and
specifying the target value as cid:<part-name>, which specifies the value of the
Content-ID (CID) header of the attachment. When the Content-ID is not know
until runtime, such as when auto-generated CIDs are run under JAX-RPC, the
attachment can be referenced by setting the type attribute to uri and specifying

Table 4–30 Attributes of Target

Attributes of Target Description

type

Indicates the type of the target value. Default value is qname.
The list of allowed values for this attribute and their descrip-
tion is as follows:
1. qname - If the target element has a local name Name and a
namespace URI some-uri, the target value is {some-
uri}Name.
 2. xpath - Indicates that the target value is the xpath of the
target element.
 3. uri - If the target element has an id some-id, then the tar-
get value is #some-id.

contentOnly

Indicates whether the complete element or only the contents
needs to be encrypted (or is required to be encrypted). The
default value is true. (Relevant only for <Encrypt> and
<RequireEncryption> targets)

enforce

If true, indicates that the security operation on the target ele-
ment is definitely required. Default value is true. (Relevant
only for <RequireSignature> and <RequireEncryption> tar-
gets)

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 165
the target value as attachmentRef:<part-name>, where part-name is the
WSDL part name of the AttachmentPart. Auto-generated CIDs in JAX-RPC
following the form <partname>=<UUID>@<Domain>. The special value cid:*

can be used to refer to all attachments of a SOAPMessage.

The attributes of <SignatureTarget> are described in Table 4–31, its sub-ele-
ments are described in Table 4–32.

Table 4–31 Attributes of SignatureTarget

Attributes of

SignatureTarget Description

type

Indicates the type of the target value. Default value is qname.
The list of allowed values for this attribute and their descrip-
tion is as follows:
1. qname - If the target element has a local name Name and a
namespace URI some-uri, the target value is {some-
uri}Name.
 2. xpath - Indicates that the target value is the xpath of the
target element.
 3. uri - If the target element has an id some-id, then the tar-
get value is #some-id. This is the option that is used to secure
message attachments.

value
Indicates whether the value needs to be encrypted (or is
required to be encrypted). The default value is true. (Rele-
vant only for <Encrypt> and <RequireEncryption> targets)

enforce

If true, indicates that the security operation on the target ele-
ment is definitely required. Default value is true. (Relevant
only for <RequireSignature> and <RequireEncryption> tar-
gets)

Table 4–32 Sub-elements of SignatureTarget

Sub-elements of

SignatureTarget Description

DigestMethod
Identifies the digest algorithm to be applied for signing the
object.

166 INTRODUCTION TO XML AND WEB SERVICES SECURITY
EncryptionTarget
The <EncryptionTarget> sub-element identifies the type of encrypted structure
being described. If neither the <EncryptionTarget> nor <Target> sub-ele-
ments are specified, the default value is a target that points to the contents of the
SOAP body of the message. The target value is a string that specifies the object
to be encrypted, and which is specified between the <EncryptionTar-

get>target_value</EncryptionTarget> elements.

You can specify attachments as targets by setting the type attribute to uri and
specifying the target value as cid:<part-name>, which specifies the value of the
Content-ID (CID) header of the attachment. When the Content-ID is not know
until runtime, such as when auto-generated CIDs are run under JAX-RPC, the
attachment can be referenced by setting the type attribute to uri and specifying
the target value as attachmentRef:<part-name>, where part-name is the
WSDL part name of the AttachmentPart. Auto-generated CIDs in JAX-RPC
following the form <partname>=<UUID>@<Domain>. The special value cid:*

can be used to refer to all attachments of a SOAPMessage.

Transform
Identifies the transform algorithm to be applied before signing
the object.

Table 4–32 Sub-elements of SignatureTarget (Continued)

Sub-elements of

SignatureTarget Description

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 167
The attributes of <EncryptionTarget> are described in Table 4–33, its sub-ele-
ments are described in Table 4–34.

Table 4–33 Attributes of EncryptionTarget

Attributes of

EncryptionTarget Description

type

Indicates the type of the target value. Default value is qname.
The list of allowed values for this attribute and their descrip-
tion is as follows:
1. qname - If the target element has a local name Name and a
namespace URI some-uri, the target value is {some-
uri}Name.
 2. xpath - Indicates that the target value is the xpath of the
target element.
 3. uri - If the target element has an id some-id, then the tar-
get value is #some-id. This option is used to secure message
attachments.

contentOnly

Indicates whether the complete element or only the contents
need to be encrypted (or is required to be encrypted). The
default value is true. (Relevant only for <Encrypt> and
<RequireEncryption> targets)

value
Indicates whether the value needs to be encrypted (or is
required to be encrypted). The default value is true.
(Required)

enforce

If true, indicates that the security operation on the target ele-
ment is definitely required. Default value is true. (Relevant
only for <RequireSignature> and <RequireEncryption> tar-
gets)

Table 4–34 Sub-elements of EncryptionTarget

Sub-elements of

EncryptionTarget Description

Transform
Identifies the transform algorithm to be applied to the object to
be encrypted.

168 INTRODUCTION TO XML AND WEB SERVICES SECURITY
SymmetricKey
The <SymmetricKey> element indicates the symmetric key to be used for
encryption. This element must not be specified if the <X509Token> or <SAMLAs-

sertion> sub-elements are present. Its attributes are discussed in Table 4–35.

CanonicalizationMethod
The <CanonicalizationMethod> element specifies the canonicalization algo-
rithm to be applied to the <SignedInfo> element prior to performing signature
calculations. When specified, the canonical XML [XML-C14N] standard, which
is an algorithm that standardizes the way XML documents should be ordered
and structured, should be applied. The recommendation that discusses this
method is the W3C XML-Signature Syntax and Processing recommendation,
which can be viewed at http://www.w3.org/TR/xmldsig-core/#sec-CanonicalizationMethod.
Its attributes are discussed in Table 4–36.

Table 4–35 Attributes of SymmetricKey

Attributes of

SymmetricKey Description

keyAlias
The alias of the symmetric key to be used for encryption. This
attribute is required.

Table 4–36 Attributes of CanonicalizationMethod

Attributes of

CanonicalizationMethod Description

algorithm

The algorithm to be used for signing. There is no default
value. You must explicitly add
http://www.w3.org/2001/10/xml-exc-c14n#
to the transforms list in the configuration file if you want to
use it. The prefix list is computed by the implementation and
does not need to be specified in the configuration file. This
transform will be added as the last transform regardless of its
placement in the configuration file.

http://www.w3.org/TR/xmldsig-core/#sec-CanonicalizationMethod

SEMANTICS OF SECURITY CONFIGURATION FILE ELEMENTS 169
SignatureMethod
The <SignatureMethod> element specifies the algorithm used for signature
generation and validation. A SignatureMethod is implicitly given two parame-
ters: the keying info and the output of CanonicalizationMethod. The recom-
mendation that discusses this method is the W3C XML-Signature Syntax and
Processing recommendation, which can be viewed at http://www.w3.org/TR/xmldsig-

core/#sec-SignatureMethod. Its attributes are discussed in Table 4–37.

DigestMethod
The <DigestMethod> element specifies the algorithm used for generating the
digest of the object to be signed. The recommendation that discusses this method
is the W3C XML-Signature Syntax and Processing recommendation, which can
be viewed at http://www.w3.org/TR/xmldsig-core/#sec-DigestMethod. The attributes of
<DigestMethod> are discussed in Table 4–38.

DataEncryptionMethod
The <DataEncryptionMethod> element specifies the encryption algorithm to be
applied to the cipher data. The recommendation that discusses this method is the
W3C XML Encryption Syntax and Processing recommendation, which can be

Table 4–37 Attributes of SignatureMethod

Attributes of

SignatureMethod Description

algorithm
The algorithm to be used for signing. The default value is
http://www.w3.org/2000/09/xmldsig#rsa-sha1.

Table 4–38 Attributes of DigestMethod

Attributes of

DigestMethod Description

algorithm
 Identifies the digest algorithm to be applied to the signed
object. The default value is
http://www.w3.org/2000/09/xmldsig#sha1.

http://www.w3.org/TR/xmldsig-core/#sec-SignatureMethod
http://www.w3.org/TR/xmldsig-core/#sec-SignatureMethod
http://www.w3.org/TR/xmldsig-core/#sec-DigestMethod

170 INTRODUCTION TO XML AND WEB SERVICES SECURITY
viewed at http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/#sec-EncryptionMethod.
The attributes of <DataEncryptionMethod> are discussed in Table 4–39.

Note: Although the schema indicates that http://www.w3.org/2001/04/

xmlenc#aes128-cbc is the default algorithm for <DataEncryptionMethod>, for
backward compatibility this implementation still uses http://www.w3.org/2001/

04/xmlenc#tripledes-cbc as the default.

Table 4–39 Attributes of DataEncryptionMethod

Attributes of

DataEncryptionMethod Description

algorithm

The algorithm to be used for encrypting data. The default
value is
"http://www.w3.org/2001/04/xmlenc#aes128-cbc").
Other options include:
"http://www.w3.org/2001/04/xmlenc#aes256-cbc";
and
"http://www.w3.org/2001/04/xmlenc#tripledes-
cbc".

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/#sec-EncryptionMethod

HOW DO I SPECIFY THE SECURITY CONFIGURATION FOR THE BUILD FILES? 171
KeyEncryptionMethod
The <KeyEncryptionMethod> element specifies the public key encryption algo-
rithm to be used for encrypting and decrypting keys. Its attributes are discussed
in Table 4–40.

SecurityEnvironmentHandler
The <SecurityEnvironmentHandler> element specifies the implementation class
name of the security environment handler. Read Writing SecurityEnvironmentHandlers

for more information on SecurityEnvironmentHandlers.

How Do I Specify the Security
Configuration for the Build Files?
After the security configuration files are created, you can easily specify which of
the security configuration files to use for your application. In the build.proper-
ties file for your application, create a property to specify which security config-
uration file to use for the client, and which security configuration file to use for
the server. An example from the simple sample application does this by listing

Table 4–40 Attributes of KeyEncryptionMethod

Attributes of

KeyEncryptionMethod Description

algorithm

Specifies the KeyTransport/KeyWrap algorithms to be used
to encrypt/decrypt a public key or secret key (key used to
encrypt the data) respectively. The default value is
http://www.w3.org/2001/04/xmlenc#rsa-oaep-
mgf1p. Other options include: "http://www.w3.org/
2001/04/xmlenc#rsa-1_5";
"http://www.w3.org/2001/04/xmlenc#kw-triple-
des";
"http://www.w3.org/2001/04/xmlenc#kw-aes128";
and
"http://www.w3.org/2001/04/xmlenc#kw-aes256".

172 INTRODUCTION TO XML AND WEB SERVICES SECURITY
all of the alternative security configuration files, and uncommenting only the
configuration to be used. The simple sample uses the following properties:

#look in config directory for alternate security
configurations
Client Security Config. file
client.security.config=config/dump-client.xml
#client.security.config=config/user-pass-authenticate-
client.xml
#client.security.config=config/encrypted-user-pass-client.xml
#client.security.config=config/encrypt-usernameToken-
client.xml
#client.security.config=config/sign-client.xml
#client.security.config=config/encrypt-client.xml
#client.security.config=config/encrypt-using-symmkey-
client.xml
#client.security.config=config/sign-encrypt-client.xml
#client.security.config=config/encrypt-sign-client.xml
#client.security.config=config/sign-ticket-also-client.xml
#client.security.config=config/timestamp-sign-client.xml
#client.security.config=config/flexiblec.xml
#client.security.config=config/method-level-client.xml

Server Security Config. file
server.security.config=config/dump-server.xml
#server.security.config=config/user-pass-authenticate-
server.xml
#server.security.config=config/encrypted-user-pass-server.xml
#server.security.config=config/encrypt-usernameToken-
server.xml
#server.security.config=config/sign-server.xml
#server.security.config=config/encrypt-server.xml
#server.security.config=config/sign-encrypt-server.xml
#server.security.config=config/encrypt-sign-server.xml
#server.security.config=config/sign-ticket-also-server.xml
#server.security.config=config/timestamp-sign-server.xml
#server.security.config=config/flexibles.xml
#server.security.config=config/method-level-server.xml

As you can see from this example, several security scenarios are listed in the
build.properties file. To run a particular security configuration option, simply
uncomment one of the entries for a client configuration file, uncomment the cor-
responding entry for the server configuration file, and comment all of the other
options.

In general, the client and server configuration files should match. However, in
some cases, more than one client configuration can be used with a server config-

HOW DO I SPECIFY THE SECURITY CONFIGURATION FOR THE BUILD FILES? 173
uration. For example, either encrypt-using-symmkey-client.xml or
encrypt-client.xml can be used with encrypt-server.xml. This combina-
tion works because the server requirement is the same (the body contents must
be encrypted) when the client-side security configuration is either encrypt-

using-symmkey-client.xml or encrypt-client.xml. The difference in the
two client configurations is the key material used for encryption.

After the property has been defined in the build.properties file, you can refer
to it from the file that contains the asant (or ant) targets, which is build.xml.

When you create an asant (or ant) target for JAX-RPC clients and services,
you use the wscompile utility to generate stubs, ties, serializers, and WSDL
files. XWS-Security has been integrated into JAX-RPC through the use of secu-
rity configuration files. The code for performing the security operations on the
client and server is generated by supplying the configuration files to the JAX-
RPC wscompile tool. The wscompile tool can be instructed to generate security
code by making use of the -security option and supplying the security configu-
ration file.

Note: For the 2.0 release of JAX-RPC, JAX-RPC will be renamed to JAX-WS.
JAX-WS will become part of the XWS-Security 2.0 FCS later this year. When this
renaming occurs, the wscompile tool will be replaced, and these steps and the
build.xml files for the sample applications will need to be modified accordingly.

An example of the target that runs the wscompile utility with the -security

option pointing to the security configuration file specified in the build.proper-

ties file to generate server artifacts, from the simple sample application, looks
like this:

<target name="gen-server" depends="prepare"
 description="Runs wscompile to generate server
artifacts">
 <echo message="Running wscompile...."/>
 <wscompile verbose="${jaxrpc.tool.verbose}"
 xPrintStackTrace="true"
 keep="true" fork="true"
 security="${server.security.config}"
 import="true"
 model="${build.home}/server/WEB-INF/
${model.rpcenc.file}"
 base="${build.home}/server/WEB-INF/classes"
 classpath="${app.classpath}"
 config="${config.rpcenc.file}">

174 INTRODUCTION TO XML AND WEB SERVICES SECURITY
 <classpath>
 <pathelement location="${build.home}/server/WEB-INF/
classes"/>
 <path refid="app.classpath"/>
 </classpath>
 </wscompile>
 </target>

An example of the target that runs the wscompile utility with the security

option pointing to the security configuration file specified in the build.proper-

ties file to generate the client-side artifacts, from the simple sample applica-
tion, looks like this:

<target name="gen-client" depends="prepare"
 description="Runs wscompile to generate client side
artifacts">
 <echo message="Running wscompile...."/>
 <wscompile fork="true" verbose="${jaxrpc.tool.verbose}"
keep="true"
 client="true"

 security="${client.security.config}"
 base="${build.home}/client"
 features=" "
 config="${client.config.rpcenc.file}">
 <classpath>
 <fileset dir="${build.home}/client">
 <include name="secenv-handler.jar"/>
 </fileset>
 <path refid="app.classpath"/>
 </classpath>
 </wscompile>
 </target>

Refer to the documentation for the wscompile utility in Useful XWS-Security Com-

mand-Line Tools for more information on wscompile options.

Are There Any Sample Applications
Demonstrating XWS-Security?
This release of the Java WSDP includes many example applications that illus-
trate how a JAX-RPC or stand-alone SAAJ application developer can use the
XML and Web Services Security framework and APIs. The example applica-
tions can be found in the <JWSDP_HOME>/xws-security/samples/

<sample_name>/ directory. Before you can run the sample applications, you

ARE THERE ANY SAMPLE APPLICATIONS DEMONSTRATING XWS-SECURITY? 175
must follow the setup instructions in Setting Up To Use XWS-Security With the Sample

Applications.

The sample applications print out both the client and server request and response
SOAP messages. The output from the server may be viewed in the appropriate
container’s log file. The output from the client is sent to stdout or whichever
stream is used by the configured log handler. Messages are logged at the INFO

level.

Note: In some of the sample security configuration files, no security is specified for
either a request or a response. In this case, the response is a simple JAX-RPC
response. When XWS-Security is enabled for an application by providing the -

security option to wscompile, and a request or response not containing a
wsse:Security Header is received, the message WSS0202: No Security element

in the message will display in the output to warn that a nonsecure response was
received.

In these examples, the server-side code is found in the <JWSDP_HOME>/xws-

security/samples/<sample_name>/server/src/<sample_name>/ directory.
Client-side code is found in the <JWSDP_HOME>/xws-security/samples/

<sample_name>/client/src/<sample_name>/ directory. The asant (or ant)

targets build objects under the /build/server/ and /build/client/ directo-
ries.

These examples can be deployed onto any of the following containers. For the
purposes of this tutorial, only deployment to the Sun Java System Application
Server Platform Edition 8.1 will be discussed. The README.txt file for each
example provides more information on deploying to the other containers. The
following containers can be downloaded from http://java.sun.com/webservices/contain-

ers/index.html.

• Sun Java System Application Server Platform Edition 8.1 (Application
Server)

• Sun Java System Web Server 6.1 (Web Server)

If you are using the Java SDK version 5.0 or higher, download service
pack 4 for the Web Server. If you are using version 1.4.2 of the Java SDK,
download service pack 2 or 3.

• Tomcat 5 Container for Java WSDP (Tomcat)

These examples use keystore and truststore files that are included in the
<JWSDP_HOME>/xws-security/etc/ directory. For more information on using

http://java.sun.com/webservices/containers/index.html

176 INTRODUCTION TO XML AND WEB SERVICES SECURITY
keystore and truststore files, read the keytool documentation at http://java.sun.com/

j2se/1.5.0/docs/tooldocs/solaris/keytool.html. Refer to the application’s README.txt file
if deploying on the Web Server or Tomcat.

The following list provides the name, a short description, and a link to further
discussion of each of the sample applications available in this release:

• simple

This sample application lets you plug in different client and server-side
configurations describing security settings. This example has support for
digital signatures, XML encryption/decryption, and username token veri-
fication. This example allows and demonstrates combinations of these
basic security mechanisms through configuration files. The section Simple

Security Configurations Sample Application provides examples and descriptions
of configuration files used in the sample application, along with instruc-
tions for compiling and running the application.

• api-sample

This sample application shows how to use the XWS-Security 2.0 APIs in
a stand-alone mode. This sample defines the XWSSProcessor interface,
which is used to insulate the API user from changes that may occur in
future releases of the API, and provides an implementation for it. The
Client.java file uses the XWSSProcessor APIs to secure a SOAP mes-
sage. The section XWS-Security APIs Sample Application provides further
description of the sample application, along with instructions for compil-
ing and running the application.

• jaas-sample

This sample demonstrates how to plug in a JAAS LoginModule for user-
name-password authentication. Read more about JAAS at http://

java.sun.com/products/jaas/. The section JAAS Sample Application provides fur-
ther description of the sample application, along with instructions for
compiling and running the application.

• swainterop

This sample application demonstrates the Soap Messages with Attachments

(SwA) interoperability scenarios. The section Soap With Attachments Sample Applica-

tion provides further description of the sample application, along with
instructions for compiling and running the application.

• samlinterop

This sample application demonstrates support for OASIS WSS Security Asser-

tion Markup Language (SAML) Token Profile 1.0 in XWS-Security. The section

http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

WRITING SECURITYENVIRONMENTHANDLERS 177
SAML Sample Application provides further description of the sample applica-
tion, along with instructions for compiling and running the application.

• dynamic-policy

This sample application demonstrates how the request and response secu-
rity policies can be set at runtime from the SecurityEnvironmen-

tHandler callback. The section Dynamic Policy Sample Application provides
further description of the sample application, along with instructions for
compiling and running the application.

• dynamic-response

This sample application demonstrates using the certificate that arrived in a
signed request to encrypt the response back to the requester. The section
Dynamic Response Sample Application provides further description of the sam-
ple application, along with instructions for compiling and running the
application.

Writing SecurityEnvironmentHandlers
The signing and encryption operations require private-keys and certificates. An
application can obtain such information in various ways, such as looking up a
keystore with an alias, using the default key-pairs available with the container,
looking up a truststore with an alias, etc. Similarly if an application wants to
send a username-password in a UsernameToken, it can choose to obtain the user-
name-password pair in various ways, such as reading from a file, prompting the
user on the console, using a popup window, etc. The authentication of the user-
name-password on the receiving application can similarly be done by plugging
into existing authentication infrastructure, using a proprietary username-pass-
word database, etc.

To support these possibilities, XWS-Security defines a set of CallBack classes
and requires the application to define a CallBackHandler to handle these call-
backs. The xwss:SecurityEnvironmentHandler element is a compulsory child
element that needs to be specified. The value of this element is the class name of
a Java class that implements the javax.security.auth.callback.Callback-

Handler interface and handles the set of callbacks defined by XWS-Security.
There are a set of callbacks that are mandatory and every CallbackHandler

needs to implement them. A few callbacks are optional and can be used to sup-
ply some fine-grained property information to the XWS-Security run-time.

When using the XWS-Security APIs for securing both JAX-RPC applications
and stand-alone applications that make use of SAAJ APIs only for their SOAP

178 INTRODUCTION TO XML AND WEB SERVICES SECURITY
messaging, you have the option of either implementing a CallbackHandler or
implementing the com.sun.xml.wss.SecurityEnvironment interface. Once
implemented, the appropriate instance of the CallbackHandler or SecurityEn-
vironment interface implementation needs to be set into an instance of
com.sun.xml.wss.ProcessingContext. For example code uses the XWS-
Security APIs, refer to XWS-Security APIs Sample Application. The SecurityEnvi-

ronment interface is evolving and is subject to refinement in a later release.

Because information such as private keys and certificates for signing and encryp-
tion can be obtained in various ways (looking up a keystore with an alias, using
the default key-pairs available with the container, looking up a truststore with an
alias, etc.), every callback defines a set of Request inner classes and a callback
can be initialized with any of its request inner classes. A tagging Request inter-
face is also defined within the callback to tag all Request classes. For example,
the XWS-Security configuration schema defines an xwss:X509Token element
containing an optional attribute certificateAlias. When the xwss:X509Token

element embedded inside a xwss:Sign element has a certificateAlias attribute
specified as shown in the following code snippet, the XWS-Security run-time
would invoke the SecurityEnvironmentHandler of the application with a Sig-

natureKeyCallback object to obtain the private-key required for the signing
operation.

<xwss:Sign>
 <xwss:X509Token certificateAlias="xws-security-client"/>

</xwss:Sign>

The SignatureKeyCallback will be initialized by XWS-Security run-time with
an AliasPrivKeyCertRequest in the following manner:

SignatureKeyCallback sigKeyCallback = new
SignatureKeyCallback(new

SignatureKeyCallback.AliasPrivKeyCertRequest(alias));

The application’s SecurityEnvironmentHandler implementation then needs to
handle the SignatureKeyCallback and use the alias to locate and set the pri-
vate-key and X.509 certificate pair on the AliasPrivKeyCertRequest. The fol-
lowing code shows how this callback is handled in the handle() method of
SecurityEnvironmentHandler shipped with the simple sample.

} else if (callbacks[i] instanceof SignatureKeyCallback) {
SignatureKeyCallback cb =

(SignatureKeyCallback)callbacks[i];

WRITING SECURITYENVIRONMENTHANDLERS 179
 if (cb.getRequest() instanceof
SignatureKeyCallback.AliasPrivKeyCertRequest) {

SignatureKeyCallback.AliasPrivKeyCertRequest request
=

(SignatureKeyCallback.AliasPrivKeyCertRequest)
cb.getRequest();

String alias = request.getAlias();
if (keyStore == null)

initKeyStore();
 try {

X509Certificate cert = (X509Certificate)
keyStore.getCertificate(alias);

request.setX509Certificate(cert);
// Assuming key passwords same as the keystore

password
PrivateKey privKey =

(PrivateKey) keyStore.getKey(alias,
keyStorePassword.toCharArray());

request.setPrivateKey(privKey);
} catch (Exception e) {

 throw new IOException(e.getMessage());
}
} else {

throw new
UnsupportedCallbackException(null, "Unsupported Callback

Type Encountered");
}

}

This handler uses a keystore to locate the private key and certificate pair, and sets
it using AliasPrivKeyCertRequest.

As shown in the sample code, the SecurityEnvironmentHandler should throw
an UnsupportedCallbackException whenever it cannot handle a Callback or a
particular Request type of a Callback.

The type of Request with which the Callback is initialized often depends on the
information specified in the security configuration file of the application. For
example if the xwss:X509Token specified under an xwss:Sign element did not
contain the certificateAlias attribute, XWS-Security would invoke the appli-
cation’s SecurityEnvironmentHandler with SignatureKeyCall-

back.DefaultPrivKeyCertRequest to try and obtain the default private-key
and certificate pair. If the SecurityEnvironmentHandler does not handle this
request and throws an UnsupportedCallbackException, the signature opera-
tion would fail.

180 INTRODUCTION TO XML AND WEB SERVICES SECURITY

st

ds are
lasses

Key(

ey)

ri-

tifi-

)

For more information, read the API documentation for callbacks from the
<JWSDP_HOME>/xws-security/docs/api/com/sun/xml/wss/impl/callback/
package-summary.html. This documentation includes the list of mandatory and
optional callbacks and the details of the Callback classes and supported meth-
ods. Table 4–41 provides a brief summary of all the mandatory Callback classes
and their associated Request types.

Table 4–41 Summary of Callback classes and their Request types

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

Signature
Key
Callback

Used by XWS-Security run-
time to obtain the private key
to be used for signing the
corresponding X.509 certifi-
cate. There are two ways in
which an application can sup-
ply the private-key and certif-
icate information.
1. Lookup a keystore using
an alias.
2. Obtain the default private-
key and certificate from the
container/environment in
which the application is run-
ning.
3. Obtain the private key and
certificate given the public
key. This kind of request is
used in scenarios where the
public key appears as a Key-
Value under a ds:KeyInfo
and needs to be used for sign-
ing.

Accordingly, there are three
Request inner classes with
which the SignatureKey-
Callback can be initialized.

1. AliasPrivKeyC-
ertRequest: A
Callback initialized
with this request
should be handled if
the private key to be
used for signing is
mapped to an alias.
2. Default-
PrivKeyCertRe-
quest: A Callback
initialized with this
request should be han-
dled if there's some
default private key to
be used for signing.
3. PublicKey-
BasedPri-
vateKeyCertReque
st: A callback initial-
ized with this request
should be handled if
the private key to be
used for signing is to
be retrieved given the
public key.

The following four metho
present in all Request C
of this Callback:
public void setPrivate

PrivateKey privateK

public PrivateKey getP

vateKey()

public void
setX509Certificate(

X509Certificate cer
cate)
public X509Certificate

getX509Certificate(

WRITING SECURITYENVIRONMENTHANDLERS 181

ds are
t
:

cer-

ate
te()

st
Signa-
ture
Verifi-
cation
Key
Callback

Obtains the certificate
required for signature verifi-
cation. There are currently
two situations in which
XWS-Security would require
this Callback to resolve the
certificate:
1. When the signature to be
verified references the key
using an X.509 Subject-
KeyIdentifier. For exam-
ple, when the sender specifies
the attribute xwss:keyRef-
erenceType="Identi-
fier" on the
xwss:X509Token child of
the xwss:Sign element.
2. When the signature to be
verified references the key
using an X.509 IssuerSe-
rialNumber. For example,
when the sender specifies the
attribute xwss:keyRefer-
enceType="IssuerSeri-
alNumber" on the
xwss:X509Token child of
the xwss:Sign element.
3. When ds:KeyInfo contains
a key value, use the public
key to obtain the X.509 cer-
tificate.

Accordingly, there are three
Request inner classes with
which a SignatureVeri-
ficationKeyCallback can
be initialized.
Note: Additional Requests
may be defined in a future
release.

1.
X509SubjectKeyId
entifierBase-
dRequest: Request
for an X.509 certifi-
cate whose X.509
SubjectKeyIden-
tifier value is
given.
2.
X509IssuerSerial
BasedRequest:
Request for an X.509
certificate whose
issuer name and serial
number values are
given.
3. PublicKeyBase-
dRequest: Request
for an X.509 certifi-
cate for a given public
key.

The following two metho
present in all the Reques
classes of this Callback

public void
setX509Certificate(

X509Certificate
tificate)
public X509Certific

getX509Certifica

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

182 INTRODUCTION TO XML AND WEB SERVICES SECURITY

ds are

eRequ

ateRe
of this

cer-

ate
te()

re
et-
 this

et-

retKe

Key
)

st
Encryp-
tion
Key
Callback

Obtains the certificate for
key-encryption or a symmet-
ric-key for data encryption.
The three situations for
which XWS-Security would
require this Callback for
performing encryption:
1. When the xwss:Encrypt
element contains an
xwss:X509Token child with
certificateAlias
attribute set to an alias. The
certificateAlias indi-
cates that a random symmet-
ric key is used for encryption
of the specified message part
and the certificate is then
used to encrypt the random
symmetric-key to be sent
along with the message.
2. When the xwss:Encrypt
element contains an
xwss:X509Token child with
no certificateAlias
attribute set on it. XWS-
Security tries to obtain a
default certificate from the
Callback to be used for
encrypting the random sym-
metric key.
3. When the xwss:Encrypt
element contains an
xwss:SymmetricKey child
specifying the keyAlias
attribute. This alias indicates
that a symmetric key corre-
sponding to this alias needs
to be located and used for
encryption of the specified
message part.
4. When an X.509 certificate
needs to be obtained for a
given public key.

The following are the
Request inner classes
with which an
EncryptionKey-
Callback can be ini-
tialized.
1.
AliasX509Certifi
cateRequest: A
Callback initialized
with this request
should be handled if
the X.509 certificate
to be used for encryp-
tion is mapped to an
alias.
2.
DefaultX509Certi
ficateRequest: A
Callback initialized
with this request
should be handled if
there's a default X.509
certificate to be used
for encryption.
3. AliasSymmet-
ricKeyRequest: A
Callback initialized
with this request
should be handled if
the symmetric key to
be used for encryp-
tion is mapped to an
alias.
4. PublicKeyBase-
dRequest: Request
for an X.509 certifi-
cate for a given public
key.

The following two metho
present in the
AliasX509Certificat
est and
DefaultX509Certific
quest Request classes
Callback:

public void
setX509Certificate(

X509Certificate
tificate)
public X509Certific

getX509Certifica

The following methods a
present in the AliasSymm
ricKeyRequest class of
Callback:

public void setSymm
ricKey(

javax.crypto.Sec
y

symmetricKey)
public
javax.crypto.Secret

getSymmetricKey(

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

WRITING SECURITYENVIRONMENTHANDLERS 183

ds are

ifier

edReq

dRequ
his

st
Decryp-
tion
Key
Callback

Obtains the symmetric key to
be used for decrypting the
encrypted data or obtaining
the private-key for decrypting
the encrypted random sym-
metric key that was sent with
the message (along with the
encrypted data).
There are currently four situ-
ations in which XWS-Secu-
rity will require this
Callback to perform
decryption.
1. When the EncryptedKey
references the key (used for
encrypting the symmetric
key) using an X.509 Sub-
jectKeyIdentifier. For
example, when the sender
specifies the attribute key-
ReferenceType="Identi-
fier" on the
xwss:X509Token child of
the xwss:Encrypt element.
2. When the Encrypted-
Key references the key (used
for encrypting the symmetric
key) using an X.509 Issu-
erSerialNumber. For
example, when the sender
specifies the attribute key-
ReferenceType="Issu-
erSerialNumber" on the
xwss:x509Token child of
xwss:Encrypt element.

1.
X509SubjectKeyId
entifierBase-
dRequest: Request
for a private-key when
the X.509 Subject-
KeyIdentifier
value for a corre-
sponding X.509 certif-
icate is given.
2.
X509IssuerSerial
BasedRequest:
Request for a private
key when the issuer
name and serial num-
ber values for a corre-
sponding X.509
certificate are given.
3.
X509CertificateB
asedRequest:
Request for a private
key when a corre-
sponding X.509 certif-
icate is given.

The following two metho
present in the
X509SubjectKeyIdent
BasedRequest,
X509IssuerSerialBas
uest, and
X509CertificateBase
est Request classes of t
Callback:

public void setPri-
vateKey(

PrivateKey pri-
vateKey)
public PrivateKey

getPrivateKey()

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

184 INTRODUCTION TO XML AND WEB SERVICES SECURITY

re
et-
 this

et-

retKe

Key
)

st
Decryp-
tion
Key
Callback
(contin-
ued)

3. When the EncryptedKey
contains a wsse:Direct ref-
erence to the key used for
encrypting the symmetric
key. This means the X.509
certificate is present as a
wsse:BinarySecurityTo-
ken in the message. For
example, when the sender
specifies the attribute key-
Reference-
Type="Direct" on the
xwss:x509Token child of
xwss:Encrypt element.
4. When the Encrypted-
Data contains a ds:key-
Name reference to the
symmetric key that was used
for encryption. For example,
when the sender specifies the
xwss:SymmetricKey child
of xwss:Encrypt and speci-
fies the keyAlias attribute
on it.
5. When the EncryptedKey
contains a ds:KeyInfo with
a key value child.
Accordingly, there are five
Request classes with which
a DecryptionKeyCall-
back can be initialized.

4. AliasSymmet-
ricKeyRequest: A
Callback initialized
with this request
should be handled if
the symmetric key to
be used for decryp-
tion is mapped to
some alias.
5. PublicKey-
BasedPrivateKey-
Request: Request for
a private key given the
public key.

The following methods a
present in the AliasSymm
ricKeyRequest class of
Callback:

public void setSymm
ricKey(

javax.crypto.Sec
y

symmetricKey)
public
javax.crypto.Secret

getSymmetricKey(

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

WRITING SECURITYENVIRONMENTHANDLERS 185

re
-

er-

ss-

re
s-

-
d)

ked by
hile

ialized

-text
k.

ring

ring

ring

ring

ring

st
Password
Valida-
tion
Callback

Username-Password valida-
tion. A validator that imple-
ments the
PasswordValidator inter-
face should be set on the call-
back by the callback handler.
There are currently two situa-
tions in which XWS-Security
will require this Callback to
perform username-password
validation:
1. When the receiver gets a
UsernameToken with plain-
text user name and password.
2. When the receiver gets a
UsernameToken with a
digested password (as speci-
fied in the WSS Username-
Token Profile).
Accordingly there are two
Request classes with which
the PasswordValidation-
Callback can be initialized.
Note: A validator for WSS
Digested Username-Pass-
word is provided as part of
this callback, with classname
PasswordValidation-
Callback.DigestPass-
wordValidator.
This class implements WSS
digest password validation.
The method for computing
password digest is described
in http://docs.oasis-
open.org/wss/2004/01/
oasis-200401-wss-user-
name-token-profile-
1.0.pdf.
For more information, see the
ServerSecurityEnviron-
mentHandler in
<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-

1. PlainTextPass-
wordRequest: Rep-
resents a validation
request when the pass-
word in the username
token is in plain text.
2. DigestPasswor-
dRequest: Repre-
sents a validation
request when the pass-
word in the username
token is in digested
form.

The following methods a
present in the PlainText
PasswordRequest:
public String getUs
name()
public String getPa
word()

The following methods a
present in the DigestPas
wordRequest:
public void setPass
word(String passwor

This method must be invo
the CallbackHandler w
handling a Callback init
with DigestPasswor-
dRequest to set the plain
password on the Callbac

public java.lang.St
getPassword()

public java.lang.St
getUsername()

public java.lang.St
getDigest()
public java.lang.St
getNonce()
public java.lang.St
getCreated()

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes
ple/src/com/sun/xml/
wss/sample.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

186 INTRODUCTION TO XML AND WEB SERVICES SECURITY

st
Username
Callback

To supply the user name for
the UsernameToken at run-
time. It contains the follow-
ing two methods:
public void setUser-
name(
 String username)
public String getUser-
name()

Refer to the ClientSecu-
rityEnvironmen-
tHandler of the
jaas-sample located in

<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-
ple/src/com/sun/xml/
wss/sample for more
details on using the Usern-
ameCallback.

Pass-
word-
Callback

To supply the password for
the username token at run-
time. It contains the follow-
ing two methods:

public void setPass-
word(String

password)
public String getPass-
word()
Refer to the ClientSecu-
rityEnvironmen-
tHandler of the jaas-
sample located in
<JWSDP_HOME>/xws-secu-
rity/samples/jaas-sam-
ple/src/com/sun/xml/
wss/sample for more
details on using the Pass-
wordCallback.

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

WRITING SECURITYENVIRONMENTHANDLERS 187

pre-

ction-
kew
ss-
uire-

amp-
ax-

en>.

st
Property
Callback

Optional callback to specify
the values of properties con-
figurable with XWS-Secu-
rity run-time.
Refer to the API documenta-
tion at <JWSDP_HOME>/
xws-security/docs/api/
com/sun/xml/wss/impl/
callback/PropertyCall-
back.html for a list of con-
figurable properties and
methods supported by this
callback.

This callback has been de
cated and disabled in this
release. To get similar fun
ality, use the maxClockS
and timestampFreshne
Limit attributes on <Req
Timestamp>, or the
maxClockSkew, timest
FreshnessLimit, and m
NonceAge attributes on
<RequireUsernameTok

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

188 INTRODUCTION TO XML AND WEB SERVICES SECURITY

ap-
 depre-

XPath
 XWS-
s, you

of the
rm
 and
tp://
/
 if the
g other

 enve-

refixes:
ean

ope/.
p://
xmld-

ttp:/
/

ttp:/
g/

ty-

tp://
/wss/
1-
ity-

p://
/wss/
1-ws
y-

ions is
urity

st
Prefix
Namespac
e
Mapping
Callback

Optional callback to register
any prefix versus namespace-
uri mappings that the devel-
oper wants to make use of in
the security configuration
(while specifying Targets
as xpaths).
Refer to the API documenta-
tion at <JWSDP_HOME>/xws-
security/docs/api/com/
sun/xml/wss/impl/call-
back/Prefix-
NamespaceMappingCallba
ck.html for more details.

The PrefixNamespaceM
pingCallback has been
cated and disabled in this
release. When specifying
expressions for targets in
Security configuration file
are required to make use
elongated syntax of the fo
local-name()="Body"
namespace-uri()="ht
schemas.xmlsoap.org
soap/envelope/", etc.,
prefix involved is anythin
than the following:
1. The prefix of the SOAP
lope in the message.
2. One of the following p
SOAP-ENV, env, S11 to m
http://schemas.xml-
soap.org/soap/envel
3. Prefix ds to mean htt
www.w3.org/2000/09/
sig#
4. Prefix xenc to mean h
/www.w3.org/2001/04
xmlenc#
5. Prefix wsse to mean h
/docs.oasis-open.or
wss/2004/01/oasis-
200401-wss-wssecuri
secext-1.0.xsd
6. Prefix wsu to mean ht
docs.oasis-open.org
2004/01/oasis-20040
wss-wssecurity-util
1.0.xsd
7.Prefix wsu to mean htt
docs.oasis-open.org
2004/01/oasis-20040
s-wssecurity-utilit
1.0.xsd

The use of XPath express
discouraged in XWS-Sec

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes
EA 2.0 because it impacts per-
formance. Users are advised to
make use of fragment URI’s and
QNames to identify targets of
signature and encryption.

WRITING SECURITYENVIRONMENTHANDLERS 189

st
Certifi-
cate
Valida-
tion
Callback

This callback is intended for
X.509 certificate validation.
A validator that implements
the CertificateValida-
tor interface should be set
on the callback by the call-
back handler.
Currently this callback is
invoked by the XWS-Secu-
rity runtime whenever an
X.509 certificate is present in
an incoming message in the
form of a BinarySecuri-
tyToken.

Dynamic
Policy
Callback

This callback is intended for
dynamic policy resolution.
DynamicPolicyCallback
is made by the XWS runtime
to allow the application and/
or handler to decide the
incoming and/or outgoing
SecurityPolicy at runt-
ime.

When the SecurityPolicy
set on the callback is a
DynamicSecurityPolicy,
the CallbackHandler is
expected to set a
com.sun.xml.wss.impl.c
onfiguration.Message-
Policy instance as the
resolved policy. The Mes-
sagePolicy instance can
contain policies generated by
the PolicyGenerator
obtained from the Dynamic-
SecurityPolicy.

Table 4–41 Summary of Callback classes and their Request types (Continued)

Callback Description
Request Inner
Classes Defined

Methods in the Reque
Classes

190 INTRODUCTION TO XML AND WEB SERVICES SECURITY
The following code snippet shows the handle() method skeleton for an applica-
tion's SecurityEnvironmentHandler that handles all the mandatory Callbacks

(except UsernameCallback and PasswordCallback) and associated Requests

defined by XWS-Security. A particular application may choose to throw an
UnsupportedCallbackException for any of the Callbacks or its Requests that
it cannot handle. The UsernameCallback and PasswordCallback are useful for
obtaining a username-password pair at run-time and are explained later in this
section.

Note: In this release of XWS-Security, users will have to ensure that the Securi-
tyEnvironmentHandler implementation they supply is thread safe.

public class SecurityEnvironmentHandler implements
CallbackHandler {

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

for (int i=0; i < callbacks.length; i++) {

if (callbacks[i] instanceof
PasswordValidationCallback) {

PasswordValidationCallback cb =
(PasswordValidationCallback) callbacks[i];

 if (cb.getRequest() instanceof
PasswordValidationCallback.PlainTextPasswordReq

uest) {
// setValidator for plain-text password

validation on callback cb
} else if (cb.getRequest() instanceof

PasswordValidationCallback.DigestPassword
Request) {

PasswordValidationCallback.DigestPassw
ordRequest request =

(PasswordValidationCallback.DigestP
asswordRequest) cb.getRequest();

// set plaintext password on request
// setValidator for digest password

validation on cb

} else {
// throw unsupported;

}

} else if (callbacks[i] instanceof

WRITING SECURITYENVIRONMENTHANDLERS 191
SignatureVerificationKeyCallback) {
SignatureVerificationKeyCallback cb =

(SignatureVerificationKeyCallback)call
backs[i];

if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Su

bjectKeyIdentifierBasedRequest) {
// subject keyid request
SignatureVerificationKeyCallback.X509Su

bjectKeyIdentifierBasedRequest
request =

(SignatureVerificationKeyCallback.X509S
ubjectKeyIdentifierBasedRequest)

cb.getRequest();
// locate and setX509Certificate on the

request
} else if (cb.getRequest() instanceof

SignatureVerificationKeyCallback.X5
09IssuerSerialBasedRequest) {

// issuer serial request
SignatureVerificationKeyCallback.X509I

ssuerSerialBasedRequest request =
(SignatureVerificationKeyCallback.X

509IssuerSerialBasedRequest)
cb.getRequest();

// locate and setX509Certificate on the
request

} else {
// throw unsupported;
}

} else if (callbacks[i] instanceof
SignatureKeyCallback) {

SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];

if (cb.getRequest() instanceof
SignatureKeyCallback.DefaultPrivK

eyCertRequest) {
 // default priv key cert req

SignatureKeyCallback.DefaultPrivKeyCertRequest request =

(SignatureKeyCallback.DefaultPrivKeyCertRequest)
cb.getRequest();

 // locate and set default
privateKey and X509Certificate on request

192 INTRODUCTION TO XML AND WEB SERVICES SECURITY
} else if (cb.getRequest() instanceof

SignatureKeyCallback.AliasPrivKeyCertRequest) {
// Alias priv key cert req

SignatureKeyCallback.AliasPrivKeyCertRequest request =

(SignatureKeyCallback.AliasPrivKeyCertRequest)
cb.getRequest();

// locate and set default
privateKey and X509Certificate on request

} else {
// throw unsupported;
}

} else if (callbacks[i] instanceof
DecryptionKeyCallback) {

DecryptionKeyCallback cb =
(DecryptionKeyCallback)callbacks[i];

if (cb.getRequest() instanceof
DecryptionKeyCallback.X509Subject

KeyIdentifierBasedRequest) {
//ski request

DecryptionKeyCallback.X509Subject
KeyIdentifierBasedRequest request =

(DecryptionKeyCallback.X509Sub
jectKeyIdentifierBasedRequest)

cb.getRequest();
// locate and set the privateKey on

the request

} else if (cb.getRequest() instanceof
DecryptionKeyCallback.X509IssuerS

erialBasedRequest) {
// issuer serial request
DecryptionKeyCallback.X509Issu

erSerialBasedRequest request =
(DecryptionKeyCallback.X509

IssuerSerialBasedRequest)
cb.getRequest();

// locate and set the
privateKey on the request

} else if (cb.getRequest() instanceof
DecryptionKeyCallback.X509Certifi

cateBasedRequest) {
// X509 cert request

WRITING SECURITYENVIRONMENTHANDLERS 193
DecryptionKeyCallback.X509Cert
ificateBasedRequest request =

(DecryptionKeyCallback.X509C
ertificateBasedRequest)

cb.getRequest();
// locate and set private key

on the request
} else if (cb.getRequest() instanceof

DecryptionKeyCallback.AliasSymmet
ricKeyRequest) {

DecryptionKeyCallback.AliasSym
metricKeyRequest request =

(DecryptionKeyCallback.Alia
sSymmetricKeyRequest)

cb.getRequest();
// locate and set symmetric key

on request

} else {
// throw unsupported;
}

} else if (callbacks[i] instanceof
EncryptionKeyCallback) {

EncryptionKeyCallback cb =
(EncryptionKeyCallback)callbacks[i];

if (cb.getRequest() instanceof
EncryptionKeyCallback.AliasX50

9CertificateRequest) {
EncryptionKeyCallback.AliasX50

9CertificateRequest request =
(EncryptionKeyCallback.Alia

sX509CertificateRequest)
cb.getRequest();

// locate and set certificate
on request

} else if (cb.getRequest() instanceof
EncryptionKeyCallback.AliasSymme

tricKeyRequest) {
EncryptionKeyCallback.AliasSy

mmetricKeyRequest request =
(EncryptionKeyCallback.Ali

asSymmetricKeyRequest)
cb.getRequest();

// locate and set symmetric
key on request

} else {

194 INTRODUCTION TO XML AND WEB SERVICES SECURITY
// throw unsupported;
}

} else if (callbacks[i] instanceof
CertificateValidationCallback) {

CertificateValidationCallback cb
=

(CertificateValidationCallback
)callbacks[i];

// set an X509 Certificate
Validator on the callback

} else {
// throw unsupported;
}

}
}

}

An application can also choose not to handle certain callbacks if it knows that
the particular application will never require those callbacks. For example if the
security application only deals with signing the requests and does not deal with
encryption or username tokens, its handle() method only needs to worry about
SignatureKeyCallback (with its associated Requests) and SignatureVerifi-

cationKeyCallback (with its associated Requests). It can then throw an
UnsupportedCallbackException for any other callback. The following code
shows the handle() method skeleton for such an application:

public class SecurityEnvironmentHandler implements
CallbackHandler {

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

for (int i=0; i < callbacks.length; i++) {
if (callbacks[i] instanceof

SignatureVerificationKeyCallback) {
(SignatureVerificationKeyCallback)callbacks[

i];

if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509Subj

ectKeyIdentifierBasedRequest) {
// subject keyid request
SignatureVerificationKeyCallback.X509Subj

ectKeyIdentifierBasedRequest
request =
(SignatureVerificationKeyCallback.X50

WRITING SECURITYENVIRONMENTHANDLERS 195
9SubjectKeyIdentifierBasedRequest)
cb.getRequest();

// locate and setX509Certificate on the
request

} else if (cb.getRequest() instanceof
SignatureVerificationKeyCallback.X509I

ssuerSerialBasedRequest) {
// issuer serial request
SignatureVerificationKeyCallback.X509I

ssuerSerialBasedRequest request =
(SignatureVerificationKeyCallback.X

509IssuerSerialBasedRequest)
cb.getRequest();

// locate and setX509Certificate on the
request

} else {
// throw unsupported;
 }

} else if (callbacks[i] instanceof
SignatureKeyCallback) {

SignatureKeyCallback cb =
(SignatureKeyCallback)callbacks[i];

if (cb.getRequest() instanceof
SignatureKeyCallback.DefaultPrivKey

CertRequest) {
// default priv key cert req
SignatureKeyCallback.DefaultPrivKeyCer

tRequest request =
(SignatureKeyCallback.DefaultPrivKe

yCertRequest) cb.getRequest();
// locate and set default privateKey

and X509Certificate on request
} else if (cb.getRequest() instanceof

SignatureKeyCallback.AliasPrivKeyCertR
equest) {

// Alias priv key cert req
SignatureKeyCallback.AliasPrivKeyCertR

equest request =
(SignatureKeyCallback.AliasPrivKeyC

ertRequest) cb.getRequest();
// locate and set default privateKey

and X509Certificate on request

} else {
// throw unsupported;
}

196 INTRODUCTION TO XML AND WEB SERVICES SECURITY
} else {
 // throw unsupported;
}

}
}

}

Similarly, an application dealing only with UsernameToken but not signature or
encryption requirements can simply throw UnsupportedCallbackException

for all non-username related callbacks.

The SecurityEnvironmentHandler implementation for the simple sample is
located in the directory <JWSDP_HOME>/xws-security/samples/simple/src/

com/sun/xml/wss/sample. The simple sample uses the same SecurityEnvi-

ronmentHandler for both the client and server side.

The jaas-sample requires a different set of callbacks to be handled on the client
and server side. The CallbackHandlers for the jaas-sample are located in the
directory <JWSDP_HOME>/xws-security/samples/jaas-sample/src/com/

sun/xml/wss/sample. The two CallbackHandlers defined for the jaas-sam-

ple are:

• A ClientSecurityEnvironmentHandler that handles only the Usern-

ameCallback and PasswordCallback for retrieving the username and
password to be sent in a WSS UsernameToken.

• A ServerSecurityEnvironmentHandler that handles only the Pass-

wordValidationCallback to validate the username-password pair that it
received in the WSS UsernameToken.

Using the SubjectAccessor API
XWS-Security applications might require access to the authenticated subject of
the sender from within the SEI implementation methods. The SubjectAccessor

API contains a single method:

public static Subject getRequesterSubject(Object context)
throws XWSSecurityException

public static Subject getRequesterSubject()

The getRequesterSubject(Object context) method returns the Subject if
one is available or else it returns NULL. The context argument to be passed into
this method should either be a ServletEndpointContext, which is available

USEFUL XWS-SECURITY COMMAND-LINE TOOLS 197
with the SEI implementation class, or a com.sun.xml.wss.ProcessingCon-

text. For an example on how the SubjectAccessor is used to obtain the authen-
ticated sender subject, refer to the PingImpl.java class in the jaas-sample

located at <JWSDP_HOME>/xws-security/samples/jaas-sample/server/src/
sample. The API for SubjectAccessor viewed from <JWSDP_HOME>/xws-secu-

rity/docs/api/com/sun/xml/wss/SubjectAccessor.html.

The getRequesterSubject() method returns the requester subject from the
context if available, and returns null if not available. This method should be used
by the receiver response processing to access the subject of the requester. This
method will work only for the Synchronous Request-Response Message
Exchange Pattern (SRRMEP). For an example that uses this method, see Dynamic

Response Sample Application.

Useful XWS-Security Command-Line
Tools

In this release, the following command-line tools are included. These tools pro-
vide specialized utilities for keystore management or for specifying security con-
figuration files:

• pkcs12import

• keyexport

• wscompile

For more information on keystore management, read the Application Server
Administration Guide topic Working with Certificates and SSL.

pkcs12import

The pkcs12import command allows Public-Key Cryptography Standards ver-
sion 12 (PKCS-12) files (sometimes referred to as PFX files) to be imported into
a keystore, typically a keystore of type Java KeyStore (JKS).

When would you want to do this? One example would be a situation where you
want to obtain a new certificate from a certificate authority. In this scenario, one
option is to follow this sequence of steps:

1. Generate a key-pair.

2. Generate a certificate request

http://docs.sun.com/app/docs/doc/819-0076

198 INTRODUCTION TO XML AND WEB SERVICES SECURITY
3. Send the request to the authority for its signature

4. Get the signed certificate and import it into this keystore.

Another option is to let the certificate authority generate a key-pair. The author-
ity would return a generated certificate signed by itself along with the corre-
sponding private key. One way the certificate authority can return this
information is to bundle the key and the certificate in a PKCS-12 formatted file
(generally pfx extension files). The information in the PKCS-12 file would be
encrypted using a password that would be conveyed to the user by the authority.
After receiving the PKCS-12 formatted file, you would import this key-pair (cer-
tificate/private-key pair) into your private keystore using the pkcs12import tool.
The result of the import is that the private-key and the corresponding certificate
in the PKCS-12 file are stored as a key entry inside the keystore, associated with
some alias.

The pkcs12import tool can be found in the directory <JWSDP_HOME>/xws-secu-

rity/bin, and can be run from the command line by executing
pkcs12import.sh (on Unix systems) or pkcs12import.bat (on Windows sys-
tems). The options for this tool listed in Table 4–42.

Table 4–42 Options for pkcs12import tool

Option Description

-file pkcs12-file
Required. The location of the PKCS-12 file to be
imported.

[-pass pkcs12-pass-
word]

The password used to protect the PKCS-12 file. The
user is prompted for this password if this option is
omitted.

[-keystore keystore-
file]

Location of the keystore file into which to import the
contents of the PKCS-12 file. If no value is given,
defaults to ${user-home}/.keystore.

[-storepass store-
password]

The password of the keystore. User is prompted for
the password of the truststore if this option is omitted.

[-keypass key-pass-
word]

The password to be used to protect the private key
inside the keystore. The user is prompted for this
password if this option is omitted.

[-alias alias]
The alias to be used to store the key entry (private key
and the certificate) inside the keystore.

keyexport 199
keyexport

This tool is used to export a private key in a keystore (typically of type Java Key-
store (JKS)) into a file.

Note: The exported private key is not secured with a password, so it should be han-
dled carefully. For example, you can export a private key from a keystore and use it
to sign certificate requests obtained through any means using other key/certificate
management tools. These certificate requests are then sent to a certificate authority
for validation and certificate generation.

The keyexport tool can be found in the directory <JWSDP_HOME>/xws-secu-

rity/bin/, and can be run from the command line by executing keyexport.sh

(on Unix systems) or keyexport.bat (on Windows systems). The options for
this tool are listed in Table 4–43.

Table 4–43 Options for keyexport tool

Option Description

-keyfile key-file
Required. The location of the file to which the private key will
be exported.

[-outform output-for-
mat]

This specifies the output format. The options are DER and
PEM. The DER format is the DER encoding (binary format)
of the certificate. The PEM format is the base64-encoding of
the DER encoding with header and footer lines added.

[-keystore keystore-
file]

Location of the keystore file containing the key. If no value is
given, this option defaults to ${user-home}/.keystore.

[-storepass store-
password]

Password of the keystore. User is prompted for the password if
this option is omitted.

[-keypass key-pass-
word]

The password used to protect the private key inside the key-
store. User is prompted for the password if this option is omit-
ted.

[-alias alias] The alias of the key entry inside the keystore.

200 INTRODUCTION TO XML AND WEB SERVICES SECURITY
wscompile

The wscompile tool generates the client stubs and server-side ties for the service
definition interface that represents the Web service interface. Additionally, it
generates the WSDL description of the Web service interface which is then used
to generate the implementation artifacts.

XWS-Security has been integrated into JAX-RPC through the use of security
configuration files. The code for performing the security operations on the client
and server is generated by supplying the configuration files to the JAX-RPC
wscompile tool. The wscompile tool can be instructed to generate security code
by making us of the -security option to specify the location of the security
configuration file that contains information on how to secure the messages to be
sent. An example of using the -security option with wscompile is shown in
How Do I Specify the Security Configuration for the Build Files?.

Note: For the 2.0 release of JAX-RPC, JAX-RPC will be renamed to JAX-WS.
JAX-WS will become part of the XWS-Security 2.0 FCS later this year. When this
renaming occurs, the wscompile tool will be replaced, and these steps and the
build.xml files for the sample applications will need to be modified accordingly.

The syntax for this option is as follows:

wscompile [-security {location of security configuration

file}]

For more description of the wscompile tool, its syntax, and examples of using
this tool, read:
http://docs.sun.com/source/817-6092/hman1m/wscompile.1m.html

Troubleshooting XWS-Security
Applications

This section lists some possible errors and the possible causes for these errors.
For more troubleshooting information, read the online release notes at http://
java.sun.com/webservices/docs/1.6/xws-security/ReleaseNotes.html.

http://docs.sun.com/source/817-6092/hman1m/wscompile.1m.html
http://java.sun.com/webservices/docs/1.5/xws-security/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.5/xws-security/ReleaseNotes.html

TROUBLESHOOTING XWS-SECURITY APPLICATIONS 201
Error: at XMLCipher.getInstance (Unknown Source)

[java] Exception in thread "main"
java.lang.NullPointerException
[java] at
com.sun.org.apache.xml.security.encryption.XMLCipher.getInstan
ce(Unknown Source)

Solution: Configure a JCE provider as described in Configuring a JCE Provider.

Error: UnsupportedClassVersionError

java.lang.UnsupportedClassVersionError: com/sun/tools/javac/
Main (Unsupported major.minor version 49.0)

Solution: Install version 1.4.2_04 or higher of Java 2 Standard Edition (J2SE). If
you had an older version of the JDK, you will also have to reinstall the Applica-
tion Server so that it recognizes this as the default version of the JDK.

Error: DeployTask not found
Solution: Verify that the jwsdp.home property in the build.properties file for
the sample is set correctly to the location where you installed the Java WSDP
version 1.6, as described in Setting Build Properties. A common error is to not
escape the backslash character when running on the Microsoft Windows plat-
form.

Compiler Errors
If you use a version of the Application Server prior to 2005Q1 for the container,
you may get compiler errors because this version of the Application Server has
an earlier version of XWS-Security bundled into it. The compilation errors that
you see are because these classes do not exist in the earlier version of XWS-
Security shipped in these earlier versions of the Application Server.

202 INTRODUCTION TO XML AND WEB SERVICES SECURITY
Further Information
• Java 2 Standard Edition, v.1.5.0 security information

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

• Java Servlet specification
http://java.sun.com/products/servlet/

• Information on SSL specifications
http://wp.netscape.com/eng/security/

• OASIS Standard 200401: Web Services Security: SOAP Message Security
1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

• XML Encryption Syntax and Processing
http://www.w3.org/TR/xmlenc-core/

• Digital Signatures Working Draft
http://www.w3.org/Signature/

• JSR 105-XML Digital Signature APIs
http://www.jcp.org/en/jsr/detail?id=105

• JSR 106-XML Digital Encryption APIs
http://www.jcp.org/en/jsr/detail?id=106

• Public-Key Cryptography Standards (PKCS)
http://www.rsasecurity.com/rsalabs/pkcs/index.html

• Java Authentication and Authorization Service (JAAS)
http://java.sun.com/products/jaas/

• WS-I Basic Security Profile Version 1.0
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html

• Web Services Security: SOAP Messages with Attachments (SwA) Profile
1.0
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-

14.pdf

• Web Services Security: SOAP Messages with Attachments (SwA) Profile
1.0, Interop 1 Scenarios
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf

• Web Services Security: Security Assertion Markup Language (SAML)
Token Profile 1.0
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

• Web Services Security: Security Assertion Markup Language (SAML)
Interop Scenarios

http://wp.netscape.com/eng/security/
http://www.rsasecurity.com/rsalabs/pkcs/index.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/products/servlet/
http://java.sun.com/products/jaas/
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/Signature/
http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=106
http://www.jcp.org/en/jsr/detail?id=106
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

FURTHER INFORMATION 203
http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-

interop1-draft-11.doc

http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-interop1-draft-11.doc

204 INTRODUCTION TO XML AND WEB SERVICES SECURITY

5

205
Understanding and
Running the XWS-

Security Sample
Applications

THIS addendum discusses the XML and Web Services Security (XWS-Secu-
rity) sample applications that are shipped with Java WSDP 1.6. For each of the
sample applications, there is an explanation of what is being demonstrated, how
the application is secured, and how to compile and run the application.

Introduction to XML and Web Services Security provides an introduction to how to use
XWS-Security in this release. Setting Up To Use XWS-Security With the Sample Applica-

tions provides information on how to configure your system to run the sample
applications.

206 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
The following sample applications are discussed in this chapter:

• Simple Security Configurations Sample Application

• JAAS Sample Application

• XWS-Security APIs Sample Application

• Soap With Attachments Sample Application

• SAML Sample Application

• Dynamic Policy Sample Application

• Dynamic Response Sample Application

Setting Up To Use XWS-Security With
the Sample Applications

This addendum discusses creating and running applications that use the XWS-
Security framework, and deploying these applications onto the Sun Java System
Application Server Platform Edition 8.1. For deployment onto other containers,
read the README.txt file for the example applications for more information.

Follow these steps to set up your system to compile, run, and deploy the sample
applications included in this release that use the XWS-Security framework.

1. Make sure that you have installed the Java 2 Platform, Standard Edition
version 1.4.2 or higher. If not, you can download the JDK from the follow-
ing URL:
http://java.sun.com/j2se/

If you are using version 1.4.x of the Java SDK, configure a version of a
JCE provider that supports RSA encryption. Information on doing this is
discussed in Configuring a JCE Provider.

2. Make sure that you have a container installed. For more information on
containers, read http://java.sun.com/webservices/containers/index.html.

3. Make sure that you have installed Java WSDP 1.6. If not, you can down-
load the JWSDP from the following URL:
http://java.sun.com/webservices/jwsdp/index.jsp

4. Set system properties as described in Setting System Properties.

5. Read the information in Setting Up the Application Server For the Examples.

http://java.sun.com/webservices/containers/index.html
http://java.sun.com/webservices/jwsdp/index.jsp
http://java.sun.com/j2se/

SETTING SYSTEM PROPERTIES 207
Setting System Properties
The asant (or ant) build files for the XWS-Security samples shipped with this
release rely on certain environment variables being set correctly. Make sure that
the following environment variables are set to the locations specified in this list.
If you are not sure how to set these environment variables, refer to the file
<JWSDP_HOME>/xws-security/docs/samples.html for more specific informa-
tion. This file includes instructions for both the Unix and Microsoft Windows
platforms. Throughout this document, instructions for running on the Unix plat-
form will be provided.

1. Set JAVA_HOME to the location of your J2SE installation directory, for
example, /home/<your_name>/j2sdk1.4.2_04/.

2. Set JWSDP_HOME to the location of your Java WSDP 1.6 installation direc-
tory, for example, /home/<your_name>/jwsdp-1.6/.

3. Set SJSAS_HOME to the location of your Application Server installation
directory, for example, /home/<your_name>/SUNWappserver/. If you are
deploying onto a different container, set SJSWS_HOME or TOMCAT_HOME

instead.

4. Set ANT_HOME to the location where the asant (or ant) executable can be
found. If you are running on the Application Server, this will be
<SJSAS_HOME>/bin/. If you are running on a different container, this
location will probably be <JWSDP_HOME>/apache-ant/bin/.

5. Set the PATH variable so that it contains these directories: <JWSDP_HOME>/
jwsdp-shared/bin/, <SJSAS_HOME>/bin/, <ANT_HOME>/, and

<JAVA_HOME>/bin/.

Configuring a JCE Provider
You only need to perform the steps in this section if you are running Java WSDP 1.6
on J2SE 1.4.x.

The Java Cryptography Extension (JCE) provider included with J2SE 1.4.x does
not support RSA encryption. Because the XWS-Security sample applications
use RSA encryption, you must download and install a JCE provider that does
support RSA encryption in order for these sample applications to run, if you are
using encryption, and if you are using a version of the Java SDK prior to version
1.5.0.

208 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
Note: RSA is public-key encryption technology developed by RSA Data Security,
Inc. The acronym stands for Rivest, Shamir, and Adelman, the inventors of the tech-
nology.

If you are running the Application Server on version 1.5 of the Java SDK, the
JCE provider is already configured properly. If you are running the Application
Server on version 1.4.x of the Java SDK, follow these steps to add a JCE pro-
vider statically as part of your JDK environment:

1. Download and install a JCE provider JAR (Java ARchive) file. The follow-
ing URL provides a list of JCE providers that support RSA encryption:
http://java.sun.com/products/jce/jce14_providers.html

2. Copy the JCE provider JAR file to <JAVA_HOME>/jre/lib/ext/.

3. Stop the Application Server (or other container). If the Application Server
is not stopped, and restarted later in this process, the JCE provider will not
be recognized by the Application Server.

4. Edit the <JAVA_HOME>/jre/lib/security/java.security properties
file in any text editor. Add the JCE provider you’ve just downloaded to this
file. The java.security file contains detailed instructions for adding this
provider. Basically, you need to add a line of the following format in a
location with similar properties:
security.provider.<n>=<provider class name>

In this example, <n> is the order of preference to be used by the Applica-
tion Server when evaluating security providers. Set <n> to 2 for the JCE
provider you’ve just added.

For example, if you’ve downloaded ABC JCE provider, and the Java class
name of the ABC provider’s main class is org.abc.ABCProvider, add
this line.

security.provider.2=org.abc.ABCProvider

Make sure that the Sun security provider remains at the highest prefer-
ence, with a value of 1.

security.provider.1=sun.security.provider.Sun

Adjust the levels of the other security providers downward so that there is
only one security provider at each level.

http://java.sun.com/products/jce/jce14_providers.html

SETTING UP THE APPLICATION SERVER FOR THE EXAMPLES 209
The following is an example of a java.security file that provides the nec-
essary JCE provider and keeps the existing providers in the correct loca-
tions.

security.provider.1=sun.security.provider.Sun
security.provider.2=org.abc.ABCProvider
security.provider.3=com.sun.net.ssl.internal.ssl.P

rovider
security.provider.4=com.sun.rsajca.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider

5. Save and close the file.

6. Restart the Application Server (or other container).

Setting Up the Application Server For the
Examples
To set up the container for running the XWS-Security sample applications
included with this release, you need to specify on which container you are run-
ning the asant (or ant) build targets (as discussed in Setting Build Properties), and
you must point the container to the keystore and truststore files to be used to run
the XWS-Security sample applications. For the sample applications, these are
the keystore and truststore files included in the /xws-security/etc/ directory.
For further discussion of using keystores and truststores with XWS-Security
applications, read Keystore and Truststore Files with XWS-Security.

Keystore and Truststore Files with XWS-
Security
For the simple sample, the keystore, truststore, and symmetric-key databases
used by that example are located in the <JWSDP_HOME>/xws-security/etc/

directory. The locations of these files have been configured in the
<JWSDP_HOME>/xws-security/etc/client-security-env.properties and
<JWSDP_HOME>/xws-security/etc/server-security-env.properties files
for the client and server respectively. These property files are used by the Secu-

rityEnvironmentHandler to handle the Callbacks.

To plug in your own keystores and truststores for an application, make sure that
the certificates are of version 3, and that the client truststore contains the certifi-
cate of the certificate authority that issued the server's certificate, and vice versa.

210 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
XWS-Security requires version 3 (v3) certificates when the keyReferenceType

attribute (specified on a xwss:X509Token element) has a value of Identifier,
which indicates the use of an X.509 SubjectKeyIdentifier extension. For all
other values of the keyReferenceType attribute, a v1 certificate can also be
used. Version 3 includes requirements specified by the WSS X509 Token Profile.

Setting Build Properties
To run the sample applications, you must edit the sample build.properties file
for that sample application and specify information that is unique to your system
and to your installation of Java WSDP 1.6 and the Application Server (or other
container).

To edit the build.properties file for the example you want to run, follow these
steps:

1. Change to the directory for the sample application you want to run:
<JWSDP_HOME>/xws-security/samples/<example>/.

2. Copy the build.properties.sample file to build.properties.

3. Edit the build.properties file, checking that the following properties
(where applicable) are set correctly for your system:

• javahome: Set this to the directory where J2SE version 1.4.2 or higher
is installed.

Note: When running on Microsoft Windows, you must escape any backslashes in
the javahome, jwsdp.home, and sjsas.home properties with another backslash or
use forward slashes as a path separator. So, for example, if your Application Server
installation is C:\Sun\AppServer, you must set sjsas.home as follows:

sjsas.home = C:\\Sun\\AppServer

or

sjsas.home=C:/Sun/AppServer

• sjsas.home: To specify that you are running under the Application
Server, set this property to the directory where the Application Server is
installed and make sure there is not a comment symbol (#) to the left of
this entry. If you are running under a different container, set the location
for its install directory under the appropriate property name (tom-

SIMPLE SECURITY CONFIGURATIONS SAMPLE APPLICATION 211
cat.home or sjsws.home) and uncomment that entry instead. Only one
of the container home properties should be uncommented at any one
time.

• username, password: Enter the appropriate username and password
values for a user assigned to the role of admin for the container instance
being used for this sample. A user with this role is authorized to deploy
applications onto the Application Server.

• endpoint.host, endpoint.port: If you changed the default host and/
or port during installation of the Application Server (or other container),
change these properties to the correct values for your host and port. If
you installed the Application Server using the default values, these
properties will already be set to the correct values.

• VS.DIR=If you are running under the Sun Java System Web Server,
enter the directory for the virtual server. If you are running under any
other container, you do not need to modify this property.

• jwsdp.home: Set this property to the directory where Java WSDP is
installed. The keystore and truststore URL’s for the client are configured
relative to this property.

• http.proxyHost, http.proxyPort: If you are using remote endpoints,
set these properties to the correct proxy server address and port. If you
are not using remote endpoints, put a comment character (#) before
these properties. A proxy server will follow the format of myser-

ver.mycompany.com. The proxy port is the port on which the proxy host
is running, for example, 8080.

4. Save and exit the build.properties file.

Simple Security Configurations Sample
Application

The simple sample application is a fully-developed sample application that
demonstrates various configurations that can be used to exercise XWS-Security
framework code. To change the type of security that is being used for the client
and/or the server, simply modify two properties in the build.properties file
for the example. The types of security configurations possible in this example
include XML Digital Signature, XML Encryption, UserNameToken verification,
and combinations thereof. This example allows and demonstrates combinations

212 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
of these basic security mechanisms through the specification of the appropriate
security configuration files.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’s log file. The output from the client is sent to stdout or whichever stream
is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side code is found in the /simple/server/src/simple/

directory. Client-side code is found in the /simple/client/src/simple/ direc-
tory. The asant (or ant) targets build objects under the /build/server/ and /

build/client/ directories.

This example uses keystores and truststores which are included in the /xws-

security/etc/ directory. For more information on using keystore and truststore
files, read the keytool documentation at the following URL:
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

Plugging in Security Configurations
This example makes it simple to plug in different client and server-side configu-
rations describing security settings. This example has support for digital signa-
tures, XML encryption/decryption, and username/token verification. This
example allows and demonstrates combinations of these basic security mecha-
nisms through configuration files. See Simple Sample Security Configuration Files, for
further description of the security configuration options defined for the simple

sample application.

To specify which security configuration option to use when the sample applica-
tion is run (see Running the Simple Sample Application), follow these steps:

1. Open the build.properties file for the example. This file is located at
<JWSDP_HOME>/xws-security/samples/simple/build.properties.

2. To set the security configuration that you want to run for the client, locate
the client.security.config property, and uncomment one of the client
security configuration options. The client configuration options are listed
in Simple Sample Security Configuration Files, and also list which client and
server configurations work together. For example, if you want to use XML
Encryption for the client, you would uncomment this option:
Client Security Config. file
client.security.config=config/encrypt-client.xml

Be sure to uncomment only one client security configuration at a time.

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 213
3. To set the security configuration that you want to run for the server, locate
the server.security.config property, and uncomment one of the server
security configuration options. The server configuration options, and
which server options are valid for a given client configuration, are listed in
Simple Sample Security Configuration Files. For example, if you want to use XML
Encryption for the server, you would uncomment this option:
Server Security Config. file
server.security.config=config/encrypt-server.xml

Be sure to uncomment only one client security configuration at a time.

4. Save and exit the build.properties file.

5. Run the sample application as described in Running the Simple Sample Applica-

tion.

Simple Sample Security Configuration
Files
The configuration files available for this example are located in the /xws-secu-

rity/samples/simple/config/ directory. The configuration pairs available
under this sample include configurations for both the client and server side.
Some possible combinations are discussed in more detail in the referenced sec-
tions.

Dumping the Request and/or the Response
The security configuration pair dump-client.xml and dump-server.xml have
no security operations. These options enable the following tasks:

• Dump the request before it leaves the client.

• Dump the response upon receipt from the server.

The container’s server logs also contain the dumps of the server request and
response. See Running the Simple Sample Application for more information on viewing
the server logs.

214 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
Encrypting the Request and/or the Response
The security configuration pair encrypt-client.xml and encrypt-server.xml

enable the following tasks:

• Client encrypts the request body and sends it.

• Server decrypts the request and sends back a response.

The encrypt-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Since no targets have been specified below, the
contents of
 the soap body would be encrypted by default.
 -->
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler

 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Signing and Verifying the Signature
The security configuration pair sign-client.xml and sign-server.xml enable
the following tasks:

• Client signs the request body.

• Server verifies the signature and sends its response.

The sign-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 215
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Note that in the <Sign> operation, a Timestamp is
exported
 in the security header and signed by default.
 -->
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-
client"/>
 </xwss:Sign>
 <!--
 Signature requirement. No target is specified,
hence the
 soap body is expected to be signed. Also, by
default, a
 Timestamp is expected to be signed.
 -->
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
sample.SecurityEnvironmentHandler

 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Signing then Encrypting the Request,
Decrypting then Verifying the Signature
The security configuration pair sign-encrypt-client.xml and sign-encrypt-

server.xml enable the following tasks:

• Client signs and then encrypts and sends the request body.

• Server decrypts and verifies the signature.

• Server signs and then encrypts and sends the response.

The sign-encrypt-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Sign/>
 <xwss:Encrypt>

216 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Identifier"/>
 </xwss:Encrypt>
 <!--
 Requirements on messages received:
 -->
 <xwss:RequireEncryption/>
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Encrypting then Signing the Request, Verifying
then Decrypting the Signature
The security configuration pair encrypt-sign-client.xml and encrypt-sign-

server.xml enable the following tasks:

• Client encrypts the request body, then signs and sends it.

• Server verifies the signature and then decrypts the request body.

• Server sends its response.

The encrypt-sign-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 First encrypt the contents of the soap body
 -->
 <xwss:Encrypt>
 <xwss:X509Token keyReferenceType="Identifier"
certificateAlias="s1as"/>
 </xwss:Encrypt>
 <!--
 Secondly, sign the soap body using some default
private key.

The sample CallbackHandler implementation has code
to handle

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 217
 the default signature private key request.
 -->
 <xwss:Sign/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Signing a Ticket
The security configuration pair sign-ticket-also-client.xml and sign-

ticket-also-server.xml enable the following tasks:

• Client signs the ticket element, which is inside the message body.

• Client signs the message body.

• Server verifies signatures.

The sign-ticket-also-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Signing multiple targets as part of the same
ds:Signature
 element in the security header
 -->
 <xwss:Sign>
 <xwss:Target type="qname">{http://xmlsoap.org/
Ping}ticket</xwss:Target>

<xwss:Target type="xpath">//env:Body</xwss:Target>
 </xwss:Sign>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

218 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
Adding a Timestamp to a Signature
The security configuration pair timestamp-sign-client.xml and timestamp-

sign-server.xml enable the following tasks:

• Client signs the request, including a timestamp in the request.

The timestamp-sign-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Export a Timestamp with the specified timeout
interval (in sec).
 -->
 <xwss:Timestamp timeout="120"/>
 <!--

The above Timestamp would be signed by the following
Sign
 operation by default.
 -->
 <xwss:Sign>
 <xwss:Target type="qname">{http://xmlsoap.org/
Ping}ticket</xwss:Target>
 </xwss:Sign>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Symmetric Key Encryption
The security configuration pair encrypt-using-symmkey-client.xml and
encrypt-server.xml enable the following tasks:

• Client encrypts the request using the specified symmetric key.

This is a case where the client and server security configuration files do not
match. This combination works because the server requirement is the same (the
body contents must be encrypted) when the client-side security configuration is

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 219
either encrypt-using-symmkey-client.xml or encrypt-client.xml. The dif-
ference in the two client configurations is the key material used for encryption.

The encrypt-using-symmkey-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Encrypt using a symmetric key associated with the
given alias
 -->
 <xwss:Encrypt>
 <xwss:SymmetricKey keyAlias="sessionkey"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Adding a Username Password Token
The security configuration pair user-pass-authenticate-client.xml and
user-pass-authenticate-server.xml enable the following tasks:

• Client adds a username-password token and sends a request.

• Server authenticates the username and password against a username-pass-
word database.

• Server sends response.

The user-pass-authenticate-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--
 Default: Digested password will be sent.
 -->

220 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
 <xwss:UsernameToken name="Ron" password="noR"/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Encrypt Request Body and a UserNameToken
The security configuration pair encrypt-usernameToken-client.xml and
encrypt-usernameToken-server.xml enable the following tasks:

• Client encrypts request body.

• Client encrypts the UsernameToken as well before sending the request.

• Server decrypts the encrypted message body and encrypted UsernameTo-

ken.

• Server authenticates the user name and password against a username-pass-
word database.

The encrypt-usernameToken-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Export a username token into the security header.
Assign it
 the mentioned wsu:Id
 -->
 <xwss:UsernameToken name="Ron" password="noR"
id="username-token"/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 <xwss:Target type="xpath">//SOAP-ENV:Body</
xwss:Target>
 <!--
 The username token has been refered as an
encryption
 target using a URI fragment
 -->
 <xwss:Target type="uri">#username-token</

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 221
xwss:Target>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

In this sample, the UsernameToken is assigned an id username-token. This id is
used to refer to the token as an encryption target within the <xwss:Encrypt> ele-
ment. The id becomes the actual wsu:id of the UsernameToken in the generated
SOAPMessage.

Adding a UserName Password Token, then
Encrypting the UserName Token
The security configuration pair encrypted-user-pass-client.xml and
encrypted-user-pass-server.xml enable the following tasks:

• Client adds a UsernameToken.

• Client encrypts the UsernameToken before sending the request.

• Server decrypts the UsernameToken.

• Server authenticates the user name and password against a username-pass-
word database.

The encrypted-user-pass-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:UsernameToken name="Ron" password="noR"/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Identifier"/>
 <xwss:Target type="qname">
 {http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-

secext-1.0.xsd}UsernameToken
 </xwss:Target>

222 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Flexibility in Positions of Timestamps and
Tokens
The security configuration pair flexiblec.xml and flexibles.xml demon-
strate the flexibility in the position of Timestamps and tokens allowed in the
receiver-side processing of a message. The tokens that can be used include
UsernameToken, BinarySecurityToken, SAMLAssertion, and others. The posi-
tion of <RequireXXX> elements for these tokens can vary in the receiver-side
configuration file regardless of the position of the tokens in the incoming mes-
sage.

This flexibility does not apply to the relative position of Signature and
EncryptedData elements in the incoming message, which have to follow the
strict order in which the <RequireSignature> and <RequireEncryption> ele-
ments appear in the configuration file.

The flexiblec.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

<xwss:Sign includeTimestamp="false"/>
<xwss:UsernameToken name="Ron" password="noR"

useNonce="true"
digestPassword="false"/>
<xwss:Timestamp timeout="300"/>

</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>

SIMPLE SAMPLE SECURITY CONFIGURATION FILES 223
sample.SecurityEnvironmentHandler
</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Adding Security at the Method Level
The security configuration pair method-level-client.xml and method-level-

server.xml enable the following tasks:

• Configures different security policies for different WSDL methods of the
application and different port instances.

The simple sample’s WSDL file contains two operations, Ping and Ping0, and
two port instances of type PingPort. The port names are Ping and Ping0. The
method level security configuration file demonstrates how different sets of secu-
rity operations can be configured for the operations Ping and Ping0 under each
of the two Port instances Ping and Ping0.

The method-level-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

<xwss:Service>
 <!--
 Service-level security configuration

-->
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping">
 <!--

Port-level security configuration. Takes precedence
over the
 service-level security configuration
 -->
 <xwss:SecurityConfiguration dumpMessages="true"/>

<xwss:Operation name="{http://xmlsoap.org/Ping}Ping">
 <!--

Operation-level security configuration. Takes
precedence
 over port-level and service-level security
configurations.
 -->

<xwss:SecurityConfiguration dumpMessages="true">

224 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
 <xwss:UsernameToken name="Ron"
 password="noR"
 digestPassword="false"
 useNonce="false"/>
 <xwss:Sign>
 <xwss:Target type="qname">{http://
xmlsoap.org/Ping}ticket</xwss:Target>
 <xwss:Target type="qname">{http://
xmlsoap.org/Ping}text</xwss:Target>
 </xwss:Sign>
 <xwss:Encrypt>

<xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Operation>

 <xwss:Operation name="{http://xmlsoap.org/
Ping}Ping0">

<xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Encrypt>

<xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Operation>

</xwss:Port>

 <xwss:Port name="{http://xmlsoap.org/Ping}Ping0">
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
 <xwss:RequireSignature/>
 </xwss:SecurityConfiguration>

<xwss:Operation name="{http://xmlsoap.org/
Ping}Ping"/>

<xwss:Operation name="{http://xmlsoap.org/
Ping}Ping0"/>

</xwss:Port>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>
</xwss:JAXRPCSecurity>

RUNNING THE SIMPLE SAMPLE APPLICATION 225
In this example, the following has been configured for the Ping operation under
port instance Ping:

• Inserts a UsernameToken into the request.

• Signs the ticket and text child elements of the request body.

• Encrypts the contents of the request body.

The following has been configured for the Ping0 operation under port instance
Ping:

• Encrypt the content of the body of the message.

When the xwss:Encrypt element is specified with no child elements of type
xwss:Target, it implies that the default Target (which is SOAP-ENV:Body) has
to be encrypted. The same rule applies to xwss:Sign elements with no child ele-
ments of type xwss:Target.

The configuration file in this example also configures the following security for
all the WSDL operations under port instance Ping0:

• Encrypts the request body.

• Expects a signed response from the server.Username

Running the Simple Sample Application
To run the simple sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:

• Setting System Properties

• Configuring a JCE Provider

• Setting Build Properties

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

b. From a Windows machine, choose Start→Programs→Sun
Microsystems→J2EE 1.4→Start Default Server.

3. Modify the build.properties file to set up the security configuration that
you want to run for the client and/or server. See Simple Sample Security Con-

figuration Files for more information on the security configurations options
that are already defined for the sample application.

226 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
4. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing:

[echo] Running the client program....
[java] ==== Sending Message Start ====
...
[java] ==== Sending Message End ====
[java] ==== Received Message Start ====
...
[java] ==== Received Message End ====

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

JAAS Sample Application
The Java Authentication and Authorization Service (JAAS) is a set of APIs that
enable services to authenticate and enforce access controls upon users. It imple-
ments a Java technology version of the standard Pluggable Authentication Mod-
ule (PAM) framework, and supports user-based authorization.

JAAS SAMPLE SECURITY CONFIGURATION FILES 227
The <JWSDP_HOME>/xws-security/samples/jaas-sample application demon-
strates the following functionality:

• Obtaining a user name and password at run-time and sending it in a Web
Services Security (WSS) UsernameToken to the server.

• Using JAAS authentication to authenticate the user name and password in
the server application.

• Accessing the authenticated sender’s subject from within the endpoint
implementation methods.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’s log file. The output from the client is sent to stdout or whichever stream
is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side code is found in the /jaas-sample/server/src/

jaas-sample/ directory. Client-side code is found in the /jaas-sample/cli-

ent/src/jaas-sample/ directory. The asant (or ant) targets build objects
under the /build/server/ and /build/client/ directories.

JAAS Sample Security Configuration
Files
The security configuration pair user-pass-authenticate-client.xml and
user-pass-authenticate-server.xml enable the following tasks:

• Client adds a username-password token and sends a request.

• Server authenticates the username and password against a username-pass-
word database.

• Server sends response.

The username-password database must be set up before this security configura-
tion pair will run properly. Refer to Setting Up For the JAAS-Sample for instructions
on setting up this database.

The user-pass-authenticate-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">

228 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
 <xwss:UsernameToken digestPassword="false"/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.ClientSecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

If you compare this security configuration file to the similar one in the simple

sample, as discussed in Adding a Username Password Token, you’ll see that this secu-
rity configuration file does not hard-code the user name and password. In this
example, the username and password are obtained by reading a system property,
username.password, that is configured in the build.xml file of the jaas-sam-

ple under the run-sample target as a sysproperty. The properties and a section
of the target from this example are configured like this:

<target name="run-sample"
depends="clean, prepare, build-server, deploy-forced,

build-client"
 description="Runs the example client">
 <echo message="Running the ${client-class} program...."/>
 <java fork="on" classname="${client-class}">
 <sysproperty key="java.endorsed.dirs"
value="${java.endorsed.dirs}"/>

<sysproperty key="endpoint.host" value="${endpoint.host}"/
>

<sysproperty key="endpoint.port" value="${endpoint.port}"/
>
 <sysproperty key="service.url" value="${service.url}"/>

<sysproperty key="username.password" value="Ron noR"/>

The client-side SecurityEnvironmentHandler of this sample is the entity that
actually reads the system property at run-time and populates the username and
password Callback objects passed to it by the XWS-Security run-time. A differ-
ent SecurityEnvironmentHandler can be plugged into this sample to obtain the
username and password at run-time from a different source (possibly by popping
up a dialog box where the user can enter the username and password).

This sample’s server-side SecurityEnvironmentHandler makes use of a JAAS
login module that takes care of authenticating the user name and password. The
sample demonstrates how JAAS authentication can be plugged into applications
that use the XWS-Security framework. The source of the JAAS login module,
UserPassLoginModule.java, is located at <JWSDP_HOME>/xws-security/

SETTING UP FOR THE JAAS-SAMPLE 229
samples/jaas-sample/src/com/sun/xml/wss/sample directory. The JAAS-

Validator.java class in the same directory does the actual JAAS authentica-
tion by creating a LoginContext and calling the LoggingContext.login()

method. The UserPassLoginModule makes use of a username-password XML
database located at <JWSDP_HOME>/xws-security/etc/userpasslist.xml

when performing the actual authentication in its login() method.

Setting Up For the JAAS-Sample
Before the sample application will run correctly, you must have completed the
tasks defined in the following sections of this addendum:

• Setting System Properties

• Setting Build Properties

In addition, follow the steps in this section that are specific to the jaas-sample

application.

1. Stop the Application Server.

2. Set the user name and password for the example.

Because the samples are run using ASAnt tasks, the user name and pass-
word for this example are set as a system property. The build.xml file for
the jaas-sample example includes the following line under the run-sam-
ple target that uses a user name and password supplied in the
<JWSDP_HOME>/xws-security/etc/userpasslist.xml file.

<sysproperty key=”username.password” value=”Ron noR”/>

The JAAS login module also makes use of the userpasslist.xml file, so
make sure that this file exists and contains the user name and password
specified in the build.xml file.

3. Add the following JAAS policy to the JAAS policy file of the Application
Server. This file can be found at <SJSAS_HOME>/domains/domain1/con-
fig/login.conf. Add the following code near the end of the file:

/** Login Configuration for the Sample Application **/
XWS_SECURITY_SERVER{com.sun.xml.wss.sample.UserPassLogin-
Module REQUIRED debug=true;
};

4. Add the following permissions to the server policy file of the Application
Server. This file can be found at <SJSAS_HOME>/domains/domain1/con-
fig/server.policy. Add the following code near the end of the file:

230 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
grant codeBase "file:${com.sun.aas.instanceRoot}/applica-

tions/j2ee-modules/jaassample/WEB-INF/-" {

permission javax.security.auth.AuthPermission "modi-

fyPrincipals";

permission javax.security.auth.AuthPermission "modi-

fyPrivateCredentials";

permission javax.security.auth.PrivateCredentialPer-

mission "* * \"*\"","read";

permission javax.security.auth.AuthPermission "getSub-

ject";

permission javax.security.auth.AuthPermission

"createLoginContext.XWS_SECURITY_SERVER";

};

5. Save and exit all files.

6. Restart the Application Server.

Running the JAAS-Sample Application
To run the jaas-sample application, follow these steps:

1. Follow the steps in Setting Up For the JAAS-Sample.

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

b. From a Windows machine, choose Start→Programs→Sun Microsys-
tems→Application Server→Start Default Server.

3. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,

RUNNING THE JAAS-SAMPLE APPLICATION 231
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing:

[echo] Running the sample.TestClient program....
 [java] Service URL=http://localhost:8080/jaassample/Ping
 [java] Username read=Ron
 [java] Password read=noR
 [java] INFO: ==== Sending Message Start ====
 [java] <?xml version="1.0" encoding="UTF-8"?>
 [java] <env:Envelope xmlns:env="http://
schemas.xmlsoap.org/soap/envelope/" xmlns:enc="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:ns0="http://
xmlsoap.org/Ping" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 [java] <env:Header>
 [java] <wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-

wss-wssecurity-secext-1.0.xsd" env:mustUnderstand="1">
 [java] <wsse:UsernameToken>
 [java] <wsse:Username>Ron</wsse:Username>
 [java] <wsse:Password>****</wsse:Password>
 [java] <wsse:Nonce EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-

200401-wss-soap-message-security-
1.0#Base64Binary">qdKj8WL0U3r21rcgOiM4H76H</wsse:Nonce>
[java] <wsu:Created xmlns:wsu="http://docs.oasis-open.org/

wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">2004-11-05T02:07:46Z</

wsu:Created>
 [java] </wsse:UsernameToken>
 [java] </wsse:Security>
 [java] </env:Header>
 [java] <env:Body>
 [java] <ns0:Ping>
 [java] <ns0:ticket>SUNW</ns0:ticket>
 [java] <ns0:text>Hello !</ns0:text>
 [java] </ns0:Ping>
 [java] </env:Body>
 [java] </env:Envelope>
 [java] ==== Sending Message End ====

 [java] INFO: ==== Received Message Start ====
 [java] <?xml version="1.0" encoding="UTF-8"?>
 [java] <env:Envelope xmlns:env="http://

232 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
schemas.xmlsoap.org/soap/envelope/"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns0="http://xmlsoap.org/
Ping" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 [java] <env:Body>
 [java] <ns0:PingResponse>
 [java] <ns0:text>Hello !</ns0:text>
 [java] </ns0:PingResponse>
 [java] </env:Body>
 [java] </env:Envelope>
 [java] ==== Received Message End ====

The server code in server/src/sample/PingImpl.java makes use of a Sub-

jectAccessor to access and print the authenticated Subjects principal from
within the business method Ping().

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

XWS-Security APIs Sample Application
The focus of api-sample is to demonstrate how to use XWS-Security APIs to
secure and validate SOAP messages in a stand-alone (non-JAX-RPC) SAAJ
application. The XWS-Security APIs can be used to secure JAX-RPC applica-
tions, too, but because securing JAX-RPC applications can be easily accom-
plished using the security configuration files, this sample application focuses on
securing stand-alone, non-JAX-RPC applications.

This sample uses configuration files that start with <xwss:SecurityConfigura-

tion> as the root element, as opposed to the other XWS-Security samples that
are based on JAX-RPC and use <xwss:JAXRPCSecurity> as the root element.

Documentation for XWS-Security 2.0 EA APIs is located in the /xws-secu-

rity/docs/api directory.

THE XWSSPROCESSOR INTERFACE 233
The <JWSDP_HOME>/xws-security/samples/api-sample application demon-
strates the following functionality:

• Defines an ease-of-use interface, XWSSProcessor interface. This interface
is intended to insulate API users from changes to the APIs in future
releases.

• Provides an implementation of XWSSProcessor interface for XWS-Secu-
rity 2.0 EA.

• The client (com.sun.wss.sample.Client) code uses the XWSSProcessor

APIs to secure SOAP messages according to the security policy inferred
from the SecurityConfiguration with which this XWSSProcessor was
initialized.

• Server verifies the secured message.

The application prints out the client request and response SOAP messages. The
output from the client is sent to stdout or whichever stream is used by the con-
figured log handler. Messages are logged at the INFO level.

The example code is found in the /api-sample/com/sun/wss/sample/ direc-
tory.

The XWSSProcessor Interface
The XWSSProcessor interface defines methods for securing an outbound SOAP-

Message and verifying the security in an inbound SOAPMessage. An XWSSPro-

cessor can add and/or verify security in a SOAPMessage in the ways defined by
the OASIS WSS 1.0 specification.

The XWSSProcessor interface contains the following methods:

• secureOutboundMessage

This method adds security to an outbound SOAPMessage according to the
security policy inferred from the SecurityConfiguration with which
this XWSSProcessor was initialized.

• verifyInboundMessage

This method verifies security in an inbound SOAPMessage according to
the security policy inferred from the SecurityConfiguration with
which this XWSSProcessor was initialized.

234 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
API-Sample Client Code
The client code (samples/api-sample/com/sun/wss/sample/Client.java)
uses the XWSSProcessor APIs to secure SOAP messages according to the secu-
rity policy inferred from the SecurityConfiguration with which this XWSSPro-
cessor was initialized. The following code demonstrates how this is done:

public static void main(String[] args) throws Exception {

 FileInputStream clientConfig = null;
 FileInputStream serverConfig = null;
 try {

 //read client-side security configuration
 clientConfig = new java.io.FileInputStream(
 new
java.io.File(System.getProperty("client.configfile")));

 //read server-side security configuration
 serverConfig = new java.io.FileInputStream(
 new
java.io.File(System.getProperty("server.configfile")));
 } catch (Exception e) {
 e.printStackTrace();
 throw e;
 }

//Create a XWSSProcessFactory.
 XWSSProcessorFactory factory =
XWSSProcessorFactory.newInstance();

//Create XWSSProcessor to secure outgoing soap messages.
 //Sample SecurityEnvironment is configured to
 //use client-side keystores.

 XWSSProcessor cprocessor =
 factory.createForSecurityConfiguration(
 clientConfig, new
SecurityEnvironmentHandler("client"));

//Create XWSSProcessor to veriy incoming soap messages.
 //Sample SecurityEnvironment is configured to
 //use server-side keystores.

 XWSSProcessor sprocessor =
 factory.createForSecurityConfiguration(
 serverConfig, new
SecurityEnvironmentHandler("server"));
 try{

API-SAMPLE CLIENT CODE 235
 clientConfig.close();
 serverConfig.close();
 }catch(Exception ex){
 ex.printStackTrace();
 return;
 }

 for(int i=0;i<1;i++){

 // create SOAPMessage
 SOAPMessage msg =
MessageFactory.newInstance().createMessage();
 SOAPBody body = msg.getSOAPBody();
 SOAPBodyElement sbe = body.addBodyElement(
 SOAPFactory.newInstance().createName(
 "StockSymbol",
 "tru",
 "http://fabrikam123.com/payloads"));
 sbe.addTextNode("QQQ");

 //Create processing context and set the soap
 //message to be processed.

ProcessingContext context = new ProcessingContext();
 context.setSOAPMessage(msg);

//secure the message.
 SOAPMessage secureMsg = cprocessor.secureOutbound-
Message(context);

 //verify the secured message.
 context = new ProcessingContext();
 context.setSOAPMessage(secureMsg);

 SOAPMessage verifiedMsg= null;
 try{

verifiedMsg= sprocessor.verifyInboundMessage(con-
text);
 //System.out.println("\nRequester Subject " +
SubjectAccessor.getRequesterSubject(context));

 }catch(Exception ex){
 ex.printStackTrace();

//context.getSOAPMessage().writeTo(System.out);
 }
 }

236 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
The API Sample Security Configuration
Files
The client (com.sun.wss.sample.Client) code uses the XWSSProcessor APIs
to secure SOAP messages according to the security policy inferred from the
SecurityConfiguration with which this XWSSProcessor was initialized. The
api-sample contains many different example security configuration files. The
following pairs should be used when specifying the client and server configura-
tion files in build.properties. The client configuration to specify is listed first,
the server configuration second:

• sign-rsign.xml, sign-rsign.xml

• username.xml, username.xml

• encryptv1.xml, encryptv1.xml

• encryptv2.xml, encryptv2.xml

• signv1.xml, signv1.xml

• signv2.xml, signv1.xml

• signv3.xml, signv1.xml

• signv4.xml, signv1.xml

• str_transform.xml, str_transform.xml

Note: The configuration files strid.xml and no_security.xml have syntax errors
and should not be used.

Remember, when using the XWS-Security APIs to secure stand-alone applica-
tion, we will use configuration files that start with <xwss:SecurityConfigura-

tion> as the root element, as opposed to the other XWS-Security samples that
are based on JAX-RPC and use <xwss:JAXRPCSecurity> as the root element.

Encrypting the SOAP Message
The security configuration files encryptv1.xml and encryptv2.xml enable the
following tasks:

• Client encrypts an outbound SOAPMessage and sends it.

• Client verifies that the inbound SOAPMessage is encrypted.

THE API SAMPLE SECURITY CONFIGURATION FILES 237
The encryptv1.xml file looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
 xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>
 </xwss:Encrypt>
</xwss:SecurityConfiguration>

The encryptv2.xml file does the same thing, but specifies the following:

• The public key encryption algorithm to be used for encrypting and
decrypting keys.

• The encryption algorithm to be applied to the cipher data.

• Specifically identifies the type of encrypted structure being described.

It looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
 xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"/>

 <xwss:KeyEncryptionMethod
algorithm="http://www.w3.org/2001/04/xmlenc#rsa-

oaep-mgf1p"/>
 <xwss:DataEncryptionMethod
 algorithm="http://www.w3.org/2001/04/
xmlenc#aes128-cbc"/>
 <xwss:EncryptionTarget type="xpath" value=".//SOAP-
ENV:Body"/>
 </xwss:Encrypt>
</xwss:SecurityConfiguration>

Signing the SOAP Message
The security configuration files signv1.xml, signv2.xml, and signv3.xml

enable the following tasks:

• Client signs an outbound SOAPMessage and sends it.

• Client verifies that the inbound SOAPMessage is signed.

238 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
The signv1.xml file looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
 <!--

Note that in the <Sign> operation, a Timestamp is exported
 in the security header and signed by default.
 -->
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-client"/>
 </xwss:Sign>
</xwss:SecurityConfiguration>

The signv2.xml file does the same thing, except that it also includes the follow-
ing:

• Specifies the canonicalization algorithm to be applied to the <Sign> ele-
ment prior to performing signature calculations.

• Specifies the algorithm used for signature generation and validation.

• Provides a list of processing steps to be applied to the resource's content
before it is digested.

It looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-client"/>
<xwss:CanonicalizationMethod algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#"/>
<xwss:SignatureMethod

algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1"/>

<xwss:SignatureTarget type="uri" value="">
<xwss:DigestMethod

algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>

<xwss:Transform
algorithm="http://www.w3.org/TR/1999/REC-

xpath-19991116">
<xwss:AlgorithmParameter name="XPATH"
value="./SOAP-ENV:Envelope/SOAP-

ENV:Header/wsse:Security/
ds:Signature[1]/ds:KeyInfo/

wsse:SecurityTokenReference"/>
</xwss:Transform>
<xwss:Transform algorithm="http://

THE API SAMPLE SECURITY CONFIGURATION FILES 239
docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-

1.0#STR-Transform">
<xwss:AlgorithmParameter

name="CanonicalizationMethod"
value="http://www.w3.org/2001/10/xml-

exc-c14n#"/>
</xwss:Transform>

</xwss:SignatureTarget>
 </xwss:Sign>
</xwss:SecurityConfiguration>

The signv3.xml file looks the same as signv1.xml file, except that it sends the
subject key identifier extension value of the certificate, instead of the actual cer-
tificate, along with the message. It looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
 <!--

Note that in the <Sign> operation, a Timestamp is exported
 in the security header and signed by default.
 -->
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-client"
keyReferenceType="Identifier"/>

 </xwss:Sign>
</xwss:SecurityConfiguration>

The sign-rsign.xml file looks like the signv1.xml file, except that it requires a
signature. It looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-client"/>
 </xwss:Sign>

 <xwss:RequireSignature/>
</xwss:SecurityConfiguration>

The str-transform.xml file uses a Security Token Reference (STR) Derefer-
ence Transform, which is an option for referencing information to be signed.
Other methods for referencing information to be signed include referencing
URIs, IDs and XPaths. Use an STR-Transform when a token format does not
allow tokens to be referenced using URIs or IDs and an XPath is undesirable.

240 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
STR-Transform allows you to create your own unique reference mechanism. It
looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >

<xwss:Sign>
<xwss:X509Token certificateAlias="xws-security-

client"/>
</xwss:Sign>
<xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-
client"/>

<xwss:Target
type="qname">{http://schemas.xmlsoap.org/

soap/envelope/}Body
</xwss:Target>

<xwss:SignatureTarget type="xpath"
value="/SOAP-ENV:Envelope/SOAP-ENV:Header/

wsse:Security/ds:Signature[1]/
ds:KeyInfo/wsse:SecurityTokenReference">

<xwss:DigestMethod
algorithm="http://www.w3.org/2000/09/

xmldsig#sha1"/>
<xwss:Transform algorithm="http://

docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-secu-

rity-1.0#STR-Transform">
<xwss:AlgorithmParameter

name="CanonicalizationMethod"
value="http://www.w3.org/2001/

10/xml-exc-c14n#"/>
</xwss:Transform>

</xwss:SignatureTarget>
</xwss:Sign>

</xwss:SecurityConfiguration>

Sending a Username Token with the SOAP
Message
The security configuration username.xml enables the following tasks:

• Client adds a username-password token to an outbound SOAPMessage and
sends a request.

• Client verifies that the inbound SOAPMessage contains a UsernameToken.

BUILDING AND RUNNING THE API SAMPLE APPLICATION 241
The username.xml file looks like this:

<xwss:SecurityConfiguration dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">
 <xwss:UsernameToken name="Ron" password="noR"/>
 <xwss:RequireUsernameToken/>
</xwss:SecurityConfiguration>

Building and Running the API Sample
Application
This sample does not require that a container be running, so there is no need to
start the Application Server for this example.

To run the api-sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:

• Setting System Properties

• Setting Build Properties

2. Modify the client.configfile and server.configfile properties in
the build.properties file so that they points to a valid security configu-
ration pair you want to run.

3. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

242 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
Soap With Attachments Sample
Application

The swainterop sample application demonstrates the Soap with Attachments
(SwA) interoperability scenarios. SwA describes how a web service consumer
can secure SOAP attachments using XWS-Security for attachment integrity,
confidentiality and origin authentication, and how a receiver may process such a
message. Read more about SwA at http://www.oasis-open.org/committees/download.php/

10090/wss-swa-profile-1.0-draft-14.pdf.

This sample application was used as Sun’s entry in a virtual interoperability
demonstration sponsored by OASIS. This sample implements a set of interop
scenarios required by the event. The scenarios addressed in this sample are
described in The SwA Interop Scenarios. Read more about the SwA interop scenarios
at http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’s log file. The output from the client is sent to stdout or whichever stream
is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side code is found in the /swainterop/server/src/

swainterop/ directory. Client-side code is found in the /swainterop/client/

src/swainterop/ directory. The asant (or ant) targets build objects under the
/build/server/ and /build/client/ directories.

The SwA Interop Scenarios
All four SwA interop scenarios use the same, simple application. The Requester
sends a Ping element with a value of a string as the single child to a SOAP
request. The value is the organization that has developed the software and the
number of the scenario, for example, in this application the value is “Sun Micro-
systems – Scenario #1”. The Responder returns a PingResponse element with a
value of the same string. Each interaction includes a SOAP attachment secured
via one of the content-level security mechanisms described in the WSS SwA Pro-

file.

http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf

THE SWA INTEROP SCENARIOS 243
The following is a summary of each of the SwA interop scenarios demonstrated
in this sample application. You will need the numbers for the scenarios when you
run the sample application.

1. Scenario #1 - Attachment Signature

Scenario #1 tests the interoperability of a signed attachment using an
X.509 certificate. The certificate used to verify the signature shall be
present in the SOAP header. No security properties are applied to any part
of the SOAP envelope.

2. Scenario #2 - Attachment Encryption

The SOAP request has an attachment that has been encrypted. The
encryption is done using a symmetric cipher. The symmetric encryption
key is further encrypted for a specific recipient identified by an X.509 cer-
tificate. The certificate associated with the key encryption is provided to
the requestor out-of-band. No security properties are applied to any part
of the SOAP envelope.

3. Scenario #3 - Attachment Signature and Encryption

The SOAP request contains an attachment that has been signed and then
encrypted. The certificate associated with the encryption is provided out-
of-band to the requestor. The certificate used to verify the signature is pro-
vided in the header. The Response Body is not signed or encrypted. There
are two certificates in the request message. One identifiers the recipient of
the encrypted attachment and one identifies the signer.

4. Scenario #4 - Attachment Signature and Encryption with MIME Headers

The SOAP request contains an attachment that has been signed and then
encrypted. The certificate associated with the encryption is provided out-
of-band to the requestor. The certificate used to verify the signature is pro-
vided in the header. The Response Body is not signed or encrypted. There
are two certificates in the request message. One identifies the recipient of
the encrypted attachment and one identifies the signer. This scenario dif-
fers from the first three scenarios in that it covers MIME headers in the
signature and encryption. This means that it uses the Attachment-Com-
plete Signature Reference Transform and Attachment-Complete Encrypt-
edData Type.

Aside from these two changes, Scenario #4 is identical to Scenario #3.

244 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
SwA Sample Configuration Files
The security configuration pair swa-client.xml and swa-server.xml are used
to secure message attachments. Each file contains the security configuration for
each of the four scenarios.

You specify attachments as targets by specifying the value of the Content-ID
(CID) header of the attachment. To do this, set the type attribute to uri and
specify the target value as cid:<part-name>, where part-name is the WSDL
part name of the AttachmentPart.

The swa-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>

<!-- Port 1: SwA Scenario 1 Sign Attachment Only-->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping1">
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

Note that in the <Sign> operation, a Timestamp is
exported
 in the security header and signed by default.
 -->
 <xwss:Sign includeTimestamp="false">

<xwss:X509Token certificateAlias="xws-security-
client"/>
 <xwss:CanonicalizationMethod

algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 <xwss:SignatureMethod

algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1"/>

 <xwss:SignatureTarget type="uri"
value="cid:foobar">
 <xwss:DigestMethod algorithm="http://
www.w3.org/2000/09/xmldsig#sha1"/>

<xwss:Transform algorithm="http://docs.oasis-
open.org/wss/2004/XX/

oasis-2004XX-wss-swa-profile-
1.0#Attachment-Complete-Transform"/>
 </xwss:SignatureTarget>
 </xwss:Sign>
 </xwss:SecurityConfiguration>
 </xwss:Port>

SWA SAMPLE CONFIGURATION FILES 245
<!-- Port 2: SwA Scenario 2 Encrypt Attachment Only -->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping2">
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Direct"/>

<xwss:Target type="uri">cid:foobar</xwss:Target>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Port>

<!-- Port 3: SwA Scenario 3 Attachment Signature and Encryp-
tion -->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping3">
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Sign includeTimestamp="false">

<xwss:X509Token certificateAlias="xws-security-
client"/>
 <xwss:CanonicalizationMethod

algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 <xwss:SignatureMethod

algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1"/>

 <xwss:SignatureTarget type="uri"
value="cid:foobar">
 <xwss:DigestMethod algorithm="http://
www.w3.org/2000/09/xmldsig#sha1"/>

<xwss:Transform algorithm="http://docs.oasis-
open.org/wss/2004/XX/

oasis-2004XX-wss-swa-profile-
1.0#Attachment-Complete-Transform"/>
 </xwss:SignatureTarget>
 </xwss:Sign>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Direct"/>

<xwss:Target type="uri">cid:foobar</xwss:Target>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Port>

<!-- Port 4: SwA Scenario 4 Attachment Signature and
Encryption

With MIME Headers-->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping4">
 <xwss:SecurityConfiguration dumpMessages="true">

246 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
 <xwss:Sign includeTimestamp="false">
<xwss:X509Token certificateAlias="xws-security-

client"/>
 <xwss:CanonicalizationMethod

algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 <xwss:SignatureMethod

algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1"/>

 <xwss:SignatureTarget type="uri"
value="cid:foobar">
 <xwss:DigestMethod algorithm="http://
www.w3.org/2000/09/xmldsig#sha1"/>

<xwss:Transform algorithm="http://docs.oasis-
open.org/wss/2004/XX/

oasis-2004XX-wss-swa-profile-1.0#
Attachment-Content-Only-Transform"/>

 </xwss:SignatureTarget>
 </xwss:Sign>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="s1as"
keyReferenceType="Direct"/>

<xwss:Target type="uri" conten-
tOnly="false">cid:foobar</xwss:Target>
 </xwss:Encrypt>
 </xwss:SecurityConfiguration>
 </xwss:Port>

 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The security configuration file for the server is swa-server.xml. Ideally, each
scenario would contain a RequireSignature and/or RequireEncryption ele-
ment, but we have not done this yet. The swa-server.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>

<!-- Port 1: SwA Scenario 1 Sign Attachment Only-->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping1">
 <xwss:SecurityConfiguration dumpMessages="true">

RUNNING THE SWA SAMPLE APPLICATION 247
</xwss:SecurityConfiguration>
 </xwss:Port>

<!-- Port 2: SwA Scenario 2 Encrypt Attachment Only-->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping2">
 <xwss:SecurityConfiguration dumpMessages="true">
 </xwss:SecurityConfiguration>
 </xwss:Port>

<!-- Port 3: SwA Scenario 3 Attachment Signature and Encryp-
tion-->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping3">
 <xwss:SecurityConfiguration dumpMessages="true"/>
 </xwss:Port>

 <!-- Port 4: SwA Scenario 4 Attachment Signature and Encryp-
tion

With MIME Headers -->
 <xwss:Port name="{http://xmlsoap.org/Ping}Ping4">
 <xwss:SecurityConfiguration dumpMessages="true"/>
 </xwss:Port>

 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Running the SwA Sample Application
To run the swainterop sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:

• Setting System Properties

• Configuring a JCE Provider

• Setting Build Properties

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

248 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
b. From a Windows machine, choose Start→Programs→Sun
Microsystems→J2EE 1.4→Start Default Server.

3. Make sure that you have modified the /swainterop/build.properties

file for this sample as described in Setting Build Properties.

4. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample-<number>

• On the other containers, the command to build and run the application
is: ant run-sample-<number>

Where the <number> variable is the number of the interop scenario you
want to run.

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing. The final response will have Sun Microsystems Scenario#<scenario-

number>.

 [echo] Running the client program....
 [java] ==== Sending Message Start ====
 ...
 [java] ==== Sending Message End ====
 [java] ==== Received Message Start ====
 ...
 [java] ==== Received Message End ====

You will see similar messages in the server log files, which are located in the fol-
lowing files:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

SAML SAMPLE APPLICATION 249
SAML Sample Application
The samlinterop sample application demonstrates support for OASIS WSS
SAML Token Profile 1.0 in XWS-Security. Security Assertion Markup Lan-
guage (SAML) assertions are used as security tokens. SAML provides a means
by which security assertions about messages can be exchanged between commu-
nicating service endpoints. SAML is also considered important for promoting
interoperable Single-Sign-On (SSO) and Federated Identity. This release,
JWSDP 1.6, adds partial support for SAML Token Profile 1.0.

This sample application was used as Sun’s entry in a virtual interoperability
demonstration sponsored by OASIS. This sample implements three out of the
four interop scenarios required by the event and described in the WSS SAML

Interop Scenarios document. The scenarios addressed in this interop are described in
SAML Interop Scenarios. Read more about the SAML interop scenarios at the fol-
lowing URL: http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-

saml-interop1-draft-11.doc.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’s log file. The output from the client is sent to stdout or whichever stream
is used by the configured log handler. Messages are logged at the INFO level.

In this example, server-side code is found in the /swainterop/server/src/

swainterop/ directory. Client-side code is found in the /swainterop/client/

src/swainterop/ directory. The asant (or ant) targets build objects under the
/build/server/ and /build/client/ directories.

SAML Interop Scenarios
All four SAML interop scenarios invoke the same, simple application. The
Requester sends a Ping element with a value of a string. The value of the string
should be the name of the organization that has developed the software and the
number of the scenario, e.g. “Sun Microsystems – Scenario #1”. The Responder
returns a PingResponse element with a value of the same string. These scenarios
use the Request/Response Message Exchange Pattern (MEP) with no intermedi-
aries. All scenarios use SAML v1.1 Assertions.

To validate and process an assertion, the receiver needs to establish the relation-
ship between the subject of each SAML subject statement and the entity provid-
ing the evidence to satisfy the confirmation method defined for the statements.

http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-interop1-draft-11.doc
http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-interop1-draft-11.doc
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

250 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
The two methods for establishing this correspondence are Holder-of-Key (HOV)
and Sender-Vouches (SV). For more information on these confirmation methods,
read SAML Token Profile 1.0.

The following is a summary of each of the SAML interop scenarios.

• Scenario #1 - Sender-Vouches: Unsigned

The request contains a minimal sender-vouches SAML assertion with no
optional elements included. There are no signatures or certificates
required. The response does not contain a security header.

In this scenario, there is no technical basis for trust because the messages
are sent in the clear with no content or channel protection. This scenario is
intended only to demonstrate message structure interoperability and is not
intended for production use.

• Scenario #2 - Sender-Vouches: Unsigned: SSL (sample not provided)

The request contains a sender-vouches SAML assertion. There are no
signatures required. This scenario is tested over SSL, and certificates are
required to support SSL at the transport layer. The response does not con-
tain a security header.

In this scenario, the basis of trust is the Requester’s client certificate used
to establish the SSL link. The Responder relies on the Requester who
vouches for the contents of the User message and the SAML Assertion.

This scenario is not demonstrated in this sample application.

• Scenario #3 - Sender-Vouches: Signed

The request contains a sender-vouches SAML assertion. The Asser-

tion and the Body elements are signed. A reference to the certificate used
to verify the signature is provided in the header. The response does not
contain a security header.

In this scenario, the basis of trust is the Requester’s certificate. The
Requester’s private key is used to sign both the SAML Assertion and the
message Body. The Responder relies on the Requester, who vouches for
the contents of the User message and the SAML Assertion.

• Scenario #4 - Holder-of-Key

The request contains a holder-of-key SAML assertion. The assertion is
signed by the assertion issuer with an enveloped signature. The certificate
used to verify the issuer signature is contained within the assertion signa-
ture. The message body is signed by the Requester. The certificate used to

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

SAML INTEROP SAMPLE CONFIGURATION FILES 251
verify the Requester’s signature is contained in the assertion Subject-

Confirmation. The response does not contain a security header.

In this scenario, the basis of trust is the Assertion Issuer’s certificate. The
Assertion Issuer’s private key is used to sign the SAML Assertion for the
User. The Responder relies on the Assertion Issuer to have issued the
assertion to an authorized User.

SAML Interop Sample Configuration Files
The following sections provide the example configuration files for SAML
interop scenarios 1, 3, and 4:

• Sender-Vouches Sample Configuration Files

• Holder-Of-Key Sample Configuration Files

Sender-Vouches Sample Configuration Files
The security configuration pair sv-saml-client3.xml and sv-saml-

server3.xml enable the following tasks, as required by Scenario #3:

• Client contains a sender-vouches SAML assertion.

• Client signs the assertion and the body elements.

• Client includes a reference to the certificate used to verify the signature in
the header.

• Client sends the request body.

• Server verifies that a SAML assertion is received.

• Server verifies the signature.

• Server sends the response, which does not contain a security header.

The sv-saml-client3.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">

 <xwss:SAMLAssertion type="SV" strId="SV-123"/>
 <xwss:Sign includeTimestamp="false">

<xwss:X509Token certificateAlias="xws-security-
client"/>
 <xwss:Target type="qname">

{http://schemas.xmlsoap.org/soap/

252 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
envelope/}Body
</xwss:Target>

<xwss:SignatureTarget type="uri" value="SV-123">
<xwss:Transform algorithm="http://docs.oasis-

open.org/wss/2004/01/
oasis-200401-wss-soap-message-

security-1.0#STR-Transform">
 <xwss:AlgorithmParameter
name="CanonicalizationMethod"

value="http://www.w3.org/2001/10/
xml-exc-c14n#"/>
 </xwss:Transform>
 </xwss:SignatureTarget>
 </xwss:Sign>
 <xwss:Timestamp />
 </xwss:SecurityConfiguration>
 </xwss:Service>
 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>
</xwss:JAXRPCSecurity>

The sv-saml-server3.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:RequireTimestamp />

 <xwss:RequireSAMLAssertion type="SV"/>
 <xwss:RequireSignature requireTimestamp="false">
 <xwss:X509Token />
 <xwss:Target type="qname">

{http://schemas.xmlsoap.org/soap/envelope/}Body
</xwss:Target>

 <xwss:SignatureTarget type="uri" value="SV-123"/>
 </xwss:RequireSignature>
 </xwss:SecurityConfiguration>
 </xwss:Service>
 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>
</xwss:JAXRPCSecurity>

The other security configuration files in the /samlinterop/config/ directory
that contain a sender-vouches type of assertion are those in support of Scenario
#1, the sv-saml-client.xml and sv-saml-server.xml pair.

SAML INTEROP SAMPLE CONFIGURATION FILES 253
Holder-Of-Key Sample Configuration Files
The security configuration pair hok-saml-client.xml and hok-saml-

server.xml enable the following tasks, as required by Scenario #4:

• Client contains a holder-of-key SAML assertion.

• Client has the assertion signed by the assertion issuer with an enveloped
signature.

• Client includes the certificate used to verify the issuer signature in the
assertion signature.

• Client signs the request body.

• Server verifies that a SAML assertion is received.

• Server verifies the signature.

• Server sends the response, which does not contain a security header.

The hok-saml-client.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:Sign includeTimestamp="false">

 <xwss:SAMLAssertion type="HOK"/>
 <xwss:Target type="qname">

{http://schemas.xmlsoap.org/soap/
envelope/}Body

</xwss:Target>
 </xwss:Sign>
 <xwss:Timestamp />
 </xwss:SecurityConfiguration>
 </xwss:Service>
 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>
</xwss:JAXRPCSecurity>

The hok-saml-server.xml file looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">
 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:RequireTimestamp />
 <xwss:RequireSignature requireTimestamp="false">

<xwss:SAMLAssertion type="HOK"/>

254 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
 <xwss:Target type="qname">
{http://schemas.xmlsoap.org/soap/envelope/}Body

</xwss:Target>
 </xwss:RequireSignature>
 </xwss:SecurityConfiguration>
 </xwss:Service>
 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>
</xwss:JAXRPCSecurity>

Running the SAML Interop Sample
To run the samlinterop sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:

• Setting System Properties

• Configuring a JCE Provider

• Setting Build Properties

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

b. From a Windows machine, choose Start→Programs→Sun
Microsystems→J2EE 1.4→Start Default Server.

3. Modify the build.properties file to set up the security configuration that
you want to run for the client and/or server. To do this, remove the com-
ment character (#) from beside the client and server configuration pair to
be used, and make sure the other security configuration files have the com-
ment character beside them. See SAML Interop Sample Configuration Files for
more information on the security configurations options defined for this
sample application.

4. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

DYNAMIC POLICY SAMPLE APPLICATION 255
Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing:

[echo] Running the client program....
 [java] ==== Sending Message Start ====
 ...
 [java] ==== Sending Message End ====
 [java] ==== Received Message Start ====
 ...
 [java] ==== Received Message End ====
 [java] Hello to Duke!

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

Dynamic Policy Sample Application
The dynamic-policy sample application demonstrates how to specify (or
change) the request and/or response security policy at runtime using the XWS-
Security APIs. Another sample that demonstrates using the XWS-Security APIs
is api-sample, which is discussed in XWS-Security APIs Sample Application.

You would want to dynamically set the security policy for an application at runt-
ime when one of these conditions is present:

• Response policy: When you don’t know who the requester may be, you
want to be able to specify the response security policy after you determine
the identity of the requester.

• Request policy: When you don’t know what the runtime parameters will
be, you want to discover these parameters, such as whether SSL is enabled
at the transport layer, before you specify your request policy.

256 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer’s log file. The output from the client is sent to stdout or to whichever
stream is used by the configured log handler. Messages are logged at the INFO

level.

In this example, server-side code is found in the /dynamic-policy/server/

src/sample/ directory. Client-side code is found in the /dynamic-policy/cli-
ent/src/sample/ directory. The asant (or ant) targets build objects under the
/build/server/ and /build/client/ directories.

Security Configuration Files for Enabling
Dynamic Policy
To specify the request and/or response security policy dynamically at runtime,
you need to enable DynamicPolicyCallback by setting the enableDynamicPol-
icy flag on the <xwss:SecurityConfiguration> element. The application-
defined runtime parameters can then be set by the application and passed into the
ProcessingContext, which is made available to the CallbackHandler as a
DynamicApplicationContext. The CallbackHandler can then modify an
existing policy or set a completely new policy into the Callback.

As you can see, the security configuration files for this example are very simple,
because the actual security policy that will be applied at runtime is being decided
by SecurityEnvironmentHandler. The SecurityEnvironmentHandler is dis-
cussed in Setting Security Policies at Runtime. The security configuration file for the
client, dynamic-client.xml, looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <!-- the exact policy to apply will be decided by the

SecurityEnvironmentHandler at runtime -->
<xwss:SecurityConfiguration dumpMessages="true" enable-

DynamicPolicy="true">
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>

SETTING SECURITY POLICIES AT RUNTIME 257
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The security configuration file for the server, dynamic-server.xml, looks like
this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
<!-- the exact policy to apply will be decided by the

SecurityEnvironmentHandler at runtime -->
<xwss:SecurityConfiguration dumpMessages="true" enable-

DynamicPolicy="true">
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 com.sun.xml.wss.sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Setting Security Policies at Runtime
The dynamic-policy sample application demonstrates how the request and
response security policies can be set at runtime from the SecurityEnvironmen-

tHandler callback.

In this sample, the SecurityEnvironmentHandler inserts a SignaturePolicy

at runtime. The SignaturePolicy asks for a signature over the body of the mes-
sage. For the requesting side, this is equivalent to using an <xwss:Sign> element
in the configuration file. For the receiving side, this is equivalent to using an
<xwss:RequireSignature> element in the configuration file. Both the request
and response contain a signature over the body.

Note: The APIs used in this sample by the SecurityEnvironmentHandler callback
are evolving and hence are subject to modification prior to the release of XWS
Security FCS 2.0.

258 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
The full code for the SecurityEnvironmentHandler is located in the /

dynamic-policy/src/com/sun/xml/wss/sample directory. The SecurityEn-

vironmentHandler file is a sample implementation of a CallbackHandler. The
following snippet of that file demonstrates how to handle a DynamicPolicy-

Callback:

} else if (callbacks[i] instanceof DynamicPolicyCallback) {
 DynamicPolicyCallback dpCallback =
(DynamicPolicyCallback) callbacks[i];
 SecurityPolicy policy =
dpCallback.getSecurityPolicy();

 if (policy instanceof WSSPolicy) {
 try {
 handleWSSPolicy (dpCallback);
 } catch (PolicyGenerationException pge) {

throw new IOException (pge.getMessage());
 }

} else if (policy instanceof DynamicSecurityPolicy)
{
 try {

handleDynamicSecurityPolicy (dpCallback);
 } catch (PolicyGenerationException pge) {

throw new IOException (pge.getMessage());
 }
 } else {
 throw unsupported;
 }

Running the Dynamic Policy Sample
Application
To run the dynamic-policy sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:

• Setting System Properties

• Configuring a JCE Provider

• Setting Build Properties

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

RUNNING THE DYNAMIC POLICY SAMPLE APPLICATION 259
b. From a Windows machine, choose Start→Programs→Sun
Microsystems→J2EE 1.4→Start Default Server.

3. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing:

[echo] Running the client program....
[java] ==== Sending Message Start ====
...
[java] ==== Sending Message End ====
[java] ==== Received Message Start ====
...
[java] ==== Received Message End ====

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

260 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
Dynamic Response Sample
Application

The dynamic-response sample application demonstrates using the certificate
that arrived in a signed request to encrypt the response back to the requester
using the XWS-Security APIs. To accomplish this task,

• A CallbackHandler retrieves the requester Subject and obtains its certif-
icate.

• The requester certificate is used to encrypt the response back to the
requester.

The application prints out both the client and server request and response SOAP
messages. The output from the server may be viewed in the appropriate con-
tainer's log file. The output from the client is sent to stdout or to whichever
stream is used by the configured log handler. Messages are logged at the INFO

level.

In this example, server-side code is found in the /dynamic-response/server/

src/sample/ directory. Client-side code is found in the /dynamic-response/

client/src/sample/ directory. The asant (or ant) targets build objects under
the /build/server/ and /build/client/ directories.

Security Configuration Files for Enabling
Dynamic Response
For this sample application, the security configuration files are fairly simple. The
security configuration files are used to sign the request and encrypt the response,
but the work of using the requester certificate to encrypt the response back to the
requester is accomplished using the SecurityEnvironmentHandler, which is
discussed in Using the CallbackHandler to Enable Dynamic Response.

The client security configuration file for this example, sign-client.xml, looks
like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <!--

USING THE CALLBACKHANDLER TO ENABLE DYNAMIC RESPONSE 261
Note that in the <Sign> operation, a Timestamp is
exported
 in the security header and signed by default.
 -->
 <xwss:Sign>

<xwss:X509Token certificateAlias="xws-security-
client"/>
 </xwss:Sign>
 <xwss:RequireEncryption/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

The server security configuration file for this example, encrypt-server.xml,
looks like this:

<xwss:JAXRPCSecurity xmlns:xwss="http://java.sun.com/xml/ns/
xwss/config">

 <xwss:Service>
 <xwss:SecurityConfiguration dumpMessages="true">
 <xwss:RequireSignature/>
 <xwss:Encrypt/>
 </xwss:SecurityConfiguration>
 </xwss:Service>

 <xwss:SecurityEnvironmentHandler>
 sample.SecurityEnvironmentHandler
 </xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

Using the CallbackHandler to Enable
Dynamic Response
In this sample application, the security configuration files sign the request and
encrypt the response, however the work of using the requester certificate to
encrypt the response back to the requester is done in the SecurityEnvironmen-

tHandler. The full source code for the SecurityEnvironmentHandler is

262 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS
located in the directory dynamic-response/src/sample. This snippet from that
file demonstrates how to use a CallbackHandler to generate the response
dynamically:

if (cb.getRequest() instanceof
EncryptionKeyCallback.AliasX509CertificateRequest) {

EncryptionKeyCallback.AliasX509CertificateRequest request =

(EncryptionKeyCallback.AliasX509CertificateRequest)
cb.getRequest();
 String alias = request.getAlias();
 if ((alias == null) || "".equals(alias)) {
 Subject currentSubject =
SubjectAccessor.getRequesterSubject();
 Set publicCredentials =
currentSubject.getPublicCredentials();
 for (Iterator it =
publicCredentials.iterator(); it.hasNext();) {
 Object cred = it.next();
 if(cred instanceof
java.security.cert.X509Certificate){

java.security.cert.X509Certificate
cert =

(java.security.cert.X509
Certificate)cred;

request.setX509Certificate(cert)
;

Running the Dynamic Response Sample
Application
To run the dynamic-response sample application, follow these steps:

1. Complete the tasks defined in the following sections of this addendum:

• Setting System Properties

• Configuring a JCE Provider

• Setting Build Properties

2. Start the selected container and make sure the server is running. To start
the Application Server,

a. From a Unix machine, enter the following command from a terminal
window: asadmin start-domain domain1

FURTHER INFORMATION 263
b. From a Windows machine, choose Start→Programs→Sun
Microsystems→J2EE 1.4→Start Default Server.

3. Build and run the application from a terminal window or command
prompt.

• On the Application Server, the command to build and run the applica-
tion is: asant run-sample

• On the other containers, the command to build and run the application
is: ant run-sample

Note: To run the sample against a remote server containing the deployed endpoint,
use the run-remote-sample target in place of the run-sample target. In this situa-
tion, make sure that the endpoint.host, endpoint.port, http.proxyHost,
http.proxyPort, and service.url properties are set correctly in the build.prop-

erties file (as discussed in Setting Build Properties) before running the sample.

If the application runs successfully, you will see a message similar to the follow-
ing:

[echo] Running the client program....
[java] ==== Sending Message Start ====
...
[java] ==== Sending Message End ====
[java] ==== Received Message Start ====
...
[java] ==== Received Message End ====

You can view similar messages in the server logs:

<SJSAS_HOME>/domains/<domain-name>/logs/server.log
<TOMCAT_HOME>/logs/launcher.server.log
<SJSWS_HOME>/<Virtual-Server-Dir>/logs/errors

Further Information
For links to specifications and other documents relevant to XWS-Security, refer
to the Further Information section in Introduction to XML and Web Services Security.

264 UNDERSTANDING AND RUNNING THE XWS-SECURITY SAMPLE APPLICATIONS

6

265
Java XML Digital
Signature API

THE Java XML Digital Signature API is a standard Java API for generating
and validating XML Signatures. This API was defined under the Java Commu-
nity Process as JSR 105 (see http://jcp.org/en/jsr/detail?id=105). This
JSR is final and this release of Java WSDP contains an FCS access implementa-
tion of the Final version of the APIs.

XML Signatures can be applied to data of any type, XML or binary (see http:/

/www.w3.org/TR/xmldsig-core/). The resulting signature is represented in
XML. An XML Signature can be used to secure your data and provide data
integrity, message authentication, and signer authentication.

After providing a brief overview of XML Signatures and the XML Digital Sig-
nature API, this chapter presents two examples that demonstrate how to use the
API to validate and generate an XML Signature. This chapter assumes that you
have a basic knowledge of cryptography and digital signatures.

The API is designed to support all of the required or recommended features of
the W3C Recommendation for XML-Signature Syntax and Processing. The API
is extensible and pluggable and is based on the Java Cryptography Service Pro-
vider Architecture. The API is designed for two types of developers:

• Java programmers who want to use the XML Digital Signature API to gen-
erate and validate XML signatures

http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

266 JAVA XML DIGITAL SIGNATURE API
• Java programmers who want to create a concrete implementation of the
XML Digital Signature API and register it as a cryptographic service of a
JCA provider (see http://java.sun.com/j2se/1.4.2/docs/guide/

security/CryptoSpec.html#Provider)

How XWS-Security and XML Digital
Signature API Are Related

Before getting into specifics, it is important to see how XWS-Security and XML
Digital Signature API are related. In this release of the Java WSDP, XWS-Secu-
rity is based on non-standard XML Digital Signature APIs.

XML Digital Signature API is an API that should be used by Java applications
and middleware that need to create and/or process XML Signatures. It can be
used by Web Services Security (the goal for a future release) and by non-Web
Services technologies (for example, signing documents stored or transferred in
XML). Both JSR 105 and JSR 106 (XML Digital Encryption APIs) are core-
XML security components. (See http://www.jcp.org/en/jsr/

detail?id=106 for more information about JSR 106.)

XWS-Security does not currently use the XML Digital Signature API or XML
Digital Encryption APIs. XWS-Security uses the Apache libraries for XML-
DSig and XML-Enc. The goal of XWS-Security is to move toward using these
APIs in future releases.

http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://www.jcp.org/en/jsr/detail?id=106
http://www.jcp.org/en/jsr/detail?id=106

XML SECURITY STACK 267
XML Security Stack
Figure 6–1 shows how XML Digital Signature API (JSR 105) interacts with
security components today and how it will interact with other security compo-
nents, including XML Digital Encryption API (JSR 106), in future releases.

Figure 6–1 Java WSDP Security Components

XWSS calls Apache XML-Security directly today; in future releases, it should
be able to call other pluggable security providers. The Apache XML-Security
provider and the Sun JCA Provider are both pluggable components. Since JSR
105 is final today, the JSR 105 layer is standard now; the JSR 106 layer will be
standard after that JSR becomes final.

268 JAVA XML DIGITAL SIGNATURE API
Package Hierarchy
The six packages in the XML Digital Signature API are:

• javax.xml.crypto

• javax.xml.crypto.dsig

• javax.xml.crypto.dsig.keyinfo

• javax.xml.crypto.dsig.spec

• javax.xml.crypto.dom

• javax.xml.crypto.dsig.dom

The javax.xml.crypto package contains common classes that are used to per-
form XML cryptographic operations, such as generating an XML signature or
encrypting XML data. Two notable classes in this package are the KeySelector

class, which allows developers to supply implementations that locate and option-
ally validate keys using the information contained in a KeyInfo object, and the
URIDereferencer class, which allows developers to create and specify their own
URI dereferencing implementations.

The javax.xml.crypto.dsig package includes interfaces that represent the
core elements defined in the W3C XML digital signature specification. Of pri-
mary significance is the XMLSignature class, which allows you to sign and vali-
date an XML digital signature. Most of the XML signature structures or
elements are represented by a corresponding interface (except for the KeyInfo

structures, which are included in their own package and are discussed in the next
paragraph). These interfaces include: SignedInfo, CanonicalizationMethod,
SignatureMethod, Reference, Transform, DigestMethod, XMLObject, Mani-
fest, SignatureProperty, and SignatureProperties. The XMLSignature-

Factory class is an abstract factory that is used to create objects that implement
these interfaces.

The javax.xml.crypto.dsig.keyinfo package contains interfaces that repre-
sent most of the KeyInfo structures defined in the W3C XML digital signature
recommendation, including KeyInfo, KeyName, KeyValue, X509Data,
X509IssuerSerial, RetrievalMethod, and PGPData. The KeyInfoFactory

class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.spec package contains interfaces and classes
representing input parameters for the digest, signature, transform, or canonical-
ization algorithms used in the processing of XML signatures.

Finally, the javax.xml.crypto.dom and javax.xml.crypto.dsig.dom pack-
ages contains DOM-specific classes for the javax.xml.crypto and

http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/KeySelector.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/URIDereferencer.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignature.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignedInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/CanonicalizationMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Reference.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Transform.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/DigestMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLObject.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperty.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperties.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyName.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyValue.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509Data.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509IssuerSerial.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/RetrievalMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/PGPData.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/spec/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html

SERVICE PROVIDERS 269
javax.xml.crypto.dsig packages, respectively. Only developers and users
who are creating or using a DOM-based XMLSignatureFactory or KeyInfo-

Factory implementation should need to make direct use of these packages.

Service Providers
A JSR 105 cryptographic service is a concrete implementation of the abstract
XMLSignatureFactory and KeyInfoFactory classes and is responsible for cre-
ating objects and algorithms that parse, generate and validate XML Signatures
and KeyInfo structures. A concrete implementation of XMLSignatureFactory

must provide support for each of the required algorithms as specified by the
W3C recommendation for XML Signatures. It may support other algorithms as
defined by the W3C recommendation or other specifications.

JSR 105 leverages the JCA provider model for registering and loading XMLSig-

natureFactory and KeyInfoFactory implementations.

Each concrete XMLSignatureFactory or KeyInfoFactory implementation sup-
ports a specific XML mechanism type that identifies the XML processing mech-
anism that an implementation uses internally to parse and generate XML
signature and KeyInfo structures. This JSR supports one standard type, DOM.
The XML Digital Signature API early access provider implementation that is
bundled with Java WSDP supports the DOM mechanism. Support for new stan-
dard types, such as JDOM, may be added in the future.

An XML Digital Signature API implementation should use underlying JCA
engine classes, such as java.security.Signature and java.security.Mes-

sageDigest, to perform cryptographic operations.

In addition to the XMLSignatureFactory and KeyInfoFactory classes, JSR 105
supports a service provider interface for transform and canonicalization algo-
rithms. The TransformService class allows you to develop and plug in an
implementation of a specific transform or canonicalization algorithm for a par-
ticular XML mechanism type. The TransformService class uses the standard
JCA provider model for registering and loading implementations. Each JSR 105
implementation should use the TransformService class to find a provider that
supports transform and canonicalization algorithms in XML Signatures that it is
generating or validating.

http://java.sun.com/j2se/1.4/docs/api/java/security/Signature.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html
http://java.sun.com/webservices/docs/1.6/api/javax/xml/crypto/dsig/TransformService.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html

270 JAVA XML DIGITAL SIGNATURE API
Introduction to XML Signatures
As mentioned, an XML Signature can be used to sign any arbitrary data, whether
it is XML or binary. The data is identified via URIs in one or more Reference
elements. XML Signatures are described in one or more of three forms:
detached, enveloping, or enveloped. A detached signature is over data that is
external, or outside of the signature element itself. Enveloping signatures are sig-
natures over data that is inside the signature element, and an enveloped signature
is a signature that is contained inside the data that it is signing.

Example of an XML Signature
The easiest way to describe the contents of an XML Signature is to show an
actual sample and describe each component in more detail. The following is an
example of an enveloped XML Signature generated over the contents of an XML
document. The contents of the document before it is signed are:

<Envelope xmlns="urn:envelope">
</Envelope>

The resulting enveloped XML Signature, indented and formatted for readability,
is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="urn:envelope">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#dsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/
xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>

<DigestValue>uooqbWYa5VCqcJCbuymBKqm17vY=</DigestValue>
 </Reference>
 </SignedInfo>
<SignatureValue>

EXAMPLE OF AN XML SIGNATURE 271
KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQRl26S2tmXjqNND7MRGtoew==
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu0ImbzRMqzVDZkVG9xD7nN1kuFw==
 </P>
 <Q>li7dzDacuo67Jg7mtqEm2TRuOMU=</Q>
 <G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/
XPaF5Bpsy4pNWMOHCBiNU0NogpsQW5QvnlMpA==
 </G>
 <Y>qV38IqrWJG0V/
mZQvRVi1OHw9Zj84nDC4jO8P0axi1gb6d+475yhMjSc/
BrIVC58W3ydbkK+Ri4OKbaRZlYeRA==
 </Y>
 </DSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
</Envelope>

The Signature element has been inserted inside the content that it is signing,
thereby making it an enveloped signature. The required SignedInfo element
contains the information that is actually signed:

<SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#dsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/
xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
 <DigestValue>uooqbWYa5VCqcJCbuymBKqm17vY=</DigestValue>
 </Reference>
</SignedInfo>

The required CanonicalizationMethod element defines the algorithm used to
canonicalize the SignedInfo element before it is signed or validated. Canonical-
ization is the process of converting XML content to a canonical form, to take

272 JAVA XML DIGITAL SIGNATURE API
into account changes that can invalidate a signature over that data. Canonicaliza-
tion is necessary due to the nature of XML and the way it is parsed by different
processors and intermediaries, which can change the data such that the signature
is no longer valid but the signed data is still logically equivalent.

The required SignatureMethod element defines the digital signature algorithm
used to generate the signature, in this case DSA with SHA-1.

One or more Reference elements identify the data that is digested. Each Refer-

ence element identifies the data via a URI. In this example, the value of the URI
is the empty String (""), which indicates the root of the document. The optional
Transforms element contains a list of one or more Transform elements, each of
which describes a transformation algorithm used to transform the data before it
is digested. In this example, there is one Transform element for the enveloped
transform algorithm. The enveloped transform is required for enveloped signa-
tures so that the signature element itself is removed before calculating the signa-
ture value. The required DigestMethod element defines the algorithm used to
digest the data, in this case SHA1. Finally the required DigestValue element
contains the actual base64-encoded digested value.

The required SignatureValue element contains the base64-encoded signature
value of the signature over the SignedInfo element.

The optional KeyInfo element contains information about the key that is needed
to validate the signature:

<KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu0ImbzRMqzVDZkVG9xD7nN1kuFw==
 </P>
 <Q>li7dzDacuo67Jg7mtqEm2TRuOMU=</Q>
 <G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/
XPaF5Bpsy4pNWMOHCBiNU0NogpsQW5QvnlMpA==
 </G>
 <Y>
qV38IqrWJG0V/mZQvRVi1OHw9Zj84nDC4jO8P0axi1gb6d+475yhMjSc/
BrIVC58W3ydbkK+Ri4OKbaRZlYeRA==
 </Y>
 </DSAKeyValue>
 </KeyValue>
</KeyInfo>

XML DIGITAL SIGNATURE API EXAMPLES 273
This KeyInfo element contains a KeyValue element, which in turn contains a
DSAKeyValue element consisting of the public key needed to validate the signa-
ture. KeyInfo can contain various content such as X.509 certificates and PGP
key identifiers. See the KeyInfo section of the XML Signature Recommenda-
tion for more information on the different KeyInfo types.

XML Digital Signature API Examples
The following sections describe two examples that show how to use the XML
Digital Signature API:

• Validate example

• Signing example

To run the sample applications using the supplied Ant build.xml files, issue the
following commands after you installed Java WSDP:

For Solaris/Linux:

1.% export JWSDP_HOME=<your Java WSDP installation directory>

2.% export ANT_HOME=$JWSDP_HOME/apache-ant

3. % export PATH=$ANT_HOME/bin:$PATH

4. % cd $JWSDP_HOME/xmldsig/samples/<sample-name>

For Windows 2000/XP:

1. > set JWSDP_HOME=<your Java WSDP installation directory>
2.> set ANT_HOME=%JWSDP_HOME%\apache-ant

3.> set PATH=%ANT_HOME%\bin;%PATH%

4.> cd %JWSDP_HOME%\xmldsig\samples\<sample-name>

validate Example
You can find the code shown in this section in the Validate.java file in the
<JWSDP_HOME>/xmldsig/samples/validate directory. The file on which it
operates, envelopedSignature.xml, is in the same directory.

To run the example, execute the following command from the <JWSDP_HOME>/

xmldsig/samples/validate directory:

$ ant

http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo

274 JAVA XML DIGITAL SIGNATURE API
The sample program will validate the signature in the file envelopedSigna-

ture.xml in the current working directory. To validate a different signature, run
the following command:

$ ant -Dsample.args="signature.xml"

where "signature.xml" is the pathname of the file.

Validating an XML Signature
This example shows you how to validate an XML Signature using the JSR 105
API. The example uses DOM (the Document Object Model) to parse an XML
document containing a Signature element and a JSR 105 DOM implementation
to validate the signature.

Instantiating the Document that Contains the
Signature
First we use a JAXP DocumentBuilderFactory to parse the XML document
containing the Signature. An application obtains the default implementation for
DocumentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Specifying the Signature Element to be
Validated
We need to specify the Signature element that we want to validate, since there
could be more than one in the document. We use the DOM method Docu-

VALIDATE EXAMPLE 275
ment.getElementsByTagNameNS, passing it the XML Signature namespace URI
and the tag name of the Signature element, as shown:

NodeList nl = doc.getElementsByTagNameNS
(XMLSignature.XMLNS, "Signature");

if (nl.getLength() == 0) {
throw new Exception("Cannot find Signature element");

}

This returns a list of all Signature elements in the document. In this example,
there is only one Signature element.

Creating a Validation Context
We create an XMLValidateContext instance containing input parameters for val-
idating the signature. Since we are using DOM, we instantiate a DOMValidate-

Context instance (a subclass of XMLValidateContext), and pass it two
parameters, a KeyValueKeySelector object and a reference to the Signature

element to be validated (which is the first entry of the NodeList we generated
earlier):

DOMValidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

The KeyValueKeySelector is explained in greater detail in Using
KeySelectors (page 277).

Unmarshaling the XML Signature
We extract the contents of the Signature element into an XMLSignature object.
This process is called unmarshalling. The Signature element is unmarshalled
using an XMLSignatureFactory object. An application can obtain a DOM
implementation of XMLSignatureFactory by calling the following line of code:

XMLSignatureFactory factory =
XMLSignatureFactory.getInstance("DOM");

276 JAVA XML DIGITAL SIGNATURE API
We then invoke the unmarshalXMLSignature method of the factory to unmar-
shal an XMLSignature object, and pass it the validation context we created ear-
lier:

XMLSignature signature =
factory.unmarshalXMLSignature(valContext);

Validating the XML Signature
Now we are ready to validate the signature. We do this by invoking the validate
method on the XMLSignature object, and pass it the validation context as fol-
lows:

boolean coreValidity = signature.validate(valContext);

The validate method returns “true” if the signature validates successfully
according to the core validation rules in the W3C XML Signature Recom-

mendation, and false otherwise.

What If the XML Signature Fails to Validate?
If the XMLSignature.validate method returns false, we can try to narrow down
the cause of the failure. There are two phases in core XML Signature validation:

• Signature validation (the cryptographic verification of the signature)

• Reference validation (the verification of the digest of each reference in
the signature)

Each phase must be successful for the signature to be valid. To check if the sig-
nature failed to cryptographically validate, we can check the status, as follows:

boolean sv =
signature.getSignatureValue().validate(valContext);

System.out.println("signature validation status: " + sv);

We can also iterate over the references and check the validation status of each
one, as follows:

Iterator i =
signature.getSignedInfo().getReferences().iterator();

for (int j=0; i.hasNext(); j++) {
boolean refValid = ((Reference)

VALIDATE EXAMPLE 277
i.next()).validate(valContext);
System.out.println("ref["+j+"] validity status: " +

refValid);
}

Using KeySelectors
KeySelectors are used to find and select keys that are needed to validate an
XMLSignature. Earlier, when we created a DOMValidateContext object, we
passed a KeySelector object as the first argument:

DOMValidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

Alternatively, we could have passed a PublicKey as the first argument if we
already knew what key is needed to validate the signature. However, we often
don’t know.

The KeyValueKeySelector is a concrete implementation of the abstract KeySe-
lector class. The KeyValueKeySelector implementation tries to find an
appropriate validation key using the data contained in KeyValue elements of the
KeyInfo element of an XMLSignature. It does not determine if the key is trusted.
This is a very simple KeySelector implementation, designed for illustration
rather than real-world usage. A more practical example of a KeySelector is one
that searches a KeyStore for trusted keys that match X509Data information (for
example, X509SubjectName, X509IssuerSerial, X509SKI, or
X509Certificate elements) contained in a KeyInfo.

The implementation of the KeyValueKeySelector is as follows:

private static class KeyValueKeySelector extends KeySelector {

public KeySelectorResult select(KeyInfo keyInfo,
KeySelector.Purpose purpose,
AlgorithmMethod method,
XMLCryptoContext context)

throws KeySelectorException {

if (keyInfo == null) {
throw new KeySelectorException("Null KeyInfo object!");

}
SignatureMethod sm = (SignatureMethod) method;
List list = keyInfo.getContent();

for (int i = 0; i < list.size(); i++) {

278 JAVA XML DIGITAL SIGNATURE API
XMLStructure xmlStructure = (XMLStructure) list.get(i);
if (xmlStructure instanceof KeyValue) {

PublicKey pk = null;
try {

pk = ((KeyValue)xmlStructure).getPublicKey();
} catch (KeyException ke) {

throw new KeySelectorException(ke);
}
// make sure algorithm is compatible with method
if (algEquals(sm.getAlgorithm(),

pk.getAlgorithm())) {
return new SimpleKeySelectorResult(pk);

}
}

}
throw new KeySelectorException("No KeyValue element

found!");
}

static boolean algEquals(String algURI, String algName) {
if (algName.equalsIgnoreCase("DSA") &&

algURI.equalsIgnoreCase(SignatureMethod.DSA_SHA1)) {
return true;

} else if (algName.equalsIgnoreCase("RSA") &&
algURI.equalsIgnoreCase(SignatureMethod.RSA_SHA1)) {

return true;
} else {

return false;
}

}
}

genenveloped Example
The code discussed in this section is in the GenEnveloped.java file in the
<JWSDP_HOME>/xmldsig/samples/genenveloped directory. The file on which it
operates, envelope.xml, is in the same directory. It generates the file envelo-

pedSignature.xml.

To compile and run this sample, execute the following command from the
<JWSDP_HOME>/xmldsig/samples/genenveloped directory:

$ ant

GENENVELOPED EXAMPLE 279
The sample program will generate an enveloped signature of the document in the
file envelope.xml and store it in the file envelopedSignature.xml in the cur-
rent working directory.

Generating an XML Signature
This example shows you how to generate an XML Signature using the XML
Digital Signature API. More specifically, the example generates an enveloped
XML Signature of an XML document. An enveloped signature is a signature that
is contained inside the content that it is signing. The example uses DOM (the
Document Object Model) to parse the XML document to be signed and a JSR
105 DOM implementation to generate the resulting signature.

A basic knowledge of XML Signatures and their different components is helpful
for understanding this section. See http://www.w3.org/TR/xmldsig-core/ for
more information.

Instantiating the Document to be Signed
First, we use a JAXP DocumentBuilderFactory to parse the XML document
that we want to sign. An application obtains the default implementation for Doc-
umentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

280 JAVA XML DIGITAL SIGNATURE API
Creating a Public Key Pair
We generate a public key pair. Later in the example, we will use the private key
to generate the signature. We create the key pair with a KeyPairGenerator. In
this example, we will create a DSA KeyPair with a length of 512 bytes :

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
kpg.initialize(512);
KeyPair kp = kpg.generateKeyPair();

In practice, the private key is usually previously generated and stored in a Key-

Store file with an associated public key certificate.

Creating a Signing Context
We create an XML Digital Signature XMLSignContext containing input parame-
ters for generating the signature. Since we are using DOM, we instantiate a DOM-
SignContext (a subclass of XMLSignContext), and pass it two parameters, the
private key that will be used to sign the document and the root of the document
to be signed:

DOMSignContext dsc = new DOMSignContext
(kp.getPrivate(), doc.getDocumentElement());

Assembling the XML Signature
We assemble the different parts of the Signature element into an XMLSignature

object. These objects are all created and assembled using an XMLSignatureFac-

tory object. An application obtains a DOM implementation of XMLSignature-
Factory by calling the following line of code:

XMLSignatureFactory fac =
XMLSignatureFactory.getInstance("DOM");

We then invoke various factory methods to create the different parts of the XML-

Signature object as shown below. We create a Reference object, passing to it
the following:

• The URI of the object to be signed (We specify a URI of "", which implies
the root of the document.)

• The DigestMethod (we use SHA1)

GENENVELOPED EXAMPLE 281
• A single Transform, the enveloped Transform, which is required for
enveloped signatures so that the signature itself is removed before calcu-
lating the signature value

Reference ref = fac.newReference
("", fac.newDigestMethod(DigestMethod.SHA1, null),

Collections.singletonList
(fac.newTransform(Transform.ENVELOPED,

(TransformParameterSpec) null)), null, null);

Next, we create the SignedInfo object, which is the object that is actually
signed, as shown below. When creating the SignedInfo, we pass as parameters:

• The CanonicalizationMethod (we use inclusive and preserve comments)

• The SignatureMethod (we use DSA)

• A list of References (in this case, only one)

SignedInfo si = fac.newSignedInfo
(fac.newCanonicalizationMethod

(CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
(C14NMethodParameterSpec) null),

fac.newSignatureMethod(SignatureMethod.DSA_SHA1, null),
Collections.singletonList(ref));

Next, we create the optional KeyInfo object, which contains information that
enables the recipient to find the key needed to validate the signature. In this
example, we add a KeyValue object containing the public key. To create KeyInfo
and its various subtypes, we use a KeyInfoFactory object, which can be
obtained by invoking the getKeyInfoFactory method of the XMLSignature-

Factory, as follows:

KeyInfoFactory kif = fac.getKeyInfoFactory();

We then use the KeyInfoFactory to create the KeyValue object and add it to a
KeyInfo object:

KeyValue kv = kif.newKeyValue(kp.getPublic());
KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

Finally, we create the XMLSignature object, passing as parameters the Signed-

Info and KeyInfo objects that we created earlier:

XMLSignature signature = fac.newXMLSignature(si, ki);

282 JAVA XML DIGITAL SIGNATURE API
Notice that we haven’t actually generated the signature yet; we’ll do that in the
next step.

Generating the XML Signature
Now we are ready to generate the signature, which we do by invoking the sign

method on the XMLSignature object, and pass it the signing context as follows:

signature.sign(dsc);

The resulting document now contains a signature, which has been inserted as the
last child element of the root element.

Printing or Displaying the Resulting Document
You can use the following code to print the resulting signed document to a file or
standard output:

OutputStream os;
if (args.length > 1) {

os = new FileOutputStream(args[1]);
} else {

os = System.out;
}

TransformerFactory tf = TransformerFactory.newInstance();
Transformer trans = tf.newTransformer();
trans.transform(new DOMSource(doc), new StreamResult(os));

7

283
Using the Service
Registry Web Console

THIS chapter describes the Web Console for the Service Registry (“the Regis-
try”). It contains the following sections:

• Getting Started With the Web Console

• Searching the Registry

• Publishing and Managing Registry Objects

Getting Started With the Web Console
The Web Console is a web-based user interface that allows you to search the
Registry and to publish content to the Registry and Repository. This section
describes the preliminary steps to follow before you can perform these opera-
tions.

• Starting the Web Console

• Changing the Default Language

284 USING THE SERVICE REGISTRY WEB CONSOLE
Starting the Web Console
To start the Web Console, type the following URL into a web browser:

http://hostname:port/soar/registry/thin/browser.jsp

For example:

http://localhost:8080/soar/registry/thin/browser.jsp

If the Registry is installed on your system, the hostname is localhost. If the
Registry is not installed on your system, use the name of the system where the
Registry is installed. The port value is usually 8080 unless there is a port con-
flict.

The Web Console has the following main sections:

• Top banner, where you can reset the locale, end the current session, and set
the content language

• Menu area on the left side of the screen

• Registry Objects area to the right of the menu area, which displays found
objects

• Detail area below the Registry Objects area, which displays the details for
any found object

Note: At this release, the top right corner of the Web Console lists the Current User
as Registry Guest. In fact, the user is Registry Operator; that is the user identity
under which all objects will be published.

Changing the Default Language
You can change the default language for the display of two kinds of information:

• Web Console labels and messages

• Registry content

CHANGING THE DEFAULT LANGUAGE 285
Changing the Default Language for Labels
and Messages
The Web Console’s labels and messages can be displayed in the languages listed
in Table 7–1.

To change the language from the default, follow these steps:

1. Add the language to your web browser language preferences by following
the instructions for the web browser.

For most browsers you can find the language settings in the General area
of the Internet Options, Options, or Preferences dialog box.

2. Make the language your preferred language by placing it first in the list of
languages.

3. Click the Reset Locale button.

The labels appear in the appropriate language.

Table 7–1 Languages Supported by the Web Console

Language Code

Simplified Chinese (China) zh_CN

Traditional Chinese (Taiwan) zh_TW

English (United States) en_US

German de

Japanese ja

Korean ko

Spanish es

French (Canada) fr_CA

Finnish fi

286 USING THE SERVICE REGISTRY WEB CONSOLE
Changing the Default Language for Registry
Content
You can publish content to the registry in any of the languages shown in the Con-
tent Language drop-down list in the top banner area, if the language is supported
on your system. The default is the language setting for your web browser.

To change the language from the default, choose the language from the Content
Language drop-down list.

Searching the Registry
The Search and Explore links in the menu area allow you to search the Registry.

• Using the Search Menu

• Selecting a Query

• Searching by Object Type

• Searching by Name and Description

• Searching by Classification

• Viewing Search Results

• Using the Explore Menu

Using the Search Menu
Click Search in the menu area. The Search form opens. It contains the following
components:

• Select Predefined Query drop-down list

• Name text field

• Description text field

• ClassificationSchemes tree

Click Hide Search Form to close the Search form and clear the results area.

The next few sections describe how to use these components.

SELECTING A QUERY 287
Selecting a Query
The Select Predefined Query drop-down list contains the items shown in Table
7–2.

The default selection is Basic Query. The following sections describe how to
perform basic queries:

• Searching by Object Type

• Searching by Name and Description

• Searching by Classification

Use the FindAllMyObjects and GetCallersUser queries to search for all the
objects you have published and to view and modify data for the user you created
when you registered.

Searching by Object Type
The simplest search is by object type only.

The default choice in the Object Type drop-down list is RegistryObject, which
searches all objects in the Registry. To narrow the search, change the object type.

Follow these steps:

1. Choose an object type from the Object Type drop-down list.

Table 7–2 Predefined Queries

Query Name Search Purpose

Basic Query
The default generic query, which allows you to search by
object type, name, description, and classification

Basic Query - Case Sensitive Case-sensitive version of Basic Query

FindAllMyObjects
Finds all objects owned (published) by the user who makes
the query; may take a long time if the user owns many
objects

GetCallersUser Finds the User object for the user who makes the query

288 USING THE SERVICE REGISTRY WEB CONSOLE
2. Click the Search button.

The search returns all objects of the specified type. You can narrow the search by
specifying a name, description, or classification.

Searching by Name and Description
To search by the name or description of an object, follow these steps:

1. From the Select Predefined Query drop-down list, select either Basic
Query or Basic Query -- Case Sensitive.

2. Type a string in the Name or Description field.

3. Click Search.

By default, the search looks for a name or description that matches the entire
string you typed. You can use wildcards to find a range of objects.

The wildcard characters are percent (%) and underscore (_).

The % wildcard matches multiple characters:

• Type %off% to return words that contain the string off, such as Coffee.

• Type %nor to return words that start with Nor or nor, such as North and
northern.

• Type ica% to return all words that end with ica, such as America.

The underscore wildcard matches a single character. For example, the search
string _us_ would match objects named Aus1 and Bus3.

Searching by Classification
Classification objects classify or categorize objects in the registry using unique
concepts that define valid values within a classification scheme. The classifica-
tion scheme is the parent in a tree hierarchy containing generations of child con-
cepts. Table 7–3 describes the classification schemes provided by the Registry

SEARCHING BY CLASSIFICATION 289
specifications. Many of the terms in this table are defined in the Registry specifi-
cations.

Table 7–3 Classification Scheme Usage

Classification Scheme
Name Usage Description or Purpose

AssociationType Frequently

Defines the types of associations between
RegistryObjects. Used as the value of the
associationType attribute of an Asso-
ciation instance to describe the nature of
the association.

ContentManagementService Rarely

Defines the types of content management
services. Used in the configuration of a
content management service, such as a val-
idation or cataloging service.

DataType Frequently

Defines the data types for attributes in
classes defined by this document. Used as
the value of the slotType attribute of a
Slot instance to describe the data type of
the Slot value.

DeletionScopeType Occasionally
Defines the values for the deletionScope
attribute of the RemoveObjectsRequest
protocol message.

EmailType Rarely Defines the types of email addresses.

ErrorHandlingModel Rarely
Defines the types of error handling models
for content management services.

ErrorSeverityType Rarely
Defines the different error severity types
encountered by the Registry while process-
ing protocol messages.

EventType Occasionally
Defines the types of events that can occur
in a registry.

InvocationModel Rarely
Defines the different ways that a content
management service may be invoked by the
Registry.

290 USING THE SERVICE REGISTRY WEB CONSOLE
In the menu area, the root of the ClassificationScheme tree is below the Descrip-
tion field.

To search by classification, follow these steps:

1. Expand the root node to view the full list of classification schemes.

The number in parentheses after each entry indicates how many concepts
the parent contains.

2. Expand the node for the classification scheme you want to use.

NodeType Occasionally

Defines the different ways in which a
ClassificationScheme may assign the
value of the code attribute for its Classi-
ficationNodes.

NotificationOptionType Rarely
Defines the different ways in which a client
may wish to be notified by the registry of
an event within a Subscription.

ObjectType Occasionally
Defines the different types of RegistryOb-
jects a registry may support.

PhoneType Rarely Defines the types of telephone numbers.

QueryLanguage Rarely
Defines the query languages supported by
the Registry.

ResponseStatusType Rarely
Defines the different types of status for a
RegistryResponse.

StatusType Occasionally
Defines the different types of status for a
RegistryResponse.

SubjectGroup Rarely
Defines the groups that a user can belong to
for access control purposes.

SubjectRole Rarely
Defines the roles that can be assigned to a
user for access control purposes.

Table 7–3 Classification Scheme Usage (Continued)

Classification Scheme
Name Usage Description or Purpose

VIEWING SEARCH RESULTS 291
3. Expand concept nodes beneath the classification scheme until you find the
leaf node (a node with no concepts beneath it) by which you want to
search.

4. Select the leaf node.

5. Optionally, restrict the search by choosing an object type or specifying a
name or description string.

6. Click the Search button.

Viewing Search Results
Objects found by a search appear in the Registry Objects area.

The Registry Objects area consists of the following:

• Buttons labeled Save, Approve, Deprecate, Undeprecate, Relate, and
Delete, which allow you to perform actions on objects. You must be the
object’s creator to perform any of these actions.

• A found objects display consisting of a search results table with the follow-
ing columns:

• Pick checkbox. Select any two objects to activate the Relate button. See
Creating Relationships Between Objects (page 303) for details.

• Details link. Click this link to open the Details area directly below the
Registry Objects area (see “Viewing Object Details”).

• Object Type field.

• Name field.

• Description field.

• Version field.

• VersionComment field.

• Pin checkbox. Select this checkbox to “pin” this object in place while
you perform another search. You can then relate two different objects by
selecting both objects.

Viewing Object Details
In the search results table, click the Details link for an object to open the Details
area immediately below the Registry Objects area.

292 USING THE SERVICE REGISTRY WEB CONSOLE
This section has a row of buttons and a row of tabs:

• The buttons are Save, Approve, Deprecate, Undeprecate, and Delete. The
buttons represent actions you can perform on the object.

• The tabs represent the object’s attributes. The tabs you see vary depending
on the object type. Table 7–4 describes the tabs and the objects they apply
to.

Click a tab to find out if the object has any values for the attribute. If it does,
click the Details link for the attribute value to open a web browser window with
the details for the attribute value.

Table 7–4 Attribute Tabs in the Details Area

Tab Name Applies To

Object Detail All objects

Classifications All objects

ExternalIdentifiers All objects

Associations All objects

ExternalLinks All objects

Audit Trail All objects

PostalAddresses Organization, User

TelephoneNumbers Organization, User

EmailAddresses Organization, User

Users Organization

Organizations Organization

ServiceBindings Service

SpecificationLinks ServiceBinding

ChildConcepts ClassificationScheme

USING THE EXPLORE MENU 293
The Audit Trail tab does not produce a table with a Details link. Instead, it pro-
duces a table containing the event type, the date and time of the event, and the
name of the User that caused it.

For every object, the Unique Identifier is an active link. Click this link to view
the XML for the object in a web browser window. (All registry objects are stored
in XML format.)

If the object is an ExternalIdentifier, the details panel has a Display Content link.
Click this link to view the object in a web browser window.

If the object is an ExtrinsicObject, the details panel has a View Repository Item
Content link. Click this link to view the repository item in a web browser win-
dow.

Using the Explore Menu
The Explore menu allows you to navigate through Registry and Repository con-
tent using the metaphor of a hierarchy of file folders. The root folder, named
root, contains all Registry content, and is similar to the UNIX root directory.

To use the Explore menu, follow these steps:

1. Click the Explore link.

2. Expand the folder named “root”. It contains two subfolders: userData,
where all user content is placed, and ClassificationSchemes.

To explore the classification schemes, follow these steps:

1. Click the ClassificationSchemes folder (not the node symbol). All the
ClassificationScheme objects appear in the Registry Objects area. Follow
the instructions in Viewing Search Results (page 291) to view the objects.

2. Expand the ClassificationSchemes node to open the Classification-
Schemes tree hierarchy in the menu area.

3. Click any file icon to view that classification scheme in the Registry
Objects area.

4. Expand a classification scheme node to see the Concept folders beneath it.

Not all classification schemes have concepts that are viewable in the
Explore menu. The last seven classification schemes have concepts that
are not viewable here.

5. Click a Concept folder to view that concept in the Registry Objects area.

294 USING THE SERVICE REGISTRY WEB CONSOLE
To explore the userData folder, follow these steps:

1. Expand the userData node.

2. Expand the RegistryObject node. Do not click the folder unless you want
to view all registry objects.

(The node named “folder1” has no content.)

3. Click a folder to view the registry objects of that type. Expand a node to
view the object types at the next level.

When you have finished, click Hide Explorer to close the Explore menu and
clear the results area.

Publishing and Managing Registry
Objects

• Publishing Objects

• Adding a Classification to an Object

• Adding an External Identifier to an Object

• Adding an External Link to an Object

• Adding Custom Information to an Object Using Slots

• Changing the State of Objects

• Removing Objects

• Creating Relationships Between Objects

Publishing Objects
Publishing objects to the registry is a two-step process:

1. Create the object.

2. Save the object. The object does not appear in the Registry until after you
save it.

At this release, ignore the Create User Account menu item. You can publish
objects to the registry without performing any authentication steps.

To create and save a new registry object, follow these steps:

1. In the menu area, click Create a New Registry Object.

ADDING A CLASSIFICATION TO AN OBJECT 295
2. In the Registry Objects area, choose an object type from the drop-down list
and click Add.

3. A Details form for the object appears in the Details area.

4. Type a name and description in the fields of the Details form. Type values
for other fields that appear in the Details form.

5. Click Save to save the object.

A status message appears, indicating whether the save was successful.

Either before or after you save the object, you can edit it by adding other objects
to it. Table 7–4 lists the objects you can add. The following sections describe
how to add these objects.

Adding a Classification to an Object
To create a classification, you use an internal classification scheme. An internal
classification scheme contains a set of concepts whose values are known to the
Registry.

To add a Classification to an object, search for the appropriate classification
scheme, then choose a concept within that classification scheme. Follow these
steps:

1. In the Details area for the object, click the Classifications button.

The Classifications table (which may be empty) appears.

2. Click Add.

A Details Panel window opens.

3. Type a name and description for the classification.

4. Click the Select ClassificationScheme or Concept button.

A ClassificationScheme/Concept Selector window opens.

5. Expand the ClassificationSchemes node, then expand concept nodes until
you have selected the leaf node you want to use.

6. Click OK to close the ClassificationScheme/Concept Selector window.

The classification scheme and concept appear in the Details Panel win-
dow.

7. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

8. Click Save in the Details area for the object.

296 USING THE SERVICE REGISTRY WEB CONSOLE
Adding an External Identifier to an
Object
To create an external identifier, you use an external classification scheme, one
whose values are not known to the Registry because the classification scheme
has no concepts.

To add an external identifier to an object, search for the appropriate classification
scheme, then enter a value. Follow these steps:

1. In the Details area for the object, click the ExternalIdentifiers tab.

The ExternalIdentifiers table (which may be empty) appears.

2. Click Add.

A Details Panel window opens.

3. Type a name and description for the external identifier.

4. Click the Select ClassificationScheme button.

A ClassificationScheme/Concept Selector window opens.

5. Expand the ClassificationSchemes node, then expand concept nodes until
you have selected the leaf node you want to use.

6. Click OK to close the ClassificationScheme/Concept Selector window.

The classification scheme and concept appear in the Details Panel win-
dow.

7. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

8. Click Save in the Details area for the object.

Adding an External Link to an Object
An external link allows you to associate a URI with a registry object.

To add an external link to an object, follow these steps:

1. In the Details area for the object, click the ExternalLinks tab.

The ExternalLinks table (which may be empty) appears.

2. Click Add.

A Details Panel window opens.

ADDING CUSTOM INFORMATION TO AN OBJECT USING SLOTS 297
3. Type a name for the external link.

4. Type the URL for the external link in the External URI field.

5. Optionally, click the Select Concept for Object Type button if you want to
specify the type of content to which the URL points.

Expand the ClassificationSchemes node and locate the content type by
expanding the ObjectType, RegistryObject, and ExtrinsicObject nodes.
Select the concept, then click OK. If you do not find a suitable type, click
Cancel. You can create a new concept for ExtrinsicObjects if you wish.

6. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

7. Click Save in the Details area for the object.

Adding Custom Information to an
Object Using Slots
A slot contains extra information that would otherwise not be stored in the Reg-
istry. Slots provide a way to add arbitrary attributes to objects.

To add a slot to an object, follow these steps:

1. In the Details area for the object, click the Slots tab.

The Slots table (which may be empty) appears.

2. Click Add.

A Details Panel window opens.

3. Type a name for the Slot.

4. Optionally, type a value in the Slot Type field. You may use this field to
specify a data type for the slot or to provide a way to group slots together.

5. Type a value in the Values field.

6. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

7. Click Save in the Details area for the object.

298 USING THE SERVICE REGISTRY WEB CONSOLE
Adding a Postal Address to an
Organization or User
An Organization or User can have one or more postal addresses. To add a postal
address to either an Organization or a User, follow these steps:

1. In the Details area for the Organization or User, click the PostalAddresses
tab.

The PostalAddresses table (which may be empty) appears.

2. Click Add.

A Details Panel window opens.

3. Type values in the fields. All fields except Street are optional.

• Street Number

• Street (required)

• City

• State or Province

• Country

• Postal Code

4. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

5. Click Save in the Details area for the object.

Adding a Telephone Number to an
Organization or User
An Organization or User can have one or more telephone numbers. To add a tele-
phone number to either an Organization or a User, follow these steps:

1. In the Details area for the Organization or User, click the TelephoneNum-
bers tab.

The TelephoneNumbers table (which may be empty) appears.

2. Click Add.

A Details Panel window opens.

ADDING AN EMAIL ADDRESS TO AN ORGANIZATION OR USER 299
3. Select a value from the Type combo box (Beeper, FAX, HomePhone,
MobilePhone, or OfficePhone).

4. Type values in the fields. All fields except Phone Number are optional.

• Country Code

• Area Code

• Phone Number (required)

• Extension

5. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

6. Click Save in the Details area for the object.

Adding an Email Address to an
Organization or User
An Organization or User can have one or more email addresses. To add an email
address to either an Organization or a User, follow these steps:

1. In the Details area for the Organization or User, click the EmailAddresses
tab.

The EmailAddresses table (which may be empty) appears.

2. Click Add.

A Details Panel window opens.

3. Select a value from the Type combo box (HomeEmail or OfficeEmail).

4. Type a value in the Email Address field.

5. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

6. Click Save in the Details area for the object.

Adding a User to an Organization
An Organization can have one or more users. One user is the primary contact,
which is normally the user that created the organization. To create a new user
and add it to an Organization, follow these steps:

1. In the Details area for the Organization, click the Users tab.

300 USING THE SERVICE REGISTRY WEB CONSOLE
The Users table appears.

2. Click Add.

A Details Panel window opens.

3. In the Name field, type the last name of the user to the left of the comma
and (optionally) the first and middle names to the right of the comma.

4. Optionally, type a description of the user in the Description field.

5. In the First Name, Middle Name, and Last Name fields, type the first name,
middle name, and surname of the user. (All fields are optional.)

6. Click Add to close the Details Panel window.

The new version of the organization appears in the Registry Objects area,
and the user is created.

7. Click Save in the Details area for the object.

Adding a Child Organization to an
Organization
An Organization can have one or more child organizations. To add a child orga-
nization to an Organization, follow these steps:

1. In the Details area for the Organization, click the Organizations tab.

The Organizations table appears.

2. Click Add.

A Details Panel window opens.

3. In the Name field, type a name for the new organization.

4. Optionally, type a description in the Description field.

5. Type values in the address fields. All fields except Street are optional.

• Street Number

• Street (required)

• City

• State or Province

• Country

• Postal Code

6. Click Add to close the Details Panel window.

ADDING A SERVICE BINDING TO A SERVICE 301
The new version of the object appears in the Registry Objects area, and
the new Organization is created.

7. Click Save in the Details area for the object.

Adding a Service Binding to a Service
A Service normally has one or more service bindings. To add a service binding
to a Service, follow these steps:

1. In the Details area for the Service, click the ServiceBindings tab.

The ServiceBindings table appears.

2. Click Add.

A Details Panel window opens.

3. In the Name field, type a name for the service binding.

4. Optionally, type a description of the service binding in the Description
field.

5. In the Access URI field, type the URL for the service binding.

6. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

7. Click Save in the Details area for the object.

Adding a Specification Link to a Service
Binding
A ServiceBinding normally has a SpecificationLink object. To add a Specifica-
tionLink to a ServiceBinding, follow these steps:

1. In the Details area for the ServiceBinding, click the SpecificationLinks tab.

The SpecificationLinks table appears.

2. Click Add.

A Details Panel window opens.

3. In the Name field, type a name for the SpecificationLink.

4. Optionally, type a description of the SpecificationLink in the Description
field.

302 USING THE SERVICE REGISTRY WEB CONSOLE
5. In the Usage Description field, type a usage description for the usage
parameters, if there are any.

6. In the Usage Parameters field, type the usage parameters, if there are any.

7. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

8. Click Save in the Details area for the object.

Adding a Child Concept to a
Classification Scheme or Concept
A ClassificationScheme normally has numerous child concepts (which can in
turn have child concepts). To add a child concept to a ClassificationScheme, fol-
low these steps:

1. In the Details area for the ClassificationScheme, click the Concepts tab.

The Concepts table appears.

2. Click Add.

A Details Panel window opens.

3. In the Name field, type a name for the concept.

4. Optionally, type a description of the concept in the Description field.

5. In the Value field, type a value for the concept.

6. Click Add to close the Details Panel window.

The new version of the object appears in the Registry Objects area.

7. Click Save in the Details area for the object.

Changing the State of Objects
In addition to saving, editing, and removing objects, you can perform the follow-
ing actions on them if you are the owner or are otherwise authorized to do so:

• Approval

• Deprecation

• Undeprecation

These features are useful in a production environment if you want to establish a
version control policy for registry objects. For example, you can approve a ver-

REMOVING OBJECTS 303
sion of an object for general use and deprecate an obsolete version before you
remove it. If you change your mind after deprecating an object, you can undepre-
cate it.

You perform all these actions in the Search Results area.

• To approve an object, select it and click the Approve button. A message
verifying the approval appears, and the event is added to the Audit Trail.

• To deprecate an object, select it and click the Deprecate button. A message
verifying the deprecation appears, and the event is added to the Audit Trail.

• To undeprecate an object, select it and click the Undeprecate button. A
message verifying the undeprecation appears, and the event is added to the
Audit Trail.

Removing Objects
To remove an object you own from the Registry, select the object and click the
Delete button.

If the object is an extrinsic object, you have two choices.

• Choose Delete Object and Repository Item (the default) from the Deletion
Options menu to delete both the ExtrinsicObject registry object and the
repository item to which it refers.

• Choose Delete Repository Item Only to delete the repository item and
leave the ExtrinsicObject in the Registry. You can then add another repos-
itory item.

The Deletion Options menu is meaningful only for extrinsic objects.

Creating Relationships Between Objects
There are two kinds of relationships between objects: references and associa-
tions. They are both unidirectional. That is, each has a source object and a target
object.

The Registry supports references, called ObjectRefs, between certain types of
objects. For example, if you create a Service and a ServiceBinding, you can cre-
ate a ServiceBinding reference from the Service to the ServiceBinding. How-
ever, you cannot create a reference from the ServiceBinding to the Service. A
Reference is not a registry object.

304 USING THE SERVICE REGISTRY WEB CONSOLE
An Association is a registry object, and you can create an Association from any
registry object to any other. The Registry supports an AssociationType classifica-
tion scheme that includes a number of predefined association types: OffersSer-
vice, RelatedTo, HasMember, and so on. You can also create new association
types. Associations between registry objects that you own are called intramural
associations. Associations in which you do not own one or both of the objects
are called extramural associations. If you create an Organization and add a Ser-
vice to it, an Association of type OffersService is automatically created from the
Organization to the Service.

If no valid reference exists for the source and target objects, you cannot create a
reference.

You use the Relate button in the Registry Objects area to relate two objects. This
button becomes active when you select two objects in the search results table.

If the two objects are not both visible in the search results table, select the Pin
checkbox to hold one object in the search results table while you find the object
to which you want to relate it.

Creating References
To create a Reference, follow these steps:

1. In the Registry Objects area, select two objects and click Relate.

2. In the Create Relationship area, select the source object if it is not already
selected.

The other object becomes the target object.

3. If a valid reference exists for the source and target objects, the Reference
option is selected by default, and the valid reference attribute appears. If
no valid reference exists for the source and target objects, the Reference
radio button is grayed out.

4. Click Save to save the Reference.

Creating Associations
To create an Association, follow these steps:

1. In the Registry Objects area, select two objects and click Relate.

2. In the Create Relationship area, select the source object if it is not already
selected.

CREATING RELATIONSHIPS BETWEEN OBJECTS 305
The other object becomes the target object.

3. Select the Association radio button, if it is not already selected.

4. Type a name and description for the Association in the Details area.

The source and target object ID values are already filled in.

5. Choose a type value from the Association Type menu.

6. Click Save to save the Association.

306 USING THE SERVICE REGISTRY WEB CONSOLE

8

1

Developing Clients for
the Service Registry

THIS chapter describes how to use the Java API for XML Registries (JAXR) to
access the Service Registry (“the Registry”).

After providing a brief overview of JAXR and the examples described in this
chapter, this chapter describes how to implement a JAXR client to query the
Registry and publish content to the Registry and its associated repository.

Overview of JAXR
This section provides a brief overview of JAXR. It covers the following topics:

• About Registries and Repositories

• About JAXR

• JAXR Architecture

• About the Examples

About Registries and Repositories
An XML registry is an infrastructure that enables the building, deployment, and
discovery of web services. It is a neutral third party that facilitates dynamic and

2 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, normally in the form of a web-based ser-
vice.

Currently there are a variety of specifications for XML registries. These include

• The ebXML Registry and Repository standard, which is sponsored by the
Organization for the Advancement of Structured Information Standards
(OASIS) and the United Nations Centre for the Facilitation of Procedures
and Practices in Administration, Commerce and Transport (U.N./
CEFACT). ebXML stands for Electronic Business using eXtensible
Markup Language.

• The Universal Description, Discovery, and Integration (UDDI) project,
which is developed by a vendor consortium

A registry provider is an implementation of a registry that conforms to a specifi-
cation for XML registries.

While a UDDI registry stores information about businesses and the services they
offer, an ebXML registry has a much wider scope. It is a repository as well as a
registry. A repository stores arbitrary content as well as information about that
content. In other words, a repository stores data as well as metadata. The ebXML
Registry standard defines an interoperable Enterprise Content Management
(ECM) API for web services.

An ebXML registry and repository is to the web what a relational database is to
enterprise applications: it provides a means for web services and web applica-
tions to store and share content and metadata.

An ebXML registry can be part of a registry federation, an affiliated group of
registries. For example, the health ministry of a country in Europe could operate
a registry, and that registry could be part of a federation that included the regis-
tries of other European health ministries.

About JAXR
JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are por-
table across various target registries. JAXR also enables value-added capabilities
beyond those of the underlying registries.

JAXR ARCHITECTURE 3
The current version of the JAXR specification includes detailed bindings
between the JAXR information model and the ebXML Registry specifications.
You can find the latest version of the JAXR specification at

http://java.sun.com/xml/downloads/jaxr.html

The Service Registry includes a JAXR provider that implements the level 1 capa-
bility profile, which allows full access to ebXML registries. The ebXML specifi-
cations and the JAXR specification are not in perfect alignment, because the
ebXML specifications have advanced beyond the JAXR specification. For this
reason, the JAXR provider for the Registry includes some additional implemen-
tation-specific methods that implement the ebXML specifications and that are
likely to be included in the next version of the JAXR specification.

JAXR Architecture
The high-level architecture of JAXR consists of the following parts:

• A JAXR client: This is a client program that uses the JAXR API to access
a registry through a JAXR provider.

• A JAXR provider: This is an implementation of the JAXR API that pro-
vides access to a specific registry provider or to a class of registry providers
that are based on a common specification. This guide does not describe
how to implement a JAXR provider.

A JAXR provider implements two main packages:

• javax.xml.registry, which consists of the API interfaces and classes
that define the registry access interface.

• javax.xml.registry.infomodel, which consists of interfaces that define
the information model for JAXR. These interfaces define the types of
objects that reside in a registry and how they relate to each other. The basic
interface in this package is the RegistryObject interface.

The most basic interfaces in the javax.xml.registry package are

• Connection. The Connection interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use a registry.

• RegistryService. The client obtains a RegistryService object from its
connection. The RegistryService object in turn enables the client to
obtain the interfaces it uses to access the registry.

http://java.sun.com/xml/downloads/jaxr.html

4 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
The primary interfaces, also part of the javax.xml.registry package, are

• QueryManager and BusinessQueryManager, which allow the client to
search a registry for information in accordance with the javax.xml.reg-

istry.infomodel interfaces. An optional interface, DeclarativeQuery-
Manager, allows the client to use SQL syntax for queries. The ebXML
provider for the Registry implements DeclarativeQueryManager.

• LifeCycleManager and BusinessLifeCycleManager, which allow the
client to modify the information in a registry by either saving it (updating
it) or deleting it.

When an error occurs, JAXR API methods throw a JAXRException or one of its
subclasses.

Many methods in the JAXR API use a Collection object as an argument or a
returned value. Using a Collection object allows operations on several registry
objects at a time.

Figure 8–1 illustrates the architecture of JAXR. For the Registry, a JAXR client
uses the capability level 0 and level 1 interfaces of the JAXR API to access the
JAXR provider, which is an ebXML provider. The JAXR provider in turn
accesses the Registry, an ebXML registry.

Figure 8–1 JAXR Architecture

ABOUT THE EXAMPLES 5
About the Examples
Many sample client programs that demonstrate JAXR features are available as
part of the Java Web Services Developer Pack (Java WSDP). If you install the
Java WSDP, you will find them in the directory <INSTALL>/registry/samples.
(<INSTALL> is the directory where you installed the Java WSDP.)

Each example or group of examples has a build.xml file that allows you to
compile and run each example using the Ant tool. Each build.xml file has a
compile target and one or more targets that run the example or examples. Some
of the run targets take command-line arguments.

Before you run the examples, you must edit two files in the directory
<INSTALL>/registry/samples/common. The file build.properties is used by
the Ant targets that run the programs. The file JAXRExamples.properties is a
resource bundle that is used by the programs themselves.

In addition, a targets.xml file in the <INSTALL>/registry/samples/common

directory defines the classpath for compiling and running the examples. It also
contains a clean target that deletes the build directory created when each exam-
ple is compiled.

Because Tomcat and the Sun Java System Application Server Platform Edition
8.1 have different file structures, there are two versions of the build.proper-

ties and targets.xml files, with the suffix tomcat for Tomcat and the suffix as

for the Application Server.

Edit the file build.properties.as as follows:

1. Set the property container.home to the location of Sun Java System
Application Server Platform Edition 8.1.

2. Set the property registry.home to the directory where you installed the
Java WSDP.

3. Set the properties proxyHost and proxyPort to specify your own proxy
settings. The proxy host is the system on your network through which you
access the Internet. You usually specify the proxy host in your web
browser settings.

The proxy port has the value 8080, which is the usual one. Change this
string if your proxy uses a different port. Your entries usually follow this
pattern:

proxyHost=proxyhost.mydomain

proxyPort=8080

6 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Edit the file build.properties.tomcat as follows:

1. Set the property tomcat.home to the directory where you installed the Java
WSDP.

2. Set the properties proxyHost and proxyPort to specify your own proxy
settings. The proxy host is the system on your network through which you
access the Internet. You usually specify the proxy host in your web
browser settings.

The proxy port has the value 8080, which is the usual one. Change this
string if your proxy uses a different port. Your entries usually follow this
pattern:

proxyHost=proxyhost.mydomain

proxyPort=8080

Copy the files as follows:

1. Copy the file you edited (build.properties.tomcat or build.proper-
ties.as) to build.properties.

2. Copy the corresponding targets.xml file (targets.xml.tomcat or tar-
gets.xml.as) to targets.xml.

Edit the file JAXRExamples.properties as follows:

1. Edit the properties query.url and publish.url to specify the URL of the
Registry. The file provides a default setting of localhost:8080 for the
host and port, but you may need to change this to another host or port if the
Registry is installed on a remote server or at a non-default port.

2. Edit the following properties to specify the properties required for logging
in to the Registry.
security.keystorePath=
security.storepass=ebxmlrr
security.alias=
security.keypass=

The security.keystorePath property specifies the location of the key-
store file. The security.storepass property has a default setting of
ebxmlrr. The security.alias and security.keypass properties are
the alias and password you specify when you use the User Registration
Wizard of the Java UI. See Getting Access to the Registry (page 7) for
details.

3. Feel free to change any of the data in the remainder of the file as you exper-
iment with the examples. The Ant targets that run the client examples
always use the latest version of the file.

SETTING UP A JAXR CLIENT 7
Setting Up a JAXR Client
This section describes the first steps to follow to implement a JAXR client that
can perform queries and updates to the Service Registry. A JAXR client is a cli-
ent program that can access registries using the JAXR API. This section covers
the following topics:

• Starting the Registry

• Getting Access to the Registry

• Establishing a Connection to the Registry

• Obtaining and Using a RegistryService Object

Starting the Registry
To start the Registry, you start the container into which you installed the Regis-
try: Tomcat or the Sun Java System Application Server.

Getting Access to the Registry
Any user of a JAXR client can perform queries on the Registry for objects that
are not restricted by an access control policy. To perform queries for restricted
objects, to add data to the Registry, or to update Registry data, however, a user
must obtain permission from the Registry to access it. The Registry uses client-
certificate authentication for user access.

To create a user that can submit data to the Registry, use the User Registration
Wizard of the Web Console that is part of the Registry software. You can also
use an existing certificate obtained from a certificate authority.

You will specify your user name and password for some of the JAXR client
example programs, along with information about the location of your certificate.

Establishing a Connection to the Registry
The first task a JAXR client must complete is to establish a connection to a regis-
try. Establishing a connection involves the following tasks:

• Creating a Connection Factory

• Creating a Connection

8 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Creating a Connection Factory
A client creates a connection from a connection factory.

To use JAXR in a stand-alone client program, you must obtainan instance of the
abstract class ConnectionFactory. To do so, call the getConnectionFactory

method in the JAXR provider’s JAXRUtility class.

import org.freebxml.omar.client.xml.registry.util.JAXRUtility;
...
ConnectionFactory factory = JAXRUtility.getConnectionFactory();

Creating a Connection
To create a connection, a client first creates a set of properties that specify the
URL or URLs of the registry or registries being accessed. The following code
provides the URLs of the query service and publishing service for the Registry if
the Registry is deployed on the local system. (There should be no line break in
the strings.)

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",

"http://localhost:8080/omar/registry/soap");
props.setProperty("javax.xml.registry.lifeCycleManagerURL",

"http://localhost:8080/omar/registry/soap");

The client then obtains the connection factory as described in Creating a Con-
nection Factory (page 8), sets its properties, and creates the connection. The fol-
lowing code fragment performs these tasks:

ConnectionFactory factory =
JAXRUtility.getConnectionFactory();

factory.setProperties(props);
Connection connection = factory.createConnection();

The makeConnection method in the sample programs shows the steps used to
create a JAXR connection.

OBTAINING AND USING A REGISTRYSERVICE OBJECT 9
Table 8–1 lists and describes the two properties you can set on a connection.
These properties are defined in the JAXR specification.

Obtaining and Using a RegistryService
Object
After creating the connection, the client uses the connection to obtain a Regis-

tryService object and then the interface or interfaces it will use:

RegistryService rs = connection.getRegistryService();
BusinessQueryManager bqm = rs.getBusinessQueryManager();
BusinessLifeCycleManager blcm =

rs.getBusinessLifeCycleManager();

Typically, a client obtains a BusinessQueryManager object and either a Life-

CycleManager or a BusinessLifeCycleManager object from the RegistrySer-

vice object. If it is using the Registry for simple queries only, it may need to
obtain only a BusinessQueryManager object.

Table 8–1 Standard JAXR Connection Properties

Property Name and Description
Data
Type Default Value

javax.xml.registry.queryManagerURL

Specifies the URL of the query manager service within
the target registry provider.

String None

javax.xml.registry.lifeCycleManagerURL

Specifies the URL of the life-cycle manager service
within the target registry provider (for registry updates).

String
Same as the specified
queryManagerURL
value

10 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Querying a Registry
This section describes the interfaces and methods JAXR provides for querying a
registry. It covers the following topics:

• Using iterative queries

• Basic Query Methods

• JAXR Information Model Interfaces

• Finding Objects by Name

• Finding Objects by Type

• Finding Objects by Classification

• Finding Objects by External Identifier

• Finding Objects by External Link

• Finding Objects by Unique Identifier

• Finding Objects You Published

• Retrieving Information About an Object

• Using Declarative Queries

• Invoking Stored Queries

• Querying a Registry Federation

Basic Query Methods
The simplest way for a client to use a registry is to query it for information about
the objects and data in it. The QueryManager, BusinessQueryManager, and Reg-

istryObject interfaces support a number of finder and getter methods that
allow clients to search for data using the JAXR information model. Many of the
finder methods return a BulkResponse (a collection of objects) that meets a set
of criteria specified in the method arguments. The most general of these methods
are as follows:

• getRegistryObject and getRegistryObjects, QueryManager methods
that return one or more objects based on their type or unique identifier, or
return the objects owned by the caller (for information on unique identifi-
ers, see Finding Objects by Unique Identifier, page 22)

• findObjects, an implementation-specific BusinessQueryManager

method that returns a list of all objects of a specified type that meet the
specified criteria

JAXR INFORMATION MODEL INTERFACES 11
Other finder methods allow you to find specific kinds of objects supported by the
JAXR information model. While a UDDI registry supports a specific hierarchy
of objects (organizations, which contain users, services, and service bindings),
an ebXML registry permits the storage of freestanding objects of various types
that can be linked to each other in various ways. Other objects are not freestand-
ing but are always attributes of another object.

The BusinessQueryManager finder methods are useful primarily for searching
UDDI registries. The more general findObjects method and the RegistryOb-

ject getter methods are more appropriate for the Service Registry.

To execute queries, you do not need to log in to the Registry. By default, an
unauthenticated user has the identity of the user named “Registry Guest.”

JAXR Information Model Interfaces
Table 8–2 lists the main interfaces supported by the JAXR information model.
All these interfaces extend the RegistryObject interface.

Table 8–2 JAXR RegistryObject Subinterfaces

Object Type Description

Association

Defines a relationship between two objects. Getter/finder meth-
ods: RegistryObject.getAssociations, BusinessQue-
ryManager.findAssociations,
BusinessQueryManager.findCallerAssociations.

AuditableEvent
Provides a record of a change to an object. A collection of Aud-
itableEvent objects constitutes an object’s audit trail. Getter
method: RegistryObject.getAuditTrail.

Classification
Classifies an object using a ClassificationScheme. Getter
method: RegistryObject.getClassifications.

12 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
ClassificationScheme

Represents a taxonomy used to classify objects. An internal
ClassificationScheme is one in which all taxonomy ele-
ments (concepts) are defined in the registry. An external Clas-
sificationScheme is one in which the values are not defined
in the registry but are represented using an ExternalIdenti-
fier. Finder methods: BusinessQueryManager.findClas-
sificationSchemes,
BusinessQueryManager.findClassificationScheme-
ByName.

Concept

Represents a taxonomy element and its structural relationship
with other elements in an internal ClassificationScheme.
Called a ClassificationNode in the ebXML specifications.
Finder methods: BusinessQueryManager.findConcepts,
BusinessQueryManager.findConceptByPath.

ExternalIdentifier
Provides a value for the content of an external Classifica-
tionScheme. Getter method: RegistryObject.getExter-
nalIdentifiers.

ExternalLink
Provides a URI for content that may reside outside the registry.
Getter method: RegistryObject.getExternalLinks.

ExtrinsicObject

Provides metadata that describes submitted content whose type
is not intrinsically known to the registry and therefore must be
described by means of additional attributes (such as mime type).
No specific getter/finder methods.

Organization

Provides information about an organization. May have a parent,
and may have one or more child organizations. Always has a
User object as a primary contact, and may offer Service
objects. Finder method: BusinessQueryManager.findOrga-
nizations.

RegistryPackage

Represents a logical grouping of registry objects. A Registry-
Package may have any number of RegistryObjects. Getter/
finder methods: RegistryObject.getRegistryPackages,
BusinessQueryManager.findRegistryPackages.

Service
Provides information on a service. May have a set of Service-
Binding objects. Finder method: BusinessQueryMan-
ager.findServices.

Table 8–2 JAXR RegistryObject Subinterfaces (Continued)

Object Type Description

JAXR INFORMATION MODEL INTERFACES 13
Table 8–3 lists the other interfaces supported by the JAXR information model.
These interfaces provide attributes for the main registry objects. They do not
themselves extend the RegistryObject interface.

ServiceBinding
Represents technical information on how to access a Service.
Getter/finder methods: Service.getServiceBindings,
BusinessQueryManager.findServiceBindings.

Slot
Provides a dynamic way to add arbitrary attributes to Regis-
tryObject instances. Getter methods: RegistryOb-
ject.getSlot, RegistryObject.getSlots.

SpecificationLink

Provides the linkage between a ServiceBinding and one of its
technical specifications that describes how to use the service
using the ServiceBinding. Getter method: ServiceBind-
ing.getSpecificationLinks.

User

Provide information about registered users within the registry.
User objects are affiliated with Organization objects. Getter
methods: Organization.getUsers, Organiza-
tion.getPrimaryContact.

Table 8–3 JAXR Object Types Used as Attributes

Object Type Description

EmailAddress
Represents an email address. A User may have an EmailAd-
dress. Getter method: User.getEmailAddresses.

InternationalString

Represents a String that has been internationalized into several
locales. Contains a Collection of LocalizedString objects.
The name and description of a RegistryObject are Inter-
nationalString objects. Getter methods: RegistryOb-
ject.getName, RegistryObject.getDescription.

Key
Represents a unique key that identifies a RegistryObject. Must
be a DCE 128 UUID (Universal Unique IDentifier). Getter
method: RegistryObject.getKey.

Table 8–2 JAXR RegistryObject Subinterfaces (Continued)

Object Type Description

14 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Finding Objects by Name
To search for objects by name, you normally use a combination of find qualifiers
(which affect sorting and pattern matching) and name patterns (which specify
the strings to be searched). The BusinessQueryManagerImpl.findObjects

method takes a collection of FindQualifier objects as its second argument and
takes a collection of name patterns as its third argument. Its method signature is
as follows:

public BulkResponse findObjects(java.lang.String objectType,
java.util.Collection findQualifiers,
java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection specifications,
java.util.Collection externalIdentifiers,
java.util.Collection externalLinks)

throws JAXRException

You can use wildcards in a name pattern. Use percent signs (%) to specify that the
query string occurs at the beginning, end, or middle of the object name.

LocalizedString
A component of an InternationalString that associates a
String with its Locale. Getter method: International-
String.getLocalizedStrings.

PersonName
Represents a person’s name. A User has a PersonName. Getter
method: User.getPersonName.

PostalAddress

Represents a postal address. An Organization or User may
have one or more PostalAddress objects. Getter methods:
Organization.getPostalAddress, Organization-
Impl.getPostalAddresses (implementation-specific),
User.getPostalAddresses.

TelephoneNumber

Represents a telephone number. An Organization or a User
may have one or more TelephoneNumber objects. Getter meth-
ods: Organization.getTelephoneNumbers,
User.getTelephoneNumbers.

Table 8–3 JAXR Object Types Used as Attributes (Continued)

Object Type Description

FINDING OBJECTS BY NAME 15
For example, the following code fragment finds all the organizations in the Reg-
istry whose names begin with a specified string, qString, and sorts them in
alphabetical order.

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
Collection namePatterns = new ArrayList();
namePatterns.add(qString + "%");

// Find organizations with name that starts with qString
BulkResponse response =

bqm.findObjects("Organization", findQualifiers,
namePatterns, null, null, null, null);

Collection orgs = response.getCollection();

The findObjects method is not case-sensitive, unless you specify FindQuali-

fier.CASE_SENSITIVE_MATCH. In the previous fragment, the first argument
could be either "Organization" or "organization", and the name pattern
matches names regardless of case.

The following code fragment performs a case-sensitive search for all registry
objects whose names contain the string qString and sorts them in alphabetical
order.

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
Collection namePatterns = new ArrayList();
namePatterns.add("%" + qString + "%");

// Find objects with name that contains qString
BulkResponse response =

bqm.findObjects("RegistryObject", findQualifiers,
namePatterns, null, null, null, null);

Collection orgs = response.getCollection();

The percent sign matches any number of characters in the name. To match a sin-
gle character, use the underscore (_). For example, to match both “Arg1” and
“Org2” you would specify a name pattern of _rg_.

16 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Finding Objects by Name: Example
For an example of finding objects by name, see the example <INSTALL>/regis-

try/samples/query-name/src/JAXRQueryByName.java. To run the example,
follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-name.

2. Type the following command, specifying a string value:
ant run -Dname=string

The program performs a case-insensitive search, returning all objects whose
names contain the specified string. It also displays the object’s classifications,
external identifiers, external links, slots, and audit trail.

Finding Objects by Type
To find all objects of a specified type, specify only the first argument of the
BusinessQueryManagerImpl.findObjects method and, optionally, a collection
of FindQualifier objects. For example, if typeString is a string whose value
is either "Service" or "service", the following code fragment will find all ser-
vices in the Registry and sort them in alphabetical order.

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);

BulkResponse response = bqm.findObjects(typeString,
findQualifiers, null, null, null, null, null);

You cannot use wildcards in the first argument to findObjects.

Finding Objects by Type: Example
For an example of finding objects by type, see the example <INSTALL>/regis-

try/samples/query-object-type/src/JAXRQueryByObjectType.java. To
run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-object-

type.

2. Type the following command, specifying a string value:
ant run -Dtype=type_name

FINDING OBJECTS BY CLASSIFICATION 17
The program performs a case-insensitive search, returning all objects whose type
is type_name and displaying their names, descriptions, and unique identifiers.
Specify the exact name of the type, not a wildcard, as in the following command
line:

ant run -Dtype=federation

Finding Objects by Classification
To find objects by classification, you establish the classification within a particu-
lar classification scheme and then specify the classification as an argument to the
BusinessQueryManagerImpl.findObjects method.

To do this, you first find the classification scheme and then create a Classifica-
tion object to be used as an argument to the findObjects method or another
finder method.

The following code fragment finds all organizations that correspond to a particu-
lar classification within the ISO 3166 country codes classification system main-
tained by the International Organization for Standardization (ISO). See http://

www.iso.org/iso/en/prods-services/iso3166ma/index.html for details.
(This classification scheme is provided in the sample database included with the
Registry.)

ClassificationScheme cScheme =
bqm.findClassificationSchemeByName(null,

"iso-ch:3166:1999");

Classification classification =
blcm.createClassification(cScheme, "United States", "US");

Collection classifications = new ArrayList();
classifications.add(classification);
// perform query
BulkResponse response = bqm.findObjects("Organization", null,

null, classifications, null, null, null);
Collection orgs = response.getCollection();

The ebXML Registry Information Model Specification requires a set of canoni-
cal classification schemes to be present in an ebXML registry. Each scheme also
has a set of required concepts (called ClassificationNodes in the ebXML specifi-
cations). The primary purpose of the canonical classification schemes is not to
classify objects but to provide enumerated types for object attributes. For exam-

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

18 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
ple, the EmailType classification scheme provides a set of values for the type

attribute of an EmailAddress object.

Table 8–4 lists and describes these canonical classification schemes.

Table 8–4 Canonical Classification Schemes

Classification Scheme Description

AssociationType Defines the types of associations between RegistryObjects.

ContentManagementSer-
vice

Defines the types of content management services.

DataType
Defines the data types for attributes in classes defined by the
specification.

DeletionScopeType
Defines the values for the deletionScope attribute in the
RemoveObjectsRequest protocol message.

EmailType Defines the types of email addresses.

ErrorHandlingModel
Defines the types of error handling models for content manage-
ment services.

ErrorSeverityType
Defines the different error severity types encountered bythe
registry during processing of protocol messages.

EventType Defines the types of events that can occur in a registry.

InvocationModel
Defines the different ways that a content management service
may be invoked by the registry.

NodeType
Defines the different ways in which a Classification-
Scheme may assign the value of the code attribute for its Clas-
sificationNodes.

NotificationOption-
Type

Defines the different ways in which a client may wish to be
notified by the registry of an event within a Subscription.

ObjectType
Defines the different types of RegistryObjects a registry
may support.

PhoneType Defines the types of telephone numbers.

QueryLanguage Defines the query languages supported by a registry.

FINDING OBJECTS BY CLASSIFICATION 19
For a sample program that displays all the canonical classification schemes and
their concepts, see <INSTALL>/registry/samples/classification-schemes/
src/JAXRGetCanonicalSchemes.java. To run this example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-

schemes.

2. Type the following command:
ant get-schemes

Finding Objects by Classification: Examples
For examples of finding objects by classification, see the two examples in
<INSTALL>/registry/samples/query-classification/src: JAXRQueryBy-

Classification.java and JAXRQueryByCountryClassification.java. The
first example searches for objects that use the canonical classification scheme
InvocationModel, while the other example searches for organizations that use a
geographical classification. To run the examples, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-classifica-

tion.

2. Type either of the following commands:
ant query-class
ant query-geo

These examples are likely to produce results only after you have published an
object that uses the specified classification (for example, the one in Adding Clas-
sifications: Example, page 48, causes the query-geo target to return an object).

ResponseStatusType Defines the different types of status for a RegistryResponse.

StatusType Defines the different types of status for a RegistryObject.

SubjectGroup
Defines the groups that a User may belong to for access con-
trol purposes.

SubjectRole
Defines the roles that may be assigned to a User for access
control purposes.

Table 8–4 Canonical Classification Schemes (Continued)

Classification Scheme Description

20 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Finding Objects by External Identifier
Finding objects by external identifier is similar to finding objects by classifica-
tion. You first find the classification scheme, then create an ExternalIdenti-

fier object to be used as an argument to the
BusinessQueryManagerImpl.findObjects method or another finder method.

The following code fragment finds all registry objects that contain the Sun
Microsystems stock ticker symbol as an external identifier. The sample database
included with the Registry does not have any external classification schemes, so
you would have to create one named NASDAQ for this example to work. See Add-
ing External Identifiers to Objects (page 49) for details on how to do this.

The collection of external identifiers is supplied as the next-to-last argument of
the findObjects method.

ClassificationScheme cScheme = null;
cScheme =

bqm.findClassificationSchemeByName(null, "NASDAQ");

ExternalIdentifier extId =
blcm.createExternalIdentifier(cScheme, "%Sun%",

"SUNW");
Collection extIds = new ArrayList();
extIds.add(extId);
// perform query
BulkResponse response = bqm.findObjects("RegistryObject",

null, null, null, null, extIds, null);
Collection objects = response.getCollection();

Finding Objects by External Identifier:
Example
For an example of finding objects by external identifier, see the example
<INSTALL>/registry/samples/query-external-identifier/src/JAXRQue-

ryByExternalIdentifier.java, which searches for objects that use the NAS-

DAQ classification scheme. To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-external-

identifier.

2. Type the following command:
ant run

FINDING OBJECTS BY EXTERNAL LINK 21
This example is not likely to produce results unless you first run the publish-

object example described in Adding Classifications: Example (page 48).

Finding Objects by External Link
Finding objects by external link does not require the use of a classification
scheme, but it does require you to specify a valid URI. The arguments to the
createExternalLink method are a URI and a description.

If the link you specify is outside your firewall, you also need to specify the sys-
tem properties http.proxyHost and http.proxyPort when you run the pro-
gram so that JAXR can determine the validity of the URI.

The following code fragment finds all organizations that have a specified Exter-

nalLink object.

ExternalLink extLink =
blcm.createExternalLink("http://java.sun.com/",

"Sun Java site");

Collection extLinks = new ArrayList();
extLinks.add(extLink);
BulkResponse response = bqm.findObjects("Organization",

null, null, null, null, null, extLinks);
Collection objects = response.getCollection();

Finding Objects by External Link: Example
For an example of finding objects by external link, see the example <INSTALL>/

registry/samples/query-external-link/src/JAXRQueryByExternal-

Link.java, which searches for objects that have a specified external link. The
http.proxyHost and http.proxyPort properties are specified in the run target
in the build.xml file.

To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-external-

link.

2. Type the following command:
ant run

This example is not likely to produce results unless you first run the publish-
object example described in Adding Classifications: Example (page 48).

22 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Finding Objects by Unique Identifier
Every object in the Registry has two identifiers, a unique identifier (also called a
Key) and a logical identifier. Often the unique and logical identifiers are the
same. However, when an object exists in more than one version, the unique iden-
tifiers are different for each version, but the logical identifier remains the same.
(See Retrieving the Version of an Object, page 34.)

If you know the value of the unique identifier for an object, you can retrieve the
object by calling the QueryManager.getRegistryObject method with the
String value as an argument. For example, if bqm is your BusinessQueryMan-
ager instance and idString is the String value, the following line of code
retrieves the object:

RegistryObject obj = bqm.getRegistryObject(idString);

Once you have the object, you can obtain its type, name, description, and other
attributes.

Finding Objects by Unique Identifier: Example
For an example of finding objects by unique identifier, see the example
<INSTALL>/registry/samples/query-id/src/JAXRQueryById.java, which
searches for objects that have a specified unique identifier. To run the example,
follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-id.

2. Type the following command:
ant run -Did=urn_value

For example, if you specify the following ID, you retrieve information on the
ObjectType classification scheme.

urn:oasis:names:tc:ebxml-regrep:classificationScheme:ObjectType

Finding Objects You Published
You can retrieve all objects that you published to the Registry, or you can narrow
this search to retrieve only the objects you published that are of a particular
object type. To retrieve all the objects you have published, use the no-argument
version of the QueryManager.getRegistryObjects method. The name of this

FINDING OBJECTS YOU PUBLISHED 23
method is misleading, because it returns only objects you have published, not all
registry objects.

For example, if bqm is your BusinessQueryManager instance, use the following
line of code:

BulkResponse response = bqm.getRegistryObjects();

To retrieve all the objects of a particular type that you published, use
QueryManager.getRegistryObjects with a String argument:

BulkResponse response = bqm.getRegistryObjects("Service");

This method is case-sensitive, so the object type must be capitalized.

The sample programs JAXRGetMyObjects and JAXRGetMyObjectsByType show
how to use these methods.

Finding Objects You Published: Examples
For examples of finding objects by classification, see the two examples in
<INSTALL>/registry/samples/get-objects/src: JAXRGetMyObjects.java

and JAXRGetMyObjectsByType.java. The first example, JAXRGetMyOb-

jects.java, retrieves all objects you have published. The second example,
JAXRGetMyObjectsByType.java, retrieves all the objects you have published of
a specified type. To run the examples, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/get-objects.

2. Type the following command to retrieve all objects you published:

ant get-obj

3. Type the following command to retrieve all objects you have published of
a specified type, where type_name is case-sensitive:
ant get-obj-type -Dtype=type_name

Note: At this release, every user has the identity RegistryOperator. Because this
user owns all the objects in the Registry, the get-obj target takes a long time to
run, and the get-obj-type target may take a long time if the type_name is one
with many objects (ClassificationNode, for example).

24 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Retrieving Information About an Object
Once you have retrieved the object or objects you are searching for, you can also
retrieve the object’s attributes and other objects that belong to it: its name,
description, type, ID values, classifications, external identifiers, external links,
and slots. For an organization, you can also retrieve the primary contact (a User

object), postal address, telephone numbers, and the services that the organization
offers. For a user, you can retrieve the name, email addresses, postal address, and
telephone numbers. For a service, you can retrieve the service bindings.

For an object, you can also retrieve the audit trail, which contains the events that
have changed the object’s state, and the version. You can also retrieve an object’s
version number, which is updated whenever a change is made to one of the
object’s attributes.

This section covers the following topics:

• Retrieving an organization hierarchy

• Retrieving the Name or Description of an Object

• Retrieving the Type of an Object

• Retrieving the ID Values for an Object

• Retrieving the Classifications for an Object

• Retrieving the External Identifiers for an Object

• Retrieving the External Links for an Object

• Retrieving the Slots for an Object

• Retrieving the Attributes of an Organization or User

• Retrieving the Services and Service Bindings for an Organization

• Retrieving an Organization Hierarchy

• Retrieving the Audit Trail of an Object

• Retrieving the Version of an Object

Retrieving the Name or Description of an
Object
The name and description of an object are both InternationalString objects.
An InternationalString object contains a set of LocalizedString objects.
The methods RegistryObject.getName() and RegistryObject.getDescrip-

RETRIEVING INFORMATION ABOUT AN OBJECT 25
tion() return the LocalizedString object for the default locale. You can then
retrieve the String value of the LocalizedString object. For example:

String name = ro.getName().getValue();
String description = ro.getDescription().getValue();

Call the getName or getDescription method with a Locale argument to
retrieve the value for a particular locale.

Many of the examples contain private utility methods that retrieve the name,
description, and unique identifier for an object. See, for example, JAXRGetMyOb-
jects.java in Finding Objects You Published: Examples (page 23).

Retrieving the Type of an Object
If you have queried the Registry without specifying a particular object type, you
can retrieve the type of the objects returned by the query. Use the RegistryOb-

ject.getObjectType method, which returns a Concept value. You can then use
the Concept.getValue method to obtain the String value of the object type.
For example:

Concept objType = object.getObjectType();
System.out.println("Object type is " + objType.getValue());

The concept will be one of those in the canonical classification scheme Object-

Type. For an example of this code, see JAXRQueryByName.java in Finding
Objects by Name: Example (page 16).

Retrieving the ID Values for an Object
The unique identifier for an object is contained in a Key object. A Key is a struc-
ture that contains the identifier in the form of an id attribute that is a String

value. To retrieve the identifier, call the method RegistryObject.get-

Key().getId().

The JAXR provider also has an implementation-specific method for retrieving
the logical identifier, called a lid. The lid is a String attribute of a Registry-

Object. To retrieve the lid, call RegistryObjectImpl.getLid(). The method
has the following signature:

public java.lang.String getLid()
throws JAXRException

26 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
For an example of the use of this method, see JAXRQueryOrg.java in Retrieving
Organization Attributes: Example (page 30).

Retrieving the Classifications for an Object
Use the RegistryObject.getClassifications method to retrieve a Collec-

tion of the object’s classifications. For each classification, you can retrieve its
name, value, and the classification scheme to which it belongs. The following
code fragment retrieves and displays an object’s classifications.

Collection classifications = object.getClassifications();
Iterator classIter = classifications.iterator();
while (classIter.hasNext()) {

Classification classification =
(Classification) classIter.next();

String name = classification.getName().getValue();
System.out.println(" Classification name is " + name);
System.out.println(" Classification value is " +

classification.getValue());
ClassificationScheme scheme =

classification.getClassificationScheme();
System.out.println(" Classification scheme for " +

name + " is " + scheme.getName().getValue());
}

Some of the examples have a showClassifications method that uses this code.
See, for example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

Retrieving the External Identifiers for an
Object
Use the RegistryObject.getExternalIdentifiers method to retrieve a Col-

lection of the object’s external identifiers. For each identifier, you can retrieve
its name, value, and the classification scheme to which it belongs. For an exter-
nal identifier, the method that retrieves the classification scheme is getIdenti-

ficationScheme. The following code fragment retrieves and displays an
object’s external identifiers.

Collection exIds = object.getExternalIdentifiers();
Iterator exIdIter = exIds.iterator();
while (exIdIter.hasNext()) {

ExternalIdentifier exId =

RETRIEVING INFORMATION ABOUT AN OBJECT 27
(ExternalIdentifier) exIdIter.next();
String name = exId.getName().getValue();
System.out.println(" External identifier name is " +

name);
String exIdValue = exId.getValue();
System.out.println(" External identifier value is " +

exIdValue);
ClassificationScheme scheme =

exId.getIdentificationScheme();
System.out.println(" External identifier " +

"classification scheme is " +
scheme.getName().getValue());

}

Some of the examples have a showExternalIdentifiers method that uses this
code. See, for example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

Retrieving the External Links for an Object
Use the RegistryObject.getExternalLinks method to retrieve a Collection

of the object’s external links. For each external link, you can retrieve its name,
description, and value. For an external link, the name is optional. The following
code fragment retrieves and displays an object’s external links.

Collection exLinks = obj.getExternalLinks();
Iterator exLinkIter = exLinks.iterator();
while (exLinkIter.hasNext()) {

ExternalLink exLink = (ExternalLink) exLinkIter.next();
String name = exLink.getName().getValue();
if (name != null) {

System.out.println(" External link name is " + name);
}
String description = exLink.getDescription().getValue();
System.out.println(" External link description is " +

description);
String externalURI = exLink.getExternalURI();
System.out.println(" External link URI is " +

externalURI);
}

Some of the examples have a showExternalLinks method that uses this code.
See, for example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

28 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Retrieving the Slots for an Object
Slots are arbitrary attributes that you can create for an object. Use the Registry-
Object.getSlots method to retrieve a Collection of the object’s slots. For
each slot, you can retrieve its name, values, and type. The name of a Slot object
is a String, not an InternationalString, and a slot has a Collection of val-
ues. The following fragment retrieves and displays an object’s slots:

Collection slots = object.getSlots();
Iterator slotIter = slots.iterator();
while (slotIter.hasNext()) {

Slot slot = (Slot) slotIter.next();
String name = slot.getName();
System.out.println(" Slot name is " + name);
Collection values = slot.getValues();
Iterator valIter = values.iterator();
int count = 1;
while (valIter.hasNext()) {

String value = (String) valIter.next();
System.out.println(" Slot value " + count++ +

": " + value);
}
String type = slot.getSlotType();
if (type != null) {

System.out.println(" Slot type is " + type);
}

Some of the examples have a showSlots method that uses this code. See, for
example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

Retrieving the Attributes of an Organization or
User
Every Organization object can have one postal address and multiple telephone
numbers in addition to the attributes available to all other objects. Every organi-
zation also has a User object as a primary contact, and it may have additional
affiliated User objects.

The attributes for a User object include a PersonName object, which has a differ-
ent format from the name of an object. A user can have multiple postal addresses
as well as multiple telephone numbers. A user can also have multiple email
addresses.

RETRIEVING INFORMATION ABOUT AN OBJECT 29
To retrieve the postal address for an organization, call the Organization.get-

PostalAddress method as follows (org is the organization):

PostalAddress pAd = org.getPostalAddress();

Once you have the address, you can retrieve the address attributes as follows:

System.out.println(" Postal Address:\n " +
pAd.getStreetNumber() + " " + pAd.getStreet() +
"\n " + pAd.getCity() + ", " +
pAd.getStateOrProvince() + " " +
pAd.getPostalCode() + "\n " + pAd.getCountry() +
"(" + pAd.getType() + ")");

To retrieve the primary contact for an organization, call the Organiza-

tion.getPrimaryContact method as follows (org is the organization):

User pc = org.getPrimaryContact();

To retrieve the postal addresses for a user, call the User.getPostalAddresses

method and extract the Collection values as follows (pc is the primary con-
tact):

Collection pcpAddrs = pc.getPostalAddresses();
Iterator pcaddIter = pcpAddrs.iterator();
while (pcaddIter.hasNext()) {

PostalAddress pAd = (PostalAddress) pcaddIter.next();
/* retrieve attributes */

}

To retrieve the telephone numbers for either an organization or a user, call the
getTelephoneNumbers method. In the following code fragment, org is the orga-
nization. The code retrieves the country code, area code, main number, and type
of the telephone number.

Collection orgphNums = org.getTelephoneNumbers(null);
Iterator orgphIter = orgphNums.iterator();
while (orgphIter.hasNext()) {

TelephoneNumber num = (TelephoneNumber) orgphIter.next();
System.out.println(" Phone number: " +

"+" + num.getCountryCode() + " " +
"(" + num.getAreaCode() + ") " +
num.getNumber() + " (" + num.getType() + ")");

}

30 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
A TelephoneNumber can also have an extension, retrievable through the getEx-

tension method. If the number can be dialed electronically, it can have a url

attribute, retrievable through the getUrl method.

To retrieve the name of a user, call the User.getPersonName method. A Per-

sonName has three attributes that correspond to the given name, middle name(s),
and surname of a user. In the following code fragment, pc is the primary contact.

PersonName pcName = pc.getPersonName();
System.out.println(" Contact name: " +

pcName.getFirstName() + " " +
pcName.getMiddleName() + " " +
pcName.getLastName());

To retrieve the email addresses for a user, call the User.getEmailAddresses

method. An EmailAddress has two attributes, the address and its type. In the fol-
lowing code fragment, pc is the primary contact.

Collection eAddrs = pc.getEmailAddresses();
Iterator eaIter = eAddrs.iterator();
while (eaIter.hasNext()) {

EmailAddress eAd = (EmailAddress) eaIter.next();
System.out.println(" Email address: " +

eAd.getAddress() + " (" + eAd.getType() + ")");
}

The attributes for PostalAddress, TelephoneNumber, PersonName, and Email-

Address objects are all String values. As noted in JAXR Information Model
Interfaces (page 11), these objects do not extend the RegistryObject interface,
so they do not have the attributes of other registry objects.

Retrieving Organization Attributes: Example
For an example of retrieving the attributes of an organization and the User that is
its primary contact, see the example <INSTALL>/registry/samples/organi-

zations/src/JAXRQueryOrg.java, which displays information about an orga-
nization whose name contains a specified string. To run the example, follow
these steps:

1. Go to the directory <INSTALL>/registry/samples/organizations.

2. Type the following command:
ant query-org -Dorg=string

RETRIEVING INFORMATION ABOUT AN OBJECT 31
Retrieving the Services and Service Bindings
for an Organization
Most organizations offer services. JAXR has methods that retrieve the services
and service bindings for an organization.

A Service object has all the attributes of other registry objects. In addition, it
normally has service bindings, which provide information about how to access
the service. A ServiceBinding object, along with its other attributes, normally
has an access URI and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice through the service binding.

In addition to these attributes, you can use the Service.getProvidingOrgani-

zation method to retrieve the organization that provides a service, and you can
use the ServiceBinding.getService method to retrieve the service for a ser-
vice binding. The following code fragment retrieves the services for the organi-
zation org. Then it retrieves the service bindings for each service and, for each
service binding, its access URI and specification links. A specification link in
turn has a specification object (typically an ExtrinsicObject), usage descrip-
tion (an InternationalString object), and a Collection of usage parameters
that are String values.

Collection services = org.getServices();
Iterator svcIter = services.iterator();
while (svcIter.hasNext()) {

Service svc = (Service) svcIter.next();
System.out.println(" Service name: " + getName(svc));
System.out.println(" Service description: " +

getDescription(svc));

Collection serviceBindings = svc.getServiceBindings();
Iterator sbIter = serviceBindings.iterator();
while (sbIter.hasNext()) {

ServiceBinding sb = (ServiceBinding) sbIter.next();
System.out.println(" Binding name: " +

getName(sb));
System.out.println(" Binding description: " +

getDescription(sb));
System.out.println(" Access URI: " +

sb.getAccessURI());

Collection specLinks = sb.getSpecificationLinks();
Iterator slIter = specLinks.iterator();
while (slIter.hasNext()) {

32 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
SpecificationLink sl =
(SpecificationLink) slIter.next();

RegistryObject ro = sl.getSpecificationObject();
System.out.println("Specification link " +

"object of type " + ro.getObjectType());
System.out.println("Usage description: " +

sl.getUsageDescription().getValue());
Collection ups = sl.getUsageParameters();
Iterator upIter = ups.iterator();
while (upIter.hasNext()) {

String up = (String) upIter.next();
System.out.println("Usage parameter: " +

up);
}

}
}

}

The example Retrieving Organization Attributes: Example (page 30) also dis-
plays the services and service bindings for the organizations it finds.

Retrieving an Organization Hierarchy
JAXR allows you to group organizations into families. One organization can
have other organizations as its children, and these can in turn have children.
Therefore, any given organization may have a parent, children, and descendants.

The Organization.getParentOrganization method retrieves an organiza-
tion’s parent. In the following fragment, chorg is a child organization.

Organization porg = chorg.getParentOrganization();

The Organization.getChildOrganizations method retrieves a Collection of
the organization’s children. In the following fragment, org is a parent organiza-
tion.

Collection children = org.getChildOrganizations();

The Organization.getDescendantOrganizations method retrieves multiple
generations of descendants, while the Organization.getRootOrganization

method retrieves the parentless ancestor of any descendant.

For an example of retrieving an organization hierarchy, see Creating and Retriev-
ing an Organization Hierarchy: Example (page 53).

RETRIEVING INFORMATION ABOUT AN OBJECT 33
Retrieving the Audit Trail of an Object
Whenever an object is published to the Registry, and whenever it is modified in
any way, JAXR creates another object, called an AuditableEvent, and adds the
event to the audit trail for the published object. The audit trail contains a list of
all the events for that object. To retrieve the audit trail, call RegistryOb-

ject.getAuditTrail. You can also retrieve the individual events in the audit
trail and find out their event types. JAXR supports the event types listed in Table
8–5.

Table 8–5 AuditableEvent Types

Event Type Description

EVENT_TYPE_CREATED Object was created and published to the registry.

EVENT_TYPE_DELETED
Object was deleted using one of the LifeCycleManager or
BusinessLifeCycleManager deletion methods.

EVENT_TYPE_DEPRECATED
Object was deprecated using the LifeCycleMan-
ager.deprecateObjects method.

EVENT_TYPE_UNDEPRECATED
Object was undeprecated using the LifeCycleMan-
ager.unDeprecateObjects method.

EVENT_TYPE_VERSIONED
A new version of the object was created. This event typically
happens when any of the object’s attributes changes.

EVENT_TYPE_UPDATED Object was updated.

EVENT_TYPE_APPROVED
Object was approved using the LifeCycleManager-
Impl.approveObjects method (implementation-spe-
cific).

EVENT_TYPE_DOWNLOADED Object was downloaded (implementation-specific).

EVENT_TYPE_RELOCATED Object was relocated (implementation-specific).

34 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
The following code fragment retrieves the audit trail for a registry object, dis-
playing the type and timestamp of each event:

Collection events = obj.getAuditTrail();
String objName = obj.getName().getValue();
Iterator eventIter = events.iterator();
while (eventIter.hasNext()) {

AuditableEventImpl ae = (AuditableEventImpl) eventIter.next();
int eType = ae.getEventType();
if (eType == AuditableEvent.EVENT_TYPE_CREATED) {

System.out.print(objName + " created ");
} else if (eType == AuditableEvent.EVENT_TYPE_DELETED) {

System.out.print(objName + " deleted ");
} else if (eType == AuditableEvent.EVENT_TYPE_DEPRECATED) {

System.out.print(objName + " deprecated ");
} else if (eType == AuditableEvent.EVENT_TYPE_UNDEPRECATED) {

System.out.print(objName + " undeprecated ");
} else if (eType == AuditableEvent.EVENT_TYPE_UPDATED) {

System.out.print(objName + " updated ");
} else if (eType == AuditableEvent.EVENT_TYPE_VERSIONED) {

System.out.print(objName + " versioned ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_APPROVED) {

System.out.print(objName + " approved ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_DOWNLOADED) {

System.out.print(objName + " downloaded ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_RELOCATED) {

System.out.print(objName + " relocated ");
} else {

System.out.print("Unknown event for " + objName + " ");
}

System.out.println(ae.getTimestamp().toString());
}

Some of the examples have a showAuditTrail method that uses this code. See,
for example, JAXRQueryByName.java in Finding Objects by Name:
Example (page 16).

See Changing the State of Objects in the Registry (page 65) for information on
how to change the state of registry objects.

Retrieving the Version of an Object
If you modify the attributes of a registry object, the Registry creates a new ver-
sion of the object. For details on how this happens, see Changing the State of

USING DECLARATIVE QUERIES 35
Objects in the Registry (page 65). When you first create an object, it has a ver-
sion of 1.1.

Note: At this release, versioning of objects is disabled by default. All objects have
a version of 1.1 even after modification. For details on how to turn versioning on,
see the Release Notes.

To retrieve the version of an object, use the implementation-specific getVer-

sionInfo method for a registry object, which returns a VersionInfoType

object. The method has the following signature:

public VersionInfoType getVersionInfo()
throws JAXRException

For example, to retrieve the version number for the organization org, cast org to
a RegistryObjectImpl when you call the method. Then call the VersionInfo-

Type.getVersionName method, which returns a String.

import org.oasis.ebxml.registry.bindings.rim.VersionInfoType;
...
VersionInfoType vInfo =

((RegistryObjectImpl)org).getVersionInfo();
if (vInfo != null) {

System.out.println("Org version: " +
vInfo.getVersionName());

}

Some of the examples use code similar to this. See, for example, JAXRQuery-
ByName.java in Finding Objects by Name: Example (page 16).

Using Declarative Queries
Instead of the BusinessQueryManager interface, you can use the Declarative-

QueryManager interface to create and execute queries to the Registry. If you are
familiar with SQL, you may prefer to use declarative queries. The Declara-

tiveQueryManager interface depends on another interface, Query.

The DeclarativeQueryManager interface has two methods, createQuery and
executeQuery. The createQuery method takes two arguments, a query type and
a string containing the query. The following code fragment creates an SQL query

36 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
that asks for a list of all Service objects in the Registry. Here, rs is a Registry-
Service object.

DeclarativeQueryManager qm = rs.getDeclarativeQueryManager();
String qString = "select s.* from Service s";
Query query = qm.createQuery(Query.QUERY_TYPE_SQL, qString);

After you create the query, you execute it as follows:

BulkResponse response = qm.executeQuery(query);
Collection objects = response.getCollection();

You then extract the objects from the response just as you do with ordinary que-
ries.

Using Declarative Queries: Example
For an example of the use of declarative queries, see <INSTALL>/registry/

samples/query-declarative/src/JAXRQueryDeclarative.java, which cre-
ates and executes a SQL query.

The SQL query string, which is defined in the JAXRExamples.properties file,
looks like this (all on one line):

declarative.query=SELECT ro.* from RegistryObject ro, Name nm,
Description d WHERE upper(nm.value) LIKE upper(’%free%’) AND
upper(d.value) LIKE upper(’%free%’) AND (ro.id = nm.parent AND
ro.id = d.parent)

This query finds all objects that have the string "free" in both the name and the
description attributes.

To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-declara-

tive.

2. Type the following command:
ant run

Using Iterative Queries
If you expect a declarative query to return a very large result set, you can use the
implementation-specific iterative query feature. The DeclarativeQueryMan-

USING ITERATIVE QUERIES 37
agerImpl.executeQuery method can take an argument that specifies a set of
parameters. This method has the following signature:

public BulkResponse executeQuery(Query query,
java.util.Map queryParams,
IterativeQueryParams iterativeParams)

throws JAXRException

You can specify parameters that cause each query to request a different subset of
results within the result set. Instead of making one query return the entire result
set, you can make each individual query return a manageable set of results.

Suppose you have a query string that you expect to return up to 100 results. You
can create a set of parameters that causes the query to return 10 results at a time.
First, you create an instance of the class IterativeQueryParams, which is
defined in the package org.freebxml.omar.common. The two fields of the class
are startIndex, the starting index of the array, and maxResults, the maximum
number of results to return. You specify the initial values for these fields in the
constructor.

int maxResults = 10;
int startIndex = 0;
IterativeQueryParams iterativeQueryParams =

new IterativeQueryParams(startIndex, maxResults);

Execute the queries within a for loop that terminates with the highest number of
expected results and advances by the maxResults value for the individual que-
ries. Increment the startIndex field at each loop iteration.

for (int i = 0; i < 100; i += maxResults) {
// Execute query with iterative query params
Query query = dqm.createQuery(Query.QUERY_TYPE_SQL,

queryStr);
iterativeQueryParams.startIndex = i;
BulkResponse br = dqm.executeQuery(query, null,

iterativeQueryParams);
Collection objects = br.getCollection();
// retrieve individual objects ...

}

The Registry is not required to maintain transactional consistency or state
between iterations of a query. Thus it is possible for new objects to be added or
existing objects to be removed from the complete result set between iterations.

38 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Therefore, you may notice that a result set element is skipped or duplicated
between iterations.

Using Iterative Queries: Example
For an example of the use of an iterative query, see <INSTALL>/registry/sam-

ples/query-iterative/src/JAXRQueryIterative.java. This program finds
all registry objects whose names match a given string and then iterates through
the first 100 of them. To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-iterative.

2. Type the following command, specifying a string value:
ant run -Dname=string

Invoking Stored Queries
The implementation-specific AdhocQueryImpl class, which extends Registry-

ObjectImpl, allows you to invoke queries that are stored in the Registry. The
Registry has several default AdhocQueryImpl objects that you can invoke. The
most useful are named FindAllMyObjects and GetCallersUser:

• FindAllMyObjects is equivalent to the
QueryManager.getRegistryObjects() method, described in Finding
Objects You Published (page 22).

• GetCallersUser is equivalent to the question “Who am I?” It returns the
User object associated with the client that executed the query. If the caller
is not logged in to the Registry, this query returns the user named “Registry
Guest.”

To invoke a stored query, begin by using the BusinessQueryManager-

Impl.findObjects method to locate the query. The following code searches for
the GetCallersUser query.

Collection namePatterns = new ArrayList();
namePatterns.add("GetCallersUser");

// Find objects with name GetCallersUser
BulkResponse response =

bqm.findObjects("AdhocQuery", null, namePatterns,
null, null, null, null);

Collection queries = response.getCollection();

QUERYING A REGISTRY FEDERATION 39
Then find the query string associated with the AdhocQuery and use it to create
and execute a query, this time using DeclarativeQueryManager methods.

// get the first (only) query and invoke it
Iterator qIter = queries.iterator();
if (!(qIter.hasNext())) {

System.out.println("No objects found");
} else {

AdhocQueryImpl aq = (AdhocQueryImpl) qIter.next();
String qString = aq.toString();
Query query = dqm.createQuery(qType, qString);

BulkResponse br = dqm.executeQuery(query);
Collection objects = br.getCollection();
...

Invoking Stored Queries: Example
For an example of the use of a stored query, see <INSTALL>/registry/sam-

ples/query-stored/src/JAXRQueryStored.java. This example returns the
user’s registry login name. To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-stored.

2. Type the following command:
ant run

Querying a Registry Federation
If the registry you are querying is part of one or more registry federations (see
About Registries and Repositories, page 1), you can perform declarative queries
on all registries in all federations of which your registry is a member, or on all
the registries in one federation.

To perform a query on all registries in all federations of which your registry is a
member, you call the implementation-specific setFederated method on a Que-

ryImpl object. The method has the following signature:

public void setFederated(boolean federated)
throws JAXRException

40 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
You call the method as follows:

QueryImpl query = (QueryImpl)
dqm.createQuery(Query.QUERY_TYPE_SQL, qString);

query.setFederated(true);

If you know that your registry is a member of only one federation, this method is
the only one you need to call before you execute the query.

To limit your query to the registries in one federation, you need to call an addi-
tional implementation-specific method, setFederation. This method takes as
its argument the unique identifier of the federation you want to query:

public void setFederation(java.lang.String federationId)
throws JAXRException

Therefore, before you can call this method, you must obtain the unique identifier
value. To do so, first call BusinessQueryManagerImpl.findObjects to locate
the federation by name. In this code, you would substitute the actual name of the
federation for the string "NameOfFederation".

Collection namePatterns = new ArrayList();
namePatterns.add("NameOfFederation");

// Find objects with name NameOfFederation
BulkResponse response =

bqm.findObjects("Federation", null, namePatterns,
null, null, null, null);

Then, iterate through the collection (which should have only one member) and
retrieve the key value:

String fedId = federation.getKey().getId();

Finally, create the query, call setFederated and setFederation, and execute
the query:

QueryImpl query = (QueryImpl)
dqm.createQuery(Query.QUERY_TYPE_SQL, qString);

query.setFederated(true);
query.setFederation(fedId);
response = dqm.executeQuery(query);

PUBLISHING OBJECTS TO THE REGISTRY 41
Using Federated Queries: Example
For an example of the use of a federated query, see <INSTALL>/registry/sam-

ples/query-federation/src/JAXRQueryFederation.java. This example
performs two queries, a declarative query and a stored query, on every federation
it finds (the database provided with the Registry contains only one).

The declarative query is the same query performed in Using Declarative Queries:
Example (page 36). The stored query is the GetCallersUser query, as in the
previous example.

To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/query-federation.

2. Type the following command:
ant run

Publishing Objects to the Registry
If a client has authorization to do so, it can submit objects to the Service Regis-
try, modify them, and remove them. A client uses the BusinessLifeCycleMan-

ager interface to perform these tasks.

Registries usually allow a client to modify or remove objects only if the objects
are being modified or removed by the same user who first submitted them.
Access policies can control who is authorized to publish objects and perform
actions on them.

Publishing registry objects involves the following tasks:

• Creating Objects

• Saving Objects in the Registry

It is important to remember that submitting objects is a multi-step task: you cre-
ate the objects and populate them by setting their attributes, then you save them.
The objects appear in the registry only after you save them.

You may remember that when you search for objects by classification, external
identifier, and the like, you create the classification or other object that you are
using in the search. (For an example, see Finding Objects by
Classification, page 17.) However, you do not save this object. You create the
object only for the purposes of the search, after which it disappears. You do not

42 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
need authorization from the Registry to create an object, but you must have
authorization to save it.

Note: At this release, you do not need authorization from the Registry to save
objects.

Creating Objects
A client creates an object and populates it with data before publishing it. You can
create and publish any of the following types of RegistryObject:

• AdhocQuery

• Association

• ClassificationScheme

• Concept

• ExternalLink

• ExtrinsicObject

• Federation

• Organization

• RegistryPackage

• Service

• Subscription

• User

The following types of RegistryObject cannot be published separately, but you
can create and save them as part of another object:

• Classification (any RegistryObject)

• ExternalIdentifier (any RegistryObject)

• ServiceBinding (Service)

• Slot (any RegistryObject)

• SpecificationLink (ServiceBinding)

CREATING OBJECTS 43
Some objects fall into special categories:

• An AuditableEvent is published by the Registry when an object has a
change in state.

• A Notification is published by the Registry when an AuditableEvent

that matches a Subscription occurs.

• A Registry can be published only by a user with the role Registry-

Administrator.

The subsections that follow describe first the tasks common to creating and sav-
ing all registry objects. They then describe some tasks specific to particular
object types.

• Adding names and descriptions to objects

• Identifying objects

• Adding classifications to objects

• Adding external identifiers to objects

• Adding external links to objects

• Adding slots to objects

• Creating organizations

• Creating users

• Creating services and service bindings

• Using Create Methods for Objects

• Adding Names and Descriptions to Objects

• Identifying Objects

• Creating and Using Classification Schemes and Concepts

• Adding Classifications to Objects

• Adding External Identifiers to Objects

• Adding External Links to Objects

• Adding Slots to Objects

• Creating Organizations

• Creating Users

• Creating Services and Service Bindings

44 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Using Create Methods for Objects
The LifeCycleManager interface supports create methods for all types of Reg-
istryObject (except AuditableEvent and Notification, which can be cre-
ated only by the Registry itself).

In addition, you can use the LifeCycleManager.createObject factory method
to create an object of a particular type. This method takes a String argument con-
sisting of one of the static fields supported by the LifeCycleManager interface.
In the following code fragment, blcm is the BusinessLifeCycleManager object:

Organization org = (Organization)
blcm.createObject(blcm.ORGANIZATION);

The object-specific create methods usually take one or more parameters that set
some of the attributes of the object. For example, the createOrganization

method sets the name of the organization:

Organization org = blcm.createOrganization("MyOrgName");

On the other hand, the createExtrinsicObject method takes a DataHandler

argument that sets the repository item for the extrinsic object.

Adding Names and Descriptions to Objects
For all objects, you can set the name and description attributes by calling setter
methods. These attributes are of type InternationalString. An Inter-

nationalString includes a set of LocalizedString objects that allow users to
display the name and description in one or more locales. By default, the Inter-

nationalString value uses the default locale.

For example, the following fragment creates a description for an organization
that uses two localized strings, one in the language of the default locale and one
in French (Canada).

InternationalString is =
blcm.createInternationalString("What We Do"));

Locale loc = new Locale("fr", "CA");
LocalizedString ls = blcm.createLocalizedString(loc,

"ce que nous faisons");
is.addLocalizedString(ls);
org.setDescription(is);

CREATING OBJECTS 45
Identifying Objects
As stated in Finding Objects by Unique Identifier (page 22), every object in the
Registry has two identifiers, a unique identifier and a logical identifier. If you do
not set these identifiers when you create the object, the Registry generates a
unique value and assigns that value to both the unique and the logical identifiers.

Whenever a new version of an object is created (see Retrieving the Version of an
Object, page 34, and Changing the State of Objects in the Registry, page 65), the
logical identifier remains the same as the original one, but the Registry generates
a new unique identifier by adding a colon and the version number to the unique
identifier.

Note: At this release, versioning is disabled by default. The logical and unique iden-
tifiers remain the same after the object is modified.

If you plan to use your own identification scheme, you can use API methods to
set object identifiers. In the JAXR API, the unique identifier is called a Key

object. You can use the LifeCycleManager.createKey method to create a
unique identifier from a String object, and you can use the RegistryOb-

ject.setKey method to set it. The logical identifier is called a lid, and the
JAXR provider for the Registry has an implementation-specific method, Regis-
tryObjectImpl.setLid, which also takes a String argument, for setting this
identifier. The method has the following signature:

public void setLid(java.lang.String lid)
throws JAXRException

Any identifier you specify must be a valid, globally unique URN (Uniform
Resource Name). When the JAXR API generates a key for an object, the key is
in the form of a DCE 128 UUID (Universal Unique IDentifier).

Creating and Using Classification Schemes
and Concepts
You can create your own classification schemes and concept hierarchies for clas-
sifying registry objects. To do so, follow these steps:

1. Use the LifeCycleManager.createClassificationScheme method to
create the classification scheme.

46 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
2. Use the LifeCycleManager.createConcept method to create concepts.

3. Use the ClassificationScheme.addChildConcept method to add the
concepts to the classification scheme.

4. For a deeper hierarchy, use the Concept.addChildConcept method to add
child concepts to the concepts.

5. Save the classification scheme.

The LifeCycleManager.createClassificationScheme method has several
forms. You can specify two arguments, a name and description, as either String
or InternationalString values. For example, to create a classification scheme
to describe how books are shelved in a library, you could use the following code
fragment:

ClassificationScheme cs =
blcm.createClassificationScheme("LibraryFloors",

"Scheme for Shelving Books");

An alternate form of the createClassificationScheme method takes one argu-
ment, a Concept, and converts it to a ClassificationScheme.

The createConcept method takes three arguments: a parent, a name, and a
value. The parent can be either a ClassificationScheme or another Concept. It
is acceptable to specify a value but no name.

The following code fragment uses a static String array containing the names of
the floors of the library to create a concept for each floor of the library, and then
adds the concept to the classification scheme.

for (int i = 0; i < floors.length; i++) {
Concept con = blcm.createConcept(cs, floors[i], floors[i]);
cs.addChildConcept(con);
...

For each concept, you can create more new concepts and call Con-

cept.addChildConcept to create another level of the hierarchy. When you save
the classification scheme, the entire concept hierarchy is also saved.

Creating Classification Schemes: Example
For an example of creating a classification scheme, see <INSTALL>/registry/

samples/classification-schemes/src/JAXRPublishScheme.java. This
example creates a classification scheme named LibraryFloors and a concept

CREATING OBJECTS 47
hierarchy that includes each floor of the library and the subject areas that can be
found there. To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-

schemes.

2. Type the following command:
ant pub-scheme

To display the concept hierarchy, use the program <INSTALL>/registry/sam-

ples/classification-schemes/src/JAXRQueryScheme.java. This example
displays the concept hierarchy for any classification scheme you specify. To run
the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-

schemes.

2. Type the following command:
ant query-scheme -Dname=LibraryFloors

To delete this classification scheme, use the program <INSTALL>/registry/

samples/classification-schemes/src/JAXRQueryScheme.java. To run the
example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/classification-

schemes.

2. Type the following command:
ant del-scheme -Dname=LibraryFloors

Adding Classifications to Objects
Objects can have one or more classifications based on one or more classification
schemes (taxonomies). To establish a classification for an object, the client first
locates the taxonomy it wants to use. The client then creates a classification
using the classification scheme and a concept (a taxonomy element) within the
classification scheme.

For information on creating a new classification scheme with a hierarchy of con-
cepts, see Creating Relationships Between Objects: Associations (page 57). A
classification scheme with a concept hierarchy is called an internal classification
scheme.

To add a classification that uses an existing classification scheme, you usually
call the BusinessQueryManager.findClassificationSchemeByName method.
This method takes two arguments, a Collection of FindQualifier objects and

48 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
a String that specifies a name pattern. It is an error for this method to return
more than one result, so you must define the search very precisely. For example,
the following code fragment searches for the classification scheme named Asso-

ciationType:

String schemeName = "AssociationType";
ClassificationScheme cScheme =

bqm.findClassificationSchemeByName(null, schemeName);

After you locate the classification scheme, you call the LifeCycleMan-

ager.createClassification method, specifying three arguments: the classifi-
cation scheme and the name and value of the concept.

Classification classification =
blcm.createClassification(cScheme, "Extends", "Extends");

An alternative method is to call BusinessQueryManager.findConcepts (or
BusinessQueryManagerImpl.findObjects with a "Concept" argument),
locate the concept you wish to use, and call another form of createClassifi-
cation, with the concept as the only argument:

Classification classification =
blcm.createClassification(concept);

After creating the classification, you call RegistryObject.addClassification
to add the classification to the object.

object.addClassification(classification);

To add multiple classifications, you can create a Collection, add the classifica-
tion to the Collection, and call RegistryObject.addClassifications to add
the Collection to the object.

Adding Classifications: Example
For an example of adding classifications to an object, see <INSTALL>/registry/
samples/publish-object/src/JAXRPublishObject.java. This example cre-
ates an organization and adds a number of objects to it. To run the example, fol-
low these steps:

1. Go to the directory <INSTALL>/registry/samples/publish-object.

2. Type the following command:
ant run

CREATING OBJECTS 49
Adding External Identifiers to Objects
To add an external identifier to an object, follow these steps:

1. Find or create the classification scheme to be used.

2. Create an external identifier using the classification scheme.

To create external identifiers, you use an external classification scheme, which is
a classification scheme without a concept hierarchy. You specify a name and
value for the external identifier.

The database supplied with the Registry does not include any external classifica-
tion schemes, so before you can use one you must create it, using code like the
following:

ClassificationScheme extScheme =
blcm.createClassificationScheme("NASDAQ",

"OTC Stock Exchange");

To find an existing classification scheme, you typically call the BusinessQuery-

Manager.findClassificationSchemeByName method, as described in Adding
Classifications to Objects (page 47).

For example, the following code fragment finds the external classification
scheme you just created:

ClassificationScheme extScheme =
bqm.findClassificationSchemeByName(null,

"NASDAQ");

To add the external identifier, you call the LifeCycleManager.createExter-

nalIdentifier method, which takes three arguments: the classification scheme
and the name and value of the external identifier. Then you add the external iden-
tifier to the object.

ExternalIdentifier extId =
blcm.createExternalIdentifier(extScheme, "Sun",

"SUNW);
object.addExternalIdentifier(extId);

The example <INSTALL>/registry/samples/publish-object/src/JAXRPub-

lishObject.java, described in Adding Classifications: Example (page 48), also
adds an external identifier to an object.

50 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Adding External Links to Objects
To add an external link to an object, you call the LifeCycleManager.createEx-

ternalLink method, which takes two arguments: the URI of the link, and a
description of the link. Then you add the external link to the object.

String eiURI = "http://java.sun.com/";
String eiDescription = "Java Technology";
ExternalLink extLink =

blcm.createExternalLink(eiURI, eiDescription);
object.addExternalLink(extLink);

The URI must be a valid URI, and the JAXR provider checks its validity. If the
link you specify is outside your firewall, you need to specify the system proper-
ties http.proxyHost and http.proxyPort when you run the program so that
JAXR can determine the validity of the URI.

To disable URI validation (for example, if you want to specify a link that is not
currently active), call the ExternalLink.setValidateURI method before you
create the link.

extLink.setValidateURI(false);

The example <INSTALL>/registry/samples/publish-object/src/JAXRPub-

lishObject.java, described in Adding Classifications: Example (page 48), also
adds an external link to an object.

Adding Slots to Objects
Slots are arbitrary attributes, so the API provides maximum flexibility for you to
create them. You can provide a name, one or more values, and a type. The name
and type are String objects. The value or values are stored as a Collection of
String objects, but the LifeCycleManager.createSlot method has a form that
allows you to specify a single String value. For example, the following code
fragment creates a slot using a String value, then adds the slot to the object.

String slotName = "Branch";
String slotValue = "Paris";
String slotType = "City";
Slot slot = blcm.createSlot(slotName, slotValue, slotType);
org.addSlot(slot);

CREATING OBJECTS 51
The example <INSTALL>/registry/samples/publish-object/src/JAXRPub-

lishObject.java, described in Adding Classifications: Example (page 48), also
adds a slot to an object.

Creating Organizations
An Organization object is probably the most complex registry object. It nor-
mally includes the following attributes, in addition to those common to all
objects:

• One or more PostalAddress objects.

• One or more TelephoneNumber objects.

• A PrimaryContact object, which is a User object. A User object normally
includes a PersonName object and collections of TelephoneNumber,
EmailAddress, and PostalAddress objects.

• One or more Service objects and their associated ServiceBinding

objects.

An organization can also have one or more child organizations, which can in turn
have children, to form a hierarchy of organizations.

The following code fragment creates an organization and specifies its name,
description, postal address, and telephone number.

// Create organization name and description
Organization org =

blcm.createOrganization("The ebXML Coffee Break");
InternationalString is =

blcm.createInternationalString("Purveyor of " +
"the finest coffees. Established 1905");

org.setDescription(is);

// create postal address for organization
String streetNumber = "99";
String street = "Imaginary Ave. Suite 33";
String city = "Imaginary City";
String state = "NY");
String country = "USA");
String postalCode = "00000";
String type = "Type US";
PostalAddress postAddr =

blcm.createPostalAddress(streetNumber, street, city, state,
country, postalCode, type);

org.setPostalAddress(postAddr);

52 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
// create telephone number for organization
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setCountryCode("1");
tNum.setAreaCode("100");
tNum.setNumber("100-1000");
tNum.setType("OfficePhone");
Collection tNums = new ArrayList();
tNums.add(tNum);
org.setTelephoneNumbers(tNums);

The telephone number type is the value of a concept in the PhoneType classifica-
tion scheme: "OfficePhone", "MobilePhone", "HomePhone", "FAX", or
"Beeper".

To create a hierarchy of organizations, use the Organization.addChildOrga-

nization method to add one organization to another, or use the Organiza-

tion.addChildOrganizations method to add a Collection of organizations to
another.

Creating an Organization: Examples
For examples of creating an organization, see JAXRPublishOrg.java and JAXR-

PublishOrgNoPC.java in the directory <INSTALL>/registry/samples/orga-

nizations/src.

The JAXRPublishOrg example creates an organization, its primary contact, and a
service and service binding. It displays the unique identifiers for the organiza-
tion, user, and service so that you can use them later when you delete the objects.
This example creates a fictitious User as the primary contact for the organiza-
tion.

The other example, JAXRPublishOrgNoPC, does not set a primary contact for the
organization. In this case, the primary contact by default is the User who is
authenticated when you run the program.

To run the examples, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/organizations.

2. Type the following commands:

ant pub-org

ant pub-org-nopc

CREATING OBJECTS 53
Creating and Retrieving an Organization Hierarchy:
Example
For examples of publishing and retrieving an organization hierarchy, see the
examples <INSTALL>/registry/samples/organizations/src/JAXRPub-

lishOrgFamily.java and <INSTALL>/registry/samples/organizations/

src/JAXRQueryOrgFamily.java. To run the examples, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/organizations.

2. Type the following command to publish the organizations:
ant pub-fam

3. Type the following command to retrieve the organizations you published:
ant query-fam

Creating Users
If you create an organization without specifying a primary contact, the default
primary contact is the User object that created the organization (that is, the user
whose credentials you set when you created the connection to the Registry).
However, you can specify a different user as the primary contact. A User is also
a complex type of registry object. It normally includes the following attributes,
in addition to those common to all objects:

• A PersonName object

• One or more PostalAddress objects

• One or more TelephoneNumber objects

• One or more EmailAddress objects

• One or more URL objects representing the user’s home page

The following code fragment creates a User and then sets that User as the pri-
mary contact for the organization. This User has a telephone number and email
address but no postal address.

// Create primary contact, set name
User primaryContact = blcm.createUser();
String userId = primaryContact.getKey().getId();
System.out.println("User URN is " + userId);
PersonName pName =

blcm.createPersonName("Jane", "M.", "Doe");
primaryContact.setPersonName(pName);

// Set primary contact phone number

54 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
TelephoneNumber pctNum = blcm.createTelephoneNumber();
pctNum.setCountryCode("1");
pctNum.setAreaCode("100");
pctNum.setNumber("100-1001");
pctNum.setType("MobilePhone");
Collection phoneNums = new ArrayList();
phoneNums.add(pctNum);
primaryContact.setTelephoneNumbers(phoneNums);

// Set primary contact email address
EmailAddress emailAddress =
blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com");
emailAddress.setType("OfficeEmail"));
Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

URL pcUrl = new URL((bundle.getString("person.url"));
primaryContact.setUrl(pcUrl);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

The telephone number type for the primary contact is the value of a concept in
the PhoneType classification scheme: "OfficePhone", "MobilePhone", "Home-
Phone", "FAX", or "Beeper". The email address type for the primary contact is
the value of a concept in the EmailType classification scheme: either "OfficeE-
mail" or "HomeEmail".

Creating Services and Service Bindings
Most organizations publish themselves to a registry to offer services, so JAXR
has facilities to add services and service bindings to an organization.

You can also create services that are not attached to any organization.

Like an Organization object, a Service object has a name, a description, and a
unique key that is generated by the registry when the service is registered. It may
also have classifications associated with it.

In addition to the attributes common to all objects, a service also commonly has
service bindings, which provide information about how to access the service. A
ServiceBinding object normally has a description, an access URI, and a speci-
fication link, which provides the linkage between a service binding and a techni-

CREATING OBJECTS 55
cal specification that describes how to use the service by using the service
binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, and then add the services to the organization. It
specifies an access URI but not a specification link. Because the access URI is
not real and because JAXR by default checks for the validity of any published
URI, the binding sets its validateURI attribute to false.

// Create services and service
Collection services = new ArrayList();
Service service = blcm.createService("My Service Name");
InternationalString is =

blcm.createInternationalString("My Service Description");
service.setDescription(is);

// Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding =

blcm.createServiceBinding();
is = blcm.createInternationalString("My Service Binding " +

"Name"));
binding.setName(is);
is = blcm.createInternationalString("My Service Binding " +

"Description");
binding.setDescription(is);
// allow us to publish a fictitious URI without an error
binding.setValidateURI(false);
binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");
...
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

A service binding normally has a technical specification that describes how to
access the service. An example of such a specification is a WSDL document. To
publish the location of a service’s specification (if the specification is a WSDL
document), you create a SpecificationLink object that refers to an Extrin-

sicObject. For details, see Storing Items in the Repository (page 60).

56 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
(This mechanism is different from the way you publish a specification’s location
to a UDDI registry: for a UDDI registry you create a Concept object and then
add the URL of the WSDL document to the Concept object as an ExternalLink

object.)

Saving Objects in the Registry
Once you have created an object and set its attributes, you publish it to the Reg-
istry by calling the LifeCycleManager.saveObjects method or an object-spe-
cific save method like BusinessLifeCycleManager.saveOrganizations or
BusinessLifeCycleManager.saveServices. You always publish a collection
of objects, not a single object. The save methods return a BulkResponse object
that contains the keys (that is, the unique identifiers) for the saved objects. The
following code fragment saves an organization and retrieves its key:

// Add organization and submit to registry
// Retrieve key if successful
Collection orgs = new ArrayList();
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);
Collection exceptions = response.getExceptions();
if (exceptions == null) {

System.out.println("Organization saved");

Collection keys = response.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {

javax.xml.registry.infomodel.Key orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

String id = orgKey.getId();
System.out.println("Organization key is " + id);

}
}

If one of the objects exists but some of the data have changed, the save methods
update and replace the data. This normally results in the creation of a new ver-
sion of the object (see Changing the State of Objects in the Registry, page 65).

MANAGING OBJECTS IN THE REGISTRY 57
Managing Objects in the Registry
• Once you have published objects to the Registry, you can perform opera-

tions on them. This chapter describes these operations.Creating Relation-
ships Between Objects: Associations

• Storing Items in the Repository

• Organizing Objects Within Registry Packages

• Changing the State of Objects in the Registry

• Removing Objects From the Registry and Repository

Creating Relationships Between Objects:
Associations
You can create an Association object and use it to specify a relationship
between any two objects. The ebXML specification specifies an Association-

Type classification scheme that contains a number of canonical concepts you can
use when you create an Association. You can also create your own concepts
within the AssociationType classification scheme, if none of the canonical ones
are suitable.

58 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
The canonical association types are as follows:

• AccessControlPolicyFor

• AffiliatedWith (which has the subconcepts EmployeeOf and MemberOf)

• Contains

• ContentManagementServiceFor

• EquivalentTo

• Extends

• ExternallyLinks

• HasFederationMember

• HasMember

• Implements

• InstanceOf

• InvocationControlFileFor (which has the subconcepts Cataloging-

ControlFileFor and ValidationControlFileFor)

• OffersService

• OwnerOf

• RelatedTo

• Replaces

• ResponsibleFor

• SubmitterOf

• Supersedes

• Uses

The Registry uses some of these association types automatically. For example,
when you add a Service to an Organization, the Registry creates an
OffersService association with the Organization as the source and the Ser-

vice as the target.

Associations are directional: each Association has a source object and a target
object. Establishing an association between two objects is a three-step process:

1. Find the AssociationType concept you wish to use (or create one).

2. Use the LifeCycleManager.createAssociation method to create the
association. This method takes two arguments, the target object and the
concept that identifies the relationship.

3. Use the RegistryObject.addAssociation method to add the association
to the source object.

CREATING RELATIONSHIPS BETWEEN OBJECTS: ASSOCIATIONS 59
For example, suppose you have two objects, obj1 and obj2, and you want to
establish a RelatedTo relationship between them. (In this relationship, which
object is the source and which is the target is arbitrary.) First, locate the concept
named RelatedTo:

// Find RelatedTo concept for Association
Collection namePatterns = new ArrayList();
namePatterns.add("RelatedTo");
BulkResponse br = bqm.findObjects("Concept", null,

namePatterns, null, null, null, null);
Collection concepts = br.getCollection();

Iterate through the concepts (there should only be one) to find the right one.

Concept relConcept = (Concept) concIter.next();

Create the association, specifying obj2 as the target:

Association relAssoc =
blcm.createAssociation(obj2, relConcept);

Add the association to the source object, obj1:

obj1.addAssociation(relAssoc);

Finally, save the association:

Collection associations = new ArrayList();
associations.add(relAssoc1);
BulkResponse response = blcm.saveObjects(associations);

Associations can be of two types, intramural and extramural. You create an
intramural association when both the source and target object are owned by you.
You create an extramural association when at least one of these objects is not
owned by you. The owner of an object can use an access control policy to restrict
the right to create an extramural association with that object as a source or target.

Creating Associations: Example
For an example of creating an association, see <INSTALL>/registry/samples/

publish-association/src/JAXRPublishAssociation.java. This example
creates a RelatedTo association between any two objects whose unique identifi-
ers you specify. For example, you could specify the identifiers of the two child

60 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
organizations created in Creating and Retrieving an Organization Hierarchy:
Example (page 53). To run the example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/publish-associa-

tion.

2. Type the following command:
ant run -Did1=string1 -Did2=string2

Whether the association is intramural or extramural depends upon who owns the
two objects.

Storing Items in the Repository
As About Registries and Repositories (page 1) explains, the Registry includes a
repository in which you can store electronic content. For every item you store in
the repository, you must first create a type of RegistryObject called an
ExtrinsicObject. When you save the ExtrinsicObject to the Registry, the
associated repository item is also saved.

Creating an Extrinsic Object
To create an ExtrinsicObject, you first need to create a javax.activa-

tion.DataHandler object for the repository item. The LifeCycleMan-

ager.createExtrinsicObject method takes a DataHandler argument.

To store a file in the repository, for example, first create a java.io.File object.
From the File object, create a javax.activation.FileDataSource object,
which you use to instantiate the DataHandler object.

String filename = "./MyFile.xml";
File repositoryItemFile = new File(filename);
DataHandler repositoryItem =

new DataHandler(new FileDataSource(repositoryItemFile));

Next, call createExtrinsicObject with the DataHandler as argument:

ExtrinsicObject eo =
blcm.createExtrinsicObject(repositoryItem);

eo.setName("My File");

STORING ITEMS IN THE REPOSITORY 61
Set the MIME type of the object to make it accessible. The default MIME type is
application/octet-stream. If the file is an XML file, set it as follows:

eo.setMimeType("text/xml");

Finally, call the implementation-specific ExtrinsicObjectImpl.setObject-

Type method to store the ExtrinsicObject in an appropriate area of the Regis-
try. This method has the following signature:

public void setObjectType(Concept objectType)
throws JAXRException

The easiest way to find the appropriate concept for a file is to use the Explore
feature of the Web Console. Look under the ObjectType classification scheme
for the various types of ExtrinsicObject concepts. Specify the ID for the con-
cept as the argument to getRegistryObject, then specify the concept as the
argument to setObjectType.

String conceptId =
"urn:oasis:names:tc:ebxml-

regrep:ObjectType:RegistryObject:ExtrinsicObject:XML";
Concept objectTypeConcept =

(Concept) bqm.getRegistryObject(conceptId);
((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);

Finally, you save the ExtrinsicObject to the Registry.

Collection extobjs = new ArrayList();
extobjs.add(eo);
BulkResponse response = blcm.saveObjects(extobjs);

The ExtrinsicObject contains the metadata, and a copy of the file is stored in
the repository.

If the Registry does not have a concept for the kind of file you want to store
there, you can create and save the concept yourself.

Creating an Extrinsic Object: Example
For an example of creating an extrinsic object, see <INSTALL>/registry/sam-

ples/publish-extrinsic/src/JAXRPublishExtrinsicObject.java. This

62 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
example publishes an XML file to the Registry. To run the example, follow these
steps:

1. Go to the directory <INSTALL>/registry/samples/publish-extrin-

sic.

2. Type the following command:
ant run

Using an Extrinsic Object as a Specification
Link
You can publish an ExtrinsicObject by itself, but it is also very common to
create an ExtrinsicObject to use as the SpecificationLink object for a Ser-

viceBinding object (see Creating Services and Service Bindings, page 54). The
ExtrinsicObject typically refers to a WSDL file.

1. Create a SpecificationLink object.

2. Store the WSDL document in the repository and create an ExtrinsicOb-

ject that refers to it. Set the extrinsic object’s type to WSDL and its mime
type to text/xml.

3. Specify the extrinsic object as the specificationObject attribute of the
SpecificationLink object.

4. Add the SpecificationLink object to the ServiceBinding object.

5. Add the ServiceBinding object to the Service object.

6. Save the Service object.

After you create a Service and ServiceBinding, create a SpecificationLink:

SpecificationLink specLink = blcm.createSpecificationLink();
specLink.setName("Spec Link Name");
specLink.setDescription("Spec Link Description");

STORING ITEMS IN THE REPOSITORY 63
Create an ExtrinsicObject as described in Creating an Extrinsic
Object (page 60). Use the ID for the WSDL concept and the text/xml MIME
type.

String conceptId =
"urn:oasis:names:tc:ebxml-

regrep:ObjectType:RegistryObject:ExtrinsicObject:WSDL";
Concept objectTypeConcept =

(Concept) bqm.getRegistryObject(conceptId);
((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);
eo.setMimeType("text/xml");

Set the ExtrinsicObject as the specification object for the Specification-

Link:

specLink.setSpecificationObject(eo);

Add the SpecificationLink to the ServiceBinding, then add the objects to
their collections and save the services.

binding.addSpecificationLink(specLink);
serviceBindings.add(binding);
...

When you remove a service from the Registry, the service bindings and specifi-
cation links are also removed. However, the extrinsic objects associated with the
specification links are not removed.

Creating an Extrinsic Object as a Specification Link:
Example
For an example of creating an extrinsic object as a specification link, see
<INSTALL>/registry/samples/publish-service/src/JAXRPublishSer-

vice.java. This example publishes a WSDL file to the Registry. To run the
example, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/publish-service.

2. Type the following command:
ant run

64 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
Organizing Objects Within Registry
Packages
Registry packages allow you to group a number of logically related registry
objects, even if the individual member objects belong to different owners. For
example, you could create a RegistryPackage object and add to it all objects in
the Registry whose names shared a particular unique string or that all contained
a Slot with the same name and value.

To create a RegistryPackage object, call the LifeCycleManager.createReg-

istryPackage method, which takes a String or InternationalString argu-
ment. Then call the RegistryPackage.addRegistryObject or
RegistryPackage.addRegistryObjects method to add objects to the package.

For example, you could create a RegistryPackage object named “SunPackage”:

RegistryPackage pkg =
blcm.createRegistryPackage("SunPackage");

Then, after finding all objects with the string "Sun" in their names, you could
iterate through the results and add each object to the package:

pkg.addRegistryObject(object);

A common use of packages is to organize a set of extrinsic objects. A registry
administrator can load a file system into the Registry, storing the directories as
registry packages and the files as the package contents. See the Administration
Guide for more information.

Organizing Objects Within Registry Packages:
Examples
For examples of using registry packages, see the two examples in <INSTALL>/

registry/samples/packages/src: JAXRPublishPackage.java and JAXRQue-

ryPackage.java. The first example publishes a RegistryPackage object that
includes all objects in the Registry whose names contain the string "free". The
second example searches for this package and displays its contents. To run the
examples, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/packages.

2. Type the following command:

CHANGING THE STATE OF OBJECTS IN THE REGISTRY 65
ant pub-pkg

3. Type the following command:
ant query-pkg

Changing the State of Objects in the
Registry
You add an AuditableEvent object to the audit trail of an object when you pub-
lish it to the Registry or when you modify it in any way. See Retrieving the Audit
Trail of an Object (page 33) for details on these events and on how to obtain
information about them. Table 8–5 on page 33 describes the events and how they
are created.

Many events are created as a side effect of some other action:

• Saving an object to the Registry creates an EVENT_TYPE_CREATED event.

• The following actions create an EVENT_TYPE_VERSIONED event:

• Changing an object’s name or description

• Adding, modifying, or removing a Classification, ExternalIden-
tifier, ExternalLink, or Slot

• For an Organization or User, adding, modifying, or removing a
PostalAddress or TelephoneNumber

You can retrieve version information for an object. See Retrieving the
Version of an Object (page 34) for details.

Note: At this release, versioning of objects is disabled. All objects have a version
of 1.1.

You can also change the state of objects explicitly. This feature may be useful in
a production environment where different versions of objects exist and you wish
to use some form of version control. For example, you can approve a version of
an object for general use and deprecate an obsolete version before you remove it.

66 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
If you change your mind after deprecating an object, you can undeprecate it. You
can perform these actions only on objects you own.

• You can approve objects by using the LifeCycleManagerImpl.approve-

Objects method. This feature is implementation-specific.

• You can deprecate objects by using the LifeCycleManager.depreca-

teObjects method.

• You can undeprecate objects by using the LifeCycleManager.unDepre-

cateObjects method.

The LifeCycleManagerImpl.approveObjects method has the following signa-
ture:

public BulkResponse approveObjects(java.util.Collection keys)
throws JAXRException

It is possible to restrict access to these actions to specific users, such as registry
administrators.

No AuditableEvent is created for actions that do not alter the state of a Regis-

tryObject. For example, queries do not generate an AuditableEvent, and no
AuditableEvent is generated for a RegistryObject when it is added to a Reg-

istryPackage or when you create an Association with the object as the source
or target.

Changing the State of Objects in the Registry:
Examples
For examples of approving, deprecating, undeprecating objects, see the exam-
ples in <INSTALL>/registry/samples/auditable-events/src: JAXRAp-

proveObject.java, JAXRDeprecateObject.java, and
JAXRUndeprecateObject.java. Each example performs an action on an object
whose unique identifier you specify, then displays the object’s audit trail so that
you can see the effect of the example. To run the examples, follow these steps:

1. Go to the directory <INSTALL>/registry/samples/packages.

2. Type the following command:
ant approve-obj -Did=id_string

3. Type the following command:
ant deprecate-obj -Did=id_string

4. Type the following command:

REMOVING OBJECTS FROM THE REGISTRY AND REPOSITORY 67
ant undeprecate-obj -Did=id_string

The object you specify should be one that you created.

Removing Objects From the Registry and
Repository
A registry allows you to remove from it any objects that you have submitted to it.
You use the object’s ID as an argument to the LifeCycleManager.deleteOb-

jects method.

The following code fragment deletes the object that corresponds to a specified
key string and then displays the key again so that the user can confirm that it has
deleted the correct one.

String id = key.getId();
Collection keys = new ArrayList();
keys.add(key);
BulkResponse response = blcm.deleteObjects(keys);
Collection exceptions = response.getException();
if (exceptions == null) {

System.out.println("Objects deleted");
Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {

orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

id = orgKey.getId();
System.out.println("Object key was " + id);

}
}

Deleting an Organization does not delete the Service and User objects that
belong to the Organization. You must delete them separately.

Deleting a Service object deletes the ServiceBinding objects that belong to it,
and also the SpecificationLink objects that belong to the ServiceBinding

objects. Deleting the SpecificationLink objects, however, does not delete the
associated ExtrinsicObject instances and their associated repository items.
You must delete the extrinsic objects separately.

68 DEVELOPING CLIENTS FOR THE SERVICE REGISTRY
AuditableEvent and Association objects are not always deleted when the
objects associated with them are deleted. You may find that as you use the Regis-
try, a large number of these objects accumulates.

Removing Objects from the Registry: Example
For an example of deleting an object from the Registry, see <INSTALL>/regis-

try/samples/delete-object/src/JAXRDelete.java. This example deletes
the object whose unique identifier you specify. To run the example, follow these
steps:

1. Go to the directory <INSTALL>/registry/samples/delete-object.

2. Type the following command:
ant run -Did=id_string

Further Information
For more information about JAXR, registries, and web services, see the follow-
ing:

• Java Specification Request (JSR) 93: JAXR 1.0:
 http://jcp.org/jsr/detail/093.jsp

• JAXR home page:

http://java.sun.com/xml/jaxr/

• ebXML:
 http://www.ebxml.org/

• Java 2 Platform, Enterprise Edition:
http://java.sun.com/j2ee/

• Java Technology and XML:
http://java.sun.com/xml/

• Java Technology and Web Services:
http://java.sun.com/webservices/

http://jcp.org/jsr/detail/093.jsp
http://java.sun.com/xml/jaxr/
http://www.ebxml.org/
http://java.sun.com/j2ee/
http://java.sun.com/xml/
http://java.sun.com/webservices/

9

69
Administering the
Service Registry

THIS chapter describes how to use the Administration Tool (“the Admin
Tool”) for the Service Registry.

This chapter contains the following sections:

• About the Admin Tool

• Starting the Admin Tool

• Using the Admin Tool

• Using Admin Tool Commands

• Other Administration Tasks

About the Admin Tool
The Service Registry Administration Tool provides a simple command-line
interface for common administration tasks, such as adding associations to the
Registry and removing objects from the Registry.

The tool can operate in either of two modes:

• In batch mode, you specify one or more commands on the tool’s command
line.

• In interactive mode, you enter commands in the tool’s interactive shell.

70 ADMINISTERING THE SERVICE REGISTRY
In keeping with the “files and folders” metaphor used for RegistryObject

objects in RegistryPackage objects, several commands, such as ls and rm,
mimic both the name and the behavior of well-known UNIX® commands that
operate on files and folders. Other commands have no corresponding UNIX
equivalent.

Starting the Admin Tool
To start the Admin Tool, go to the bin directory of the registry and run the reg-

istry-admin script.

On a Windows system:

cd <JWSDP_HOME>\registry\bin
admin-tool [options]...

On a UNIX system:

cd <JWSDP_HOME>/registry/bin
admin-tool.sh [options]...

The <JWSDP_HOME> location is the directory where you installed the Java WSDP.

To exit the Admin Tool, use the quit command.

Batch Mode
To run the Admin Tool in batch mode, specify the -command option on the com-
mand line when you start the Admin Tool.

For example, the following command executes the ls command:

java -jar ~/jwsdp-1.6/registry/lib/admin-tool.jar -command "ls
*.html"

The Admin Tool echoes your commands and the tool’s responses to the screen
and then exits after your commands have been executed.

Make sure that you properly escape any characters that are significant to your
shell.

INTERACTIVE MODE 71
Interactive Mode
To run the Admin Tool in interactive mode, start the Admin Tool shell by speci-
fying no options on the command line:

java -jar <JWSDP_HOME>/registry/lib/admin-tool.jar

The Admin Tool displays the following prompt and waits for your input:

admin>

Admin Tool Command-line Options
The Admin Tool recognizes the command-line options listed in Synopsis and
described in Options.

Synopsis

[-alias alias] [-command commands] [-debug] [-help]
-keypass keypass [-localdir localdir] [-locale locale]
[-registry url] [-root locator [-create]]
[-sqlselect SQL_statement] [-v | -verbose]

Options

-alias

The alias to use when accessing the user’s certificate in the keystore. At
this release, this option is not meaningful.

-command

The Admin Tool command sequence to run instead of getting commands
from the interactive shell. Use a semicolon (;) to separate multiple com-
mands. It is not necessary to include a quit command in commands. If you
need to use a semicolon that is not a command separator, precede it by a
backslash:

\;

72 ADMINISTERING THE SERVICE REGISTRY
The shell in which you run the Admin Tool may require you to escape the
backslash with a second backslash:

\\;

If any command contains spaces, enclose the entire command sequence in
single or double quotes so that the tool will treat the sequence as one com-
mand-line parameter instead of several. If your shell also interprets a
semicolon as separating shell commands, you always have to put
sequences of multiple Admin Tool commands in quotation marks.

-create

If necessary, create the RegistryPackage specified by the -root option
as well as any parent RegistryPackage objects as needed. This option is
valid only if the user running the Admin Tool is authorized to create
objects.

-debug

Outputs extra information that is useful when debugging.

-help

Provides a list of these options.

-keypass

The password to use when accessing a user’s certificate in the keystore.
At this release, this option is not meaningful.

-localdir

The base directory in the local file system for commands that relate to
files in the local file system.

-locale

The locale (for example, en or fr_CA) to use for selecting the resource
bundle to use for error and status messages. The default is determined by
the JavaTM Virtual Machine.

-registry

USING THE ADMIN TOOL 73
The URL of the ebXML registry to which to connect. The default is
http://localhost:8080/soar/registry/soap.

-root

The locator (for example, /registry/userData) of the RegistryPack-

age to use as the base for those commands that treat the repository as a
tree of RegistryPackage objects that each contain other RegistryOb-

ject and RegistryPackage objects. The default is the RegistryPackage

that is defined for all users’ data: /registry/userData.

-sqlselect

Execute SQL_statement to select registry objects. This should be a com-
plete SQL statement that starts with select. The SQL statement must be
enclosed in quotation marks, but it does not have to be terminated by a
semicolon.

-v | -verbose

Specifies the verbose output of status messages.

Using the Admin Tool
This section covers the following topics:

• Permissions

• Displaying Exceptions

• Identifying Registry Objects

• The Effect of Locale on Specifying Names

• Case Sensitivity

Permissions
When you use the Admin Tool, you can perform only those actions that are
allowed for the user whose alias and password you specified when you started
the tool. Only a user with the role of administrator can perform certain com-
mands (chown, for example).

74 ADMINISTERING THE SERVICE REGISTRY
Displaying Exceptions
The Admin Tool enables you to avoid viewing long stack traces when a com-
mand fails.

When a command fails, the Admin Tool prints the first line of the stack trace and
the following message:

An error occurred when executing the function. Use the show
exception command to view messages.

If you need more information, execute the show exception command next to
see the full stack trace.

The show exception command always displays the stack trace of the immedi-
ately preceding command.

Identifying Registry Objects
The primary way to identify registry objects is by name. This extends to identi-
fying RegistryPackage objects by the path from the registry root to the Regis-

tryPackage. For example, /registry/userData is the path to the userData

RegistryPackage.

Some matches for names support wildcards. Use a question mark (?) to match a
single character, and use an asterisk (*) to match zero or more characters.

Some commands (for example, cd and chown) support identifying objects by
their Uniform Resource Name (URN), which must include a leading urn:. For
example, urn:uuid:2702f889-3ced-4d49-82d1-e4cd846cb9e4.

The chown command also supports using %number to refer to a User listed by a
previous users command.

For some commands, you can enter names that contain spaces by enclosing the
entire name in double quotes or by preceding each space in the name by a back-
slash.

THE EFFECT OF LOCALE ON SPECIFYING NAMES 75
The Effect of Locale on Specifying
Names
A RegistryObject (or a RegistryPackage) may have multiple names, each of
which is associated with a different locale.

The paths and object names that you specify are evaluated with respect to the
current locale only. When you attempt to select by name a registry object that
has multiple names, the Registry attempts to match the name that you provide
against only one alternative for the registry object’s name (the choice whose
locale most closely matches the current locale), not against all the multiple
names for the registry object.

For example, suppose the current RegistryPackage has a member object that
has two names, each associated with a different locale: red in the en (English)
locale and rouge in the fr (French) locale. When the current locale is en, the
command ls rouge does not display that member object, but when the locale is
fr (or one of its variants), then it does.

Case Sensitivity
Command names and literal parameters that are recognized by the Admin Tool
are not case sensitive. For example, ls, Ls, and LS are equivalent.

Options to which you provide the value are passed literally to the code that uses
the option.

Using Admin Tool Commands
The following sections describe the available commands. For each command,
the synopsis and the descriptions of the options and operands observe the follow-
ing typographical conventions:

• Italics indicate an option argument or operand that should be replaced
by an actual value when you run the command.

• Curly braces ({ }) delimit a choice of options or operands where you must
include one of the options or operands. The options or operands are sepa-
rated by a vertical bar (|).

• Square brackets ([]) delimit an option or operand, or a choice of options
or operands, that may be omitted.

76 ADMINISTERING THE SERVICE REGISTRY
• Ellipses (...) after an option or operand indicates that you may repeat the
option or operand.

Anything else is literal text that you must include when running the command.

add association
Adds an Association object to the Registry.

Synopsis

add association -type association-type sourceURN targetURN

ADD ASSOCIATION 77
Description
The add association command adds an Association object of the specified
type to the Registry. You can use any of the following types:

• AccessControlPolicyFor

• AffiliatedWith (which has the subconcepts EmployeeOf and MemberOf)

• Contains

• ContentManagementServiceFor

• EquivalentTo

• Extends

• ExternallyLinks

• HasFederationMember

• HasMember

• Implements

• InstanceOf

• InvocationControlFileFor (which has the subconcepts Cataloging-

ControlFileFor and ValidationControlFileFor)

• OffersService

• OwnerOf

• RelatedTo

• Replaces

• ResponsibleFor

• SubmitterOf

• Supersedes

• Uses

Options

-type

The type of the Association object.

Operands

sourceURN

78 ADMINISTERING THE SERVICE REGISTRY
The URN of the source object.

targetURN

The URN of the target object.

Example
The following command (all on one line) creates a RelatedTo relationship
between the objects with the two specified URNs.

admin> add association -type RelatedTo \
urn:uuid:ab80d8f7-3bea-4467-ad26-d04a40045446 \
urn:uuid:7a54bbca-2131-4a49-8ecc-e7b4ac86c4fd

add user
Adds a user to the Registry.

Synopsis

add user [-edit] [-load file] [-firstName string] [-lastName
string] [-middleName string] [-alias string] [-keypass string]
[-post1.type string] [-post1.city string] [-post1.country
string] [-post1.postalcode string] [-post1.stateOrProvince
string] [-post1.street string] [-post1.streetNumber string]
[-post2.type string] [-post2.city string] [-post2.country
string] [-post2.postalcode string] [-post2.stateOrProvince
string] [-post2.street string] [-post2.streetNumber string]
[-post3.type string] [-post3.city string] [-post3.country
string] [-post3.postalcode string] [-post3.stateOrProvince
string] [-post3.street string] [-post3.streetNumber string]
[-telephone1.type string] [-telephone1.areaCode string]
[-telephone1.countryCode string] [-telephone1.extension
string] [-telephone1.number string] [-telephone1.URL string]
[-telephone2.type string] [-telephone2.areaCode string]
[-telephone2.countryCode string] [-telephone2.extension
string] [-telephone2.number string] [-telephone2.URL string]
[-telephone3.type string] [-telephone3.areaCode string]
[-telephone3.countryCode string] [-telephone3.extension

ADD USER 79
string] [-telephone3.number string] [-telephone3.URL string]
[-email1.type string] [-email1.address string] [-email2.type
string] [-email2.address string] [-email3.type string]
[-email3.address string]

Description
The add user command adds a User object. A User object contains at least one
PostalAddress, TelephoneNumber, and EmailAddress object. The information
that you provide is checked for validity using the same criteria as when you add
a new user using the Web Console or the JAXR API.

Specify the information about the user either on the command line itself or by
using the -load option to specify a Java properties file with the information. The
information options and the -load option are evaluated in the order they appear
on the command line. For example, you can specify some properties on the com-
mand line, load others from a properties file, and then override information in the
properties file with later command-line options.

Specify at least one postal address, telephone number, and email address for the
new user. You can specify up to three of each type. If you need more, you can
add them later using the Web Console or JAXR.

When you specify a postal address, telephone number, or email address, you
must provide a value for its type: for example, -emailType OfficeEmail.

You can use shorthand options (such as -fn) on the command line for some of
the common information that is required for every user, but you must use the
longer form when providing the information in a properties file. For example,
you can specify the user’s first email address on the command line using either
-email1.address, -emailAddress, or -email, but when you specify it in a
properties file, you must use email1.address=. Because there is only one
option for the user’s second email address, you must use -email2.address on
the command line and email2.address= in a properties file.

If you specify the -edit option, the Admin Tool launches an editor so that you
can edit the new user’s information. See the option description for details.

The properties files that you load with -load or edit with -edit use the
IS0-8859-1 charset, as do all Java properties files. See the documentation for
java.util.Properties.load(InputStream) for details on how to represent
other characters not in ISO-8859-1 in properties files.

80 ADMINISTERING THE SERVICE REGISTRY
Options

-edit

Causes the Admin Tool to launch an editor so that you can edit the new
user’s information. The tool launches the editor after evaluating the other
command-line parameters, so editing starts with the result of evaluating
any information specified on the command line or with a properties file.
The editing program must terminate without error before the command
can continue. (At the time of this writing, -edit currently works with
emacsclient and the NetBeans command bin/runide.sh --open (but not
very well), has not been shown to work with vi, and has not been tested
on Windows.)

-load

Specifies a Java properties file whose contents specify properties for the
user. The property names are the same as those of the long form of the
add user command options (for example, lastName and post1.type).

-fn | -firstName

Specifies the first name of a user.

-ln | -lastName

Specifies the last name of a user. A last name is required; it must be spec-
ified either on the command line or in a properties file.

-mn | -middleName

Specifies the middle name of a user.

-alias

The alias to use when accessing the user’s certificate in the keystore.

-keypass

The password to use when accessing a user’s certificate in the keystore.

-postalType | -post1.type

ADD USER 81
The type of the first PostalAddress. The type is required; it must be
specified either on the command line or in a properties file. It is an arbi-
trary string (for example, Office or Home).

-city | -post1.city

The city of the first PostalAddress.

-country | -post1.country

The country of the first PostalAddress.

-postalcode | -postcode | -zip | -post1.postalcode

The postal code of the first PostalAddress.

-stateOrProvince | -state | -province | -post1.stateOrProvince

The state or province of the first PostalAddress.

-street | -post1.street

The street name of the first PostalAddress. The street is required; it must
be specified either on the command line or in a properties file.

-streetNumber | -number | -post1.streetNumber

The street number of the first PostalAddress.

-post2.type

The type of the second PostalAddress. If a second PostalAddress is
specified, the type is required; it must be specified either on the command
line or in a properties file. It is an arbitrary string (for example, Office or
Home).

-post2.city

The city of the second PostalAddress.

-post2.country

82 ADMINISTERING THE SERVICE REGISTRY
The country of the second PostalAddress.

-post2.postalcode

The postal code of the second PostalAddress.

-post2.stateOrProvince

The state or province of the second PostalAddress.

-post2.street

The street name of the second PostalAddress. If a second Postal-

Address is specified, the street is required; it must be specified either on
the command line or in a properties file.

-post2.streetNumber

The street number of the second PostalAddress.

-post3.type

The type of the third PostalAddress. If a third PostalAddress is speci-
fied, the type is required; it must be specified either on the command line
or in a properties file. It is an arbitrary string (for example, Office or
Home).

-post3.city

The city of the third PostalAddress.

-post3.country

The country of the third PostalAddress.

-post3.postalcode

The postal code of the third PostalAddress.

-post3.stateOrProvince

The state or province of the third PostalAddress.

-post3.street

ADD USER 83
The street name of the third PostalAddress. If a third PostalAddress is
specified, the street is required; it must be specified either on the com-
mand line or in a properties file.

-post3.streetNumber

The street number of the third PostalAddress.

-phoneType | -telephone1.type

The type of the first TelephoneNumber. The type is required; it must be
specified either on the command line or in a properties file. It can have
any of the following values: Beeper, FAX, HomePhone, MobilePhone, or
OfficePhone.

-areaCode | -telephone1.areaCode

The area code of the first TelephoneNumber.

-countryCode | -telephone1.countryCode

The country code of the first TelephoneNumber.

-extension | -telephone1.extension

The extension of the first TelephoneNumber.

-number | -telephone1.number

The telephone number suffix, not including the country or area code, of
the first TelephoneNumber. The number is required; it must be specified
either on the command line or in a properties file.

-URL | -telephone1.URL

The URL of the first TelephoneNumber (the URL that can dial this num-
ber electronically).

-telephone2.type

The type of the second TelephoneNumber. If a second TelephoneNumber

is specified, the type is required; it must be specified either on the com-

84 ADMINISTERING THE SERVICE REGISTRY
mand line or in a properties file. It can have any of the following values:
Beeper, FAX, HomePhone, MobilePhone, or OfficePhone.

-telephone2.areaCode

The area code of the second TelephoneNumber.

-telephone2.countryCode

The country code of the second TelephoneNumber.

-telephone2.extension

The extension of the second TelephoneNumber.

-telephone2.number

The telephone number suffix, not including the country or area code, of
the second TelephoneNumber. If a second TelephoneNumber is specified,
the number is required; it must be specified either on the command line or
in a properties file.

-telephone2.URL

The URL of the second TelephoneNumber (the URL that can dial this
number electronically).

-telephone3.type

The type of the third TelephoneNumber. If a third TelephoneNumber is
specified, the type is required; it must be specified either on the command
line or in a properties file. It can have any of the following values: Beeper,
FAX, HomePhone, MobilePhone, or OfficePhone.

-telephone3.areaCode

The area code of the third TelephoneNumber.

-telephone3.countryCode

The country code of the third TelephoneNumber.

-telephone3.extension

ADD USER 85
The extension of the third TelephoneNumber.

-telephone3.number

The telephone number suffix, not including the country or area code, of
the third TelephoneNumber. If a third TelephoneNumber is specified, the
number is required; it must be specified either on the command line or in
a properties file.

-telephone3.URL

The URL of the third TelephoneNumber (the URL that can dial this num-
ber electronically).

-emailType | -email1.type

The type of the first EmailAddress. The type is required; it must be spec-
ified either on the command line or in a properties file. It can have either
of the following values: HomeEmail or OfficeEmail.

-emailAddress | -email | -email1.address

The first email address. The first email address is required.

-email2.type

The type of the second EmailAddress. If a second EmailAddress is spec-
ified, the type is required; it must be specified either on the command line
or in a properties file. It can have either of the following values:
HomeEmail or OfficeEmail.

-email2.address

The second email address.

-email3.type

The type of the second EmailAddress. If a third EmailAddress is speci-
fied, the type is required; it must be specified either on the command line
or in a properties file. It can have either of the following values:
HomeEmail or OfficeEmail.

-email3.address

86 ADMINISTERING THE SERVICE REGISTRY
The third email address.

Examples
The following command loads the User properties from the file Jane-

Smith.properties in the user’s home directory.

admin> add user -load ~/JaneSmith.properties

The following command (all on one line) specifies the minimum properties
required to create a User.

admin> add user -ln Smith -postaltype Office \
-street “Smith Street” -phonetype Office \
-number 333-3333 -emailtype OfficeEmail \
-emailaddress JaneSmith@JaneSmith.com

cd
Changes the RegistryPackage location.

Synopsis

cd {locator | URN}

Description
Change directory (metaphorically) to the RegistryPackage at the specified path
or with the specified URN.

Change to a specified URN when there are multiple RegistryPackage objects
with the same path (for the current locale).

Operands

locator

The path of names of registry objects from the root of the repository to an
object in the repository, with each name preceded by a forward slash (/).

CHOWN 87
For example, the locator for the userData RegistryPackage that is a
member of the registry RegistryPackage (which is not itself a member
of any RegistryPackage) is /registry/userData, and the locator for
the folder1 RegistryPackage that is a member of the userData Regis-

tryPackage is /registry/userData/folder1.

If you used the -root option to specify the RegistryPackage locator
when you started the Admin Tool, the locator value is relative to that root.

URN

The URN of the RegistryPackage, which must be a URN starting with
urn:.

Examples
The following command changes the directory to the RegistryPackage with the
URN urn:uuid:92d3fd01-a929-4eba-a5b4-a3f036733017.

admin> cd urn:uuid:92d3fd01-a929-4eba-a5b4-a3f036733017

The following command changes the directory to the location /registry/user-

Data/myData.

admin> cd /registry/userData/myData

chown
Changes the owner of a RegistryObject.

Synopsis

chown {URN | %index}

Description
The chown command changes the ownership of the objects selected with a pre-
ceding select command to the user specified by either the URN or the reference
to the user’s URN when listed by a preceding users command.

88 ADMINISTERING THE SERVICE REGISTRY
Only a user with the role of administrator can execute this command success-
fully.

Operands

URN

The User specified by the URN.

%index

A numerical reference to a URN for a user listed in a preceding users

command.

Examples
The following command changes the ownership of the selected objects to the
user specified by the URN
urn:uuid:26aa17e6-d669-4775-bfe8-a3a484d3e079.

admin> chown urn:uuid:26aa17e6-d669-4775-bfe8-a3a484d3e079

The following command changes the ownership of the selected objects to the
user with the number 2 in a preceding users command.

admin> chown %2

cp
Copies files and folders into the Registry.

Synopsis

cp [-owner {URN | %index}] [-exclude pattern]... pattern...

Description
The cp command copies files and folders into the Registry as RegistryPackage
and ExtrinsicObject objects, respectively.

CP 89
The local directory on the local file system from which to copy files and folders
defaults to the current directory from which you started the Admin Tool. You can
use the -localdir option to change the local directory when you start the
Admin Tool, or you can use the lcd command to change it after the Admin Tool
has started. You can get the absolute path of the current local directory using the
show localdir command.

The command is recursive. That is, if you specify a directory, the command cop-
ies all the files and folders under the directory.

Options

-owner

Sets the owner of the copied registry objects to the user specified by the
URN or %index argument. See the description of the chown command for a
description of these arguments. You must have the role of administrator to
specify an owner other than yourself.

-exclude

Copies all files except those whose names contain the specified pattern,
where pattern is a pattern comprising literal characters and the special
characters asterisk (*) (representing zero or more characters) and question
mark (?) (representing one and only one character).

You can specify this option more than once.

Operands

pattern

The files or folders to be copied, specified by a pattern comprising literal
characters and the special characters asterisk (*) (representing zero or
more characters) and question mark (?) (representing one and only one
character). You can specify more than one pattern.

90 ADMINISTERING THE SERVICE REGISTRY
Examples
The following command copies the directory mydir to the Registry, to be owned
by the user with the number 4 in a preceding users command.

admin> cp -owner %4 mydir

The following command copies the directory mydir to the Registry, excluding
files and directories that end with the string .z or .c.

admin> cp mydir -exclude \.z -exclude \.c

echo
Echoes a string.

Synopsis

echo string

Description
The echo command echoes the specified string to the output. It is most useful
when you specify it in the -command option when you run the Admin Tool in
batch mode.

Operand

string

A sequence of characters.

Example
The following command prints the date and the result of the ls command into a
log file.

registry-admin.sh -command "echo ‘date‘; ls" > admin.log

HELP 91
help
Displays information about commands.

Synopsis

help [command_name]

Description
The help command displays information about the available commands or a
specified command.

For commands with subcommands, such as add and show, the help command
displays information about the subcommands.

If you do not specify an argument, the help command displays usage informa-
tion for all commands.

Operand

command_name

The name of an Admin Tool command.

Examples
The following command displays usage information for all commands.

admin> help

The following command displays usage information for the lcd command.

admin> help lcd

The following command displays usage information for the add subcommands.

admin> help add

92 ADMINISTERING THE SERVICE REGISTRY
lcd
Changes the current directory on the local file system.

Synopsis

lcd [path_name]

Description
The lcd command changes the current local directory on the local file system.

If you do not specify an argument, the lcd command changes the current direc-
tory to your default home directory.

Operand

path_name

A directory name, which may be absolute or relative.

Examples
The following command changes the current local directory to the /usr/share

directory.

admin> cd /usr/share

The following command changes the current local directory to your default
home directory on the local file system.

admin> lcd

ls
Lists the objects in the current RegistryPackage.

LS 93
Synopsis

ls [{pattern | URN}...]

Description
The ls command lists the objects in the current RegistryPackage or, when a
pattern or URN is provided, list the objects in the current RegistryPackage

whose names (in the current locale) or unique identifiers match pattern or URN.

Operands

pattern

A pattern comprising literal characters and the special characters asterisk
(*) (representing zero or more characters) and question mark (?) (repre-
senting one and only one character). You can specify more than one
pattern.

URN

A URN starting with urn:, for example,
urn:uuid:4a6741e7-4be1-4cfb-960a-e5520356c4fd. You can specify
more than one URN.

Examples
The following command lists all the objects in the current RegistryPackage.

admin> ls

The following command lists all the objects whose name matches the pattern
urn:bird:poultry:chicken or whose ID is urn:bird:poultry:chicken.

admin> ls urn:bird:poultry:chicken

94 ADMINISTERING THE SERVICE REGISTRY
The following command lists all the objects whose name matches the pattern
bird. (It would also list the objects whose ID is *bird*, if *bird* were a
valid ID.)

admin> ls *bird*

The following command lists all the objects whose name matches the pattern
bird or whose name matches the pattern urn:bird:poultry:chicken or
whose ID is urn:bird:poultry:chicken.

admin> ls *bird* urn:bird:poultry:chicken

pwd
Displays the path to the current RegistryPackage.

Synopsis

pwd

Description
The pwd command displays the path (or paths) to the current RegistryPackage
using the best-matching names for the current locale. Also displays the locale for
the path.

Example

admin> pwd
(en_US) /registry/userData

quit
Exits the Admin Tool.

RM 95
Synopsis

quit

Description
The quit command exits the Admin Tool.

Example

admin> quit

rm
Removes objects from a RegistryPackage.

Synopsis

rm [-d] [-r] {pattern | URN}...

Description
The rm command removes the member objects of the current RegistryPackage
whose names (in the current locale) match the patterns specified by a pattern or
URN.

When a matching RegistryObject is a member of multiple RegistryPackage

objects, this command removes only the association between the current Regis-
tryPackage and the object. The object is removed from the Registry only when
the removal of the association leaves the object with no association with any
other RegistryObject.

When a matching member object is itself a RegistryPackage that contains other
objects, neither the object nor the association between the current Registry-
Package and the member RegistryPackage is removed unless either the -r or
the -d option is specified.

96 ADMINISTERING THE SERVICE REGISTRY
When both the -d and -r options are specified, the -d option is applied recur-
sively, so all objects that would be selected by -r (and their associations) are
removed whether or not they have other associations.

Options

-d

Removes the association between the current RegistryPackage and the
specified RegistryPackage. Removes the specified RegistryPackage

only if its only remaining associations are to its member objects. Member
objects of the now-removed RegistryPackage that are not anchored by
being the target of other HasMember associations are now accessible as
members of the root of the Registry.

-r

Removes the specified RegistryPackage object and all its descendant
objects (except when an object has other associations).

Operands

pattern

A pattern comprising literal characters and the special characters asterisk
(*) (representing zero or more characters) and question mark (?) (repre-
senting one and only one character). You can specify more than one
pattern.

URN

A URN starting with urn:, for example,
urn:uuid:4a6741e7-4be1-4cfb-960a-e5520356c4fd. You can specify
more than one URN.

SELECT 97
Examples
The following command removes all RegistryPackage objects containing the
string “stat” and all their descendants.

admin> rm -r *stat*

select
Executes an SQL select statement.

Synopsis

select [SQL]

Description
The select command selects and lists the objects specified by evaluating the
entire command as an SQL query. If no argument is specified, the command lists
any objects selected by a preceding select command.

Operand

SQL

An SQL select statement (without the leading select because that is
already present as the name of the command).

Examples
The following command lists all ClassificationScheme objects in the Regis-
try:

admin> select s.* from ClassificationScheme s

set
Sets a property value.

98 ADMINISTERING THE SERVICE REGISTRY
Synopsis

set property value

Description
The set command sets the value of a property of the Admin Tool shell.

The tool supports the following properties and values.

set debug {true | on | yes | false | off | no}

Enables or disables output of debugging messages.

set editor string

Sets the command to use when the Admin Tool launches an interactive
editor. The default value is /bin/vi on UNIX and Linux systems, and is
notepad.exe on Windows systems.

set verbose {true | on | yes | false | off | no}

Enables or disables output of more verbose messages when executing
commands.

Operands

property

One of the following properties: debug, editor, verbose.

value

A supported value of the specified property. See the Description section
for details.

SHOW 99
Examples
The following command sets the editor to /usr/bin/vi instead of the default /
bin/vi.

admin> set editor /usr/bin/vi

show
Displays a property value.

Synopsis

show [property]

Description
The show command displays the value of a property of the Admin Tool shell.

If no argument is specified, the command displays the values of all properties.

The command supports the following properties:

debug

Whether or not debugging output is enabled.

editor

The editor to use when the Admin Tool launches an interactive editor.

exception

The exception stack trace, if any, from the immediately preceding exe-
cuted command.

locale

The current locale.

verbose

100 ADMINISTERING THE SERVICE REGISTRY
Whether or not verbose output is enabled.

Operands

property

The property whose current value is to be displayed. The properties
exception and locale can be displayed, but you cannot use the set

command to set them.

Example
The following command displays the exceptions from the previous command.

admin> show exception

users
Lists the current User objects.

Synopsis

users

Description
The users command lists the User objects currently in the Registry.

The output has the following format:

%index: URN lastname, firstname

In the output, the index is a numeric value that you can use, including the percent
sign (%), to refer to a user when you run the chown or cp command. The
lastname and firstname are the first and last names of the user.

OTHER ADMINISTRATION TASKS 101
Examples
The following command displays the current users:

admin> users
%0: urn:uuid:2702f889-3ced-4d49-82d1-e4cd846cb9e4 user, test
%1: urn:uuid:85428d8e-1bd5-473b-a8c8-b9d595f82728 Parker, Miles
%2: urn:uuid:921284f0-bbed-4a4c-9342-ecaf0625f9d7 Operator, Registry
%3: urn:uuid:977d9380-00e2-4ce8-9cdc-d8bf6a4157be Brown, Arthur
%4: urn:uuid:abfa78d5-605e-4dbc-b9ee-a42e99d5f7cf Guest, Registry

Other Administration Tasks
This section describes other tasks you may need to perform for the Registry:

• Backing Up and Restoring the Database

Backing Up and Restoring the Database
The Registry uses the Apache Derby database. By default, the database is
located in the following directory:

$HOME/soar/platform/3.0/data/registry/soar/

where platform is either tomcat or as8.1.

To learn how to back up and restore the database, consult the Apache Derby doc-
umentation. To locate the documentation, follow these steps:

1. In a web browser, go to the URL http://incubator.apache.org/

derby/.

2. Click the Manuals tab.

3. Locate the Server & Admin Guide.

4. Locate the sections on backing up and restoring databases.

102 ADMINISTERING THE SERVICE REGISTRY

A

103
XWS-Security Formal
Schema Definition

Formal Schema Definition
This chapter shows the formal schema definition for security configuration files
for XWS-Security EA 2.0. More information on using security configuration
files is described in Introduction to XML and Web Services Security. More
information on each of the schema elements is described in XWS-Security Con-
figuration File Schema. Sample applications that use these elements are
described in Understanding and Running the XWS-Security Sample Applica-
tions.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://java.sun.com/xml/ns/xwss/config"
targetNamespace="http://java.sun.com/xml/ns/xwss/config"
elementFormDefault="qualified">

<xs:element name="JAXRPCSecurity">
<xs:complexType>

<xs:sequence>
<xs:element name="Service" type="Service_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="SecurityEnvironmentHandler"
type="xs:string"/>

104 A XWS-SECURITY FORMAL SCHEMA DEFINITION
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="Service_T">

<xs:sequence>
<xs:element ref="SecurityConfiguration" minOccurs="0"/>
<xs:element name="Port" type="Port_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="SecurityEnvironmentHandler"
type="xs:string" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="conformance" use="optional">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="bsp"/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name="useCache" type="xs:boolean" use="optional"
default="false"/>

</xs:complexType>
<xs:complexType name="Port_T" mixed="true">

<xs:sequence>
<xs:element ref="SecurityConfiguration" minOccurs="0"/>
<xs:element name="Operation" type="Operation_T"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:minLength value="1"/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name="conformance" use="optional">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="bsp"/>
</xs:restriction>

FORMAL SCHEMA DEFINITION 105
</xs:simpleType>
</xs:attribute>

</xs:complexType>
<xs:complexType name="Operation_T">

<xs:sequence>
<xs:element ref="SecurityConfiguration" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:minLength value="1"/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>
<xs:element name="SecurityConfiguration"
type="SecurityConfiguration_T"/>
<xs:complexType name="SecurityConfiguration_T">

<xs:sequence>
<xs:group ref="SecurityConfigurationElements" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="dumpMessages" type="xs:boolean"
use="optional" default="false"/>
<xs:attribute name="enableDynamicPolicy" type="xs:boolean"
use="optional" default="false"/>

</xs:complexType>
<xs:group name="SecurityConfigurationElements">

<xs:choice>
<xs:element name="Timestamp" type="Timestamp_T"
minOccurs="0"/>
<xs:element name="RequireTimestamp"
type="RequireTimestamp_T" minOccurs="0"/>
<xs:element name="UsernameToken" type="UsernameToken_T"
minOccurs="0"/>
<xs:element name="RequireUsernameToken"
type="RequireUsernameToken_T" minOccurs="0"/>
<xs:element name="SAMLAssertion" type="SAMLAssertion_T"
minOccurs="0"/>
<xs:element name="RequireSAMLAssertion"

106 A XWS-SECURITY FORMAL SCHEMA DEFINITION
type="RequireSAMLAssertion_T" minOccurs="0"/>
<xs:element name="OptionalTargets" type="OptionalTargets_T"
minOccurs="0"/>
<xs:element name="Sign" type="Sign_T"/>
<xs:element name="Encrypt" type="Encrypt_T"/>
<xs:element name="RequireSignature"
type="RequireSignature_T"/>
<xs:element name="RequireEncryption"
type="RequireEncryption_T"/>

</xs:choice>
</xs:group>
<xs:complexType name="Timestamp_T">

<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="timeout" type="xs:decimal" use="optional"

default="300"/>
</xs:complexType>
<xs:complexType name="RequireTimestamp_T">

<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="maxClockSkew" type="xs:decimal"
use="optional" default="60"/>
<xs:attribute name="timestampFreshnessLimit" type="xs:decimal"
use="optional" default="300"/>

</xs:complexType>
<xs:complexType name="UsernameToken_T">

<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="password" type="xs:string" use="optional"/>
<xs:attribute name="useNonce" type="xs:boolean" use="optional"
default="true"/>
<xs:attribute name="digestPassword" type="xs:boolean"
use="optional" default="true"/>

</xs:complexType>
<xs:complexType name="RequireUsernameToken_T">

<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="nonceRequired" type="xs:boolean"
use="optional" default="true"/>
<xs:attribute name="passwordDigestRequired" type="xs:boolean"
use="optional" default="true"/>
<xs:attribute name="maxClockSkew" type="xs:decimal"
use="optional" default="60"/>
<xs:attribute name="timestampFreshnessLimit" type="xs:decimal"

FORMAL SCHEMA DEFINITION 107
use="optional" default="300"/>
<xs:attribute name="maxNonceAge" type="xs:decimal"
use="optional" default="900"/>

</xs:complexType>
<xs:complexType name="Encrypt_T">

<xs:sequence minOccurs="0">
<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="X509Token" type="X509Token_T"/>
<xs:element name="SAMLAssertion"
type="SAMLAssertion_T"/>
<xs:element name="SymmetricKey"
type="SymmetricKey_T"/>

</xs:choice>
<xs:element name="KeyEncryptionMethod"
type="KeyEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs:element name="DataEncryptionMethod"
type="DataEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Target" type="Target_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="EncryptionTarget"
type="EncryptionTarget_T" minOccurs="0"
maxOccurs="unbounded"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="id" type="id_T" use="optional"/>

</xs:complexType>
<xs:complexType name="KeyEncryptionMethod_T">

<xs:attribute name="algorithm" use="optional"
default="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value=
"http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
<xs:enumeration value=
"http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<xs:enumeration value=
"http://www.w3.org/2001/04/xmlenc#kw-tripledes"/>
<xs:enumeration value=

108 A XWS-SECURITY FORMAL SCHEMA DEFINITION
"http://www.w3.org/2001/04/xmlenc#kw-aes128"/>
<xs:enumeration value=
"http://www.w3.org/2001/04/xmlenc#kw-aes256"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:complexType name="DataEncryptionMethod_T">

<xs:attribute name="algorithm" use="optional"
default="http://www.w3.org/2001/04/xmlenc#aes128-cbc">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value=
"http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
<xs:enumeration value=
"http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>
<xs:enumeration value=
"http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:complexType name="EncryptionTarget_T">

<xs:sequence>
<xs:element name="Transform" type="Transform_T"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="type" type="xs:string" use="optional"
default="qname"/>
<xs:attribute name="contentOnly" type="xs:boolean" use="optional"
default="true"/>
<xs:attribute name="enforce" type="xs:boolean" use="optional"
default="true"/>
<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="SymmetricKey_T">

<xs:attribute name="keyAlias" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:minLength value="1"/>

</xs:restriction>

FORMAL SCHEMA DEFINITION 109
</xs:simpleType>
</xs:attribute>

</xs:complexType>
<xs:complexType name="Sign_T">

<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="X509Token" type="X509Token_T"/>
<xs:element name="SAMLAssertion"
type="SAMLAssertion_T"/>
<xs:element name="SymmetricKey"
type="SymmetricKey_T"/>

</xs:choice>
<xs:element name="CanonicalizationMethod"
type="CanonicalizationMethod_T" minOccurs="0"/>
<xs:element name="SignatureMethod"

type="SignatureMethod_T"
minOccurs="0"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Target" type="Target_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="SignatureTarget"
type="SignatureTarget_T" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:sequence>
<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="includeTimestamp" type="xs:boolean"
use="optional" default="true"/>

</xs:complexType>
<xs:complexType name="CanonicalizationMethod_T">

<xs:attribute name="algorithm" type="xs:string" use="optional"
default="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</xs:complexType>
<xs:complexType name="SignatureMethod_T">

<xs:attribute name="algorithm" type="xs:string" use="optional"
default="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

</xs:complexType>
<xs:complexType name="RequireSignature_T">

<xs:sequence minOccurs="0" maxOccurs="1">
<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="X509Token" type="X509Token_T"/>

110 A XWS-SECURITY FORMAL SCHEMA DEFINITION
<xs:element name="SAMLAssertion"
type="SAMLAssertion_T"/>
<xs:element name="SymmetricKey"
type="SymmetricKey_T"/>

</xs:choice>
<xs:element name="CanonicalizationMethod"
type="CanonicalizationMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs:element name="SignatureMethod"

type="SignatureMethod_T"
minOccurs="0" maxOccurs="1"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Target" type="Target_T" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="SignatureTarget"
type="SignatureTarget_T" minOccurs="0"
maxOccurs="unbounded"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="requireTimestamp" type="xs:boolean"
use="optional" default="true"/>

</xs:complexType>
<xs:complexType name="RequireEncryption_T">

<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="X509Token" type="X509Token_T"/>
<xs:element name="SAMLAssertion"
type="SAMLAssertion_T"/>
<xs:element name="SymmetricKey"
type="SymmetricKey_T"/>

</xs:choice>
<xs:element name="KeyEncryptionMethod"
type="KeyEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs:element name="DataEncryptionMethod"
type="DataEncryptionMethod_T" minOccurs="0"
maxOccurs="1"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Target" type="Target_T"/>
<xs:element name="EncryptionTarget"

FORMAL SCHEMA DEFINITION 111
type="EncryptionTarget_T"/>
</xs:choice>

</xs:sequence>
<xs:attribute name="id" type="id_T" use="optional"/>

</xs:complexType>
<xs:complexType name="OptionalTargets_T">

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Target" type="Target_T"/>

</xs:choice>
</xs:complexType>
<xs:complexType name="X509Token_T">

<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="strId" type="id_T" use="optional"/>
<xs:attribute name="certificateAlias" type="xs:string"
use="optional"/>
<xs:attribute name="keyReferenceType" use="optional"
default="Direct">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="Direct"/>
<xs:enumeration value="Identifier"/>
<xs:enumeration value="IssuerSerialNumber"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="encodingType" use="optional">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="valueType" type="xs:string" use="optional"/>

</xs:complexType>
<xs:complexType name="SAMLAssertion_T">

<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="authorityId" type="id_T" use="optional"/>
<xs:attribute name="strId" type="id_T" use="optional"/>
<xs:attribute name="keyIdentifier" type="id_T" use="optional"/>

112 A XWS-SECURITY FORMAL SCHEMA DEFINITION
<xs:attribute name="encodingType" use="prohibited"/>
<xs:attribute name="keyReferenceType" use="optional"
default="Identifier">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="Identifier"/>
<xs:enumeration value="Embedded"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="type" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="HOK"/>
<xs:enumeration value="SV"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:complexType name="RequireSAMLAssertion_T">

<xs:attribute name="id" type="id_T" use="optional"/>
<xs:attribute name="authorityId" type="id_T" use="optional"/>
<xs:attribute name="strId" type="id_T" use="optional"/>
<xs:attribute name="type" type="xs:string" use="required"
fixed="SV"/>
<xs:attribute name="encodingType" use="prohibited"/>
<xs:attribute name="keyReferenceType" use="optional"
default="Identifier">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="Direct"/>
<xs:enumeration value="Identifier"/>
<xs:enumeration value="Embedded"/>
<xs:enumeration value="IssuerSerialNumber"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:complexType name="Target_T">

<xs:simpleContent>
<xs:extension base="xs:string">

FORMAL SCHEMA DEFINITION 113
<xs:attribute name="type" use="optional" default="qname">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="qname"/>
<xs:enumeration value="uri"/>
<xs:enumeration value="xpath"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="contentOnly" type="xs:boolean"
use="optional" default="true"/>
<xs:attribute name="enforce" type="xs:boolean" use="optional"
default="true"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:complexType name="SignatureTarget_T">

<xs:sequence minOccurs="0" maxOccurs="1">
<xs:element name="DigestMethod" type="DigestMethod_T"
minOccurs="0" maxOccurs="1"/>
<xs:element name="Transform" type="Transform_T"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="type" use="optional" default="qname">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="qname"/>
<xs:enumeration value="uri"/>
<xs:enumeration value="xpath"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="enforce" type="xs:boolean" use="optional"
default="true"/>
<xs:attribute name="value" type="xs:string" use="optional"
default="true"/>

</xs:complexType>
<xs:complexType name="DigestMethod_T">

<xs:attribute name="algorithm" type="xs:string" use="optional"
default="http://www.w3.org/2000/09/xmldsig#sha1"/>

</xs:complexType>

114 A XWS-SECURITY FORMAL SCHEMA DEFINITION
<xs:complexType name="Transform_T">
<xs:sequence>

<xs:element name="AlgorithmParameter"
type="AlgorithmParameter_T" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="algorithm" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="AlgorithmParameter_T">

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>
<xs:simpleType name="id_T">

<xs:restriction base="xs:string">
<xs:minLength value="1"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

B

115
SJSXP JAR Files

There are two JAR files in the Sun Java System XML Streaming Parser (SJSXP)
implementation of JSR 173, Streaming API for XML (StAX). Both of these
JARs are located in the <JWSDP_HOME>/sjsxp/lib directory:

• sjsxp.jar – Sun implementation JAR for SJSXP

• jsr173_api.jar – Standard API JAR for JSR 173

The remainder of this appendix lists the contents of these JAR files. Refer to
Chapter 3, "Streaming API for XML," for detailed information about StAX and
Sun’s SJSXP implementation.

sjsxp.jar
The sjsxp.jar file contains the following files:

META-INF/services/javax.xml.stream.XMLEventFactory
META-INF/services/javax.xml.stream.XMLInputFactory
META-INF/services/javax.xml.stream.XMLOutputFactory
META-INF/pack.properties
com/sun/xml/stream/xerces/impl/msg/DOMMessages.properties
com/sun/xml/stream/xerces/impl/msg/XMLMessages.properties
com/sun/xml/stream/xerces/impl/msg/XMLSchemaMessages.propertie
s
com/sun/xml/stream/xerces/impl/msg/XMLSerializerMessages.prope
rties
com/sun/xml/stream/BufferManager.class
com/sun/xml/stream/Constants.class

116 SJSXP JAR FILES
com/sun/xml/stream/Constants$ArrayEnumeration.class
com/sun/xml/stream/Entity.class
com/sun/xml/stream/Entity$ExternalEntity.class
com/sun/xml/stream/Entity$InternalEntity.class
com/sun/xml/stream/Entity$ScannedEntity.class
com/sun/xml/stream/EventFilterSupport.class
com/sun/xml/stream/FileBufferManager.class
com/sun/xml/stream/PropertyManager.class
com/sun/xml/stream/StaxEntityResolverWrapper.class
com/sun/xml/stream/StaxErrorReporter.class
com/sun/xml/stream/StaxErrorReporter$1.class
com/sun/xml/stream/StaxXMLInputSource.class
com/sun/xml/stream/StreamBufferManager.class
com/sun/xml/stream/StreamBufferManager$RewindableInputStream.c
lass
com/sun/xml/stream/XMLBufferListener.class
com/sun/xml/stream/XMLDTDScannerImpl.class
com/sun/xml/stream/XMLDocumentFragmentScannerImpl.class
com/sun/xml/stream/XMLDocumentFragmentScannerImpl$Driver.class
com/sun/xml/stream/XMLDocumentFragmentScannerImpl$Element.clas
s
com/sun/xml/stream/XMLDocumentFragmentScannerImpl$ElementStack
.class
com/sun/xml/stream/XMLDocumentFragmentScannerImpl$ElementStack
2.class
com/sun/xml/stream/XMLDocumentFragmentScannerImpl$FragmentCont
entDriver.class
com/sun/xml/stream/XMLDocumentScannerImpl.class
com/sun/xml/stream/XMLDocumentScannerImpl$ContentDriver.class
com/sun/xml/stream/XMLDocumentScannerImpl$DTDDriver.class
com/sun/xml/stream/XMLDocumentScannerImpl$PrologDriver.class
com/sun/xml/stream/XMLDocumentScannerImpl$TrailingMiscDriver.c
lass
com/sun/xml/stream/XMLDocumentScannerImpl$XMLBufferListenerImp
l.class
com/sun/xml/stream/XMLDocumentScannerImpl$XMLDeclDriver.class
com/sun/xml/stream/XMLEntityHandler.class
com/sun/xml/stream/XMLEntityManager.class
com/sun/xml/stream/XMLEntityManager$RewindableInputStream.clas
s
com/sun/xml/stream/XMLEntityReader.class
com/sun/xml/stream/XMLEntityReaderImpl.class
com/sun/xml/stream/XMLEntityStorage.class
com/sun/xml/stream/XMLErrorReporter.class
com/sun/xml/stream/XMLEventReaderImpl.class
com/sun/xml/stream/XMLNSDocumentScannerImpl.class
com/sun/xml/stream/XMLNSDocumentScannerImpl$NSContentDriver.cl
ass

SJSXP.JAR 117
com/sun/xml/stream/XMLNamespaceBinder.class
com/sun/xml/stream/XMLReaderImpl.class
com/sun/xml/stream/XMLReaderImpl$1.class
com/sun/xml/stream/XMLScanner.class
com/sun/xml/stream/XMLStreamFilterImpl.class
com/sun/xml/stream/ZephyrParserFactory.class
com/sun/xml/stream/ZephyrWriterFactory.class
com/sun/xml/stream/dtd/DTDGrammarUtil.class
com/sun/xml/stream/dtd/nonvalidating/DTDGrammar.class
com/sun/xml/stream/dtd/nonvalidating/DTDGrammar$QNameHashtable
.class
com/sun/xml/stream/dtd/nonvalidating/XMLAttributeDecl.class
com/sun/xml/stream/dtd/nonvalidating/XMLElementDecl.class
com/sun/xml/stream/dtd/nonvalidating/XMLNotationDecl.class
com/sun/xml/stream/dtd/nonvalidating/XMLSimpleType.class
com/sun/xml/stream/events/AttributeImpl.class
com/sun/xml/stream/events/CharacterEvent.class
com/sun/xml/stream/events/CommentEvent.class
com/sun/xml/stream/events/DTDEvent.class
com/sun/xml/stream/events/DummyEvent.class
com/sun/xml/stream/events/EndDocumentEvent.class
com/sun/xml/stream/events/EndElementEvent.class
com/sun/xml/stream/events/EntityDeclarationImpl.class
com/sun/xml/stream/events/EntityReferenceEvent.class
com/sun/xml/stream/events/LocationImpl.class
com/sun/xml/stream/events/NamedEvent.class
com/sun/xml/stream/events/NamespaceImpl.class
com/sun/xml/stream/events/NotationDeclarationImpl.class
com/sun/xml/stream/events/ProcessingInstructionEvent.class
com/sun/xml/stream/events/StartDocumentEvent.class
com/sun/xml/stream/events/StartElementEvent.class
com/sun/xml/stream/events/XMLEventAllocatorImpl.class
com/sun/xml/stream/events/ZephyrEventFactory.class
com/sun/xml/stream/util/ReadOnlyIterator.class
com/sun/xml/stream/writers/WriterUtility.class
com/sun/xml/stream/writers/XMLEventWriterImpl.class
com/sun/xml/stream/writers/XMLStreamWriterImpl.class
com/sun/xml/stream/writers/XMLStreamWriterImpl$Attribute.class
com/sun/xml/stream/writers/XMLStreamWriterImpl$ElementStack.cl
ass
com/sun/xml/stream/writers/XMLStreamWriterImpl$ElementState.cl
ass
com/sun/xml/stream/writers/XMLStreamWriterImpl$NamespaceContex
tImpl.class
com/sun/xml/stream/xerces/impl/io/ASCIIReader.class
com/sun/xml/stream/xerces/impl/io/UCSReader.class
com/sun/xml/stream/xerces/impl/io/UTF8Reader.class
com/sun/xml/stream/xerces/impl/msg/XMLMessageFormatter.class

118 SJSXP JAR FILES
com/sun/xml/stream/xerces/util/AugmentationsImpl.class
com/sun/xml/stream/xerces/util/AugmentationsImpl$Augmentations
ItemsContainer.class
com/sun/xml/stream/xerces/util/AugmentationsImpl$LargeContaine
r.class
com/sun/xml/stream/xerces/util/AugmentationsImpl$SmallContaine
r.class
com/sun/xml/stream/xerces/util/AugmentationsImpl$SmallContaine
r$SmallContainerKeyEnumeration.class
com/sun/xml/stream/xerces/util/DefaultErrorHandler.class
com/sun/xml/stream/xerces/util/EncodingMap.class
com/sun/xml/stream/xerces/util/IntStack.class
com/sun/xml/stream/xerces/util/MessageFormatter.class
com/sun/xml/stream/xerces/util/NamespaceContextWrapper.class
com/sun/xml/stream/xerces/util/NamespaceSupport.class
com/sun/xml/stream/xerces/util/NamespaceSupport$IteratorPrefix
es.class
com/sun/xml/stream/xerces/util/NamespaceSupport$Prefixes.class
com/sun/xml/stream/xerces/util/ObjectFactory.class
com/sun/xml/stream/xerces/util/ObjectFactory$ConfigurationErro
r.class
com/sun/xml/stream/xerces/util/ParserConfigurationSettings.cla
ss
com/sun/xml/stream/xerces/util/STAXAttributesImpl.class
com/sun/xml/stream/xerces/util/STAXAttributesImpl$Attribute.cl
ass
com/sun/xml/stream/xerces/util/SecuritySupport.class
com/sun/xml/stream/xerces/util/SecuritySupport12.class
com/sun/xml/stream/xerces/util/SecuritySupport12$1.class
com/sun/xml/stream/xerces/util/SecuritySupport12$2.class
com/sun/xml/stream/xerces/util/SecuritySupport12$3.class
com/sun/xml/stream/xerces/util/SecuritySupport12$4.class
com/sun/xml/stream/xerces/util/ShadowedSymbolTable.class
com/sun/xml/stream/xerces/util/SymbolHash.class
com/sun/xml/stream/xerces/util/SymbolHash$Entry.class
com/sun/xml/stream/xerces/util/SymbolTable.class
com/sun/xml/stream/xerces/util/SymbolTable$Entry.class
com/sun/xml/stream/xerces/util/SynchronizedSymbolTable.class
com/sun/xml/stream/xerces/util/URI.class
com/sun/xml/stream/xerces/util/URI$MalformedURIException.class
com/sun/xml/stream/xerces/util/XMLAttributesImpl.class
com/sun/xml/stream/xerces/util/XMLAttributesImpl$Attribute.cla
ss
com/sun/xml/stream/xerces/util/XMLAttributesIteratorImpl.class
com/sun/xml/stream/xerces/util/XMLChar.class
com/sun/xml/stream/xerces/util/XMLResourceIdentifierImpl.class
com/sun/xml/stream/xerces/util/XMLStringBuffer.class
com/sun/xml/stream/xerces/util/XMLSymbols.class

JSR173_API.JAR 119
com/sun/xml/stream/xerces/xni/Augmentations.class
com/sun/xml/stream/xerces/xni/NamespaceContext.class
com/sun/xml/stream/xerces/xni/QName.class
com/sun/xml/stream/xerces/xni/XMLAttributes.class
com/sun/xml/stream/xerces/xni/XMLDTDContentModelHandler.class
com/sun/xml/stream/xerces/xni/XMLDTDHandler.class
com/sun/xml/stream/xerces/xni/XMLDocumentFragmentHandler.class
com/sun/xml/stream/xerces/xni/XMLDocumentHandler.class
com/sun/xml/stream/xerces/xni/XMLLocator.class
com/sun/xml/stream/xerces/xni/XMLResourceIdentifier.class
com/sun/xml/stream/xerces/xni/XMLString.class
com/sun/xml/stream/xerces/xni/XNIException.class
com/sun/xml/stream/xerces/xni/parser/XMLComponent.class
com/sun/xml/stream/xerces/xni/parser/XMLComponentManager.class
com/sun/xml/stream/xerces/xni/parser/XMLConfigurationException
.class
com/sun/xml/stream/xerces/xni/parser/XMLDTDContentModelFilter.
class
com/sun/xml/stream/xerces/xni/parser/XMLDTDContentModelSource.
class
com/sun/xml/stream/xerces/xni/parser/XMLDTDFilter.class
com/sun/xml/stream/xerces/xni/parser/XMLDTDScanner.class
com/sun/xml/stream/xerces/xni/parser/XMLDTDSource.class
com/sun/xml/stream/xerces/xni/parser/XMLDocumentFilter.class
com/sun/xml/stream/xerces/xni/parser/XMLDocumentScanner.class
com/sun/xml/stream/xerces/xni/parser/XMLDocumentSource.class
com/sun/xml/stream/xerces/xni/parser/XMLEntityResolver.class
com/sun/xml/stream/xerces/xni/parser/XMLErrorHandler.class
com/sun/xml/stream/xerces/xni/parser/XMLInputSource.class
com/sun/xml/stream/xerces/xni/parser/XMLParseException.class
com/sun/xml/stream/xerces/xni/parser/XMLParserConfiguration.cl
ass
com/sun/xml/stream/xerces/xni/parser/XMLPullParserConfiguratio
n.class

jsr173_api.jar
The jsr173_api.jar file contains the following files:

META-INF/pack.properties
javax/xml/XMLConstants.class
javax/xml/namespace/NamespaceContext.class
javax/xml/namespace/QName.class
javax/xml/stream/EventFilter.class
javax/xml/stream/FactoryConfigurationError.class
javax/xml/stream/FactoryFinder.class

120 SJSXP JAR FILES
javax/xml/stream/FactoryFinder$1.class
javax/xml/stream/FactoryFinder$ClassLoaderFinder.class
javax/xml/stream/FactoryFinder$ClassLoaderFinderConcrete.class
javax/xml/stream/Location.class
javax/xml/stream/StreamFilter.class
javax/xml/stream/XMLEventFactory.class
javax/xml/stream/XMLEventReader.class
javax/xml/stream/XMLEventWriter.class
javax/xml/stream/XMLInputFactory.class
javax/xml/stream/XMLOutputFactory.class
javax/xml/stream/XMLReporter.class
javax/xml/stream/XMLResolver.class
javax/xml/stream/XMLStreamConstants.class
javax/xml/stream/XMLStreamException.class
javax/xml/stream/XMLStreamReader.class
javax/xml/stream/XMLStreamWriter.class
javax/xml/stream/events/Attribute.class
javax/xml/stream/events/Characters.class
javax/xml/stream/events/Comment.class
javax/xml/stream/events/DTD.class
javax/xml/stream/events/EndDocument.class
javax/xml/stream/events/EndElement.class
javax/xml/stream/events/EntityDeclaration.class
javax/xml/stream/events/EntityReference.class
javax/xml/stream/events/Namespace.class
javax/xml/stream/events/NotationDeclaration.class
javax/xml/stream/events/ProcessingInstruction.class
javax/xml/stream/events/StartDocument.class
javax/xml/stream/events/StartElement.class
javax/xml/stream/events/XMLEvent.class
javax/xml/stream/util/EventReaderDelegate.class
javax/xml/stream/util/StreamReaderDelegate.class
javax/xml/stream/util/XMLEventAllocator.class
javax/xml/stream/util/XMLEventConsumer.class

121

Index
Symbols
% (percent sign)

wildcard for searches 288
wildcard in JAXR queries 14

_ (underscore)
wildcard for searches 288
wildcard in JAXR queries 15

A
add association command 76
add user command 78
addAssociation method (Regis-
tryObject interface) 58
addChildConcept method (Classi-
ficationScheme interface) 46
addChildConcept method (Concept
interface) 46
addChildOrganization method
(Organization interface) 52
addChildOrganizations method
(Organization interface) 52
addClassification method (Reg-
istryObject interface) 48
addRegistryObject method (Reg-
istryPackage interface) 64
addRegistryObjects method (Reg-
istryPackage interface) 64
addServiceBindings method (Ser-

vice interface) 55
addServices method (Organiza-
tion interface) 55
addSpecificationLink method
(ServiceBinding interface) 63
AdhocQueryManagerImpl class 38
Admin Tool

command-line options 71
introduction 69
starting 70
stopping 94

-alias command-line option 71
Apache 132
approveObjects method (LifeCy-
cleManagerImpl class) 66
approving registry objects 302, 65

example 66
Association interface 11

creating objects 57
associations

adding to registry 76
creating 303

AssociationType classification
scheme 18, 57

concepts 58
audit trails

generating events 65
retrieving 33
viewing 291

122 INDEX
AuditableEvent interface 11
retrieving objects 33

B
backing up Registry database 101
Basic Security Profile (BSP) 133
batch mode 70
BSP 133
build.properties file

JAXR examples 5
BusinessLifeCycleManager inter-
face 4, 9, 41
BusinessQueryManager interface 4,
9

C
Callback 180
Callback classes

summary 180
CallbackHandler interface 177
case sensitivity 75
cd command 86
certificates

obtaining 7
child organizations

adding to organizations 300
chown command 87
Classification interface 11

adding objects 47
retrieving objects 26
using to find objects 17

classification schemes 288
adding child concepts 302
creating with JAXR 45
ebXML specification 17

classifications

adding to registry objects 295
searching by 288

ClassificationScheme interface
12
clients, JAXR 3

examples 5
setting up 7

-command command-line option 71
command-line options 71

-alias 71
-command 71
-create 72
-debug 72
-help 72
-keypass 72
-localdir 72
-locale 72
-registry 72
-root 73
-sqlselect 73
-v 73
-verbose 73

commands
add association 76
cd 86
chown 87
cp 88
echo 90
help 91
lcd 92
ls 92
pwd 94
quit 94
rm 95
select 97
set 97
show 99
users 100

INDEX 123
Concept interface 12
concepts

adding to classification
schemes 302

using to create classifications
with JAXR 47

connection factories, JAXR
creating 8

Connection interface (JAXR) 3, 8
connection properties, JAXR

examples 8
ConnectionFactory class (JAXR)
8
connections, JAXR

creating 8
setting properties 8

ContentManagementService classi-
fication scheme 18
copying files and folders to Regis-
try 88
cp command 88
-create command-line option 72
createAssociation method (Life-
CycleManager interface) 58
createClassification method
(LifeCycleManager interface) 17,
48
createClassificationScheme

method (LifeCycleManager inter-
face) 46
createConcept method (LifeCy-
cleManager interface) 46
createExternalIdentifier meth-
od (LifeCycleManager interface)
20, 49
createExternalLink method
(LifeCycleManager interface) 21,
50

createExtrinsicObject method
(LifeCycleManager interface) 60
createInternationalString

method (LifeCycleManager inter-
face) 44
createKey method (LifeCycleMan-
ager interface) 45
createLocalizedString method
(LifeCycleManager interface) 44
createObject method (LifeCy-
cleManager interface) 44
createOrganization method
(LifeCycleManager interface) 51
createPersonName method (Life-
CycleManager interface) 53
createPostalAddress method
(LifeCycleManager interface) 51
createQuery method (Declara-
tiveQueryManager interface) 35
createRegistryPackage method
(LifeCycleManager interface) 64
createService method (LifeCy-
cleManager interface) 55
createServiceBinding method
(LifeCycleManager interface) 55
createSlot method (LifeCycleM-
anager interface) 50
createSpecificationLink meth-
od (LifeCycleManager interface)
62
createTelephoneNumber method
(LifeCycleManager interface) 51
createUser method (LifeCycleM-
anager interface) 53
creating registry objects 294
current directory

changing 92

124 INDEX
D
database

backing up and restoring 101
DataType classification scheme 18
-debug command-line option 72
debug property

displaying value 99
setting 97

DeclarativeQueryManager inter-
face 4, 35
DeclarativeQueryManagerImpl

class 36
DecryptionKeyCallback 183
deleteObjects method (LifeCy-
cleManager interface) 67
deleting objects from Registry-

Package 95
deleting registry objects 303
DeletionScopeType classification
scheme 18
deprecateObjects method (Life-
CycleManager interface) 66
deprecating registry objects 302,
65

example 66
descriptions of registry objects

searching by 288
Details area 291
directory

changing 92
displaying

property values 99
DSig 130, 132, 211, 225, 230

security configuration file 136
dumping requests 213

E
ebXML

registries 2
echo command 90
editor property

displaying value 99
setting 97

email addresses
adding to organizations or us-

ers 299
EmailAddress interface 13

retrieving objects 28
EmailType classification scheme
18
Encrypt element 136
EncryptedKeyCallback 182
encrypting

SOAP messages 128
encrypting messages 137
encryption technologies 130
end-to-end security 127
ErrorHandlingModel classifica-
tion scheme 18
ErrorSeverityType classification
scheme 18
EventType classification scheme
18
examples

JAXR
adding classifications to

objects 48
adding external identifiers

to objects 49
adding external links to ob-

jects 50
adding slots to objects 51
changing the state of regis-

try objects 66

INDEX 125
creating an extrinsic object
as a specification
link 63

creating associations 59
creating classification

schemes 46
creating extrinsic objects

61
creating organization hier-

archies 53
creating organizations 52
creating registry packages

64
ctoring items in the reposi-

tory 61
declarative queries 36
deleting objects 68
displaying classification

schemes and con-
cepts 19

federated queries 41
finding objects by classifi-

cation 19
finding objects by external

identifier 20
finding objects by external

link 21
finding objects by key 22
finding objects by name 16
finding objects by type 16
finding objects by unique

identifier 22
finding objects you pub-

lished 23
introduction 5
iterative queries 38
publishing a service 63
retrieving organization and

user attributes 30
retrieving organization hi-

erarchies 53
stored queries 39

location xiv
required software xiv

exception property
displaying value 99

exceptions
displaying 74

executeQuery method (Declara-
tiveQueryManager interface) 35
executeQuery method (Declara-
tiveQueryManagerImpl class) 36
exiting the Admin Tool 94
Explore menu 293
external classification schemes

definition 49
external identifiers

adding to registry objects 296
external links

adding to registry objects 296
ExternalIdentifier interface 12

adding objects 49
retrieving objects 26
using to find objects 20

ExternalLink interface 12
adding objects 50
retrieving objects 27
using to find objects 21

extramural associations
definition 59

ExtrinsicObject interface 12
creating objects 60
deleting objects 67
using objects as specification

links 62

126 INDEX
F
federations, registry

querying 39
file system, local

base directory 72
changing current directory 92

files and folders
copying to Registry 88

FindAllMyObjects stored query 38
findClassificationSchemeByName

method (BusinessQueryManager
interface) 17, 47
findObjects method (Busi-
nessQueryManagerImpl class) 10,
14
framework

XWS-Security 128

G
getAccessURI method (Service-
Binding interface) 31
getAddress method (EmailAddress
interface) 30
getAreaCode method (Telephone-
Number interface) 29
getAuditTrail method (Registry-
Object interface) 33
GetCallersUser stored query 38
getChildOrganizations method
(Organization interface) 32
getCity method (PostalAddress
interface) 29
getClassifications method (Reg-
istryObject interface) 26
getConnectionFactory method 8
getCountry method (PostalAd-
dress interface) 29

getCountryCode method (Tele-
phoneNumber interface) 29
getDescendantOrganizations

method (Organization interface)
32
getDescription method (Regis-
tryObject interface) 24
getEmailAddresses method (User
interface) 30
getEventType method (Audit-
ableEvent interface) 34
getExtension method (Telephone-
Number interface) 30
getExternalIdentifiers method
(RegistryObject interface) 26
getExternalLinks method (Regis-
tryObject interface) 27
getFirstName method (PersonName
interface) 30
getId method (Key interface) 25
getIdentificationScheme meth-
od (ExternalIdentifier interface)
26
getKey method (RegistryObject
interface) 25
getLastName method (PersonName
interface) 30
getLid method (RegistryObjec-
tImpl class) 25
getMiddleName method (Person-
Name interface) 30
getName method (RegistryObject
interface) 24
getNumber method (TelephoneNum-
ber interface) 29
getObjectType method (Registry-
Object interface) 25
getParentOrganization method

INDEX 127
(Organization interface) 32
getPersonName method (User inter-
face) 30
getPostalAddress method (Orga-
nization interface) 29
getPostalAddresses method (User
interface) 29
getPostalCode method (PostalAd-
dress interface) 29
getPrimaryContact method (Orga-
nization interface) 29
getRegistryObject method (Que-
ryManager interface) 10, 22
getRegistryObjects method (Que-
ryManager interface) 10, 22
getRootOrganization method (Or-
ganization interface) 32
getServiceBindings method (Ser-
vice interface) 31
getServices method (Organiza-
tion interface) 31
getSlots method (RegistryObject
interface) 28
getSlotType method (Slot inter-
face) 28
getSpecificationLinks method
(ServiceBinding interface) 31
getSpecificationObject method
(SpecificationLink interface) 31
getStateOrProvince method
(PostalAddress interface) 29
getStreet method (PostalAddress
interface) 29
getStreetNumber method (Postal-
Address interface) 29
getTelephoneNumbers method (Or-
ganization interface or User inter-
face) 29

getTimeStamp method (Audit-
ableEvent interface) 34
getType method (EmailAddress in-
terface) 30
getType method (PostalAddress
interface) 29
getType method (TelephoneNumber
interface) 29
getUrl method (TelephoneNumber
interface) 30
getUsageDescription method
(SpecificationLink interface) 31
getUsageParameters method
(SpecificationLink interface) 31
getValues method (Slot interface)
28
getVersionInfo method (Regis-
tryObjectImpl class) 35
getVersionName method (Version-
InfoType interface) 35

H
-help command-line option 72
help command 91

I
information model, JAXR 2–3

interfaces 11
interactive mode 71
internal classification schemes

definition 47
InternationalString interface 13
interoperability

secure 133
intramural associations

definition 59

128 INDEX
InvocationModel classification
scheme 18
IterativeQueryParams class 37

J
jaas-sample application 226
Java Cryptography Architecture
(JCA) 133
Java Cryptography Extension
(JCE) 133
Java KeyStore (JKS) 197
javax.xml.registry package 3
javax.xml.registry.infomodel

package 3
javax.xml.registry.lifeCycleM-

anagerURL connection property 9
javax.xml.registry.queryMan-

agerURL connection property 9
JAXR 1

architecture 3
classification schemes 17
clients 3, 7
creating connections 8
creating objects 42
definition 2
information model 2, 11
overview 1
provider 3
publishing objects to a registry

41
querying a registry 10
specification 2

JAXRExamples.properties file
JAXR examples 6

JAX-RPC
securing applications 128

JAX-RPC applications

securing 128
JAXRPCSecurity element 136
JAXRUtility class

getConnectionFactory method
8

JCE
JCA 132

JCE provider
configuring 207

JSR-105 132
JSR-106 132

K
Key interface 13

using to find objects 22
keyexport command 128, 199
-keypass command-line option 72
keystore files

for XWS-Security samples
209

L
languages

changing default 284
lcd command 92
LifeCycleManager interface 4, 9
-localdir command-line option
72
-locale command-line option 72
locale property

displaying value 99
locales

effect on specifying names 75
setting 284

LocalizedString interface 14
logical identifiers

INDEX 129
retrieving 25
ls command 92

M
method-level security 223

N
names of registry objects

searching by 288
NodeType classification scheme 18
NotificationOptionType classifi-
cation scheme 18

O
Oasis Web Services Security

See WSS
object types

searching by 287
ObjectType classification scheme
18
Organization interface 12

creating objects 51
deleting objects 67
retrieving object attributes 28
retrieving parent and child ob-

jects 32
retrieving services and service

bindings 31
organizations

adding child organizations 300
adding email addresses 299
adding postal addresses 298
adding telephone numbers 298
adding users 299

P
PasswordCallback 186
PasswordValidationCallback 185
PersonName interface 14
PFX files 197
PhoneType classification scheme
18
PKCS-12 files 197
pkcs12import command 128, 197
postal addresses

adding to organizations or us-
ers 298

PostalAddress interface 14
retrieving objects 28

predefined queries 287
PrefixNamespaceMappingCall-
back 188
prerequisites xi
printing the tutorial xv
property values

displaying 99
setting 97

PropertyCallback 187
providers

JAXR 3
pwd command 94

Q
queries

basic methods 10
by classification 17
by external identifier 20
by external link 21
by name 14
by type 16
by unique identifier 22
declarative 35

130 INDEX
federated 39
iterative 36
predefined 287
stored 38

QueryLanguage classification
scheme 18
QueryManager interface 4
quit command 94

R
references

creating 303
registries

definition 1
ebXML 2
federations 39
UDDI 2

-registry command-line option
72
Registry database

backing up and restoring 101
registry federations

definition 2
registry objects 3

adding classifications 295, 47
adding external identifiers

296, 49
adding external links 296, 50
adding names and descriptions

44
adding slots 297, 50
approving, deprecating, or un-

deprecating 302, 65
changing owner 87
creating 294, 42
creating associations 303, 57
creating identifiers 45

creating relationships 303
finding by classification 17
finding by external identifier

20
finding by external link 21
finding by key 22
finding by name 14
finding by type 16
finding by unique identifier 22
finding objects you published

22
finding with declarative que-

ries 35
finding with iterative queries

36
finding with stored queries 38
identifying 74
listing 92
organizing as registry packag-

es 64
removing 303, 67
retrieving audit trail 33
retrieving classifications 26
retrieving external identifiers

26
retrieving external links 27
retrieving information about

24
retrieving logical identifier 25
retrieving name or description

24
retrieving slots 28
retrieving type 25
retrieving unique identifier 25
retrieving version information

34
saving 294, 56
searching by classification 288

INDEX 131
searching by name and de-
scription 288

searching by object type 287
using create methods 44
viewing search results 291

Registry Objects area 291
registry providers

definition 2
RegistryObject interface 3
RegistryPackage interface 12

creating objects 64
RegistryPackage location

changing 86
RegistryPackage objects

creating 72
displaying path to 94
listing contents 92
removing member objects 95

RegistryService interface 3, 9
removing objects from Registry-

Package 95
removing registry objects 303
repositories

definition 2
storing items in 60

request
signing and encrypting 215,

251, 253
request inner classes

methods 180
requests

authenticating 219, 227, 240
decrypting 214, 216
dumping 213
encrypting 214
encrypting and signing 216
signing 214
signing and encrypting 214

signing ticket element and
message body 223

username token 219, 227, 240
username token and encrypt

220–221
RequireEncryption element 136
RequireSignature element 136
responses

dumping 213
encrypting 214
signing 214
signing and encrypting 214

ResponseStatusType classifica-
tion scheme 19
restoring Registry database 101
rm command 95
-root command-line option 73
RSA encryption 207

S
sample applications

XWS-Security 174
interop 174
simple 130–131, 174

running 211, 225, 229,
247, 254, 258,
262

running against a re-
mote server
226, 230, 241,
248, 255, 259,
263

sample programs
XWS-Security 128

saveObjects method (LifeCycleM-
anager interface) 56
saveOrganizations method (Busi-

132 INDEX
nessLifeCycleManager interface)
56
saving registry objects 294, 56
SAX 87
schema

XWS-Security 139, 103
Search menu 286
security

end-to-end 127
message-level 127
XML and Web Services 127
XWS-Security 127

security configuration file
creating 135

security configuration files 135
security tokens 128
SecurityConfiguration element
136
SecurityEnvironmentHandler ele-
ment 136
SecurityEnvironmentHandlers

writing 177
select command 97
service bindings

adding specification links 301
adding to services 301
definition 54

Service element 136
Service interface 12

creating objects 54
deleting objects 67
retrieving objects 31

ServiceBinding interface 13
creating objects 54
retrieving objects 31

ServiceBinding objects
using extrinsic objects as spec-

ification links 62

services
adding service bindings 301

set command 97
setAccessURI method (Service-
Binding interface) 55
setAreaCode method (Telephone-
Number interface) 51
setCountryCode method (Tele-
phoneNumber interface) 51
setDescription method (Regis-
tryObject interface) 51
setEmailAddresses method (User
interface) 53
setFederated method (QueryImpl
class) 39
setFederation method (QueryImpl
class) 40
setKey method (RegistryObject
interface) 45
setLid method (RegistryObjec-
tImpl class) 45
setMimeType method (Extrinsi-
cObject interface) 61, 63
setNumber method (TelephoneNum-
ber interface) 51
setObjectType method (Extrinsi-
cObjectImpl class) 61, 63
setPersonName method (User inter-
face) 53
setPostalAddress method (Orga-
nization interface) 51
setSpecificationObject method
(SpecificationLink interface) 63
setTelephoneNumbers method (Or-
ganization interface) 51
setTelephoneNumbers method (Us-
er interface) 53
setting property values 97

INDEX 133
setType method (TelephoneNumber
interface) 51
setUrl method (User interface) 53
setValidateURI method (Exter-
nalLink interface) 50
setValidateURI method (Service-
Binding interface) 55
show command 99
Sign element 136
SignatureKeyCallback 178, 180
signatures

verifying 214, 216
SignatureVerificationKeyCall-
back 181
signing

SOAP messages 128
Slot interface 13

adding objects 50
retrieving objects 28

slots
adding to registry objects 297

SOAP messages
encrypting 128
signing 128
verifying 128

specification links
adding to service bindings 301

SpecificationLink interface 13
using extrinsic objects 62

SQL statements
executing 73, 97

-sqlselect command-line option
73
starting the Admin Tool 70
StatusType classification scheme
19
stopping the Admin Tool 94
SubjectAccessor API

using 196
SubjectGroup classification
scheme 19
SubjectRole classification scheme
19
Sun Java System Service Registry

changing the state of objects
65

getting access 7
implementing clients 1
publishing objects with JAXR

41
querying with JAXR 10
removing objects 67
saving objects 56
starting 7
storing items in the repository

60
symmetric key encryption 218,
244

T
targets.xml file

JAXR examples 5
telephone numbers

adding to organizations or us-
ers 298

TelephoneNumber interface 14
retrieving objects 28

timestamp 155
Timestamp element

discussion 152
tokens

security 128
UsernameTokens 130

truststore files
for XWS-Security samples

134 INDEX
209
typographical conventions xvi

U
UDDI

registries 2
unDeprecateObjects method
(LifeCycleManager interface) 66
undeprecating registry objects
302, 65

example 66
unique identifiers

finding objects by 22
retrieving 25

User interface 13
creating objects 53
retrieving object attributes 28

user name
specifying on command line

71
UserName Token verification 211
Username Token Verification 130
UserName tokens 131
UsernameCallback 186
UsernameTokens 130
users

adding email addresses 299
adding postal addresses 298
adding telephone numbers 298
adding to organizations 299
adding to registry 78
listing 100

users command 100

V
-v command-line option 73

-verbose command-line option 73
verbose property

displaying value 99
setting 97

verifying
SOAP messages 128

version information
retrieving 34

W
Web Console

starting 284
wildcards

using 74
using in JAXR queries 14
using in searches 288

wscompile command 134, 173
with XWS-Security 200

WSDL files
storing as extrinsic objects 62

WSS
implementation 130

X
XML

digital signatures 130
encryption 130

XML and Web Services Security
security configuration files

135
See XWS-Security

XML Digital Signature 225, 230
See DSig

XML Encryption
See XML-Enc

XML-Enc 130, 132, 137, 211

INDEX 135
XWS-Security 127, 205
framework 128
method level 223
sample applications 174

JAAS 226
sample programs 128
schema 136

fomal 103
security configuration files

135
schema 139

troubleshooting 200

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	Prerequisites
	How to Use This Tutorial
	About the Examples
	Required Software
	Java WSDP 1.6 Bundle
	Application Server

	Building the Examples

	Further Information
	How to Print This Tutorial
	Typographical Conventions
	Feedback

	Binding XML Schema to Java Classes with JAXB
	JAXB Architecture
	Architectural Overview
	The JAXB Binding Process
	JAXB Binding Framework
	More About javax.xml.bind
	More About Unmarshalling
	More About Marshalling
	More About Validation

	XML Schemas
	Representing XML Content
	Binding XML Names to Java Identifiers
	Java Representation of XML Schema

	Binding XML Schemas
	Simple Type Definitions
	Default Data Type Bindings
	Default Binding Rules Summary

	Customizing JAXB Bindings
	Scope
	Scope Inheritance

	What is Not Supported
	JAXB APIs and Tools

	Using JAXB
	General Usage Instructions
	Description
	Using the Examples
	Configuring and Running the Samples
	Solaris/Linux
	Windows NT/2000/XP

	JAXB Compiler Options
	About the Schema-to-Java Bindings
	Schema-Derived JAXB Classes
	Comment.java
	Items.java
	ObjectFactory.java
	PurchaseOrder.java
	PurchaseOrderType.java
	USAddress.java

	Basic Examples
	Unmarshal Read Example
	Sample Output

	Modify Marshal Example
	Sample Output

	Create Marshal Example
	Sample Output

	Unmarshal Validate Example
	Sample Output

	Validate-On-Demand Example
	Sample Output

	Customizing JAXB Bindings
	Why Customize?
	Customization Overview
	Inline and External Customizations
	Scope, Inheritance, and Precedence
	Customization Syntax
	Customization Namespace Prefix

	Customize Inline Example
	Customized Schema
	Global Binding Declarations
	Schema Binding Declarations
	Class Binding Declarations
	Property Binding Declarations
	MyDatatypeConverter Class

	Datatype Converter Example
	External Customize Example
	JAXB Version, Namespace, and Schema Attributes
	Global and Schema Binding Declarations
	Class Declarations

	Fix Collides Example
	The example.xsd Schema
	Looking at the Conflicts
	Output From Running the ant Task Without Using a Binding Declarations File
	The binding.xjb Declarations File
	Resolving the Conflicts in example.xsd

	Bind Choice Example
	Customizing a choice Model Group

	Streaming API for XML
	Why StAX?
	Streaming Versus DOM
	Pull Parsing Versus Push Parsing
	StAX Use Cases
	Comparing StAX to Other JAXP APIs

	StAX API
	Cursor API
	Iterator API
	Iterator Event Types
	Sample Event Mapping

	Choosing Between Cursor and Iterator APIs
	Development Goals
	Comparing Cursor and Iterator APIs

	Using StAX
	StAX Factory Classes
	XMLInputFactory
	XMLOutputFactory
	XMLEventFactory

	Resources, Namespaces, and Errors
	Resource Resolution
	Attributes and Namespaces
	Error Reporting and Exception Handling

	Reading XML Streams
	Using XMLStreamReader
	Using XMLEventReader

	Writing XML Streams
	Using XMLStreamWriter
	Using XMLEventWriter

	Sun’s Streaming Parser Implementation
	SJSXP JAR Files
	Reporting CDATA Events
	SJSXP Factories Implementation

	Sample Code
	Configuring Your Environment for Running the Samples
	Running the Samples
	Running the Samples Using Ant
	Running the Samples Manually

	Sample XML Document
	CursorParse.java
	Stepping Through Events
	Returning String Representations
	Running the Sample

	CursorApproachEventObject.java
	Instantiating an XMLEventAllocator
	Creating an Event Iterator
	Creating the Allocator Method
	Running the Sample

	EventParse.java
	Creating an Input Factory
	Creating an Event Reader
	Creating an Event Iterator
	Getting the Event Stream
	Running the Sample

	CursorWriter.java
	Creating the Output Factory
	Creating a Stream Writer
	Writing the Stream
	Running the Sample

	MyStreamFilter.java
	Implementing the StreamFilter Class
	Creating an Input Factory
	Creating the Filter
	Capturing the Event Stream
	Filtering the Stream
	Running the Sample

	EventProducerConsumer.java
	Creating an Event Producer/Consumer
	Creating an Iterator
	Creating a Writer
	Running the Sample

	Further Information

	Introduction to XML and Web Services Security
	Overview
	Does XWS-Security Implement Any Specifications?
	On Which Technologies Is XWS-Security Based?
	Interoperability with Other Web Services
	What is Basic Security Profile (BSP)?

	What is the XWS-Security Framework?
	Configuring Security Configuration Files
	Understanding Security Configuration Files
	XWS-Security Configuration File Schema
	Semantics of Security Configuration File Elements
	How Do I Specify the Security Configuration for the Build Files?
	Are There Any Sample Applications Demonstrating XWS-Security?

	Writing SecurityEnvironmentHandlers
	Using the SubjectAccessor API

	Useful XWS-Security Command-Line Tools
	pkcs12import
	keyexport
	wscompile

	Troubleshooting XWS-Security Applications
	Further Information

	Understanding and Running the XWS- Security Sample Applications
	Setting Up To Use XWS-Security With the Sample Applications
	Setting System Properties
	Configuring a JCE Provider
	Setting Up the Application Server For the Examples
	Keystore and Truststore Files with XWS- Security

	Setting Build Properties

	Simple Security Configurations Sample Application
	Plugging in Security Configurations
	Simple Sample Security Configuration Files
	Dumping the Request and/or the Response
	Encrypting the Request and/or the Response
	Signing and Verifying the Signature
	Signing then Encrypting the Request, Decrypting then Verifying the Signature
	Encrypting then Signing the Request, Verifying then Decrypting the Signature
	Signing a Ticket
	Adding a Timestamp to a Signature
	Symmetric Key Encryption
	Adding a Username Password Token
	Encrypt Request Body and a UserNameToken
	Adding a UserName Password Token, then Encrypting the UserName Token
	Flexibility in Positions of Timestamps and Tokens
	Adding Security at the Method Level

	Running the Simple Sample Application

	JAAS Sample Application
	JAAS Sample Security Configuration Files
	Setting Up For the JAAS-Sample
	Running the JAAS-Sample Application

	XWS-Security APIs Sample Application
	The XWSSProcessor Interface
	API-Sample Client Code
	The API Sample Security Configuration Files
	Encrypting the SOAP Message
	Signing the SOAP Message
	Sending a Username Token with the SOAP Message

	Building and Running the API Sample Application

	Soap With Attachments Sample Application
	The SwA Interop Scenarios
	SwA Sample Configuration Files
	Running the SwA Sample Application

	SAML Sample Application
	SAML Interop Scenarios
	SAML Interop Sample Configuration Files
	Sender-Vouches Sample Configuration Files
	Holder-Of-Key Sample Configuration Files

	Running the SAML Interop Sample

	Dynamic Policy Sample Application
	Security Configuration Files for Enabling Dynamic Policy
	Setting Security Policies at Runtime
	Running the Dynamic Policy Sample Application

	Dynamic Response Sample Application
	Security Configuration Files for Enabling Dynamic Response
	Using the CallbackHandler to Enable Dynamic Response
	Running the Dynamic Response Sample Application

	Further Information

	Java XML Digital Signature API
	How XWS-Security and XML Digital Signature API Are Related
	XML Security Stack
	Package Hierarchy
	Service Providers
	Introduction to XML Signatures
	Example of an XML Signature
	XML Digital Signature API Examples
	validate Example
	Validating an XML Signature
	Instantiating the Document that Contains the Signature
	Specifying the Signature Element to be Validated
	Creating a Validation Context
	Unmarshaling the XML Signature
	Validating the XML Signature
	What If the XML Signature Fails to Validate?
	Using KeySelectors

	genenveloped Example
	Generating an XML Signature
	Instantiating the Document to be Signed
	Creating a Public Key Pair
	Creating a Signing Context
	Assembling the XML Signature
	Generating the XML Signature
	Printing or Displaying the Resulting Document

	Using the Service Registry Web Console
	Getting Started With the Web Console
	Starting the Web Console
	Changing the Default Language
	Changing the Default Language for Labels and Messages
	Changing the Default Language for Registry Content

	Searching the Registry
	Using the Search Menu
	Selecting a Query
	Searching by Object Type
	Searching by Name and Description
	Searching by Classification
	Viewing Search Results
	Viewing Object Details
	Using the Explore Menu

	Publishing and Managing Registry Objects
	Publishing Objects
	Adding a Classification to an Object
	Adding an External Identifier to an Object
	Adding an External Link to an Object
	Adding Custom Information to an Object Using Slots
	Adding a Postal Address to an Organization or User
	Adding a Telephone Number to an Organization or User
	Adding an Email Address to an Organization or User
	Adding a User to an Organization
	Adding a Child Organization to an Organization
	Adding a Service Binding to a Service
	Adding a Specification Link to a Service Binding
	Adding a Child Concept to a Classification Scheme or Concept
	Changing the State of Objects
	Removing Objects
	Creating Relationships Between Objects
	Creating References
	Creating Associations

	Developing Clients for the Service Registry
	Overview of JAXR
	About Registries and Repositories
	About JAXR
	JAXR Architecture
	About the Examples

	Setting Up a JAXR Client
	Starting the Registry
	Getting Access to the Registry
	Establishing a Connection to the Registry
	Creating a Connection Factory
	Creating a Connection

	Obtaining and Using a RegistryService Object

	Querying a Registry
	Basic Query Methods
	JAXR Information Model Interfaces
	Finding Objects by Name
	Finding Objects by Name: Example

	Finding Objects by Type
	Finding Objects by Type: Example

	Finding Objects by Classification
	Finding Objects by Classification: Examples

	Finding Objects by External Identifier
	Finding Objects by External Identifier: Example

	Finding Objects by External Link
	Finding Objects by External Link: Example

	Finding Objects by Unique Identifier
	Finding Objects by Unique Identifier: Example

	Finding Objects You Published
	Finding Objects You Published: Examples

	Retrieving Information About an Object
	Retrieving the Name or Description of an Object
	Retrieving the Type of an Object
	Retrieving the ID Values for an Object
	Retrieving the Classifications for an Object
	Retrieving the External Identifiers for an Object
	Retrieving the External Links for an Object
	Retrieving the Slots for an Object
	Retrieving the Attributes of an Organization or User
	Retrieving the Services and Service Bindings for an Organization
	Retrieving an Organization Hierarchy
	Retrieving the Audit Trail of an Object
	Retrieving the Version of an Object

	Using Declarative Queries
	Using Declarative Queries: Example

	Using Iterative Queries
	Using Iterative Queries: Example

	Invoking Stored Queries
	Invoking Stored Queries: Example

	Querying a Registry Federation
	Using Federated Queries: Example

	Publishing Objects to the Registry
	Creating Objects
	Using Create Methods for Objects
	Adding Names and Descriptions to Objects
	Identifying Objects
	Creating and Using Classification Schemes and Concepts
	Adding Classifications to Objects
	Adding External Identifiers to Objects
	Adding External Links to Objects
	Adding Slots to Objects
	Creating Organizations
	Creating Users
	Creating Services and Service Bindings

	Saving Objects in the Registry

	Managing Objects in the Registry
	Creating Relationships Between Objects: Associations
	Creating Associations: Example

	Storing Items in the Repository
	Creating an Extrinsic Object
	Using an Extrinsic Object as a Specification Link

	Organizing Objects Within Registry Packages
	Organizing Objects Within Registry Packages: Examples

	Changing the State of Objects in the Registry
	Changing the State of Objects in the Registry: Examples

	Removing Objects From the Registry and Repository
	Removing Objects from the Registry: Example

	Further Information

	Administering the Service Registry
	About the Admin Tool
	Starting the Admin Tool
	Batch Mode
	Interactive Mode
	Admin Tool Command-line Options
	Synopsis
	Options

	Using the Admin Tool
	Permissions
	Displaying Exceptions
	Identifying Registry Objects
	The Effect of Locale on Specifying Names
	Case Sensitivity

	Using Admin Tool Commands
	add association
	Synopsis
	Description
	Options
	Operands
	Example

	add user
	Synopsis
	Description
	Options
	Examples

	cd
	Synopsis
	Description
	Operands
	Examples

	chown
	Synopsis
	Description
	Operands
	Examples

	cp
	Synopsis
	Description
	Options
	Operands
	Examples

	echo
	Synopsis
	Description
	Operand
	Example

	help
	Synopsis
	Description
	Operand
	Examples

	lcd
	Synopsis
	Description
	Operand
	Examples

	ls
	Synopsis
	Description
	Operands
	Examples

	pwd
	Synopsis
	Description
	Example

	quit
	Synopsis
	Description
	Example

	rm
	Synopsis
	Description
	Options
	Operands
	Examples

	select
	Synopsis
	Description
	Operand
	Examples

	set
	Synopsis
	Description
	Operands
	Examples

	show
	Synopsis
	Description
	Operands
	Example

	users
	Synopsis
	Description
	Examples

	Other Administration Tasks
	Backing Up and Restoring the Database

	A XWS-Security Formal Schema Definition
	Formal Schema Definition

	SJSXP JAR Files
	sjsxp.jar
	jsr173_api.jar

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

