Contents

Preface ... vii

Audience .. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions .. viii

Part I Upgrading Oracle Data Integrator

1 Oracle Data Integrator Upgrade Overview
 1.1 Flowchart of the Oracle Data Integrator Upgrade Process ... 1-1
 1.2 Steps in the Oracle Data Integrator Upgrade Process .. 1-2

2 Oracle Data Integrator 11g for 10g Users
 2.1 Components of the Oracle Data Integrator Installation ... 2-1
 2.2 Important Changes for Oracle Data Integrator 10g Users .. 2-2
 2.2.1 Upgrade Considerations .. 2-2
 2.2.2 Changes in the Run-Time Agent ... 2-2
 2.2.3 Other Changes ... 2-3

3 Upgrading Your Oracle Data Integrator Environment
 3.1 Task 1: Understand the Starting Points for Oracle Data Integrator ... 3-1
 3.1.1 Starting Points When Upgrading the Middle Tier Instance .. 3-1
 3.1.2 Starting Points When Upgrading the Oracle Data Integrator Repositories 3-2
 3.2 Task 2: Plan the Oracle Data Integrator Component Architecture ... 3-2
 3.3 Task 3: If Necessary, Upgrade the Database that Contains the ODI Repository 3-3
 3.4 Task 4: Copy (Clone) Existing 10g Master and Work Repositories ... 3-3
 3.4.1 Schema Cloning Process for Oracle Database ... 3-4
 3.4.2 Schema Cloning Process for Microsoft SQL Server Database .. 3-5
 3.4.3 Schema Cloning Process for PostgreSQL Database ... 3-6
 3.4.4 Schema Cloning Process for IBM DB2 Universal Database .. 3-7
 3.4.4.1 Same Host Cloning Process for ODI 10g Master and Work Schemas 3-7
 3.4.4.2 Different Host Cloning Process for ODI 10g Master and Work Schemas 3-8
 3.4.5 Schema Cloning Process for IBM DB2 AS/400 Database ... 3-8
 3.4.6 Schema Cloning Process for Sybase AS Enterprise 15+ ... 3-10
3.4.7 Schema Cloning Process for Hypersonic SQL 1.7.3.3................................. 3-11
3.5 Task 5: Create a Backup of the ODI Repositories to be Upgraded 3-11
3.6 Task 6: Install and Configure Oracle Data Integrator 11g.......................... 3-12
3.7 Task 7: Run Upgrade Assistant to Upgrade ODI Middle Tier and Repositories 3-12
3.7.1 Task 7a: Run the Upgrade Assistant for Oracle Data Integrator 3-13
3.7.2 Task 7b: Upgrade the Middle Tier Instance .. 3-13
3.7.3 Task 7c: Upgrade the Oracle Data Integrator Repositories 3-14
3.8 Task 8: Perform Any Required Post-Upgrade Manual Steps 3-16

4 Oracle Data Integrator Post-Upgrade Tasks
4.1 Redistributing Centralized Repositories After Upgrade 4-1
4.2 Updating the Work Repository Connection Parameters 4-2
4.3 Updating Topology and Security Metadata ... 4-2
4.4 Re-applying ODI 10g Modifications to the ODI 11g Topology and Security Metadata 4-3
4.5 Replacing KMs with Mandatory Updates ... 4-3

Part II Upgrading Oracle Data Profiling and Oracle Data Quality

5 Oracle Data Profiling and Oracle Data Quality Upgrade Overview
5.1 Steps in the Oracle Data Profiling and Data Quality Upgrade Process 5-1

6 Oracle Data Profiling and Data Quality for 10g Users
6.1 Components of the Oracle Data Quality 11g Release 1 Installation 6-1

7 Upgrading Your Oracle Data Profiling and Quality Environment
7.1 Preparing to Upgrade .. 7-1
7.1.1 Understand the Supported Upgrade Starting Points 7-1
7.1.2 Backup the Existing Repository .. 7-1
7.1.3 Install Oracle Data Profiling and Oracle Data Quality for Data Integrator 7-1
7.1.4 Copy the Existing Repository to the Oracle Data Quality Server 7-2
7.1.5 Remove User-Defined Metabases and Users 7-2
7.2 Oracle Data Quality Upgrade Instructions ... 7-3

8 Oracle Data Profiling and Quality Post-Upgrade Tasks
8.1 Update Metabase Connections .. 8-1
8.2 Validate the Upgrade Operation ... 8-2

A Oracle Data Integrator Upgrade Screens
A.1 Welcome ... A-1
A.2 Specify Operation ... A-1
A.3 Specify Source Home .. A-5
A.4 Prerequisites ... A-5
A.5 Target Database .. A-6
A.6 Specify Work Repositories .. A-8
A.7 Examine ... A-9
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.8</td>
<td>Upgrade Summary</td>
<td>A-9</td>
</tr>
<tr>
<td>A.9</td>
<td>Upgrade Progress</td>
<td>A-10</td>
</tr>
<tr>
<td>A.10</td>
<td>End of Upgrade</td>
<td>A-10</td>
</tr>
</tbody>
</table>

Index
This preface contains the following sections:

- Audience
- Documentation Accessibility
- Related Documents
- Conventions

Audience

This guide is intended for Oracle Fusion Middleware system administrators who are responsible for installing, maintaining, and upgrading Oracle Data Integrator. It is assumed that readers of this manual have knowledge of the following:

- Oracle Fusion Middleware system administration and configuration
- Configuration parameters and expected behavior of the system being upgraded

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documents

For more information, see the following related documentation available in the Oracle Fusion Middleware 11g documentation library:

- Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator
- Oracle Fusion Middleware Installation Guide for Oracle Data Integrator
- Oracle Fusion Middleware Upgrade Planning Guide
- Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator
- Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Part I

Upgrading Oracle Data Integrator

Part I provides information on upgrading from Oracle Data Integrator 10g to Oracle Data Integrator 11g.

Part I contains the following chapters:

- Chapter 1, "Oracle Data Integrator Upgrade Overview"
- Chapter 2, "Oracle Data Integrator 11g for 10g Users"
- Chapter 3, "Upgrading Your Oracle Data Integrator Environment"
- Chapter 4, "Oracle Data Integrator Post-Upgrade Tasks"
This chapter provides a high-level overview of the Oracle Data Integrator upgrade process. Refer to the following sections for more information:

- Section 1.1, "Flowchart of the Oracle Data Integrator Upgrade Process"
- Section 1.2, "Steps in the Oracle Data Integrator Upgrade Process"

1.1 Flowchart of the Oracle Data Integrator Upgrade Process

Figure 1–1 provides a flowchart of the Oracle Data Integrator upgrade process. Review this chart to get familiar with the steps you will be required to take, based on your existing Oracle Data Integrator environment.
1.2 Steps in the Oracle Data Integrator Upgrade Process

Table 1–1 describes each of the steps in the upgrade process flowchart which is shown in Figure 1–1. The table also provides information on where to go to get more information on each step in the process.
Table 1–1 Table Describing the Steps in the Oracle Data Integrator Upgrade Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review upgrade concepts in the Oracle Fusion Middleware Upgrade Planning Guide</td>
<td>The Oracle Fusion Middleware Upgrade Planning Guide provides a high-level overview of how to upgrade your entire Oracle Data Integrator environment to Oracle Fusion Middleware, including compatibility information and instructions for upgrading any databases that support your Oracle Fusion Middleware components.</td>
<td>"Developing an Upgrade Strategy" in Oracle Fusion Middleware Upgrade Planning Guide</td>
</tr>
<tr>
<td>Understand the upgrade starting points</td>
<td>Before planning your upgrade, you should be familiar with the supported starting points for an Oracle Data Integrator upgrade.</td>
<td>Section 3.1, "Task 1: Understand the Starting Points for Oracle Data Integrator"</td>
</tr>
<tr>
<td>Decide upon an Oracle Data Integrator Component Architecture</td>
<td>With the introduction of Oracle WebLogic Server, the component configuration and architecture for Oracle Data Integrator has changed. Before you begin an upgrade, make sure you are familiar with the basic configurations in Oracle Fusion Middleware 11g.</td>
<td>Section 3.2, "Task 2: Plan the Oracle Data Integrator Component Architecture"</td>
</tr>
<tr>
<td>If necessary, upgrade the repository database to a supported database version</td>
<td>The Oracle Data Integrator Repositories are stored into database schemas. Before you can upgrade these schemas, you must make sure the database is a supported version.</td>
<td>Section 3.3, "Task 3: If Necessary, Upgrade the Database that Contains the ODI Repository"</td>
</tr>
<tr>
<td>Copy (clone) existing 10g Master and Work Repositories into a single database instance before running the Upgrade Assistant</td>
<td>Oracle recommends that you perform repository upgrades on cloned repository schemas. Upgrading repositories distributed on different database instances is not supported. Clone schemas into a single database instance and then redistribute them after the upgrade to their original instances.</td>
<td>Section 3.4, "Task 4: Copy (Clone) Existing 10g Master and Work Repositories"</td>
</tr>
<tr>
<td>Create a database backup of the ODI schema that will be upgraded.</td>
<td>Creating a backup is mandatory if the repository schemas have not been cloned and you are attempting to upgrade a non-cloned schema. Performing a backup of the ODI schemas is particularly important if the upgrade fails and corrupts the content. With a backup, you can delete the corrupted schemas and re-clone the originals to complete the upgrade.</td>
<td>Section 3.5, "Task 5: Create a Backup of the ODI Repositories to be Upgraded"</td>
</tr>
<tr>
<td>Install and Configure Oracle Data Integrator 11g</td>
<td>The Upgrade Assistant is available as part of the ODI 11g installation.</td>
<td>Section 3.6, "Task 6: Install and Configure Oracle Data Integrator 11g"</td>
</tr>
<tr>
<td>Begin the upgrade process with the Upgrade Assistant.</td>
<td>The Upgrade Assistant automates most of the Oracle Data Integrator upgrade tasks.</td>
<td>Section 3.7.1, "Task 7a: Run the Upgrade Assistant for Oracle Data Integrator"</td>
</tr>
</tbody>
</table>
Table 1–1 (Cont.) Table Describing the Steps in the Oracle Data Integrator Upgrade Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Upgrade Assistant to Upgrade Oracle Data Integrator Middle Tier. (This step can be performed before or after upgrading the repositories.)</td>
<td>For ODI stand-alone agent installations: this step copies the user’s 10g Agent libraries, drivers and scripting engines into the 11g Standalone Agent installation folder. Note that this upgrade step does not apply to Java EE components (as they did not exist in ODI 10g) and does not apply to the 10g Designer or 11g Studio.</td>
<td>Section 3.7.2, "Task 7b: Upgrade the Middle Tier Instance"</td>
</tr>
<tr>
<td>Run Upgrade Assistant to Upgrade the Oracle Data Integrator Master Repository and Work Repository schema. (This step can be performed before or after upgrading the Middle Tier.)</td>
<td>The Upgrade Assistant upgrades the Oracle Data Integrator 10g repository schemas to Oracle Data Integrator 11g.</td>
<td>Section 3.7.3, "Task 7c: Upgrade the Oracle Data Integrator Repositories"</td>
</tr>
<tr>
<td>Perform Any Required Post-Upgrade Manual Steps</td>
<td>The Upgrade Assistant automates many of the upgrade tasks, but there are cases where you must manually modify the configuration settings after running the Upgrade Assistant.</td>
<td>Chapter 4, "Oracle Data Integrator Post-Upgrade Tasks"</td>
</tr>
</tbody>
</table>
Oracle Data Integrator 11g for 10g Users

The following sections introduce some key concepts of the Oracle Data Integrator environment for 10g Release 3 (10.1.3.x) users:

- Section 2.1, "Components of the Oracle Data Integrator Installation"
- Section 2.2, "Important Changes for Oracle Data Integrator 10g Users"

2.1 Components of the Oracle Data Integrator Installation

Oracle Data Integrator 10g Release 3 (10.1.3) provided the following components:

- Oracle Data Integrator
- Oracle Data Profiling
- Oracle Data Quality for Data Integrator

Oracle Data Integrator 11g provides updates to all of these components, but not in a single installation. In Oracle Data Integrator 11g, Oracle Data Profiling and Oracle Data Quality components are packaged and installed separately, but they still provide the same resources and services.

Specifically, Oracle Data Integrator 11g provides the following installation options:

- **Oracle Data Integrator Client Components**
 - ODI Studio
 This component replaces the Oracle Data Integrator 10g graphical modules (Designer, Operator, Topology and Security Manager), which are all merged into a single Fusion Common Platform (FCP) user interface.
 - ODI Software Development Kit (SDK)
 This new component is a Java API for performing run-time and design-time operations.

- **Oracle Data Integrator Standalone Agent**
 - Standalone Agent
 This component corresponds to the ODI 10g run-time agent. It runs on a Java Machine.

- **Oracle Data Integrator Java EE Components**
 - Java EE Agent
 This component is a Java EE flavor of the run-time agent, for deployment within an application server.
2.2 Important Changes for Oracle Data Integrator 10g Users

Although the overall product architecture has not changed, 10g users should be aware the following changes to plan for their updates.

- Upgrade Considerations
- Changes in the Run-Time Agent
- Other Changes

2.2.1 Upgrade Considerations

Before you begin the upgrade process, consider the following:

- Upgrading to ODI 11gR1 is performed using the Upgrade Assistant. It is not possible to upgrade repositories from the Oracle Data Integrator user interface.

- The database that contains the Oracle Data Integrator repositories must be supported by Oracle Fusion Middleware 11g. For the latest list of supported databases, see:

- For instructions on verifying that your database meets the requirements of Oracle Fusion Middleware 11g, see “Upgrading and Preparing Your Databases” in the Oracle Fusion Middleware Upgrade Planning Guide. Oracle recommends that you refer to your database-specific upgrade documentation for additional information.

- During the upgrade process Work Repositories must reside on the same database server as their Master Repository. The repositories can be manually redistributed after the upgrade.

 For more information on cloning repositories, see Task 4: Copy (Clone) Existing 10g Master and Work Repositories.

2.2.2 Changes in the Run-Time Agent

The run-time agent is available as a standalone agent or a Java EE agent. Both of these agents are now connected to a single Work Repository and act as schedulers. The agents connect systematically to the Master Repository at startup.

For these agents to start properly:
Important Changes for Oracle Data Integrator 10g Users

- For the standalone agent the connection configuration (using the odiparams file) must be performed. Running the agent.bat starts a scheduler agent.

- For the Java EE agent, the connection configuration is made in the agent template, and the agent connects to the repositories using JDBC data sources defined in the application server.

The agent now uses the HTTP protocol rather than its own protocol. In addition, the standalone agent is no longer started as a service using the Wrapper tool. To configure the agent for high availability, Oracle Process Manager and Notification Server (OPMN) is used and can be configured using some built-in scripts.

2.2.3 Other Changes

Oracle Data Integrator 10g users should also be aware of the following changes in Oracle Data Integrator 11g:

- Knowledge modules and technologies are available in a directory called /xml-reference.

- The demonstration environment is delivered separately from the ODI Installer on the ODI Companion CD.

- Host and Modules are removed from the Security. This entire feature is deprecated.

- The following scripts are deprecated: Jython, agentscheduler, agentweb, designer, topology, security, and operator.

- Repository creation for Oracle, DB2 and Microsoft SQL Server can be performed using Repository Creation Utility (RCU). This tool allows creation and management of schemas for multiple Oracle products.

- Repository creation and import is possible from the ODI Studio. The minimport and mupgrade scripts are deprecated.

- ODI is now shipped with DataDirect JDBC drivers to connect to technologies such as MSSQL and DB2. Note that the other ODI drivers can still be used to connect to the database. The additional drivers for the Standalone Agent are in the /drivers directory, but the drivers for the ODI Studio are in the /user_home directory.

For more information, see "Add Additional Drivers and Open Tools" in Oracle Fusion Middleware Installation Guide for Oracle Data Integrator.

Note: For a detailed list of the new features in Oracle Data Integrator 11gR1, see "What’s New In Oracle Data Integrator?", in Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator.
This chapter describes how to upgrade your existing Oracle Data Integrator 10g environment to Oracle Data Integrator 11g.

This chapter contains the following sections:

- Task 1: Understand the Starting Points for Oracle Data Integrator
- Task 2: Plan the Oracle Data Integrator Component Architecture
- Task 3: If Necessary, Upgrade the Database that Contains the ODI Repository
- Task 4: Copy (Clone) Existing 10g Master and Work Repositories
- Task 5: Create a Backup of the ODI Repositories to be Upgraded
- Task 6: Install and Configure Oracle Data Integrator 11g
- Task 7: Run Upgrade Assistant to Upgrade ODI Middle Tier and Repositories
 - Task 7a: Run the Upgrade Assistant for Oracle Data Integrator
 - Task 7b: Upgrade the Middle Tier Instance
 - Task 7c: Upgrade the Oracle Data Integrator Repositories
- Task 8: Perform Any Required Post-Upgrade Manual Steps

3.1 Task 1: Understand the Starting Points for Oracle Data Integrator

The supported starting points for an upgrade depend on the components you will be upgrading and the components you have installed. This section describes the starting points for the following upgrade operations:

- Starting Points When Upgrading the Middle Tier Instance
- Starting Points When Upgrading the Oracle Data Integrator Repositories

3.1.1 Starting Points When Upgrading the Middle Tier Instance

ODI Middle Tier Upgrade migrates an ODI 10g Run-time Agent configuration (drivers and odiparams file parameters) to an ODI 11g Standalone Agent.

The starting point for the Middle Tier Upgrade is to have both an ODI 10g Run-Time Agent and an ODI 11g Standalone Agent installed on this machine.
3.1.2 Starting Points When Upgrading the Oracle Data Integrator Repositories

The database that contains the Oracle Data Integrator repository must be supported by Oracle Fusion Middleware 11g. The Upgrade Assistant supports Master and Work repository upgrades for databases listed below.

If your current database is not listed below or to validate that your database version is compatible with ODI 11g, see Task 3: If Necessary, Upgrade the Database that Contains the ODI Repository.

- Oracle RDBMS
- Microsoft SQL Server
- Sybase Adaptive Server

NOTE: In order to upgrade repositories stored in Sybase, it is required that the repository is stored in a database with a page size of 4k or greater. If the repository is stored in a database with a smaller page size, the database should be migrated to a database of an appropriate page size before upgrading the repository.

For details on increasing the page size, refer to http://www.sybase.com/content/1021203/sybmigrate_wp.pdf

- Hypersonic SQL
- IBM DB2
- IBM DB2/400
- PostgreSQL

NOTE: The ODI 11gR1 Upgrade Assistant includes the drivers for all the supported databases except PostgreSQL. To use the Upgrade Assistant with PostgreSQL, you must download the latest JDBC driver from http://jdbc.postgresql.org/download.html and copy it to the ODI_HOME/upgrade/jlib directory where ODI_HOME is the installation directory of Oracle Data Integrator 11g.

3.2 Task 2: Plan the Oracle Data Integrator Component Architecture

The Oracle Data Integrator 10g component architecture changed with ODI 11g. Although you can keep the same component organization as ODI 10g, Oracle recommends that you review the new components organization in "Introduction to Oracle Data Integrator" in *Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator* to identify any architecture changes.
3.3 Task 3: If Necessary, Upgrade the Database that Contains the ODI Repository

The database that contains the Oracle Data Integrator repositories must be supported by Oracle Fusion Middleware 11g. For the latest list of supported databases, see:

For instructions on verifying that your database meets the requirements of Oracle Fusion Middleware 11g, see “Upgrading and Preparing Your Databases” in the Oracle Fusion Middleware Upgrade Planning Guide. Oracle recommends that you refer to your database-specific upgrade documentation for additional information.

Note: If your RDBMS was supported in Oracle Data Integrator 10g, but is no longer supported in Oracle Data Integrator 11g, use the ODI 10g version to do the following before you upgrade:

1. Export the ODI 10g repositories from the unsupported database systems/versions.
2. Import Master and Work Repositories into new repositories created with the 10g version into supported database systems/versions.

For additional information, see "Repository-Level Export/Import" in the Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator.

3.4 Task 4: Copy (Clone) Existing 10g Master and Work Repositories

Oracle recommends that you clone each original ODI 10g Master and Work repository before beginning the upgrade process. During the Master Repository upgrade process, the Upgrade Assistant will prompt you for the location and credentials of the cloned Master Repository and Work Repositories.

Caution: The Upgrade Assistant does not support the upgrade of repositories distributed on different instances or technologies.

Both ODI 10g and ODI 11g support a repository configuration where the Master Repository can be on different database instances than the Work Repository. During the upgrade process, however, the Master Repository and all Work Repositories must reside on the same database instance. After the upgrade process they can be redistributed.

Once both the Master and Work repositories are upgraded and optionally redistributed, you must update the Work Repositories connections defined in the Topology to match their post-upgrade location. See Section 4.2, "Updating the Work Repository Connection Parameters" for more information on updating the connection parameters to the Work Repository as defined in the Topology.

The following sections provide basic schema cloning procedures for databases that are supported to host ODI repositories. For detailed information, refer to your database-specific documentation.

- Schema Cloning Process for Oracle Database
Schema Cloning Process for Microsoft SQL Server Database
Schema Cloning Process for PostgreSQL Database
Schema Cloning Process for IBM DB2 Universal Database
Schema Cloning Process for IBM DB2 AS/400 Database
Schema Cloning Process for Sybase AS Enterprise 15+
Schema Cloning Process for Hypersonic SQL 1.7.3.3

Note: The goal of this section is to stress the importance of creating a clone (or copy) of each of the ODI 10g repositories before you begin the upgrade process. The cloning procedures documented in this section are sample procedures for each of the ODI 11g supported databases. You are not restricted to using these procedures. Always use the cloning procedures that suit your specific needs.

WARNING: Once you have completed the cloning process, DO NOT use your Oracle Data Integrator 10.1.3.5 client to validate that the cloning process worked properly. The Upgrade Assistant will perform validation checks on the cloned repositories before the upgrade.

3.4.1 Schema Cloning Process for Oracle Database

The following steps can be used to clone Oracle Database schemas for ODI:

1. Export ODI 10g Master and Work schema using Oracle Export Utility
 Example:

 exp userid=odi_master_10g/odi_master_10g file=/tmp/odi_master_10g.dmp
 exp userid=odi_work_10g/odi_work_10g file=/tmp/odi_work_10g.dmp
 exp userid=odi_work1_10g/odi_work1_10g file=/tmp/odi_work1_10g.dmp

2. Create Master and Work clone schemas
 Using SQL*Plus, create Master and Work clone schemas and grant connect/resource privileges.
 Example:

 create user odi_master_10g_cp identified by odi_master_10g_cp;
 create user odi_work_10g_cp identified by odi_work_10g_cp;
 create user odi_work1_10g_cp identified by odi_work1_10g_cp;
 grant connect,resource to odi_master_10g_cp, odi_work_10g_cp, odi_work1_10g_cp;

3. Import Master and Work schema into cloned schemas using Oracle Import Utility.
 Using Oracle Import, import the ODI 10g Master and Work schema dump into the cloned Master and Work schemas.
 Example:

 imp userid='system/manager' touser=odi_master_10g_cp fromuser=odi_master_10g
 file=/tmp/odi_master_10g.dmp
 imp userid='system/manager' touser=odi_work_10g_cp fromuser=odi_work_10g
 file=/tmp/odi_work_10g.dmp
 imp userid='system/manager' touser=odi_work1_10g_cp fromuser=odi_work1_10g
 file=/tmp/odi_work1_10g.dmp
3.4.2 Schema Cloning Process for Microsoft SQL Server Database

The following steps can be used to clone Microsoft SQL 2005/2008 database schemas:

1. Export the ODI 10g Master and Work schemas using SQL Management Studio.
 Example:
   ```sql
   BACKUP DATABASE [odi_10g] TO DISK = N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\odi_10g.bak' WITH INIT, NOSKIP;
   ```

2. Restore Master and Work schemas into the new database using SQL Management Studio.
 Using SQL Management Studio Express perform the following:
 1. Restore the Master and Work schemas.
 2. Print logical names of files used to store the database.
 3. Move the files used to store database.
 Example:
   ```sql
   RESTORE DATABASE [odi_10g_cp] FROM DISK = N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\odi_10g_cp.mdf',
   MOVE N'odi_10g_log' TO N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\odi_10g_cp_log.1df', NOUNLOAD;
   ```

3. Create login and user for cloned Master and Work schemas using SQL Management Studio.
 Using SQL Management Studio Express, create logins and users to access cloned Master and Work schemas. Be sure to select the correct database instance in SQL Management Studio Express, as these commands are applied to the selected database instance.
 Example:
   ```sql
   create login odi_10g_cp with password=N'odi_10g_cp',
   default_database=odi_10g_cp,  check_expiration = off, check_policy = off;
   USE odi_10g_cp
   create user odi_10g_cp  for login odi_10g_cp;
   ```

4. To move the old schema to the new schema location, run the following SQL script:
 NOTE: In the example below, the old schema name is odi_10g and the new schema name is odi_10g_cp.
   ```sql
   CREATE SCHEMA [odi_10g_cp] AUTHORIZATION odi_10g_cp
   go
   SET @OldSchema = 'odi_10g'
   DECLARE @OldSchema AS varchar(255)
   DECLARE @NewSchema AS varchar(255)
   ```
SET @NewSchema = 'odi_10g_cp'.
DECLARE @sql AS varchar(MAX)
SET @sql = CHAR(13) + CHAR(10)
SELECT @sql = @sql + 'ALTER SCHEMA [' + @NewSchema + '] TRANSFER [' + TABLE_SCHEMA + '].[' + TABLE_NAME + '] + CHAR(13) + CHAR(10)
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = @OldSchema
EXEC (@sql)
go

5. To finalize the schema move, run the following SQL query:
DROP SCHEMA [odi_10g]
go
drop user odi_10g;
go
alter user ua_master_c with default_schema = odi_10g_cp;
go
grant create table, create view, create procedure,create function to odi_10g_cp;
go

3.4.3 Schema Cloning Process for PostgreSQL Database

Use the following steps to clone PostgreSQL database schemas:

1. Export ODI 10g Master and Work schemas using PostgreSQL Backup Utility.

 Example:

 pg_dump -U odi_master_10g --schema=odi_master_10g -Ft -f 'c:/odi_master_10g.dmp.tar' odi_10g
 pg_dump -U odi_work_10g --schema=odi_work_10g -Ft -f 'c:/odi_work_10g.dmp.tar' odi_10g
 pg_dump -U odi_work1_10g --schema=odi_work1_10g -Ft -f 'c:/odi_work1_10g.dmp.tar' odi_10g

2. Create a clone of the database and the Master and Work users.

 Using PostgreSQL Interactive Terminal, create a clone database and users for Master and Work clone schemas with SUPERUSER option.

 Example:

 psql -U postres
 CREATE ROLE odi_master_10g_cp WITH SUPERUSER LOGIN PASSWORD 'odi_master_10g_cp';
 CREATE ROLE odi_work_10g_cp WITH SUPERUSER LOGIN PASSWORD 'odi_work_10g_cp';
 CREATE ROLE odi_work1_10g_cp WITH SUPERUSER LOGIN PASSWORD 'odi_work1_10g_cp';
 CREATE DATABASE odi_10g_cp with owner=odi_master_10g_cp;

3. Restore Master and Work schemas into clone database using PostgreSQL.

 Using PostgreSQL Restore Utility, restore Master and Work schemas into cloned database.

 Example:

 pg_restore -O -U odi_master_10g_cp -d odi_10g_cp -C 'c:/odi_master_10g.dmp.tar'
 pg_restore -O -U odi_work_10g_cp -d odi_10g_cp 'c:/odi_work_10g.dmp.tar'

Using PostgreSQL Interactive Terminal, set NOSUPERUSER for Master and Work clone schema users.

Example:

```
psql -U postres -d odi_10g_cp
ALTER USER odi_master_10g_cp WITH NOSUPERUSER;
ALTER USER odi_work_10g_cp WITH NOSUPERUSER;
ALTER USER odi_work1_10g_cp WITH NOSUPERUSER;
```

Using PostgreSQL Interactive Terminal, rename Master and Work clone schemas.

Example:

```
ALTER SCHEMA odi_master_10g RENAME TO odi_master_10g_cp;
ALTER SCHEMA odi_work_10g RENAME TO odi_work_10g_cp;
ALTER SCHEMA odi_work1_10g RENAME TO odi_work1_10g_cp;
```

3.4.4 Schema Cloning Process for IBM DB2 Universal Database

Chose one of the following procedures to clone IBM’s DB2 Universal Database schemas:

- Same Host Cloning Process for ODI 10g Master and Work Schemas
- Different Host Cloning Process for ODI 10g Master and Work Schemas

Note: The Page size for database has to be 32768 (32k) and operating system users ODI_MASTER_10G_CP and ODI_WORK_10G_CP have to be created manually.

3.4.4.1 Same Host Cloning Process for ODI 10g Master and Work Schemas

Use the following steps to clone IBM DB2 schemas on the same host or platform:

1. Create DB2 Database using Command Line Processor.

Example:

```
db2 CREATE DATABASE ODI11 AUTOMATIC STORAGE YES ON 'C:\' DBPATH ON 'C:\' USING CODESET IBM-1252 TERRITORY US COLLATE USING SYSTEM PAGESIZE 32768
```

2. Copy ODI 10g Master and Work schemas using DB2 Database Movement Tool to new schema.

Master Schema Example:

```
db2move ODI10G COPY -sn odi_master_10g -co TARGET_DB ODI10GCP USER db2admin USING welcome SCHEMA_MAP ((odi_master_10g,odi_master_10g_cp)) TABLESPACE_MAP ((USERSPACE1,USERSPACE1),SYS_ANY) owner odi_master_10g_cp
```

Work Schema Example:

```
db2move ODI10G COPY -sn odi_work_10g -co TARGET_DB ODI10GCP USER db2admin USING welcome SCHEMA_MAP ((odi_work_10g,odi_work_10g_cp)) TABLESPACE_MAP ((USERSPACE1,USERSPACE1),SYS_ANY) owner odi_work_10g_cp
```
3.4.4.2 Different Host Cloning Process for ODI 10g Master and Work Schemas
Use the following steps to clone IBM DB2 schemas on different hosts or platforms:

1. Export DDL and Data from Master and Work schemas using DB2 Database Movement Tool and DDL Extracting Tool.

 DB2 Database Movement Tool produces PC/IXF files with data and `db2move.lst` file with list of tables. Files are produced in the folder where the tool was called. The DDL Extracting Tool produces `db2master.sql` and `db2work.sql` with SQL queries to recreate database structure.

 Example:

   ```
   db2move ODI10G export -sn odi_master_10g,odi_work_10g
   db2master -d ODI10G -z odi_master_10g -e -o c:/db2master.sql
   db2work -d ODI10G -z odi_work_10g -e -o c:/db2work.sql
   ```

2. Transfer exported files to new location.

 1. Ensure that the PC/IXF files were transferred in binary mode, and that the `db2move.lst` file and the `db2master.sql` and `db2work.sql` files were transferred in ASCII mode.

 2. Place the PC/IXF files where the DB2 Database Movement Tools is located.

 Example:

   ```
   db2 CREATE DATABASE ODI10G AUTOMATIC STORAGE YES ON 'C:\' DBPATH ON 'C:\'
   USING CODESET IBM-1252 TERRITORY US COLLATE USING SYSTEM PAGESIZE 32768
   ```

4. Import the exported DDL to the new database using the Command Line Processor.

 Example:

   ```
   db2 -tvf c:/db2backup/db2master.sql
   db2 -tvf c:/db2backup/db2work.sql
   ```

5. Import exported data to new database using DB2 Database Movement Tool.

 Example:

   ```
   db2move ODI10G load
   ```

6. Verify that cloned schemas are intact; some tables may be in "check pending" state (because of check constraint).

 Use command `set integrity` to move to the normal state.

 Example:

   ```
   db2 set integrity for <table name> immediate checked
   ```

3.4.5 Schema Cloning Process for IBM DB2 AS/400 Database
Use the following steps to clone IBM DB2 AS/400 database schemas:

1. Save ODI 10g Master and Work schemas.

 Using Telnet Client, save the ODI 10g Master and Work schemas.

 Example:

   ```
   CRTLIB LIB(ODI10GDMP) TYPE(*TEST)
   ```
Task 4: Copy (Clone) Existing 10g Master and Work Repositories

2. Create Master and Work clone schemas.
 Using Telnet, create user profiles for the cloned schemas.
 Example:
   ```
   CRTUSRPRF USRPRF(ODIMCP) PASSWORD(ODIMCP) PWDEXP(*NO)
   CRTUSRPRF USRPRF(ODIWCP) PASSWORD(ODIWCP) PWDEXP(*NO)
   ```

3. Create ODI 10g Master and Work clone schemas.
 Using iSeries Navigator or Interactive SQL (STRSQL), create ODI 10g Master and Work clone schemas.
 Example:
   ```
   CREATE SCHEMA AUTHORIZATION ODIMCP
   CREATE SCHEMA AUTHORIZATION ODIWCP
   ```

4. Restore ODI 10g Master and Work schemas into clone schemas.
 Using Telnet, restore ODI 10g Master and Work schema into clone schemas.
 Example:
   ```
   RSTLIB SAVLIB(ODIM10G) DEV(*SAVF) SAVF(ODI10GDMP/ODIM10GDMP) OPTION(*NEW)
   RSTLIB(ODIMCP)
   RSTLIB SAVLIB(ODIW10G) DEV(*SAVF) SAVF(ODI10GDMP/ODIW10GDMP) OPTION(*NEW)
   RSTLIB(ODIWCP)
   CHGOWN OBJ('QSYS.LIB/ODIMCP.LIB/*.*')  NEWOWN(ODIMCP)
   CHGOWN OBJ('QSYS.LIB/ODIWCP.LIB/*.*')  NEWOWN(ODIWCP)
   ```

5. Using iSeries Navigator, select tables in schemas ODIM10G and ODIW10G to stop journalizing.
 a. Select Journal from schema ODIM10G:
 Databases>Denmlas3>Schemas>ODIM10G>Journals
 b. Select file QSQJRN.
 c. Select Start or End Table Journaling from journal’s context menu.
 d. Select tables for schema ODIM10G in 'Tables already journalized' view.
 e. Click Remove to remove them.
 f. Repeat steps a-e for Schema ODIW10G (Use ODIW10G instead of ODIM10G).

6. Using iSeries Navigator, select tables in schemas ODIMCP and ODIWCP to start journalizing.
 Example:
 a. Select Journal from schema ODIMCP:
 Databases->Denmlas3->Schemas->ODIMCP->Journals.
 b. Select file QSQJRN.
 c. Select Start or End Table Journaling from journal’s context menu.
 d. Select schema ODIMCP in tables’ view.
 e. Add all tables from schema ODIMCP to 'Table to journal' view.
f. Check 'Journal both images' and 'Omit open/close entries' for them. Click **OK**.

g. Repeat steps a-f for Schema ODIWCP (Use ODIWCP instead of ODIMCP).

3.4.6 Schema Cloning Process for Sybase AS Enterprise 15+

Use the following steps to clone Sybase AS Enterprise database schemas:

1. **Export ODI 10g Master and Work schema using ISQL Utility.**

 Example:

   ```
isql -D odi10g -S STANE08 -U sa -P welcome
dump database odi10g to "c:/odi10g.dmp" with init
go
   ```

2. **Restore Master and Work schemas into new database using ISQL Utility.**
 Using ISQL Utility, restore Master and Work schemas.

 Example:

   ```
isql -S STANE08 -U sa -P welcome
create database odi10gcp on master = 860
load database odi10gcp from "c:/odi10g.dmp" with override
go
ONLINE DATABASE odi10gcp
   ```

3. **Create logins for cloned Master and Work schemas using ISQL Utility.**
 Using ISQL Utility, create logins to access the cloned Master and Work schemas.

 Example:

   ```
sp_addlogin ODIMCP, ODIMCP, odi10gcp
sp_addlogin ODIWCP, ODIWCP, odi10gcp
   ```

4. **Rename original Master and Work schemas using ISQL Utility.** Note that you cannot change the owner of a table or rename user. You must rename users directly.

 Example:

   ```
sql -D odi10gcp -S STANE08 -U sa -P welcome
sp_configure 'allow updates', 1
go
update dbo.sysusers set name='ODIMCP' where name='ODI_MASTER_10G'
go
update dbo.sysusers set name='ODIWCP' where name='ODI_WORK_10G'
go
sp_configure 'allow updates', 0
go
   ```

5. **Assign created logins to renamed users using ISQL Utility.** Note that you cannot assign a login to a user. You must assign logins to users directly.

 Example:

   ```
select suid from master.dbo.syslogins where name='ODIMCP'
   ```
3.4.7 Schema Cloning Process for Hypersonic SQL 1.7.3.3

Use the following steps to clone Hypersonic SQL 1.7.3.3 database schemas:

1. Update server.properties
   ```
   server.database.1=file:ODI/odi_10g_cp
   server.dbname.1=odi_10g_cp
   ```

2. Update sqltool.rc with new connection information:
   ```
   urlid odicp_sa
   url jdbc:hsqldb:hsql://localhost/odi_10g_cp
   username SA
   password
   ```

3. Using SQL Tool, stop the server.
   ```
   java -jar ./lib/hsqldb.jar odi_sa
   checkpoint;
   shutdown;
   ```

4. Copy database’s file to the location of new database. ODI Uses MEMORY table therefore copy only properties and script files.
   ```
   copy odi_10g.properties odi_10g_cp.properties
   copy odi_10g.script odi_10g_cp.script
   ```

5. Restart the server.

6. Using SQL Tool, create new logins for the cloned Oracle Data Integrator 10g database.
   ```
   create user odim10g_cp password odim10g_cp ADMIN
   create user odiw10g_cp password odiw10g_cp ADMIN
   drop user odim10g
   drop user odiw10g
   ```

3.5 Task 5: Create a Backup of the ODI Repositories to be Upgraded

Oracle recommends that you create a backup for each ODI Master and Work repository. The backup enables you to restore to a pre-upgrade state if necessary. For more information, see "Backup Strategies for Upgrade," in Oracle Fusion Middleware Upgrade Planning Guide.
The Upgrade Assistant Prerequisite screen prompts you to indicate whether the backup of the ODI repositories has been completed. It is important to note, however, that the Upgrade Assistant will not validate that a backup has been created.

Caution: This is a critical step of the upgrade process; especially if the repositories were not cloned. In the event that upgrade results are unsatisfactory, having a backup copy of the ODI repositories ensures that you will not lose important data. For more information on creating a backup, refer to your database backup and recovery documentation.

3.6 Task 6: Install and Configure Oracle Data Integrator 11g

Before running the Upgrade Assistant, use the Oracle Universal Installer to install and configure ODI 11g. Note that it is not necessary to run the Repository Configuration Utility (RCU), finalize the agent configuration, or configure Java EE components during the installation process.

The ODI installation and configuration procedures are documented in the *Oracle Fusion Middleware Installation Guide for Oracle Data Integrator*.

3.7 Task 7: Run Upgrade Assistant to Upgrade ODI Middle Tier and Repositories

Note: You can complete Task 7b: Upgrade the Middle Tier Instance and Task 7c: Upgrade the Oracle Data Integrator Repositories in any order.

The Oracle Fusion Middleware Upgrade Assistant automates the upgrade of many aspects of your Oracle Data Integrator 10g environment. Some post-upgrade configuration procedures may be required, however.

The Upgrade Assistant performs the following tasks and provides the progress on each task:

- Prompts you to specify the existing 10g ODI home location (path).
- Examines the components to be upgraded.
- Provides a summary of the components to be upgraded so you can verify that the Upgrade Assistant is upgrading the components you expect.
- Provides a progress screen so you can see the status of the upgrade as it proceeds.
- Alerts you of any errors or problems that occur during the upgrade.

See Also: Section B.1, "Troubleshooting Upgrade Assistant Problems and Issues" in the *Oracle Fusion Middleware Upgrade Planning Guide* for specific instructions for troubleshooting problems that occur while running the Upgrade Assistant.

- Displays the **End of Upgrade** screen, which confirms that the upgrade was complete.
Task 7: Run Upgrade Assistant to Upgrade ODI Middle Tier and Repositories

3.7.1 Task 7a: Run the Upgrade Assistant for Oracle Data Integrator

To start the Upgrade Assistant using the graphical user interface:

1. Change directory to the ODI_HOME/bin where ODI_HOME is the installation folder of Oracle Data Integrator directory of the Oracle Fusion Middleware installation.

2. Enter the following command to start the Upgrade Assistant.
 On UNIX system:
   ```
   ./ua
   ```
 On Windows systems:
   ```
   ua.bat
   ```

3. Provide the required information in each of the Upgrade Assistant screens.

3.7.2 Task 7b: Upgrade the Middle Tier Instance

The Middle Tier upgrade copies the ODI 10g Agent configuration information into the ODI 11g Standalone Agent. Java EE components and ODI Studio are not affected by the middle tier upgrade.

Note: You can perform the ODI upgrade operations in any order. If you want to upgrade the ODI repositories first, see Section 3.7.3.

To upgrade the Middle Tier Instance, start the Upgrade Assistant as described in Task 7a: Run the Upgrade Assistant for Oracle Data Integrator and provide the required information in the following screens:

<table>
<thead>
<tr>
<th>No.</th>
<th>Screen Name</th>
<th>When does this screen appear?</th>
<th>Description and Action Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Welcome</td>
<td>Always</td>
<td>No action required.</td>
</tr>
<tr>
<td>2</td>
<td>Specify Operation</td>
<td>Always</td>
<td>Select the Upgrade Middle Tier Instance option.</td>
</tr>
<tr>
<td>3</td>
<td>Specify Source Home</td>
<td>Only if you selected Upgrade Middle Tier Instance on the Specify Operation screen.</td>
<td>Specify the location of the 10g Oracle home you want to upgrade.</td>
</tr>
<tr>
<td>4</td>
<td>Examine</td>
<td>Always</td>
<td>The Upgrade Assistant performs a series of validations before upgrading the selected components. Ensure that all validations have succeeded.</td>
</tr>
<tr>
<td>5</td>
<td>Upgrade Summary</td>
<td>Always</td>
<td>If the summary information looks correct, click Upgrade.</td>
</tr>
</tbody>
</table>
3.7.3 Task 7c: Upgrade the Oracle Data Integrator Repositories

The Oracle Data Integrator Repository upgrade option upgrades the Oracle Data Integrator 10g repositories to ODI 11g versions. The ODI 10g repositories should always be cloned (copied) before launching the Upgrade Assistant. See Task 4: Copy (Clone) Existing 10g Master and Work Repositories.

Note: The Upgrade Assistant uses a version registry to determine which repositories have been upgraded; not the actual data and structure of the ODI repository. After a successful upgrade of the repositories from ODI 10g to ODI 11g, you cannot perform another upgrade, even if you have used external database utilities to revert the ODI 11g schemas to ODI 10g versions. The Upgrade Assistant will return an error message stating that the repository has already been upgraded.

To debug or view the repository catalog information, use the following query on Table `schema_version_registry` which is stored in the Admin user (not in the ODI schema/repository):

```
SELECT COMP_ID, COMP_NAME, MRC_NAME, OWNER, VERSION, STATUS, UPGRADED
FROM schema_version_registry;
```

(On DB2/400 operating systems, the Admin user is QSECOFR, and the `schema_version_registry` table is located in the schema 'NULLID'.)

Rows with the component "ODI" are used to track ODI repositories.

To upgrade ODI Repositories, start the Upgrade Assistant as described in Task 7a: Run the Upgrade Assistant for Oracle Data Integrator and provide the required information in the following screens:

Caution: If the upgrade process fails, you must close the Upgrade Assistant, correct the issue, and then restart the Upgrade Assistant as described in Section 3.7.1.

If the upgrade process fails after the upgrade process has started, you must drop the cloned repository and start from a freshly cloned repository in addition to correcting the underlying issue. There is no way to restart the failed upgrade process.
Task 7: Run Upgrade Assistant to Upgrade ODI Middle Tier and Repositories

Upgrading Your Oracle Data Integrator Environment

<table>
<thead>
<tr>
<th>No.</th>
<th>Screen Name</th>
<th>When does this screen appear?</th>
<th>Description and Action Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Welcome</td>
<td>Always</td>
<td>No action required.</td>
</tr>
</tbody>
</table>
| 2 | Specify Operation | Always | Select Upgrade Oracle Data Integrator Repositories and choose which additional repository upgrade options you want to perform:
 - Update Topology and Security Metadata
 - Replace KMs with Mandatory Updates
 - Check that Upgrade Occurs Only on Cloned Repositories
 For more information on these options, see the Specify Operation screen description in Appendix A. |
| 3 | Prerequisites | Only if you selected Upgrade Oracle Data Integrator Repositories on the Specify Operation screen. | The Upgrade Assistant requires that you indicate the following prerequisites have been met in order to continue the upgrade:
 - Database schema backup completed
 Oracle recommends that you backup your ODI repositories on the database before upgrading. The Upgrade Assistant does not verify that the repositories have been backed up, so this option serves as a reminder. See Task 5: Create a Backup of the ODI Repositories to be Upgraded for more information.
 - Database version is certified by Oracle for Fusion Middleware upgrade
 The Upgrade Assistant requires that the Oracle Data Integrator repositories reside on a supported database. See Task 3: If Necessary, Upgrade the Database that Contains the ODI Repository for a link to the latest list of Oracle Data Integrator supported databases. |
3.8 Task 8: Perform Any Required Post-Upgrade Manual Steps

Depending on the options you selected during the upgrade process, you may have to perform manual procedures to finalize the upgrade process.

Refer to Chapter 4, "Oracle Data Integrator Post-Upgrade Tasks" for a description of the post-upgrade tasks you might need to perform for each of the Oracle Data Integrator components.
Oracle Data Integrator Post-Upgrade Tasks

The Upgrade Assistant automates many of the upgrade tasks, but there are cases where you must manually modify the configuration settings after running the Upgrade Assistant. Review Table 4–1 to determine if you need to perform any additional upgrade procedures:

Table 4–1 Post-Upgrade Procedures for ODI

<table>
<thead>
<tr>
<th>If you...</th>
<th>Then do this to finalize the upgrade...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized master and Work Repositories onto a single instance before the upgrade</td>
<td>Redistribute the repositories accordingly</td>
</tr>
<tr>
<td>Selected the Upgrade Oracle Data Integration Schemas option to upgrade the master and Work Repository schemas</td>
<td>Update the connection parameters to the Work Repositories as defined in the ODI topology. See Section 4.2, "Updating the Work Repository Connection Parameters"</td>
</tr>
<tr>
<td>Chose not to Update Topology and Security Metadata during the upgrade</td>
<td>Manually upgrade the ODI 10g metadata so that it can be used with ODI 11g. See Section 4.3, " Updating Topology and Security Metadata"</td>
</tr>
<tr>
<td>Updated the Topology and Security Metadata using Upgrade Assistant</td>
<td>Manually re-apply modifications made in Oracle Data Integrator 10g to the new ODI 11g built-in metadata objects. (The automated upgrade process erases any changes that were made to the ODI 10g objects.) See Section 4.4, "Re-applying ODI 10g Modifications to the ODI 11g Topology and Security Metadata"</td>
</tr>
<tr>
<td>Chose not to Replace KMs with Mandatory Updates during the upgrade</td>
<td>Manually upgrade the ODI 10g KMs so that they can be used with ODI 11g. See Section 4.5, "Replacing KMs with Mandatory Updates"</td>
</tr>
</tbody>
</table>

4.1 Redistributing Centralized Repositories After Upgrade

Both ODI 10g and ODI 11g support the distribution of schemas on multiple database instances. The Upgrade Assistant, however, supports only one set of database credentials at the time of the upgrade. To use the Upgrade Assistant, you must first clone (copy) all ODI 10g repositories to a single database/server instance. Once the upgrade is completed, you can redistribute the upgraded repositories.

Note: The redistribution process is similar to the cloning processes documented in Section 3.4, "Task 4: Copy (Clone) Existing 10g Master and Work Repositories".
4.2 Updating the Work Repository Connection Parameters

You must update the connection parameters to the upgraded Work Repositories as defined in the ODI topology.

To update the Work Repository Connection Parameters:

1. Launch the Oracle Data Integrator Console and connect to the Master Repository using Oracle Data Integrator Studio.
 Expand the Work Repositories node in the Repositories accordion of the Topology Navigator.
2. Edit each Work Repository that is now hosted on a new server and edit its connection parameters by clicking the Connection button in the Work Repository editor toolbar.
3. Modify the connection parameters, User and Password, on the Definition tab. Modify the JDBC Driver and URL on the JDBC tab. Save the changes.
4. Validate your changes by creating and testing Repository Connections for these Work Repositories in Studio.
5. Modify your odiparams script to reflect the new connection parameters to your Master Repository. This file is in the ODI_HOME/oracledi/agent/bin directory, where ODI_HOME is the Oracle Data Integrator installation directory.
 - On UNIX system:
 odiparams.sh
 - On Windows system:
 odiparams.bat

 Edit the odiparams script with a text editor to set the configuration parameters as shown in the following example. (Note that the values are provided for example only; be sure to enter your own parameters):

 ODI_MASTER_DRIVER=oracle.jdbc.driver.OracleDriver
 ODI_MASTER_URL=jdbc:oracle:thin:@ours:1521:ORA9
 ODI_MASTER_USER=ODI_11G
 ODI_MASTER_ENCODED_PASS=gxfpqkz074jeaCpL4XSEFz xo j8E0p
 ODI_SECU_WORK_REP=WORKREP
 ODI_SUPERVISOR=SUPERVISOR
 ODI_SUPERVISOR_ENCODED_PASS=fJya.vR5kvNcu9TtV, jVZEt

6. For each ODI Agent configuration update the odiparams.bat (.sh) script as indicated in step 5.

4.3 Updating Topology and Security Metadata

By default, the Upgrade Assistant enables you to import the same ODI 10g technologies, data types, data type conversions, and languages when upgrading to ODI 11g. If, however, you have selected not to have them upgraded automatically by the Upgrade Assistant, you should upgrade them manually to take advantage of the ODI 11g features. The following ODI 10g metadata should be manually updated using Oracle Data Integrator import features:

- Technologies
- Data types and data type conversions
- Default Actions
- Action Groups
- Languages
- Security profiles
- Objects
- Methods

Note: Oracle Data Integrator 11g Topology and Repository Metadata exports are located in the `ODI_HOME/oracledi/xml-reference` directory. These objects must be imported in 'Synonym Insert-Update' mode.

For more information on importing and exporting ODI metadata, see "Chapter 18, Exporting/Importing" in the *Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator*.

4.4 Re-applying ODI 10g Modifications to the ODI 11g Topology and Security Metadata

The ODI 11g upgrade process will automatically upgrade your ODI 10g topology and security metadata objects. However, if you modified the topology and security objects that were provided by default with ODI 10g, such as user defined profiles or technologies, you must reapply your changes manually by editing the objects.

For information on modifying topology and security metadata, see *Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator*.

4.5 Replacing KMs with Mandatory Updates

By default, the Upgrade Assistant enables you to update ODI 10g Knowledge Modules (KMs) when upgrading to ODI 11g. Most ODI 10g KMs can be used with ODI 11g, so the update is not mandatory for all KMs.

Specifically the following KMs must be manually updated using KM Import/Replace before using ODI 11g (refer to the note below for more information):

- LKM File to Oracle (EXTERNAL TABLE)
- LKM File to Netezza (EXTERNAL TABLE)
- LKM File to Oracle (SQLLDR)
- LKM File to SAS
- LKM File to DB2 UDB (LOAD)
- LKM SAS to SQL
- LKM SQL to Teradata (TTU)
- IKM SQL to Teradata (TTU)
- LKM File to Teradata (TTU)
- IKM File to Teradata (TTU)
- IKM Teradata to File (TTU)
- LKM File to MSSQL (BCP)
Replacing KMs with Mandatory Updates

- LKM File to Sybase IQ (LOAD TABLE)

Note: The Knowledge Modules listed above must be updated because they use calls to the `odiRef.getTargetTable` or `odiRef.getTableList` APIs to request field or row separators for a file datastore. In ODI 10g, the returned values were inverted when requesting hexadecimal (`XFILE_SEP_FIELD`, `XFILE_SEP_ROW`) and ASCII (`FILE_SEP_FIELD`, `FILE_SEP_ROW`) separators. To address this issue, the ODI 10g KMs were implemented to work around this issue.

The 11g `odiRef` APIs return the correct values; therefore, the KMs have been modified to request the correct hexadecimal or ASCII separators.

For example:

- `odiRef.getTargetTable("FILE_SEP_FIELD")` was replaced with `odiRef.getTargetTable("XFILE_SEP_FIELD")`
- `odiRef.getTargetTable("XFILE_SEP_FIELD")` was replaced with `odiRef.getTargetTable("FILE_SEP_FIELD")`
- `odiRef.getTargetTable("XFILE_SEP_ROW")` was replaced with `odiRef.getTargetTable("FILE_SEP_ROW")`
- `odiRef.getTargetTable("FILE_SEP_ROW")` was replaced with `odiRef.getTargetTable("XFILE_SEP_ROW")`

If you customized KMs using these methods, you must make the appropriate changes to the API calls.
Part II

Upgrading Oracle Data Profiling and Oracle Data Quality

Part II contains the following chapters:

- Chapter 5, "Oracle Data Profiling and Oracle Data Quality Upgrade Overview"
- Chapter 6, "Oracle Data Profiling and Data Quality for 10g Users"
- Chapter 7, "Upgrading Your Oracle Data Profiling and Quality Environment"
- Chapter 8, "Oracle Data Profiling and Quality Post-Upgrade Tasks"
Oracle Data Profiling and Oracle Data Quality Upgrade Overview

This chapter provides a high-level overview of the Oracle Data Profiling and Oracle Data Quality for Oracle Data Integrator upgrade process. The Oracle Data Profiling and Oracle Data Quality for Data Integrator components are also referred to as Oracle Data Quality Products.

5.1 Steps in the Oracle Data Profiling and Data Quality Upgrade Process

Table 5–1 describes each of the steps in the upgrade process. The table also provides information on where to go to get more information on each step in the process.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install and Configure Oracle Data Integrator 11g</td>
<td>In 11g Oracle Data Integrator and the Oracle Data Quality products are installed and configured separately.</td>
<td>For installation steps, refer to Oracle Fusion Middleware Installation Guide for Oracle Data Integrator</td>
</tr>
<tr>
<td>Understand the Oracle Data Profiling and Oracle Data Quality Upgrade Starting Points</td>
<td>Before you upgrade the Oracle Data Profiling and Oracle Data Quality components for Oracle Data Integrator, ensure that your environment meets the installation and configuration requirements.</td>
<td>See Section 7.1.1, "Understand the Supported Upgrade Starting Points".</td>
</tr>
<tr>
<td>Backup the Repository</td>
<td>Oracle recommends that you create a backup copy of the entire Oracle Data Quality Products Repository before performing the upgrade.</td>
<td>See Section 7.1.2, "Backup the Existing Repository".</td>
</tr>
<tr>
<td>Install Oracle Data Profiling and Quality 11g</td>
<td>Use the Oracle Installer to install Oracle Data Profiling and Quality. Do not create any metabases until the upgrade has completed successfully.</td>
<td>See Section 7.1.3, "Install Oracle Data Profiling and Oracle Data Quality for Data Integrator".</td>
</tr>
<tr>
<td>If the Oracle Data Quality 11g repository is not installed on the same server as Oracle Data Quality installation, copy the entire repository directory to the new Oracle Data Quality installation.</td>
<td>If your Oracle Data Quality installation is on a different server than your previous installation, you must copy the entire existing repository directory (including all subdirectories) to a temporary location on the Oracle Data Quality server. You can delete this temporary directory after you complete the migration task.</td>
<td>See Section 7.1.4, "Copy the Existing Repository to the Oracle Data Quality Server".</td>
</tr>
</tbody>
</table>
Table 5–1 (Cont.) Table Describing the Steps in the Oracle Data Profiling and Data Quality Upgrade Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove any user-defined metabases, users, or loader connections from the 11g repository</td>
<td>The 11g target repository must not contain any user-defined metabases, users, or loader connections. Although the upgrade process alerts you if any of these items exist, it is recommended that you check the repository before beginning the upgrade process.</td>
<td>See Section 7.1.5, "Remove User-Defined Metabases and Users".</td>
</tr>
<tr>
<td>Upgrade the Metabase Repository</td>
<td>Run the Oracle Data Profiling and Quality upgrade executables after all of the pre-upgrade tasks have been completed.</td>
<td>Section 7.2, "Oracle Data Quality Upgrade Instructions"</td>
</tr>
<tr>
<td>Perform any required post-upgrade configurations.</td>
<td>You may need to reapply custom settings and reconnect to your metabases after the upgrade.</td>
<td>Section 8.1, "Update Metabase Connections"</td>
</tr>
<tr>
<td>Validate the Upgrade Process</td>
<td>Validate that the metabases and loader connections are available in the Control Admin panel.</td>
<td>Section 8.2, "Validate the Upgrade Operation"</td>
</tr>
</tbody>
</table>
The following sections describe changes in the Oracle Data Profiling and Oracle Data Quality for Oracle Data Integrator 11g environment for 10g Release 3 (10.1.3.x) users:

- Section 6.1, "Components of the Oracle Data Quality 11g Release 1 Installation"

6.1 Components of the Oracle Data Quality 11g Release 1 Installation

If you are upgrading your Oracle Data Quality products from 10g Release 3 to 11g Release 1, there are some significant changes you should be aware of. This section describes those changes.

The Oracle Data Profiling and Data Quality 10g Release 3 (10.1.3) default installation provided the following components:

- Oracle Data Integrator
- Oracle Data Profiling
- Oracle Data Quality for Data Integrator

Oracle Fusion Middleware 11g provides updates to all these components, but not in a single installation. In Oracle Fusion Middleware 11g, your Oracle Data Profiling and Oracle Data Quality components are packaged and installed separately, but they still provide the same resources and services.

See Also: Oracle Fusion Middleware Installation Guide for Oracle Data Integrator

Oracle Data Profiling and Oracle Data Quality for Oracle Data Integrator 11g Release 1 (11.1.1.) provides the following components:

- Oracle Data Profiling and Data Quality Client User Interface
 The Oracle Data Profiling and Oracle Data Quality user interface is available for Windows 32-bit operating systems only. This client can be configured to connect to a Metabase Server installed on a separate machine.

- Oracle Data Profiling and Quality Server
 The Oracle Data Profiling and Quality server installation includes the following components:
 - Metabase Server
The Metabase Server contains the profiling data and metadata.

- **Data Quality Server (Windows 32-bit operating system only)**

 The Data Quality Server is the run-time component for Oracle Data Quality processes.

- **ODBC Server (Windows 32-bit operating system only)**

 Oracle Data Quality ODBC Adapter is used to connect ODBC data sources. This optional component can be installed on Windows platforms only.
This chapter explains how to migrate to Oracle Data Quality 11g from Oracle Data Quality 10g. Specifically, this chapter describes the following steps required to upgrade Oracle Data Quality products:

- Section 7.1, "Preparing to Upgrade"
- Section 7.2, "Oracle Data Quality Upgrade Instructions"

7.1 Preparing to Upgrade
Before you begin the upgrade process, review the following sections to ensure that you have performed all of the required pre-upgrade tasks:

- Understand the Supported Upgrade Starting Points
- Backup the Existing Repository
- Remove User-Defined Metabases and Users
- Install Oracle Data Profiling and Oracle Data Quality for Data Integrator

7.1.1 Understand the Supported Upgrade Starting Points
Any Oracle Data Quality repository, residing on a platform supported under the Oracle Data Profiling and Quality version 10.1.3.5.0 hardware requirements, can be migrated to the Oracle Data Quality 11g version as long as the following conditions are met:

- The existing repository must reside on the same server as Oracle Data Quality 11g
- The existing repository must be compatible with the Oracle Data Quality 11g server.

7.1.2 Backup the Existing Repository
Oracle recommends that you create a backup copy of the entire `ORACLE_HOME/oracledq/metabase_data` directory before you upgrade.

7.1.3 Install Oracle Data Profiling and Oracle Data Quality for Data Integrator
For installation steps, refer to the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator.
7.1.4 Copy the Existing Repository to the Oracle Data Quality Server

If the existing repository is not installed on the same server as Oracle Data Quality installation, copy the entire repository directory to the new Oracle Data Quality 11g installation server (this includes all E<n> directories). Make sure that the two servers are running the same operating system.

For Example:

If you have an Oracle Data Quality 10.1.3.5 repository residing in the ORACLE_HOME/oracledq/metabase_data directory on a server named oracle1 and your Oracle Data Quality 11g installation is on a server named oracle2, you need to copy the entire repository directory ORACLE_HOME/oracledq/metabase_data (including subdirectories) from oracle1 to a temporary location on oracle2.

When you migrate an existing repository to an Oracle Data Quality 11g server, everything is migrated except for bookmarks.

7.1.5 Remove User-Defined Metabases and Users

The target repository must not contain any user-defined metabases, users, or loader connections. (Verify that the Oracle Data Quality 11g repository only contains the _control metabase.) Although the migration process alerts you if any of these items exist, Oracle recommends that you check the repository before beginning the migration process.

Caution: Only perform these steps on the Oracle Data Quality 11g Repositories.

1. Log on to the ODP/ODQ Metabase Manager as the metabase administrator (for example, madmin).
2. From the Explorer pane, expand the Control Admin folder.
3. From the Explorer pane, double-click Metabases.
 The List View pane displays a list of all metabases defined in the repository. If there are metabases other than the _control metabase listed, you must delete them before migrating your metabases.
4. Select the first user-defined metabase, right-click, and select Delete...
5. Repeat step 4 until all metabases (except _control) are deleted.
6. From the Explorer pane, double-click Users.
 The List View displays a list of all users defined in the repository.
7. In the List View, select all users except the metabase administrator.
8. Right-click and select Delete...
9. From the Explorer pane, double-click Loader Connections.
 The List View displays a list of all loader connections defined in the repository.
10. In the List View, highlight all loader connections.
11. Right-click and select Delete...
7.2 Oracle Data Quality Upgrade Instructions

The following steps are used to upgrade Oracle Data Quality repositories.

1. Log on to the metabase server with an administrator account.
 Oracle recommends that you do not use a remote server to migrate your existing repository.

2. Open a command line shell.

3. From the command line, change directories to `ORACLE_HOME/oracledq/metabase_server/bin`.

4. At the prompt, type one of the following commands on a single line and then press Enter.

 - On UNIX operating systems:
     ```bash
     ./mtb_admin -user <Metabase Administrator User Name> -password <Metabase Administrator User Password> -level INFO -migrate repository "<Existing Repository Path>" ddl upgrade.ddl
     ```
 - On Windows operating systems:
     ```cmd
     mtb_admin -user <Metabase Administrator User Name> -password <Metabase Administrator User Password> -level INFO -migrate repository "<Existing Repository Path>" ddl upgrade.ddl
     ```

 In the commands above:
 - `<Metabase Administrator User Name>` corresponds to the metabase Admin user name (for example `madmin`)
 - `<Metabase Administrator User Password>` corresponds to the metabase Admin user password
 - `<Existing Repository Path>` corresponds to the `/metabase` sub-directory of the directory into which the repository was copied.

 The migration command processes the entities in the metabase, and reports its progress. For example:
   ```
   Converting entity 30 table "mask"
   Converting entity 30 table "metaphone"
   Converting entity 30 table "pattern"
   ```

 The time required for the migration is comparable to the time it took to originally load the data into the original metabase(s). Your existing repository is left untouched after the migration. When the migration ends, it displays information and recommendations. For example:
   ```
   ODBC loader connection "odbc" must have its PORT updated
   Don't forget to migrate entity sources using the "updateentitysource", "updateconnection" or "updateallconnections" commands
   Press any key to continue. . .
   ```

 If you received a message at the end of your migration to update a loader connection port (for example `ODBC loader connection "odbc" must have its PORT updated`), connect to the metabase administrator and edit the loader connection to update the connection port.

 To migrate entity sources, see Section 8.1, "Update Metabase Connections".
This chapter describes additional tasks that may be required after you have performed the upgrade.

- Section 8.1, "Update Metabase Connections"
- Section 8.2, "Validate the Upgrade Operation"

8.1 Update Metabase Connections

The following commands allow you to update your loader connections after migrating the repository:

- `updateconnection` - updates the details of a specific connection
- `updateallconnections` - updates the details of all migrated connections

Oracle recommends using the `updateconnection` command to update your migrated loader connections.

To update the metabase connections:

1. Start the Metabase Server Administrator Prompt
 - **On UNIX operating systems:**

 ./mtb_admin

 - **On Windows operating systems:**

 Select Programs > Oracle > Oracle Data Profiling and Quality > Metabase Server > Administrator Command Prompt from the Start menu.

2. When prompted, supply your username, password, and metabase name. Use the `_control` metabase name.

3. Enter one of the following commands:
 - To update a specific migrated connection in all the metabases:

 `updateconnection <connection name>`

 - To update all migrated connections in all the metabases.

 `updateallconnections`

4. Respond to the system prompts by typing a new value and pressing Enter. To keep the current value, press Enter at the prompt.
After you respond to all the prompts, the command locates the specified connection in all the metabases and updates them with the new information.

Example of a connection update:

1. Start the Metabase Server Administrator and log on to the _control metabase:

 `./mth_admin -user madmin -password ***** -metabase _control`

2. At the _control prompt, enter the updateconnection command and press Enter:

 `updateconnection myconnection`

 The following prompt appears:

 Please enter the connection description. Just enter for the original "this is my connection">

3. Press Enter to use the same description, or type a new description and then press Enter.

 The following prompt appears:

 Please enter the path to data files. Just enter for the original "/data/data">

4. Press Enter to use the same path, or type a new path and then press Enter. The following prompt appears:

 Please enter the path to the schema files. Just enter for the original "/data/schemas">

5. Press Enter to use the same path, or type a new path and then press Enter. The following message appears:

 Successfully updated loader connection
 Updating entities in metabase "demo"

 username>

6. Respond to the prompts for your username and password. Progress messages appear as the command updates the connections named myconnection in each metabase. For example:

 Successfully updated entity 11
 Successfully updated entity 12
 Successfully updated entity 13
 Successfully updated entity 14
 Updating entities in metabase "oracledq"
 Successfully updated entity 1
 _control:

8.2 Validate the Upgrade Operation

Start Metabase Manager and verify that your metabases and loader connections are available in the Control Admin pane.
This appendix contains images and descriptions for all of the Oracle Fusion Middleware Upgrade Assistant for Oracle Data Integrator screens.

A.1 Welcome

[Image of Welcome screen]

Click Next.

A.2 Specify Operation

The Specify Operation screen provides two upgrade options:
- Select **Upgrade Middle Tier Instance** to upgrade the ODI 10g Agent configuration information into the ODI 11g Standalone Agent. Java EE components are not affected by the Middle Tier Instance upgrade.

- Select **Upgrade Oracle Data Integrator Repositories** to upgrade the Oracle Data Integrator 10g repositories to ODI 11g versions. The repositories should be cloned (copied) before launching the Upgrade Assistant. See Task 4: Copy (Clone) Existing 10g Master and Work Repositories. By default, the following options are selected with this option:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Topology and Security Metadata</td>
<td>The Update Topology and Security Metadata option updates only the Oracle Data Integrator 10g built-in topology and security objects. Customized objects, such as user defined profiles or technologies, for example, are not updated. If you modified any ODI 10g objects, you must re-apply your changes after the upgrade process. NOTE: If this option is deselected, the topology and security metadata objects will have to be manually upgraded in order to use the ODI 11g features. For more information, see Section 4.3, "Updating Topology and Security Metadata".</td>
</tr>
<tr>
<td></td>
<td>■ Updating the Topology Metadata upgrades the built-in technologies to support new 11g features. If you do not upgrade your topology, you will not be able to use the 11g features defined in the technologies.</td>
</tr>
<tr>
<td></td>
<td>■ Updating the Security Metadata upgrades the profiles, objects and methods to support new 11g features and menus. If you do not upgrade the security metadata, some of the 11g features will not be available.</td>
</tr>
</tbody>
</table>
| | For more information, see Section 4.4, "Re-applying ODI 10g Modifications to the ODI 11g Topology and Security Metadata".
Specify Operation

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace KM with Mandatory Updates</td>
<td>Most ODI 10g Knowledge Modules (KMs) can be used with ODI 11g, so the update is not mandatory for all KMs. This option updates only the 10g Knowledge Modules (KMs) that will no longer work with ODI 11g. If this option is deselected, the 10g Knowledge Modules that no longer work with ODI 11g will have to be manually upgraded to take advantage of the ODI 11g features. For more information, see Section 4.5, "Replacing KM with Mandatory Updates". NOTE: KM updates are performed based on the name of the knowledge module. For example, a KM called "LKM File to DB2 UDB (LOAD)" will automatically be replaced. The following 10g KMs are automatically updated to work with ODI 11g when the Replace KM with Mandatory Updates option is selected: - LKM File to Oracle (EXTERNAL TABLE) - LKM File to Netezza (EXTERNAL TABLE) - LKM File to Oracle (SQLLDR) - LKM File to SAS - LKM File to DB2 UDB (LOAD) - LKM SAS to SQL - LKM SQL to Teradata (TTU) - IKM SQL to Teradata (TTU) - LKM File to Teradata (TTU) - IKM File to Teradata (TTU) - IKM Teradata to File (TTU) - LKM File to MSSQL (BCP) - LKM File to Sybase IQ (LOAD TABLE) NOTE: Replaced KMs are exported, before their replacement, into a directory named: UA_Oracle_ Home/upgrade/odi/KM10g/expdir.<time_stamp>/work_ repository_name/project_name</td>
</tr>
<tr>
<td>Check that Upgrade Occurs Only on Cloned Repositories</td>
<td>When selected, this option will prevent an upgrade if validations find that the repositories are not cloned copies. Specifically, the Upgrade Assistant performs the following validations: - Original ODI 10g Master Repository schema and cloned ODI 10g Master Repository schema names are not the same. - Each cloned ODI 10g Work Repository schema name is different from the original ODI 10g Work Repository schema name. NOTE: If the Upgrade Assistant detects that one of the repositories is not a clone, you will be prevented from proceeding with the upgrade. Oracle recommends that you clone the repositories before running the Upgrade Assistant.</td>
</tr>
</tbody>
</table>
A.3 Specify Source Home

This screen only appears when you select **Upgrade Middle Tier Instance**. Select the 10g Oracle home you want to upgrade. Click **Next** to continue.

A.4 Prerequisites

Check the boxes indicating that the prerequisites have been met and click **Next** to continue.
A.5 Target Database

The following table provides sample field entries for the ODI databases that the Upgrade Assistant supports:

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Database Type</td>
<td>Select the database type from the drop-down list. The target database is the database where you installed the Oracle Fusion Middleware 11g ODI schema.</td>
</tr>
</tbody>
</table>
Connect String

Enter the connect string for the database that contains the 11g ODI schemas.

Oracle Database
Use a JDBC connect string:

`host:port:SID`

For example:

odiHost:1521:odiDB

Or:

`//host:port/service`

For example:

//odiHost:1521/odiDB2

Microsoft SQL Server

Use the following connect string:

`//host:port;DatabaseName=dbname`

For example:

//odiHost:1443;DatabaseName=odiDB

IBM DB2

Use the following connect string:

`//host:port;DatabaseName=dbname`

For example:

//odiHost:446;DatabaseName=odiDB

PostgreSQL

Use the following connect string:

`//host:port/database`

For example:

//odiHost:5432/odiDB

HSQL Database Engine

Use the following connect string:

`//host:port/database`

For example:

//odiHost:9001/odiDB

SYBASE

Use the following connect string:

`//host:port;DatabaseName=dbname`

For example:

//odiHost:4100;DatabaseName=odiDB

DBA User Name

Enter the user name that will be used by the Upgrade Assistant to connect to the target database. You can also include the privileges required for the user.

Oracle Database

For example, to connect as the SYS user, enter the following in the **DBA User Name** field:

`sys as sydba`
A.6 Specify Work Repositories

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBA Password</td>
<td>Enter the password for the user you entered in the DBA User Name field.</td>
</tr>
</tbody>
</table>
| Master Repository User Name | Enter the user name of the Oracle Data Integrator Master Repository owner.
For example:
DEV_ODI_REPO |
| Master Repository Password | Enter the password for the user you entered in the **Master Repository User Name** field. |
| ODI Supervisor Name | Enter the user name of the Oracle Data Integrator User with Supervisor privileges.
For example:
SUPERVISOR |
| ODI Supervisor Password | Enter the password for the user you entered in the **ODI Supervisor Name** field. |

Enter the Oracle Data Integrator 11g Work Repositories usernames and passwords. Click **Next**.
A.7 Examine

Click Next if all component examinations have succeeded. If there are any issues, refer to the generated log file located in the directory shown on this screen.

A.8 Upgrade Summary

Review the summary of the Oracle Data Integrator upgrade operations. If the operations and configuration settings are correct, click Upgrade to begin.
A.9 Upgrade Progress

The Upgrading Components screen shows the progress of the upgrade process. Once complete, click Next.

A.10 End of Upgrade

The Upgrade Complete screen provides a link to the upgrade log file. Review the log file and test the upgraded applications to ensure that they are working as expected. Click Close to dismiss the Upgrade Assistant.
Index

C
cloning procedures, 3-3
Hypersonic SQL 1.7.3.3, 3-11
IBM DB2 AS/400 Database, 3-8
IBM DB2 Universal Database, 3-7
MS SQL Database, 3-5
Oracle Database, 3-4
PostgreSQL Database, 3-6
Sybase AS Enterprise 15+, 3-10

D
Data Quality products, 3-2
databases
RDBMS, 3-3
supported versions, 2-2, 3-3
demonstration environment, 2-3

J
Java EE Agent, 2-1, 2-3

M
master repository, 3-3
backing up, 3-11
Middle Tier, 3-13

O
ODI 10g Designer, 3-13
ODI SDK, 2-1
ODI Studio, 2-1
ODI Upgrade Process Flow, 1-2
Oracle Data Integrator Console, 2-2
Oracle Universal Installer, 3-12

P
post-upgrade configuration, 3-12
Public Web Service, 2-2

R
repositories
upgrading, 3-14
repository
debug upgrade errors, 3-14
Repository Configuration Utility (RCU), 3-12
run-time agent, 2-2

S
Standalone Agent, 2-1, 2-3

T
Troubleshooting, 3-12

U
Upgrade Assistant, 3-2, 3-13
databases supported, 3-2
starting, 3-13

W
work repositories, 2-2
backing up, 3-11