Oracle® Fusion Middleware
Application Adapter for Siebel User's Guide for Oracle WebLogic Server
11g Release 1 (11.1.1.4.0)
E17056-04

April 2011
Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audience</td>
<td>vii</td>
</tr>
<tr>
<td>Documentation Accessibility</td>
<td>vii</td>
</tr>
<tr>
<td>Related Documents</td>
<td>vii</td>
</tr>
<tr>
<td>Conventions</td>
<td>viii</td>
</tr>
</tbody>
</table>

1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Features</td>
<td>1-1</td>
</tr>
<tr>
<td>The Siebel Application Model</td>
<td>1-4</td>
</tr>
<tr>
<td>Integration with Siebel</td>
<td>1-4</td>
</tr>
<tr>
<td>Integrating with Siebel EAI Architecture</td>
<td>1-5</td>
</tr>
<tr>
<td>Using Application Explorer with Oracle Application Adapter for Siebel</td>
<td>1-5</td>
</tr>
<tr>
<td>BSE Versus Oracle Adapter J2CA Deployment</td>
<td>1-6</td>
</tr>
</tbody>
</table>

2 Configuring Oracle Application Server Adapter for Siebel

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Application Explorer</td>
<td>2-2</td>
</tr>
<tr>
<td>Configuring Repository Settings</td>
<td>2-3</td>
</tr>
<tr>
<td>Creating a Repository Configuration</td>
<td>2-3</td>
</tr>
<tr>
<td>Creating a Configuration for BSE</td>
<td>2-3</td>
</tr>
<tr>
<td>Creating a Configuration for J2CA</td>
<td>2-4</td>
</tr>
<tr>
<td>Connecting to a BSE or J2CA Configuration</td>
<td>2-6</td>
</tr>
<tr>
<td>Establishing a Connection (Target) for Siebel</td>
<td>2-6</td>
</tr>
<tr>
<td>Defining a Target to Siebel</td>
<td>2-7</td>
</tr>
<tr>
<td>Connecting to a Defined Target</td>
<td>2-10</td>
</tr>
<tr>
<td>Disconnecting From Siebel</td>
<td>2-10</td>
</tr>
<tr>
<td>Editing a Target</td>
<td>2-11</td>
</tr>
<tr>
<td>Deleting a Target to Siebel</td>
<td>2-11</td>
</tr>
<tr>
<td>Viewing Application System Objects</td>
<td>2-11</td>
</tr>
<tr>
<td>Viewing Metadata</td>
<td>2-11</td>
</tr>
<tr>
<td>Creating XML Schemas</td>
<td>2-13</td>
</tr>
<tr>
<td>Siebel Prerequisites for Working With Integration Objects</td>
<td>2-16</td>
</tr>
<tr>
<td>Creating Schemas for Siebel Integration Objects</td>
<td>2-17</td>
</tr>
<tr>
<td>Creating Integration Object (IO) Nodes for Siebel</td>
<td>2-19</td>
</tr>
<tr>
<td>Creating a Service Node for a Siebel Business Service</td>
<td>2-23</td>
</tr>
<tr>
<td>Creating and Testing a Web Service (BSE Configurations Only)</td>
<td>2-24</td>
</tr>
</tbody>
</table>
7 Configuring Outbound and Inbound Processing Using Oracle Service Bus

Overview of Application Adapter Integration with Oracle Service Bus .. 7-1
Configuring Outbound Processing Using Oracle Service Bus (J2CA Configuration) 7-1
 Starting Oracle Service Bus and Creating Project Folders ... 7-2
 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 7-5
 Publishing a WSDL From Application Explorer to Oracle Service Bus .. 7-5
 Configuring a WSDL-based Business Service ... 7-7
 Configuring a File Type Business Service ... 7-10
 Configuring a Proxy Service .. 7-14
 Configuring a Pipeline ... 7-19
Configuring Inbound Processing Using Oracle Service Bus (J2CA Configuration) 7-28
 Starting Oracle Service Bus and Creating Project Folders ... 7-28
 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 7-30
 Publishing a WSDL From Application Explorer to Oracle Service Bus .. 7-31
 Configuring a WSDL-based Proxy Service ... 7-38
 Configuring a File Type Business Service ... 7-40
 Configuring a Pipeline ... 7-43
Configuring Outbound Processing Using Oracle Service Bus (BSE Configuration) 7-48
 Starting Oracle Service Bus and Creating Project Folders ... 7-48
 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 7-51
 Publishing a WSDL From Application Explorer to Oracle Service Bus .. 7-51
 Configuring a File Type Business Service ... 7-54
 Configuring a WSDL Type Business Service ... 7-56
 Configuring a Proxy Service .. 7-61
 Configuring a Pipeline ... 7-64

8 New Features

 Exception Filter .. 8-1
 Prerequisites ... 8-1
 Configuring the Exception Filter .. 8-2

 Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM) 8-7
 Prerequisites ... 8-7
 Configuring Credential Mapping ... 8-8

 Credential Mapping for Oracle Service Bus (OSB) .. 8-14
 Prerequisites ... 8-14
 Configuring Credential Mapping ... 8-14
Preface

Oracle Fusion Middleware Application Adapter for Siebel User’s Guide for Oracle WebLogic Server describes how to provide connectivity and integrate with Siebel systems.

Audience

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.
Related Documents

For more information, see the following documents in the Oracle Enterprise Repository 11g Release 1 (11.1.1.4.0) documentation set:

- **Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server**
- **Oracle Fusion Middleware Application Adapter Upgrade Guide for Oracle WebLogic Server**
- **Oracle Fusion Middleware Application Adapter Best Practices Guide for Oracle WebLogic Server**
- **Oracle's Unified Method (OUM)**

A wealth of additional Governance information can be found within Oracle's Unified Method (OUM). OUM can be used by Oracle employees, Oracle Partner Network Certified Partners or Certified Advantage Partners, and Clients who either participate in the OUM Customer Program or are engaged on projects where Oracle provides consulting services. OUM is a web-deployed toolkit for planning, executing and controlling software development and implementation projects.

For more information about OUM, see the OUM FAQ at

http://my.oracle.com/portal/page/myo/ROOTCORNER/KNOWLEDGEAREAS1/BUSINESS_PRACTICE/Methods/Learn_about_OUM.html

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Introduction

Oracle WebLogic Server connects to a Siebel system through Oracle Application Adapter for Siebel. Oracle Application Adapter for Siebel provides connectivity and carries out interactions on a Siebel system. This chapter contains the following topics:

- Section 1.1, "Adapter Features"
- Section 1.2, "The Siebel Application Model"
- Section 1.3, "Integration with Siebel"
- Section 1.4, "Using Application Explorer with Oracle Application Adapter for Siebel"
- Section 1.5, "BSE Versus Oracle Adapter J2CA Deployment"

1.1 Adapter Features

Oracle Application Adapter for Siebel provides a means to exchange real-time business data between Siebel systems and other applications, databases, or external business partner systems. The adapter enables external applications for inbound and outbound processing with Siebel.

Oracle Application Adapter for Siebel can be deployed as a J2EE Connector Architecture (J2CA) version 1.0 resource adapter. This deployment is referred to as Oracle Adapter J2CA. It can also be deployed as a Web services servlet and as such is referred to as Oracle Adapter Business Services Engine (BSE).

Oracle Application Adapter for Siebel uses XML messages to enable non-Siebel applications to communicate and exchange transactions with Siebel using services and events. Services and events are defined as follows:

- Services (also known as outbound processing): Enables applications to initiate a Siebel business event.
- Events (also known as inbound processing): Enables applications to access Siebel data only when a Siebel business event occurs.

To support event functionality, channels are supported. A channel represents configured connections to particular instances of back-end or other types of systems.

The channel is the adapter component that receives events in real time from the EIS application. The channel component can be a File reader, an HTTP listener, or an MQ listener. A channel is always EIS specific. The adapter supports multiple channels for a particular EIS, which enables the user to choose the optimal channel component based on deployment requirements.

Oracle Application Adapter for Siebel:
■ Supports synchronous and asynchronous, bidirectional message interactions for Siebel Business Services, Business Components, and Integration Objects.

■ Includes Oracle WebLogic Server Adapter Application Explorer (Application Explorer), a GUI tool that uses the Siebel Object Manager to explore Siebel metadata and build XML schemas or Web services.

■ Supports Siebel transports—MQSeries, File, and HTTP. It also supports MSMQ messaging.

■ XML schemas for Oracle Adapter J2CA.

■ Web services for BSE.

Oracle Application Adapter for Siebel supports all 23 Siebel Industry Applications (SIA) through business objects, business components, business services, and integration objects. Siebel Industry Applications include industry verticals such as insurance, high technology, automotive, communications, media, financial services, life sciences, manufacturing, and consumer goods.

Siebel Industry Applications is tailored to the specific business requirements and processes of a particular industry with additional business logic in the form of business objects, business components, business services, and integration objects. Oracle Application Adapter for Siebel exposes and generates metadata and interacts with these industry-specific objects.

See Also: Oracle Application Server Adapter Concepts Guide

Oracle Adapter Business Services Engine (BSE) Architecture

Figure 1–1 shows the generic architecture for the Oracle Web service adapter for packaged applications. The adapter works with BSE, as deployed to a Web container in a J2EE application server. BSE serves as host to the adapters, enabling Web service requests to the adapters.

Application Explorer, a design-time tool deployed along with BSE, is used to configure adapter connections, browse EIS objects, and configure services. Metadata created while you perform these operations are stored in the repository by BSE.

BSE uses SOAP as a protocol for receiving requests from clients, interacting with the EIS, and sending responses from the EIS back to clients.
Figure 1–1 Oracle Adapter Business Services Engine (BSE) Generic Architecture

Oracle Adapter J2CA Generic Architecture

Figure 1–2 shows the generic architecture for the Oracle Adapter J2CA for packaged applications. The Oracle Adapter J2CA is deployed to a standard J2CA container and serves as host container to the adapters. The connector is configured with a repository. Application Explorer, a design tool that works with the connector, is used to configure adapter connections, browse EIS objects, and configure services. Metadata created while you perform these operations are stored in the repository by the connector. The repository can be a file system or an Oracle database. It is deployed as a RAR file and has an associated deployment descriptor called ra.xml. You can create multiple connector factories by editing the Oracle WebLogic Server deployment descriptor ra.xml. For more information, see Chapter 3, "Oracle WebLogic Server Deployment and Integration".

Note: Do not use a file repository for BSE in production environments.
1.2 The Siebel Application Model

The Siebel Enterprise application defines a data abstraction layer that removes dependencies on the underlying database. It accomplishes this by using intermediate Business Components and Business Objects that represent database structures. A Business Component usually represents a table in a database. A Business Object is a group of related business components.

From a given business component, you can navigate the relationships defined for that component to another component. The path you use to traverse component relationships is called the navigation path. For example, if you want to obtain all addresses for a particular account, you can traverse the parent/child relationship between Account and Address to obtain those addresses. By using navigation paths, you can traverse nearly all of the business component relationships defined in the Siebel system.

In Siebel, Integration Objects are similar to Siebel Business Components but describe more complex hierarchal data relationships.

1.3 Integration with Siebel

You can use Oracle Application Adapter for Siebel to initiate a Siebel business process, such as add/update account, or you can use the adapter as part of an integration effort to connect Siebel and non-Siebel systems. Oracle Application Adapter for Siebel is bidirectional and can detect an event from Siebel by receiving a Siebel XML document emitted by Siebel.
When integrating with Siebel using Siebel XML documents, the adapter application developer must use existing Siebel Integration Objects or create new Siebel Integration Objects to use within a Siebel Workflow. The Workflow processes inbound or outbound Siebel XML and uses various transports such as MQSeries, File, and HTTP to exchange transactions with external systems. The Siebel Workflow is usually created by the Siebel administrator or developer using Siebel Workflow Administration screens.

When integrating with Siebel directly using the Java Data Bean or COM Data Interface, Oracle Application Adapter for Siebel does not require a Siebel Integration Object or Siebel Workflow. Instead, it executes Siebel Business Services and Siebel Business Components directly.

The following table lists Siebel objects and processes.

<table>
<thead>
<tr>
<th>Siebel Objects</th>
<th>API or Transport</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Services</td>
<td>Java Data Bean (Siebel Version 6.3-8.0)</td>
<td>Service</td>
</tr>
<tr>
<td></td>
<td>Com Data Interface (Siebel Version 6.01-6.2)</td>
<td></td>
</tr>
<tr>
<td>Business Components</td>
<td>Java Data Bean (Siebel Version 6.3-8.0)</td>
<td>Service</td>
</tr>
<tr>
<td></td>
<td>Com Data Interface (Siebel Version 6.01-6.2)</td>
<td></td>
</tr>
<tr>
<td>Integration Objects</td>
<td>File</td>
<td>Event, Service</td>
</tr>
<tr>
<td></td>
<td>HTTP</td>
<td>Event, Service</td>
</tr>
<tr>
<td></td>
<td>MQSeries</td>
<td>Event, Service</td>
</tr>
<tr>
<td></td>
<td>MQ Read</td>
<td>Service</td>
</tr>
</tbody>
</table>

1.3.1 Integrating with Siebel EAI Architecture

Siebel enables integration with other applications and systems using its Siebel EAI (Enterprise Application Integration) framework and its Business Integration Manager facility. Oracle Application Adapter for Siebel uses the Siebel EAI framework and leverages various integration access methods to provide the greatest amount of flexibility and functionality while working within the Siebel framework.

Oracle Application Adapter for Siebel supports the following integration access methods:

- Siebel Java Data Bean for services involving Siebel Business Components or Siebel Business Services.
- Siebel COM Data Interface for services involving Siebel Business Components or Siebel Business Services.
- Siebel XML for events and services involving Siebel Integration Objects.

1.4 Using Application Explorer with Oracle Application Adapter for Siebel

Application Explorer uses an explorer metaphor for browsing the Siebel system for Business Services, Business Objects, Business Components, and Integration Objects. The explorer enables you to create XML schemas and Web services for the associated object. External applications that access Siebel through Oracle Application Adapter for Siebel use either XML schemas or Web services to pass data between the external application and the adapter.
Application Explorer uses interfaces provided by Siebel and in-depth knowledge of the Siebel application systems to access and browse business object metadata. After an object is selected, Application Explorer can generate an XML schema or Web service to define the object for use with Oracle Application Adapter for Siebel.

Key features of Application Explorer include:

- The ability to connect to and explore a variety of application systems.
- Access to application system object metadata.
- A point-and-click process for generating XML schemas and Web services.

See Also:

- Oracle Application Server Adapter Concepts Guide
- Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server

1.5 BSE Versus Oracle Adapter J2CA Deployment

If you are using Oracle Application Adapter for Siebel with Oracle SOA Suite components (for example, BPEL, Mediator, BPM, or OSB), then note that:

- Only Oracle Adapter J2CA deployment supports inbound integration (event notification) with Oracle SOA Suite components.
- Oracle Adapter J2CA and BSE deployments support outbound integration (request-response service) with Oracle SOA Suite components.

The following two factors explain the differences between deploying BSE and Oracle Adapter J2CA. Understanding these factors can help in selecting a deployment option.

1. BSE has the following advantages:

- Can be deployed in a separate instance of Oracle WebLogic Server.
- Provides better distribution of load.
- Conforms more closely to the Service Oriented Architecture (SOA) model for building applications.

2. Oracle Adapter J2CA does provide slightly better performance than BSE.
This chapter describes how to configure Oracle Application Adapter for Siebel and create schemas for Siebel Business Objects. It contains the following topics:

- Section 2.1, "Starting Application Explorer"
- Section 2.2, "Configuring Repository Settings"
- Section 2.3, "Creating a Repository Configuration"
- Section 2.4, "Establishing a Connection (Target) for Siebel"
- Section 2.5, "Viewing Application System Objects"
- Section 2.6, "Creating XML Schemas"
- Section 2.7, "Siebel Prerequisites for Working With Integration Objects"
- Section 2.8, "Creating Schemas for Siebel Integration Objects"
- Section 2.9, "Creating Integration Object (IO) Nodes for Siebel"
- Section 2.10, "Creating a Service Node for a Siebel Business Service"
- Section 2.11, "Creating and Testing a Web Service (BSE Configurations Only)"
- Section 2.12, "Generating WSDL (J2CA Configurations Only)"
- Section 2.13, "Configuring an Event Adapter"

Encoding Support on UNIX Platforms

Important (All UNIX Platforms): Before you attempt to connect to a Siebel target using a BSE or J2CA configuration in a UNIX environment, you must perform the additional steps described in "Adding Required Encoding Option (All UNIX Platforms)" on page 2-1. Failure to add the encoding option as described in this section results in an error and prevents you from connecting to the Siebel target. The error message may indicate that the encoding is not supported, for example:

Error: Problem activating adapter -- UTF-8 is not supported. Check logs for more information.

Error: Error getting target [Siebel] -- UTF-8 is not supported.

Adding Required Encoding Option (All UNIX Platforms)

Before attempting to connect to a Siebel target, add the following Java file encoding option to the startWebLogic.sh file:

```
JAVA_OPTIONS="${SAVE_JAVA_OPTIONS} -Dfile.encoding=ISO8859_1"
```

Configuring Oracle Application Server Adapter for Siebel
The startWebLogic.sh file is located in the following directory:

<ADAPTER_HOME>\user_projects\domains\base_domain\lib

Siebel Connectivity Prerequisites for Versions 6.2 and Lower

For Siebel versions 6.2 and lower only, you must perform the following steps to connect to your Siebel system using COM connectivity for a J2CA configuration.

1. Install Siebel thick client on the same system where the adapters are installed.
2. Install the database client (Microsoft SQL Server or Oracle) on the same system.
3. The Siebel .DLL files (iwsiebel.local.dll and iwsiebel.core.dll) in the adapter lib folder must be added to the Application server path.
4. Edit the uagent.cfg file and change the data source parameter value from "local" to "server".
 The uagent.cfg file can be found in the following Siebel thick client folder:
 c:\sea\client\bin

5. Edit the data source for SEA MSQl with appropriate parameters.
 You can edit a data source in Windows by accessing the Control Panel, Administrative Tools, and Data Sources (ODBC).

6. Use the following target type when creating the adapter target connection:
 Siebel 6.2 - (Local COM Access Implementation)

7. Provide the full path to the uagent.cfg file when creating an adapter target connection, for example:
 c:\sea\client\bin\uagent.cfg

2.1 Starting Application Explorer

To start Application Explorer:

1. Ensure that Oracle WebLogic Server is started, which is where Application Explorer is deployed.
2. Open the command prompt.
3. Navigate to the following directory:
 <WLS_Home>\user_projects\domains\base_domain\bin

4. Execute `setDomainEnv.cmd` (Windows) or `./setDomainEnv.sh` (UNIX/Linux).
 This command sets the class path and other environment variables for Application Explorer in the Oracle WebLogic Server environment. In addition, it allows Application Explorer to access the Oracle WebLogic Server APIs to publish WSDL files to the Oracle Service Bus (OSB) Console.

5. Do not close the command prompt.
6. Navigate to the following directory:
 For Oracle SOA Suite:
 <ORACLE_HOME>\soa\thirdparty\ApplicationAdapters\tools\iwae\bin\ae.bat
In this example, `<ORACLE_HOME>` is the location where Oracle SOA Suite is installed.

For OSB:

`<OSB_HOME>\Oracle_OSB1\3rdparty\ApplicationAdapters\tools\iwae\bin\ae.bat`

In this example, `<OSB_HOME>` is the location where Oracle Service Bus is installed.

`<OSB_Home>\3rdparty\ApplicationAdapters\tools\iwae\bin`

7. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer.

Application Explorer starts. You are ready to define new targets to your Siebel system.

Note: Before you run the `iwae.sh` file on UNIX or Linux platforms, the permissions must be changed. For example:

```
chmod +x iwae.sh
```
3. Enter a name for the new configuration (for example, SampleConfig) and click OK.

The New Configuration dialog is displayed, as shown in Figure 2–1.

![Figure 2–1 New Configuration Dialog](image)

4. From the Service Provider list, select iBSE.

5. In the iBSE URL field, accept the default URL or replace it with a different URL using the following format:

 http://host name:port/ibse/IBSEServlet

 Where host name is the system where your Oracle WebLogic Server resides and port is the HTTP port number on which the Oracle WebLogic Server is listening.

6. Click OK.

 As shown in Figure 2–2, a node representing the new configuration appears beneath the root Configurations node.

![Figure 2–2 SampleConfig Node](image)

2.3.2 Creating a Configuration for J2CA

To create a configuration for Oracle Adapter J2CA using Application Explorer, you must first define a new configuration.

Defining a New Configuration for J2CA

To define a new configuration for J2CA:

1. Start the Application Explorer.

2. Right-click Configurations and select New, as shown in Figure 2–3.

![Figure 2–3 Configurations Node](image)

 The New Configuration dialog is displayed, as shown in Figure 2–4.

3. Enter a name for the new configuration (for example, SampleConfig) and click OK.
Creating a Repository Configuration

Configuring Oracle Application Server Adapter for Siebel

4. From the **Service Provider** list, select JCA.

5. Click **OK**.

 As shown in Figure 2–5, a node representing the new configuration appears beneath the root Configurations node.

Figure 2–5 SampleConfig Node

The Oracle Adapter J2CA configuration folder is stored in a location based on your adapter installation:

For Oracle SOA Suite:

<ORACLE_HOME>\soa\thirdparty\ApplicationAdapters\config\configuration_name

In this example, <ORACLE_HOME> is the location where Oracle SOA Suite is installed.

For OSB:

<OSB_HOME>\Oracle_OSB1\3rdparty\ApplicationAdapters\config\configuration_name

In this example, <OSB_HOME> is the location where Oracle Service Bus is installed.

The **configuration_name** is the name of the configuration you created (for example, SampleConfig).

HTTP Repository Connection

J2CA users can create an HTTP repository connection, which enables them to generate and store WSDL documents remotely. Perform the following steps to create an HTTP repository connection in Application Explorer. To use the HTTP repository, make sure that the iwafjcaivp test tool is successfully deployed and running.

1. Start the Application Explorer.

2. Right-click the **Configurations** node in the left pane and select **New**.

 The New Configuration dialog opens.

3. Type a name for the configuration and click **OK**.

4. Select JCA from the Service Provider list box and enter an HTTP target value in the Home field.

 Use the following format for the HTTP target value:

 http://host name:port/iwafjca/JCAServlet
For example:

http://iwserv14:8001/iwafjca/JCAServlet

5. Click OK.

The new HTTP repository connection is added to the Configurations node.

Once you connect to the remote server, you can create new Adapter targets, generate WSDL documents, and store them in the remote server.

Note: When you configure an Adapter target with the J2CA HTTP repository, you are not required to restart the Oracle WebLogic Server for run time purposes.

2.3.3 Connecting to a BSE or J2CA Configuration

To connect to a new configuration:

1. Right-click the configuration to which you want to connect, for example, SampleConfig.

2. Select Connect.

Nodes appear for Adapters, Events, and Business Services (also known as Web services). The Business Services node is only available for BSE configurations. If you are connected to a J2CA configuration, then the Business Services node is not shown. As shown in Figure 2–6, the following is an example of a BSE configuration named SampleConfig:

![Figure 2–6 The New SampleConfig Configuration That Appears Under The Configurations Node](image)

- Use the Adapters folder to create inbound interaction with Siebel. For example, you use the Siebel node in the Adapters folder to configure a service that updates Siebel.
- Use the Events folder (available for J2CA configurations only) to configure listeners that listen for events in Siebel.
- Use the Business Services folder (available for BSE configurations only) to test Web services created in the Adapters folder. You can also control security settings for the Web services by using the security features of the Business Services folder.

You can now define new targets to Siebel.

2.4 Establishing a Connection (Target) for Siebel

To browse the Siebel Business Services, Business Components, and Integration Objects, you must define a target to Siebel. After you define the target, the parameters are automatically saved.

Important (All UNIX Platforms): Before you attempt to connect to a Siebel target using a BSE or J2CA configuration in a UNIX environment, you must perform the additional steps described in "Adding Required Encoding Option (All UNIX..."
Establishing a Connection (Target) for Siebel

Configuring Oracle Application Server Adapter for Siebel

Platforms) on page 2-7. Failure to add the encoding option as described in this section results in an error and you are not able to connect to the Siebel target. The error message may indicate that the encoding is not supported, for example:

Error: Problem activating adapter -- UTF-8 is not supported. Check logs for more information.

Error: Error getting target [Siebel] -- UTF-8 is not supported.

Adding Required Encoding Option (All UNIX Platforms)
Before attempting to connect to a Siebel target, perform the following steps:

1. Add the following Java file encoding option to the startWebLogic.sh file:

 JAVA_OPTIONS="${SAVE_JAVA_OPTIONS} -Dfile.encoding=ISO8859_1"

 The startWebLogic.sh file is located in the following directory:

 <ADAPTER_HOME>/user_projects/domains/base_domain/bin

2.4.1 Defining a Target to Siebel

The connection parameters required for defining a Siebel target can be obtained from the eapps.cfg file, which is located in the following directory:

drive:\SiebelRoot\SWEApp\BIN

Where Siebelroot is the Siebel installation directory.

When you are working with a J2CA configuration, creating, updating, and deleting a target requires you to restart the Oracle WebLogic Server. In addition, make sure to close Application Explorer before you restart the Oracle WebLogic Server.

To define a target to Siebel:

1. In the left pane, expand the Adapters node, as shown in Figure 2–7.

 Figure 2–7 Adapters Node

2. Right-click the Siebel node and select Add Target.

 The Add Target dialog is displayed. Provide the following information:

 a. In the Name field, enter a name for the new target.
 b. In the Description field, enter a description (optional).
 c. From the Target Type list, select Java Bean Data Connection (default).

3. Click OK.

 The Java Data Bean Connection dialog is displayed, as shown in Figure 2–8.
Enter the system information as specified in the following steps:

a. In the Gateway Server field, enter the name of the server. To specify a Gateway Server that uses a port other than the default (usually, 2320), add a colon and the port number, for example, `gateway name:port number`.

b. In the Enterprise Name field, enter the appropriate name.

c. In the Siebel Server field, enter the name of your Siebel server. Do not supply a value in this field when connecting to a Siebel 7.7, 7.8, or 8 system.

d. In the User field, enter the user name.

e. In the Password field, enter the password associated with the user name.

f. From the Siebel Version list, select **Siebel 7.7 and above** (default) or **Siebel 7.5 and below**.

g. Click the **Advanced** tab, as shown in Figure 2–9 and verify the following:
 - Language
 - Object Manager
Object Manager

For Siebel 7.0.3, the default Object Manager is EAIObjMgr. For Siebel 7.7, the default is EAIObjMgr_enu. Siebel 7.7 requires that you add a language extension (for example, _enu) to the end of the Object Manager name. Check with your Siebel Administrator for the specific names that apply to your system.

Repository Name

If no repository is specified, then a full list of objects from all available repositories is returned. If a specified repository is not found, then an empty list of objects is returned.

The configuration parameters supplied are those used by Siebel client applications to connect to the Siebel system. For more information about these parameters, see your Siebel documentation or ask your Siebel system administrator.

Encryption

A new parameter named Encryption is now introduced to the Advanced tab when using the Siebel adapter to create a target during design time. This parameter has two values, None and RSA. The default value is None, where no encryption is performed. By choosing RSA, an RSA-encrypted connection to the object manager specified is established.

To use RSA encryption, the Object Manager must be specified as SCCObjMgr_enu.
Establishing a Connection (Target) for Siebel

2.4.2 Connecting to a Defined Target

To connect to a defined target:

1. Expand the Siebel node and click the target name to which you want to connect, as shown in Figure 2–10.

Figure 2–10 Disconnected Siebel Target

2. In the left pane, right-click the target name and select Connect.

The target icon changes, indicating that you are connected to the Siebel system, as shown in Figure 2–11.

Figure 2–11 Siebel Target Node

You can now browse the available Business Objects, Business Services, and Integration Objects in the Siebel system.

2.4.3 Disconnecting From Siebel

Although you can maintain multiple open connections to different application systems, it is good practice to close connections when not in use.

To disconnect from Siebel:

1. In the left pane, select the target to which you are connected.

2. Right-click the target and select Disconnect.

Disconnecting from the application system drops the target, but the node remains. The SiebelConnection node in the left pane changes to reflect that the target is disconnected, as shown in Figure 2–12.

Note: These parameters are typically found in Siebel configuration files stored under the Siebel server root/bin/<language> directory, where language is the Siebel code for the language you installed (enu for U.S English). For example, for Siebel versions 7 and higher on a Windows platform, for the Siebel Call Center module, these values can be found in the uagent.cfg file. Consult your Siebel administrator and your Siebel bookshelf documentation for more information.
2.4.4 Editing a Target

To edit a target:

1. In the left pane, ensure the target you want to edit is disconnected.
2. Right-click the disconnected target and select **Edit**, as shown in Figure 2–13.

![Figure 2–13 Edit Option](image)

The Edit pane is displayed on the right.
3. Modify the target information.
4. Click **OK**.

2.4.5 Deleting a Target to Siebel

You can delete a target, rather than just disconnecting and closing it. When you delete the target, the node disappears from the list of Siebel targets in the left pane of Application Explorer.

When you delete a target, you must restart the Oracle WebLogic Server to update the repository for run time purposes.

To delete a target:

1. In the left pane, select the target.
2. Right-click the target and select **Delete**.

 A confirmation message is displayed.
3. Click **OK** to delete the target you selected.

 The Siebel connection node disappears from the left pane.

2.5 Viewing Application System Objects

Application Explorer gives you the flexibility to view all Siebel application system objects. One benefit of this flexibility is that you can gain an understanding of the Siebel data structure. You can review parameters, data types, and other attributes of the Siebel data in the right pane.

2.5.1 Viewing Metadata

To view metadata:

1. Start Application Explorer and connect to your Siebel system.
2. In the left pane, expand the Business Object or Business Service containing the component for which you want to generate schema.

3. Expand the Business Object or Business Service node.

4. Expand the Business Component or the Business Service node to view the objects under it.
 - For a Business Component, select the node in which you are interested, for example, Account, as shown in Figure 2–14.

 Figure 2–14 Account Node

 ![Account Node](image)

 - For a Siebel Business Service, select the object in which you are interested, for example, addAccount, as shown in Figure 2–15.

 Figure 2–15 Simple Add Account Node

 ![Simple Add Account](image)

5. In the right pane, click the ellipsis (…) in the Table row of the properties table.

 The metadata table appears in the right pane, as shown in Figure 2–16.

 Figure 2–16 Metadata Table for the Siebel Object

 ![Metadata Table for the Siebel Object](image)
2.6 Creating XML Schemas

You can create service schemas for Business Services and Business Components using Application Explorer.

The following topic describes how to create schemas for the adapter when you deploy Oracle Application Adapter for Siebel for use either in a J2CA environment or a Web services environment. For more information, see "Creating and Testing a Web Service (BSE Configurations Only)" on page 2-24 if you plan to deploy Oracle Application Adapter for Siebel in a Web services environment.

Siebel Schema Considerations

When inserting a record into Siebel, the data can be specified by the user or configured in Siebel to have default values or other system generated values. For example the Account Business Component, Currency Code, by default, has ‘USD’ and the system fields such as ROW_ID generated by the Siebel system when the record is inserted. The Siebel API does not provide this distinction. Therefore, the Oracle Application Adapter for Siebel can not anticipate what the required fields the user should enter are and what are the required fields that can be filled by Siebel. As a result, the adapter schemas have been modified to have all elements as optional by setting minoccurs=0 for the elements.

Hence, all users must determine which fields are mandatory through Siebel Tools and create a payload (request XML document) for Siebel services (outbound).

Creating an XML Schema for a Siebel Business Object or Business Service

You create schemas for Siebel Business Service methods (for example, the Add method) and Business Components using Application Explorer. After you create a schema, you can use it to generate service request and response schemas for the Business Service or Business Component.

Siebel Business Objects contain one or more Siebel Business Components. You can view Business Components by clicking the associated Business Object.

For example, the Account Business Object can be expanded to display all available Business Components, as shown in Figure 2–17.
Creating an XML Schema for a Siebel Business Component or Business Service

To generate service request and response schemas for a Business Component or Business Service:

1. Start Application Explorer and connect to your Siebel system.
2. In the left pane, expand the Business Object or the Business Service node.
3. Expand the Business Component or Business Service to view the objects under it.
 - For a Business Component, expand the Business Object node, then expand the Business Component you want, then expand the node you want, and select the method for which you want to create a schema, as shown in Figure 2–18.
 - For a Siebel Business Service, expand the Business Service node containing the object for which you want to create schema, as shown in Figure 2–19.
4. Right-click the node and select Generate Schema.
 Application Explorer accesses the Siebel repository and builds schemas.
As shown in Figure 2–20, schema tabs similar to the following appear in the right pane.

![Request and Response Schema Tabs](image)

5. To view a schema, click the ellipsis tab corresponding to the schema you want to view.

The schema appears on the right, as shown in Figure 2–21.

Figure 2–21 XML Schema

```
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:z="">
  <xs:element name="Siebel">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="insert" type="z:record"/>
        <xs:element name="location" type="xsd:string" use="optional"/>
      </xs:complexType>
    </xs:element>
  </xs:complexType>
</xs:schema>
```

Searching for a Specific Siebel Object

You can use the search function in Application Explorer to locate a Siebel object or node quickly.

1. Start Application Explorer and connect to your Siebel system through a target.
2. Expand the target and select Business Object, Business Service, or Integration Object.
3. In the right pane, move the cursor over Operations and select Search.
4. Enter the name of the node or object on which you want to search in the text entry box, for example, Account.
5. Click OK.

A list containing the Siebel items that match your search appears.

6. Select the item in which you are interested.

Application Explorer locates the item in which you are interested.

Returning Fields in a Specified Order

When you create a request document from an XML schema to query the Siebel system, you can limit the expected response to specific fields that are specified in the query.
Using QueryWithView

For Business Components, the iWay Application Adapter for Siebel enables Insert, Update, Delete, and Query. It also enables a method called QueryWithView. The View modes are a visibility feature provided by Siebel.

By using QueryWithView, you can specify a Siebel View mode as a parameter. The API parameters allow different presentations of data depending on the Siebel environment that you configured.

You can use Query except when you want to enable a user to retrieve records based on different view modes. In this case, use QueryWithView. For more information on QueryWithView mode or Siebel "Visibility" concepts, see your Siebel Administrator.

The following levels are available:

- Sales Rep View
- Manager View
- Personal View
- All View
- Organization View
- Group View
- Catalog View
- SubOrganization View

2.7 Siebel Prerequisites for Working With Integration Objects

To create XML schemas for Siebel Integration Objects, you may have to generate XDR schemas first, using the Siebel Tools Schema Wizard.

The XDR schema is used as input to Application Explorer when generating schemas for integration objects. After you generate the XDR schema, Application Explorer uses the XDR file to generate the XML schema.

Please note:
For **Siebel 7.5 and later**: Generate XSD schemas directly from Siebel tools. These XSD schemas are used to create Web services directly using Application Explorer. After you generate an XSD schema through Siebel tools, use it to create an IO node and Web service.

For **Siebel 7.0**: You cannot generate XSD schemas directly from Siebel tools; only XDR schemas can be created. Therefore, to create a Web service, Application Explorer must first generate an XSD schema from the XDR schema.

For releases **before Siebel 6.3**: The Siebel Tools Schema Wizard creates only DTD schemas. You must transform these schemas manually, or by using other tools, into XDR files before Application Explorer can use them as input to create XML schemas. In addition, you must include the SiebelMessage tag reference in your XDR file.

Oracle Application Adapter for Siebel supports access to Siebel Integration Objects by using Siebel XML to handle events. Using Siebel Integration Objects through supported transports requires Siebel workflows.

2.8 Creating Schemas for Siebel Integration Objects

This section describes how to create schemas for Siebel Integration Objects.

Creating a Siebel XDR or XSD Schema for a Siebel Integration Object

To generate a Siebel XDR or XSD schema:

1. Log on to Siebel Tools, as shown in Figure 2–22.

Figure 2–22 Siebel Tools Menu

Perform the following steps:

a. Enter your user ID and password.

b. Select a database from the list.

2. Click OK.
The Siebel Tools window is displayed, as shown in Figure 2–23. Integration Objects appear in the right pane.

Figure 2–23 Siebel Tools Window

Perform the following steps:

3. To create a schema, select an Integration Object, for example, Sample Account.

The Generate XML Schema wizard is displayed, as shown in Figure 2–24.

Figure 2–24 Generate XML Schema Wizard
a. From the Select a Business Service list, select **EAI XML XDR Generator** for XDR schemas or **EAI XML XSD Generator** for XSD schemas (for Siebel 7.5 and later).

b. From the Select an envelope type list, select **Siebel Message envelope**.

c. In the Choose the file name field, specify a file name for the XDR schema and a directory where it can be accessed by Application Explorer.

Note: The XDR or XSD schema file must be saved to a directory on the same computer as Application Explorer.

5. Click **Finish**.

6. Create a workflow to accept incoming XML documents through HTTP and to insert/update Siebel data by using the EAI XML Converter and EAI Siebel Adapter Business Services.

 For more information, see Appendix A, “Using Siebel Workflows”.

7. Edit the `eai.cfg` file, which is located in the following directory:

 `<siebel_server>/bin/enu`

8. Add the following line to the `[HTTP Services]` section:

   ```
   [HTTP Services]
   wf = iWayWorkflow
   ```

9. Confirm that the following line is set in the `[EAIENU]` section of the `Eapps.cfg` file:

   ```
   [EAIENU]
   EnableExtServiceOnly = True
   ```

 The `Eapps.cfg` file is located in the following directory:

 `<siebel_server>/bin`

10. Create a named subsystem using Siebel Server Manager by running the following command, where **EAITEST** is the name of the workflow that was created in step 6:

    ```
    create named subsystem iWayWorkflow for subsystem EAITransportDataHandlingSubsys with DispatchWorkflowProcess="EAITEST"
    ```

 Now you can use Application Explorer to create Integration Object (IO) nodes for Siebel.

2.9 Creating Integration Object (IO) Nodes for Siebel

To create an Integration Object node for Siebel, perform the following steps:

1. In Application Explorer, connect to a defined target. For more information on how to connect to a target, see “Connecting to a Defined Target” on page 2-10.

 The X over the icon disappears, indicating that the node target is connected, as shown in Figure 2–25.
2. Expand the Integration Object node and select Sample Account.

3. Right-click the Sample Account node and select Add IO Node.

 The Add IO Node dialog is displayed, as shown in Figure 2–26.

Please note:

- **For Siebel 7.5 or later:** Generate XSD schemas directly from Siebel tools. You use the XSD schemas when you create Web services in Application Explorer. After you generate an XSD schema through Siebel tools, use it to create an IO node and a Web service.

- **For Siebel 7.0:** You cannot generate XSD schemas directly from Siebel tools; only XDR schemas can be created. Before you create a Web service, you must first generate an XSD schema from the XDR schema using Application Explorer.

Note: This is the schema file that you generated in Creating Schemas for Siebel Integration Objects on page 2-17.

4. Enter a node name, for example SampleAccount in the Node name field and a path to the Sample Account XDR or XSD file in the Schema location field.

5. If the XSD schema has already been generated, then select XSD Schema. If you are using Siebel-generated XDR schemas, then do not select the XSD schema option.

6. Select a protocol from the Protocol list.

7. Click Continue.

 The Add IO Node dialog is displayed, as shown in Figure 2–27.
8. Perform the following steps:

 a. In the SWE URL field, type the Base SWE URL. For example:

      ```
      http://web_server/eai/start.swe
      ```

 Where `web_server` is the name of the Web server that is hosting Siebel SWE.

 b. In the SWE External Source field, type the section within the `eai.cfg` file to execute, which is the `[HTTP Services]` section.

 For more information, see step 8 in Creating Schemas for Siebel Integration Objects on page 2-17.

 c. In the SWE External Command field, type the following command exactly as shown:

      ```
      Execute
      ```

 d. In the User Name and Password fields, type a valid user name and password used to connect to the Siebel SWE.

 The user name and password must have privileges to execute the given workflow.

9. Click Finish.

 The new IO node is listed under the Integration Object's Sample Account node, as shown in Figure 2–28.

Figure 2–28 Integration Object's Sample Account Node

You can now create an XML schema.

Creating an XML Schema for a Siebel Integration Object

After you create an Integration Object node for Siebel, you can create an XML schema using Application Explorer.
To create an XML schema:

1. In Application Explorer, expand the **Integration Objects** node to browse the Integration Objects in the Siebel system, as shown in Figure 2–29.

Figure 2–29 Siebel Integration Objects Node, Sample Account

2. Scroll down and select an Integration Object (for example, SampleAccount).

3. Right-click the created Integration Object node (for example, SampleAccount) and select **Export Schema(s)** from the menu, as shown in Figure 2–30.

Figure 2–30 Export Schema(s) Menu Option

The Select Export Directory dialog is displayed, as shown in Figure 2–31.
The exported event schema must be specified during the channel creation process in the PreParser tab (Schema location field).

2.10 Creating a Service Node for a Siebel Business Service

OracleAS Adapter for Siebel enables the addition of a service node for a Business Service that includes methods containing method arguments having hierarchy data types.

Important limitations:

- The adapter supports only Integration Object hierarchy data types.
- Adding a Service node requires that you have previously generated an XSD schema for the Integration Object. For more information on generating XSD schemas for Siebel Integration Objects, see "Creating Schemas for Siebel Integration Objects" on page 2-17.
- Only one of the method arguments for the Business Service method for which you want to add a service node can be a hierarchical data type.
- The method argument XMLCharEncoding is not supported. Leave this element blank in the XML payload. If you enter a valid XMLCharEncoding value such as UTF-8 or UTF-16, then the following error is received:

Invocation of Service failed.

To create the service:

1. Select the Business Service node in which you are interested.
2. Right-click the Business Service method argument for which you want to create a service and select Add Service Node.

The Add Service Node dialog is displayed, as shown in Figure 2–32.
3. Perform the following steps:
 a. Provide a service node name.
 b. Enter a description (optional).
 c. Provide the full path (including the file name) to the XSD schema file.
 d. Specify the root element for the XSD schema file. For many XSD schemas for Integration Objects, the root element is SiebelMessage.
 e. Specify whether the XSD schema is for an Integration Object.
 Important: You must verify that this check box is selected.

4. Click OK.

The Service node is listed under the Business Service object, as shown in Figure 2–33.

Figure 2–33 Service Node Listed Under The Business Service Object

You can right-click this node to create a Web service. The request and response schemas are displayed in the right pane.

The following procedure describes how to create a Web service for a Business Object.

2.11 Creating and Testing a Web Service (BSE Configurations Only)

You can generate a business service (also known as a Web service) for Siebel objects you want to use with your adapter after you have properly configured the servlet BSE.

Note: In a J2EE Connector Architecture (J2CA) implementation of adapters, Web services are not available. When the adapters are deployed to use Oracle Adapter J2CA, the Common Client Interface provides integration services using the adapters.
This section contains the following topics:

- "Creating a Web Service" on page 2-25
- "Testing a Web Service" on page 2-26

2.11.1 Creating a Web Service

To generate a Web service for a Siebel Business Object:

1. Connect to your Siebel system.
2. Expand a Business Object node.
3. Expand the Business Component for which you want to create a Web service, as shown in Figure 2–34.

Figure 2–34 Account Business Object with queryWithView method

4. Expand the object and select a method for creating the Web service, for example, QueryWithView under Account.
5. Right-click the node from which you want to create a business service and select Create Business Service.

The Create Web Service dialog is displayed.

You can add the business object as a method for a new Web service or as a method for an existing one. Perform the following steps:

- a. From the Existing Service Names list, select either <new service> or an existing service.
- b. Specify a service name if you are creating a new service. This name identifies the Web service in the list of services under the Business Services node.
- c. Enter a description for the service (optional).
- d. Select one of the available licenses.

6. Click Next.

The License and Method dialog is displayed. Perform the following steps:

- a. In the License field, select one or more license codes to assign to the Web service. To select more than one, hold down the Ctrl key and click the licenses.
- b. In the Method Name field, leave the default method name.
- c. In the Description field, enter a brief description of the method (optional).

7. Click OK.

Application Explorer switches the view to the Business Services node, and the new Web service appears in the left pane.

8. Right-click the new Web service and select Save WSDL from the menu.
The Save dialog is displayed.

9. Provide a name for the WSDL file and a location to save the WSDL file on your file system.

10. Click Save.

2.11.2 Testing a Web Service

After you create a Web service for the Siebel Business Object, test it to ensure it functions properly. Application Explorer includes a test tool for testing a Web service.

Testing a Web Service for a Business Object

1. In the left pane of Application Explorer, expand the Business Services node.

2. Expand the Services node.

3. As shown in Figure 2–35, select the name of the business service you want to test.

4. Expand the Methods node under the service and select the method you want to test.

 The test option appears in the right pane.

 If you are testing a Web service that requires XML input, then an input field is displayed.

5. Click Invoke.

 Application Explorer displays the results in the results pane, as shown in Figure 2–36.
Testing a Web Service for a Business Service
After you create a Web service for the Siebel Business Service, test it to ensure it functions properly. Application Explorer includes a test tool for testing a Web service.

1. Expand the Business Services node.
2. Expand the Services node.
3. Select the name of the business service you want to test.
4. Expand the Methods node and select the name of the method you want to test.
 The test option appears in the right pane.
 If you are testing a Web service that requires XML input, then an input field is displayed.
5. Provide the appropriate input.
6. Click Invoke.
 Application Explorer displays the results in the results pane.

Identity Propagation
If you test or execute a Web service using a third party XML editor, for example XMLSPY, then the user name and password values that you specify in the SOAP header must be valid and are used to connect to Siebel. The user name and password values that you provided for Siebel during target creation using Application Explorer are overwritten for this Web service request. The following is a sample SOAP header that is included in the WSDL file for a Web service:

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <SOAP-ENV:Body>
    <QueryWithViewResponse
      xmlns="urn:iwaysoftware:ibse:2003:QueryWithView"
      cid="6386D6B7002C0A3D649296446C44D0">
      <SiebelResponse status="success">
        <record>
          <Name>SIEBEL1 ACCOUNT</Name>
          <Location>ONE</Location>
        </record>
        <record>
          <Name>SIEBEL2 ACCOUNT</Name>
          <Location>TWO</Location>
        </record>
        <record>
          <Name>SIEBEL3</Name>
          <Location>RR</Location>
        </record>
      </SiebelResponse>
    </QueryWithViewResponse>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```
<SOAP-ENV:Header>
 <m:ibsinfo xmlns:m="urn:schemas-iwaysoftware-com:iwse">
 <m:service>String</m:service>
 <m:method>String</m:method>
 <m:license>String</m:license>
 <m:disposition>String</m:disposition>
 <m:Username>String</m:Username>
 <m:Password>String</m:Password>
 <m:language>String</m:language>
 </m:ibsinfo>
</SOAP-ENV:Header>

You can remove the <m:disposition> and <m:language> tags from the SOAP header, since they are not required.

2.12 Generating WSDL (J2CA Configurations Only)

The Web Service Definition Language (WSDL) description of a Web service enables you to make the service available to other services within a host server. You use Application Explorer to create both request-response (outbound) and event notification (inbound) JCA services of the adapter.

Note: The Create Inbound JCA Service (Event) option is only available when the selected node supports events.

To generate a WSDL file for request-response service:

1. Under your connected Siebel target, expand **Business Object, Account, Account**. Navigate to an object and right-click the object.

 The following menu is displayed, as shown in Figure 2–37.

 ![Figure 2–37 Create Outbound JCA Service (Request/Response) Option](image)

2. Select Create Outbound JCA Service (Request/Response).

 As shown in Figure 2–38, the Export WSDL dialog is displayed.
3. Accept the default name for the file.

The .wsdl file extension is added automatically. By default, the names of WSDL files generated for request-response services end with _invoke, while those generated for event notification end with _receive.

4. Click OK.

The WSDL file is saved in the specified location.

The procedure for generating WSDL for event notification is similar to request-response. To generate WSDL for event notification, you must first create a channel for every event.

2.13 Configuring an Event Adapter

Events are generated by a specific business condition being satisfied or triggered in the Siebel system. You can use events to trigger an action in your application. For example, an update to a database can reflect an update to customer information. If your application must perform when this happens, then your application is a consumer of this event.

After you create a connection to your application system, you can add events using Application Explorer. To configure an event, you must create a channel.
A channel represents configured connections to particular instances of back-end systems. A channel binds one or more event ports to a particular listener managed by the adapter. For more information, see "Creating and Modifying a Channel" on page 2-30.

Please note that adding IO node functionality is not applicable in event configurations.

2.13.1 Creating and Modifying a Channel

The following procedure describes how to create a channel for your event. All defined event ports must be associated with a channel.

When you create, modify, or delete a channel, you must restart the Oracle WebLogic Server to recognize the change and update the repository for run time purposes. After successfully creating the channel and inbound WSDL file, close Application Explorer before you restart the Oracle WebLogic Server.

Note: If you are using a J2CA configuration, then you must create a new channel for every different event object and select this channel when you generate WSDL. Creating a channel is required for J2CA configurations only. For example, if you are working with the Account and Contact Siebel objects, then two separate channels are required for this purpose.

Note: If you are planning to integrate Oracle Application Adapter for Siebel with BPM, BPEL, or OSB inbound process components, then do not start the channel. The channel is managed by the run-time server after the BPM, BPEL, or OSB process component is deployed. If you start the channel from Application Explorer for testing and debugging purposes, then stop it before run-time (when working with BPM, BPEL, or OSB process components).

Note: Channels can be configured only on the system where the Oracle Application Adapter for Siebel is installed.

Three channel types are available:

- HTTP
- MQ Series
- File

Note: Channels can be configured only on the system where the Oracle Application Adapter for Siebel is installed.

2.13.1.1 Creating an HTTP Channel

To create an HTTP channel:

1. Click the Events node.

 The Events window is displayed. The adapters that appear in the left pane support events.

2. In the left pane, expand the Siebel node.

 The ports and channels nodes appear.

3. Right-click channels and select Add channel.
The Add Channel dialog is displayed, as shown in Figure 2–39.

Figure 2–39 Add Channel Dialog

Perform the following steps:

a. Enter a name for the channel, for example, NewChannel.

b. Enter a brief description.

c. From the Protocol list, select **HTTP Listener**.

4. Click **Next**.

 The Http Listener dialog is displayed, as shown in Figure 2–40.

Figure 2–40 Http Listener Dialog

5. Enter the system information as specified in the following table:
6. Click the **PreParser** tab, as shown in **Figure 2–41**.

Figure 2–41 PreParser Tab

![PreParser Tab](image)

7. Specify the location of the schema file that was generated for the Integration Object node using the **Export Schema(s)** option in Application Explorer.

Note: During run time, the Oracle Application Adapter for Siebel adds the namespace to the Siebel published document using the schema that is specified in the PreParser tab. If the Schema location field in the PreParser tab is left blank, then BPEL, BPM, OSB, and Mediator processes do not work properly as the Siebel published documents do not contain any namespaces.

8. Click **OK**.

A summary is displayed, which provides the channel description, channel status, and available ports. All the information is associated with the channel you created. The channel also appears under the channels node in the left pane, as shown in **Figure 2–42**.

Figure 2–42 Inactive SiebelHTTP Node

![Inactive SiebelHTTP Node](image)
An X over the icon indicates that the channel is currently disconnected. You must start the channel to activate your event configuration.

9. Right-click the channel and select **Start**.

 The channel you created becomes active. The X over the icon in the left pane disappears.

10. To stop the channel, right-click the channel and select **Stop**.

2.13.1.2 Creating an MQ Series Channel

To create an MQ Series channel:

1. Click the **Events** node.

 The Events window is displayed. The adapters that appear in the left pane support events.

2. In the left pane, expand the **Siebel** node.

 The ports and channels nodes appear.

3. Right-click the **channels** node and select **Add channel**.

 The Add a new channel pane is displayed. Perform the following steps:

 a. Enter a name for the channel, for example, NewChannel.

 b. Enter a brief description.

 c. From the Protocol list, select **MQ Series Listener**.

4. Click **Next**.

 The MQ Listener dialog is displayed, as shown in **Figure 2–43**.

Figure 2–43 MQ Listener Dialog

![MQ Listener Dialog]

5. Enter the system information as specified in the following steps:

 a. In the Request tab, enter values for the following parameters:
Configuring an Event Adapter

b. In the Response tab, enter values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue manager name</td>
<td>The host on which the MQ Server is located (MQ Client only).</td>
</tr>
<tr>
<td>MQ server host for MQClient operation</td>
<td>Port on which the host database is listening.</td>
</tr>
<tr>
<td>MQ server port for MQClient operation</td>
<td>The number to connect to an MQ Server queue manager (MQ client only).</td>
</tr>
<tr>
<td>MQ server channel for MQClient operation</td>
<td>The case-sensitive name of the channel that connects with the remote MQ Server queue manager (MQ client only). The default channel name for MQSeries is SYSTEM.DEF.SVRCONN.</td>
</tr>
<tr>
<td>Document type XML</td>
<td>Leave the default selection.</td>
</tr>
<tr>
<td>Request queue name</td>
<td>Queue where the message is routed and where request documents are received. The name of the queue is case-sensitive and conforms to the following format: Host\queue type$qName</td>
</tr>
<tr>
<td></td>
<td>Host</td>
</tr>
<tr>
<td></td>
<td>Is the system name where the MQ Series queuing system is running.</td>
</tr>
<tr>
<td>queue type</td>
<td>Private queues are queues that are not published in Active Directory and appear only on the local computer where they reside. Private queues are accessible only by Message Queuing applications that recognize the full path name or format name of the queue.</td>
</tr>
<tr>
<td>qName</td>
<td>Is the name of the queue where messages are placed, for example, iwaykxc1\Private$siebel</td>
</tr>
</tbody>
</table>

c. In the Advanced tab, enter values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronization Type</td>
<td>Select REQUEST_RESPONSE from the Synchronization Type list, which is the recommended option.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message wait interval (msec)</td>
<td>The interval (in milliseconds) when to check for new input. The default is 3 seconds. Optional.</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Choose Sequential or Threaded.</td>
</tr>
<tr>
<td></td>
<td>■ Sequential indicates single processing of requests.</td>
</tr>
<tr>
<td></td>
<td>■ Threaded indicates processing of multiple requests simultaneously.</td>
</tr>
<tr>
<td>Thread limit</td>
<td>If you selected threaded processing, then indicate the maximum number of requests that can be processed simultaneously.</td>
</tr>
</tbody>
</table>
6. Click OK.

A summary is displayed, which provides the channel description, channel status, and available ports. All the information is associated with the channel you created. The channel also appears under the channels node in the left pane.

An X over the icon indicates that the channel is currently disconnected. You must start the channel to activate your event configuration.

7. Right-click the channel and select Start.

The channel you created becomes active. The X over the icon in the left pane disappears.

8. To stop the channel, right-click the channel and select Stop.

2.13.1.3 Creating a File Channel

To create a File channel:

1. Click the Events node.

 The Events window is displayed. The adapters that appear in the left pane support events.

2. In the left pane, expand the Siebel node.

 The ports and channels nodes appear.

3. Right-click the channels node and select Add Channel.

 The Add Channel dialog is displayed. Perform the following steps:
 a. Enter a name for the channel, for example, NewChannel.
 b. Enter a brief description.
 c. From the Protocol list, select File Listener.

4. Click Next.

 The File Listener dialog is displayed, as shown in Figure 2–44.

Figure 2–44 File Listener Dialog

5. Enter the system information as specified in the following steps:
 a. In the Request tab, enter values for the following parameters:
b. In the Response tab, enter values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polling Location</td>
<td>The target file system location for the Siebel XML file.</td>
</tr>
<tr>
<td>File Mask</td>
<td>The file name to be used for the output file generated by this operation.</td>
</tr>
</tbody>
</table>

c. In the Advanced tab, enter values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronization Type</td>
<td>Select REQUEST_RESPONSE from the Synchronization Type list, which is the recommended option.</td>
</tr>
<tr>
<td>Response/Ack Directory</td>
<td>Directory where responses or acknowledgments are sent.</td>
</tr>
<tr>
<td>Error Directory</td>
<td>Directory to which documents with errors are written.</td>
</tr>
<tr>
<td>Poll interval (msec)</td>
<td>The interval (in milliseconds) when to check for new input. The default is 3 seconds. Optional.</td>
</tr>
<tr>
<td>Processing Mode</td>
<td>Choose Sequential or Threaded.</td>
</tr>
<tr>
<td></td>
<td>■ Sequential indicates single processing of requests.</td>
</tr>
<tr>
<td></td>
<td>■ Threaded indicates processing of multiple requests simultaneously.</td>
</tr>
<tr>
<td>Thread limit</td>
<td>If you selected threaded processing, then indicate the maximum number of requests that can be processed simultaneously.</td>
</tr>
</tbody>
</table>

6. Click **OK**.

A summary is displayed, which provides the channel description and channel status. All the information is associated with the channel you created. The channel also appears under the channels node in the left pane.

An X over the icon indicates that the channel is currently disconnected. You must start the channel to activate your event configuration.

7. Right-click the channel and select **Start**.

The channel you created becomes active.

The X over the icon in the left pane disappears.

8. To stop the channel, right-click the channel and select **Stop**.

2.13.1.4 Editing a Channel

To edit a channel:

1. In the left pane, select the channel you want to edit.
2. Right-click the channel and select **Edit**.

The Edit channels dialog is displayed.

3. Make the required changes to the channel configuration and click **OK**.
2.13.1.5 Deleting a Channel

To delete a channel:

1. In the left pane, select the channel you want to delete.
2. Right-click the channel and select **Delete**.

The channel disappears from the list in the left pane.
This chapter describes Oracle WebLogic Server (OracleWLS) deployment and integration with Oracle Application Adapter for Siebel. It contains the following topics:

- Section 3.1, "Adapter Integration with Oracle WebLogic Server"
- Section 3.2, "Deployment of Adapter"
- Section 3.3, "Updating Adapter Configuration"

See Also:

- Oracle Application Server Adapter Concepts Guide

3.1 Adapter Integration with Oracle WebLogic Server

Oracle Application Adapter for Siebel is deployed within an OracleWLS container during installation. All client applications run within the OracleWLS environment. In a J2CA deployment, the Common Client Interface (CCI) integrates an OracleWLS client application with a resource adapter.

See Also:

- Oracle Application Server Adapter Concepts Guide

3.2 Deployment of Adapter

Figure 3–1 shows deployment of the Connector to the Oracle WebLogic Server. In a run-time service scenario, an Enterprise Java Bean, Servlet, or Java program client makes CCI calls to J2CA resource adapters. The adapters process the calls as requests and send them to the EIS. The EIS response is then sent back to the client.
3.3 Updating Adapter Configuration

During the J2CA deployment of OracleAS Adapter for Siebel, OracleWLS generates a deployment descriptor called ra.xml, located in:

<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\iwa:jca.rar\META-INF

Your installation contains more than one file named ra.xml. The OracleWLS deployment descriptor that is described in this section is located in the directory specified above.

Note: Multiple managed connection factories are supported only for outbound processing (services).

Creating a Managed Connector Factory Object

The ra.xml descriptor provides OracleWLS-specific deployment information for resource adapters. For example, the default jca_sample configuration in Application Explorer is represented in the ra.xml file as follows:

```xml
<?xml version="1.0" encoding='UTF-8'?>
<!DOCTYPE connector PUBLIC '-//Sun Microsystems, Inc./DTD Connector 1.0//EN' 'http://java.sun.com/dtd/connector_1_0.dtd'>
```
<connector>
 <display-name>IWAFJCA10</display-name>
 <vendor-name>IWAY Software</vendor-name>
 <spec-version>1.0</spec-version>
 <eis-type>IWAF</eis-type>
 <version>1.0</version>
 <license>
 <license-required>false</license-required>
 </license>
 <resourceadapter>
 <managedconnectionfactory-class>com.ibi.afjca.spi.IWAFManagedConnectionFactory</managedconnectionfactory-class>
 <connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>
 <connectionfactory-impl-class>com.ibi.afjca.cci.IWAFConnectionFactory</connectionfactory-impl-class>
 <connection-interface>javax.resource.cci.Connection</connection-interface>
 <connection-impl-class>com.ibi.afjca.cci.IWAFConnection</connection-impl-class>
 <transaction-support>NoTransaction</transaction-support>
 <config-property>
 <config-property-name>AdapterName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>Config</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayHome</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>C:\oracle\Middleware\Oracle_SOA1\oa\thirdparty\ApplicationAdapters</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayConfig</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>jca_sample</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoDriver</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoURL</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoUser</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 </resourceadapter>
</connector>
The parameters defined in the ra.xml file are described in the following table:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWayHome</td>
<td>The base installation directory for the OracleWLS packaged application adapter.</td>
</tr>
<tr>
<td>IWayConfig</td>
<td>The adapter configuration name as defined in Application Explorer. For example, Oracle Application Adapter for Siebel has a preconfigured jca_sample configuration in Application Explorer.</td>
</tr>
<tr>
<td>IWayRepoURL</td>
<td>The URL to use when opening a connection to the database. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>IWayRepoUser</td>
<td>User name to use when connecting to the database. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>IWayRepoPassword</td>
<td>Password. If provided, then it overwrites configuration. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>loglevel</td>
<td>It overwrites the level set by the ManagedConnectorFactory property.</td>
</tr>
</tbody>
</table>

Creating Multiple Managed Connector Factory Objects

To establish multiple managed connector factory objects, you must edit the weblogic-ra.xml file and add more <connection-instance> nodes. This file is located in:

```
<ADAPTER_HOME>/soa/thirdparty/ApplicationAdapters/iwafjca.rar/META-INF
```

For example, the first jca_configuration in Application Explorer is represented in the weblogic-ra.xml file as follows:

```xml
<?xml version="1.0"?>
<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">
  <enable-access-outside-app>true</enable-access-outside-app>
  <enable-global-access-to-classes>true</enable-global-access-to-classes>
  <outbound-resource-adapter>
    <default-connection-properties>
      ... (configuration details) ...
    </default-connection-properties>
  </outbound-resource-adapter>
</weblogic-connector>
```
<pool-params>
<initial-capacity>0</initial-capacity>
</pool-params>
<transaction-support>LocalTransaction</transaction-support>
</default-connection-properties>
</connection-definition-group>

<connection-definition-group>
<connection-factory-interface>javax.resource.cci.ConnectionFactory</connection-factory-interface>
<connection-instance>
<jndi-name>eis/OracleJCAAdapter/DefaultConnection</jndi-name>
</connection-instance>
</connection-definition-group>
</outbound-resource-adapter>
</weblogic-connector>

To create multiple managed connector factory objects, you must add new <connection-instance> nodes in the file. For example:

```xml
<?xml version="1.0"?>
<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">

  <enable-access-outside-app>true</enable-access-outside-app>
  <enable-global-access-to-classes>true</enable-global-access-to-classes>

  <outbound-resource-adapter>
    <default-connection-properties>
      <pool-params>
        <initial-capacity>0</initial-capacity>
      </pool-params>
      <transaction-support>LocalTransaction</transaction-support>
    </default-connection-properties>
    <connection-definition-group>
      <connection-factory-interface>javax.resource.cci.ConnectionFactory</connection-factory-interface>
      <connection-instance>
        <jndi-name>eis/OracleJCAAdapter/DefaultConnection</jndi-name>
      </connection-instance>
    </connection-definition-group>
  </outbound-resource-adapter>

  <connection-definition-group>
    <connection-factory-interface>javax.resource.cci.ConnectionFactory</connection-factory-interface>
    <connection-instance>
      <jndi-name>eis/OracleJCAAdapter/DefaultConnection1</jndi-name>
    </connection-instance>
  </connection-definition-group>

  <name>IWayHome</name>
  <value>C:\oracle\Middleware\Oracle_SOAI\soa\thirdparty\ApplicationAdapters\</value>
  <property>
    <name>IWayConfig</name>
    <value>jca_sample2</value>
  </property>
  <property>
    <name>IWayRepoURL</name>
    <value></value>
  </property>
  <property>
    <name>IWayRepoUser</name>
    <value></value>
  </property>
  <property>
    <name>IWayRepoPassword</name>
    <value></value>
  </property>
</weblogic-connector>
```
<value></value>
</property>
<property>
<name>LogLevel</name>
<value>Debug</value>
</property>
</connection-properties>
</connection-instance>
</connection-definition-group>
</outbound-resource-adapter>
</weblogic-connector>

If you do not specify a <property> element in the <connection-instance> section, then the value is taken from the ra.xml file. You can specify the default properties in the ra.xml file and then override them as required in the weblogic-ra.xml file. In addition, note that the J2CA configuration (for example, jca_sample2) must already be created in Application Explorer.

Note: When you modify the ra.xml and weblogic-ra.xml files, the Oracle WebLogic Server must be restarted. If the Oracle WebLogic Server is already running, then stop the Oracle WebLogic Server and then restart it.

In addition, the iwafjca.rar file must be redeployed in the Oracle WebLogic Administration Console to activate these changes.

Modifying WSDL Files for Additional Connection Factory Values

Application Explorer generates the J2CA properties file using the default connection factory name eis/OracleJCAAdapter/DefaultConnection. If you created additional connection factories, then the WSDLs generated for the additional configuration and connection factory must be changed to reflect the location field of the jca:address section in the J2CA properties file. The default J2CA properties file for the Oracle Application Adapter for Siebel with a configuration of isdsrv2_conn2 is shown in the following example.

Notice that the J2CA properties file has the following default connection factory:

eis/OracleJCAAdapter/DefaultConnection

```xml
<jca:address location="eis/OracleJCAAdapter/DefaultConnection"
    ConnectionSpec="com.ibi.afjca.cci.IWAFConnectionSpec"
    cs.AdapterName="Siebel" cs.Config="isdsrv2_conn2"
    UIConnectionName="Connection1"/>
```

The connection factory value must be changed to the following:

eis/OracleJCAAdapter/DefaultConnection1

For example:

```xml
<jca:address location="eis/OracleJCAAdapter/DefaultConnection1"
    ConnectionSpec="com.ibi.afjca.cci.IWAFConnectionSpec"
    cs.AdapterName="Siebel" cs.Config="isdsrv2_conn2"
    UIConnectionName="Connection1"/>
```

Note that only the value for the location field in the jca:address section should be modified. Do not modify any other field or section.
Integration With BPEL Service Components in the Oracle SOA Suite

Oracle Application Adapter for Siebel integrates seamlessly with Business Process Execution Language (BPEL) Process Manager to facilitate Web service integration. Oracle BPEL Process Manager is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following topics:

- Section 4.1, "Overview"
- Section 4.2, "Deployment of Adapter"
- Section 4.3, "Configuring a New Application Server Connection"
- Section 4.4, "Designing an Outbound BPEL Process for Service Integration"
- Section 4.5, "Designing an Inbound BPEL Process for Event Integration"

4.1 Overview

To integrate with Oracle BPEL Process Manager, Oracle Application Adapter for Siebel must be deployed in the same WLS container as Oracle BPEL Process Manager. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter. For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-28.

The generated WSDL files are used to design the appropriate BPEL processes for inbound or outbound adapter services. A completed BPEL process must be successfully compiled in Oracle JDeveloper and deployed to a BPEL server. Upon deployment to the BPEL server, every newly built process is automatically deployed to the Oracle Enterprise Manager console, where you run, monitor, administer BPEL processes, and listen to adapter events.

4.2 Deployment of Adapter

During installation, Oracle Application Adapter for Siebel is deployed as a J2CA 1.0 resource adapter within the WLS container. The adapter must be deployed in the same WLS container as Oracle BPEL Process Manager.
4.3 Configuring a New Application Server Connection

To configure a new Application Server connection in Oracle JDeveloper:

1. Open Oracle JDeveloper on your system.

2. From the menu bar, click View and select Application Server Navigator, as shown in Figure 4–1.

Figure 4–1 Application Server Navigator Option

3. Right-click Application Servers, and then select New Application Server.

The Create Application Server Connection Wizard - Usage page is displayed, as shown in Figure 4–3.
4. Accept the default selection (Standalone Server) and click Next.

The Name and Type page is displayed, as shown in Figure 4–4.
5. Specify a new name for the Application Server connection and click **Next**.
 The Authentication page is displayed, as shown in **Figure 4–5**.

 Figure 4–5 Authentication Page

6. Specify a valid user name (for example, weblogic) and a password (for example, welcome1) for your new connection.

7. Click **Next**.
 The Configuration page is displayed, as shown in **Figure 4–6**.
8. Specify the Oracle WebLogic host name (for example, localhost), which is the machine IP where the process needs to deploy and Oracle WebLogic domain (for example, base_domain).

9. Click Next.

The Test page is displayed, as shown in Figure 4–7.
10. Click Test Connection.
11. Ensure that the test status is successful.
12. Click Next.

The Finish page is displayed, as shown in Figure 4–8.
13. Click Finish.

As shown in Figure 4–9, the new Application Server connection is listed in the left pane (Application Server tab).

4.4 Designing an Outbound BPEL Process for Service Integration

The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPEL Designer (JDeveloper) or Eclipse

Note: The examples in this chapter demonstrate the use of Oracle JDeveloper.
Samples have been provided for this usecase scenario in the etc/sample folder in Application Adapters installation.

Before you design a BPEL process, you must create a schema and generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-28.

4.4.1 Generating WSDL for Request/Response Service

To generate WSDL in Application Explorer:

1. Start **Application Explorer** and connect to a defined Siebel target or create a new target.

 For more information, see **Connecting to a Defined Target** on page 2-10.

2. Expand the Siebel target to which you are connected.

3. As shown in **Figure 4–10**, expand **Business Object, Account**, and then **Account**.

 ![Figure 4–10 Create Outbound JCA Service (Request/Response) Option](image)

4. Right-click **queryWithView**, and then select **Create Outbound JCA Service (Request/Response)**.

 The Export WSDL dialog is displayed, as shown in **Figure 4–11**.
Designing an Outbound BPEL Process for Service Integration

4.4.2 Creating a New SOA Application for the Outbound BPEL Process

Perform the following steps to create a new SOA application for the outbound BPEL process:

1. Open Oracle JDeveloper on your system.

2. Click Application in the menu bar and select New from the menu, as shown in Figure 4–12.

3. Specify an export location on your file system or accept the default path.

 The .wsdl file extension is added automatically. By default, the names of WSDL files generated for request-response services end with _invoke.

4. Click OK.

 You can now create an empty composite for SOA, which is the first step that is required to define a BPEL outbound process in Oracle JDeveloper.
The Create SOA Application wizard is displayed, as shown in Figure 4-13.
Figure 4–13 Create SOA Application Wizard

3. From the Application Template list, click SOA Application.

4. Enter a name for the new SOA application (for example, Siebel_Outbound_BPEL) and click Next.

The Name your project page is displayed, as shown in Figure 4–14.
5. Enter a project name (for example, QueryWithView_Invoke) and click **Next**. The Configure SOA settings page is displayed, as shown in **Figure 4–15**.
6. From the Composite Template list, select **Empty Composite** and click **Finish**.

As shown in **Figure 4–16**, the new SOA application (Siebel_Outbound_BPEL) and associated project (QueryWithView_Invoke) are added to the Application Navigator tab in the left pane.

Figure 4–16 SOA application (Siebel_Outbound_BPEL) In Application Navigator Tab
4.4.3 Defining a BPEL Outbound Process

This section describes how to define a BPEL outbound process, which consists of the following stages:

1. Configuring a Third Party Adapter Service Component
2. Configuring an Outbound BPEL Process Component

Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the **Third Party Adapter** component from the Component Palette tab (Service Adapters section) to the External References design pane, as shown in Figure 4–17.

![Figure 4–17 Third Party Adapter Component](image)

The Create Third Party Adapter Service dialog is displayed, as shown in Figure 4–18.
2. Enter a name for the new third party adapter service.

3. Ensure that Reference is selected from the Type list (default).

4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The SOA Resource Browser dialog is displayed, as shown in Figure 4–19.
5. Browse and select an outbound WSDL file from the following directory:

<ADAPTER_HOME>/soa/thirdparty/ApplicationAdapters/wsdls

6. Click OK.

The Localize Files dialog is displayed, as shown in Figure 4–20.
7. Click **OK**.

The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 4–21.

Figure 4–20 Localize Files Dialog

Copy Options: **Maintain original directory structure for imported files**

The following files will be created in directory:

C:\Developer\mywork\Siebel_Outbound_BPEL\queryWithView_Invoke:

- queryWithView_invoke.wsdl
- queryWithViewInvoke_request.xsd
- queryWithViewInvoke_response.xsd

Figure 4–21 Create Third Party Adapter Service Dialog
8. Click the **Find JCA Files** icon, which is located to the right of the JCA File field. The SOA Resource Browser dialog is displayed, as shown in Figure 4–22.

Figure 4–22 SOA Resource Browser Dialog

9. Browse and select the JCA properties file from the following directory:
 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\wsds`
10. Click **OK**.
 As shown in Figure 4–23, the following message is displayed.

Figure 4–23 Copy File Confirmation Message

The jca file `queryWithView_invoke.jca` is external to the current project. In order to make this file available to your project at runtime, JDeveloper can now make a local copy. Do you want to copy file to `queryWithView_invoke_3P.jca`?
11. Click Yes.

A copy of the JCA properties file is made in the project folder.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 4–24.

Figure 4–24 Create Third Party Adapter Service Dialog

12. Click OK.

The third party adapter service component (QueryWithView) is created and displayed in the External References pane, as shown in Figure 4–25.
You are now ready to configure an outbound BPEL process component.

Configuring an Outbound BPEL Process Component

Perform the following steps to configure an outbound BPEL process component:

1. Drag and drop the **BPEL Process** component from the Component Palette tab (Service Components section) to the Components design pane, as shown in **Figure 4–26**.

Figure 4–26 BPEL Process Component Dragged to the Components Design Pane

The Create BPEL Process dialog is displayed, as shown in **Figure 4–27**.
2. In the Name field, enter a name to identify the new outbound BPEL process component (for example, querywithview_out).

 By default, the BPEL specification is set to **BPEL 1.1 Specification**. The BPEL process also supports BPEL 2.0 Specification.

3. From the Template list, select **Synchronous BPEL Process**.

4. Click the **Browse Input Elements** icon, which is located to the right of the Input field to select the associated XML request schema file.

 The Type Chooser dialog is displayed, as shown in Figure 4–28.
5. Expand Project Schema Files, queryWithView_invoke_request.xsd, and then select Siebel.

6. Click OK.

You are returned to the Create BPEL Process dialog, as shown in Figure 4–29.

7. Click the Browse Output Elements icon, which is located to the right of the Output field to select the associated XML response schema file.

The Type Chooser dialog is displayed, as shown in Figure 4–30.
8. Expand Project Schema Files, queryWithView_invoke_response.xsd, and then select SiebelResponse.

9. Click OK.

You are returned to the Create BPEL Process dialog, as shown in Figure 4–31.

Figure 4–31 Create BPEL Process Dialog

10. Click OK.

11. As shown in Figure 4–32, create a connection between the outbound BPEL process component (querywithview_out) and the third party adapter service component (QueryWithView).
12. Double-click the outbound BPEL process component (querywithview_out) in the Components pane.

The following is displayed, as shown in Figure 4–33.

Figure 4–33 Outbound BPEL Process Component (querywithview_out) in the Components Pane

13. Drag and drop the **Invoke** activity component to the Components pane and place it between the **receiveInput** activity component and the **replyOutput** activity component, as shown in Figure 4–34.
14. Create a connection between the new Invoke activity component (Invoke1) and the third party adapter service component (QueryWithView), as shown in Figure 4–35.

The Edit Invoke dialog is displayed, as shown in Figure 4–36.
15. Click the **Automatically Create Input Variable** icon, which is located to the right of the Input field to configure a new input variable.

The Create Variable dialog is displayed, as shown in Figure 4–37.

Figure 4–37 Create Variable Dialog

16. Accept the default values that are provided for the new input variable and click **OK**.

You are returned to the Edit Invoke dialog, as shown in Figure 4–38.
17. Click the **Automatically Create Output Variable** icon, which is located to the right of the Output field to configure a new output variable.

The Create Variable dialog is displayed, as shown in Figure 4–39.

![Figure 4–39 Create Variable Dialog](image)

18. Accept the default values that are provided for the new output variable and click *OK*.

You are returned to the Edit Invoke dialog, as shown in Figure 4–40.
19. Click **Apply** and then **OK**.

As shown in **Figure 4–41**, the Invoke activity component (Invoke1) is updated accordingly.

Figure 4–41 Updated Invoke Activity Component (Invoke1)
20. Drag and drop the **Assign** activity component to the Components pane and place it between the Receive activity component (receiveInput) and the Invoke activity component (Invoke1), as shown in Figure 4–42.

Figure 4–42 Assign Activity Component Dragged to the Components Pane

21. Double-click the new Assign activity component (**Assign1**).

Figure 4–43 Assign Dialog

22. Click the **Plus sign** icon and select **Copy Operation** from the list of available operations.

The Edit Assign dialog is displayed, as shown in Figure 4–44.
23. In the left pane, under Variables, expand InputVariable, and then select payload.
24. In the right pane, under Variables, expand Invoke1_queryWithView_InputVariable, and then select input_queryWithView.
25. Drag and map the payload variable to the input_queryWithView variable as shown in Figure 4–45.

The mapped variables are populated in the highlighted area.
26. Click Apply and then OK.

27. As shown in Figure 4–46, drag and drop the Assign activity component to the Components pane and place it between the Invoke activity (Invoke1) and the Reply activity (replyOutput).

Figure 4–46 Assign Activity Component Dragged to the Components Pane and Placed Between the Invoke Activity (Invoke1) and the Reply Activity (replyOutput)

28. Double-click the new Assign activity component (Assign2), as shown in Figure 4–47

Figure 4–47 Assign2 Dialog

29. Click the Plus sign icon and select Copy Operation from the list of available operations.
The Edit Assign dialog is displayed, as shown in Figure 4–48.

Figure 4–48 Edit Assign Dialog

30. In the left pane, under Variables, expand `Invoke1_queryWithView_OutputVariable`, and then select `output_queryWithView`.

31. In the right pane, under Variables, expand `outputVariable`, and then select `payload`.

32. Drag and map the `output_queryWithView` variable to the `payload` variable.

The mapped variables are populated in the highlighted area, as shown in Figure 4–49.
33. Click **Apply** and then **OK**.

The completed activity flow is now displayed, as shown in Figure 4–50.

34. As shown in Figure 4–50, double-click **composite.xml** in the left pane.

35. As shown in Figure 4–51, click the **Save All** icon in the menu bar to save the new outbound BPEL process component that was configured.
You are now ready to deploy the BPEL outbound process.

4.4.4 Deploying the BPEL Outbound Process

Perform the following steps to deploy the BPEL outbound process.

1. Right-click the project name in the left pane (for example, `QueryWithView_Invoke`), select **Deploy**, and then click **QueryWithView_Invoke**, as shown in **Figure 4–52**.

 ![Deploy Option](image)

 Figure 4–52 Deploy Option

 The Deployment Action dialog is displayed, as shown in **Figure 4–53**.
2. Ensure that **Deploy to Application Server** is selected.

3. Click **Next**.

 The Deploy Configuration dialog is displayed, as shown in **Figure 4–54**.
4. Leave the default values selected and click **Next**.

 The Select Server dialog is displayed, as shown in **Figure 4–55**.
5. Select an available application server that was configured and click **Next**.

The SOA Servers dialog is displayed, as shown in **Figure 4–56**.

Figure 4–56 SOA Servers Dialog

6. Select a target SOA server and click **Next**.

The Summary dialog is displayed, as shown in **Figure 4–57**.
7. Review and verify all the available deployment information for your project and click Finish.

The process is deployed successfully, as shown in Figure 4–58.

4.4.5 Invoking the Input XML Document in the Oracle Enterprise Manager Console

Perform the following steps to invoke the input XML document in the Oracle Enterprise Manager console.

1. Log in to the Oracle Enterprise Manager console by using the following URL:
 http://localhost:7001/em

2. Expand your domain in the left pane followed by the SOA folder, as shown in Figure 4–59.
3. As shown in Figure 4–60, select an available project (for example, Siebel_Outbound_queryWithView_BPEL).

Figure 4–60 The Siebel_Outbound_queryWithView_BPEL Project Being Selected

4. Click Test in the right pane.

The Test Web Service page is displayed, as shown in Figure 4–61.
5. Click the Request tab.
6. As shown in Figure 4–62, scroll down to the Input Arguments section.

7. Select XML View from the list in the upper-left corner.
9. Click Test Web Service.

The output response is received in the Response tab of the Oracle Enterprise Manager console, as shown in Figure 4–63.
4.4.6 Testing Outbound BPEL and Mediator Processes

When testing an outbound BPEL process from the Oracle Enterprise Manager console or an outbound Mediator process from the Enterprise Manager console, do not use the XML envelopes that are generated by these consoles. Instead, remove them and use the XML payloads that are generated from the schemas, which conform to the WSDLs for namespace qualifications.

The Mediator data flows can be tested using the Enterprise Manager console. When creating a Mediator data flow and interactions, the Web services are created and registered with the Oracle Application Server. For more information on creating a Mediator outbound process, see Chapter 5, "Integration With Mediator Service Components in the Oracle SOA Suite".

4.5 Designing an Inbound BPEL Process for Event Integration

This topic illustrates Siebel event integration. It describes design-time and run-time configuration. The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPEL Designer (JDeveloper) or Eclipse

Note: The examples in this chapter demonstrate the use of Oracle JDeveloper.

Samples have been provided for this use case scenario in the etc/sample folder in the Application Adapters installation.
Before you design a BPEL process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Event Integration" on page 4-42.

4.5.1 Generating WSDL for Event Integration

You must create a separate channel for every inbound J2CA service and select that channel when you generate WSDL for inbound interaction using Application Explorer.

Note: If two or more events share the same channel, then event messages may not be delivered to the right BPEL process.

Creating a Channel

You must create a separate channel for every inbound J2CA service and select that channel when you generate WSDL for inbound interaction using Application Explorer.

Note: If two or more events share the same channel, then event messages may not be delivered to the right BPEL process.

To create a channel:

1. In the left pane, click Events.
2. Expand the Siebel node.
 The ports and channels nodes appear in the left pane, as shown in Figure 4–64.

Figure 4–64 Ports and Channels Nodes Under Siebel Node

3. Right-click Channels and select Add Channel.
 The Add Channel dialog is displayed, as shown in Figure 4–65.
Perform the following steps:

a. Enter a name for the channel, for example, SiebelEvent.

b. Enter a brief description.

c. From the Protocol list, select HTTP Listener, MQ Series Listener, or File Listener.

For demonstration purposes, this procedure uses the HTTP Listener as an example.

4. Click Next.

The Basic dialog is displayed, as shown in Figure 4–66.
5. Enter the system information as specified in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listener port</td>
<td>Port on which to listen for Siebel event data.</td>
</tr>
<tr>
<td>Https</td>
<td>For a secure HTTP connection, select the Https check box. This option is currently not supported.</td>
</tr>
<tr>
<td>Synchronization Type</td>
<td>Select REQUEST_RESPONSE from the list, which is the recommended option.</td>
</tr>
<tr>
<td>Encoding Type</td>
<td>Choose an encoding type to be used from the list. By default, ASCII is selected.</td>
</tr>
</tbody>
</table>

6. Click the PreParser tab, as shown in Figure 4–67.

7. Specify the location of the schema file that was generated for the Integration Object node using the Export Schema(s) option in Application Explorer.
8. Click OK.

As shown in Figure 4–68, the channel appears under the channels node in the left pane. An X over the icon indicates that the channel is currently disconnected.

Figure 4–68 New Channel Node

You must now create an Integration Object node.

Creating an Integration Object Node
1. Start Application Explorer.
2. Expand the Adapters node, as shown in Figure 4–69.

Figure 4–69 Disconnected Siebel Target Node, Siebel, Under the Siebel Node

You must now create an Integration Object node.

Note: During run time, the Oracle Application Adapter for Siebel adds the namespace to the Siebel published document using the schema that is specified in the PreParser tab. If the Schema location field in the PreParser tab is empty, then BPEL and Mediator processes do not work properly as the Siebel published documents do not contain any namespaces.

Note: Do not start the channel, as it is managed by BPEL PM Server. If you start the channel for testing and debugging purposes, then stop it before run-time.
5. Expand the Integration Object node and select Sample Account.
6. Right-click the Sample Account node and select Add IO Node.
 The Add IO Node dialog is displayed, as shown in Figure 4–71.

Figure 4–71 Add IO Node Dialog

![Add IO Node Dialog](image)

7. Enter a node name (for example, Sample_Account) in the Node name field and a path to the Sample Account XSD file in the Schema location field.
 Please note:
 - For Siebel 7.5 or later: Generate XSD schemas directly from Siebel tools. You use the XSD schemas when you create Web services in Application Explorer. After you generate an XSD schema through Siebel tools, use it to create an IO node and a Web service.
 - For Siebel 7.0: You cannot generate XSD schemas directly from Siebel tools; only XDR schemas can be created. Before you create a Web service, you must first generate an XSD schema from the XDR schema using Application Explorer.
8. If the XSD schema has already been generated, then select XSD Schema. If you are using Siebel-generated XDR schemas, then do not select the XSD schema option.
9. Select a protocol (HTTP, FILE, or MQ Series) from the Protocol list.
10. Click Continue.
 The new Integration Object node is added, as shown in Figure 4–72.

Figure 4–72 Integration Object Node

![Integration Object Node](image)
Generating WSDL for Event Notification

After you create a channel and an associated Integration Object node, you must generate WSDL for the event using Application Explorer.

You must be connected to a Siebel target under the Adapters node in Application Explorer. For detailed information on how to define and connect to a target, see "Establishing a Connection (Target) for Siebel" on page 2-6.

After you connect to a Siebel target, generate WSDL for the event as follows:

1. Right-click the Integration Object node (for example, Sample_Account), and then select **Create Inbound JCA Service (Event)**, as shown in **Figure 4–73**.

![Figure 4–73 Create Inbound JCA Service (Event) Option Selected in Application Explorer](image)

The Export WSDL dialog is displayed, as shown in **Figure 4–74**.

Note: You must restart the Oracle WebLogic Server after the Integration Object node and channel are created.
Figure 4–74 Export WSDL Dialog

Perform the following steps:

a. In the Name field, specify a name for the WSDL file. The .wsdl file extension is added automatically. By default, the names of WSDL files generated for events end with _receive.

b. From the Channel list, select the channel you created for this inbound service (for example, SiebelEvent).

Important: You must create a separate channel for each inbound service. Verify that the channel is stopped before run-time.

2. Click OK.

4.5.2 Creating a New SOA Application for the Inbound BPEL Process

Perform the following steps to create a new SOA application for the inbound BPEL process:

1. Open Oracle JDeveloper on your system.
2. Click **Application** in the menu bar and select **New** from the menu, as shown in Figure 4-75.

![Figure 4-75 New Option Being Selected in the Application Menu](image)

The Create SOA Application wizard - Name your application page is displayed, as shown in Figure 4-76.
Figure 4–76 Create SOA Application Wizard - Name Your application Page

3. From the Application Template list, click SOA Application.

4. Enter a name for the new SOA application (for example, Siebel_Inbound_BPEL) and click Next.

 The Name your project page is displayed, as shown in Figure 4–77.
5. Enter a project name (for example, SampleAccount_Receive) and click Next.

The Configure SOA settings page is displayed, as shown in Figure 4–78.
6. From the Composite Template list, select **Empty Composite** and click **Finish**.

As shown in Figure 4–79, the new SOA application (Siebel_Inbound_BPEL) and associated project (SampleAccount_Receive) are added to the Application Navigator tab in the left pane.

Figure 4–79 *New SOA Application (Siebel_Inbound_BPEL) and Associated Project (SampleAccount_Receive)*

4.5.3 Defining a BPEL Inbound Process

This section describes how to define a BPEL inbound process, which consists of the following stages:

1. Configuring a Third Party Adapter Service Component
2. Configuring an Inbound BPEL Process Component

Creating a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the **Third Party Adapter** component from the Component Palette tab (Service Adapters section) to the Exposed Services pane, as shown in Figure 4–80.
The Create Third Party Adapter Service dialog is displayed, as shown in Example 4–81.

2. Enter a name for the third party adapter service.
3. Ensure that Service is selected from the Type list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The SOA Resource Browser dialog is displayed, as shown in Example 4–82.
Figure 4–82 SOA Resource Browser Dialog

5. Browse and select an inbound WSDL file from the following directory:

 `<ADAPTER_HOME>/soa/thirdparty/ApplicationAdapters/wsdls`

6. Click **OK**.

 The Localize Files dialog is displayed, as shown in Example 4–83.

Figure 4–83 Localize Files Dialog

7. Click **OK**.
The inbound WSDL file and associated receive/request XML schema file (.xsd) are imported to the project folder that has been created.

As shown in Example 4-84, you are returned to the Create Third Party Adapter Service dialog.

Figure 4-84 Create Third Party Adapter Service Dialog

![Create Third Party Adapter Service Dialog](image)

8. Click the **Find JCA Files** icon, which is located to the right of the JCA File field. The SOA Resource Browser dialog is displayed, as shown in Example 4-85.
9. Browse and select the JCA properties file from the following directory:
 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\wsdls`

10. Click OK.
 As shown in Example 4-86, the following message is displayed.

11. Click Yes.
 A copy of the JCA properties file is made in the project folder.
 You are returned to the Create Third Party Adapter Service dialog, as shown in Example 4-87.
12. Click OK.

The third party adapter service component (SampleAccount) is created and displayed in the Exposed Services pane, as shown in Example 4–88.

You are now ready to configure an inbound BPEL process component.
Creating an Inbound BPEL Process Component

Perform the following steps to create an inbound BPEL process component:

1. Drag and drop the BPEL Process component from the Component Palette tab (Service Components section) to the Components pane, as shown in Example 4–89.

 \[Figure \ 4–89 \ \text{BPEL Process Component in the Components Pane} \]

 ![Image of BPEL Process Component in Components Pane]

 The Create BPEL Process dialog is displayed, as shown in Example 4–90.

 \[Figure \ 4–90 \ \text{Create BPEL Process Dialog} \]

 ![Image of Create BPEL Process Dialog]

2. In the Name field, enter a name to identify the new inbound BPEL process component (for example, SampleAccount_Inbound).

 By default, the BPEL specification is set to BPEL 1.1 Specification. The BPEL Process also supports BPEL 2.0 Specification.

3. From the Template list, select Base on a WSDL.

4. Uncheck the Expose as a SOAP service check box.
5. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.

 The SOA Resource Browser dialog is displayed, as shown in Example 4–91.

 Figure 4–91 SOA Resource Browser Dialog

 ![SOA Resource Browser Dialog](image)

 6. Browse and select an inbound WSDL file from the **wsdls** folder (for example, **Sample_Account_receive.wsdl**).

 7. Click **OK**.

 The Localize Files dialog is displayed, as shown in Example 4–92.
8. Click **OK**.

 Uncheck the box for **Rename duplicate files** field under Copy Options area.

 You are returned to the Create BPEL Process dialog, as shown in Example 4–93.

9. Click **OK** to create the connection, as shown in Example 4–94.
10. Create a connection between the third party adapter service component (SampleAccount) and the inbound BPEL process component (SampleAccount_Inbound).

11. Double-click `composite.xml` in the left pane, as shown in Example 4–95.

12. Click the **Save All** icon in the menu bar to save the new inbound BPEL process component that was configured, as shown in Example 4–96.
You are now ready to deploy the BPEL inbound process.

4.5.4 Deploying the BPEL Inbound Process

Perform the following steps to deploy the BPEL inbound process.

1. Right-click the project name in the left pane (for example, **SampleAccount_Receive**), select **Deploy** and then click **SampleAccount_Receive**, as shown in Example 4–97.

The Deployment Action dialog is displayed, as shown in Example 4–98.
2. Ensure that Deploy to Application Server is selected.
3. Click Next.

The Deploy Configuration dialog is displayed, as shown in Example 4–99.
4. Leave the default values selected and click **Next**.

 The Select Server dialog is displayed, as shown in **Example 4–100**.

 Figure 4–100 Select Server Dialog

5. Select an available application server that was configured and click **Next**.

 The SOA Servers dialog is displayed, as shown in **Example 4–101**.
6. Select a target SOA server and click **Next**.

The Summary dialog is displayed, as shown in **Example 4–102**.
7. Review and verify all the available deployment information for your project and click **Finish**.

The process is deployed successfully, as shown in **Example 4–103**.

Figure 4–103 Deployment Successful Message

![Deployment Successful Message](image)

Once event messages are triggered through Siebel, successful instances are received in the Oracle Enterprise Manager console.

4.5.5 Triggering an Event in Siebel

The following topic describes how to trigger an event in Siebel and verify event integration using Oracle Application Adapter for Siebel.

Triggering a Siebel Event to Test Event Runtime Integration

To trigger an event in Siebel:

1. As shown in **Example 4–104**, start the Siebel Call Center by entering the following URL in a browser:

   ```
   http://host name/callcenter/start.swe
   ```

Figure 4–104 Site Map Option Selected Under the View Menu in the Siebel Call Center

![Site Map Option Selected](image)

2. Click **View** and select **Site Map** from the list.

 The Site Map view is displayed, as shown in **Example 4–105**.
3. Click Siebel Workflow Administration.
 The Siebel Workflow Administration page is displayed, as shown in Example 4–106.

4. Click Workflow Processes.
 The Workflow Processes page is displayed, as shown in Example 4–107.
5. Click **Query** to search for the Workflow needed to trigger a Siebel event, as shown in Example 4–108.
6. As shown in Example 4–109, enter a Siebel workflow name and click Search.

Figure 4–109 Workflow Processes Page

7. As shown in Example 4–110, select the workflow.

Figure 4–110 Process Designer Tab

8. Click the Process Designer tab and double-click the Send Siebel Quote Data HTTP workflow element.

 The Input Arguments tab is displayed, as shown in Example 4–111.

Figure 4–111 Input Arguments Tab

9. Enter the IP address and port for the HTTPRequestURLTemplate input argument.

10. Click Return To Designer, as shown in Example 4–112.
11. Click the Process Simulator tab, as shown in Example 4–113.

Figure 4–113 Process Simulator Tab

The Simulator tab is displayed, as shown in Example 4–114.

Figure 4–114 Simulator Tab

12. Click Start then Continue to complete the Siebel event triggering process.

Verifying the Results

To verify your results:

1. Log in to the Oracle Enterprise Manager console by using the following URL:
2. As shown in Example 4–115, expand your domain in the left pane followed by the SOA folder.

Figure 4–115 Oracle Enterprise Manager Console

![Oracle Enterprise Manager Console](image)

3. As shown in Example 4–116, select an available project (for example, Siebel_Inbound_sampacc_ionode_BPEL).

Figure 4–116 Instances Tab

![Instances Tab](image)

4. Click the Instances tab in the right pane.
Recently received run-time events are displayed in the Instances tab, as shown in Example 4–117.

Figure 4–117 Recently Received Run-time Events Displayed in the Instances Tab

5. Select a Siebel instance ID. The Flow Trace page is displayed, as shown in Example 4–118.

Figure 4–118 Flow Trace Page

6. Select a component instance to view its detailed audit trail. The Instance page for the selected component is displayed, as shown in Example 4–119.
7. Click the Audit Trail tab to view the event message.

The message received from the Siebel system is displayed in the Audit Trail tab.
Integration With Mediator Service Components in the Oracle SOA Suite

This chapter describes integration with Mediator service components in the Oracle SOA Suite. It contains the following topics:

- Section 5.1, "Configuring a New Application Server Connection"
- Section 5.2, "Configuring a Mediator Outbound Process"
- Section 5.3, "Configuring a Mediator Inbound Process"

The scenarios shown in this chapter require the following prerequisites.

Prerequisites

The following are installation and configuration requirements:

- Oracle Application Adapter for Siebel must be installed on Oracle WebLogic Server.
- Siebel must be configured for inbound and outbound processing.
- OracleAS Technology adapters must be deployed and properly configured.

The examples in this chapter present the configuration steps necessary for demonstrating service and event integration with Siebel. Prior to using this material, you must be familiar with the following:

- How to configure Oracle Application Adapter for Siebel for services and events. For more information, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel".
- How to configure Oracle JDeveloper. For more information, see Chapter 4, "Integration With BPEL Service Components in the Oracle SOA Suite".
- How to use Siebel workflows. For more information on Siebel design requirements, see Appendix A, "Using Siebel Workflows".

Overview of Mediator Integration

Mediator provides a comprehensive application integration framework. Oracle Application Adapter for Siebel used with Mediator enables you to seamlessly integrate enterprise software, eliminating the need to write custom code. Functional modeling, as opposed to custom coding solutions, allows for software reuse and reduces the complexity and management challenges that arise over the software lifecycle. This integration model consists of two components—high-level integration logic and low-level platform services.

Adapter integration with Oracle WebLogic Server, Mediator is a two-step process:
1. **Design Time:** Oracle Application Adapter for Siebel is configured in Application Explorer for services and events, as described in Chapter 2, "Configuring Oracle Application Server Adapter for Siebel". Integration logic is modeled in iStudio. Metadata are stored in repositories.

2. **Runtime:** The underlying platform treats this metadata as run-time instructions to enable the communication between participating applications.

5.1 Configuring a New Application Server Connection

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 4.3, "Configuring a New Application Server Connection".

5.2 Configuring a Mediator Outbound Process

The following example describes how to configure a Mediator outbound process to your Siebel system, using a Mediator project in Oracle JDeveloper.

Samples have been provided for this usecase scenario in the etc/sample folder of the Application Adapter installation.

Prerequisites

Before you design a Mediator outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Request/Response Service" on page 4-8.

5.2.1 Creating a New SOA Application for the Outbound Mediator Process

Perform the following steps to create a new SOA application for the outbound Mediator process:

1. Open Oracle JDeveloper on your system.

2. Click **Application** in the menu bar and select **New** from the menu, as shown in Figure 5–1.
Figure 5–1 New Option in the Application Menu

The Create SOA Application wizard - Name your application page is displayed, as shown in Figure 5–2.
3. From the Application Template list, click **SOA Application**.

4. Enter a name for the new SOA application (for example, Siebel_Outbound_Mediator) and click **Next**.

 The Name your project page is displayed, as shown in Figure 5–3.
5. Enter a project name (for example, QueryWithView_Invoke) and click **Next**. The Configure SOA settings page is displayed, as shown in **Figure 5–4**.

Figure 5-3 Name Your Project Page

![Name Your Project Page](image)

Figure 5-4 Configure SOA Settings Page

![Configure SOA Settings Page](image)
6. From the Composite Template list, select **Empty Composite** and click **Finish**.

As shown in Figure 5–5, the new SOA application (Siebel_Outbound_Mediator) and associated project (QueryWithView_Invoke) are added to the Application Navigator tab in the left pane.

![Application Navigator](image)

Figure 5–5 A New SOA Application (Siebel_Outbound_Mediator) and Associated Project (QueryWithView_Invoke) Added to the Application Navigator Tab

5.2.2 **Defining a Mediator Outbound Process**

This section describes how to define a Mediator outbound process, which consists of the following stages:

1. Configuring a Third Party Adapter Service Component
2. Configuring an Outbound Mediator Process Component
3. Configuring the Routing Rules

Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the **Third Party Adapter** component from the Component Palette tab (Service Adapters section) to the External References pane, as shown in Figure 5–6.
2. Enter a name for the new third party adapter service.
3. Ensure that Reference is selected from the Type list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The SOA Resource Browser dialog is displayed, as shown in Figure 5–8.
Figure 5–8 SOA Resource Browser Dialog

5. Browse and select an outbound WSDL file from the following directory:

<ADAPTER_HOME>/soa/thirdparty/ApplicationAdapters/wsdls

6. Click OK.

The Localize Files dialog is displayed, as shown in Figure 5–9.
7. Click **OK**.

The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 5-10.

Figure 5-10 Create Third Party Adapter Service Dialog
8. Click the **Find JCA Files** icon, which is located to the right of the JCA File field. The SOA Resource Browser dialog is displayed, as shown in Figure 5–11.

Figure 5–11 SOA Resource Browser Dialog

9. Browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\wsdlss`

10. Click **OK**. The following message is displayed, as shown in Figure 5–12.

Figure 5–12 Copy File Message

 The jca file `queryWithView_invoke.jca` is external to the current project. In order to make this file available to your project at runtime, JDeveloper can now make a local copy. Do you want to copy file to `queryWithView_invoke_3P.jca` ?
11. Click Yes.

 A copy of the JCA properties file is made in the project folder.

 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 5–13.

Figure 5–13 Create Third Party Adapter Service Dialog

12. Click OK.

 The third party adapter service component (QueryWithView) is created and displayed in the External References pane, as shown in Figure 5–14.
You are now ready to configure an outbound Mediator process component.

Configuring an Outbound Mediator Process Component

Perform the following steps to configure an outbound Mediator process component:

1. Drag and drop the **Mediator** component from the Component Palette tab (Service Components section) to the Components pane, as shown in Figure 5–15.

The Create Mediator dialog is displayed, as shown in Figure 5–16.
In the Name field, enter a name to identify the new outbound Mediator process component (for example, QueryWithView_Mediator).

3. From the Template list, select **Synchronous Interface**.

4. Click the **Browse Input Elements** icon, which is located to the right of the Input field to select the associated XML request schema file.

The Type Chooser dialog is displayed, as shown in **Figure 5–17**.
5. Expand **Project WSDL Files**, `queryWithView_invoke.wsdl`, **Inline Schemas**, `schema`, and select **Siebel**.

6. Click **OK**.

You are returned to the Create Mediator dialog, as shown in Figure 5–18.
7. Click the **Browse Output Elements** icon, which is located to the right of the Output field to select the associated XML response schema file.

The Type Chooser dialog is displayed, as shown in **Figure 5–19**.

![Figure 5–19 Type Chooser Dialog](image)

8. Expand **Project WSDL Files**, **queryWithView_invoke.wsdl**, **Inline Schemas**, **schema**, and select **SiebelResponse**.

9. Click **OK**.

You are returned to the Create Mediator dialog, as shown in **Figure 5–20**.
10. Click OK.

11. As shown in Figure 5–21, create a connection between the outbound Mediator process component (QueryWithView_ Mediator) and the third party adapter service component (QueryWithView).

You are now ready to configure the routing rules.

Configuring the Routing Rules

Perform the following steps to configure routing rules for the Mediator outbound process component:
1. Double-click the outbound Mediator process component (QueryWithView_Mediator) in the Components pane, as shown in Figure 5–22.

Figure 5–22 The Outbound Mediator Process Component (QueryWithView_Mediator) in the Components Pane

The Routing Rules dialog is displayed, as shown in Figure 5–23.

Figure 5–23 Routing Rules Dialog

2. In the <<Filter Expression>> area, click the Select an existing mapper file or create a new one icon to the right of the Transform Using field. The Request Transformation Map dialog is displayed, as shown in Figure 5–24.
3. Select the **Create New Mapper File** option and click **OK**.
 The Siebel_To_Siebel.xsl tab is displayed, as shown in Figure 5–25.

 The Auto Map Preferences dialog is displayed, as shown in Figure 5–26.
5. Retain the default values and click **OK**.

6. As shown in Figure 5–27, click the **QueryWithView_Mediator.mplan** tab.

 Figure 5–27 QueryWithView_Mediator.mplan Tab

 ![QueryWithView_Mediator.mplan Tab](image)

 You are returned to the Routing Rules dialog, as shown in Figure 5–28.

 Figure 5–28 Routing Rules Dialog

 ![Routing Rules Dialog](image)

7. In the Synchronous Reply area, click the **Select an existing mapper file or create a new one** icon to the right of the Transform Using field.

 The Reply Transformation Map dialog is displayed, as shown in Figure 5–29.

 Figure 5–29 Reply Transformation Map Dialog

 ![Reply Transformation Map Dialog](image)

8. Select the **Create New Mapper File** option and click **OK**.

 The **SiebelResponse_To_SiebelResponse.xsl** tab is displayed, as shown in Figure 5–30.

The Auto Map Preferences dialog is displayed, as shown in Figure 5–31.

Retain the default values and click OK.

As shown in Figure 5–32, the mapping is completed.

Click the Save All icon in the menu bar to save the new outbound Mediator process component that was configured, as shown in Figure 5–33.
5.2.3 Deploying the Mediator Outbound Process

Perform the following steps to deploy the Mediator outbound process.

1. As shown in Figure 5–34, right-click the project name in the left pane (for example, QueryWithView_Invoke), select Deploy, and then click QueryWithView_Invoke.

The Deployment Action dialog is displayed, as shown in Figure 5–35.
2. Ensure that **Deploy to Application Server** is selected.

3. Click **Next**.

 The Deploy Configuration dialog is displayed, as shown in **Figure 5–36**.
4. Leave the default values selected and click **Next**.

 The Select Server dialog is displayed, as shown in **Figure 5–37**.
5. Select an available application server that was configured and click **Next**.
The SOA Servers dialog is displayed, as shown in Figure 5–38.

![SOA Servers Dialog](image)

6. Select a target SOA server and click **Next**.
The Summary dialog is displayed, as shown in Figure 5–39.
7. Review and verify all the available deployment information for your project and click **Finish**.

The process is deployed successfully, as shown in **Figure 5–40**.

Figure 5–40 Deployment Successful Message

```
Failed: [error]

Validating composite: 'C:\Developer\mywork\Siebel_Outbound_Mediator\query.xml'

BUILD SUCCESSFUL
Total time: 5 seconds
```

5.2.4 Invoking the Input XML Document in the Oracle Enterprise Manager Console

Perform the following steps to invoke the input XML document in the Oracle Enterprise Manager console:

1. Log in to the Oracle Enterprise Manager console by using the following URL:

2. Expand your domain in the left pane followed by the **SOA** folder, as shown in **Figure 5–41**.

Figure 5–39 Summary Dialog

![Summary Dialog](image)

Figure 5–40 Deployment Successful Message

```
Failed: [error]

Validating composite: 'C:\Developer\mywork\Siebel_Outbound_Mediator\query.xml'

BUILD SUCCESSFUL
Total time: 5 seconds
```
3. As shown in Figure 5–42, select an available project (for example, Siebel_Outbound_queryWithView_Mediator).

Figure 5–42 An Available Project (for example, Siebel_Outbound_queryWithView_Mediator) Being Selected

4. Click Test in the right pane.

The Test Web Service page is displayed, as shown in Figure 5–43.
5. Click the Request tab.

6. Scroll down to the Input Arguments section, as shown in Figure 5–44.

Figure 5–44 Input Arguments Section

7. Select XML View from the list in the upper-left corner.

9. Click Test Web Service.

The output response is received in the Response tab of the Oracle Enterprise Manager console, as shown in Figure 5–45.
5.3 Configuring a Mediator Inbound Process

The following example describes how to configure a Mediator inbound process to your Siebel system, using a Mediator project in Oracle JDeveloper.

Samples have been provided for this usecase scenario in the etc/sample folder of the Application Adapter installation.

Prerequisites

Before you design a Mediator inbound process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Event Integration" on page 4-42.

5.3.1 Creating a New SOA Application for the Inbound Mediator Process

Perform the following steps to create a new SOA application for the inbound Mediator process:

1. Open Oracle JDeveloper on your system.
2. Click Application in the menu bar and select New from the menu, as shown in Figure 5–46.
The Create SOA Application wizard is displayed, as shown in Figure 5–47.

Figure 5–46 New Option

Figure 5–47 Create SOA Application Wizard
3. From the Application Template list, click **SOA Application**.

4. Enter a name for the new SOA application (for example, Siebel_Inbound_Mediator) and click **Next**.

 The Name your project page is displayed, as shown in **Figure 5–48**.

Figure 5–48 Name Your Project Page

![Name Your Project Page](image)

5. Enter a project name (for example, SampleAccount_Receive) and click **Next**.

 The Configure SOA settings page is displayed, as shown in **Figure 5–49**.
6. From the Composite Template list, select **Empty Composite** and click **Finish** to show the Application Navigator, as shown in Figure 5–50.

The new SOA application (Siebel_Inbound_Mediator) and associated project (SampleAccount_Receive) are added to the Application Navigator tab in the left pane.
5.3.2 Defining a Mediator Inbound Process

This section describes how to define a Mediator inbound process, which consists of the following stages:

1. Configuring a Third Party Adapter Service Component
2. Configuring an Inbound Mediator Process Component With a File Adapter
3. Configuring the Routing Rules

Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Component Palette tab (Service Adapters section) to the Exposed Services pane, as shown in Figure 5–51.

Figure 5–51 Third Party Adapter Component Being Dragged to the Exposed Services Pane

The Create Third Party Adapter Service dialog is displayed, as shown in Figure 5–52.
2. Enter a name for the third party adapter service.
3. Ensure that **Service** is selected from the Type list (default).
4. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.

The SOA Resource Browser dialog is displayed, as shown in Figure 5–53.

Figure 5–53 SOA Resource Browser Dialog

![SOA Resource Browser Dialog](image-url)
5. Browse and select an inbound WSDL file from the following directory:

 `<ADAPTER_HOME>`/soa/thirdparty/ApplicationAdapters/wsdls

6. Click **OK**.

 The Localize Files dialog is displayed, as shown in Figure 5–54.

 Figure 5–54 Localize Files Dialog

 ![Localize Files Dialog](image)

 The inbound WSDL file and associated receive/request XML schema file (.xsd) are imported to the project folder that has been created.

7. Click **OK**.

 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 5–55.
8. Click the **Find JCA Files** icon, which is located to the right of the JCA File field. The SOA Resource Browser dialog is displayed, as shown in Figure 5–56.

Figure 5–56 SOA Resource Browser Dialog

9. Browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\wsdls`

10. Click **OK**.
As shown in Figure 5–57, the following message is displayed.

Figure 5–57 Copy File Confirmation Message Dialog

![Copy File Confirmation Message Dialog](image)

11. Click Yes.

A copy of the JCA properties file is made in the project folder.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 5–58.

Figure 5–58 Create Third Party Adapter Service Dialog

![Create Third Party Adapter Service Dialog](image)

12. Click OK.

The third party adapter service component (SampleAccount) is created and displayed in the Exposed Services pane, as shown in Figure 5–59.
Configuring an Inbound Mediator Process Component With a File Adapter

Perform the following steps to configure an inbound Mediator process component with a File adapter.

1. Drag and drop the Mediator component from the Component Palette tab (Service Components section) to the Components pane, as shown in Figure 5–60.

You are now ready to configure an inbound BPEL process component.

Figure 5–60 Mediator Component Being Dragged to the Components Pane

The Create Mediator dialog is displayed, as shown in Figure 5–61.
2. In the Name field, enter a name to identify the new inbound Mediator process component (for example, SampleAccount_Mediator).

3. From the Template list, select Define Interface Later.

4. Click the OK.

 The new Mediator process component is added to the Components pane, as shown in Figure 5–62.

5. Drag and drop the File Adapter component from the Service Adapters pane to the External References pane.

 The Adapter Configuration Wizard - Welcome page is displayed, showing the Welcome page, as shown in Figure 5–63.
Figure 5–63 The Adapter Configuration Wizard - Welcome Page

6. Click Next.

The Service Name page is displayed, as shown in Figure 5–64.
7. Type a name for the new File adapter in the Service Name field and click **Next**. The Adapter Interface page is displayed, as shown in Figure 5–65.
8. Ensure that the **Define from operation and schema (specified later)** option is selected.

9. Click **Next**.

 The Operation page is displayed, as shown in Figure 5–66.
10. Select **Write File** from the list of Operation Type options and specify an Operation Name (for example, Write).

11. Click **Next**.

The File Configuration page is displayed, as shown in Figure 5–67.
12. Specify a location on your file system for the output file.
13. In the File Naming Convention field, specify a name for the output file.
14. Click Next.

The Messages page is displayed, as shown in Figure 5–68.
15. Click **browse for schema file**, which is located to the right of the URL field.

The Type Chooser dialog is displayed, as shown in **Figure 5–69**.
16. Expand Project WSDL Files, Sample_Account_receive.wsdl, Inline Schemas, and schema.

17. Select the available schema (for example, SiebelMessage)

18. Click OK.

You are returned to the Messages page, as shown in Figure 5–70.
19. **Click Next.**

The Finish page is displayed, as shown in Figure 5–71.
20. Click Finish.

21. Create a connection between the inbound Mediator process component and the third party adapter service component, as shown in Figure 5–72.

Figure 5–72 Connection Between the Inbound Mediator Process Component and the Third Party Adapter Service Component

22. Create a connection between the inbound Mediator process component and the File adapter component, as shown in Figure 5–73.
You are now ready to configure the routing rules.

Configuring the Routing Rules
Perform the following steps to configure routing rules for the Mediator inbound process component:

1. Double-click the inbound Mediator process component in the Components pane, as shown in Figure 5–74.

The Routing Rules dialog is displayed, as shown in Figure 5–75.
2. In the <<Filter Expression>> area, click the **Select an existing mapper file or create a new one** icon to the right of the Transform Using field.

The Request Transformation Map dialog is displayed, as shown in Figure 5–76.

![Figure 5–75 Routing Rules Dialog](image)

Figure 5–75 Routing Rules Dialog

2. In the <<Filter Expression>> area, click the **Select an existing mapper file or create a new one** icon to the right of the Transform Using field.

The Request Transformation Map dialog is displayed, as shown in Figure 5–76.

![Figure 5–76 Request Transformation Map Dialog](image)

Figure 5–76 Request Transformation Map Dialog

3. Select the **Create New Mapper File** option and click **OK**.

The SiebelMessage_To_SiebelMessage.xsl tab is displayed, as shown in Figure 5–77.

![Figure 5–77 SiebelMessage_To_SiebelMessage.xsl Tab](image)

Figure 5–77 SiebelMessage_To_SiebelMessage.xsl Tab

The Auto Map Preferences dialog is displayed, as shown in Figure 5–78.
5. Retain the default values and click OK.
 As shown in Figure 5–79, the mapping is now complete.

6. As shown in Figure 5–80, click the Save All icon in the menu bar to save the new inbound Mediator process component that was configured.
You are now ready to deploy the Mediator inbound process. You can follow the same procedure that is described in "Defining a BPEL Inbound Process" on page 4-52.

Once event messages are triggered through Siebel, output XML is received in the location that was specified for the File adapter component. For more information on triggering events in Siebel, see “Triggering an Event in Siebel” on page 4-66.
6
Integration With BPM Service Components in the Oracle SOA Suite

OracleAS Adapter for Siebel integrates seamlessly with Oracle Business Process Management (BPM) to facilitate Web service integration. Oracle BPM is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following topics:

- Section 6.1, "Overview"
- Section 6.2, "Deployment of Adapter"
- Section 6.3, "Configuring a New Application Server Connection"
- Section 6.4, "Designing an Outbound BPM Process Using Transformations for Service Integration"
- Section 6.5, "Designing an Inbound BPM Process Using Transformations for Event Integration"

6.1 Overview

To integrate with Oracle BPM, OracleAS Adapter for Siebel must be deployed in the same WLS container as Oracle BPM. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter. For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-28.

The generated WSDL files are used to design the appropriate BPM processes for inbound or outbound adapter services. A completed BPM process must be successfully compiled in JDeveloper and deployed to a BPM server. Upon deployment to the BPM server, every newly built process is automatically deployed to the Oracle Enterprise Manager console, where you run, monitor, and administer BPM processes, and listen to adapter events.

6.2 Deployment of Adapter

During installation, OracleAS Adapter for Siebel is deployed as a J2CA 1.0 resource adapter within the WLS container. The adapter must be deployed in the same WLS container as Oracle BPM.
6.3 Configuring a New Application Server Connection

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 4.3, "Configuring a New Application Server Connection".

6.4 Designing an Outbound BPM Process Using Transformations for Service Integration

The following tools are required to complete your outbound design-time configuration:

■ Oracle Adapter Application Explorer (Application Explorer)
■ Oracle JDeveloper BPM Designer (JDeveloper) or Eclipse

Note: The examples in this chapter demonstrate the use of JDeveloper.

Samples have been provided for this usecase scenario in the etc/sample folder of the Application Adapter installation.

Before you design a BPM process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Request/Response Service" on page 4-8.

6.4.1 Creating an Empty Composite for BPM

Perform the following steps to create an empty composite for BPM:

1. Create a new BPM application.
2. Enter a name for the new BPM application and click Next, as shown in Figure 6–1.
The Name your project page is displayed, as shown in Figure 6–2.

3. Enter a project name (for example, Siebel_JCA_Outbound) and click Next.
The Configure SOA settings page is displayed, as shown in Figure 6–3.

Figure 6–3 Configure SOA Settings Page

4. From the Composite Template list, select **Empty Composite** and click **Finish**.

6.4.2 Defining a BPM Outbound Process

This section describes how to define a BPM outbound process, which consists of the following stages:

1. Configuring a Third Party Adapter Service Component
2. Configuring an Outbound BPM Process Component
3. Creating a File Adapter for the Write Operation

Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. As shown in **Figure 6–4**, drag and drop the **Third Party Adapter** component from the Service Adapters pane to the External References pane.
Figure 6–4 Third Party Adapter Component Being Dragged from the Service Adapters Pane to the External References Pane

The Create Third Party Adapter Service dialog is displayed, as shown in Figure 6–5.

Figure 6–5 Create Third Party Adapter Service Dialog

2. Enter a name for the third party adapter service.
3. Ensure that Reference is selected from the Type list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The SOA Resource Browser dialog is displayed, as shown in Figure 6–6.
5. Browse and select an outbound Siebel WSDL file from the following directory:
 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\wsdls`

6. Click OK.
 The Localize Files dialog is displayed, as shown in Figure 6–7.
7. Click OK.

The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 6–8.

Figure 6–8 Create Third Party Adapter Service Dialog
8. Click the **Find JCA file** icon, which is located to the right of the JCA File field. The SOA Resource Browser dialog is displayed, as shown in Figure 6–9.

Figure 6–9 SOA Resource Browser Dialog

9. Browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\wsdls`

10. Click **OK**.

 As shown in Figure 6–10, the following message is displayed.

Figure 6–10 Copy File Confirmation Message

11. Click **Yes**.

 A copy of the JCA properties file is made in the project folder.
You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 6–11.

Figure 6–11 Create Third Party Adapter Service Dialog

12. Click OK.

The third party adapter service component (QueryWithView) is created and displayed in the External References pane, as shown in Figure 6–12.

Figure 6–12 Third Party Adapter Service Component
You are now ready to configure an outbound BPM process component.

Configuring an Outbound BPM Process Component

Perform the following steps to configure an outbound BPM process component:

1. Drag and drop the **BPMN Process** component from the Service Components pane to the Components pane, as shown in **Figure 6–13**.

![BPMN Process Component Being Dragged to the Components Pane](image)

The Create BPMN Process dialog is displayed, as shown in **Figure 6–14**.

![Create BPMN Process Dialog](image)

2. Accept the default option that is selected under the Type area (Asynchronous Service) and click **Finish**.

The BPMN Process component is created, as shown in **Figure 6–15**.
3. Double-click the BPMN Process component in the Components pane. The BPMN process is displayed, as shown in Figure 6–16.

4. Click the Activity icon, as shown in Figure 6–17.
5. As shown in Figure 6–18, drop the Activity icon on the wire between the Start and End event components.

The Properties - Activity dialog is displayed, as shown in Figure 6–19.
6. Click the **Implementation** tab, as shown in Figure 6–20.

7. Select **Service Task** from the Implementation Type list, as shown in Figure 6–21.
8. Select **Service Call** from the Implementation list.

9. Click the Browse icon to the right of the Name field, as shown in Figure 6–22.
10. Select the Third Party Service that has been created (for example, QueryWithView) and click OK.

You are returned to the Properties - Activity dialog, as shown in Figure 6–24.
11. Select the **Use Associations** option that is located under Data Associations.

12. Click the **Edit Data Associations** icon.

 The Data Associations dialog is displayed, as shown in **Figure 6–25**.

Figure 6–25 Data Associations Dialog

13. Right-click the **Process** node in the right pane and select **Add**.

 The Create Data Object dialog is displayed, as shown in **Figure 6–26**.
14. Enter a name in the Name field (for example, Request) and click on the drop-down button in the Type field and select `<Component>` from the list.

 The Create Data Object dialog is displayed, as shown in Figure 6–27.

15. Click on the Browse icon below the Type field.

 The Browse window opens as shown in Figure 6–28.
16. Select the first component (for example, Siebel) and click **OK**.

 You are returned to the Create Data Object dialog, as shown in **Figure 6–29**.

Figure 6–29 Create Data Object Dialog

17. Click **OK**.

 The Data Object (for example, Request) that has been created is displayed under the Process node in the Data Associations dialog, as shown in **Figure 6–30**.
18. Create another Data Object by right-clicking the Process node in the right pane and selecting Add, as shown in Figure 6–31.

The Create Data Object dialog is displayed, as shown in Figure 6–32.

19. Enter a name in the Name field (for example, Response) and click on the drop down button in the Type field and select <Component> on the list.

The Create Data Object is displayed, as shown in Figure 6–33.
20. Click on the Browse icon below the Type field.

 The Browse window opens, as shown in Figure 6–34.

21. Select the second component (for example, SiebelResponse) and click OK.

 You are returned to the Create Data Object dialog, as shown in Figure 6–35.
22. Click OK.

The Data Object (for example, Response) that has been created is displayed under the Process node in the Data Associations dialog, as shown in Figure 6–36.

23. Select the Request Data Object under the Process node in the right pane and drag it to the field below the Inputs area, as shown in Figure 6–37.

24. Select the Response Data Object under the Process node in the right pane and drag it to the field below the Outputs area, as shown in Figure 6–38.
25. Click OK.

You are returned to the Properties - Activity dialog, as shown in Figure 6–39.

26. Click OK.

As shown in Figure 6–40, the Service Task is created between the Start and End Event components.
27. Save the process and double-click the Start event component. The Properties - Start dialog is displayed, as shown in Figure 6–41.

28. Click the Implementation tab, as shown in Figure 6–42.
29. Click the **Plus** icon to the right of the Arguments Definition field. The Create Argument dialog is displayed, as shown in Figure 6–43.

30. Enter a name in the Name field (by default, argument1) and click on the drop-down button in the Type field and select `<Component>` from the list. The Create Argument dialog is displayed, as shown in Figure 6–44.
31. Click on the Browse icon below the Type field.
 The Browse window appears, as shown in Figure 6–45

32. Select the first component (for example, Siebel) and click **OK**.
 You are returned to the Create Argument dialog, as shown in Figure 6–46.
33. Click OK.

You are returned to the Properties - Start dialog, as shown in Figure 6–47.

34. Select the Use Associations option that is located under Data Associations.

35. Click the Edit Data Associations icon.

The Data Associations dialog is displayed.

36. As shown in Figure 6–48, select the Request Data Object under the Process node in the right pane and drag it to the field below the Outputs area.
37. Click OK. You are returned to the Properties - Start dialog, as shown in Figure 6–49.

Figure 6–49 Properties - Start Dialog

38. Click OK. You are returned to the Process workspace area.

39. As shown in Figure 6–50, double-click `composite.xml` in the left pane.
40. Click the Save All icon in the menu bar to save the new outbound BPM process component that was configured.

You are now ready to create a File adapter for the write operation.

Creating a File Adapter for the Write Operation

Perform the following steps to create a File adapter for the write operation:

1. Drag and drop the File Adapter component from the Service Adapters pane to the External References pane, as shown in Figure 6–51.

The Adapter Configuration Wizard is displayed, as shown in Figure 6–52.
2. Click Next.

The Service Name page is displayed, as shown in Figure 6–53.
3. Type a name for the new File adapter in the Service Name field and click Next. The Adapter Interface page is displayed, as shown in Figure 6–54.
4. Ensure that the **Define from operation and schema (specified later)** option is selected.

5. Click **Next**.

 The Operation page is displayed, as shown in **Figure 6–55**.
6. Select **Write File** from the list of Operation Type options and specify an Operation Name (for example, Write).

7. Click **Next**.

The File Configuration page is displayed, as shown in Figure 6–56.
8. Specify a location on your file system for the output file.

9. In the File Naming Convention field, specify a name for the output file.

10. Click Next.

 The Messages page is displayed, as shown in Figure 6–57.
11. Click browse for schema file, which is located to the right of the URL field. The Type Chooser dialog is displayed, as shown in Figure 6–58.

13. Select the available schema (for example, SiebelResponse)

14. Click OK.

You are returned to the Messages page, as shown in Figure 6–59.

Figure 6–59 Messages Page

![Messages Page](image)

15. Click Next.

The Finish page is displayed, as shown in Figure 6–60.
16. Click Finish.

As shown in Figure 6–61, the File Adapter service is created in the External References pane.

Figure 6–61 File Adapter Service Created in the External References Pane

17. Double-click the BPMN Process component.
The BPMN process is displayed, as shown in Figure 6–62.

Figure 6–62 Activity Icon

18. Click the Activity icon.

19. Drop the Activity icon on the wire between the Service Task and End event components, as shown in Figure 6–63.

Figure 6–63 Activity Icon Placed on the Wire Between the Service Task and End Event Component

The Properties - Activity dialog is displayed, as shown in Figure 6–64.
20. As shown in Figure 6–65, click the Implementation tab.

21. As shown in Figure 6–66, select Service Task from the Implementation Type list.
22. Select Service Call from the Implementation list.
23. Click the Browse icon to the right of the Name field, as shown in Figure 6–67.
The Type dialog is displayed, as shown in Figure 6–68.

24. Select the service for write operation that has been created (for example, Siebel_File_Adapter) and click OK.

You are returned to the Properties - Activity dialog, as shown in Figure 6–69.
25. Select the **Use Transformations** option that is located under Data Associations.

26. Click the **Edit XSL Transformations** icon.

The Edit Transformations dialog is displayed, as shown in **Figure 6–70**.
27. Click the **Plus** icon.

The Create Transformation dialog is displayed, as shown in Figure 6–71.

28. As shown in Figure 6–72, select the **Response** Data Object that was created from the Sources list.
29. Click the Plus icon so that the Data Object ‘Response’ is added to the Selected Elements area.

30. Accept the default value that is selected in the Target list, as shown in Figure 6–72.

31. Leave the default name displayed in the Create field and click OK.

You are returned to the Edit Transformations dialog, as shown in Figure 6–73.
32. Click **OK**.

You are returned to the Properties - Activity dialog, as shown in Figure 6–74.

Figure 6–74 Properties - Activity Dialog

33. Click **OK**.

The Response_body.xsl tab is displayed, as shown in Figure 6–75.

Figure 6–75 The Response_body.xsl Tab

34. Automap the Source and Target elements.

The Auto Map Preferences dialog is displayed, as shown in Figure 6–76.
35. Accept the default values and click **OK**.

The transformation is completed, as shown in Figure 6–77.

36. Save the transformation.

37. Return to the Process workspace area, as shown in Figure 6–78.
38. Save the process.

39. Double-click the End event component.

 The Properties - End dialog is displayed.

 As shown in Figure 6–79, click the Implementation tab.

41. Select None from the Implementation Type list, as shown in Figure 6–80.
42. Click OK.
You are returned to the Process workspace area.

43. Save the Process and double-click the composite.xml file.

44. Click OK.
You are returned to the Process workspace area and ready to deploy the outbound BPM process.

6.4.3 Deploying the BPM Outbound Process

Perform the following steps to deploy the BPM outbound process.

1. Right-click the project name in the left pane (for example, Siebel_JCA_Outbound), select Deploy, and then click **Siebel_JCA_Outbound**, as shown in Figure 6–81.
The Deployment Action page is displayed.

2. Ensure that **Deploy to Application Server** is selected.

3. Click **Next**.

 The Deploy Configuration page is displayed, as shown in Figure 6–82.

Figure 6–82 Deploy Configuration Page

4. Leave the default values selected and click **Next**.

 The Select Server page is displayed, as shown in Figure 6–83.
5. Select an available application server that was configured and click **Next**.

The SOA Servers page is displayed, as shown in Figure 6–84.

6. Select a target SOA server and click **Next**.
The Summary page is displayed, as shown in Figure 6–85.

Figure 6–85 Summary Page

7. Review and verify all the available deployment information for your project and click **Finish**.

The process is deployed successfully, as shown in Figure 6–86.

Figure 6–86 Deployment Successful Message

6.4.4 Invoking the Input XML Document in the Oracle Enterprise Manager Console

Perform the following steps to invoke the input XML document in the Oracle Enterprise Manager console.

1. Logon to the Oracle Enterprise Manager console., as shown in Figure 6–87.
2. Expand your domain in the left pane followed by the SOA folder.
3. Select an available project (for example, Siebel_JCA_Outbound).
4. Click Test.
5. Click the Request tab.
6. Provide an appropriate input value in the Value field and click Test Web Service. A response is received in the Response tab to indicate that invocation was successful in the Oracle Enterprise Manager console.
7. Navigate to the defined output directory on your file system and open the XML response document that was received.

The XML response document contains the generated output with values.

6.5 Designing an Inbound BPM Process Using Transformations for Event Integration

This section demonstrates how OracleAS Adapter for Siebel integrates with Siebel to receive event data.

The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPM Designer (JDeveloper) or Eclipse

Note: The examples in this chapter demonstrate the use of JDeveloper.

Samples have been provided for this usecase scenario in the etc/sample folder in the Application Adapters installation.

Before you design a BPM process, you must generate the respective WSDL file using Application Explorer. For more information, see Generating WSDL for Event Integration on page 4-42.

6.5.1 Creating an Empty Composite for BPM

Perform the following steps to create an empty composite for BPM:
1. Create a new BPM application.
2. Enter a name for the new BPM application and click Next, as shown in Figure 6–88.

Figure 6–88 Name Your Application Page

The Name your project page is displayed, as shown in Figure 6–89.
3. Enter a project name (for example, Siebel_JCA_Inbound) and click **Next**.

The Configure SOA settings page is displayed, as shown in Figure 6–90.

Figure 6–90 Configure SOA Settings Page

![Configure SOA Settings Page](image-url)
4. From the Composite Template list, select Empty Composite and click Finish.

6.5.2 Defining a BPM Inbound Process

This section describes how to define a BPM inbound process, which consists of the following stages:

1. Configuring a Third Party Adapter Service Component
2. Configuring an Inbound BPM Process Component
3. Creating a File Adapter for the Write Operation

Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the Exposed References pane, as shown in Figure 6–91.

Figure 6–91 Third Party Adapter Component Being Dragged to the Exposed References Pane

The Create Third Party Adapter Service dialog is displayed, as shown in Figure 6–92.
2. Enter a name for the third party adapter service.
3. Ensure that **Service** is selected from the Type list (default).
4. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.

The SOA Resource Browser dialog is displayed, as shown in **Figure 6–93**.

![Create Third Party Adapter Service Dialog](image)

Figure 6–93 *Create Third Party Adapter Service Dialog*
5. Browse and select an inbound WSDL file from the following directory:

<ADAPTER_HOME>/soa/thirdparty/ApplicationAdapters/wsdls

6. Click OK.

The Localize Files dialog is displayed, as shown in Figure 6–94.
7. Click OK.

The inbound WSDL file and associated receive_request XML schema file (.xsd) are imported to the project folder that has been created.

As shown in Figure 6–95, you are returned to the Create Third Party Adapter Service dialog.

Figure 6–95 Create Third Party Adapter Service Dialog

8. Click the Find JCA file icon, which is located to the right of the JCA File field. The SOA Resource Browser dialog is displayed, as shown in Figure 6–96.
9. Browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\wsdls`

10. Click OK.

 The following message is displayed, as shown in Figure 6–97.

Figure 6–97 Copy File Confirmation Message

 The jca file Sample_Account_receive.jca is external to the current project. In order to make this file available to your project at runtime, JDeveloper can now make a local copy. Do you want to copy file to Sample_Account_receive_3P.jca?

 ![Copy File Confirmation Message]

11. Click Yes.

 A copy of the JCA properties file is made in the project folder.

 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 6–98.
12. Click OK.

The third party adapter service component (SampleAccount) is created in the Exposed References pane, as shown in Figure 6–99.
You are now ready to configure an inbound BPM process component.

Configuring an Inbound BPM Process Component

Perform the following steps to configure an inbound BPM process component:

1. As shown in Figure 6–100, drag and drop the BPMN Process component from the Service Components pane to the Components pane.

 ![Figure 6–100 BPMN Process Component Being Dragged to the Components Pane](image)

 The Create BPMN Process dialog is displayed, as shown in Figure 6–101.

 ![Figure 6–101 Create BPMN Process Dialog](image)

2. Select the From Pattern option in the left pane and ensure that Manual Process is selected in the Patterns area, as shown in Figure 6–102.
3. Click Finish.

The BPMN Process component is created, as shown in Figure 6–103.

4. Double-click the BPMN Process component in the Components pane.

The BPMN process is displayed, as shown in Figure 6–104.
5. Right-click **UserTask** and select **Delete** from the menu.

6. As shown in Figure 6–105, double-click the **Start** event component.

Figure 6–105 Start Event Component

The Properties - Start dialog is displayed, as shown in Figure 6–106.
7. Click the Implementation tab, as shown in Figure 6–107.

8. Select Message from the Implementation Type list, as shown in Figure 6–108.
9. Select **Interface from Catalog** from the Implementation list.

10. Click the **Browse** icon to the right of the Name field, as shown in Figure 6–109.
The Type dialog is displayed, as shown in Figure 6–110.

11. Select the Third Party Service that has been created and click **OK**.

You are returned to the Properties - Start dialog, as shown in Figure 6–111.
12. Select the **Use Associations** option that is located under Data Associations.

13. Click the **Edit Data Associations** icon.

 The Data Associations dialog is displayed, as shown in **Figure 6–112**.

Figure 6–112 Data Associations Dialog

14. Right-click the **Process** node in the right pane and select **Add**.

 The Create Data Object dialog is displayed, as shown in **Figure 6–113**.

Figure 6–113 Properties - Start Dialog

Designing an Inbound BPM Process Using Transformations for Event Integration

Oracle Fusion Middleware Application Adapter for Siebel User's Guide for Oracle WebLogic Server
15. Enter a name in the Name field (for example, sample_account_in) and click on the drop down button in the Type field and select `<Component>` from the list. The Create Data Object dialog is displayed, as shown in Figure 6–114.

16. Click on the Browse icon below the Type field, as shown in Figure 6–115.

The Browse window opens, as shown in Figure 6–116.
17. Select the first component (for example, SiebelMessage) and click OK.

You are returned to the Create Data Object dialog, as shown in Figure 6–117.

18. Click OK.

The Data Object (for example, sample_account_in) that has been created is displayed under the Process node in the Data Associations dialog, as shown in Figure 6–118.
19. As shown in Figure 6–119, select the **sample_account_in** Data Object under the Process node in the right pane and drag it to the field below the Outputs area.

20. Click **OK**.

 You are returned to the Properties - Start dialog, as shown in Figure 6–120.
21. Click **OK**.

You are returned to the Process workspace area.

22. Double-click **composite.xml** in the left pane, as shown in Figure 6–121.

23. Click the **Save All** icon in the menu bar to save the new inbound BPM process component that was configured.

You are now ready to create a File adapter for the write operation.

Creating a File Adapter for the Write Operation

Perform the following steps to create a File adapter for the write operation:
1. Drag and drop the **File Adapter** component from the Service Adapters pane to the External References pane, as shown in Figure 6–122.

![Figure 6–122 File Adapter Component Being Dragged to External References Pane](image)

The Adapter Configuration Wizard is displayed, as shown in Figure 6–123.

![Figure 6–123 Adapter Configuration Wizard](image)

The Adapter Configuration Wizard helps you create a service using the File Adapter. You will be asked to specify configuration parameters and define an operation for the service.

2. Click **Next**.

The Service Name page is displayed, as shown in Figure 6–124.
3. Type a name for the new File adapter in the Service Name field and click Next. The Adapter Interface page is displayed, as shown in Figure 6–125.
4. Ensure that the **Define from operation and schema (specified later)** option is selected.

5. Click **Next**.

 The Operation page is displayed, as shown in **Figure 6–126**.
6. Select **Write File** from the list of Operation Type options and specify an Operation Name (for example, Write).

7. Click **Next**.

 The File Configuration page is displayed, as shown in **Figure 6–127**.
8. Specify a location on your file system for the output file.

9. In the File Naming Convention field, specify a name for the output file.

10. Click Next.

The Messages page is displayed, as shown in Figure 6–128.
11. Click browse for schema file, which is located to the right of the URL field. The Type Chooser dialog is displayed, as shown in Figure 6–129.
12. Expand **Project Schema Files** and then **Sample_Account_receive_request.xsd**.

13. Select the available schema (for example, SiebelMessage)

14. Click **OK**.

 You are returned to the Messages page, as shown in **Figure 6–130**.

Figure 6–130 Messages Page

15. Click **Next**.

 The Finish page is displayed, as shown in **Figure 6–131**.
16. Click Finish.

As shown in Figure 6–132, the File Adapter service is created in the External References pane.

17. Double-click the BPMN Process component.

The BPMN process is displayed, as shown in Figure 6–133.
18. Click the Activity icon.

19. As shown in Figure 6–134, drop the Activity icon on the wire between the Start and End event components.

The Properties - Activity dialog is displayed, as shown in Figure 6–135.
20. Click the **Implementation** tab, as shown in Figure 6–136.

Figure 6–136 Implementation Tab

21. Select **Service Task** from the Implementation Type list, as shown in Figure 6–137.
22. Select **Service Call** from the Implementation list.

23. Click the **Browse** icon to the right of the Name field, as shown in **Figure 6–138**.
The Type dialog is displayed, as shown in Figure 6–139.

24. Select the service for write operation that has been created and click OK.

You are returned to the Properties - Activity dialog, as shown in Figure 6–140.
25. Select the **Use Transformations** option that is located under Data Associations.

26. Click the **Edit XSL Transformations** icon.

 The Edit Transformations dialog is displayed, as shown in Figure 6–141.

Figure 6–140 Properties - Activity Dialog

![Properties - Activity Dialog](image)

Figure 6–141 Edit Transformations Dialog

![Edit Transformations Dialog](image)
27. Click the **Plus** icon.

The Create Transformation dialog is displayed, as shown in *Figure 6–142*.

![Create Transformation Dialog](image)

28. Click the **Plus** icon so that the Data Object ‘sample_account_in’ is added to the Selected Elements area, as shown in *Figure 6–143*.

Figure 6–142 Create Transformation Dialog
29. Accept the default value that is selected in the Target list.

30. Leave the default name displayed in the Create field and click **OK**.

You are returned to the Edit Transformations dialog, as shown in Figure 6–144.

Figure 6–143 Create Transformation Dialog

Figure 6–144 Edit Transformations Dialog
31. Click OK.

You are returned to the Properties - Activity dialog, as shown in Figure 6–145.

Figure 6–145 Properties - Activity Dialog

32. Click OK.

The sample_account_in_body.xsl tab is displayed, as shown in Figure 6–146.

Figure 6–146 The sample_account_in_body.xsl Tab

33. Automap the Source and Target elements.

The Auto Map Preferences dialog is displayed, as shown in Figure 6–147.
34. Accept the default values and click OK.

The transformation is completed, as shown in Figure 6–148.

35. Save the transformation.

36. As shown in Figure 6–149, return to the Process workspace area.
The ServiceTask component is created between the Start event component and the End event component.

37. Save the Process and double-click the composite.xml file.

38. Click the Save All icon in the menu bar to save the new inbound BPM process component that was configured.

You are now ready to deploy the inbound BPM process, as shown in Figure 6–150.

6.5.3 Deploying the BPM Inbound Process

Perform the following steps to deploy the BPM inbound process.

1. Right-click the project name in the left pane (for example, Siebel_JCA_Inbound), select Deploy, and then click Siebel_JCA_Inbound, as shown in Figure 6–151.
2. Ensure that Deploy to Application Server is selected.

3. Click Next.

The Deploy Configuration page is displayed, as shown in Figure 6–153.
4. Leave the default values selected and click **Next**.

The Select Server page is displayed, as shown in **Figure 6–154**.

Figure 6–154 Select Server Page
5. Select an available application server that was configured and click **Next**. The SOA Servers page is displayed, as shown in **Figure 6–155**.

Figure 6–155 SOA Servers Page

6. Select a target SOA server and click **Next**. The Summary page is displayed, as shown in **Figure 6–156**.

Figure 6–156 Summary Page
7. Review and verify all the available deployment information for your project and click Finish.

The process is deployed successfully, as shown in Figure 6–157.

Figure 6–157 Deployment Successful Message

6.5.4 Triggering an Event in Siebel

The following topic describes how to trigger an event in Siebel and verify event integration using Oracle Application Adapter for Siebel.

Triggering a Siebel Event to Test Event Runtime Integration

To trigger an event in Siebel:

1. As shown in Figure 6–158, start the Siebel Call Center by entering the following URL in a browser:

 http://host name/callcenter/start.swe

 Figure 6–158 Site Map Option

2. Click View and select Site Map from the list.

 The Site Map view is displayed, as shown in Figure 6–159.
3. Click Siebel Workflow Administration.

The Siebel Workflow Administration page is displayed, as shown in Figure 6–160.

Figure 6–160 Siebel Workflow Administration Page

4. Click Workflow Processes.

The Workflow Processes page is displayed, as shown in Figure 6–161.
5. Click **Query** to search for the Workflow needed to trigger a Siebel event, as shown in Figure 6–162.

Figure 6–161 Workflow Processes Page

![Image of Workflow Processes Page]

Figure 6–162 Workflow Processes Page

![Image of Workflow Processes Page]
6. As shown in Figure 6–163, enter a Siebel workflow name and click Search.

![Figure 6–163 Workflow Processes Page](Image)

7. Select the workflow, as shown in Figure 6–164.

![Figure 6–164 Process Designer Tab](Image)

8. Click the Process Designer tab and double-click the Send Siebel Quote Data HTTP workflow element.

 As shown in Figure 6–165, the Input Arguments tab is displayed.

![Figure 6–165 Input Arguments Tab](Image)

9. Enter the IP address and port for the HTTPRequestURLTemplate input argument.

10. Click Return To Designer, as shown in Figure 6–166.
11. Click the Process Simulator tab, as shown in Figure 6–167.

The Simulator tab is displayed, as shown in Figure 6–168.

12. Click **Start** then **Continue** to complete the Siebel event triggering process.

Verifying the Results

To verify your results:

1. Log in to the Oracle Enterprise Manager console by using the following URL:
2. Expand your domain in the left pane followed by the SOA folder.

3. As shown in Figure 6–169, select an available project (for example, Siebel_JCA_Inbound).

Figure 6–169 Instances Tab

![SOA Composite with Instances tab](image)

Instances of the SOA Composite are listed below. There may be more instances in the database than shown in this page. Also when composite audit tracking is disabled, component instances may be created within the composite without its own instances. Click Delete with Options to purge the instances from the database.

4. Click the Instances tab in the right pane.

Recently received run-time events are displayed in the Instances tab, as shown in Figure 6–170.

Figure 6–170 Recently Received Run-time Events in Instances Tab

![Instances tab with event information](image)

5. Navigate to the defined output directory on your file system and open the event messages that were created.

The event messages contain the generated output with values.
OracleAS Adapter for Siebel integrates seamlessly with Oracle Service Bus (OSB) to facilitate Web service integration. OSB is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following topics:

- **Section 7.1, "Overview of Application Adapter Integration with Oracle Service Bus"**
- **Section 7.2, "Configuring Outbound Processing Using Oracle Service Bus (J2CA Configuration)"**
- **Section 7.3, "Configuring Inbound Processing Using Oracle Service Bus (J2CA Configuration)"**
- **Section 7.4, "Configuring Outbound Processing Using Oracle Service Bus (BSE Configuration)"**

7.1 Overview of Application Adapter Integration with Oracle Service Bus

To integrate with Oracle Service Bus (OSB), OracleAS Adapter for Siebel must be deployed in the same Oracle WebLogic Server as OSB. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter.

7.2 Configuring Outbound Processing Using Oracle Service Bus (J2CA Configuration)

This section describes how to configure outbound processing using Oracle Service Bus for J2CA configurations.

Samples have been provided for this usecase scenario in the etc/sample folder in the Application Adapters installation.

This section includes the following topics:

- **Section 7.2.1, "Starting Oracle Service Bus and Creating Project Folders"**
- **Section 7.2.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"**
7.2.1 Starting Oracle Service Bus and Creating Project Folders

Perform the following steps to start Oracle Service Bus and create project folders:

1. Start the Oracle WebLogic Server for the Oracle WebLogic Server domain that you have configured.

2. Open the Oracle Service Bus Console in a Web browser by entering the following URL:

 `http://hostname:port/sbconsole`

 Where `hostname` is the name of the machine where Oracle WebLogic Server is running and `port` is the port for the domain you are using. The port for the default domain is 7001.

 The Oracle Service Bus Console logon page is displayed.

3. Log on to the Oracle Service Bus Console using a valid user name and password.

 The Oracle Service Bus Console home page is displayed, as shown in Figure 7–1.

 Figure 7–1 Oracle Service Bus Console Home Page

4. Click **Create** in the Change Center area to start a new Oracle Service Bus session, as shown in Figure 7–2.
5. Click **Project Explorer** in the left pane, as shown in Figure 7–3.

6. Provide a valid name for the new project (for example, Siebel_Project) and click **Add Project**.

7. Click the new project node in the left pane.

The project page is displayed, as shown in Figure 7–5.
8. In the Enter New Folder Name field, type **Business Service** and click **Add Folder**.

9. In the Enter New Folder Name field, type **Proxy Service** and click **Add Folder**.

10. In the Enter New Folder Name field, type **wsdls** and click **Add Folder**.

 The Business Service, Proxy Service, and wsdls folders are listed in the left pane below the new Siebel_Project node, as shown in **Figure 7–6**.

Figure 7–6 Business Service, Proxy Service, and wsdls Folders Listed Below the Project Node

11. Click **Activate** in the Change Center.

 The Activate Session page is displayed, as shown in **Figure 7–7**.

Figure 7–7 Activate Session Page

12. Click **Submit**.
7.2.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

Before starting and using Application Explorer to publish a WSDL directly to the Oracle Service Bus (OSB) Console (project/folder), OSB users must perform the following steps:

1. Open the command prompt window.
2. Navigate to the following directory:
 `<OSB_Home>/user_projects/domains/base_domain/bin`
3. Execute `setDomainEnv.cmd` (Windows) or `. ./setDomainEnv.sh` (UNIX/Linux). This command sets the class path for Application Explorer to access the Oracle WebLogic Server APIs to publish the WSDLs to the OSB Console.
4. Do not close the command prompt window.
5. Navigate to the following directory:
 `<OSB_Home>/3rdparty/ApplicationAdapters/tools/iwae/bin`
6. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer. You are now ready to publish WSDLs from Application Explorer to the OSB Console.

7.2.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

Perform the following steps to publish a WSDL from Application Explorer to Oracle Service Bus:

1. Start Application Explorer, connect to a J2CA configuration, and connect to a Siebel target.
 For more information, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel".
2. Expand Business Object, Account, and then Account.
3. Right-click the query method and select Create Outbound JCA Service(Request/Response) from the menu, as shown in Figure 7–8.
The Export WSDL dialog is displayed, as shown in Figure 7–9.
4. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

5. Select the **Export to OSB** option.

6. In the Location field, enter the folder name in Oracle Service Bus where you want to publish the WSDL document.

 The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

7. In the Host field, enter the name of the machine where Oracle Service Bus is installed.

8. In the Port field, enter the port that is being used by Oracle Service Bus.

9. In the User field, enter your username to access Oracle Service Bus.

10. In the Password field, enter your password to access Oracle Service Bus.

11. Click **OK**.

The WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Business Service or Proxy Service in Oracle Service Bus.

7.2.4 Configuring a WSDL-based Business Service

Perform the following steps to configure a WSDL-based Business Service:
1. As shown in Figure 7–10, open the Oracle Service Bus Console and select the created WSDL folder in the left pane (for example, wsdls).

![Figure 7–10 WSDL Folder](image)

2. Ensure that the exported WSDL is listed, as shown in Figure 7–11.

![Figure 7–11 The Exported WSDL Listed](image)

3. Click the icon that corresponds to the exported WSDL in the Actions column. The Generate WSDL and Service page is displayed, as shown in Figure 7–12.
4. Provide a new WSDL name and a new service name in the corresponding fields, as shown in Figure 7–13.

5. In the Location area, select an available project and the sub-folder that is designated for Business Services.
6. Click Generate.

If the WSDL and Service resources are successfully created, then the following message is displayed, as shown in Figure 7–14.

Figure 7–14 WSDL and Service Resources Generated Successfully Message

7.2.5 Configuring a File Type Business Service

Perform the following steps to configure a File type Business Service:

1. As shown in Figure 7–15, select the Business Service folder you created in the left pane.

Figure 7–15 Business Service Folder Selected in the Project Explorer

2. In the right pane, select Business Service from the Create Resource menu, as shown in Figure 7–16.

Figure 7–16 Business Service Selected from the Create Resource Menu

As shown in Figure 7–17, the General Configuration page is displayed.
3. Provide a name for the new Business Service and select **Messaging Service** from the Service Type area.

4. Click **Next**.

The Message Type Configuration page is displayed, as shown in **Figure 7–18**.

Figure 7–18 Message Type Configuration Page
5. Select **XML** as the Request Message Type and **None** as the Response Message Type.

6. Click **Next**.

 The Transport Configuration page is displayed, as shown in Figure 7–19.

Figure 7–19 Transport Configuration Page

![Transport Configuration Page](image)

7. Select **file** from the Protocol list.

8. Enter the path to a destination folder on your file system in the Endpoint URI field and click **Add**.

9. Click **Next**, as shown in Figure 7–20.

Figure 7–20 Next Button in the Transport Configuration Page

![Next Button in Transport Configuration](image)

The FILE Transport Configuration page is displayed, as shown in Figure 7–21.
10. Enter the prefix and suffix for the output file to be received and click **Next**.

 The Message Handling and Advanced Settings page is displayed, as shown in **Figure 7–22**.

 Figure 7–22 Message Handling and Advanced Settings Page

 ![Message Handling and Advanced Settings Page](image)

11. Click **Next**.

 The following Summary page is displayed, as shown in **Figure 7–23**.
Figure 7–23 Summary Page

<table>
<thead>
<tr>
<th>General Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Name</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Service Type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Type Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Message Type</td>
</tr>
<tr>
<td>Response Message Type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
</tr>
<tr>
<td>Load Balancing Algorithm</td>
</tr>
<tr>
<td>Endpoint URI</td>
</tr>
<tr>
<td>Retry Count</td>
</tr>
<tr>
<td>Retry Iteration Interval</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FILE Transport Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
</tr>
<tr>
<td>Suffix</td>
</tr>
<tr>
<td>Request encoding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Handling Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result Caching</td>
</tr>
</tbody>
</table>

12. Review all the information for your Business Service and click **Save**.

7.2.6 Configuring a Proxy Service

Perform the following steps to configure a Proxy Service:

1. As shown in Figure 7–24, select the **Proxy Service** folder you created in the left pane.
2. In the right pane, select **Proxy Service** from the Create Resource menu. The General Configuration page is displayed, as shown in Figure 7–25.

3. Provide a name for the Proxy Service and from the Service Type area select **Any XML Service**.

4. Click **Next**, as shown in Figure 7–26.
5. Select file from the Protocol list.

6. Enter the path to an input folder on your file system in the Endpoint URI field.

7. Click Next, as shown in Figure 7–27.

9. Click **Next**, as shown in Figure 7–28.

Figure 7–28 Message Handling Page

<table>
<thead>
<tr>
<th>Message Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Required</td>
</tr>
<tr>
<td>Same Transaction For Response</td>
</tr>
<tr>
<td>Content Streaming</td>
</tr>
<tr>
<td>Buffer Type</td>
</tr>
<tr>
<td>Memory Buffer</td>
</tr>
<tr>
<td>Disk Buffer</td>
</tr>
<tr>
<td>Compression</td>
</tr>
</tbody>
</table>

10. Accept the default values and click **Next**.

 The following Summary page is displayed, as shown in Figure 7–29.
11. Review all the information for your Proxy Service and click **Save**.

12. Check if the success message is displayed, as shown in **Figure 7–30**.

Figure 7–29 Summary Page

<table>
<thead>
<tr>
<th>General Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Name</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
</tr>
<tr>
<td>Endpoint URI</td>
</tr>
<tr>
<td>Get All Headers</td>
</tr>
<tr>
<td>Headers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FILE Transport Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Mask</td>
</tr>
<tr>
<td>Polling Interval</td>
</tr>
<tr>
<td>Read Limit</td>
</tr>
<tr>
<td>Sort By Name</td>
</tr>
<tr>
<td>Scan SubDirectories</td>
</tr>
<tr>
<td>Pass By Reference</td>
</tr>
<tr>
<td>Post Read Action</td>
</tr>
<tr>
<td>Stage Directory</td>
</tr>
<tr>
<td>Error Directory</td>
</tr>
<tr>
<td>Request encoding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Handling Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Required</td>
</tr>
<tr>
<td>Same Transaction For Responses</td>
</tr>
<tr>
<td>Content Streaming</td>
</tr>
</tbody>
</table>

Figure 7–30 Proxy Service Created Successfully Message

- The Service "Query_ob_Siebel" was created successfully.

- Siebel_Project/Proxy Service

- Folders

- Enter New Folder Name: [Input Field] [Add Folder]
7.2.7 Configuring a Pipeline

Perform the following steps to configure a Pipeline:

1. As shown in Figure 7–31, click the Edit Message Flow icon in the row of the Proxy Service you created.

![Figure 7–31 Edit Message Flow Icon](image)

The Edit Message Flow workspace area is displayed, as shown in Figure 7–32.

![Figure 7–32 Edit Message Flow Workspace Area](image)

2. Click the Proxy Service icon and select Add Pipeline Pair from the menu, as shown in Figure 7–33.

![Figure 7–33 Add Pipeline Pair Option](image)

3. Click the PipelinePairNode1 icon and select Add Route from the menu, as shown in Figure 7–34.

![Figure 7–34 Add Route Option](image)
Figure 7–34 Add Route Option

The RouteNode1 icon is added below the Request Pipeline icon, as shown in Figure 7–35.

Figure 7–35 Edit Route Option

4. Click the RouteNode1 icon and select Edit Route from the menu.

As shown in Figure 7–36, the Edit Stage Configuration workspace area is displayed.
5. As shown in Figure 7–37, click **Add an Action**, select **Communication** from the menu, and click **Routing**.

6. Click **<Service>**.
 The Select Service dialog is displayed, as shown in Figure 7–38.
7. Select the WSDL type Business Service configured for Siebel and click **Submit**.
 As shown in **Figure 7–39**, you are returned to the Edit Stage Configuration workspace area.

8. Select the name of the Siebel business object (for example, Query) as the operational attribute from the list, as shown in **Figure 7–40**.
9. Click **Save**.

Figure 7–41 Add Stage Option

10. As shown in **Figure 7–41**, click the **Response Pipeline** icon and select **Add Stage** from the menu.

The Stage1 icon is added below the Response Pipeline icon, as shown in **Figure 7–42**.
11. Click the **Stage1** icon and select **Edit Stage** from the menu.

The Edit Stage Configuration workspace area is displayed, as shown in Figure 7–43.

12. Click **Add an Action**, select **Communication** from the menu, and click **Publish**, as shown in Figure 7–44.
13. Click `<Service>`.

As shown in Figure 7–45, the Select Service dialog is displayed.

![Figure 7–45 Select Service Dialog](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Path</th>
<th>Resource Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get_detail_batch</td>
<td>SAP_Project/Proxy Service</td>
<td>Proxy Service</td>
</tr>
<tr>
<td>GetDetail_invoice</td>
<td>SAP_Project/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>MATERIALIZATION</td>
<td>SAP_Project/Proxy Service</td>
<td>Proxy Service</td>
</tr>
<tr>
<td>Maintain_BS_SAP</td>
<td>SAP_Project/Proxy Service</td>
<td>Proxy Service</td>
</tr>
<tr>
<td>query_invoce_BS</td>
<td>Sibel_Project/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>Query_FB_Sibel</td>
<td>Sibel_Project/Proxy Service</td>
<td>Proxy Service</td>
</tr>
<tr>
<td>SAP_JDE_Out</td>
<td>SAP_Project/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>SAP_Out_Mtibra</td>
<td>SAP_Project/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>Sibel_file_Out</td>
<td>Sibel_Project/Business Service</td>
<td>Business Service</td>
</tr>
</tbody>
</table>

14. Select a File type Business Service and click Submit.

You are returned to the Edit Stage Configuration workspace area, as shown in Figure 7–46.
15. Click **Save**.

You are returned to the Edit Message Flow workspace area, as shown in Figure 7–47.

Figure 7–47 Edit Message Flow Workspace Area

16. Click **Save**.
17. As shown in Figure 7–48, check if the success message is displayed and click **Activate** in the Change Center. The Activate Session page is displayed, as shown in Figure 7–49.

![Activate Session Page](image)

18. Click **Submit**.

19. As shown in Figure 7–50, check if the View Configuration Changes page is displayed.

![View Configuration Changes Page](image)

20. As shown in Figure 7–51, copy and paste an input XML file in the input folder you have configured.
7.3 Configuring Inbound Processing Using Oracle Service Bus (J2CA Configuration)

This section describes how to configure inbound processing using Oracle Service Bus for J2CA configurations.

Samples have been provided for this usecase scenario in the etc/sample folder in the Application Adapters installation.

This section includes the following topics:

- Section 7.3.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 7.3.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"
- Section 7.3.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus"
- Section 7.3.4, "Configuring a WSDL-based Proxy Service"
- Section 7.3.5, "Configuring a File Type Business Service"
- Section 7.3.6, "Configuring a Pipeline"

7.3.1 Starting Oracle Service Bus and Creating Project Folders

Perform the following steps to start Oracle Service Bus and create project folders:

1. Start the Oracle WebLogic Server for the Oracle WebLogic Server domain that you have configured.

2. Open the Oracle Service Bus Console in a Web browser by entering the following URL:

 http://hostname:port/sbconsole

 Where hostname is the name of the machine where Oracle WebLogic Server is running and port is the port for the domain you are using. The port for the default domain is 7001.

 The Oracle Service Bus Console logon page is displayed.

3. Log on to the Oracle Service Bus Console using a valid user name and password.

 The Oracle Service Bus Console home page is displayed, as shown in Figure 7–52.

 ![Figure 7–51 An Input XML File in the Configured Folder](image)

21. Output is received in the configured output location.
4. As shown in Figure 7–53, click **Create** in the Change Center area to start a new Oracle Service Bus session.

![Create Button in Change Center](image)

5. Click **Project Explorer** in the left pane, as shown in Figure 7–54.

![Project Explorer Option](image)

The Project Explorer page is displayed, as shown in Figure 7–55.

![Project Explorer Page](image)

6. Provide a valid name for the new project and click **Add Project**.
The project is successfully created and listed.

7. Click on the created project.

The project page is displayed, as shown in Figure 7–56.

Figure 7–56 Enter New Folder Name Field in Project Page

8. In the Enter New Folder Name field, type Business Service and click Add Folder.

9. In the Enter New Folder Name field, type Proxy Service and click Add Folder.

10. In the Enter New Folder Name field, type wsds and click Add Folder.

The Business Service, Proxy Service, and wsds folders are listed in the left pane below the project node, as shown in Figure 7–57.

Figure 7–57 Business Service, Proxy Service, and wsds Folders Listed in Project Explorer

7.3.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

Before starting and using Application Explorer to publish a WSDL directly to the Oracle Service Bus (OSB) Console (project/folder), OSB users must perform the following steps:

1. Open the command prompt window.

2. Navigate to the following directory:

<OSB_Home>/user_projects/domains/base_domain/bin

3. Execute setDomainEnv.cmd (Windows) or ./setDomainEnv.sh (UNIX/Linux).

This command sets the class path for Application Explorer to access the Oracle WebLogic Server APIs to publish the WSDLs to the OSB Console.

4. Do not close the command prompt window.

5. Navigate to the following directory:
6. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer. You are now ready to publish WSDLs from Application Explorer to the OSB Console.

7.3.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

This section describes how to publish a WSDL from Application Explorer to Oracle Service Bus.

Creating a Channel

Before publishing a WSDL, you must first create a separate channel for every inbound J2CA service and select that channel when you generate WSDL for inbound interaction using Application Explorer.

To create a channel:

1. In the left pane, click **Events**.
2. Expand the **Siebel** node.
 - The ports and channels nodes appear in the left pane.

Figure 7–58 Add Channel Option

3. Right-click **Channels** and select **Add Channel**, as shown in Figure 7–58.
 - The Add Channel dialog is displayed, as shown in Figure 7–59.
Perform the following steps:

a. Enter a name for the channel, for example, SiebelEvent.

b. Enter a brief description.

c. From the Protocol list, select HTTP Listener, MQ Series Listener, or File Listener.

For demonstration purposes, this procedure uses the HTTP Listener as an example.

4. Click Next.

The Basic dialog is displayed, as shown in Figure 7-60.
Figure 7–60 Basic Dialog

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listener port</td>
<td>Port on which to listen for Siebel event data.</td>
</tr>
<tr>
<td>Https</td>
<td>For a secure HTTP connection, select the Https check box. This option is currently not supported.</td>
</tr>
<tr>
<td>Synchronization Type</td>
<td>Select REQUEST_RESPONSE from the list, which is the recommended option.</td>
</tr>
<tr>
<td>Encoding Type</td>
<td>Choose an encoding type to be used from the list. By default, ASCII is selected.</td>
</tr>
</tbody>
</table>

5. Enter the system information as specified in the following table:

6. As shown in Figure 7–61, click the PreParser tab.

Figure 7–61 PreParser Tab

7. Specify the location of the schema file that was generated for the Integration Object node using the Export Schema(s) option in Application Explorer.
8. Click **OK**.

The channel appears under the channels node in the left pane. An X over the icon indicates that the channel is currently disconnected, as shown in Figure 7–62.

![Disconnected Channel](image)

You must now create an Integration Object node.

Creating an Integration Object Node

1. Start Application Explorer.
2. Expand the **Adapters** node, as shown in Figure 7–63.

![Disconnected Siebel Target Node](image)

Perform the following steps:

- **a.** Expand the **Siebel** node.

 The defined Siebel targets are displayed under the adapter node.

- **b.** Click the target name, for example, siebel, under the **Siebel** node.

 The Connection dialog displays the values you entered.

3. Verify your connection parameters.

4. Right-click the target name and select **Connect**.

 The x icon disappears, indicating that the node is connected, as shown in Figure 7–64.

Note: During run time, the Oracle Application Adapter for Siebel adds the namespace to the Siebel published document using the schema that is specified in the PreParser tab. If the Schema location field in the PreParser tab is left blank, then OSB processes do not work properly as the Siebel published documents do not contain any namespaces.
5. Expand the **Integration Object** node and select **Sample Account**.

6. Right-click the **Sample Account** node and select **Add IO Node**.

 The Add IO Node dialog is displayed, as shown in **Figure 7–65**.

Figure 7–65 Add IO Node Dialog

7. Enter a node name (for example, Sample_Account) in the **Node name** field and a path to the Sample Account XSD file in the **Schema location** field.

 Please note:

 - **For Siebel 7.5 or later**: Generate XSD schemas directly from Siebel tools. You use the XSD schemas when you create Web services in Application Explorer. After you generate an XSD schema through Siebel tools, use it to create an IO node and a Web service.

 - **For Siebel 7.0**: You cannot generate XSD schemas directly from Siebel tools; only XDR schemas can be created. Before you create a Web service, you must first generate an XSD schema from the XDR schema using Application Explorer.

8. If the XSD schema has already been generated, then select XSD Schema. If you are using Siebel-generated XDR schemas, then do not select the XSD schema option.

9. Select a protocol (HTTP, FILE, or MQ Series) from the **Protocol** list.

10. Click **Continue**.

 The new Integration Object node is added, as shown in **Figure 7–66**.

Figure 7–66 New Integration Object Node
Generating WSDL for Event Notification
After you create a channel and an associated Integration Object node, you must generate WSDL for the event using Application Explorer.

You must be connected to a Siebel target under the Adapters node in Application Explorer. For detailed information on how to define and connect to a target, see "Establishing a Connection (Target) for Siebel" on page 2-6.

After you connect to a Siebel target, generate WSDL for the event as follows:

1. As shown in Figure 7–67, right-click the Integration Object node (for example, Sample_Account), and then select Create Inbound JCA Service (Event).

![Figure 7–67 Create Inbound JCA Service (Event) Option](image)

The Export WSDL dialog is displayed, as shown in Figure 7–68.
2. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

3. From the Channel list, select the channel you created for this inbound service.

4. Select the Export to OSB option.

5. In the Location field, enter the folder name in Oracle Service Bus where you want to publish the WSDL document.
 The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

6. In the Host field, enter the name of the machine where Oracle Service Bus is installed.

7. In the Port field, enter the port that is being used by Oracle Service Bus.

8. In the User field, enter your username to access Oracle Service Bus.

9. In the Password field, enter your password to access Oracle Service Bus.

10. Click OK.
 The inbound WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Proxy Service in Oracle Service Bus.

Note: The schema validation options (Root, Namespace, Schema) are not applicable for the Oracle Application Adapter for Siebel.
7.3.4 Configuring a WSDL-based Proxy Service

Perform the following steps to configure a WSDL-based Proxy Service:

1. As shown in Figure 7–69, open the Oracle Service Bus Console and select the created WSDL folder in the left pane (for example, wsdls).

 Figure 7–69 Created WSDL Folder Selected in the Project Explorer

 ![Project Explorer](image)

2. Ensure that the exported WSDL is listed, as shown in Figure 7–70.

 Figure 7–70 Exported WSDL

 ![Exported WSDL](image)

3. Click the icon that corresponds to the exported WSDL in the Actions column. The Generate WSDL and Service page is displayed, as shown in Figure 7–71.
4. Provide a new WSDL name and a new service name in the corresponding fields.

5. In the Location area, select an available project and the sub-folder that is designated for Proxy Services.

6. Click Generate.

 If the WSDL and Service resources are successfully created, then the following message is displayed, as shown in Figure 7–72.

Figure 7–72 WSDL and Service Resources Successfully Created Message

WSDL and Service Resources were generated successfully.

7. Click Proxy Service under Project Explorer and check if the generated WSDL and Proxy Service are listed, as shown in Figure 7–73.

Figure 7–73 Generated WSDL Listed
7.3.5 Configuring a File Type Business Service

Perform the following steps to configure a File type Business Service:

1. Select the Business Service folder you created in the left pane, as shown in Figure 7–74.

2. In the right pane, select Business Service from the Create Resource menu, as shown in Figure 7–75.

The General Configuration page is displayed, as shown in Figure 7–76.
3. Provide a name for the Business Service and from the Service Type area select Messaging Service.

4. Click Next.

 As shown in Figure 7–77, the Message Type Configuration page is displayed.

![Figure 7–77 Message Type Configuration Page](image-url)
5. Select **XML** as the Request Message Type and **None** as the Response Message Type.

6. Click **Next**.

 The Transport Configuration page is displayed, as shown in Figure 7–78.

 Figure 7–78 Transport Configuration Page

 ![Transport Configuration Page]

 - **Protocol**: File
 - **Load Balancing Algorithm**: Round-Robin
 - **Endpoint URI**: `file:///root/dir1` (Existing URI: `file:///c:/output/siebel/account`)
 - **Retry Count**: 0
 - **Retry Iteration Interval**: 30

7. Select **file** from the Protocol list.

8. Enter the path to a destination folder on your file system in the Endpoint URI field and click **Add**.

9. Click **Next**.

 The FILE Transport Configuration page is displayed, as shown in Figure 7–79.

 Figure 7–79 FILE Transport Configuration Page

 ![FILE Transport Configuration Page]

 - **Prefix**: sample_account
 - **Suffix**: xml
 - **Request encoding**: utf-8

10. Enter the prefix and suffix for the output file to be received and click **Next**.

 As shown in Figure 7–80, the Message Handling and Advanced Settings page is displayed.
11. Click Next.

The following Summary page is displayed, as shown in Figure 7–81.

12. Review all the information for your Business Service and click Save.

7.3.6 Configuring a Pipeline

Perform the following steps to configure a Pipeline:

1. As shown in Figure 7–82, click the Edit Message Flow icon in the row of the Proxy Service you created.
The Edit Message Flow workspace area is displayed, as shown in Figure 7–83.

2. Click the displayed Proxy service icon and select Add Route from the menu.
 The RouteNode1 icon is added below the Request Pipeline icon.

Figure 7–84 Edit Route Option
3. As shown in Figure 7–84, click the **RouteNode1** icon and select **Edit Route** from the menu.

 The Edit Stage Configuration workspace area is displayed, as shown in Figure 7–85.

 Figure 7–85 Edit Stage Configuration Workspace Area

4. Click **Add an Action**, select **Communication** from the menu, and click **Routing**.

 Figure 7–86 Edit Stage Configuration Page

5. As shown in Figure 7–86, click **<Service>**.

 The Select Service dialog is displayed, as shown in Figure 7–87.
6. Select a File type Business Service and click **Submit**.

As shown in **Figure 7–88**, you are returned to the Edit Stage Configuration workspace area.

Figure 7–88 Edit Stage Configuration Workspace Area

7. Click **Save**.

As shown in **Figure 7–89**, you are returned to the Edit Message Flow workspace area.
8. Click Save.

9. As shown in Figure 7–90, check if the success message is displayed and click Activate in the Change Center.
 The Activate Session page is displayed, as shown in Figure 7–91.

10. Click Submit.

11. As shown in Figure 7–92, check if the View Configuration Changes page is displayed.
12. Trigger an event from the Siebel system and check if the output is received in the configured output location.

7.4 Configuring Outbound Processing Using Oracle Service Bus (BSE Configuration)

This section describes how to configure outbound processing using Oracle Service Bus for BSE configurations.

Samples have been provided for this usecase scenario in the etc/sample folder in the Application Adapters installation.

This section includes the following topics:

- Section 7.4.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 7.4.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"
- Section 7.4.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus"
- Section 7.4.4, "Configuring a File Type Business Service"
- Section 7.4.5, "Configuring a WSDL Type Business Service"
- Section 7.4.6, "Configuring a Proxy Service"
- Section 7.4.7, "Configuring a Pipeline"

7.4.1 Starting Oracle Service Bus and Creating Project Folders

Perform the following steps to start Oracle Service Bus and create project folders:

1. Start the Oracle WebLogic Server for the Oracle WebLogic Server domain that you have configured.

2. Open the Oracle Service Bus Console in a Web browser by entering the following URL:

 http://hostname:port/sbconsole

 Where hostname is the name of the machine where Oracle WebLogic Server is running and port is the port for the domain you are using. The port for the default domain is 7001.

 The Oracle Service Bus Console logon page is displayed.

3. Log on to the Oracle Service Bus Console using a valid user name and password.

 The Oracle Service Bus Console home page is displayed, as shown in Figure 7–93.
4. As shown in Figure 7–94, click Create in the Change Center area to start a new Oracle Service Bus session.

5. Click Project Explorer in the left pane, as shown in Figure 7–95.

The Project Explorer page is displayed, as shown in Figure 7–96.
6. Provide a valid name for the new project (for example, Siebel_Project) and click Add Project.

 The new project is successfully created and listed in the left pane.

7. Click the new project node in the left pane.

 The project page is displayed, as shown in Figure 7–97.

8. In the Enter New Folder Name field, type Business Service and click Add Folder.

9. In the Enter New Folder Name field, type Proxy Service and click Add Folder.

10. In the Enter New Folder Name field, type wsdls and click Add Folder.

 The Business Service, Proxy Service, and wsdls folders are listed in the left pane below the new Siebel_Project node, as shown in Figure 7–98.

11. Click Activate in the Change Center.

 The Activate Session page is displayed, as shown in Figure 7–99.
7.4.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

Before starting and using Application Explorer to publish a WSDL directly to the Oracle Service Bus (OSB) Console (project/folder), OSB users must perform the following steps:

1. Open the command prompt window.
2. Navigate to the following directory:

 `<OSB_Home>\user_projects\domains\base_domain\bin`

3. Execute `setDomainEnv.cmd` (Windows) or `. /setDomainEnv.sh` (UNIX/Linux).
 This command sets the class path for Application Explorer to access the Oracle WebLogic Server APIs to publish the WSDLs to the OSB Console.

4. Do not close the command prompt window.
5. Navigate to the following directory:

 `<OSB_Home>\3rdparty\ApplicationAdapters\tools\iwae\bin`

6. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer.
 You are now ready to publish WSDLs from Application Explorer to the OSB Console.

7.4.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

This section describes how to publish a WSDL from Application Explorer (BSE configuration) to Oracle Service Bus.

1. Start Application Explorer, connect to a BSE configuration, and connect to a Siebel target, as shown in Figure 7–100.
2. Expand the Business Object node and select the Account object.

3. Right-click the query method and select Create Web Service from the menu.

The Create Web Service dialog is displayed, as shown in Figure 7–101.

4. Enter a service name and click Next.

5. Click OK on the next dialog that is displayed.

Application Explorer switches the view to the Business Services node, and the new Web service appears in the left pane.
6. As shown in Figure 7–102, right-click the new Web service and select **Export WSDL** from the menu.

The Export WSDL dialog is displayed, as shown in Figure 7–103.

7. In the **Name** field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

8. In the **Location** field, enter the location where you want to publish the WSDL document.

 The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

9. In the **Host** field, enter the name of the machine where Oracle WebLogic Server is running.

10. In the **Port** field, enter the port for the domain you are using.

11. In the **User** field, enter your username to access Oracle Service Bus.

12. In the **Password** field, enter your password to access Oracle Service Bus.

13. Click **OK**.

 The WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Business Service or Proxy Service in Oracle Service Bus.
7.4.4 Configuring a File Type Business Service

This section describes how to configure a File type Business Service using the Oracle Service Bus Console.

1. As shown in Figure 7–104, select the Business Service folder you created in the left pane.

![Figure 7–104 Business Service Option](resources/image1.jpg)

2. In the right pane, select Business Service from the Create Resource menu.

 The General Configuration page is displayed, as shown in Figure 7–105.

![Figure 7–105 General Configuration Page](resources/image2.jpg)

3. Provide a name for the Business Service and from the Service Type area select Messaging Service.

4. Click Next.

 The Message Type Configuration page is displayed, as shown in Figure 7–106.
5. Select XML as the Request Message Type and None as the Response Message Type.

6. Click Next.

 The Transport Configuration page is displayed, as shown in Figure 7–107.

\[\text{Figure 7–107 Transport Configuration Page} \]

7. Select file from the Protocol list.

8. Enter the path to a destination folder on your file system in the Endpoint URI field and click Add.

9. Click Next.

 The FILE Transport Configuration page is displayed, as shown in Figure 7–108.
10. Enter the prefix and suffix for the output file to be received and click **Next**. The Summary page is displayed, as shown in **Figure 7–109**.

11. Review all the information for your Business Service and click **Save**.

7.4.5 Configuring a WSDL Type Business Service

This section describes how to configure a WSDL type Business Service using the Oracle Service Bus Console.

1. As shown in **Figure 7–110**, select the **Business Service** folder you created in the left pane.
2. In the right pane, select Business Service from the Create Resource menu. The General Configuration page is displayed, as shown in Figure 7–111.

3. Provide a name for the Business Service and from the Service Type area select WSDL Web Service.

4. Click Browse.
 As shown in Figure 7–112, the Select a WSDL dialog is displayed.
5. Select a BSE WSDL that you published for OracleAS Adapter for Siebel using Application Explorer and click Submit. The Select a WSDL Definition dialog is displayed, as shown in Figure 7–113.

Figure 7–113 Select a WSDL Definition Dialog
6. Select the WSDL definition under the Ports section and click **Submit**.
You are returned to the General Configuration page where the WSDL you selected is now available.

7. Click **Next**.
The Transport Configuration page is displayed, as shown in **Figure 7–114**.

![Transport Configuration Page](image)

Figure 7–114 Transport Configuration Page

8. Leave the default values and click **Next**.
The HTTP Transport Configuration page is displayed, as shown in **Figure 7–115**.

![HTTP Transport Configuration Page](image)

Figure 7–115 HTTP Transport Configuration Page

9. Leave the default values and click **Next**.
The SOAP Binding Configuration page is displayed, as shown in **Figure 7–116**.
10. Click Next.

The Message Content Handling page is displayed, as shown in Figure 7–117.

11. Click Next.

The Summary page is displayed, as shown in Figure 7–118.
Figure 7–118 Summary Page

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Balancing Algorithm</td>
<td>round-robin</td>
</tr>
<tr>
<td>Endpoint URI</td>
<td>http://172.19.21.199:7001/bse/IBSEServlet/XDS0APRouter</td>
</tr>
<tr>
<td>Retry Count</td>
<td>0</td>
</tr>
<tr>
<td>Retry Iteration Interval</td>
<td>30</td>
</tr>
<tr>
<td>Retry Application Errors</td>
<td>Yes</td>
</tr>
<tr>
<td>HTTP Transport Configuration</td>
<td></td>
</tr>
<tr>
<td>Timeout</td>
<td>0</td>
</tr>
<tr>
<td>HTTP Request Method</td>
<td>POST</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
<tr>
<td>Proxy Server</td>
<td></td>
</tr>
<tr>
<td>Follow HTTP redirects</td>
<td>DISABLED</td>
</tr>
<tr>
<td>Use Chunked Streaming Mode</td>
<td>ENABLED</td>
</tr>
<tr>
<td>SOAP Binding Configuration</td>
<td></td>
</tr>
<tr>
<td>Enforce WS-I Compliance</td>
<td>No</td>
</tr>
<tr>
<td>Message Content Handling Configuration</td>
<td></td>
</tr>
<tr>
<td>XOP/MTOM Support</td>
<td>Disabled</td>
</tr>
<tr>
<td>Page Attachments to Disk</td>
<td>No</td>
</tr>
</tbody>
</table>

12. Review all the information for your Business Service and click **Save**.

7.4.6 Configuring a Proxy Service

This section describes how to configure a Proxy Service using the Oracle Service Bus Console.

1. As shown in **Figure 7–119**, select the **Proxy Service** folder you created in the left pane.

Figure 7–119 Proxy Service Option
2. In the right pane, select **Proxy Service** from the Create Resource menu.
 The General Configuration page is displayed, as shown in Figure 7–120.

 Figure 7–120 General Configuration Page

 ![General Configuration Page](image)

 3. Provide a name for the Proxy Service and from the Service Type area select **Any XML Service**.

 4. Click **Next**.
 The Transport Configuration page is displayed, as shown in Figure 7–121.

 Figure 7–121 Transport Configuration Page

 ![Transport Configuration Page](image)

 5. Select **file** from the Protocol list.

 6. Enter the path to an input folder on your file system in the Endpoint URI field.
 This is the folder where the XML input file will be copied during runtime.
7. Click Next.

The FILE Transport Configuration page is displayed, as shown in Figure 7–122.

Figure 7–122 FILE Transport Configuration Page

9. Click Next.

The Message Content Handling page is displayed, as shown in Figure 7–123.

Figure 7–123 Message Content Handling Page

10. Click Next.

The Summary page is displayed, as shown in Figure 7–124.
7.4.7 Configuring a Pipeline

This section describes how to configure a Pipeline using the Oracle Service Bus Console.

1. As shown in Figure 7–125, click the Edit Message Flow icon in the row of the Proxy Service you created.

Figure 7–125 Edit Message Flow Icon

The Edit Message Flow workspace area is displayed.

2. As shown in Figure 7–126, click the Proxy Service icon and select Add Pipeline Pair from the menu, as shown in the following image.

Figure 7–126 Summary Page

<table>
<thead>
<tr>
<th>FILE Transport Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Mask</td>
</tr>
<tr>
<td>Polling Interval</td>
</tr>
<tr>
<td>Read Limit</td>
</tr>
<tr>
<td>Sort By Arrival</td>
</tr>
<tr>
<td>Scan SubDirectories</td>
</tr>
<tr>
<td>Pass By Reference</td>
</tr>
<tr>
<td>Post Read Action</td>
</tr>
<tr>
<td>Stage Directory</td>
</tr>
<tr>
<td>Error Directory</td>
</tr>
<tr>
<td>Request encoding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Content Handling Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Streaming</td>
</tr>
</tbody>
</table>
3. Click the PipelinePairNode1 icon and select Add Route from the menu as shown in Figure 7–127.

4. As shown in Figure 7–127, click the RouteNode1 icon and select Edit Route from the menu.
5. As shown in Figure 7–128, click Add an Action, select Communication from the menu, and click Routing.

6. As shown in Figure 7–129, click <Service>.

 The Select Service dialog is displayed, as shown in Figure 7–130.
7. Select a WSDL type Business Service and click **Submit**.

 As shown in Figure 7–131, you are returned to the Edit Stage Configuration workspace area.

Figure 7–130 Select Service Dialog

<table>
<thead>
<tr>
<th>Name</th>
<th>Path</th>
<th>Resource Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieb_file_out</td>
<td>default/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>Sieb_query_BSE BS</td>
<td>default/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>Sieb_query_boo_PSS</td>
<td>default/Proxy Service</td>
<td>Proxy Service</td>
</tr>
</tbody>
</table>

8. Select **query** as the operational attribute from the list.

9. Click **Validate** and then **Save**.

 You are returned to the main Pipeline configuration area, as shown in Figure 7–132.
10. Click the **Response Pipeline** icon and select **Add Stage** from the menu.
 The Stage1 icon is added below the Response Pipeline icon.
11. As shown in Figure 7–133, click the **Stage1** icon and select **Edit Stage** from the menu.

The Edit Stage Configuration workspace area is displayed, as shown in Figure 7–134.

Figure 7–134 Edit Stage Configuration Workspace Area

12. Click **Add an Action**, select **Communication** from the menu, and click **Publish**.

Figure 7–135 Edit Stage Configuration Workspace Area

13. As shown in Figure 7–135, click `<Service>`.

The Select Service dialog is displayed, as shown in Figure 7–136.
14. Select a File type Business Service and click **Submit**.
 You are returned to the Edit Stage Configuration workspace area.

15. Click **Validate** and then **Save**.
 The completed Pipeline is displayed, as shown in **Figure 7–137**.

16. Click **Save**.

17. As shown in **Figure 7–138**, click **Activate** in the Change Center area to activate your changes in the Oracle Service Bus session.
18. As shown in Figure 7–139, copy and paste an input XML file in the input folder you have configured.

An output XML file is received in the destination folder, as shown in Figure 7–140.
11g Release 1 (11.1.1.4.0) provides new features for the Oracle Application Adapter for Siebel, which are described in this chapter. This chapter contains the following topics:

- Section 8.1, "Exception Filter"
- Section 8.2, "Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)"
- Section 8.3, "Credential Mapping for Oracle Service Bus (OSB)"

8.1 Exception Filter

This section describes how to configure exception filter functionality for the Oracle Application Adapter for Siebel and includes a sample testing scenario.

The exception filter is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.

The exception filter uses the `com.ibi.afjca.oracle.AdapterExceptionFilter` class to filter the generated exceptions. This class filters the exceptions and categorizes them into the following categories:

- `PCRetriableResourceException`
- `PCResourceException`

The following exceptions are represented in the fault policies file:

- `PCRetriableResourceException` - A remote fault.
- `PCResourceException` - A binding fault.

8.1.1 Prerequisites

This section lists the prerequisites for the exception filter.

- Oracle PS3 SOA Suite must be installed.
- Oracle JDeveloper for PS3 must be installed with the updated SOA composite editor.
- Oracle Application Adapter for Siebel for 11g Release 1 (11.1.1.4.0) must be installed.

For more information, see the Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server.
8.1.2 Configuring the Exception Filter

Exception filter configuration consists of the following steps:

1. Generate a WSDL file.
2. Create a BPEL process with exception filter functionality.
3. Create fault policies and fault binding files.
4. Deploy and test the BPEL process with exception filter functionality.

8.1.2.1 Generating a WSDL File

To generate a WSDL file:

1. Open Application Explorer and create a J2CA configuration.
 For more information, see "Creating a Configuration for J2CA" on page 2-4.
2. Create a target for the Siebel adapter and then connect to the target.
 For more information, see "Establishing a Connection (Target) for Siebel" on page 2-6.
3. Generate a WSDL for the appropriate object.
 For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-28.

8.1.2.2 Creating a BPEL process With Exception Filter Functionality

To create a BPEL process with exception filter functionality:

1. Open JDeveloper and create a new SOA application.
 For more information, see "Creating a New SOA Application for the Outbound BPEL Process" on page 4-9.
2. Create a new SOA project (for example, Siebel_Exception_Filter).
3. Create a third party adapter service component.
 For more information, see "Configuring a Third Party Adapter Service Component" on page 4-14.
 Once the third party adapter service component is created, the WSDL file (with corresponding schemas and JCA file) is imported to the JDeveloper project.
 For more information, see "Defining a BPEL Outbound Process" on page 4-14.
4. Modify the imported JCA file.
 a. Right-click the imported JCA file and select Open from the menu, as shown in Figure 8–1.
b. In the `<interaction-spec>` element, add the `ExceptionFilter` property. For example:

```xml
<interaction-spec className="com.ibi.afjca.cci.IWAFInteractionSpec">
   <property name="FunctionName" value="PROCESS"/>
   <property name="ExceptionFilter" value="com.ibi.afjca.oracle.AdapterExceptionFilter"/>
</interaction-spec>
```

c. Save the modified JCA file.

5. Once the third party adapter service component is created and the JCA file is modified, continue with the remainder of the BPEL process creation.

 For more information, see “Defining a BPEL Outbound Process” on page 4-14.

8.1.2.3 Creating Fault Policies and Fault Binding Files

To create fault policies and fault binding files:

1. Right-click the created SOA project (for example, Siebel_Exception_Filter) and select `New` from the menu, as shown in Figure 8–2.
The New Gallery dialog is displayed, as shown in Figure 8–3.

2. Select File and click OK.

The Create File dialog is displayed, as shown in Figure 8–4.
3. In the File Name field, type `fault-bindings.xml` and click OK.

4. Add the appropriate fault binding functions in the `fault-bindings.xml` file.
 To view a sample `fault-bindings.xml` file, see "Sample Fault-Bindings.xml File" on page 8-5.

 Note: The parameter in the `<name>` element is the name of the created BPEL process.

5. Save the `fault-bindings.xml` file.

6. Repeat steps 1 to 5 for the `fault-policies.xml` file, but ensure to add the appropriate fault policies functions.
 To view a sample `fault-policies.xml` file, see "Sample Fault-Policies.xml File" on page 8-6.

 Note: The parameter ID in the `<fault policy>` element is obtained from the `fault-bindings.xml` file, which can be found in the `<Component>` element of the `fault-bindings.xml` file. This ID can have any name as long as it is identical in the `fault-policies.xml` and `fault-bindings.xml` files.

 Tip: The `fault-bindings.xml` and `fault-policies.xml` files can also be created externally and manually copied to the JDeveloper project.

Sample Fault-Bindings.xml File

```xml
<?xml version="1.0" encoding="UTF-8" ?>
  <component faultPolicy="bpelFaultHandling">
    <name>BPELProcess1</name>
  </component>
</faultPolicyBindings>
```
Sample Fault-Policies.xml File

```xml
<?xml version="1.0" encoding="UTF-8"?>

<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
  <faultPolicy version="2.0.1" id="bpelFaultHandling" xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
               xmlns:xs="http://www.w3.org/2001/XMLSchema"
               xmlns="http://schemas.oracle.com/bpel/faultpolicy"
               xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <Conditions>
      <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension" name="bpelx:remoteFault">
        <condition>
          <action ref="ora-retry-3"/>
        </condition>
      </faultName>
      <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension" name="bpelx:bindingFault">
        <condition>
          <action ref="ora-retry-5"/>
        </condition>
      </faultName>
    </Conditions>
    <Actions>
      <Action id="ora-retry-3">
        <retry>
          <retryCount>3</retryCount>
          <retryInterval>2</retryInterval>
          <retryFailureAction ref="ora-terminate"/>
          <exponentialBackoff/>
        </retry>
      </Action>
      <Action id="ora-retry-5">
        <retry>
          <retryCount>5</retryCount>
          <retryInterval>2</retryInterval>
          <retryFailureAction ref="ora-terminate"/>
          <exponentialBackoff/>
        </retry>
      </Action>
      <Action id="ora-terminate">
        <abort/>
      </Action>
    </Actions>
    </faultPolicy>
  </faultPolicies>
```

8.1.2.4 Deploying and Testing the BPEL Process With Exception Filter Functionality

To deploy and test the BPEL process with exception filter functionality:

1. Deploy the created BPEL process.
For more information, see "Deploying the BPEL Outbound Process" on page 4-34.

2. Simulate a communication error by disconnecting the system (where the servers are running) from the network.

3. Invoke the deployed BPEL process with a valid input.

 For more information, see "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 4-38.

4. Select the process ID.

 You can observe the BPEL process being retried or aborted based on the configuration of the fault-policies.xml file.

8.2 Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)

This section describes how to configure credential mapping functionality for the Oracle Application Adapter for Siebel in a configuration that uses Oracle SOA Suite (BPEL, Mediator, or BPM). A sample testing scenario is also included. This section contains the following topics:

- Section 8.2.1, "Prerequisites"
- Section 8.2.2, "Configuring Credential Mapping"

Credential mapping is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.

Note: The J2CA connector is common to all four application adapters (SAP R/3, PeopleSoft, Siebel, and J.D. Edwards OneWorld). If credential mapping is required, then ensure that only one application adapter is used in a particular instance. For example, in one adapter instance only the Siebel application adapter can be used. Credential mapping cannot be configured at the individual adapter level. If you require the use of credential mapping for two adapters, then both adapters must be running in two independent adapter instances.

To pass user credentials to the iWay J2CA resource adapter, create a credential map from the Oracle WebLogic Server user credentials to the EIS user credentials (Siebel adapter). Then associate a credential policy with a BPEL, Mediator, or BPM Web service and invoke the Web service using Oracle WebLogic Server user credentials. These credentials are mapped to the EIS user credentials and then passed to the iWay J2CA container, which uses them to connect with the EIS adapter (Siebel).

8.2.1 Prerequisites

This section lists the prerequisites for credential mapping.

- Oracle PS3 SOA Suite with an extended BPM domain must be installed.
- Oracle JDeveloper for PS3 must be installed with the updated SOA/BPM composite editor.
- Oracle Application Adapter for Siebel for 11g Release 1 (11.1.1.4.0) must be installed.

For more information, see the Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server.
8.2.2 Configuring Credential Mapping

Configuring credential mapping consists of the following steps:

1. Deploy the adapter.
 For more information, see Chapter 3, "Oracle WebLogic Server Deployment and Integration".

2. Associate Oracle WebLogic Server credentials with EIS credentials.
 For more information, see "Associating Oracle WebLogic Server Credentials With EIS Credentials" on page 8-8.

 For more information, see "Generating a WSDL File" on page 8-11.

4. Create an outbound process.
 For more information, see "Creating an Outbound Process" on page 8-11.

5. Attach a security policy to an outbound process.
 For more information, see "Attaching a Security Policy to an Outbound Process Using the Oracle Enterprise Manager Console" on page 8-12.

8.2.2.1 Associating Oracle WebLogic Server Credentials With EIS Credentials

To associate Oracle WebLogic Server credentials with EIS credentials:

1. Log in to the Oracle WebLogic Server Administration Console.

2. In the Domain Structure section in the left pane, click Deployments, as shown in Figure 8–5.

Figure 8–5 Domain Structure Section

![Domain Structure Figure]

The Deployments page is displayed, as shown in Figure 8–6.
3. Click the iwafjca resource adapter. The Settings for iwafjca page is displayed, as shown in Figure 8–7.

4. Click the Credential Mappings tab under the Security tab, and then click New. The Create a New Security Credential Mapping page is displayed, as shown in Figure 8–8.
5. Select the outbound connection pool.
 For example:
 eis/OracleJCAAdapter/DefaultConnection

6. Click Next.
 The WebLogic Server User page is displayed, as shown in Figure 8–9.

Figure 8–9 WebLogic Server User Page

7. Select Configured User Name, enter a valid Oracle WebLogic Server user name, and then click Next.
 The EIS User Name and Password page is displayed, as shown in Figure 8–10.
8. Enter the user name and password for the EIS and click **Finish**.

The credentials for an Oracle WebLogic Server user are now mapped with an EIS user (Siebel). The mapping is invoked automatically before invoking the J2CA service.

8.2.2.2 Generating a WSDL File

To generate a WSDL file:

1. Open Application Explorer and create a J2CA configuration.

 For more information, see "Creating a Configuration for J2CA" on page 2-4.

2. Create a target for the Siebel adapter and then connect to the target.

 For more information, see "Establishing a Connection (Target) for Siebel" on page 2-6.

3. Generate a WSDL for the appropriate object.

 For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-28.

8.2.2.3 Creating an Outbound Process

This section describes how to configure an outbound process. For demonstration purposes, specific references to the BPEL outbound process are made. However, the same steps apply to Mediator and BPM outbound processes.

For more information about creating a Mediator outbound process, see Chapter 5, "Integration With Mediator Service Components in the Oracle SOA Suite".

For more information about creating a BPM outbound process, see Chapter 6, "Integration With BPM Service Components in the Oracle SOA Suite".

To create a BPEL outbound process:

1. Open JDeveloper and create a new SOA application.
For more information, see "Creating a New SOA Application for the Outbound BPEL Process" on page 4-9.

2. Create a new SOA project (for example, Credential_Mappings).

3. Deploy the BPEL outbound process.

 For more information, see "Deploying the BPEL Outbound Process" on page 4-34.

8.2.2.4 Attaching a Security Policy to an Outbound Process Using the Oracle Enterprise Manager Console

To attach a security policy to an outbound process using the Oracle Enterprise Manager console:

1. Log in to the Oracle Enterprise Manager console and navigate to the deployed composite.

2. Click the Policies tab.

 From the Attach To/Detach From list, select the BPEL, Mediator, or BPM outbound process.

 BPEL or Mediator outbound processes have _client appended to the process name. BPM outbound processes use the Process.service naming convention.

Figure 8–11 Policies Tab

The Attached Policies page is displayed, as shown in Figure 8–12.
3. Select the Security category and click Search.

4. Scroll through the list and select oracle/wss_http_token_service_policy.

5. Click Attach and then OK.
 The selected policy is now displayed in the Policies tab.

6. Click the Test tab and select WSS Username Token in the Security section of the Request tab. Enter a valid Oracle WebLogic Server user name and password, as shown in Figure 8–13

7. Invoke the deployed BPEL outbound process with a valid input.
 For more information, see “Invoking the Input XML Document in the Oracle Enterprise Manager Console” on page 4-38.

8. Check the J2CA log files and locate the encrypted password, which shows that the user credentials have been passed to the EIS through Oracle WebLogic Server.
 For example:

 FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util
8.3 Credential Mapping for Oracle Service Bus (OSB)

This section describes how to configure credential mapping functionality for the Oracle Application Adapter for Siebel in a configuration that uses Oracle Service Bus (OSB). A sample testing scenario is also included. This section contains the following topics:

- Section 8.3.1, "Prerequisites"
- Section 8.3.2, "Configuring Credential Mapping"

Credential mapping is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.

Note: The J2CA connector is common to all four application adapters (SAP R/3, PeopleSoft, Siebel, and J.D. Edwards OneWorld). If credential mapping is required, then ensure that only one application adapter is used in a particular instance. For example, in one adapter instance only the Siebel application adapter can be used. Credential mapping cannot be configured at the individual adapter level. If you require the use of credential mapping for two adapters, then both adapters must be running in two independent adapter instances.

To pass user credentials to the iWay J2CA resource adapter, create a credential map from the Oracle WebLogic Server user credentials to the EIS user credentials (Siebel adapter). Then associate a credential policy with a Web service and invoke the Web service using Oracle WebLogic Server user credentials. These credentials are mapped to the EIS user credentials and then passed to the iWay J2CA container, which uses them to connect with the EIS adapter (Siebel).

8.3.1 Prerequisites

This section lists the prerequisites for credential mapping.

- Oracle Service Bus (OSB) for PS3 must be installed.
- Oracle Application Adapter for Siebel for 11g Release 1 (11.1.1.4.0) must be installed.

For more information, see the *Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server*.

8.3.2 Configuring Credential Mapping

Configuring credential mapping consists of the following steps:

1. Deploy the adapter.

 For more information, see Chapter 3, "Oracle WebLogic Server Deployment and Integration".
2. Associate Oracle WebLogic Server credentials with EIS credentials.
 For more information, see "Associating Oracle WebLogic Server Credentials With EIS Credentials" on page 8-15.

 For more information, see "Generating a WSDL File" on page 8-18.

4. Create an Oracle Service Bus (OSB) outbound process.
 For more information, see "Creating an Oracle Service Bus (OSB) Outbound Process" on page 8-18.

8.3.2.1 Associating Oracle WebLogic Server Credentials With EIS Credentials

To associate Oracle WebLogic Server credentials with EIS credentials:

1. Log in to the Oracle WebLogic Server Administration Console.

2. In the Domain Structure section in the left pane, click Deployments, as shown in Figure 8–14.

Figure 8–14 Domain Structure Section

The Deployments page is displayed, as shown in Figure 8–15.

Figure 8–15 Deployments Page
3. Click the iwafjca resource adapter.
 The Settings for iwafjca page is displayed, as shown in Figure 8–16.

 Figure 8–16 Settings for iwafjca Page

4. Click the **Credential Mappings** tab under the Security tab, and then click **New**.
 The Create a New Security Credential Mapping page is displayed, as shown in Figure 8–17.

 Figure 8–17 Create a New Security Credential Mapping Page

5. Select the outbound connection pool.
 For example:

 `eis/OracleJCAAdapter/DefaultConnection`

6. Click **Next**.
 The WebLogic Server User page is displayed, as shown in Figure 8–18.
7. Select Configured User Name, enter a valid Oracle WebLogic Server user name, and then click Next.

The EIS User Name and Password page is displayed, as shown in Figure 8–19.

8. Enter the user name and password for the EIS and click Finish.

The credentials for an Oracle WebLogic Server user are now mapped with an EIS user (Siebel). The mapping is invoked automatically before invoking the J2CA service.
8.3.2.2 Generating a WSDL File

To generate a WSDL file:

1. Set the class path for Application Explorer to integrate with Oracle Service Bus (OSB).
 For more information, see "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus" on page 7-5.

2. Open Application Explorer and create a J2CA configuration.
 For more information, see "Creating a Configuration for J2CA" on page 2-4.

3. Create a target for the Siebel adapter and then connect to the target.
 For more information, see "Establishing a Connection (Target) for Siebel" on page 2-6.

4. Publish a WSDL to OSB for the appropriate object.
 For more information, see "Publishing a WSDL From Application Explorer to Oracle Service Bus" on page 7-5.

8.3.2.3 Creating an Oracle Service Bus (OSB) Outbound Process

To create an Oracle Service Bus (OSB) outbound process with credential mapping functionality:

1. Start Oracle Service Bus and create project folders.
 For more information, see "Starting Oracle Service Bus and Creating Project Folders" on page 7-2.

2. Configure a File type Business Service.
 For more information, see "Configuring a File Type Business Service" on page 7-10.

3. Configure a Business Service.
 For more information, see "Configuring a WSDL-based Business Service" on page 7-7.

4. Configure a Proxy Service.
 For more information, see "Configuring a Proxy Service" on page 7-14.

5. Configure a Pipeline.
 For more information, see "Configuring a Pipeline" on page 7-43.

6. Configure a Service account by selecting the created folder in the left pane.
 In the right pane, select Service Account from the Create Resource list, as shown in Figure 8–20.
The Create a New Service Account page is displayed, as shown in Figure 8–21.

Figure 8–21 General Configuration Page

7. Provide a name for the resource and select Static as the resource type.

8. Click Next.

The Static User Configuration page is displayed, as shown in Figure 8–22.
9. Provide a valid user name and password for Oracle WebLogic Server, and then click Last.

The Summary page is displayed, as shown in Figure 8–23.

10. Review the information and click Save.

11. In the left pane, select the Business Service that was created while publishing the WSDL, as shown in Figure 8–24.
For more information, see “Configuring a WSDL-based Business Service” on page 7-7.

12. Click Edit to edit the process, as shown in Figure 8–25.

The General Configuration page is displayed.

13. Click Next.

The Transport Configuration page is displayed, as shown in Figure 8–26.
14. Click Next.

The JCA Transport Configuration page is displayed, as shown in Figure 8–27.

15. Browse the JNDI service account that was created and click Last.

The Summary page is displayed, as shown in Figure 8–28.
16. Review the information and click **Save**.

17. Check if the success message is displayed and click **Activate** in the Change Center, as shown in Figure 8–29.

The Activate Session page is displayed, as shown in Figure 8–30.
18. Click **Submit**.

19. Copy and paste a valid input XML file in the input folder you configured and check to see that the output is received in the configured output location.

20. Check the J2CA log files and locate the encrypted password, which shows that the user credentials have been passed to the EIS through Oracle WebLogic Server.

For example:

```
FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util getPasswordCredential(78) InLoop:
User-iwayqa:Password-ENCR(3189321331831132502333215312132323192322731773156)
Tue FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util getPasswordCredential(90) Use the system PasswordCredential:
User-iwayqa:Password-ENCR(3189321331831132502333215312132323192322731773156)
```
This chapter explains the limitations and workarounds when connecting to Siebel. It contains the following topics:

- Section 9.1, "Troubleshooting"
- Section 9.2, "BSE Error Messages"

9.1 Troubleshooting

This topic provides troubleshooting information for Siebel, separated into four categories:

- General Usage Notes for the Oracle Application Adapter for Siebel
- Application Explorer
- Siebel
- Oracle Adapter J2CA
- Oracle Adapter Business Services Engine (BSE)

Log file information that can be relevant in troubleshooting can be found in the following locations based on your adapter installation:

- The Oracle Adapter J2CA trace information can be found under the following directory:

 For Oracle SOA Suite:

 `<ORACLE_HOME>\soa\thirdparty\ApplicationAdapters\config\configuration_name\log`

 For OSB:

 `<OSB_HOME>\Oracle_OSB1\3rdparty\ApplicationAdapters\config\configuration_name\log`

- BSE trace information can be found under the following directory:

 `<ADAPTER_HOME>\user_projects\domains\base_domain\servers\soa_server1\stage\ibse\ibse.war\ibse\logs`

- The log file for Application Explorer can be found under the following directory:

 For Oracle SOA Suite:

 `<ORACLE_HOME>\soa\thirdparty\ApplicationAdapters\tools\iwae\bin`

 For OSB:
General Usage Notes for the Oracle Application Adapter for Siebel

The Oracle Application Adapter for Siebel is subject to the following limitations:

- The HTTPS protocol is not supported for services and events.
- Updates for multi-value (MVG) fields with join specifications are not supported.
- When a connection is lost, the adapter does not automatically reconnect to Siebel.

Application Explorer

This topic discusses the different types of errors that can occur when using Application Explorer.

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siebel does not appear in the Application Explorer Adapter node list.</td>
<td>Ensure that the Siebel jar files supplied with your Siebel distribution media have been placed in the <code><ADAPTER_HOME></code>\soa\thirdparty\ApplicationAdapters\lib directory. For example, for Siebel 7.03 environments, the <code>SiebelJI_Common.jar</code> and <code>SiebelJI_enu.jar</code> should be placed in this directory.</td>
</tr>
<tr>
<td>Target Type drop down contains only Java Data Bean Connection and COM connection type is desired.</td>
<td>Ensure that the Siebel thin client is installed correctly on the system hosting Application Explorer so that appropriate COM environment is available.</td>
</tr>
<tr>
<td>An error message that includes the name of the Siebel Gateway server appears when you try to connect to a Siebel target. For example, Problem activating adapter (<server_name>). Check logs for more information.</td>
<td>Ensure that the name of the Siebel Gateway server is correctly defined for the target you are using.</td>
</tr>
<tr>
<td>You receive the following error when trying to connect to a Siebel target: Problem activating adapter. (You have entered an invalid set of logon parameters. Please type in your logon parameters again.). Check logs for more information.</td>
<td>Ensure that the User ID and password parameter values to connect to your Siebel system are correct.</td>
</tr>
<tr>
<td>You receive the following error when trying to connect to a Siebel target: Problem activating adapter. (Couldn't get nameserver connection). Check logs for more information.</td>
<td>Check on network connectivity to Siebel environment. Correct networking problem and retry connection.</td>
</tr>
<tr>
<td>You receive the following error when attempting to connect to a Siebel target: Problem activating adapter. (NSReadKey request failed (no error information)...). Check logs for more information.</td>
<td>Ensure that the values defined for Siebel Server, Enterprise Name, and Object Manager for the target you are using are correct, and retry the connection.</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>You receive the following error when attempting to connect to a Siebel target:</td>
<td>Ensure that the value of the Language parameter on the Advanced tab is defined correctly for the target you are using to connect to your Siebel system (for example, enu for English).</td>
</tr>
<tr>
<td>Problem activating adapter. (Error loading translatable messages: com.siebel.locale.enux.messages.SS AMessages_enux). Check logs for more information</td>
<td>The Repository Name specified on the Advanced tab in the Siebel target configuration is either void or empty of any components in the targeted Siebel environment or that Repository Name is not valid for the targeted Siebel environment. Verify that the Repository Name is valid and contains components for interrogation then re-connect.</td>
</tr>
<tr>
<td>A successful connection is made to Siebel environment but no values are available in Business Object, Business Service, and Integration Object nodes in Application Explorer tree.</td>
<td>If the password for connecting to your Siebel system is not specified when creating a target or with the Edit option in Application Explorer, then you are unable to connect to Siebel. The connection password is not saved in repository.xml. Update the password using the Edit option in Application Explorer, then restart the application server.</td>
</tr>
<tr>
<td>Logon failure error at run-time.</td>
<td>This is a benign exception. It does not affect adapter functionality. Download BouncyCastle files from: ftp://ftp.bouncycastle.org/pub</td>
</tr>
<tr>
<td>The following exception occurs when you start Application Explorer by activating ae.bat (not iaexplorer.exe):</td>
<td>JAVACMD is not set on the user system. Before starting Application Explorer, export JAVACMD as follows: JAVACMD=/<jdk_home>/bin/java, where <jdk_home> is the directory where JDK is installed on your system.</td>
</tr>
<tr>
<td>java.lang.ClassNotFoundException: org.bouncycastle.jce.provider.BouncyCastleProvider</td>
<td></td>
</tr>
<tr>
<td>Unable to start Application Explorer in a Solaris environment. The following exception is thrown in the console:</td>
<td></td>
</tr>
</tbody>
</table>
Siebel

The error messages listed can occur when using the adapter with either a BSE or Oracle Adapter J2CA repository project.

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A successful connection is made to Siebel environment but no values are available in Business Object, Business Service, and Integration Object nodes in Application Explorer tree.</td>
<td>The Repository Name specified on the Advanced tab in the Siebel Target configuration is either void or empty of any components in the targeted Siebel environment or that Repository Name is not valid for the targeted Siebel environment. Verify that the Repository Name is valid and contains components for interrogation then re-connect.</td>
</tr>
<tr>
<td>When executing a request, the following error message appears: AdapterException: Unsupported Action: {0} Tquery</td>
<td>Verify that method is available for specific request by verifying schema.</td>
</tr>
<tr>
<td>When executing a request, the following error message appears: AdapterException: Field 'NFame' does not exist in definition for business component 'Account'. Please ask your systems administrator to check your application configuration.</td>
<td>Ensure that field names are valid within request document by referring to schema for that specific object, and then re-submit the request.</td>
</tr>
<tr>
<td>When connecting to releases before Siebel 7.7 using the Java Data Bean Interface, you cannot reconnect after initial connection loss. This might occur when Application Explorer experiences a brief loss of network connection or if the Siebel Server or Gateway Service is restarted while Application Explorer is logged into the Siebel application.</td>
<td>Restart Oracle WebLogic Server and Application Explorer to log in successfully to the Siebel application. This is a known Siebel API issue. For more information, see Siebel Alert 984.</td>
</tr>
<tr>
<td>The following error may occur when adding a service node for a Business Service that includes methods containing method arguments having hierarchy data types. If you enter a valid XMLCharEncoding value such as UTF-8 or UTF-16, then the following error is received: Invocation of Service failed.</td>
<td>The method argument XMLCharEncoding is not supported. Leave this element blank in the XML payload.</td>
</tr>
</tbody>
</table>

Oracle Adapter J2CA

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Application Explorer, the following error message appears when you attempt to connect to an Oracle Adapter J2CA configuration: Could not initialize JCA</td>
<td>In the Details tab in the right pane, ensure that the directory specified in the Home field points to the correct directory, for example: <code><ADAPTER_HOME>/soa/thirdparty/ApplicationAdapters\tools\iwaebin\...\...\...</code></td>
</tr>
</tbody>
</table>
9.2 BSE Error Messages

This topic discusses the different types of errors that can occur when processing Web services through BSE.

9.2.1 General Error Handling in BSE

BSE serves as both a SOAP gateway into the adapter framework and as the engine for some of the adapters. In both design time and run-time, various conditions can cause errors in BSE when Web services that use adapters run. Some of these conditions and resulting errors are exposed the same way, regardless of the specific adapter; others are exposed differently, based on the adapter being used. This topic explains what you can expect when you encounter some of the more common error conditions on an adapter-specific basis.

Usually the SOAP gateway (agent) inside BSE passes a SOAP request message to the adapter required for the Web service. If an error occurs, then how it is exposed depends on the adapter and the API or interfaces that the adapter uses. A few scenarios cause the SOAP gateway to generate a SOAP fault. In general, anytime the SOAP agent inside BSE receives an invalid SOAP request, a SOAP fault element is generated in the SOAP response. The SOAP fault element contains fault string and fault code elements. The fault code contains a description of the SOAP agent error.

The following SOAP response document results when BSE receives an invalid SOAP request:

```xml
  <SOAP-ENV:Body>
    <SOAP-ENV:Fault>
      <faultcode>SOAP-ENV:Client</faultcode>
      <faultstring>Parameter node is missing</faultstring>
    </SOAP-ENV:Fault>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

In this example, BSE did not receive an element in the SOAP request message that is mandatory for the WSDL for this Web service.

9.2.2 Adapter-Specific Error Handling

When an adapter raises an exception during run-time, the SOAP agent in BSE produces a SOAP fault element in the generated SOAP response. The SOAP fault element contains fault code and fault string elements. The fault string contains the native error description from the adapter target system. Since adapters use the target system interfaces and APIs, whether an exception is raised depends on how the target systems interface or API treats the error condition. If a SOAP request message is passed to an adapter by the SOAP agent in BSE, and that request is invalid based on the WSDL for that service, then the adapter may raise an exception yielding a SOAP fault.

While it is almost impossible to anticipate every error condition that an adapter may encounter, the following is a description of how adapters handle common error conditions and how they are then exposed to the Web services consumer application.
Oracle Application Adapter for Siebel Invalid SOAP Request

If Oracle Application Adapter for Siebel receives a SOAP request message that does not conform to the WSDL for the Web services being executed, then the following SOAP response is generated:

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
  <SOAP-ENV:Body>
    <SOAP-ENV:Fault>
      <faultcode>SOAP-ENV:Server</faultcode>
    </SOAP-ENV:Fault>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

Empty Result From Siebel Request

If Oracle Application Adapter for Siebel cannot connect to Siebel when executing a Web service, then the following SOAP response is generated:

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
  <SOAP-ENV:Body>
    <SOAP-ENV:Fault>
      <faultcode>SOAP-ENV:Server</faultcode>
      <faultstring><Exception> - major:4096 minor: -1 message:NSReadKey request 11 was abandoned after 37846ms connection:12a due to Connection shutdown request
Connection reset by peer:JVM_recv in socket input stream
stream read DetailedMessage:Unknown</Exception></faultstring>
    </SOAP-ENV:Fault>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

Oracle WebLogic Server Integration Adapters

Oracle Adapters connect BSE to adapters whose engines are other Oracle servers. Therefore, since this type of adapter is used to connect BSE to many different target systems, the error handling behavior is consistent. Check the user guide for your adapter to see if you require the Oracle WebLogic Server Integration Adapter when running Web services.

Invalid SOAP Request

If Oracle Application Adapter for Siebel receives a SOAP request message that does not conform to the WSDL for the Web services being executed, then the following SOAP response is generated:

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
  <SOAP-ENV:Body>
    <SOAP-ENV:Fault>
      <faultcode>SOAP-ENV:Server</faultcode>
      <faultstring>RPC server connection failed: Connection refused: connect</faultstring>
    </SOAP-ENV:Fault>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```
Empty Result From Oracle WebLogic Server Adapter Request

If Oracle Application Adapter for Siebel executes a SOAP request using input parameters passed that do not match records in the target system, then the following SOAP response is generated.

Note: The condition for this adapter does not yield a SOAP fault.

```xml
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
  <SOAP-ENV:Body>
    <m:RunDBQueryResponse xmlns:m="urn:schemas-iwaysoftware-com:iwse"
                          xmlns="urn:schemas-iwaysoftware-com:iwse"
                          cid="2A3CB42703EB20203F91951B89F3C5AF">
      <RunDBQueryResult run="1" />
    </m:RunDBQueryResponse>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```
This chapter describes advanced user tools. It contains the following topics:

- Section 10.1, "Web Services Policy-Based Security"
- Section 10.2, "Migrating Repositories"

10.1 Web Services Policy-Based Security

Application Explorer provides a security model called Web services policy-based security. The following topics describe how the feature works and how to configure it.

Web services provide a layer of abstraction between the back-end business logic and the user or application running the Web service. Easy application integration is enabled. However, the issue of controlling the use and implementation of critical and sensitive business logic that is run as a Web service is raised.

Application Explorer controls the use of Web services that use adapters, using a feature called policy-based security. This feature enables an administrator to apply "policies" to Business Services (Web services) to deny or permit their execution.

A policy is a set of privileges dealing with the execution of a Business Service (iBS) that can be applied to an existing or new iBS. When you set specific rights or privileges inside a policy, you do not have to re-create privileges for every iBS that has security concerns in common with other Business Services. Instead, you reuse a policy on multiple Business Services.

The goal of the feature is to secure requests at both the transport and the SOAP request level transmitted on the wire. Some of the policies do not deal with security issues directly, but do effect the run-time behavior of the Web services to which they have been applied.

The iBS administrator creates an "instance" of a policy type, names it, associates individual users or groups (a collection of users), and then applies that policy to one or more Business Services.

You can assign a policy to an iBS, or to a method within an iBS. If a policy is only applied to a method, then other methods in that iBS is not governed by it. However, if a policy is applied to the iBS, all methods are governed by it. At run-time, the user ID and password that are sent to BSE in the SOAP request message are checked against the list of users for all policies applied to that specific iBS. The policy type that is supported is Resource Execution, which dictates who can or cannot execute the iBS.

When a policy is not applied, the default value for an iBS is to "grant all". For example, anybody can execute the iBS, until the Resource Execution policy is associated to the iBS. At that time, only those granted execution permissions, or users not part of the group that has been denied execution permissions, have access to the iBS.
10.1.1 Configuring Web Services Policy-Based Security

The following procedures describe how to configure Web services policy-based security.

Creating and Associating a User with a Policy

Before you create instances of policies, you must have a minimum of one user or one group to associate to an instance. You can create users and groups using Application Explorer.

1. Start Application Explorer.
2. Right-click the configuration to which you want to connect, for example, SampleConfig. For information on creating a new configuration, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel".
3. Select Connect.

 As shown in Figure 10–1, nodes appear for Adapters and Business Services (also known as Web services).

Figure 10–1 Siebel Configuration, SampleConfig

Perform the following steps:

a. Expand the Business Services node.

b. Expand the Configuration node.

c. Expand the Security node.

d. Expand the Users and Groups node.

4. As shown in Figure 10–2, right-click Users and then New User.

Figure 10–2 New User Option

The New User dialog box is displayed, as shown in Figure 10–3.
Perform the following steps:

a. In the Name field, enter a user ID.

b. In the Password field, enter the password associated with the user ID.

c. In the Description field, enter a description of the user (optional).

5. Click OK.

The new user is added under the Users node, as shown in Figure 10–4.

Creating a Group to Use With a Policy

To create a group to use with a policy:

1. Start Application Explorer.

2. Right-click the configuration to which you want to connect, for example, SampleConfig. For information on creating a new configuration, see Chapter 2, “Configuring Oracle Application Server Adapter for Siebel”.

3. Select Connect.

As shown in Figure 10–5, nodes appear for Adapters and Business Services (also known as Web services).

Perform the following steps:

a. Expand the Business Services node.

b. Expand the Configurations node.

c. Expand the Security node.

d. Expand the Users and Groups node.

4. Right-click Groups and select New Group, as shown in Figure 10–6.
The New Group dialog box is displayed, as shown in Figure 10–7.

Perform the following steps:

a. In the Name field, enter a name for the group.

b. In the Description field, enter a description for the group (optional).

c. From the available list of users in the left pane, select one or more users and add them to the Selected list by clicking the double right facing arrow.

5. When you have selected at least one user, click OK.

As shown in Figure 10–8, the new group is added under the Group node.
Creating an Execution Policy

An execution policy governs who can execute the Business Services to which the policy is applied.

To create an execution policy:

1. Start Application Explorer.

2. Right-click the configuration to which you want to connect, for example, SampleConfig. For information on creating a new configuration, see Chapter 2, “Configuring Oracle Application Server Adapter for Siebel”.

3. Select Connect.

 As shown in Figure 10–9, nodes appear for Adapters and Business Services (also known as Web services).

Figure 10–9 Adapters and Business Services Nodes

Perform the following steps:

a. Expand the Business Services node.

b. Expand the Configurations node.

c. Expand the Security node.

d. Expand the Policies node.

4. As shown in Figure 10–10, right-click Policies and select New Policy.

Figure 10–10 New Policy Option

The New policy dialog box is displayed, as shown in Figure 10–11.
Perform the following steps:

a. In the **Name** field, enter a name for the policy.
b. From the **Type** list, select **Execution**.
c. In the **Description** field, enter a description for the policy (optional).
d. From the available list of users in the left pane, select one or more users and add them to the **Selected** list by clicking the double right facing arrow.

Note: This user ID is checked against the value in the user ID element of the SOAP header sent to BSE in a SOAP request.

5. When you have selected at least one user, click **OK**.

6. Click **Next**.
 The New Policy permissions dialog box is displayed.

7. When you have selected at least one user, click **OK**.

8. Click **Next**.
 The New Policy permissions dialog box is displayed, as shown in Figure 10–12.
To grant permission to a user or group to execute an iBS, select the user or group and move them into the **Execution Granted** list by selecting the double left facing arrow.

To deny permission to a user or group to execute an iBS, select the user or group and move them into the **Execution Denied** list by selecting the double right facing arrow.

9. Click **OK**.

The following pane summarizes your configuration, as shown in **Figure 10–13**.

Figure 10–13 Summary of Policy Configuration

- **Name**: test
- **Type**: Execution
- **Description**

- **User and Group Restrictions**
 - group.test Execution Granted

Using the IP and Domain Restrictions Policy Type

You configure the IP and Domain Restriction policy type slightly differently from other policy types. The IP and Domain Restriction policy type controls connection access to BSE and therefore need not be applied to individual Web services. You need not create a policy, however, you must enable the Security Policy option in Application Explorer.

1. Start Application Explorer.

2. Right-click the configuration to which you want to connect, for example, SampleConfig. For information on creating a new configuration, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel".

3. Select **Connect**.
As shown in Figure 10–14, nodes appear for **Adapters** and **Business Services** (also known as Web services).

Figure 10–14 Adapters and Business Services Nodes

Perform the following steps:

a. Expand the **Business Services** node.

b. Expand the **Configurations** node.

c. Expand the **Security** node.

4. As shown in Figure 10–15, right-click **IP and Domain** and select **New IP and Domain Restriction**.

Figure 10–15 New IP and Domain Restriction Option

The New IP and Domain Restriction dialog box is displayed, as shown in Figure 10–16.

Figure 10–16 New IP and Domain Restriction Dialog

Perform the following steps:

a. In the **IP(Mask)/Domain** field, enter the IP or domain name using the following guidelines:

 If you select **Single** (Computer) from the **Type** list, then you must provide the IP address for that computer. If you only know the DNS name for the computer, then click **DNS Lookup** to obtain the IP Address based on the DNS name.

 If you select **Group** (of Computers), then you must provide the IP address and subnet mask for the computer group.
If you select **Domain**, then you must provide the domain name.

b. From the **Type** list, select the type of restriction.

c. In the **Description** field, enter a description (optional).

d. To grant access, select the **Grant Access** check box.

5. Click **OK**.

The new domain is added under the IP and Domain node.

The following pane summarizes your configuration, as shown in Figure 10–17.

Figure 10–17 Summary of IP and Domain Configuration

- **IP Address(Mask)/Domain**: www.yahoo.com
- **Type**: Domain
- **Access**: Denied
- **Description**

10.2 Migrating Repositories

During design time, the Oracle repository is used to store metadata created when using Application Explorer to configure adapter connections, browse EIS objects, configure services, and configure listeners to listen for EIS events. The information in the repository is also referenced at run-time. For management purposes, you can migrate BSE and J2CA repositories that are configured for Oracle to new destinations without affecting your existing configuration. For example, you may want to migrate a repository from a test environment to a production environment.

Migrating a BSE Repository

To migrate a BSE repository:

1. Copy the BSE control service URL, for example:

 http://localhost:8001/ibse/IBSEServlet/admin/iwcontrol.ibs

2. Open a third party XML editor, for example, XMLSpy.

3. From the menu bar, click **SOAP**.

 A list of options appears, as shown in Figure 10–18.

Figure 10–18 Create new SOAP request Option

<table>
<thead>
<tr>
<th>SOAP</th>
<th>Tools</th>
<th>Window</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create new SOAP request</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Send request to server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change SOAP request parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Select **Create new SOAP request**.

 The WSDL file location dialog box is displayed, as shown in Figure 10–19.
Perform the following steps:

a. In the Choose a file field, paste the BSE control service URL.

b. Append ?wsdl to the URL, for example:

 http://localhost:8001/ibse/IBSServlet/admin/iwcontrol.ibs?wsdl

5. Click OK.

 The soap operation name dialog box displays the available control methods, as shown in Figure 10–20.

6. Select the MIGRATEREPO(MIGRATEREPO parameters) control method and click OK.

 Note: The MIGRATEREPO(MIGRATEREPO parameters) control method is available from the BSE administration console. This control method migrates all Web services to the new (empty) repository. You can choose to migrate select Web services only.

The following window is displayed, showing the structure of the SOAP envelope, as shown in Figure 10–21.
7. Locate the **Text view** icon in the toolbar, as shown in Figure 10–22.

![Figure 10–22 Text View Icon](image)

8. To display the structure of the SOAP envelope as text, click the **Text view** icon.

 The `<SOAP-ENV:Header>` tag is not required and can be deleted from the SOAP envelope.

9. Locate the following section:

   ```xml
   <m:MIGRATEREPO xmlns:m="urn:schemas-iwaysoftware-com:jul2003:ibse:config" version="">
     <m:repositorysetting>
       <m:rname>oracle</m:rname>
       <m:rconn>String</m:rconn>
       <m:rdriver>String</m:rdriver>
       <m:ruser>String</m:ruser>
       <m:rpwd>String</m:rpwd>
     </m:repositorysetting>
     <m:servicename>String</m:servicename>
   </m:MIGRATEREPO>
   ```

 Perform the following steps:

 a. For the `<m:rconn>` tag, replace the String placeholder with a repository URL where you want to migrate your existing BSE repository.

 The Oracle repository URL has the following format:

      ```javascript
      jdbc:oracle:thin:@[host]:[port]:[sid]
      ```

 b. For the `<m:rdriver>` tag, replace the String placeholder with the location of your Oracle driver.
Migrating Repositories

For the `<m:ruser>` tag, replace the String placeholder with a valid user name to access the Oracle repository.

For the `<m:rpwd>` tag, replace the String placeholder with a valid password to access the Oracle repository.

10. Perform one of the following migration options.

- If you want to migrate a single Web service from the current BSE repository, then enter the Web service name in the `<m:servicename>` tag, for example:

 `<m:servicename>SiebelService1</m:servicename>`

- If you want to migrate multiple Web services from the current BSE repository, then duplicate the `<m:servicename>` tag for each Web service, for example:

 `<m:servicename>SiebelService1</m:servicename>`
 `<m:servicename>SiebelService2</m:servicename>`

- If you want to migrate all Web services from the current BSE repository, then remove the `<m:servicename>` tag.

11. From the menu bar, click SOAP and select **Send request to server**, as shown in Figure 10–23.

Figure 10–23 Send request to server Option

Your BSE repository and any Web services you selected are now migrated to the new Oracle repository URL you specified.

Migrating a J2CA Repository

To migrate a J2CA repository:

1. Navigate to the location of your J2CA configuration directory where the repository schemas and other information is stored, for example:

 `<ADAPTER_HOME>\soa\thirdparty\ApplicationAdapters\config\JCA_CONFIG`

 Where `JCA_CONFIG` is the name of your J2CA configuration.

2. Locate and copy the `repository.xml` file.

3. Place this file in a new J2CA configuration directory to migrate the existing repository.

 Your J2CA repository is migrated to the new J2CA configuration directory.
Using Siebel Workflows

When using Siebel XML to integrate with Siebel Integration Objects, the interface uses a Siebel Workflow.

Note: This appendix is intended as a supplement to the documentation designed for Oracle Application Adapter for Siebel user and is not intended as a substitute for Siebel documentation. For complete and up-to-date information on Siebel Workflow and policy topics, see the Siebel Bookshelf for your Siebel system.

This appendix contains the following topics:

- Section A.1, "Overview"
- Section A.2, "Creating a Siebel Workflow"

A.1 Overview

A Siebel Workflow is defined within Siebel to emit or to receive Siebel XML. In either case, emitting or receiving is handled by Siebel transport services for MQSeries, File, or HTTP. The following topics describe the use and creation of workflows that employ the supported transport services.

A.1.1 Siebel Workflows

A Siebel Workflow is a series of Siebel Business Services linked together to accomplish a business task. You create workflows using the Siebel Client Workflow Administration screens. Workflows are invoked through one of the following methods:

- Using a workflow policy
- Using a run-time event (Siebel Event)
- Using a script (eScript or Siebel VB)

The following topic briefly describes how to invoke the workflow through a policy condition.

See Also:

Siebel Bookshelf documentation for more information on policy and other methods.
A.1.2 Using a Policy to Invoke a Siebel EAI Workflow

A workflow policy is defined by a set of conditions that performs a set of defined actions. A Siebel workflow policy consists of:

- Conditions that define circumstances, based on changes in the state of a Siebel database.
- Actions that define steps taken when conditions are fulfilled.

Creating a policy to invoke a workflow as an action involves the following steps:

1. Define an action to be executed after a policy is triggered. Use the Run Integration Process program.
2. Create a policy by setting conditions and selecting appropriate policy groups and actions.
3. Activate the policy by choosing an activation date.
4. Run the Generate Triggers server task from Server Administration windows to set the conditions to be monitored.
5. Start the Workflow Monitor agent after editing with the appropriate policy group (to which your policy belongs) to evaluate whether to perform an action.
6. Start the Workflow Action Agent server task from Server Administration windows to perform the action.

A.1.3 Siebel Workflow - Outbound

When a Siebel Workflow is triggered based on a Siebel policy, run-time, or script (eScript or Siebel VB) event, the result is the generation of a Siebel XML document that is placed on one of the Siebel transports. For example, when you add a new account in the Siebel Call Center application, you can design and configure a workflow to be triggered on the account transaction. You can design the workflow to extract the data for the new record, convert it to Siebel XML, and then, place it on an MQSeries message queue.

In this example, the Siebel Workflow process executes the following series of Siebel Business Services:

1. Calls the Siebel EAI Siebel Adapter that queries for the newly updated account record and places the data in its original internal structure into memory.
2. Calls the Siebel EAI XML Converter that converts the data into an XML message.
3. Calls the Siebel EAI MQSeries Transport that places the newly created XML message into the appropriate MQSeries message queue

After the message is placed in the message queue, it is retrieved by Oracle Application Adapter for Siebel 6.3 and higher. The following Workflow sequence illustrates the previous steps, as shown in Figure A–1.
A.1.4 Siebel Workflow - Inbound

A Siebel Workflow that is triggered by an external event begins by receiving a Siebel XML document placed on one of its transports. The result might be the update of a Siebel record using the XML as input, for example, when a new account is added in another CRM system but also must be updated in the Siebel Call Center application. You can design and configure a Workflow to receive or listen on an MQSeries message queue. Upon receipt of the XML message, the Workflow processes the transaction into the Siebel system to update the record.

In this example, upon receipt of the Siebel XML message in the message queue, the Siebel MQSeries Receiver server task initiates a Siebel Workflow process, which in turn executes a series of Siebel Business Services as follows:

1. Calls the Siebel EAI XML Converter, which converts the XML message into Siebel internal format.
2. Calls the Siebel EAI Siebel Adapter, which applies the newly updated account record based on the methods defined in its service.

The following is a sample of the Workflow process, as shown in Figure A–2.

A.2 Creating a Siebel Workflow

The following topics include procedures for creating Siebel Workflows in the Siebel Workflow Administration window.

A.2.1 Creating a Siebel Workflow for an Event Using MQSeries Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for exporting Siebel Account record information using the MQSeries transport.

The following is a Siebel Workflow Administration window, as shown in Figure A–3.
The following procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application. The Workflow is then placed on an MQSeries message queue.

To create a Siebel Workflow:

1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties.

 The Account message contains Siebel Account data in hierarchical format.

 Account XML specifies the Siebel Account data that the workflow has converted to XML.

 The following window is displayed, showing the Process Properties tab active, as shown in Figure A–4.
2. Use the Siebel Workflow Administration windows to create a Workflow.

 The Business Service obtains the Account information from Siebel using the Query method.

 Output from this Business Service is generated in hierarchical format, as shown in Figure A–5.
4. Define an EAI XML Converter Business Service step and call it **Convert to XML**.

It is defined to receive the Account data from the EAI Siebel Adapter Business Service in hierarchical format and convert it to XML format, as shown in Figure A–6.
5. Define an EAI MQSeries server transport Business Service step and call it `Send to Q`, as shown in Figure A–7.

It is defined to receive the Account data from the EAI XML Converter Business Service in Siebel XML format and send the Account XML to MQSeries using the Send method.
A.2.2 Creating a Siebel Workflow for an Event Using File Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for exporting Siebel Account record information using the File transport.

The following window is displayed with the Process Designer tab active, as shown in Figure A–8.
This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application and then places Siebel XML on the file system.

To create a Siebel Workflow:
1. On the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–9. Account message contains the Siebel Account data in hierarchical format. Account XML specifies which Siebel Account data the Workflow converted to XML.

2. Use the Siebel Workflow Administration windows to create a Workflow. As shown in Figure A–10, the following is an example of a Siebel Workflow Administration window.

The Business Service obtains the Account information from Siebel using the Query method.

Output from this Business Service is generated in hierarchical format.
4. As shown in Figure A–11, define an EAI XML Converter Business Service step and call it Convert Account Data to XML.

This Business Service is defined to receive the Account data from the EAI Siebel Adapter Business Service in hierarchical format and convert it to XML format.
5. As shown in Figure A–12, define an EAI File Transport Business Service step and call it Send Account Data.

This Business Service is defined to receive the Account data from the EAI XML Converter Business Service in Siebel XML format and send the Account XML to the file system in a specified directory using the Send method.

A.2.3 Creating a Siebel Workflow for an Event Using HTTP Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for exporting Siebel Account record information using the HTTP transport.

This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application.

To create a Siebel Workflow:
1. As shown in Figure A–13, in the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties.

Account message contains the Siebel Account data in hierarchical format.

Account XML specifies the Siebel Account data that the Workflow has converted to XML.

2. Use the Siebel Workflow Administration windows to create a Workflow.
3. As shown in Figure A–14, define an EAI Siebel Adapter Business Service step to receive an instance of Account data and call it Get New Account. The Business Service obtains the Account information from Siebel using the Query method.

Output from this Business Service is generated in hierarchical format.

4. Define an EAI XML Converter Business Service step and call it Convert to XML. This Business Service is defined to receive the Account data from the EAI Siebel Adapter Business Service in hierarchical format and convert it to XML format.
Creating a Siebel Workflow

5. Define an EAI HTTP Transport Business Service step and call it Send HTTP, as shown in Figure A–15.

This Business Service is defined to receive the Account data from the EAI XML Converter Business Service in Siebel XML format and send the Account XML to HTTP using the Send method.

A.2.4 Creating a Siebel Workflow for a Service Using MQSeries Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for importing Siebel Account record information through the MQSeries Transport.

Figure A–16 shows a sample Siebel Workflow Administration window.
This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application.

To create a Siebel Workflow:
1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–17.

Account message contains the Siebel Account data in hierarchical format.

Account XML specifies the Siebel Account data that the Workflow converted to XML.
2. Define an EAI MQSeries Server Transport Business Service step and call it **Receive**, as shown in Figure A–18.

The Business Service is defined to receive the Account data from the MQSeries message queue.

The EAI MQSeries Server Transport Business Service receives the Account data in Siebel XML format and sends it to the EAI XML Converter Business Service.
3. Define an EAI XML Converter Business Service step and call it **Get XML from MQ & Convert to XML**, as shown in Figure A–19.

This Business Service is defined to receive the Account data from the EAI MQSeries Server Transport Business Service in XML format and convert it to hierarchical format.
4. Define an EAI Siebel Adapter Business Service step and call it Update Account, as shown in Figure A–20.

This Business Service is defined to receive from the EAI XML Converter Business Service the instance of Account data in hierarchical format.

The Business Service applies the Account information into Siebel using the Insert or Update method.

A.2.5 Creating a Siebel Workflow for a Service Using File Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The workflow was designed for importing Siebel Account record information through the File transport.

This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application and then places Siebel XML on the file system.

The following is a Siebel Workflow Administration window with the Process Designer tab active, as shown in Figure A–21.
To create a Siebel Workflow:

Figure A–22 Process Properties Tab of the Workflow Process Window

```plaintext
table
<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>Default String</th>
<th>Default Date</th>
<th>Default Number</th>
<th>Business Compnent Virtual Field</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Message</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account ID</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Codes</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Message</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProcessName</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object ID</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siebel Operation ID</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```plaintext
Figure A–21 Siebel Workflow Administration Window
```
1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–22. Account message contains the Siebel Account data in hierarchical format. Account XML specifies the Siebel Account data that the workflow converted to XML.

![Figure A-23 EAI File Transport Business Service Step](image)

2. Define an EAI FileTransport Business Service step and call it Receive Account Data, as shown in Figure A–23. The Business Service is defined to receive the Account data from the file system. The EAI File Transport Business Service receives the Account data in Siebel XML format and sends it to the EAI XML Converter Business Service.
3. Define an EAI XML Converter Business Service step and call it **Convert from XML**, as shown in **Figure A–24**.

This Business Service is defined to receive the Account data from the EAI File Transport Business Service in XML format and convert it to hierarchical format.
4. Define an EAI Siebel Adapter Business Service step and call it Update or Insert New Account, as shown in Figure A–25.

This Business Service is defined to receive from the EAI XML Converter Business Service the instance of Account data in hierarchical format.

The Business Service applies the Account information into Siebel using the Insert or Update method.

A.2.6 Creating a Siebel Workflow for a Service Using HTTP Transport

The following procedure is an example of a Siebel workflow illustrated in the Siebel Workflow Administration window, as shown in Figure A–26. The Workflow was designed for importing Siebel Account record information through the HTTP transport, as shown in .
The following procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application and then places Siebel XML on the file system.

To create a Siebel Workflow:
1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–27.

Account message contains the Siebel Account data in hierarchical format.

Account XML specifies the Siebel Account data that the workflow converted to XML.
2. Define an EAI XML Converter Business Service step and call it XML to Property Set, as shown in Figure A–28.

The Business Service is defined to receive the Account data from the EAI HTTP Transport Business Service in XML format and convert it to hierarchical format.
3. Define an EAI Siebel Adapter Business Service step and call it *Update Siebel*, as shown in Figure A–29.

The Business Service is defined to receive from the EAI XML Converter Business Service the instance of Account data in hierarchical format.

The Business Service applies the Account information into Siebel using the Insert or Update method.
adapter
Provides universal connectivity by enabling an electronic interface to be accommodated (without loss of function) to another electronic interface.

agent
Supports service protocols in listeners and documents.

business service
Also known as a Web service. A Web service is a self-contained, modularized function that can be published and accessed across a network using open standards. It is the implementation of an interface by a component and is an executable entity.

channel
Represents configured connections to particular instances of back-end systems. A channel binds one or more event ports to a particular listener managed by an adapter.

listener
A component that accepts requests from client applications.

port
Associates a particular business object exposed by the adapter with a particular disposition. A disposition is a URL that defines the protocol and location of the event data. The port defines the end point of the event consumption.
Index

A
access rights, 10-1
adapter configuration
 updating, 3-2
adapter exceptions, 9-4
adapter types
 resource, 3-2
adapters, 1-1
 configuring, 3-2
 deploying, 3-1 to 3-2, 4-1
 integrating with BPEL Process Manager, 4-1, 6-1
 troubleshooting, 9-1 to 9-7
Adapters node, 4-45, 4-47
Add Channel dialog box, 2-30, 4-42
Add Target dialog box, 2-7
Advanced tab, 2-8, 2-34, 2-36
ae batch script, 9-2
application adapters
 configuring, 3-2
 deploying, 3-1 to 3-2, 4-1
 integrating with BPEL Process Manager, 4-1, 6-1
 troubleshooting, 9-1 to 9-7
Application Explorer, 1-2, 1-5, 2-11 to 2-13, 4-7
debugging and, 9-2 to 9-3
J2CA configuration and, 3-2
OracleAS Adapter J2CA and, 9-4
security and, 10-1, 10-7
targets and, 4-47
testing and, 9-2 to 9-3
troubleshooting, 9-2 to 9-3
WSDL files and, 4-42
application system objects
 viewing, 2-11
Available list, 10-4, 10-6

B
BPEL Designer, 4-1, 6-1
BPEL Process Manager
 integrating with adapters, 4-1, 6-1
OracleAS Adapter for Siebel and, 4-1
browsing metadata, 2-10
BSE (OracleAS Adapter Business Services Engine)
 configuring, 2-3
 connection access to, 10-7
troubleshooting, 9-5
BSE control service URL, 10-9
BSE repositories
 migrating, 10-9
BSE URL field, 2-4
Business Components, 1-2 to 1-5, 2-13, 2-24
business events, 1-1
Business Integration Manager, 1-5
Business Objects, 1-4, 2-24
 browsing, 2-10
Business Service list, 2-19
business services, 1-2 to 1-5, 2-13, A-1 to A-3
 browsing, 2-10
 creating, 2-24 to 2-25
 deploying, 10-1
testing, 2-26 to 2-27
Business Services node, 10-2 to 10-5, 10-8

C
CCI (Common Client Interface), 3-1
CCI calls, 3-1
channel configuration parameters
 Document type XML, 2-33
 Error Directory, 2-34, 2-36
 File Mask, 2-35
 Message wait interval, 2-34
 Mode of operation, 2-34
 MQ server channel, 2-33
 MQ server host, 2-33
 MQ server port, 2-33
 Poll interval, 2-36
 Polling Location, 2-35
 Port, 2-31, 4-44
 Processing Mode, 2-36
 Queue manager name, 2-33
 Request queue name, 2-34
 Response/Ack Directory, 2-36
 Server port, 2-31, 4-44
 Synchronization Type, 2-31, 2-34, 2-36, 4-44
 Thread limit, 2-34, 2-36
Channel field, 4-48
channel types
 File, 2-35
 HTTP, 2-30, 4-42 to 4-45
 MQSeries, 2-33
channels
 creating, 1-1, 2-30 to 2-36, 4-42 to 4-45
deleting, 2-37
ing, 2-36
starting, 2-33 to 2-36, 4-45
stopping, 2-33 to 2-36, 4-45
testing and debugging, 4-45
Channels node, 2-30, 4-42
channels. See also listeners
closing connections, 2-10
COM environment, 9-2
Common Client Interface (CCI), 3-1
Configuration node under Business Services, 10-2 to 10-5, 10-8
configuration parameters, 3-4
 IWayConfig, 3-4
 IWayHome, 3-4
 IWayRepoPassword, 3-4
 IWayRepoURL, 3-4
 IWayRepoUser, 3-4
 LogLevel, 3-4
configurations
 connecting to, 2-6
defining, 2-3 to 2-5
overwriting, 3-4
Configurations node, 2-4, 10-2
configuring adapters, 3-2
configuring events, 2-29 to 2-36
connecting to OracleAS Adapter J2CA, 9-4
connecting to Siebel, 2-6 to 2-10, 4-45, 4-47, 9-2 to 9-4, 9-6
Connection dialog box, 4-45
connection parameters, 9-2
 Language, 2-8
 Object Manager, 2-8
 Repository Manager, 2-8
connection types, 9-2
connections
 closing, 2-10
deleting, 2-11
establishing, 2-6 to 2-10, 2-19, 4-45
Connector
 deploying to Oracle Application Server, 3-1
connector factories, 3-2
connector factory objects, 3-2
 multiple, 3-4
control methods, 10-10
Create Web Service dialog box, 2-25
creating channels, 4-42 to 4-45
creating events, 4-47 to 4-48
creating repository projects, 2-3 to 2-5
creating schemas, 2-13 to 2-15
creating Web services, 2-24 to 2-25
Oracle, 3-4
defining targets to Siebel, 2-7
deleting channels, 2-37
deleting targets, 2-11
deploying adapters, 3-1 to 3-2, 4-1
Description field, 2-25, 10-3 to 10-4, 10-6, 10-8
design time, 2-3, 4-1, 4-41, 10-9
 configuring, 4-7
disconnecting from Siebel, 2-10
DNS Lookup option, 10-8
DNS name, 10-8
Document type XML parameter, 2-33
Domain Name System (DNS), 10-8
domain names, 10-8
Domain option, 10-8
E
EAI (Enterprise Application Integration), 1-5
Eclipse. See JDeveloper
 editing channels, 2-36
 editing targets, 2-11
EJB (Enterprise Java Beans), 3-1
Enterprise Application Integration (EAI), 1-5
Enterprise Connector for J2EE Connector Architecture (J2CA), 1-1
Enterprise Java Beans (EJB), 3-1
Envelope type list, 2-19
Error Directory parameter, 2-34, 2-36
target systems and, 9-5
eScript script, A-1
event adapters, 2-29 to 2-36
event integration, 4-41
event messages, 4-42
event ports
 creating, 4-47 to 4-48
event schemas, 2-16
events, 1-1
 configuring, 2-29 to 2-36
 creating, 4-47 to 4-48
 triggering, 4-66 to 4-70, 6-92 to 6-96
workflows and, A-3 to A-16
Events node, 2-30
Execution Denied list, 10-7
Execution Granted list, 10-7
Existing Service Names list, 2-25
Export WSDL dialog box, 4-8

F
fault code elements, 9-5
fault string elements, 9-5
File channel, 2-35
File Mask parameter, 2-35
File transport, A-8 to A-13, A-21
G
Generate XML Schema wizard, 2-18
Grant Access check box, 10-8

database connections
 opening, 3-4
databases
 connecting to, 3-4
Group (of Computers) option, 10-8
 groups
 creating, 10-3
Groups node, 10-4

H
Hostname parameter, 2-4
HTTP channel, 2-30, 4-42 to 4-45
HTTP transport, A-13, A-25

I
inbound J2CA services, 4-42
inbound processing, 1-1 to 1-5, A-3
input arguments, 4-69, 6-95
Input Arguments tab, 4-69, 6-95
installation directories, 3-4
instances of policy types, 10-1
integration access methods
 OracleAS Adapter for Siebel and, 1-5
Integration Object (IO) node, 2-20
 creating, 4-46
Integration Objects, 1-2, 2-17
 browsing, 2-10
IO (Integration Object) node, 2-20
 creating, 4-46
IP (Mask)/Domain field, 10-8
IP addresses, 10-8
IP and Domain Restriction policy type, 10-7
IWayConfig parameter, 3-4
IWayHome parameter, 3-4
IWayRepoPassword parameter, 3-4
IWayRepoURL parameter, 3-4
IWayRepoUser parameter, 3-4

J
J2CA (Enterprise Connector for J2EE Connector Architecture), 1-1
J2CA architecture
 Oracle Application Server Adapter and, 3-1
J2CA configuration
 Application Explorer and, 3-2
J2CA repositories
 migrating, 10-12
J2CA resource adapters, 1-1, 3-1
J2CA services, 4-42
JAR files, 9-2
Java Data Bean, 1-5
Java program clients, 3-1
JDeveloper, 4-7, 6-1

L
Language parameter, 2-8, 9-3
License and Method dialog box, 2-25
License field, 2-25
licenses, 2-25
list of nodes, 9-2
listeners. See also channels
log files, 9-1
log levels
 overwriting, 3-4
Loglevel parameter, 3-4
logon parameters, 9-2

M
managed connector factories, 3-2
managed connector factory objects, 3-2
 multiple, 3-4
ManagedConnectionFactory parameter, 3-4
Mediator Inbound Process, 5-28
Mediator Outbound Process, 5-2
message interactions
 asynchronous, 1-2
 synchronous, 1-2
message types
 event, 4-42
Message wait interval parameter, 2-34
messages, 1-1
metadata
 browsing, 2-10
 viewing, 2-11
metadata tables, 2-12
Method Name field, 2-25
methods, 10-1
Methods node, 2-26
migrating repositories, 10-9
Mode of operation parameter, 2-34
MQ server channel parameter, 2-33
MQ server host parameter, 2-33
MQ server port parameter, 2-33
MQSeries channel, 2-33
MQSeries transport, A-3, A-16

N
Name field, 10-3 to 10-4, 10-6
navigation paths, 1-4
New Configuration dialog box, 2-3 to 2-5
New Group dialog box, 10-4
New Policy permissions dialog box, 10-6
New User dialog box, 10-2
Node list, 9-2
Node name field, 4-46
nodes
 Adapters, 4-45, 4-47
 Business Services, 10-2, 10-8
 Channels, 2-30, 4-42
 Configuration under Business Services, 10-2 to 10-5, 10-8
 Configurations, 2-4, 10-2
 connected, 2-10, 4-45
disconnected, 2-10
Events, 2-30
Groups, 10-4
Integration Object, 2-20, 4-46
Methods, 2-26
Policies, 10-5

Index-3
Ports, 4-42
Sample Account, 2-20, 4-46
Security, 10-2 to 10-5, 10-8
Services, 2-26
Siebel, 4-45 to 4-47
Users and Groups, 10-2 to 10-3

O
Object Manager, 1-2
Object Manager parameter, 2-8
Oracle Application Server
deployment of Connector to, 3-1
Oracle Application Server Adapter
J2CA architecture and, 3-1
troubleshooting, 9-6
Oracle databases, 3-4
Oracle JDeveloper, 4-7, 6-1
Oracle repositories
migrating, 10-9
Oracle’s Unified Method (OUM), viii
OracleAS Adapter
installation directory and, 3-4
OracleAS Adapter Application Explorer. See
Application Explorer
OracleAS Adapter Business Services Engine
(BSE), 1-1, 2-3
troubleshooting, 9-5
OracleAS Adapter for Siebel
BPEL Process Manager and, 4-1
deploying, 1-1, 4-1
integration access methods and, 1-5
troubleshooting, 9-1 to 9-7
OracleAS Adapter J2CA, 2-3 to 2-4
Application Explorer and, 9-4
connecting to, 9-4
outbound processing, 1-1 to 1-5, A-2

P
parameter types
channel configuration, 2-31 to 2-36, 4-44
configuration, 3-4
connection, 2-8, 9-2
repository migration, 10-10
Password parameter, 9-2, 10-3
passwords, 3-4
permissions, 10-1
denying, 10-7
granting, 10-7
policies, 10-1
applying, 10-1
creating, 10-5
Policies node, 10-5
policy types, 10-1
IP and Domain Restriction, 10-7
policy-based security, 10-1 to 10-9
Poll interval parameter, 2-36
Polling Location parameter, 2-35
Port Number parameter, 2-4
Port parameter, 2-31, 4-44
ports creating, 2-29, 4-47 to 4-48
Ports node, 4-42
privileges, 10-1
setting, 10-1
Process Designer tab, 4-69, 6-95
Process Manager. See BPEL Process Manager
Process Simulator tab, 4-70, 6-96
Processing Mode parameter, 2-36
projects repository, 2-3 to 2-5
properties, 3-4
Protocol list, 2-20, 4-43, 4-46

Q
Query method, A-11
Queue manager name parameter, 2-33

R
repositories
migrating, 10-9
Repository Manager parameter, 2-8
repository migration parameters, 10-10
Repository Name parameter, 9-3 to 9-4
repository projects creating, 2-3 to 2-5
Web services and, 2-3
repository URLs, 10-11 to 10-12
repository.xml file, 10-12
REQUEST option, 2-34
Request queue name parameter, 2-34
request schemas, 2-13
Request tab, 2-33, 2-35
REQUEST_ACK option, 2-34
REQUEST_RESPONSE option, 2-34
requests executing, 9-4
Resource Execution policy type, 10-1
response schemas, 2-13
Response tab, 2-34 to 2-36
Response/Ack Directory parameter, 2-36
runtime, 2-3, 4-45 to 4-48
runtime events (Siebel Events), A-1
runtime integration, 4-66, 6-92

S
Sample Account node, 2-20, 4-46
schema considerations, 2-13
Schema location field, 4-46
schemas creating, 2-13 to 2-15, 2-16
scripts, A-1
security, 10-1 to 10-9
Application Explorer and, 10-1, 10-7
configuring, 10-2
Security node, 10-2 to 10-5, 10-8
Index-5

security policies
applying, 10-1
creating, 10-5
Security Policy option, 10-7
Selected list, 10-4, 10-6
Server port parameter, 2-31, 4-44
service names, 2-25
Service Provider list, 2-4 to 2-5
service schemas
creating, 2-13 to 2-15
Service-Oriented Architecture (SOA), 4-1
services, 1-1
creating, 2-24 to 2-25
deploying, 10-1
testing, 2-26 to 2-27
workflows and, A-16 to A-29
Services node, 2-26
servlets, 3-1
Siebel
connecting to, 1-4, 2-6 to 2-10, 4-45, 9-2 to 9-4, 9-6
disconnecting from, 2-10
Siebel Business Components, 1-2 to 1-5, 2-13, 2-24
Siebel Business Objects, 1-4, 2-24
browsing, 2-10
Siebel business processes
invoking, 1-4
Siebel Business Services, 1-2 to 1-5, 2-13, A-1 to A-3
browsing, 2-10
Siebel Call Center
starting, 4-66, 6-92
Siebel Client Workflow Administration screens, A-1
Siebel COM Data Interface, 1-5
Siebel Events (run-time events), A-1
Siebel Gateway server, 9-2
Siebel Integration Objects, 1-2, 2-17
browsing, 2-10
Siebel Java Data Bean, 1-5
Siebel node, 4-45 to 4-47
Siebel Object Manager, 1-2
Siebel Tools Schema Wizard, 2-16, 2-19
Siebel Tools window, 2-18
Siebel transports, 1-5
Siebel VB script, A-1
Siebel Workflow Administration window, 4-67, 6-93
Siebel workflow policies, A-2
Siebel Workflows, 1-5, A-1 to A-29
creating, A-3
SiebelJJ_common.jar file, 9-2
SiebelJJ_enu.jar file, 9-2
Single (Computer) option, 10-8
SOA (Service-Oriented Architecture), 4-1
SOAP agents, 9-5
SOAP envelopes, 10-10
SOAP faults, 9-5
soap operation name dialog box, 10-10
SOAP requests, 9-5 to 9-7, 10-1, 10-6
creating, 10-9
errors and, 9-5 to 9-7
SOAP responses, 9-5 to 9-7
starting the Siebel Call Center, 4-66, 6-92
Synchronization Type parameter, 2-31, 2-34 to 2-36, 4-44
system objects
viewing, 2-11

T
target systems
errors and, 9-5
Target Type list, 2-7
targets
connecting to, 2-6 to 2-10, 4-45, 4-47, 9-2 to 9-4
defining, 2-7
deleting, 2-11
disconnecting from, 2-10
dispatching, 2-11
testing Web services, 2-26 to 2-27
thin clients, 9-2
Thread limit parameter, 2-34, 2-36
trace information, 9-1
transaction processing, 1-1
transports, 1-5
File, A-8 to A-13, A-21
HTTP, A-13, A-25
MQSeries, A-3, A-16
triggering an event, 4-66 to 4-70, 6-92 to 6-96
troubleshooting, 9-1 to 9-7
Application Explorer, 9-2 to 9-3
BSE, 9-5
Web services, 9-5 to 9-7
Type list, 10-6, 10-8

U
updating adapter configuration, 3-2
UserName parameter, 9-2
users
associating, 10-2
Users and Groups node, 10-2 to 10-3
Users node, 10-3

V
viewing system objects, 2-11

W
Web Service Definition Language (WSDL), 2-28 to 2-29
Web service names, 2-25
Web services, 1-1 to 1-2, 1-5, 2-3
creating, 2-24 to 2-25
deploying, 10-1
integrating, 4-1
repository projects and, 2-3
testing, 2-26 to 2-27
troubleshooting, 9-5 to 9-7
Web services policy-based security, 10-1 to 10-9
workflows elements, 4-69, 6-95
workflow policies, A-2
Workflow Process window, A-4 to A-23, A-27

Index-5
Workflow Processes window, 4-67, 6-93
Workflows, A-1 to A-29
 creating, A-3
WSDL (Web Service Definition Language), 2-28 to 2-29
WSDL documents, 4-1
WSDL file location dialog box, 10-9
WSDL File Name field, 4-48
WSDL files, 4-1, 6-1
 Application Explorer and, 4-42
 creating, 4-42

X
XDR schemas
 creating, 2-16
XML documents, 1-4, A-2
XML messages, 1-1, A-2 to A-3
XML schemas, 1-2, 1-5
 creating, 2-13 to 2-15, 2-16