MySQL HeatWave User Guide
This topic describes how to generate recommended items for users.
For known users and known items, the output includes a list of items that the user will most likely give a high rating and the predicted rating or ranking.
For a new user, and an explicit feedback model, the prediction is the global top K items that received the average highest ratings.
For a new user, and an implicit feedback model, the prediction is the global top K items with the highest number of interactions.
For a user who has tried all known items, the prediction
is an empty list because it is not possible to recommend
any other items. Set remove_seen
to
false
to repeat existing interactions
from the training table.
Review and complete the following tasks:
When you run ML_PREDICT_TABLE
or ML_PREDICT_ROW
to generate
item recommendations, a default value of three items are
recommended. To change this value, set the
topk
parameter.
If not already done, load the model. You can use the
session variable for the model that is valid for the
duration of the connection. Alternatively, you can use
the model handle previously set. For the option to set
the user name, you can set it to
NULL
.
The following example uses the session variable.
mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);
The following example uses the model handle.
mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);
Make predictions for the test dataset by using the
ML_PREDICT_TABLE
routine.
mysql> CALL sys.ML_PREDICT_TABLE(table_name
, model_handle
, output_table_name
), [options
]);
Replace table_name
,
model_handle
, and
output_table_name
with your
own values. Add options
as
needed.
The following example runs
ML_PREDICT_TABLE
on the testing dataset previously created and sets the
topk
parameter to 2, so only two
items are recommended.
mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.item_recommendations', JSON_OBJECT('recommend', 'items', 'topk', 2));
Where:
recommendation_data.testing_dataset
is the fully qualified name of the input table that
contains the data to generate predictions for
(database_name.table_name
).
@model
is the session variable
for the model handle.
recommendation_data.item_recommendations
is the fully qualified name of the output table with
recommendations
(database_name.table_name
).
JSON_OBJECT('recommend', 'items', 'topk',
2)
sets the recommendation task to
recommend items to users. A maximum of two items to
recommend is set.
Query the output table to review the recommended top two items for each user in the output table.
mysql> SELECT * from item_recommendations;
+---------+---------+--------+--------------------------------------------------------------------+
| user_id | item_id | rating | ml_results |
+---------+---------+--------+--------------------------------------------------------------------+
| 1 | 2 | 4.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 1 | 4 | 7.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 1 | 6 | 1.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 1 | 8 | 3.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 10 | 18 | 1.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 10 | 2 | 6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 10 | 5 | 3.0 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 10 | 6 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 2 | 1 | 5.0 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 2 | 3 | 8.0 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 2 | 5 | 2.5 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 2 | 7 | 6.5 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 3 | 18 | 7.0 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 3 | 2 | 3.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 3 | 5 | 6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 3 | 8 | 2.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 4 | 1 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 4 | 3 | 8.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 4 | 6 | 2.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 4 | 7 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 5 | 12 | 5.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5 | 2 | 7.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5 | 4 | 1.5 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5 | 6 | 4.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 6 | 3 | 6.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 6 | 5 | 1.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 6 | 7 | 4.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 6 | 8 | 7.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 7 | 1 | 6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 7 | 4 | 3.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 7 | 5 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 7 | 9 | 8.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 8 | 2 | 8.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8 | 4 | 2.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8 | 6 | 5.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8 | 9 | 3.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 9 | 1 | 5.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
| 9 | 3 | 8.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
| 9 | 7 | 2.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
| 9 | 8 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
+---------+---------+--------+--------------------------------------------------------------------+
40 rows in set (0.0387 sec)
Review the recommended items in the
ml_results
column next to
item_id
. For example, user 1 is
predicted to like items 20 and 18. Review the ratings in
the ml_results
column to review the
expected ratings for each recommended item. For example,
user 1 is expected to rate item 20 with a value of 4.7,
and item 18 with a value of 3.48.
Alternatively, if you do not want to generate an entire
table of recommended items, you can run
ML_PREDICT_ROW
to specify
a user to recommend items for.
mysql> SELECT sys.ML_PREDICT_ROW(input_data
, model_handle
), [options
]);
Replace input_data
and
model_handle
with your own
values. Add options
as
needed.
The following example runs
ML_PREDICT_ROW
and
specifies user 1 with a limit of two recommended items.
mysql> SELECT sys.ML_PREDICT_ROW('{"user_id": "1"}', @model, JSON_OBJECT('recommend', 'users_to_items', 'topk', 2));
+--------------------------------------------------------------------------------------------------------+
| sys.ML_PREDICT_ROW('{"user_id": "1"}', @model, JSON_OBJECT('recommend', 'users_to_items', 'topk', 2)) |
+--------------------------------------------------------------------------------------------------------+
| {"user_id": "1", "ml_results": {"predictions": {"rating": [4.7, 3.48], "item_id": ["20", "18"]}}} |
+--------------------------------------------------------------------------------------------------------+
1 row in set (0.7899 sec)
The predicted items of 20 and 18 and predicted ratings are the same as the one in the output table previously created.
Learn how to generate different types of recommendations:
Learn how to Score a Recommendation Model.