
The WSIT Tutorial

For Web Services Interoperability Technologies
Version 1.0 FCS

September 18, 2007

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Naming
and Directory Interface, EJB, JSP, J2EE, J2SE and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Enterprise JavaBeans, Java Naming and
Directory Interface, EJB, JSP, J2EE, J2SE et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
cles y compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres
pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines,
y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas partic-
iper, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
législation américaine en matière de contrôle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cially Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

iii

Contents

About This Tutorial. .ix

Who Should Use This Tutorial ix
How to Use This Tutorial x
About the Examples x
Typographical Conventions xi
Feedback xi

Chapter 1: Introduction . 1

What is WSIT? 2
Bootstrapping and Configuration 3
Message Optimization Technology 4
Reliable Messaging Technology 5
Security Technology 6

How WSIT Relates to Windows Communication Foundation (WCF) 6
WSIT Specifications 7

Bootstrapping and Configuration Specifications 8
Message Optimization Specifications 10
Reliable Messaging Specifications 12
Security Specifications 13

How the WSIT Technologies Work 14
How Message Optimization Works 15
How Reliable Messaging Works 16
How Security Works 18

Chapter 2: WSIT Example Using
a Web Container
and NetBeans23

Registering GlassFish with the IDE 23
Creating a Web Service 24

iv CONTENTS
Configuring WSIT Features in the Web Service 26
Deploying and Testing a Web Service 28
Creating a Client to Consume a WSIT-Enabled Web Service 29

Chapter 3: Bootstrapping and Configuration33

What is a Server-Side Endpoint? 33
Creating a Client from WSDL 34
Client From WSDL Examples 35

Chapter 4: Message Optimization .37

Creating a Web Service 38
Configuring Message Optimization in a Web Service 38
Deploying and Testing a Web Service 39
Creating a Client to Consume a WSIT-enabled Web Service 39
Message Optimization and Secure Conversation 42

Chapter 5: Using Reliable Messaging .43

Reliable Messaging Options 43
Creating Web Service Providers and Clients that use Reliable Messag-
ing 45
Using Secure Conversation With Reliable Messaging 45

Chapter 6: Using WSIT Security .47

Configuring Security Using NetBeans IDE 48
Securing the Service 48
Securing the Client 51

Summary of Configuration Requirements 52
Summary of Service-Side Configuration Requirements 53
Summary of Client-Side Configuration Requirements 55

Security Mechanisms 62
Username Authentication with Symmetric Keys 62
Mutual Certificates Security 63
Transport Security (SSL) 63
Message Authentication over SSL 65
SAML Authorization over SSL 65
Endorsing Certificate 66
SAML Sender Vouches with Certificates 66
SAML Holder of Key 67

CONTENTS v
STS Issued Token 67
STS Issued Token with Service Certificate 68
STS Issued Endorsing Token 68

Configuring SSL and Authorized Users 69
Configuring SSL For Your Applications 70
Adding Users to GlassFish 73

Configuring Keystores and Truststores 75
Updating GlassFish Certificates 75
Specifying Aliases with the Updated Stores 77
Configuring the Keystore and Truststore 78
Configuring Validators 85

Securing an Operation 86
Specifying Security at the Operation, Input Message, or Output Message
Level 87
Supporting Token Options 90

Configuring A Secure Token Service (STS) 91
Creating a Third-Party STS 92
Specifying an STS on the Service Side 95
Specifying an STS on the Client Side 95

Example Applications 98
Example: Username Authentication with Symmetric Keys (UA) 98
Example: Mutual Certificates Security (MCS) 101
Example: Transport Security (SSL) 104
Example: SAML Authorization over SSL (SA) 107
Example: SAML Sender Vouches with Certificates (SV) 112
Example: STS Issued Token (STS) 116
Example: Other STS Examples 122

Further Information 122

Chapter 7: Further Detail on WSIT Security Features 123

Issues Addressed Using Security Mechanisms 123
Understanding WSIT Configuration Files 125

Service-Side WSIT Configuration Files 125
Client-Side WSIT Configuration Files 130

Security Mechanism Configuration Options 133

Chapter 8: WSIT Example Using
a Web Container Without NetBeans139

Environment Configuration Settings 140

vi CONTENTS
Setting the Web Container Listener Port 140
Setting the Web Container Home Directory 141

WSIT Configuration and WS-Policy Assertions 141
Creating a Web Service 142

Creating a Web Service From Java 142
 Creating a Web Service From WSDL 145

Building and Deploying the Web Service 147
Building and Deploying a Web Service Created From Java 148
Building and Deploying a Web Service Created From WSDL 149
Deploying the Web Service to a Web Container 149
Verifying Deployment 150

 Creating a Web Service Client 151
Creating a Client from Java 152
Creating a Client from WSDL 154

Building and Deploying a Client 155
Running a Web Service Client 155
Undeploying a Web Service 155

Chapter 9: Accessing WSIT Services Using WCF Clients.157

Creating a WCF Client 157
Prerequisites to Creating the WCF Client 158
The Client Class 158
Building and Running the Client 159

Chapter 10: Data Contracts .163

Web Service - Start from Java 163
DataTypes 164
Fields/Properties 180
Class 185
Open Content 188
Enum Type 190
Package 191

Web Service - Start from WSDL 192
Java Client 192
Customizations for WCF Service WSDL 193

generateElementProperty 193
Developing a Microsoft .NET Client 197
BP 1.1 Conformance 198

BP 1.1 R2211 198

CONTENTS vii
Chapter 11: Using Atomic Transactions 199

About the basicWSTX Example 199
Building, Deploying and Running the basicWSTX Example 203

Index . 209

viii CONTENTS

About This Tutorial

THIS tutorial explains how to develop web applications using the Web Service
Interoperability Technologies (WSIT). The tutorial describes how, when, and
why to use the WSIT technologies and also describes the features and options
that each technology supports.

WSIT, developed by Sun Microsystems, implements several new web services
technologies including WS-Security, WS-Trust, WS-SecureConversation, WS-
ReliableMessaging, WS-AtomicTransactions, Data Binding, and Optimization.
WSIT was also tested in a joint effort by Sun Microsystems, Inc. and Microsoft
with the expressed goal of ensuring interoperability between web services appli-
cations developed using either WSIT and the Windows Communication Founda-
tion (WCF) product.

Who Should Use This Tutorial
This tutorial is intended for programmers who are interested in developing and
deploying Java based clients and service providers that can interoperate with
Microsoft .NET 3.0 clients and service providers.
ix

x ABOUT THIS TUTORIAL
How to Use This Tutorial
This tutorial addresses the following technology areas:

• Bootstrapping and Configuration

• Message Optimization

• Reliable Messaging (WS-RM)

• Web Services Security 1.1 (WS-Security)

• Web Services Trust (WS-Trust)

• Web Services Secure Conversation (WS-Secure Conversation)

• Data Contracts

• Atomic Transactions (WS-AT)

About the Examples
This section tells you everything you need to know to install, build, and run the
examples.

Required Software
To use this tutorial you must download and install the following software:

• The latest Java SE 5.0 (Update 12) or JDK 6.0 (Update 2) with which the
WSIT version 1.0 FCS software has been extensively tested

• GlassFish version 2 Build 58g, your web container

You can run the examples in this tutorial that use a web container without
the NetBeans IDE on either GlassFish or Tomcat. However, for this edi-
tion of the tutorial, you can only run the examples that use a web con-
tainer and the NetBeans IDE with GlassFish.

• WSIT distribution (version 1.0 FCS)

• Netbeans IDE 5.5.1 FCS

• WSIT plug-in modules, Version 2.41, for Netbeans IDE 5.5.1

See the WSIT Installation Instructions, located at https://wsit-

docs.dev.java.net/releases/1-0-FCS/install.html, for instructions about
downloading and installing all the required software.

https://wsit-docs.dev.java.net/releases/1-0-FCS/install.html
https://wsit-docs.dev.java.net/releases/1-0-FCS/install.html

ABOUT THIS TUTORIAL xi
To run the examples described in this tutorial, you must also download the WSIT
samples kits. Download the sample kits from the following locations:

• https://wsit.dev.java.net/source/browse/*check-

out*/wsit/wsit/docs/howto/wsit-enabled-fromjava.zip

• https://wsit.dev.java.net/source/browse/*check-

out*/wsit/wsit/docs/howto/wsit-enabled-fromwsdl.zip

• https://wsit.dev.java.net/source/browse/*check-

out*/wsit/wsit/docs/howto/csclient-enabled-fromjava.zip

• https://wsit-docs.dev.java.net/releases/1-0-FCS/wsittuto-

rial.zip

Typographical Conventions
Table 1 lists the typographical conventions used in this tutorial.

Menu selections indicated with the right-arrow character →, for example,
First→Second, should be interpreted as: select the First menu, then choose Sec-
ond from the First submenu.

Feedback
Please send comments, broken link reports, errors, suggestions, and questions
about this tutorial to the tutorial team at users@wsit.dev.java.net.

Table 1 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

monospace
URLs, code examples, file names, path names, tool names,
application names, programming language keywords, tag,
interface, class, method, field names, and properties

italic monospace Variables in code, file paths, and URLs

<italic monospace> User-selected file path components

mailto:users@wsit.dev.java.net
https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/docs/howto/wsit-enabled-fromjava.zip
https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/docs/howto/wsit-enabled-fromwsdl.zip
https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/docs/howto/csclient-enabled-fromjava.zip
https://wsit-docs.dev.java.net/releases/1-0-FCS/wsittutorial.zip

xii ABOUT THIS TUTORIAL

1

Introduction

This tutorial describes how to use the Web Services Interoperability Technolo-
gies (WSIT)—a product of Sun Microsystems web services interoperability
effort to develop Java clients and service providers that interoperate with
Microsoft .NET 3.0 clients and service providers.

The tutorial consists of the following chapters:

• This chapter, the introduction, introduces WSIT, highlights the features of
each WSIT technology, describes the standards that WSIT implements for
each technology, and provides high-level descriptions of how each tech-
nology works.

• Chapter 2 provides instructions for creating, deploying, and testing Web
service providers and clients using NetBeans IDE.

• Chapter 3 describes how to create a WSIT client from a Web Service
Description Language (WSDL) file.

• Chapter 4 describes how to configure web service providers and clients to
use message optimization.

• Chapter 5 describes how to configure web service providers and clients to
use reliable messaging.

• Chapter 6 describes how to use the NetBeans IDE to configure web service
providers and clients to use web services security.

• Chapter 8 provides code examples and instructions for creating, deploying,
and testing web service providers and clients using either of the supported
web containers.
1

2 INTRODUCTION
• Chapter 9 describes how to build and run a Microsoft Windows Commu-
nication Foundation (WCF) client that accesses the addnumbers service
described in Chapter 8.

• Chapter 10 describes the best practices for production and consumption of
data contracts for interoperability between WCF web services and Java
web service clients or Java web services and WCF web service clients.

• Chapter 11 describes Atomic Transactions.

What is WSIT?
Sun is working closely with Microsoft to ensure interoperability of web services
enterprise technologies such as message optimization, reliable messaging, and
security. The initial release of WSIT is a product of this joint effort. WSIT is an
implementation of a number of open web services specifications to support
enterprise features. In addition to message optimization, reliable messaging, and
security, WSIT includes a bootstrapping and configuration technology. Figure 1–
1 shows the underlying services that were implemented for each technology.

Figure 1–1 WSIT Web Services Features

WHAT IS WSIT? 3
Starting with the core XML support currently built into the Java platform, WSIT
uses or extends existing features and adds new support for interoperable web ser-
vices. See the following sections for an overview of each feature:

• Bootstrapping and Configuration (page 3)

• Message Optimization Technology (page 4)

• Reliable Messaging Technology (page 5)

• Security Technology (page 6)

Bootstrapping and Configuration
Bootstrapping and configuration consists of using a URL to access a web ser-
vice, retrieving its WSDL file, and using the WSDL file to create a web service
client that can access and consume a web service. The process consists of the
following steps, which are shown in Figure 1–2:

Figure 1–2 Bootstrapping and Configuration

1. Client acquires the URL for a web service that it wants to access and con-
sume. How you acquire the URL is outside the scope of this tutorial. For
example, you might look up the URL in a Web Services registry.

2. The client uses the URL and the wsimport tool to send a MetadataExchan-
geRequest to access the web service and retrieve the WSDL file. The
WSDL file contains a description of the web service endpoint, including
WS-Policy assertions that describe the security and/or reliability capabili-

4 INTRODUCTION
ties and requirements of the service. The description describes the require-
ments that must be satisfied to access and consume the web service.

3. The client uses the WSDL file to create the web service client.

4. The web service client accesses and consumes the web service.

Chapter 3 explains how to bootstrap and configure a web service client and a
web service endpoint that use the WSIT technologies.

Message Optimization Technology
A primary function of web services applications is to share data among applica-
tions over the Internet. The data shared can vary in format and include large
binary payloads, such as documents, images, music files, and so on. When large
binary objects are encoded into XML format for inclusion in SOAP messages,
even larger files are produced. When a web service processes and transmits these
large files over the network, the performance of the web service application and
the network are negatively affected. In the worst case scenario the effects are as
follows:

• The performance of the web service application degrades to a point that it
is no longer useful.

• The network gets bogged down with more traffic than the allotted band-
width can handle.

One way to deal with this problem is to encode the binary objects so as to opti-
mize both the SOAP application processing time and the bandwidth required to
transmit the SOAP message over the network. In short, XML needs to be opti-
mized for web services. This is the exactly what the Message Optimization tech-
nology does. It ensures that web services messages are transmitted over the
Internet in the most efficient manner.

Sun recommends that you use message optimization if your web service client or
web service endpoint will be required to process binary encoded XML docu-
ments larger than 1KB.

For instructions on how to use the Message Optimization technology, see Chap-
ter 4.

WHAT IS WSIT? 5
Reliable Messaging Technology
Reliable Messaging is a Quality of Service (QoS) technology for building more
reliable web services. Reliability is measured by a system’s ability to deliver
messages from point A to point B without error. The primary purpose of Reliable
Messaging is to ensure the delivery of application messages to web service end-
points.

The reliable messaging technology ensures that messages in a given message
sequence are delivered at least once and not more than once and optionally in the
correct order. When messages in a given sequence are lost in transit or delivered
out of order, this technology enables systems to recover from such failures. If a
message is lost in transit, the sending system retransmits the message until its
receipt is acknowledged by the receiving system. If messages are received out of
order, the receiving system may re-order the messages into the correct order.

The Reliable Messaging technology can also be used to implement session man-
agement. A unique message sequence is created for each client-side proxy and
the lifetime of the sequence identifier coincides with the lifetime of the proxy.
Therefore, each message sequence can be viewed as a session and can be used to
implement session management.

You should consider using reliable messaging if the web service is experiencing
the following types of problems:

• Communication failures are occurring that result in the network being
unavailable or connections being dropped

• Application messages are being lost in transit

• Application messages are arriving at their destination out of order and
ordered delivery is a requirement

To help decide whether or not to use reliable messaging, weigh the following
advantages and disadvantages:

• Enabling reliable messaging ensures that messages are delivered exactly
once from the source to the destination and, if the ordered-delivery option
is enabled, ensures that messages are delivered in order.

• Enabling reliable messaging causes a degradation of web service perfor-
mance, especially if the ordered delivery option is enabled.

• Non-reliable messaging clients cannot interoperate with web services that
have reliable messaging enabled.

For instructions on how to use the Reliable Messaging technology, see Chapter
5.

6 INTRODUCTION
Security Technology
Until now, web services have relied on transport-based security such as SSL to
provide point-to-point security. WSIT implements WS-Security so as to provide
interoperable message content integrity and confidentiality, even when messages
pass through intermediary nodes before reaching their destination endpoint. WS-
Security as provided by WSIT is in addition to existing transport-level security,
which may still be used.

WSIT also enhances security by implementing WS-Secure Conversation, which
enables a consumer and provider to establish a shared security context when a
multiple-message-exchange sequence is first initiated. Subsequent messages use
derived session keys that increase the overall security while reducing the security
processing overhead for each message.

Further, WSIT implements two additional features to improve security in web
services:

• Web Services Security Policy—Enables web services to use security asser-
tions to clearly represent security preferences and requirements for web
service endpoints.

• Web Services Trust—Enables web service applications to use SOAP mes-
sages to request security tokens that can then be used to establish trusted
communications between a client and a web service.

WSIT implements these features in such a way as to ensure that web service
binding security requirements, as defined in the WSDL file, can interoperate
with and be consumed by WSIT and WCF endpoints.

For instructions on how to use the WS-Security technology, see Chapter 6.

How WSIT Relates to Windows
Communication Foundation (WCF)

Web services interoperability is an initiative of Sun and Microsoft. The goal is to
produce web services consumers and producers that support platform indepen-
dence, and then to test and deliver products to market that interoperate across
different platforms.

WSIT is the product of Sun’s web services interoperability initiative. Windows
Communication Foundation (WCF) is Microsoft’s unified programming model
for building connected systems. WCF, which is now available as part of the

WSIT SPECIFICATIONS 7
.NET Framework 3.0 product, includes application programming interfaces
(APIs) for building secure, reliable, transacted web services that interoperate
with non-Microsoft platforms.

In a joint effort, Sun Microsystems and Microsoft are testing WSIT against WCF
to ensure that Sun web service clients (consumers) and web services (producers)
do in fact interoperate with WCF web services applications and vice versa. The
testing will ensure that the following interoperability goals are realized:

• WSIT web services clients can access and consume WCF web services.

• WCF web services clients can access and consume WSIT web services.

Sun is building WSIT on the Java platform and Microsoft is building WCF on
the .NET 3.0 platform. The sections that follow describe the web services speci-
fications implemented by Sun Microsystems in Web Services Interoperability
Technologies (WSIT) and provide high-level descriptions of how each WSIT
technology works.

Note: Because WSIT-based clients and services are interoperable, you can gain the
benefits of WSIT without using WCF.

WSIT Specifications
The specifications for bootstrapping and configuration, message optimization,
reliable messaging, and security technologies are discussed in the following sec-
tions:

• Bootstrapping and Configuration Specifications (page 8)

• Message Optimization Specifications (page 10)

• Reliable Messaging Specifications (page 12)

• Security Specifications (page 13)

WSIT 1.0 implements the following versions of these specifications:

• Bootstrapping

• WS-MetadataExchange v1.1

• Reliable Messaging

• WS-ReliableMessaging v1.0

8 INTRODUCTION
• WS-ReliableMessaging Policy v1.0

• Atomic Transactions

• WS-AtomicTransaction v1.0

• WS-Coordination v1.0

• Security

• WS-Security v1.1

• WS-SecurityPolicy v1.1

• WS-Trust v1.0

• WS-SecureConversation v1.0

• Policy

• WS-Policy v1.2

• WS-PolicyAttachment v1.2

The same versions of these specifications are also implemented in WCF in .NET
3.0. Sun will update to the standard versions of these specifications in a future
release of WSIT. Those versions will coincide with the versions used in WCF in
.NET 3.5.

Bootstrapping and Configuration
Specifications
Bootstrapping and configuring involves a client getting a web service URL (per-
haps via service registry) and obtaining the information needed to build a web
services client that is capable of accessing and consuming a web service over the
Internet. This information is usually obtained from a WSDL file. Figure 1–2

WSIT SPECIFICATIONS 9
shows the specifications that were implemented to support bootstrapping and
configuration.

Figure 1–3 Bootstrapping and Configuration Specifications

In addition to the Core XML specifications, bootstrapping and configuration was
implemented using the following specifications:

• WSDL: The Web Services Description Language (WSDL) specification
was previously implemented in JAX-WS. WSDL is a standardized XML
format for describing network services. The description includes the name
of the service, the location of the service, and ways to communicate with
the service, that is, what transport to use. WSDL descriptions can be stored
in service registries, published on the Internet, or both.

• Web Services Policy: This specification provides a flexible and extensible
grammar for expressing the capabilities, requirements, and general charac-
teristics of a web service. It provides the mechanisms needed to enable
web services applications to specify policy information in a standardized
way. However, this specification does not provide a protocol that consti-
tutes a negotiation or message exchange solution for web Services. Rather,
it specifies a building block that is used in conjunction with the WS-Meta-
data Exchange protocol. When applied in the web services model, policy
is used to convey conditions on interactions between two web service end-
points. Typically, the provider of a web service exposes a policy to convey
conditions under which it provides the service. A requester might use the
policy to decide whether or not to use the service.

• Web Services Metadata Exchange: This specification defines a protocol to
enable a consumer to obtain a web service’s metadata, that is, its WSDL
and policies. It can be thought of as a bootstrap mechanism for communi-
cation.

10 INTRODUCTION
Message Optimization Specifications
Message optimization is the process of transmitting web services messages in
the most efficient manner. It is achieved in web services communication by
encoding messages prior to transmission and then de-encoding them when they
reach their final destination.

Figure 1–4 shows the specifications that were implemented to optimize commu-
nication between two web service endpoints.

Figure 1–4 Message Optimization Specifications

In addition to the Core XML specifications, optimization was implemented
using the following specifications:

• SOAP: JAX Web Services currently supports the SOAP wire protocol.
With SOAP implementations, client requests and web service responses
are most often transmitted as Simple Object Access Protocol (SOAP) mes-
sages over HTTP to enable a completely interoperable exchange between
clients and web services, all running on different platforms and at various
locations on the Internet. HTTP is a familiar request-and response standard
for sending messages over the Internet, and SOAP is an XML-based pro-
tocol that follows the HTTP request-and-response model. In SOAP 1.1, the
SOAP portion of a transported message handles the following:

• Defines an XML-based envelope to describe what is in the message and
how to process the message.

• Includes XML-based encoding rules to express instances of applica-
tion-defined data types within the message.

• Defines an XML-based convention for representing the request to the
remote service and the resulting response.

WSIT SPECIFICATIONS 11
In SOAP 1.2 implementations, web service endpoint addresses can be
included in the XML-based SOAP envelope, rather than in the transport
header (for example in the HTTP transport header), thus enabling SOAP
messages to be transport independent.

• Web Services Addressing: The Java APIs for W3C Web Services Address-
ing were first shipped with Java Web Services Developer’s Pack 2.0
(JWSDP 2.0). This specification defines a set of abstract properties and an
XML Infoset representation that can be bound to a SOAP message so as to
reference web services and to facilitate end-to-end addressing of endpoints
in messages. A web service endpoint is an entity, processor, or resource
that can be referenced and to which web services messages can be
addressed. Endpoint references convey the information needed to address
a web service endpoint. The specification defines two constructs: message
addressing properties and endpoint references, that normalize the informa-
tion typically provided by transport protocols and messaging systems in a
way that is independent of any particular transport or messaging system.
This is accomplished by defining XML tags for including web service
addresses in the SOAP message, instead of the HTTP header. The imple-
mentation of these features enables messaging systems to support message
transmission—in a transport-neutral manner—through networks that
include processing nodes such as endpoint managers, firewalls, and gate-
ways.

• Web Services Secure Conversation: This specification provides better mes-
sage-level security and efficiency in multiple-message exchanges in a stan-
dardized way. It defines basic mechanisms on top of which secure
messaging semantics can be defined for multiple-message exchanges and
allows for contexts to be established and potentially more efficient keys or
new key material to be exchanged, thereby increasing the overall perfor-
mance and security of the subsequent exchanges.

• SOAP MTOM: The SOAP Message Transmission Optimization Mecha-
nism (MTOM), paired with the XML-binary Optimized Packaging (XOP),
provides standard mechanisms for optimizing the transmission and/or wire
format of SOAP messages by selectively encoding portions of the SOAP
message, while still presenting an XML Infoset to the SOAP application.
This mechanism enables the definition of a hop-by-hop contract between
a SOAP node and the next SOAP node in the SOAP message path so as to
facilitate the efficient pass-through of optimized data contained within
headers or bodies of SOAP messages that are relayed by an intermediary.
Further, it enables message optimization to be done in a binding indepen-
dent way.

12 INTRODUCTION
Reliable Messaging Specifications
Reliability is measured by a system’s ability to deliver messages from point A to
point B without error. Figure 1–5 shows the specifications that were imple-
mented to ensure reliable delivery of messages between two web services end-
points.

Figure 1–5 Reliable Messaging Specifications

In addition to the Core XML specifications and supporting standards (Web Ser-
vices Security and Web Services Policy—which are required building blocks),
the reliability feature is implemented using the following specifications:

• Web Services Reliable Messaging: This specification defines a standardized
way to identify, track, and manage the reliable delivery of messages
between exactly two parties, a source and a destination, so as to recover
from failures caused by messages being lost or received out of order. The
specification is also extensible so it allows additional functionality, such as
security, to be tightly integrated. The implementation of this specification
integrates with and complements the Web Services Security, and the Web
Services Policy implementations.

• Web Services Coordination: This specification defines a framework for pro-
viding protocols that coordinate the actions of distributed applications.
This framework is used by Web Services Atomic Transactions. The imple-
mentation of this specification enables the following capabilities:

• Enables an application service to create the context needed to propagate
an activity to other services and to register for coordination protocols.

• Enables existing transaction processing, workflow, and other coordina-
tion systems to hide their proprietary protocols and to operate in a het-
erogeneous environment.

WSIT SPECIFICATIONS 13
• Defines the structure of context and the requirements so that context can
be propagated between cooperating services.

• Web Services Atomic Transactions: This specification defines a standard-
ized way to support two-phase commit semantics such that either all oper-
ations invoked within an atomic transaction succeed or are all rolled back.
Implementations of this specification require the implementation of the
Web Services Coordination specification.

Security Specifications
Figure 1–6 shows the specifications implemented to secure communication
between two web service endpoints and across intermediate endpoints.

Figure 1–6 Web Services Security Specifications

In addition to the Core XML specifications, the security feature is implemented
using the following specifications:

• Web Services Security: This specification defines a standard set of SOAP
extensions that can be used when building secure web services to imple-
ment message content integrity and confidentiality. The implementation
provides message content integrity and confidentiality even when commu-
nication traverses intermediate nodes, thus overcoming a short coming of
SSL. The implementation can be used within a wide variety of security
models including PKI, Kerberos, and SSL and provides support for multi-
ple security token formats, multiple trust domains, multiple signature for-
mats, and multiple encryption technologies.

• Web Services Policy: This specification provides a flexible and extensible
grammar for expressing the capabilities, requirements, and general charac-
teristics of a web service. It provides a framework and a model for the

14 INTRODUCTION
expression of these properties as policies and is a building block for Web
Services Security policy.

• Web Services Trust: This specification supports the following capabilities
in a standardized way:

• Defines extensions to Web Services Security that provide methods for
issuing, renewing, and validating security tokens used by Web services
security.

• Establishes, assesses the presence of, and brokers trust relationships.

• Web Services Secure Conversation: This specification defines a standard-
ized way to provide better message-level security and efficiency in multi-
ple-message exchanges. The WSIT implementation provides basic
mechanisms on top of which secure messaging semantics can be defined
for multiple-message exchanges and allows for contexts to be established
along with more efficient keys or new key material. This approach
increases the overall performance and security of the subsequent
exchanges. While the Web Services Security specification, described
above, focuses on the message authentication model, it does leave open-
ings for several forms of attacks. The Secure Conversation authentication
specification defines a standardized way to authenticate a series of mes-
sages, thereby addressing the short comings of Web Services Security.
With the Web Services Security Conversation model, the security context
is defined as a new Web Services security token type that is obtained using
a binding of Web Services Trust.

• Web Services Security Policy: This specification defines a standard set of
patterns or sets of assertions that represent common ways to describe how
messages are secured on a communications path. The WSIT implementa-
tion allows flexibility in terms of tokens, cryptography, and mechanisms
used, including leveraging transport security, but is specific enough to
ensure interoperability based on assertion matching by web service clients
and web services providers.

How the WSIT Technologies Work
The following sections provide a high-level description of how the messaage
optimization, reliable messaging, and security technologies work.

HOW THE WSIT TECHNOLOGIES WORK 15
How Message Optimization Works
Message optimization ensures that web services messages are transmitted over
the Internet in the most efficient manner. Because XML is a textual format,
binary files must be represented using character sequences before they can be
embedded in an XML document. A popular encoding that permits this embed-
ding is known as base64 encoding, which corresponds to the XML Schema data
type xsd:base64Binary. In a web services toolkit that supports a binding frame-
work, a value of this type must be encoded before transmission and decoded
before binding. The encoding and decoding process is expensive and the costs
increase linearly as the size of the binary object increases.

Message optimization enables web service endpoints to identify large binary
message payloads, remove the message payloads from the body of the SOAP
message, encode the message payloads using an efficient encoding mechanism
(effectively reducing the size of the payloads), re-insert the message payloads
into the SOAP message as attachments (the file is linked to the SOAP message
body by means of an Include tag). Thus, message optimization is achieved by
encoding binary objects prior to transmission and then de-encoding them when
they reach there final destination.

The optimization process is really quite simple. To effect optimized message
transmissions, the sending endpoint checks the body of the SOAP message for
XML encoded binary objects that exceed a predetermined size and encodes
those objects for efficient transmission over the Internet.

SOAP MTOM, paired with the XML-binary Optimized Packaging (XOP),
addresses the inefficiencies related to the transmission of binary data in SOAP
documents. Using MTOM and XOP, XML messages are dissected in order to
transmit binary files as MIME attachments in a way that is transparent to the
application. This transformation is restricted to base64 content in canonical form
as defined in XSD Datatypes as specified in XML Schema Part 2: Datatypes Sec-
ond Edition, W3C Recommendation 28 October 2004.

Thus, the WSIT technology achieves message optimization through an imple-
mentation of the MTOM and XOP specifications. With the message optimization
feature enabled, small binary objects are sent in-line in the SOAP body. For large
binary objects, this becomes quite inefficient, so the binary object is separated
from the SOAP body, encoded, sent as an attachment to the SOAP message, and
decoded when it reaches its destination endpoint.

16 INTRODUCTION
How Reliable Messaging Works
When reliable messaging is enabled, messages are grouped into sequences,
which are defined by the client’s proxies. Each proxy corresponds to a message
sequence, which consists of all of the request messages for that proxy. Each mes-
sage contains a sequence header. The header includes a sequence identifier that
identifies the sequence and a unique message number that indicates the order of
the message in the sequence. The web service endpoint uses the sequence header
information to group the messages and—if the Ordered Delivery option is
selected—to process them in the proper order. Additionally, if secure conversa-
tion is enabled, each message sequence is assigned its own security context
token. The security context token is used to sign the handshake messages that
initialize communication between two web service endpoints and subsequent
application messages.

Thus, using the Reliable Messaging technology, web service endpoints collabo-
rate to determine which messages in a particular application message sequence
arrived at the destination endpoint and which messages require resending. The
reliable messaging protocol requires that the destination endpoint return mes-
sage-receipt acknowledgements that include the sequence identifier and the mes-
sage number of each message received. If the source determines that a message
was not received by the destination, it resends the message and requests an
acknowledgement. Once the source has sent all messages for a given sequence
and their receipt has been acknowledged by the destination, the source termi-
nates the sequence.

The web service destination endpoint in turn sends the application messages
along to the application. If ordered delivery is configured (optional), the destina-
tion endpoint reconstructs a complete stream of messages for each sequence in
the exact order in which the messages were sent and sends them along to the des-
tination application. Thus, through the use of the reliable messaging protocol,
the destination endpoint is able to provide the following "delivery assurances" to
the web service application:

• Each message is delivered to the destination application at least once.

• Each message is delivered to the destination application at most once.

• Sequences of messages are grouped by sequence identifiers and delivered
to the destination application in the order defined by the message numbers.

HOW THE WSIT TECHNOLOGIES WORK 17
Figure 1–7 shows a simplified view of client and web service application mes-
sage exchanges when the Reliable Messaging protocol is not used.

Figure 1–7 Application Message Exchange Without Reliable Messaging

When the Reliable Messaging protocol is not used, application messages flow
over the HTTP connection with no delivery assurances. If messages are lost in
transit or delivered out of order, the communicating endpoints have no way of
knowing.

Figure 1–8 shows a simplified view of client and web service application mes-
sage exchanges when reliable messaging is enabled.

Figure 1–8 Application Message Exchange with Reliable Messaging Enabled

With reliable messaging enabled, the Reliable Messaging source module is
plugged into the JAX-WS web service client. The source module transmits the
application messages and keeps copies of the messages until their receipt is
acknowledged by the destination module via the exchange of protocol messages.
The destination module acknowledges messages and optionally buffers them for
ordered-delivery guarantee. After guaranteeing order, if configured, the destina-

18 INTRODUCTION
tion module allows the messages to proceed through the JAX-WS dispatch for
delivery to the endpoint or application destination.

How Security Works
The following sections describe how the WSIT security technologies, security
policy, trust, and secure conversation work.

How Security Policy Works
The WSIT Web Service Security Policy implementation builds on the features
provided by the Web Service Policy implementation in WSIT. It enables users to
use XML elements to specify the security requirements of a web service end-
point, that is, how messages are secured on the communication path between the
client and the web service. The web service endpoint specifies the security
requirements to the client as assertions (see Figure 1–9).

Figure 1–9 Security Policy Exchange

The security policy model uses the policy specified in the WSDL file for associ-
ating policy assertions with web service communication. As a result, whenever
possible, the security policy assertions do not use parameters or attributes. This
enables first-level, QName-based assertion matching to be done at the frame-
work level without security domain-specific knowledge. The first-level matching
provides a narrowed set of policy alternatives that are shared by the client and
web service endpoint when they attempt to establish a secure communication
path.

Note: A QName is a qualified name, as specified by XML Schema Part2: Datatypes
specification, Namespaces in XML, Namespaces in XML Errata. A qualified name
is made up of a namespace URI, a local part, and a prefix.

HOW THE WSIT TECHNOLOGIES WORK 19
The benefit of representing security requirements as assertions is that QName
matching is sufficient to find common security alternatives and that many aspects
of security can be factored out and re-used. For example, it may be common that
the security mechanism is constant for a web service endpoint, but that the mes-
sage parts that are protected, or secured, may vary by message action.

The following types of assertions are supported:

• Protection assertions: Define the scope of security protection. These asser-
tions identify the message parts that are to be protected and how, that is,
whether data integrity and confidentiality mechanisms are to be used.

• Conditional assertions: Define general aspects or pre-conditions of the
security. These assertions define the relationships within and the character-
istics of the environment in which security is being applied, such as the
tokens that can be used, which tokens are for integrity or confidentiality
protection, and applicable algorithms to use, and so on.

• Security binding assertions: Define the security mechanism that is used to
provide security. These assertions are logical grouping that defines how the
conditional assertions are used to protect the indicated message parts. For
example, that an asymmetric token is to be used with a digital signature to
provide integrity protection, and that parts are to be encrypted with a sym-
metric key, which is then encrypted using the public key of the recipient.
In its simplest form, the security binding assertions restrict what can be
placed in the wsse:Security header and the associated processing
rules.

• Supporting token assertions: Define the token types and usage patterns that
can be used to secure individual operations and/or parts of messages.

• Web Services Security and Trust assertions: Define the token referencing
and trust options that can be used.

20 INTRODUCTION
How Trust Works
Figure 1–11 shows how the Web Services Trust technology establishes trust.

Figure 1–10 Trust and Secure Conversation

To establish trust between a client, a Security Token Service, and a web service:

1. The client establishes an HTTPS connection with the Secure Token Ser-
vice using one of the following methods:

• Username Authentication and Transport Security: The client authenti-
cates to the Security Token Service using a username token. The Secu-
rity Token Service uses a certificate to authenticate to the Client.
Transport security is used for message protection.

• Mutual Authentication: Both the client-side and server-side use X509
certificates to authenticate to each other. The client request is signed
using Client’s X509 certificate, then signed using ephemeral key. The
web service signs the response using keys derived from the client’s key.

2. The client sends a RequestSecurityToken message to the Security Token
Service.

3. The Security Token Service sends a Security Assertion Markup Language
(SAML) token to the Client.

4. The client uses the SAML token to authenticate itself to the web service
and trust is established.

All communication uses SOAP messages.

HOW THE WSIT TECHNOLOGIES WORK 21
How Secure Conversation Works
Figure 1–11 shows how the Web Services Secure Conversation technology
establishes a secure conversation when the Trust technology is not used.

Figure 1–11 Secure Conversation

To establish a secure conversation between a Client and a web service:

1. The client sends a X509 Certificate to authenticate itself to the web service.

2. The web service sends a X509 Certificate to authenticate itself to the client.

All communication uses SOAP messages.

22 INTRODUCTION

2

WSIT Example Using

a Web Container
and NetBeans

THIS chapter describes how to use NetBeans IDE and GlassFish to build and
deploy a web service and client that use WSIT technologies. It includes exam-
ples of the files that the IDE helps you create and examples of the build directo-
ries and the key files that the IDE produces to create a web service and a client.

This chapter covers the following topics:

• Registering GlassFish with the IDE (page 23)

• Creating a Web Service (page 24)

• Configuring WSIT Features in the Web Service (page 26)

• Deploying and Testing a Web Service (page 28)

• Creating a Client to Consume a WSIT-Enabled Web Service (page 29)

Registering GlassFish with the IDE
Before you create the web service, perform the following steps to register Glass-
fish with the IDE:
23

24 WSIT EXAMPLE USING A WEB CONTAINER AND NETBEANS
1. Start the IDE and choose Tools→Server Manager from the main window.
The Server Manager window appears.

2. Click Add Server. Select the Sun Java System Application Server, assign a
name to server instance, and click Next. The platform folder location win-
dow appears.

3. Specify the platform location of the server instance, and the domain to
which you want to register, and click Finish. The Server Manager window
appears.

4. Enter the server username and password that you supplied when you
installer the web container (the default is admin/adminadmin) and click
Close.

Creating a Web Service
The starting point for developing a web service to use the WSIT technologies is
a Java class file annotated with the javax.jws.WebService annotation. The
WebService annotation defines the class as a web service endpoint. The follow-
ing Java code shows a web service. The IDE will create most of this Java code
for you.

package org.me.calculator;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;

@WebService()
public class Calculator {

@WebMethod(action="sample_operation")
public String operation(@WebParam(name="param_name")

String param) {
// implement the web service operation here
return param;

}

@WebMethod(action=”add”)
public int add(@WebParam(name = "i") int i,

@WebParam(name = "j") int j) {
int k = i + j;
return k;

}
}

CREATING A WEB SERVICE 25
Notice that this web service performs a very simple operation. It takes two inte-
gers, adds them, and returns the result.

Perform the following steps to use the IDE to create this web service:

1. Click on the Runtime tab in the left pane and verify that GlassFish is listed
in the left pane. If it is not listed, refer to Registering GlassFish with the
IDE (page 23) and register it.

2. Choose File→New Project, select Web Application from the Web cate-
gory, and click Next.

3. Assign the project a name that is representative of services that will be pro-
vided by the web service (for example, CalculatorApplication), set the
Project Location to the location of the Sun application server, and click
Finish.

Note: As of this writing, when creating the web service project be sure to define a
Project Location that does not include spaces in the directory name. Spaces in the
directory might cause the web service and web service clients to fail to build and
deploy properly. To avoid this problem, Sun recommends that you create a direc-
tory, for example C:\work, and put your project there.

4. Right-click the CalculatorApplication node and choose New→Web Ser-
vice.

5. Enter the web service name (CalculatorWS) and the package name
(org.me.calculator) in the Web Service Name and the Package fields
respectively.

6. Select Create an Empty Web Service.

7. Click Finish.

The IDE then creates a skeleton CalculatorWS.java file for the web ser-
vice that includes an empty WebService class with annotation @Webser-

vice.

8. Right-click within the body of the class and choose Web Service→Add
Operation.

9. In the upper part of the Add Operation dialog box, type add in Name and
choose int from the Return Type drop-down list.

10. In the lower part of the Add Operation dialog box, click Add and create a
parameter of type int named i. Click OK. Click Add again and create a
parameter of type int called j. Click OK and close the Enter Method
Parameter dialog box.

26 WSIT EXAMPLE USING A WEB CONTAINER AND NETBEANS
11. Click OK at the bottom of the Add Operation dialog box.

12. Notice that the add method has been added to the Source Editor:
@WebMethod
public int add(@WebParam(name = "i") int i,

@WebParam(name = "j") int j) {
// TODO implement operation
return 0;

}

13. Change the add method to the following (changes are in bold):
@WebMethod(action="add")
public int add(@WebParam(name = "i") int i,

@WebParam(name = "j") int j) {
int k = i + j;
return k;

}

Note: To ensure interoperability with Windows Communication Foundation
(WCF) clients, you must specify the action element of @WebMethod in your end-
point implementation classes. WCF clients will incorrectly generate an empty
string for the Action header if you do not specify the action element.

14. Save the CalculatorWS.java file.

You have successfully coded the web service.

Configuring WSIT Features in the Web
Service

Now that you have coded a web service, you can configure the web service to
use WSIT technologies. This section only describes how to configure the WSIT
Reliable Messaging technology. For a discussion of reliable messaging, see
Chapter 5. To see how to secure the web service, see Chapter 6.

To configure a web service to use the WSIT Reliable Messaging technology, per-
form the following steps:

1. In the Projects window, expand the Web Services node under the Calcula-
torApplication node, right-click the CalculatorWS node, and choose Edit
Web Service Attributes, as shown in Figure 2–1:

CONFIGURING WSIT FEATURES IN THE WEB SERVICE 27
Figure 2–1 Accessing the Edit Web Service Attributes

The Web Service Attributes Editor appears.

2. Select the Reliable Message Delivery check box, as shown in Figure 2–2,
and click OK.

Figure 2–2 Reliable Messaging Configuration Window

This setting ensures that the service sends an acknowledgement to the cli-
ents for each message that is delivered, thus enabling clients to recognize
message delivery failures and to retransmit the message. This capability
makes the web service a “reliable” web service.

3. In the left pane, expand the Web Pages node and the WEB-INF node, and
open the wsit-<endpoint classname>.xml file in the Source Editor.

Notice that the IDE has added the following tags to the file to enable reli-
able messaging:

<wsp:Policy wsu:Id="CalculatorWSPortBindingPolicy">
<wsp:ExactlyOne>

28 WSIT EXAMPLE USING A WEB CONTAINER AND NETBEANS
<wsp:All>
<wsaw:UsingAddressing xmlns:wsaws=

"http://www.w3.org/2006/05/addressing/wsdl"/>
<wsrm:RMAssertion/>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

Deploying and Testing a Web Service
Now that you have configured the web service to use WSIT technologies, you
can deploy and test it.

To deploy and test the web service, perform the following steps:

1. Right-click the project node, select Properties, and select Run.

2. Type /CalculatorWSService?wsdl in the Relative URL field and click
OK.

3. Right-click the project node and choose Run Project. The first time Glass-
fish is started, you will be prompted for the admin password. The IDE
starts the web container, builds the application, and displays the WSDL file
page in your browser. You have now successfully tested the deployed a
WSIT-enabled web service.

Notice that the WSDL file includes the following WSIT tags:

<wsp:UsingPolicy/>

<wsp:Policy wsu:Id="CalculatorWSPortBindingPolicy">

<wsp:ExactlyOne>

<wsp:All>

<ns1:RMAssertion/>

<ns2:UsingAddressing/>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

You have now successfully tested the deployment of a WSIT-enabled web ser-
vice.

CREATING A CLIENT TO CONSUME A WSIT-ENABLED WEB SERVICE 29
Creating a Client to Consume a WSIT-
Enabled Web Service

Now that you have built and tested a web service that uses WSIT technologies,
you can create a client that accesses and consumes that web service. The client
will use the web service’s WSDL to create the functionality necessary to satisfy
the interoperability requirements of the web service.

To create a client to access and consume the web service, perform the following
steps:

1. Choose File→New Project, select Web Application from the Web category
and click Next.

2. Name the project, for example, CalculatorWSServletClient, and click Fin-
ish.

3. Right-click the CalculatorWSServletClient node and select New→Web
Service Client. The New Web Service Client window appears.

Note: NetBeans submenus are dynamic, so the Web Service Client option may not
appear. If you do not see the Web Service Client option, select New→−
File\Folder→Webservices→Web Service Client.

4. Select the WSDL URL option.

5. Cut and paste the URL of the web service that you want the client to con-
sume into the WSDL URL field. For example, here is the URL for the Cal-
culatorWS web service:

http://localhost:8080/CalculatorApplication/CalculatorWSService?wsdl

When JAX-WS generates the web service, it appends “Service” to the
class name by default.

6. Type org.me.calculator.client in the Package field, and click Finish.
The Projects window displays the new web service client, as shown in Fig-
ure 2–3.

Figure 2–3 Web Service Client

30 WSIT EXAMPLE USING A WEB CONTAINER AND NETBEANS
7. Right-click the CalculatorWSServletClient project node and choose
New→Servlet.

8. Name the servlet ClientServlet, specify the package name, for example,
org.me.calculator.client and click Finish.

9. To make the servlet the entry point to your application, right-click the Cal-
culatorWSServletClient project node, choose Properties, click Run, type /
ClientServlet in the Relative URL field and click OK.

10. If ClientServlet.java is not already open in the Source Editor, open it.

11. In the Source Editor, remove the line that comments out the body of the
processRequest method. This is the start-comment line that starts the sec-
tion that comments out the code:

/* TODO output your page here

12. Delete the end-comment line that ends the section of commented out code:
*/

13. Add some empty lines after the following line:
out.println("<h1>Servlet ClientServlet at " +

request.getContextPath () + "</h1>");

14. Right-click in one of the empty lines that you added. Choose Web Service
Client Resources→Call Web Service Operation. The Select Operation to
Invoke dialog box appears.

15. Browse to the Add operation and click OK. The processRequest method
is as follows, with bold indicating code added by the IDE:

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet ClientServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet ClientServlet at " +

request.getContextPath () + "</h1>");

try { // Call Web Service Operation
org.me.calculator.client.CalculatorWS port =

service.getCalculatorWSPort();
// TODO initialize WS operation arguments here
int i = 0;
int j = 0;

CREATING A CLIENT TO CONSUME A WSIT-ENABLED WEB SERVICE 31
// TODO process result here
int result = port.add(i, j);
out.println("Result = "+result);
}catch (Exception ex) {
// TODO handle custom exceptions here
}
out.println("</body>");
out.println("</html>");
out.close();

}

16. Change the value for int i and int j to other numbers, such as 3 and 4.

17. Add a line that prints out an exception, if an exception is thrown. The try/
catch block is follows (new and changed lines from this step and the pre-
vious step are highlighted in bold text):

try { // Call Web Service Operation
org.me.calculator.client.CalculatorWS port =

service.getCalculatorWSPort();
// TODO initialize WS operation arguments here
int i = 3;
int j = 4;
// TODO process result here
int result = port.add(i, j);
out.println("<p>Result: " + result);

} catch (Exception ex) {

out.println("<p>Exception: " + ex);
}

18. If Reliable Messaging is enabled, the client needs to close the port when
done or the server log will be overwhelmed with messages. To close the
port, first add the following line to the import statements at the top of the
file:

import com.sun.xml.ws.Closeable;

Then add the line in bold at the end of the try block, as shown below.

try { // Call Web Service Operation
org.me.calculator.client.CalculatorWS port =

service.getCalculatorWSPort();
// TODO initialize WS operation arguments here
int i = 3;
int j = 4;
// TODO initialize WS operation arguments here
int i = 3;
int j = 4;
// TODO process result here
int result = port.add(i, j);

32 WSIT EXAMPLE USING A WEB CONTAINER AND NETBEANS
out.println("<p>Result: " + result);
((Closeable)port).close();

} catch (Exception ex) {
out.println("<p>Exception: " + ex);

}

19. Right-click the project node and choose Run Project. The server starts (if
it was not running already), the application is built, deployed, and run. The
browser opens and displays the calculation result.

You have successfully created and deployed a WSIT-enabled client that can
access a WSIT-enabled web service.

3

Bootstrapping and

Configuration

THIS chapter explains how to retrieve information that is used to access and
consume a WSIT-enabled web service and provides pointers to examples that
demonstrate how to bootstrap and configure WSIT-enabled clients from Web
Services Description Language (WSDL) files.

The following topics are covered in this chapter:

• What is a Server-Side Endpoint? (page 33)

• Creating a Client from WSDL (page 34)

• Client From WSDL Examples (page 35)

What is a Server-Side Endpoint?
Web services expose one or more endpoints to which messages can be sent. A
web service endpoint is an entity, processor, or resource that can be referenced
and to which web services messages can be addressed. Endpoint references con-
vey the information needed to address a web service endpoint. Clients need to
know this information before they can access a service.

Typically, web services package endpoint descriptions and use a WSDL file to
share these descriptions with clients. Clients use the web service endpoint
33

34 BOOTSTRAPPING AND CONFIGURATION
description to generate code that can send SOAP messages to and receive SOAP
messages from the web service endpoint.

Creating a Client from WSDL
To create a web service client that can access and consume a web service pro-
vider, you must obtain the information that defines the interoperability require-
ments of the web service provider. Providers make this information available by
means of WSDL files. WSDL files may be made available in service registries or
published on the Internet via a URL (or both). You can use a web browser or the
Netbeans IDE to obtain WSDL files.

A WSDL file contains descriptions of the following:

• Network services: The description includes the name of the service, the
location of the service, and ways to communicate with the service, that is,
what transport to use.

• Web services policies: Policies express the capabilities, requirements, and
general characteristics of a web service. Web service providers use policies
to specify policy information in a standardized way. Policies convey con-
ditions on interactions between two web service endpoints. Typically, the
provider of a web service exposes a policy to convey conditions under
which it provides the service. A requester (a client) might use the policy to
decide whether or not to use the service.

Web Services Metadata Exchange (WS-MEX) is the protocol for requesting and
transferring the WSDL from the provider to the client. This protocol is a boot-
strap mechanism for communication. When the type of metadata desired is
clearly known (for example, WS-Policy), a client request may indicate that only
that type should be returned.

CLIENT FROM WSDL EXAMPLES 35
Client From WSDL Examples
The following sections, found in other chapters of this tutorial, explain how to
create a client from a WSDL file using the example files in the tutorial bundle:

• Creating a Client to Consume a WSIT-Enabled Web Service (page 29)
shows how to create a client from WSDL using a web container and the
NetBeans IDE.

• Creating a Client from WSDL (page 154) shows how to create a client
from WSDL using only a web container.

36 BOOTSTRAPPING AND CONFIGURATION

4

Message

Optimization

THIS chapter provides instructions on how to configure message optimization
in web service providers and clients.

Note: Because of the special encoding/decoding requirements for message optimi-
zation, if a service uses message optimization, then a client of that service must sup-
port message optimization. Most web services stacks do support message
optimization. In the rare case when you think that a legacy client, which does not
support optimization, will access your service, do not use message optimization. In
general, however, it is a safe and good practice to use message optimization.

This chapter covers the following topics:

• Creating a Web Service (page 38)

• Configuring Message Optimization in a Web Service (page 38)

• Deploying and Testing a Web Service (page 39)

• Creating a Client to Consume a WSIT-enabled Web Service (page 39)

• Message Optimization and Secure Conversation (page 42)
37

38 MESSAGE OPTIMIZATION
Creating a Web Service
The starting point for developing a web service to use the WSIT technologies is
a Java class file annotated with the javax.jws.WebService annotation.

For detailed instructions for how to use NetBeans IDE to create a web service,
see Creating a Web Service (page 24).

Configuring Message Optimization in a
Web Service

To use the IDE to configure a web service for message optimization, perform the
following steps:

1. In the IDE Projects window, expand the Web Services node, right-click the
CalculatorWS node, and choose Edit Web Service Attributes, as shown in
Figure 4–1. The Web Service Attributes editor appears.

Figure 4–1 Selecting the Edit Web Services Attributes Option

2. Select the Optimize Transfer of Binary Data (MTOM) check box, as
shown in Figure 4–2, and click Ok.

Figure 4–2 Enabling MTOM

CREATING A CLIENT TO CONSUME A WSIT-ENABLED WEB SERVICE 39
This setting configures the web service to optimize messages that it trans-
mits and to decode optimized messages that it receives.

Deploying and Testing a Web Service
Now that you have configured the web service to use message optimization, you
can deploy and test it.

To deploy and test the web service, perform the following steps:

1. Right-click the project node, select Properties, and select Run.

2. Type /CalculatorWSService?wsdl in the Relative URL field and click
OK.

3. Right-click the project node and choose Run Project. The IDE starts the
web container, builds the application, and displays the WSDL file page in
your browser.

You have now successfully tested the deployment of a web service with message
optimization enabled.

Creating a Client to Consume a WSIT-
enabled Web Service

Now that you have built and tested a web service that uses the WSIT Message
Optimization technology, you can create a client that accesses and consumes that
web service. The client will use the web service’s WSDL to create the function-
ality necessary to satisfy the interoperability requirements of the web service.

To create a client to access and consume the web service, perform the following
steps:

1. Choose File→New Project, select Web Application from the Web category
and click Next.

2. Name the project, for example, CalculatorWSServletClient.

3. Make sure that the J2EE version is set to Java EE 5, then click Finish.

4. Right-click the CalculatorWSServletClient node and select New→Web
Service Client. The New Web Service Client window appears.

5. Cut and paste the URL of the web service that you want the client to con-
sume into the WSDL URL field, for example, http://localhost:8080/

40 MESSAGE OPTIMIZATION
CalculatorApplication/CalculatorWSService?wsdl, the URL of the
CalculatorWS web service.

6. Type org.me.calculator.client in the Package field, and click Finish.
The Projects tab displays the new web service client, shown in Figure 4–3.

Figure 4–3 Web Service Client

7. Right-click the CalculatorWSServletClient project node and choose
New→Servlet.

8. Name the servlet ClientServlet, specify the package name, for example,
org.me.calculator.client and click Finish.

9. To make the servlet the entry point to your application, right-click the
project node, choose Properties, click Run, type /ClientServlet in the
Relative URL field and click OK.

10. Double-click ClientServlet.java so that it opens in the Source Editor.

11. In the Source Editor, remove the line that comments out the body of the
processRequest method. This is the start-comment line that starts the sec-
tion that comments out the code:
/* TODO output your page here

12. Delete the end-comment line that ends the section of commented out code:
*/

13. Add some empty lines after the following line:
out.println("<h1>Servlet ClientServlet at " +

request.getContextPath () + "</h1>");

14. Right-click in one of the empty lines that you added. Choose Web Service
Client Resources→Call Web Service Operation. The Select Operation to
Invoke dialog box appears.

15. Browse to the Add operation and click OK. The processRequest method
looks as follows (the added code is in bold below):

CREATING A CLIENT TO CONSUME A WSIT-ENABLED WEB SERVICE 41
protected void processRequest(HttpServletRequest

request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Servlet ClientServlet</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>Servlet ClientServlet at "

+ request.getContextPath () + "</h1>");

try { // Call Web Service Operation

org.me.calculator.client.CalculatorWS port =

service.getCalculatorWSPort();

// TODO initialize WS operation arguments here

int i = 0;

int j = 0;

// TODO process result here

int result = port.add(i, j);

system.out.println("Result = "+result);

} catch (Exception ex) {

// TODO handle custom exceptions here

}

out.println("</body>");

out.println("</html>");

out.close();

}

16. Change the value for int i and int j to other numbers, such as 3 and 4.

17. Change the System.out.println statement to out.println.

18. Add a line that prints out an exception, if an exception is thrown. The try/
catch block should look as follows (new and changed lines are highlighted
in bold text):

try { // Call Web Service Operation
org.me.calculator.client.CalculatorWS port =

service.getCalculatorWSPort();
// TODO initialize WS operation arguments here
int i = 3;
int j = 4;
// TODO process result here
int result = port.add(i, j);

42 MESSAGE OPTIMIZATION
out.println("<p>Result: " + result);
} catch (Exception ex) {

out.println("<p>Exception: " + ex);
}

19. Right-click the project node and choose Run Project. The server starts (if
it was not running already) the application is built and deployed, and the
browser opens and displays the calculation result.

You have successfully created and deployed a client that can access a web ser-
vice with message optimization enabled.

Message Optimization and Secure
Conversation

The Web Services Secure Conversation technology has message optimization
benefits. While providing better message-level security it also improves the effi-
ciency of multiple-message exchanges. It accomplishes this by providing basic
mechanisms on top of which secure messaging semantics can be defined for
multiple-message exchanges. This feature allows for contexts to be established
so that potentially more efficient keys or new key material can be exchanged.
The result is that the overall performance of subsequent message exchanges is
improved.

For more information on how to use Secure Conversation, see Chapter 6.

5

Using Reliable

Messaging

THIS chapter explains how to configure reliable messaging in web service pro-
viders and clients.

This chapter covers the following topics:

• Reliable Messaging Options (page 43)

• Creating Web Service Providers and Clients that use Reliable Messaging
(page 45)

• Using Secure Conversation With Reliable Messaging (page 45)

Reliable Messaging Options
Table 5–1 describes the reliable messaging configuration options.

Table 5–1 Endpoint Reliable Messaging Configuration Options

Option Description

Reliable Messaging Specifies whether reliable messaging is enabled.
43

44 USING RELIABLE MESSAGING
Ordered Delivery

Specifies whether the Reliable Messaging protocol ensures that the
application messages for a given message sequence are delivered
to the endpoint application in the order indicated by the message
numbers.
This option increases the time to process application message
sequences and may result in the degradation of web service perfor-
mance. Therefore, you should not enable this option unless ordered
delivery is required by the web service.

 Flow Control

Specifies whether the Flow Control feature is enabled. When
enabled, this option works in conjunction with the Max Buffer Size
setting to determine the maximum number of messages for
sequence that can be stored at the endpoint awaiting delivery to the
application. Messages may have to be withheld from the applica-
tion if ordered delivery is required and some of their predecessors
have not arrived. If the number of stored messages reaches the
threshold specified in the Max Buffer Size setting, incoming mes-
sages belonging to the sequence are ignored.

Max Buffer Size

If Flow control is enabled, specifies the number of messages that
will be buffered for a message sequence. The default setting is 32.
For more information, see the description of the Flow Control
option.

Inactivity Timeout

Specifies the time interval beyond which either source or destina-
tion may terminate any message sequence due to inactivity. The
default setting is 600,000 milliseconds (10 minutes). A web ser-
vice endpoint will always terminate a sequence whose inactivity
timeout has expired. To keep the sequence active, an inactive client
will always send a stand- alone message with an AckRequested
header to act as a heartbeat as the end of the Inactivity timeout
interval approaches.

Table 5–1 Endpoint Reliable Messaging Configuration Options

Option Description

USING SECURE CONVERSATION WITH RELIABLE MESSAGING 45
Creating Web Service Providers and
Clients that use Reliable Messaging

Examples and detailed instructions on how to create web service providers and
clients that use reliable messaging are provided in Chapters 2 and 8 of this tuto-
rial.

• For an example of creating a web service and a client using a web container
and NetBeans IDE, see Chapter 2.

• For an example of creating a web service and a client using only a web con-
tainer, see Chapter 8.

Using Secure Conversation With
Reliable Messaging

If Secure Conversation is enabled for the web service endpoint, the web service
acquires a Security Context Token (SCT) for each application message
sequence, that is, each message sequence is assigned a different SCT. The web
service then uses that token to sign all messages exchanged for that message
sequence between the source and destination for the life of the sequence. Hence,
there are two benefits in using Secure Conversation with Reliable Messaging:

• The sequence messages are secure while in transit between the source and
destination endpoints.

• If there are different users accessing data at the source and destination end-
points, the SCT prevents users from seeing someone else’s data.

Note: Secure Conversation is a WS-Security option, not a reliable messaging
option. If Secure Conversation is enabled on the web service endpoint, Reliable
Messaging uses Security Context Tokens.

For more information on how to use Secure Conversation, see Chapter 6.

46 USING RELIABLE MESSAGING

6

47
Using WSIT Security

THIS chapter describes how to use NetBeans Integrated Development Envi-
ronment (the IDE) to configure security for web services and web service clients
using WSIT.

This release of WSIT makes securing web services even easier by including a set
of preconfigured security mechanisms that can be applied to a web service or a
web service operation simply by selecting it from a list. You can use advanced
configuration options to customize the security mechanism to the needs of your
application.

This chapter covers the following topics:

• Configuring Security Using NetBeans IDE (page 48)

• Summary of Configuration Requirements (page 52)

• Security Mechanisms (page 62)

• Configuring SSL and Authorized Users (page 69)

• Configuring Keystores and Truststores (page 75)

• Securing an Operation (page 86)

• Configuring A Secure Token Service (STS) (page 91)

• Example Applications (page 98)

48 USING WSIT SECURITY
Configuring Security Using NetBeans
IDE

This section contains the following topics:

• Securing the Service (page 48)

• Securing the Client (page 51)

Securing the Service
To use the IDE to configure security for a web service and/or a web service oper-
ation, perform the following tasks:

1. Create or open your web service.

If you need an example of how to create a web service, refer to Chapter 2,
WSIT Example Using a Web Container and NetBeans.

NOTE: When creating an application using the wizards in NetBeans and
running on GlassFish, the Java EE Version defaults to Java EE 5. This
results in an application compliant with JSR-109, Implementing Enter-
prise Web Services, which can be read at http://jcp.org/en/jsr/

detail?id=109. If you select a value other than the default, for example,
J2EE 1.4, the application that is created is not JSR-109 compliant, which
means that the application is not JAX-WS, but is JAX-RPC.

2. In the Projects window, expand the Web Services node.

3. Right-click the node for the web service you want to secure.

4. Select Edit Web Service Attributes.

When the Web Service Attributes Editor is opened, the WSIT Configura-
tion options display (see Figure 6–1).

http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109

SECURING THE SERVICE 49
Figure 6–1 Web Service Attributes Editor Page

5. Select Secure Service. This option enables WSIT security for all of the
operations of a web service.

For information on how to secure selected operations, refer to Securing an
Operation (page 86).

6. Select a Security Mechanism from the list.

Most of the mechanisms are fully functional without further configura-
tion, however, if you’d like to customize the mechanism, click Configure
to specify the configuration for that mechanism.

50 USING WSIT SECURITY
Options in the Configure dialog are discussed in Security Mechanism
Configuration Options (page 133)

7. Specify Keystore, Truststore, STS, SSL, and/or user information as
required for the selected security mechanism.

Refer to the entry for the selected security mechanism in Table 6–1 for
further information. This table summarizes the information that need to
be set up for each of the security mechanisms.

8. Click OK to save your changes.

9. Run the web application by right-clicking the project node and selecting
Run Project.

10.Verify the URL of the WSDL file before proceeding with the creation of
the web service client:

The client will be created from this WSDL file, and will get the service’s
security policies through the web service reference URL when the client
is built or refreshed.

The WSIT Configuration file that is used when the web service is deployed can
be viewed by expanding the Web Pages→WEB-INF elements of the application
in the tree, and then double-clicking the wsit-<package>.<service>.xml file
to open it in the editor. The full contents of an example service-side WSIT con-
figuration file can be viewed at Service-Side WSIT Configuration Files
(page 125).

Steps for configuring an example application are provided for several of the
mechanisms. Please see the following sections for a complete example of how to
configure a web service and a web service client to use these security mecha-
nisms:

• Example: Username Authentication with Symmetric Keys (UA) (page 98)

• Example: Mutual Certificates Security (MCS) (page 101)

• Example: Transport Security (SSL) (page 104)

• Example: SAML Authorization over SSL (SA) (page 107)

• Example: SAML Sender Vouches with Certificates (SV) (page 112)

• Example: STS Issued Token (STS) (page 116)

SECURING THE CLIENT 51
Securing the Client
All of the steps in Securing the Service (page 48) need to be completed before
you create your web service client. The service’s security policies are defined in
its WSDL. You specify this WSDL file when you create the client application so
that the client is configured to work with the service’s security mechanism
through the web service reference URL when the client is built or refreshed.

To use the IDE to configure security for a web service client, perform the follow-
ing tasks:

1. Create a client for your web service.

If you need an example of how to do this, see Creating a Client to Con-
sume a WSIT-Enabled Web Service (page 29).

If you are creating a client for a mechanism that will use SSL, specify the
secure port for running the client when completing the New Web Service
Client step. To do this, enter https://

<fully_qualified_hostname>:8181/<rest_of_url> in the WSDL
URL field of the New Web Service Client wizard. For the example, this is
the way to specify the secure URL for CalculatorWS web service:
https://<fully_qualified_hostname>:8181/CalculatorApplica-

tion/CalculatorWSService?wsdl

NOTE: If you prefer to use localhost in place of the fully-qualified
hostname when specifying the URL for the service WSDL, you must fol-
low the workaround described in Transport Security (SSL) Workaround
(page 64).

2. In the Projects window, expand the client node.

3. Expand the Web Service References node.

4. Right-click the node for the web service reference you want to secure.

5. Select Edit Web Service Attributes.

When the Web Service References Attributes Editor is opened, select the
WSIT tab to display the WSIT options (see Figure 6–2).

52 USING WSIT SECURITY
Figure 6–2 Web Service References Attributes Editor Page for Web Service Clients

6. Refer to Table 6–2 for a summary of what options are required on the client
side. The configuration requirements for the client are dependent upon
which security mechanism is specified on the server side.

7. Click OK to save your changes.

The WSIT configuration information is saved in two files under Source
Packages→META-INF.

To view the WSIT configuration files, in the tree, drill down from the project to
Source Packages→META-INF. Double-click on <service>Service.xml or
wsit-client.xml to view the contents. The full contents of example client
WSIT configuration files can be viewed at Client-Side WSIT Configuration Files
(page 130).

Summary of Configuration
Requirements

The following sections summarize the options that need to be configured for
each of the security mechanisms on both the service and client side. The config-
uration requirements for the client are dependent upon which security mecha-
nism is specified on the server side.

SUMMARY OF SERVICE-SIDE CONFIGURATION REQUIREMENTS 53
Summary of Service-Side Configuration
Requirements
Table 6–1 summarizes the options that need to be configured for each of the
security mechanisms. Each of the columns is briefly discussed after the table.

54 USING WSIT SECURITY
Table 6–1 Summary of Service-Side Configuration Requirements

Mechanism Keystore Truststore STS SSL
User in

GlassFish

Username Auth.
w/Symmetric
Keys

YES YES

Mutual Certs. YES
YES

(no alias)

Transport Sec. YES YES

Message Auth.
over SSL - User-
name Token

YES YES

Message Auth.
over SSL - X.509
Token

YES
(no alias)

YES

SAML Auth.
over SSL

YES
YES

(no alias)
YES

Endorsing Cert. YES YES

SAML Sender
Vouches with
Cert.

YES
YES

(no alias)

SAML Holder of
Key

YES
YES

(no alias)

STS Issued
Token

YES YES YES

STS Issued
Token with Ser-
vice Cert.

YES YES YES

STS Issued
Endorsing Token

YES YES YES

SUMMARY OF CLIENT-SIDE CONFIGURATION REQUIREMENTS 55
• Keystore—If this column indicates YES, click the Keystore button and
configure the keystore to specify the alias identifying the service certificate
and private key. For the GlassFish keystores, the file is keystore.jks and
the alias is xws-security-server, assuming that you’ve updated the
GlassFish default certificate stores as described in Updating GlassFish
Certificates (page 75).

• Truststore—If this column indicates YES, click the Truststore button and
configure the truststore to specify the alias that contains the certificate and
trusted roots of the client. For the GlassFish keystores, the file is cac-

erts.jks and the alias is xws-security-client, assuming that you’ve
updated the GlassFish default certificate stores as described in Updating
GlassFish Certificates (page 75).

• STS—If this column indicates YES, you must have a Security Token Ser-
vice that can be referenced by the service. An example of an STS can be
found in the section Creating and Securing the STS (STS) (page 118). The
STS is secured using a separate (non-STS) security mechanism. The secu-
rity configuration for the client-side of this application is dependent upon
the security mechanism selected for the STS, and not on the security mech-
anism selected for the application.

• SSL—To use a mechanism that uses secure transport (SSL), you must con-
figure the system to point to the client and server keystore and truststore
files. Steps for doing this are described in Configuring SSL For Your
Applications (page 70).

• User in Glassfish—To use a mechanism that requires a user database for
authentication, you can add a user to the file realm of GlassFish. Instruc-
tions for doing this can be found at Adding Users to GlassFish (page 73).

Summary of Client-Side Configuration
Requirements
Table 6–2 summarizes the options that need to be configured for each of the
security mechanisms on the client-side. Each of the columns is briefly discussed
after the table.

56 USING WSIT SECURITY
Table 6–2 Summary of Client-Side Configuration Requirements

Mechanism
Key
store

Trust
store

Default
User

SAML
Callback
Handler STS SSL

User
in

GF

Username
Auth. w/Sym-
metric Keys

YES YES YES

Mutual Certs. YES YES

Transport Sec. YES YES

Message
Auth. over
SSL - User-
name Token

YES YES YES

Message
Auth. over
SSL - X.509
Token

YES YES

SAML Auth.
over SSL

YES YES YES YES

Endorsing
Cert.

YES YES

SAML Sender
Vouches with
Cert.

YES YES YES

SAML Holder
of Key

YES YES YES

STS Issued
Token

YES YES Y

STS Issued
Token with
Service Cert.

YES YES Y

SUMMARY OF CLIENT-SIDE CONFIGURATION REQUIREMENTS 57
• Keystore—If this column indicates YES, configure the keystore to point
to the alias for the client certificate. For the GlassFish keystores, the key-
store file is keystore.jks and the alias is xws-security-client, assum-
ing that you’ve updated the GlassFish default certificate stores as described
in Updating GlassFish Certificates (page 75).

• Truststore—If this column indicates YES, configure the truststore that
contains the certificate and trusted roots of the server. For the GlassFish
keystores, the file is cacerts.jks and the alias is xws-security-server,
assuming that you’ve updated the GlassFish default certificate stores as
described in Updating GlassFish Certificates (page 75).

When using an STS mechanism, the client specifies the truststore and cer-
tificate alias for the STS, not the service. For the GlassFish stores, the file
is cacerts.jks and the alias is wssip.

• Default User—When this column indicates YES, you must configure
either a default username and password, a UsernameCallbackHandler, or
leave these options blank and specify a user at runtime. More information
on these options can be found at Configuring Username Authentication on
the Client (page 58).

• SAML Callback Handler—When this column indicates YES, you must
specify a SAML Callback Handler. Examples of SAML Callback Han-
dlers are described in Example SAML Callback Handlers (page 60).

• STS—If this column indicates YES, you must have a Security Token Ser-
vice that can be referenced by the service. An example of an STS can be
found in the section Creating and Securing the STS (STS) (page 118). The
STS is secured using a separate (non-STS) security mechanism. The secu-
rity configuration for the client-side of this application is dependent upon

STS Issued
Endorsing
Token

YES YES Y

Table 6–2 Summary of Client-Side Configuration Requirements (Continued)

Mechanism
Key
store

Trust
store

Default
User

SAML
Callback
Handler STS SSL

User
in

GF

58 USING WSIT SECURITY
the security mechanism selected for the STS, and not on the security mech-
anism selected for the application.

• SSL—To use a mechanism that uses secure transport (SSL), you must con-
figure the system to point to the client and server keystore and truststore
files. Steps for doing this are described in Configuring SSL For Your
Applications (page 70).

• User in Glassfish—To use a mechanism that requires a user database for
authentication, you can add a user to the file realm of GlassFish. Instruc-
tions for doing this can be found at Adding Users to GlassFish (page 73).

Configuring Username Authentication on the
Client
On the client side, a user name and password must be configured for some of the
security mechanisms. For this purpose, you can use the default Username and
Password Callback Handlers (when deploying to GlassFish), specify a SAML
Callback Handler, specify a default user name and password for development
purposes, create and specify your own Callback Handlers if the container you
are using does not provide defaults, or leave all of these options blank and spec-
ify the username and password dynamically at runtime. When using any of these
options, you must create an authorized user on GlassFish using the Admin Con-
sole, as described in Adding Users to GlassFish (page 73).

Once you’ve created an authorized user and determined how your application
needs to specify the user, configure the Username Authentication options, as fol-
lows:

1. In the Projects window, expand the node for the web service client.

2. Expand the Web Service References node.

3. Right-click the node for the web service reference for which you want to
configure security options.

4. Select Edit Web Service Attributes.

5. Select the WSIT tab to display the WSIT options.

6. Expand the Username Authentication section to specify the user name and
password information as required by the service. The dialog displays as
follows:

SUMMARY OF CLIENT-SIDE CONFIGURATION REQUIREMENTS 59
Figure 6–3 WSIT Configuration - Client - Username Authentication

7. The following options are available:

NOTE: Currently the GlassFish CallbackHandler cannot handle the fol-
lowing: SAML Callbacks and Require ThumbPrint Reference assertions
under an X.509 Token. This may be addressed in a future milestone.

• Authentication Credentials—Select Static or Dynamic.

• Default Username, Default Password—Enter the name of an authorized
user and the password for this user. This option is best used only in the
development environment. When the Default Username and Default Pass-
word are specified, the username and password are stored in the wsit-

client.xml file in clear text, which presents a security risk. Do not use
this option for production.

• SAML Callback Handler—To use a SAML Callback Handler, you need to
create one, as there is no default. References to example SAML Callback
Handlers are provided in Example SAML Callback Handlers (page 60).
An example that uses a SAML Callback Handler can be found in Example:
SAML Authorization over SSL (SA) (page 107).

60 USING WSIT SECURITY
Example SAML Callback Handlers
Creating a SAML Callback Handler is beyond the scope of this document, how-
ever, the following web pages may be helpful for this purpose:

• A client-side configuration, which includes a SAML Callback Handler,
can be viewed at the following URL:
https://wsit.dev.java.net/source/browse/*checkout*/wsit/

wsit/test/e2e/testcases/xwss/s11/resources/wsit-client.xml

• An example of a SAML Callback Handler can be viewed and/or down-
loaded from the following URL:
https://xwss.dev.java.net/servlets/ProjectDocu-

mentList?folderID=6645&expandFolder=6645&folderID=6645

• An example application in this tutorial that uses a SAML Callback Handler
can be found in Example: SAML Authorization over SSL (SA) (page 107).

When writing SAML Callback Handlers for different security mechanisms, set
the subject confirmation method to SV (Sender Vouches) or HOK (Holder of
Key) and the appropriate SAML Assertion version depending on the SAML ver-
sion and SAML Token Profile selected when setting the security mechanism for
the service.

For example, the following code snippet for one of the SAMLCallbackHandlers
listed above demonstrates how to set the subject confirmation method and sets
the SAMLAssertion version to 1.0, profile 1.0.

if(callbacks[i] instanceof SAMLCallback) {
try {

SAMLCallback samlCallback = (SAMLCallback)callbacks[i];

/*
Set confirmation Method to SV [SenderVouches] or
HOK[Holder of Key]
*/
samlCallback.setConfirmationMethod

(samlCallback.SV_ASSERTION_TYPE);

if(samlCallback.getConfirmationMethod().equals(
samlCallback.SV_ASSERTION_TYPE)) {

samlCallback.setAssertionElement
(createSVSAMLAssertion());

svAssertion_saml10 =
samlCallback.getAssertionElement();

https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/test/e2e/testcases/xwss/s11/resources/wsit-client.xml
https://xwss.dev.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645

SUMMARY OF CLIENT-SIDE CONFIGURATION REQUIREMENTS 61
/*
samlCallback.setAssertionElement

(createSVSAMLAssertion20());
svAssertion_saml20 =

samlCallback.getAssertionElement();
*/

}else

if(samlCallback.getConfirmationMethod().equals(
samlCallback.HOK_ASSERTION_TYPE)) {

samlCallback.setAssertionElement
(createHOKSAMLAssertion());

hokAssertion_saml10 =
samlCallback.getAssertionElement();

/*
samlCallback.setAssertionElement

(createHOKSAMLAssertion20());
hokAssertion_saml20 =

samlCallback.getAssertionElement();
*/

}

} catch (Exception e) {
e.printStackTrace();
}

} else {
throw unsupportedCallback;

}

62 USING WSIT SECURITY
Security Mechanisms
The following lists the possible choices for security mechanisms. These mecha-
nisms are discussed in the following sections:

• Username Authentication with Symmetric Keys (page 62)

• Mutual Certificates Security (page 63)

• Transport Security (SSL) (page 63)

• Message Authentication over SSL (page 65)

• SAML Authorization over SSL (page 65)

• Endorsing Certificate (page 66)

• SAML Sender Vouches with Certificates (page 66)

• SAML Holder of Key (page 67)

• STS Issued Token (page 67)

• STS Issued Token with Service Certificate (page 68)

• STS Issued Endorsing Token (page 68)

A table that summarizes the configuration options on the server side is available
in Summary of Service-Side Configuration Requirements (page 53).

Some common communication issues that need to be addressed using security
mechanisms are discussed in Issues Addressed Using Security Mechanisms
(page 123).

Username Authentication with
Symmetric Keys
The Username Authentication with Symmetric Keys mechanism protects your
application for integrity and confidentiality. Symmetric key cryptography relies
on a single, shared secret key that is used to both sign and encrypt a message.
Symmetric keys are usually faster than public key cryptography.

For this mechanism, the client does not possess any certificate/key of his own,
but instead sends its username/password for authentication. The client shares a
secret key with the server. The shared, symmetric key is generated at runtime
and encrypted using the service’s certificate. The client must specify the alias in
the truststore by identifying the server’s certificate alias.

MUTUAL CERTIFICATES SECURITY 63
See Also: Example: Username Authentication with Symmetric Keys (UA)
(page 98).

Mutual Certificates Security
The Mutual Certificates Security mechanism adds security via authentication
and message protection that ensures integrity and confidentiality. When using
mutual certificates, a keystore and truststore file must be configured for both the
client and server sides of the application.

See Also: Example: Mutual Certificates Security (MCS) (page 101).

Transport Security (SSL)
The Transport Security mechanism protects your application during transport
using SSL for authentication and confidentiality. Transport-layer security is pro-
vided by the transport mechanisms used to transmit information over the wire
between clients and providers, thus transport-layer security relies on secure
HTTP transport (HTTPS) using Secure Sockets Layer (SSL). Transport security
is a point-to-point security mechanism that can be used for authentication, mes-
sage integrity, and confidentiality. When running over an SSL-protected session,
the server and client can authenticate one another and negotiate an encryption
algorithm and cryptographic keys before the application protocol transmits or
receives its first byte of data. Security is “live” from the time it leaves the con-
sumer until it arrives at the provider, or vice versa. The problem is that it is not
protected once it gets to its destination. For protection of data after it reaches its
destination, use one of the security mechanisms that uses SSL and also secures
data at the message level.

Digital certificates are necessary when running secure HTTP transport (HTTPS)
using Secure Sockets Layer (SSL). The HTTPS service of most web servers will
not run unless a digital certificate has been installed. Digital certificates have
already been created for GlassFish, and the default certificates are sufficient for
running this mechanism, and are required when using Atomic Transactions (see
Chapter 11). However, the message security mechanisms require a newer version
of certificates than is available with GlassFish. You can download valid keystore
and truststore files for the client and server as described in Updating GlassFish
Certificates (page 75).

To use this mechanism, follow the steps in Configuring SSL For Your Applica-
tions (page 70).

64 USING WSIT SECURITY
See Also: Example: Transport Security (SSL) (page 104).

Transport Security (SSL) Workaround
This note applies to cases where https is the transport protocol used between a
WSIT client and a secure web service using transport binding, and you are refer-
encing localhost when creating the client.

Note: If you use the fully-qualified hostname (FQHN) in the URL for the service
WSDL when you are adding the web service client to the client application, this
workaround is not required. It is only required when you specify localhost in the
URL for the service WSDL.

During development (not production) it is sometimes convenient to use certifi-
cates whose CN (Common Name) does not match the host name in the URL.

A developer would want to use a CN which is different from the host name in the
URL in WSIT when using https addresses in Dispatch clients and during wsim-

port. The below mentioned workaround is only for the Dispatch clients, which
are also used in WS-Trust to communicate with STS. This has to be done even if
the client's main service is not on https, but only the STS is on https.

Java by default verifies that the certificate CN (Common Name) is the same as
host name in the URL. If the CN in the certificate is not the same as the host
name, your web service client fails with the following exception:

javax.xml.ws.WebServiceException: java.io.IOException: HTTPS
hostname wrong: should be <hostname as in the certificate>

The recommended way to overcome this issue is to generate the server certificate
with the Common Name (CN) matching the host name.

To workaround this only during development, in your client code, you can set the
default host name verifier to a custom host name verifier which does a custom
check. An example is given below. It is sometimes necessary to include this in
the static block of your main Java class as shown below to set this verifier before
any connections are made to the server.

static {
 //WORKAROUND. TO BE REMOVED.

MESSAGE AUTHENTICATION OVER SSL 65
javax.net.ssl.HttpsURLConnection.setDefaultHostnameVerifier(
new javax.net.ssl.HostnameVerifier(){

public boolean verify(String |hostname|,
javax.net.ssl.SSLSession sslSession) {
if (hostname.equals("mytargethostname")) {

return true;
}
return false;

}
});
}

Please remember to remove this once you install valid certificates on the server.

Message Authentication over SSL
The Message Authentication over SSL mechanism attaches a cryptographically
secured identity or authentication token with the message and use SSL for confi-
dentiality protection.

By default, a Username Supporting Token will be used for message authentica-
tion. To use an X.509 Supporting Token instead, click the Configure button and
select X509. Under this scenario, you will need to configure your system for
using SSL as described in Configuring SSL For Your Applications (page 70).

SAML Authorization over SSL
The SAML Authorization over SSL mechanism attaches an authorization token
with the message and uses SSL for confidentiality protection. In this mechanism,
the SAML token is expected to carry some authorization information about an
end user. The sender of the token is actually vouching for the credentials in the
SAML token.

To use this mechanism, configure SSL on the server, as described in Configuring
SSL For Your Applications (page 70), and, on the clients side, configure a SAML-

CallbackHandler as described in Example SAML Callback Handlers
(page 60).

See Also: Example: SAML Authorization over SSL (SA) (page 107).

66 USING WSIT SECURITY
Endorsing Certificate
This mechanism uses secure messages using symmetric key for integrity and
confidentiality protection, and uses an endorsing client certificate to augment the
claims provided by the token associated with the message signature. For this
mechanism, the client knows the service’s certificate, and requests need to be
endorsed/authorized by a special identity. For example, all requests to a vendor
must be endorsed by a purchase manager, so the certificate of the purchase man-
ager should be used to endorse (or counter sign) the original request.

SAML Sender Vouches with Certificates
This mechanism protects messages with mutual certificates for integrity and con-
fidentiality and with a Sender Vouches SAML token for authorization. The
Sender Vouches method establishes the correspondence between a SOAP mes-
sage and the SAML assertions added to the SOAP message. The attesting entity
provides the confirmation evidence that will be used to establish the correspon-
dence between the subject of the SAML subject statements (in SAML asser-
tions) and SOAP message content. The attesting entity, presumed to be different
from the subject, vouches for the verification of the subject. The receiver has an
existing trust relationship with the attesting entity. The attesting entity protects
the assertions (containing the subject statements) in combination with the mes-
sage content against modification by another party. For more information about
the Sender Vouches method, read the SAML Token Profile document at http://
docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf.

For this mechanism, the SAML token is included as part of the message signa-
ture as an authorization token and is sent only to the recipient. The message pay-
load needs to be signed and encrypted. The requestor is vouching for the
credentials (present in the SAML assertion) of the entity on behalf of which the
requestor is acting.

The initiator token, which is an X.509 token, is used for signature. The recipient
token, which is also an X.509 token, is used for encryption. For the server, this is
reversed, the recipient token is the signature token and the initiator token is the
encryption token. A SAML token is used for authorization.

See Also: Example: SAML Sender Vouches with Certificates (SV) (page 112).

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

SAML HOLDER OF KEY 67
SAML Holder of Key
This mechanism protects messages with a signed SAML assertion (issued by a
trusted authority) carrying client public key and authorization information with
integrity and confidentiality protection using mutual certificates. The Holder-of-
Key (HOK) method establishes the correspondence between a SOAP message
and the SAML assertions added to the SOAP message. The attesting entity
includes a signature that can be verified with the key information in the confir-
mation method of the subject statements of the SAML assertion referenced for
key info for the signature. For more information about the Holder of Key
method, read the SAML Token Profile document at http://docs.oasis-

open.org/wss/oasis-wss-saml-token-profile-1.0.pdf.

Under this scenario, the service does not trust the client directly, but requires the
client to send a SAML assertion issued by a particular SAML authority. The cli-
ent knows the recipient’s public key, but does not share a direct trust relationship
with the recipient. The recipient has a trust relationship with the authority that
issues the SAML token. The request is signed with the client’s private key and
encrypted with the server certificate. The response is signed using the server’s
private key and encrypted using the key provided within the HOK SAML asser-
tion.

STS Issued Token
This security mechanism protects messages using a token issued by a trusted
Secure Token Service (STS) for message integrity and confidentiality protection.

An STS is a service that implements the protocol defined in the WS-Trust speci-
fication (you can find a link to this specification at https://

wsit.dev.java.net/.) This protocol defines message formats and message
exchange patterns for issuing, renewing, canceling, and validating security
tokens.

Service providers and consumers are in potentially different managed environ-
ments but use a single STS to establish a chain of trust. The service does not trust
the client directly, but instead trusts tokens issued by a designated STS. In other
words, the STS is taking on the role of a second service with which the client has
to securely authenticate. The issued tokens contain a key, which is encrypted for
the server and which is used for deriving new keys for signing and encrypting.

To use this mechanism for the web service, you simply select this option as your
security mechanism. However, you must have a Security Token Service that can

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
https://wsit.dev.java.net/
https://wsit.dev.java.net/

68 USING WSIT SECURITY
be referenced by the service. An example of an STS can be found in the section
Creating and Securing the STS (STS) (page 118). In this section, you select a
security mechanism for the STS. The security configuration for the client-side of
this application is dependent upon the security mechanism selected for the STS,
and not on the security mechanism selected for the application. The client trust-
store must contain the certificate of the STS, which has the alias of wssip if you
are using the updated GlassFish certificates.

See Also: Example: STS Issued Token (STS) (page 116).

STS Issued Token with Service Certificate
This security mechanism is similar to the one discussed in STS Issued Token
(page 67), with the difference being that in addition to the service requiring the
client to authenticate using a SAML token issued by a designated STS, confiden-
tiality protection is achieved using a service certificate. A service certificate is
used by a client to authenticate the service and provide message protection. For
GlassFish, a default certificate of s1as is installed.

To use this mechanism for the web service, you simply select this option as your
security mechanism. However, you must have a Security Token Service that can
be referenced by the service. An example of an STS can be found in the section
Creating and Securing the STS (STS) (page 118). In this section, you select a
security mechanism for the STS. The security configuration for the client-side of
this application is dependent upon the security mechanism selected for the STS,
and not on the security mechanism selected for the application. The client trust-
store must contain the certificate of the STS, which has the alias of wssip if you
are using the updated GlassFish certificates.

STS Issued Endorsing Token
This security mechanism is similar to the one discussed in STS Issued Token
(page 67), with the difference being that the client authenticates using a SAML
token that is issued by a designated STS. An endorsing token is used to sign the
message signature.

In this mechanism, message integrity and confidentiality are protected using
ephemeral keys encrypted for the service. Ephemeral keys use an algorithm
where the exchange key value is purged from the cryptographic service provider
(CSP) when the key handle is destroyed. The service requires messages to be
endorsed by a SAML token issued by a designated STS.

CONFIGURING SSL AND AUTHORIZED USERS 69
Service providers and consumers are in potentially different managed environ-
ments. For this mechanism, the service requires that secure communications be
endorsed by a trusted STS. The service does not trust the client directly, but
instead trusts tokens issued by a designated STS. In other words, the STS is tak-
ing on the role of a second service with which the client has to securely authenti-
cate.

For this mechanism, authentication of the client is achieved in this way:

• The client authenticates with the STS and obtains the necessary token with
credentials.

• The client’s request is signed and encrypted using ephemeral key K.

• The server’s response is signed and encrypted using the same K.

• The primary signature of the request is endorsed using the issued token.

To use this mechanism for the web service, you simply select this option as your
security mechanism. However, you must have a Security Token Service that can
be referenced by the service. An example of an STS can be found in the section
Creating and Securing the STS (STS) (page 118). In this section, you select a
security mechanism for the STS. The security configuration for the client-side of
this application is dependent upon the security mechanism selected for the STS,
and not on the security mechanism selected for the application. The client trust-
store must contain the certificate of the STS, which has the alias of wssip if you
are using the updated GlassFish certificates.

Configuring SSL and Authorized Users
This chapter discusses configuring security for your web service and web service
client using the WSIT security mechanisms. Some of these mechanisms require
some configuration outside of NetBeans IDE. Depending upon which security
mechanism you plan to use, some of the following tasks will need to be com-
pleted:

• If you are using the GlassFish container and message security, you must
update the GlassFish keystore and truststore by importing v3 certificates.
The procedure for updating the certificates is described in Updating Glass-
Fish Certificates (page 75).

• If you are using a security mechanism that requires a user to enter a user
name and password, create authorized users for your container. Steps for
creating an authorized user for the GlassFish container are described in
Adding Users to GlassFish (page 73).

70 USING WSIT SECURITY
• To use a mechanism that uses secure transport (SSL), you must configure
the system to point to the client and server keystore and truststore files.
Steps for doing this are described in Configuring SSL For Your Applica-
tions (page 70).

Configuring SSL For Your Applications
This section describes adding the steps to configure your application for SSL.
These steps will need to be accomplished for any application that uses one of the
mechanisms:

• Transport Security (SSL) (page 63) (see Example: Transport Security
(SSL), page 104)

• Message Authentication over SSL (page 65)

• SAML Authorization over SSL (page 65) (see Example: SAML Authori-
zation over SSL (SA), page 107)

The following steps are generic to any application, but have example configura-
tions that will work with the tutorial examples, in particular, Example: SAML
Authorization over SSL (SA) (page 107) and Example: Transport Security (SSL)
(page 104).

To configure SSL for your application, follow these steps:

1. Select one of the mechanisms that require SSL. These include Transport
Security (SSL) (page 63), Message Authentication over SSL (page 65),
and SAML Authorization over SSL (page 65).

2. Server Configuration

• GlassFish is already configured for SSL. No further SSL configuration
is necessary if you are using Transport Security. However, if you are
using one of the Message Security mechanisms with SSL, you must
update the GlassFish certificates as described in Updating GlassFish
Certificates (page 75).

• Configure a user on GlassFish as described in Adding Users to Glass-
Fish (page 73).

3. Client Configuration

For configuring your system for SSL in order to work through the exam-
ples in this tutorial, the same keystore and truststore files are used for both
the client and the service. This obviates the needs to set system properties

CONFIGURING SSL FOR YOUR APPLICATIONS 71
to point to the client stores, as both GlassFish and NetBeans are aware of
these certificates and point to them by default.

In general, for the client side of SSL you will not be using the same certif-
icates for the client and the service. In that case, you need to define the
client certificate stores by setting the system properties -

Djavax.net.ssl.trustStore, -Djavax.net.ssl.keyStore, -

Djavax.net.ssl.trustStorePassword, and
-Djavax.net.ssl.keyStorePassword in the application client con-
tainer.

You can specify the environment variables for keystore and truststore by
setting the environment variable VMARGS through the shell environment or
inside an Ant script, or by passing them in when you start NetBeans IDE
from the command line. For example, in the latter case:

<NETBEANS_HOME>/bin/netbeans.exe
-J-Djavax.net.ssl.trustStore=
<AS_HOME>/domains/domain1/config/cacerts.jks
-J-Djavax.net.ssl.keyStore=
<AS_HOME>/domains/domain1/config/keystore.jks
-J-Djavax.net.ssl.trustStorePassword=changeit
-J-Djavax.net.ssl.keyStorePassword=changeit

Use the hard-coded path to the keystore and truststore files, not variables.

For the SSL mechanism, The browser will prompt you to accept the
server alias s1as.

4. On the client side, for the Transport Security (SSL) mechanism, you must
either use the fully-qualified hostname in the URL for the service WSDL
when you are creating the web sercie client, or else you must follow the
steps in Transport Security (SSL) Workaround (page 64).

5. Service Configuration

To require the service to use the HTTPS protocol, you have to specify the
security requirements in the service’s application deployment descriptor.
This file is ejb-jar.xml for a web service that is implemented as an EJB
endpoint, and web.xml for a web service implemented as a servlet. To
specify the security information, follow these steps:

a. From your web service application expand Web Pages→WEB-INF.

b. Double-click web.xml (or ejb-jar.xml) to open it in the editor.

c. Select the Security tab.

d. On the Security Constraints line, click Add Security Constraint.

72 USING WSIT SECURITY
e. Under Web Resource Collection, click Add.

f. Enter a Name for the Resource (for example, CalcWebResource), and
enter the URL Pattern to be protected (for example, /*). Select which
HTTP Methods to protect, for example, POST. Click OK to close this
dialog.

g. Check the Enable User Data Constraint box. Select CONFIDENTIAL
for the Transport Guarantee to specify that the application uses SSL
because the application requires that data be transmitted so as to prevent
other entities from observing the contents of the transmission.

h. The IDE looks like this:

Figure 6–4 Deployment Descriptor page

i. Click the XML tab to display the additions to web.xml. The security
constraint looks like this:

<security-constraint>
<display-name>Constraint1</display-name>
<web-resource-collection>

<web-resource-name>
CalcWebResource

</web-resource-name>
<description/>
<url-pattern>/*</url-pattern>
<http-method>POST</http-method>

ADDING USERS TO GLASSFISH 73
</web-resource-collection>
<user-data-constraint>

<description/>
<transport-guarantee>

CONFIDENTIAL
</transport-guarantee>

</user-data-constraint>
</security-constraint>

j. When you run this project (right-click, select Run Project), the browser
will ask you to accept the server certificate of s1as. Accept this certifi-
cate. The WSDL displays in the browser.

6. Creating a Client

When creating your client application, use the fully-qualified hostname to
specify the secure WSDL location (use https://

<fully_qualified_hostname>:8181/CalculatorApplication/Cal-

culatorWSService?wsdl, for example, in place of http://local-

host:8080/CalculatorApplication/CalculatorWSService?wsdl).

In some cases, you might get an error dialog telling you that the URL
https://<fully_qualified_hostname>:8181/CalculatorApplica-

tion/CalculatorWSService?wsdl couldn't be downloaded. However,
this is the correct URL, and it does load when you run the service. So,
when this error occurs, repeat the steps that create the Web Service Client
using the secure WSDL. The second time, the web service reference is
created and you can continue creating the client.

Adding Users to GlassFish
The following topics are covered:

• Adding Users to GlassFish Using Admin Console (page 73)

• Adding Users to GlassFish From Command Line (page 74)

Adding Users to GlassFish Using Admin
Console
To add users to GlassFish using the Admin Console, follow these steps:

1. Start GlassFish if you haven’t already done so.

74 USING WSIT SECURITY
2. Start the Admin Console if you haven’t already done so. You can start the
Admin Console by starting a web browser and entering the URL http://

localhost:4848/asadmin. If you changed the default Admin port during
installation, enter the correct port number in place of 4848.

3. To log in to the Admin Console, enter the user name and password of a user
in the admin-realm who belongs to the asadmin group. The name and
password entered during installation will work, as will any users added to
this realm and group subsequent to installation.

4. Expand the Configuration node in the Admin Console tree.

5. Expand the Security node in the Admin Console tree.

6. Expand the Realms node. Select the file realm.

7. Click the Manage Users button.

8. Click New to add a new user to the realm.

9. Enter the correct information into the User ID, Password, and Group(s)
fields. The example applications reference a user with the following
attributes:

a. User ID = wsitUser

b. Group List = wsit

c. New Password = changeit

d. Confirm New Password = changeit

10.Click OK to add this user to the list of users in the realm.

11.Click Logout when you have completed this task.

Adding Users to GlassFish From Command
Line
To add users to GlassFish from the command line, make sure GlassFish is run-
ning, then enter the following command:

<AS_HOME>/asadmin create-file-user --groups wsit wsitUser

Enter changeit for the password when prompted.

CONFIGURING KEYSTORES AND TRUSTSTORES 75
Configuring Keystores and Truststores
This section describes configuring keystores and truststores. Security mecha-
nisms that use certificates require keystore and truststore files for deployment.

• For GlassFish, default keystore and truststore files come bundled, however
WSIT security mechanisms for message security require X.509 version 3
certificates. GlassFish contains version 1 certificates, therefore, to enable
the WSIT applications to run on GlassFish, you will need to follow the
instructions in Updating GlassFish Certificates (page 75).

• For Tomcat, keystore and truststore files do not come bundled with this
container, so they must be provided. You can download valid keystore and
truststore files for the client and server from https://

xwss.dev.java.net/.

The following sections discuss how to specify and configure the keystore, trust-
store, and validators.

Updating GlassFish Certificates
The WSIT message security mechanisms require the use of v3 certificates. The
default GlassFish keystore and truststore do not contain v3 certificates at this
time (but should before FCS). (GlassFish instances installed using JDK 1.6 do
have a v3 certificate but the certificate lacks a particular extension required for
supporting some secure WSIT mechanisms.) In order to use message security
mechanisms with GlassFish, it is necessary to download keystore and truststore
files that contain v3 certificates and import the appropriate certificates into the
default GlassFish stores.

To update the GlassFish certificates, follow these steps.

1. Download the zip file that contains the certificates and the Ant scripts
(copyv3.zip) by going to this URL: https://xwss.dev.java.net/

servlets/ProjectDocumentList?folderID=6645&expand-

Folder=6645&folderID=6645.

2. Unzip this file and change into its directory, copyv3.

3. Verify that an environment variable named AS_HOME is created, and that it
specifies the full path to the location of your GlassFish installation, for
example, C:\Sun\GlassFish.

NOTE: Some releases of GlassFish may have different default passwords
for the keystores. If you are using a different version of GlassFish than the

https://xwss.dev.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
https://xwss.dev.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
https://xwss.dev.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
https://xwss.dev.java.net/
https://xwss.dev.java.net/
https://xwss.dev.java.net/

76 USING WSIT SECURITY
one recommended at wsit.dev.java.net, edit the file build.xml and
specify the correct default password in the AS_KEYSTORE_PASSWORD field.

4. From the copyv3 directory, execute the Ant command that will copy the
keystore and truststore files to the appropriate location, and import the
appropriate certificates into the GlassFish keystore and truststore. This Ant
command is simply: <AS_HOME>/lib/ant/bin/ant

The command window will echo back the certificates that are being added
to the keystore and truststore files, and should look something like this:

[echo] WARNING: currently we add non-CA certs to GF trust-
store, this will not be required in later releases when we
WSIT starts supporting CertStore(s)
 [java] Added Key Entry :xws-security-server
 [java] Added Key Entry :xws-security-client

[java] Added Trusted Entry :xwss-certificate-authority
 [java] Added Key Entry :wssip
 [java] Added Trusted Entry :xws-security-client
 [java] Added Trusted Entry :xws-security-server
 [java] Added Trusted Entry :wssip

[echo] Adding JVM Option for https outbound alias, this
will take atleast One Minute.
...

5. If you’d like to verify that the updates were successful, follow these steps:

a. Change to the directory containing the GlassFish keystore and truststore
files, <AS_HOME>/domains/domain1/config.

b. Verify that the v3 certificate has been imported into the GlassFish trust-
store. To do this, run the following keytool command:
<JDK_HOME>/bin/keytool -list -keystore cacerts.jks -alias

wssip -storepass changeit

If the certificates are successfully updated, your response will look
something like this:
wssip, Aug 20, 2007, trustedCertEntry,

Certificate fingerprint (MD5):

1A:0E:E9:69:7D:D0:80:AD:5C:85:47:91:EB:0D:11:B1

If the certificates were not successfully update, your response will look
something like this:
keytool error: java.lang.Exception: Alias <wssip> does not

exist

c. Verify that the v3 certificate has been imported into the GlassFish key-
store. To do this, run the following keytool command:

SPECIFYING ALIASES WITH THE UPDATED STORES 77
<JDK_HOME>/bin/keytool -list -keystore keystore.jks -alias

xws-security-server -storepass changeit

<JDK_HOME>/bin/keytool -list -keystore keystore.jks -alias

xws-security-client -storepass changeit

If the certificates were successfully updated, your response should look
something like this:
xws-security-server, Aug 20, 2007, PrivateKeyEntry,

Certificate fingerprint (MD5):

E4:E3:A9:02:3C:B0:36:0C:C1:48:6E:0E:3E:5C:5E:84

If your certificates were not successfully update, your response will
look more like this:
keytool error: java.lang.Exception: Alias <xws-security-

server> does not exist

NOTE: The XWSS keystore(s) are sample keystores containing sample v3 certif-
icates. These sample keystores can be used for development and testing of secu-
rity with WSIT technology. Once an application is in production, you should
definitely use your own v3 certificates issued by a trusted authority. In order to
use WSIT security on GlassFish, you will have to import your trusted stores into
GlassFish’s keystore and specify those certificates from NetBeans IDE.

Specifying Aliases with the Updated
Stores
The configuration of the aliases for all containers (Tomcat, GlassFish) and for all
applications (JSR-109-compliant and non-JSR-109-compliant), except for appli-
cations that use a Security Token Service (STS) mechanism, is as shown in Table
6–3:

Table 6–3 Keystore and Truststore Aliases

Keystore Alias Truststore Alias

Client-Side
Configuration

xws-security-client xws-security-server

Server-Side
Configuration

xws-security-server xws-security-client

78 USING WSIT SECURITY
The configuration of the aliases for applications that use a Security Token Ser-
vice (STS) mechanism is as shown in Table 6–4:

Configuring the Keystore and Truststore
NetBeans IDE already knows the location of the default keystore file and its
password, but you need to specify which alias is to be used. The following sec-
tions discuss configuring the keystore on the service and on the client.

Configuring the Keystore on a Service
A keystore is a database of private keys and their associated X.509 certificate
chains authenticating the corresponding public keys. A key is a piece of informa-
tion that controls the operation of a cryptographic algorithm. For example, in
encryption, a key specifies the particular transformation of plaintext into cipher-
text, or vice versa during decryption. Keys are used in digital signatures for
authentication.

To configure a keystore on a service, perform the following steps:

1. Check the table in Summary of Service-Side Configuration Requirements
(page 53) to see if a keystore needs to be configured for the selected secu-
rity mechanism. If so, continue.

2. Right-click the web service and select Edit Web Service Attributes. The
Web Service Attributes editor is displayed.

3. Enable Secure Service, then select a security mechanism.

4. Check the tables in Summary of Service-Side Configuration Requirements
(page 53) to see what keystore configuration, if any, is required for that
mechanism.

Table 6–4 Keystore and Truststore Aliases for STS

Keystore Alias Truststore Alias

Client-Side
Configuration

xws-security-client xws-security-server

STS
Configuration

xws-security-client wssip

CONFIGURING THE KEYSTORE AND TRUSTSTORE 79
5. Click the Keystore button. The following dialog displays:

Figure 6–5 Keystore Configuration dialog

6. Depending on what is required for the selected mechanism, you may spec-
ify the following information in the Keystore Configuration dialog:

• Location—Use the Browse button to specify the location and name of
the keystore. By default, this field specifies the GlassFish keystore file,
<AS_HOME>/domains/domain1/config/keystore.jks.

• Keystore Password—Specifies the password for the keystore file. If
you are running under GlassFish, GlassFish’s password is already
entered. If you have changed the keystore’s password from the default,
you must specify the correct value in this field.

• Load Aliases—Click the Load Aliases button to populate the Alias field
with the aliases contained in the keystore file. The Location and Store
Password fields must be specified correctly for this option to work.

• Alias—Specifies the alias of the certificate in the specified keystore to
be used for authentication. Refer to the table in Specifying Aliases with
the Updated Stores (page 77) to determine which alias to choose for the
selected security mechanism.

• Key Password—Specifies the password of the key within the keystore.
For this sample, leave this blank. For this field, the default assumes the
key password is the same as the store password, so you only need to
specify this field when the key password is different.

NOTE: The Key Password field enables you to specify a password for the
keystore used by the application. When specified, this password is stored
in a WSIT configuration file in clear text, which is a security risk. Setting
the keystore password in the development environment is fine, however,
when you go into production, remember to use the container’s Callback
Handler to obtain the keys from the keystore. This eliminates the need for

80 USING WSIT SECURITY
the keystore passwords to be supplied by the users. You can also specify
the passwords for keystores and truststores by specifying a Callback Han-
dler class that implements the javax.security.auth.callback.Call-

backHandler interface in the Key Password or Store Password fields.

When creating JSR-109-compliant application, GlassFish will only use
the default CallbackHandlers and Validators, and you cannot override the
location of the keystore and truststore files. Any attempt to override the
default location will be ignored. You do, however, need to specify the
keystore and truststore locations in these dialogs in order to specify the
alias.

When creating non-JSR-109-compliant application, you can specify the
passwords for keystores and truststores by specifying a CallbackHandler
class that implements the javax.security.auth.callback.Callback-

Handler interface in the Key Password or Store Password fields.

7. Click OK to close the dialog.

Configuring the Truststore on a Service
A truststore is a database of trusted entities and their associated X.509 certificate
chains authenticating the corresponding public keys.

The truststore contains the Certificate Authority (CA) certificates and the certifi-
cate(s) of the other party to which this entity intends to send encrypted (confi-
dential) data. This file must contain the public key certificates of the CA and the
client’s public key certificate. Any kind of encryption without WS-SecureCon-
versation will generally require that a truststore be configured on the client side.
Any kind of signature without WS-SecureConversation will generally require a
truststore on the server side.

NOTE: For this release, we are showing that you place the trusted certificates of
other parties in GlassFish’s truststore, cacerts.jks. This is not a recommended
practice because any certificate you add to the cacerts.jks file effectively
means it can be a trusted root for any and all certificate chains, which can be a
security problem. In future releases, trusted certificates from other parties will be
placed in a certstore and only trusted roots will be placed inside cacerts.jks.

CONFIGURING THE KEYSTORE AND TRUSTSTORE 81
To set the truststore configuration options on a service, perform the following
steps:

1. Check the table in Summary of Service-Side Configuration Requirements
(page 53) to see if a truststore is required for the selected security mecha-
nism. If so, continue.

2. Right-click the web service and select Edit Web Service Attributes. The
Web Service Attributes editor is displayed.

3. Enable Secure Service.

4. Click the Truststore button.

5. On the Truststore Configuration page, specify the following options:

• Location—By default, the location and name of the truststore that
stores the public key certificates of the CA and the client’s public key
certificate is already entered. The GlassFish truststore file is
<AS_HOME>/domains/domain1/config/cacerts.jks.

• Store Password—Specifies the password for the truststore. If you are
using GlassFish, the value of changeit is already entered. If you have
changed the value of the truststore password, you must enter the new
value in this field.

NOTE: The Store Password field enables you to specify a password for
the truststore used by the application. When specified, this password is
stored in a WSIT configuration file in clear text, which is a security risk.
Setting the truststore password in the development environment is fine,
however, when you go into production, remember to use the container’s
Callback Handler to obtain the keys from the truststore. This eliminates
the need for the truststore passwords to be supplied by the users. You
can also specify the passwords for keystores and truststores by specify-
ing a CallbackHandler class that implements the javax.secu-

rity.auth.callback.CallbackHandler interface in the Key
Password or Store Password fields.

When creating JSR-109-compliant application, GlassFish will only use
the default CallbackHandlers and Validators, and you cannot override
the location of the keystore and truststore files. Any attempt to override
the default location will be ignored. You do, however, need to specify
the keystore and truststore locations in these dialogs in order to specify
the alias.

82 USING WSIT SECURITY
• Load Aliases—Click the Load Aliases button to populate the Alias field
with the aliases contained in the truststore file. The Location and Store
Password fields must be specified correctly for this option to work.

• Alias—Specifies the peer alias of the certificate in the truststore that is
to be used when the client needs to send encrypted data. Refer to the
table in Specifying Aliases with the Updated Stores (page 77) to deter-
mine which alias is appropriate for the selected security mechanism.

A truststore contains trusted other-party certificates and certificates of
Certificate Authorities (CA). A peer alias is the alias of the other party
(peer) that the sending party needs to use to encrypt the request.

6. Click OK to close the dialog.

Configuring the Keystore and Truststore on a
Client
On the client side, a keystore and truststore file must be configured for some of
the security mechanisms. Refer to the table in Summary of Client-Side Configu-
ration Requirements (page 55) for information on which mechanisms require the
configuration of keystores and truststores. If the mechanism configured for the
service requires the configuration of keystores and truststores, follow these steps:

1. Check the table in Summary of Client-Side Configuration Requirements
(page 55) to see if a keystore needs to be configured for the client for the
selected security mechanism. If so, continue.

2. In the Projects window, expand the node for the web service client.

3. Expand the Web Service References node.

4. Right-click the node for the web service reference for which you want to
configure security options.

5. Select Edit Web Service Attributes.

When the Web Service References Attributes Editor is opened, select the
WSIT Configuration tab to display the WSIT options.

6. Expand the Certificates section to specify the keystore and truststore infor-
mation if required by the service.

7. Depending on what is required for the selected mechanism, you may spec-
ify the following information in the Certificates section:

CONFIGURING THE KEYSTORE AND TRUSTSTORE 83
• Keystore Location—The directory and file name containing the certifi-
cate key to be used to authenticate the client. By default, the location is
already set to the default GlassFish keystore, <AS_HOME>/domains/

domain1/config/keystore.jks

• Keystore Password—The password for the keystore used by the client.
By default, the password for the GlassFish keystore is already entered.
This password is changeit.

NOTE: When specified, this password is stored in a WSIT configuration
file in clear text. Setting the keystore password in the development envi-
ronment is fine, however, when you go into production, remember to
use the container’s default CallbackHandler to obtain the keys from
the keystore. This eliminates the need for the keystore passwords to be
supplied by the users. You can also specify the passwords for keystores
and truststores by specifying a CallbackHandler class that implements
the javax.security.auth.callback.CallbackHandler interface in
the Keystore Password, Truststore Password, or Key Password fields.

• Load Aliases—Click this button to populate the Alias list with all of the
certificates available in the selected keystore. This option will only work
if the keystore location and password are correct.

• Keystore Alias—Select the alias in the keystore. Refer to the table in
Specifying Aliases with the Updated Stores (page 77) to determine
which alias is appropriate for the selected security mechanism.

• Key Password—If the client key has been password-protected, enter the
password for this key. The GlassFish certificate key password is
changeit.

• Truststore Location—The directory and file name of the client truststore
containing the certificate of the server. By default, this field points to the
default GlassFish truststore, <AS_HOME>/domains/domain1/config/

cacerts.jks.

• Truststore Password—The password for the truststore used by the client.
By default, the password for the GlassFish truststore is already speci-
fied. The password is changeit.

NOTE: When specified, this password is stored in a WSIT configuration
file in clear text. Setting the truststore password in the development
environment is fine; however, when you go into production, remember
to use the container’s default CallbackHandler to obtain the keys from
the keystore. This eliminates the need for the keystore passwords to be

84 USING WSIT SECURITY
supplied by the users. You can also specify the passwords for keystores
and truststores by specifying a CallbackHandler class that implements
the javax.security.auth.callback.CallbackHandler interface in
the Keystore Password, Truststore Password, or Key Password fields.

• Load Aliases—Click this button to populate the Alias list with all of the
certificates available in the selected keystore. This option will only work
if the truststore location and password are correct.

• Truststore Alias—Select the alias of the server certificate and private key
in the client truststore. Refer to the table in Specifying Aliases with the
Updated Stores (page 77) to determine which alias is appropriate for the
selected security mechanism.

8. When the certificates are configured as suggested for some of the examples
in this chapter, the dialog will look like this:

Figure 6–6 Client-side Certificate Configuration Dialog

9. Click OK to close the dialog.

CONFIGURING VALIDATORS 85
Configuring Validators
A validator is an optional set of classes used to check the validity of a token, a
certificate, a timestamp, or a username and password.

Applications that run under a GlassFish 9.1 container do not need to configure
Callback Handlers and Validators when using the IDE with WSIT enabled. This
is because the container handles the callbacks and validation. You only need to
make sure that the certificates are available at locations that GlassFish requires
and/or create authorized users using the Admin Console (described in Adding
Users to GlassFish (page 73).

Validators are always optional because there are defaults in the runtime (regard-
less of the container and regardless of whether the application is a JSR-109 or a
non-JSR-109 deployment.) For non-JSR-109 deployment, you only need to
specify a validator when you want to override the default validators. For JSR-
109 deployments, there is no point in specifying an overriding validator, as these
will be overridden back to the defaults by GlassFish, thus the Validators button is
not available when the selected web service is a JSR-109-compliant application.

To set the validator configuration options for a non-JSR-109-compliant applica-
tion (such as a J2SE client), perform the following steps:

1. Right-click the web service and select Edit Web Service Attributes. The
Web Service Attributes editor is displayed.

2. Enable Secure Service.

3. Click the Validator button.

4. On the Validator Configuration page, specify the following options, when
necessary:

• Username Validator—Specifies the validator class to be used to vali-
date username and password on the server side. This option is only used
by a web service.

NOTE: When using the default Username Validator, make sure that the
username and password of the client are registered with GlassFish
(using Admin Console, described in Adding Users to GlassFish,
page 73) if using GlassFish, or is included in the tomcat-users.xml

file if using Tomcat.

• Timestamp Validator—Specifies the validator class to be used to
check the token timestamp to determine whether the token has expired
or is still valid.

86 USING WSIT SECURITY
• Certificate Validator—Specifies the validator class to be used to vali-
date the certificate supplied by the client or the web service.

• SAML Validator—Specifies the validator class to be used to validate
SAML token supplied by the client or the web service.

5. Click OK to close the dialog.

Securing an Operation
This section discusses specifying security mechanisms at the level of a web ser-
vice operation.

The <operation_name>Operation section consists of three subsections. These
include:

• Operation

At times, you may need to configure different operations with different
supporting tokens. You may wish to configure security at the operation
level, for example, in the situation where only one operation requires a
UsernameToken to be passed and the rest of the operations do not require
this, or in the situation where only one operation needs to be endorsed by
a special token and the others do not.

• Input Message and Output Message

Security mechanisms at this level are used to specify what is being pro-
tected and the level of protection required.

In this section, you can specify parts of a message that require integrity
protection (digital signature) and/or confidentiality (encryption). When
you do this, the specified part of the message, outside of security headers,
requires signature and/or encryption. For example, a message producer
might submit an order that contains an orderID header. The producer
signs and/or encrypts the orderID header (the SOAP message header)
and the body of the request (the SOAP message body). Parts that can be
signed and/or encrypted include the body, the header, the local name of
the SOAP header, and the namespace of the SOAP header.

You can also specify arbitrary elements in the message that require integ-
rity protection and/or confidentiality. Because of the mutability of some
SOAP headers, a message producer may decide not to sign and/or encrypt
the SOAP message header or body as a whole, but instead sign and/or
encrypt elements within the header and body. Elements that can be signed

SPECIFYING SECURITY AT THE OPERATION, INPUT MESSAGE, OR OUTPUT MESSAGE LEVEL 87
and/or encrypted include an XPath expression or a URI which indicates
the version of XPath to use.

Specifying Security at the Operation,
Input Message, or Output Message Level
To specify security mechanisms at the level of the operation, input message, or
output message, perform the following steps:

1. Right-click the web service and select Web Service Attributes. The Web
Service Attributes editor is displayed.

2. Select Secure Service.

3. Select a security mechanism.

The following mechanisms do not support Input message level protection:

• Username Authentication with Symmetric Keys (page 62)

• Transport Security (SSL) (page 63)

• Message Authentication over SSL (page 65)

• SAML Authorization over SSL (page 65)

• SAML Sender Vouches with Certificates (page 66)

4. Expand the <operation>Operation node.

5. Expand the Operation node. It should look like Figure 6–7:

88 USING WSIT SECURITY
Figure 6–7 Web Service Attributes Editor Page - Operation Level

6. Expand the Operation section. The section will be grayed out if Secure
Service is not selected.

7. Specify the following option, as appropriate:

• Transactions—Select an option from the Transactions list to specify a
level at which transactions will be secured. For this release, transactions
will only use SSL for security. Transactions are discussed in Chapter 11,
Using Atomic Transactions.

8. Expand the Input Message section. This section will be grayed out if
Secure Service is not selected.

9. Specify the following options, as appropriate:

• Authentication Token— Specifies which supporting token will be used
to sign and/or encrypt the specified message parts. Options include
Username, X509, SAML, Issued, or None. For further description of
these options, read Supporting Token Options (page 90).

SPECIFYING SECURITY AT THE OPERATION, INPUT MESSAGE, OR OUTPUT MESSAGE LEVEL 89
• Signed—Specifies that the authentication token must be a signed, sup-
porting token. A signed, supporting token is signed by the primary sig-
nature token and is part of primary signature.

• Endorsing—Specifies that the authentication token must be endorsed.
With an endorsing supporting token, the key represented by the token is
used to endorse/sign the primary message signature.

If both Signed and Endorsing are selected, the authentication token must
be a signed, endorsing, supporting token. In this situation, the token is
signed by the primary signature. The key represented by the token is used
to endorse/sign the primary message signature.

10.For the Input Message and/or Output Message, click the Message Parts
button to specify which parts of the message need to be encrypted, signed,
and/or required. See the following section for more information on the
options in the Message Parts dialog. The Message Parts dialogue displays.
It should look like Figure 6–8:

Figure 6–8 Web Service Attributes Editor Page - Operation Level

11.Click in a checkbox to the right of the message part or element that you
would like to sign, encrypt or require.

• Select Sign to specify the parts or elements of a message that require
integrity protection (digital signature).

• Select Encrypt to specify the parts or elements of a message that require
confidentiality (encryption).

• Select Require to specify the set of parts and/or elements that a message
must contain.

90 USING WSIT SECURITY
12.Click Add Body to add a row for the message body. This will only be nec-
essary if the row has been removed.

13.Click Add Header to add a row for either a specific SOAP header part or
for all SOAP header parts. This will only be necessary if the SOAP header
row in question has been deleted. The header parts that are available to sign
and/or encrypt before clicking the Add Header button include To
(Addressing), From (Addressing), FaultTo (Addressing), ReplyTo
(Addressing), MessageID (Addressing), RelatesTo (Addressing), and
Action (Addressing). After clicking Add Header, and then clicking All
Headers, you may also specify AckRequested (RM), SequenceAcknowl-
edgement (RM), and Sequence (RM).

14.There are no XPath elements displayed by default. Click Add XPath to add
rows that enable you to specify signature and/or encryption for an XPath
expression or a URI which indicates the version of XPath to use. By
default, the Required field is selected. This is an editable field. Double
click on the XPath row to specify the XPath expression or URI. Only one
XPath element is allowed.

NOTE: There is a limitation when specifying XPath elements. To use
XPath elements, switch off Optimize Security manually by adding the
disableStreamingSecurity policy assertion. For information on how to
do this, refer to http://blogs.sun.com/venu/ for more information on
disableStreamingSecurity.

15.To remove an element, select it in the Message Part section, and then click
Remove to remove it from message security.

16.Click OK to save these settings.

Supporting Token Options
The following are choices for supporting tokens:

• Username Token

A username token is used to identify the requestor by their username, and
optionally using a password (or shared secret, or password equivalent) to
authenticate that identity. When using a username token, the user must be
configured on GlassFish. For information on configuring users on Glass-
Fish, read Adding Users to GlassFish (page 73).

http://blogs.sun.com/venu/

CONFIGURING A SECURE TOKEN SERVICE (STS) 91
• X.509 Certificate

An X.509 certificate specifies a binding between a public key and a set of
attributes that includes (at least) a subject name, issuer name, serial num-
ber, and validity interval. An X.509 certificate may be used to validate a
public key that may be used to authenticate a SOAP message or to iden-
tify the public key with a SOAP message that has been encrypted. When
this option is selected, you must specify a truststore. For information on
specifying a truststore, read Configuring the Truststore on a Service
(page 80).

• Issued Token

An issued token is a token issued by a trusted Secure Token Service
(STS). The service does not trust the client directly, but instead trusts
tokens issued by a designated STS. In other words, the STS is taking on
the role of a second service with which the client has to securely authenti-
cate. The issued tokens contain a key, which is encrypted for the server
and which is used for deriving new keys for signing and encrypting.

• SAML Token

A SAML Token uses Security Assertion Markup Language (SAML)
assertions as security tokens.

Configuring A Secure Token Service
(STS)

A Secure Token Service (STS) is a Web service that issues security tokens. That
is, it makes assertions based on evidence that it trusts, to whoever trusts it (or to
specific recipients). To communicate trust, a service requires proof, such as a
signature, to prove knowledge of a security token or set of security tokens. A ser-
vice itself can generate tokens or it can rely on a separate STS to issue a security
token with its own trust statement (note that for some security token formats this
can just be a re-issuance or co-signature). This forms the basis of trust brokering.

The issued token security model includes a target server, a client, and a trusted
third party called a Security Token Service (STS). Policy flows from server to
client, and from STS to client. Policy may be embedded inside an issued token
assertion, or acquired out-of-hand. There may be an explicit trust relationship
between the server and the STS. There must be a trust relationship between the
client and the STS.

92 USING WSIT SECURITY
When the web service being referenced by the client uses any of the STS secu-
rity mechanisms (refer to table in Summary of Service-Side Configuration
Requirements (page 53), an STS must be specified. You can specify the STS in
one of these ways.

• On the service side, specify the endpoint of the Issuer element and/or spec-
ify the Issuer Metadata Exchange (Mex) address of the STS.

If you need to create a third-party STS, follow the steps in Creating a
Third-Party STS (page 92).

If you already have an STS that you want to use, follow the steps in Spec-
ifying an STS on the Service Side (page 95).

An example that creates and uses an STS can be found in Example: STS
Issued Token (STS) (page 116).

• On the client side, specify the information for a preconfigured STS. This
is mainly used for a local STS that is in the same domain as the client. Con-
figuring the STS for the client is described in Specifying an STS on the Cli-
ent Side (page 95).

Creating a Third-Party STS
Use the STS wizard to create an STS from a WSDL file. When using the STS
wizard, provide the name of the STS implementation class. This class must
extend com.sun.xml.ws.security.trust.sts.BaseSTSImpl. After complet-
ing the steps of the wizard, your application will contain a new service that is an
STS and includes a provider implementation class, STS WSDL, and a WSIT
configuration file with a predefined set of policies.

To use the STS wizard to create an STS, follow these steps:

1. Create a new project for the STS by selecting File→New Project.

2. Select Web, then Web Application, then Next.

3. Enter a Project Name. Click Finish.

4. Right-click the STS Project node, select New, then click File/Folder at the
top.

5. Select Web Service from the Categories list.

6. Select Secure Token Service (STS) from the File Type(s) list.

7. Click Next.

8. Enter a name for the Web Service Class Name.

CREATING A THIRD-PARTY STS 93
9. Enter or select a name for the Package list.

10.Click Finish.

The IDE takes a while to create the STS. When created, it displays under
the project’s Web Services node as <your_STS>Service, and the Java file
displays in the right pane.

11.The STS wizard creates an empty implementation of provider class.
Implement the provider implementation class. An example of this can be
found in Creating and Securing the STS (STS) (page 118).

12.Back in the Projects window, right-click the STS project folder, and select
Edit Web Service Attributes to configure the STS.

13.Select Secure Service.

14.Select a Security Mechanism (but not one of the STS mechanisms). The
example application uses Username Authentication with Symmetric Keys.

15.Select the Configure button. For Algorithm Suite option, specify a value
that matches the value of the web service. Set the Key Size to 128 if you
have not configured Unlimited Strength Encryption. Select OK to close the
configuration dialog.

NOTE: Some of the algorithm suite settings require that Unlimited
Strength Encryption be configured in the Java Runtime Environment
(JRE), particularly the algorithm suites that use 256 bit encryption.
Instructions for downloading and configuring unlimited strength encryp-
tion can be found at the following URLS:

http://java.sun.com/products/jce/javase.html

http://java.sun.com/javase/downloads/index_jdk5.jsp#docs

16.Select Act as Secure Token Service (STS). The default values will create
a valid STS. Optionally, you can change the following configuration
options:

• Issuer—Specify an identifier for the issuer for the issued token. This
value can be any string that uniquely identifies the STS, for example,
MySTS.

• Contract Implementation Class—Specify the actual implementation
class for the WSTrustContract interface that will handle token issu-
ance, validation, etc. Default value is
com.sun.xml.ws.trust.impl.IssueSamlTokenContractImpl for
issuing SAML assertions, or click Browse to browse to another contract
implementation class.

http://java.sun.com/products/jce/javase.html
http://java.sun.com/javase/downloads/index_jdk5.jsp#docs

94 USING WSIT SECURITY
• Life Time of Issued Tokens—The life span of the token issued by the
STS. Default value is 300,000 ms.

• Encrypt Issued Key—Select this option if the issued key should be
encrypted using the service certificate. Default is true.

• Encrypt Issued Token—Select this option if the issued token should be
encrypted using the service certificate. Default is false.

17.Optionally, to add one or more Service Providers that have a trust relation-
ship with the STS, click the Add button and specify the following config-
uration options:

• Provider Endpoint URI—The endpoint URI of the service provider.

• Certificate Alias—The alias of the certificate of the service provider in
the keystore.

• Token Type—The type of token the service provider requires, for
example, urn:oasis:names:tc:SAML1.0:assertion.

• Key Type—The type of key the service provider requires. The choices
are public key or symmetric key. Symmetric key cryptography relies on
a shared secret and is usually faster than public key cryptography. Pub-
lic key cryptography relies on a key that is made public to all and is pri-
marily used for encryption but can be used for verifying signatures.

18.Click OK to close the Select STS Service Provider dialog.

19.Click OK to close the STS Configuration dialog.

20.Click the Keystore button to configure the keystore. If you are using the
updated GlassFish stores, these are the settings:

• Location—Defaults to the location and name of the keystore,
<AS_HOME>/domains/domain1/config/keystore.jks.

• Store Password—Enter or accept changeit.

• Load Aliases—Click the Load Aliases button.

• Alias—Select wssip.

• Click OK to close the dialog.

21.Right-click the STS Project, select Properties. Select the Run category,
and enter the following in the Relative URL field: /

<your_STS>Service?wsdl.

22.Run the Project (right-click the Project and select Run Project).

23.To view the STS WSDL, append <your_STS>Service to the URL of the
deployed application in the browser. For the example application (Exam-
ple: STS Issued Token (STS), page 116), you would view the STS WSDL

SPECIFYING AN STS ON THE SERVICE SIDE 95
by browsing to
http://localhost:8080//MySTSProject/MySTSService?wsdl.

Specifying an STS on the Service Side
This section discusses how to specify a Security Token Service that can be refer-
enced by the service. On the service side, you select a security mechanism that
includes STS in its title.

The STS itself is secured using a separate (non-STS) security mechanism. The
security configuration of the client-side of this application is dependent upon the
security mechanism selected for the STS, and not on the security mechanism
selected for the application.

To specify an STS for the web service, follow these steps:

1. Right-click the node for the web service you want to secure.

2. Select Edit Web Service Attributes.

3. Select Secure Service.

4. Select a Security Mechanism that specifies STS from the list.

5. Click Configure to specify the STS information.

6. Enter the Issuer Address and/or Issuer Metadata Address.

When the Issuer Address and the Metadata values are the same, you only
need to enter the Issuer Address. For the example application, the Issuer
Address would be http://localhost:8080/MySTSProject/MySTSSer-

vice.

7. Set the Algorithm Suite value so that the algorithm suite value of the ser-
vice matches the algorithm suite value of the STS.

Specifying an STS on the Client Side
Once you’ve determined whether the an STS is required to be configured on the
client side (see Summary of Client-Side Configuration Requirements, page 55),
configure the client Secure Token Service options, as follows:

1. In the Projects window, expand the node for the web services client.

2. Expand the Web Service References node.

3. Right-click the node for the web service reference for which you want to
configure security options.

96 USING WSIT SECURITY
4. Select Edit Web Service Attributes.

When the Web Service References Attributes Editor is opened, select the
WSIT tab to display the WSIT options.

5. Expand the Secure Token Service section to specify the information
required by the service. The following options are available for configura-
tion:

• Endpoint—The endpoint of the STS.

• WSDL Location—The location of the WSDL for the STS.

• Metadata—The metadata address for the STS.

• Service Name—The service name of the STS.

• Port Name—The port name of the STS.

• Namespace—The namespace for the service in the WSDL.

The Endpoint field is a mandatory field. Depending on how you plan to
configure the STS, you can provide either Metadata information or infor-
mation regarding the WSDL Location, Service Name, Port Name and
Namespace. The following section contain a few example STS configura-
tions. When the options are configured along the lines of STS Example 2:
Endpoint with WSDL Location, Service Name, Port Name, and
Namespace (page 97), the dialog looks like this:

SPECIFYING AN STS ON THE CLIENT SIDE 97
Figure 6–9 WSIT Configuration Page - Secure Token Service on Client

STS Example 1: Endpoint with Metadata
• Endpoint:

http://131.107.72.15/

Security_Federation_SecurityTokenService_Indigo/

Symmetric.svc/

Scenario_5_IssuedTokenForCertificate_MutualCertificate11

• Metadata:
http://131.107.72.15//

Security_Federation_SecurityTokenService_Indigo/

Symmetric.svc

STS Example 2: Endpoint with WSDL Location,
Service Name, Port Name, and Namespace

• Endpoint:
http://131.107.72.15/

98 USING WSIT SECURITY
Security_Federation_SecurityTokenService_Indigo/

Symmetric.svc/

Scenario_5_IssuedTokenForCertificate_MutualCertificate11

• WSDL Location:
http://131.107.72.15//

Security_Federation_SecurityTokenService_Indigo/

Symmetric.svc?wsdl

• Service Name:
MySTSService

• Port Name:
CustomBinding_IMySTSService

• Namespace:
http://tempuri.org/

Example Applications
The following example applications demonstrate configuring web services and
web service clients for different security mechanisms. If you are going to work
through the examples sequentially, you must manually undo the changes to the
service and then refresh the client in order for the client to receive the most
recent version of the service’s WSDL file, which contains the latest security con-
figuration information.

• Example: Username Authentication with Symmetric Keys (UA) (page 98)

• Example: Mutual Certificates Security (MCS) (page 101)

• Example: Transport Security (SSL) (page 104)

• Example: SAML Authorization over SSL (SA) (page 107)

• Example: SAML Sender Vouches with Certificates (SV) (page 112)

• Example: STS Issued Token (STS) (page 116)

Example: Username Authentication with
Symmetric Keys (UA)
The section includes the following topics:

• Securing the Example Service Application (UA) (page 99)

• Securing the Example Web Service Client Application (UA) (page 100)

EXAMPLE: USERNAME AUTHENTICATION WITH SYMMETRIC KEYS (UA) 99
Securing the Example Service Application
(UA)
The following example application starts with the example provided in Chapter
2, WSIT Example Using a Web Container and NetBeans, and demonstrates add-
ing security to both the web service and to the web service client.

For this example, the security mechanism of Username Authentication with
Symmetric Keys (page 62) is used to secure the application. To add security to
the service part of the example, follow these steps:

1. If you haven’t already completed these steps, complete them now:

a. Update the GlassFish keystore and truststore files as described in Updat-
ing GlassFish Certificates (page 75).

b. Create a user on GlassFish as described in Adding Users to GlassFish
(page 73).

2. Create the CalculatorApplication example by following the steps
described in the following sections of Chapter 2, WSIT Example Using a
Web Container and NetBeans.

a. Creating a Web Service (page 24)

b. Skip the section on adding Reliable Messaging.

c. Deploying and Testing a Web Service (page 28) (first two steps only, do
not run the project yet)

3. Expand CalculatorApplication→Web Services, then right-click the node
for the web service (CalculatorWS) and select Edit Web Service
Attributes.

4. Unselect Reliable Messaging if it is selected.

5. In the CalculatorWSPortBinding section, select Secure Service.

6. From the drop-down list for Security Mechanism, select Username
Authentication with Symmetric Keys.

7. Click the Keystore button to provide your keystore with the alias identify-
ing the service certificate. To do this, click the Load Aliases button and
select xws-security-server. Click OK to close.

8. Click OK to close the WSIT Configuration dialog.

A new file is added to the project. To view the WSIT configuration file,
expand Web Pages→WEB-INF, then double-click the file wsit-

org.me.calculator.CalculatorWS.xml. This file contains the sc:Key-

Store element.

100 USING WSIT SECURITY
An example of this file can be viewed in the tutorial by clicking this link:
Service-Side WSIT Configuration Files (page 125).

9. Right-click the CalculatorApplication node and select Run Project. A
browser will open and display the WSDL file for the application.

10.Verify that the WSDL file contains the following elements: Symmet-

ricBinding and UsernameToken.

11.Follow the steps to secure the client application as described in the next
section.

Securing the Example Web Service Client
Application (UA)
This section demonstrates adding security to the web service client that refer-
ences the web service created in the previous section. This web service is
secured using the security mechanism described in Username Authentication
with Symmetric Keys (page 62). When this security mechanism is used with a
web service, the web service client must provide a username and password in
addition to specifying the certificate of the server.

To add security to the client that references this web service, complete the fol-
lowing steps:

1. Create the client application by following the steps described in Creating
a Client to Consume a WSIT-Enabled Web Service (page 29).

NOTE: Whenever you make changes on the service, refresh the client so
that the client will pick up the change. To refresh the client, right-click the
node for the Web Service Reference for the client, and select Refresh Cli-
ent.

2. Expand the node for the web service client application, Calculator-
WSServletClient.

3. Expand the node for Web Service References.

4. Right-click on CalculatorWSService, select Edit Web Service Attributes.

5. Select the WSIT Configuration tab of the CalculatorWSService dialog.

6. For this testing environment, provide a default username and password. To
do this,

a. Expand the Username Authentication node.

b. Enter the username and password that you created on GlassFish into the
Default Username and Default Password fields. If you followed the

EXAMPLE: MUTUAL CERTIFICATES SECURITY (MCS) 101
steps in the section Adding Users to GlassFish (page 73), the user name
is wsitUser and the password is changeit.

NOTE: In a production environment, you should configure a Username
Handler and a Password Handler class to eliminate the security risk asso-
ciated with the default username and password options.

7. Provide the server’s certificate by pointing to an alias in the client trust-
store. To do this, select the Certificates node, click the Load Aliases button
for the Truststore, and select xws-security-server from the Truststore
Alias list.

8. Click OK to close this dialog.

9. In the tree, drill down from the project to Source Packages→META-INF.
Double-click on CalculatorWSService.xml, and verify that lines similar to
the following are present:
<wsp:All>

<wsaws:UsingAddressing xmlns:wsaws=
"http://www.w3.org/2006/05/addressing/wsdl"/>

<sc:CallbackHandlerConfiguration
wspp:visibility="private">

<sc:CallbackHandler default="wsitUser"
name="usernameHandler"/>

<sc:CallbackHandler default="changeit"
name="passwordHandler"/>

</sc:CallbackHandlerConfiguration>
<sc:TrustStore wspp:visibility="private" location=

"home\glassfish\domains\domain1\config\cacerts.jks"
storepass="changeit" peeralias="xws-security-server"/>

</wsp:All>

An example of this file can be viewed in the tutorial by clicking this link:
Client-Side WSIT Configuration Files (page 130).

10.Right-click on the CalculatorWSServletClient node and select Run
Project.

Example: Mutual Certificates Security
(MCS)
The section includes the following topics:

• Securing the Example Service Application (MCS) (page 102)

• Securing the Example Web Service Client Application (MCS) (page 103)

102 USING WSIT SECURITY
Securing the Example Service Application
(MCS)
The following example application starts with the example provided in Chapter
2, WSIT Example Using a Web Container and NetBeans, and demonstrates add-
ing security to both the web service and to the web service client.

For this example, the security mechanism of Mutual Certificates Security
(page 63) is used to secure the application. To add security to the service part of
the example, follow these steps:

1. If you haven’t already completed these steps, complete them now:

a. Update the GlassFish keystore and truststore files as described in Updat-
ing GlassFish Certificates (page 75).

2. Create the CalculatorApplication example by following the steps
described in the following sections of Chapter 2, WSIT Example Using a
Web Container and NetBeans.

a. Creating a Web Service (page 24)

b. Skip the section on adding Reliable Messaging.

c. Deploying and Testing a Web Service (page 28) (first two steps only, do
not run the project yet)

3. Expand CalculatorApplication→Web Services, then right-click the node
for the web service, CalculatorWS, and select Edit Web Service Attributes.

4. Unselect Reliable Messaging if it is selected.

5. Select Secure Service.

6. From the drop-down list for Security Mechanism, select Mutual Certifi-
cates Security.

7. Click the Keystore button, then click the Load Aliases button and select
xws-security-server. Click OK to close the dialog.

8. Click OK to close the WSIT Configuration dialog.

A new file is added to the project. To view the WSIT configuration file,
expand Web Pages→WEB-INF, then double-click the file wsit-

org.me.calculator.CalculatorWS.xml. This file contains the sc:Key-

Store element.

9. Right-click the CalculatorApplication node and select Run Project. A
browser will open and display the WSDL file for the application.

10.Verify that the WSDL file contains the AsymmetricBinding element.

EXAMPLE: MUTUAL CERTIFICATES SECURITY (MCS) 103
11.Follow the steps to secure the client application as described in the next
section.

Securing the Example Web Service Client
Application (MCS)
This section demonstrates adding security to the web service client that refer-
ences the web service created in the previous section. This web service is
secured using the security mechanism described in Mutual Certificates Security
(page 63).

To add security to the client that references this web service, complete the fol-
lowing steps:

1. Create the client application following the steps described in Creating a
Client to Consume a WSIT-Enabled Web Service (page 29).

NOTE: Whenever you make changes on the service, refresh the client so
that the client will pick up the change. To refresh the client, right-click the
node for the Web Service Reference for the client, and select Refresh Cli-
ent.

2. Expand the node for the web service client, CalculatorWSServletClient.

3. Expand the node for Web Service References.

4. Right-click on CalculatorWSService, select Edit Web Service Attributes.

5. Select the WSIT Configuration tab of the CalculatorWSService dialog.

6. Provide the client’s private key by pointing to an alias in the keystore. To
do this,

a. Expand the Certificates node.

b. Click the Load Aliases button for the keystore.

c. Select xws-security-client from the Alias list.

7. Provide the server’s certificate by pointing to an alias in the client trust-
store. To do this, from the Certificates node,

a. Click the Load Aliases button for the truststore.

b. Select xws-security-server from the Alias list.

c. Click OK to close this dialog.

8. In the tree, drill down from the project to Source Packages→META-INF.
Double-click on CalculatorWSService.xml, and verify that lines similar to
the following are present:

104 USING WSIT SECURITY
<wsp:All>
<wsaws:UsingAddressing xmlns:wsaws=

"http://www.w3.org/2006/05/addressing/wsdl"/>
<sc:KeyStore wspp:visibility="private" location=

"C:\Sun\glassfish\domains\domain1\config\keystore.jks"
storepass="changeit" alias="xws-security-server"
keypass="changeit"/>

<sc:TrustStore wspp:visibility="private" location=
"C:\Sun\glassfish\domains\domain1\config\cacerts.jks"
storepass="changeit"
peeralias="xws-security-server"/>

</wsp:All>

9. Compile and run this application by right-clicking on the Calculator-
WSServletClient node and selecting Run Project.

Example: Transport Security (SSL)
This section includes the following topics:

• Securing the Example Service Application (SSL) (page 104)

• Securing the Example Web Service Client Application (SSL) (page 106)

Securing the Example Service Application
(SSL)
The following example application starts with the example provided in Chapter
2, WSIT Example Using a Web Container and NetBeans, and demonstrates add-
ing transport security to both the web service and to the web service client.

For this example, the security mechanism of Transport Security (SSL) (page 63)
is used to secure the application. To add security to the service part of the exam-
ple, follow these steps:

1. Create the CalculatorApplication example by following the steps
described in the following sections of Chapter 2, WSIT Example Using a
Web Container and NetBeans.

a. Creating a Web Service (page 24)

b. Skip the section on adding Reliable Messaging.

c. Deploying and Testing a Web Service (page 28) (first two steps only, do
not run the project yet)

EXAMPLE: TRANSPORT SECURITY (SSL) 105
2. Expand CalculatorApplication→Web Services, then right-click the node
for the web service, CalculatorWS, and select Edit Web Service Attributes.

3. Unselect Reliable Messaging if it is selected.

4. Select Secure Service.

5. From the drop-down list for Security Mechanism, select Transport Secu-
rity (SSL).

6. Click OK to close the WSIT Configuration dialog.

A new file is added to the project. To view the WSIT configuration file,
expand Web Pages→WEB-INF, then double-click the file wsit-

org.me.calculator.CalculatorWS.xml.

NOTE: For Transport Security, the keystore and truststore files are config-
ured outside of the NetBeans UI, in GlassFish. The keystore and truststore
files for basic SSL come pre-configured with GlassFish, so there are no
additional steps required for this configuration.

7. To require the service to use the HTTPS protocol, you have to specify the
security requirements in the service’s application deployment descriptor,
which is web.xml for a web service implemented as a servlet. To specify
the security information, follow these steps:

a. From your web service application expand Web Pages→WEB-INF.

b. Double-click web.xml to open it in the editor.

c. Select the Security tab.

d. On the Security Constraints line, click Add Security Constraint.

e. Under Web Resource Collection, click Add.

f. Enter a Name for the Resource, CalcWebResource. Enter the URL Pat-
tern to be protected, /*. Select which HTTP Methods to protect, for
example, POST. Click OK to close this dialog.

g. Check the Enable User Data Constraint box. Select CONFIDENTIAL
as the Transport Guarantee to specify that the application uses SSL.

h. Click the XML tab to view the resulting deployment descriptor addi-
tions.

8. Right-click the CalculatorApplication node and select Run Project. If the
server presents its certificate, s1as, accept this certificate. A browser will
open and display the WSDL file for the application.

9. Follow the steps to secure the client application as described in the next
section.

106 USING WSIT SECURITY
Securing the Example Web Service Client
Application (SSL)
This section demonstrates adding security to the web service client that refer-
ences the web service created in the previous section. This web service is
secured using the security mechanism described in Transport Security (SSL)
(page 63).

To add security to the client that references this web service, complete the fol-
lowing steps:

1. Create the client application by following the steps described in Creating
a Client to Consume a WSIT-Enabled Web Service (page 29), with the
exception that you need to specify the secure WSDL when creating the
Web Service Client. To do this, create the client application up to the step
where you create the Servlet (step 7 as of this writing) by following the
steps described in Creating a Client to Consume a WSIT-Enabled Web Ser-
vice (page 29), with the following exception:

a. In the step where you are directed to cut and paste the URL of the web
service that you want the client to consume into the WSDL URL field,
enter https://<fully-qualified-hostname>:8181/CalculatorAp-
plication/CalculatorWSService?wsdl (changes indicated in bold)
to indicate that this client should reference the web service using the
secure port. The first time you access this service, accept the certificate
(s1as) when you are prompted. This is the server certificate popping up
to confirm its identity to the client.

In some cases, you might get an error dialog telling you that the URL
https://<fully-qualified-hostname>:8181/CalculatorAppli-

cation/CalculatorWSService?wsdl couldn't be downloaded. How-
ever, this the correct URL, and it does load when you run the service.
So, when this error occurs, repeat the steps that create the Web Service
Client using the secure WSDL. The second time, the web service refer-
ence is created and you can continue creating the client.

NOTE: If you prefer to use localhost in place of the fully-qualified
hostname (FQHN) in this example, you must follow the steps in Trans-
port Security (SSL) Workaround (page 64).

b. Continue creating the client following the remainder of the instructions
in Creating a Client to Consume a WSIT-Enabled Web Service
(page 29).

EXAMPLE: SAML AUTHORIZATION OVER SSL (SA) 107
NOTE: Whenever you make changes on the service, refresh the client so
that the client will pick up the change. To refresh the client, right-click the
node for the Web Service Reference for the client, and select Refresh Cli-
ent.

2. Compile and run this application by right-clicking on the Calculator-
WSServletClient node and selecting Run Project.

Example: SAML Authorization over SSL
(SA)
The section includes the following topics:

• Securing the Example Service Application (SA) (page 107)

• Securing the Example Web Service Client Application (SA) (page 109)

Securing the Example Service Application
(SA)
The following example application starts with the example provided in Chapter
2, WSIT Example Using a Web Container and NetBeans, and demonstrates add-
ing security to both the web service and to the web service client.

For this example, the security mechanism of SAML Authorization over SSL
(page 65) is used to secure the application. The steps are similar to the ones
described in Example: Username Authentication with Symmetric Keys (UA)
(page 98), with the addition of the writing of a client-side SAML callback han-
dler to populate the client's request with a SAML assertion.

To add security to the service part of the example, follow these steps:

1. If you haven’t already completed these steps, complete them now:

a. Update the GlassFish keystore and truststore files as described in Updat-
ing GlassFish Certificates (page 75).

b. Create a user on GlassFish as described in Adding Users to GlassFish
(page 73).

2. Create the CalculatorApplication example by following the steps
described in the following sections of Chapter 2, WSIT Example Using a
Web Container and NetBeans.

a. Creating a Web Service (page 24)

108 USING WSIT SECURITY
b. Skip the section on adding Reliable Messaging.

c. Deploying and Testing a Web Service (page 28) (first two steps only, do
not run the project yet)

3. Expand CalculatorApplication→Web Services, then right-click the node
for the web service, CalculatorWS, and select Edit Web Service Attributes.

4. Unselect the Reliable Messaging option if it is selected.

5. Select Secure Service.

6. From the drop-down list for Security Mechanism, select SAML Authori-
zation over SSL.

7. Click the Keystore button to provide your keystore with the alias identify-
ing the service certificate and private key. To do this, click the Load Aliases
button and select xws-security-server. Click OK to close the dialog.

8. For this example, the Truststore information that you need is specified by
default, so there is no need to change these settings.

9. Click OK to exit the WSIT Configuration editor.

A new file is added to the project. To view the WSIT configuration file,
expand Web Pages→WEB-INF, then double-click the file wsit-

org.me.calculator.CalculatorWS.xml. This file contains the sc:Key-

Store and sc:Truststore elements.

10.To require the service to use SSL, you have to specify the security require-
ments in the service’s application deployment descriptor, which is
web.xml for a web service implemented as a servlet. To specify the secu-
rity information, follow these steps:

a. From your web service application expand Web Pages→WEB-INF.

b. Double-click web.xml to open it in the editor.

c. Select the Security tab.

d. On the Security Constraints line, click Add Security Constraint.

e. Under Web Resource Collection, click Add.

f. Enter a Name for the Resource, CalcWebResource. Enter the URL Pat-
tern to be protected, /*. Select which HTTP Methods to protect, for
example, POST. Click OK to close this dialog.

g. Check the Enable User Data Constraint box. Select CONFIDENTIAL
as the Transport Guarantee to specify that the application uses SSL.

h. Click the XML tab to view the resulting deployment descriptor addi-
tions.

EXAMPLE: SAML AUTHORIZATION OVER SSL (SA) 109
11.Right-click the CalculatorApplication node and select Run Project.
Accept the s1as certificate if you are prompted to. A browser will open
and display the WSDL file for the application.

12.Verify that the WSDL file contains the TransportBinding and Signed-

SupportingTokens element, which in turn contains a SamlToken element.

13.Follow the steps to secure the client application as described in the next
section.

Securing the Example Web Service Client
Application (SA)
This section demonstrates adding security to the web service client that refer-
ences the web service created in the previous section. This web service is
secured using the security mechanism described in SAML Authorization over
SSL (page 65).

To add security to the client that references this web service, complete the fol-
lowing steps:

1. For this example, we are using a non-JSR-109-compliant client for variety.
To do this, create the client application up to the step where you create the
Servlet (step 7 as of this writing) by following the steps described in Cre-
ating a Client to Consume a WSIT-Enabled Web Service (page 29), with
the following exceptions:

a. In the step where you are directed to cut and paste the URL of the web
service that you want the client to consume into the WSDL URL field,
enter https://<fully-qualified-hostname>:8181/CalculatorAp-
plication/CalculatorWSService?wsdl, to indicate that this client
should reference the web service using the secure port. The first time
you access this service, accept the certificate (s1as) when you are
prompted. This is the server certificate popping up to confirm its identity
to the client.

In some cases, you might get an error dialog telling you that the URL
https://<fully-qualified-hostname>:8181/CalculatorAppli-

cation/CalculatorWSService?wsdl couldn't be downloaded. How-
ever, this the correct URL, and it does load when you run the service.
So, when this error occurs, repeat the steps that create the Web Service
Client using the secure WSDL. The second time, the web service refer-
ence is created and you can continue creating the client.

110 USING WSIT SECURITY
NOTE: If you prefer to use localhost in place of the fully-qualified
hostname (FQHN) in this example, you must follow the steps in Trans-
port Security (SSL) Workaround (page 64).

b. Name the application CalculatorClient (since it’s not a servlet.).

2. Instead of creating a client servlet as is described in Creating a Client to
Consume a WSIT-Enabled Web Service (page 29), we are just going to add
the web service operation to the generated index.jsp file to create a non-
JSR-109 client. To do this,

a. If the index.jsp file is not open in the right pane, double-click it to
open it.

b. Drill down through the Web Service References node until you get to
the add operation.

c. Drag the add operation to the line immediately following the following
line:
<h1>JSP Page</h1>

d. Edit the values for i and j if you’d like.

3. Write a SAMLCallback handler for the client side to populate a SAML
assertion into the client's request to the service. A suggested method for
creating the SAMLCallbackHandler is shown below:

a. Right-click on the CalculatorClient node.

b. Select New→Java Package.

c. For Package Name, enter xwss.saml.

d. Click Finish.

e. Drill down from CalculatorClient→Source Packages→xwss.saml.

f. Right-click on xwss.saml. Select New→File/Folder.

g. From the Categories list, select Java Classes.

h. From the File Types list, select Empty Java File.

i. Click Next.

j. For Class Name, enter SamlCallbackHandler.

k. Click Finish.

l. The empty file displays in the IDE.

m.Download the example file SamlCallbackHandler.java from the fol-
lowing URL:
https://xwss.dev.java.net/servlets/ProjectDocu-

mentList?folderID=6645&expandFolder=6645&folderID=6645

https://xwss.dev.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
https://xwss.dev.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645

EXAMPLE: SAML AUTHORIZATION OVER SSL (SA) 111
n. Open the file in a text editor.

o. Modify the home variable to provide the hard-coded path to your Glass-
Fish installation. For example, modify the line:

String home = System.getProperty("WSIT_HOME");

to

String home = "/home/glassfish";

p. Copy the contents of this file into the SamlCallbackHandler.java

window that is displaying in the IDE.

4. Drill down from CalculatorClient→Web Service References.

5. Right-click on CalculatorWSService, select Edit Web Service Attributes.

6. Select the WSIT Configuration tab of the CalculatorWSService dialog.

7. Provide the client’s private key by pointing to an alias in the keystore. To
do this, expand the Certificates node, click the Load Aliases button for the
keystore, and select xws-security-client from the Alias list.

NOTE: If you are using a certificate other than the updated GlassFish cer-
tificates described in Updating GlassFish Certificates (page 75), or are
otherwise using a different alias for the client’s private key alias, correct
the private key alias in the line in the SAMLCallbackHandler.java file
that looks like this:

String client_priv_key_alias="xws-security-client";

NOTE: If you are using different keystore/truststore files than those
described in Updating GlassFish Certificates (page 75), edit the following
code in the SAMLCallbackHandler.java file accordingly:

this.keyStoreURL = home + fileSeparator + "domains" +
fileSeparator + fileSeparator + "config" + "domain1" +
fileSeparator + "keystore.jks";
this.keyStoreType = "JKS";
this.keyStorePassword = "changeit";
this.trustStoreURL = home + fileSeparator + "domains" +
fileSeparator + "domain1" + fileSeparator + "config" +
fileSeparator + "cacerts.jks";
this.trustStoreType = "JKS";
this.trustStorePassword = "changeit";

8. Provide the server’s certificate by pointing to an alias in the client trust-
store. To do this, from the Certificates node, click the Load Aliases button
for the Truststore and select xws-security-server.

112 USING WSIT SECURITY
9. Expand the Username Authentication node. In the SAML Callback Han-
dler field, enter the name of the class written in step 3 above,
xwss.saml.SamlCallbackHandler.

10.Click OK to close this dialog.

11.In the tree, drill down from the project to Source Packages→META-INF.
Double-click on CalculatorWSService.xml, and verify that lines similar to
the following are present, where xwss.saml.SamlCallbackHandler is the
SAML Callback Handler class for the client:
<wsp:All>

<wsaws:UsingAddressing xmlns:wsaws=
"http://www.w3.org/2006/05/addressing/wsdl"/>

<sc:CallbackHandlerConfiguration
wspp:visibility="private">
<sc:CallbackHandler name="samlHandler"

classname="xwss.saml.SamlCallbackHandler"/>
</sc:CallbackHandlerConfiguration>
<sc:KeyStore wspp:visibility="private" location=

"<GF_HOME>\domains\domain1\config\keystore.jks"
storepass="changeit" alias="xws-security-client"
keypass="changeit"/>

<sc:TrustStore wspp:visibility="private" location=
"<GF_HOME>\domains\domain1\config\cacerts.jks"
storepass="changeit"
peeralias="xws-security-server"/>

</wsp:All>

12.Compile and run this application by right-clicking the CalculatorClient
node and selecting Run Project.

Example: SAML Sender Vouches with
Certificates (SV)
The topics covered in this section include the following:

• Securing the Example Service Application (SV) (page 113)

• Securing the Example Web Service Client Application (SV) (page 114)

EXAMPLE: SAML SENDER VOUCHES WITH CERTIFICATES (SV) 113
Securing the Example Service Application
(SV)
The following example application starts with the example provided in Chapter
2, WSIT Example Using a Web Container and NetBeans, and demonstrates add-
ing security to both the web service and to the web service client.

For this example, the security mechanism of SAML Sender Vouches with Certif-
icates (page 66) is used to secure the application. The steps are similar to the
ones described in Example: Username Authentication with Symmetric Keys
(UA) (page 98), with the addition of the writing of a client-side SAML callback
handler to populate the client's request with a SAML assertion.

To add security to the service part of the example, follow these steps:

1. If you haven’t already completed these steps, complete them now:

a. Update the GlassFish keystore and truststore files as described in Updat-
ing GlassFish Certificates (page 75).

b. Create a user on GlassFish as described in Adding Users to GlassFish
(page 73).

2. Create the CalculatorApplication example by following the steps
described in the following sections of Chapter 2, WSIT Example Using a
Web Container and NetBeans.

a. Creating a Web Service (page 24)

b. Skip the section on adding Reliable Messaging.

c. Deploying and Testing a Web Service (page 28) (first two steps only, do
not run the project yet)

3. Expand CalculatorApplication→Web Services, then right-click the node
for the web service, CalculatorWS, and select Edit Web Service Attributes.

4. Unselect the Reliable Messaging option if it is selected.

5. Select Secure Service.

6. From the drop-down list for Security Mechanism, select SAML Sender
Vouches with Certificates.

7. Click the Keystore button to provide your keystore with the alias identify-
ing the service certificate and private key. To do this, click the Load Aliases
button and select xws-security-server. Click OK to close the dialog.

8. For this example, the Truststore information that you need is specified by
default, so there is no need to change these settings.

114 USING WSIT SECURITY
9. Click OK to exit the WSIT Configuration editor.

A new file is added to the project. To view the WSIT configuration file,
expand Web Pages→WEB-INF, then double-click the file wsit-

org.me.calculator.CalculatorWS.xml. This file contains the sc:Key-

Store and sc:Truststore elements.

10.Right-click the CalculatorApplication node and select Run Project.
Accept the s1as certificate if you are prompted to. A browser will open
and display the WSDL file for the application.

11.Verify that the WSDL file contains the TransportBinding and Signed-

SupportingTokens element, which in turn contains a SamlToken element.

12.Follow the steps to secure the client application as described in the next
section.

Securing the Example Web Service Client
Application (SV)
This section demonstrates adding security to the web service client that refer-
ences the web service created in the previous section. This web service is
secured using the security mechanism described in SAML Sender Vouches with
Certificates (page 66).

To add security to the client that references this web service, complete the fol-
lowing steps:

1. For this example, we are using a non-JSR-109-compliant client. To do this,
create the client application up to the step where you create the Servlet
(step 7 as of this writing) by following the steps described in Creating a
Client to Consume a WSIT-Enabled Web Service (page 29), with one
exception: name the application CalculatorClient (since it’s not a servlet.).

2. Instead of creating a client servlet as is described in Creating a Client to
Consume a WSIT-Enabled Web Service (page 29), we are just going to add
the web service operation to the generated index.jsp file to create a non-
JSR-109 client. To do this,

a. If the index.jsp file is not open in the right pane, double-click it to
open it.

b. Drill down through the Web Service References node until you get to
the add operation.

c. Drag the add operation to the line immediately following the following
line:

EXAMPLE: SAML SENDER VOUCHES WITH CERTIFICATES (SV) 115
<h1>JSP Page</h1>

d. Edit the values for i and j if you’d like.

3. Write a SAMLCallback handler for the client side to populate a SAML
assertion into the client's request to the service. A suggested method for
creating the SAMLCallbackHandler is shown below:

a. Right-click on the CalculatorClient node.

b. Select New→Java Package.

c. For Package Name, enter xwss.saml.

d. Click Finish.

e. Drill down from CalculatorClient→Source Packages→xwss.saml.

f. Right-click on xwss.saml. Select New→File/Folder.

g. From the Categories list, select Java Classes.

h. From the File Types list, select Empty Java File.

i. Click Next.

j. For Class Name, enter SamlCallbackHandler.

k. Click Finish.

l. The empty file displays in the IDE.

m.Download the example file SamlCallbackHandler.java from the fol-
lowing URL:
https://xwss.dev.java.net/servlets/ProjectDocu-

mentList?folderID=6645&expandFolder=6645&folderID=6645

n. Open the file in a text editor.

o. Modify the home variable to provide the hard-coded path to your Glass-
Fish installation. For example, modify the line:

String home = System.getProperty("WSIT_HOME");

to

String home = "/home/glassfish";

p. Set the subject confirmation method to SV (Sender Vouches). For more
information on this topic, read Example SAML Callback Handlers
(page 60).

q. Copy the contents of this file into the SamlCallbackHandler.java

window that is displaying in the IDE.

4. Drill down from CalculatorClient→Web Service References.

5. Right-click on CalculatorWSService, select Edit Web Service Attributes.

https://xwss.dev.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645

116 USING WSIT SECURITY
6. Select the WSIT Configuration tab of the CalculatorWSService dialog.

7. Provide the client’s private key by pointing to an alias in the keystore. To
do this, expand the Certificates node, click the Load Aliases button for the
keystore, and select xws-security-client from the Alias list.

8. Provide the server’s certificate by pointing to an alias in the client trust-
store. To do this, from the Certificates node, click the Load Aliases button
for the Truststore and select xws-security-server.

9. Expand the Username Authentication node. In the SAML Callback Han-
dler field, enter the name of the class written in step 3 above,
xwss.saml.SamlCallbackHandler.

10.Click OK to close this dialog.

11.In the tree, drill down from the project to Source Packages→META-INF.
Double-click on CalculatorWSService.xml, and verify that lines similar to
the following are present, where xwss.saml.SamlCallbackHandler is the
SAML Callback Handler class for the client:
<wsp:All>

<wsaws:UsingAddressing xmlns:wsaws=
"http://www.w3.org/2006/05/addressing/wsdl"/>

<sc:CallbackHandlerConfiguration
wspp:visibility="private">
<sc:CallbackHandler name="samlHandler"

classname="xwss.saml.SamlCallbackHandler"/>
</sc:CallbackHandlerConfiguration>
<sc:KeyStore wspp:visibility="private" location=

"<GF_HOME>\domains\domain1\config\keystore.jks"
storepass="changeit" alias="xws-security-client"
keypass="changeit"/>

<sc:TrustStore wspp:visibility="private" location=
"<GF_HOME>\domains\domain1\config\cacerts.jks"
storepass="changeit"
peeralias="xws-security-server"/>

</wsp:All>

12.Compile and run this application by right-clicking the CalculatorClient
node and selecting Run Project.

Example: STS Issued Token (STS)
The topics covered in this section include the following:

• Securing the Example Service Application (STS) (page 117)

• Creating and Securing the STS (STS) (page 118)

EXAMPLE: STS ISSUED TOKEN (STS) 117
• Securing the Example Web Service Client Application (STS) (page 120)

Securing the Example Service Application
(STS)
The following example application starts with the example provided in Chapter
2, WSIT Example Using a Web Container and NetBeans, and demonstrates add-
ing security to both the web service and to the web service client.

For this example, the security mechanism of STS Issued Token (page 67) is used
to secure the application. The steps are similar to the ones described in Example:
Username Authentication with Symmetric Keys (UA) (page 98), with the addi-
tion of creating and securing an STS.

To add security to the service part of the example, follow these steps:

1. Create a user on GlassFish if you haven’t already done so. (see Adding
Users to GlassFish, page 73).

2. Create the CalculatorApplication example by following the steps
described in the following sections of Chapter 2, WSIT Example Using a
Web Container and NetBeans.

a. Creating a Web Service (page 24)

b. Skip the section on adding Reliable Messaging.

c. Deploying and Testing a Web Service (page 28) (first two steps only, do
not run the project yet).

3. Expand CalculatorApplication→Web Services, then right-click the node
for the web service, CalculatorWS, and select Edit Web Service Attributes.

4. Unselect the Reliable Messaging option if it is selected.

5. Select Secure Service.

6. From the drop-down list for Security Mechanism, select STS Issued
Token.

7. Select the Configure button. For Algorithm Suite, select Basic128 bit. For
Key Size, select 128. Select OK to close the configuration dialog (the algo-
rithm suite value of the service must match the algorithm suite value of the
STS.)

NOTE: If you have configured Unlimited Strength Encryption as
described in Creating a Third-Party STS (page 92), you can leave the key
size at 256. Otherwise, you must set it to 128.

118 USING WSIT SECURITY
8. Click OK to exit the WSIT Configuration editor.

A new file is added to the project. To view the WSIT configuration file,
expand Web Pages→WEB-INF, then double-click the file wsit-

org.me.calculator.CalculatorWS.xml.

9. Right-click the CalculatorApplication node and select Run Project. This
step compiles the application and deploys it onto GlassFish. A browser
will open and display the WSDL file for the application.

10.Follow the steps for creating and securing the Security Token Service as
described in the next section.

Creating and Securing the STS (STS)
To create and secure a Security Token Service for this example, follow these
steps:

1. Create a new project for the STS by selecting File→New Project.

2. Select Web, then Web Application, then Next.

3. Enter MySTSProject for the Project Name. Click Finish.

4. Right-click the MySTSProject node, select New, then click File/Folder at
the top.

5. Select Web Services from the Categories list.

6. Select Secure Token Service (STS) from the File Type(s) list.

7. Click Next.

8. Enter the name MySTS for the Web Service Class Name.

9. Select org.me.my.sts from the Package list.

10.Click Finish.

The IDE takes a while to create the STS. When created, it displays under
the project’s Web Services node as MySTSService, and MySTS.java dis-
plays in the right pane.

11.The STS wizard creates an empty implementation of provider class.
Implement the provider implementation class by copying the following
code into the MySTS.java file:

a. Add these import statements to the list of imports:
import com.sun.xml.ws.security.trust.sts.BaseSTSImpl;
import javax.annotation.Resource;
import javax.xml.ws.Provider;
import javax.xml.ws.Service;

EXAMPLE: STS ISSUED TOKEN (STS) 119
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceProvider;
import javax.xml.transform.Source;
import javax.xml.ws.handler.MessageContext;

b. Add the following Resource annotation after the line
public class MySTS implements javax.xml.ws.Pro-

vider<Source> {:
@Resource protected WebServiceContext context;

c. Change the following line of code:

public class MySTS implements

javax.xml.ws.Provider<Source>

to:

public class MySTS extends BaseSTSImpl implements

javax.xml.ws.Provider<Source>

d. For the invoke method, replace the return null line with the follow-
ing return statement:
return super.invoke(source);

e. Add the following method after the invoke method:

protected MessageContext getMessageContext() {
MessageContext msgCtx = context.getMessageContext();
return msgCtx;

}

12.Back in the Projects window, expand the MySTSProject node, then
expand the Web Services node. Right-click on the MySTSSer-
vice[IMySTSService_Port] node, and select Edit Web Service Attributes
to configure the STS.

13.Select Secure Service if it’s not already selected.

14.Verify that the Security Mechanism of Username Authentication with
Symmetric Keys is selected.

15.Select the Configure button. For Algorithm Suite, verify that Basic128 bit
is selected (so that it matches the value selected for the service.) For the
Key Size, verify that 128 is selected. Select OK to close the configuration
dialog.

16.Select Act as Secure Token Service (STS). Click OK to close the Select
STS Service Provider dialog.

120 USING WSIT SECURITY
17.Click the Keystore button to provide your keystore with the alias identify-
ing the service certificate and private key. To do this, click the Load Aliases
button and then select wssip. Click OK to close the dialog.

18.Click OK to close the WSIT Configuration dialog.

A new file is added to the project. To view the WSIT configuration file,
expand Web Pages→WEB-INF→wsdl→MySTS, then double-click the
file MySTSService.wsdl. This file contains the sc:KeyStore element.

19.Right-click the MySTSProject tab, select Properties. Select the Run cate-
gory, and enter the following in the Relative URL field: /MySTSSer-

vice?wsdl.

20.Run the Project (right-click the project and select Run Project). The STS
WSDL displays in the browser.

21.Follow the steps to secure the client application as described in the next
section.

Securing the Example Web Service Client
Application (STS)
This section demonstrates adding security to the CalculatorApplication’s web
service client, which was secured using the security mechanism described in
STS Issued Token (page 67).

To add security to the client, complete the following steps:

1. Create the client application by following the steps described in Creating
a Client to Consume a WSIT-Enabled Web Service (page 29).

NOTE: Whenever you make changes on the service, refresh the client so
that the client will pick up the change. To refresh the client, right-click the
node for the Web Service Reference for the client, and select Refresh Cli-
ent.

2. Drill down from CalculatorWSServletClient→Web Service References.

3. Right-click on CalculatorWSService, select Edit Web Service Attributes.
Select the WSIT Configuration tab.

4. Provide the client’s private key by pointing to an alias in the keystore. To
do this, expand the Certificates node, click the Load Aliases button for the
keystore, and select xws-security-client from the Alias list.

EXAMPLE: STS ISSUED TOKEN (STS) 121
5. Provide the service’s certificate by pointing to an alias in the client trust-
store. To do this, from the Certificates node, click the Load Aliases button
for the truststore and select xws-security-server from the Alias list.

6. Expand the Security Token Service node to provide details for the STS to
be used. When the Endpoint and the Metadata values are the same, you
only need to enter the Endpoint value. For the Endpoint field, enter the fol-
lowing value: http://localhost:8080/MySTSProject/MySTSService.

7. Click OK to close this dialog.

8. The service requires a token to be issued from the STS at http://local-
host:8080/MySTSProject/MySTSService, with WSDL file http://

localhost:8080/MySTSProject/MySTSService?wsdl. To do this, fol-
low these steps:

a. Right-click the CalculatorWSServletClient node and select New→Web
Service Client. The New Web Service Client window appears.

b. Select the WSDL URL option.

c. Cut and paste the URL of the web service that you want the client to
consume into the WSDL URL field. For example, here is the URL for
the MySTS web service:
http://localhost:8080/MySTSProject/MySTSService?wsdl

d. Type org.me.calculator.client.sts in the Package field, and click
Finish. The Projects window displays the new web service client.

9. Drill down from CalculatorWSServletClient→Web Service References.

10.Right-click MySTSService, select Edit Web Service Attributes.

11.Select the WSIT Configuration tab of the MySTSService dialog.

12.Provide the client’s private key by pointing to an alias in the keystore. To
do this, expand the Certificates node, click the Load Aliases button for the
keystore, and select xws-security-client from the Alias list.

13.Verify the STS’s certificate by pointing to an alias in the client truststore.
To do this, from the Certificates node, click the Load Aliases button and
select wssip from the Alias list.

14.Expand the Username Authentication node and verify that the default user
name and password as specified in GlassFish. If you followed the steps in
Adding Users to GlassFish (page 73), this will be User Name wsitUser

and Password changeit.

15.Click OK to close this dialog.

16.Compile and run this application by right-clicking the CalculatorWSServ-
letClient project and selecting Run Project.

122 USING WSIT SECURITY
Example: Other STS Examples
Another STS example application can be found at the following URL:

https://wsit.dev.java.net/source/browse/wsit/wsit/samples/ws-
trust/

Further Information
For more information on securing web applications using the WSIT technology,
visit the Project Tango web site at https://wsit.dev.java.net/. On this page,
you will find information about the specifications implemented in this product,
source code, support information, links to documentation updates, and much
more.

Some other sources that contain blogs and/or screencasts about using WSIT
include the following:

• Sun WSIT Bloggers
http://pipes.yahoo.com/pipes/

pipe.info?_id=2iWQPSDG2xGT0WC7p2IyXQ

http://planet.sun.com/webservices/group/blogs/

• Project Tango: An Overview
https://wsit.dev.java.net/docs/tango-overview.pdf

• Web Services blog
http://blogs.sun.com/arungupta/category/webservices

• Manual Web Service Configuration In From Java Case (and others)
http://blogs.sun.com/japod/date/20070226

• Develop WSTrust Application Using NetBeans (and others)
http://blog.sun.com/shyamrao/

• Security in WSIT (and others)
http://blogs.sun.com/ashutosh/category/Sun

• WSIT Screencasts
https://wsit.dev.java.net/screencasts.html

• Specifications Implemented by WSIT
https://wsit.dev.java.net/specification-links.html

https://wsit.dev.java.net/
https://wsit.dev.java.net/docs/tango-overview.pdf
https://wsit.dev.java.net/source/browse/wsit/wsit/samples/ws-trust/
http://blogs.sun.com/japod/date/20070226
http://blog.sun.com/shyamrao/
http://blogs.sun.com/ashutosh/category/Sun
https://wsit.dev.java.net/screencasts.html
http://blogs.sun.com/arungupta/category/webservices
http://pipes.yahoo.com/pipes/pipe.info?_id=2iWQPSDG2xGT0WC7p2IyXQ
http://planet.sun.com/webservices/group/blogs/
https://wsit.dev.java.net/specification-links.html

7

123
Further Detail on WSIT
Security Features

THIS chapter provides a bit more descriptive material for WSIT security fea-
tures in NetBeans Integrated Development Environment (the IDE)

This chapter covers the following topics:

• Issues Addressed Using Security Mechanisms (page 123)

• Understanding WSIT Configuration Files (page 125)

• Security Mechanism Configuration Options (page 133)

Issues Addressed Using Security
Mechanisms

The security mechanism that you need to select reflects the commonly available
infrastructure between your organization and another organization with which
you will be communicating. The following list provides some common commu-
nication issues that need to be addressed using security mechanisms:

• Asymmetric binding is used for message protection. This binding has two
binding specific token properties: the initiator token and the recipient
token. If the message pattern requires multiple messages, this binding
defines that the initiator token is used for the message signature from ini-

124 FURTHER DETAIL ON WSIT SECURITY FEATURES
tiator to the recipient, and for encryption from recipient to initiator. The
recipient token is used for encryption from initiator to recipient, and for the
message signature from recipient to initiator.

• Some organizations have a Kerberos infrastructure, while other organiza-
tions have a PKI infrastructure (asymmetric binding). WS-Trust allows
two communicating parties having different security infrastructure to com-
municate securely with one another. In this scenario, the client authenti-
cates with a third party (STS) using its infrastructure. The STS returns a
(digitally-signed) SAML token containing authorization and authentica-
tion information regarding the client, along with a key. The client then sim-
ply relays the token to the server and uses the STS-supplied key to ensure
integrity and confidentiality of the messages sent to the server.

Note: Kerberos is not supported in this release.

• Symmetric binding is used for message protection. This binding has two
binding specific token properties: encryption token and signature token. If
the message pattern requires multiple messages, this binding defines that
the encryption token used from initiator to recipient is also used from
recipient to initiator. Similarly, the signature token used from initiator to
recipient is also used from recipient to initiator.

In some cases, the client does not have its own certificates. In this case,
the client can choose a security mechanism that makes use of symmetric
binding and could use a Username token as a signed supporting token for
authentication with the server. The symmetric binding in this case serves
the purpose of integrity and confidentiality protection.

• In the absence of a notion of secure session, the client would have to reau-
thenticate with the server upon every request. In this situation, if the client
is sending a Username token, the client will be asked for its username and
password on each request, or, if the client is sending a certificate, the valid-
ity of the certificate has to be established with every request. This is expen-

UNDERSTANDING WSIT CONFIGURATION FILES 125
sive! Enable Secure Conversation to remove the requirement for re-
authentication.

• The use of the same session key (Secure Conversation) for repeated mes-
sage exchanges is sometimes considered a risk. To reduce that risk, enable
Require Derived Keys.

• RSA Signatures (signatures with public-private keys) is more expensive
than Symmetric Key signatures. Use the Secure Conversation option to
enable Symmetric Key signatures.

• Enabling WSS 1.1 enables an encrypted key generated by the client to be
reused by the server in the response to the client. This saves the time oth-
erwise required to create a Symmetric Key, encrypt it with the client public
key (which is also an expensive RSA operation), and transmit the
encrypted key in the message (it occupies markup and requires Base64
operations).

Understanding WSIT Configuration Files
When a web service or a web service client are configured for WSIT features,
this information is saved in WSIT Configuration files. The following sections
discuss the WSIT configuration files for the service and for the client:

• Service-Side WSIT Configuration Files (page 125)

• Client-Side WSIT Configuration Files (page 130)

Service-Side WSIT Configuration Files
WSIT features are configured on a web service in the following way:

1. Right-click the web service in NetBeans IDE.

2. Select Edit Web Service Attributes.

3. Select and/or configure the appropriate WSIT features on the WSIT Con-
figuration tab for the web service. Many of the WSIT features are dis-
cussed in Chapter 6.

4. Select OK to close the dialog.

5. Run the web application by right-clicking the project node and selecting
Run Project. .

126 FURTHER DETAIL ON WSIT SECURITY FEATURES
The service-side WSIT Configuration file that is used when the web service is
deployed can be viewed by expanding the Web Pages→WEB-INF elements of
the application in the tree, and then double-clicking the wsit-

<package>.<service>.xml file to open it in the editor.

For the example application Example: Username Authentication with Symmet-
ric Keys (UA) (page 98), the WSIT configuration file for the service is named
wsit-org.me.calculator.CalculatorWS.xml, and looks like this:

<?xml version="1.0" encoding="UTF-8"?>
 <definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
name="CalculatorWSService"
targetNamespace="http://calculator.me.org/"
xmlns:tns="http://calculator.me.org/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsaws="http://www.w3.org/2005/08/addressing"
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy"
xmlns:sc="http://schemas.sun.com/2006/03/wss/server"
xmlns:wspp="http://java.sun.com/xml/ns/wsit/policy"
xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 >
 <message name="add"/>
 <message name="addResponse"/>
 <portType name="CalculatorWS">
 <wsdl:operation name="add">
 <wsdl:input message="tns:add"/>
 <wsdl:output message="tns:addResponse"/>
 </wsdl:operation>
 </portType>
 <binding name="CalculatorWSPortBinding"
type="tns:CalculatorWS">
 <wsp:PolicyReference
URI="#CalculatorWSPortBindingPolicy"/>
 <wsdl:operation name="add">
 <wsdl:input>
 <wsp:PolicyReference
URI="#CalculatorWSPortBinding_add_Input_Policy"/>
 </wsdl:input>
 <wsdl:output>

SERVICE-SIDE WSIT CONFIGURATION FILES 127
 <wsp:PolicyReference
URI="#CalculatorWSPortBinding_add_Output_Policy"/>
 </wsdl:output>
 </wsdl:operation>
 </binding>
 <service name="CalculatorWSService">
 <wsdl:port name="CalculatorWSPort"
binding="tns:CalculatorWSPortBinding"/>
 </service>
 <wsp:Policy wsu:Id="CalculatorWSPortBindingPolicy">

 <wsp:ExactlyOne>
 <wsp:All>
 <wsaws:UsingAddressing

xmlns:wsaws="http://www.w3.org/2006/05/addressing/
wsdl"/>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/
ws/2005/07/

securitypolicy/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic128/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>

128 FURTHER DETAIL ON WSIT SECURITY FEATURES
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/
2005/07/securitypolicy/IncludeToken/

AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sc:KeyStore wspp:visibility="private"

alias="xws-security-server" storepass="changeit"
type="JKS" location="C:\Sun\glassfish\domains\
domain1\config\keystore.jks"/>

 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <wsp:Policy
wsu:Id="CalculatorWSPortBinding_add_Input_Policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:SignedParts>
 <sp:Body/>
 <sp:Header Name="To" Namespace="http://
www.w3.org/

2005/08/addressing"/
<sp:Header Name="From" Namespace="http://www.w3.org/
2005/08/addressing"/>

 <sp:Header Name="FaultTo"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action" Namespace="http:/
/www.w3.org/

2005/08/addressing"/>
 <sp:Header Name="AckRequested"

SERVICE-SIDE WSIT CONFIGURATION FILES 129
Namespace="http://schemas.xmlsoap.org/ws/2005/02/
rm"/>
 <sp:Header Name="SequenceAcknowledgement"

Namespace="http://schemas.xmlsoap.org/ws/2005/02/
rm"/>
 <sp:Header Name="Sequence"

Namespace="http://schemas.xmlsoap.org/ws/2005/02/
rm"/>
 </sp:SignedParts>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <wsp:Policy
wsu:Id="CalculatorWSPortBinding_add_Output_Policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:SignedParts>
 <sp:Body/>
 <sp:Header Name="To" Namespace="http://
www.w3.org/

2005/08/addressing"/>
<sp:Header Name="From" Namespace="http://www.w3.org/
2005/08/addressing"/>

 <sp:Header Name="FaultTo"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"
Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="AckRequested"
Namespace="http://schemas.xmlsoap.org/ws/2005/02/

rm"/>
 <sp:Header Name="SequenceAcknowledgement"

Namespace="http://schemas.xmlsoap.org/ws/2005/02/
rm"/>
 <sp:Header Name="Sequence"

Namespace="http://schemas.xmlsoap.org/ws/2005/02/
rm"/>
 </sp:SignedParts>

130 FURTHER DETAIL ON WSIT SECURITY FEATURES
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
</definitions>

Client-Side WSIT Configuration Files
WSIT features are configured on the client in the following way:

1. Expand the Web Service Reference node for the web service client in Net-
Beans IDE.

2. Select Edit Web Service Attributes.

3. Select and/or configure the appropriate WSIT features on the WSIT Con-
figuration tab for the web service client. Many of the WSIT features are
discussed in Chapter 6.

4. Select OK to close the dialog.

5. Run the web service client by right-clicking the project node and selecting
Run Project. .

The WSIT Configuration information can be viewed by expanding Source Pack-
ages→META-INF in NetBeans IDE for the client project. This directory con-
tains two files: <service>Service.xml and wsit-client.xml.

The <service>Service.xml file is an XML file that must conform to the WSDL
specification. The WSIT configuration is written to this file. For the example
application Example: Username Authentication with Symmetric Keys (UA)
(page 98), the WSIT configuration file for the client is named Calculator-

WSServiced.xml, and looks like this:

<?xml version="1.0" encoding="UTF-8"?><!-- Published by JAX-WS
RI at
http://jax-ws.dev.java.net. RI's version is JAX-WS RI 2.1.2-
hudson-132-M1. -->
<!-- Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's
version is
JAX-WS RI 2.1.2-hudson-132-M1. -->
<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/
01/
oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://calculator.me.org/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

CLIENT-SIDE WSIT CONFIGURATION FILES 131
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://calculator.me.org/"
name="CalculatorWSService"
xmlns:tc="http://schemas.sun.com/ws/2006/05/trust/client"
xmlns:wspp="http://java.sun.com/xml/ns/wsit/policy"
xmlns:sc="http://schemas.sun.com/2006/03/wss/client">
<types>
<xsd:schema>
<xsd:import namespace="http://calculator.me.org/"
schemaLocation="http://localhost:8080/CalculatorApplication/
CalculatorWSService?xsd=1"></xsd:import>
</xsd:schema>
</types>
<message name="add">
<part name="parameters" element="tns:add"></part>
</message>
<message name="addResponse">
<part name="parameters" element="tns:addResponse"></part>
</message>
<portType name="CalculatorWS">
<operation name="add">
<input message="tns:add"></input>
<output message="tns:addResponse"></output>
</operation>
</portType>
<binding name="CalculatorWSPortBinding"
type="tns:CalculatorWS">

<wsp:PolicyReference URI="#CalculatorWSPortBindingPolicy"/>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/
http" style="document"></soap:binding>
<operation name="add">
<soap:operation soapAction=""></soap:operation>
<input>
<soap:body use="literal"></soap:body>
</input>
<output>
<soap:body use="literal"></soap:body>
</output>
</operation>
</binding>
<service name="CalculatorWSService">
<port name="CalculatorWSPort"
binding="tns:CalculatorWSPortBinding">
<soap:address location="http://localhost:8080/
CalculatorApplication/CalculatorWSService"></soap:address>
</port>
</service>
 <wsp:Policy wsu:Id="CalculatorWSPortBindingPolicy">

132 FURTHER DETAIL ON WSIT SECURITY FEATURES
 <wsp:ExactlyOne>
 <wsp:All>

<tc:PreconfiguredSTS wspp:visibility="private"/>
 <sc:CallbackHandlerConfiguration
wspp:visibility="private">
 <sc:CallbackHandler default="wsitUser"
name="usernameHandler"/>
 <sc:CallbackHandler default="changeit"
name="passwordHandler"/>
 </sc:CallbackHandlerConfiguration>
 <sc:KeyStore wspp:visibility="private"

storepass="changeit" type="JKS"

location="C:\Sun\glassfish\domains\domain1\config\keystore.jks
"/>
 <sc:TrustStore wspp:visibility="private"

storepass="changeit" type="JKS"

location="C:\Sun\glassfish\domains\domain1\config\cacerts.jks"
peeralias="xws-security-server"/>

 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
</definitions>

The wsit-client.xml file imports the <service>Service.xml file. For the
example shown about, the wsit-client.xml file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
 <definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
name="mainclientconfig"
 >
 <import location="CalculatorWSService.xml"
namespace="http://calculator.me.org/"/>
</definitions>

SECURITY MECHANISM CONFIGURATION OPTIONS 133
Security Mechanism Configuration
Options

The following fields are used to configure different security policies. Not
every option is available for every mechanism, but many of the policies
include the same configuration options, so they are grouped here for the pur-
poses of defining them in one central location.

Table 7–1 Security Mechanism Configuration Options

Option Description

Algorithm Suite

This attribute specifies the algorithm suite required for perform-
ing cryptographic operations with symmetric or asymmetric
key-based security tokens. An algorithm suite specifies actual
algorithms and allowed key lengths. A mechanism alternative
will define what algorithms are used and how they are used. The
value of this attribute is typically referenced by a security bind-
ing and is used to specify the algorithms used for all crypto-
graphic operations performed under the security binding. The
default value is Basic 128 bit.

Some of the algorithm suite settings require that Unlimited
StrengthEncryption be configured in the Java Runtime Environ-
ment (JRE), particularly the algorithm suites that use 256 bit
encryption. Instructions for downloading and configuring
unlimited strength encryption can be found at the following
URLS:
http://java.sun.com/products/jce/javase.html
http://java.sun.com/javase/downloads/
index_jdk5.jsp#docs

Read the OASIS specification WS-Security Policy section on
Security Binding Properties for more description of the compo-
nents for each of these algorithm suites. A link to this document
can be found at https://wsit.dev.java.net/.

Encrypt Before Signing

If selected, specifies that the order of message protection is to
encrypt the SOAP content, then sign the entire SOAP body.
Encryption key and signing key must be derived from the same
source key.

If not selected, the default behavior is Sign Before Encrypt.

http://java.sun.com/products/jce/javase.html
http://java.sun.com/javase/downloads/index_jdk5.jsp#docs
http://java.sun.com/javase/downloads/index_jdk5.jsp#docs
https://wsit.dev.java.net/

134 FURTHER DETAIL ON WSIT SECURITY FEATURES
Encrypt Signature

Specifies whether the signature must be encrypted. If selected,
the primary signature must be encrypted and any signature con-
firmation elements must also be encrypted. If not selected (the
default), the primary signature must not be encrypted and any
signature confirmation elements must not be encrypted.

Establish Secure Ses-
sion (Secure Conversa-
tion)

Secure Conversation enables a consumer and provider to estab-
lish a shared security context when a multiple-message-
exchange sequence is first initiated. Subsequent messages use
(possibly derived) session keys that increase the overall security
while reducing the security processing overhead for each mes-
sage.

In the absence of a notion of secure session, the client would
have to reauthenticate with the server upon every request.In this
situation, if the client is sending a Username token, it has to
authenticate on every request, or, if the client is sending a certif-
icate, the validity of the certificate has to be established on
every request. This is expensive. Enable Secure Conversation to
get over this requirement for re-authentication.

When this option and Require Derived Keys are both enabled, a
derived key will be used. If not, the original session key will be
used.

Note on Secure Conversation with Reliable Message Deliv-
ery— Reliable Messaging can be used independently of the
security mechanisms, however, when Reliable Messaging (RM)
is used with a security mechanism, it requires the use of Secure
Conversation, which will be automatically configured for a
security mechanism when Reliable Messaging is selected
before the security mechanism is selected. If Secure Conversa-
tion is selected for a security mechanism and the Reliable Mes-
saging option was not selected before the security mechanism
was specified, Reliable Messaging will need to be manually
selected in order for Secure Conversation to work. Reliable
messaging, as well as the Advanced configuration options and
Deliver Messages in Exact Order feature, is discussed in Chap-
ter 5, Using Reliable Messaging.

Table 7–1 Security Mechanism Configuration Options (Continued)

Option Description

SECURITY MECHANISM CONFIGURATION OPTIONS 135
Issuer Address

This optional element specifies the address of the issuer (STS)
that will accept the security token that is presented in the mes-
sage. This element's type is an endpoint reference. An STS con-
tains a set of interfaces to be used for the issuance, exchange,
and validation of security tokens. An example that creates and
uses an STS can be found at Example: STS Issued Token (STS)
(page 116).

For example, for JAX-WS services:
Issuer: http://localhost:8080/jaxws-sts/sts

For WCF STS:

Issuer: http://131.107.72.15/
Security_Federation_SecurityTokenService_Indigo
/Symmetric.svc/
Scenario_5_IssuedTokenForCertificate_MutualCert
ificate11

Issuer Metadata
Address

Specifies the address from which to retrieve the issuer metadata.
They should be just the URLs. For example, for JAX-WS ser-
vices:
Issuer Metadata Address: http://localhost:8080/jaxws-
sts/sts

For WCF STS:

Issuer Metadata Address: http://131.107.72.15/
Security_Federation_SecurityTokenService_Indigo
/Symmetric.svc

For more information, read Configuring A Secure Token Ser-
vice (STS) (page 91).

Key Type

Applicable for Issued Token mechanisms only. The type of key
the service provider desires. The choices are public key or sym-
metric key. Symmetric key cryptography relies on a shared
secret and is usually faster than public key cryptography. Public
key cryptography relies on a key that is made public to all and is
primarily used for encryption but can be used for verifying sig-
natures.

Table 7–1 Security Mechanism Configuration Options (Continued)

Option Description

136 FURTHER DETAIL ON WSIT SECURITY FEATURES
Key Size

Applicable for Issued Token mechanisms only. The size of the
symmetric key requested, specified in number of bits. This is a
request, and, as such, the requested security token is not obli-
gated to use the requested key size, nor is the STS obligated to
issue a token with the same key size. That said, the recipient
should try to use a key at least as strong as the specified value if
possible. The information is provided as an indication of the
desired strength of the security. Valid choices include 128, 192,
and 256.

Require Client Certifi-
cate

Select this option to require that a client certificate be provided
to the server for verification.
If you are using a security mechanism with SSL, a client certifi-
cate will be required by the server both during its initial hand-
shake and again during verification.

Require Derived Keys

Require Derived Keys
for:
Issued Token
Secure Session
X509 Token

A derived key is a cryptographic key created from a password
or other user data. Derived keys allow applications to create ses-
sion keys as needed, eliminating the need to store a particular
key. The use of the same session key (for example, when using
Secure Conversation) for repeated message exchanges is some-
times considered a risk. To reduce that risk, enable Require
Derived Keys.

Require Signature Con-
firmation

When the WSS Version is 1.1, select this option to reduce the
risk of attacks because signature confirmation indicates that the
responder has processed the signature in the request. For more
information, read section 8.5, Signature Confirmation, of the
Web Services Security: SOAP Message Security 1.1 specifica-
tion at http://www.oasis-open.org/committees/download.php/
16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

SAML Version

Specifies which version of the SAML token should be used.
The SAML Version is something the CallbackHandler has to
verify, not the security runtime. SAML tokens are defined in
WSS: SAML Token Profile documents, available from
http://www.oasis-open.org/specs/index.php.

For an example that uses SAML Callbacks, refer to Example:
SAML Authorization over SSL (SA) (page 107).

Table 7–1 Security Mechanism Configuration Options (Continued)

Option Description

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/specs/index.php

SECURITY MECHANISM CONFIGURATION OPTIONS 137
Security Header Layout

Specifies which layout rules to apply when adding items to the
security header. The options are: Strict (items are added to the
security header following the general principle of “declare
before use”), Lax (items are added to the security header in any
order that conforms to WSS: SOAP Message Security, however,
WSIT follows strict even when lax is selected), Lax (Times-
tamp First or Last) (the same as for Lax, except that the first or
last item in the security header must be a wsse:Timestamp).

Examples of the layout rules are described in the OASIS WS-
SecurityPolicy specification, a link to which can be found at
https://wsit.dev.java.net/.

Supporting Token

Specifies the type of supporting token to be used. Supporting
Tokens are included in the security header and may sign and/or
encrypt additional message parts. Valid options for supporting
tokens include X.509 tokens, Username tokens, SAML tokens,
or an Issued Token from an STS.

For more information on these options, read Supporting Token
Options (page 90).

Token Type
The type of SAML token the service provider requires, for
example, urn:oasis:names:tc:SAML1.0:asser-
tion.Choices are 1.0, 1.1, or 2.0.

WSS Version

Specifies which version of the Web Services Security specifica-
tion should be followed, 1.0 or 1.1. These specifications can be
viewed from
http://www.oasis-open.org/specs/index.php.
Enabling WSS 1.1 enables an encrypted key generated by the
client to be reused by the Server in the response to the client.
This saves the time otherwise required to create a Symmetric
Key during the course of response, encrypt it with the client
public key (which is also an expensive RSA operation), and
transmit the encrypted key in the message (it occupies markup
and requires Base64 operations). Enabling WSS 1.1 also
enables encrypted headers.

Table 7–1 Security Mechanism Configuration Options (Continued)

Option Description

https://wsit.dev.java.net/
http://www.oasis-open.org/specs/index.php

138 FURTHER DETAIL ON WSIT SECURITY FEATURES

8

WSIT Example Using

a Web Container
Without NetBeans

THIS chapter describes how to use the two supported web containers—Glass-
Fish version 2 or Apache Tomcat 5.5—to create, build, and deploy a web service
and a client that use the Web Services Interoperability Technologies (WSIT).
This chapter also includes examples of the files you must create and the build
directories.

To run the examples described in this chapter, download the WSIT samples kits,
wsit-enabled-fromjava.zip and wsit-enabled-fromwsdl.zip, from the fol-
lowing location:

https://wsit.dev.java.net/source/browse/wsit/wsit/docs/

howto/

You could also use NetBeans IDE to create and deploy WSIT web services and
clients. The IDE provides a graphical user interface (GUI) and does many of the
manual steps described in this chapter for you, thus reducing the amount of cod-
ing and processing required. For an example that creates, builds, and deploys a
web service and a web service client using NetBeans IDE, see Chapter 2.
139

https://wsit.dev.java.net/source/browse/wsit/wsit/docs/howto/

140 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
This chapter covers the following topics:

• Environment Configuration Settings (page 140)

• WSIT Configuration and WS-Policy Assertions (page 141)

• Creating a Web Service (page 142)

• Building and Deploying the Web Service (page 147)

• Creating a Web Service Client (page 151)

• Building and Deploying a Client (page 155)

• Running a Web Service Client (page 155)

• Undeploying a Web Service (page 155)

Environment Configuration Settings
Before you can build and run the samples in this tutorial, you need to complete
the following tasks:

• Setting the Web Container Listener Port (page 140)

• Setting the Web Container Home Directory (page 141)

Setting the Web Container Listener Port
The Java code and configuration files for the examples used in this tutorial
assume that the web container is listening on IP port 8080. Port 8080 is the
default listener port for both GlassFish (domain1) and Tomcat. If you have
changed the port, you must update the port number in the following files before
building and running the examples:

• wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumber-

sImpl.xml

• wsit-enabled-fromjava/etc/custom-schema.xml

• wsit-enabled-fromjava/etc/custom-client.xml

• wsit-enabled-fromjava/etc/build.properties

• wsit-enabled-fromwsdl/etc/custom-client.xml

• wsit-enabled-fromwsdl/etc/build.properties

WSIT CONFIGURATION AND WS-POLICY ASSERTIONS 141
Setting the Web Container Home
Directory
Before building and deploying the web service and its client, the home directory
of the web container must be set as an environment variable.

When you are running from the command-line, you should set the appropriate
environment variable to the web container’s top-level installation directory. This
way, you will not have to manually set the environment variable each time you
open a new command window. For GlassFish, the AS_HOME environment variable
should be set to the top-level directory of GlassFish, for example, on Windows:
C:/Sun/glassfish. For Apache Tomcat, set the CATALINA_HOME environment
variable to the Tomcat top-level directory.

WSIT Configuration and WS-Policy
Assertions

WSIT features are enabled and configured using a mechanism defined by the
Web Services Policy Framework (WS-Policy) specification. A web service
expresses its requirements and capabilities via policies embedded in the service’s
WSDL description. A web service consumer, or client, verifies that it can handle
the expressed requirements and, optionally, uses server capabilities advertised in
policies.

Each individual WSIT technology, such as Reliable Messaging, Addressing, or
Secure Conversation, provides a set of policy assertions it can process. Those
assertions provide the necessary configuration details to the WSIT run-time to
enable proper operation of the WSIT features used by a given web service. The
assertions may specify particular configuration settings or rely on default set-
tings that are pre-determined by the specific technology. For instance, in the
snippet shown below, the wsrm:AcknowledgementInterval and wsrm:Inac-

tivityTimeout settings are both optional and could be omitted. The following
snippet shows WS-Policy assertions for WS-Addressing and WS-Reliable Mes-
saging:

<wsp:Policy wsu:Id="AddNumbers_policy">
<wsp:ExactlyOne>

<wsp:All>
<wsaw:UsingAddressing/>
<wsrm:RMAssertion>

142 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
<wsrm:InactivityTimeout Milliseconds="600000"/>
<wsrm:AcknowledgementInterval Milliseconds="200"/>

</wsrm:RMAssertion>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

This snippet is valid in either a WSIT configuration file (wsit-<pack-
age>.<service>.xml) or in a Web Services Description Language (WSDL) file.
This snippet is from the WSIT configuration file in the example wsit-enabled-

fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml.

Creating a Web Service
You can create a web service starting from Java code or starting from a WSDL
file. The following sections describe each approach:

• Creating a Web Service From Java (page 142)

• Creating a Web Service From WSDL (page 145)

Creating a Web Service From Java
One way to create a web service application is to start by coding the endpoint in
Java. If you are developing your Java web service from scratch or have an exist-
ing Java class you wish to expose as a web service, this is the most direct
approach.

The Java API for XML Web Services (JAX-WS) 2.0, JSR-224, relies heavily on
the use of annotations as specified in A Metadata Facility for the Java

Programming Language (JSR-175) and Web Services Metadata for the Java
Platform (JSR-181), as well as additional annotations defined by the JAX-WS
2.0 specification.

The web service is written as a normal Java class. Then the class and its exposed
methods are annotated with the web service annotations @WebService and @Web-

Method. The following code snippet shows an example:

@WebService
public class AddNumbersImpl {

@WebMethod(action="addNumbers")
public int addNumbers(int number1, int number2)

throws AddNumbersException {

CREATING A WEB SERVICE 143
if (number1 < 0 || number2 < 0) {
throw new AddNumbersException(

"Negative number cant be added!",
"Numbers: " + number1 + ", " + number2);

}
return number1 + number2;

}
}

When developing a web service from scratch or based on an existing Java class,
WSIT features are enabled using a configuration file. That file, wsit-<pack-
age>.<service>.xml, is written in WSDL format. An example configuration
file can be found in the accompanying samples:

wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumber-
sImpl.xml

The settings in the wsit-<package>.<service>.xml file are incorporated
dynamically by the WSIT run-time into the WSDL it generates for the web ser-
vice. So when a client requests the web service’s WSDL, the run-time embeds
any publicly visible policy assertions contained in the wsit-<package>.<ser-

vice>.xml file into the WSDL. For the example wsit-fromjava.server.Add-

NumbersImpl.xml in the sample discussed in this tutorial, the Addressing and
Reliable Messaging assertions are part of the WSDL as seen by the client.

Note: The wsit-<package>.<service>.xml file must be in the WEB-INF sub-direc-
tory of the application’s WAR file when it is deployed to the web container. Other-
wise, the WSIT run-time environment will not find it.

To create a web service from Java, create the following files:

• These files define the web service and the WSIT configuration for the ser-
vice, which are discussed in the sections below:

• Web Service Implementation Java File (page 144)

• wsit-<package>.<service>.xml File (page 145)

• These files are standard files required for JAX-WS. Examples of these files
are provided in the wsit-enabled-fromjava sample directory.

• AddNumbersException.java

• custom-schema.xml

• sun-jaxws.xml

144 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
• web.xml

• These files are standard in any Ant build environment. Examples of these
files are provided in the wsit-enabled-fromjava sample directory.

• build.xml

• build.properties

Web Service Implementation Java File
The sample files define a web service that takes two integers, adds them, and
returns the result. If one of the integers is negative, an exception is thrown.

The starting point for developing a web service that uses the WSIT technologies
is a Java class file annotated with the javax.jws.WebService annotation. The
@WebService annotation defines the class as a web service endpoint.

The following file (wsit-enabled-fromjava/src/fromjava/serverAddNum-
bersImpl.java) implements the web service interface.

package fromjava.server;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class AddNumbersImpl {

@WebMethod(action="addNumbers")
public int addNumbers(int number1, int number2)

throws AddNumbersException {
if (number1 < 0 || number2 < 0) {

throw new AddNumbersException(
"Negative number cannot be added!",
"Numbers: " + number1 + ", " + number2);

}
return number1 + number2;

}
}

Note: To ensure interoperability with Windows Communication Foundation
(WCF) clients, you must specify the action element of @WebMethod in your end-
point implementation classes. WCF clients will incorrectly generate an empty
string for the Action header if you do not specify the action element.

CREATING A WEB SERVICE 145
wsit-<package>.<service>.xml File
This file is the WSIT configuration file. It defines which WSIT technologies are
enabled in the web service. The snippet shown below illustrates how to enable
the WSIT reliable messaging technology in a wsit-<package>.<service>.xml

file.

<wsp:Policy wsu:Id="AddNumbers_policy">
<wsp:ExactlyOne>

<wsp:All>
<wsaw:UsingAddressing/>
<wsrm:RMAssertion>

<wsrm:InactivityTimeout Milliseconds="600000"/>
<wsrm:AcknowledgementInterval Milliseconds="200"/>

</wsrm:RMAssertion>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

For a complete example of a wsit-<package>.<service>.xml file, see the
wsit-enabled-fromjava example. You can use the wsit-<package>.<ser-

vice>.xml file provided in the example as a reference for creating your own
wsit-<package>.<service>.xml file.

Creating a Web Service From WSDL
Typically, you start from WSDL to build your web service if you want to imple-
ment a web service that is already defined either by a standard or an existing
instance of the service. In either case, the WSDL already exists. The JAX-WS
wsimport tool processes the existing WSDL document, either from a local copy
on disk or by retrieving it from a network address or URL. For an example of
using a web browser to access a service’s WSDL, see Verifying Deployment
(page 150).

When developing a web service starting from an existing WSDL, the process is
actually simpler than starting from Java. This is because the policy assertions
needed to enable various WSIT technologies are already embedded in the
WSDL file. An example WSDL file is included in the fromwsdl sample pro-
vided with this tutorial at:

<INSTALL>/wsit-enabled-fromwsdl/etc/AddNumbers.wsdl

146 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
To Create a web service from WSDL, create the following source files:

• WSDL File (page 146)

• Web Service Implementation File (page 147)

• custom-server.xml

• web.xml

• sun-jaxws.xml

• build.xml

• build.properties

The following files are standard files required for JAX-WS. Examples of these
files are provided in the fromwsdl sample directory.

• custom-server.xml

• sun-jaxws.xml

• web.xml

The build.xml and build.properties files are standard in any Ant build envi-
ronment. Examples of these files are provided in the respective samples directo-
ries.

The sample files provided in this tutorial define a web service that takes two inte-
gers, adds them, and returns the result. If one of the integers is negative, an
exception is returned.

WSDL File
You can create a WSDL file by hand or retrieve it from an existing web service
by simply pointing a web browser at the web service’s URL. The snippet shown
below illustrates how to enable the WSIT Reliable Messaging technology in a
WSDL file.

<wsp:Policy wsu:Id="AddNumbers_policy">
<wsp:ExactlyOne>

<wsp:All>
<wsrm:RMAssertion>

<wsrm:InactivityTimeout Milliseconds="600000"/>
<wsrm:AcknowledgementInterval Milliseconds="200"/>

</wsrm:RMAssertion>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

BUILDING AND DEPLOYING THE WEB SERVICE 147
For a complete example of a WSDL file, see the AddNumbers.wsdl in the from-

wsdl example. Another benefit of AddNumbers.wsdl file is that it shows how a
WSIT-enabled WSDL is constructed. Therefore, you can use it as a reference
when you create a WSDL file or modify an existing one.

Web Service Implementation File
The following file (AddNumbersImpl.java) shows how to implement a web
service interface.

package fromwsdl.server;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService (endpointInterface=
"fromwsdl.server.AddNumbersPortType")

public class AddNumbersImpl{
@WebMethod(action="addNumbers")
public int addNumbers (int number1, int number2)

throws AddNumbersFault_Exception {
if (number1 < 0 || number2 < 0) {

String message = "Negative number cannot be added!";
String detail = "Numbers: " + number1 + ", " + number2;
AddNumbersFault fault = new AddNumbersFault ();
fault.setMessage (message);
fault.setFaultInfo (detail);
throw new AddNumbersFault_Exception(message, fault);

}
return number1 + number2;

}

public void oneWayInt(int number) {
System.out.println("Service received: " + number);

}
}

Building and Deploying the Web
Service

Once configured, you can build and deploy a WSIT-enabled web service in the
same manner as you would build and deploy a standard JAX-WS web service.

148 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
The following topics describe how to perform this task:

• Building and Deploying a Web Service Created From Java (page 148)

• Building and Deploying a Web Service Created From WSDL (page 149)

• Deploying the Web Service to a Web Container (page 149)

• Verifying Deployment (page 150)

Building and Deploying a Web Service
Created From Java
To build and deploy the web service, open a terminal window, go to the
<INSTALL>/wsit-enabled-fromjava/ directory and type the following:

ant server

This command calls the server target in build.xml, which builds and packages
the application into a WAR file, wsit-enabled-fromjava.war, and places it in
the wsit-enabled-fromjava/build/war directory. The ant server command
also deploys the WAR file to the web container.

The ant command calls multiple tools to build and deploy the web service. The
JAX-WS annotation processing tool (apt) processes the annotated source code
and invokes the compiler itself, resulting in the class files for each of the Java
source files. In the wsit-enabled-fromjava example, the ant target build-

server-java in build.xml handles this portion of the process. Next, the indi-
vidual class files are bundled together along with the web service’s supporting
configuration files into the application’s WAR file. It is this file that is deployed
to the web container by the deploy target.

During execution of the server target, you will see a warning message. The
message refers to "Annotation types without processors". The warning is
expected and does not indicate an abnormal situation. The text is included here
for reference:

build-server-java:
[apt] warning: Annotation types without processors:

[javax.xml.bind.annotation.XmlRootElement,
 javax.xml.bind.annotation.XmlAccessorType,
 javax.xml.bind.annotation.XmlType,
 javax.xml.bind.annotation.XmlElement]

[apt] 1 warning

BUILDING AND DEPLOYING THE WEB SERVICE 149
Building and Deploying a Web Service
Created From WSDL
To build and deploy the web service, open a terminal window, go to the
<INSTALL>/wsit-enabled-fromjava/ directory, and type the following:

ant server

This command calls wsimport, which takes the WSDL description and gener-
ates a corresponding Java interface and other supporting classes. Then the Java
compiler is called to compile both the user’s code and the generated code.
Finally, the class files are bundled together into the WAR file. To see the details
of how this is done, see the build-server-wsdl and create-war targets in the
wsit-enabled-fromwsdl/build.xml file.

Deploying the Web Service to a Web
Container
As a convenience, invoking the ant server command builds the web service’s
WAR file and immediately deploys it to the web container. However, in some sit-
uations, such as after undeploying a web service, it may be useful to deploy the
web service without rebuilding it.

For both scenarios, wsit-enabled-fromjava and fromwsdl, the resulting appli-
cation is deployed in the same manner.

The following sections describe how to deploy on the different web containers:

• Deploying to GlassFish (page 149)

• Deploying to Apache Tomcat (page 150)

Deploying to GlassFish
For development purposes, the easiest way to deploy is to use the autodeploy

facility of the GlassFish application server. To do so, you simply copy your
application’s WAR file to the /autodeploy directory for the domain to which
you want to deploy. If you are using the default domain, domain1, which is set
up by the GlassFish installation process, the appropriate directory path would be
<AS_HOME>/domains/domain1/autodeploy.

150 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
The build.xml file which accompanies this example has a deploy target for
GlassFish. To invoke that target, run the following command in the top-level
directory of the respective examples, either wsit-enabled-fromjava or wsit-
enabled-fromwsdl, as follows.

ant deploy

Deploying to Apache Tomcat
Apache Tomcat also has an autoDeploy feature that is enabled by Tomcat’s out-
of-the-box configuration settings. If you are not sure whether the autoDeploy is
enabled, check <TOMCAT_HOME>/conf/server.xml for the value of autoDeploy.
Assuming autoDeploy is enabled, you simply copy your application’s WAR file
to the <TOMCAT_HOME>/webapps directory

The build.xml file which accompanies this example has a deploy target for
Tomcat. To invoke that target, run the following command in the top-level direc-
tory of the respective examples, either wsit-enabled-fromjava or wsit-

enabled-fromwsdl, as follows. You need to use the -Duse.tomcat=true switch
to make sure that the application is deployed to Tomcat, and not to the default
server, which is GlassFish.

ant -Duse.tomcat=true deploy

Verifying Deployment
A basic test to verify that the application has deployed properly is to use a web
browser to retrieve the application’s WSDL from its hosting web container. The
following URLs retrieve the WSDL from each of the two example services. If
you are running your web browser and web container on different machines, you
need to replace localhost with the name of the machine hosting your web ser-
vice.

Note: Before testing, make sure your web container is running.

• http://localhost:8080/wsit-enabled-fromjava/addnumbers?wsdl

• http://localhost:8080/wsit-enabled-fromwsdl/addnumbers?wsdl

If the browser displays a page of XML tags, the web service has been deployed
and is working. If not, check the web container log for any error messages

CREATING A WEB SERVICE CLIENT 151
related to the sample WAR you have just deployed. For GlassFish, the log can be
found at <AS_HOME>/domains/domain1/logs/server.log. For Apache Tom-
cat, the appropriate log file can be found at <TOMCAT_HOME>/logs/cat-

alina.out.

Creating a Web Service Client
Unlike developing a web service provider, creating a web service client applica-
tion always starts with an existing WSDL file. This process is similar to the pro-
cess you use to build a service from an existing WSDL file. The WSDL file that
the client consumes already contains the WS–* policy assertions (and, in some
cases, any value-added WSIT policy assertions that augment Sun’s implementa-
tion, but can safely be ignored by other implementations). Most of the policy
assertions are defined in the WS-* specifications. Sun’s implementation pro-
cesses these standard policy assertions.

The policy assertions describe any requirements from the server as well as any
optional features the client may use. The WSIT build tools and run-time environ-
ment detect the WSDL’s policy assertions and configure themselves appropri-
ately, if possible. If an unsupported assertion is found, an error message
describing the problem will be displayed.

Typically, you retrieve the WSDL directly from a web service provider using the
wsimport tool. The wsimport tool then generates the corresponding Java source
code for the interface described by the WSDL. The Java compiler, javac, is then
called to compile the source into class files. The programming code uses the gen-
erated classes to access the web service.

The following sections describe how to create a web service client:

• Creating a Client from Java (page 152)

• Creating a Client from WSDL (page 154)

152 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
Creating a Client from Java
To create a client from Java, you must create the following files:

• Client Java File (fromjava) (page 152)

• Client Configuration File (fromjava) (page 153)

• build.xml

• build.properties

The build.xml and build.properties files are standard in any Ant build envi-
ronment. Examples of these files are provided in the wsit-enabled-fromjava

sample directory.

Client Java File (fromjava)
The client Java file defines the functionality of the web service client. The fol-
lowing code shows the AddNumbersClient.java file that is provided in the sam-
ple.

package fromjava.client;

import com.sun.xml.ws.Closeable;
import java.rmi.RemoteException;

public class AddNumbersClient {
public static void main (String[] args) {

AddNumbersImpl port = null;
try {

port = new
AddNumbersImplService().getAddNumbersImplPort();

int number1 = 10;
int number2 = 20;
System.out.printf ("Invoking addNumbers(%d, %d)\n",

number1, number2);
int result = port.addNumbers (number1, number2);
System.out.printf (

"The result of adding %d and %d is %d.\n\n",
number1, number2, result);

number1 = -10;
System.out.printf ("Invoking addNumbers(%d, %d)\n",

number1, number2);
result = port.addNumbers (number1, number2);
System.out.printf (

"The result of adding %d and %d is %d.\n",

CREATING A WEB SERVICE CLIENT 153
number1, number2, result);
} catch (AddNumbersException_Exception ex) {

System.out.printf (
"Caught AddNumbersException_Exception: %s\n",
ex.getFaultInfo ().getDetail ());

} finally {
((Closeable)port).close();

}
}

}

This file specifies two positive integers that are to be added by the web service,
passes the integers to the web service and gets the results from the web service
via the port.addNumbers method, and prints the results to the screen. It then
specifies a negative number to be added, gets the results (which should be an
exception), and prints the results (the exception) to the screen.

Client Configuration File (fromjava)
The client configuration file defines the URL of the web service WSDL file. It is
used by the web container wsimport tool to access and consume the WSDL and
to build the stubs that are used to communicate with the web service.

The custom-client.xml file provided in the wsit-enabled-fromjava sample
is shown below. The wsdlLocation and the package name xml tags are unique
to each client and are highlighted in bold text

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bindings

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="http://localhost:8080/wsit-enabled-fromjava/

addnumbers?wsdl"
xmlns="http://java.sun.com/xml/ns/jaxws">
<bindings node="wsdl:definitions">

<package name="fromjava.client"/>
</bindings>

</bindings>

154 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
Creating a Client from WSDL
To create a client from WSDL, you must create the following files:

• Client Java File (fromwsdl) (page 154)

• Client Configuration File (fromwsdl) (page 154)

• build.xml

• build.properties

The build.xml and build.properties files are standard in any Ant build envi-
ronment. Examples of these files are provided in the fromwsdl sample directory.

Client Java File (fromwsdl)
The client Java file defines the functionality of the web service client. The same
client java file is used with both samples, wsit-enabled-fromjava and wsit-

enabled-fromwsdl. For more information on this file, see Client Java File
(fromjava) (page 152).

Client Configuration File (fromwsdl)
This is a sample custom-client.xml file. The wsdlLocation, package name,
and jaxb:package name xml tags are unique to each client and are highlighted
in bold text

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bindings

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="http://localhost:8080/wsit-enabled-fromwsdl/

addnumbers?wsdl"
xmlns="http://java.sun.com/xml/ns/jaxws">
<bindings node="ns1:definitions"

xmlns:ns1="http://schemas.xmlsoap.org/wsdl/">
<package name="fromwsdl.client"/>

</bindings>
<bindings node="ns1:definitions/ns1:types/xsd:schema

[@targetNamespace=’http://duke.org’]"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="http://schemas.xmlsoap.org/wsdl/">

<jaxb:schemaBindings>

UNDEPLOYING A WEB SERVICE 155
<jaxb:package name="fromwsdl.client"/>
</jaxb:schemaBindings>

</bindings>
</bindings>

Building and Deploying a Client
To build and deploy a client for either of the examples provided in this tutorial,
enter one of the following Ant commands in the top-level directory of the
respective example, (either wsit-enabled-fromjava or wsit-enabled-from-

wsdl) depending on which web container you are using:

For GlassFish: ant client

For the Apache Tomcat: ant -Duse.tomcat=true client

This command runs wsimport, which retrieves the web service’s WSDL, and
then it runs javac to compile the source.

Running a Web Service Client
To run a client for either of the examples provided in this tutorial, enter one of
the following Ant commands in the top-level directory of the respective exam-
ple, (either wsit-enabled-fromjava or wsit-enabled-fromwsdl) depending
on which web container you are using:

For GlassFish: ant run

For the Apache Tomcat: ant -Duse.tomcat=true run

This command executes the run target, which simply runs Java with the name of
the client’s class, for example, fromwsdl.client.AddNumbersClient.

Undeploying a Web Service
During the development process, it is often useful to undeploy a web service.
Undeploying a web service means to disable and remove it from the web con-
tainer. Once the web service is removed, clients are no longer able to use the web
service. Further, the web service will not restart without explicit redeployment
by the user.

156 WSIT EXAMPLE USING A WEB CONTAINER WITHOUT NETBEANS
To undeploy from GlassFish, enter the following commands:

• asadmin undeploy --user admin wsit-enabled-fromjava

• asadmin undeploy --user admin wsit-enabled-fromwsdl

To undeploy from Apache Tomcat, enter the following commands:

• rm $CATALINA_HOME/webapps/wsit-enabled-fromjava.war

• rm $CATALINA_HOME/webapps/wsit-enabled-fromwsdl.war

9

Accessing WSIT

Services Using WCF
Clients

THIS chapter describes how to build and run a Microsoft Windows Communi-
cation Foundation (WCF) client that accesses the addnumbers service described
in Chapter 8.

Creating a WCF Client
The process of creating a WCF C# client to the addnumbers service is similar to
that for a Java programming language client. To create a WCF client you will:

1. Use the svcutil.exe tool to generate the C# proxy class and contracts for
accessing the web service.

2. Create a client program that uses the generated files to make calls to the
addnumbers web service.
157

158 ACCESSING WSIT SERVICES USING WCF CLIENTS
Prerequisites to Creating the WCF Client
You must have the following software installed to create the WCF client:

• Microsoft Windows Software Development Kit (SDK) for July Commu-
nity Technology Preview

• Microsoft .NET Framework 3.0 RTM

• the csclient-enabled-fromjava.zip example bundle, which you can
download from https://wsit.dev.java.net/source/browse/*check-

out*/wsit/wsit/docs/howto/csclient-enabled-fromjava.zip

You must also deploy the addnumbers service described in Chapter 8. You can
download the service from https://wsit.dev.java.net/source/browse/

checkout/wsit/wsit/docs/howto/wsit-enabled-fromjava.zip.

The Client Class
The client class uses a generated proxy class, AddNumbersImpl, to access the
web service. The port instance variable stores a reference to the proxy class.

...
port = new AddNumbersImplClient("AddNumbersImplPort");
...

Then the web service operation addNumbers is called on port:

...
int result = port.addNumbers (number1, number2);
...

The following is the full Client.cs class:

using System;

class Client {
static void Main(String[] args) {

AddNumbersImplClient port = null;
try {

port = new AddNumbersImplClient("AddNumbersImplPort");
int number1 = 10;
int number2 = 20;

Console.Write("Adding {0} and {1}. ", number1, number2);
int result = port.addNumbers (number1, number2);

https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/docs/howto/wsit-enabled-fromjava.zip
https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/docs/howto/wsit-enabled-fromjava.zip
https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/docs/howto/csclient-enabled-fromjava.zip
https://wsit.dev.java.net/source/browse/*checkout*/wsit/wsit/docs/howto/csclient-enabled-fromjava.zip

CREATING A WCF CLIENT 159
Console.WriteLine("Result is {0}.\n\n",result);

number1 = -10;
Console.Write("Adding {0} and {1}. ", number1, number2);
result = port.addNumbers (number1, number2);
Console.WriteLine("Result is {0}.\n\n",result);
port.Close();

} catch (System.ServiceModel.FaultException e) {
Console.WriteLine("Exception: " + e.Message);
if (port != null) port.Close();

}
}

}

Building and Running the Client
The example bundle contains all the files you need to build and run a WCF client
that accesses a WSIT web service written in the Java programming language.

The csclient-enabled-fromjava.zip bundle contains the following files:

• Client.cs—the C# client class

• build.bat—the build batch file

Generating the Proxy Class and Configuration
File
When creating a Java programming language client, you use the wsimport tool
to generate the proxy and helper classes used by the client class to access the
web service. When creating a WCF client, the svcutil.exe tool provides the
same functionality as the wsimport tool. svcutil.exe generates the C# proxy
class and contracts for accessing the service from a C# client program.

The example bundle contains a batch file, build.bat, that calls svcutil.exe to
generate the proxy class. The command is:

svcutil /config:Client.exe.config http://localhost:8080/wsit-
enabled-fromjava/addnumbers?wsdl

160 ACCESSING WSIT SERVICES USING WCF CLIENTS
Building the AddNumbers Client
The example bundle’s build.bat file first generates the proxy class and configu-
ration file for the client, then compiles the proxy class, configuration file, and
Client.cs client class into the Client.exe executable file.

To run build.bat, do the following:

1. At a command prompt navigate the location where you extracted the exam-
ple bundle.

2. If necessary, customize the build.bat file as described in Customizing the
build.bat File below.

3. Enter the following command:
build.bat

Customizing the build.bat File
To customize the build.bat file for your environment, do the following:

1. Open build.bat in a text editor.

2. On the first line enter the full path to the svcutil.exe tool. By default, it
is installed at C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin.

3. On the first line change the WSDL location URL if you did not deploy the
addnumbers service to the local machine, or if the service was deployed to
a different port than the default 8080 port number. For example, the follow-
ing line sets the host name to testmachine.example.com and the port
number to 8081:

svcutil /config:Client.exe.config
http://testmachine.example.com:8081/wsit-enabled-fromjava/
addnumbers?wsdl

4. On line 2, change the location of the csc.exe C# compiler and the Sys-

tem.ServiceModel and System.Runtime.Serialization support DLLs
if you installed the .NET 2.0 and 3.0 frameworks to non-default locations.

Running the AddNumbers Client
After the client has been built, run the client by following these steps:

1. At a command prompt navigate the location where you extracted the exam-
ple bundle.

2. Enter the following command:

CREATING A WCF CLIENT 161
Client.exe

You will see the following output:

Adding 10 and 20. Result is 30.
Adding -10 and 20. Exception: Negative numbers can't
be added!

162 ACCESSING WSIT SERVICES USING WCF CLIENTS

10

Data Contracts

THIS chapter describes guidelines for:

• Designing a XML schema exposed by a web service starting from Java

• Consuming a WCF service generated WSDL/XML schema when design-
ing a Java client or Java web service

• Developing a Microsoft WCF client

A WSIT client/service uses JAXB 2.0 for XML serialization, generating XML
schemas from Java classes and generating Java classes from XML schemas. A
WCF client/service uses either XmlSerializer or DataContractSerializer

for like tasks. JAXB 2.0 and the WCF XML serialization mechanisms differ in
two fundamental ways. First, JAXB 2.0 supports all of XML schema. .NET’s
DataContractSerializer and XmlSerializer support different XML schema
sets. Second, WCF’s XMLSerializer/DataContractSerializer and JAXB 2.0
differ in their mapping of programming language datatypes to XML Schema
constructs. As a result, a XML schema generated from a programming language
on one platform and consumed on another platform may result in less than devel-
oper-friendly bindings. This chapter discusses some of the common databinding
differences between the two systems and recommends ways to address them.

Web Service - Start from Java
This section provides guidelines for designing a XML schema exported by a
Java web service designed starting from Java. JAXB 2.0 provides a rich set of
annotations and types for mapping Java classes to different XML Schema con-
163

164 DATA CONTRACTS
structs. The guidelines provide guidance on using JAXB 2.0 annotations and
types so that developer friendly bindings may be generated by XML serialization
mechanisms (svcutil) on WCF client.

Not all JAXB 2.0 annotations are included here; not all are relevant from an
interoperability standpoint. For example, the annotation @XmlAccessorType pro-
vides control over default serialization of fields and properties in a Java class but
otherwise has no effect on the on-the-wire XML representation or the XML
schema generated from a Java class. Select JAXB 2.0 annotations are therefore
not included here in the guidance.

The guidance includes several examples, which use the following conventions:

• prefix xs: is used to represent XML Schema namespace

• JAXB 2.0 annotations are defined in javax.xml.bind.annotation pack-
age but, for brevity, the package name has been omitted

DataTypes

Primitives and Wrappers
Guideline: Java primitive and wrapper classes map to slightly different XML
schema representations. Therefore, .NET bindings will vary accordingly.

Example: A Java primitive type and its corresponding wrapper class

//-- Java code fragment
public class StockItem{

public Double wholeSalePrice;
public double retailPrice;

}

//--Schema fragment
<xs:complexType name="stockItem">
 <xs:sequence>
 <xs:element name="wholeSalePrice" type="xs:double"

WEB SERVICE - START FROM JAVA 165
minOccurs="0"/>
<xs:element name="retailPrice" type="xs:double"/>

 </xs:sequence>
 </xs:complexType>

//-- .NET C# auto generated code from schema
 public partial class stockItem
 {
 private double wholeSalePrice;
 private bool wholeSalePriceFieldSpecified;
 private double retailPrice;

 public double wholeSalePrice
 {
 get{ return this.wholeSalePrice;}
 set{this.wholeSalePrice=value}
 }

 public bool wholeSalePriceSpecified
 {
 get{ return
this.wholeSalePriceFieldSpecified;}

set{this.wholeSalePriceFieldSpecified=value}
 }

 public double retailPrice
 {
 get{ return this.retailPrice;}
 set{this.retailPrice=value}
 }
 }

//-- C# code fragment
 stockItem s = new stockItem();
 s.wholeSalePrice = Double.parse("198.92");
 s.wholeSalePriceSpecified = true
 s.retailPrice = Double.parse("300.25");

BigDecimal
Guideline: Limit decimal values to the range and precision of .NET’s Sys-

tem.decimal.

java.math.BigDecimal maps to xs:decimal. .NET maps xs:decimal to Sys-

tem.decimal. These two data types support different range and precision.
java.math.BigDecimal supports arbitrary precision. System.decimal does

166 DATA CONTRACTS
not. For interoperability use only values within the range and precision of Sys-
tem.decimal. (See System.decimal.Minvalue and System.decimal.Max-

value.) Any values outside of this range require a customized .NET client.

Example: BigDecimal usage

//--- Java code fragment
 public class RetBigDecimal {

 private BigDecimal arg0;

 public BigDecimal getArg0() { return this.arg0; }

 public void setArg0(BigDecimal arg0) { this.arg0 = arg0; }

 }

 //--- Schema fragment
 <xs:complexType name="retBigDecimal">

 <xs:sequence>

<xs:element name="arg0" type="xs:decimal" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

//--- .NET auto generated code from schema
 public partial class retBigDecimal{

 private decimal arg0Field;

 private bool arg0FieldSpecified;

 public decimal arg0 {

 get { return this.arg0Field;}

 set { this.arg0Field = value;}

 }

 public bool arg0Specified {

 get { return this.arg0FieldSpecified;}

 set { this.arg0FieldSpecified = value;}

 }

 }

//--- C# code fragment
System.CultureInfo engCulture = new System.CultureInfo("en-

US");

 retBigDecimal bd = new retBigDecimal();

 bd.arg0 = System.decimal.MinValue;

WEB SERVICE - START FROM JAVA 167
 retBigDecimal negBd = new retBigDecimal();

 negBd = System.decimal.Parse("-0.0", engCulture);

java.net.URI
Guideline: Use the @XmlSchemaType annotation for a strongly typed binding to a
.NET client generated with the DataContractSerializer.

java.net.URI maps to xs:string. .NET maps xs:string to System.string.
Annotation @XmlSchemaType can be used to define a more strongly typed bind-
ing to a .NET client generated with the DataContractSerializer. @XmlSche-
maType can be used to map java.net.URI to xs:anyURI. .NET’s
DataContractSerializer and XmlSerializer bind xs:anyURI differently:

• DataContractSerializer binds xs:anyURI to .NET type System.Uri

• XmlSerializer binds xs:anyURI to .NET type System.string

Thus, the above technique only works if the WSDL is processed using DataCon-

tractSerializer.

Example: @XmlSchemaType and DataContractSerializer

// Java code fragment
public class PurchaseOrder
{

@XmlSchemaType(name=”anyURI”)
public java.net.URI uri;

}

//-- Schema fragment
<xs:complexType name=”purchaseOrder”>

<xs:sequence>
<xs:element name=”uri” type=”xs:anyURI” minOccurs=”0”/>

</xs:sequence>
</xs:complexType>

//--- .NET auto generated code from schema
//--- Using svcutil.exe /serializer:DataContractSerializer <wsdl file>
 public partial class purchaseOrder : object,
 System.Runtime.Serialization.IExtensibleDataObject
 {

 private System.Uri uriField;

 //-- other gernerated code
public System.Uri uri

168 DATA CONTRACTS
 {
 get { return this.uriField; }
 set { this.uriField = value; }
 }
 }

//--- C# code fragment
 purchaseOrder tmpU = new purchaseOrder()
 tmpU.uri = new System.Uri("../Hello",
System.UriKind.Relative);

Example: @XmlSchemaType and XmlSerializer

// Java code fragment
public class PurchaseOrder
{

@XmlSchemaType(name=”anyURI”)
public java.net.URI uri;

}

//--- .NET auto generated code from schema
//--- Using svcutil.exe /serializer:XmlSerializer <wsdl file>
 public partial class purchaseOrder
 {
 private string uriField;
 public string uri
 {
 get { return this.uriField; }
 set { this.uriField = value; }
 }
 }

//--- C# code fragment
 purchaseOrder tmpU = new purchaseOrder()
 tmpU.uri = "mailto:mailto:mduerst@ifi.unizh.ch";

Duration
Guideline: Use .NET’s System.Xml.XmlConvert to generate a lexical representation
of xs:duration when the binding is to a type of System.string.

javax.xml.datatype.Duration maps to xs:duration. .NET maps xs:dura-

tion to a different datatype for DataContractSerializer and XmlSerializer.

• DataContractSerializer binds xs:duration to .NET Sys-

tem.TimeSpan.

WEB SERVICE - START FROM JAVA 169
• XmlSerializer binds xs:duration to .NET System.string.

When xs:duration is bound to .NET System.string, the string value must
be a lexical representation for xs:duration. .NET provides utility Sys-

tem.Xml.XmlConvert for this purpose.

Example: Mapping xs:duration using DataContactSerializer

//-- Java code fragment
 public class PurchaseReport {
 public javax.xml.datatype.Duration period;
 }

//-- Schema fragment
 <xs:complexType name="purchaseReport">
 <xs:sequence>
 <xs:element name="period" type="xs:duration"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

//-- .NET auto generated code from schema
 //-- Using svcutil.exe /serializer:DataContractSerializer <wsdl file>
 public partial class purchaseReport: object,
 System.Runtime.Serialization.IExtensibleDataObject
 {
 private System.TimeSpan periodField;
 //-- other gernerated code
 public System.TimeSpan period
 {
 get { return this.periodField; }
 set { this.periodField = value; }
 }
 }

//-- C# code fragment
 purchaseReport tmpR = new purchaseReport();
 tmpR.period = new System.TimeSpan.MaxValue;

Example: Mapping xs:duration using XmlSerializer

//-- .NET auto generated code from schema
//-- Using svcutil.exe /serializer:XmlSerializer <wsdl file>
 public partial class purchaseReport
 {
 private string periodField;
 public string period

170 DATA CONTRACTS
 {
 get { return this.periodField; }
 set { this.periodField = value; }
 }
 }

//-- C# code fragment
purchaseReport tmpR = new purchaseReport();
tmpR.period = System.Xml.XmlConvert.ToString(new
System.TimeSpan(23, 0,0));

Binary Types
java.awt.Image, javax.xml.transform.Source, and javax.activa-

tion.DataHandler map to xs:base64Binary. .NET maps xs:base64Binary to
byte[].

JAXB 2.0 provides the annotation @XmlMimeType, which supports specifying the
content type, but .NET ignores this information.

Example: Mapping java.awt.Image without @XmlMimeType

//-- Java code fragment
 public class Claim{
 public java.awt.Image photo;
 }

//-- Schema fragment
 <xs:complexType name="claim">
 <xs:sequence>
 <xs:element name="photo" type="xs:base64Binary"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

//-- .NET auto generated code from schema
 public partial class claim : object,
 System.Runtime.Serialization.IExtensibleDataObject
 {
 private byte[] photoField;
 //-- other gernerated code
 public byte[] photo
 {

WEB SERVICE - START FROM JAVA 171
 get { return this.photoField; }
 set { this.photoField = value; }
 }
 }

//-- C# code fragment
 try
 {
 claim tmpC = new claim();

 System.IO.FileStream f = new System.IO.FileStream(
 "C:\\icons\\circleIcon.gif", System.IO.FileMode.Open);
 int cnt = (int)f.Length;
 tmpC.photo = new byte[cnt];
 int rCnt = f.Read(tmpC.photo, 0, cnt);

 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }

Example: Mapping java.awt.Image with @XmlMimeType

//-- Java code fragment
public class Claim{
 @XmlMimeType("image/gif")
 public java.awt.Image photo;
}

//-- Schema fragment
 <xs:complexType name="claim">
 <xs:sequence>

<xs:element name="photo" ns1:expectedContentTypes="image/
gif"
 type="xs:base64Binary" minOccurs="0"
 xmlns:ns1="http://www.w3.org/2005/05/xmlmime"/>
 </xs:sequence>
 </xs:complexType>

//-- Using the @XmlMimeType annotation doesn’t change .NET
//--auto generated code
 public partial class claim : object,
 System.Runtime.Serialization.IExtensibleDataObject
 {
 private byte[] photoField;
 //-- other gernerated code
 public byte[] photo

172 DATA CONTRACTS
 {
 get { return this.photoField; }
 set { this.photoField = value; }
 }
 }

//-- This code is unchanged by the different schema
//-- C# code fragment
 try
 {
 claim tmpC = new claim();

 System.IO.FileStream f = new System.IO.FileStream(
 "C:\\icons\\circleIcon.gif", System.IO.FileMode.Open);
 int cnt = (int)f.Length;
 tmpC.photo = new byte[cnt];
 int rCnt = f.Read(tmpC.photo, 0, cnt);

 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }

XMLGregorianCalendar
Guideline: Use java.xml.datatype.XMLGregorianCalendar instead of
java.util.Date and java.util.Calendar.

XMLGregorianCalendar supports the following XML schema calendar types:
xs:date, xs:time, xs:dateTime, xs:gYearMonth, xs:gMonthDay, xs:gYear,
xs:gMonth, and xs:gDay. It is statically mapped to xs:anySimpleType, the
common schema type from which all the XML schema calendar types are der-
vived. .NET maps xs:anySimpleType to System.string.

java.util.Date and java.util.Calendar map to xs:dateTime, but don’t
provide as complete XML support as XMLGregorianCalendar does.

Guideline: Use annotation @XmlSchemaType for a strongly typed binding of
XMLGregorianCalendar to one of the XML schema calendar types.

WEB SERVICE - START FROM JAVA 173
Example: XmlGregorianCalendar without @XmlSchemaType

//-- Java code fragment
 public class PurchaseOrder{
 public javax.xml.datatype.XMLGregorianCalendar orderDate;
 }

//-- Schema fragment
 <xs:complexType name="purchaseOrder">
 <xs:sequence>
 <xs:element name="orderDate" type="xs:anySimpleType"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

//-- .NET auto generated code from schema
 public partial class purchaseOrder
 {
 private string orderDateField;
 public string orderDate
 {
 get { return this.orderDateField; }
 set { this.orderDateField = value; }
 }
 }

//-- C# code fragment
 purchaseOrder tmpP = new purchaseOrder();
 tmpP.orderDate = System.Xml.XmlConvert.ToString(
 System.DateTime.Now,
System.Xml.XmlDateTimeSerializerMode.RoundtripKind);

174 DATA CONTRACTS
Example: XMLGregorianCalendar with @XmlSchemaType

//-- Java code fragment
public class PurchaseOrder{
 @XmlSchemaType(name="dateTime")
 public javax.xml.datatype.XMLGregorianCalendar orderDate;
 }

//-- Schema fragment
 <xs:complexType name="purchaseOrder">
 <xs:sequence>
 <xs:element name="orderDate" type="xs:dateTime"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

//-- .NET auto generated code from schema
 public partial class purchaseOrder : object,
 System.Runtime.Serialization.IExtensibleDataObject
 {

private System.Runtime.Serialization.ExtensionDataObject
extensionDataField;
 private System.DateTime orderDateField;

 public System.Runtime.Serialization.ExtensionDataObject
ExtensionData
 {
 get { return this.extensionDataField; }
 set { this.extensionDataField = value; }
 }

 public System.DateTime orderDate
 {
 get { return this.orderDateField; }
 set { this.orderDateField = value; }
 }
 }

//-- C# code fragment
 purchaseOrder tmpP = new purchaseOrder();
 tmpP.orderDate = System.DateTime.Now;

UUID
Guideline: Use Leach-Salz variant of UUID at runtime.

WEB SERVICE - START FROM JAVA 175
java.util.UUID maps to schema type xs:string. .NET maps xs:string to
System.string. The constructors in java.util.UUID allow any variant of
UUID to be created. Its methods are for manipulation of the Leach-Salz variant.

Example: Mapping UUID

//-- Java code fragment
public class ReportUid{
 public java.util.UUID uuid;
 }

//-- Schema fragment
 <xs:complexType name="reportUid">
 <xs:sequence>
 <xs:element name="uuid" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

//-- .NET auto generated code from schema
 public partial class reportUid: object,
 System.Runtime.Serialization.IExtensibleDataObject
 {

private System.Runtime.Serialization.ExtensionDataObject
extensionDataField;
 private string uuidField;

 public System.Runtime.Serialization.ExtensionDataObject
ExtensionData
 {
 get { return this.extensionDataField; }
 set { this.extensionDataField = value; }
 }

 public string uuid
 {
 get { return this.uuidField; }
 set { this.uuidField = value; }
 }
 }

//-- C# code fragment
 reportUid tmpU = new reportUid();
 System.Guid guid = new System.Guid("06b7857a-05d8-4c14-b7fa-
822e2aa6053f");
 tmpU.uuid = guid.ToString();

176 DATA CONTRACTS
Type Variable
A typed variable maps to xs:anyType. .NET maps xs:anyType to Sys-

tem.Object.

Example: Using a typed variable

// Java class
public class Shape <T>
{

private T xshape;

public Shape() {};
public Shape(T f)
{

xshape = f;
}

}

<xs:complexType name=”shape”>
<xs:sequence>

<xs:element name=”xshape” type=”xs:anyType”
minOccurs=”0”/>

</xs:sequence>
</xs:complexType>

// C# code generated by svcutil
public partial class shape
{

private object xshapeField;

public object xshape
{

get { return this.xshapeField; }
set { this.xshapeField = value; }

}
}

Collections
Java collections types - java.util.Collection and its subtypes, array, List,
and parameterized collection types (e.g. List<Integer>) can be mapped to
XML schema in different ways and can be serialized in different ways. The fol-
lowing examples show .NET bindings.

WEB SERVICE - START FROM JAVA 177
List of nillable elements
By default, a collection type such as List<Integer> maps to a XML schema
construct that is a repeating unbounded occurrence of an optional and nillable
element. .NET binds the XML schema construct to System.Nullable<int>[].
The element is optional and nillable. However, when marshalling JAXB mar-
shaller will always marshal a null value using xsi:nil.

Example: Collection to a list of nillable elements

//-- Java code fragment
@XmlRootElement(name=”po”)
public PurchaseOrder {

public List<Integer> items;
}

//-- Schema fragment
<xs:element name=”po” type=”purchaseOrder”>
<xs:complexType name=”purchaseOrder”>

<xs:sequence>
<xs:element name=”items” type=”xs:int” nillable=”true”

 minOccurs=”0” maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

//--- JAXB XML serialization
<po>

<items> 1 </items>
<items> 2 </items>
<items> 3 </items>

</po>

<po>
<items> 1 </items>
<items xsi:nil=true/>
<items> 3 </items>

</po>

//-- .NET auto generated code from schema
partial class purchaseOrder {

private System.Nullable<int>[] itemsField;

public System.Nullable<int>[] items
{

get { return this.itemsField; }
set { this.itemsField = value; }

}
}

178 DATA CONTRACTS
List of optional elements
This is the same as above except that a collection type such as List<Integer>

maps to a repeating unbounded occurrence of an optional (minOccurs=”0”) but
not nillable element. This in turn binds to .NET type int[]. This is more devel-
oper friendly. However, when marshalling, JAXB will marshal a null value
within the List<Integer> as a value that is absent from the XML instance.

Example: Collection to a list of optional elements

//-- Java code fragment
@XmlRootElement(name=”po”)
public PurchaseOrder {

@XmlElement(nillable=false)
public List<Integer> items;

}

//-- Schema fragment
<xs:element name=”po” type=”purchaseOrder”>
<xs:complexType name=”purchaseOrder”>

<xs:sequence>
<xs:element name=”items” type=”xs:int”

 minOccurs=”0” maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

// .NET auto generated code from schema
partial class purchaseOrder {

private int[] itemsField;

public int[] items
{

get { return this.itemsField; }
set { this.itemsField = value; }

}
}

List of values
A collection such as List<Integer> can be mapped to a list of XML values (i.e.
a XML schema list simple type) using annotation @XmlList. .NET maps list
simple type to a .NET System.string.

WEB SERVICE - START FROM JAVA 179
Example: Collection to a list of values using @XmlList

//-- Java code fragment
@XmlRootElement(name=”po”)
public PurchaseOrder {

@XmlList public List<Integer> items;
}

//-- Schema fragment
<xs:element name=”po” type=”purchaseOrder”>
<xs:complexType name=”purchaseOrder”>

<xs:element name=”items” minOccurs=”0”>
<xs:simpleType>

<xs:list itemType=”xs:int”/>
</xs:simpleType>

</xs:element>
</xs:complexType>

//-- XML serialization
<po>

<items> 1 2 3 </items>
</po>

// .NET auto generated code from schema
partial class purchaseOrder {

private string itemsField;

public string items
{

get { return this.itemsField; }
set { this.itemsField = value; }

}

180 DATA CONTRACTS
Arrays
Example: Single and multidimensional Arrays

//-- Java code fragment
public class FamilyTree {

public Person[] persons;
public Person[][] family;

}

// .NET auto generated code from schema
public partial class familyTree
{

private person[] persons;
private person[][] families;

public person[] persons
{

get { return this.membersField; }
set { this.membersField = value; }

}

public person[][] families {
get { return this.familiesField; }
set { this.familiesField = value; }

}
}

Fields/Properties
The following guidelines apply to mapping of Javabean properties and Java
fields, but for brevity Java fields are used.

@XmlElement
The @XmlElement annotation maps a property/field to an XML element. This is
also the default mapping in the absence of any other JAXB 2.0 annotations. The
annotation parameters in @XmlElement can be used to specify whether the ele-
ment is optional or required, nillable or not. The following examples illustrate
the corresponding bindings in the .NET client.

WEB SERVICE - START FROM JAVA 181
Example: Map a field/property to a nillable element

//-- Java code fragment
public class PurchaseOrder {

// Map a field to a nillable XML element
@javax.xml.bind.annotation.XmlElement(nillable=true)
public java.math.BigDecimal price;

}

//-- Schema fragment
<xs:complexType name="purchaseOrder">

<xs:sequence>
<xs:element name="price" type="xs:decimal"

nillable="true" minOccurs="0" />
</xs:sequence>

</xs:complexType>

// .NET auto generated code from schema
public partial class purchaseOrder {

private System.Nullable<decimal> priceField;
private bool priceFieldSpecified;

public decimal price
{

get { return this.priceField; }
set { this.priceField = value; }

}

public bool priceSpecified {
{

get { return this.priceFieldSpecified; }
set { this.priceFieldSpecified = value;}

}

Example: Map property/field to a nillable, required element

//-- Java code fragment
public class PurchaseOrder {

// Map a field to a nillable XML element

182 DATA CONTRACTS
@XmlElement(nillable=true, required=true)
public java.math.BigDecimal price;

}

//-- Schema fragment
<xs:complexType name="purchaseOrder">

<xs:sequence>
<xs:element name="price" type="xs:decimal"

nillable="true" minOccurs="1" />
</xs:sequence>

</xs:complexType>

// .NET auto generated code from schema
public partial class purchaseOrder {

private System.Nullable<decimal> priceField;

public decimal price
{

get { return this.priceField; }
set { this.priceField = value; }

}

}

@XmlAttribute
A property/field can be mapped to an XML attribute using @XmlAttribute

annotation. .NET binds an XML attribute to a property.

Example: Mapping field/property to XML attribute

//-- Java code fragment
public class UKAddress extends Address {

@XmlAttribute
public int exportCode;

}

//-- Schema fragment
<! XML Schema fragment -->
<xs:complexType name="ukAddress">

<xs:complexContent>
<xs:extension base="tns:address">

<xs:sequence/>

WEB SERVICE - START FROM JAVA 183
<xs:attribute name="exportCode" type="xs:int"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

// .NET auto generated code from schema
public partial class ukAddress : address
{

private int exportCodeField;
public int exportCode
{

get { return this.exportCodeField; }
set { this.exportCodeField = value; }

}
}

@XmlElementRefs
Guideline: @XmlElementRefs maps to a xs:choice. This binds to a property
with name “item” in the C# class. If there is another field/property named “item”
in the Java class, there will be a name clash that .NET will resolve by generating
name. To avoid the nameclash, either change the name or use customization, for
example @XmlElement(name=”foo”).

Example: Mapping a field/property using @XmlElementRefs

//-- Java code fragment
public class PurchaseOrder {

@XmlElementRefs({
@XmlElementRef(name="plane", type=PlaneType.class),
@XmlElementRef(name="auto", type=AutoType.class)})

public TransportType shipBy;
}

@XmlRootElement(name="plane")
public class PlaneType extends TransportType {}

@XmlRootElement(name="auto")

184 DATA CONTRACTS
public class AutoType extends TransportType { }

@XmlRootElement
public class TransportType { ... }

//-- Schema fragment
<!-- XML schema generated by wsgen -->
<xs:complexType name=”purchaseOrder”>

<xs:choice>
<xs:element ref=”plane”/>
<xs:element ref=”auto”/>

</xs:choice>
</xs:complexType>

<!-- XML global elements -->
<xs:element name=”plane” type=”autoType” />
<xs:element name=”auto” type=”planeType” />

<xs:complexType name=”autoType”>
<!-- content omitted - details not relevant to example -->

</xs:complexType>

</xs:complexType name=”planeType”>
<!-- content omitted - details not relevant to example -->

</xs:complexType>

// .NET auto generated code from schema
public partial class purchaseOrder {

 private transportType itemField;

[System.Xml.Serialization.XmlElementAttribute("auto",
typeof(autoType), Order=4)]

[System.Xml.Serialization.XmlElementAttribute("plane",
typeof(planeType), Order=4)]

public transportType Item
{

get { return this.itemField; }
set { this.itemField = value; }

}

public partial class planeType { ... } ;
public partial class autoType { ... } ;

WEB SERVICE - START FROM JAVA 185
Class
A Java class can be mapped to different XML schema type and/or an XML ele-
ment. The following guidelines apply to the usage of annotations at the class
level.

@XmlType - Anonymous type
Guideline: Prefer mapping class to named XML schema type rather than an
anonymous type for a better .NET type binding.

The @XmlType annotation is used to customize the mapping of a Java class to an
anonymous type. .NET binds an anonymous type to a .NET class - one per refer-
ence to the anonymous type. Thus, each Java class mapped to an anonymous
type can generate multiple classes on the .NET client.

Example: Mapping a Java class to an anonymous type using @XmlType

//-- Java code fragment
public class PurchaseOrder {

public java.util.List<Item> item;
}

@XmlType(name="")
public class Item {

public String productName;
...

}

//-- Schema fragment
<xs:complexType name=”purchaseOrder”>

<xs:sequence>
<xs:element name=”item”>

<xs:complexType>
<xs:sequence>

<xs:element name=”productName” type=”xs:string”/>
</xs:sequence>

186 DATA CONTRACTS
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

// C# code generated by svcutil
public partial class purchaseOrder
{

private purchaseOrderItem[] itemField;

System.Xml.Serialization.XmlElementAttribute("item",
Form=System.Xml.Schema.XmlSchemaForm.Unqualified,
IsNullable=true, Order=0)]

public purchaseOrderItem[] item
{

get {
return this.itemField;

}

set {
this.itemField = value;

}
}

// .NET auto generated code from schema
public partial class purchaseOrderItem
{

private string productNameField;
public string productName {

get { return this.productNameField; }
set { this.productNameField = value; }

}
}

@XmlType - xs:all
Guideline: Avoid using XmlType(propOrder=:{}).

@XmlType(propOrder={}) maps a Java class to a XML Schema complex type
with xs:all content model. Since XML Schema places severe restrictions on
xs:all, the use of @XmlType(propOrder={}) is therefore not recommended.
So, the following example shows the mapping of a Java class to xs:all, but the
corresponding .NET code generated by svcutil is omitted.

WEB SERVICE - START FROM JAVA 187
Example: Mapping a class to xs:all using @XmlType

//-- Java code fragment
@XmlType(propOrder={})
public class USAddress {

public String name;
public String street;

}

//-- Schema fragment
<xs:complexType name="USAddress">

<xs:all>
<xs:element name="name" type="xs:string"/>
<xs:element name="street" type="xs:string"/>
...

</xs:all>
</xs:complexType>

@XmlType - simple content
Guideline: A class can be mapped to a complexType with a simpleContent using
@XmlValue annotation. .NET binds the Java property annotated with @XmlValue to a
property with name “value”.

Example: Class to complexType with simpleContent

//-- Java code fragment
public class InternationalPrice
{

@XmlValue
public java.math.BigDecimal price;

@XmlAttribute public String currency;
}

//-- Schema fragment
<xs:complexType name=”internationalPrice”>

<xs:simpleContent>
<xs:extension base=xs:decimal”>

188 DATA CONTRACTS
xs:attribute name=”currency” type=”xs:string”/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

// .NET auto generated code from schema
public partial class internationalPrice
{

private string currencyField;
private decimal valueField;
public string currency
{

get { return this.currencyField; }
set { this.currencyField = value;}

}

public decimal Value
{

get { return this.valueField; }
set { this.valueField = value;}

}
}

Open Content
JAXB 2.0 supports the following annotations for defining open content. (Open
content allows content not statically defined in XML schema to occur in an XML
instance):

• @XmlAnyElement - which maps to xs:any, which binds to .NET type Sys-
tem.Xml.XmlElement[].

• @XmlAnyAttribute - which maps to xs:anyAttribute, which binds to
.NET type System.Xml.XmlAttribute[].

Example: Using @XmlAnyElement for open content

//-- Java code fragment
@XmlType(propOrder={“name”, “age”, “oc”})
public class OcPerson {

@XmlElement(required=true)
public String name;
public int age;

WEB SERVICE - START FROM JAVA 189
// Define open content
@XmlAnyElement
public List<Object> oc;

}

//-- Schema fragment
<xs:complexType name=”ocPerson”>

<xs:sequence>
<xs:element name=”name” type=”xs:string”/>
<xs:element name=”age” type=”xs:int”/>
<xs:any minOccurs=”0” maxOccurs=”unbounded”>

</xs:sequence>
</xs:complexType>

// .NET auto generated code from schema
public class ocPerson
{

private String name;
private int age;
private System.Xml.XmlElement[] anyField;<

public String name { ... }
public int age { ... }

public System.Xml.XmlElement[] Any {
{

get { return this.anyField; }
set { this.anyField = value; }

}
}

Example: Open content using @XmlAnyAttribute

//-- Java code fragment
@XmlType(propOrder={“name”, “age”}
public class OcPerson {

public String name;
public int age;

190 DATA CONTRACTS
// Define open content
@XmlAnyAttribute
public java.util.Map oc;

}

//-- Schema fragment
<xs:complexType name=”ocPerson”>

<xs:sequence>
<xs:element name=”name” type=”xs:string”/>
<xs:element name=”age” type=”xs:int”/>

</xs:sequence>
<xs:anyAttribute/>

</xs:complexType>

// .NET auto generated code from schema
public class ocPerson
{

private String name;
private double age;
private System.Xml.XmlAttribute[] anyAttrField;<

public String name { ... }
public double age { ... }

public System.Xml.XmlElement[] anyAttr {
{

get { return this.anyAttrField; }
set { this.anyAttrField = value; }

}
}

Enum Type
A Java enum type maps to an XML schema type constrained by enumeration fac-
ets. This, in turn, binds to .NET type enum type.

WEB SERVICE - START FROM JAVA 191
Example: Java enum -> xs:simpleType (with enum facets) -> .NET enum

//-- Java code fragment
public enum USState {MA, NH}

//-- Schema fragment
<xs:simpleType name=”usState”>

<xs:restriction base=”xs:string”>
<xs:enumeration value=”NH” />
<xs:enumeration value=”MA” />

</xs:restriction>
</xs:simpleType>

// .NET auto generated code from schema
public enum usState { NH, MA }

Package
The following package level JAXB annotations are relevant from an interopera-
bility standpoint:

• @XmlSchema – customizes the mapping of package to XML namespace.

• @XmlSchemaType – customizes the mapping of XML schema built-in type.
The @XmlSchemaType annotation can also be used at the property/field
level, as was seen in the previous example XMLGregorianCalendar
(page 172).

@XmlSchema
A package is mapped to an XML namespace. The following attributes of the
XML namespace can be customized using the @XmlSchema annotation parame-
ters:

• elementFormDefault using @XmlSchema.elementFormDefault()

• attributeFormDefault using @XmlSchema.attributeFormDefault()

• targetNamespace using @XmlSchema.namespace()

• Associate namespace prefixes with the XML namespaces using the
@XmlSchema.ns() annotation

These XML namespace attributes are bound to .NET serialization attributes (for
example, XmlSerializer attributes).

192 DATA CONTRACTS
Not Recommended Annotations
Any JAXB 2.0 annotation can be used but the following are not recommended:

• The javax.xml.bind.annotation.XmlElementDecl annotation is used
to provide complete XML schema support.

• The @XmlID and @XmlIDREF annotations are used for XML object graph
serialization, which is not well supported.

Web Service - Start from WSDL
The following guidelines apply when designing a Java web service starting from
a WSDL:

1. If the WSDL was generated by DataContractSerializer, enable JAXB
2.0 customizations described in Customizations for WCF Service WSDL
(page 193)”. The rationale for the JAXB 2.0 customizations is described in
the same section.

2. If the WSDL is a result of contract first approach, verify that the WSDL
can be processed by either the DataContractSerializer or XmlSerial-
izer mechanisms.

The purpose of this step is to ensure that the WSDL uses only the set of
XML schema features supported by JAXB 2.0 or .NET serialization
mechanisms. JAXB 2.0 was designed to support all the XML schema fea-
tures. The WCF serialization mechanisms, DataContractSerializer

and XmlSerializer, provide different levels of support for XML schema
features. Thus, the following step will ensure that the WSDL/schema file
can be consumed by the WCF serialization mechanisms.

svcutil <wsdl-file>

svcutil.exe tool, by default, uses DataContractSerializer but falls
back to XmlSerializer if it encounters an XML schema construct not
supported by XmlFormatter.

Java Client
A Java client is always developed starting from a WSDL. See section, “Custom-
izations for WCF Service WSDL (page 193)” for guidelines.

CUSTOMIZATIONS FOR WCF SERVICE WSDL 193
Customizations for WCF Service WSDL
When developing either a Java web service or a Java client from a WCF service
WSDL generated using DataContractSerializer, the following JAXB 2.0 cus-
tomizations are useful and/or required.

• generateElementProperty

• mapSimpleTypeDef

The following sections explain the use and rationale of these customizations.

generateElementProperty
WCF service WSDL generated from a programming language such as C# using
DataContractSerializer may contain XML Schema constructs which result
in JAXBElement<T> in generated code. A JAXBElement<T> type can also some-
times be generated when a WSDL contains advanced XML schema features
such as substitution groups or elements that are both optional and nillable. In all
such cases, JAXBElement<T> provides roundtripping support of values in XML
instances. However, JAXBElement<T> is not natural to a Java developer. So the
generateElementProperty customization can be used to generate an alternate
developer friendly but lossy binding. The different bindings along with the trade-
offs are discussed below.

Default Binding
The following is the default binding of an optional (minOccurs=”0”) and nill-

able(nillable=”true”) element:

<!-- XML schema fragment
<xs:element name=”person” type=”Person”
<xs:complexType name="Person">

<xs:sequence>
<xs:element name="name" type="xs:string"

nillable="true" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

// Binding
public class Person {

JAXBElement<String> getName() {...};
public void setName(JAXBElement<String> value) {...}

}

194 DATA CONTRACTS
Since the XML element “name” is both optional and nillable, it can be repre-
sented in an XML instance in one of following ways:

<!-- Absence of element name-->
<person>

<-- element name is absent -->
</person>

<!-- Presence of an element name -->
<person>

<name xsi:nil=”true”/>
</person>

The JAXBElement<String> type roundtrips the XML representation of “name”
element across an unmarshal/marshal operation.

Customized Binding
When generateElementProperty is false, the binding is changed as follows:

// set JAXB customization generateElementProperty="false"/>
public class Person {

String getName() {...}
public void setName(String value) {...}

}

The above binding is more natural to Java developer than JAXBEle-

ment<String>. However, it does not roundtrip the value of <name>.

JAXB 2.0 allows generateElementProperty to be set:

• Globally in <jaxb:globalBindings>

• Locally in <jaxb:property> customization

When processing a WCF service WSDL, it is recommended that the genera-

teElementProperty customization be set in <jaxb:globalBindings>:

<jaxb:bindings version="2.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<jaxb:bindings schemaLocation="schema-importedby-wcfsvcwsdl"
 node="/xs:schema">

<jaxb:globalBindings generateElementProperty=”false”/>
</jxb:bindings>

CUSTOMIZATIONS FOR WCF SERVICE WSDL 195
Note: The generateElementProperty attribute was introduced in JAXB 2.1.

mapSimpleTypeDef
XML Schema Part 2: Datatype defines facilities for defining datatypes for use in
XML Schemas. .NET platform introduced the CLR types for some of the XML
schema datatypes as described in Table 10–1.

However, there are no corresponding Java types that map to the XML Schema
types listed in Table 10–1. Furthermore, JAXB 2.0 maps these XML schema
types to Java types that are natural to Java developer. However, this results in a
mapping that is not one-to-one. For example:

• xs:int -> int

• xs:unsignedShort -> int

The lack of a one-to-one mapping means that when XML Schema types shown
in Table 10–1 are used in an xsi:type construct, they won’t be preserved by
default across an unmarshal followed by marshal operation. For example:

// C# web method
public Object retObject(Object objvalue);

// Java web method generated from WCF service WSDL
public Object retObject(

Object objvalue);
}

Table 10–1 CLR to XML Schema Type Mapping

CLR Type XML Schema Type

byte xs:unsignedByte

uint xs:unsignedInt

ushort xs:unsignedShor

ulong xs:unsignedLong

196 DATA CONTRACTS
The following illustrates why xsi:type is not preserved across an unmarshal/
marshal operation.

• A value of type uint is marshalled by WCF serialization mechanism as:
<objvalue xsi:type=”xs:unsignedShort”/>

• JAXB 2.0 unmarshaller unmarshals the value as an instance of int and
assigns it to parameter objvalue.

• The objvalue is marshalled back by JAXB 2.0 marshaller with an
xsi:type of xs:int.

<objvalue xsi:type=”xs:int”/>

One way to preserve and roundtrip the xsi:type is to use the mapSimpleType-

Def customization. The customization makes the mapping of XML Schema Part
2 datatypes one--to-one by generating additional Java classes. Thus,
xs:unsignedShort will be bound to its own class rather than int, as shown:

//Java class to which xs:unsignedShort is bound
public class UnsignedShort { ... }

The following illustrates how the xsi:type is preserved across an unmarshal/
marshal operation:

• A value of type uint is marshalled by WCF serialization mechanism as:
<objvalue xsi:type=”xs:unsignedShort”/>

• JAXB 2.0 unmarshaller unmarshals the value as an instance of Unsigned-
Short and assigns it to parameter objvalue.

• The objvalue is marshalled back by JAXB 2.0 marshaller with an
xsi:type of xs:int.

<objvalue xsi:type=”xs:unsignedShort”/>

Guideline: Use mapSimpleTypedef customization where roundtripping of XML
Schema types in Table 10–1 are used in xsi:type. However, it is preferable to
avoid the use of CLR types listed in Table 10–1 since they are specific to .NET
platform.

DEVELOPING A MICROSOFT .NET CLIENT 197
The syntax of the mapSimpleTypeDef customization is shown below.

<jxb:bindings version="2.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<jaxb:bindings schemaLocation="schema-importedby-wcfsvcwsdl"
 node="/xs:schema">

<jaxb:globalBindings mapSimpleTypeDef="true"/>
</jaxb:bindings>

Developing a Microsoft .NET Client
This section describes how to develop a .NET client that uses data binding.

Do the following steps to generate a Microsoft .NET client from a Java web ser-
vice WSDL file:

1. Generate WCF web service client artifacts using the svcutil.exe tool:
svcutil.exe <java-web-service-wsdl>

svcutil.exe has the following options for selecting a serializer.

svcutil.exe /serializer:auto (default)
svcutil.exe /serializer:DataContractSerializer
svcutil.exe /serializer:XmlSerializer

We recommend using the default (/serializer:auto) option. This
option ensures that svcutil.exe falls back to XmlSerializer if an XML
schema construct is used that cannot be processed by DataContractSe-

rializer.

For example, in the following class field price is mapped to an XML
attribute that cannot be consumed by DataContractSerializer.

public class POType {
@javax.xml.bind.annotation.XmlAttribute
public java.math.BigDecimal price;

}

<!-- XML schema fragment -->
<xs:complexType name="poType">

<xs:sequence/>
<xs:attribute name="price" type="xs:decimal"/>

</xs:complexType>

2. Develop the .NET client using the generated artifacts.

198 DATA CONTRACTS
BP 1.1 Conformance
JAX-WS 2.0 enforces strict Basic Profile 1.1 compliance. The following are
known cases where .NET framework does not enforce strict BP 1.1 semantics
and their usage can lead to interoperability problems.

BP 1.1 R2211
In rpclit mode, BP 1.1 http://www.ws-i.org/Profiles/BasicProfile-

1.1-2006-04-10.html, R2211 disallows the use of xsi:nil in part accessors
(see the R2211 for the actual text). From a developer perspective this means that
in rpclit mode, JAX-WS does not allow a null to be passed in a web service
method parameter.

//Java Web method
public byte[] retByteArray(byte[] inByteArray)
{

return inByteArray;
}

<!-- In rpclit mode, the above Java web service method will
throw an exception if the following XML instance with xsi:nil
is passed by a .NET client. -->
<RetByteArray xmlns="http://tempuri.org/">

<inByteArray a:nil="true" xmlns=""
xmlns:a="http://www.w3.org/2001/XMLSchema-instance"/>

</RetByteArray>

11

Using Atomic
Transactions

THIS chapter explains how to configure and use WSIT WS-TX, which imple-
ments Web Services-AtomicTransactions (WS-AT) and Web Services-Coordina-
tion (WS-Coordination). WSIT WS-TX enables Java EE transactions to work
across heterogeneous systems that support WS-AT and WS-Coordination.

About the basicWSTX Example
The basicWSTX example shows the following on the client-side:

1. Developers use existing Java Transaction APIs (JTA). Invocations of
transacted web service operations flow transactional context from client to
web service.

Persistent resources updated with client-created transactions are all com-
mitted or rolled back as a single atomic transaction.

2. After the client-side code commits or aborts the JTA transaction, the client
confirms that all operations in the transaction succeeded or failed via calls
to verify methods on the transacted web service.
199

200 USING ATOMIC TRANSACTIONS
SampleServiceClient, a WSIT servlet that initiates the transaction, and mscli-

ent, a client that performs the same operations but runs on the Microsoft side,
both interact with the following components running on the service-side:

1. SimpleService, a web service implemented as a Java servlet with trans-
acted operations

The "Edit Web Service Attributes" feature in the NetBeans WSIT plug-in
is used to configure Transaction Attributes of each web service operation.

2. SimpleServiceASCMTEJB, a web service implemented as container-man-
aged transaction Enterprise bean (CMT EJB)

No configuration is necessary for this case.

3. LibraryFacadeWebServiceBean, a web service that uses the Java Persis-
tence API (JPA) with two JDBC resources

4. Managed Java EE resources participating in a distributed transaction hav-
ing its transacted updates all committed or rolled back

The servlet and CMT EJB transacted web service operations manipulate
two JMS resources:

• jms/ConnectionFactory, an XATransaction connection factory

• jms/Queue, a JMS queue

The LibraryFacadeWebServiceBean web service operations manipulate
the JDBC resources.

• connectionPool, an XATransaction JDBC connection pool

• jdbc/javaProgrammingLibrary, a JDBC connection resource

This example shows how to use XATransaction-enabled JMS and JDBC. The
first version of this example, showing WSIT-to-WSIT operations, has the Sam-

pleServiceClient client configured to run on one GlassFish instance and the
service running on the other GlassFish instance. Either the Java client or the Java
web service could be replaced by a semantically equivalent Microsoft imple-
mentation. The Java client is, in fact, replaced by a Microsoft WCF client in the
more advanced version of the example, described in XXX.

With the SampleServiceClient client, the WS-Coordination/WS-AtomicTrans-
action protocol messages flow back and forth between the two GlassFish
instances just as they do in the Microsoft-to-Sun transaction interoperability sce-
nario with the msclient client.

ABOUT THE BASICWSTX EXAMPLE 201
The basicWSTX example was initially designed so it could be run in either one or
in two GlassFish domains. If you run the example in one domain, only one coor-
dinator is used; no WS-Coordination protocol messages will be exchanged. We
explain how to run the example in two domains so both protocols, WS-Coordi-
nation and WS-AtomicTransaction (WS-AT), are used, as shown in Figure 11–1.

Figure 11–1 WS-Coordination and WS-AtomicTransaction Protocols in Two GlassFish
Domains

We also provide the msclient client, which is the equivalent of the client servlet
shown in Domain 2.

Figure 11–2 shows the components that make up the two domain example.
Again, the msclient client would be equivalent to the client servlet in Domain 2
in this figure as well.

202 USING ATOMIC TRANSACTIONS
Figure 11–2 Components in the basicWSTX Example

The service, which runs in domain1, is comprised of two components:

• SimpleService, a web service that is implemented as a servlet with trans-
acted operations

• SimpleServiceASCMTEJB, a container-managed transaction Enterprise
bean (CMT EJB) web service

The SimpleService web service uses two JMS resources that are created in
domain1:

• jms/ConnectionFactory, an XATransaction connection factory

• jms/Queue, a JMS queue

The client servlet, which runs in domain2, initiates the transaction.

BUILDING, DEPLOYING AND RUNNING THE BASICWSTX EXAMPLE 203
Building, Deploying and Running the
basicWSTX Example

Complete the following steps to configure your environment then build, deploy,
and run the basicWSTX example.

1. Download the sample kit for this example from https://wsit-

docs.dev.java.net/releases/1-0-FCS/wsittutorial.zip.

2. Ensure that properties that point to your local GlassFish and WSIT Tuto-
rial installations have been set.

a. Copy file <INSTALL>/wsittutorial/examples/bp-project/app-

server.properties.sample to file <INSTALL>/wsittutorial/exam-
ples/bp-project/app-server.properties.

b. Set the javaee.home and wsit.tutorial.home properties in the file
<INSTALL>/wsittutorial/examples/bp-project/app-

server.properties.

c. Ensure that GlassFish and Ant 1.6.5 or higher have been installed and
are on the path. GlassFish includes Ant 1.6.5, which can be found in the
<javaee.home>/lib/ant/bin directory.

3. Set up your environment to run the basicWSTX example.

This step performs the following configuration tasks for you:

• Starts domain1.

• Creates the resources (jms/Queue and XATransaction jms/Connec-

tionFactory) used in the example.

• Creates and sets up two GlassFish domains.

The domains can either be created on one machine or on two different
machines. We’ll show you how to do it on one machine. The first
domain, domain1, is created as part of the GlassFish installation.

• Establishes trust between the two domains by installing each domain’s
s1as security certificate in the other domain’s truststore.

To configure your environment to run the example:

a. Change to the <INSTALL>/wsittutorial/examples/wstx/basicW-

STX/SampleService directory:

https://wsit-docs.dev.java.net/releases/1-0-FCS/wsittutorial.zip

204 USING ATOMIC TRANSACTIONS
cd <INSTALL>/wsittutorial/examples/wstx/basicWSTX/Sam-

pleService

b. Issue the following command to configure your environment to run the
example:

ant setup

4. Register the GlassFish server instances (domain1 and domain2) in the Net-
Beans IDE.

a. If the Sun Java System Application Server (domain1) is already regis-
tered, go to Step 4g. If it is not, go to Step 4b.

b. In the Runtime tab, right-click Servers and select Add Server. The Add
Server Instance dialog displays.

c. Choose the server (Sun Java System Application Server) from the pull-
down and give it a descriptive name, such as Sun Java System Applica-
tion Server - domain1 (Server), and then press Next.

d. Press the Browse button, navigate to the location where the GlassFish
server is installed, then press Choose.

e. Select domain1 from the pulldown, then press Next.

f. Enter the admin account password (adminadmin) in the Admin Pass-
word field then press Finish. The server instance you just registered is
the one in which you will run the web service (SampleService).

g. Right-click Servers and select Add Server. The Add Server Instance dia-
log displays.

h. Choose the server (Sun Java System Application Server) from the pull-
down and give it a descriptive name, such as Sun Java System Applica-
tion Server - domain2 (Client), and then press Next.

i. Press the Browse button, navigate to the location where the GlassFish
server is installed, then press Choose.

j. Select domain2 from the pulldown, then press Next.

k. Enter the admin account password (adminadmin) in the Admin Pass-
word field then press Finish. The server instance you just registered is
the one in which you will run the web service client (SampleService-
Client).

5. Associate the SampleService web service with the appropriate instance
(domain1) of the GlassFish server.

a. Select File, then Open Project.

BUILDING, DEPLOYING AND RUNNING THE BASICWSTX EXAMPLE 205
b. Browse to the <wsit.tutorial.home>/examples/wstx/basicWSTX/

directory, select the SampleService project, and select Open Project
Folder.

c. In the Projects tab, right-click SampleService, select Properties, then
select the Run category.

d. Use the Server pulldown to point to the Sun Java System Application
Server, the default domain, or the Glassfish server instance (domain1)
you registered in Step 4.

e. Click OK.

6. Set the proper transaction attributes for each mapping (wsdl:binding/
wsdl:operation) in the SimpleService-war web service.

This operation creates file SampleService\SampleService-

war\web\WEB-INF\wsit-wstx.sample.service.Simple.xml, in which
the transaction attribute settings for the SampleService-war are stored.

To set the transaction attributes for the SampleService-war web service:

a. In the Projects tab, open the SampleService-war project.

b. Open the Web Services node.

c. Right-click Simple and select Edit Web Service Attributes.

d. Select the WSIT tab and open the Operation node and then the method
node in each section.

Select the indicated setting for each of the following operations from the
Transaction pulldown:

• Set init to Required

• Set publishRequired to Required

• Set publishSupports to Supported

• Set verify to Required

206 USING ATOMIC TRANSACTIONS
Figure 11–3 shows how this is done for the publishRequired oper-
ation.

Figure 11–3 Setting the Transaction Attribute for the publishRequired
Method

e. Click OK.

Transaction attributes for SampleServiceASCMTEJB do not need to be set;
EJB 3.0 transaction attributes are used.

7. Deploy the SampleService web service.

Right-click SampleService and select Deploy Project. NetBeans will start
domain1 and deploy the webservice to that domain.

8. Register the SampleServiceClient client with the appropriate instance
(domain2) of the GlassFish server.

a. Select File, then Open Project.

BUILDING, DEPLOYING AND RUNNING THE BASICWSTX EXAMPLE 207
b. Browse to the <wsit.tutorial.home>/examples/wstx/basicWSTX/

directory, select the SampleServiceClient project, and select Open
Project Folder.

c. In the Projects tab, right-click SampleServiceClient, select Properties,
then select the Run category.

d. Use the Server pulldown to point to domain2.

e. Click OK.

9. Create web service references for the client (two web service clients, a
simpleServlet and a CMT EJB client) and generate the WSDL for both.

a. In the Projects tab, right-click SampleServiceClient, select New, then
select Web Service Client.

b. Click Browse next to the Project field. The Browse Web Services dialog
is displayed.

c. Open SampleService-war, select Simple, then click OK.

d. In the Package field, enter wstx.sample.client, then click Finish.

e. Right-click SampleServiceClient, select New, then select Web Service
Client.

f. Click Browse next to the Project field. The Browse Web Services dialog
is displayed.

g. Open SampleService-ejb, select SimpleASCMTEjb, then click OK.

h. In the Package field, enter wstx.sample.ejbclient, then click Finish.

If transaction attributes for the servlet (see Step 7) or CMT EJB web ser-
vice have changed, those services must be deployed and client web ser-
vice references refreshed to get new web service attributes.

To refresh the client web service references for this example:

a. In the Projects tab, open the SampleServiceClient, then open Web Ser-
vice References.

b. Right-click SimpleService and select Refresh Client to refresh the client
node and regenerate the WSDL for the simpleServlet.

c. Right-click SimpleAsCMTEjb to do the same for the CMT EJB client.

10. Deploy and Run the client.

Right-click SampleClient and select Run Project. NetBeans will start
domain2, deploy the servlet and EJB CMT clients to that domain, then dis-

208 USING ATOMIC TRANSACTIONS
play the results for both in a pop-up browser window, as shown in Figure
11–4.

Figure 11–4 basicWSTX Results

Index

A
Advanced Configuration page 48, 51,

82, 96
aliases

specifying 77
annotations

WebService 24, 144
application messages

being lost 5
Application Server

adding users to 73–74
authentication credentials 59

B
binary objects

encoding 4
bootstrapping and configuration 3

process steps 3

C
Certificate Validator field 86
certificates

digital 63
v3 75
validating 86

Client/Service Trust Requirements page
48, 51, 82, 96

Client/Service WSS Requirements page
48, 51, 82, 96

clients
web service

securing 48
client-side proxy 5
configuration file

client 130
service 126

configuration files
WSIT 125

D
derived session keys 6

E
Edit Web Service Attributes 48, 95
endpoints

descriptions 33
references 33
server-side 33

examples
required software x

F
flow control 44
209

210 INDEX
I
inactivity timeout 44

J
Java file

annotations 24, 38, 144
skeleton 25

JAX-WS
defined 1

K
keystore

aliases 77
configuring 78

Keystore Configuration options 78, 81,
85, 87

Keystore Configuration page 48, 51, 82,
96

keystores
alias 79, 94
configuring 48, 50–51, 75, 78, 81–

82, 85, 87, 96
location 79, 94

M
Message Elements/Parts to Sign and En-

crypt 48, 51, 82, 96
message optimization

binary objects 4
description 4
network performance 4
secure conversation 42

messages
encrypting elements 48, 51, 82, 96
encrypting parts 48, 51, 82, 96
securing 86
signing elements 48, 51, 82, 96
signing parts 48, 51, 82, 96

MetadataExchangeRequest 3
multiple-message-exchange sequence 6

N
network connections

being dropped 5

O
operations

securing 86
ordered delivery 43

P
password

default 59
proxy

lifetime 5

Q
Quality of Service 5

R
Reliable Message Delivery 134
reliable messaging 134

advantages and disadvantages 5
configuration options 43
description 5
messages being lost 5
network connections being dropped

5
ordered delivery 5
performance degradation 44
quality of service 5
secure conversation 45
sequence identifier 5
session management 5
when to use it 5

reliable messaging options
enabled/disabled 43
flow control 44
inactivity timeout 44

INDEX 211
max buffer size 44
ordered delivery 43

RM 134

S
SAAJ 157, 163
SAML callback handlers

examples of 60
specifying 59

SAML tokens
validating 86

SAML Validator field 86
secure conversation

security context token 45
secure messaging

performance 42
semantics 42

Secure Service 49
Secure Token Service (STS)

configuring 91
security

bindings
configuring 48, 51, 82, 96

configuring 48
configuration requirements

client 56

service 54
derived session keys 6
examples 98

mutual certificates 101
SAML authorization 107
SAML sender vouches (SV) 112
transport security (SSL) 104
username authentication 98
WSIT configuration files 125

mechanisms
described 62

SSL
configuring 69

transport-layer
advantages 63
disadvantages 63

web services
configuring 48, 51, 82, 96

WSIT
configuring 48

WSIT Configuration
client 51
Secure Service 49
Security Mechanism 49

Security Binding Configuration page 48,
51, 82, 96

security context token 45
security mechanism 49, 95
security mechanisms

issues addressed 123
security policy

description 6
security technology

description 6
sequence identifier 5

lifetime of 5
service registries 9, 34
services

securing 48
session management

implementing 5
shared security context 6
SOAP

messages 34
SOAP with Attachments API for Java

See SAAJ
specifications

bootstrapping and configuration 9
message optimization 10
reliable messaging 11
SOAP 10
SOAP MTOM 11
Web Services Addressing 11
Web Services Atomic Transactions

13
Web Services Coordination 12
Web Services Metadata Exchange 9,

34
Web Services Policy 9, 13
Web Services Reliable Messaging

212 INDEX
12
Web Services Secure Conversation

11, 14
Web Services Security 13
Web Services Security Policy 14
Web Services Trust 14
WSDL 9

SSL
configuring 50, 69

STS
configuring 50, 91

supporting token options 90

T
Timestamp Validator field

timestamps
validating 85

tokens
supporting

options 90
trust

configuring 48, 51, 82, 96
Truststore Configuration page 80
truststores

configuring 50, 75, 80
location 81
peer alias 82

typographical conventions xi

U
username

default 59
validating 85

username authentication
configuring

client 58
Username Validator field 85
users

adding to Application Server 73–74
creating 73

V
validating

password 85
SAML tokens 86
token timestamps 85
username 85

validators
configuring 85

W
WCF 6

platform 7
Web services 7

Web service
creating 25
creating and deploying 24, 38, 144
Java code 24

Web Service Attributes
editor 38

web services
attributes

editing 48, 51, 58, 82, 95–96
securing 48

Web Services Description Language
See WSDL 33

Web Services Interoperability Technolo-
gy 2

See WSIT 7
Web services trust

description 6
Windows Communication Foundation

See WCF 6
WSDL 3, 9, 33
wsimport 3
WSIT 3

and Indigo 6
configuration file

client 130
service 126

description 2
joint testing 7
platform 7
Web service 7

INDEX 213
wsit-*.xml file
client 130
service 126

WS-Metadata Exchange protocol 9
WS-Secure Conversation 6
WS-Security

configuring 48, 51, 82, 96
WS-Trust

configuring 48, 51, 82, 96

X
XML Infoset 11

214 INDEX

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	How to Use This Tutorial
	About the Examples
	Required Software

	Typographical Conventions
	Feedback

	Introduction
	What is WSIT?
	Bootstrapping and Configuration
	Message Optimization Technology
	Reliable Messaging Technology
	Security Technology

	How WSIT Relates to Windows Communication Foundation (WCF)
	WSIT Specifications
	Bootstrapping and Configuration Specifications
	Message Optimization Specifications
	Reliable Messaging Specifications
	Security Specifications

	How the WSIT Technologies Work
	How Message Optimization Works
	How Reliable Messaging Works
	How Security Works
	How Security Policy Works
	How Trust Works
	How Secure Conversation Works

	WSIT Example Using a Web Container and NetBeans
	Registering GlassFish with the IDE
	Creating a Web Service
	Configuring WSIT Features in the Web Service
	Deploying and Testing a Web Service
	Creating a Client to Consume a WSIT- Enabled Web Service

	Bootstrapping and Configuration
	What is a Server-Side Endpoint?
	Creating a Client from WSDL
	Client From WSDL Examples

	Message Optimization
	Creating a Web Service
	Configuring Message Optimization in a Web Service
	Deploying and Testing a Web Service
	Creating a Client to Consume a WSIT- enabled Web Service
	Message Optimization and Secure Conversation

	Using Reliable Messaging
	Reliable Messaging Options
	Creating Web Service Providers and Clients that use Reliable Messaging
	Using Secure Conversation With Reliable Messaging

	Using WSIT Security
	Configuring Security Using NetBeans IDE
	Securing the Service
	Securing the Client

	Summary of Configuration Requirements
	Summary of Service-Side Configuration Requirements
	Summary of Client-Side Configuration Requirements
	Configuring Username Authentication on the Client
	Example SAML Callback Handlers

	Security Mechanisms
	Username Authentication with Symmetric Keys
	Mutual Certificates Security
	Transport Security (SSL)
	Transport Security (SSL) Workaround

	Message Authentication over SSL
	SAML Authorization over SSL
	Endorsing Certificate
	SAML Sender Vouches with Certificates
	SAML Holder of Key
	STS Issued Token
	STS Issued Token with Service Certificate
	STS Issued Endorsing Token

	Configuring SSL and Authorized Users
	Configuring SSL For Your Applications
	Adding Users to GlassFish
	Adding Users to GlassFish Using Admin Console
	Adding Users to GlassFish From Command Line

	Configuring Keystores and Truststores
	Updating GlassFish Certificates
	Specifying Aliases with the Updated Stores
	Configuring the Keystore and Truststore
	Configuring the Keystore on a Service
	Configuring the Truststore on a Service
	Configuring the Keystore and Truststore on a Client

	Configuring Validators

	Securing an Operation
	Specifying Security at the Operation, Input Message, or Output Message Level
	Supporting Token Options

	Configuring A Secure Token Service (STS)
	Creating a Third-Party STS
	Specifying an STS on the Service Side
	Specifying an STS on the Client Side
	STS Example 1: Endpoint with Metadata
	STS Example 2: Endpoint with WSDL Location, Service Name, Port Name, and Namespace

	Example Applications
	Example: Username Authentication with Symmetric Keys (UA)
	Securing the Example Service Application (UA)
	Securing the Example Web Service Client Application (UA)

	Example: Mutual Certificates Security (MCS)
	Securing the Example Service Application (MCS)
	Securing the Example Web Service Client Application (MCS)

	Example: Transport Security (SSL)
	Securing the Example Service Application (SSL)
	Securing the Example Web Service Client Application (SSL)

	Example: SAML Authorization over SSL (SA)
	Securing the Example Service Application (SA)
	Securing the Example Web Service Client Application (SA)

	Example: SAML Sender Vouches with Certificates (SV)
	Securing the Example Service Application (SV)
	Securing the Example Web Service Client Application (SV)

	Example: STS Issued Token (STS)
	Securing the Example Service Application (STS)
	Creating and Securing the STS (STS)
	Securing the Example Web Service Client Application (STS)

	Example: Other STS Examples

	Further Information

	Further Detail on WSIT Security Features
	Issues Addressed Using Security Mechanisms
	Understanding WSIT Configuration Files
	Service-Side WSIT Configuration Files
	Client-Side WSIT Configuration Files

	Security Mechanism Configuration Options

	WSIT Example Using a Web Container Without NetBeans
	Environment Configuration Settings
	Setting the Web Container Listener Port
	Setting the Web Container Home Directory

	WSIT Configuration and WS-Policy Assertions
	Creating a Web Service
	Creating a Web Service From Java
	Web Service Implementation Java File
	wsit-<package>.<service>.xml File

	Creating a Web Service From WSDL
	WSDL File
	Web Service Implementation File

	Building and Deploying the Web Service
	Building and Deploying a Web Service Created From Java
	Building and Deploying a Web Service Created From WSDL
	Deploying the Web Service to a Web Container
	Deploying to GlassFish
	Deploying to Apache Tomcat

	Verifying Deployment

	Creating a Web Service Client
	Creating a Client from Java
	Client Java File (fromjava)
	Client Configuration File (fromjava)

	Creating a Client from WSDL
	Client Java File (fromwsdl)
	Client Configuration File (fromwsdl)

	Building and Deploying a Client
	Running a Web Service Client
	Undeploying a Web Service

	Accessing WSIT Services Using WCF Clients
	Creating a WCF Client
	Prerequisites to Creating the WCF Client
	The Client Class
	Building and Running the Client
	Generating the Proxy Class and Configuration File
	Building the AddNumbers Client
	Running the AddNumbers Client

	Data Contracts
	Web Service - Start from Java
	DataTypes
	Primitives and Wrappers
	BigDecimal
	java.net.URI
	Duration
	Binary Types
	XMLGregorianCalendar
	UUID
	Type Variable
	Collections
	Arrays

	Fields/Properties
	@XmlElement
	@XmlAttribute
	@XmlElementRefs

	Class
	@XmlType - Anonymous type
	@XmlType - xs:all
	@XmlType - simple content

	Open Content
	Enum Type
	Package
	@XmlSchema
	Not Recommended Annotations

	Web Service - Start from WSDL
	Java Client
	Customizations for WCF Service WSDL
	generateElementProperty
	Default Binding
	Customized Binding
	mapSimpleTypeDef

	Developing a Microsoft .NET Client
	BP 1.1 Conformance
	BP 1.1 R2211

	Using Atomic Transactions
	About the basicWSTX Example
	Building, Deploying and Running the basicWSTX Example

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	K
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

