The Java™ Web'
Services Tutorial

For Java Web Services Developer’s Pack, v2.0

February 17, 2006

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Naming
and Directory Interface, EJB, JSP, J2EE, J2SE and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals listsis
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de laFAR [(Federal Acquisition Regulations) et des suppléments a celles-ci.

Cette distribution peut comprendre des composants dével oppés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Enterprise JavaBeans, Java Naming and
Directory Interface, EJB, JSP, J2EE, J2SE et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’ autres pays.

A moins qu’ autrement autorisé, le code de logiciel en tous |es matériaux techniques dans le présent (arti-
clesy compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font I’ objet de ce manuel d’ entretien et les informations qu’il contient sont régis par la
|égislation américaine en matiére de controle des exportations et peuvent étre soumis au droit d’ autres
pays dans |e domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’ exclusion d’ exportation américaines,
y compris, mais de maniére non exclusive, laliste de personnes qui font objet d' un ordre de ne pas partic-
iper, d’une fagon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
|égislation américaine en matiére de contréle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cialy Designated Nationals and Blocked Persons"),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L' ABSENCE DE CONTREFACON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

Chapter 1:

Chapter 2:

Contents

About This Tutorial., iX

Who Should Use This Tutorial
Prerequisites
How to Use This Tutorial
About the Examples
Required Software xi
Building the Examples xi
How to Print This Tutorial
Typogr aphical Conventions
Feedback

Building Web Services with JAX-WS.

Setting the Port

Creating a Simple Web Service and Client with JAX-WS
Requirements of a JAX-WS Endpoint
Coding the Service Endpoint Implementation Class
Building the Service
Packaging and Deploying the Service
A Simple JAX-WS Client

Types Supported by JAX-WS

Web Services I nteroperability and JAX-WS

Further Information

Xiii
Xiii
Xiv

XVi
XVi
XViii
XiX
XiX
XX
XXi
XXiii
XXiii
XXiv

Binding between XML Schema and Java Classes . 1

JAXB Architecture
Architectural Overview
The JAXB Binding Process
More About Unmarshalling
More About Marshalling

A D ODNPR

Chapter 3:

CONTENTS

More About Validation
Representing XML Content

Java Representation of XML Schema
Binding XML Schemas

Simple Type Definitions

Default Data Type Bindings
Customizing JAXB Bindings

Schemarto-Java

Java-to-Schema

UsingJAXB.i....

General Usage I nstructions
Description
Using the Examples
Configuring and Running the Samples
JAXB Compiler Options
JAXB Schema Generator Options
About the Schema-to-Java Bindings
Schema-Derived JAXB Classes
Basic Examples
Unmarsha Read Example
Modify Marshal Example
Unmarsha Validate Example
Customizing JAXB Bindings
Why Customize?
Customization Overview
Customize Inline Example
Datatype Converter Example
External Customize Example
Fix Collides Example
Bind Choice Example
Java-toSchema Examples
j2s-create-marshal Example
j2s-xmlAccessorOrder Example
j2s-xml Adapter-field Example
j2s-xmlAttribute-field Example
j2s-xmlRootElement Example
j2s-xml SchemaType-class Example
j2s-xmiType Example

© 00 0 o U1 o1 o101 A~

12
12
15
15
16
18
19
22
29
29
31
33
35
35
36
49
55
56
59

66
66
66
69
72
73
73
74

Chapter 4.

Chapter 5:

CONTENTS

Streaming APIfor XML

Why StAX?

Streaming Versus DOM

Pull Parsing Versus Push Parsing

StAX Use Cases

Comparing StAX to Other JAXP APIs
StAX API

Cursor AP

Iterator AP

Choosing Between Cursor and Iterator APIs

Using StAX
StAX Factory Classes
Resources, Namespaces, and Errors
Reading XML Streams
Writing XML Streams
Sun’s Streaming Parser Implementation
Reporting CDATA Events
SISXP Factories Implementation
Sample Code
Sample Code Organization

Configuring Y our Environment for Running the Samples

Running the Samples
Sample XML Document
cursor Sample — CursorParsejava

cursor2event Sample — CursorApproachEventObject.java

event Sample — EventParse.java
filter Sample — MyStreamFilter.java

readnwrite Sample — EventProducerConsumer.java

writer Sample — CursorWriter.java
Further Information

SOAP with Attachments API for Java

Overview of SAAJ
Messages
Connections

Tutorial
Creating and Sending a Simple Message
Adding Content to the Header
Adding Content to the SOAPPart Object
Adding a Document to the SOAP Body

77
78
79
79
80
81
81
82
87
89
89
91
92
95
97
97
98
99
99
100
101
102
103
105
106
109
111
114
116

118
118
122
123
124
133
134
136

Vi

Chapter 6:

CONTENTS

Manipulating Message Content Using SAAJor DOM APIs
Adding Attachments
Adding Attributes
Using SOAP Faults
Code Examples
Request.java
MyUddiPing.java
HeaderExamplejava
DOMExample.java and DOM SrcExample.java
Attachments.java
SOAPFaultTest.java
Further Information

Java API for XML Registries

Overview of JAXR
What Is a Registry?
What 1s JAXR?
JAXR Architecture
Implementing a JAXR Client
Establishing a Connection
Querying a Registry
Managing Registry Data
Using Taxonomiesin JAXR Clients
Running the Client Examples
Before Y ou Compile the Examples
Compiling the Examples
Running the Examples
Using JAXR Clientsin Java EE Applications
Coding the Application Client: MyAppClient.java
Coding the PubQuery Session Bean
Editing the Properties File
Compiling the Source Files
Starting the Application Server
Creating JAXR Resources
Packaging the Application
Deploying the Application
Running the Application Client
Further Information

136
137
139
145
151
152
153
160
162
166
168
170

171
171
172
173
174
175
181
186
194
199
200
201
201
206
207
207
207
208
208
208
209
210
210
210

Chapter 7:

Chapter 8:

CONTENTS

Java XML Digital Signature API.

How XWS-Security and XML Digital Signature APl Are Related 214

XML Security Stack

Package Hierarchy

Service Providers

Introduction to XML Signatures

Example of an XML Signature

XML Digital Signature APl Examples
validate Example
genenveloped Example

SecuringWeb Services

Securing Web Service Endpoints
Overview of Message Security
Advantages of M essage Security
M essage Security M echanisms
Web Services Security Initiatives and Organizations
Wa3C Specifications
OASIS Specifications
JCP Specifications
WS- Specifications
Using M essage Security with Java EE
Using the Application Server Message Security Implementation
Using the Java WSDP XWSS Security Implementation
Further Information

215
216
217
218
218
221
221
226

232
232
233
235
236
236
237
238
239
241
242
247
251

vii

viii CONTENTS

About This Tutorial

T HE Java™ Web Services Tutorial is a guide to developing Web applications
with the Java Web Services Devel oper Pack (Java WSDP). The JavaWSDPisan
all-in-one download containing key technologies to simplify building of Web
services using the Java 2 Platform. Thistutorial requires afull installation (Typi-
cal) of the Java WSDP, v2.0 with the Sun Java System Application Server Plat-
form Edition 9 (hereafter called the Application Server). Here we cover al the
things you need to know to make the best use of this tutorial.

Who Should Use This Tutorial

This tutorial is intended for programmers who are interested in developing and
deploying Web services and Web applications on the Sun Java System Applica-
tion Server Platform Edition 9.

Prerequisites

Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
all the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et al., (Addison-Wedley, 2000). In particular, you should be familiar

ABOUT THIS TUTORIAL

with relational database and security features described in the trails listed in
Table 1.

Table1l Prerequisite Trailsin The Java™ Tutorial

Trail URL
JDBC http://java.sun.com/docs/books/tutorial/jdbc
Security http://java.sun.com/docs/books/tutorial/securityl.2

How to Use This Tutorial

The Java Web Services Tutorial addresses the following technology areas:

» The Java Architecture for XML Web Services (JAX-WS)

» The Java Architecture for XML Binding (JAXB)

» The StAX APIsand the Sun Java Streaming XML Parser implementation

» SOAP with Attachments API for Java (SAAJ)

e The Java Architecture for XML Registries

* XML Digital Signature

» Security inthe Web Tier
All of the examplesfor thistutorial (except for the XML Digital Signature exam-
ples) are installed with the Java Web Services Tutorial for Java WSDP 2.0 bun-
de ad can be found in the subdirectories of the

<jwstutorial20>/samples/<technology> directory, where
<jwstutorial20>.

About the Examples

This section tells you everything you need to know to install, build, and run the
examples.

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/security1.2

ABOUT THIS TUTORIAL

Required Software

Java Web Services Tutorial Bundle

The example source for the technologies in this tutorial is contained in the Java
Web Services Tutorial bundle. If you are viewing this online, you need to down-
load the tutorial bundle from:

http://java.sun.com/webservices/download/webservicespack.html

Application Server

Sun Java System Application Server Platform Edition 9 is the build and runtime

environment for the tutorial examples. To build, deploy, and run the examples,
you need a copy of the Application Server and the J2SE 5.0.

Building the Examples

Most of the examples are distributed with a build file for Ant, a portable build
tool contained in the Java WSDP. For information about Ant, visit
http://ant.apache.org/. Directionsfor building the examples are provided in
each chapter. Most of the tutorial examples are distributed with a configuration
filefor asant, aportable build tool contained in the Application Server. Thistool
is an extension of the Ant tool developed by the Apache Software Foundation
(http://ant.apache.org). The asant utility contains additional tasks that
invoke the Application Server administration utility asadmin. Directions for
building the examples are provided in each chapter.

Build properties and targets common to all the examples are specified in the files
<INSTALL>/jwstutoriall3javaeetutorial5/examples/com-
mon/build.properties and
<INSTALL>/jwstutoriall3javaeetutorial5/examples/com-
mon/targets.xml. Build properties and targets common to a particular technol-

ogy are specified in the files
<INSTALL>/jwstutoriall3javaeetutorial5/exam-
ples/tech/common/build.properties and

<INSTALL>/jwstutoriall3javaeetutorial5/exam-
ples/tech/common/targets.xml.

Xi

http://java.sun.com/webservices/download/webservicespack.html
http://ant.apache.org/
http://ant.apache.org

Xii ABOUT THIS TUTORIAL

To run the asant scripts, you must set common build properties in the file
<INSTALL>/javaeetutorial5/examples/common/build.properties as fol-
lows:

» Set the javaee.home property to the location of your Application Server
installation. The build process uses the javaee. home property to include
the libraries in <JAVAEE_HOME>/1ib/ in the classpath. All examples that
run on the Application Server include the Java EE library archive—
<JAVAEE_HOME>/11ib/javaee.jar—in the build classpath. Some exam-
ples use additional librariesin <JAVAEE_HOME>/11ib/; the required librar-
ies are enumerated in the individual technology chapters. <JAVAEE_HOME>
refersto the directory where you have installed the Application Server.

Note: On Windows, you must escape any backslashesin the javaee . home property
with another backslash or use forward slashes as a path separator. So, if your Appli-
cation Server installation is C:\Sun\AppServer, you must set javaee.home as fol-
lows:

javaee.home = C:\\Sun\\AppServer

or

javaee.home=C:/Sun/AppServer

» Set the javaee. tutorial.home property to the location of your tutorial.
This property is used for asant deployment and undepl oyment.

| For example, on UNIX:
javaee.tutorial.home=/home/username/javaeetutorial5
On Windows:

javaee.tutorial.home=C:/javaeetutorial5

ABOUT THIS TUTORIAL

Do not install the tutorial to alocation with spaces in the path.

If you did not use the default value (admin) for the admin user, set the
admin.user property to the value you specified when you installed the
Application Server.

If you did not use port 8080, set the domain. resources.port property to
the value specified when you installed the Application Server.

Set the admin user's password in
<INSTALL>/javaeetutorial5/examples/common/admin-pass-

word. txt to the value you specified when you installed the Application
Server. The format of this file is AS_ADMIN_PASSWORD=password. For
example:

AS_ADMIN_PASSWORD=mypassword

How to Print This Tutorial

To print thistutorial, follow these steps.

1. Ensure that Adobe Acrobat Reader isinstalled on your system.
2. Open the PDF version of this book.
3. Click the printer icon in Adobe Acrobat Reader.

Typographical Conventions

Table 2 lists the typographical conventions used in thistutorial.

Table2 Typographical Conventions

Font Style Uses
italic Emphasis, titles, first occurrence of terms

URLSs, code examples, file names, path names, tool names,
monospace application names, programming language keywords, tag,

interface, class, method, and field names, properties

italic monospace

Variablesin code, file paths, and URLs

Xiii

JavaWSTutorial.pdf

Xiv ABOUT THIS TUTORIAL

Table2 Typographical Conventions

Font Style Uses

<italic monospace> User-selected file path components

Feedback

Please send comments, broken link reports, errors, suggestions, and questions
about thistutorial to the tutorial team at users@jwsdp.dev.java.net.

mailto:users@jwsdp.dev.java.net

1

Building Web Services
with JAX-WS

JAX-WS stands for Java API for XML Web Services. JAX-WSis atechnology
for building web services and clients that communicate using XML. JAX-WS
allows developers to write message-oriented as well as RPC-oriented web ser-
vices.

In JAX-WS, aremote procedure cal is represented by an XML-based protocol
such as SOAP. The SOAP specification defines the envelope structure, encoding
rules, and conventions for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages (XML files) over
HTTP.

Although SOAP messages are complex, the JAX-WS API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. A client creates a
proxy (alocal object representing the service) and then simply invokes methods
on the proxy. With JAX-WS, the developer does not generate or parse SOAP
messages. It is the JAX-WS runtime system that converts the APl calls and
responses to and from SOAP messages.

With JAX-WS, clients and web services have a big advantage: the platform inde-
pendence of the Java programming language. In addition, JAX-WS s not restric-
tive: a JAX-WS client can access a web service that is not running on the Java

XV

XVi

BUILDING WEB SERVICES WITH JAX-WS

platform, and vice versa. This flexibility is possible because JAX-WS uses tech-
nologies defined by the World Wide Web Consortium (W3C): HTTPR, SOAPR, and
the Web Service Description Language (WSDL). WSDL specifies an XML for-
mat for describing a service as a set of endpoints operating on messages.

Setting the Port

Severa files in the JAX-WS examples depend on the port that you specified
when you installed the Application Server. The tutorial examples assume that the
server runs on the default port, 8080. If you have changed the port, you must
update the port number in the following files before building and running the
JAX-WS examples:

o <INSTALL>/javaeetutorial5/examples/jaxws/simpleclient/
HelloClient.java

Creating a Simple Web Service and
Client with JAX-WS

This section shows how to build and deploy a simple web service and client. The
source code for the service is in <INSTALL>/javaeetutorial5/exam-
ples/jaxws/helloservice/ and the client is in
<INSTALL>/javaeetutorial5/examples/jaxws/simpleclient/.

Figure 1-1 illustrates how JAX-WS technology manages communication
between aweb service and client.

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-WS

G e

HelloClient
Program

HelloService

Stubs Ties

JAX-RPC T eOAD JAX-RPC

. SOAP .
Runtime Message Runtime

Figure1-1 Communication Between a JAX-WS Web Service and a Client

The starting point for developing a JAX-WS web service is a Java class anno-
tated with the javax. jws.WebService annotation. The WebService annotation
defines the class as a web service endpoint.

A service endpoint interface (SEI) is a Java interface that declares the methods
that a client can invoke on the service. An SEI is not required when building a
JAX-WS endpoint. The web service implementation class implicitly defines a
SEl.

You may specify an explicit SEI by adding the endpointInterface element to
the WebService annotation in the implementation class. You must then provide a
SEI that defines the public methods made available in the endpoint implementa-
tion class.

You use the endpoint implementation class and the wsgen tool to generate the
web service artifacts and the stubs that connect a web service client to the JAX-
WS runtime. For reference documentation on wsgen, see the Application Server
man pages a http://docs.sun.com/db/doc/817-6092.

Together, the wsgen tool and the Application Server provide the Application
Server’'simplementation of JAX-WS.

These are the basic steps for creating the web service and client:
1. Code the implementation class.
2. Compile the implementation class.

3. Usewsgen to generate the artifacts required to deploy the service.
4. Package thefilesinto aWAR file.

XVii

http://docs.sun.com/db/doc/817-6092

XViii

BUILDING WEB SERVICES WITH JAX-WS

5. Deploy the WAR file. Thetie classes (which are used to communicate with

clients) are generated by the Application Server during deployment.

6. Code the client class.

7. Usewsimport to generate and compile the stub files.
8. Compilethe client class.

9. Run the client.

The sections that follow cover these stepsin greater detail.

Requirements of a JAX-WS Endpoint

JAX-WS endpoints must follow these requirements:

The implementing class must be annotated with either the
javax.jws.WebService OF javax.jws.WebServiceProvider annotea-
tion.

The implementing class may explicitly reference an SEI through the end-
pointInterface element of the @webService annotation, but is not
required to do so. If no endpointlnterface is not specified in @webService,
an SEl isimplicityly defined for the implementing class.

The business methods of the implementing class must be public, and must
not be declared static or final.

Business methods that are exposed to web service clients must be anno-
tated with javax. jws.WebMethod.

Business methods that are exposed to web service clients must have JAX-
B-compatible parameters and return types. See Default Data Type
Bindings (page 6).

The implementing class must not be declared final and must not be
abstract.

The implementing class must have a default public constructor.

The implementing class must not define the finalize method.

Theimplementing class may usethe javax.annotation.PostConstruct
or javax.annotation.PreDestroy annotationson its methods for lifecy-
cle event callbacks.

The @PostConstruct method is called by the container before the imple-
menting class begins responding to web service clients.

CODING THE SERVICE ENDPOINT IMPLEMENTATION CLASS

The @PreDestroy method is called by the container before the endpoint is
removed from operation.

Coding the Service Endpoint
Implementation Class

In this example, the implementation class, Hel1o, is annotated as a web service
endpoint using the @webService annotation. Hello declares a single method
named sayHello, annotated with the @webMethod annotation. @webMethod
exposes the annotated method to web service clients. sayHe17o returns a greet-
ing to the client, using the name passed to sayHello to compose the greeting.
The implementation class also must define a default, public, no-argument con-

structor.
package helloservice.endpoint;
import javax.jws.WebService;
@webService()
public class Hello {
private String message = new String("Hello, ");

public void Hello() {}

@webMethod ()
public String sayHello(String name) {

return message + name + . ;

}
}

Building the Service

To build HelloService, in a termina window go to the
<INSTALL>/javaeetutorial5/examples/jaxws/helloservice/ directory and
type the following:

asant build

The bui1d task command executes these asant subtasks:

e compile-service

XiX

XX

BUILDING WEB SERVICES WITH JAX-WS

The compile-service Task

Thisasant task compilesHel7o0. java, writing the classfilesto the bui1d subdi-
rectory. It then calls the wsgen tool to generate JAX-WS portable artifacts used
by the web service. The equivalent command-line command is as follows:

wsgen -d build -s build -classpath build
helloservice.endpoint.Hello

The -d flag specifies the output location of generated class files. The -s flag
specifies the output location of generated source files. The -classpath flag
specifies the location of the input files, in this case the endpoint implmentation
class, helloservice.endpoint.Hello.

Packaging and Deploying the Service

You package and deploy the service using asant.

Upon deployment, the Application Server and the JAX-WS runtime generate any
additional artifacts required for web service invocation, including the WSDL
file.

Packaging and Deploying the Service with
asant

To package and deploy the helloservice example, follow these steps:
1. In a terminal window, go to
<INSTALL>/javaeetutorial5/examples/jaxws/helloservice/.
2. Run asant create-war.
3. Make sure the Application Server is started.
4. Set your admin username and password in
<INSTALL>/javaeetutorial5/examples/common/build.properties.
5. Run asant deploy.
You can view the WSDL file of the deployed service by requesting the URL

http://localhost:8080/helloservice/hello?wsdl in aweb browser. Now
you are ready to create a client that accesses this service.

A SIMPLE JAX-WS CLIENT

Undeploying the Service
At this point in the tutorial, do not undeploy the service. When you are finished
with this example, you can undeploy the service by typing this command:

asant undeploy

Testing the Service Without a Client

The Application Server Admin Console allows you to test the methods of aweb
service endpoint. To test the sayHe110 method of He1loService, do the follow-

ing:
1. Openthe Admin Console by opening the following URL in aweb browser:
http://localhost: 4848/

. Enter the admin username and password to log in to the Admin Console.
. Click Web Servicesin the left pane of the Admin Console.
. Click Hel1To.
. Click Test.
. Under Methods, enter a name as the parameter to the sayHe11o method.
. Click the sayHe110 button.

Thiswill take you to the sayHe110 Method invocation page.

N o 00k WON

8. Under Method returned, you' Il see the response from the endpoint.

A Simple JAX-WS Client

HelloClient is a stand-alone Java program that accesses the sayHe11o method
of HelloService. It makes this call through a stub, alocal object that acts as a
proxy for the remote service. The stub is created at development time by the
wsimport tool, which generates JAX-WS portable artifacts based on a WSDL
file.

Coding the Client

When invoking the remote methods on the stub, the client performs these steps:

1. Usesthe javax.xm1.ws.WebServiceRef annotation to declare areference
to aweb service. WebServiceRef usesthewsdlLocation element to spec-
ify the URI of the deployed service' sWSDL file.

XXi

XXii

BUILDING WEB SERVICES WITH JAX-WS

@WebServiceRef(wsdlLocation="http://localhost:8080/
helloservice/helTo?wsd1")
static HelloService service;

. Retrieves a proxy to the service, aso known as a port, by invoking getH-

elloPort on the service.
Hello port = service.getHelloPort();

The port implements the SEI defined by the service.

. Invokes the port’'s sayHello method, passing to the service a name.

String response = port.sayHello(name);
the full source of HelloClient, |ocated in the

<INSTALL>/javaeetutorial5/examples/jaxws/simpleclient/src/ direc-

package simpleclient;

import javax.xml.ws.WebServiceRef;

import helloservice.endpoint.HelloService;
import helloservice.endpoint.Hello;

public class HelloClient {

@WebServiceRef(wsdlLocation="http://localhost:8080/
helloservice/hello?wsd1™)
static HelloService service;

public static void main(String[] args) {
try {
HelTloClient client = new HelloClient();
client.doTest(args);
} catch(Exception e) {
e.printStackTrace(Q);
}
}

public void doTest(String[] args) {
try {
System.out.println("Retrieving the port from
the following service: " + service);
Hello port = service.getHelTloPort();
System.out.println("Invoking the sayHello operation
on the port.");

String name;

if (args.length > 0) {
name = args[0];

} else {

TYPES SUPPORTED BY JAX-WS XXiii

name = "No Name";

}

String response = port.sayHello(name);
System.out.println(response);

} catch(Exception e) {
e.printStackTrace();

}

}
}

Building and Running the Client

To build the client, you must first have deployed He11oServiceApp, as described
in “Packaging and Deploying the Service with asant (page xx).” Then navigate
to <JAVA_EE_HOME>/examples/jaxws/simpleclient/ and do the following:

asant build
The run the client, do the following:

asant run

Types Supported by JAX-WS

JAX-WS delegates the mapping of Java programming language types to and
from XML definitions to JAXB. Application developers don’'t need to know the
details of these mappings, but they should be aware that not every class in the
Java language can be used as a method parameter or return type in JAX-WS. For
information on which types are supported by JAXB, see Default Data Type
Bindings (page 6).

Web Services Interoperability and JAX-
WS

JAX-WS 2.0 supports the Web Services Interoperability (WS-I) Basic Profile
Version 1.1. The WS- Basic Profile is a document that clarifies the SOAP 1.1
and WSDL 1.1 specifications in order to promote SOAP interoperability. For
links related to WS-, see Further Information (page xxiv).

XXiv

BUILDING WEB SERVICES WITH JAX-WS

To support WS- Basic Profile Version 1.1, JAX-WS has the following features:

The JAX-WS runtime supportsdoc/literal and rpc/literal encodingsfor ser-
vices, static stubs, dynamic proxies, and DI|I.

Further Information

For more information about JAX-WS and related technologies, refer to the fol-
lowing:

Java API for XML Web Services 2.0 specification
https://jax-ws.dev.java.net/spec-downToad.html
JAX-WS home

https://jax-ws.dev.java.net/

Simple Object Access Protocol (SOAP) 1.2 W3C Note
http://www.w3.0rg/TR/SOAP/

Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.0org/TR/wsd1

WS-| Basic Profile 1.1
http://www.ws-1.org

https://jax-ws.dev.java.net//
https://jax-ws.dev.java.net/spec-download.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

2

Binding between XML
Schema and Java
Classes

T HE Java™ Architecture for XML Binding (JAXB) provides afast and conve-
nient way to bind between XML schemas and Java representations, making it
easy for Java developers to incorporate XML data and processing functions in
Java applications. As part of this process, JAXB provides methods for unmar-
shalling XML instance documents into Java content trees, and then marshalling
Java content trees back into XML instance documents. JAXB also provides a
way generate XML schema from Java objects.

This chapter describes the JAXB architecture, functions, and core concepts. You
should read this chapter before proceeding to Chapter 3, which provides sample
code and step-by-step procedures for using JAXB.

JAXB Architecture

This section describes the components and interactions in the JAXB processing
model.

BINDING BETWEEN XML SCHEMA AND JAVA CLASSES

Architectural Overview

Figure 2—1 shows the components that make up a JAXB implementation.

Schema o
Generator Application Code

Package
S javax.xml.bind

Portable
JAXB-annotated
classes

]

A4

Schema [-
=P Compiler | --

XML/ Java

Jave Annctation-driven
Customization Object Binding
Binding Factory Framework
Declarations

Implementation

----- P Schema to Java

— Java to Schema

Figure2-1 JAXB Architectural Overview

A JAXB implementation consists of the following architectural components:

» schema compiler: binds a source schema to a set of schema derived pro-
gram elements. The binding is described by an XML-based binding lan-
guage.

» schema generator: maps a set of existing program elements to a derived
schema. The mapping is described by program annotations.

* binding runtime framework: provides unmarshalling (reading) and mar-
shalling (writing) operations for accessing, manipulating and validating
XML content using either schema-derived or existing program elements.

THE JAXB BINDING PROCESS

The JAXB Binding Process

Figure 2—-2 shows what occurs during the JAXB binding process.

> JAXB
Schema bind mapped
< classes
follows instances of
unmarshal A
(validate)
Document Objects
<
marshal
(validate)

Figure2-2 Stepsin the JAXB Binding Process

Take steps from The general stepsin the JAXB data binding process are:

1. Generate classes. An XML schemais used as input to the JAXB binding
compiler to generate JAXB classes based on that schema.

2. Compile classes. All of the generated classes, sourcefiles, and application
code must be compiled.

3. Unmarshal. XML documents written according to the constraints in the
source schema are unmarshalled by the JAXB binding framework. Note
that JAXB also supports unmarshalling XML datafrom sources other than
files/documents, such as DOM nodes, string buffers, SAX Sources, and so
forth.

4. Generate content tree. The unmarshalling process generates a content tree
of data objects instantiated from the generated JAXB classes; this content
tree represents the structure and content of the source XML documents.

BINDING BETWEEN XML SCHEMA AND JAVA CLASSES

5. Validate (optional). The unmarshalling process optionally involves valida-
tion of the source XML documents before generating the content tree.
Note that if you modify the content treein Step 6, below, you can also use
the JAXB Validate operation to validate the changes before marshalling the
content back to an XML document.

6. Process content. The client application can modify the XML data repre-
sented by the Java content tree by means of interfaces generated by the
binding compiler.

7. Marshal. The processed content treeis marshalled out to one or more XML
output documents. The content may be validated before marshalling.

More About Unmarshalling

Unmarshlling provides a client application the ability to convert XML data into
JAXB-derived Java objects.

More About Marshalling

Marshalling provides a client application the ability to convert a JAXB-derived
Java object tree back into XML data.

By default, the Marshaller uses UTF-8 encoding when generating XML data.

Client applications are not required to validate the Java content tree before mar-
shalling. There is aso no requirement that the Java content tree be valid with
respect to its original schemain order to marshal it back into XML data.

More About Validation

Validation is the process of verifying that an XML document meets all the con-
straints expressed in the schema. JAXB 1.0 provided validation at unmarshal
time and also enabled on-demand validation on a JAXB content tree. JAXB 2.0
only allows validation at unmarshal and marshal time. A web service processing
model is to be lax in reading in data and strict on writing it out. To meet that
model, validation was added to marshal time so one could confirm that they did
not invalidate the XML document when modifying the document in JAXB form.

REPRESENTING XML CONTENT

Representing XML Content

This section describes how JAXB represents XML content as Java abjects.

Java Representation of XML Schema

JAXB supports the grouping of generated classes in Java packages. A package
comprises:
* A Javaclass nameisderived from the XML element name, or specified by
a binding customization.

e AnoObjectFactory classis afactory that is used to return instances of a
bound Java class.

Binding XML Schemas

This section describes the default XML-to-Java bindings used by JAXB. All of
these bindings can be overridden on global or case-by-case levels by means of a
custom binding declaration. See the JAXB Specification for complete informa-
tion about the default JAXB bindings.

Simple Type Definitions

A schema component using a simple type definition typically binds to a Java
property. Since there are different kinds of such schema components, the follow-
ing Java property attributes (common to the schema components) include:

* Basetype

e Collection type, if any

» Predicate

The rest of the Java property attributes are specified in the schema component
using the simple type definition.

http://java.sun.com/xml/downloads/jaxb.html

BINDING BETWEEN XML SCHEMA AND JAVA CLASSES

Default Data Type Bindings

Schema-to-Java

The Javalanguage provides aricher set of datatype than XML schema. Table 2—
1 liststhe mapping of XML datatypes to Java datatypesin JAXB.

Table2-1 JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type | Java Data Type

xsd:string java.lang.String
xsd:integer java.math.BigInteger
xsd:int int

xsd.Tong Tong

xsd:short short

xsd:decimal java.math.BigDecimal
xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName
xsd:dateTime javax.xml.datatype.XMLGregorianCalendar

xsd:base64Binary bytel[]

xsd:hexBinary byte[]

xsd:unsignedInt Tong

xsd:unsignedShort | int

xsd:unsignedByte short

xsd:time javax.xml.datatype.XMLGregorianCalendar

DEFAULT DATA TYPE BINDINGS

Table2-1 JAXB Mapping of XML Schema Built-in Data Types (Continued)

XML Schema Type

Java Data Type

xsd:date

javax.xml.datatype.XMLGregorianCalendar

xsd:g

javax.xml.datatype.XMLGregorianCalendar

xsd:anySimpleType

java.lang.Object

xsd:anySimpleType

java.lang.String

xsd:duration

javax.xml.datatype.Duration

xsd:NOTATION

javax.xml.namespace.QName

JAXBElement

When XML element information can not be inferred by the derived Java repre-
sentation of the XML content, a JAXBElement object is provided. This object
has methods for getting and setting the object name and object value.

Java-to-Schema
Table 2—2 shows the default mapping of Java classesto XML datatypes.

Table2—2 JAXB Mapping of XML Data Types to Java classes.

Java Class

XML Data Type

java.lang.String

Xxs:string

java.math.BigIn-
teger

xs:integer

java.math.BigDec-
imal

xs:decimal

java.util.Calen-
dar

xs:dateTime

java.util.Date

xs:dateTime

BINDING BETWEEN XML SCHEMA AND JAVA CLASSES

Table2—2 JAXB Mapping of XML Data Types to Java classes. (Continued)

Java Class XML Data Type
javax.xml.namespa .

ce.QName xs :QName
java.net.URI xs:string
javax.xml.datatyp

e.XMLGregorian- xs:anySimpleType

Calendar

javax.xml.datatyp

. xs:duration
e.Duration

java.lang.Object xs:anyType

java.awt.Image xs:base64Binary

javax.activa-

tion.DataHandler xs:base64Binary

javax.xml.trans-

Form.Source xs:base64Binary

java.util.UUID xs:string

Customizing JAXB Bindings

Schema-to-Java

Custom JAXB hinding declarations also allow you to customize your generated
JAXB classes beyond the XML-specific constraints in an XML schema to
include Java-specific refinements such as class and package name mappings.

JAXB provides two ways to customize an XML schema:

» Asinline annotationsin asource XML schema
» Asdeclarationsin an external binding customizationsfile that is passed to
the JAXB binding compiler

Code examples showing how to customize JAXB bindings are provided in Chap-
ter 3.

JAVA-TO-SCHEMA

Java-to-Schema

XML schemathat is generated from Java objects can be customized with JAXB
annotations.

10

BINDING BETWEEN XML SCHEMA AND JAVA CLASSES

3
Using JAXB

T HIS chapter provides instructions for using the sample Java applications that
areincluded in the <javaee.tutorial.home>/examples/jaxb directory. These
examples demonstrate and build upon key JAXB features and concepts. It is rec-
ommended that you follow these procedures in the order presented.

After reading this chapter, you should feel comfortable enough with JAXB that
you can:

* Generate JAXB Java classes from an XML schema

¢ Use schema-derived JAXB classes to unmarshal and marshal XML con-
tent in a Java application

» Create a Java content tree from scratch using schema-derived JAXB
classes

» Validate XML content during unmarshalling and at runtime
e Customize JAXB schema-to-Java bindings

The primary goals of the Basic examples are to highlight the core set of JAXB
functions using default settings and bindings. After familiarizing yourself with
these core features and functions, you may wish to continue with Customizing
JAXB Bindings (page 35) for instructions on using Customize examples that
demonstrate how to modify the default JAXB bindings. Finaly, the Java-to-
Schema examples show how to use annotations to map Java classes to XML
schema.

11

12

UsING JAXB

Note: The Purchase Order schema, po.xsd, and the Purchase Order XML file,
po.xm1, used in the Basic and Customize samples are derived from the W3C XML
Schema Part 0: Primer (http://www.w3.0rg/TR/xmlschema-0/), edited by
David C. Falside.

General Usage Instructions

This section provides general usage instructions for the examples used in this
chapter, including how to build and run the applications using the Ant build tool,
and provides details about the default schema-to-JAXB bindings used in these
examples.

Description

This chapter describes three sets of examples:

» The Basic examples (Unmarshal Read, Modify Marshal, Unmarshal Vali-
date, Pull Parser) demonstrate basic JAXB concepts like ummarshalling,
marshalling, validating XML content, and parsing XML data.

* The Customize examples (Customize Inline, Datatype Converter, External
Customize, Fix Collides) demonstrate various ways of customizing the
binding of XML schemas to Java objects.

* The Java-to-Schema examples show how to use annotations to map Java
classesto XML schema.

The Basic and Customize examples are based on a Purchase Order scenario.
With the exception of the Fix Collides example, each uses an XML document,
po.xm1, written against an XML schema, po.xsd.

http://www.w3.org/TR/xmlschema-0/

DESCRIPTION

Table 3-1 briefly describes the Basic examples.

Table3-1 Basic JAXB Examples

Example Name

Description

Unmarshal Read Exam-
ple

Demonstrates how to unmarshal an XML document into a Java
content tree and access the data contained within it.

Modify Marshal Exam-
ple

Demonstrates how to modify a Java content tree.

Unmarshal Validate
Example

Demonstrates how to enable validation during unmarshalling.

Pull Parser Example

Demonstrates how to use the StAX pull parser to parse aportion
of an XML document.

Table 3-2 briefly describes the Customize examples.

Table3-2 Customize JAXB Examples

Example Name

Description

Customize Inline Exam-
ple

Demonstrates how to customize the default JAXB bindings by
using inline annotationsin an XML schema.

Datatype Converter
Example

Similar to the Customize Inline example, this exampleillustrates
aternate, moreterse bindings of XML simp1eType definitionsto
Java datatypes.

External Customize
Example

Ilustrates how to use an external binding declarations file to pass
binding customizations for a read-only schemato the JAXB bind-
ing compiler.

Fix Collides Example

Ilustrates how to use customizations to resolve name conflicts
reported by the JAXB binding compiler. You should first move
binding.xjb, the binding file, out of the application directory to
see the errors reported by the JAXB binding compiler, and then
look at binding.xjb to see how the errors were resolved. Run-
ning asant alone uses the hinding customizations to resolve the
name conflicts while compiling the schema.

13

14

UsING JAXB

Table 3-3 briefly describes the Java-to-Schema examples.

Table 3-3 Java-toSchema JAXB Examples

Example Name Description

Illustrates how to marshal and unmarshal JAXB-annotated classes
to XML schema. The example also shows how to enable JAXP
1.3 validation at unmarshal time using a schemafile that was gen-
erated from the JAXB mapped classes.

j2s-create-marshal

Ilustrates how to use the @X mlAccessorOrder and @Xml-
Type.propOrder mapping annotationsin Java classesto control the
order inwhich XML content is marshalled/unmarshaled by a Java

type.

j2s-xml AccessorOrder

Illustrates how to use the interface XmTAdapter and the annota-
tion @XmlJavaTypeAdapter to provide aa custom mapping of
XML content into and out of aHashMap (field) that uses an “int”
asthe key and a“string” asthe value.

j2s-xmlAdapter-field

Illustrates how to use the annotation @X mlAttribute to define a

jesxmiAttribute-field property or field to be handled as an XML attribute.

Illustrates how to use the annotation @X mlRootElement to define
j2s-xmlRootElement an XML element name for the XML schema type of the corre-
sponding class.

j2s-xml SchemaType- Illustrates how to use the annotation @XmlSchemaType to cus-
class tomize the mapping of a property or field to an XML built-in type.
i2sxmiType Illustrates how to use the annotation @XmIType to map aclass or

enum type to an XML schematype.

Each Basic and Customize example directory contains several basefiles:

* po.xsd isthe XML schema you will use as input to the JAXB binding
compiler, and from which schema-derived JAXB Java classes will be gen-
erated. For the Customize Inline and Datatype Converter examples, this
file contains inline binding customizations. Note that the Fix Collides
example uses example.xsd rather than po.xsd.

» po.xml isthe Purchase Order XML file containing sample XML content,
and isthefile you will unmarshal into a Java content tree in each example.
Thisfile is almost exactly the same in each example, with minor content

USING THE EXAMPLES

differences to highlight different JAXB concepts. Note that the Fix Col-
lides example uses example.xm1 rather than po.xm1.

* Main.java isthe main Java class for each example.

e build.xml isan Ant project file provided for your convenience. Use Ant
to generate, compile, and run the schema-derived JAXB classes automati-
caly. The build.xm1 file varies across the examples.

e MyDatatypeConverter.javaintheinline-customize exampleisaJava
class used to provide custom datatype conversions.

e binding.xjb in the External Customize and Fix Collides examplesis an
external binding declarations file that is passed to the JAXB binding com-
piler to customize the default JAXB bindings.

e example.xsd in the Fix Collides example is a short schema file that con-
tains deliberate naming conflicts, to show how to resolve such conflicts
with custom JAXB bindings.

Using the Examples

As with al applications that implement schema-derived JAXB classes, as
described above, there are two distinct phasesin using JAXB:

1. Generating and compiling JAXB Java classes from an XML source
schema

2. Unmarshalling, validating, processing, and marshalling XML content

In the case of these examples, you perform these steps by using asant with the
build.xm1 project file included in each example directory.

Configuring and Running the Samples

The build.xm1 file included in each example directory is an asant project file
that, when run, automatically performs the following steps:

1. Updates your CLASSPATH to include the necessary schema-derived JAXB
classes.

2. For the Basic and Customize examples, runs the JAXB binding compiler
to generate JAXB Java classes from the XML source schema, po. xsd, and
puts the classes in a package named primer. po. For the Java-to-Schema
examplesruns schemagen, the schemagenerator, to generate XML schema
from the annotated Java classes.

15

16

UsING JAXB

3. Compiles the schema-derived JAXB classes or the annotated Java code.
4. RunstheMain class for the example.

The schema-derived JAXB classes and how they are bound to the source schema
is described in About the Schema-to-Java Bindings (page 19). The methods used
for building and processing the Java content tree are described in Basic
Examples (page 29).

JAXB Compiler Options

The JAXB XJC schema binding compiler transforms, or binds, a source XML
schemato a set of JAXB content classes in the Java programming language. The
compiler, xjc, is provided in two flavors in the Application Server: xjc.sh
(Solaris/Linux) and xjc.bat (Windows). Both xjc.sh and xjc.bat take the
same command-line options. You can display quick usage instructions by invok-
ing the scripts without any options, or with the -he1p switch. The syntax is as
follows:

xjc [-options ...] <schema>

The xjc command-line options are listed in Table 3-4.
Table 34 xjc Command-Line Options

Option or
Argument Description

Do not perform strict validation of the input schema(s). By defaullt,
xjc performs strict validation of the source schema before process-
-nv ing. Note that this does not mean the binding compiler will not per-
form any validation; it ssimply means that it will perform less-strict

validation.

By default, the XJC binding compiler strictly enforces the rules out-
lined in the Compatibility chapter of the JAXB Specification. In the
default (strict) mode, you are also limited to using only the binding
customizations defined in the specification. By using the-exten-
sion switch, you will be allowed to use the JAXB Vendor Exten-
sions.

-extension

JAXB CoMPILER OPTIONS

Table 34 xjc Command-Line Options (Continued)

Option or
Argument

Description

-b file

Specify one or more external binding filesto process. (Each binding
filemust haveits own -b switch.) The syntax of the external binding
filesis extremely flexible. You may have a single binding file that
contains customizations for multiple schemas or you can break the
customi zations into multiple bindingsfiles. In addition, the ordering
of the schema files and binding files on the command line does not
matter.

-d dir

By default, xjc will generate Java content classes in the current
directory. Use this option to specify an alternate output directory.
The directory must already exist; xjc will not create it for you.

-p package

Specify an alternate output directory. By default, the XJC binding
compiler will generate the Java content classes in the current direc-
tory. The output directory must already exist; the XJC binding com-
piler will not create it for you.

-proxy proxy

Specify the HTTP/HTTPS proxy. The format is [user[:pass-
word]@]proxyHost[:proxyPort]. Theold -host and -port
options are still supported by the Reference Implementation for
backwards compatibility, but they have been deprecated.

-classpath arg

Specify where to find client application class files used by the
<jxb:javaType> and <xjc:superClass> customizations.

-catalog file

Specify catalog files to resolve external entity references. Supports
TR9401, XCatalog, and OASIS XML Catalog format. For more
information, please read the XML Entity and URI Resolvers docu-
ment or examine the catal og-resolver sample application.

-readOnly

Force the XJC binding compiler to mark the generated Java sources
read-only. By default, the XJC binding compiler does not write-pro-
tect the Java source files it generates.

-npa

Supress the generation of package level annotationsinto **/pack-
age-info.java. Using this switch causes the generated code to
internalize those annotations into the other generated classes.

-xmlschema

Treat input schemas as W3C XML Schema (default). If you do not
specify this switch, your input schemas will be treated as W3C
XML Schema.

17

18 UsING JAXB

Table 34 xjc Command-Line Options (Continued)

Option or
Argument Description
_quiet Suppress compiler output, such as progress information and warn-
9 ings.
-help Display abrief summary of the compiler switches.
-version Display the compiler version information.
-XTocator Enable source location support for generated code.
-Xsync-methods Generate accessor methods with the synchronized keyword.
Mark the generated code with the -@javax.annotation.Gener-
-mark-generated .
ated annotation.

JAXB Schema Generator Options

The JAXB Schema Generator, schemagen, creates a schema file for each
namespace referenced in your Java classes. The schema generator can be
launched using the appropriate schemagen shell script in the bin directory for
your platform. The schema generator processes Java source files only. If your
Java sources reference other classes, those sources must be accessible from your
system CLASSPATH environment variable or errors will occur when the schema
is generated. There is no way to control the name of the generated schemafiles.

You can display quick usage instructions by invoking the scripts without any
options, or with the -he1p switch. The syntax is as follows:

schemagen [-options ...] [java_source_files]

The schemagen command-line options are listed in Table 3-5.
Table3-5 schemagen Command-Line Options

Option or

Argument Description

-d path Specifies the location of the processor- and javac generated class
files.

ABOUT THE SCHEMA-TO-JAVA BINDINGS

About the Schema-to-Java Bindings

When you run the JAXB binding compiler against the po.xsd XML schema
used in the basic examples (Unmarshal Read, Modify Marshal, Unmarshal Vali-
date), the JAXB binding compiler generates a Java package named primer. po
containing eleven classes, making a total of twelve classes in each of the basic

examples:

Table 36 Schema-Derived JAXB Classes in the Basic Examples

Comment.java

Class Description
Public interface extending javax.xm1.bind.ETement;
primer/po/ binds to the global schema element named comment. Note

that JAXB generates element interfaces for al global element
declarations.

primer/po/
Items.java

Public interface that binds to the schema complexType
named Items.

primer/po/
ObjectFactory.java

Public class extending com. sun.xm1.bind.DefaultJAXB-
ContextImpl; used to create instances of specified inter-
faces. For example, theObjectFactory createComment ()
method instantiates a Comment object.

primer/po/
PurchaseOrder.java

Public interface extending javax.xml1.bind.Element, and
PurchaseOrderType; bindsto the global schemaelement
named PurchaseOrder.

primer/po/
PurchaseOrderType.java

Public interface that binds to the schema complexType
named PurchaseOrderType.

primer/po/
USAddress.java

Public interface that binds to the schema complexType
named USAddress

primer/po/impl1/
CommentImpl.java

Implementation of Comment. java.

primer/po/impl/
ItemsImpl.java

Implementation of ITtems. java

primer/po/impl/
PurchaseOrderImpl.java

Implementation of PurchaseOrder.java

19

20

UsING JAXB

Table3-6 Schema-Derived JAXB Classes in the Basic Examples (Continued)

Class Description

primer/po/impl/

PurchaseOrderType- Implementation of PurchaseOrderType.java
Impl.java

primer/po/impl/ . .
USAddressImpl.java Implementation of USAddress. java

Note: You should never directly use the generated implementation classes—that is,
*Imp1.java inthe <packagename>/imp1 directory. These classes are not directly
referenceabl e because the class names in this directory are not standardized by the
JAXB specification. The ObjectFactory method isthe only portable meansto cre-
ate an instance of a schema-derived interface. There is also an ObjectFac-

tory.newInstance(Class

instances of interfaces.

JAXBinterface) method that enables you to create

These classes and their specific bindingsto the source XML schemafor the basic
examples are described below.

Table 3-7 Schema-to-Java Bindings for the Basic Examples

XML Schema

JAXB Binding

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

PurchaseOrder.java

<xsd:element name="comment" type="xsd:string"/>

Comment.java

<xsd:complexType
<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

</xsd:sequence>

<xsd:attribute

name="PurchaseOrderType">

name="shipTo" type="USAddress"/>
name="bi11To" type="USAddress"/>
ref="comment" minOccurs="0"/>
name="1items" type="Items"/>

name="orderDate" type="xsd:date"/>

</xsd:complexType>

PurchaseOrder-
Type.java

ABOUT THE SCHEMA-TO-JAVA BINDINGS

Table 3-7 Schema-to-Java Bindings for the Basic Exampl es (Continued)

21

XML Schema

JAXB Binding

<xsd:complexType name="USAddress">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAddress.java

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="1item" minOccurs="1" maxOc-
curs="unbounded">

Items.java

<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity'">
<xsd:simpleType>
<xsd:restriction base="xsd:positivelnteger">
<xsd:maxExcTlusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU" use="required"/>
</xsd:complexType>

Items.ItemType

</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

22

UsING JAXB

Schema-Derived JAXB Classes

The code for the individua classes generated by the JAXB binding compiler for the
Basic examples is listed below, followed by brief explanations of its functions. The
classes listed here are:

Comment.java
Items.java
ObjectFactory.java
PurchaseOrder.java
PurchaseOrderType.java
USAddress.java

Comment.java

In Comment.java:

The Comment . java classis part of the primer.po package.
Comment isapublic interface that extends javax.xm1.bind.Element.

Content in instantiations of this class bind to the XML schema e ement named
comment.

The getvalue() and setValue() methods are used to get and set strings repre-
senting XML comment elementsin the Java content tree.

The Comment. java code looks like this:

package primer.po;

public interface Comment

{

extends javax.xml.bind.Element

String getValue(Q);
void setValue(String value);

SCHEMA-DERIVED JAXB CLASSES

ltems.java

In Items.java, below:

e TheItems.java classispart of theprimer.po package.
» Theclass provides public interfaces for ITtems and ItemType.

e Content in instantiations of this class bind to the XML ComplexTypes
Items and itschild element ItemType.

e Item providesthe getItem() method.

e ItemType provides methodsfor:
e getPartNum(Q);
e setPartNum(String value);
o« getComment();
e setComment(java.lang.String value);
e getUSPrice();
e setUSPrice(java.math.BigDecimal value);
e getProductName();
e setProductName(String value);
e getShipDate();
o setShipDate(java.util.Calendar value);
e« getQuantity(Q;
e setQuantity(java.math.BigInteger value);

The Items.java codelookslike this;
package primer.po;

public interface Items {
java.util.List getItem();

public interface ItemType {
String getPartNum(Q);
void setPartNum(String value);
java.lang.String getComment();
void setComment(java.lang.String value);
java.math.BigDecimal getUSPrice(Q);
void setUSPrice(java.math.BigDecimal value);
String getProductName();
void setProductName(String value);
java.util.Calendar getShipDate();
void setShipDate(java.util.Calendar value);

24 UsING JAXB

java.math.BigInteger getQuantity();
void setQuantity(java.math.BigInteger value);

ObjectFactory.java

InObjectFactory.java, below:

* TheoObjectFactory classispart of the primer.po package.

* ObjectFactory providesfactory methods for instantiating Java interfaces
representing XML content in the Java content tree.

» Method names are generated by concatenating:
» Thestring constant create

« |f the Java content interface is nested within another interface, then the
concatenation of all outer Java class names

* The name of the Java content interface

» JAXB implementation-specific code was removed in this example to
make it easier to read.

For example, in this case, for the Java interface primer.po.Items.ItemType,
ObjectFactory createsthe method createItemsItemType().

TheObjectFactory.java codelookslikethis:
package primer.po;

public class ObjectFactory
extends com.sun.xml.bind.DefaultJAXBContextImpl {

/:‘:7‘:
* Create a new ObjectFactory that can be used to create
* new instances of schema derived classes for package:
* primer.po
:':/
public ObjectFactory() {

super(new primer.po.ObjectFactory.GrammarInfoImp1());

}
/ Yede

* Create an instance of the specified Java content
* interface.
-.':/

public Object newInstance(Class javaContentInterface)

SCHEMA-DERIVED JAXB CLASSES

throws javax.xml.bind.JAXBException

{
}

/7': %
* Get the specified property. This method can only be
* used to get provider specific properties.
* Attempting to get an undefined property will result
* in a PropertyException being thrown.
7‘:/
public Object getProperty(String name)
throws javax.xml.bind.PropertyException
{

}

/7’: *

* Set the specified property. This method can only be
* used to set provider specific properties.

* Attempting to set an undefined property will result
* in a PropertyException being thrown.

7‘:/
public void setProperty(String name, Object value)

throws javax.xml.bind.PropertyException

return super.newlnstance(javaContentInterface);

return super.getProperty(name);

{
super.setProperty(name, value);
}
/:': *
* Create an instance of PurchaseOrder
7‘:/

public primer.po.PurchaseOrder createPurchaseOrder()
throws javax.xml.bind.JAXBException

{
return ((primer.po.PurchaseOrder)
newInstance((primer.po.PurchaseOrder.class)));
3
/:“::‘:
* Create an instance of ItemsItemType
:':/

public primer.po.Items.ItemType createItemsItemType()
throws javax.xml.bind.JAXBException
{

return ((primer.po.Items.ItemType)
newInstance((primer.po.Items.ItemType.class)));

25

UsING JAXB

/ Yol
* Create an instance of USAddress
%* /
public primer.po.USAddress createUSAddress()
throws javax.xml.bind.JAXBException

{
return ((primer.po.USAddress)
newInstance((primer.po.USAddress.class)));
}
/7': %

* Create an instance of Comment
¥ /
public primer.po.Comment createComment()
throws javax.xml.bind.JAXBException

{
return ((primer.po.Comment)
newInstance((primer.po.Comment.class)));

}
/-,'::“:

* Create an instance of Comment
-,':/
public primer.po.Comment createComment(String value)
throws javax.xml.bind.JAXBException
{

}
/ ek

* Create an instance of Items

:'r/

public primer.po.Items createltems()
throws javax.xml.bind.JAXBException

return new primer.po.impl.CommentImpl(value);

{
return ((primer.po.Items)
newInstance((primer.po.Items.class)));

}
/-.': *

* Create an instance of PurchaseOrderType
¥ /
public primer.po.PurchaseOrderType
createPurchaseOrderType()
throws javax.xml.bind.JAXBException

{

SCHEMA-DERIVED JAXB CLASSES 27

return ((primer.po.PurchaseOrderType)
newInstance((primer.po.PurchaseOrderType.class)));

PurchaseOrder.java

In PurchaseOrder.java, below:

* ThePurchaseOrder classis part of the primer.po package.

* PurchaseOrder isapublic interface that extends javax.xml.bind.Ele-
ment and primer.po.PurchaseOrderType.

+ Content in instantiations of this class bind to the XML schema element
named purchaseOrder.

The PurchaseOrder. java code looks likethis:
package primer.po;

public interface PurchaseOrder
extends javax.xml.bind.Element, primer.po.PurchaseOrderType{

}

PurchaseOrderType.java

In PurchaseOrderType.java, below:

¢ ThePurchaseOrderType classis part of the primer.po package.

+ Content in instantiations of this class bind to the XML schema child ele-
ment named PurchaseOrderType.

* PurchaseOrderType is a public interface that provides the following
methods:

e getItems();

e« setItems(primer.po.Items value);

e getOrderDate();

e setOrderDate(java.util.Calendar value);
« getComment();

« setComment(java.lang.String value);

e getBillTo(Q);

¢« setBillTo(primer.po.USAddress value);

e getShipTo(Q);

e setShipTo(primer.po.USAddress value);

28 UsING JAXB

The PurchaseOrderType.java code looks like this:
package primer.po;

public interface PurchaseOrderType {
primer.po.Items getItems();
void setItems(primer.po.Items value);
java.util.Calendar getOrderDate();
void setOrderDate(java.util.Calendar value);
java.lang.String getComment();
void setComment(java.lang.String value);
primer.po.USAddress getBill1To(Q);
void setBillTo(primer.po.USAddress value);
primer.po.USAddress getShipTo(Q);
void setShipTo(primer.po.USAddress value);

USAddress.java

In USAddress. java, below:

» TheUSAddress classis part of the primer. po package.

e Content in instantiations of this class bind to the XML schema element
named USAddress.

* USAddress isapublic interface that provides the following methods:

o getState();

o setState(String value);

« getZip(Q;

o setZip(java.math.BigDecimal value);
o getCountry();

o setCountry(String value);
« getCity(Q;

o setCity(String value);

o getStreet();

o setStreet(String value);
o getName();

o setName(String value);

The USAddress. java code looks like this:
package primer.po;

public interface USAddress {
String getState();

BAsIC EXAMPLES

void setState(String value);
java.math.BigDecimal getZip(Q);
void setZip(java.math.BigDecimal value);
String getCountry();

void setCountry(String value);
String getCity(Q);

void setCity(String value);
String getStreet();

void setStreet(String value);
String getName();

void setName(String value);

Basic Examples

This section describes the Basic examples (Unmarshal Read, Modify Marshal,
Unmarshal Validate) that demonstrate how to:

+ Unmarsha an XML document into a Java content tree and access the data
contained within it

» Modify a Java content tree

* UsetheObjectFactory classto create aJavacontent tree from scratch and
then marshal it to XML data

* Perform validation during unmarshalling
» Validate a Java content tree at runtime

Unmarshal Read Example

The purpose of the Unmarshal Read example is to demonstrate how to unmar-
shal an XML document into a Java content tree and access the data contained
withinit.

1. The <INSTALL>/examples/jaxb/unmarshal-read/

Main.java class declaresimports for four standard Java classes plus three
JAXB binding framework classes and the primer. po package:

import java.io.FileInputStream
import java.io.IOException

import java.util.Iterator

import java.util.List

import javax.xml.bind.JAXBContext
import javax.xml.bind.JAXBException

30

UsING JAXB

import javax.xml.bind.Unmarshaller
import primer.po.*;

. A JAXBContext instance is created for handling classes generated in

primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

. An Unmarshaller instanceis created.

Unmarshaller u = jc.createUnmarshaller();

. po.xm1 isunmarshalled into a Java content tree comprising objects gener-

ated by the JAXB binding compiler into the primer. po package.

PurchaseOrder po =
(PurchaseOrder)u.unmarshal(
new FileInputStream("po.xml"));

. A smplestring is printed to system. out to provide a heading for the pur-

chase order invoice.
System.out.printin("Ship the following items to: ");

. get and display methods are used to parse XML content in preparation

for output.

USAddress address = po.getShipTo();
displayAddress(address);

Items items = po.getItems();
displayItems(items);

. Basic error handling isimplemented.

} catch(JAXBException je) {
je.printStackTrace(Q);

} catch(IOException ioe) {
ioe.printStackTrace();

. TheUSAddress branch of the Javatreeiswalked, and address information

isprinted to system.out.

public static void displayAddress(USAddress address) {
// display the address
System.out.println("\t" + address.getName());
System.out.println("\t" + address.getStreet());
System.out.printIn("\t" + address.getCity() +
", " + address.getState() +
" " + address.getZip(Q);

System.out.printIn("\t" + address.getCountry() + "\n");

MoDIFY MARSHAL EXAMPLE 31

9. The Items list branch is walked, and item information is printed to sys-
tem.out.

public static void displayItems(Items items) {
// the items object contains a List of
//primer.po.ItemType objects
List itemTypelList = items.getItem();

10.Walking of the Items branch isiterated until all items have been printed.

for(Iterator iter = itemTypelList.iterator();
jter.hasNext();) {
Items.ItemType item = (Items.ItemType)iter.next();
System.out.printIn("\t" + item.getQuantity() +
" copies of \ + item.getProductName() +

"\"")5

Sample Output
Running java Main for this example produces the following outpult:

Ship the following items to:
Alice Smith
123 Maple Street
Cambridge, MA 12345
us

5 copies of "Nosferatu - Special Edition (1929)"
3 copies of "The Mummy (1959)"

3 copies of "Godzilla and Mothra: Battle for Earth/Godzilla
vs. King Ghidora"

Modify Marshal Example

The purpose of the Modify Marshal example is to demonstrate how to modify a
Java content tree.

1. The <INSTALL>/examples/jaxb/modify-marshal/
Main.java class declaresimportsfor three standard Java classes plus four
JAXB binding framework classes and primer. po package:
import java.io.FileInputStream;
import java.io.IOException;

32

UsING JAXB

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import primer.po.¥;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");
3. AnUnmarshaller instanceis created, and po.xm1 is unmarshalled.

Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =
(PurchaseOrder)u.unmarshal(
new FileInputStream("po.xm1"));

4. set methods are used to modify information in the address branch of the
content tree.

USAddress address = po.getBillTo(Q);
address.setName("John Bob");
address.setStreet("242 Main Street");
address.setCity("Beverly Hills");
address.setState("CA");

address.setZip(new BigDecimal("90210"));

5. A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty APl is used to specify output
encoding; in this case formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();

m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
Boolean.TRUE);

m.marshal(po, System.out);

Sample Output

Running java Main for this example produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="1999-10-20-05:00">

<shipTo country="US">

<name>Alice Smith</name>

<street>123 Maple Street</street>

UNMARSHAL VALIDATE EXAMPLE

<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>

</shipTo>

<bi11To country="US">

<name>John Bob</name>
<street>242 Main Street</street>
<city>Beverly Hills</city>
<state>CA</state>
<zip>90210</zip>

</bil11To>

<items>

<item partNum="242-NO">
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity>
<USPrice>19.99</USPrice>

</item>

<item partNum="242-MU">
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>

</1item>

<item partNum="242-GZ">

<productName>

Godzilla and Mothra: Battle for Earth/Godzilla vs. King Ghidora
</productName>

<quantity>3</quantity>
<USPrice>27.95</USPrice>
</item>

</items>
</purchaseOrder>

Unmarshal Validate Example

The Unmarshal Validate example demonstrates how to enable validation during
unmarshalling (Unmarshal-Time Validation). Note that JAXB provides functions
for validation during unmarshalling but not during marshaling. Validation is
explained in more detail in More About Validation (page 4).

1. The <INSTALL>/examples/jaxb/unmarshal-validate/Main.java
class declares imports for three standard Java classes plus seven JAXB
binding framework classes and the primer. po package:
import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import javax.xml.bind.JAXBContext;

33

UsING JAXB

import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.¥*;
2. A JAXBContext instance is created for handling classes generated in
primer.po.
JAXBContext jc = JAXBContext.newInstance("primer.po");
3. AnUnmarshaller instanceis created.
Unmarshaller u = jc.createUnmarshaller();

4, The default JAXB Unmarshaller ValidationEventHandler isenabled to
send to validation warnings and errorsto system. out. The default config-
uration causes the unmarshal operation to fail upon encountering the first
validation error.

u.setValidating(true);

5. An attempt is made to unmarshal po.xm1 into a Java content tree. For the
purposes of this example, the po.xm1 contains adeliberate error.

PurchaseOrder po =
(PurchaseOrder)u.unmarshal(
new FileInputStream('"po.xml1"));

6. The default validation event handler processes avalidation error, generates
output to system. out, and then an exception is thrown.

} catch(UnmarshalException ue) {
System.out.println("Caught UnmarshalException");
} catch(JAXBException je) {
je.printStackTrace();
} catch(IOException ioe) {
joe.printStackTrace();

Sample Output

Running java Main for this example produces the following output:

DefaultValidationEventHandler: [ERROR]: "-1" does not satisfy
the "positivelnteger" type
Caught UnmarshalException

CusToMIZING JAXB BINDINGS

Customizing JAXB Bindings

The remainder of this chapter describes several examples that build on the con-
cepts demonstrated in the basic examples.

The goa of this section is to illustrate how to customize JAXB bindings by
means of custom binding declarations made in either of two ways:

* Asannotations madeinlinein an XML schema

« Asstatementsin an external file passed to the JAXB binding compiler

Unlike the examplesin Basic Examples (page 29), which focus on the Java code
in the respective Main. java class files, the examples here focus on customiza-
tions made to the XML schema before generating the schema-derived Java bind-
ing classes.

Note: Although JAXB binding customizations must currently be made by hand, it
isenvisioned that atool/wizard may eventually be written by Sun or athird party to
make this process more automatic and easier in general. One of the goals of the
JAXB technology isto standardize the format of binding declarations, thereby mak-
ing it possible to create customization tools and to provide a standard interchange
format between JAXB implementations.

This section just begins to scratch the surface of customizations you can make to
JAXB bindings and validation methods. For more information, please refer to
the JAXB Specification (http://java.sun.com/xm1/downloads/jaxb.htm1).

Why Customize?

In most cases, the default bindings generated by the JAXB binding compiler will
be sufficient to meet your needs. There are cases, however, in which you may
want to modify the default bindings. Some of these include:

» Creating APl documentation for the schema-derived JAXB packages,
classes, methods and constants; by adding custom Javadoc tool annota-
tionsto your schemas, you can explain concepts, guidelines, and rules spe-
cific to your implementation.

e Providing semantically meaningful customized names for cases that the
default XML name-to-Java identifier mapping cannot handle automati-
cally; for example:

35

http://java.sun.com/xml/downloads/jaxb.html

36

UsING JAXB

» Toresolve name collisions (as described in Appendix C.2.1 of the JAXB
Foecification). Note that the JAXB binding compiler detects and reports
al name conflicts.

» To provide names for typesafe enumeration constants that are not legal
Javaidentifiers; for example, enumeration over integer values.

» To provide better names for the Java representation of unnamed model
groups when they are bound to a Java property or class.

» To provide more meaningful package names than can be derived by
default from the target namespace URI.
» Overriding default bindings; for example:
» Specify that amodel group should be bound to a classrather than alist.
» Specify that afixed attribute can be bound to a Java constant.

* Override the specified default binding of XML Schema built-in
datatypes to Java datatypes. In some cases, you might want to introduce
an aternative Java class that can represent additional characteristics of
the built-in XML Schema datatype.

Customization Overview

This section explains some core JAXB customization concepts:

* Inline and External Customizations
» Scope, Inheritance, and Precedence
» Customization Syntax

* Customization Namespace Prefix

Inline and External Customizations

Customizations to the default JAXB bindings are made in the form of binding
declarations passed to the JAXB binding compiler. These binding declarations
can be made in either of two ways:

+ Asinline annotations in asource XML schema
» Asdeclarationsin an external binding customizationsfile
For some people, using inline customizations is easier because you can see your

customizations in the context of the schema to which they apply. Conversely,
using an external binding customization file enables you to customize JAXB

CUSTOMI ZATION OVERVIEW

bindings without having to modify the source schema, and enables you to easily
apply customizations to severa schemafiles at once.

Note: You can combine the two types of customizations—for example, you could
include a reference to an external binding customizations file in an inline annota-
tion—but you cannot declare both an inline and external customization on the same
schema element.

Each of these types of customization is described in more detail below.

Inline Customizations

Customizations to JAXB bindings made by means of inline binding declarations
in an XML schema file take the form of <xsd:appinfo> elements embedded in
schema <xsd:annotation> elements (xsd: isthe XML schema namespace pre-
fix, as defined in W3C XML Schema Part 1: Structures). The general form for
inline customizations is shown below.

<xs:annotation>
<xs:appinfo>

binding declarations

</xs:appinfo>
</Xs:annotation>

Customizations are applied at the location at which they are declared in the
schema. For example, a declaration at the level of a particular element would
apply to that element only. Note that the XML Schema namespace prefix must be
used with the <annotation> and <appinfo> declaration tags. In the example
above, xs: is used as the namespace prefix, so the declarations are tagged
<xs:annotation> and <xs:appinfo>.

UsING JAXB

External Binding Customization Files

Customizations to JAXB bindings made by means of an external file containing
binding declarations take the general form shown below.

<jxb:bindings schemalLocation = "xs:anyURI">
<jxb:bindings node = "xs:string">*
<binding declaration>
<jxb:bindings>
</jxb:bindings>
* schemalocation isaURI reference to the remote schema
* node is an XPath 1.0 expression that identifies the schema node within
schemaLocation to which the given binding declaration is associated.

For example, thefirst schemaLocation/node declarationin a JAXB binding dec-
larations file specifies the schema name and the root schema node:

<jxb:bindings schemalLocation="po.xsd" node="/xs:schema">

A subsequent schemalLocation/node declaration, say for asimpleType element
named zipCodeType in the above schema, would take the form:

<jxb:bindings node="//xs:simpleType[@nrame="ZipCodeType’]”>

Binding Customization File Format

Binding customization files should be straight ASCII text. The name or exten-
sion does not matter, although atypical extension, used in this chapter, is. xjb.

Passing Customization Files to the JAXB Binding
Compiler

Customization files containing binding declarations are passed to the JAXB
Binding compiler, xjc, using the following syntax:

xjc -b <file> <schema>

where <file> is the name of binding customization file, and <schema> is the
name of the schema(s) you want to pass to the binding compiler.

CUSTOMI ZATION OVERVIEW

You can have asingle binding file that contains customizations for multiple sche-
mas, or you can break the customizations into multiple bindings files; for exam-
ple:

xjc schemal.xsd schema2.xsd schema3.xsd -b bindingsl123.xjb

xjc schemal.xsd schema2.xsd schema3.xsd -b bindingsl.xjb -b
bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the command line
does not matter, although each binding customization file must be preceded by
its own -b switch on the command line.

For more information about xjc compiler options in general, see JAXB Com-
piler Options (page 16).

Restrictions for External Binding Customizations
There are several rules that apply to binding declarations made in an external

binding customization file that do not apply to similar declarations made inline
in a source schema:

« Thebinding customization file must begin with the jxb:bindings
version attribute, plus attributes for the JAXB and XMLSchema
namespaces:
<jxb:bindings version="1.0"

xmlns:jxb="http://java.sun.com/xml1/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

« The remote schemato which the binding declaration applies must beiden-
tified explicitly in X Path notation by means of ajxb:bindings declaration
specifying schemalocation and node attributes:

* schemalocation — URI reference to the remote schema

* node — XPath 1.0 expression that identifies the schema node within
schemalocation to which the given binding declaration is associated,;
in the case of theinitial jxb:bindings declaration in the binding cus-
tomization file, thisnodeistypically "/xs:schema"

For information about XPath syntax, see XML Path Language, James
Clark and Steve DeRose, eds., W3C, 16 November 1999. Available at
http://www.w3.0rg/TR/1999/REC-xpath-19991116.

e Similarly, individual nodes within the schemato which customizations are
to be applied must be specified using X Path notation; for example:

39

http://www.w3.org/TR/1999/REC-xpath-19991116

40

UsING JAXB

<jxb:bindings node="//xs:complexType[@name="USAddress']">

In such cases, the customization is applied to the node by the binding
compiler as if the declaration was embedded inline in the node's
<xs:appinfo> element.

To summarize these rules, the external binding element <jxb:bindings> isonly
recognized for processing by a JAXB binding compiler in three cases:

* Whenits parent isan <xs :appinfo> element
* Whenitisan ancestor of another <jxb:bindings> element

« When it is root element of a document—an XML document that has a
<jxb:bindings> element asitsroot is referred to as an externa binding
declaration file

Scope, Inheritance, and Precedence

Default JAXB bindings can be customized or overridden at four different levels,
or scopes, as described in Table 3—7.

Figure 3-1 illustrates the inheritance and precedence of customization declara-
tions. Specifically, declarations towards the top of the pyramid inherit and super-
sede declarations below them. For example, Component declarations inherit
from and supersede Definition declarations; Definition declarations inherit and
supersede Schema declarations; and Schema declarations inherit and supersede
Global declarations.

CUSTOMIZATION OVERVIEW 41

Definition Scope

Global Scope

Figure3-1 Customization Scope Inheritance and Precedence

Customization Syntax

The syntax for the four types of JAXB binding declarations, as well as the syntax
for the XML-to-Java datatype binding declarations and the customization
namespace prefix are described below.

» Globa Binding Declarations

» Schema Binding Declarations

» Class Binding Declarations

» Property Binding Declarations

* <javaTlype> Binding Declarations

» Typesafe Enumeration Binding Declarations
 <javadoc> Binding Declarations
 Customization Namespace Prefix

42

UsING JAXB

Global Binding Declarations

Global scope customizations are declared with <globalBindings>. The syntax
for global scope customizationsis as follows:

<globalBindings>
[collectionType = "collectionType"]
[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"]
[generateIsSetMethod= "true" | "false" | "1" | "@"]
[enableFailFastCheck = "true" | "false" | "1" | "0"]
[choiceContentProperty = "true" | "false" | "1" | "0"]
[underscoreBinding = "asWordSeparator" | "asCharInWord"]
[typesafeEnumBase = "typesafeEnumBase"]
[typesafeEnumMemberName = "generateName" | "generateError"]
[enablelavaNamingConventions = "true" | "false" | "1" | "0"]
[bindingStyle = "elementBinding" | "modelGroupBinding"]
[<javaType> ... </javaType>]*
</globalBindings>

collectionType can be either indexed or any fully qualified class name
that implements java.util.List.

fixedAttributeAsConstantProperty can beeither true, false, 1, Or 0.
The default valueis false.

generateIsSetMethod can be either true, false, 1, or 0. The default
valueis false.

enableFailFastCheck can beeither true, false, 1, 0r 0. If enableFail-
FastCheck is true or 1 and the JAXB implementation supports this
optional checking, type constraint checking is performed when setting a
property. The default valueis false. Please note that the JAXB implemen-
tation does not support failfast validation.

choiceContentProperty can be either true, false, 1, or 0. The default
value is false. choiceContentProperty is not relevant when the bind-
ingStyle iSelementBinding. Therefore, if bindingStyle isspecified as
elementBinding, then the choiceContentProperty must result in an
invalid customization.

underscoreBinding can be either aswWordSeparator or asCharInWord.
The default value is asWordSeparator.

enableJavaNamingConventions can be either true, false, 1, or 0. The
default valueis true.

typesafeEnumBase can be alist of QNames, each of which must resolve
to asimple type definition. The default value is xs : NCName. See Typesafe

CUSTOMI ZATION OVERVIEW

Enumeration Binding Declarations (page 47) for information about local-
ized mapping of simpleType definitionsto Java typesafe enum classes.

* typesafeEnumMemberName can be either generateError Or generate-
Name. The default valueis generateError.

* bindingStyle can be either elementBinding, or mode1GroupBinding.
The default value is elementBinding.

* <javaType> can be zero or more javaType binding declarations. See
<javaType> Binding Declarations (page 45) for more information.

<globalBindings> declarations are only valid in the annotation element of the
top-level schema element. There can only be a single instance of a <gTobalBi-
ndings> declaration in any given schema or binding declarations file. If one
source schema includes or imports a second source schema, the <gTobalBind-
ings> declaration must be declared in the first source schema

Schema Binding Declarations

Schema scope customizations are declared with <schemaBindings>. The syntax
for schema scope customizationsis:

<schemaBindings>

[<package> package </package>]

[<nameXm1Transform> ... </nameXmlTransform>]*
</schemaBindings>

<package [name = "packageName"]
[<javadoc> ... </javadoc>]

</package>

<nameXmlTransform>

[<typeName [suffix="suffix" 1]

[prefix="prefix" 1 /> 1]
[<eTementName [suffix="suffix"]

[prefix="prefix" 1 /> 1]
[<modeTlGroupName [suffix="suffix"]
[prefix="prefix"] />]
[<anonymousTypeName [suffix="suffix"]
[prefix="prefix" 1 />]
</nameXmlTransform>

As shown above, <schemaBinding> declarations include two subcomponents:

e <package>...</package> specifies the name of the package and, if
desired, the location of the APl documentation for the schema-derived
classes.

UsING JAXB

* <nameXmlTransform>...</nameXm1Transform> Specifies customiza-
tions to be applied.

Class Binding Declarations

The <class> binding declaration enables you to customize the binding of a
schema element to a Java content interface or a Java Element interface. <class>
declarations can be used to customize:

» A name for a schema-derived Java interface
» Animplementation class for a schema-derived Java content interface.

The syntax for <class> customizationsis:

<class [name = "className"]
[imp1Class= "imp1Class"] >
[<javadoc> ... </javadoc>]
</class>

* name isthe name of the derived Javainterface. It must be alegal Javainter-
face name and must not contain a package prefix. The package prefix is
inherited from the current value of package.

* implClass is the name of the implementation class for className and
must include the complete package name.

* The <javadoc> element specifies the Javadoc tool annotations for the
schema-derived Java interface. The string entered here must use CDATA or
< to escape embedded HTML tags.

Property Binding Declarations

The <property> binding declaration enables you to customize the binding of an
XML schema element to its Java representation as a property. The scope of cus-
tomization can either be at the definition level or component level depending
upon where the <property> binding declaration is specified.

The syntax for <property> customizationsis:

<property[name = "propertyName"]
[collectionType = "propertyCollectionType"]
[fixedAttributeAsConstantProperty = "true" | "false" | "1" | "0"]
[generateIsSetMethod = "true" | "false" | "1" | "@"]
[enableFailFastCheck ="true" | "false" | "1" | "0"]
[<baseType> ... </baseType>]
[<javadoc> ... </javadoc>]
</property>

CUSTOMI ZATION OVERVIEW

<baseType>

<javaType> ... </javaType>

</baseType>

name defines the customization value propertyName; it must be a legal
Javaidentifier.

collectionType defines the customization value propertyCollection-
Type, whichisthe collection type for the property. propertyCollection-
Type if specified, can be either indexed or any fully-qualified class name
that implements java.util.List.

fixedAttributeAsConstantProperty defines the customization value
fixedAttributeAsConstantProperty. The vaue can be either true,
false, 1, Or 0.

generateIsSetMethod defines the customization value of generatels-
SetMethod. The value can be either true, false, 1, or 0.

enableFailFastCheck defines the customization value enableFail-
FastCheck. The value can be either true, false, 1, or 0. Please note that
the JAXB implementation does not support failfast validation.

<javadoc> customizes the Javadoc tool annotationsfor the property’s get-
ter method.

<javaType> Binding Declarations

The <javaType> declaration provides a way to customize the translation of
XML datatypes to and from Java datatypes. XML provides more datatypes than
Java, and so the <javaType> declaration lets you specify custom datatype bind-
ings when the default JAXB binding cannot sufficiently represent your schema.

Thetarget Java datatype can be a Java built-in datatype or an application-specific
Java datatype. If an application-specific datatype is used as the target, your
implementation must also provide parse and print methods for unmarshalling
and marshalling data. To this end, the JAXB specification supports a
parseMethod and printMethod:

The parseMethod is called during unmarshalling to convert a string from
the input document into a value of the target Java datatype.

TheprintMethod iscalled during marshalling to convert avalue of thetar-
get type into alexical representation.

46

UsING JAXB

If you prefer to define your own datatype conversions, JAXB defines a static
class, DatatypeConverter, to assist in the parsing and printing of valid lexical
representations of the XML Schema built-in datatypes.

The syntax for the <javaType> customization is:

<javaType name= "javaType"
[xmT1Type= "xm1Type" 1]
[hasNsContext = “true” | “false”]
[parseMethod= "parseMethod" 1]
[printMethod= "printMethod" 1>

* name isthe Java datatype to which xm1Type isto be bound.

* xm1Type isthe name of the XML Schema datatype to which javaType is
to bound; this attribute is required when the parent of the <javaType> dec-
laration is <globalBindings>.

» parseMethod isthe name of the parse method to be called during unmar-
shalling.

* printMethod isthe name of the print method to be called during marshal-
ling.

* hasNsContext alows a hamespace context to be specified as a second
parameter to a print or a parse method; can be either true, false, 1, or 0.
By default, this attribute is false, and in most cases you will not need to
changeit.

The <javaType> declaration can be used in:

* A <globalBindings> declaration

* An annotation element for simple type definitions, Globa1Bindings, and
<basetype> declarations.

* A <property> declaration.
See MyDatatypeConverter Class (page 54) for an example of how <javaType>

declarations and the DatatypeConverterInterface interface are implemented
in a custom datatype converter class.

CUSTOMI ZATION OVERVIEW

Typesafe Enumeration Binding Declarations

The typesafe enumeration declarations provide a localized way to map XML
simpleType elements to Java typesafe enum classes. There are two types of
typesafe enumeration declarations you can make:

e <typesafeEnumClass> letsyou map an entire simpleType classto type-
safe enum classes.
e <typesafeEnumMember> letsyou map just selected membersof asimple-
Type classto typesafe enum classes.
In both cases, there are two primary limitations on this type of customization:
* Only simpleType definitions with enumeration facets can be customized
using this binding declaration.

e This customization only applies to a single simpleType definition at a
time. To map sets of similar simpleType definitions on aglobal level, use
the typesafeEnumBase attribute in a <globalBindings> declaration, as
described Global Binding Declarations (page 42).

The syntax for the <typesafeEnumClass> customization is:

<typesafeEnumClass[name = "enumClassName"]
[<typesafeEnumMember> ... </typesafeEnumMember>]*
[<javadoc> enumClassJavadoc </javadoc>]
</typesafeEnumClass>

* name must be alegal Javaldentifier, and must not have a package prefix.

* <javadoc> customizes the Javadoc tool annotations for the enumeration
class.

* You can have zero or more <typesafeEnumMembers> declarations embed-
ded in a<typesafeEnumClass> declaration.

The syntax for the <typesafeEnumMember> customization is:

<typesafeEnumMember name = "enumMemberName'">
[value = "enumMemberValue"]
[<javadoc> enumMemberJavadoc </javadoc>]
</typesafeEnumMember>

* name must always be specified and must be alegal Javaidentifier.
» value must be the enumeration value specified in the source schema.

e <javadoc> customizes the Javadoc tool annotations for the enumeration
constant.

47

48

UsING JAXB

For inline annotations, the <typesafeEnumClass> declaration must be specified
in the annotation element of the <simpleType> element. The <typesafeEnum-
Member> must be specified in the annotation element of the enumeration mem-
ber. This alows the enumeration member to be customized independently from
the enumeration class.

For information about typesafe enum design patterns, see the sample chapter of
Joshua Bloch's Effective Java Programming on the Java Devel oper Connection.

<javadoc> Binding Declarations

The <javadoc> declaration lets you add custom Javadoc tool annotations to
schema-derived JAXB packages, classes, interfaces, methods, and fields. Note
that <javadoc> declarations cannot be applied globally—that is, they are only
valid as a sub-elements of other binding customizations.

The syntax for the <javadoc> customization is:

<javadoc>
Contents in &1t;b>Javadoc<\b> format.
</javadoc>

or

<javadoc>
<< ! [CDATAL
Contents in Javadoc<\b> format

11>

</javadoc>

Note that documentation strings in <javadoc> declarations applied at the pack-
age level must contain <body> open and close tags; for example:

<jxb:package name="primer.myPo">

<jxb:javadoc><! [CDATA[<body>Package Tevel documentation
for generated package primer.myPo.</body>]]>
</jxb:javadoc>

</jxb:package>

Customization Namespace Prefix

All standard JAXB binding declarations must be preceded by a namespace prefix
that maps to the JAXB namespace URI (http://java.sun.com/xml/ns/jaxb).
For example, in this sample, jxb: isused. To this end, any schema you want to

CUSTOMIZE INLINE EXAMPLE 49

customize with standard JAXB binding declarations must include the JAXB
namespace declaration and JAXB version number at the top of the schema file.
For example, in po.xsd for the Customize Inline example, the namespace decla-
ration is as follows:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="1.0">

A binding declaration with the jxb namespace prefix would then take the form:

<xsd:annotation>
<xsd:appinfo>
<jxb:globalBindings binding declarations />
<jxb:schemaBindings>

binding declarations

</jxb:schemaBindings>
</xsd:appinfo>
</xsd:annotation>

Note that in this example, the globalBindings and schemaBindings declara-
tions are used to specify, respectively, global scope and schema scope customi-
zations. These customization scopes are described in more detail in Scope,
Inheritance, and Precedence (page 40).

Customize Inline Example

The Customize Inline example illustrates some basic customizations made by
means of inline annotations to an XML schema named po. xsd. In addition, this
example implements a custom datatype converter class, MyDatatypeCon-
verter.java, which illustrates print and parse methods in the <javaType> cus-
tomization for handling custom datatype conversions.

To summarize this example:

1. po.xsd isan XML schema containing inline binding customizations.

2. MyDatatypeConverter.java isaJavaclassfile that implements print and
parse methods specified by <javaType> customizationsin po. xsd.

50

UsING JAXB

3. Main. javaistheprimary classfileinthe Customizenline example, which
uses the schema-derived classes generated by the JAXB compiler.

Key customizationsin this sample, and the custom MyDatatypeConverter.java
class, are described in more detail below.

Customized Schema

The customized schema used in the Customize Inline example is in the file
<JAVA_HOME>/jaxb/samples/inline-customize/po.xsd. The customizations
areinthe <xsd:annotation> tags.

Global Binding Declarations

The code below shows the globalBindings declarationsin po.xsd:

<jxb:globalBindings
fixedAttributeAsConstantProperty="true"
collectionType="java.util.Vector"
typesafeEnumBase="xsd:NCName"
choiceContentProperty="false"
typesafeEnumMemberName="generateError"
bindingStyle="elementBinding"
enableFailFastCheck="false"
generateIsSetMethod="false"
underscoreBinding="asCharInWord" />

In this example, all values are set to the defaults except for collectionType.

» Setting collectionType to java.util.Vector specifies that all listsin
the generated implementation classes should be represented internally as
vectors. Note that the class name you specify for collectionType must
implement java.util.List and be calable by newInstance.

e Setting fixedAttributeAsConstantProperty to true indicates that all
fixed attributes should be bound to Java constants. By default, fixed
attributes are just mapped to either simple or collection property, which
ever is more appropriate.

» Please note that the JAXB implementation does not support the enable-
FailFastCheck attribute.

* If typesafeEnumBase t0 xsd:string it would be a global way to specify
that all simple type definitions deriving directly or indirectly from

CUSTOMIZE INLINE EXAMPLE

xsd:string and having enumeration facets should be bound by default to
atypesafe enum. If typesafeEnumBase is set to an empty string, ", no
simpTle type definitions would ever be bound to atypesafe enum classby
default. The value of typesafeEnumBase can be any atomic simple type
definition except xsd:boolean and both binary types.

Note: Using typesafe enums enabl es you to map schemaenumeration valuesto Java
constants, which in turn makes it possible to do compares on Java constants rather
than string values.

Schema Binding Declarations

The following code shows the schema binding declarationsin po.xsd:

<jxb:schemaBindings>
<jxb:package name="primer.myPo">
<jxb:javadoc>
<! [CDATA[<body> Package Tevel documentation for
generated package primer.myPo.</body>]]>
</jxb:javadoc>
</jxb:package>
<jxb:nameXm1Transform>
<jxb:elementName suffix="Element"/>
</jxb:nameXm1Transform>
</jxb:schemaBindings>

e <jxb:package name="primer.myPo"/> specifiesthe primer.myPo asthe
package in which the schema-derived classes should be generated.

* <jxb:nameXmlTransform> Specifiesthat all generated Java element inter-
faces should have Element appended to the generated names by default.
For example, when the JAXB compiler is run against this schema, the ele-
ment interfaces CommentElement and PurchaseOrderElement will be
generated. By contrast, without this customization, the default binding
would instead generate Comment and PurchaseOrder.

This customization is useful if a schema uses the same name in different
symbol spaces; for example, in global element and type definitions. In
such cases, this customization enables you to resolve the collision with
one declaration rather than having to individually resolve each collision
with a separate binding declaration.

52 UsING JAXB

* <jxb:javadoc> specifies customized Javadoc tool annotations for the
primer.myPo package. Note that, unlike the <javadoc> declarations at the
class level, below, the opening and closing <body> tags must be included

when the <javadoc> declaration is made at the package level.

Class Binding Declarations

The following code shows the class binding declarationsin po. xsd:

<xsd:compTlexType name="PurchaseOrderType">
<xsd:annotation>
<xsd:appinfo>
<jxb:class name="POType">
<jxb:javadoc>
A &1t;b>Purchase Order consists of
addresses and items.
</jxb:javadoc>
</jxb:class>
</xsd:appinfo>
</xsd:annotation>

</xsd:complexType>

The Javadoc tool annotations for the schema-derived POType class will contain
the description "A &1t;b>Purchase Order consists of addresses
and items." The< isused to escape the opening bracket on the HTML

tags.

Note: When a<class> customization is specified in the appinfo element of acom-
plexType definition, asit ishere, the comp1exType definition isbound to aJavacon-

tent interface.

Later in po.xsd, another <javadoc> customization is declared at this class level,

but thistime the HTML string is escaped with CDATA:

<xsd:annotation>
<xsd:appinfo>
<jxb:class>
<jxb:javadoc>
<! [CDATA[First Tine of documentation for a
USAddress.1]>

CUSTOMIZE INLINE EXAMPLE 53

</jxb:javadoc>
</jxb:class>
</xsd:appinfo>
</xsd:annotation>

Note: If you want to include HTML markup tagsin a<jaxb: javadoc> customiza-
tion, you must enclose the data within a CDATA section or escape all |eft angle brack-
ets using &l1t;. See XML 1.0 2nd Edition for more information (http://
www.w3.0rg/TR/2000/REC-xm1-20001006#sec-cdata-sect).

Property Binding Declarations

Of particular interest here is the generateIsSetMethod customization, which
causes two additional property methods, isSetQuantity and unsetQuantity, to
be generated. These methods enable a client application to distinguish between
schema default values and values occurring explicitly within an instance docu-
ment.

For example, in po.xsd:

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="1item" minOccurs="1"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" default="10">
<xsd:annotation>
<xsd:appinfo>
<jxb:property generateIsSetMethod="true"/>
</xsd:appinfo>
</xsd:annotation>

</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>

The @generateIlsSetMethod applies to the quantity element, which is bound
to a property within the Items.ItemType interface. unsetQuantity and
isSetQuantity methods are generated in the Items.ItemType interface.

http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect
http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect

UsING JAXB

MyDatatypeConverter Class

The <INSTALL>/examples/jaxb/inline-customize

/MyDatatypeConverter class, shown below, provides a way to customize the
tranglation of XML datatypes to and from Java datatypes by means of a
<javaType> customization.

package primer;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;

public class MyDatatypeConverter {

public static short parselntegerToShort(String value) {
BigInteger result =
DatatypeConverter.parselnteger(value);
return (short) (result.intValue());

}

public static String printShortToInteger(short value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);

}

public static int parseIntegerToInt(String value) {
BigInteger result =
DatatypeConverter.parselnteger(value);

return result.intValue();

}

public static String printIntToInteger(int value) {
BigInteger result = BigInteger.valueOf(value);
return DatatypeConverter.printInteger(result);
}
b

The following code shows how the MyDatatypeConverter classisreferenced in
a<javaType> declarationin po.xsd:

<xsd:simpleType name="ZipCodeType'>
<xsd:annotation>
<xsd:appinfo>
<jxb:javaType name="1int"
parseMethod="primer.MyDatatypeConverter.parselntegerToInt"
printMethod="primer.MyDatatypeConverter.printIntTo Integer" />
</xsd:appinfo>
</xsd:annotation>

DATATYPE CONVERTER EXAMPLE

<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxIncTlusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

In this example, the jxb:javaType binding declaration overrides the default
JAXB binding of this type to java.math.BigInteger. For the purposes of the
Customize Inline example, the restrictions on ZipCodeType—specifically that
legal US ZIP codes are limited to five digits—make it so all valid values can eas-
ily fit within the Java primitive datatype int. Note also that, because <jxb:jav-
aType name="int"/> is declared within zZipCodeType, the customization
appliesto al JAXB properties that reference this simpl1eType definition, includ-
ing the getZip and setZip methods.

Datatype Converter Example

The Datatype Converter example is very similar to the Customize Inline exam-
ple. As with the Customize Inline example, the customizations in the Datatype
Converter example are made by using inline binding declarations in the XML
schemafor the application, po. xsd.

The global, schema, and package, and most of the class customizations for the
Customize Inline and Datatype Converter examples are identical. Where the
Datatype Converter example differs from the Customize Inline exampleisin the
parseMethod and printMethod used for converting XML data to the Java int
datatype.

Specificaly, rather than using methods in the custom MyDataTypeConverter
class to perform these datatype conversions, the Datatype Converter example
uses the built-in methods provided by javax.xml1.bind.DatatypeConverter:

<xsd:simpleType name="ZipCodeType">
<xsd:annotation>
<xsd:appinfo>
<jxb:javaType name="1int"
parseMethod="javax.xml.bind.DatatypeConverter.parselnt"
printMethod="javax.xml.bind.DatatypeConverter.printInt"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="xsd:integer">

55

56

UsING JAXB

<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

External Customize Example

The External Customize exampleisidentical to the Datatype Converter example,
except that the binding declarations in the External Customize example are made
by means of an external binding declarations file rather than inline in the source
XML schema.

The binding customization file used in the External Customize example is
<INSTALL>/examples/jaxb/external-customize/binding.xjb

This section compares the customization declarations in bindings.xjb with the
analogous declarations used in the XML schema, po. xsd, in the Datatype Con-
verter example. The two sets of declarations achieve precisely the same results.

» JAXB Version, Namespace, and Schema Attributes

» Global and Schema Binding Declarations

* Class Declarations

JAXB Version, Namespace, and Schema
Attributes

All JAXB binding declarations files must begin with:

* JAXB version number
» Namespace declarations
e Schema name and node

The version, namespace, and schema declarations in bindings.xjb are as fol-
lows:

<jxb:bindings version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<jxb:bindings schemalLocation="po.xsd" node="/xs:schema">

<binding_declarations>

EXTERNAL CUSTOMIZE EXAMPLE

</jxb:bindings>
<!-- schemalocation="po.xsd" node="/xs:schema" -->
</jxb:bindings>

JAXB Version Number

An XML filewith aroot element of <jaxb:bindings> isconsidered an externa
binding file. The root element must specify the JAXB version attribute with
which its binding declarations must comply; specifically the root <jxb:bind-
ings> element must contain either a <jxb:version> declaration or aversion
attribute. By contrast, when making binding declarations inline, the JAXB ver-
sion number is made as attribute of the <xsd: schema> declaration:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="1.0">

Namespace Declarations

As shown in JAXB Version, Namespace, and Schema Attributes (page 56), the
namespace declarations in the external binding declarations file include both the
JAXB namespace and the XML Schema namespace. Note that the prefixes used
in this example could in fact be anything you want; the important thing isto con-
sistently use whatever prefixes you define here in subsequent declarations in the
file.

Schema Name and Schema Node

The fourth line of the code in JAXB Version, Namespace, and Schema
Attributes (page 56) specifies the name of the schema to which this binding dec-
larations file will apply, and the schema node at which the customizations will
first take effect. Subsequent binding declarations in this file will reference spe-
cific nodes within the schema, but this first declaration should encompass the
schemaas awhole; for example, in bindings.xjb:

<jxb:bindings schemalLocation="po.xsd" node="/xs:schema">

Global and Schema Binding Declarations

The global schema binding declarations in bindings.xjb are the same as those
in po.xsd for the Datatype Converter example. The only difference is that
because the declarations in po.xsd are made inline, you need to embed them in

57

58 UsING JAXB

<xs:appinfo> elements, which are in turn embedded in <xs:annotation> ele-
ments. Embedding declarations in this way is unnecessary in the external bind-
ingsfile.

<jxb:globalBindings
fixedAttributeAsConstantProperty="true"
collectionType="java.util.Vector"
typesafeEnumBase="xs :NCName"
choiceContentProperty="false"
typesafeEnumMemberName="generateError"
bindingStyle="elementBinding"
enableFailFastCheck="false"
generatelsSetMethod="false"
underscoreBinding="asCharInWord"/>
<jxb:schemaBindings>
<jxb:package name="primer.myPo">
<jxb:javadoc><! [CDATA[<body>Package Tevel
documentation for generated package primer.myPo.</body>]]>
</jxb:javadoc>
</jxb:package>
<jxb:nameXm1Transform>
<jxb:elementName suffix="Element"/>
</jxb:nameXmlTransform>
</jxb:schemaBindings>

By comparison, the syntax used in po.xsd for the Datatype Converter example
is:

<xsd:annotation>
<xsd:appinfo>
<jxb:globalBindings
<binding_declarations>
<jxb:schemaBindings>
<binding_declarations>
</jxb:schemaBindings>

</xsd:appinfo>
</xsd:annotation>

Fix COLLIDES EXAMPLE

Class Declarations

The class-level binding declarations in bindings.xjb differ from the analogous
declarationsin po. xsd for the Datatype Converter example in two ways:

« Aswith all other binding declarations in bindings.xjb, you do not need to
embed your customizations in schema <xsd: appinfo> elements.

* You must specify the schema node to which the customization will be
applied. The general syntax for thistype of declaration is:

<jxb:bindings node="//<node_type>[@name="<node_name>"']">

For example, the following code shows binding declarations for the complex-
Type named USAddress.

<jxb:bindings node="//xs:complexType[@nrame="'USAddress']">
<jxb:class>
<jxb:javadoc>
<! [CDATA[First 1ine of documentation for a USAddress.]]>
</jxb:javadoc>
</jxb:class>

<jxb:bindings node=".//xs:element[@name="name']">
<jxb:property name="toName"/>
</jxb:bindings>

<jxb:bindings node=".//xs:element[@nhame="zip']">
<jxb:property name="zipCode"/>
</jxb:bindings>
</jxb:bindings>
<!-- node="//xs:complexType[@name="'USAddress']" -->

Notein this example that USAddress isthe parent of the child elements name and
zip, and therefore a </jxb:bindings> tag encloses the bindings declarations
for the child elements as well as the class-level javadoc declaration.

Fix Collides Example

The Fix Collides example illustrates how to resolve name conflicts—that is,
places in which a declaration in a source schema uses the same name as another
declaration in that schema (namespace collisions), or places in which a declara-
tion uses a name that does tranglate by default to alegal Java name.

59

60

UsING JAXB

Note: Many name collisions can occur because XSD Part 1 introduces six unique
symbol spaces based on type, while Java only has only one. There is a symbols
space for type definitions, el ements, attributes, and group definitions. As aresult, a
valid XML schema can use the exact same name for both atype definition and aglo-
bal element declaration.

For the purposes of this example, it is recommended that you remove the bind-
ing parameter to the xjc task in the build.xm1 file in the <INSTALL>/exam-
ples/jaxb/fix-collides directory to display the error output generated by the
xjc compiler. The XML schema for the Fix Collides, example.xsd, contains
deliberate name conflicts.

Like the External Customize example, the Fix Collides example uses an external
binding declarations file, binding.xjb, to define the JAXB binding customiza-
tions.

The example.xsd Schema

Looking at the Conflicts

Output From Running the ant Task Without Using a Binding Declarations
File

The binding.xjb Declarations File

Resolving the Conflictsin example.xsd

The example.xsd Schema

The XML schema, <INSTALL>/examples/jaxb/fix-collides

/example.xsd, used in the Fix Collides example illustrates common name con-
flicts encountered when attempting to bind XML names to unique Java identifi-
ersin a Java package. The schema declarations that result in name conflicts are
highlighted in bold below.

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
xmlns:jxb="http://java.sun.com/xml/ns/jaxb”
jxb:version="1.0">

<xs:element name="Class” type="xs:int”/>
<xs:element name="FooBar” type="FooBar”/>
<xs:complexType name="FooBar”’>
<XS:sequence>
<xs:element name="foo” type="xs:int”/>
<xs:element ref="Class”/>

Fix COLLIDES EXAMPLE 61

<xs:element name="zip” type="xs:integer”/>
</Xs:sequence>
<xs:attribute name="zip” type="xs:string”/>
</xs:complexType>
</xs:schema>

Looking at the Conflicts

Thefirst conflict in example.xsd isthe declaration of the element name Class:
<xs:element name="Class” type="xs:int”/>

Class isareserved word in Java, and while it is legal in the XML schema lan-
guage, it cannot be used as a name for a schema-derived class generated by
JAXB.

When this schema s run against the JAXB binding compiler with the ant fail
command, the following error message is returned:

[xjc] [ERROR] Attempt to create a property having the same
name as the reserved word "Class".
[xjc] Tine 6 of example.xsd

The second conflict isthat there are an element and a complexType that both use
the name Foobar:

<xs:element name="FooBar” type="FooBar”/>
<xs:complexType name="FooBar”>

In this case, the error messages returned are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.

[xjc] Tine 22 of example.xsd

[xjcl [ERROR] (Relevant to above error) another one is
generated from this schema component.

[xjc] Tine 20 of example.xsd

The third conflict is that there are an element and an attribute both named
zip:

<xs:element name="zip” type="xs:integer”/>
<xs:attribute name="zip” type="xs:string”/>

62

UsING JAXB

The error messages returned here are:

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.

[xjc] Tine 22 of example.xsd

[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.

[xjc] Tine 20 of example.xsd

Output From Running the ant Task Without
Using a Binding Declarations File

Here is the output that is returned if you run the ant task in the <INSTALL>/
examples/jaxb/fix-collides directory without specifying the binding
parameter to the xjc task in the build.xm1 file:

[echo] Compiling the schema w/o external binding file
(name collision errors expected)...

[xjc] Compiling file:/C:/javaeetutorial5/examples/jaxb/
fix-collides/example.xsd

[xjc] [ERROR] Attempt to create a property having the same
name as the reserved word "Class".

[xjc] Tine 14 of example.xsd

[xjc] [ERROR] A property with the same name "Zip" is
generated from more than one schema component.

[xjc] Tine 17 of example.xsd

[xjc] [ERROR] (Relevant to above error) another one is
generated from this schema component.

[xjc] Tine 15 of example.xsd

[xjc] [ERROR] A class/interface with the same name
"generated.FooBar" is already in use.

[xjc] Tine 9 of example.xsd

[xjc] [ERROR] (Relevant to above error) another one is
generated from here.

[xjc] Tine 18 of example.xsd

The binding.xjb Declarations File

The <INSTALL>/examples/jaxb/fix-collides/binding.xjb binding declara-
tions file resolves the conflicts in examples.xsd by means of several customiza-
tions.

Fix COLLIDES EXAMPLE

Resolving the Conflicts in example.xsd

The first conflict in example.xsd, using the Java reserved name Class for an
element name, is resolved in binding.xjb with the <class> and <property>
declarations on the schema element node Class:

<jxb:bindings node="//xs:element[@name="Class']">
<jxb:class name="Clazz"/>
<jxb:property name="Clazz"/>

</jxb:bindings>

The second conflict in example.xsd, the namespace collision between the ele-
ment FooBar and the complexType FooBar, is resolved in binding.xjb by
using a <nameXmlTransform> declaration at the <schemaBindings> level to
append the suffix ETement to al element definitions.

This customization handles the case where there are many name conflicts due to
systemic collisions between two symbol spaces, usually named type definitions
and globa element declarations. By appending a suffix or prefix to every Java
identifier representing a specific XML symbol space, this single customization
resolves al name collisions:

<jxb:schemaBindings>
<jxb:package name="example"/>
<jxb:nameXmlTransform>
<jxb:elementName suffix="Element"/>
</jxb:nameXm1Transform>
</jxb:schemaBindings>

The third conflict in example.xsd, the namespace collision between the ele-
ment zip and the attribute zip, isresolvedin binding.xjb by mapping the
attribute zip to property named zipAttribute:

<jxb:bindings node=".//xs:attribute[@nhame="'zip']">
<jxb:property name="zipAttribute"/>
</jxb:bindings>

If you add the binding parameter you removed back to the xjc task in the
build.xml file and then run ant in the <INSTALL>/examples/jaxb/fix-col-
lides directory, the customizations in binding.xjb will be passed to the xjc
binding compiler, which will then resolve the conflicts in example.xsd in the
schema-derived Java classes.

63

64 UsING JAXB

Bind Choice Example

The Bind Choice example shows how to bind a choice model group to a Java
interface. Like the External Customize and Fix Collides examples, the Bind
Choice example uses an externa binding declarations file, binding.xjb, to
define the JAXB binding customization.

The schemadeclarationsin <INSTALL>/examples/jaxb/bind-choice
/example.xsd that will be globally changed are highlighted in bold below.

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
xmlns:jxb="http://java.sun.com/xml1/ns/jaxb”
jxb:version="1.0">

<xs:element name="FooBar”>
<xs:complexType>
<xs:sequence>
<xs:element name="fo0” type="xs:int”/>
<xs:element ref="Class”/>
<xs:choice>
<xs:element name="phoneNumber” type="xs:string”/>
<xs:element name="speedDial” type="xs:int”/>
</xs:choice>
<xs:group ref="ModelGroupChoice”/>
</Xs:sequence>
<xs:attribute name="zip” type="xs:string”/>
</xs:complexType>
</xs:element>

<xs:group name="ModelGroupChoice”>
<xs:choice>
<xs:element name="bool” type="xs:boolean”’/>
<xs:element name="comment” type="xs:string”’/>
<xs:element name="value” type="xs:int”/>
</xs:choice>
</xs:group>
</xs:schema>

Customizing a choice Model Group

The <INSTALL>/examples/jaxb/bind-choice/binding.xjb binding declara-
tions file demonstrates one way to override the default derived names for choice

BIND CHOICE EXAMPLE

model groups in example.xsd by means of a <jxb:globalBindings> declara-
tion:

<jxb:bindings schemalLocation="example.xsd” node="/xs:schema">
<jxb:globalBindings bindingStyle="modelGroupBinding"/>
<jxb:schemaBindings/>
<jxb:package name="example”/>
</jxb:schemaBindings>
</jxb:bindings
</jxb:bindings>

This customization results in the choice model group being bound to its own
content interface. For example, given the following choice model group:

<xs:group name="ModelGroupChoice”>
<xs:choice>
<xs:element name="bool” type="xs:boolean”/>
<xs:element name="comment” type="xs:string”/>
<xs:element name="value” type="xs:int”/>
</xs:choice>
</Xs:group>

the globalBindings customization shown above causes JAXB to generate the
following Java class:

/:“: *
* Java content class for model group.
:‘:/
public interface ModelGroupChoice {
int getValue(Q);
void setValue(int value);
boolean isSetValue();

java.lang.String getComment();
void setComment(java.lang.String value);
boolean 1isSetComment();

boolean isBoo1();
void setBool(boolean value);
boolean isSetBool1();

Object getContent();
boolean isSetContent();
void unSetContent();

65

66

UsING JAXB

Calling getContent returns the current value of the Choice content. The setters
of this choice are just like radio buttons; setting one unsets the previoudy set
one. This class represents the data representing the choice.

Additionally, the generated Java interface FooBarType, representing the anony-
mous type definition for element FooBar, contains a nested interface for the
choice model group containing phoneNumber and speedDial.

Java-toSchema Examples

The Java-to-Schema examples show how to use annotations to map Java classes
to XML schema.

j2s-create-marshal Example

The j2s-create-marhal example illustrates Java to schema databinding. It demon-
strates marshalling and unmarshalling of JAXB annotated classes. The example
also shows how to enable JAXP 1.3 validation at unmarshal time using a schema
file that was generated from the JAXB mapped classes.

The schemafile, bc. xsd, was generated with the following commands:

% schemagen src/cardfile/*.java
% cp schemal.xsd bc.xsd

Note that schemal. xsd, was copied to bc.xsd; schemagen does not allow you to
specify a schema name of your choice.

j2s-xmlAccessorOrder Example

The j2s-xmlAccessorOrder example shows how to use the @X ml A ccessorOrder
and @XmIType.propOrder annotations to dictate the order in which XML con-
tent is marshalled/unmarshalled by a Java type.

Java-to-Schema maps a JavaBean's properties and fields to an XML Schema
type. The class el ements are mapped to either an XML Schema complex type or
an XML Schema simple type. The default element order for a generated schema
type is currently unspecified because Java reflection does not impose a return
order. Thelack of reliable element ordering negatively impacts application port-
ability. You can use two annotations, @XmlAccessorOrder and @XmIType.pro-

J25-XMLACCESSORORDER EXAMPLE

pOrder, to define schema element ordering for applications that need to be
portable across JAXB Providers.

The @XmlAccessorOrder annotation imposes one of two element ordering algo-
rithms, AccessorOrder.UNDEFINED or AccessorOrder.ALPHABETICAL.
AccessorOrder. UNDEFINED is the default setting. The order is dependent on
the system's reflection implementation. AccessorOrder. ALPHABETICAL
orders the elements in lexicographic order as determined by
java.lang.String.CompareTo(String anotherString).

You can define the @XmlAccessorOrder annotation for annotation type Ele-
mentType.PACKAGE on aclass object. When the @XmlAccessorOrder anno-
tation is defined on a package, the scope of the formatting ruleis active for every
class in the package.

When defined on aclass, the ruleis active on the contents of that class.

There can be multiple @XmlAccessorOrder annotations within a package. The
order of precedence isthe innermost (class) annotation takes precedence over the
outer annotation. For example, if @XmlAccessorOrder(Accesso-
rOrder ALPHABETICAL) is defined on a package and @XmlAccesso-
rOrder(AccessorOrder. UNDEFINED) is defined on a class in that package, the
contents of the generated schema type for the class would be in an unspecified
order and the contents of the generated schema type for evey other class in the
package would be alphabetical order.

The @XmlType annotation can be defined for a class. The annotation element
propOrder() in the @XmIType annotation allows you to specify the content
order in the generated schema type. When you use the @XmlType.propOrder
annotation on a class to specify content order, all public properties and public
fieldsin the class must be specified in the parameter list. Any public property or
field that you want to keep out of the parameter list must be annotated with
@XmlAttribute or @XmlTransient.

The default content order for @XmIType.propOrder is{} or {""}, not active. In
such cases, the active @XmlAccessorOrder annotation takes precedence. When
class content order is specified by the @Xml Type.propOrder annotation, it takes
precedence over any active @XmlAccessorOrder annotation on the class or
package. If the @XmlAccessorOrder and @XmlType.propOrder(A, B, ...)
annotations are specified on a class, the propOrder always takes precedence
regardless of the order of the annontation statements. For example, in the code

67

68 UsING JAXB

bel ow, the @XmlAccessorOrder annotation precedes the @Xml Type.propOrder
annotation.

@XmlAccessorOrder(AccessorOrder.ALPHABETICAL)
@Xm1Type(propOrder={"name", "city"})
public class USAddress {

public String getCity() {return city;}

public void setCity(String city) {this.city = city;}
public String getName() {return name;}
= name;}

public void setName(String name) {this.name
3

In the cade below, the @X ml Type.propOrder annotation precedes the @XmlAc-
cessorOrder annotation.

@Xm1Type(propOrder={"name", "city"})
@XmlAccessorOrder(AccessorOrder.ALPHABETICAL)
public class USAddress {

public String getCity() {return city;}

public void setCity(String city) {this.city = city;}

public String getName() {return name;}
public void setName(String name) {this.name = name;}

}

In both scenarios, propOrder takes precedence and the identical schema content
shown below will be generated.

<xs:complexType name="usAddress">
<Xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="0"/>
<xs:element name="city" type="xs:string" minOccurs="0"/>
</Xs:sequence>
</xs:complexType>

The purchase order code example demonstrates the affects of schema content
ordering using the @XmlAccessorOrder annotation at the package and class
level, and the @X mI Type.propOrder annotation on a class.

Class package-info.java defines @XmlAccessorOrder to be ALPHABETI-
CAL for the package. The public fields shipTo and bi11To in class Purchase-

J2S-XMLADAPTER-FIELD EXAMPLE

OrderType will be affected in the generated schema content order by this rule.
Class USAddress defines the @XmlType.propOrder annotation on the class.
This demonstates user-defined property order superseding ALPHABETICAL
order in the generated schema.

The generated schemafile can be found in directory schemas.

j2s-xmlAdapter-field Example

The j2s-xmlAdapter-field example demonstrates how to use the XmlAdapter
interface and the @XmlJavaTypeAdapter annotation to provide a custom map-
ping of XML content into and out of a HashMap (field) that uses an “int” as the
key and a*“string” asthe value.

Interface Xm1Adapter and annotation @XmlJavaTypeAdapter are used for spe-
cial processing of datatypes during unmarshalling/marshalling. There are a vari-
ety of XML datatypes for which the representation does not map easily into Java
(for example, xs:DateTime and xs:Duration), and Java types which do not
map conveniently into XML representations, for example implementations of
java.util.Collection (such asList) and java.util.Map (such as HashMap)
or for non-JavaBean classes. It isfor these cases that

The Xm1Adapter interface and the @XmlJavaTypeAdapter annotation are pro-
vided for cases such as these. This combination provides a portable mechanism
for reading/writing XML content into and out of Java applications.

69

70 UsING JAXB

The Xm1Adapter interface defines the methods for data reading/writing.

/:':

ValueType - Java class that provides an XML representation
of the data. It is the object that is used for
marshalling and unmarshalling.

BoundType - Java class that is used to process XML content.

:':/

public abstract class XmlAdapter<ValueType,BoundType> {
// Do-nothing constructor for the derived classes.
protected XmlAdapter() {}

// Convert a value type to a bound type.
public abstract BoundType unmarshal(ValueType v);

// Convert a bound type to a value type.
public abstract ValueType marshal(BoundType v);
}

You can use the @XmlJavaTypeAdapter annotation to associate a particular
XmlAdapter implementation with a Target type, PACKAGE, FIELD,
METHOD, TYPE, or PARAMETER.

The j2s-xmlAdapter-field example demonstrates an XmlAdapter for mapping
XML content into and out of a (custom) HashMap. The HashMap object, basket,
in class KitchenWorldBasket, uses a key of type “int” and a value of type
“String”. We want these datatypes to be reflected in the XML content that is
read and written. The XML content should look like this.

<basket>
<entry key="9027">glasstop stove in black</entry>
<entry key="288">wooden spoon</entry>

</basket>

The default schema generated for Java type HashMap does not reflect the desired
format.

<xs:element name="basket">
<xs:complexType>
<XS:sequence>
<xs:element name="entry" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<XS:sequence>

J2S-XMLADAPTER-FIELD EXAMPLE

<xs:element name="key" minOccurs="0"
type="xs:anyType"/>
<xs:element name="value" minOccurs="0"
type="xs:anyType" />
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

In the default HashMap schema, key and value are both elements and are of
datatype anyType. The XML content will look like this:

<basket>
<entry>
<key>9027</>
<value>glasstop stove in black</>
</entry>
<entry>
<key>288</>
<value>wooden spoon</>
</entry>
</basket>

To resolve this issue, we wrote two Java classes, PurchaselList and PartEntry,
that reflect the needed schema format for unmarshalling/marshalling the content.
The XML schema generated for these classesis as follows:

<xs:complexType name="PurchaselListType">
<XS:sequence>
<xs:element name="entry" type="partEntry"
nillable="true" maxOccurs="unbounded"
minOccurs="0"/>
</Xs:sequence>
</xs:complexType>

<xs:complexType name="partEntry">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="key" type="xs:int"
use="required"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>

71

72

UsING JAXB

Class AdapterPurchaseListToHashMap implements the Xm1Adapter interface.
In class KitchenWorldBasket, the @XmlJavaTypeAdapter annotation is used to
pair AdapterPurchaseListToHashMap with field HashMap basket. This pairing
will cause the marshal/unmarshal method of AdapterPurchaselistToHashMap
to be called for any corresponding marshal/unmarshal action on KitchenWorld-
Basket.

j2s-xmilAttribute-field Example

The j2s-xmlAttribute-field example shows how to use the @XmlAttribute anno-
tation to define a property or field to be treated as an XML attribute.

The @XmlAttribute annotation maps a field or JavaBean property to an XML
attribute. The following rules are imposed:

» A staticfinal field is mapped to a XML fixed attribute.

» When thefield or property is a collection type, the items of the collection
type must map to a schema simple type.

» When the field or property is other than a collection type, the type must
map to a schema simple type.

When following the JavaBean programming paradigm, a property is defined by a
“get” and “set” prefix on afield name.

int zip;
public int getZip(Q{return zip;}
public void setZip(int z){zip=z;}

Within a bean class, you have the choice of setting the @XmlAttribute annota-
tion on one of three components: the field, the setter method, or the getter
method. If you set the @XmlAttribute annotation on the field, the setter method
will need to be renamed or there will be a naming conflict at compiletime. If you
set the @XmlAttribute annotationt on one of the methods, it must be set on
either the setter or getter method, but not on both.

The j2s-xmlAttribute-field example shows how to use the @XmlAttribute anno-
tationd on a static final field, on afield rather than on one of the corresponding
bean methods, on a bean property (method), and on a field that is other than a
collection type. In class USAddress, fields, country, and zip are tagged as
attributes. The setzip method was disabled to avoid the compile error. Prop-
erty state was tagged as an attribute on the setter method. You could have used
the getter method instead. In class PurchaseOrderType, field cCardvendor isa

J2S-XMLROOTELEMENT EXAMPLE

non-collection type. It meets the requirment of being a simple type; it is an
enum type.

j2s-xmlRootElement Example

The j2s-xmIRootElement example demonstrates the use of the @XmlRootEle-
ment annotation to define an XML element name for the XML schema type of
the corresponding class.

The @XmIRootElement annotation maps a class or an enum type to an XML
eement. At least one element definition is needed for each top-level Java type
used for unmarshalling/marshalling. If there is no element definition, thereis no
starting location for XML content processing.

The @XmIRootElement annotation uses the class name as the default element
name. You can change the default name by using the annotation attribute name.
If you do, the specified name will then be used as the element name and the type
name. It is common schema practice for the element and type namesto be differ-
ent. You can use the @Xml Type annotation to set the element type name.

The namespace attribute of the @XmlRootElement annotation is used to define a
namespace for the element.

j2s-xmlISchemaType-class Example

The j2s-XmlSchemaType-class example demonstrates the use of the annotation
@Xml SchemaType to customize the mapping of a property or field to an XML
built-in type.

The @XmlSchemaType annotation can be used to map a Java type to one of the
XML built-in types. This annotation is most useful in mapping a Java type to
one of the nine date/time primitive datatypes.

When the @XmlSchemaType annotation is defined at the package level, the
identification requires both the XML built-in type name and the corresponding
Javatypeclass. A @XmlSchemaType definition on afield or property takes pre-
cedence over a package definition.

The j2s-Xml SchemaType-clasexampl e shows how to use the @Xml SchemaType
annotation at the package level, on afield and on aproperty. File TrackingOrder
has two fields, orderDate and deliveryDate, which are defined to be of type
XMLGregorianCalendar. The generated schemawill define these elementsto be

73

74

UsING JAXB

of XML built-in type gMonthDay. This relationship was defined on the package
in the file package-info.java. Field shipDate in file TrackingOrder is also
defined to be of type XMLGregorianCalendar, but the @Xml SchemaType anno-
tation statements override the package definition and specify the field to be of
type date. Property method getTrackingDuration definesthe schema e ement
to be defined as primitive type duration and not Javatype String.

j2s-xmliType Example

The j2s-xmIType example demonstrates the use of annotation @XmiType.
Annotation @XmIType maps a class or an enum type to a XML Schematype.

A class must have either a public zero arg constructor or a static zero arg factory
method in order to be mapped by this annotation. One of these methods is used
during unmarshalling to create an instance of the class. The factory method may
reside within in afactory class or the existing class. Thereisan order of presed-
ence as to which method is used for unmarshalling.

» If afactory classis identified in the annotation, a corresponding factory
method in that class must also be identified and that method will be used.

 If afactory method is identified in the annotation but no factory classis
identified, the factory method must reside in the current class. The factory
method is used even if there is a public zero arg constructor method
present.

« If no factory method is identified in the annotation, the class must contain
apublic zero arg constructor method.

J2S-XMLTYPE EXAMPLE

In this example a factory class provides zero arg factory methods for several
classes. The @XmlType annotation on class OrderContext references the fac-
tory class. The unmarshaller will use the identified factory method in this class.

public class OrderFormsFactory {
public OrderContext newOrderInstance() {
return new OrderContext()

}

public PurchaseOrderType newPurchaseOrderType() {
return new newPurchaseOrderType();
}
}

@Xm1Type(name="oContext", factoryClass="OrderFormsFactory",
factoryMethod="newOrderInstance")
public class OrderContext {
public OrderContext(){ }
}

In this example, a factory method is defined in a class, which also contains a
standard class constructure. Because the factoryMethod value is defined and no
factoryClass is defined, the factory method newOrderInstance isused during
unmarshalling.

@Xm1Type(name="oContext", factoryMethod="newOrderInstance")
public class OrderContext {

public OrderContext(){ }
public OrderContext newOrderInstance() {

return new OrderContext();

}

75

76

UsING JAXB

4
Streaming API for XML

This chapter focuses on the Streaming API for XML (StAX), a streaming
Javarbased, event-driven, pull-parsing API for reading and writing XML docu-
ments. StAX enables you to create bidrectional XML parsers that are fast, rela-
tively easy to program, and have alight memory footprint.

StAX providesis the latest APl in the JAXP family, and provides an alternative
to SAX, DOM, TrAX, and DOM for developerslooking to do high-performance
stream filtering, processing, and modification, particularly with low memory and
limited extensibility requirements.

Note: To synopsize, StAX provides a standard, bidirectional pull parser interface
for streaming XML processing, offering a simpler programming model than SAX
and more efficient memory management than DOM. StAX enables developers to
parse and modify XML streams as events, and to extend XML information models
to alow application-specific additions. More detailed comparisons of StAX with
several dternative APIs are provided below, in “Comparing StAX to Other JAXP
APIs”

Why StAX?

The StAX project was spearheaded by BEA with support from Sun Microsys-
tems, and the JSR 173 specification passed the Java Community Process final
approval balot in March, 2004 (http://jcp.org/en/jsr/detail?id=173).
The primary goal of the StAX API isto give “parsing control to the programmer

7

78

STREAMING APl FOR XML

by exposing a simple iterator based API. This allows the programmer to ask for
the next event (pull the event) and alows state to be stored in procedural fash-
ion.” StAX was created to address limitations in the two most prevalent parsing
APIs, SAX and DOM.

Streaming Versus DOM

Generally speaking, there are two programming models for working with XML
infosets: document streaming and the document object model (DOM).

The DOM model involves creating in-memory objects representing an entire
document tree and the complete infoset state for an XML document. Once in
memory, DOM trees can be navigated freely and parsed arbitrarily, and as such
provide maximum flexibility for developers. However the cost of this flexibility
is a potentially large memory footprint and significant processor requirements,
as the entire representation of the document must be held in memory as objects
for the duration of the document processing. This may not be an issue when
working with small documents, but memory and processor requirements can
escal ate quickly with document size.

Sreaming refers to a programming model in which XML infosets are transmit-
ted and parsed serially at application runtime, often in real time, and often from
dynamic sources whose contents are not precisely known beforehand. Moreover,
stream-based parsers can start generating output immediately, and infoset ele-
ments can be discarded and garbage collected immediately after they are used.
While providing a smaller memory footprint, reduced processor requirements,
and higher performance in certain situations, the primary trade-off with stream
processing is that you can only see the infoset state at one location at atimein
the document. You are essentially limited to the “ cardboard tube” view of a doc-
ument, the implication being that you need to know what processing you want to
do before reading the XML document.

Streaming models for XML processing are particularly useful when your appli-
cation has strict memory limitations, as with a cellphone running J2ME, or when
your application needs to simultaneously process severa requests, as with an
application server. In fact, it can be argued that the majority of XML business
logic can benefit from stream processing, and does not require the in-memory
maintenance of entire DOM trees.

PuLL PARSING VERSUS PUSH PARSING

Pull Parsing Versus Push Parsing

Streaming pull parsing refersto a programming model in which aclient applica
tion calls methods on an XML parsing library when it needs to interact with an
XML infoset—that is, the client only gets (pulls) XML data when it explicitly
asksfor it.

Streaming push parsing refers to a programming model in which an XML parser
sends (pushes) XML data to the client as the parser encounters elements in an
XML infoset—that is, the parser sends the data whether or not the client is ready
to useit at that time.

Pull parsing provides several advantages over push parsing when working with
XML streams:

« With pull parsing, the client controls the application thread, and can call
methods on the parser when needed. By contrast, with push processing, the
parser controls the application thread, and the client can only accept invo-
cations from the parser.

» Pull parsing libraries can be much smaller and the client code to interact
with those libraries much simpler than with push libraries, even for more
complex documents.

 Pull clients can read multiple documents at one time with a single thread.

* A StAX pull parser can filter XML documents such that elements unnec-
essary to the client can be ignored, and it can support XML views of non-
XML data.

StAX Use Cases

The StAX specification defines a number of uses cases for the API:

e Databinding
e Unmarshalling an XML document
e Marshalling an XML document
 Parallel document processing
* Wireless communication
» SOAP message processing
» Parsing simple predictable structures
 Parsing graph representations with forward references

79

80

STREAMING APl FOR XML

» Parsing WSDL
 Virtual data sources
» Viewing as XML data stored in databases
» Viewing datain Java objects created by XML data binding
* Navigating aDOM tree as a stream of events

e Parsing specific XML vocabularies

» Pipelined XML processing
A complete discussion of all these use cases is beyond the scope of this chapter.
Please refer to the StAX specification for further information.

Comparing StAX to Other JAXP APIs

As an API in the JAXP family, StAX can be compared, among other APIs, to
SAX, TrAX, and JDOM. Of thelatter two, StAX isnot as powerful or flexible as
TrAX or JDOM, but neither does it require as much memory or processor |oad to
be useful, and StAX can, in many cases, outperform the DOM-based APIs. The
same arguments outlined above, weighing the cost/benefits of the DOM model
versus the streaming model, apply here.

With thisin mind, the closest comparisons between can be made between StAX
and SAX, and it is here that StAX offers features that are beneficial in many
cases; some of these include:

» StAX-enabled clientsare generally easier to code than SAX clients. While
it can be argued that SAX parsers are marginally easier to write, StAX
parser code can be smaller and the code necessary for the client to interact
with the parser smpler.

+ StAX isabidirectional API, meaning that it can both read and write XML
documents. SAX isread only, so another APl isneeded if you want to write
XML documents.

» SAXisapush APl, whereas StAX ispull. The trade-offs between push and
pull APIs outlined above apply here.

STAX API

Table 4-1 synopsizes the comparative features of StAX, SAX, DOM, and TrAX
(table adapted from “Does StAX Belong in Your XML Toolbox?’
(http://www.developer.com/xml/article.php/3397691) by Jeff Ryan).

Table4-1 XML Parser APl Feature Summary

Feature StAX SAX DOM TrAX

API Type Pull, streaming | Push, streaming | In memory tree | XSLT Rule
Ease of Use High Medium High Medium
XPath Capability No No Yes Yes

CPU and Memory Efficiency | Good Good Varies Varies
Forward Only Yes Yes No No

Read XML Yes Yes Yes Yes

Write XML Yes No Yes Yes

Create, Read, Update, Delete | No No Yes No

StAX API

The StAX APl exposes methods for iterative, event-based processing of XML
documents. XML documents are treated as a filtered series of events, and infoset
states can be stored in a procedura fashion. Moreover, unlike SAX, the StAX
API isbidirectional, enabling both reading and writing of XML documents.

The StAX API isrealy two distinct APl sets: acursor APl and an iterator API.
Thesetwo API sets explained in greater detail later in this chapter, but their main
features are briefly described below.

Cursor API

As the name implies, the StAX cursor API represents a cursor with which you
can walk an XML document from beginning to end. This cursor can point to one
thing at atime, and always moves forward, never backward, usually one infoset
element at atime.

82

STREAMING APl FOR XML

The two main cursor interfaces are XMLStreamReader and XMLStreamWriter.
XMLStreamReader includes accessor methods for al possible information
retrievable from the XML Information model, including document encoding,
element names, attributes, namespaces, text nodes, start tags, comments, pro-
cessing instructions, document boundaries, and so forth; for example:

public interface XMLStreamReader {
public int next() throws XMLStreamException;
public boolean hasNext() throws XMLStreamException;
public String getText();
public String getLocalName();
public String getNamespaceURI();
// ... other methods not shown

}

You can call methods on XMLStreamReader, such as getText and getName, to
get data at the current cursor location. XMLStreamWriter provides methods that
correspond to StartElement and EndElement event types; for example:

public interface XMLStreamWriter {
public void writeStartElement(String TocalName) \
throws XMLStreamException;
public void writeEndElement() \
throws XMLStreamException;
public void writeCharacters(String text) \
throws XMLStreamException;
// ... other methods not shown

}

The cursor API mirrors SAX in many ways. For example, methods are available
for directly accessing string and character information, and integer indexes can
be used to access attribute and namespace information. As with SAX, the cursor
APl methods return XML information as strings, which minimizes object alloca-
tion requirements.

Iterator API

The StAX iterator API represents an XML document stream as a set of discrete
event objects. These events are pulled by the application and provided by the
parser in the order in which they are read in the source XML document.

The base iterator interface is called XMLEvent, and there are subinterfaces for
each event type listed in Table 4-2, below. The primary parser interface for read-

ing iterator eventsis XMLEventReader, and the primary interface for writing iter-
ator events is XMLEventWriter. The XMLEventReader interface contains five
methods, the most important of which is nextEvent(), which returns the next
event in an XML stream. XMLEventReader implements java.util.Iterator,
which means that returns from XMLEventReader can be cached or passed into

I TERATOR API

routines that can work with the standard Java Iterator; for example:

public interface XMLEventReader extends Iterator {
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;

}

Similarly, on the output side of the iterator API, you have:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
public void add(Attribute attribute) \
throws XMLStreamException;

lterator Event Types
Table 4-2 lists the thirteen XMLEvent types defined in the event iterator API.

Table4-2 XMLEvent Types

Event Type Description
StartDocu- Reports the beginning of aset of XML events, including encoding,
ment XML version, and standalone properties.

Reports the start of an element, including any attributes and namespace
StartEle- o .)

declarations; also provides access to the prefix, namespace URI, and
ment

local name of the start tag.

Reports the end tag of an element. Namespaces that have gone out of
EndETement scope can be recalled here if they have been explicitly set on their corre-

sponding StartElement.

83

STREAMING APl FOR XML

Table4-2 XMLEvent Types (Continued)

Event Type Description
Correspondsto XML CData sectionsand CharacterData entities.
Characters Note that ignorable whitespace and significant whitespace are al'so
reported as Character events.
Character entities can be reported as discrete events, which an applica-
EntitvRef- tion developer can then choose to resolve or pass through unresolved.
e rencz By default, entities are resolved. Alternatively, if you do not want to
report the entity as an event, replacement text can be substituted and
reported as Characters.
Processin-
gInstruc- Reports the target and data for an underlying processing instruction.
tion
Comment Returns the text of a comment
EndDocument | Reportsthe end of aset of XML events.
Reportsas java. lang.String information about the DTD, if any,
DTD associated with the stream, and provides a method for returning custom
objects found in the DTD.
Attributes are generally reported as part of aStartElement event.
. However, there are times when it is desirable to return an attribute as a
Attribute . .)
standalone Attribute event; for example, when a namespaceis
returned as the result of an XQuery or XPath expression.
Aswith attributes, namespaces are usually reported as part of a
Namespace StartElement, but there are timeswhen it is desirable to report a
namespace as adiscrete Namespace event.

Note that the DTD, EntityDeclaration, EntityReference, NotationDeclara-
tion, and ProcessingInstruction events are only created if the document
being processed containsaDTD.

I TERATOR API

Sample Event Mapping

As an example of how the event iterator APl maps an XML stream, consider the

following XML document:

<?xml version="1.0"7>
<BookCatalogue xmlns="http://www.publishing.org">
<Book>

<Title>Yogasana Vijnana: the Science of Yoga</Title>

<ISBN>81-40-34319-4</ISBN>
<Cost currency="INR">11.50</Cost>
</Book>
</BookCatalogue>

This document would be parsed into eighteen primary and secondary events, as
shown below. Note that secondary events, shown in curly braces ({}), are typi-

cally accessed from a primary event rather than directly.

Table 4-3 Sample Iterator APl Event Mapping

Element/Attribute

Event

version="1.0"

StartDocument

isCData = false
data = “\n”
IsWhiteSpace = true

Characters

gname = BookCatalogue:http://www.publishing.org
attributes = null
namespaces = {BookCatalogue” -> http://www.publishing.org”}

StartElement

gname = Book
attributes = null
namespaces = null

StartElement

gname = Title
attributes = null
namespaces = null

StartElement

isCData = false
data = “Yogasana Vijnana: the Science of Yoga\n\t”
IsWhiteSpace = false

Characters

gname = Title
namespaces = null

EndETement

86

STREAMING APl FOR XML

Table4-3 Sample Iterator APl Event Mapping (Continued)

Element/Attribute

Event

gname = ISBN
attributes = null
namespaces = null

StartElement

isCData = false
data = “81-40-34319-4\n\t”
IsWhiteSpace = false

Characters

10

gname = ISBN
namespaces = null

EndElement

11

gname = Cost
attributes = {“currency” -> INR}
namespaces = null

StartElement

12

isCData = false
data = “11.50\n\t”
IsWhiteSpace = false

Characters

13

gname = Cost
namespaces = null

EndElement

14

isCData = false
data = “\n”
IsWhiteSpace = true

Characters

15

gname = Book
namespaces = null

EndElement

16

isCData = false
data = “\n”
IsWhiteSpace = true

Characters

17

gname = BookCatalogue:http://www.publishing.org
namespaces = {BookCatalogue” -> http://www.publishing.org”}

EndElement

18

EndDocument

There are several important things to note in the above example:

» The events are created in the order in which the corresponding XML ele-
ments are encountered in the document, including nesting of elements,

CHOOSING BETWEEN CURSOR AND | TERATOR APIS

opening and closing of elements, attribute order, document start and doc-
ument end, and so forth.

As with proper XML syntax, all container elements have corresponding
start and end events; for example, every StartElement has a correspond-
ing EndETement, even for empty elements.

Attribute events are treated as secondary events, and are accessed from
their corresponding StartElement event.

Similar to Attribute events, Namespace events are treated as secondary,
but appear twice and are accessible twice in the event stream, first from
their corresponding StartElement and then from their corresponding
EndETement.

Character events are specified for all elements, even if those elements
have no character data. Similarly, Character events can be split across
events.

The StAX parser maintains a namespace stack, which holds information
about all XML namespaces defined for the current element and its ances-
tors. The namespace stack is exposed through the
javax.xml.namespace.NamespaceContext interface, and can be
accessed by namespace prefix or URI.

Choosing Between Cursor and Iterator
APIs

It is reasonable to ask at this point, “What APl should | choose? Should | create
instances of XMLStreamReader or XMLEventReader? Why are there two kinds of
APIsanyway?’

Development Goals

The authors of the StAX specification targeted three types of developers:
e Library and infrastructure developers— Create application servers, JAXM,

JAXB, JAX-RPC and similar implementations; need highly efficient, low-
level APIswith minimal extensibility requirements.

e J2ME developers — Need small, simple, pull-parsing libraries, and have

minimal extensibility needs.

87

88

STREAMING APl FOR XML

J2EE and J2SE developers — Need clean, efficient pull-parsing libraries,
plus need the flexibility to both read and write XML streams, create new
event types, and extend XML document elements and attributes.

Given these wide-ranging development categories, the StAX authors fdt it was
more useful to define two small, efficient APIsrather than overloading one larger
and necessarily more complex API.

Comparing Cursor and Iterator APIs

Before choosing between the cursor and iterator APIs, you should note a few
things that you can do with the iterator API that you cannot do with cursor API:

Objects created from the XMLEvent subclasses are immutable, and can be
usedinarrays, lists, and maps, and can be passed through your applications
even after the parser has moved on to subsequent events.

You can create subtypes of XMLEvent that are either completely new infor-
mation items or extensions of existing items but with additional methods.

You can add and remove events from an XML event stream in much sim-
pler ways than with the cursor API.

Similarly, keep some general recommendations in mind when making your
choice:

If you are programming for a particularly memory-constrained environ-
ment, like 22ME, you can make smaller, more efficient code with the cur-
sor API.

If performance is your highest priority—for example, when creating |ow-
level libraries or infrastructure—the cursor APl is more efficient.

If you want to create XML processing pipelines, use the iterator API.
If you want to modify the event stream, use the iterator API.

If you want to your application to be able to handle pluggable processing
of the event stream, use the iterator API.

In general, if you do not have a strong preference one way or the other,
using the iterator APl is recommended because it is more flexible and
extensible, thereby “future-proofing” your applications.

USING STAX

Using StAX

In general, StAX programmers create XML stream readers, writers, and events
by using the XMLInputFactory, XMLOutputFactory and XMLEventFactory
classes. Configuration is done by setting properties on the factories, whereby
implementation-specific settings can be passed to the underlying implementation
using the setProperty() method on the factories. Similarly, implementation-
specific settings can be queried using the getProperty () factory method.

The XMLInputFactory, XMLOutputFactory and XMLEventFactory classes are
described below, followed by discussions of resource allocation, namespace and
attribute management, error handling, and then finadly reading and writing
streams using the cursor and iterator APIs.

StAX Factory Classes

XMLInputFactory

The XMLInputFactory class lets you configure implementation instances of
XML stream reader processors created by the factory. New instances of the
abstract class XMLInputFactory are created by calling the newInstance()
method on the class. The static method XMLInputFactory.newInstance() iS
then used to create a new factory instance.

Deriving from JAXP, the XMLInputFactory.newInstance() method deter-
mines the specific XMLInputFactory implementation class to load by using the
following lookup procedure:

1. Usethe javax.xml.stream.XMLInputFactory System property.

2. Usethe Tib/xm1.stream.properties filein the JRE directory.

3. Usethe Services AP, if available, to determine the classname by looking
in the META-INF/services/javax.xml.stream.XMLInputFactory files
in jars available to the JRE.

4. Use the platform default XMLInputFactory instance.

After getting areference to an appropriate XML InputFactory, an application can
use the factory to configure and create stream instances. Table 44 lists the prop-

89

STREAMING APl FOR XML

erties supported by XMLInputFactory. See the StAX specification for a more

detailed listing.

Table 44 XMLInputFactory Properties

Property

Description

javax.xml.stream.isValidating

Turns on implementation specific validation.

javax.xml.stream.isCoal escing

(Required) Requires the processor to coal esce
adjacent character data.

javax.xml.stream.isNamespaceAware

Turns off namespace support. All implementations
must support namespaces supporting non-
namespace aware documentsis optional.

javax.xml.stream.isReplacingEntityReferences

(Required) Requires the processor to replace inter-
nal entity references with their replacement value
and report them as characters or the set of events
that describe the entity.

javax.xml.stream.isSupportingExternal Entities

(Required) Requires the processor to resolve exter-
nal parsed entities.

javax.xml.stream.reporter

(Required) Sets and gets the implementation of the
XMLReporter

javax.xml.stream.resolver

(Required) Sets and gets the implementation of the
XMLResolver interface

javax.xml.stream.allocator

(Required) Sets/gets the implementation of the
XMLEventAllocator interface

XMLOutputFactory

New instances of the abstract class XMLOutputFactory are created by calling the
newInstance() method on the class. The static method XMLOutputFac-
tory.newInstance() is then used to create a new factory instance. The algo-
rithm used to obtain the instance is the same as for XMLInputFactory but
referencesthe javax.xm1.stream.XMLOutputFactory System property.

XMLOutputFactory supports only one property, javax.xml.stream.isRepair-
ingNamespaces. This property is required, and its purpose is to create default

RESOURCES, NAMESPACES, AND ERRORS

prefixes and associate them with Namespace URIs. See the StAX specification
for amore information.

XMLEventFactory

New instances of the abstract class XMLEventFactory are created by calling the
newInstance() method on the class. The static method XMLEventFac-
tory.newInstance() isthen used to create anew factory instance. This factory
references the javax.xm1.stream.XMLEventFactory property to instantiate the
factory. The agorithm used to obtain the instance is the same as for XMLInput-
Factory and XMLOutputFactory but referencesthe javax.xml.stream.XMLEv-
entFactory system property.

There are no default properties for XMLEventFactory.

Resources, Namespaces, and Errors

The StAX specification handles resource allocation, attributes and hamespace,
and errors and exceptions as described below.

Resource Resolution

The XMLResolver interface provides a means to set the method that resolves
resources during XML processing. An application sets the interface on XMLIn-
putFactory, which then sets the interface on all processors created by that fac-
tory instance.

Attributes and Namespaces

Attributes are reported by a StAX processor using lookup methods and stringsin
the cursor interface and Attribute and Namespace events in the iterator inter-
face. Note here that namespaces are treated as attributes, athough namespaces
are reported separately from attributes in both the cursor and iterator APIs. Note
also that nhamespace processing is optional for StAX processors. See the StAX
specification for complete information about namespace binding and optional
namespace processing.

91

92

STREAMING APl FOR XML

Error Reporting and Exception Handling

All fatal errors are reported by way of javax.xml.stream.XMLStreamExcep-
tion. All nonfatal errors and warnings are reported using the
javax.xml.stream.XMLReporter interface.

Reading XML Streams

Asdescribed earlier in this chapter, the way you read XML streams with a StAX
processor—and more importantly, what you get back—varies significantly
depending on whether you are using the StAX cursor API or the event iterator
API. Thefollowing two sections describe how to read XML streams with each of
these APIs.

Using XMLStreamReader

The XMLStreamReader interface in the StAX cursor API lets you read XML
streams or documents in a forward direction only, one item in the infoset at a
time. The following methods are available for pulling data from the stream or
skipping unwanted events.

* Get thevalue of an attribute

* Read XML content

» Determine whether an element has content or is empty

» Get indexed accessto a collection of attributes

» Get indexed access to a collection of namespaces

» Get the name of the current event (if applicable)

» Get the content of the current event (if applicable)
Instances of XMLStreamReader have at any one time a single current event on
which its methods operate. When you create an instance of XMLStreamReader on

a stream, the initial current event is the START_DOCUMENT state. The XMLStream-
Reader.next () method can then be used to step to the next event in the stream.

Reading Properties, Attributes, and Namespaces

The XMLStreamReader.next () method loads the properties of the next event in
the stream. You can then access those properties by calling the XMLStream-
Reader.getLocalName() and XMLStreamReader.getText() methods.

READING XML STREAMS 93

When the XMLStreamReader Cursor is over a StartElement event, it reads the
name and any attributes for the event, including the namespace. All attributes for
an event can be accessed using an index value, and can also be looked up by
namespace URI and local name. Note, however, that only the namespaces
declared on the current StartEvent are available; previousy declared
namespaces are not maintained, and redeclared namespaces are not removed.

XMLStreamReader Methods

XMLStreamReader provides the following methods for retrieving information
about namespaces and attributes:

int getAttributeCount();

String getAttributeNamespace(int index);

String getAttributeLocalName(int index);

String getAttributePrefix(int index);

String getAttributeType(int index);

String getAttributeValue(int index);

String getAttributeValue(String namespaceUri,String
TocalName);

boolean isAttributeSpecified(int index);

Namespaces can also be accessed using three additional methods:

int getNamespaceCount();
String getNamespacePrefix(int index);
String getNamespaceURI(int index);

Instantiating an XMLStreamReader

This example, taken from the StAX specification, shows how to instantiate an
input factory, create areader, and iterate over the elements of an XML stream:

XMLInputFactory f

XMLStreamReader r

while(r.hasNext()) {
r.next(Q;

}

XMLInputFactory.newInstance();
f.createXMLStreamReader(...);

Using XMLEventReader

The XMLEventReader API inthe StAX event iterator API provides the means to
map events in an XML stream to allocated event objects that can be freely
reused, and the API itself can be extended to handle custom events.

STREAMING APl FOR XML

XMLEventReader provides four methods for iteratively parsing XML streams:

* next() — Returnsthe next event in the stream

* nextEvent() — Returns the next typed XMLEvent

* hasNext() —Returnstrueif there are more eventsto processin the stream
* peek() — Returns the event but does not iterate to the next event

For example, the following code snippet illustrates the XMLEventReader method
declarations:

package javax.xml.stream;

import java.util.Iterator;

public interface XMLEventReader extends Iterator {
public Object next();
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;

To read al events on a stream and then print them, you could use the following:

while(stream.hasNext()) {
XMLEvent event = stream.nextEvent();
System.out.print(event);

}

Reading Attributes

You can access attributes from their associated javax.xml.stream.StartEle-
ment, as follows:

public interface StartElement extends XMLEvent {
public Attribute getAttributeByName(QName name);
public Iterator getAttributes();

}

You can usethe getAttributes() method onthe StartElement interfaceto use
an Iterator over al the attributes declared on that StartElement.

Reading Namespaces

Similar to reading attributes, namespaces are read using an Iterator created by
calling the getNamespaces () method on the StartElement interface. Only the
namespace for the current StartElement isreturned, and an application can get

WRITING XML STREAMS

the current namespace context by using StartElement.getNamespaceCon-
text().

Writing XML Streams

StAX is a bidirectional API, and both the cursor and event iterator APIs have
their own set of interfaces for writing XML streams. As with the interfaces for
reading streams, there are significant differences between the writer APIs for
cursor and event iterator. The following sections describe how to write XML
streams using each of these APIs.

Using XMLStreamWriter

The XMLStreamWriter interface in the StAX cursor API lets applications write
back to an XML stream or create entirely new streams. XML StreamWriter has
methods that let you:

e Write well-formed XML
e Fush or close the output
« Write qualified names

Note that XMLStreamWriter implementations are not required to perform well-
formedness or validity checks on input. While some implementations my per-
form strict error checking, others may not. The rules you choose to implement
are set on properties provided by the XMLOutputFactory class.

ThewriteCharacters(...) method isused to escape characters such as &, <, >,
and “. Binding prefixes can be handled by either passing the actual value for the
prefix, by using the setPrefix() method, or by setting the property for default-
ing namespace declarations.

The following example, taken from the StAX specification, shows how to instan-
tiate an output factory, create awriter and write XML output:

XMLOutputFactory output = XMLOutputFactory.newInstance();
XMLStreamWriter writer = output.createXMLStreamWriter(...);
writer.writeStartDocument();
writer.setPrefix("c","http://c");
writer.setDefaultNamespace("http://c");
writer.writeStartElement("http://c","a");
writer.writeAttribute("b","blah");
writer.writeNamespace("c","http://c");
writer.writeDefaultNamespace("http://c");

95

96

STREAMING APl FOR XML

writer.setPrefix("d","http://c");
writer.writeEmptyElement("http://c","d");
writer.writeAttribute("http://c","chris","fry");
writer.writeNamespace("d","http://c");
writer.writeCharacters("foo bar foo");
writer.writeEndElement();

writer.flush(Q;

This code generates the following XML (new lines are non-normative)

<?xml version='1.0' encoding="utf-8'?>

<d:d d:chris="fry" xmlns:d="http://c"/>foo bar foo

Using XMLEventWriter

The XMLEventWriter interface in the StAX event iterator APl lets applications
write back to an XML stream or create entirely new streams. This API can be
extended, but the main APl is asfollows:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
// ... other methods not shown.

}

Instances of XMLEventWriter are created by an instance of XMLOutputFactory.
Stream events are added iteratively, and an event cannot be modified after it has
been added to an event writer instance.

Attributes, Escaping Characters, Binding Prefixes
StAX implementations are required to buffer the last StartElement until an
event other than Attribute or Namespace is added or encountered in the stream.
This means that when you add an Attribute or a Namespace to a stream, it is
appended the current StartETement event.

You can use the Characters method to escape characterslike &, <, >, and “.

The setPrefix(...) method can be used to explicitly bind a prefix for use dur-
ing output, and the getPrefix(...) method can be used to get the current pre-
fix. Note that by default, XMLEventWriter adds namespace bindings to its
internal namespace map. Prefixes go out of scope after the corresponding
EndElement for the event in which they are bound.

SUN’S STREAMING PARSER | MPLEMENTATION

sSun’s Streaming Parser Implementation

The Sun Java System Application Server (SISAS) PE 9.0 package includes Sun
Microsystem’s JSR 173 (StAX) implementation, called the Sun Java Streaming
XML Parser (SISXP). The SISXP is a high-speed, non-validating, W3C XML
1.0 and Namespace 1.0-compliant streaming XML pull parser built upon the
Xerces2 codebase.

In Sun’s SISXP implementation, the Xerces2 lower layers, particularly the Scan-
ner and related classes, have been redesigned to behave in a pull fashion. In addi-
tion to the changes the lower layers, the SISXP includes additional StAX-related
functionality and many performance-enhancing improvements. The SISXP is
implemented in appserv-ws.jar and javaee. jar, both of which are located in
the <javaee.home>/11ib directory.

Included with this J2EE tutorial are StAX code samples, located in the <jav-
aee.tutorial.home>/examples/stax directory, that illustrate how Sun's
SISXP implementation works. These samples are described in the Sample Code
section, later in this chapter.

Before proceeding with the sample code, there are two important aspects of the
SJISXP about which you should be aware:

» Reporting CDATA Events
» SJISXP Factories Implementation

These two topics are discussed below.

Reporting CDATA Events

The javax.xm1.stream.XMLStreamReader implemented in the SISXP does not
report CDATA events. If you have an application that needs to receive such
events, configure the XMLInputFactory to set the following implementation-
specific “report-cdata-event” property:

XMLInputFactory factory = XMLInptuFactory.newInstance();
factory.setProperty("report-cdata-event", Boolean.TRUE);

97

98

STREAMING APl FOR XML

SJSXP Factories Implementation

Most applications do not need to know the factory implementation class name.
Just adding the javaee.jar and appserv-ws.jar filesto the classpath is suffi-
cient for most applications because these two jars supply the factory implemen-
tation classname for various SISXP properties under the META-INF/services
directory—for example, javax.xml.stream.XMLInputFactory
javax.xml.stream.XMLOutputFactory, and javax.xml.stream.XMLEvent-
Factory—whichisthethird step of alookup operation when an application asks
for the factory instance. See the javadoc for the XMLInputFactory.newlIn-
stance () method for more information about the lookup mechanism.

However, there may be scenarios when an application would like to know about
the factory implementation class name and set the property explicitly. These sce-
narios could include cases where there are multiple JSR 173 implementationsin
the classpath and the application wants to choose one, perhaps one that has supe-
rior performance, contains a crucia bug fix, or suchlike.

If an application sets the SystemProperty, it is the first step in alookup opera-
tion, and so obtaining the factory instance would be fast compared to other
options; for example:

javax.xml.stream.XMLInputFactory -->
com.sun.xml.stream.ZephyrParserFactory
javax.xml.stream.XMLOutputFactory -->
com.sun.xml.stream.ZephyrWriterFactor
javax.xml.stream.XMLEventFactory -->
com.sun.xml.stream.events.ZephyrEventFactory

SamMPLE CODE

Sample Code

This section steps through the sample StAX code included in the J2EE 1.4 Tuto-
rial bundle. All sample directories used in this section are located off the <jav-
aee.tutorial.home>/examples/stax directory.

The topics covered in this section are as follows:

Sample Code Organization (page 99)

Configuring Your Environment for Running the Samples (page 100)
Running the Samples (page 101)

Sample XML Document (page 102)

cursor Sample — CursorParse.java (page 103)

cursor2event Sample — CursorA pproachEventObject.java (page 105)
event Sample — EventParse.java (page 106)

filter Sample — MyStreamFilter.java (page 109)

readnwrite Sample — EventProducerConsumer.java (page 111)
writer Sample — CursorWriter.java (page 114)

Sample Code Organization

There are seven StAX sample directories in <javaee. tutorial.home>/exam-
ples/stax:

common containsabuild.properties fileand atarget.xm1 file that are
used commonly by al the StAX tutorial examples. There is also a data
directory containing a sample XML document, BookCatalog.xm1, that is
used by all the StAX examples. Thevaluesin common/build.properties
aswell asall the StAX examples are inherited from aparent build. prop-
erties file in the <javaee.tutorial.home>/examples/common direc-
tory. Note that you should not need to modify the build.properties file
in stax/common/build.properties.

cursor contains CursorParse. java, which illustrates how to use the XML -
StreamReader (cursor) APl to read an XML file.
cursor2event contains CursorApproachEventObject. java, which illus-

trates how an application can get information as an XMLEvent object when
using cursor API.

99

100

STREAMING APl FOR XML

* event contains EventParse. java, whichillustrates how to use the XMLEv-
entReader (event iterator) API to read an XML file.

» filter contains MyStreamFilter.java, which illustrates how to use the
StAX Stream Filter APIs. In this example, the filter accepts only Start-
Element and EndElement events and filters out the remainder of the
events.

* readnwrite contains EventProducerConsumer.java, which illustrates
how the StAX producer/consumer mechanism can be used to simulta-
neously read and write XML streams.

e writer contains CursorWriter.java, which illustrates how to use XML-
StreamWriter to write an XML file programatically.

Configuring Your Environment for
Running the Samples

The instructions for configuring your environment are the same as those for run-
ning the other J2EE Tutorial samples. Specifically, to configure your environ-
ment for running the StAX examples, follow the steps below.

Note: If you are configuring the samples to run in a Microsoft Windows environ-
ment, use UNIX-style forward slashes (/) rather than Windows-style backslashes
(\) to separate directory nameswhen specifying pathsin the steps below. For exam-
ple, if your Application Server PE installation isin c:\Sun\AppServer, specify
c:/Sun/AppServer instead.

1. Set the following two properties in <javaee.tutorial.home>/exam-
ples/common/build.properties:

* javaeehome to the directory in which SISASPE 9.0 isinstalled
 javaeetutorial.home to the directory in which the J2EE 1.4 Tutorid is
installed.

2. Specify the admin password used for your Application Server installation
in <javaee.tutorial.home>/examples/common/admin-password.txt.

RUNNING THE SAMPLES

3. You may also need to specify the path to the asant command in your PATH
environment variable; for example, on UNIX/Linux:

export PATH=$PATH:/opt/SUNWappserver/bin/
or, on Windows:;
set PATH=%PATH%;c:\Sun\AppServer\bin

asant isascript wrapper around the implementation of Ant bundled with
the J2EE 1.4 Tutorial. Be sure to use this Ant implementation when run-
ning the tutorial samples rather than any other Ant implementation you
may have installed on your system. Also be sureto use the asant wrapper
rather than running Ant directly.

4. Finaly, note that the build.xm1 filesin the various stax sample directo-
riesinclude classpath referencesto <javaee.home>/1ib/javaee. jar and
<javaee.home>/1ib/appserv-ws.jar. You should not change these val-
ues, and if you create your own build.xm1 files, be sure to include these
classpath references.

Running the Samples

The samples are run by means of the asant Ant wrapper and three build targets,
defined inthe <javaee. tutorial.home>/stax/samples/build.xm1 file. When
you run any of the samples, the compiled class files are placed in a directory
named . /build. Thisdirectory is created if it does not exist already.

Note: As mentioned above, be sure to use the implementation of Ant bundled with
the J2EE Tutorial rather than any version of Ant you may already have installed on
your system. Also be sureto use the asant wrapper script rather than running Ant
directly.

Thereis aseparate build.xm1 filein each of the stax sample directories except
common, and each build.xm1 file provides the same three targets. Switch to the
directory containing the sample you want to run, and then run the desired
build.xm1 target from there.

101

102

STREAMING APl FOR XML

The three Ant targets defined in each of the StAX build.xm1 filesare:

* build — Compile and run all classes
* run —Run the example
 clean —Clean al compiled files and sample directories when you are done

For example, to run the cursor example:

cd <javaee.tutorial.home>/examples/stax/cursor
asant build
asant run

Sample XML Document

The sample XML document, BookCatalogue.xm1, used by most of the StAX
sample classes is located in the <javaee.tutorial.home>/exam-
ples/stax/common/data directory, and is a simple book catalog based on the
common BookCatalogue namespace. The contents of BookCatalogue.xml are
listed below:

<?xml version="1.0" encoding="UTF-8"?7>
<BookCatalogue xmlns="http://www.publishing.org">
<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<author>Dhirendra Brahmachari</Author>
<Date>1966</Date>
<ISBN>81-40-34319-4</ISBN>
<Publisher>Dhirendra Yoga Publications</Publisher>
<Cost currency="INR">11.50</Cost>
</Book>
<Book>
<Title>The First and Last Freedom</Title>
<Author>]. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<PubTisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>
</Book>
</BookCatalogue>

CURSOR SAMPLE — CURSORPARSE.JAVA

cursor Sample - CursorParse.java

Located in the <javaee.tutorial.home>/examples/stax/cursor directory,
CursorParse.java demonstrates using the StAX cursor APl to read an XML
document. In this sample, the application instructs the parser to read the next
event in the XML input stream by calling <code>next () </code>.

Note that <code>next()</code> just returns an integer constant corresponding
to underlying event where the parser is positioned. The application needs to call
the relevant function to get more information related to the underlying event.

You can imagine this approach as a virtual cursor moving across the XML input
stream. There are various accessor methods which can be called when that vir-
tual cursor isat particular event.

Stepping Through Events

In this example, the client application pulls the next event in the XML stream by
calling the next () method on the parser; for example:

try
{
for(int i =0 ; i< count ; i++)
{
//pass the file name.. allrelativeentity
//references will be resolved againstthis as
//base URI.
XMLStreamReader xmlr=
xml1if.createXMLStreamReader (filename, new
FileInputStream(filename));
//when XMLStreamReader is created, it is positioned
at START_DOCUMENT event.
int eventType = xmlr.getEventType();
//printEventType(eventType);
printStartDocument(xmlr);
//check if there aremore eventsinthe input stream
while(xmlr.hasNext())
{
eventType =xmlr.next();
//printEventType(eventType);
//these functionsprints the information about
theparticular event by calling relevant function
printStartETement(xmlr);
printEndElement(xmlr);
printText(xmlr);

103

104

STREAMING APl FOR XML

printPIData(xmlr);
printComment(xmlr);
}
}

Note that next() just returns an integer constant corresponding to the event
underlying the current cursor location. The application calls the relevant function
to get more information related to the underlying event. There are various acces-
sor methods which can be called when the cursor is at particular event.

Returning String Representations

Because the next() method only returns integers corresponding to underlying
event types, you typically need to map these integers to string representations of
the events; for example:

public final staticString getEventTypeString(inteventType)
{
switch(eventType)
{

case XMLEvent.START_ELEMENT:
return "START_ELEMENT";

case XMLEvent.END_ELEMENT:
return "END_ELEMENT";

case XMLEvent.PROCESSING_INSTRUCTION:
return "PROCESSING_INSTRUCTION";

case XMLEvent.CHARACTERS:
return "CHARACTERS";

case XMLEvent.COMMENT:
return "COMMENT";

case XMLEvent.START_DOCUMENT:
return "START_DOCUMENT";

case XMLEvent.END_DOCUMENT:
return "END_DOCUMENT";

case XMLEvent.ENTITY_REFERENCE:
return "ENTITY_REFERENCE";

case XMLEvent.ATTRIBUTE:
return "ATTRIBUTE";

case XMLEvent.DTD:
return "DTD";

case XMLEvent.CDATA:
return "CDATA";

case XMLEvent.SPACE:

CURSORZEVENT SAMPLE — CURSORAPPROACHEVENTOBJECT.JAVA

return "SPACE";

}
return"UNKNOWN_EVENT_TYPE , "+ eventType;

}

Running the Sample

When you run the CursorParse sample, the class is compiled, and the XML
stream is parsed and returned to STDOUT.

cursor2event Sample -
CursorApproachEventObject.java

Located in the <javaee.tutorial.home>/examples/stax/cursor2event
directory, CursorApproachEventObject.java demonstrates how to get infor-
mation returned by an XMLEvent object even when using the cursor API.

The idea here is that the cursor API'S XMLStreamReader returns integer con-
stants corresponding to particular events, where as the event iterator API's
XMLEventReader returns immutable and persistent event objects. XMLStream-
Reader ismore efficient, but XMLEventReader iseasier to use, asal theinforma-
tion related to a particular event is encapsulated in a returned XMLEvent object.
However, the disadvantage of event approach is the extra overhead of creating
objects for every event, which consumes both time and memory.

With this mind, XMLEventAlTlocator can be used to get event information as an
XMLEvent abject, even when using the cursor API.

Instantiating an XMLEventAllocator

The first step is to create a new XMLInputFactory and instantiate an XMLEven-
tAllocator:

XMLInputFactory xmlif = XMLInputFactory.newInstance();
System.out.printTn("FACTORY: " + xmlif);
xmlif.setEventAllocator(new XMLEventAlTlocatorImp1());
allocator = xmlif.getEventAllocator();

XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,
new FileInputStream(filename));

106 STREAMING APl FOR XML

Creating an Event Iterator

The next step isto create an event iterator:

int eventType = xmlr.getEventType(Q);
while(xmlr.hasNext()){
eventType = xmlr.next(Q);
//Get all "Book"™ elements as XMLEvent object
if(eventType == XMLStreamConstants.START_ELEMENT &&
xmlr.getLocalName() .equals("Book")){
//get immutable XMLEvent
StartElement event = getXMLEvent(xmlr).asStartElement();
System.out.printTn("EVENT: " + event.toString());

Creating the Allocator Method

Thefinal step isto create the XMLEventAllocator method:

private static XMLEvent getXMLEvent(XMLStreamReader reader)
throws XMLStreamException{
return allocator.allocate(reader);

}

Running the Sample

When you run the CursorApproachEventObject sample, the class is compiled,
and the XML stream is parsed and returned to STDOUT. Note how the Book events
arereturned as strings.

event Sample - EventParse.java

Located in the <javaee.tutorial.home>/examples/stax/event directory
EventParse.java demonstrates how to use the StAX event APl to read an XML
document.

EVENT SAMPLE — EVENTPARSE.JAVA 107

Creating an Input Factory

Thefirst step isto create anew instance of XMLInputFactory:

XMLInputFactory factory = XMLInputFactory.newInstance();
System.out.printTn("FACTORY: " + factory);

Creating an Event Reader

The next step isto create an instance of XML EventReader:

XMLEventReader r = factory.createXMLEventReader(filename, new
FileInputStream(filename));

Creating an Event Iterator

Thethird step isto create an event iterator:

XMLEventReader r = factory.createXMLEventReader(filename, new
FileInputStream(filename));
while(r.hasNext()) {
XMLEvent e = r.nextEvent();
System.out.printin(e.toString());
}

Getting the Event Stream
Thefinal step isto get the underlying event stream:

public final static String getEventTypeString(int eventType)
{
switch (eventType)
{
case XMLEvent.START_ELEMENT:
return "START_ELEMENT";
case XMLEvent.END_ELEMENT:
return "END_ELEMENT";
case XMLEvent.PROCESSING_INSTRUCTION:
return "PROCESSING_INSTRUCTION";
case XMLEvent.CHARACTERS:
return "CHARACTERS";
case XMLEvent.COMMENT:
return "COMMENT";
case XMLEvent.START_DOCUMENT:

108

STREAMING APl FOR XML

return "START_DOCUMENT";
case XMLEvent.END_DOCUMENT:
return "END_DOCUMENT";
case XMLEvent.ENTITY_REFERENCE:
return "ENTITY_REFERENCE";
case XMLEvent.ATTRIBUTE:
return "ATTRIBUTE";
case XMLEvent.DTD:
return "DTD";
case XMLEvent.CDATA:
return "CDATA";
case XMLEvent.SPACE:
return "SPACE";

}
return "UNKNOWN_EVENT_TYPE " + "," + eventType;

}

Running the Sample

When you run the EventParse sample, the class is compiled, and the XML
stream is parsed as events and returned to STDOUT. For example, an instance of
the Author element isreturned as:

<['http://www.publishing.org']: :Author>
Dhirendra Brahmachari
</["http://www.pubTlishing.org']: :Author>

Note in this exampl e that the event comprises an opening and closing tag, both of
which include the namespace. The content of the element is returned as a string
within the tags.

Similarly, an instance of the Cost element is returned as:

<["http://www.publishing.org']::Cost currency="INR'>
11.50
</['http://www.publishing.org']::Cost>

In this case, the currency attribute and value are returned in the opening tag for
the event.

See earlier in this chapter, in the “Iterator API” and “Reading XML Streams’
sections, for amore detailed discussion of StAX event parsing.

FILTER SAMPLE — MYSTREAMFILTER.JAVA 109

filter Sample — MyStreamfFilter.java

Located in the <javaee.tutorial.home>/examples/stax/filter directory,
MyStreamFilter.java demonstrates how to use the StAX stream filter APl to
filter out events not needed by your application. In this example, the parser filters
out al events except StartElement and EndETement.

Implementing the StreampFilter Class

The MyStreamFilter implements javax.xml.stream.StreamFilter:

public class MyStreamFilter implements
javax.xml.stream.StreamFilter{

Creating an Input Factory

The next step is to create an instance of XML InputFactory. In this case, various
properties are also set on the factory:

XMLInputFactory xmlif = null ;
try{
xmlif = XMLInputFactory.newInstance();
xmlif.setProperty (XMLInputFactory.IS_REPLACING_ENTITY_REFERENC
ES,Boolean.TRUE);
xmlif.setProperty(XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTIT
IES,Boolean.FALSE);
xm1if.setProperty (XMLInputFactory.IS_NAMESPACE_AWARE ,
Boolean.TRUE);
xm1lif.setProperty (XMLInputFactory.IS_COALESCING ,
Boolean.TRUE);
}catch(Exception ex){

ex.printStackTrace();
}
System.out.printTn("FACTORY: " + xmlif);
System.out.printin("filename = "+ filename);

110 STREAMING APl FOR XML

Creating the Filter

The next step isto instantiate afile input stream and create the stream filter:
FileInputStream fis = new FileInputStream(filename);

XMLStreamReader xmlr =
xmlif.createFilteredReader(xmlif.createXMLStreamReader(fis),
new MyStreamFilter());

int eventType = xmlr.getEventType(Q);
printEventType(eventType);
while(xmlr.hasNext()){
eventType = xmlr.next();
printEventType(eventType);
printName(xmlr,eventType);
printText(xmlr);
if(xmlr.isStartETement()){
printAttributes(xmlr);
}
printPIData(xmlr);
System.out.println("---------—cccmmmm ");

Capturing the Event Stream

The next step is to capture the event stream. This is done in basically the same
way asintheevent Sample - EventParse.java sample.

Filtering the Stream
Thefinal step isthefilter the stream:

public boolean accept(XMLStreamReader reader) {
if(!reader.isStartETement() && !reader.isEndETement())
return false;
else
return true;

READNWRITE SAMPLE — EVENTPRODUCERCONSUMER.JAVA

Running the Sample

When you run the MyStreamFi1ter sample, the classis compiled, and the XML
stream is parsed as events and returned to STDOUT. For example an Author event
isreturned as follows:

EVENT TYPE(1) : START_ELEMENT
HAS NAME: Author

HAS NO TEXT

HAS NO ATTRIBUTES

EVENT TYPE(2) :END_ELEMENT
HAS NAME: Author

HAS NO TEXT

Similarly, aCost event isreturned as follows:

EVENT TYPE(1) :START_ELEMENT
HAS NAME: Cost
HAS NO TEXT

HAS ATTRIBUTES:
ATTRIBUTE-PREFIX:
ATTRIBUTE-NAMESP: null
ATTRIBUTE-NAME: currency
ATTRIBUTE-VALUE: USD
ATTRIBUTE-TYPE: CDATA

EVENT TYPE(2) :END_ELEMENT
HAS NAME: Cost
HAS NO TEXT

See earlier in this chapter, in the “Iterator API” and “Reading XML Streams”
sections, for amore detailed discussion of StAX event parsing.

readnwrite Sample -
EventProducerConsumer.java

Located in the <javaee.tutorial.home>/examples/stax/readnwrite direc-
tory, EventProducerConsumer.java demonstrates how to use a StAX parser
simultaneously as both a producer and a consumer.

111

112 STREAMING APl FOR XML

The StAX XMLEventWriter APl extends from the XMLEventConsumer interface,
and isreferred to as an event consumer. By contrast, XMLEventReader iSan event
producer. StAX supports simultaneous reading and writing, such that it is possi-
ble to read from one XML stream sequentially and simultaneously write to
another stream.

This sample shows how the StAX producer/consumer mechanism can be used to
read and write simultaneously. This sample also shows how a stream can be
modified, and new events can be added dynamically and then written to different
stream.

Creating an Event Producer/Consumer

The first step is to instantiate an event factory and then create an instance of an
event producer/consumer:

XMLEventFactory m_eventFactory=XMLEventFactory.newInstance();
public EventProducerConsumer() {

}

try{
EventProducerConsumer ms = new EventProducerConsumer();

XMLEventReader reader =
XMLInputFactory.newInstance().createXMLEventReader (new
java.io.FileInputStream(args[0]));

XMLEventWriter writer =
XMLOutputFactory.newInstance().createXMLEventWriter(System.out
)

Creating an Iterator

The next step isto create an iterator to parse the stream:

while(reader.hasNext())

{
XMLEvent event = (XMLEvent)reader.next();
if(event.getEventType() == event.CHARACTERS)
{

writer.add(ms.getNewCharactersEvent(event.asCharacters()));

}

READNWRITE SAMPLE — EVENTPRODUCERCONSUMER.JAVA 113

else

{
}

writer.add(event);

}
writer.flush(Q;

Creating a Writer

Thefinal step isto create a stream writer in the form of anew Character event:

Characters getNewCharactersEvent(Characters event){
if(event.getData().equalsIgnoreCase("Namel™)){
return
m_eventFactory.createCharacters(Calendar.getInstance().getTime
QO .toString());

}
//else return the same event
else return event;

}

Running the Sample

When you run the EventProducerConsumer sample, the class is compiled, and
the XML stream is parsed as events and written back to STDOUT:

<?xml version="1.0" encoding="UTF-8"7>
<BookCatalogue xmlns="http://www.publishing.org">
<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<Author>Dhirendra Brahmachari</Author>
<Date>1966</Date>
<ISBN>81-40-34319-4</ISBN>
<Publisher>Dhirendra Yoga Publications</Publisher>
<Cost currency="INR">11.50</Cost>
</Book>

<Book>
<Title>The First and Last Freedom</Title>
<Author>]. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>

114

STREAMING APl FOR XML

<Publisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>
</Book>
</BookCatalogue>

writer Sample — CursorWriter.java

Located in the <javaee.tutorial.home>/examples/stax/writer directory
CursorWriter.java demonstrates how to use the StAX cursor API to write an
XML stream.

Creating the Output Factory

Thefirst step isto create an instance of XMLOutputFactory:

XMLOutputFactory xof = XMLOutputFactory.newInstance();

Creating a Stream Writer

The next step isto create an instance of XMLStreamWriter:

XMLStreamWriter xtw = null;

Writing the Stream

The final step is to write the XML stream. Note that the stream is flushed and
closed after the final EndDocument iswritten:

xtw = xof.createXMLStreamWriter(new FileWriter(fileName));
xtw.writeComment("all elements here are explicitly in the HTML
namespace");

xtw.writeStartDocument("utf-8","1.0");

xtw.setPrefix("html", "http://www.w3.org/TR/REC-htm140");
xtw.writeStartElement("http://www.w3.0org/TR/REC-
htm140","htm1");

xtw.writeNamespace("html1", "http://www.w3.0rg/TR/REC-htm140");
xtw.writeStartETement("http://www.w3.0rg/TR/REC-
htm140","head") ;
xtw.writeStartElement("http://www.w3.0org/TR/REC-
htm140","title");

xtw.writeCharacters("Frobnostication");
xtw.writeEndElement();

Xtw.
Xtw.

WRITER SAMPLE — CURSORWRITER.JAVA 115

writeEndElement();
writeStartElement("http://www.w3.0org/TR/REC-

htm140", "body") ;

Xtw.
.writeCharacters("Moved to");
Xtw.
Xtw.
Xtw.
.writeEndElement();

Xtw

Xtw

Xtw.
Xtw.
writeEndElement();
Xtw.
Xtw.
xXtw.

Xtw

writeStartElement("http://www.w3.0rg/TR/REC-htm140","p");

writeStartElement("http://www.w3.0rg/TR/REC-htm140","a");
writeAttribute("href","http://frob.com™);
writeCharacters("here");

writeEndElement();
writeEndElement();

writeEndDocument();
flush();
close();

Running the Sample

When you run the CursorWriter sample, the class is compiled, and the XML
stream is parsed as events and written to afile named CursorWriter-Output:

<!--all elements here are explicitly in the HTML namespace-->
<?xm1 version="1.0" encoding="utf-8"7>

<html:html xmlns:html="http://www.w3.0rg/TR/REC-htm140">
<html:head>
<html:title>Frobnostication</html:title></html:head>
<htm1:body>

<html:p>Moved to <html:a href="http://frob.com">here</html:a>
</html:p>

</htm1:body>

</html1:html>

Note that in the actual CursorWriter-Output file, this stream is written without
any linebreaks; the breaks have been added here to make the listing easier to
read. In this example, as with the object stream in the event Sample - Event-
Parse.java sample, the namespace prefix is added to both the opening and clos-
ing HTML tags. This is not required by the StAX specification, but it is good
practice when the final scope of the output stream is not definitively known.

116 STREAMING APl FOR XML

Further Information

For more information about StAX, see:

» Java Community Process page:
http://jcp.org/en/jsr/detail?id=173.

» W3C Recommendation “Extensible Markup Language (XML) 1.0":
http://www.w3.0rg/TR/REC-xm]

e XML Information Set:
http://www.w3.0rg/TR/xml-infoset/

» JAXB specification:
http://java.sun.com/xml/jaxb

» JAX-RPC specification:
http//java.sun.com/xml/jaxrpc

* W3C Recommendation “Document Object Model”:
http://www.w3.0rg/DOM/

e SAX “Simple API for XML":
http://www.saxproject.org/

e DOM “Document Object Model”:
http://www.w3.0rg/TR/2002/WD-DOM-Level-3-Core-
20020409/core.html1#ID-B63ED1A3

* W3C Recommendation “Namespaces in XML”:
http://www.w3.0rg/TR/REC-xm1-names/

For some useful articles about working with StAX, see:
o Jeff Ryan, “Does StAX Belong in Your XML Toolbox?’:

http://www.developer.com/xml/article.php/3397691

 Elliotte Rusty Harold, “An Introduction to StAX”:
http://www.xml.com/pub/a/2003/09/17/stax.html

» “Moreéefficient XML parsing with the Streaming API for XML":
http://www-106.1ibm.com/developerworks/xm1/Tibrary/x-tipstx/

http://jcp.org/en/jsr/detail?id=173

5

SOAP with
Attachments API for
Java

SOAP with Attachments API for Java (SAAJ) is used mainly for the SOAP
messaging that goes on behind the scenesin JAX-WS handlers and JAXR imple-
mentations. Secondarily, it is an API that developers can use when they choose
to write SOAP messaging applications directly rather than use JAX-WS. The
SAAJAPI alowsyou to do XML messaging from the Java platform: By simply
making method calls using the SAAJ API, you can read and write SOAP-based
XML messages, and you can optionally send and receive such messages over the
Internet (some implementations may not support sending and receiving). This
chapter will help you learn how to use the SAAJAPI.

The SAAJ API conforms to the Simple Object Access Protocol (SOAP) 1.1 and
1.2 specifications and the SOAP with Attachments specification. The SAAJ 1.3
specification defines the javax.xm1.soap package, which contains the API for
creating and populating a SOAP message. This package has all the API neces-
sary for sending request-response messages. (Request-response messages are
explained in SOAPConnection Objects, page 122.)

117

118

SOAP WITH ATTACHMENTS APl FOR JAVA

Note: The javax.xm1.messaging package, defined in the Java APl for XML Mes-
saging (JAXM) 1.1 specification, is not part of the Java EE platform and is not dis-
cussed in this chapter. The JAXM API is available as a separate download from
http://java.sun.com/xml1/jaxm/.

This chapter starts with an overview of messages and connections, giving some
of the conceptual background behind the SAAJ API to help you understand why
certain things are done the way they are. Next, the tutorial shows you how to use
the basic SAAJ AP, giving examples and explanations of the commonly used
features. The code examplesin the last part of the tutorial show you how to build
an application.

Overview of SAAJ

This section presents a high-level view of how SAAJ messaging works and
explains concepts in genera terms. Its goal isto give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at SAAJfrom two perspectives. messages and connections.

Messages

SAAJ messages follow SOAP standards, which prescribe the format for mes-
sages and also specify some things that are required, optional, or not allowed.
With the SAAJ AP, you can create XML messages that conform to the SOAP
1.1 or 1.2 specification and to the WS-I Basic Praofile 1.1 specification simply by
making Java API calls.

The Structure of an XML Document

An XML document has a hierarchical structure made up of elements, subele-
ments, subsubelements, and so on. You will notice that many of the SAAJ
classes and interfaces represent XML elementsin a SOAP message and have the
word element or SOAP (or both) in their names.

An element is also referred to as a node. Accordingly, the SAAJ API has the
interface Node, which is the base class for al the classes and interfaces that rep-

http://java.sun.com/xml/jaxm/

MESSAGES

resent XML elements in a SOAP message. There are also methods such as
SOAPElement.addTextNode, Node.detachNode, and Node.getValue, which
you will see how to usein the tutorial section.

What Is in a Message?

The two main types of SOAP messages are those that have attachments and
those that do not.

Messages with No Attachments

The following outline shows the very high-level structure of a SOAP message
with no attachments. Except for the SOAP header, all the parts listed are required
to bein every SOAP message.

I. SOAP message
A. SOAP part
1. SOAP envelope
a. SOAP header (optional)
b. SOAP body

The SAAJ API provides the SOAPMessage class to represent a SOAP message,
the SOAPPart class to represent the SOAP part, the SOAPEnveTope interface to
represent the SOAP envelope, and so on. Figure 5-1 illustrates the structure of a
SOAP message with no attachments.

Note: Many SAAJAPI interfaces extend DOM interfaces. In a SAAJ message, the
SOAPPart class is also a DOM document. See SAAJ and DOM (page 122) for
details.

When you create a new SOAPMessage object, it will automatically have the parts
that are required to be in a SOAP message. In other words, a new SOAPMessage
object has a SOAPPart object that contains a SOAPEnveTope object. The SOAPEn-
velope object in turn automatically contains an empty SOAPHeader object fol-
lowed by an empty SOAPBody object. If you do not need the SOAPHeader object,
which is optional, you can delete it. The rationale for having it automatically
included is that more often than not you will need it, so it is more convenient to
have it provided.

119

120

SOAP WITH ATTACHMENTS APl FOR JAVA

The SOAPHeader object can include one or more headers that contain metadata
about the message (for example, information about the sending and receiving
parties). The SOAPBody object, which always follows the SOAPHeader object if
there is one, contains the message content. If there is a SOAPFault object (see
Using SOAP Faullts, page 145), it must be in the SOAPBody object.

SOAPMessage (an XML document)
SOAPPart

SOAPEnvelope
— -
SOAPHeader (optional)
P

Header

Header

————— e

SOAPBody

J——

XML Content
or SOAPFault

Figure5-1 SOAPMessage Object with No Attachments

Messages with Attachments

A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part must contain only XML content; asaresult, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So if, for example, you want your message to contain a binary file, your
message must have an attachment part for it. Note that an attachment part can
contain any kind of content, so it can contain datain XML format aswell. Figure
5-2 shows the high-level structure of a SOAP message that has two attachments.

MESSAGES

SOAPMessage (an XML document)
SOAPPart

SOAPEnvelope

o
SOAPHeader (optional)

fHeaders (if any)

A
SOAPBody

~

XML Content
or SOAPFault

AttachmentPart

MIME Headers

"~ Content (XML or non-XML)

AttachmentPart

MIME Headers

-~

Content (XML or non-XML)

Figure5-2 SOAPMessage Object with Two AttachmentPart Objects

The SAAJ API provides the AttachmentPart class to represent an attachment
part of a SOAP message. A SOAPMessage object automatically has a SOAPPart
object and its required subelements, but because AttachmentPart objects are
optional, you must create and add them yourself. The tutorial section walks you
through creating and populating messages with and without attachment parts.

121

122

SOAP WITH ATTACHMENTS APl FOR JAVA

If a SOAPMessage object has one or more attachments, each AttachmentPart
object must have a MIME header to indicate the type of datait contains. It may
also have additional MIME headers to identify it or to give its location. These
headers are optional but can be useful when there are multiple attachments.
When a SOAPMessage object has one or more AttachmentPart objects, its SOAP-
Part object may or may not contain message content.

SAAJ and DOM

The SAAJAPIs extend their counterpartsin the org.w3c. dom package:

* TheNode interface extends the org.w3c.dom.Node interface.

 The SOAPETement interface extends both the Node interface and the
org.w3c.dom.ETement interface.

* The SOAPPart classimplementsthe org.w3c.dom.Document interface.
» TheText interface extends the org.w3c.dom. Text interface.

Moreover, the SOAPPart of a SOAPMessage isalso aDOM Level 2 Document and
can be manipulated as such by applications, tools, and libraries that use DOM.
For details on how to use DOM documents with the SAAJAPI, see Adding Con-
tent to the SOAPPart Object (page 134) and Adding a Document to the SOAP
Body (page 136).

Connections

All SOAP messages are sent and received over a connection. With the SAAJ
API, the connection is represented by a SOAPConnection object, which goes
from the sender directly to its destination. This kind of connection is called a
point-to-point connection because it goes from one endpoint to another endpoint.
Messages sent using the SAAJ API are called request-response messages. They
are sent over a SOAPConnection object with the cal1 method, which sends a
message (arequest) and then blocks until it receives the reply (aresponse).

SOAPConnection Objects

The following code fragment creates the SOAPConnection object connection
and then, after creating and populating the message, uses connection to send
the message. As stated previoudly, all messages sent over a SOAPConnection
object are sent with the ca11 method, which both sends the message and blocks

TUTORIAL 123

until it receives the response. Thus, the return value for the cal1 method is the
SOAPMessage oObject that is the response to the message that was sent. The
request parameter is the message being sent; endpoint represents where it is
being sent.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();
SOAPConnection connection = factory.createConnection();

.// create a request message and give it content

java.net.URL endpoint =
new URL("http://fabulous.com/gizmo/order™);
SOAPMessage response = connection.call(request, endpoint);

Note that the second argument to the cal1 method, which identifies where the
message is being sent, can be a String object or a URL object. Thus, the last two
lines of code from the preceding example could also have been the following:

String endpoint = "http://fabulous.com/gizmo/order";
SOAPMessage response = connection.call(request, endpoint);

A web service implemented for request-response messaging must return a
response to any message it receives. The response is a SOAPMessage object, just
as the request is a SOAPMessage object. When the request message is an update,
the response is an acknowledgment that the update was received. Such an
acknowledgment implies that the update was successful. Some messages may
not require any response at all. The service that gets such a message is till
required to send back a response because one is needed to unblock the call
method. In this case, the response is not related to the content of the message; it
is simply a message to unblock the ca11 method.

Now that you have some background on SOAP messages and SOAP connec-
tions, in the next section you will see how to use the SAAJAPI.

Tutorial

This tutorial walks you through how to use the SAAJ API. Firgt, it covers the
basics of creating and sending a simple SOAP message. Then you will learn
more details about adding content to messages, including how to create SOAP
faults and attributes. Finally, you will learn how to send a message and retrieve

124

SOAP WITH ATTACHMENTS APl FOR JAVA

the content of the response. After going through this tutorial, you will know how
to perform the following tasks:

Creating and sending a simple message

Adding content to the header

Adding content to the SOAPPart object

Adding a document to the SOAP body

Manipulating message content using SAAJor DOM APIs
Adding attachments

Adding attributes

Using SOAP faults

In the section Code Examples (page 151), you will see the code fragments from
| earlier parts of the tutorial in runnable applications, which you can test yourself.

A SAAJ client can send reguest-response messages to web services that are
implemented to do request-response messaging. This section demonstrates how
you can do this.

Creating and Sending a Simple
Message

This section covers the basics of creating and sending a simple message and
retrieving the content of the response. It includes the following topics:

Creating a message

Parts of a message

Accessing el ements of amessage
Adding content to the body
Getting a SOAPConnection object
Sending a message

Getting the content of a message

Creating a Message

Thefirst step is to create a message using a MessageFactory object. The SAAJ
API provides a default implementation of the MessageFactory class, thus mak-

CREATING AND SENDING A SIMPLE MESSAGE

ing it easy to get an instance. The following code fragment illustrates getting an
instance of the default message factory and then using it to create a message.

MessageFactory factory = MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

As is true of the newInstance method for SOAPConnectionFactory, the
newInstance method for MessageFactory is static, so you invoke it by calling
MessageFactory.newInstance.

If you specify no arguments to the newInstance method, it creates a message
factory for SOAP 1.1 messages. To create a message factory that allows you to
create and process SOAP 1.2 messages, use the following method call:

MessageFactory factory =
MessageFactory.newInstance(SOAPConstants.SOAP_1_2_PROTOCOL);

To create a message factory that can create either SOAP 1.1 or SOAP 1.2 mes-
sages, use the following method call:

MessageFactory factory =
MessageFactory.newInstance (SOAPConstants.DYNAMIC_SOAP_PROTOCOL

);

This kind of factory enables you to process an incoming message that might be
of either type.

Parts of a Message

A SOAPMessage object is required to have certain elements, and, as stated previ-
oudly, the SAAJ API simplifies things for you by returning a new SOAPMessage
object that already contains these elements. When you call createMessage with
no arguments, the message that is created automatically has the following:

I. A SOAPPart object that contains
A. A SOAPEnvelope object that contains
1. Anempty SOAPHeader object
2. An empty SOAPBody oObject

The SOAPHeader object is optional and can be deleted if it is not needed. How-
ever, if thereis one, it must precede the SOAPBody object. The SOAPBody object
can hold either the content of the message or a fault message that contains status

125

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html#log(java.lang.String,java.lang.Throwable)

126

SOAP WITH ATTACHMENTS APl FOR JAVA

information or details about a problem with the message. The section Using
SOAP Faults (page 145) walks you through how to use SOAPFault objects.

Accessing Elements of a Message

The next step in creating a message is to access its parts so that content can be
added. There are two ways to do this. The SOAPMessage object message, created
in the preceding code fragment, is the place to start.

The first way to access the parts of the message is to work your way through the
structure of the message. The message contains a SOAPPart object, so you use
the getSOAPPart method of message to retrieveit:

SOAPPart soapPart = message.getSOAPPart();

Next you can use the getEnvelope method of soapPart to retrieve the SOAPEn-
velope object that it contains.

SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use the getHeader and getBody methods of envelope to retrieve
its empty SOAPHeader and SOAPBody objects.

SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();

The second way to access the parts of the message is to retrieve the message
header and body directly, without retrieving the SOAPPart or SOAPEnvelope. TO
do so, use the getSOAPHeader and getSOAPBody methods of SOAPMessage:

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

This example of a SAAJ client does not use a SOAP header, so you can deleteiit.
(You will see more about headers later.) Because all SOAPETement objects,
including SOAPHeader objects, are derived from the Node interface, you use the
method Node . detachNode to delete header.

header.detachNode();

CREATING AND SENDING A SIMPLE MESSAGE

Adding Content to the Body

The SOAPBody object contains either content or a fault. To add content to the
body, you normally create one or more SOAPBodyETlement objects to hold the
content. You can also add subelements to the SOAPBodyE1ement objects by using
the addChi1dETement method. For each element or child element, you add con-
tent by using the addTextNode method.

When you create any new element, you aso need to create an associated
javax.xml.namespace.QName object so that it is uniquely identified.

Note: You can use Name objectsinstead of QName objects. Name objects are specific
to the SAAJ API, and you create them using either SOAPEnvelope methods or
SOAPFactory methods. However, the Name interface may be deprecated at afuture
release.

The SOAPFactory class also lets you create XML elements when you are not creat-
ing an entire message or do not have access to a complete SOAPMessage object. For
example, JAX-RPC implementations often work with XML fragments rather than
complete SOAPMessage objects. Conseguently, they do not have accessto a SOAPEN-
veTlope object, and this makes using a SOAPFactory object to create Name objects
very useful. In addition to a method for creating Name objects, the SOAPFactory
class provides methods for creating Detai1 objects and SOAP fragments. You will
find an explanation of Detai1 objectsin Overview of SOAP Faults (page 146) and
Creating and Populating a SOAPFault Object (page 147).

QName objects associated with SOAPBodyElement Or SOAPHeaderElement
objects must be fully qualified; that is, they must be created with a namespace
URI, aloca part, and a namespace prefix. Specifying a namespace for an ele-
ment makes clear which one is meant if more than one element has the same
local name.

The following code fragment retrieves the SOAPBody object body from message,
constructs a QName abject for the element to be added, and adds a new SOAP-
BodyElement object to body.

SOAPBody body = message.getSOAPBody();

QName bodyName = new QName("http://wombat.ztrade.com",
"GetLastTradePrice", "m");

SOAPBodyElement bodyElement = body.addBodyElement(bodyName) ;

At this point, body contains a SOAPBodyETement object identified by the QName
object bodyName, but there is still no content in bodyETlement. Assuming that

127

128

SOAP WITH ATTACHMENTS APl FOR JAVA

you want to get a quote for the stock of Sun Microsystems, Inc., you need to cre-
ate a child element for the symbol using the addChiTdETement method. Then
you heed to give it the stock symbol using the addTextNode method. The QName
object for the new SOAPETlement object symbo1l is initialized with only a local
name because child el ementsinherit the prefix and URI from the parent element.

QName name = new QName("symbol");
SOAPETement symbol = bodyElement.addChildETement(name);
symbol.addTextNode("SUNW") ;

You might recall that the headers and content in a SOAPPart object must be in
XML format. The SAAJ API takes care of thisfor you, building the appropriate
XML constructs automatically when you call methods such as addBodyETement,
addChildElement, and addTextNode. Note that you can cal the method
addTextNode only on an element such as bodyETement or any child elements
that are added to it. You cannot call addTextNode on a SOAPHeader or SOAPBody
object because they contain elements and not text.

The content that you have just added to your SOAPBody object will look like the
following when it is sent over the wire:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<m:GetlLastTradePrice xmins:m="http://wombat.ztrade.com">
<symbo1>SUNW</symbo1>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let's examine this XML excerpt line by line to see how it relates to your SAAJ
code. Note that an XML parser does not care about indentations, but they are
generally used to indicate element levels and thereby make it easier for a human
reader to understand.

Here isthe SAAJ code;

SOAPMessage message = messageFactory.createMessage();
SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

CREATING AND SENDING A SIMPLE MESSAGE

Hereisthe XML it produces:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The outermost element in this XML example is the SOAP envelope element,
indicated by SOAP-ENV:Envelope. Note that Envelope is the name of the ele-
ment, and SOAP-ENV is the namespace prefix. Theinterface SOAPEnveTope repre-
sents a SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line is an example of an attribute for the SOAP envelope element.
Because a SOAP envel ope element always contains this attribute with this value,
a SOAPMessage object comes with it automatically included. xm1ns stands for
“XML namespace,” and its value is the URI of the namespace associated with
Envelope.

The next line is an empty SOAP header. We could remove it by calling
header.detachNode after the getSOAPHeader call.

The next two lines mark the beginning and end of the SOAP body, represented in
SAAJ by a S0APBody object. The next step isto add content to the bodly.

Hereisthe SAAJ code:

QName bodyName = new QName("http://wombat.ztrade.com",
"GetLastTradePrice", "m");
SOAPBodyETlement bodyElement = body.addBodyElement(bodyName) ;

Hereisthe XML it produces:

<m:GetLastTradePrice
xmins:m="http://wombat.ztrade.com">

</m:GetLastTradePrice>

These lines are what the SOAPBodyETement bodyElement in your code repre-
sents. GetlLastTradePrice is its local name, m is its namespace prefix, and
http://wombat.ztrade.com iSits namespace URI.

129

130

SOAP WITH ATTACHMENTS APl FOR JAVA

Here isthe SAAJ code:

QName name = new QName("symbol1");
SOAPETement symbol = bodyElement.addChildETement(name);
symbol.addTextNode ("SUNW") ;

Here isthe XML it produces:
<symbo1>SUNW</symbol>

The String "SUNW" is the text node for the element <symbol>. This String
object is the message content that your recipient, the stock quote service,
receives.

The following example shows how to add multiple SOAPETement objects and add
text to each of them. The code first creates the SOAPBodyElement object
purchaselLineItems, which has a fully qualified name associated with it. That
is, the QName object for it has a namespace URI, alocal name, and a namespace
prefix. Asyou saw earlier, a SOAPBodyETement object is required to have afully
qualified name, but child elements added to it, such as SOAPETement objects, can
have Name objects with only the local name.

SOAPBody body = message.getSOAPBody();

QName bodyName = new QName("http://sonata.fruitsgalore.com",
"PurchaselLineItems", "P0");

SOAPBodyETement purchaselLineItems =
body.addBodyElement (bodyName) ;

QName childName = new QName("Order");
SOAPETement order =
purchaselLinelItems.addChildElement(childName);

childName = new QName("Product");
SOAPETement product = order.addChildETement(childName);
product.addTextNode("Apple");

childName = new QName("Price");
SOAPETlement price = order.addChildElement(childName);
price.addTextNode("1.56");

childName = new QName("Order™");
SOAPETement order2 =
purchaselLinelItems.addChildElement(chiTldName);

childName = new QName("Product");
SOAPETement product2 = order2.addChiTldElement(chiTdName);

CREATING AND SENDING A SIMPLE MESSAGE 131

product2.addTextNode("Peach");

childName = soapFactory.new QName("Price");
SOAPET1ement price2 = order2.addChildElement(chiTldName);
price2.addTextNode("1.48");

The SAAJ code in the preceding example produces the following XML in the
SOAP body:

<PO:PurchaselLineltems
xmIns:PO="http://sonata.fruitsgalore.com">
<Order>
<Product>Apple</Product>
<Price>1.56</Price>
</Order>

<Order>
<Product>Peach</Product>
<Price>1.48</Price>
</Order>
</PO:PurchaselLineItems>

Getting a SOAPConnection Object

The SAAJAPI isfocused primarily on reading and writing messages. After you
have written a message, you can send it using various mechanisms (such asJMS
or JAXM). The SAAJ API does, however, provide a simple mechanism for

request-response messaging.
To send a message, a SAAJ client can use a SOAPConnection object. A SOAP-

Connection object is a point-to-point connection, meaning that it goes directly
from the sender to the destination (usually a URL) that the sender specifies.

Thefirst step is to obtain a SOAPConnectionFactory object that you can use to
create your connection. The SAAJ APl makes this easy by providing the SOAP-
ConnectionFactory class with a default implementation. You can get an
instance of thisimplementation using the following line of code.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

Now you can use soapConnectionFactory to create a SOAPConnection object.

SOAPConnection connection =
soapConnectionFactory.createConnection();

132

SOAP WITH ATTACHMENTS APl FOR JAVA

You will use connection to send the message that you created.

Sending a Message

A SAAJ client calls the SOAPConnection method call on a SOAPConnection
object to send a message. The call method takes two arguments: the message
being sent and the destination to which the message should go. This message is
going to the stock quote service indicated by the URL object endpoint.

java.net.URL endpoint = new URL(
"http://wombat.ztrade.com/quotes");

SOAPMessage response = connection.call(message, endpoint);

The content of the message you sent is the stock symbol SUNW; the SOAPMes -
sage object response should contain the last stock price for Sun Microsystems,
which you will retrieve in the next section.

A connection uses afair amount of resources, so it isagood ideato close a con-
nection as soon as you are finished using it.

connection.close();

Getting the Content of a Message

Theinitia steps for retrieving a message's content are the same as those for giv-
ing content to a message: Either you use the Message object to get the SOAPBody
object, or you access the SOAPBody object through the SOAPPart and SOAPEnve-
Tope objects.

Then you access the SOAPBody object’s SOAPBodyE1ement object, becausethat is
the element to which content was added in the example. (In a later section you
will see how to add content directly to the SOAPPart object, in which case you
would not need to access the SOAPBodyETlement object to add content or to
retrieveit.)

To get the content, which was added with the method SOAPETement.addText-
Node, you call the method Node . getValue. Notethat getvalue returnsthe value
of theimmediate child of the element that calls the method. Therefore, in the fol-
lowing code fragment, the getvalue method is called on bodyETement, the ele-
ment on which the addTextNode method was called.

ADDING CONTENT TO THE HEADER

To access bodyETement, you call the getChildElements method on soapBody.
Passing bodyName t0 getChildETlements returns a java.util.Iterator object
that contains al the child elements identified by the Name object bodyName. You
aready know that there is only one, so calling the next method on it will return
the SOAPBodyETement you want. Note that the Iterator.next method returns a
Java Object, SO you need to cast the Object it returns to a SOAPBodyETement
object before assigning it to the variable bodyETement.

SOAPBody soapBody = response.getSOAPBody();

java.util.Iterator iterator =
soapBody.getChildETements (bodyName) ;

SOAPBodyETlement bodyElement =
(SOAPBodyETement)iterator.next();

String lastPrice = bodyElement.getValue();

System.out.print("The Tast price for SUNW 1is ");

System.out.printlin(lastPrice);

If more than one element had the name bodyName, you would have to use a

while loop using the Iterator.hasNext method to make sure that you got all of
them.

while (iterator.hasNext()) {
SOAPBodyETlement bodyElement =
(SOAPBodyETement)iterator.next();
String lastPrice = bodyElement.getValue();
System.out.print("The Tlast price for SUNW is ");
System.out.printin(lastPrice);

}

At this point, you have seen how to send a very basic request-response message
and get the content from the response. The next sections provide more detail on
adding content to messages.

Adding Content to the Header

To add content to the header, you create a SOAPHeaderElement object. As with
al new elements, it must have an associated QName object.

For example, suppose you want to add a conformance claim header to the mes-
sage to state that your message conforms to the WS-I Basic Profile. The follow-
ing code fragment retrieves the SOAPHeader object from message and adds a

133

SOAP WITH ATTACHMENTS APl FOR JAVA

new SOAPHeaderETlement object to it. This SOAPHeaderETlement object contains
the correct qualified name and attribute for aWS-I conformance claim header.

SOAPHeader header = message.getSOAPHeader();

QName headerName = new QName(
"http://ws-1i.org/schemas/conformanceClaim/",
"Claim", "wsi'");

SOAPHeaderElement headerElement =
header.addHeaderElement(headerName) ;

headerElement.addAttribute(new QName("conformsTo"),
"http://ws-1i.org/profiles/basic/1.1/");

At this point, header contains the SOAPHeaderElement object headerElement
identified by the QName object headerName. Note that the addHeaderElement
method both creates headerElement and addsit to header-.

A conformance claim header has no content. This code produces the following
XML header:

<SOAP-ENV:Header>
<wsi:Claim
xmlns:wsi="http://ws-i.org/schemas/conformanceClaim/"
conformsTo="http://ws-i.org/profiles/basic/1.1/"/>
</SOAP-ENV:Header>

For more information about creating SOAP messages that conform to WS-, see
the Conformance Claim Attachment Mechanisms document described in the
Conformance section of the WS-| Basic Profile.

For adifferent kind of header, you might want to add content to headerETement.
Thefollowing line of code uses the method addTextNode to do this.

headerElement.addTextNode("order");

Now you have the SOAPHeader object header that contains a SOAPHeaderEle-
ment object whose content is "order".

Adding Content to the SOAPPart Object

If the content you want to send isin afile, SAAJ provides an easy way to add it
directly to the SOAPPart object. This means that you do not access the SOAPBody
object and build the XML content yourself, as you did in the preceding section.

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#conformance

ADDING CONTENT TO THE SOAPPART OBJECT

To add a file directly to the SOAPPart object, you use a javax.xml.trans-
form.Source object from JAXP (the Java API for XML Processing). There are
three types of Source objects. SAXSource, DOMSource, and StreamSource. A
StreamSource object holds an XML document in text form. SAXSource and
DOMSource objects hold content along with the instructions for transforming the
content into an XML document.

The following code fragment uses the JAXP API to build a DOMSource object
that is passed to the SOAPPart. setContent method. Thefirst three lines of code
get a DocumentBuilderFactory object and use it to create the Document-
Builder object builder. Because SOAP messages use hamespaces, you should
set the NamespaceAware property for the factory to true. Then builder parses
the content file to produce aDocument object.

DocumentBuilderFactory dbFactory =
DocumentBuilderFactory.newInstance();
dbFactory.setNamespaceAware(true);

DocumentBuilder builder = dbFactory.newDocumentBuilder();
Document document =

builder.parse("file:///music/order/soap.xml™);
DOMSource domSource = new DOMSource(document);

Thefollowing two lines of code access the SOAPPart object (using the SOAPMes -
sage object message) and set the new Document object asits content. The SOAP-
Part.setContent method not only sets content for the SOAPBody object but also
sets the appropriate header for the SOAPHeader object.

SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

The XML file you use to set the content of the SOAPPart object must include
Envelope and Body elements:

<SOAP-ENV:Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You will see other ways to add content to a message in the sections Adding a
Document to the SOAP Body (page 136) and Adding Attachments (page 137).

135

136

SOAP WITH ATTACHMENTS APl FOR JAVA

Adding a Document to the SOAP Body

In addition to setting the content of the entire SOAP message to that of a DOM-
Source object, you can add a DOM document directly to the body of the mes-
sage. This capability means that you do not have to create a
javax.xml.transform.Source object. After you parse the document, you can
add it directly to the message body:

SOAPBody body = message.getSOAPBody();
SOAPBodyElement docElement = body.addDocument(document);

Manipulating Message Content Using
SAAJ or DOM APIs

Because SAAJ nodes and elements implement the DOM Node and Element
interfaces, you have many options for adding or changing message content:

e Useonly DOM APIs.
* Useonly SAAJAPIs.
» Use SAAJAPIs and then switch to using DOM APIs.
* Use DOM APIsand then switch to using SAAJAPIs.

The first three of these cause no problems. After you have created a message,
whether or not you have imported its content from another document, you can
start adding or changing nodes using either SAAJor DOM APIs.

But if you use DOM APIsand then switch to using SAAJ APIsto manipulate the
document, any references to objects within the tree that were obtained using
DOM APIs are no longer valid. If you must use SAAJ APIs after using DOM
APIs, you should set all your DOM typed references to null, because they can
become invalid. For more information about the exact cases in which references
become invalid, see the SAAJ APl documentation.

The basic rule is that you can continue manipulating the message content using
SAAJ APIs as long as you want to, but after you start manipulating it using
DOM, you should no longer use SAAJAPIs.

ADDING ATTACHMENTS

Adding Attachments

An AttachmentPart object can contain any type of content, including XML.
And because the SOAP part can contain only XML content, you must use an
AttachmentPart object for any content that is not in XML format.

Creating an AttachmentPart Object and
Adding Content

The SOAPMessage object creates an AttachmentPart object, and the message
also must add the attachment to itself after content has been added. The SOAP-
Message class has three methods for creating an AttachmentPart object.

The first method creates an attachment with no content. In this case, an Attach-
mentPart method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to attachment by using the AttachmentPart method setCon-
tent. This method takes two parameters. a Java Object for the content, and a
String object for the MIME content type that is used to encode the object. Con-
tent in the SOAPBody part of amessage automatically hasaContent-Type header
with the value "text/xm1" because the content must bein XML. In contrast, the
type of content in an AttachmentPart object must be specified because it can be

any type.

Each AttachmentPart object has one or more MIME headers associated with it.
When you specify a type to the setContent method, that type is used for the
header Content-Type. Note that Content-Type is the only header that is
required. You may set other optional headers, such as Content-Id and Content-
Location. For convenience, SAAJ provides get and set methods for the head-
ers Content-Type, Content-Id, and Content-Location. These headers can be
helpful in accessing a particular attachment when a message has multiple attach-
ments. For example, to access the attachments that have particular headers, you
can call the SOAPMessage method getAttachments and pass it a MIMEHeaders
object containing the MIME headers you are interested in.

The following code fragment shows one of the ways to use the method setCon-
tent. The Java Object in the first parameter can be a String, a stream, a
javax.xml.transform.Source object, or a javax.activation.DataHandler
object. The JavaObject being added in the following code fragment isaString,
which is plain text, so the second argument must be "text/plain”. The code

137

138 SOAP WITH ATTACHMENTS APl FOR JAVA

also sets a content identifier, which can be used to identify this AttachmentPart
object. After you have added content to attachment, you must add it to the
SOAPMessage object, something that is done in the last line.

String stringContent = "Update address for Sunny Skies " +
"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain");
attachment.setContentId("update_address");

message.addAttachmentPart(attachment);

The attachment variable now represents an AttachmentPart object that con-
tains the string stringContent and has a header that contains the string "text/
plain". It also has a Content-Id header with "update_address" asits value.
And attachment is now part of message.

The other two SOAPMessage.createAttachment methods create an Attach-
mentPart object complete with content. Oneis very similar to the Attachment-
Part.setContent method in that it takes the same parameters and does
essentially the same thing. It takes a Java Object containing the content and a
String giving the content type. As with AttachmentPart.setContent, the
Object can beaString, astream, a javax.xml.transform.Source object, or a
javax.activation.DataHandler object.

The other method for creating an AttachmentPart object with content takes a
DataHandler abject, which is part of the JavaBeans Activation Framework
(JAF). Using aDataHandler object is fairly straightforward. First, you create a
java.net.URL object for the file you want to add as content. Then you create a
DataHandler object initialized with the URL object:

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment =
message.createAttachmentPart(dataHandler);
attachment.setContentId("attached_image");

message.addAttachmentPart(attachment);

You might note two things about this code fragment. First, it sets a header for
Content-ID using the method setContentId. This method takes a String that
can be whatever you like to identify the attachment. Second, unlike the other
methods for setting content, this one does not take a String for Content-Type.
This method takes care of setting the Content-Type header for you, something

ADDING ATTRIBUTES

that is possible because one of the things a DataHand1er object doesisto deter-
mine the data type of thefileit contains.

Accessing an AttachmentPart Object

If you receive a message with attachments or want to change an attachment to a
message you are building, you need to access the attachment. The SOAPMessage
class provides two versions of the getAttachments method for retrieving its
AttachmentPart objects. When it is given no argument, the method SOAPMes -
sage.getAttachments returns a java.util.Iterator object over al the
AttachmentPart objectsin a message. When getAttachments isgiven aMime-
Headers object, which is a list of MIME headers, getAttachments returns an
iterator over the AttachmentPart objects that have a header that matches one of
the headersin thelist. The following code uses the getAttachments method that
takes no arguments and thus retrieves all the AttachmentPart objects in the
SOAPMessage object message. Thenit printsthe content ID, the content type, and
the content of each AttachmentPart object.

java.util.Iterator iterator = message.getAttachments();
while (iterator.hasNext()) {
AttachmentPart attachment = (AttachmentPart)iterator.next();
String id = attachment.getContentId();
String type = attachment.getContentType();
System.out.print("Attachment " + id +
" has content type " + type);
if (type.equals("text/plain™)) {
Object content = attachment.getContent();
System.out.println("Attachment contains:\n" + content);
}
}

Adding Attributes

An XML element can have one or more attributes that give information about
that element. An attribute consists of a name for the attribute followed immedi-
ately by an equal sign (=) and its value.

The SOAPETement interface provides methods for adding an attribute, for getting
the value of an attribute, and for removing an attribute. For example, in the fol-
lowing code fragment, the attribute named id is added to the SOAPE1ement
object person. Because person is a SOAPE1ement object rather than a SOAP-

139

140

SOAP WITH ATTACHMENTS APl FOR JAVA

BodyElement object or SOAPHeaderElement object, it is legal for its QName
object to contain only alocal hame.

QName attributeName = new QName("id");
person.addAttribute(attributeName, "Person7");

These lines of code will generate the first linein the following XML fragment.
<person id="Person7">
</6é;son>

The following line of code retrieves the value of the attribute whose nameisid.

String attributeValue =
person.getAttributeValue(attributeName);

If you had added two or more attributes to person, the preceding line of code
would have returned only the value for the attribute named 1d. If you wanted to
retrieve the values for al the attributes for person, you would use the method
getAlT1Attributes, which returns an iterator over all the values. The following
lines of code retrieve and print each value on a separate line until there are no
more attribute values. Note that the Iterator.next method returns a Java
Object, which is cast to a QName object so that it can be assigned to the QName
object attributeName. (The examples in DOMExamplejava and
DOM SrcExample.java (page 162) use code similar to this.)

Iterator iterator = person.getAl1AttributesAsQNames();
while (iterator.hasNext()){
QName attributeName = (QName) iterator.next();
System.out.printin("Attribute name is " +
attributeName.toString());
System.out.println("Attribute value is " +
element.getAttributeValue(attributeName));

}

The following line of code removes the attribute named id from person. The
variable successful will be true if the attribute was removed successfully.

boolean successful = person.removeAttribute(attributeName);

In this section you have seen how to add, retrieve, and remove attributes. This
information is general in that it applies to any element. The next section dis-
cusses attributes that can be added only to header elements.

ADDING ATTRIBUTES

Header Attributes

Attributes that appear in a SOAPHeaderETement object determine how arecipient
processes a message. You can think of header attributes as offering a way to
extend a message, giving information about such things as authentication, trans-
action management, payment, and so on. A header attribute refines the meaning
of the header, whereas the header refines the meaning of the message contained
in the SOAP body.

The SOAP 1.1 specification defines two attributes that can appear only in SOAP-
HeaderETlement objects: actor and mustUnderstand.

The SOAP 1.2 specification defines three such attributes: role (a new name for
actor), mustUnderstand, and relay.

The next sections discuss these attributes.

See HeaderExample.java (page 160) for an example that uses the code shown in
this section.

The Actor Attribute

The actor attributeis optional, but if it is used, it must appear in a SOAPHeader-
Element object. Its purpose is to indicate the recipient of a header element. The
default actor is the message's ultimate recipient; that is, if no actor attribute is
supplied, the message goes directly to the ultimate recipient.

An actor is an application that can both receive SOAP messages and forward
them to the next actor. The ahility to specify one or more actors as intermediate
recipients makes it possible to route a message to multiple recipients and to sup-
ply header information that applies specifically to each of the recipients.

For example, suppose that a message is an incoming purchase order. 1ts SOAP-
Header object might have SOAPHeaderElement objects with actor attributes that
route the message to applications that function as the order desk, the shipping
desk, the confirmation desk, and the billing department. Each of these applica-
tions will take the appropriate action, remove the SOAPHeaderElement objects
relevant to it, and send the message on to the next actor.

Note: Although the SAAJAPI providesthe API for adding these attributes, it does
not supply the API for processing them. For example, the actor attribute requires
that there be an implementation such as a messaging provider service to route the
message from one actor to the next.

141

142

SOAP WITH ATTACHMENTS APl FOR JAVA

An actor is identified by its URI. For example, the following line of code, in
which orderHeader is a SOAPHeaderETlement object, sets the actor to the given
URI.

orderHeader.setActor("http://gizmos.com/orders");

Additional actors can be set in their own SOAPHeaderElement objects. The fol-
lowing code fragment first usesthe SOAPMessage object message to get its SOAP-
Header object header. Then header creates four SOAPHeaderETement Objects,
each of which setsitsactor attribute.

SOAPHeader header = message.getSOAPHeader();
SOAPFactory soapFactory = SOAPFactory.newInstance();

String nameSpace = "ns";
String nameSpaceURI = "http://gizmos.com/NSURI";

QName order =
new QName(nameSpaceURI, "orderDesk", nameSpace);
SOAPHeaderElement orderHeader =
header.addHeaderElement(order);
orderHeader.setActor("http://gizmos.com/orders");

QName shipping =
new QName(nameSpaceURI, "shippingDesk", nameSpace);
SOAPHeaderElement shippingHeader =
header.addHeaderElement(shipping);
shippingHeader.setActor("http://gizmos.com/shipping");

QName confirmation =
new QName(nameSpaceURI, "confirmationDesk", nameSpace);
SOAPHeaderETement confirmationHeader =
header.addHeaderElement(confirmation);
confirmationHeader.setActor(
"http://gizmos.com/confirmations");

QName billing =
new QName(nameSpaceURI, "billingDesk", nameSpace);
SOAPHeaderETlement billingHeader =
header.addHeaderElement(billing);
billingHeader.setActor("http://gizmos.com/billing");

The SOAPHeader interface provides two methods that return ajava.util.Iter-
ator object over al the SOAPHeaderElement objects that have an actor that

ADDING ATTRIBUTES

matches the specified actor. The first method, examineHeaderElements, returns
an iterator over all the elements that have the specified actor.

java.util.Iterator headerElements =
header.examineHeaderElements("http://gizmos.com/orders");

The second method, extractHeaderElements, not only returns an iterator over
al the SOAPHeaderElement objects that have the specified actor attribute but
a so detaches them from the SOAPHeader object. So, for example, after the order
desk application did its work, it would call extractHeaderElements to remove
al the SOAPHeaderETement oObjectsthat applied to it.

java.util.Iterator headerElements =
header.extractHeaderElements("http://gizmos.com/orders");

Each SOAPHeaderETement object can have only one actor attribute, but the same
actor can be an attribute for multiple SOAPHeaderElement objects.

Two additional SOAPHeader methods—examineAllHeaderElements and
extractAl1HeaderElements—allow you to examine or extract all the header
elements, whether or not they have an actor attribute. For example, you could use
the following code to display the values of all the header elements:

Iterator allHeaders =
header.examineAlTHeaderElements();
while (allHeaders.hasNext()) {
SOAPHeaderElement headerElement =
(SOAPHeaderElement)allHeaders.next();
QName headerName =
headerElement.getElementQName();
System.out.printin("\nHeader name is " +
headerName.toString());
System.out.printin("Actor is " +
headerElement.getActor());

The role Attribute

The role attribute is the name used by the SOAP 1.2 specification for the SOAP
1.2 actor attribute. The SOAPHeaderETement methods setRole and getRole
perform the same functions as the setActor and getActor methods.

143

144

SOAP WITH ATTACHMENTS APl FOR JAVA

The mustUnderstand Attribute

The other attribute that must be added only to a SOAPHeaderETlement object is
mustUnderstand. This attribute says whether or not the recipient (indicated by
the actor attribute) is required to process a header entry. When the value of the
mustUnderstand attribute is true, the actor must understand the semantics of
the header entry and must process it correctly to those semantics. If the valueis
false, processing the header entry is optional. A SOAPHeaderElement object
with no mustUnderstand attribute is equivalent to one with a mustUnderstand
attribute whose value is false.

ThemustUnderstand attribute is used to call attention to the fact that the seman-
ticsin an element are different from the semanticsin its parent or peer elements.
This allows for robust evolution, ensuring that a change in semantics will not be
silently ignored by those who may not fully understand it.

If the actor for a header that has a mustUnderstand attribute set to true cannot
process the header, it must send a SOAP fault back to the sender. (See Using
SOAP Faults, page 145.) The actor must not change state or cause any side
effects, so that, to an outside observer, it appears that the fault was sent before
any header processing was done.

For example, you could set the mustUnderstand attribute to true for the con-
firmationHeader in the code fragment in The Actor Attribute (page 141):

QName confirmation =
new QName(nameSpaceURI, "confirmationDesk", nameSpace);
SOAPHeaderETement confirmationHeader =
header.addHeaderETement(confirmation);
confirmationHeader.setActor(
"http://gizmos.com/confirmations");
confirmationHeader.setMustUnderstand(true);

This fragment produces the following XML:

<ns:confirmationDesk
xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/confirmations"
SOAP-ENV:mustUnderstand="1"/>

UsING SOAP FAULTS

You can use the getMustUnderstand method to retrieve the value of the must-
Understand attribute. For example, you could add the following to the code
fragment at the end of the preceding section:

System.out.println("mustUnderstand is " +
headerElement.getMustUnderstand());

The relay Attribute

The SOAP 1.2 specification adds a third attribute to a SOAPHeaderElement,
relay. This attribute, like mustUnderstand, is a boolean vaue. If it is set to
true, it indicates that the SOAP header block must not be processed by any node
that is targeted by the header block, but must only be passed on to the next tar-
geted node. This attribute is ignored on header blocks whose mustUnderstand
attribute is set to true or that are targeted at the ultimate receiver (which is the
default). The default value of this attribute is false.

For example, you could set the reTlay element to true for the billingHeader in
the code fragment in The Actor Attribute (page 141) (also changing setActor to
setRole):

QName billing =
new QName(nameSpaceURI, "billingDesk", nameSpace);
SOAPHeaderElement billingHeader =
header.addHeaderElement(billing);
billingHeader.setRole("http://gizmos.com/billing");
billingHeader.setRelay(true);

This fragment produces the following XML.:

<ns:billingDesk
xmlns:ns="http://gizmos.com/NSURI"
env:relay="true"
env:role="http://gizmos.com/billing"/>

To display the value of the attribute, call getRelay:

System.out.printin("relay is + headerElement.getRelay());

Using SOAP Faults

In this section, you will see how to use the API for creating and accessing a
SOAP fault element in an XML message.

145

146

SOAP WITH ATTACHMENTS APl FOR JAVA

Overview of SOAP Faults

If you send a message that was not successful for some reason, you may get back
aresponse containing a SOAP fault el ement, which gives you status information,
error information, or both. There can be only one SOAP fault element in a mes-
sage, and it must be an entry in the SOAP body. Furthermore, if thereis a SOAP
fault element in the SOAP body, there can be no other elements in the SOAP
body. This means that when you add a SOAP fault element, you have effectively
completed the construction of the SOAP body.

A SOAPFault object, the representation of a SOAP fault element in the SAAJ
AP, is similar to an Exception object in that it conveys information about a
problem. However, a SOAPFault object is quite different in that it is an element
in a message's SOAPBody object rather than part of the try/catch mechanism
used for Exception objects. Also, as part of the SOAPBody object, which pro-
vides a simple means for sending mandatory information intended for the ulti-
mate recipient, a SOAPFault object only reports status or error information. It
does not halt the execution of an application, as an Exception object can.

If you are aclient using the SAAJ API and are sending point-to-point messages,
the recipient of your message may add a SOAPFault object to the response to
aert you to a problem. For example, if you sent an order with an incomplete
address for where to send the order, the service receiving the order might put a
SOAPFault object in the return message telling you that part of the address was
missing.

Another example of who might send a SOAP fault is an intermediate recipient,
or actor. As stated in the section Adding Attributes (page 139), an actor that can-
not process a header that has a mustUnderstand attribute with a value of true
must return a SOAP fault to the sender.

A SOAPFault object contains the following elements:

» A fault code: Always required. The fault code must be a fully qualified
name: it must contain a prefix followed by alocal name. The SOAP spec-
ifications define a set of fault code local name values, which a devel oper
can extend to cover other problems. (These are defined in section 4.4.1 of
the SOAP 1.1 specification and in section 5.4.6 of the SOAP 1.2 specifica-

UsING SOAP FAULTS

tion.) Table 5-1 on page 149 lists and describes the default fault code local
names defined in the specifications.

A SOAP 1.2 fault code can optionally have a hierarchy of one or more
subcodes.

* A fault string: Always required. A human-readable explanation of the
fault.

» A fault actor: Required if the SOAPHeader object contains one or more
actor attributes; optional if no actors are specified, meaning that the only
actor is the ultimate destination. The fault actor, which is specified as a
URI, identifies who caused the fault. For an explanation of what an actor
is, see The Actor Attribute, page 141.

» A Detail object: Required if the fault is an error related to the SOAPBody
object. If, for example, the fault code is C1ient, indicating that the mes-
sage could not be processed because of a problem in the SOAPBody object,
the SOAPFault object must contain aDetail object that gives details about
the problem. If aSOAPFault object doesnot contain aDetail abject, it can
be assumed that the SOAPBody object was processed successfully.

Creating and Populating a SOAPFault Object

You have seen how to add content to a SOAPBody abject; this section walks you
through adding a SOAPFault object to a SOAPBody object and then adding its
constituent parts.

Aswith adding content, the first step isto access the SOAPBody object.
SOAPBody body = message.getSOAPBody();

With the SOAPBody object body in hand, you can use it to create a SOAPFault
object. The following line of code creates a SOAPFault object and adds it to
body.

SOAPFault fault = body.addFault();

The SOAPFault interface provides convenience methods that create an element,
add the new element to the SOAPFault object, and add a text node, all in one
operation. For example, in the following lines of SOAP 1.1 code, the method
setFaultCode creates a faultcode element, adds it to fault, and adds a Text

147

148

SOAP WITH ATTACHMENTS APl FOR JAVA

node with the value "SOAP-ENV:Server" by specifying a default prefix and the
namespace URI for a SOAP envelope.

QName faultName =

new QName (SOAPConstants.URI_NS_SOAP_ENVELOPE, "Server");
fault.setFaultCode(faultName);
fault.setFaultActor("http://gizmos.com/orders");
fault.setFaultString("Server not responding");

The SOAP 1.2 code would look like this:

QName faultName =
new QName (SOAPConstants.URI_NS_SOAP_1_2_ENVELOPE,
"Receiver");
fault.setFaultCode(faultName);
fault.setFaultRole("http://gizmos.com/order™);
fault.addFaultReasonText("Server not responding"”, Locale.US);

To add one or more subcodes to the fault code, call the method fault.append-
FaultSubcode, which takes a QName argument.

The SOAPFault object fault, created in the preceding lines of code, indicates
that the cause of the problem is an unavail able server and that the actor at http:/
/gizmos.com/orders is having the problem. If the message were being routed
only to its ultimate destination, there would have been no need to set a fault
actor. Also note that fault does not have a Detail object because it does not
relate to the SOAPBody object. (If you use SOAP 1.2, you can use the setFault-
RoTe method instead of setFaultActor.)

Thefollowing SOAP 1.1 code fragment creates a SOAPFault object that includes
aDetail object. Note that a SOAPFaul+t object can have only one Detail object,
which is simply a container for Detai1Entry objects, but the Detail object can
have multiple DetailEntry objects. The Detail object in the following lines of
code has two Detai1Entry objects added to it.

SOAPFault fault body.addFault();

QName faultName =

new QName (SOAPConstants.URI_NS_SOAP_ENVELOPE, "Client");
fault.setFaultCode(faultName);
fault.setFaultString("Message does not have necessary info");

Detail detail = fault.addDetail();

QName entryName =
new QName("http://gizmos.com/orders/", "order", "P0");

UsING SOAP FAULTS

DetailEntry entry = detail.addDetailEntry(entryName) ;
entry.addTextNode("Quantity element does not have a value");

QName entryName2 =
new QName("http://gizmos.com/orders/", "order", "P0");

DetailEntry entry2 = detail.addDetailEntry(entryName2);

entry2.addTextNode("Incomplete address: no zip code");

See SOAPFaultTest.java (page 168) for an example that uses code like that
shown in this section.

The SOAP 1.1 and 1.2 specifications define dlightly different values for a fault
code. Table 5-1 lists and describes these val ues.

Table5-1 SOAP Fault Code Values

SOAP 1.1

SOAP 1.2

Description

VersionMismatch

VersionMismatch

The namespace or local name for a SOAPEn-
velope object wasinvalid.

MustUnderstand

MustUnderstand

Animmediate child element of a SOAP-
Header object had itsmustUnderstand
attribute set to true, and the processing party
did not understand the element or did not obey
it.

Client

Sender

The SOAPMessage object was not formed
correctly or did not contain the information
needed to succeed.

Server

Receiver

The SOAPMessage object could not be pro-
cessed because of a processing error, not
because of a problem with the message itself.

N/A

DataEncodingUnknown

A SOAP header block or SOAP body child
element information item targeted at the fault-
ing SOAP node is scoped with a data encod-
ing that the faulting node does not support.

Retrieving Fault Information

Just as the SOAPFault interface provides convenience methods for adding infor-
mation, it also provides convenience methods for retrieving that information.

150

SOAP WITH ATTACHMENTS APl FOR JAVA

The following code fragment shows what you might write to retrieve fault infor-
mation from a message you received. In the code fragment, newMessage is the
SOAPMessage object that has been sent to you. Because a SOAPFault object must
be part of the SOAPBody object, the first step is to access the SOAPBody object.
Then the code tests to see whether the SOAPBody object contains a SOAPFault
object. If it does, the code retrieves the SOAPFault object and uses it to retrieve
its contents. The convenience methods getFaultCode, getFaultString, and
getFaultActor make retrieving the values very easy.

SOAPBody body = newMessage.getSOAPBody();

if (body.hasFault(Q)) {
SOAPFault newFault = body.getFault();
QName code = newFault.getFaultCodeAsQName();
String string = newFault.getFaultString(Q;
String actor = newFault.getFaultActor();

To retrieve subcodes from a SOAP 1.2 fault, call the method newFault.get-
FaultSubcodes

Next the code prints the valuesit has just retrieved. Not al messages are required
to have a fault actor, so the code tests to see whether there is one. Testing
whether the variable actor is nul11 works because the method getFaultActor
returnsnull if afault actor has not been set.

System.out.println("SOAP fault contains: ");

System.out.println(" Fault code = " +
code.toString());

System.out.println(" Local name = " + code.getlLocalPart());

System.out.printin(" Namespace prefix = " +
code.getPrefix() + ", bound to " +
code.getNamespaceURI());

System.out.println(" Fault string = " + string);

if (actor != null) {
System.out.println(" Fault actor =

}

+ actor);

The final task is to retrieve the Detail1 object and get its DetailEntry objects.
The code uses the SOAPFault object newFault to retrieve the Detail object
newDetail, and then it uses newDetail to call the method getDetailEntries.
This method returns the java.util.Iterator object entries, which contains
al the DetailEntry objects in newDetail. Not all SOAPFault objects are
required to have aDetail object, so the code tests to see whether newDetail is

CODE EXAMPLES 151

null. If itisnot, the code printsthe values of the DetailEntry objectsaslong as
there are any.

Detail newDetail = newFault.getDetail();
if (newDetail != null) {
Iterator entries = newDetail.getDetailEntries();
while (entries.hasNext()) {
DetailEntry newEntry = (DetailEntry)entries.next();
String value = newEntry.getValue(Q);
System.out.println(" Detail entry =
}
}

+ value);

In summary, you have seen how to add a SOAPFault object and its contents to a
message as well as how to retrieve the contents. A SOAPFault object, which is
optional, is added to the SOAPBody object to convey status or error information. It
must always have a fault code and a String explanation of the fault. A SOAP-
Fault object must indicate the actor that is the source of the fault only when
there are multiple actors; otherwise, it is optional. Similarly, the SOAPFault
object must contain aDetai1 object with one or more DetailEntry objects only
when the contents of the SOAPBody object could not be processed successfully.

See SOAPFaultTest.java (page 168) for an example that uses code like that
shown in this section.

Code Examples

Thefirst part of thistutoria uses code fragments to walk you through the funda-
mentals of using the SAAJ API. In this section, you will use some of those code
fragments to create applications. First, you will see the program Request. java.
Then you will see how to run the programs MyUddiPing.java, HeaderExam-
ple.java, DOMExample.java, DOMSrcExample.java, Attachments.java, and
SOAPFaultTest.java.

Note: Before you run any of the examples, follow the preliminary setup instructions
in Building the Examples (page xxxiii).

152

SOAP WITH ATTACHMENTS APl FOR JAVA

Request.java

The class Request.java puts together the code fragments used in the section
Tutorial (page 123) and adds what is needed to make it a complete example of a
client sending a request-response message. In addition to putting all the code
together, it adds import statements, amain method, and a try/catch block with
exception handling.

import javax.xml.soap.*;

import javax.xml.namespace.QName;
import java.util.Iterator;

import java.net.URL;

public class Request {
public static void main(String[] args){
try {
SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();
SOAPConnection connection =
soapConnectionFactory.createConnection();

MessageFactory factory =
MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();
header.detachNode();

QName bodyName = new QName("http://wombat.ztrade.com",
"GetLastTradePrice", "m");

SOAPBodyETement bodyElement =
body.addBodyElement (bodyName) ;

QName name = new QName("symbol1");

SOAPETement symbol =
bodyElement.addChildElement(name);

symboTl.addTextNode("SUNW") ;

URL endpoint = new URL
("http://wombat.ztrade.com/quotes");
SOAPMessage response =
connection.call(message, endpoint);
connection.close();

SOAPBody soapBody = response.getSOAPBody();

MYUDDIPING.JAVA

Iterator iterator =

soapBody.getChildElements (bodyName) ;
bodyETement = (SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW 1is ");
System.out.println(lastPrice);

} catch (Exception ex) {
ex.printStackTrace();
3
}
}

For Request.java to be runnable, the second argument supplied to the call
method would have to be a valid existing URI, and this is not true in this case.
However, the application in the next section is one that you can run.

MyUddiPing.java

The program MyUddiPing.java is another example of a SAAJ client applica-
tion. It sends a request to a Universal Description, Discovery and Integration
(UDDI) service and gets back the response. A UDDI serviceis abusiness regis-
try from which you can get information about businesses that have registered
themselves with the registry service. For this example, the MyUddiPing applica-
tion is accessing a test (demo) version of a UDDI service registry. Because of
this, the number of businesses you can get information about is limited. Never-
theless, MyUddiPing demonstrates a request being sent and a response being
received.

Setting Up
The MyUddiPing example isin the following directory:

<INSTALL>/javaeetutorial5/examples/saaj/myuddiping/

Note: <INSTALL> isthe directory where you installed the tutorial bundle.

In the myuddiping directory, you will find three files and the src directory. The
src directory contains one source file, MyuddiPing. java.

../examples/saaj/myuddiping/src/MyUddiPing.java

154

SOAP WITH ATTACHMENTS APl FOR JAVA

Thefile build.xm1 isthe asant build file for this example.
Thefile build.properties defines one property.

Thefileuddi.properties containsthe URL of the destination (a UDDI test reg-
istry). To install this registry, follow the instructions in Preliminaries. Getting
Access to a Registry (page 175). If the Application Server where you install the
registry is running on a remote system, open uddi . properties in atext editor
and replace Tocalhost with the name of the remote system.

The prepare target creates a directory named build. To invokethe prepare tar-
get, you type the following at the command line:

asant prepare

The target named bui1d compiles the source file MyUddiPing. java and puts the
resulting .class file in the build directory. So to do these tasks, you type the
following at the command line:

asant build

Examining MyuddiPing

We will go through the file MyuddiPing.java afew lines at a time, concentrat-
ing on the last section. This is the part of the application that accesses only the
content you want from the XML message returned by the UDDI registry.

Thefirst lines of code import the interfaces used in the application.

import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPElement;
import javax.xml.namespace.QName;
import java.net.URL;

import java.util.Properties;

import java.util.Enumeration;

import java.util.Iterator;

import java.io.FileInputStream;

../examples/saaj/myuddiping/src/MyUddiPing.java

MYUDDIPING.JAVA 155

The next few lines begin the definition of the class MyUddiPing, which starts
with the definition of its main method. The first thing it does is to check to see
whether two arguments were supplied. If they were not, it prints a usage message
and exits. The usage message mentions only one argument; the other is supplied
by the build.xm1 target.

public class MyUddiPing {
public static void main(String[] args) {
try {

if (args.length != 2) {

System.err.printin("Usage: asant run " +
"-Dbusiness-name=<name>") ;

System.exit(1l);

}

The following lines create a java.util.Properties oObject that contains the
system properties and the properties from the file uddi . properties, whichisin
the myuddiping directory.

Properties myprops = new Properties();
myprops.load(new FileInputStream(args[@]));

Properties props = System.getProperties();

Enumeration propNames = myprops.propertyNames();
while (propNames.hasMoreElements()) {
String s = (String) propNames.nextElement();
props.setProperty(s, myprops.getProperty(s));
}

The next four lines create a SOAPMessage object. First, the code gets an instance
of SOAPConnectionFactory and uses it to create a connection. Then it gets an
instance of a SOAP 1.1 MessageFactory, using the MessageFactory instance to
create a message.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

SOAPConnection connection =
soapConnectionFactory.createConnection();

MessageFactory messageFactory =
MessageFactory.newInstance();
SOAPMessage message = messageFactory.createMessage();

156

SOAP WITH ATTACHMENTS APl FOR JAVA

The next lines of code retrieve the SOAPHeader and SOAPBody objects from the
message and remove the header.

SOAPHeader header = message.getSOAPHeader();
header.detachNode();
SOAPBody body = message.getSOAPBody();

The following lines of code create the UDDI find_business message. The first
line creates a SOAPBodyElement with a fully quaified name, including the
required namespace for a UDDI version 2 message. The next lines add two
attributes to the new element: the required attribute generic, with the UDDI ver-
sion number 2.0, and the optional attribute maxRows, with the value 100. Then
the code adds a child element that has the QName object name and adds text to the
element by using the method addTextNode. The added text is the business name
you will supply at the command line when you run the application.

SOAPBodyElement findBusiness =
body.addBodyElement(new QName(
"urn:uddi-org:api_v2", "find_business"));
findBusiness.addAttribute(new QName("generic"), "2.0");
findBusiness.addAttribute(new QName("maxRows"), "100");

SOAPETement businessName =
findBusiness.addChiTdETement(new QName('"name"));
businessName.addTextNode(args[1]);

The next line of code saves the changes that have been made to the message.
This method will be called automatically when the message is sent, but it does
not hurt to call it explicitly.

message.saveChanges();
The following lines display the message that will be sent:

System.out.println("\n---- Request Message ----\n");
message.writeTo(System.out);

The next line of code creates the java.net.URL object that represents the desti-
nation for this message. It gets the value of the property named URL from the sys-
tem properties.

URL endpoint = new URL(
System.getProperties().getProperty("URL"));

MYUDDIPING.JAVA

Next, the message message is sent to the destination that endpoint represents,
which isthe UDDI test registry. The ca11 method will block until it gets a SOAP-
Message object back, at which point it returns the reply.

SOAPMessage reply = connection.call(message, endpoint);

In the next lines of code, the first line prints aline giving the URL of the sender
(the test registry), and the others display the returned message.

System.out.printTn("\n\nReceived reply from: +
endpoint);

System.out.println("\n---- Reply Message ----\n");

reply.writeTo(System.out);

The returned message is the complete SOAP message, an XML document, as it
looks when it comes over the wire. It isabusinessList that follows the format
specified in http://uddi.org/pubs/DataStructure-V2.03-Published-
20020719.htm#_Toc25130802.

Asinteresting asit isto seethe XML that is actually transmitted, the XML docu-
ment format does not make it easy to see the text that is the message's content.
To remedy this, the last part of MyUddiPing.java contains code that prints only
the text content of the response, making it much easier to see the information you
want.

Because the content is in the SOAPBody object, the first step is to access it, as
shown in the following line of code.

SOAPBody replyBody = reply.getSOAPBody();

Next, the code displays a message describing the content:

System.out.println("\n\nContent extracted from +
"the reply message:\n");

To display the content of the message, the code uses the known format of the
reply message. First, it gets al the reply body’s child elements named busi-
nessList:

Iterator businesslListIterator =
replyBody.getChiTldElements(new QName(
"urn:uddi-org:api_v2",
"businessList"));

157

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802

158

SOAP WITH ATTACHMENTS APl FOR JAVA

The method getChildElements returns the elements in the form of a
java.util.Iterator object. You access the child elements by calling the
method next on the Iterator object. An immediate child of a SOAPBody object
isa SOAPBodyETement object.

We know that the reply can contain only one businessList element, so the code
then retrieves this one element by calling the iterator’s next method. Note that
the method Iterator.next returns an Object, which must be cast to the spe-
cific kind of object you are retrieving. Thus, the result of calling
businessListIterator.next iScast to a SOAPBodyETement oObject:

SOAPBodyElement businessList =
(SOAPBodyETement) businessListIterator.next();

The next element in the hierarchy is a single businessInfos element, so the
code retrieves this element in the same way it retrieved the businessList. Chil-
dren of SOAPBodyETement objects and all child elements from this point forward
are SOAPETement objects.

Iterator businessInfosIterator =
businessList.getChildETements(new QName(
"urn:uddi-org:api_v2", "businessInfos"));

SOAPETement businessInfos =
(SOAPETement) businessInfosIterator.next();

The businessInfos element contains zero or more businessInfo elements. If
the query returned no businesses, the code prints a message saying that none
were found. If the query returned businesses, however, the code extracts the
name and optional description by retrieving the child elements that have those
names. The method Iterator.hasNext can be used in awhile loop because it
returns true as long as the next call to the method next will return a child ele-
ment. Accordingly, the loop ends when there are no more child elements to
retrieve.

Iterator businessInfolterator =
businessInfos.getChildETlements(
soapFactory.createName("businessInfo",
"", "urn:uddi-org:api_v2"));

if (! businessInfolterator.hasNext()) {
System.out.println("No businesses found " +
"matching the name \"" + args[1] + "\".");
} else {

MYUDDIPING.JAVA

while (businessInfoIlterator.hasNext()) {
SOAPETement businessInfo = (SOAPETement)
businessInfolterator.next();

Iterator namelterator =
businessInfo.getChildETements(new QName(
"urn:uddi-org:api_v2", "name"));

while (namelterator.hasNext()) {
businessName =
(SOAPETement)namelterator.next();

System.out.println("Company name: +
businessName.getValue());
}

Iterator descriptionIterator =
businessInfo.getChildElements(new QName(
"urn:uddi-org:api_v2", "description"));

while (descriptionIterator.hasNext()) {
SOAPETlement businessDescription =
(SOAPE1ement) descriptionIterator.next();

System.out.println("Description: +
businessDescription.getValue());

3
System.out.println("");

}
}
}

Finally, the program closes the connection:

connection.close();

Running MyuddiPing

You are now ready to run MyUddiPing. The run target takes two arguments, but
you need to supply only one of them. The first argument is the file uddi . prop-
erties, which is supplied by a property that is set in build.properties. The
other argument is the first letters of the name of the business for which you want
to get adescription, and you need to supply this argument on the command line.
Note that any property set on the command line overrides any value set for that
property in the build.xm1 file.

Use a command like the following to run the example:

asant run -Dbusiness-name=the

159

160

SOAP WITH ATTACHMENTS APl FOR JAVA

The program output depends on the contents of the registry. For example:

Content extracted from the reply message:

Company name: The Coffee Break
Description: Purveyor of the finest coffees. Established 1950

The program will not return any results until you have run the examplesin Chap-
ter 6

If you want to run MyUddiPing again, you may want to start over by deleting the
build directory and the . class fileit contains. You can do this by typing the fol-
lowing at the command line:

asant clean

HeaderExample.java

The example HeaderExample. java, based on the code fragments in the section
Adding Attributes (page 139), creates a message that has several headers. It then
retrieves the contents of the headers and prints them. The example generates
either a SOAP 1.1 message or a SOAP 1.2 message, depending on arguments
you specify. You will find the code for HeaderExample in the following direc-
tory:

<INSTALL>/javaeetutorial5/examples/saaj/headers/src/

Running HeaderExample

To run HeaderExample, you use the file build.xm1 that is in the directory
<INSTALL>/javaeetutorial5/examples/saaj/headers/.

To run HeaderExample, use one of the following commands:

asant run -Dsoap=1.1
asant run -Dsoap=1.2

This command executes the prepare, build, and run targets in the build.xm1
and targets.xm] files.

../examples/saaj/headers/src/HeaderExample.java

HEADEREXAMPLE.JAVA 161

When you run HeaderExample to generate a SOAP 1.1 message, you will see
output similar to the following:

————— Request Message ----

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>

<ns:orderDesk xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/orders" />
<ns:shippingDesk xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/shipping"/>
<ns:confirmationDesk xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/confirmations"
SOAP-ENV:mustUnderstand="1"/>

<ns:billingDesk xmIns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/billing"/>
</SOAP-ENV:Header><SOAP-ENV:Body/></SOAP-ENV:Envelope>

Header name is {http://gizmos.com/NSURI}orderDesk
Actor is http://gizmos.com/orders
mustUnderstand is false

Header name 1is {http://gizmos.com/NSURI}shippingDesk
Actor is http://gizmos.com/shipping
mustUnderstand 1is false

Header name is {http://gizmos.com/NSURI}confirmationDesk
Actor 1is http://gizmos.com/confirmations
mustUnderstand 1is true

Header name is {http://gizmos.com/NSURI}bi11ingDesk
Actor is http://gizmos.com/billing
mustUnderstand is false

When you run HeaderExample to generate a SOAP 1.2 message, you will see
output similar to the following:

————— Request Message ----

<env:Envelope
xmlns:env="http://www.w3.0rg/2003/05/soap-envelope'>
<env:Header>

<ns:orderDesk xmlns:ns="http://gizmos.com/NSURI"
env:role="http://gizmos.com/orders" />
<ns:shippingDesk xmlns:ns="http://gizmos.com/NSURI"
env:role="http://gizmos.com/shipping"/>

162 SOAP WITH ATTACHMENTS APl FOR JAVA

<ns:confirmationDesk xmlns:ns="http://gizmos.com/NSURI"
env:mustUnderstand="true"
env:role="http://gizmos.com/confirmations"/>
<ns:billingDesk xmIns:ns="http://gizmos.com/NSURI"
env:relay="true" env:role="http://gizmos.com/billing"/>
</env:Header><env:Body/></env:Envelope>

Header name is {http://gizmos.com/NSURI}orderDesk
Role 1is http://gizmos.com/orders

mustUnderstand 1is false

relay is false

Header name 1is {http://gizmos.com/NSURI}shippingDesk
Role 1is http://gizmos.com/shipping

mustUnderstand is false

relay is false

Header name is {http://gizmos.com/NSURI}confirmationDesk
Role 1is http://gizmos.com/confirmations

mustUnderstand is true

relay is false

Header name is {http://gizmos.com/NSURI}biT1TingDesk
Role 1is http://gizmos.com/billing

mustUnderstand is false

relay is true

DOMExample.java and
DOMSrcExample.java

The examples DOMExample.java and DOMSrcExample.java show how to add a
DOM document to a message and then traverse its contents. They show two
ways to do this:

* DOMExample.java createsa DOM document and adds it to the body of a
message.
* DOMSrcExample.java createsthe document, usesit to create aDOMSource

object, and then sets the DOMSource object as the content of the message's
SOAP part.

You will find the code for DOM Example and DOM SrcExample in the following
directory:

<INSTALL>/javaeetutorial5/examples/saaj/dom/src/

../examples/saaj/dom/src/DOMExample.java
../examples/saaj/dom/src/DOMSrcExample.java

DOMEXAMPLE.JAVA AND DOM SRCEXAMPLE.JAVA

Examining DOMExample

DOMExample first creates a DOM document by parsing an XML document.
Thefileit parsesis one that you specify on the command line.

static Document document;

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(args[0]));

Next, the example creates a SOAP message in the usual way. Then it adds the
document to the message body:

SOAPBodyElement docElement = body.addDocument(document);

This example does not change the content of the message. Instead, it displaysthe
message content and then uses a recursive method, getContents, to traverse the
element tree using SAAJ APIs and display the message contents in a readable
form.

public void getContents(Iterator iterator, String indent) {

while (iterator.hasNext()) {
Node node = (Node) 1iterator.next();
SOAPElement element = null;
Text text = null;
if (node instanceof SOAPETement) {
element = (SOAPETement)node;
QName name = element.getElementQName();
System.out.println(indent + "Name 1is " +
name.toString());
Iterator attrs = element.getAlTAttributesAsQNames();
while (attrs.hasNext()){
QName attrName = (QName)attrs.next();
System.out.println(indent + "
attrName.toString(Q);
System.out.printin(indent + " Attribute value is " +
element.getAttributeValue(attrName));

Attribute name is +

}
Iterator iter2 = element.getChildETements();
getContents(iter2, indent + " ");

163

SOAP WITH ATTACHMENTS APl FOR JAVA

} else {
text = (Text) node;
String content = text.getValue(Q);
System.out.println(indent +

"Content is: " + content);

}

}

}

Examining DOMSrcExample

DOM SrcExample differs from DOMExample in only a few ways. First, after it
parses the document, DOM SrcExample uses the document to create a DOM-
Source object. This code is the same as that of DOM Example except for the last
line:

static DOMSource domSource;
try {
DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse(new File(args[0]));
domSource = new DOMSource(document);

Then, after DOM SrcExampl e creates the message, it does not get the header and
body and add the document to the body, as DOMExample does. Instead, DOM-
SrcExample gets the SOAP part and sets the DOMSource object as its content:

// Create a message
SOAPMessage message = messageFactory.createMessage();

// Get the SOAP part and set its content to domSource
SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

The example then uses the getContents method to obtain the contents of both
the header (if it exists) and the body of the message.

The most important difference between these two examples is the kind of docu-
ment you can use to create the message. Because DOM Exampl e adds the docu-
ment to the body of the SOAP message, you can use any valid XML fileto create
the document. But because DOM SrcExample makes the document the entire
content of the message, the document must aready be in the form of a valid
SOAP message, and not just any XML document.

DOMEXAMPLE.JAVA AND DOM SRCEXAMPLE.JAVA

Running DOMExample and DOMSrcExample

To run DOM Example and DOM SrcExample, you use the file build.xm1 that is
in the directory <INSTALL>/javaeetutorial5/examples/saaj/dom/. This
directory also contains several sample XML files you can use:

e domsrcl.xml, an example that has a SOAP header (the contents of the
HeaderExample output) and the body of a UDDI query

e domsrc2.xml, an example of areply to a UDDI query (specifically, some
sample output from the MyUddiPing example), but with spaces added for
readability

e uddimsg.xml, similartodomsrc2.xm1 except that it isonly the body of the
message and contains no spaces

e slide.xml1, another file that consists only of a body but that contains
spaces

You can use any of these four files when you run DOMExample. To run
DOMExample, use acommand like the following:

asant run-dom -Dxml-file=uddimsg.xml

When you run DOMExample using the file uddimsg.xm1, you will see output
that begins like the following:

Running DOMExample.

Name 1is {urn:uddi-org:api_v2}businesslList
Attribute name 1is generic

Attribute value is 2.0

Attribute name 1is operator

Attribute value is www.ibm.com/services/uddi
Attribute name is truncated

Attribute value is false

Attribute name is xmlns

Attribute value 1is urn:uddi-org:api_v2

You can use either domsrcl.xml or domsrc2.xm1 to run DOMSrcExample. To
run DOM SrcExample, use a command like the following:

asant run-domsrc -Dxml-file=domsrc2.xml

165

166

SOAP WITH ATTACHMENTS APl FOR JAVA

When you run DOM SrcExample using the file domsrc2 . xm1, you will see output
that begins like the following:

run-domsrc:
Running DOMSrcExample.
Body contents:
Content is:

Name is {urn:uddi-org:api_v2}businessList
Attribute name 1is generic

Attribute value is 2.0

Attribute name 1is operator

Attribute value is www.ibm.com/services/uddi
Attribute name 1is truncated

Attribute value is false

Attribute name is xmlns

Attribute value is urn:uddi-org:api_v2

If you run DOM SrcExample with the file uddimsg.xm1 or s1ide.xm1, you will
see runtime errors.

Attachments.java

The example Attachments. java, based on the code fragments in the sections
Creating an AttachmentPart Object and Adding Content (page 137) and Access-
ing an AttachmentPart Object (page 139), creates a message that has a text
attachment and an image attachment. It then retrieves the contents of the attach-
ments and prints the contents of the text attachment. You will find the code for
Attachmentsin the following directory:

<INSTALL>/javaeetutorial5/examples/saaj/attachments/src/

Attachments first creates a message in the usual way. It then creates an Attach-
mentPart for the text attachment:

AttachmentPart attachmentl = message.createAttachmentPart();

../examples/saaj/attachments/src/Attachments.java

ATTACHMENTS.JAVA

After it reads input from a file into a string named stringContent, it sets the
content of the attachment to the value of the string and the type to text/plain
and also sets a content ID.

attachmentl.setContent(stringContent, "text/plain");
attachmentl.setContentId("attached_text");

It then adds the attachment to the message:
message.addAttachmentPart(attachmentl);

The example usesa javax.activation.DataHandler object to hold areference
to the graphic that constitutes the second attachment. It creates this attachment
using the form of the createAttachmentPart method that takes aDataHandler
argument.

// Create attachment part for image

URL ur1l = new URL("file:///../xml-pic.jpg");

DataHandTler dataHandler = new DataHandler(url);

AttachmentPart attachment2 =
message.createAttachmentPart(dataHandler);

attachment2.setContentId("attached_image");

message.addAttachmentPart(attachment?2);

The example then retrieves the attachments from the message. It displays the
contentId and contentType attributes of each attachment and the contents of
the text attachment.

Running Attachments

To run Attachments, you use the file build.xm1 that is in the directory
<INSTALL>/javaeetutorial5/examples/saaj/attachments/.

To run Attachments, use the following command:
asant run -Dfile=path_name

Specify any text file as the path_name argument. The attachments directory
contains afile named addr. txt that you can use:

asant run -Dfile=addr.txt

167

168 SOAP WITH ATTACHMENTS APl FOR JAVA

When you run Attachments using this command line, you will see output like the
following:

Running Attachments.

Attachment attached_text has content type text/plain
Attachment contains:

Update address for Sunny Skies, Inc., to

10 Upbeat Street

Pleasant Grove, CA 95439

Attachment attached_image has content type image/jpeg

SOAPFaultTest.java

The example SOAPFaultTest. java, based on the code fragmentsin the sections
Creating and Populating a SOAPFault Object (page 147) and Retrieving Fault
Information (page 149), creates a message that has a SOAPFault object. It then
retrieves the contents of the SOAPFault object and prints them. You will find the
code for SOAPFaultTest in the following directory:

<INSTALL>/javaeetutorial5/examples/saaj/fault/src/

Running SOAPFaultTest

To run SOAPFaultTest, you use the file build.xm1 that is in the directory
<INSTALL>/javaeetutorial5/examples/saaj/fault/.

Like HeaderExample, this example contains code that allows you to generate
either aSOAP 1.1 or a SOAP 1.2 message.

To run SOAPFaultTest, use one of the following commands:

asant run -Dsoap=1.1
asant run -Dsoap=1.2

When you run SOAPFaultTest to generate a SOAP 1.1 message, you will see
output like the following (line breaks have been inserted in the message for read-
ability):

Here is what the XML message looks Tike:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

../examples/saaj/fault/src/SOAPFaultTest.java

SOAPFAULTTEST.JAVA 169

<SOAP-ENV:Header/><SOAP-ENV:Body>
<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Message does not have necessary info</faultstring>
<faultactor>http://gizmos.com/order</faultactor>
<detail>

<PO:order xmlns:PO="http://gizmos.com/orders/">
Quantity element does not have a value</PO:order>
<P0O:confirmation xmlns:PO="http://gizmos.com/confirm">
Incomplete address: no zip code</PO:confirmation>
</detail></SOAP-ENV:Fault>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP fault contains:

Fault code = {http://schemas.xmlsoap.org/soap/envelope/}Client
Local name = Client

Namespace prefix = SOAP-ENV, bound to
http://schemas.xmlsoap.org/soap/envelope/

Fault string = Message does not have necessary info

Fault actor = http://gizmos.com/order

Detail entry = Quantity element does not have a value

Detail entry = Incomplete address: no zip code

When you run SOAPFaultTest to generate a SOAP 1.2 message, the output looks
like this:

Here is what the XML message Tooks Tlike:

<env:Envelope
xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header/><env:Body>

<env:Fault>
<env:Code><env:Value>env:Sender</env:Value></env:Code>
<env:Reason><env:Text xml:Tlang="en-US">

Message does not have necessary info
</env:Text></env:Reason>
<env:Role>http://gizmos.com/order</env:Role>
<env:Detail>

<P0O:order xmlns:PO="http://gizmos.com/orders/">
Quantity element does not have a value</PO:order>
<PO:confirmation xmlns:PO="http://gizmos.com/confirm">
Incomplete address: no zip code</PO:confirmation>
</env:Detail></env:Fault>

</env:Body></env:Envelope>

SOAP fault contains:

Fault code = {http://www.w3.0rg/2003/05/soap-envelope}Sender
Local name = Sender

Namespace prefix = env, bound to

170 SOAP WITH ATTACHMENTS APl FOR JAVA

http://www.w3.0rg/2003/05/soap-envelope

Fault reason text = Message does not have necessary info
Fault role = http://gizmos.com/order

Detail entry = Quantity element does not have a value
Detail entry = Incomplete address: no zip code

Further Information

For more information about SAAJ, SOAPR, and WS-, see the following:

» SAAJ1.3 specification, available from
http://java.sun.com/xml/downloads/saaj.html

» SAAJweb site;
http://java.sun.com/xml/saaj/

» Simple Object Access Protocol (SOAP) 1.1:
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

» SOAP Version 1.2 Part O: Primer:
http://www.w3.0rg/TR/soapl2-part@/

» SOAP Version 1.2 Part 1. Messaging Framework:
http://www.w3.0rg/TR/soapl2-partl/

» SOAP Version 1.2 Part 2: Adjuncts:
http://www.w3.0rg/TR/soapl2-part2/

» WS Basic Profile:
http://www.ws-1i.org/Profiles/BasicProfile-1.1.html

* WS Attachments Profile:
http://www.ws-1i.org/Profiles/AttachmentsProfile.html

» SOAP Message Transmission Optimization Mechanism (MTOM):
http://www.w3.0rg/TR/soapl2-mtom/

o XML-binary Optimized Packaging (XOP):
http://www.w3.0rg/TR/xopl@/

* JAXM web site:
http://java.sun.com/xml1/jaxm/

http://java.sun.com/xml/saaj/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://java.sun.com/xml/jaxm/
http://java.sun.com/xml/downloads/saaj.html
http://www.ws-i.org/Profiles/AttachmentsProfile.html
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/

S

Java API for XML
Registries

T HE Java API for XML Registries (JAXR) provides a uniform and standard
Java API for accessing various kinds of XML registries.

After providing a brief overview of JAXR, this chapter describes how to imple-
ment a JAXR client to publish an organization and its web services to a registry
and to query aregistry to find organizations and services. Finaly, it explains how
to run the examples provided with this tutorial and offers links to more informa-
tion on JAXR.

Overview of JAXR

This section provides a brief overview of JAXR. It covers the following topics.

* What isaregistry?
« What isJAXR?
+ JAXR architecture

What Is a Registry?

An XML registry is an infrastructure that enables the building, deployment, and
discovery of web services. It is aneutral third party that facilitates dynamic and 171

172

JAVA APl FOR XML REGISTRIES

loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, often in the form of aweb-based service.

Currently there are a variety of specificationsfor XML registries. These include

» The ebXML Registry and Repository standard, which is sponsored by the
Organization for the Advancement of Structured Information Standards
(OASIS) and the United Nations Centre for the Facilitation of Procedures
and Practices in Administration, Commerce and Transport (U.N./
CEFACT)

» The Universa Description, Discovery, and Integration (UDDI) project,
which is being developed by a vendor consortium

A registry provider isan implementation of abusiness registry that conformsto a
specification for XML registries.

What Is JAXR?

JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are por-
table across various target registries. JAXR also enables value-added capabilities
beyond those of the underlying registries.

The current version of the JAXR specification includes detailed bindings
between the JAXR information model and both the ebXML Registry and the
UDDI version 2 specifications. You can find the latest version of the specifica-
tion at

http://java.sun.com/xml/downloads/jaxr.html

At this release of the Application Server, the JAXR provider implements the
level O capahility profile defined by the JAXR specification. This level allows
access to both UDDI and ebXML registries at a basic level. At this release, the
JAXR provider supports access only to UDDI version 2 registries.

Currently no public UDDI registries exist. However, you can use the Java WSDP
Registry Server, aprivate UDDI version 2 registry that comes with release 1.5 of
the Java Web Services Developer Pack (Java WSDP).

http://java.sun.com/xml/downloads/jaxr.html

JAXR ARCHITECTURE

Service Registry, an ebXML registry and repositry with a JAXR provider, is
available as part of the Sun Java Enterprise System.

JAXR Architecture

The high-level architecture of JAXR consists of the following parts:

* AJAXRclient: Thisisaclient program that uses the JAXR API to access
abusinessregistry viaa JAXR provider.

¢ A JAXR provider: This is an implementation of the JAXR API that pro-
vides accessto aspecific registry provider or to aclassof registry providers
that are based on a common specification.

A JAXR provider implements two main packages:

* javax.xml.registry, which consists of the APl interfaces and classes
that define the registry access interface.

* javax.xml.registry.infomodel, which consistsof interfacesthat define
the information model for JAXR. These interfaces define the types of
objectsthat residein aregistry and how they relate to each other. The basic
interface in this package is the RegistryObject interface. Its subinter-
facesinclude Organization, Service, and ServiceBinding.

The most basic interfacesin the javax.xm1.registry package are

* Connection. The Connection interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use aregistry.

* RegistryService. Theclient obtainsaRegistryService object from its
connection. The RegistryService object in turn enables the client to
obtain the interfaces it uses to access the registry.

The primary interfaces, also part of the javax.xm1.registry package, are

e BusinessQueryManager, which allows the client to search a registry for
information in accordance with the javax.xml.registry.infomodel
interfaces. An optional interface, DeclarativeQueryManager, alows the
client to use SQL syntax for queries. (The implementation of JAXR in the
Application Server does not implement DeclarativeQueryManager.)

e BusinessLifeCycleManager, which allowsthe client to modify the infor-
mation in aregistry by either saving it (updating it) or deleting it.

173

174

JAVA APl FOR XML REGISTRIES

When an error occurs, JAXR APl methods throw a JAXRException or one of its
subclasses.

Many methods in the JAXR APl use a Collection object as an argument or a
returned value. Using a Collection object allows operations on several registry
objects at atime.

Figure 6-1 illustrates the architecture of JAXR. In the Application Server, a
JAXR client uses the capability level O interfaces of the JAXR API to access the
JAXR provider. The JAXR provider in turn accesses a registry. The Application
Server supplies a JAXR provider for UDDI registries.

JAXR Client
JAXR API Registry-specific
Capability-specific Interfaces JAXR Provider
o 5 : Diverse
ebXML Provider UDDI Provider Other Provider Registries

ebXML/ uoDY/ v
SOAP SOAP o
I Y R)

Figure6-1 JAXR Architecture

Implementing a JAXR Client

This section describes the basic steps to follow in order to implement a JAXR
client that can perform queries and updates to a UDDI registry. A JAXR clientis
aclient program that can access registries using the JAXR API. This section cov-
ersthe following topics:

» Establishing a connection

* Querying aregistry

* Managing registry data

e Using taxonomiesin JAXR clients

Thistutorial does not describe how to implement a JAXR provider. A JAXR pro-
vider provides an implementation of the JAXR specification that allows accessto

ESTABLISHING A CONNECTION

an existing registry provider, such asaUDDI or ebXML registry. The implemen-
tation of JAXR in the Application Server itself is an example of a JAXR pro-
vider.

The Application Server provides JAXR in the form of a resource adapter using
the Java EE Connector architecture. The resource adapter is in the directory
<JAVAEE_HOME>/1ib/install/applications/jaxr-ra. (<JAVAEE_HOME> iS
the directory where the Application Server isinstalled.)

This tutoria includes several client examples, which are described in Running
the Client Examples (page 199), and a Java EE application example, described
in Using JAXR Clientsin Java EE Applications (page 206). The examples arein
the directory <INSTALL>/javaeetutorial5/examples/jaxr/. (<INSTALL> IS
the directory where you installed the tutorial bundle.) Each example directory
hasabuild.xml file (which refersto a targets.xml file) and abuild.proper-
ties file in the directory <INSTALL>/javaeetutorial5/examples/jaxr/com-
mon/.

Establishing a Connection

Thefirst task a JAXR client must complete is to establish a connection to aregis-
try. Establishing a connection involves the following tasks:

« Preliminaries: Getting accessto aregistry

 Creating or looking up a connection factory

« Creating a connection

 Setting connection properties
Obtaining and using aRegistryService object

Preliminaries: Getting Access to a Registry

To use the Java WSDP Registry Server, a private UDDI version 2 registry, you
need to download and install Java WSDP 1.5 and then to install the Registry
Server in the Application Server.

To download Java WSDP 1.5, perform these steps:

1. Gotothefollowing URL.:
http://java.sun.com/webservices/downloads/1.5/index.html

2. Under Java Web Services Devel oper Pack v1.5, click Download.

175

http://java.sun.com/webservices/downloads/1.5/index.html

176

JAVA APl FOR XML REGISTRIES

3. On the Login page, click the Download link. (You do not haveto log in.)
4. Select the Accept radio button to accept the license agreement.

5. Click the download arrow for your platform (Solaris or Windows).

6. Choose the directory where you will download Java WSDP,

Install Java WSDP as follows;

1. Go to the directory where you downloaded Java WSDP 1.5.

2. Run the Java WSDP installer. You can follow the instructions that are
linked to from http://java.sun.com/webservices/downloads/1.5/
index.htm1, although these instructions refer to a newer version of Java
WSDP.

3. On the Select a Web Container page of the installer, select No Web Con-
tainer.

4. Choose a directory where you will install Java WSDP.

5. Select either a Typical or a Custom ingtallation. If you select Custom,
remove the check marks from every checkbox you can except Java WSDP
Registry Server. (You cannot remove the check marks from JAXB, JAXP,
JAXR, or SAAJ; these technologies are required.)

After the installation completes, install the Registry Server in the Application
Server asfollows:

1. Stop the Application Server if it is running.

2. Copy the two WAR files in the directory <JWSDP_HOME>/registry-
server/webapps, RegistryServer.war and Xindice.war, to the follow-
ing directory:
<JAVAEE_HOME>/domains/domainl/autodeploy

3. Start the Application Server.

Any user of a JAXR client can perform queries on a registry. To add data to the

registry or to update registry data, however, a user must obtain permission from
the registry to accessiit.

To add or update data in the Java WSDP Registry Server, you can use the default
user name and password, testuser and testuser.

http://java.sun.com/webservices/downloads/1.5/index.html

ESTABLISHING A CONNECTION 177

Obtaining a Connection Factory

A client creates a connection from a connection factory. A JAXR provider can
supply one or more preconfigured connection factories. Clients can obtain these
factories by using resource injection.

At this release of the Application Server, JAXR supplies a connection factory
through the JAXR RA, but you need to use a connector resource whose JNDI
nameis eis/JAXR to access this connection factory from a Java EE application.
To inject this resource in a Java EE component, use code like the following:

import javax.annotation.Resource;.*;
import javax.xml.registry.ConnectionFactory;

@Resource(mappedName="eis/JAXR")
public ConnectionFactory factory;

Later in this chapter you will learn how to create this connector resource.

To use JAXR in a stand-alone client program, you must create an instance of the
abstract class ConnectionFactory:

import javax.xml.registry.ConnectionFactory;

ConnectionFactory connFactory =
ConnectionFactory.newInstance();

Creating a Connection

To create a connection, a client first creates a set of properties that specify the
URL or URLSs of the registry or registries being accessed. For example, the fol-
lowing code provides the URL s of the query service and publishing service for a
hypothetical registry. (There should be no line break in the strings.)

Properties props = new Properties();

props.setProperty("javax.xml.registry.queryManagerURL",
"http://localhost:8080/RegistryServer/");

props.setProperty("javax.xml.registry.11ifeCycleManagerURL",
"http://Tocalhost:8080/RegistryServer/");

With the Application Server implementation of JAXR, if the client isaccessing a
registry that is outside afirewall, it must also specify proxy host and port infor-
mation for the network on which it isrunning. For queriesit may need to specify

178

JAVA APl FOR XML REGISTRIES

only the HTTP proxy host and port; for updates it must specify the HTTPS
proxy host and port.

props.setProperty("com.sun.xml.registry.http.proxyHost",
"myhost.mydomain");

props.setProperty('"com.sun.xml.registry.http.proxyPort",
"8080");

props.setProperty("com.sun.xml.registry.https.proxyHost",
"myhost.mydomain");

props.setProperty("com.sun.xml.registry.https.proxyPort",
"8080");

The client then sets the properties for the connection factory and creates the con-
nection:

connFactory.setProperties(props);
Connection connection = connFactory.createConnection();

The makeConnection method in the sample programs shows the steps used to
create a JAXR connection.

Setting Connection Properties

The implementation of JAXR in the Application Server allows you to set a num-
ber of properties on a JAXR connection. Some of these are standard properties
defined in the JAXR specification. Other properties are specific to the implemen-
tation of JAXR in the Application Server. Tables 6-1 and 6-2 list and describe
these properties.

Table6-1 Standard JAXR Connection Properties

Data
Property Name and Description Type | Default Value
javax.xml.registry.queryManagerURL
Specifies the URL of the query manager service within String | None
the target registry provider.
javax.xml.registry.1ifeCycleManagerURL Same as the specified
Specifies the URL of the life-cycle manager service String q;e ryManagerURL
within the target registry provider (for registry updates). value

ESTABLISHING A CONNECTION

Table6-1 Standard JAXR Connection Properties (Continued)

Property Name and Description

Data
Type

Default Value

javax.xml.registry.semanticEquivalences

Specifies semantic equivalences of concepts as one or
more tuples of the ID values of two equivalent concepts
separated by acomma. The tuples are separated by ver-
tical bars:

idl,id2|id3,id4

String

None

javax.xml.registry.security.authentica-
tionMethod

Provides a hint to the JAXR provider on the authentica-
tion method to be used for authenticating with the regis-
try provider.

String

None;
UDDI_GET_AUTHTOKEN
isthe only supported
value

javax.xml.registry.uddi.maxRows

The maximum number of rows to be returned by find
operations. Specific to UDDI providers.

String

100

javax.xml.registry.postalAddressScheme

ThelD of aClassificationScheme to be used asthe
default postal address scheme. See Specifying Postal
Addresses (page 197) for an example.

String

None

Table 62 Implementation-Specific JAXR Connection Properties

Specifiesthe HTTP proxy port to be used for access-
ing external registries; usually 8080.

Data
Property Name and Description Type Default Value
com.sun.xml.registry.http.proxyHost
Specifiesthe HTTP proxy host to be used for access- String None
ing external registries.
com.sun.xml.registry.http.proxyPort
String None

179

180 JAVA APl FOR XML REGISTRIES

Table 62 Implementation-Specific JAXR Connection Properties (Continued)

Data
Property Name and Description Type Default Value
com.sun.xml.registry.https.proxyHost

Stin Same as HTTP proxy
Specifiesthe HTTPS proxy host to be used for 9 host value
accessing external registries.
com.sun.xml.registry.https.proxyPort

Strin Same as HTTP proxy
Specifiesthe HTTPS proxy port to be used for 9 port value
accessing external registries; usually 8080.
com.sun.xml.registry.http.proxyUserName
Specifies the user name for the proxy host for HTTP String None
proxy authentication, if oneisrequired.
com.sun.xml.registry.http.proxyPassword
Specifies the password for the proxy host for HTTP String None
proxy authentication, if oneis required.
com.sun.xml.registry.useCache

Boolean,
Tellsthe JAXR implementation to look for registry passedin | True
objects in the cache first and then to look in theregis- | as String
try if not found.
com.sun.xml.registry.userTaxonomyFile-
names

String None
For details on setting this property, see Defining a
Taxonomy (page 194).

Obtaining and Using a RegistryService Object

After creating the connection, the client uses the connection to obtain a Regis-
tryService object and then the interface or interfacesit will use:

RegistryService rs = connection.getRegistryService();

BusinessQueryManager bgm = rs.getBusinessQueryManager();

BusinessLifeCycleManager blcm =
rs.getBusinessLifeCycleManager();

QUERYING A REGISTRY

Typicaly, a client obtains both a BusinessQueryManager object and a Busi-
nessLifeCycleManager object from the RegistryService object. If it isusing
the registry for simple queries only, it may need to obtain only aBusinessQue-
ryManager object.

Querying a Registry

The simplest way for aclient to use aregistry isto query it for information about
the organizations that have submitted data to it. The BusinessQueryManager
interface supports a number of find methods that allow clients to search for data
using the JAXR information model. Many of these methods return a Bulk-
Response (a collection of objects) that meets a set of criteria specified in the
method arguments. The most useful of these methods are as follows:

e findOrganizations, which returns a list of organizations that meet the
specified criteria—often a name pattern or a classification within a classi-
fication scheme

» findServices, which returns a set of services offered by a specified orga-
nization

» findServiceBindings, which returns the service bindings (information
about how to access the service) that are supported by a specified service

The JAXRQuery program illustrates how to query aregistry by organization name
and display the data returned. The JAXRQueryByNAICSClassification and
JAXRQueryByWSDLClassification programs illustrate how to query a registry
using classifications. All JAXR providers support at least the following taxono-
mies for classifications:

¢ TheNorth American Industry Classification System (NAICS). Seehttp:/
/www.census.gov/epcd/www/naics.html for details.

» The Universal Standard Products and Services Classification (UNSPSC).
See http://www.eccma.org/unspsc/ for details.

« ThelSO 3166 country codes classification system maintained by the Inter-
national Organization for Standardization (I1SO). See http://
www.iso.org/iso/en/prods-services/iso3166ma/
index.html for details.

The following sections describe how to perform some common queries:
 Finding organizations by name
 Finding organizations by classification

181

http://www.census.gov/epcd/www/naics.html
http://www.census.gov/epcd/www/naics.html
http://www.eccma.org/unspsc/
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

182

JAVA APl FOR XML REGISTRIES

* Finding services and service bindings

Finding Organizations by Name

To search for organizations by name, you normally use a combination of find
gualifiers (which affect sorting and pattern matching) and name patterns (which
specify the strings to be searched). The findOrganizations method takes a col-
lection of findQualifier objects asits first argument and takes a collection of
namePattern objects as its second argument. The following fragment shows
how to find all the organizations in the registry whose names begin with a speci-
fied string, gString, and sort them in alphabetical order.

// Define find qualifiers and name patterns
Collection<String> findQualifiers = new ArrayList<String>(Q);
findQualifiers.add(FindQualifier.SORT_BY_NAME_DESQC);
Collection<String> namePatterns = new ArraylList<String>Q);
namePatterns.add(qString);

// Find orgs whose names begin with gString
BulkResponse response =
bgm. findOrganizations(findQualifiers, namePatterns, null,
null, null, null);
Collection orgs = response.getCollection();

The last four arguments to findOrganizations allow you to search using other
criteria than the name: classifications, specification concepts, external identifiers,
or external links. Finding Organizations by Classification (page 183) describes
searching by classification and by specification concept. The other searches are
less common and are not described in this tutorial.

A client can use percent signs (%) to specify that the query string can occur any-
where within the organization name. For example, the following code fragment
performs a case-sensitive search for organizations whose names contain
gqString:

Collection<String> findQualifiers = new ArraylList<String>(Q);
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection<String> namePatterns = new ArraylList<String>Q);
namePatterns.add("%" + gString + "%");

// Find orgs with names that contain gString

QUERYING A REGISTRY

BulkResponse response =
bgm.findOrganizations(findQualifiers, namePatterns, null,
null, null, null);
Collection orgs = response.getCollection();

Finding Organizations by Classification

To find organizations by classification, you establish the classification within a
particular classification scheme and then specify the classification as an argu-
ment to the findOrganizations method.

The following code fragment finds all organizations that correspond to a particu-
lar classification within the NAICS taxonomy. (You can find the NAICS codes at
http://www.census.gov/epcd/naics/naicscod.txt.)The NAICS taxonomy
has a well-known universally unique identifier (UUID) that is defined by the
UDDI specification. The getRegistryObject method finds an object based
upon its key. (See Creating an Organization, page 186 for more information
about keys)

String uuid_naics =
"uuid:COBI9FE13-179F-413D-8A5B-5004DB8E5SBB2" ;
ClassificationScheme cScheme =
(ClassificationScheme) bgm.getRegistryObject(uuid_naics,
LifeCycleManager.CLASSIFICATION_SCHEME) ;
InternationalString sn = blcm.createInternationalString(
"A11 Other Specialty Food Stores™));
String sv = "445299";
Classification classification =
blcm.createClassification(cScheme, sn, sv);
Collection<Classification> classifications =
new ArraylList<Classification>();
classifications.add(classification);
BuTlkResponse response = bgm.findOrganizations(null, null,
classifications, null, null, null);
Collection orgs = response.getCollection();

You can aso use classifications to find organizations that offer services based on
technical specifications that take the form of WSDL (Web Services Description
Language) documents. In JAXR, a concept is used as a proxy to hold the infor-
mation about a specification. The steps are a little more complicated than in the
preceding example, because the client must first find the specification concepts
and then find the organi zations that use those concepts.

The following code fragment finds all the WSDL specification instances used
within a given registry. You can see that the code is similar to the NAICS query

183

http://www.census.gov/epcd/naics/naicscod.txt

184 JAVA APl FOR XML REGISTRIES

code except that it ends with a call to findConcepts instead of findOrganiza-
tions.

String schemeName = "uddi-org:types";
ClassificationScheme uddiOrgTypes =
bgm.findClassificationSchemeByName(nhull, schemeName);

/:'c
* Create a classification, specifying the scheme
and the taxonomy name and value defined for WSDL
documents by the UDDI specification.
-,':/

Classification wsdlSpecClassification =
blcm.createClassification(uddiOrgTypes, "wsdlSpec",
"wsd1Spec");

Collection<Classification> classifications =
new ArraylList<Classification>(Q);
classifications.add(wsdlSpecClassification);

// Find concepts
BuTkResponse br = bgm.findConcepts(null, null,
classifications, null, null);

To narrow the search, you could use other arguments of the findConcepts
method (search qualifiers, names, external identifiers, or external links).

The next step isto go through the concepts, find the WSDL documents they cor-
respond to, and display the organizations that use each document:

// Display information about the concepts found
Collection specConcepts = br.getCollection();
Iterator iter = specConcepts.iterator();
if (liter.hasNext()) {

System.out.println("No WSDL specification concepts found");
} else {

while (iter.hasNext()) {

Concept concept = (Concept) iter.next();

String name = getName(concept);

Collection 1links = concept.getExternallLinks();

System.out.println("\nSpecification Concept:\n\tName: " +
name + "\n\tKey: " + concept.getKey().getId() +
"\n\tDescription: + getDescription(concept));

if (links.size() > 0) {
ExternalLink 1ink =

QUERYING A REGISTRY 185

(ExternalLink) Tinks.iterator().next();
System.out.println("\tURL of WSDL document: '" +
Tink.getExternalURI() + "'");
}

// Find organizations that use this concept
ColTlection<Concept> specConceptsl =
new ArraylList<Concept>(Q);
specConceptsl.add(concept);
br = bgm.findOrganizations(null, null, null,
specConceptsl, null, null);

// Display information about organizations

}
}

If you find an organization that offers a service you wish to use, you can invoke
the service using JAX-WS.

Finding Services and Service Bindings

After aclient has located an organization, it can find that organization’s services
and the service bindings associated with those services.

Iterator orglter = orgs.iterator();
while (orgIter.hasNext()) {
Organization org = (Organization) orglter.next();
Collection services = org.getServices();
Iterator svclIter = services.iterator();
while (svcIter.hasNext()) {
Service svc = (Service) svclter.next();
Collection serviceBindings =
svc.getServiceBindings();
Iterator sbIter = serviceBindings.iterator(Q);
while (sbIter.hasNext()) {
ServiceBinding sb =
(ServiceBinding) sbIter.next();

186

JAVA APl FOR XML REGISTRIES

Managing Registry Data

If aclient has authorization to do so, it can submit data to a registry, modify it,
and remove it. It uses the BusinessLifeCycleManager interface to perform
these tasks.

Registries usually alow a client to modify or remove data only if the data is
being maodified or removed by the same user who first submitted the data.

Managing registry datainvolves the following tasks:

» Getting authorization from the registry

» Creating an organization

» Adding classifications

» Adding services and service bindings to an organization
 Publishing an organization

 Publishing a specification concept

* Removing data from the registry

Getting Authorization from the Registry

Before it can submit data, the client must send its user name and password to the
registry in a set of credentials. The following code fragment shows how to do
this.

"testuser";
"testuser";

String username =
String password =
// Get authorization from the registry
PasswordAuthentication passwdAuth =
new PasswordAuthentication(username,
password.toCharArray());

HashSet<PasswordAuthentication> creds =
new HashSet<PasswordAuthentication>(Q);

creds.add(passwdAuth) ;

connection.setCredentials(creds);

Creating an Organization

The client creates the organization and populates it with data before publishing
it.

MANAGING REGISTRY DATA

An Organization object is one of the more complex data items in the JAXR
API. It normally includes the following:

A Name object.
A Description object.

A Key object, representing the ID by which the organization is known to
the registry. This key is created by the registry, not by the user, and is
returned after the organization is submitted to the registry.

A PrimaryContact object, which isaUser object that refers to an autho-
rized user of the registry. A User object normally includes a PersonName
object and collections of TeTlephoneNumber, EmailAddress, and Postal-
Address objects.

A collection of Classification objects.
Service objects and their associated ServiceBinding objects.

For example, the following code fragment creates an organization and specifies
its name, description, and primary contact. When a client creates an organization
to be published to a UDDI registry, it does not include a key; the registry returns
the new key when it accepts the newly created organization. The b1cm object in
the following code fragment is the BusinessLifeCycleManager object returned
in Obtaining and Using a RegistryService Object (page 180). An Internation-
alString object is used for string values that may need to be localized.

// Create organization name and description
InternationalString s =

blcm.createInternationalString("The Coffee Break");

Organization org = blcm.createOrganization(s);

S

= blcm.createInternationalString("Purveyor of the +

"finest coffees. Established 1950");

org.setDescription(s);

// Create primary contact, set name

User primaryContact = blcm.createUser();

PersonName pName = blcm.createPersonName('"Jane Doe");
primaryContact.setPersonName(pName) ;

// Set primary contact phone number

TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber (" (800) 555-1212");
Collection<TelephoneNumber> phoneNums =

new ArraylList<TelephoneNumber>();

phoneNums .add (tNum) ;
primaryContact.setTelephoneNumbers(phoneNums);

187

188

JAVA APl FOR XML REGISTRIES

// Set primary contact email address
EmailAddress emailAddress =
blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com");
Collection<EmailAddress> emailAddresses =
new ArraylList<EmailAddress>();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

Adding Classifications

Organizations commonly belong to one or more classifications based on one or
more classification schemes (taxonomies). To establish a classification for an
organization using a taxonomy, the client first locates the taxonomy it wants to
use. It uses the BusinessQueryManager to find the taxonomy. The
findClassificationSchemeByName method takes a set of FindQualifier
objects asits first argument, but this argument can be null.

// Set classification scheme to NAICS
ClassificationScheme cScheme =
bgm. findClassificationSchemeByName (nulT,
"ntis-gov:naics:1997");

The client then creates a classification using the classification scheme and a con-
cept (a taxonomy element) within the classification scheme. For example, the
following code sets up a classification for the organization within the NAICS
taxonomy. The second and third arguments of the createClassification
method are the name and the value of the concept.

// Create and add classification
InternationalString sn =
blcm.createlnternationalString(
“A11 Other Specialty Food Stores“));
String sv = “445299“;
Classification classification =
blcm.createClassification(cScheme, sn, sv);
Collection<Classification> classifications =
new ArraylList<Classification>(Q);
classifications.add(classification);
org.addClassifications(classifications);

Services also use classifications, so you can use similar code to add a classifica
tion to aService object.

MANAGING REGISTRY DATA

Adding Services and Service Bindings to an
Organization

Most organizations add themselves to aregistry in order to offer services, so the
JAXR API hasfacilities to add services and service bindings to an organization.

Like an Organization object, aService object has a name, adescription, and a
unique key that is generated by the registry when the service isregistered. It may
also have classifications associated with it.

A service also commonly has service bindings, which provide information about
how to access the service. A ServiceBinding object normally has a description,
an access URI, and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice by using the service binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, and then add the services to the organization. It
specifies an access URI but not a specification link. Because the access URI is
not real and because JAXR by default checks for the validity of any published
URI, the binding setsits validateURI property to false.

// Create services and service
Collection<Service> services = new ArraylList<Service>();
InternationalString s =

blcm.createInternationalString("My Service Name"));
Service service = blcm.createService(s);
s = blcm.createlnternationalString("My Service Description");
service.setDescription(is);

// Create service bindings
Collection<ServiceBinding> serviceBindings =
new ArraylList<ServiceBinding>(Q);
ServiceBinding binding = blcm.createServiceBinding();
s = blcm.createlnternationalString("My Service Binding " +
"Description");
binding.setDescription(is);
// allow us to publish a fictitious URI without an error
binding.setValidateURI(false);
binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

189

190

JAVA APl FOR XML REGISTRIES

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

Publishing an Organization

The primary method a client uses to add or modify organization data is the
saveOrganizations method, which creates one or more new organizationsin a
registry if they did not exist previously. If one of the organizations exists but
some of the data have changed, the saveOrganizations method updates and
replaces the data.

After a client populates an organization with the information it wants to make
public, it saves the organization. The registry returns the key in its response, and
the client retrievesit.

// Add organization and submit to registry
// Retrieve key if successful
Collection<Organization> orgs = new ArraylList<Organization>(Q);
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);
Collection exceptions = response.getException();
if (exceptions == null) {
System.out.println("Organization saved");

Collection keys = response.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {
Key orgKey = (Key) keyIter.next();
String id = orgKey.getId();
System.out.println("Organization key is " + 1id);

}
}

Publishing a Specification Concept

A service binding can have atechnical specification that describes how to access
the service. An example of such a specification isaWSDL document. To publish
the location of a service's specification (if the specification is a WSDL docu-
ment), you create a Concept object and then add the URL of the WSDL docu-
ment to the Concept object as an ExternallLink object. The following code
fragment shows how to create a concept for the WSDL document associated
with the simple web service example in Creating a Simple Web Service and Cli-

MANAGING REGISTRY DATA 191

ent with JAX-WS (page xvi). First, you call the createConcept method to cre-
ate a concept named HelloConcept. After setting the description of the concept,
you create an external link to the URL of the He110o service’s WSDL document,
and then add the external link to the concept.

Concept specConcept =
blcm.createConcept(null, "HelloConcept", "");
InternationalString s =
blcm.createInternationalString(
"Concept for Hello Service");
specConcept.setDescription(s);
ExternalLink wsdlLink =
blcm.createExternalLink(
"http://Tocalhost:8080/hello-jaxws/hello?WSDL",
"HelTlo WSDL document");
specConcept.addExternalLink(wsdlLink);

Next, you classify the Concept object as a WSDL document. To do this for a
UDDI registry, you search the registry for the well-known classification scheme
uddi-org: types, using its key ID. (The UDDI term for a classification scheme
istModel.) Then you create a classification using the name and value wsd1Spec.
Finally, you add the classification to the concept.

String uuid_types =
"uuid:clacf26d-9672-4404-9d70-39b756e62ab4" ;
ClassificationScheme uddiOrgTypes =
(ClassificationScheme) bgm.getRegistryObject(uuid_types,
LifeCycleManager.CLASSIFICATION_SCHEME) ;

Classification wsd1SpecClassification =
blcm.createClassification(uddiOrgTypes,
"wsd1Spec", "wsdlSpec");
specConcept.addClassification(wsdlSpecClassification);

Finally, you save the concept using the saveConcepts method, similarly to the
way you save an organization:

Collection<Concept> concepts = new ArraylList<Concept>();
concepts.add(specConcept);
BulkResponse concResponse = blcm.saveConcepts(concepts);

After you have published the concept, you normally add the concept for the
WSDL document to a service binding. To do this, you can retrieve the key for the

192 JAVA APl FOR XML REGISTRIES

concept from the response returned by the saveConcepts method; you use a
code sequence very similar to that of finding the key for a saved organization.

String conceptKeyId = null;
Collection concExceptions = concResponse.getExceptions();
Key concKey = nulT;
if (concExceptions == null) {
System.out.printTn("WSDL Specification Concept saved");

Collection keys = concResponse.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {
concKey = (Key) keyIter.next();
conceptKeyId = concKey.getId();
System.out.println("Concept key is

+ conceptKeyId);
}
}

Then you can call the getRegistryObject method to retrieve the concept from
theregistry:

Concept specConcept =
(Concept) bgm.getRegistryObject(conceptKeyld,
LifeCycleManager.CONCEPT);

Next, you create a SpecificationLink object for the service binding and set the
concept as the value of its SpecificationObject:

SpecificationLink specLink =
blcm.createSpecificationLink();

specLink.setSpecificationObject(specConcept);

binding.addSpecificationLink(specLink);

Now when you publish the organization with its service and service bindings,
you have aso published a link to the WSDL document. Now the organization
can be found via queries such as those described in Finding Organizations by
Classification (page 183).

If the concept was published by someone else and you don’'t have access to the
key, you can find it using its name and classification. The code looks very similar
to the code used to search for a WSDL document in Finding Organizations by

MANAGING REGISTRY DATA

Classification (page 183), except that you also create a collection of name pat-
terns and include that in your search. Here is an example:

// Define name pattern
Collection namePatterns = new ArraylList();
namePatterns.add("HelloConcept");

BulkResponse br = bgm.findConcepts(null, namePatterns,
classifications, null, null);

Removing Data from the Registry

A registry alows you to remove from it any data that you have submitted to it.
You use the key returned by the registry as an argument to one of the Business-
LifeCycleManager delete methods. deleteOrganizations, deleteServices,
deleteServiceBindings, deleteConcepts, and others.

The JAXRDeTlete sample program deletes the organization created by the JAXR-
Pub1ish program. It deletes the organization that corresponds to a specified key
string and then displays the key again so that the user can confirm that it has
deleted the correct one.

String id = key.getId();
System.out.println("Deleting organization with id " + id);
Collection<Key> keys = new ArraylList<Key>(Q);
keys.add(key);
BuTlkResponse response = blcm.deleteOrganizations(keys);
Collection exceptions = response.getException();
if (exceptions == null) {
System.out.println("Organization deleted");
Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
Key orgKey = null;
if (keyIter.hasNext()) {
orgKey = (Key) keyIter.next();
id = orgKey.getId(Q);
System.out.println("Organization key was " + 1id);
}
}

A client can use a similar mechanism to delete concepts, services, and service
bindings.

194

JAVA APl FOR XML REGISTRIES

Using Taxonomies in JAXR Clients

In the JAXR API, a taxonomy is represented by a ClassificationScheme
object. This section describes how to use the implementation of JAXR in the
Application Server to perform these tasks:

» To define your own taxonomies
» To specify postal addresses for an organization

Defining a Taxonomy

The JAXR specification requires that a JAXR provider be able to add user-
defined taxonomies for use by JAXR clients. The mechanisms clients use to add
and administer these taxonomies are implementation-specific.

The implementation of JAXR in the Application Server uses a simple file-based
approach to provide taxonomies to the JAXR client. These files are read at run-
time, when the JAXR provider starts up.

The taxonomy structure for the Application Server is defined by the JAXR Pre-
defined Concepts DTD, which is declared both in the file jaxrconcepts.dtd
and, in XML schema form, in the file jaxrconcepts.xsd. The file jaxrcon-
cepts.xml contains the taxonomies for the implementation of JAXR in the
Application Server. All these files are contained in the <JAVAEE_HOME>/1ib/
appserv-ws.jar file. This JAR file aso includes files that define the well-
known taxonomies used by the implementation of JAXR in the Application
Server: naics.xml, is03166.xm1, and unspsc.xml.

The entriesin the jaxrconcepts.xm1 file look like this:

<PredefinedConcepts>
<JAXRClassificationScheme id="schId" name="schName">
<JAXRConcept id="schId/conCode" name="conName"
parent="parentId" code="conCode">
</JAXRConcept>

</JAXRClassificationScheme>
</PredefinedConcepts>

The taxonomy structure is a containment-based structure. The element Pre-
definedConcepts is the root of the structure and must be present. The JAXR-
ClassificationScheme element is the parent of the structure, and the

USING TAXONOMIES IN JAXR CLIENTS

JAXRConcept elements are children and grandchildren. A JAXRConcept element
may have children, but it is not required to do so.

In al element definitions, attribute order and case are significant.
To add a user-defined taxonomy, follow these steps.

1. Publish the JAXRClassificationScheme element for the taxonomy as a
ClassificationScheme object in the registry that you will be accessing.
To publish aClassificationScheme object, you must set its name. You
a so give the scheme a classification within aknown classification scheme
such asuddi-org: types. In the following code fragment, the nameisthe
first argument of the LifeCycleManager.createClassificationScheme
method call.

InternationalString sn =
blcm.createlnternationalString("MyScheme");

InternationalString sd = blcm.createInternationalString(
"A Classification Scheme");

ClassificationScheme postalScheme =
blcm.createClassificationScheme(sn, sd);

String uuid_types =
"uuid:clacf26d-9672-4404-9d70-39b756e62ab4";

ClassificationScheme uddiOrgTypes =
(ClassificationScheme) bgm.getRegistryObject(uuid_types,

LifeCycleManager.CLASSIFICATION_SCHEME) ;

if (uddiOrgTypes != null) {

Classification classification =
bTcm.createClassification(uddiOrgTypes,
"postalAddress", "postalAddress");
postalScheme.addClassification(classification);

InternationalString 1d =
blcm.createIlnternationalString("My Scheme");
ExternallLink externallLink =
bTcm.createExternalLink(
"http://www.mycom.com/myscheme.xm1", 1d);
postalScheme.addExternalLink(externalLink);
Collection<ClassificationScheme> schemes =
new ArraylList<ClassificationScheme>();
schemes.add(cScheme);
BulkResponse br =
blcm.saveClassificationSchemes(schemes);

}

The BulkResponse object returned by the saveClassificationSchemes
method contains the key for the classification scheme, which you need to
retrieve:

195

196 JAVA APl FOR XML REGISTRIES

if (br.getStatus() == JAXRResponse.STATUS_SUCCESS) {
System.out.println("Saved ClassificationScheme");
Collection schemeKeys = br.getCollection();
Iterator keysIter = schemeKeys.iterator();
while (keysIter.hasNext()) {
Key key = (Key) keysIter.next();
System.out.println("The postalScheme key is " +
key.getId());
System.out.println("Use this key as the scheme" +
" uuid in the taxonomy file");
}
3
2. In an XML file, define a taxonomy structure that is compliant with the
JAXR Predefined Concepts DTD. Enter the ClassificationScheme ele-
ment in your taxonomy XML file by specifying the returned key 1D value
as the id attribute and the name as the name attribute. For the foregoing
code fragment, for example, the opening tag for the JAXRClassifica-
tionScheme element looks something like this (all on one line):
<JAXRClassificationScheme
id="uuid:nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn"
name="MyScheme">
The ClassificationScheme id must be a universally unique identifier
(UUID).
3. Enter each JAXRConcept €lement in your taxonomy XML file by specify-
ing the following four attributes, in this order:
a. idisthe JAXRClassificationScheme id value, followed by a / sepa-
rator, followed by the code of the JAXRConcept element.
b. name isthe name of the JAXRConcept € ement.
C. parent isthe immediate parent id (either the ClassificationScheme
id or that of the parent JAXRConcept).
d. code isthe JAXRConcept element code value.

The first JAXRConcept element in the naics.xm1 file looks like this (all
ononeline):

<JAXRConcept
id="uuid:COB9FE13-179F-413D-8A5B-5004DBSE5BB2/11"
name="Agriculture, Forestry, Fishing and Hunting"
parent="uuid:COB9FE13-179F-413D-8A5B-5004DB8E5BB2"
code="11"></JAXRConcept>

USING TAXONOMIES IN JAXR CLIENTS

4. To add the user-defined taxonomy structure to the JAXR provider, specify
the connection property com.sun.xml.registry.userTaxonomyFile-
names in your client program. You set the property as follows:
props.setProperty
("com.sun.xml.registry.userTaxonomyFilenames",

"o \mydir\xxx.xml|c:\mydir\xxx2.xm1");
Use the vertical bar (|) as a separator if you specify more than one file
name.

Specifying Postal Addresses

The JAXR specification defines a postal address as a structured interface with
attributes for street, city, country, and so on. The UDDI specification, on the
other hand, defines a postal address as a free-form collection of address lines,
each of which can also be assigned a meaning. To map the JAXR Postal-
Address format to aknown UDDI address format, you specify the UDDI format
as a(lassificationScheme object and then specify the semantic equivalences
between the concepts in the UDDI format classification scheme and the com-
ments in the JAXR PostalAddress classification scheme. The JAXR Postal-
Address classification schemeis provided by the implementation of JAXR in the
Application Server.

Inthe JAXR API, aPostalAddress object hasthefields streetNumber, street,
city, state, postalCode, and country. In the implementation of JAXR in the
Application Server, these are predefined conceptsin the jaxrconcepts.xm1 file,
within the ClassificationScheme named PostalAddressAttributes.

To specify the mapping between the JAXR postal address format and another
format, you set two connection properties:

e Thejavax.xml.registry.postalAddressScheme property, which spec-
ifies a postal address classification scheme for the connection

e The javax.xml.registry.semanticEquivalences property, which
specifies the semantic equivalences between the JAXR format and the
other format

For example, suppose you want to use a scheme named MyPostalAddress-
Scheme, which you published to a registry with the UUID uuid:f7922839-
f1f7-9228-c97d-ce@b4594736c¢.

<JAXRClassificationScheme id="uuid:f7922839-f1f7-9228-c97d-
cedb4594736¢c" name="MyPostalAddressScheme">

197

198

JAVA APl FOR XML REGISTRIES

First, you specify the postal address scheme using the id value from the JAXR-
ClassificationScheme element (the UUID). Case does not matter:

props.setProperty("javax.xml.registry.postalAddressScheme",
"uuid:f7922839-f1f7-9228-c97d-ce®b4594736¢c");

Next, you specify the mapping from the id of each JAXRConcept element in the
default JAXR postal address scheme to the id of its counterpart in the scheme
you published:

props.setProperty("javax.xml.registry.semanticEquivalences",
"urn:uuid:PostalAddressAttributes/StreetNumber," +
"uuid:f7922839-f1f7-9228-c97d-ce@b4594736¢c/

StreetAddressNumber|" +
"urn:uuid:PostalAddressAttributes/Street," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce@b4594736¢c/

StreetAddress|" +
"urn:uuid:PostalAddressAttributes/City," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce@b4594736¢c/City|" +
"urn:uuid:PostalAddressAttributes/State," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce@b4594736¢c/State|" +
"urn:uuid:PostalAddressAttributes/PostalCode," +
"urn:uuid:£7922839-f1f7-9228-c97d-ce@b4594736¢c/ZipCode|" +
"urn:uuid:PostalAddressAttributes/Country," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce@b4594736¢c/Country™);

After you create the connection using these properties, you can create a postal
address and assign it to the primary contact of the organization before you pub-
lish the organization:

String streetNumber = "99";
String street = "Imaginary Ave. Suite 33";
String city = "Imaginary City";
String state = "NY";
String country = "USA";
String postalCode = "00000";
String type = "";
PostalAddress postAddr =
blcm.createPostalAddress(streetNumber, street, city, state,
country, postalCode, type);
Collection<PostalAddress> postalAddresses =
new ArraylList<PostalAddress>();
postalAddresses.add(postAddr) ;
primaryContact.setPostalAddresses(postalAddresses);

RUNNING THE CLIENT EXAMPLES

If the postal address scheme and semantic equivalences for the query are the
same as those specified for the publication, a JAXR query can then retrieve the
postal address using PostalAddress methods. To retrieve postal addresses when
you do not know what postal address scheme was used to publish them, you can
retrieve them as a collection of S1ot objects. The JAXRQueryPostal.java Sam-
ple program shows how to do this.

In general, you can create a user-defined postal address taxonomy for any
PostalAddress tModels that use the well-known categorization in the uddi-
org:types taxonomy, which has the tModel UUID uuid:clacf26d-9672-
4404-9d70-39b756e62ab4 with avalue of postalAddress. You can retrieve the
tModel overviewDoc, which pointsto the technical detail for the specification of
the scheme, where the taxonomy structure definition can be found. (The JAXR
equivalent of an overviewDoc iSan ExternalLink.)

Running the Client Examples

The simple client programs provided with this tutorial can be run from the com-
mand line. You can modify them to suit your needs. They allow you to specify
the Java WSDP Registry Server for queries and updates. (To install the Registry
Server, follow the instructions in Preliminaries. Getting Access to a

Registry (page 175).
The examples, in the <INSTALL>/javaeetutorial5/examples/jaxr/simple/
src/ directory, are asfollows:

e JAXRQuery.java shows how to search aregistry for organizations.

e JAXRQueryByNAICSClassification.java showshow to search aregistry
using a common classification scheme.

e JAXRQueryByWSDLClass1ification.java shows how to search aregistry
for web servicesthat describe themselves by means of aWSDL document.

* JAXRPubTish.java shows how to publish an organization to aregistry.
* JAXRDelete.java shows how to remove an organization from aregistry.

¢ JAXRSaveClassificationScheme.java shows how to publish a classifi-
cation scheme (specifically, a postal address scheme) to aregistry.

e JAXRPubTishPostal.java shows how to publish an organization with a
postal address for its primary contact.

e JAXRQueryPostal.java showshow to retrieve postal address datafrom an
organization.

199

../examples/jaxr/JAXRQuery.java
../examples/jaxr/simple/src/JAXRQuery.java
../examples/jaxr/JAXRQueryByNAICSClassification.java
../examples/jaxr/simple/src/JAXRQueryByNAICSClassification.java
../examples/jaxr/JAXRQueryByWSDLClassification.java
../examples/jaxr/simple/src/JAXRQueryByWSDLClassification.java
../examples/jaxr/JAXRPublish.java
../examples/jaxr/simple/src/JAXRPublish.java
../examples/jaxr/JAXRDelete.java
../examples/jaxr/simple/src/JAXRDelete.java
../examples/jaxr/JAXRSaveClassificationScheme.java
../examples/jaxr/simple/src/JAXRSaveClassificationScheme.java
../examples/jaxr/JAXRPublishPostal.java
../examples/jaxr/simple/src/JAXRPublishPostal.java
../examples/jaxr/JAXRQueryPostal.java
../examples/jaxr/simple/src/JAXRQueryPostal.java

200

JAVA APl FOR XML REGISTRIES

* JAXRDeleteScheme.java shows how to delete a classification scheme
from aregistry.

* JAXRPubTishConcept.java shows how to publish aconcept for aWSDL
document.

* JAXRPublishHe1l100rg.java shows how to publish an organization with
aservice binding that refersto a WSDL document.

* JAXRDeleteConcept.java shows how to delete a concept.

* JAXRGetMyObjects.java listsal the objectsthat you own in aregistry.

The <INSTALL>/javaeetutorial5/examples/jaxr/simple/ directory also
contains the following:

* A build.xml file for the examples
* A JAXRExamples.properties file, in the src subdirectory, that supplies
string values used by the sample programs

» Afilecalled postalconcepts.xml that serves as the taxonomy filefor the
postal address examples

Before You Compile the Examples

Before you compile the examples, edit the file <INSTALL>/javaeetutorial5/
examples/jaxr/simple/src/JAXRExamples.properties asfollows.

1. If the Application Server where you installed the Registry Server is run-
ning on a system other than your own or if itis using a nondefault HTTP
port, change the following lines:

query.url=http://localhost:8080/RegistryServer/
publish.url=http://localhost:8080/RegistryServer/

Tink.uri=http://localhost:8080/hello-jaxws/helT1o?WSDL

wsdlorg.svcbnd.uri=http://localhost:8080/hello-jaxws/hello

Specify the fully qualified host name instead of localhost, or change
8080 to the correct value for your system.

2. (Optional) Edit the following lines, which contain empty strings for the
proxy hosts, to specify your own proxy settings. The proxy host isthe sys-
tem on your network through which you access the Internet; you usually
specify it in your Internet browser settings.

HTTP and HTTPS proxy host and port
http.proxyHost=

../examples/jaxr/JAXRDeleteScheme.java
../examples/jaxr/simple/src/JAXRDeleteScheme.java
../examples/jaxr/JAXRPublishConcept.java
../examples/jaxr/simple/src/JAXRPublishConcept.java
../examples/jaxr/JAXRPublishHelloOrg.java
../examples/jaxr/simple/src/JAXRPublishHelloOrg.java
../examples/jaxr/JAXRDeleteConcept.java
../examples/jaxr/simple/src/JAXRDeleteConcept.java
../examples/jaxr/JAXRGetMyObjects.java
../examples/jaxr/simple/src/JAXRGetMyObjects.java
../examples/jaxr/JAXRExamples.properties
../examples/jaxr/simple/src/JAXRExamples.properties

COMPILING THE EXAMPLES 201

http.proxyPort=8080

https.proxyHost=

https.proxyPort=8080

The proxy ports have the value 8080, which is the usua one; change this
string if your proxy uses a different port.

Your entries usually follow this pattern:

http.proxyHost=proxyhost.mydomain

http.proxyPort=8080

https.proxyHost=proxyhost.mydomain

https.proxyPort=8080

You need to specify aproxy only if you want to specify an external link or
service binding that is outside your firewall.

3. Fedl freeto change any of the organization datain the remainder of thefile.
This data is used by the publishing and postal address examples. Try to
make the organization names unusual so that queries will return relatively
few results.

You can edit the src/JAXRExamples.properties file a any time. The asant
targets that run the client examples will use the latest version of thefile.

Note: Before you compile any of the examples, follow the preliminary setup
instructions in Building the Examples (page xxxiii).

Compiling the Examples

To compile the programs, go to the <INSTALL>/javaeetutorial5/examples/
jaxr/simple/ directory. A build.xml file allows you to use the following com-
mand to compile all the examples:

asant

This command uses the default target, build, which performs the compilation.
The asant tool creates a subdirectory called build.

Running the Examples

You must start the Application Server in order to run the examples against the
Registry Server.

202

JAVA APl FOR XML REGISTRIES

Running the JAXRPublish Example

To run the JAXRPub1ish program, use the run-publish target with no com-
mand-line arguments:

asant run-publish

The program output displays the string value of the key of the new organization.

After you run the JAXRPubl1ish program but before you run JAXRDelete, you
can run JAXRQuery to look up the organization you published.

Running the JAXRQuery Example

To run the JAXRQuery example, use the asant target run-query. Specify a
query-string argument on the command line to search the registry for organi-
zations whose names contain that string. For example, the following command
line searches for organizations whose names contain the string "coffee"
(searching is not case-sensitive):

asant -Dquery-string=coffee run-query

Running the JAXRQueryByNAICSClassification
Example

After you run the JAXRPub11sh program, you can also run the JAXRQueryByNA-
ICSClassification example, which looks for organizations that use the All
Other Specialty Food Stores classification, the same one used for the organiza-
tion created by JAXRPub1ish. To do so, use the asant target run-query-naics:

asant run-query-naics

Running the JAXRDelete Example

To run the JAXRDeTete program, specify the key string displayed by the JAXR-
Pub1ish program asinput to the run-delete target:

asant -Dkey-string=keyString run-delete

RUNNING THE EXAMPLES 203

Publishing a Classification Scheme

To publish organizations with postal addresses, you must first publish a classifi-
cation scheme for the postal address.

To run the JAXRSaveClassificationScheme program, use the target run-save-
scheme:

asant run-save-scheme

The program returns a UUID string, which you will use in the next section.

Running the Postal Address Examples

Before you run the postal address examples, perform these steps:

1. Openthefile src/postalconcepts.xml in an editor.

2. Wherever you see the string uuid-from-save, replace it with the UUID
string returned by the run-save-scheme target (including the uuid: pre-
fix).

For a given registry, you only need to publish the classification scheme and edit
postalconcepts.xml once. After you perform those steps, you can run the
JAXRPubTishPostal and JAXRQueryPostal programs multiple times.

1. Run the JAXRPub1ishPostal program. Specify the string you entered in
the postalconcepts.xml file, including the uuid: prefix, as input to the
run-publish-postal target:
asant -Duuid-string=uuidstring run-publish-postal
The uuidstring would look something like this:
uuid:938d9ccd-a74a-4c7e-864a-e6e2c6822519

The program output displays the string value of the key of the new organi-
zation.

2. Run the JAXRQueryPostal program. The run-query-postal target spec-
ifiesthe postalconcepts.xml filein a<sysproperty> tag.

As input to the run-query-postal target, specify both a query-string
argument and a uuid-string argument on the command line to search
the registry for the organization published by the run-publish-postal
target:

asant -Dquery-string=coffee

-Duuid-string=uuidstring run-query-postal

204

JAVA APl FOR XML REGISTRIES

The postal address for the primary contact will appear correctly with the
JAXR PostalAddress methods. Any postal addresses found that use
other postal address schemes will appear as S1ot lines.

If you want to delete the organization you published, follow the instructions in
Running the JAXRDelete Example (page 202).

Deleting a Classification Scheme

To delete the classification scheme you published after you have finished using
it, run the JAXRDeleteScheme program using the run-delete-scheme target:

asant -Duuid-string=uuidstring run-delete-scheme

Publishing a Concept for a WSDL Document

To publish the location of the WSDL document for the JAX-WS Hello service,
first deploy the service to the Application Server as described in Creating a Sim-
ple Web Service and Client with JAX-WS (page xvi).

Then run the JAXRPubTishConcept program using the run-publish-concept
target:

asant run-publish-concept

The program output displays the UUID string of the new specification concept,
which is named HelloConcept. You will use this string in the next section.

After you run the JAXRPub1ishConcept program, you can run JAXRPub1ish-
He1100rg to publish an organization that uses this concept.

Publishing an Organization with a WSDL
Document in Its Service Binding

To run the JAXRPub1ishHe1100rg example, use the asant target run-publish-
hello-org. Specify the string returned from JAXRPub1ishConcept (including
theuuid: prefix) asinput to this target:

asant -Duuid-string=uuidstring run-publish-hello-org

RUNNING THE EXAMPLES

The uuidstring would look something like this:
uuid:10945f5c-f2e1-0945-2f07-5897ebcfaa3s

The program output displays the string value of the key of the new organization,
which is named Hello Organization.

After you publish the organization, run the JAXRQueryByWSDLClassification
example to search for it. To deleteit, run JAXRDelete.

Running the JAXRQueryByWSDLClassification
Example

To run the JAXRQueryByWSDLClassification example, use the asant target
run-query-wsd1. Specify a query-string argument on the command line to
search the registry for specification concepts whose names contain that string.
For example, the following command line searches for concepts whose names
contain the string "helTloconcept” (Searching is not case-sensitive):

asant -Dquery-string=helloconcept run-query-wsdl

This example finds the concept and organization you published.

Deleting a Concept

To run the JAXRDeTleteConcept program, specify the UUID string displayed by
the JAXRPub1ishConcept program asinput to the run-delete-concept target:

asant -Duuid-string=uuidString run-delete-concept
Do not delete the concept until after you have deleted any organizations that

refer toit.

Getting a List of Your Registry Objects

To get alist of the objects you own in the registry—organizations, classification
schemes, and concepts—run the JAXRGetMyObjects program by using the run-
get-objects target:

asant run-get-objects

205

206 JAVA APl FOR XML REGISTRIES

Other Targets

To remove the bui1d directory and classfiles, use the command

asant clean

To obtain a syntax reminder for the targets, use the command

asant -projecthelp

Using JAXR Clients in Java EE
Applications

You can create Java EE applications that use JAXR clients to access registries.
This section explains how to write, compile, package, deploy, and run a Java EE
application that uses JAXR to publish an organization to a registry and then
guery the registry for that organization. The application in this section uses two
components: an application client and a statel ess session bean.

| The section covers the following topics:
» Coding the application client: MyAppClient.java
» Coding the PubQuery session bean
e Compiling the sourcefiles
e Starting the Application Server
» Creating JAXR resources
 Creating and packaging the application
» Deploying the application
» Running the application client
You will find the source files for this section in the directory <INSTALL>/

javaeetutorial5/examples/jaxr/clientsession. Path namesin this section
arerelative to this directory.

The following directory contains a built version of this application:

<INSTALL>/javaeetutorial5/examples/jaxr/provided-ears

CODING THE APPLICATION CLIENT: MYAPPCLIENT.JAVA

Coding the Application Client:
MyAppClient.java

The application client class, src/MyAppClient.java, accesses the PubQuery
enterprise bean’'s remote interface. The program calls the bean’s two business
methods, executePublish and executeQuery.

Coding the PubQuery Session Bean

The PubQuery bean is a stateless session bean that has two business methods.
The bean uses remote interfaces rather than local interfaces because it is
accessed from the application client.

The remote interface, src/PubQueryRemote.java, declares two business meth-
ods. executePublish and executeQuery. The bean class, src/PubQuery-
Bean.java, implements the executePublish and executeQuery methods and
their helper methods getName, getDescription, and getKey. These methods are
very similar to the methods of the same name in the simple examples JAXR-
Query.java and JAXRPublish.java. The executePublish method uses infor-
mation in the file PubQueryBeanExample.properties to create an organization
named The Coffee Enterprise Bean Break. The executeQuery method uses the
organization name, specified in the application client code, to locate this organi-
zation.

The bean class injects a ConnectionFactory resource. It implements a @Post-
Construct method named makeConnection, which uses the ConnectionFac-
tory to create the Connection. Finaly, a @PreDestroy method named
endConnection closesthe Connection.

Editing the Properties File

Before you compile the application, edit the PubQueryBeanExamples.proper-
ties filein the same way you edited the JAXRExamples.properties file to run
the simple examples. Feel free to change any of the organization datain thefile.

207

../examples/jaxr/clientsession/src/MyAppClient.java
../examples/jaxr/clientsession/src/PubQueryRemote.java
../examples/jaxr/clientsession/src/PubQueryBean.java
../examples/jaxr/clientsession/src/PubQueryBean.java

208

JAVA APl FOR XML REGISTRIES

Compiling the Source Files

To compile the application source files, go to the directory <INSTALL>/
javaeetutorial5/examples/jaxr/clientsession. Use the following com-
mand:

asant build

The build target places the properties file and the class files in the bui1d direc-
tory.

Starting the Application Server

To run this example, you need to start the Application Server. Follow the instruc-
tionsin Starting and Stopping the Application Server (page 28).

Creating JAXR Resources

To use JAXR in aJava EE application that uses the Application Server, you need
to access the JAXR resource adapter (see Implementing a JAXR
Client, page 174) through a connector connection pool and a connector resource.
You can create these resources in the Admin Console.

If you have not done so, start the Admin Console as described in Starting the
Admin Console (page 29).

To create the connector connection pool, perform the following steps:
1. In the tree component, expand the Resources node, then expand the Con-
nectors node.
2. Click Connector Connection Pools.
. Click New.
4. On the Genera Settings page:
a. Type jaxr-pool inthe Name field.
b. Choose jaxr-ra from the Resource Adapter drop-down list.

c. Choose com.sun.connector.jaxr.JaxrConnectionFactory (the
only choice) from the Connection Definition drop-down list

d. Click Next.

w

5. On the next page, click Finish.

PACKAGING THE APPLICATION

To create the connector resource, perform the following steps:

1. Under the Connectors node, click Connector Resources.
2. Click New. The Create Connector Resource page appears.
3. Inthe INDI Name field, type eis/JAXR.
4. Choose jaxr-poo1 from the Pool Name drop-down list.
5. Click OK.
If you are in a hurry, you can create these objects by executing the following

command (from the directory <INSTALL>/javaeetutorial5/examples/jaxr/
clientsession):

asant create-resource

Packaging the Application

The build.xm1 file in the clientsession directory defines Ant targets that
package the clientsession application. To package the application, use the fol-
lowing command:

asant pack-ear

The pack-ear target depends on the pack-c1ient and pack-ejb targets, which
in turn depend on the bui1d target.

The pack-client target creates a JAR file that contains the client class file, a
manifest file, and the PubQueryBeanExample.properties file.

The pack-ejb target packages the session bean. It creates a JAR file that con-
tains the bean class files, a manifest file, and the PubQueryBeanExample.prop-
erties file.

The pack-ear target packages the two JAR files aong with an applica-
tion.xm] file. It creates a file named clientsession.ear in the clientses-
sion directory.

209

210

JAVA APl FOR XML REGISTRIES

Deploying the Application

The build.xm1 file in the clientsession directory defines an Ant target that
deploys the clientsession.ear file and returns a client JAR file. Use the fol-
lowing command:

asant deploy-ear

This command deploys the application and returns a JAR file named client-
sessionClient.jar inthe clientsession directory.

Running the Application Client
To run the client, use the following command:

appclient -client clientsessionClient.jar
The program output in the terminal window looks like this:

To view the bean output,
check <install_dir>/domains/domainl/Togs/server.log.

In the server log, you will find the output from the executePublish and exe-
cuteQuery methods, wrapped in logging information.

After you run the example, use the following command to undeploy the applica-
tion:

asant undeploy-ear

You can use the run-delete target in the simple directory to delete the organi-
zation that was published.

Further Information

For more information about JAXR, registries, and web services, see the follow-
ing:
 Java Specification Request (JSR) 93: JAXR 1.0:
http://jcp.org/jsr/detail/093.jsp
* JAXR home page:

http://jcp.org/jsr/detail/093.jsp

FURTHER | NFORMATION

http://java.sun.com/xml/jaxr/

Universal Description, Discovery and Integration (UDDI) project:

http://www.uddi.org/

ebXML:

http://www.ebxml.org/
Service Registry (ebXML Registry/Repository):
http://www.sun.com/products/soa/registry/
Open Source JAXR Provider for ebXML Registries:
http://ebxmlrr.sourceforge.net/jaxr/

Java Platform, Enterprise Edition:
http://java.sun.com/javaee/

Java Technology and XML:
http://java.sun.com/xml/

Java Technology and Web Services:
http://java.sun.com/webservices/

211

http://java.sun.com/xml/jaxr/
http://www.uddi.org/
http://www.ebxml.org/
http://ebxmlrr.sourceforge.net/jaxr/
http://java.sun.com/j2ee/
http://java.sun.com/xml/
http://java.sun.com/webservices/
http://www.sun.com/products/soa/registry/

212 JAVA APl FOR XML REGISTRIES

v

Java XML Digital
Sighature API

T HE Java XML Digital Signature API is a standard Java APl for generating
and validating XML Signatures. This APl was defined under the Java Commu-
nity Process as JSR 105 (see http://jcp.org/en/jsr/detail?id=105). This
JSR isfinal and this release of Java WSDP contains an FCS access implementa-
tion of the Final version of the APIs.

XML Signatures can be applied to data of any type, XML or binary (see http:/
/www.w3.org/TR/xmldsig-core/). The resulting signature is represented in
XML. An XML Signature can be used to secure your data and provide data
integrity, message authentication, and signer authentication.

After providing a brief overview of XML Signatures and the XML Digital Sig-
nature API, this chapter presents two examples that demonstrate how to use the
API to validate and generate an XML Signature. This chapter assumes that you
have a basic knowledge of cryptography and digital signatures.

The API is designed to support all of the required or recommended features of
the W3C Recommendation for XML-Signature Syntax and Processing. The AP
is extensible and pluggable and is based on the Java Cryptography Service Pro-
vider Architecture. The API isdesigned for two types of developers:

» Javaprogrammerswho want to usethe XML Digital Signature API to gen-
erate and validate XML signatures

213

http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

214

JAVA XML DIGITAL SIGNATURE API

» Java programmers who want to create a concrete implementation of the
XML Digital Signature API and register it as a cryptographic service of a
JCA provider (see http://java.sun.com/j2se/1.4.2/docs/guide/
security/CryptoSpec.html#Provider)

How XWS-Security and XML Digital
Sighature APl Are Related

Before getting into specifics, it isimportant to see how XWS-Security and XML
Digital Signature API arerelated. In this release of the Java WSDP, XWS-Secu-
rity is based on non-standard XML Digital Signature APIs.

XML Digital Signature APl isan API that should be used by Java applications
and middleware that need to create and/or process XML Signatures. It can be
used by Web Services Security (the goal for a future release) and by non-Web
Services technologies (for example, signing documents stored or transferred in
XML). Both JSR 105 and JSR 106 (XML Digital Encryption APIs) are core-
XML security components. (See http://www.jcp.org/en/jsr/
detail?id=106 for moreinformation about JSR 106.)

XWS-Security does not currently use the XML Digital Signature APl or XML
Digital Encryption APIs. XWS-Security uses the Apache libraries for XML-
DSig and XML-Enc. The goal of XWS-Security is to move toward using these
APIsin future releases.

http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html#Provider
http://www.jcp.org/en/jsr/detail?id=106
http://www.jcp.org/en/jsr/detail?id=106

XML SECURITY STACK

XML Security Stack

Figure 7-1 shows how XML Digital Signature APl (JSR 105) interacts with
security components today and how it will interact with other security compo-
nents, including XML Digital Encryption API (JSR 106), in future releases.

Today...

In the Future...

Fpplications

A

EAlTE S

Ppplications

1

i

JSR 105

I

JER 108 Prowvider

Apache Hil

e g

Security

A

B s

f

i

JER 105

JSR 105

f

)

J5R 105 Prowider

JER 106 Prowvider

Java Cryptography
Frihitecturs

f

JCA Prowider

Sun JCA
Provvider

Pluggable Pluggable
W= Secuorty Security
Prowider Provwider

[

|

Java Cryptography

Frchitecturs

!

JCA Provider

Pluggable JCA
Prowider

Figure7-1 Java WSDP Security Components

XWSS calls Apache XML-Security directly today; in future releases, it should
be able to call other pluggable security providers. The Apache XML-Security
provider and the Sun JCA Provider are both pluggable components. Since JSR
105 isfina today, the JSR 105 layer is standard now; the JSR 106 layer will be
standard after that JSR becomes final.

215

216

JAVA XML DIGITAL SIGNATURE API

Package Hierarchy

The six packagesin the XML Digital Signature API are:

e javax.xml.crypto

» javax.xml.crypto.dsig

e javax.xml.crypto.dsig.keyinfo
e javax.xml.crypto.dsig.spec

e javax.xml.crypto.dom

e javax.xml.crypto.dsig.dom

The javax.xm1.crypto package contains common classes that are used to per-
form XML cryptographic operations, such as generating an XML signature or
encrypting XML data. Two notable classes in this package are the KeySelector
class, which allows devel opers to supply implementations that |ocate and option-
aly validate keys using the information contained in a KeyInfo object, and the
URIDereferencer class, which allows devel opersto create and specify their own
URI dereferencing implementations.

The javax.xml.crypto.dsig package includes interfaces that represent the
core elements defined in the W3C XML digital signature specification. Of pri-
mary significance isthe XMLS1ignature class, which alows you to sign and vali-
date an XML digital signature. Most of the XML signature structures or
elements are represented by a corresponding interface (except for the KeyInfo
structures, which areincluded in their own package and are discussed in the next
paragraph). These interfaces include: SignedInfo, CanonicalizationMethod,
SignatureMethod, Reference, Transform, DigestMethod, XMLObject, Mani -
fest, SignatureProperty, and SignatureProperties. The XMLSignature-
Factory classis an abstract factory that is used to create objects that implement
these interfaces.

The javax.xml.crypto.dsig.keyinfo package contains interfaces that repre-
sent most of the KeyInfo structures defined in the W3C XML digital signature
recommendation, including KeyInfo, KeyName, KeyValue, X509Data,
X509IssuerSerial, RetrievalMethod, and PGPData. The KeyInfoFactory
class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.spec package contains interfaces and classes
representing input parameters for the digest, signature, transform, or canonical-
ization algorithms used in the processing of XML signatures.

Finally, the javax.xml.crypto.dom and javax.xml.crypto.dsig.dom pack-
ages contains DOM-gpecific classes for the javax.xml.crypto and

http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/KeySelector.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/URIDereferencer.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignature.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignedInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/CanonicalizationMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Reference.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Transform.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/DigestMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLObject.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/Manifest.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperty.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/SignatureProperties.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfo.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyName.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyValue.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509Data.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/X509IssuerSerial.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/RetrievalMethod.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/PGPData.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/spec/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/dom/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/package-summary.html

SERVICE PROVIDERS 217

javax.xml.crypto.dsig packages, respectively. Only developers and users
who are creating or using a DOM-based XMLSignatureFactory or KeyInfo-
Factory implementation should need to make direct use of these packages.

Service Providers

A JSR 105 cryptographic service is a concrete implementation of the abstract
XMLSignatureFactory and KeyInfoFactory classes and is responsible for cre-
ating objects and algorithms that parse, generate and validate XML Signatures
and KeyInfo structures. A concrete implementation of XMLSignatureFactory
must provide support for each of the required algorithms as specified by the
W3C recommendation for XML Signatures. It may support other algorithms as
defined by the W3C recommendation or other specifications.

JSR 105 leverages the JCA provider model for registering and loading XMLS1g-
natureFactory and KeyInfoFactory implementations.

Each concrete XMLSignatureFactory or KeyInfoFactory implementation sup-
ports a specific XML mechanism type that identifies the XML processing mech-
anism that an implementation uses internally to parse and generate XML
signature and KeyInfo structures. This JSR supports one standard type, DOM.
The XML Digital Signature APl early access provider implementation that is
bundled with Java WSDP supports the DOM mechanism. Support for new stan-
dard types, such as JDOM, may be added in the future.

An XML Digita Signature APl implementation should use underlying JCA
engine classes, such as java.security.Signature and java.security.Mes-
sageDigest, to perform cryptographic operations.

In addition to the XMLS1ignatureFactory and KeyInfoFactory classes, JSR 105
supports a service provider interface for transform and canonicalization algo-
rithms. The TransformService class alows you to develop and plug in an
implementation of a specific transform or canonicalization algorithm for a par-
ticular XML mechanism type. The TransformService class uses the standard
JCA provider model for registering and loading implementations. Each JSR 105
implementation should use the TransformService class to find a provider that
supports transform and canonicalization algorithmsin XML Signatures that it is
generating or validating.

http://java.sun.com/j2se/1.4/docs/api/java/security/Signature.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html
http://java.sun.com/j2se/1.4/docs/api/java/security/MessageDigest.html
http://java.sun.com/webservices/docs/1.6/api/javax/xml/crypto/dsig/TransformService.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/package-summary.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
http://java.sun.com/webservices/docs/1.4/api/javax/xml/crypto/dsig/KeyInfoFactory.html

218 JAVA XML DIGITAL SIGNATURE API

Introduction to XML Signatures

Asmentioned, an XML Signature can be used to sign any arbitrary data, whether
it is XML or binary. The data is identified via URIs in one or more Reference
elements. XML Signatures are described in one or more of three forms:
detached, enveloping, or enveloped. A detached signature is over data that is
external, or outside of the signature element itself. Enveloping signatures are sig-
natures over data that is inside the signature element, and an enveloped signature
isasignature that is contained inside the data that it is signing.

Example of an XML Sighature

The easiest way to describe the contents of an XML Signature is to show an
actual sample and describe each component in more detail. The following is an
example of an enveloped XML Signature generated over the contents of an XML
document. The contents of the document beforeit is signed are:

<Envelope xmlns="urn:envelope">
</Envelope>

The resulting enveloped XML Signature, indented and formatted for readability,
isasfollows:

<?xml1 version="1.0" encoding="UTF-8"7>
<Envelope xmlns="urn:envelope">
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xm1-cl4n-
20010315#WithComments" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal"/>
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09/
xmldsig#enveloped-signature"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal"/>
<DigestValue>uooqbWYa5VCqcICbhuymBKgml7vY=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>

EXAMPLE OF AN XML SIGNATURE 219

KedJuTob5gtvYx9gM3k3gm7kbLBwVbEQR126S2tmXjgNND7MRGtoew==
</SignatureValue>
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu@ImbzRMqzVDZkVGIXD7nN1kuFw==
</P>
<Q>11i7dzDacuo673g7mtqEm2TRUOMU=</Q>
<G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ@1khpMdLRQNG541Awtx/
XPaF5Bpsy4pNWMOHCBiNU@ONogpsQW5QvnTMpA==
</G>
<Y>qV38IqrwlGev/
mZQvRVi10Hw9Zj84nDC4j08P0axilgh6d+475yhMjSc/
BrIVC58W3ydbkK+Ri40KbaRZTYeRA==
</Y>
</DSAKeyValue>
</KeyValue>
</KeyInfo>
</Signature>
</Envelope>

The Signature element has been inserted inside the content that it is signing,
thereby making it an enveloped signature. The required SignedInfo element
contains the information that is actually signed:

<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xm1-cl4n-
20010315#WithComments" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal"/>
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09/
xmldsig#enveloped-signature" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal"/>
<DigestValue>uooqbWYa5VCqcICbhuymBKgml7vY=</DigestValue>
</Reference>
</SignedInfo>

The required CanonicalizationMethod element defines the algorithm used to
canonicalize the SignedInfo element beforeit is signed or validated. Canonical-
ization is the process of converting XML content to a canonical form, to take

220

JAVA XML DIGITAL SIGNATURE API

into account changes that can invalidate a signature over that data. Canonicaliza-
tion is necessary due to the nature of XML and the way it is parsed by different
processors and intermediaries, which can change the data such that the signature
isno longer valid but the signed datais still logically equivaent.

The required SignatureMethod element defines the digital signature algorithm
used to generate the signature, in this case DSA with SHA-1.

One or more Reference elementsidentify the data that is digested. Each Refer-
ence element identifies the data viaa URI. In this example, the value of the URI
is the empty String ("), which indicates the root of the document. The optional
Transforms element contains alist of one or more Transform elements, each of
which describes a transformation algorithm used to transform the data before it
is digested. In this example, there is one Transform element for the enveloped
transform algorithm. The enveloped transform is required for enveloped signa-
tures so that the signature element itself is removed before cal culating the signa-
ture value. The required DigestMethod element defines the algorithm used to
digest the data, in this case SHA1. Finaly the required DigestValue €lement
contains the actual base64-encoded digested value.

The required Signaturevalue element contains the base64-encoded signature
value of the signature over the SignedInfo element.

The optional KeyInfo element contains information about the key that is needed
to validate the signature:

<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>
/KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
Eu@ImbzRMqzVDZkVGIXD7nN1kuFw==
</P>
<Q>11i7dzDacuo673g7mtqEm2TRUOMU=</Q>
<G>Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ@1khpMdLRQNG541Awtx/
XPaF5Bpsy4pNWMOHCBiNUONogpsQW5QvnTMpA==
</G>
<Y>
qV38IqrwlGaOV/mZQvRVi1lOHw9Zj84nDC4j08P0axilgb6d+475yhMjSc/
BrIVC58W3ydbkK+Ri40KbaRZ1YeRA==
</Y>
</DSAKeyValue>
</KeyValue>
</KeyInfo>

XML DIGITAL SIGNATURE APl EXAMPLES 221

This KeyInfo element contains a KeyvValue element, which in turn contains a
DSAKeyValue element consisting of the public key needed to validate the sigha
ture. KeyInfo can contain various content such as X.509 certificates and PGP
key identifiers. See the KeyInfo section of the XML Signature Recommenda-
tion for more information on the different KeyInfo types.

XML Digital Signhature APl Examples

The following sections describe two examples that show how to use the XML
Digital Signature API:

« Validate example

» Signing example
To run the sample applications using the supplied Ant build.xm1 files, issue the
following commands after you installed Java WSDP:

For Solarig/Linux:
1.% export JWSDP_HOME=<your Java WSDP installation directory>
2.% export ANT_HOME=$JWSDP_HOME/apache-ant
3. % export PATH=$ANT_HOME/bin:$PATH
4. % cd $IWSDP_HOME/xmldsig/samples/<sample-name>

For Windows 2000/X P;

1. > set JWSDP_HOME=<your Java WSDP installation directory>

2.> set ANT_HOME=%JIWSDP_HOME%\apache-ant
set PATH=%ANT_HOME%\bin;%PATH%
cd %IWSDP_HOME%\xmldsig\samples\<sample-name>

validate Example

You can find the code shown in this section in the validate.java file in the
<JWSDP_HOME>/xm1dsig/samples/validate directory. The file on which it
operates, envelopedSignature.xml, iSin the same directory.

To run the example, execute the following command from the <JwSDP_HOME>/
xmldsig/samples/validate directory:

$ ant

http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo

222

JAVA XML DIGITAL SIGNATURE API

The sample program will validate the signature in the file envelopedSigna-
ture.xml in the current working directory. To validate a different signature, run
the following command:

$ ant -Dsample.args="signature.xml"

where "signature.xm1" isthe pathname of thefile.

Validating an XML Signature

This example shows you how to validate an XML Signature using the JSR 105
API. The example uses DOM (the Document Object Model) to parse an XML
document containing a Signature element and a JSR 105 DOM implementation
to validate the signature.

Instantiating the Document that Contains the
Signature

First we use a JAXP DocumentBuilderFactory to parse the XML document
containing the Signature. An application obtains the default implementation for
DocumentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:
dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of aDocumentBuilder, which isused
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Specifying the Signature Element to be
Validated

We need to specify the Signature element that we want to validate, since there
could be more than one in the document. We use the DOM method Docu-

VALIDATE EXAMPLE

ment.getElementsByTagNameNS, passing it the XML Signature namespace URI
and the tag name of the Signature element, as shown:

NodeList n1 = doc.getElementsByTagNameNS
(XMLS1ignature.XMLNS, "Signature");

if (n1.getLength() == 0) {
throw new Exception("Cannot find Signature element");

}

Thisreturns alist of al Signature elements in the document. In this example,
thereisonly one Signature element.

Creating a Validation Context

We create an XMLValidateContext instance containing input parametersfor val-
idating the signature. Since we are using DOM, we instantiate aDOMvalidate-
Context instance (a subclass of XMLvalidateContext), and pass it two
parameters, a KeyValueKeySelector object and a reference to the Signature
element to be validated (which is the first entry of the NodeL1ist we generated
earlier):

DOMValidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

The KeyvValueKeySelector is explained in greater detail in Usng
KeySelectors (page 225).

Unmarshaling the XML Signature

We extract the contents of the Signature element into an XMLS1ignature object.
This process is called unmarshalling. The Signature element is unmarshalled
using an XMLSignatureFactory object. An application can obtain a DOM
implementation of XMLS1ignatureFactory by caling the following line of code:

XMLSignatureFactory factory =
XMLSignatureFactory.getInstance(''DOM");

223

224

JAVA XML DIGITAL SIGNATURE API

We then invoke the unmarshalxMLSignature method of the factory to unmar-
shal an XMLSignature object, and pass it the validation context we created ear-
lier:

XMLSignature signature =
factory.unmarshalXMLSignature(valContext);

Validating the XML Signature

Now we are ready to validate the signature. We do this by invoking the validate
method on the XMLSignature object, and pass it the validation context as fol-
lows:

boolean coreValidity = signature.validate(valContext);

The validate method returns “true’ if the signature validates successfully
according to the core validation rulesinthew3C XML Signature Recom-
mendation, and false otherwise.

What If the XML Signhature Fails to Validate?

If the XMLSignature.validate method returnsfalse, we can try to narrow down
the cause of thefailure. There are two phasesin core XML Signature validation:

» Signature validation (the cryptographic verification of the signature)

» Reference validation (the verification of the digest of each referencein
the signature)

Each phase must be successful for the signature to be valid. To check if the sig-
nature failed to cryptographicaly validate, we can check the status, as follows:

boolean sv =
signature.getSignatureValue().validate(valContext);
System.out.println("signature validation status: " + sv);

We can aso iterate over the references and check the validation status of each
one, as follows:

Iterator i =
signature.getSignedInfo().getReferences().iterator();
for (int j=0; i.hasNext(); j++) {
boolean refValid = ((Reference)

VALIDATE EXAMPLE

i.next()).validate(valContext);
System.out.println("ref["+j+"] validity status: " +
refvalid);

Using KeySelectors

KeySelectors are used to find and select keys that are needed to validate an
XMLSignature. Earlier, when we created a DOMvalidateContext object, we
passed aKeySelector object asthe first argument:

DOMValidateContext valContext = new DOMValidateContext
(new KeyValueKeySelector(), nl.item(0));

Alternatively, we could have passed a PublicKey as the first argument if we
already knew what key is needed to validate the signature. However, we often
don’t know.

The KeyValueKeySelector isaconcrete implementation of the abstract KeySe-
lector class. The KeyValueKeySelector implementation tries to find an
appropriate validation key using the data contained in Keyvalue elements of the
KeyInfo element of an XMLSignature. It does not determineif the key istrusted.
This is a very simple KeySelector implementation, designed for illustration
rather than real-world usage. A more practical example of aKeySelector isone
that searches a KeyStore for trusted keys that match X509Data information (for
example, X509SubjectName, X509IssuerSerial, X509SKT, or
X509Certificate elements) contained in aKeyInfo.

The implementation of the KeyvValueKeySelector isasfollows:

private static class KeyValueKeySelector extends KeySelector {

public KeySelectorResult select(KeyInfo keyInfo,
KeySelector.Purpose purpose,
AlgorithmMethod method,
XMLCryptoContext context)
throws KeySelectorException {

if (keyInfo == null) {
throw new KeySelectorException("Null KeyInfo object!");

}
SignatureMethod sm = (SignatureMethod) method;
List Tist = keyInfo.getContent();

for (int i = 0; i < list.size(); i++) {

225

226 JAVA XML DIGITAL SIGNATURE API

XMLStructure xmlStructure = (XMLStructure) list.get(i);
if (xm1Structure instanceof KeyValue) {
PublicKey pk = null;
try {
pk = ((KeyValue)xmlStructure).getPublicKey(Q);
} catch (KeyException ke) {
throw new KeySelectorException(ke);

}

// make sure algorithm is compatible with method
if (algEquals(sm.getAlgorithm(Q),
pk.getAlgorithm())) {
return new SimpleKeySelectorResult(pk);

3
}
}
throw new KeySelectorException("No KeyValue element

found!");
}

static boolean algEquals(String algURI, String algName) {
if (algName.equalsIgnoreCase("DSA") &&
algURI.equalsIgnoreCase(SignatureMethod.DSA_SHAL1)) {
return true;
} else if (algName.equalsIgnoreCase("RSA"™) &&
algURI.equalsIgnoreCase(SignatureMethod.RSA_SHAL1)) {

return true;
} else {

return false;
}

}
}

genenveloped Example

The code discussed in this section is in the GenEnveloped.java file in the
<JWSDP_HOME>/xm1dsig/samples/genenveloped directory. Thefile on which it
operates, envelope.xml, isin the same directory. It generates the file envelo-
pedSignature.xml.

To compile and run this sample, execute the following command from the
<JWSDP_HOME>/xm1dsig/samples/genenveloped directory:

$ ant

GENENVELOPED EXAMPLE

The sample program will generate an envel oped signature of the document in the
file envelope.xml and store it in the file envelopedSignature.xml in the cur-
rent working directory.

Generating an XML Signature

This example shows you how to generate an XML Signature using the XML
Digital Signature API. More specifically, the example generates an enveloped
XML Signature of an XML document. An enveloped signature is a signature that
is contained inside the content that it is signing. The example uses DOM (the
Document Object Model) to parse the XML document to be signed and a JSR
105 DOM implementation to generate the resulting signature.

A basic knowledge of XML Signatures and their different componentsis helpful
for understanding this section. See http://www.w3.org/TR/xmldsig-core/ for
more information.

Instantiating the Document to be Signed

First, we use a JAXP DocumentBuilderFactory to parse the XML document
that we want to sign. An application obtains the default implementation for Doc-
umentBuilderFactory by caling the following line of code:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:
dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of aDocumentBuilder, which isused
to parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv([0]));

227

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

228

JAVA XML DIGITAL SIGNATURE API

Creating a Public Key Pair

We generate a public key pair. Later in the example, we will use the private key
to generate the signature. We create the key pair with a KeyPairGenerator. In
this example, we will create a DSA KeyPai r with alength of 512 bytes:

KeyPairGenerator kpg = KeyPairGenerator.getInstance('"DSA");
kpg.initialize(512);
KeyPair kp = kpg.generateKeyPair();

In practice, the private key is usually previously generated and stored in a Key-
Store file with an associated public key certificate.

Creating a Signing Context

We create an XML Digital Signature XMLS1ignContext containing input parame-
tersfor generating the signature. Since we are using DOM, we instantiate a DOM-
SignContext (@ subclass of XMLS1ignContext), and pass it two parameters, the
private key that will be used to sign the document and the root of the document
to be signed:

DOMSignContext dsc = new DOMSignContext
(kp.getPrivate(), doc.getDocumentElement());

Assembling the XML Signature

We assembl e the different parts of the Signature element into an XMLSignature
object. These objects are al created and assembled using an XMLSignatureFac-
tory object. An application obtains a DOM implementation of XMLSignature-
Factory by calling the following line of code:

XMLSignatureFactory fac =
XMLSignatureFactory.getInstance("DOM");

We then invoke various factory methods to create the different parts of the XML -
Signature object as shown below. We create a Reference object, passing to it
the following:

» The URI of the object to be signed (We specify aURI of ", which implies
the root of the document.)

* TheDigestMethod (we use SHA1)

GENENVELOPED EXAMPLE

* A sgingle Transform, the enveloped Transform, which is required for
enveloped signatures so that the signature itself is removed before calcu-
lating the signature value

Reference ref = fac.newReference
("", fac.newDigestMethod(DigestMethod.SHALl, null),
Collections.singletonList
(fac.newTransform(Transform.ENVELOPED,
(TransformParameterSpec) null)), null, null);

Next, we create the SignedInfo object, which is the object that is actualy
signed, as shown below. When creating the SignedInfo, we pass as parameters:

e TheCanonicalizationMethod (we useinclusive and preserve comments)
¢ TheSignatureMethod (we use DSA)
e Alist of References (in this case, only one)

SignedInfo si = fac.newSignedInfo
(fac.newCanonicalizationMethod
(CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
(C14NMethodParameterSpec) null),
fac.newSignatureMethod(SignatureMethod.DSA_SHA1, null),
Collections.singletonList(ref));

Next, we create the optional KeyInfo object, which contains information that
enables the recipient to find the key needed to validate the signature. In this
example, we add aKeyVvalue object containing the public key. To create KeyInfo
and its various subtypes, we use a KeyInfoFactory object, which can be
obtained by invoking the getKeyInfoFactory method of the XMLSignature-
Factory, asfollows:

KeyInfoFactory kif = fac.getKeyInfoFactory();

We then use the KeyInfoFactory to create the Keyvalue object and add it to a
KeyInfo object:

KeyValue kv = kif.newKeyValue(kp.getPublic());
KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

Finally, we create the XMLSignature object, passing as parameters the Signed-
Info and KeyInfo objectsthat we created earlier:

XMLSignature signature = fac.newXMLSignature(si, ki);

229

230

JAVA XML DIGITAL SIGNATURE API

Notice that we haven't actually generated the signature yet; we'll do that in the
next step.

Generating the XML Signature

Now we are ready to generate the signature, which we do by invoking the sign
method on the XMLSignature object, and passit the signing context as follows:

signature.sign(dsc);

The resulting document now contains a signature, which has been inserted as the
last child element of the root element.

Printing or Displaying the Resulting Document

You can use the following code to print the resulting signed document to afile or
standard output:

OQutputStream os;
if (args.length > 1) {

os = new FileOutputStream(args[1]);
} else {

os = System.out;

}

TransformerFactory tf = TransformerFactory.newInstance();
Transformer trans = tf.newTransformer();
trans.transform(new DOMSource(doc), new StreamResult(os));

8

Securing Web
Services

T HE security model used for web services is based on specifications and rec-
ommendations of various standards organizations (see Web Services Security
Initiatives and Organizations, page 236). The challenge behind the security
model for Java EE-based web services is to understand and assess the risk
involved in securing a web-based service today and, at the same time, track
emerging standards and understand how they will be deployed to offset the risk
in the future.

This chapter addresses using message security to address the characteristics of a
web service that make its security needs different from those of other Java EE
applications.

This chapter assumes that you are familiar with the web services technologies
being discussed, or that you have read the following chapters in this tutorial that
discuss these technol ogies:

e Chapter 1, “Building Web Services with JAX-WS’

e Chapter 3, “Using JAXB”

* Chapter 6, “Java APl for XML Registries’

e Chapter 5, “SOAP with Attachments API for Java’

231

232

SECURING WEB SERVICES

Securing Web Service Endpoints

Web services can be deployed as EJB endpoints or as web (servlet) endpoints.
Securing web service endpointsis discussed in the following chapters:

For information on securing web service endpoints of an enterprise bean,
read Securing Enterprise Beans (page 1024).

For information on securing web service endpoints of web components,
read Chapter 9, “ Securing Web Applications’.

Overview of Message Security

Java EE security is easy to implement and configure, and can offer fine-grained
access control to application functions and data. However, asisinherent to secu-
rity applied at the application layer, security properties are not transferable to
applications running in other environments and only protect data while it is
residing in the application environment. In the context of a traditional applica-
tion, thisis not necessarily a problem, but when applied to a web services appli-
cation, Java EE security mechanisms provide only a partial solution.

The characteristics of a web service that make its security needs different than
those of other Java EE applications include the following:

L oose coupling between the service provider and service consumer

Standards-based (read Web Services Security Initiatives and
Organizations, page 236 for a discussion of web services security initia-
tives and organizations)

Uses XML-formatted messages and metadata

Highly-focused on providing interoperability

Platform and programming language neutral

Can use avariety of transport protocols, although HTTPisused most often

Supports interactions with multiple hops between the service consumer
and the service provider

ADVANTAGES OF MESSAGE SECURITY 233

Some of the characteristics of aweb service that make it especially vulnerable to
security attacks include the following:

« Interactions are performed over the Internet using transport protocols that
arefirewall friendly.

» Communication is often initiated by service consumers who have no prior
relationship with the service provider.

» The message format is text-based.

Additionally, the distributed nature of web service interactions and dependencies
might require a standard way to propagate identity and trust between application
domains.

There are several well-defined aspects of application security that, when prop-
erly addressed, help to minimize the security threat faced by an enterprise. These
include authentication, authorization, integrity, confidentiality, and non-repudia-
tion, and more. These requirements are discussed in more detail in Characteris-
tics of Application Security (page 946).

One of the methods that can be used to address the unique challenges of web ser-
vices security is message security. Message security is discussed in this chapter
which includes the following topics:

» Advantages of Message Security (page 233)

* Message Security Mechanisms (page 235)

» Web Services Security Initiatives and Organizations (page 236)
» Using Message Security with Java EE (page 241)

Advantages of Message Security

Before we get to message security, it is important to understand why security at
the transport layer is not always sufficient to address the security needs of aweb
service. Transport-layer security is provided by the transport mechanisms used
to transmit information over the wire between clients and providers, thus trans-
port-layer security relies on secure HTTP transport (HTTPS) using Secure Sock-
ets Layer (SSL). Transport security is a point-to-point security mechanism that
can be used for authentication, message integrity, and confidentiality. When run-
ning over an SSL-protected session, the server and client can authenticate one
another and negotiate an encryption algorithm and cryptographic keys before the
application protocol transmits or receives its first byte of data. Security is “live”
from the time it leaves the consumer until it arrives at the provider, or vice versa,

234

SECURING WEB SERVICES

even across intermediaries. The problem isthat it is not protected once it gets to
its destination. One solution is to encrypt the message before sending using mes-
sage security.

In message-layer security, security information is contained within the SOAP
message and/or SOAP message attachment, which allows security information
to travel along with the message or attachment. For example, a portion of the
message may be signed by a sender and encrypted for a particular receiver.
When the message is sent from the initial sender, it may pass through intermedi-
ate nodes before reaching its intended receiver. In this scenario, the encrypted
portions continue to be opague to any intermediate nodes and can only be
decrypted by the intended receiver. For this reason, message-layer security is
also sometimes referred to as end-to-end security.

The advantages of message-layer security include the following:

» Security stayswith the message over all hops and after the message arrives
at its destination.

» Isfine-grained. Can be selectively applied to different portions of a mes-
sage (and to attachments if using XWSS).

» Can be used in conjunction with intermediaries over multiple hops.
* Isindependent of the application environment or transport protocol.

The disadvantage to using message-layer security is that it is relatively complex
and adds some overhead to processing.

The Application Server and the Java Web Services Devel oper Pack (Java WSDP)
both support message security.

* The Sun Java System Application Server uses Web Services Security
(WSS) to secure messages. Using WSS is discussed in Using the Applica-
tion Server Message Security |mplementation (page 242).

» The Java Web Services Developer Pack (Java WSDP) includes XML and
Web Services Security (XWSS), a framework for securing JAX-RPC,
JAX-WS, and SAAJ applications, as well as message attachments. An
implementation of XWSS is included in the Application Server. Using
XWSS is discussed in Using the Java WSDP XWSS Security
Implementation (page 247).

Because neither of these options for message security are part of the Java EE
platform, this document would not normally discuss using either of these options
to secure messages. However, as there are currently no Java EE APIs that per-
form this function and message security is a very important component of web

MESSAGE SECURITY MECHANISMS 235

services security, this chapter presents a brief introduction to using both the WSS
and XWSS functionality that is incorporated into the Sun Java System Applica-
tion Server.

This chapter includes the following topics:

» Message Security Mechanisms (page 235)
» Web Services Security Initiatives and Organizations (page 236)
» Using Message Security with Java EE (page 241)

Message Security Mechanisms

Encryption is the transformation of datainto aform that is as close to impossible
as possible to read without the appropriate knowledge, which is contained in a
key. Its purpose is to ensure privacy by keeping information hidden from anyone
for whom it is not intended, even those who have access to the encrypted data.
Decryption isthe reverse of encryption; it isthe transformation of encrypted data
back into an intelligible form.

Encryption and decryption generally require the use of some secret information,
referred to as a key. For some encryption mechanisms, the same key is used for
both encryption and decryption; for other mechanisms, the keys used for encryp-
tion and decryption are different.

Authentication is as fundamentally a part of our lives as privacy. We use authen-
tication throughout our everyday lives - when we sign our name to some docu-
ment for instance - and, as we move to a world where our decisions and
agreements are communicated electronically, we need to have electronic tech-
niques for providing authentication.

The “crypt” in encryption and decryption is cryptography. Cryptography pro-
vides mechanisms for providing authentication, which include encryption and
decryption, as well as digital signatures and digital timestamps. A digital signa-
ture binds a document to the possessor of a particular key, while a digital times-
tamp binds a document to its creation at a particular time. These cryptographic
mechanisms can be used to control access to a shared disk drive, a high security
installation, or a pay-per-view TV channel.

Authentication is any process through which one proves and verifies certain
information. Sometimes one may want to verify the origin of a document, the
identity of the sender, the time and date a document was sent and/or signed, the
identity of a computer or user, and so on. A digital signature is a cryptographic

236

SECURING WEB SERVICES

means through which many of these may be verified. The digital signature of a
document is a piece of information based on both the document and the signer's
private key. It istypically created through the use of a hash function and a private
signing function (encrypting with the signer's private key), but there are other
methods.

For more information on cryptography, please read this document: RSA Labora-
tories Freguently Asked Questions About Today's Cryptography, Version 4.1,
available a http://www.rsasecurity.com/rsalabs/node.asp?id=2152.
(Some of the text in this section was excerpted, by permission, from this docu-
ment.)

Web Services Security Initiatives and
Organizations

The following organizations work on web services security specifications, guide-
lines, and tools:

» The World Wide Web Consortium (W3C)

* Organization for Advancement of Structured Information Standards
(OASIS)

» Web Services Interoperability Organization (WS-I)
» Java Community Process (JCP)

Basicaly, the JCP, W3C, and OASIS are developing specifications related to
web services security. WS-| creates profiles that recommend what to implement
from various specifications and provides direction on how to implement the
specifications. The following sections briefly discuss the specifications and pro-
files being developed by each organization.

W3C Specifications

The mission of the World Wide Web Consortium (W3C), according to its Web
siteat http://www.w3.org/, isto lead the World Wide Web to its full potential
by developing protocols and guidelines that ensure long-term growth for the
web. W3C primarily pursues its mission through the creation of Web standards

http://www.rsasecurity.com/rsalabs/node.asp?id=2152
http://www.w3.org/

OASI S SPECIFICATIONS

and guidelines. The W3C is working on the following specifications related to
web services security:

e XML Encryption (XML-ENCc)

This specification provides requirements for XML syntax and processing
for encrypting digital content, including portions of XML documents and
protocol messages. The version of the specification current at the time of
this writing may be viewed at http://www.w3.0rg/TR/2002/REC-xmlenc-
core-20021210/.

e XML Digital Signature (XML-Sig)
This specification specifies an XML compliant syntax used for represent-
ing the signature of web resources and portions of protocol messages
(anything referenceable by a URI) and procedures for computing and ver-
ifying such signatures. The version of the specification current at the time
of thiswriting may be viewed at http://www.w3.0rg/TR/2002/REC-xmld-
sig-core-20020212/.

* XML Key Management Specification (XKMS)
The specification specifies protocols for distributing and registering pub-
lic keys, suitable for use in conjunction with the W3C recommendations
for XML Signature and XML Encryption. The version of the specification

current at the time of this writing may be viewed at http://www.w3.org/
TR/2005/REC-xkms2-20050628/.

OASIS Specifications

According to its web site at http://www.oasis-open.org/, the Organization for the
Advancement of Structured Information Standards (OASIS) drives the develop-
ment, convergence, and adoption of e-business standards. OASIS is working on
the following specifications related to web services security. At the time this
document was written, OASIS standards documents are available from http://
WWW.0asi s-open.org/specs/index.php.

» Web Services Security (WSS): SOAP Message Security

This specification describes enhancements to SOAP messaging to provide
message integrity, message confidentiality, and message authentication
while accommodating a wide variety of security models and encryption
technologies. This specification also defines an extensible, general-pur-
pose mechanism for associating security tokens with message content, as

237

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2005/REC-xkms2-20050628/
http://www.w3.org/TR/2005/REC-xkms2-20050628/
http://www.oasis-open.org/
http://www.oasis-open.org/specs/index.php
http://www.oasis-open.org/specs/index.php

238

SECURING WEB SERVICES

well as how to encode binary security tokens, a framework for XML-
based tokens, and how to include opaque encrypted keys.
» Security Assertion Markup Language (SAML)

The SAML specification defines an XML -based mechanism for securing
Business-to-Business (B2B) and Business-to-Consumer (B2C) e-com-
merce transactions. SAML defines an XML framework for exchanging
authentication and authorization information. SAML uses XML-encoded
security assertions and XML-encoded request/response protocol and
specifies rules for using assertions with standard transport and messaging
frameworks. SAML provides interoperability between disparate security
systems. SAML can be applied to facilitate three use cases: single sign-
on, distributed transactions, and authorization services.

» eXtensible Access Control Markup Language (XACML)

The XACML specification defines a common language for expressing
security policy. XACML defines an extensible structure for the core
schema and namespace for expressing authorization policies in XML. A
common policy language, when implemented across an enterprise, allows
the enterprise to manage the enforcement of all the elements of its secu-
rity policy in all the components of its information systems.

JCP Specifications

According to the Java Community Process (JCP) web site, the JCP holds the
responsibility for the devel opment of Java technology. The JCP primarily guides
the development and approval of Java technical specifications. The JCP is work-
ing on the following specifications related to web services security. The specifi-
cations can be viewed from the JCP web site at http://www.jcp.org/en/jsr/all.

* JSR 104: XML Trust Service APIs

JSR-104 defines a standard set of APIs and a protocol for atrust service.
A key objective of the protocol design is to minimize the complexity of
applications using XML Signature. By becoming a client of the trust ser-
vice, the application isrelieved of the complexity and syntax of the under-
lying PKI used to establish trust relationships, which may be based upon a
different specification such as X.509/PK1X, SPKI or PGP.

e JSR 105: XML Digital Signature APIs

JSR-105 defines a standard set of APIs for XML digital signature ser-
vices. The XML Digital Signature specification is defined by the W3C.

http://www.jcp.org/en/jsr/all

WS-| SPECIFICATIONS

This proposal is to define and incorporate the high-level implementation-
independent Java APIs.

JSR 106: XML Encryption APIs

JSR-106 defines a standard set of APIs for XML digital encryption ser-
vices. XML Encryption can be used to perform fine-grained, element-
based encryption of fragments within an XML Document as well as
encrypt arbitrary binary data and include this within an XML document.

JSR 155: Web Services Security Assertions

JSR-155 provides a set of APIs, exchange patterns, and implementation to
securely (integrity and confidentiality) exchange assertions between web
services based on OASIS SAML.

JSR 183: Web Services Message Security APIs

JSR-183 defines a standard set of APIs for Web services message secu-
rity. The goal of this JSR is to enable applications to construct secure
SOAP message exchanges.

JSR 196: Java Authentication Service Provider Interface for Containers

The proposed specification will define a standard service provider inter-
face by which authentication mechanism providers may be integrated
with containers. Providers integrated through this interface will be used to
establish the authentication identities used in container access decisions,
including those used by the container in invocations of components in
other containers.

WS-| Specifications

According to the Web Services Interoperability Organization (WS-1) web site,
WS- is an open industry organization chartered to promote Web services
interoperability across platforms, operating systems and programming lan-
guages. Specifically, WS-I creates, promotes and supports generic protocols for
the interoperable exchange of messages between Web services. WS- creates
profiles, which recommend what to use and how to use it from the various web
services specifications created by W3C, OASIS, and the JCP. WS- is working
on the following profiles related to web services security. The profiles can be
viewed from the WS-| web Site at http://www.ws-1i.org/deliverables/
Default.aspx.

« Basic Security Profile (BSP)

239

http://www.ws-i.org/deliverables/Default.aspx
http://www.ws-i.org/deliverables/Default.aspx

240

SECURING WEB SERVICES

The Basic Security Profile provides guidance on the use of WS-Security
and the User Name and X.509 security token formats.

* REL Token Profile
The REL Token Profile is the interoperability profile for the Rights
Expression Language (REL) security token that is used with WS-Secu-
rity.

» SAML Token Profile

Thisistheinteroperability profile for the Security Assertion Markup Lan-
guage (SAML) security token that is used with WS-Security.

» Security Challenges, Threats, and Countermeasures

This document identifies potential security challenges and threats in a
web service application, and identifies appropriate candidate technol ogies
to address these challenges. The section Security Challenges, Threats, and
Countermeasures (page 240) discusses the challenges, threats, and coun-
termeasuresin abit more detail.

Security Challenges, Threats, and
Countermeasures

The WS- document titled Security Challenges, Threats, and Countermeasures
can be read in its entirety at http://www.ws-1i.org/Profiles/BasicSecu-
rity/SecurityChallenges-1.0.pdf. Table 8-1 attempts to summarize many
of the threats and countermeasures as an introduction to this document.

Table8-1 Security Challenges, Threats, and Countermeasures

Challenge Threats Countermeasures

-HTTPS with X.509 server authenti-

falsified messages, man cation
Peer Identificationand | in the middle, principal ;)':'gg;')'em authentication (Basic

Authentication spoofing, forged claims,

-HTTPS with X.509 mutual authenti-
replay of message parts

cation of server and user agent
-OA SIS SOAP Message Security

http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf

USING MESSAGE SECURITY WITH JAVA EE

Table8-1 Security Challenges, Threats, and Countermeasures (Continued)

Challenge Threats Counter measures

falsified messages, man -OASIS SOAP Message Security
Data Origin I dentifica- in the middle, principal -MIME with XML Signature/XML
tion and Authentication spoofing, forged claims, Encryption

replay of message parts -XML Signature

Data Integrity (includ-) . .
ing Transport Data Integ- | message alteration, SSL/TL.S with encrypti on engbled
rity and SOAP Message | replay -XML Signatures (as profiled in
Integrity) OASIS SOAP Message Security)
Data Confidentiaity
(including Transport -SSL/TSL with encryption enabled
Data Confidentiality and | confidentiality -XML Signatures (as profiled in
SOAP Message Confi- OASIS SOAP Message Security)
dentiality)

-SSL/TLS between the node that
M e Uniqueness replay of message parts, | generated the request and the node

replay, denial of service

that is guaranteeing

-Signing of nonce, time stamp

Asyou can see from the countermeasures that are recommended in the table and
in the document, the use of XML Encryption and XML Digital Signature to
secure SOAP messages and attachments is strongly recommended by this orga-
nization. Using Message Security with Java EE (page 241) discusses some
options for securing messages with Java EE.

Using Message Security with Java EE

Because message security is not yet a part of the Java EE platform, and because
message security is a very important component of web services security, this
section presents a brief introduction to using both the Application Server’'s Web
Services Security (WSS) and the Java WSDP's XML and Web Services Security
(XWSS) functionality.

* Using the Application
Implementation (page 242)
» Using the Java WSDP XWSS Security Implementation (page 247)

Server Message Security

241

242

SECURING WEB SERVICES

Using the Application Server Message
Security Implementation

The Sun Java System Application Server uses Web Services Security (WS-Secu-
rity) to secure messages. WS-Security is amessage security mechanism that uses
XML Encryption and XML Digital Signature to secure web services messages
sent over SOAP. The WS-Security specification defines the use of various secu-
rity tokens including X.509 certificates, SAML assertions, and username/pass-
word tokens to authenticate and encrypt SOAP web services messages.

The Application Server offersintegrated support for the WS-Security standard in
itsweb services client and server-side containers. This functionality isintegrated
such that web services security is enforced by the containers of the Application
Server on behalf of applications, and such that it can be applied to protect any
web service application without requiring changes to the implementation of the
application. The Application Server achieves this effect by providing facilitiesto
bind SOAP layer message security providers and message protection policies to
containers and to applications deployed in containers.

There are two ways to enable message security when using the Application
Server:

» Configure the Application Server so that web services security will be
applied to al web services applications deployed on the Application
Server. For more information, read How Does WSS Work in the Applica-
tion Server (page 242).

» Configure application-specific web services security by annotating the
server-specific deployment descriptor. For more information, read Config-
uring Application-Specific Message Security (page 244).

How Does WSS Work in the Application Server

Web services deployed on the Application Server are secured by binding SOAP
layer message security providers and message protection policies to the contain-
ersin which the applications are deployed or to web service endpoints served by
the applications. SOAP layer message security functionality is configured in the
client-side containers of the Application Server by binding SOAP layer message
security providers and message protection policies to the client containers or to
the portable service references declared by client applications.

When the Application Server is installed, SOAP layer message security provid-
ers are configured in the client and server-side containers of the Application

USING THE APPLICATION SERVER MESSAGE SECURITY | MPLEMENTATION

Server, where they are available for binding for use by the containers, or by indi-
vidual applications or clients deployed in the containers. During installation, the
providers are configured with a simple message protection policy that, if bound
to a container, or to an application or client in a container, would cause the
source of the content in all request and response messages to be authenticated by
XML digital signature.

By default, message layer security is disabled on the Application Server. To con-
figure message layer security at the Application Server level, read Configuring
the Application Server for Message Security (page 243). To configure message
security at the application level, read Configuring Application-Specific Message
Security (page 244).

Configuring the Application Server for
Message Security

The following steps briefly explain how to configure the Application Server for
message security. For more detailed information on configuring the Application
Server for message security, refer to the Application Server’s Administration
Guide. For alink to this document, see Further Information (page 251).

To configure the SOAP layer message security providersin the client and server-
side containers of the Application Server, follow these steps:

1. Start the Application Server as described in Starting and Stopping the
Application Server (page 28).

2. Start the Admin Console, as described in Starting the Admin
Console (page 29).

. In the Admin Console tree component, expand the Configuration node.
. Expand the Security node.

. Expand the Message Security node.

Select the SOAP node.

. Select the Message Security tab.

. Onthe Edit Message Security Configuration page, specify aprovider to be
used on the server side and/or a provider to be used on the client side for
all applicationsfor which a specific provider has not been bound. For more
description of each of the fields on this page, select Help from the Admin
Console.

9. Select Save.

0N AW

243

244

SECURING WEB SERVICES

10.To modify the message protection policies of the enabled providers, select
the Providers tab.

11.Select a provider for which to modify message protection policies. For
more description on each of the fields on the Edit Provider Configuration
page, select Help from the Admin Console.

12.Click Save and restart the Application Server if so indicated.

Configuring Application-Specific Message
Security

Application-specific web services message security functionality is configured
(at application assembly) by adding message-security-binding €lements to
the web service endpoint. The message-security-binding elements are added
to the runtime deployment descriptors of the application (sun-ejb-jar.xml,
sun-web.xml, Or sun-application-client.xml). These message-security-
binding elements are used to associate a specific provider or message protection
policy with aweb services endpoint or service reference, and may be qualified so
that they apply to a specific port or method of the corresponding endpoint or ref-
erenced service.

The following is an example of a sun-ejb-jar.xm1 deployment descriptor file
to which amessage-security-binding element has been added:

<sun-ejb-jar>
<enterprise-beans>
<unique-id>1</unique-id>
<ejb>
<ejb-name>HelloWorld</ejb-name>
<jndi-name>HelTloWorld</jndi-name>
<webservice-endpoint>
<port-component-name>HelloIF</port-component-name>
<endpoint-address-uri>service/HelloWorld</endpoint-
address-uri>
<message-security-binding auth-layer="SOAP">
<message-security>
<message>
<java-method>
<method-name>ejbTaxCalc</method-name>
</java-method>
</message>
<message>
<java-method>
<method-name>sayHello</method-name>

USING THE APPLICATION SERVER MESSAGE SECURITY | MPLEMENTATION

</java-method>
</message>
<request-protection auth-source="content" />
<response-protection auth-source="content"/>
</message-security>
</message-security-binding>
</webservice-endpoint>
</ejb>

</enterprise-beans>
</sun-ejb-jar>

In this example, the message-security-binding element has been added to a
web service endpoint for an enterprise bean. The elements highlighted in bold
above are described briefly below and in more detail in the Application Server's
Application Deployment Guide. A link to this document is provided in Further
Information (page 251).

* message-security-binding: Thiselement specifiesacustom authentica-
tion provider binding for a parent webservice-endpoint Or port-info
element by binding to a specific provider and/or by specifying the message
security requirements enforced by the provider. It contains the attributes
auth-layer and provider-id (optional)

auth-Tayer: This element specifies the message layer at which authen-
tication is performed. The value must be SOAP.

provider-id: Thiselement is optional and specifies the authentication
provider used to satisfy application-specific message security require-
ments. If thisattribute is not specified, adefault provider isused, if there
is one defined for the message layer. If no default provider is defined,
authentication requirements defined in the message-security-bind-
ing element are not enforced.

* message-security: This element specifies message security require-
ments. If the grandparent element is webservice-endpoint, these
reguirements pertain to request and response messages of the endpoint. If
the grandparent element is port-info, these requirements pertain to the
port of the referenced service.

message: This element includes the methods (java-method) and oper-
ations (method-name) to which message security requirements apply. If
this element is not included, message protection appliesto al methods.

request-protection: This element defines the authentication policy
requirements of the application’s request processing. It has attributes of
auth-source and auth-recipient to define what type of protectionis
applied and when it is applied.

245

246

SECURING WEB SERVICES

* response-protection: Thiselement defines the authentication policy
requirements of the application’s response processing. It has attributes
of auth-source and auth-recipient to define what type of protection
is applied and when it is applied.

» auth-source: This attribute specifies the type of required authentica-
tion, either sender (user name and password) or content (digital sig-
nature). Thisisan attribute of the request-protection and response-
protection elements.

» auth-recipient: Thisattribute specifies whether recipient authentica-
tion occurs before or after content authentication. Allowed values are
before-content and after-content. This is an attribute of the
request-protection and response-protection e ements.

For more detailed information on configuring application-specific web services
security, refer to the Application Server's Developer’s Guide. For more detailed
information on the elements used for message security binding, read the Appli-
cation Server’'s Application Deployment Guide. For a link to these documents,
see Further Information (page 251).

Example: Using Application Server WS-
Security

The Application Server ships with sample applications named xms and
xms_ap1_1v1. Both applications features a smple web service that is imple-
mented by both a Java EE EJB endpoint and a Java Servlet endpoint. Both end-
points share the same service endpoint interface. The service endpoint interface
defines a single operation, sayHello, which takes a String argument, and
returns a String composed by pre-pending He17o to the invocation argument.

* The xms application shows how to enable message layer security at the
Application Server level by enabling the Application Server's default mes-
sage security providers. In this case, web services are protected using
default configuration files and default WSS providers.

* Thexms_ap1_1v1 application shows how to enable message layer security
at the application level by modifying the runtime deployment descriptor
(sun-ejb-jar.xml or sun-web.xm1). In this case, you can selectively
specify when/how message layer security can be applied to a specific
method (or for al methods) in aweb service.

The instructions which accompany the sample describe how to enable the WS-
Security functionality of the Application Server such that it is used to secure the

USING THE JAVA WSDP XWSS SECURITY IMPLEMENTATION

xms application. The sample also demonstrates the binding of WS-Security func-
tionality directly to the application. (The /samples/ directory will only exist if
you selected Install Samples Server during installation.)

The sample applications are installed in the following directories:

e <INSTALL>/samples/webservices/security/ejb/apps/xms/
* <INSTALL>/samples/webservices/security/ejb/apps/xms_apl_Tvl

For information on compiling, packaging, and running the sample applications,
refer to the sample file at <INSTALL>/samples/webservices/security/docs/
common. htm1 or to the Securing Applications chapter of the Application Server
Developers Guide (see Further Information, page 251, for a link to this docu-
ment).

Using the Java WSDP XWSS Security
Implementation

The Java Web Services Developer Pack (Java WSDP) includes XML and Web
Services Security (XWSS), a framework for securing JAX-RPC, JAX-WS, and
SAAJ applications and message attachments.

XWS-Security includes the following features:

e Support for securing JAX-RPC and JAX-WS applications at the service,
port, and operation levels.

o XWS-Security APIs for securing both JAX-RPC and JAX-WS applica-
tions and stand-alone applications that make use of SAAJ APIs only for
their SOAP messaging.

* A sample security framework within which a JAX-RPC application devel-
oper will be able to secure applications by signing, verifying, encrypting,
and/or decrypting parts of SOAP messages and attachments.

The message sender can al so make claims about the security properties by
associating security tokens with the message. An example of a security

247

248

SECURING WEB SERVICES

claim is the identity of the sender, identified by a user name and pass-
word.

» Support for SAML Tokens and the WSS SAML Token Profile (partial).

» Support for securing attachments based on the WSS SwA Profile Draft.

» Partial support for sending and receiving WS-I Basic Security Profile
(BSP) 1.0 compliant messages.

» Sample programs that demonstrate using the framework.

» Command-linetoolsthat provide specialized utilitiesfor keystore manage-
ment, including pkcs12import and keyexport.

XWSS supports deployment onto any of the following containers:

» Sun Java System Application Server
* Sun Java System Web Server
» Apache Tomcat servlet container

Samples for using XWS-Security are included with Java WSDP in the directory
<JIWSDP_HOME>/xws-security/samples/ or can be viewed online at http://
java.sun.com/webservices/docs/2.0/xws-security/samples.html.

Configuring Message Security Using XWSS

The Application Server contains all of the JAR files necessary to use XWS-Secu-
rity for securing JAX-WS applications, however, in order to view the sample
applications, you must download and install the standalone Java WSDP bundle.
You can download the Java WSDP from http://java.sun.com/webservices/
downloads/webservicespack.html.

To add message security to an existing JAX-WS application using XWSS, fol-
low these steps on the client side:

1. Create aclient security configuration. The client security configuration file
specifies the order and type of message security operations that will be
used for the client application. For example, a simple security configura-
tion to perform adigital signature operation looks like this:

<?xml version="1.0" encoding="UTF-8"7?><xwss:JAXRPCSecurity

xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

<xwss:Service conformance= "bsp">
<xwss:SecurityConfiguration dumpMessages="true" >

<xwss:Sign id="s" includeTimestamp="true">

http://java.sun.com/webservices/downloads/webservicespack.html
http://java.sun.com/webservices/downloads/webservicespack.html
http://java.sun.com/webservices/docs/2.0/xws-security/samples.html
http://java.sun.com/webservices/docs/2.0/xws-security/samples.html

USING THE JAVA WSDP XWSS SECURITY IMPLEMENTATION 249

<xwss:X509Token encodingType="http://docs.oasis-

open.org/wss/2004/01/

0asis-200401-wss-soap-message-security-
1.0#Base64Binary"

valueType="http://docs.oasis-open.org/wss/2004/
01/0asi1s-200401-wss-

x509-token-profile-1.0#X509SubjectKeyIdentifier"

certificateAlias="xws-security-client"
keyReferenceType="Identifier"/>

</xwss:Sign>

</xwss:SecurityConfiguration>
</xwss:Service>

<xwss:SecurityEnvironmentHandler>
simple.client.SecurityEnvironmentHandler

</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

For more information on writing and understanding security configura-
tions and setting up SecurityEnvironmentHandlers, please see the Java
Web Services Developer Pack Tutorial at http://java.sun.com/web-
services/docs/1.6/tutorial/doc/index.html

2. Inyour client code, create an XWSSecurityConfiguration object initial-
ized with the security configuration generated. Here is an example of the
code that you would use in your client file. For an example of a complete
file that uses this code, ook at the example client in the \jaxws2.0\sim-
ple-doclit\src\simple\client\ directory

FileInputStream f = new FileInputStream("./etc/
client_security_config.xml");
XWSSecurityConfiguration config =

SecurityConfigurationFactory.newXWSSecurityConfiguration(f);

3. Set security configuration information on the RequestContext by using
the XwSSecurityConfiguration.MESSAGE_SECURITY_CONFIGURATION
property. For an example of acomplete file that uses this code, ook at the

http://java.sun.com/webservices/docs/1.6/tutorial/doc/index.html
http://java.sun.com/webservices/docs/1.6/tutorial/doc/index.html

250 SECURING WEB SERVICES

example client in the \jaxws2.0\simple-docTlit\src\simple\client\
directory.

// put the security config info
((BindingProvider)stub) .getRequestContext().

put (XWSSecurityConfiguration.MESSAGE_SECURITY_CONFIGURATION,
config);

4. Invoke the method on the stub as you would if you were writing the client
without regard to adding XWS-Security. The example for the application
from the \jaxws2.0\simple-docTlit\src\simple\client\ directory is
as shown below:

Holder<String> hold = new Holder("Hello !");
stub.ping(ticket, hold);

To add message security to an existing JAX-RPC, JAX-WS, or SAAJ application
using XWSS, follow these steps on the server side:
1. Create a server security configuration file and give it the name:

serviceName + "_" + "security_config.xml

An example of a server security configuration file can be found in the
\jaxws2.0\simple-doclit\etc\server_security_config.xml direc-
tory.

2. No other changes need to be made to the server-side JAX-WS code.

Information about running the example application is included in
<JWSDP_HOME>/xws-security/samples/jaxws2.0/simple-doclit/
README. txt and in the Java WSDP Tutorial.

For more information on XWSS,

» Read the Java Web Services Developer Pack Tutorial. The tutorial can be
accessed from http://java.sun.com/webservices/docs.html.

* Read the XWSS samples documentation, which is located in the
<JWSDP_HOME>/xws-security/samples/ directory of your Java WSDP
installation or at http://java.sun.com/webservices/docs/2.0/xws-
security/samples.html online.

» Visit the XWSS home page at http://java.sun.com/webservices/
Xwss/.

http://java.sun.com/webservices/docs.html
http://java.sun.com/webservices/xwss/
http://java.sun.com/webservices/xwss/
http://java.sun.com/webservices/docs/2.0/xws-security/samples.html
http://java.sun.com/webservices/docs/2.0/xws-security/samples.html

FURTHER | NFORMATION 251

» Takethe Sun training classtitled Developing Secure Java Web Services. To
sign up, go to https://www.sun.com/training/catalog/java/
web_services.html

Further Information

» Java 2 Standard Edition, v.1.5.0 Security:
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

» Java EE 5 Secification at
http://java.sun.com/j2ee/download.html#platformspec.

« Java Web Services Developer Pack Tutorial at
http://java.sun.com/webservices/docs/1.6/tutorial/doc/
index.html

« The Developer’s Guide for the Application Server containsinformation on
developing applications specifically for deployment onto the Application
Server. As of thiswriting, this document is available for viewing at
http://docs.sun.com/app/docs/doc/819-3659.

« The Administration Guide for the Application Server includesinformation
on setting security settings for the Application Server. As of this writing,
this document was available for viewing at
http://docs.sun.com/app/docs/doc/819-3658.

» The Application Deployment Guidefor the Application Server isavailable,
as of thiswriting, at:

http://docs.sun.com/app/docs/doc/819-3660
» Wb Servicesfor Java EE (JSR-109), at

http://jcp.org/aboutlava/communityprocess/maintenance/
jsrl109/index.html

» OASIS Standard 200401: Web Services Security: SOAP Message Security
1.0

http://java.sun.com/j2ee/download.html#platformspec
http://docs.sun.com/app/docs/doc/819-3659
http://docs.sun.com/app/docs/doc/819-3658
https://www.sun.com/training/catalog/java/web_services.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/webservices/docs/1.6/tutorial/doc/index.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr109/index.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr109/index.html
http://docs.sun.com/app/docs/doc/819-3660

252

SECURING WEB SERVICES

http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
soap-message-security-1.0.pdf

XML Encryption Syntax and Processing
http://www.w3.0rg/TR/xmlenc-core/

Digital Signatures Working Draft
http://www.w3.0rg/Signature/

JSR 105-XML Digital Sgnature APIs
http://www.jcp.org/en/jsr/detail?id=105

JSR 106-XML Digital Encryption APIs
http://www.jcp.org/en/jsr/detail?id=106

Public-Key Cryptography Sandards (PKCS)
http://www.rsasecurity.com/rsalabs/pkcs/index.html
Java Authentication and Authorization Service (JAAS)
http://java.sun.com/products/jaas/

WS-| Basic Security Profile Version 1.0
http://www.ws-1i.org/Profiles/BasicSecurityProfile-1.0-2005-
01-20.html

Web Services Security: SOAP Messages with Attachments (SwA) Profile
1.0

http://www.oasis-open.org/committees/downTload.php/10090/
wss-swa-profile-1.0-draft-14.pdf

Web Services Security: SOAP Messages with Attachments (SwA) Profile
1.0, Interop 1 Scenarios
http://1ists.oasis-open.org/archives/wss/200410/
pdf00003.pdf

Web Services Security: Security Assertion Markup Language (SAML)
Token Profile 1.0
http://docs.oasis-open.org/wss/oasis-wss-saml-token-pro-
file-1.0.pdf

Web Services Security: Security Assertion Markup Language (SAML)
Interop Scenarios
http://www.oasis-open.org/apps/org/workgroup/wss/down-
Toad.php/7011/wss-saml-interopl-draft-11.doc

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/Signature/
http://www.jcp.org/en/jsr/detail?id=105
http://www.jcp.org/en/jsr/detail?id=106
http://www.rsasecurity.com/rsalabs/pkcs/index.html
http://java.sun.com/products/jaas/
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2005-01-20.html
http://www.oasis-open.org/committees/download.php/10090/wss-swa-profile-1.0-draft-14.pdf
http://lists.oasis-open.org/archives/wss/200410/pdf00003.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

http://www.oasis-open.org/apps/org/workgroup/wss/download.php/7011/wss-saml-interop1-draft-11.doc

A
addChildElement method 128
addClassifications method 188
addExternallLink method 195
addServiceBindings method 189
addServices method 190
addTextNode method 128
AttachmentPart class 121, 137

creating objects 137

headers 137
attachments 120

adding 137

SAAJ example 166
attributes

SOAP envelope 129

SOAP header 141

XML elements 139
authentication

for XML registries 186

B
binding templates

adding to an organization with

JAXR 189
finding with JAXR 185
businesses
contacts 187
creating with JAXR 186

Index

finding
by name with JAXR 182,
202
usng WSDL documents
with JAXR 205
finding by classification with
JAXR 183, 202
keys 187, 193
publishing with JAXR 190
removing with JAXR 193, 202
saving with JAXR 202-204
BusinessLifeCycleManager inter-
face 173, 181, 186
BusinessQueryManager interface
173,181

C
call method 122-123, 132
capability levels, JAXR 172
classification schemes
finding with JAXR 188
SO 3166 181
NAICS 181, 202
postal address 195, 203
publishing with JAXR 195,
203
removing with JAXR 204

UNSPSC 181
253

INDEX

user-defined 194
classifications
creating with JAXR 188
clients, JAXR 173
examples 199
implementing 174
close method 132
com.sun.xml.registry.ht-
tp.proxyHost connection property
179
com.sun.xml.registry.ht-
tp.proxyPort CONNection property
179
com.sun.xml.registry.ht-
tps.proxyHost connection proper-
ty 180
com.sun.xml.registry.ht-
tps.proxyPassword connection
property 180
com.sun.xml.registry.ht-
tps.proxyPort connection proper-
ty 180
com.sun.xml.registry.ht-
tps.proxyUserName connection
property 180
com.sun.xml.registry.useCache
connection property 180
com.sun.xml.registry.userTax-
onomyFilenames CONNection prop-
erty 180, 197
concepts
in user-defined classification
schemes 194
publishing with JAXR 190,
204
removing with JAXR 205
using to create classifications
with JAXR 188

connection factories, JAXR
creating 177
Connection interface (JAXR) 173,
177
connection properties, JAXR 178
examples 177
ConnectionFactory class (JAXR)
177
connections, JAXR
creating 177
setting properties 177
connections, SAAJ 122
closing 132
point-to-point 131
country codes

1SO 3166 181
createClassification method
188, 195
createClassificationScheme
method 195

createExternalLink method 195
createOrganization method 187
createPostalAddress method 198
createService method 189
createServiceBinding method

189

D
deleteOrganizations method 193
detachNode method 126
Detail interface 148
DetailEntry interface 148
DOM
SAAJand 122, 136, 162

E
ebXML
registries 172-173
encrypting
SOAP messages 247
end-to-end security 234
examples
JAXR
Java EE application 206
simple 199
required software xi
SAAJ
attachments 166
DOM 162
headers 160
request-response 153
SOAP faults 168
setting build properties xi
web services xvi

F
findClassificationSchemeByName
method 188
findConcepts method 184
findOrganization method 182
framework

XWS-Security 247
fully qualified names 127

G

getAttachments method 139
getBody method 126
getEnvelope method 126
getHeader method 126
getRegistryObject method 183
getSOAPBody method 126

INDEX 255

getSOAPHeader method 126
getSOAPPart method 126
getValue method 132

H
HTTP xv—xvi
setting proxies 179

|

information model, JAXR 172-
173

SO 3166 country codes 181

J
Java EE applications

JAXR example 206
javax.activation.DataHandler
class 137-138
javax.xml.namespace.QName Class
127
javax.xml.registry package 173
javax.xml.registry.infomodel
package 173
javax.xml.registry.1ifeCycleM-
anagerURL connection property
178
javax.xml.registry.postalAd-
dressScheme connection property
179, 197
javax.xml.registry.queryMan-
agerURL connection property 178
javax.xml.registry.securi-
ty.authenticationMethod CONNEC-
tion property 179

javax.xml.registry.seman-

256

INDEX

ticEquivalences connection prop-
erty 179, 197
javax.xml.registry.ud-
di.maxRows conNnection property
179
javax.xml.soap package 117
javax.xml.transform.Source in-
terface 135
JAXM specification 118
JAXR 171
adding
classifications 188
service bindings 189
services 189
architecture 173
capability levels 172
clients 173-174
creating connections 177
defining taxonomies 194
definition 172
establishing security creden-
tials 186
finding classification schemes
188
information model 172
Java EE application example
206
organizations
creating 186
publishing 190
removing 193
overview 171
provider 173
publishing
specification concepts 190
WSDL documents 190
querying aregistry 181
specification 172

specifying postal addresses
197
submitting data to a registry
186
JAX-RPC
securing applications 247
service endpoint interfaces
XVii
JAX-RPC applications
securing 247
JAX-WS
defined xv
specification xxiv

K
keyexport command 248

L
local names 129-130

M

MessageFactory class 124

messages, SAAJ
accessing elements 126
adding body content 127
attachments 120
creating 124
getting the content 132
overview 118

MIME
headers 122

N
NAICS 181

using to find organizations
183, 202
Name interface 127
names
fully qualified 127, 130
local 129-130
namespaces 127
prefix 129
nodes
SAAJand 118

O
Organization interface 187
organizations
creating with JAXR 186
finding
by classification 183, 202
by name 182, 202
using WSDL documents
205
keys 187, 193
primary contacts 187
publishing with JAXR 190,
202-204
removing with JAXR 193, 202

P
pkcs12import command 248
point-to-point connection, SAAJ
131
postal addresses
retrieving with JAXR 199, 203
specifying with JAXR 197,
203
prerequisitesix
printing the tutorial xiii

INDEX

providers

JAXR 173
proxies xv

HTTP, setting 179

R
registries
definition 171
ebXML 172-173
guerying with JAXR 181
submitting data with JAXR
186
UDDI 172
registry objects 173
retrieving with JAXR 205
RegistryObject interface 173
RegistryService interface 173,
180
reguest-response messaging 122
resource adapter, JAXR 175
creating resources 208
resource adapters
JAXR 208
resources
JAXR 208

S

SAAJ117
examples 151
messages 118
overview 118
specification 117
tutorial 123

sample applications
XWS-Security

simple 248

257

258

INDEX

sample programs
XWS-Security 248
saveConcepts method 190
saveOrganizations method 190
SAX 77
security
credentials for XML registries
186
end-to-end 234
security tokens 247
service bindings
adding to an organization with
JAXR 189
finding with JAXR 185
services
adding to an organization with
JAXR 189
finding with JAXR 185
setContent method 135, 137
setPostalAddresses method 198
signing
SOAP messages 247
SOAP xv—xvi, xxiv, 117
body 129
adding content 127
Content-Type header 137
envelope 129
headers
adding content 133
Content-Id 137
Content-Location 137
Content-Type 137
example 160
SOAP faults 145
detail 147
fault actor 147
fault code 146
fault string 147

retrieving information 149

SAAJ example 168
SOAP messages

encrypting 247

signing 247

verifying 247
SOAPBody interface 119, 129
SOAPBodyElement interface 127,
129, 158
SOAPConnection class 122

getting objects 131
SOAPETement interface 128, 158
SOAPEnvelope interface 119, 127,
129
SOAPFactory class 127
SOAPFault interface 146

creating and populating ob-

jects 147

detail element 147

fault actor element 147

fault code element 146

fault string element 147
SOAPHeader interface 119, 133
SOAPHeaderElement interface 127,
133
SOAPMessage Class 119, 125-126
SOAPPart class 119, 122, 128

adding content 134
specification concepts

publishing with JAXR 190,

204
removing with JAXR 205

T
taxonomies
finding with JAXR 188
SO 3166 181

NAICS 181, 202

UNSPSC 181

user-defined 194

using to find organizations 183
tokens

security 247
typographical conventions xiii

U
uUDDI

accessing registrieswith SAAJ

153

registries 172
Universal Standard Products and
Services Classification (UNSPSC)
181
UNSPSC 181

Vv
verifying
SOAP messages 247

w
W3C xvi, Xxiv
web services
examples xvi
WSDL xvi, xxiv
publishing concepts for with
JAXR 204
publishing with JAXR 190
removing concepts for with
JAXR 205
using to find organizations
183, 205
wsgen tool Xvii

INDEX

X
XML xv
documents, and SAAJ 118
elements in SOAP messages
118
registries
establishing security cre-
dentials 186
XWS-Security
framework 247
sample programs 248

259

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	Prerequisites
	How to Use This Tutorial
	About the Examples
	Required Software
	Java Web Services Tutorial Bundle
	Application Server

	Building the Examples

	How to Print This Tutorial
	Typographical Conventions
	Feedback

	Building Web Services with JAX-WS
	Setting the Port
	Creating a Simple Web Service and Client with JAX-WS
	Requirements of a JAX-WS Endpoint
	Coding the Service Endpoint Implementation Class
	Building the Service
	The compile-service Task

	Packaging and Deploying the Service
	Packaging and Deploying the Service with asant
	Testing the Service Without a Client

	A Simple JAX-WS Client
	Coding the Client
	Building and Running the Client

	Types Supported by JAX-WS
	Web Services Interoperability and JAX- WS
	Further Information

	Binding between XML Schema and Java Classes
	JAXB Architecture
	Architectural Overview
	The JAXB Binding Process
	More About Unmarshalling
	More About Marshalling
	More About Validation

	Representing XML Content
	Java Representation of XML Schema

	Binding XML Schemas
	Simple Type Definitions
	Default Data Type Bindings
	Schema-to-Java
	JAXBElement
	Java-to-Schema

	Customizing JAXB Bindings
	Schema-to-Java
	Java-to-Schema

	Using JAXB
	General Usage Instructions
	Description
	Using the Examples
	Configuring and Running the Samples
	JAXB Compiler Options
	JAXB Schema Generator Options
	About the Schema-to-Java Bindings
	Schema-Derived JAXB Classes
	Comment.java
	Items.java
	ObjectFactory.java
	PurchaseOrder.java
	PurchaseOrderType.java
	USAddress.java

	Basic Examples
	Unmarshal Read Example
	Sample Output

	Modify Marshal Example
	Sample Output

	Unmarshal Validate Example
	Sample Output

	Customizing JAXB Bindings
	Why Customize?
	Customization Overview
	Inline and External Customizations
	Scope, Inheritance, and Precedence
	Customization Syntax
	Customization Namespace Prefix

	Customize Inline Example
	Customized Schema
	Global Binding Declarations
	Schema Binding Declarations
	Class Binding Declarations
	Property Binding Declarations
	MyDatatypeConverter Class

	Datatype Converter Example
	External Customize Example
	JAXB Version, Namespace, and Schema Attributes
	Global and Schema Binding Declarations
	Class Declarations

	Fix Collides Example
	The example.xsd Schema
	Looking at the Conflicts
	Output From Running the ant Task Without Using a Binding Declarations File
	The binding.xjb Declarations File
	Resolving the Conflicts in example.xsd

	Bind Choice Example
	Customizing a choice Model Group

	Java-toSchema Examples
	j2s-create-marshal Example
	j2s-xmlAccessorOrder Example
	j2s-xmlAdapter-field Example
	j2s-xmlAttribute-field Example
	j2s-xmlRootElement Example
	j2s-xmlSchemaType-class Example
	j2s-xmlType Example

	Streaming API for XML
	Why StAX?
	Streaming Versus DOM
	Pull Parsing Versus Push Parsing
	StAX Use Cases
	Comparing StAX to Other JAXP APIs

	StAX API
	Cursor API
	Iterator API
	Iterator Event Types
	Sample Event Mapping

	Choosing Between Cursor and Iterator APIs
	Development Goals
	Comparing Cursor and Iterator APIs

	Using StAX
	StAX Factory Classes
	XMLInputFactory
	XMLOutputFactory
	XMLEventFactory

	Resources, Namespaces, and Errors
	Resource Resolution
	Attributes and Namespaces
	Error Reporting and Exception Handling

	Reading XML Streams
	Using XMLStreamReader
	Using XMLEventReader

	Writing XML Streams
	Using XMLStreamWriter
	Using XMLEventWriter

	Sun’s Streaming Parser Implementation
	Reporting CDATA Events
	SJSXP Factories Implementation

	Sample Code
	Sample Code Organization
	Configuring Your Environment for Running the Samples
	Running the Samples
	Sample XML Document
	cursor Sample – CursorParse.java
	Stepping Through Events
	Returning String Representations
	Running the Sample

	cursor2event Sample – CursorApproachEventObject.java
	Instantiating an XMLEventAllocator
	Creating an Event Iterator
	Creating the Allocator Method
	Running the Sample

	event Sample – EventParse.java
	Creating an Input Factory
	Creating an Event Reader
	Creating an Event Iterator
	Getting the Event Stream
	Running the Sample

	filter Sample – MyStreamFilter.java
	Implementing the StreamFilter Class
	Creating an Input Factory
	Creating the Filter
	Capturing the Event Stream
	Filtering the Stream
	Running the Sample

	readnwrite Sample – EventProducerConsumer.java
	Creating an Event Producer/Consumer
	Creating an Iterator
	Creating a Writer
	Running the Sample

	writer Sample – CursorWriter.java
	Creating the Output Factory
	Creating a Stream Writer
	Writing the Stream
	Running the Sample

	Further Information

	SOAP with Attachments API for Java
	Overview of SAAJ
	Messages
	The Structure of an XML Document
	What Is in a Message?
	SAAJ and DOM

	Connections
	SOAPConnection Objects

	Tutorial
	Creating and Sending a Simple Message
	Creating a Message
	Parts of a Message
	Accessing Elements of a Message
	Adding Content to the Body
	Getting a SOAPConnection Object
	Sending a Message
	Getting the Content of a Message

	Adding Content to the Header
	Adding Content to the SOAPPart Object
	Adding a Document to the SOAP Body
	Manipulating Message Content Using SAAJ or DOM APIs
	Adding Attachments
	Creating an AttachmentPart Object and Adding Content
	Accessing an AttachmentPart Object

	Adding Attributes
	Header Attributes

	Using SOAP Faults
	Overview of SOAP Faults
	Creating and Populating a SOAPFault Object
	Retrieving Fault Information

	Code Examples
	Request.java
	MyUddiPing.java
	Setting Up
	Examining MyUddiPing
	Running MyUddiPing

	HeaderExample.java
	Running HeaderExample

	DOMExample.java and DOMSrcExample.java
	Examining DOMExample
	Examining DOMSrcExample
	Running DOMExample and DOMSrcExample

	Attachments.java
	Running Attachments

	SOAPFaultTest.java
	Running SOAPFaultTest

	Further Information

	Java API for XML Registries
	Overview of JAXR
	What Is a Registry?
	What Is JAXR?
	JAXR Architecture

	Implementing a JAXR Client
	Establishing a Connection
	Preliminaries: Getting Access to a Registry
	Obtaining a Connection Factory
	Creating a Connection
	Setting Connection Properties
	Obtaining and Using a RegistryService Object

	Querying a Registry
	Finding Organizations by Name
	Finding Organizations by Classification
	Finding Services and Service Bindings

	Managing Registry Data
	Getting Authorization from the Registry
	Creating an Organization
	Adding Classifications
	Adding Services and Service Bindings to an Organization
	Publishing an Organization
	Publishing a Specification Concept
	Removing Data from the Registry

	Using Taxonomies in JAXR Clients
	Defining a Taxonomy
	Specifying Postal Addresses

	Running the Client Examples
	Before You Compile the Examples
	Compiling the Examples
	Running the Examples
	Running the JAXRPublish Example
	Running the JAXRQuery Example
	Running the JAXRQueryByNAICSClassification Example
	Running the JAXRDelete Example
	Publishing a Classification Scheme
	Running the Postal Address Examples
	Deleting a Classification Scheme
	Publishing a Concept for a WSDL Document
	Publishing an Organization with a WSDL Document in Its Service Binding
	Running the JAXRQueryByWSDLClassification Example
	Deleting a Concept
	Getting a List of Your Registry Objects
	Other Targets

	Using JAXR Clients in Java EE Applications
	Coding the Application Client: MyAppClient.java
	Coding the PubQuery Session Bean
	Editing the Properties File
	Compiling the Source Files
	Starting the Application Server
	Creating JAXR Resources
	Packaging the Application
	Deploying the Application
	Running the Application Client

	Further Information

	Java XML Digital Signature API
	How XWS-Security and XML Digital Signature API Are Related
	XML Security Stack
	Package Hierarchy
	Service Providers
	Introduction to XML Signatures
	Example of an XML Signature
	XML Digital Signature API Examples
	validate Example
	Validating an XML Signature
	Instantiating the Document that Contains the Signature
	Specifying the Signature Element to be Validated
	Creating a Validation Context
	Unmarshaling the XML Signature
	Validating the XML Signature
	What If the XML Signature Fails to Validate?
	Using KeySelectors

	genenveloped Example
	Generating an XML Signature
	Instantiating the Document to be Signed
	Creating a Public Key Pair
	Creating a Signing Context
	Assembling the XML Signature
	Generating the XML Signature
	Printing or Displaying the Resulting Document

	Securing Web Services
	Securing Web Service Endpoints
	Overview of Message Security
	Advantages of Message Security
	Message Security Mechanisms
	Web Services Security Initiatives and Organizations
	W3C Specifications
	OASIS Specifications
	JCP Specifications
	WS-I Specifications
	Security Challenges, Threats, and Countermeasures

	Using Message Security with Java EE
	Using the Application Server Message Security Implementation
	How Does WSS Work in the Application Server
	Configuring the Application Server for Message Security
	Configuring Application-Specific Message Security
	Example: Using Application Server WS- Security

	Using the Java WSDP XWSS Security Implementation
	Configuring Message Security Using XWSS

	Further Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

