MySQL 5.5 Release Notes

Abstract

This document contains release notes for the changes in each release of MySQL 5.5, up through MySQL 5.5.62. For information about changes in a different MySQL series, see the release notes for that series.

For additional MySQL 5.5 documentation, see the MySQL 5.5 Reference Manual, which includes an overview of features added in MySQL 5.5 (What Is New in MySQL 5.5), and discussion of upgrade issues that you may encounter for upgrades from MySQL 5.1 to MySQL 5.5 (Changes in MySQL 5.5).

Updates to these notes occur as new product features are added, so that everybody can follow the development process. If a recent version is listed here that you cannot find on the download page (https://dev.mysql.com/downloads/), the version has not yet been released.

The documentation included in source and binary distributions may not be fully up to date with respect to release note entries because integration of the documentation occurs at release build time. For the most up-to-date release notes, please refer to the online documentation instead.

Previously, MySQL development proceeded by including a large set of features and moving them over many versions within a release series through several stages of maturity (Alpha, Beta, and so forth). This development model had a disadvantage in that problems with only part of the code could hinder timely release of the whole.

MySQL development now uses a milestone model. The move to this model provides for more frequent milestone releases, in which each milestone introduces a small subset of thoroughly tested features. Following the releases for one milestone, development proceeds with another small number of releases that focuses on the next set of features. From one milestone to the next, feature interfaces may change or features may even be removed, based on feedback provided by community members who try these early releases. Features within milestone releases may be considered to be of pre-production quality.

MySQL 5.5.0-m2 is the first release for Milestone 2. The new features of this milestone may be considered to be initially of beta quality. For subsequent Milestone 2 releases, we plan to use increasing version numbers (5.5.1 and higher) while continuing to employ the "-m2" suffix. For Milestone 3, we plan to change the suffix to "-m3". Version designators with "-alpha" or "-beta" suffixes are no used.

You may notice that the MySQL 5.5.0 release is designated as Milestone 2 rather than Milestone 1. This is because MySQL 5.4 was actually designated as Milestone 1, although we had not yet begun referring to milestone numbers as part of version numbers at the time.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL users.

Document generated on: 2019-12-07 (revision: 19349)

Table of Contents

Preface and Legal Notices ... 3
Changes in MySQL 5.5.62 (2018-10-22, General availability) 4
Changes in MySQL 5.5.61 (2018-07-27, General availability) 5
Changes in MySQL 5.5.60 (2018-04-19, General availability) 5
Changes in MySQL 5.5.59 (2018-01-15, General availability) 6
Changes in MySQL 5.5.58 (2017-10-16, General availability) 7
Changes in MySQL 5.5.57 (2017-07-17, General availability) ... 7
Changes in MySQL 5.5.56 (2017-05-02, General availability) ... 9
Changes in MySQL 5.5.55 (2017-04-10, General availability) ... 9
Changes in MySQL 5.5.54 (2016-12-12, General availability) ... 12
Changes in MySQL 5.5.53 (2016-10-12, General Availability) .. 13
Changes in MySQL 5.5.52 (2016-09-06, General Availability) ... 14
Changes in MySQL 5.5.51 (2016-07-29, General Availability) ... 15
Changes in MySQL 5.5.50 (2016-06-02, General Availability) ... 16
Changes in MySQL 5.5.49 (2016-04-11, General Availability) ... 16
Changes in MySQL 5.5.48 (2016-02-05, General Availability) ... 18
Changes in MySQL 5.5.47 (2015-12-07, General Availability) ... 19
Changes in MySQL 5.5.46 (2015-09-30, General Availability) ... 20
Changes in MySQL 5.5.45 (2015-07-24, General Availability) ... 22
Changes in MySQL 5.5.44 (2015-05-29, General Availability) ... 23
Changes in MySQL 5.5.43 (2015-04-06, General Availability) ... 24
Changes in MySQL 5.5.42 (2015-02-02, General Availability) ... 24
Changes in MySQL 5.5.41 (2014-11-28, General Availability) ... 25
Changes in MySQL 5.5.40 (2014-09-22, General Availability) ... 27
Changes in MySQL 5.5.39 (2014-07-31, General Availability) ... 28
Changes in MySQL 5.5.38 (2014-05-30, General Availability) ... 30
Changes in MySQL 5.5.37 (2014-03-27, General Availability) ... 31
Changes in MySQL 5.5.36 (2014-01-31, General Availability) ... 33
Changes in MySQL 5.5.35 (2013-12-03, General Availability) ... 35
Changes in MySQL 5.5.34 (2013-09-20, General Availability) ... 37
Changes in MySQL 5.5.33 (2013-07-31, General Availability) ... 40
Changes in MySQL 5.5.32 (2013-06-03, General Availability) ... 44
Changes in MySQL 5.5.31 (2013-04-18, General Availability) ... 47
Changes in MySQL 5.5.30 (2013-02-05, General Availability) ... 53
Changes in MySQL 5.5.29 (2012-12-21, General Availability) ... 57
Changes in MySQL 5.5.28 (2012-09-28, General Availability) ... 60
Changes in MySQL 5.5.27 (2012-08-02, General Availability) ... 63
Changes in MySQL 5.5.26 (Not released) ... 65
Changes in MySQL 5.5.25a (2012-07-05, General Availability) 65
Changes in MySQL 5.5.25 (2012-05-30, General Availability) ... 66
Changes in MySQL 5.5.24 (2012-05-07, General Availability) ... 67
Changes in MySQL 5.5.23 (2012-04-12, General Availability) ... 68
Changes in MySQL 5.5.22 (2012-03-21, General Availability) ... 71
Changes in MySQL 5.5.21 (2012-02-17, General Availability) ... 72
Changes in MySQL 5.5.20 (2012-01-10, General Availability) ... 76
Changes in MySQL 5.5.19 (2011-12-08, General Availability) ... 77
Changes in MySQL 5.5.18 (2011-11-16, General Availability) ... 78
Changes in MySQL 5.5.17 (2011-10-19, General Availability) ... 80
Changes in MySQL 5.5.16 (2011-09-15, General Availability) ... 81
Changes in MySQL 5.5.15 (2011-07-28, General Availability) ... 85
Changes in MySQL 5.5.14 (2011-07-05, General Availability) ... 86
Changes in MySQL 5.5.13 (2011-05-31, General Availability) ... 88
Changes in MySQL 5.5.12 (2011-05-05, General Availability) ... 89
Changes in MySQL 5.5.11 (2011-04-07, General Availability) ... 91
Changes in MySQL 5.5.10 (2011-03-15, General Availability) ... 95
Changes in MySQL 5.5.9 (2011-02-07, General Availability) ... 98
Changes in MySQL 5.5.8 (2010-12-03, General Availability) .. 105
Changes in MySQL 5.5.7 (2010-10-14, Release Candidate) ... 112
Changes in MySQL 5.5.6 (2010-09-13, Release Candidate) ... 123
Changes in MySQL 5.5.5 (2010-07-06, Developer Milestone) ... 135
Preface and Legal Notices

This document contains release notes for the changes in each release of MySQL 5.5, up through MySQL 5.5.62.

Legal Notices

Copyright © 1997, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Changes in MySQL 5.5.62 (2018-10-22, General availability)

• Packaging Notes
• Functionality Added or Changed
• Bugs Fixed

Packaging Notes

• The zlib library bundled with MySQL has been upgraded from version 1.2.3 to version 1.2.11. MySQL implements compression with the help of the zlib library.

The zlib compressBound() function in zlib 1.2.11 returns a slightly higher estimate of the buffer size required to compress a given length of bytes than it did in zlib version 1.2.3. The compressBound() function is called by InnoDB functions that determine the maximum row size permitted when creating compressed InnoDB tables or inserting rows into compressed InnoDB tables. As a result, CREATE TABLE ... ROW_FORMAT=COMPRESSED or INSERT and UPDATE operations with row sizes very close to the maximum row size that were successful in earlier releases could now fail. For additional information, see Changes in MySQL 5.5.

Functionality Added or Changed

• Previously, file I/O performed in the I/O cache in the mysys library was not instrumented, affecting in particular file I/O statistics reported by the Performance Schema about the binary log index file. Now,
this I/O is instrumented and Performance Schema statistics are accurate. Thanks to Yura Sorokin for the contribution. (Bug #27788907, Bug #90264)

Bugs Fixed

• MySQL Server and test RPM packages were missing perl-Data-Dumper as a dependency. (Bug #28144933, Bug #72926)

• For the mysql client, the --b short option was associated with two long options, --no-beep and --binary-as-hex. The --b option now is associated only with --no-beep. (Bug #28093271)

• During server startup/shutdown, PID files could be mishandled. (Bug #27919254)

• For MEMORY tables, memory overflow errors could occur. (Bug #27799513)

• When converting from a BLOB (or TEXT) type to a smaller BLOB (or TEXT) type, no warning or error was reported informing about the truncation or data loss. Now an appropriate error is issued in strict SQL mode and a warning in nonstrict SQL mode. (Bug #27788885, Bug #90266)

• ALTER TABLE ... REORGANIZE PARTITION ... could result in incorrect behavior if any partition other than the last was missing the VALUES LESS THAN part of the syntax. (Bug #26791931)

Changes in MySQL 5.5.61 (2018-07-27, General availability)

Bugs Fixed

• A heap overflow vulnerability in the MySQL client library was fixed. (Bug #27980823)

• An unencrypted connection could result from a client connection attempt specifying that an encrypted connection was required, if the server was not configured to support SSL. (Bug #27759871)

• With automatic_sp_privileges enabled, the EXECUTE and ALTER ROUTINE privileges were not correctly granted to routine creators. (Bug #27407480)

• Mishandling of internal privilege structures could cause a server exit. (Bug #27230925)

• The UNION of a user-defined variable and a DECIMAL column produced an incorrect result when using a UTF8 character set. (Bug #27197235)

• mysqldump exited abnormally for large --where option values. (Bug #26171967, Bug #86496, Bug #27510150)

• For MyISAM tables, particular sequences of INSERT and DELETE statements could cause table corruption. (Bug #25541037)

• For RPM packages, starting the server using old-style RPM init scripts could fail. (Bug #23099326)

Changes in MySQL 5.5.60 (2018-04-19, General availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• If the server PID file is configured to be created in a world-writable location, the server now issues a warning suggesting use of a more secure location. (Bug #26585560)
Bugs Fixed

- **InnoDB**: A `REPLACE` operation on a temporary table raised an assertion. (Bug #27225649, Bug #27229072)

- **Replication**: A number of changes were made to the binary log decoding procedure to improve handling of invalid or corrupted binary log entries. (Bug #24365972)

- Adding a unique index to an InnoDB table on which multiple locks were held could raise an assertion. (Bug #27216817)

- For some statements, the `FILE` privilege was not properly checked. (Bug #27160888)

- Dropping an index from a system table could cause a server exit. (Bug #26881798)

- A server exit could result from simultaneous attempts by multiple threads to register and deregister metadata Performance Schema objects. (Bug #26502135)

- The thread pool plugin logged too much information for failed connections. (Bug #26368725, Bug #86863)

- MySQL client programs could exit unexpectedly if malformed client/server protocol packets were received. (Bug #25471090)

Changes in MySQL 5.5.59 (2018-01-15, General availability)

- Configuration Notes
- Test Suite Notes
- Bugs Fixed

Configuration Notes

- For RHEL, SLES, and Fedora RPMs, the default plugin directory for debug builds has been changed from `/usr/lib64/mysql/plugin` to `/usr/lib64/mysql/plugin/debug`. (Bug #27072155, Bug #88363)

Test Suite Notes

- Documentation for the MySQL Test Suite is now maintained in the MySQL source tree using Doxygen (see the MySQL Server Doxygen documentation, available at https://dev.mysql.com/doc/index-other.html.) The related Unix man pages that previously were produced from the old test suite manual are no longer updated and have gone out of date. Consequently, they are no longer included in MySQL distributions. (Bug #27021754)

Bugs Fixed

- **InnoDB**: Warnings that should only appear in debug builds of MySQL were printed to the error log when the length of the history list exceeded 2000000. (Bug #24296076, Bug #82213)

- **Packaging**: Initialization of the MySQL Server Docker container failed with the message “hostname: command not found” when the server was being initialized. That was due to a missing library in the Docker image. (Bug #26747305)

- **Partitioning**: Queries involving `NULL` were not always handled correctly on tables that were partitioned by `LIST`. (Bug #76418, Bug #20748521)
MySQL 5.5 Release Notes

References: See also: Bug #86255, Bug #26034430.

• **Microsoft Windows:** On Windows, with the `myisam_use_mmap` and `flush` system variables enabled, MyISAM did not always flush table files properly. (Bug #26880757)

• `VALUES()` was not handled correctly in some cases. (Bug #26881946)

 References: See also: Bug #19601973, Bug #17458914.

• Incorrect results or a server exit could result when `SHA2()` was passed a user-defined variable in some character sets. (Bug #26704451)

• Creating a table with excessive index information could cause a server exit. (Bug #26529369)

• Setting the `MYSQL_GROUP_SUFFIX` environment variable had no effect. (Bug #23072792)

• A circular dependency problem involving `sql/sql_builtin.cc` was resolved. (Bug #16877045)

• A prepared statement containing an `ORDER BY` list that referred to a parameter was not always handled correctly. (Bug #87863, Bug #26867652)

Changes in MySQL 5.5.58 (2017-10-16, General availability)

• Packaging Notes

• Bugs Fixed

Packaging Notes

• `mysqlcheck` was missing in the MySQL Server Docker image, which prevented `mysql_upgrade` from running. (Bug #26400146, Bug #86968)

Bugs Fixed

• **Replication:** Replication clients no longer enable `LOCAL` capability for `LOAD DATA` statements, because they do not use `LOAD DATA LOCAL` statements. (Bug #24763131)

• `yaSSL` could incorrectly perform TLS cipher negotiation. (Bug #26482173)

• The server failed to check the maximum path length for partition names. (Bug #26390632)

• Identifiers containing a mix of backslashes and backticks could be parsed incorrectly. (Bug #26372491)

• MSI Community packages failed to install. (Bug #26171638)

• `NAME_CONST()` can return null if incorrect arguments are given. In some cases, this was not handled and could cause a server exit. (Bug #19143243, Bug #26361149)

Changes in MySQL 5.5.57 (2017-07-17, General availability)

• Packaging Notes

• Platform-Specific Notes

• Functionality Added or Changed

• Bugs Fixed
Packaging Notes

• mysqladmin was added to Docker/Minimal packages because it is needed by InnoDB Cluster. (Bug #25998285)

Platform-Specific Notes

• Linux: The generic Linux build for MySQL 5.5 is now built on Oracle Linux 6 using glibc 2.12. Systems that use the build need to have glibc 2.12 or later installed on them. (Bug #26005558)

Functionality Added or Changed

• For Windows, MSI installer packages now include a check for the required Visual Studio redistributable package, and produce a message asking the user to install it if it is missing. (Bug #25658832)

• The mysql client now supports a --binary-as-hex option that causes display of binary data using hexadecimal notation (0xvalue). Thanks to Daniël van Eeden for the patch. (Bug #25340722, Bug #84391)

• mysqlaccess now looks for its configuration file only in the SYSConfDIR directory and /etc. (Bug #25043674)

Bugs Fixed

• Replication: If a relay log index file named relay log files that did not exist, RESET SLAVE ALL sometimes did not fully clean up properly. (Bug #24901077)

• mysqldump could write database names in USE statements incorrectly. (Bug #25998635)

• If the mysql_stmt_close() C API function was called, it freed memory that later could be accessed if mysql_stmt_error(), mysql_stmt_errno(), or mysql_stmt_sqlstate() was called. To obtain error information after a call to mysql_stmt_close(), call mysql_error(), mysql_errno(), or mysql_sqlstate() instead. (Bug #25988681)

• The Perl path in #! lines at the beginning of Perl scripts has been adjusted to /usr/local/bin/perl for FreeBSD 11. (Bug #25719975)

• A race condition could occur for CREATE TABLE statements with DATA DIRECTORY or INDEX DIRECTORY clauses. (Bug #25451091)

• Full-text code now uses the standard isalnum() function rather than the my_isalnum() macro, for improved handling of default character set structure. (Bug #25447551)

• MySQL compilation in different directories produced different builds to leakage of absolute paths into debug information and __FILE__. (Bug #25436469, Bug #84608, Bug #25859274, Bug #85855)

• mysqlld_failed to start the server if the --datadir option was specified with a relative path name. (Bug #25364806)

• With read_only enabled, creation of non-TEMPORARY tables by non-SUPER users was permitted under certain conditions. (Bug #25250768)

• On x86 machines, the uint3korr() macro read 4 bytes of data instead of the intended 3 bytes. (Bug #24807826, Bug #83264)

• Queries that contained UNION in a subquery and GROUP BY could return incorrect results. (Bug #24595639)
• **LOAD XML** performance became noticeably slower when the XML file being read contained a great
many spaces, such as those introduced by indenting or pretty-printing. Now all leading whitespace is
trimmed from each such value before reading it into memory. (Bug #16212207)

Changes in MySQL 5.5.56 (2017-05-02, General availability)

Binary packages for MySQL 5.5.56 are identical to those for MySQL 5.5.55, except for the version number.
The change in 5.5.56 for Bug #25942414 is applicable only to those who build from source.

Security Notes

• For the **WITH_SSL** CMake option, **no** is no longer a permitted value or the default value. The default is
now **bundled**. Consequently, MySQL now is always built with SSL support and cannot be built without
some SSL library. (Bug #25942414)

Changes in MySQL 5.5.55 (2017-04-10, General availability)

• Compilation Notes
• Configuration Notes
• Packaging Notes
• Security Notes
• Thread Pool Notes
• Platform-Specific Notes
• Functionality Added or Changed
• Bugs Fixed

Compilation Notes

• Windows builds now use the default runtime libraries (builds use the `/MD` flag). (Bug #25611609)

Configuration Notes

• MySQL failed to compile if `-DENABLE_DEBUG_SYNC=OFF` AND `-DWITH_DEBUG=ON` were both given.
The `ENABLE_DEBUG_SYNC` option has been removed and enabling `WITH_DEBUG` enables Debug Sync.
(Bug #18374703)

Packaging Notes

• **Microsoft Windows**: *Reminder:* MySQL 5.5 requires the Microsoft Visual C++ 2008 Redistributable
Package to run on Windows platforms. Users should make sure the package has been installed on the
system before starting the server. The package is available at the Microsoft Download Center.

Security Notes

• The `mysql_options()` C API function now supports a **MYSQL_OPT_SSL_MODE** option. The only
permitted option value is **SSL_MODE_REQUIRED**, to require an encrypted connection to the server. It
causes `mysql_real_connect()` to fail if an encrypted connection cannot be obtained, without falling
back to an unencrypted connection. Thus, \texttt{mysql_real_connect()} returns an error if the server does not support SSL or the client is not configured to use SSL. The client/server exchange terminates immediately after the initial server packet has been received if the server indicates that it does not support SSL.

To require an encrypted connection in MySQL 5.5, the standard MySQL client programs call \texttt{mysql_options()} to set \texttt{MYSQL_OPT_SSL_MODE} if the \texttt{--ssl-mode=REQUIRED} command-line option was specified. Third-party applications that must be able to require encrypted connections can use the same technique. For details, see \texttt{mysql_ssl_set()}.

The minor C API version number was not incremented for this change. Application programs compiled for MySQL 5.5 that require \texttt{MYSQL_OPT_SSL_MODE} may fail to operate properly if the dynamic loader provides an older client library without \texttt{MYSQL_OPT_SSL_MODE}. Such applications must be written to handle this possibility by checking whether the \texttt{mysql_options()} call succeeds or fails. (Bug \#25575605)

Thread Pool Notes

- To improve \texttt{thread_pool} plugin performance, connection authentication and initialization have been moved from the acceptor thread to the thread pool worker threads that handle client connections. This enables the acceptor thread to handle new connections at a higher rate with reduced latency. The \texttt{INFORMATION_SCHEMA TP_THREAD_GROUP_STATE} table now contains a \texttt{CONNECT_THREAD_COUNT} column that indicates the number of threads that are processing or waiting to process connection initialization and authentication. There can be a maximum of four connection threads per thread group; these threads expire after a period of inactivity. (Bug \#17159742)

Platform-Specific Notes

- \textit{Oracle Linux 5, Red Hat Enterprise Linux 5, and CentOS 5}: This is the last release in the MySQL 5.5 series to support Oracle Linux 5, Red Hat Enterprise Linux 5, and CentOS 5. As per the MySQL Support Lifecycle policy regarding ending support for OS versions that are obsolete or have reached end of life, we plan to discontinue building binaries for those Linux distributions in future releases. Moreover, we plan to build the generic Linux tarballs for the next release on Oracle Linux 6 using glibc 2.12. (Bug \#25828375)

Functionality Added or Changed

- \texttt{Solaris}: Solaris packages are now marked as dependent on \texttt{/bin/bash} because some scripts need features not present in the default shell \texttt{/bin/sh}. (Bug \#25136289)

- \texttt{mysql_secure_installation} is more strict about what it considers valid yes and no responses. (Bug \#13344753, Bug \#62925)

Bugs Fixed

- \texttt{InnoDB}: A server exit on restart was caused by missing \texttt{my_thread_init()} and \texttt{my_thread_exit()} functions for background threads that initialize the \texttt{st_my_thread_var} structure. (Bug \#25167032)

- \texttt{mysqldump} failed to properly quote certain identifiers in SQL statements written to the dump output. (Bug \#25717383)

- For \texttt{CREATE TABLE} statements that specified the table name with a database qualifier and included a \texttt{DATA DIRECTORY} or \texttt{INDEX DIRECTORY} option, an error occurred if there was no default database. (Bug \#25514146, Bug \#84861)
• `mysqld_safe` did not check whether the directory named by the `--basedir` option existed. (Bug #25365194)

• `mysqld_safe` failed if the error log file named by the `--log-error` option was a FIFO. (Bug #25356221, Bug #84427)

• `mysqld_safe` could fail if the `--datadir` option value ended with a `/` character. (Bug #25319457)

• A recent change to `mysqld_safe` caused the `mysql.server` script to be unable to start it if the base directory was specified as an absolute path that differed from the compiled-in default absolute path. (Bug #25319392, Bug #84263)

• For System V init scripts for RPMs, the `[mysqld]` option-file section was being ignored for some options, such as `pid-file`. (Bug #25287707, Bug #84172)

• Init scripts failed to launch `mysqld_safe` if a non-default base directory was used. (Bug #25261472, Bug #84219)

• `mysqld_safe --no-defaults` did not work (inadvertent consequence of an earlier bug fix). (Bug #25244898, Bug #84173)

• For a client linked against `libmysqlclient`, invalid memory access could occur during use of prepared statements. (Bug #25164932)

• The fix for Bug #25088048 caused the command used by `mysqld_safe` to start the MySQL server to no longer include the `mysqld` path. (Bug #25144379)

 References: This issue is a regression of: Bug #25088048.

• Changes made to `mysqld_safe` in recent MySQL releases require the `--ledir`, `--mysqld`, `--mysqld-version` options to be specified on the command line; they can no longer be specified in option files. This could cause failure of init scripts that invoke `mysqld_safe`. Such scripts now pass the value of the `MYSQLD_OPTS` environment variable as the first command-line argument to `mysqld_safe`, with the value set to such command line-only `mysqld_safe` option values as may be required. On platforms that use systemd, the `MYSQLD_OPTS` value can be set in `/etc/sysconfig/mysqld` with a line such as this:

  ```
  MYSQLD_OPTS="--ledir=/mysqld_ledir --mysqld=my_wrapper 
  
  The value of `MYSQLD_OPTS` can also include `mysqld` options for `mysqld_safe` to pass to `mysqld`. (Bug #24619033, Bug #82920)

  References: This issue is a regression of: Bug #24464380, Bug #24483092, Bug #25088048, Bug #25378439, Bug #25378565.

• For `LOAD DATA` used to insert data into an updateable view, the check to verify whether a column is actually updatable was missing. (Bug #24595937)

• A regular expression pattern match into a large string could result in a server exit due to memory allocation failure or integer overflow. (Bug #24449076, Bug #24449090)

• An incorrect error was reported for `CREATE TABLE` statements with a large value for the `CONNECTION` table option. The value is now limited to 1024 bytes. (Bug #24437124)

• Grant tables with incorrect structure may cause problems in user management operations. As a consequence of the fix for this, for any operation that modifies a grant table, the server now checks whether the table has the expected structure and produces an error if not. `mysql_upgrade` must be run to update the tables to the expected structure. (Bug #23295423, Bug #25095876, Bug #25448037)
• The `QUOTE()` function could allocate excessive memory. A limit of `max_allowed_packet` bytes is now imposed and returns `NULL` with a warning for attempts to allocate more. (Bug #23195404)

• When attempting to locate the data directory, `mysqld_safe` incorrectly considered `$MY_BASEDIR_VERSION/var` as one of the possible locations. (Bug #23013510, Bug #80866)

• The `main.log_tables-big` test case could be unstable on highly loaded hosts. Thanks to Laurynas Biveinis for the patch. (Bug #22874167, Bug #80607)

• On non-Linux Unix systems, the `mysql.server` startup script used the Linux command `pidof` rather than `pgrep`. (Bug #13788154, Bug #64342)

• Starting multiple instances of `mysqld_safe` after an abnormal server exit could result in one `mysqld_safe` instance killing another. As a consequence of the bug fix, the `mysqld_safe.pid` file is no longer used. (Bug #11751149, Bug #41908)

• The `--help` message for `mysqld_safe` was corrected to mention that the `--no-defaults`, `--defaults-file`, and `--defaults-extra-file` options, if given, must be the first argument. (Bug #11745176, Bug #11192)

• The bounds check for the XML parser position stack for each level (which has a fixed depth) used the size of the array as the upper limit, and so was off by one. This is fixed by decreasing the allowable depth by one, which actually matches the maximum number of elements in the position stack. (Bug #83871, Bug #25111907)

References: See also: Bug #14040071, Bug #15948580.

**Changes in MySQL 5.5.54 (2016-12-12, General availability)**

**Security Notes**

• Incompatible Change: These changes were made to `mysqld_safe`:

  Unsafe use of `rm` and `chown` in `mysqld_safe` could result in privilege escalation. `chown` now can be used only when the target directory is `/var/log`. An incompatible change is that if the directory for the Unix socket file is missing, it is no longer created; instead, an error occurs. Due to these changes, `/bin/bash` is required to run `mysqld_safe` on Solaris. `/bin/sh` is still used on other Unix/Linux platforms.

  The `--ledir` option now is accepted only on the command line, not in option files.

  `mysqld_safe` ignores the current working directory.

Other related changes:

• Initialization scripts that invoke `mysqld_safe` pass `--basedir` explicitly.

• Initialization scripts create the error log file only if the base directory is `/var/log` or `/var/lib`.

• Unused systemd files for SLES were removed.

(Bug #24483092, Bug #25088048, Bug #25378439, Bug #25378565)

References: See also: Bug #24464380, Bug #24388753, Bug #24619033, Bug #82920.
MySQL 5.5 Release Notes

Bugs Fixed

- **Incompatible Change:** A change made in MySQL 5.5.51 for handling of multibyte character sets by `LOAD DATA` was reverted due to the replication incompatibility that it caused. (Bug #24487120, Bug #82641)

  References: See also: Bug #23080148.

- **InnoDB:** The GCC `mach_parse_compressed` function should load one to five bytes depending on the value of the first byte. Due to a GCC bug, GCC 5 and 6 emit code to load four bytes before the first byte value is checked (GCC Bug #77673). A workaround prevents this behavior. Thanks to Laurynas Biveinis for the patch. (Bug #24707869, Bug #83073)

- Some Linux startup scripts did not process the `datadir` setting correctly. (Bug #25159791)

- `CREATE TABLE` now requires the `FILE` privilege if `DATA DIRECTORY` or `INDEX DIRECTORY` is specified explicitly as a table or partition option. `ALTER TABLE` requires the `FILE` privilege if either option is specified explicitly as a partition option (it ignores them if specified as table options). (Bug #25092566)

- OEL RPM packages now better detect which platforms have multilib support (for which 32-bit and 64-bit libraries can be installed). Thanks to Alexey Kopytov for the patch. (Bug #24925181, Bug #83457)

- If `mysqladmin shutdown` encountered an error determining the server process ID file, it displayed an error message that did not clearly indicate the error was nonfatal. It now indicates that execution continues. (Bug #24496214)

- The data structure used for `ZEROFILL` columns could experience memory corruption, leading eventually to a server exit. (Bug #24489302)

- Use of very long subpartition names could result in a server exit. Now partition or subpartition names larger than 64 characters produce an `ER_TOO_LONG_IDENT` error. (Bug #24400628, Bug #82429)

- On Solaris, `gettimeofday()` could return an invalid value and cause a server shutdown. (Bug #23499695)

- A union query resulting in tuples larger than `max_join_size` could result in a server exit. (Bug #23303485)

- For some deeply nested expressions, the optimizer failed to detect stack overflow, resulting in a server exit. (Bug #23135667)

- The `--character-set-server` option could set connection character set system variables to values such as `ucs2` that are not permitted. (Bug #15985752, Bug #23303391)

Changes in MySQL 5.5.53 (2016-10-12, General Availability)

- **Packaging Notes**

- **Security Notes**

Packaging Notes

- RPM packages now create the `/var/lib/mysql-files` directory, which is now the default value of the `secure_file_priv` system variable that specifies a directory for import and export operations. (Bug #24709892, Bug #24761774)
Security Notes

- **Incompatible Change:** The `secure_file_priv` system variable is used to limit the effect of data import and export operations. The following changes have been made to how the server handles this variable:
  - `secure_file_priv` can be set to `NULL` to disable all import and export operations.
  - The server checks the value of `secure_file_priv` at startup and writes a warning to the error log if the value is insecure. A non-`NULL` value is considered insecure if it is empty, or the value is the data directory or a subdirectory of it, or a directory that is accessible by all users. If `secure_file_priv` is set to a nonexistent path, the server writes an error message to the error log and exits.
  - Previously, the `secure_file_priv` system variable was empty by default. Now the default value is platform specific and depends on the value of the `INSTALL_LAYOUT` CMake option, as shown in the following table.

<table>
<thead>
<tr>
<th>INSTALL_LAYOUT Value</th>
<th>Default <code>secure_file_priv</code> Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDALONE, WIN</td>
<td>NULL</td>
</tr>
<tr>
<td>DEB, RPM, SLES, SVR4</td>
<td>/var/lib/mysql-files</td>
</tr>
<tr>
<td>Otherwise</td>
<td>mysql-files under the CMAKE_INSTALL_PREFIX value</td>
</tr>
</tbody>
</table>

- To specify the default `secure_file_priv` value explicitly if you are building from source, use the new `INSTALL_SECURE_FILE_PRIVDIR` CMake option. To specify a directory for the embedded server, set the new `INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR` option. Its default value is `NULL`.

(Bug #24679907, Bug #24695274, Bug #24707666)

- yaSSL was upgraded to version 2.4.2. This upgrade corrects issues with: Potential AES side channel leaks; DSA padding for unusual sizes; the `SSL_CTX_load_verify_locations()` OpenSSL compatibility function failing to handle long path directory names. (Bug #24512715, Bug #24740291)

Changes in MySQL 5.5.52 (2016-09-06, General Availability)

**Bugs Fixed**

- **Replication:** `mysqlbinlog --read-from-remote-server log1 log2` was opening a new connection for `log2` without freeing the connection used for `log1`. Thanks to Laurynas Biveinis for the contribution. (Bug #81675, Bug #23540182)

- For `mysqld_safe`, the argument to `--malloc-lib` now must be one of the directories `/usr/lib`, `/usr/lib64`, `/usr/lib/i386-linux-gnu`, or `/usr/lib/x86_64-linux-gnu`. In addition, the `--mysqld` and `--mysqld-version` options are accepted only on the command line, not in option files. (Bug #24464380)

  References: See also: Bug #24619033, Bug #82920.

- It was possible to write log files ending with `.ini` or `.cnf` that later could be parsed as option files. The general query log and slow query log can no longer be written to a file ending with `.ini` or `.cnf`. (Bug #24388753)

- Privilege escalation was possible by exploiting the way `REPAIR TABLE` used temporary files. (Bug #24388746)
• Certain internal character-handling functions could fail to handle a too-large character and cause a server exit. (Bug #23296299)

• A blank server name in `CREATE SERVER` statements produced a server exit rather than an error. (Bug #23295288)

• The optimizer failed to check a function return value for an area calculation, leading to a server exit. (Bug #23280059)

• A prepared statement that used a parameter in the select list of a derived table that was part of a join could cause a server exit. (Bug #22392374, Bug #24380263)

• `MEDIUMINT` columns used in operations with long integer values could result in buffer overflow. (Bug #19984392)

• `EINVAL` handling in the client library has been fixed so that interrupted read and write calls are retried. Previously, `EINVAL` was ignored. (Bug #82019, Bug #23703570)

Changes in MySQL 5.5.51 (2016-07-29, General Availability)

Bugs Fixed

• **Incompatible Change:** For multibyte character sets, `LOAD DATA` could fail to allocate space correctly and ignore input rows as a result.

  A consequence of this change is that previously accepted invalid character data is now rejected, which can cause issues if you replicate from an older server without this bug fix to a newer server with this bug fix. For example, if an older server that accepts invalid `utf8` character set data replicates to a newer server with this bug fix, the newer server will not accept the data and replication will fail with an “Invalid utf8 character string” error. Solutions for this issue include:

  • Correct the invalid data so that it is correct for the character set
  • Use a different character set for which the data is not invalid
  • Upgrade the master to a version that has the bug fix so that master and slave interpret the data the same way

  (Bug #76237, Bug #20683959, Bug #23080148)

  References: This issue is a regression of: Bug #14653594.

• **Replication:** When using statement-based or mixed binary logging format with `--read-only=ON`, it was not possible to modify temporary tables. (Bug #62008, Bug #12818255)

  References: See also: Bug #14294223, Bug #16561483.

• MySQL Server upgrades performed using RPM packages failed when upgrading from MySQL 5.1 Community to MySQL 5.5 Community or MySQL 5.1 Commercial to MySQL 5.5 Commercial. (Bug #23736787)

• A buffer overflow in the `regex` library was fixed. (Bug #23498283)

• Certain arguments to `NAME_CONST()` could cause a server exit. (Bug #23279858)

• Installing MySQL from a `yum` or `zypper` repository resulted in `/var/log/mysqld.log` being created with incorrect user and group permissions. (Bug #21879694, Bug #78512)
• If a stored function updated a view for which the view table had a trigger defined that updated another table, it could fail and report an error that an existing table did not exist. (Bug #21142859, Bug #76808)

• If an INSTALL PLUGIN statement contained invalid UTF-8 characters in the shared library name, it caused the server to hang (or to raise an assertion in debug builds). (Bug #14653594, Bug #23080148, Bug #27167197)

Changes in MySQL 5.5.50 (2016-06-02, General Availability)

• Functionality Added or Changed
• Bugs Fixed

Functionality Added or Changed

• The version of the tcmalloc library included in MySQL distributions was very old. It has been removed and is no longer included with MySQL. (Bug #80994, Bug #23068660)

Bugs Fixed

• Replication: When using row-based replication in a cascading or circular replication setup, where a master is replicating to server 1 which is then replicating to server 2, merge tables were not being correctly applied on server 2. This could cause an unexpected halt on server 2 while server 1 was unaffected. (Bug #17018343)

• INSERT with ON DUPLICATE KEY UPDATE and REPLACE on a table with a foreign key constraint defined failed with an incorrect duplicate entry error rather than a foreign key constraint violation error. (Bug #23135731)

References: This issue is a regression of: Bug #78853, Bug #22037930.

• Setting sort_buffer_size to a very large value could cause some operations to fail with an out-of-memory error. (Bug #22594514)

• Several potential buffer overflow issues were corrected. (Bug #21977380, Bug #23187436, Bug #23202778, Bug #23195370, Bug #23202699)

• If the CA certificate as given to the --ssl-ca option had an invalid path, yaSSL returned an error message different from OpenSSL. Now both return SSL connection error: SSL_CTX_set_default_verify_paths failed. (Bug #21920657)

• Some string functions returned one or a combination of their parameters as their result. If one of the parameters had a non-ASCII character set, the result string had the same character set, resulting in incorrect behavior when an ASCII string was expected. (Bug #18740222)

• A null pointer dereference of a parser structure could occur during stored procedure name validation. (Bug #79396, Bug #22286421)

• mysqld_multi displayed misleading error messages when it was unable to execute my_print_defaults. (Bug #74636, Bug #19920049)

Changes in MySQL 5.5.49 (2016-04-11, General Availability)

• Security Notes
• Bugs Fixed
Security Notes

- MySQL client programs now support an `--ssl-mode` option that enables you to specify the security state of the connection to the server. If the option is not specified, the default value is **DISABLED** (establish an unencrypted connection). `--ssl-mode=REQUIRED` can be specified to require an encrypted connection, or fail if an encrypted connection cannot be obtained.

These clients support `--ssl-mode`: `mysql`, `mysqladmin`, `mysqlcheck`, `mysqldump`, `mysqlimport`, `mysqlshow`, `mysqlpump`, `mysqllap`, `mysqltest`, `mysql_upgrade`.

For more information, see [Command Options for Encrypted Connections](#).

**Note**

In MySQL 5.7 and higher, the C client library provides native support for requiring encrypted connections: call the `mysql_options()` C API function, passing the `MYSQL_OPT_SSL_MODE` option with a value of `SSL_MODE_REQUIRED`. In MySQL 5.5, the client library provides no such support because doing so would break binary compatibility with previous library versions within the series. Clients that require encrypted connections must implement the logic themselves.

To require encrypted connections in MySQL 5.5, the standard MySQL client programs use this technique: If `--ssl-mode=REQUIRED` was specified, the client program turns on SSL, connects to the server, and checks whether the resulting connection is encrypted. If not, the client exits with an error. Third-party applications that must be able to require encrypted connections can use the same technique. For details, see `mysql_ssl_set()`.

Bugs Fixed

- **InnoDB**: Running `REPLACE` operations on multiple connections resulted in a hang. (Bug #22530768, Bug #79185)

- **Replication**: The test case `main.merge` failed when the variables `binlog_format` was set to “ROW,” as the server tried to get information for table creation for a child table before it was opened. With this fix, the server skips getting information for the table in the situation. (Bug #20574550, Bug #75976)

- MySQL did not build with GCC 5. (Bug #22680706)

- The System-V initialization script for RHEL6 or older failed to enable the `mysqld` service by default. (Bug #22600974)

- Improper host name checking in X509 certificates could permit man-in-the-middle attacks. (Bug #22295186, Bug #22738607)

- A boolean mode full-text search caused a segmentation fault. (Bug #22176795)

- Concurrent selecting and flushing of a `FEDERATED` table while killing connections accessing it could result in a server exit. (Bug #21918190)

- Executing `GRANT_PROXY` statements after altering the definition of the `mysql.user` system table could result in a server exit. (Bug #21699037)

- Certain error messages included part of the SQL statement that produced them, possibly exposing data. (Bug #21682356)

- Character set conversion operations on `NULL` parameters to prepared statements could cause a server exit. (Bug #18823979)
• **CREATE TABLE ... SELECT** could create a table with a column of type **NULL**, which when accessed caused a server exit. (Bug #14021323, Bug #23280699)

• For **INSERT** and **UPDATE** operations that caused **FOREIGN KEY** constraint violations, errors were reported rather than warnings when the **IGNORE** keyword was used. (Bug #78853, Bug #22037930)

  References: See also: Bug #23135731.

• Processlist state information was not updated correctly for **LOAD DATA** and could show a state different from **executing**. (Bug #69375, Bug #16912362)

### Changes in MySQL 5.5.48 (2016-02-05, General Availability)

- **Security Notes**
- **Functionality Added or Changed**
- **Bugs Fixed**

#### Security Notes

• yaSSL was upgraded to version 2.3.9. This upgrade corrects an issue in which yaSSL handled only cases of zero or one leading zeros for the key agreement instead of potentially any number, which in rare cases could cause connections to fail when using DHE cipher suites. (Bug #22361038)

#### Functionality Added or Changed

• The Valgrind function signature in `mysql-test/valgrind.supp` was upgraded for Valgrind 3.11. (Bug #22214867)

#### Bugs Fixed

• **Replication:** When DML invokes a trigger or a stored function that inserts into an **AUTO_INCREMENT** column, that DML has to be marked as an unsafe statement. If the tables are locked in the transaction prior to the DML statement (for example by using **LOCK TABLES**), then the DML statement was not being marked as an unsafe statement. The fix ensures that such DML statements are marked correctly as unsafe. (Bug #17047208)

• **Replication:** **DROP TABLE** statements are regenerated by the server before being written to the binary log. If a table or database name contained a non-regular character, such as non-latin characters, the regenerated statement was using the wrong name, breaking replication. The fix ensures that in such a case the regenerated name is correctly converted back to the original character set. Also during work on this bug, it was discovered that in the rare case that a table or database name contained 64 characters, the server was throwing an **assert(M_TBLLEN < 128)** assertion. The assertion has been corrected to be less than or equal 128. (Bug #77249, Bug #21205695)

  References: See also: Bug #78036, Bug #22261585, Bug #21619371.

• **Microsoft Windows:** Added Microsoft Visual Studio 2015 support. Changes include using the native (added in VS 2015) timespec library if it exists, renamed lfind/lsearch and timezone/tzname to avoid redefinition problems, set TMPDIR to "" by default as P_tmpdir no longer exists, deprecated std::hash_map in favor of std::unordered_map, and added Wix Toolset 3.10 support. (Bug #21770366)

  References: See also: Bug #21657078.
• Data corruption or a server exit could occur if a stored procedure had a variable declared as TEXT or BLOB and data was copied to that variable using SELECT ... INTO syntax from a TEXT or BLOB column. (Bug #2203532, Bug #2223232, Bug #21941152)

• CREATE TEMPORARY TABLE .. SELECT statements involving BIT columns that resulted in a column type redefinition could cause a server exit or an improperly created table. (Bug #21902059)

• When an invalid date was supplied to the UNIX_TIMESTAMP() function using the STR_TO_DATE() function, no check was performed before converting it to a timestamp value. (Bug #21564557)

• With LOCK TABLES in force, an attempt to open a temporary MERGE table consisting of a view in its list of tables (not the last table in the list) caused a server exit. (Bug #20691429)

• For certain prepared statements, the optimizer could transform join conditions such that it used a pointer to a temporary table field that was no longer available after the initial execution. Subsequent executions caused a server exit. (Bug #19941403)

• Repeated execution of ALTER TABLE v1 CHECK PARTITION as a prepared statement, where v1 is a view, led to a server exit.

  In addition, output for some administrative operations, when they are attempted on a view, changes from “Corrupt” to “Operation failed”. These include ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE, and ALTER TABLE statements that perform ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR PARTITION operations. (Bug #19817021)

• Using systemd to start mysqld failed if configuration files contained multiple datadir lines. Now the last datadir line is used. (Bug #79613, Bug #22361702)

• AddressSanitizer compilation errors were silenced. (Bug #75739, Bug #20459338, Bug #75740, Bug #20459363)

Changes in MySQL 5.5.47 (2015-12-07, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL Server RPM packages now contain a conflict indicator for MySQL Connector C, such that an error occurs when installing MySQL Server if MySQL Connector C is also installed. To install MySQL Server, remove any MySQL Connector C packages first. (Bug #21900800)

• These client programs now support the --enable-cleartext-plugin option: mysqlcheck, mysqldump, mysqlimport, mysqlshow. This option enables the mysql_clear_password cleartext authentication plugin. (See Client-Side Cleartext Pluggable Authentication.) (Bug #21235226)

• mysql_upgrade now attempts to print more informative errors than FATAL ERROR: Upgrade failed. (Bug #77803, Bug #21489398)

Bugs Fixed

• Performance: Temporary MyISAM tables (unlike normal MyISAM tables) did not use the dynamic row format when they contained VARCHAR columns, resulting in larger temporary files (and more file I/O) than necessary. Dynamic row format now is used, which results in smaller tables that are faster to process. (Bug #13350136, Bug #78840, Bug #22023218)
MySQL 5.5 Release Notes

- **InnoDB**: Altering the lettercase of a column introduced an inconsistency between the .frm file and data dictionary resulting in a failed `CREATE INDEX` operation on the altered column. (Bug #20755615)
- Possibly unsafe uses of `strcpy()` in the `mysql_plugin` command were corrected. (Bug #21977070)
- Possible buffer overflow from incorrect use of `strcpy()` and `sprintf()` was corrected. (Bug #21973610)
- MySQL RPM packages for RHEL5 failed to create the `mysql` system user. (Bug #21950975)
- Concurrent `FLUSH PRIVILEGES` and `REVOKE` or `GRANT` statements could produce a small time window during which invalid memory access to proxy user information could occur, leading to a server exit. (Bug #21602056)
- Starting the server with the `query_alloc_block_size` system variable set to certain negative values on a machine without enough memory could result in out-of-memory errors. (Bug #21503595)
- Using `UNINSTALL PLUGIN` to uninstall the `daemon_example` plugin could cause a server exit. (Bug #21467458)
- `FLUSH DES_KEY_FILE` failed to reload the DES key file. (Bug #21370329)
- A server exit could occur for the second execution of a prepared statement for which an `ORDER BY` clause referred to a column position. (Bug #20755389)
- Repeated execution of a prepared statement could cause a server exit if the default database was changed. (Bug #20447262)
- Outer references do not work as arguments to `MATCH()`, but the server did not properly detect them. Now it does and raises an error. (Bug #20007383)
  
  References: See also: Bug #21140088.
- Valgrind errors were produced during row comparator setup. (Bug #19929406)
- `INSERT DELAYED` could cause a server exit for tables partitioned with a character column as the key and for which the expression required a character set conversion. (Bug #19894161)
- A server exit could occur when updating a view using an `ALL` comparison operator on a subquery that selects from an indexed column in the main table. (Bug #19434916)
- When a fixed-width row was inserted into a `MyISAM` temporary table, the entire content of the record buffer was written to the table, including any trailing space contained in `VARCHAR` columns, the issue being that this trailing space could be uninitialized. This problem has been resolved by insuring that only the bytes actually used to store the `VARCHAR` (and none extra) are copied and inserted in such cases. (Bug #13389854, Bug #79028, Bug #22123583)
- MySQL development RPM packages could fail to install if MySQL Connector/C development RPM packages were installed. (Bug #78815, Bug #22005375)

**Changes in MySQL 5.5.46 (2015-09-30, General Availability)**

- **Security Notes**
- **Bugs Fixed**

**Security Notes**

- yaSSL was upgraded to version 2.3.8.
Upgrading from older versions fixes a connection-failure issue when used with the thread pool plugin. (Bug #20774956, Bug #2188925)

Bugs Fixed

- **InnoDB; Microsoft Windows**: Setting `lower_case_table_names=0` on a case-insensitive file system could result in a hang condition when running an `INSERT INTO ... SELECT ... FROM tbl_name` operation with the wrong `tbl_name` lettercase. An error message is now printed and the server exits when attempting to start the server with `--lower_case_table_names=0` on a case-insensitive file system. (Bug #20198490, Bug #75185)

- **InnoDB**: A data corruption occurred on ARM64. GCC builtins did not issue the correct fences when setting or unsetting the lock word. (Bug #21102971, Bug #76135)

- **InnoDB**: In `READ COMMITTED` mode, a `REPLACE` operation on a unique secondary index resulted in a constraint violation. Thanks to Alexey Kopytov for the patch. (Bug #21025880, Bug #76927)

- **InnoDB**: The `IBUF_BITMAP_FREE` bit indicated that there was more free space in the leaf page than was actually available. (Bug #20796566)

- **Partitioning**: `CREATE TABLE` statements that used an invalid function in a subpartitioning expression did not always fail gracefully as expected. (Bug #20310212)

- **Partitioning**: `ALTER TABLE` when executed from a stored procedure did not always work correctly with tables partitioned by `RANGE`. (Bug #77333, Bug #16613004, Bug #21246891)

- Certain subqueries as arguments to `PROCEDURE ANALYSE()` could cause a server exit. (Bug #21350175)

- An assertion could be raised due to incorrect error handling if a `SELECT ... FOR UPDATE` subquery resulted in deadlock and caused a rollback. (Bug #21096444)

- Servers linked against yaSSL and compiled with GCC 4.8.2 could fail to respond correctly to connection attempts until several seconds after startup. (Bug #21025377)

- For tables with subpartitions, the server could exit due to incorrect error handling during partition pruning if the partition could be identified but not the subpartition. (Bug #20909518)

- `DELETE` could check privileges for the wrong database when table aliases were used. (Bug #20777016)

- Within a trigger, use of a cursor that accessed `OLD` or `NEW` values from a row could cause a server exit. (Bug #20760261)

- Long path name values for some options could lead to stack overflow. (Bug #20376760)

- MySQL sometimes produced no warning when it was unable to interpret a character in a given character set. (Bug #20238729)

- For MySQL distributions linked against yaSSL, a corrupt client key file could cause clients to exit. (Bug #20168526)

- Execution of certain `BINLOG` statements while temporary tables were open by `HANDLER` statements could cause a server exit. (Bug #19894987, Bug #20449914)

- On Windows, setting `query_cache_min_res_unit` to too large a value could result in a value of 0 and a subsequent server exit. (Bug #18487951)
MySQL 5.5 Release Notes

• RPM installation scripts failed if configuration files contained multiple datadir lines. Now the last datadir line is used. (Bug #77878, Bug #21527467)

• For wait events, the Performance Schema uses the CYCLE timer by default, but failed to fall back to a different timer if CYCLE was unavailable. (Bug #77577, Bug #21374104)

• Updating VARCHAR and TEXT columns in the same UPDATE statement could produce incorrect results. When a VARCHAR column was assigned to a TEXT column and the VARCHAR column was then set to a different value, the TEXT column's result contained the VARCHAR column's new value. (Bug #77135, Bug #21143080)

• mysqladmin -u root -p could exit with a segmentation fault. (Bug #76538, Bug #20802751)

• mysqlimport --use-threads did not actually use multiple threads. (Bug #76480, Bug #20772273)

• View creation from a UNION failed with a duplicate-column error if a SELECT statement in the UNION other than the first used the same column name multiple times. (Bug #74539, Bug #19886430)

• Empty XML elements having the form <element/> were not handled correctly by the LOAD XML statement. (Bug #67542, Bug #16171518)

Changes in MySQL 5.5.45 (2015-07-24, General Availability)

• Security Notes

• Bugs Fixed

Security Notes

• Due to the LogJam issue (https://weakdh.org/), OpenSSL has changed the Diffie-Hellman key length parameters for openssl-1.0.1n and up. OpenSSL has provided a detailed explanation at http://openssl.org/news/secadv_20150611.txt. To adopt this change in MySQL, the key length used in vio/viosslfactories.c for creating Diffie-Hellman keys has been increased from 512 to 2,048 bits. (Bug #77275, Bug #21221862, Bug #18367167, Bug #21307471, Bug #21449838)

Bugs Fixed

• InnoDB: On Unix-like platforms, os_file_create_simple_no_error_handling_func and os_file_create_func opened files in different modes when innodb_flush_method was set to O_DIRECT. (Bug #21113036, Bug #76627)

• InnoDB: An assertion was raised when InnoDB attempted to dereference a NULL foreign key object. (Bug #20762798)

• InnoDB: An index record was not found on rollback due to inconsistencies in the purge_node_t structure. The inconsistency resulted in warnings and error messages such as “error in sec index entry update”, “unable to purge a record”, and “tried to purge sec index entry not marked for deletion”. (Bug #19138298, Bug #70214, Bug #21126772, Bug #21065746)

• The Spencer regex library used for the REGEXP operator could be subject to heap overflow in some circumstances. (Bug #20642505)

• A buffer-overflow error could occur for mysqlslap during option parsing. (Bug #20605441)

• GROUP BY or ORDER BY on a CHAR(0) NOT NULL column could lead to a server exit. (Bug #19660891)

• mysql-systemd-start failed if datadir was set in /etc/my.cnf. (Bug #77357, Bug #21262883)
• On OS X 10.10 (Yosemite), `mysqld` failed to start automatically. The startup item has been replaced with a `launchd` job, which enables the preference pane checkbox for automatic startup to work again. (Bug #74434, Bug #19858350)

Changes in MySQL 5.5.44 (2015-05-29, General Availability)

Bugs Fixed

• **InnoDB; Partitioning:** The `CREATE_TIME` column of the `INFORMATION_SCHEMA.TABLES` table now shows the correct table creation time for partitioned InnoDB tables. The `CREATE_TIME` column of the `INFORMATION_SCHEMA.PARTITIONS` table now shows the correct partition creation time for a partition of partitioned InnoDB tables.

  The `UPDATE_TIME` column of the `INFORMATION_SCHEMA.TABLES` table now shows when a partitioned InnoDB table was last updated by an INSERT, DELETE, or UPDATE. The `UPDATE_TIME` column of the `INFORMATION_SCHEMA.PARTITIONS` table now shows when a partition of a partitioned InnoDB table was last updated. (Bug #69990, Bug #17299181)

• **InnoDB:** An assertion was raised on shutdown due to XA PREPARE transactions holding explicit locks. (Bug #20816223, Bug #76567)

• **InnoDB:** Removal of a foreign key object from the data dictionary cache during error handling caused the server to exit. (Bug #20442523)

• **InnoDB:** `SHOW ENGINE INNODB STATUS` output showed negative reservation and signal count values due to a counter overflow error. (Bug #20417397)

• **InnoDB:** Estimates that were too low for the size of merge chunks in the result sorting algorithm caused a server exit. (Bug #20049521)

• **SHOW VARIABLES** mutexes were being locked twice, resulting in a server exit. (Bug #20788853)

• Under certain conditions, the `libedit` command-line library could write outside an array boundary and cause a client program crash. (Bug #20318154)

• Host value matching for the grant tables could fail to use the most specific of values that contained wildcard characters. (Bug #20181776)

• A user with a name of `event_scheduler` could view the Event Scheduler process list without the `PROCESS` privilege. (Bug #20007583, Bug #20754369)

• **SHOW GRANTS** after connecting using a proxy user could display the password hash of the proxied user. (Bug #19817663)

• For a prepared statement with an `ORDER BY` that refers by column number to a `GROUP_CONCAT()` expression that has an outer reference, repeated statement execution could cause a server exit. (Bug #19814337)

• Loading corrupt spatial data into a `MyISAM` table could cause the server to exit during index building. (Bug #19573096)

• A `Provides` rule in RPM `.spec` files misspelled “mysql-embedded” as “mysql-embedded”. (Bug #76385, Bug #20734434)

• Certain queries for the `INFORMATION_SCHEMA_TABLES` and `COLUMNS` tables could lead to excessive memory use when there were large numbers of empty InnoDB tables. (Bug #72322, Bug #18592390)

• MySQL failed to compile using OpenSSL 0.9.8e. (Bug #68999, Bug #16861371)
Changes in MySQL 5.5.43 (2015-04-06, General Availability)

- **Functionality Added or Changed**
- **Bugs Fixed**

**Functionality Added or Changed**

- **CMake** support was updated to handle **CMake** version 3.1. (Bug #20344207)
- The server now includes its version number when it writes the initial "starting" message to the error log, to make it easier to tell which server instance error log output applies to. This value is the same as that available from the **version** system variable. (Bug #74917, Bug #20052694)

**Bugs Fixed**

- **Replication**: When using a slave configured to use a special character set such as UTF-16, UTF-32, or UCS-2, the receiver (I/O) thread failed to connect. The fix ensures that in such a situation, if a slave’s character set is not supported then default to using the **latin1** character set. (Bug #19855907)
- Ordering by a **GROUP_CONCAT()** result could cause a server exit. (Bug #19880368, Bug #20730220)
- A malformed **mysql.proc** table row could result in a server exit for **DROP DATABASE** of the database associated with the **proc** row. (Bug #19875331)
- Large values of the **transaction_prealloc_size** system variable could cause the server to allocate excessive amounts of memory. The maximum value has been adjusted down to 128K. A similar change was made for **transaction_alloc_block_size**. Transactions can still allocate more than 128K if necessary; this change reduces the amount that can be preallocated, as well as the maximum size of the incremental allocation blocks. (Bug #19770858, Bug #20730053)
- A server exit could occur for queries that compared two rows using the `<>` operator and the rows belonged to different character sets. (Bug #19699237, Bug #20730155)
- Certain InnoDB errors caused stored function and trigger condition handlers to be ignored. (Bug #19683834, Bug #20094067)
- The optimizer could raise an assertion due to incorrectly associating an incorrect field with a temporary table. (Bug #19612819, Bug #20730129)
- The server could exit due to an optimizer failure to allocate enough memory for resolving outer references. (Bug #18782905, Bug #19892803)
- Starting the server with **start service** or **mysqld_safe** could result in failure to use the correct plugin directory. (Bug #17619241)
- Creating a **FEDERATED** table with an **AUTO_INCREMENT** column using a **LIKE** clause results in a server exit. (Bug #12671631)

Changes in MySQL 5.5.42 (2015-02-02, General Availability)

- **Security Notes**
- **Functionality Added or Changed**
- **Bugs Fixed**
MySQL 5.5 Release Notes

Security Notes

• yaSSL was upgraded to version 2.3.7. (Bug #19695101, Bug #20201864)

Functionality Added or Changed

• SSL 2.0 and SSL 3.0 protocols are now explicitly disabled because they provide weak encryption. (Bug #19820550)

  References: See also: Bug #19921150.

• The valid date range of the SSL certificates in mysql-test/std_data has been extended to the year 2029. (Bug #18366947)

Bugs Fixed

• InnoDB: An error occurred when the push_warning_printf function was invoked during server recovery. This function was previously used to print a warning message to the client. Also, current_thd was NULL when the server was restarted. (Bug #20144839)

• InnoDB: A multiple-table delete operation caused the server to halt. (Bug #19815702)

• Replication: If a DROP_DATABASE statement failed on the master, mismatched tables could be left on the slave, breaking replication. This was caused by the DROP_TABLE statement being binary logged if at least one table was deleted during the DROP_DATABASE operation. The fix ensures that in such a situation the DROP_TABLE statement is binary logged with the IF EXISTS option. (Bug #74890, Bug #20041860)

• Unlocking a temporary table after locking and truncating it could cause a server exit. (Bug #19786309)

• The Enterprise Encryption plugin could mishandle string arguments. (Bug #19688008, Bug #20730103)

• FLUSH TABLES on a FEDERATED table failed if the table had been idle longer than the wait_timeout time plus the TCP keepalive time. (Bug #17599258)

• Selecting all columns from INFORMATION_SCHEMA.TABLES did not reopen tables if they were in the table cache, but selecting a subset of those columns under the same conditions did reopen tables. (Bug #16869534)

• MySQL failed to compile with GCC 4.9.1 in debug mode. (Bug #74710, Bug #19974500)

• A file created for an internal temporary table could cause problems if the file was orphaned for some reason and the file name was reused for later queries. (Bug #32917, Bug #11747548)

Changes in MySQL 5.5.41 (2014-11-28, General Availability)

• Compilation Notes

• Deprecation and Removal Notes

• Security Notes

• Bugs Fixed

Compilation Notes

• CMake workarounds for older OS X and XCode versions were removed. On OS X, compilation always uses Clang, even for 32-bit builds.
Compilation on OS X is now supported for OS X 10.8 and up, using XCode 5 and up. Compilation on older versions may work but is unsupported. (Bug #18510941)

- Previously, the `MYSQL_MAINTAINER_MODE` `CMake` option was turned on by default for debug builds and off for release builds, and `MYSQL_MAINTAINER_MODE` caused `-Werror` to be enabled when building with GCC. This made it cumbersome to enable `-Werror` under certain conditions, such as when compiling with Clang.

Now, `MYSQL_MAINTAINER_MODE` is on by default when compiling debug builds with GCC, and `MYSQL_MAINTAINER_MODE` enables `-Werror` regardless of whether GCC or Clang is used. Enabling `-Werror` with Clang can be done simply by explicitly setting `-DMYSQL_MAINTAINER_MODE=1` when running `CMake`. In addition, some compilation warnings reported by Clang 3.4 were fixed, making it possible to build the default debug build with `-Werror`. (Bug #18313717)

- Build support was modified to produce the same warnings for Clang as for `gcc`. (Bug #17959689)

- `CMake` configuration for the Clang compiler sets more appropriate flags for building on Linux. Specifically, `-g -fno-omit-frame-pointer -fno-strict-aliasing` is now added. (Bug #17633291)

### Deprecation and Removal Notes

- **Replication:** The global scope for the `sql_log_bin` system variable has been deprecated, and this variable can now be set with session scope only. The statement `SET GLOBAL SQL_LOG_BIN` now produces an error. It remains possible to read the global value of `sql_log_bin`, but doing so produces a warning. You should act now to remove from your applications any dependencies on reading this value; the global scope `sql_log_bin` is removed in MySQL 8.0. (Bug #67433, Bug #15868071)

### Security Notes

- `yaSSL` was upgraded to version 2.3.5. (Bug #19695101, Bug #20201864)

### Bugs Fixed

- **InnoDB:** An `ALTER TABLE` operation raised an assertion. When a foreign key object was removed from the dictionary cache, an incorrect foreign key object was removed from the rb-tree. (Bug #19908343)

  References: This issue is a regression of: Bug #18806829.

- **InnoDB:** In debug builds, setting the `innodb_limit_optimistic_insert_debug` debug configuration option to 1 caused an infinite B-tree page split. (Bug #19904003, Bug #74605)

- **InnoDB:** The `dict_set_corrupted()` function attempted to update the clustered index of the `SYS_INDEXES` data dictionary table incorrectly. (Bug #19584379)

- **InnoDB:** A procedure, called from a function to perform an operation on a temporary table, caused the server to halt. (Bug #19306524)

- **InnoDB:** A `CREATE TABLE` operation that failed when `innodb_strict_mode` was enabled succeeded without printing a warning when `innodb_strict_mode` was disabled. (Bug #17852083)

- **Replication:** When using a MySQL version that had been compiled with the `WITH_DEBUG` option enabled, using `expire_logs_days` to purge binary logs caused a restart to crash the server. This problem arose after the fix for Bug #17283409. The fix ensures that `current_thd` is checked before calling `DEBUG_SYNC()`. (Bug #19553099)
MySQL 5.5 Release Notes

• **Replication:** A corrupted header length in `FORMAT_DESCRIPTION_LOG_EVENT` could cause the server to stop unexpectedly. This was due to `FORMAT_DESCRIPTION_LOG_EVENT` being considered invalid if the header length was too short. (Bug #19145712)

• **Replication:** Start log events were not checked by slaves for minimum size. (Bug #19145698)

• **Replication:** A kernel mutex contention was being caused because `mysqlbinlog` was calling `localtime()` for every event read, which in turn called `stat(/etc/localtime)`. This fix ensures that `mysqlbinlog` uses `localtime_r()`, which is optimized to store the read only timezone internal structure. This also means that `mysqlbinlog` now establishes the time zone at the beginning of processing and you can not change it during processing. This is the same behavior as MySQL server. (Bug #72701, Bug #18808072)

• **Microsoft Windows:** On Windows, the `replace` utility did not work. (Bug #16581605)

• Previously, **InnoDB** permitted a foreign key to be created which referenced a parent table for which the user did not have sufficient privileges. Now, the user must have at least one of the `SELECT, INSERT, UPDATE, DELETE,` or `REFERENCES` privileges for the parent table to create a foreign key. (Bug #18790730, Bug #11746917)

• Binary MySQL distributions for OS X 10.8 and up now bundle the `MySQL.prefPane` and `MySQLStartupItem.pkg` tools into the main package as configurable options instead of separate packages. (Bug #74123, Bug #19701502)

• On CentOS 6, specifying a relative path name for the `--socket` option caused MySQL startup script failure. (Bug #74111, Bug #19775856)

• The `IS_FREE_LOCK()` and `IS_USED_LOCK()` function implementations contained a race condition due to which they could access freed memory when a user lock was concurrently checked and freed. Accessing freed memory could result in an incorrect function return value or server exit. (Bug #73123, Bug #19070633)

• `mysql_setpermission` failed to properly quote user names in SQL statements that it generated. (Bug #66317, Bug #14486004)

Changes in MySQL 5.5.40 (2014-09-22, General Availability)

**Bugs Fixed**

• **InnoDB:** An `ALTER TABLE ... ADD FOREIGN KEY` operation could cause a serious error. (Bug #19471516, Bug #73650)

• **InnoDB:** With a transaction isolation level less than or equal to `READ COMMITTED`, gap locks were not taken when scanning a unique secondary index to check for duplicates. As a result, duplicate check logic failed allowing duplicate key values in the unique secondary index. (Bug #19140907)

  References: This issue is a regression of: Bug #16133801.

• **InnoDB:** During recovery, a segmentation fault would occur when marking a table as corrupt. (Bug #18942294)

  References: This issue is a regression of: Bug #11830883.

• yaSSL client code did not validate the encryption size or session ID length, which could cause the client to exit. (Bug #19463277, Bug #19463565)

• MySQL installation from RPM packages could fail if Postfix had been installed using `yum`. (Bug #19392127)
MySQL 5.5 Release Notes

- yaSSL could fail preauthorization if the client supplied inaccurate buffer lengths. (Bug #19370676, Bug #19355577)
- Competition between threads could lead to timeout failure trying to rotate the audit log file. (Bug #19184973)
- On Linux (OEL6), if Sun DTrace was installed, the MySQL build failed. (Bug #19149091)
- LPAD() and RPAD() could cause a server exit if the pad string argument was not well formed. (Bug #18935421)
- The optimizer could create a zero-length column for a temporary table, causing a server exit. (Bug #18928848)
- MOD for very small decimal right-hand arguments could cause a server exit. (Bug #18469276)
- The client library now includes a call to X509_verify_cert_error_string() in the SSL certificate verification code, to be more robust in detecting invalid certificates. (Bug #18384260)
- The thread_concurrency system variable is deprecated, but no warning resulted from setting it at server startup. (Bug #17873011)
- Sending a SIGQUIT or SIGINT signal to mysql could result in a glibc double free or corruption error. (Bug #17297324)
- On EL7, installation of MySQL from RPM packages could fail if postfix had previously been installed using yum. (Bug #73507, Bug #19392051, Bug #19392149)
- mysql_upgrade could fail if the mysql.user table contained multiple accounts with the same user name and host name where the host name differed in lettercase. This is still not permitted, but now mysql_upgrade prints a more informative error message to indicate the nature of the problem:

```
ERROR 1644 (45000): Multiple accounts exist for user_name, host_name that differ only in Host lettercase; remove all except one of them
```

(Bug #72066, Bug #18415196)
- If the general query log or slow query log file was set to a FIFO or socket file, and the file reader went away, the server stopped executing statements. Now the server detects such files, logs an error message, and continues with the appropriate log disabled. (Bug #67088, Bug #14757009)
- LIKE matches failed for code points of HALF WIDTH KATAKANA in the sjis and cp932 character sets. (Bug #47641, Bug #11755818)

Changes in MySQL 5.5.39 (2014-07-31, General Availability)

- Functionality Added or Changed
- Bugs Fixed

Functionality Added or Changed

- CMake support was updated to handle CMake version 3. (Bug #19001781)
- The timed_mutexes system variable has no effect and is deprecated. (Bug #18277305)

Bugs Fixed

- InnoDB: Opening a parent table that has thousands of child tables could result in a long semaphore wait condition. (Bug #18806829)
• **Partitioning:** Selecting from a table having multiple columns in its primary key and partitioned by `LIST COLUMNS (R)`, where `R` was the last (rightmost) column listed in the primary key definition, returned an incorrect result. (Bug #17909699, Bug #71095)

• **Replication:** When using row-based replication, updating or deleting a row on the master that did not exist on the slave led to failure of the slave when it tried to process the change. This problem occurred with InnoDB tables lacking a primary key. (Bug #18432495, Bug #72085)

• **Replication:** Quotation marks were not always handled correctly by `LOAD DATA` when written into the binary log. (Bug #18207212, Bug #71603)

• **Replication:** Uninstalling and reinstalling semisynchronous replication plugins while semisynchronous replication was active caused replication failures. The plugins now check whether they can be uninstalled and produce an error if semisynchronous replication is active. To uninstall the master-side plugin, there must be no semisynchronous slaves. To uninstall the slave-side plugin, there must be no semisynchronous I/O threads running. (Bug #70391, Bug #17638477)

• **Replication:** A group of threads involved in acquiring locks could deadlock when the following events occurred:

1. Dump thread reconnects from slave; on master, a new dump thread tries to kill zombie dump threads; having acquired the thread’s `LOCK_thd_data`, it is about to acquire `LOCK_log`.

2. Application thread executing show binary logs, having acquired `LOCK_log` and about to acquire `LOCK_index`.

3. Application thread executing `PURGE BINARY LOGS`; having acquired `LOCK_index`, it is about to acquire `LOCK_thread_count`.

4. Application thread executing `SHOW PROCESSLIST` (or `SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST`), having acquired `LOCK_thread_count` and about to acquire the zombie dump thread’s `LOCK_thd_data`.

This leads to the 4 threads deadlocking in the same order which the threads have been listed here.

This problem arises because there are ordering rules for `LOCK_log` and `LOCK_index`, as well as rules for ordering `LOCK_thread_count` and `LOCK_thd_data`, but there are no rules for ordering across these two sets of locks. This was because the internal `mysqld_list_processes()` function invoked by `SHOW PROCESSLIST` acquired `LOCK_thread_count` for the complete lifetime of the function as well as acquiring and releasing each thread’s `LOCK_thd_data`. Now this function takes a copy of the threads from the global thread list and performs its traversal on these, and only after releasing `LOCK_thread_count`. During this traversal, removal from the global thread list is blocked using `LOCK_thd_remove` such that the copies that would otherwise be destroyed by the removal remain valid during traversal. The locking order following this fix is shown here:

```
LOCK_thd_remove -> LOCK_thd_data -> LOCK_log -> LOCK_index -> LOCK_thread_count
```

(Bug #69954, Bug #17283409)

References: See also: Bug #73475, Bug #19364731, Bug #19365180.

• SHA and MD5 functions failed for operations using the internal `filename` character set and could cause a server exit. (Bug #18786138)

• Large arguments passed to `mysqldump` could lead to buffer overflow and program exit. (Bug #18779944)
• **ALTER TABLE** on a partitioned table could result in the wrong storage engine being written into the table’s **.frm** file and displayed in **SHOW CREATE TABLE**. (Bug #18618561)

• Compiler flags were not passed to DTrace, causing problems for 32-bit builds cross-compiled on 64-bit platforms. (Bug #18593044)

• With the `max_heap_table_size` system variable set to a large value (20GB), creation of a temporary table or a table using the **MEMORY** storage engine caused a server exit. (Bug #18463911)

• If MySQL was built with the `-DINSTALL_LIBDIR=lib64` option, `mysql_config` did not work if the MySQL package was unpacked into a location with a different installation prefix. Also, `mysql_config` did not work for some RPM builds because it used an incorrect installation prefix. (Bug #18382225)

• yaSSL code had an off-by-one error in certificate decoding that could cause buffer overflow. yaSSL code had an `opendir()` without a corresponding `closedir()`. (Bug #18178997, Bug #17201924)

• `mysqladmin password` masked the old password given on the command line, but not the new password. (Bug #18163964)

• **MyISAM** temporary files could be used to mount a code-execution attack. (Bug #18045646)

• If a query had both `MIN()/MAX()` and `aggregate_function(DISTINCT)` (for example, `SUM(DISTINCT)`) and was executed using Loose Index Scan, the result values of `MIN()/MAX()` were set improperly. (Bug #17217128)

• For **UNION** statements, the rows-examined value was calculated incorrectly. This was manifest as too-large values for the `ROWS EXAMINED` column of Performance Schema statement tables (such as `events_statements_current`). (Bug #17059925)

• Clients could determine based on connection error message content whether an account existed. (Bug #16513435, Bug #17357528, Bug #19273967)

• An assertion could be raised when creating a index on a prefix of a **TINYBLOB** or **GEOMETRY** column in an **InnoDB** column. (Bug #16368875, Bug #18776592, Bug #17665767)

• Use of a nonmultibyte algorithm for skipping leading spaces in multibyte strings could cause a server exit. (Bug #12368495, Bug #18315770)

• MySQL did not compile with Bison 3. (Bug #71250, Bug #18017820, Bug #18978946)

• Deadlock could occur if three threads simultaneously performed **INSTALL PLUGIN, SHOW VARIABLES, and mysql_change_user**. (Bug #71236, Bug #18008907, Bug #72870, Bug #18903155)

• If there was a predicate on a column referenced by `MIN()` or `MAX()` and that predicate was not present in all the disjunctions on key parts earlier in the compound index, Loose Index Scan returned an incorrect result. (Bug #71097, Bug #17909656)

• File permissions and line endings of several test and configuration files were made more consistent to avoid warnings from package checkers. (Bug #68521, Bug #16415173, Bug #16395459, Bug #68517, Bug #16415032, Bug #71112, Bug #17919313, Bug #71113, Bug #17919422)

• For a view defined on a **UNION**, the server could create an invalid view definition. (Bug #65388, Bug #14117018, Bug #72018, Bug #18405221)

**Changes in MySQL 5.5.38 (2014-05-30, General Availability)**
Bugs Fixed

- **InnoDB**: For each insert, `memset` would be called three times to allocate memory for system fields. To reduce CPU usage, the three `memset` calls are now combined into a single call. (Bug #17858679, Bug #71014)

- **Replication**: When used on a table employing a transactional storage engine, a failed `TRUNCATE TABLE` was still written to the binary log and thus replayed on the slave. This could lead to inconsistency when the master retained data that was removed on the slave.

  Now in such cases `TRUNCATE TABLE` is logged only when it executes successfully. (Bug #17942050, Bug #71070)

- For indexes on prefixes or character string columns, index corruption could occur for assignment of binary data to the column due to improper character counting. (Bug #18359924)

- Certain `INFORMATION_SCHEMA` queries could cause a server exit. (Bug #18319790)

- Solaris-specific scripts were included in and installed by non-Solaris packages. (Bug #18305641)

- `EXPLAIN` on a query with an `EXISTS` subquery containing a `UNION` could cause a server exit. Multiple executions of a prepared `EXPLAIN` on a `UNION` of subqueries could cause a server exit. (Bug #18167356)

- The client library could cause clients to exit due to incorrectly mapping the client error number to the corresponding message, if reallocation of packet buffer memory occurred. (Bug #18080920)

- Executing a correlated subquery on an `ARCHIVE` table which has an `AUTO_INCREMENT` column caused the server to hang. (Bug #18065452)

- Calling `mysql_get_server_version()` with an invalid connection handler argument caused the client to exit. Now it returns 0 and reports a `CR_COMMANDS_OUT_OF_SYNC` error. (Bug #18053212)

- On Windows, calling `mysql_thread_init()` call without `mysql_init()` caused the client to exit. windows. Now it returns a nonzero result because it is an error to call `mysql_thread_init()` before the client library is initialized with `mysql_library_init()`. (Bug #17514920)

- A statement of the following form broke row-based replication because it created a table having a field of data type `BIGINT` with a display width of 3000, which is beyond the maximum acceptable value of 255:

  ```sql
 CREATE TABLE t1 AS SELECT REPEAT('A',1000) DIV 1 AS a;
  ```

  (Bug #71179, Bug #17994219)

- **CMake** produced not-useful warnings about `INTERFACE_LINK_LIBRARIES` policy. (Bug #71089, Bug #17905155, Bug #17894997)

- `LOAD DATA LOCAL` could use all CPU if import errors occurred when there were no line delimiters. (Bug #51840, Bug #11759519)

Changes in MySQL 5.5.37 (2014-03-27, General Availability)

- Functionality Added or Changed
- Bugs Fixed
Functionality Added or Changed

- Solaris: On Solaris, `mysql_config --libs` now includes `-R/path/to/library` so that libraries can be found at runtime. (Bug #18235669)

Bugs Fixed

- InnoDB: A regression introduced by Bug #14329288 would result in a performance degradation when a compressed table does not fit into memory. (Bug #18124788, Bug #71436)
  References: This issue is a regression of: Bug #14329288.
- InnoDB: The maximum value for `innodb_thread_sleep_delay` is now 1000000 microseconds. The previous maximum value (4294967295 microseconds on 32-bit and 18446744073709551615 microseconds on 64-bit) was unnecessarily large. Because the maximum value of `innodb_thread_sleep_delay` is limited by the value set for `innodb_adaptive_max_sleep_delay` (when set to a nonzero value), the maximum value for `innodb_thread_sleep_delay` is now the same as the maximum value for `innodb_adaptive_max_sleep_delay`. (Bug #18117322)
- InnoDB: In debug builds, creating a unique index on a binary column, with input data containing duplicate keys, would cause an assertion. (Bug #18010711)
- InnoDB: InnoDB failed to start when `innodb_data_file_path` specified the data file size in kilobytes by appending \( K \) to the size value. (Bug #16287752)
- InnoDB: An insert buffer merge would cause an assertion error due to incorrectly handled ownership information for externally stored BLOBs.
  
  InnoDB: Assertion failure in thread `thread_num` in file `ibuf0ibuf.cc` line `4080`
  InnoDB: Failing assertion: `rec_get_deleted_flag(rec, page_is_comp(page))`

  (Bug #14668683)
- InnoDB: Decreasing the `auto_increment_increment` value would have no affect on the next auto-increment value. (Bug #14049391, Bug #65225)
- Replication: The server did not handle correctly the insertion of a row larger than 4 GB when using row-based replication. (Bug #17081415)
- Replication: When using row-based replication, an additional auto-increment column on the slave version of a table was not updated correctly; a zero was inserted instead. (Bug #17066269, Bug #69680)
- Replication: Statements involving the Performance Schema tables should not be written to the binary log, because the content of these tables is applicable only to a given MySQL Server instance, and may differ greatly between different servers in a replication topology. The database administrator should be able to configure (INSERT, UPDATE, or DELETE) or flush (TRUNCATE TABLE) performance schema tables on a single server without affecting others. However, when replicating from a MySQL 5.5 master to a MySQL 5.5 or later slave, warnings about unsafe statements updating Performance Schema tables were elevated to errors. For MySQL 5.6 and later slaves, this prevented the simultaneous use of `performance_schema` and GTIDs (see Replication with Global Transaction Identifiers, in the MySQL 5.6 Manual).

This fix causes all updates on tables in the `performance_schema` database to be filtered on the master and not replicated, regardless of the type of logging that is in effect. Prior to this fix, statements using were handled by being marked as unsafe for replication, which caused warnings during execution; the statements were nonetheless written to the binary log, regardless of the logging format in effect.
Existing replication behavior for tables in the `INFORMATION_SCHEMA` database is not changed by this fix.

For more information, see MySQL Performance Schema. (Bug #16814264)

References: See also: Bug #14741537, Bug #18259193.

• While printing the server version, the `mysql` client did not check for buffer overflow in a string variable. (Bug #18186103)

• Compilation failed if MySQL was configured with `CFLAGS` set to include a `-Werror` option with an argument. (Bug #18173037)

• A shared `libmysqld` embedded server library was not built on Linux. A new `WITH_EMBEDDED_SHARED_LIBRARY` CMake option now makes this possible. (Bug #18123048, Bug #16430656, Bug #68559)

• Contraction information in a collation could be mishandled, resulting in incorrect decisions about whether a character is part of a contraction, and miscalculation of contraction weights. (Bug #17760379)

• `DROP TRIGGER` succeeded even with the `read_only` system variable enabled. (Bug #17503460)

• Updating the `setup_instruments` Performance Schema table on a replication master caused a slave to exit. (Bug #14539290)

• When run by `root,mysqld --help --verbose` exited with a nonzero error code after displaying the help message. (Bug #70058, Bug #17324415)

• A deadlock error occurring during subquery execution could cause an assertion to be raised. (Bug #69969, Bug #17307201)

• For system variables that take a string value, `SET` statements permitted an unquoted value, but values that contained dots were parsed incorrectly and only part of the value was assigned. For example, `SET GLOBAL slow_query_log_file = my_slow.log` assigned the value `my_slow`. Now such values must be quoted or an error occurs. (Bug #69703, Bug #17075846)

• MySQL client programs from a Community Edition distribution could not connect using SSL to a MySQL server from an Enterprise Edition. This was due to a difference in certificate handling by yaSSL and OpenSSL (used for Community and Enterprise, respectively). OpenSSL expected a blank certificate to be sent when not all of the `--ssl-ca`, `--ssl-cert`, and `--ssl-key` options were specified, and yaSSL did not do so. To resolve this, yaSSL has been modified to send a blank certificate when an option is missing. (Bug #68788, Bug #16715064)

• Due to a race condition, it was possible for two threads to end up with the same query ID for different queries. (Bug #58785, Bug #11765785)

• On Windows, `mysql_install_db.pl` could be run only from within the `bin` directory under the installation directory. (Bug #42421, Bug #11751526)

Changes in MySQL 5.5.36 (2014-01-31, General Availability)

• Functionality Added or Changed

• Bugs Fixed
MySQL 5.5 Release Notes

Functionality Added or Changed

- **CMake** now supports a `-DTMPDIR=dir_name` option to specify the default `tmpdir` value. If unspecified, the value defaults to `P_tmpdir` in `<stdio.h>`. Thanks to Honza Horak for the patch. (Bug #68338, Bug #16316074)

Bugs Fixed

- **InnoDB**: Table renaming errors would appear in the `LATEST FOREIGN KEY ERROR` section of the `SHOW ENGINE INNODB STATUS` output. (Bug #12762390, Bug #61746)

- **Partitioning**: Queries using the `index_merge` optimization (see Index Merge Optimization) could return invalid results when run against tables that were partitioned by `HASH`. (Bug #17588348, Bug #70588)

  References: See also: Bug #16862316, Bug #17648468, Bug #18167648.

- **Partitioning**: When no partition had returned a row since the last `HA_ERR_KEY_NOT_FOUND` error, the use of uninitialized memory in the priority queue used for returning rows in sorted order could lead to a crash of the server. (Bug #17401628)

- **Replication**: When `log_warnings` is greater than 1, the master prints binary log dump thread information—containing the slave server ID, binary log file name, and binary log position—in `mysqld.1.err`. A slave server ID greater than 2 billion was printed with a negative value in such cases. (Bug #17641586, Bug #70685)

  References: See also: Bug #16960133.

- **Replication**: Invalid event offsets in the binary log were not always handled correctly, which could lead to replication failure. (Bug #16736412, Bug #69087)

- **Microsoft Windows**: On Windows, the `--local-service` server option did not work, and was not displayed in the `--help` message. (Bug #69637, Bug #17049656)

- The cache used for the Index Merge access method was freed only after successful retrieval of all rows. Interruption or failure of the operation led to a file descriptor leak. (Bug #17708621)

- For `utf8` and `utf8mb4` strings, handler functions unnecessarily called a Unicode conversion function. (Bug #14057034)

- Use of a nonmultibyte algorithm for skipping leading spaces in multibyte strings could cause a server exit. (Bug #12368495, Bug #18315770)

- The prototype of the Performance Schema instrumentation API `mysql_cond_timedwait()` call was fixed to be drop-in compatible with `pthread_cond_timedwait()`. This fix affects only implementors of third-party plugins. (Bug #70628, Bug #17702677)

- For the path specified with the `--basedir` option, `mysql_plugin` attempted to unlink the path rather than free the memory in which the path was stored. (Bug #69752, Bug #17168602)

- For the `utf8_bin` collation, `ORDER BY LOWER(col_name)` could produce incorrect ordering. (Bug #69005, Bug #16691598)

- `COUNT(DISTINCT)` sometimes produced an incorrect result when the last read row contained a `NULL` value. (Bug #68749, Bug #16539979, Bug #71028, Bug #17867117)
MySQL 5.5 Release Notes

• Some scripts displayed out-of-date information regarding where to report bugs. (Bug #68742, Bug #16530527)

• Updating a FEDERATED table with UPDATE . . . JOIN caused a server exit when the local table contained a single row and that row could be joined to a row in the FEDERATED table. (Bug #68354, Bug #16324629)

• mysql_install_db referred to the obsolete mysqlbug script for reporting problems. It now refers to http://bugs.mysql.com/ instead. (Bug #29716, Bug #11746921)

Changes in MySQL 5.5.35 (2013-12-03, General Availability)

• Packaging Notes

• Functionality Added or Changed

• Bugs Fixed

Packaging Notes

• Previously, MySQL Server distributions included the MySQL Reference Manual in Info format (the Docs/mysql.info file). Because the license for the manual restricts redistribution, its inclusion in Community packages caused problems for downstream redistributors, such as those who create Linux distributions. Community distributions of MySQL Server no longer include the mysql.info file, to make the repackaging and redistribution process easier (for example, the source tarball and its checksum can be used directly). This change applies to all source and binary Community packaging formats. Commercial (Enterprise) distributions are unchanged.

For those who wish to continue using the MySQL Reference Manual in Info format, we have made it available at https://dev.mysql.com/doc/ .

Functionality Added or Changed

• A new CMake option, WITH_ASAN, permits enabling AddressSanitizer for compilers that support it. (Bug #17435338)

• Attempts to use the thread_concurrency system variable (which has an effect only for Solaris 8 and earlier) now indicate that it has no effect when that is the case. (Bug #67944, Bug #16032946)

Bugs Fixed

• InnoDB: CHECK TABLE would ignore the QUICK option. (Bug #17513737)

• InnoDB: Running SHOW ENGINE INNODB STATUS on one connection thread and killing that thread by running a KILL CONNECTION statement from a different connection thread would result in a severe error. (Bug #17474166)

• InnoDB: In debug builds, test case failures would occur due to ibuf_contract_ext performing merges and dict_stats_update returning evicted pages back into the buffer pool while ibuf_change_buffering_debug is enabled. (Bug #17446090)

• InnoDB: InnoDB failed to return an error when attempting to run a query after discarding the tablespace. (Bug #17431533)

• InnoDB: When the change buffer is enabled, InnoDB failed to write a transaction log record when merging a record from the insert buffer to a secondary index page if the insert was performed as an "update-in-place". (Bug #16752251, Bug #69122)
MySQL 5.5 Release Notes

- **InnoDB**: When `index_read_map` is called for an exact search and fails to return a record due to non-matching search criteria, the cursor would be positioned on the next record after the searched key. A subsequent call to `index_next` would return the next record instead of returning the previous non-matching row, thereby skipping a record. (Bug #14621190, Bug #15965874, Bug #17314241, Bug #70038, Bug #17413093, Bug #12860669, Bug #60220, Bug #17565888)

- **InnoDB**: Converting a table with a large number of columns from MyISAM to InnoDB would cause an assertion due to insufficient log buffer space. Instead of asserting, InnoDB now attempts to increase log buffer size automatically if the redo log size is too large. (Bug #11758196, Bug #50366)

- **Partitioning**: The storage engine was set incorrectly during a rebuild of a partition; the table storage engine was ignored and the default storage engine used instead. Thus, in MySQL 5.1, it was possible for `REBUILD PARTITION` to change the partition storage engine from InnoDB to MyISAM, and for the reverse (rebuilding partitions of MyISAM tables causing the partitions to use InnoDB) to occur in MySQL 5.5 and later. Now, when rebuilding partitions, the storage engine actually used by the table is checked and used by the handler for the rebuild operation, so that the partition storage engine is not inadvertently changed. (Bug #17559867)

- **Partitioning**: After disabling the parent table's indexes with `ALTER TABLE ... DISABLE KEYS`, rebuilding any of its partitions enabled the indexes on those partitions, leading MyISAM to fail with an error when the optimizer tried to use one of the affected indexes.

  Now in such cases, we check for disabled indexes on the table before rebuilding any of its partitions. If the indexes have been disabled, then we disable them on the partition following the rebuild. (Bug #16051817)

- **Replication**: A replication master did not handle correctly the disabling of the semisync plugin on the master and the slave, with a subsequent stopping of the slave. (Bug #17460821, Bug #70349)

- **Replication**: The final argument in the `SET` clause of a `LOAD DATA ... SET` statement was repeated in the binary log. (Bug #17429677, Bug #70277)

- **Replication**: When an error encountered by the dump thread while reading events from the active binary log file was a temporary error, so that the dump thread tried to read the event, it was possible for the dump thread to seek the wrong position, which could cause one or more events to be resent. To prevent this, the thread's position is obtained after each correct read of an event.

  In addition, with this fix, only binary logs that are not closed normally are marked as possibly being corrupted.

  Finally, two warnings are added; these are now returned when a dump thread encounters a temporary error. (Bug #17402313)

- **Replication**: Setting `rpl_semi_sync_master_enabled` while the master was waiting for a reply from the slave could in some cases cause the master to fail. (Bug #17327454, Bug #70045)

- **Replication**: The value of `LAST_INSERT_ID()` was not correctly replicated when filtering rules were used on the slave. (Bug #17234370, Bug #69861)

- **Replication**: Enabling Index Merge optimizer switches and setting a small `sort_buffer_size` value could lead to a server exit. (Bug #17617945)

- Some license and documentation files were missing from Windows MSI packages. (Bug #17584523)

- The `filesort` implementation sometimes failed to allocate enough buffer space, leading to a server exit. (Bug #17326567)
MySQL 5.5 Release Notes

- The `mysql_options()` C API function could leak memory if called more than once with the `MYSQL_SET_CLIENT_IP` option. (Bug #17297012)

- The `CONV()` function could call `abs(INT_MIN)`, which is undefined, and cause a server exit. (Bug #17296644)

- An error array in the SSL code was missing a comma, leading to implicit concatenation of adjacent messages and a resulting off-by-one error in the relationship between error numbers and messages. (Bug #17294150)

- `GROUP_CONCAT()` with an invalid separator could cause a server exit. (Bug #16870783)

- An internal InnoDB string routine could write past the end of a buffer. (Bug #16765410)

- Using the binary client/server protocol, the second execution of a prepared statement for a query with parameters in the `LIMIT` clause raised an assertion. (Bug #16346241)

- The usual failed-login attempt accounting was not applied to failed `COM_CHANGE_USER` commands. (Bug #16241992, Bug #17357535)

- Very long database names in queries could cause the server to exit. (Bug #15912213, Bug #16900358)

- Standalone Windows MSI packages did not have the `ALLUSERS` property set. They now set `ALLUSERS=1`. For earlier MSI packages in this MySQL series, a workaround is to use the following command:

```
C:\> msiexec /i msi_installer_name ALLUSERS=1
```

(Bug #14647206)

- Some `.pdb` files were missing from Windows Zip archive distributions. (Bug #13878021)

- `COUNT(DISTINCT)` should not count `NULL` values, but they were counted when the optimizer used Loose Index Scan. (Bug #69841, Bug #17222452)

- For queries of the form `UPDATE ... WHERE unique_key ORDER BY ... LIMIT ...`, incorrect rows could be updated. Unique keys permit multiple `NULL` values, but the optimizer did not always consider all of them. (Bug #68656, Bug #16482467)

- The `my_b_vprintf()` function could produce incorrect results for long integers on 64-bit systems. (Bug #67386, Bug #16978278)

- Host names in grant tables are stored in lowercase, but `mysql_install_db` could fail to observe this convention, leading to accounts that could not be dropped with `DROP_USER`. (Bug #62255, Bug #12917164, Bug #62254, Bug #12917151)

- Killing a query that is performing a `filesort` operation resulted in an `ER_SERVER_SHUTDOWN` (Server shutdown in progress) error. (Bug #18256, Bug #11745656)

Changes in MySQL 5.5.34 (2013-09-20, General Availability)

- Audit Log Notes

  - Bugs Fixed

Audit Log Notes

- MySQL 5.7 changed audit log file output to a new format that has better compatibility with Oracle Audit Vault. This format has been backported to MySQL 5.5 and it is possible to select either the old or new
format using the new `audit_log_format` system variable, which has permitted values of `OLD` and `NEW` (default `OLD`). For details about each format, see Audit Log File Formats.

In addition, when the audit log plugin rotates the audit log file, it uses a different file name format. For a log file named `audit.log`, the plugin previously renamed the file to `audit.log.TIMESTAMP`. The plugin now renames the file to `audit.log.TIMESTAMP.xml` to indicate that it is an XML file.

If you change the value of `audit_log_format`, use this procedure to avoid writing log entries in one format to an existing log file that contains entries in a different format:

1. Stop the server.
2. Rename the current audit log file manually.
3. Restart the server with the new value of `audit_log_format`. The audit log plugin will create a new log file, which will contain log entries in the selected format.

The API for writing audit plugins has also changed. The `mysql_event_general` structure has new members to represent client host name and IP address, command class, and external user. For more information, see Writing Audit Plugins.

### Bugs Fixed

- **InnoDB; Partitioning:** Following any query on the `INFORMATION_SCHEMA.PARTITIONS` table, InnoDB index statistics as shown in the output of statements such as `SELECT * FROM INFORMATION_SCHEMA.STATISTICS` were read from the last partition, instead of from the partition containing the greatest number of rows. (Bug #11766851, Bug #60071)

  References: See also: Bug #16882435, Bug #69179.

- **InnoDB:** The `row_sel_sec_rec_is_for_clust_rec` function would incorrectly prepare to compare a NULL column prefix in a secondary index with a non-NULL column in a clustered index. (Bug #17312846)

- **InnoDB:** An incorrect purge would occur when rolling back an update to a delete-marked record. (Bug #17302896)

- **InnoDB:** Adding a foreign key with a constraint name that included the string "_ibfk_" caused InnoDB to create a duplicate constraint with a generated internal name. The generated internal name could also collide with an existing user-defined constraint of the same name, causing a duplicate key error. (Bug #17076737, Bug #69693, Bug #17076718, Bug #69707)

- **InnoDB:** Rolling back an `INSERT` after a failed `BLOB` write would result in an assertion failure. The assertion has been modified to allow NULL `BLOB` pointers if an error occurs during a `BLOB` write. (Bug #16971045)

- **InnoDB:** A regression introduced with the fix for Bug #11762038 would cause InnoDB to raise an incorrect error message. The message stated that, “InnoDB cannot delete/update rows with cascading foreign key constraints that exceed max depth of 20”. The error message would occur when killing connections reading from InnoDB tables that did not have foreign key constraints. (Bug #16710923)

  References: This issue is a regression of: Bug #11762038.

- **InnoDB:** The documentation incorrectly stated that `START TRANSACTION WITH CONSISTENT SNAPSHOT` provides a consistent snapshot only if the current isolation level is `REPEATABLE READ` or `SERIALIZABLE`. `START TRANSACTION WITH CONSISTENT SNAPSHOT` only works with `REPEATABLE READ`. All other isolation levels are ignored. The documentation has been revised and a warning is now
generated whenever the \texttt{WITH CONSISTENT_SNAPSHOT} clause is ignored. (Bug \#14017206, Bug \#65146)

- \textbf{InnoDB:} The \texttt{srv_master_thread} background thread, which monitors server activity and performs activities such as page flushing when the server is inactive or in a shutdown state, runs on a one second delay loop. \texttt{srv_master_thread} failed to check if the server is in a shutdown state before sleeping. (Bug \#13417564, Bug \#63276)

- \textbf{InnoDB:} An infinite loop could occur in \texttt{buf_page_get_gen} when handling compressed-only pages. (Bug \#12560151, Bug \#61132)

- \textbf{Partitioning:} Creating a table \texttt{t1} using \texttt{CREATE TABLE ... PARTITION BY LIST ... PARTITION ... VALUES IN (NULL)}, then attempting to execute \texttt{CREATE TABLE ... LIKE t1} caused the server to fail. (Bug \#13417564, Bug \#63276)

- \textbf{Replication:} A slave using row-based replication was unable to read the rows containing columns of type \texttt{MYSQL_TYPE_DECIMAL} properly (old-style decimal, used prior to MySQL 5.0.3). Now the slave throws an error if it receives this type of data. You can convert the old-style \texttt{DECIMAL} format to the binary format used in current MySQL releases with \texttt{ALTER TABLE}; see \texttt{Upgrading from MySQL 4.1 to 5.0}, for more information. (Bug \#16416302)

- \textbf{Replication:} \texttt{DROP TEMP TABLE IF EXISTS} statements could lead to failures in applying the binary log during point-in-time recovery operations. This is due to the fact that, when using row-based replication, the server appends \texttt{IF EXISTS} to any \texttt{DROP TEMPORARY TABLE} statements written to the binary log, and that the slave SQL thread does not check * wildcard filter rules for \texttt{DROP TEMPORARY TABLE IF EXISTS}. If \texttt{--log-slave-updates} was also enabled on the slave, such a statement was preceded by a \texttt{USE} statement. If the database referred by the \texttt{USE} statement did not exist, the statement failed, and stopped replication.

Now, when writing \texttt{DROP TEMPORARY TABLE IF EXISTS} into the binary log, no \texttt{USE} statement is written, and the table name in the \texttt{DROP TEMPORARY TABLE} statement is a fully qualified table name. (Bug \#16290902)

- Savepoints could not be used successfully following an \texttt{ER_LOCK_DEADLOCK} error (or \texttt{ER_LOCK_WAIT_TIMEOUT} error, if \texttt{innodb_rollback_on_timeout} was enabled). (Bug \#17356954)

References: This issue is a regression of: Bug \#14188793.

- Within a stored program, comparison of the value of a scalar subquery with an \texttt{IN} clause resulted in an error for the first execution and raised an assertion for the second execution. (Bug \#17029399)

- The \texttt{my_strtoll10()} function could incorrectly convert some long string-format numbers to numeric values and fail to set the overflow flag. (Bug \#16997513)

- A race condition in the thread pool plugin could cause status variables such as \texttt{Aborted_connects} not to be incremented and permitting concurrent kills to happen for the same thread ID. (Bug \#16959022)

- Within a stored procedure, repeated execution of a prepared \texttt{CREATE TABLE} statement for a table with partitions could cause a server exit. (Bug \#16614004)

- Deadlocks involving metadata locks and InnoDB deadlocks were both reported as an \texttt{ER_LOCK_DEADLOCK} error, but only InnoDB deadlocks rolled back the transaction. Now both deadlocks roll back the transaction. (Bug \#14188793)

- For queries that accessed an \texttt{INFORMATION_SCHEMA} table in a subquery, an attempt to lock a mutex that had already been locked could cause a server crash. (Bug \#11765744)
MySQL 5.5 Release Notes

- RPM packages did not provide lowercase tags for their contents. For example, a server RPM indicated that it provided `MySQL-server`, but not `mysql-server`. (Bug #69830, Bug #17211588)

- InnoDB deadlock caused transaction rollback but did not release metadata locks, blocking concurrent DDL on the transaction tables until the connection that got the deadlock issued an explicit `COMMIT` or `ROLLBACK`. (Bug #69668, Bug #17054007)

- `mysqldump` wrote SET statements as SET OPTION, which failed when reloaded because the deprecated OPTION keyword has been removed from SET syntax. (Bug #67507, Bug #15844882)

- For failure to create a new thread for the event scheduler, event execution, or new connection, no message was written to the error log. This could lead to the impression that the event scheduler was running normally when it was not. (Bug #67191, Bug #14749800, Bug #16865959)

- If one connection changed its default database and simultaneously another connection executed `SHOW PROCESSLIST`, the second connection could access invalid memory when attempting to display the first connection's default database. memory. (Bug #58198, Bug #11765252)

Changes in MySQL 5.5.33 (2013-07-31, General Availability)

A known limitation of this release:

![Note]

On Microsoft Windows, MySQL Installer does not upgrade MySQL Enterprise Backup (MEB) 3.8.1 to 3.8.2 (latest version). A workaround is to uninstall MEB 3.8.1 and then install MEB 3.8.2 (latest version) with MySQL Installer.

- Functionality Added or Changed
- Bugs Fixed

Functionality Added or Changed

- Previously, program options could be specified in full or as any unambiguous prefix. For example, the `--compress` option could be given to `mysqldump` as `--compr`, but not as `--comp` because the latter is ambiguous. Option prefixes now are deprecated. They can cause problems when new options are implemented for programs. A prefix that is currently unambiguous might become ambiguous in the future. If an unambiguous prefix is given, a warning now occurs to provide feedback. For example:

```
Warning: Using unique option prefix compr instead of compress is deprecated and will be removed in a future release. Please use the full name instead.
```

Option prefixes are no longer supported in MySQL 5.7; only full options are accepted. (Bug #16996656)

- `comp_err` now checks to make sure that new errors are not being added to MySQL 5.1 or 5.5 because the set of errors for these series is frozen. (Bug #16807394)

Bugs Fixed

- Important Change; Performance; InnoDB: InnoDB failed to open a tablespace that has multiple data files. This removes the known limitation that was in MySQL Server 5.6.12. (Bug #17033706, Bug #69623)

- Performance; InnoDB: When `innodb_thread_concurrency` is set to a nonzero value, there was a possibility that all `innodb_concurrency_tickets` would be released after each row was read, resulting in a concurrency check after each read. This could impact performance of all queries. One
symptom could be higher system CPU usage. We strongly recommend that you upgrade to MySQL Server 5.6.13 if you use this setting. This could cause a performance drop between MySQL Server 5.5.x and 5.6.x. (Bug #68869, Bug #16622478)

- **InnoDB:** When **CHECK TABLE** found a secondary index that contained the wrong number of entries, it would report an error but not mark the index as corrupt. **CHECK TABLE** now marks the index as corrupt when this error is encountered, but only the index is marked as corrupt, not the table. As a result, only the index becomes unusable until it is dropped and rebuilt. The table is unaffected. (Bug #16914007)

- **InnoDB:** **InnoDB** would attempt to gather statistics on partially created indexes. (Bug #16907783)

- **InnoDB:** The two **INFORMATION_SCHEMA** tables for the InnoDB buffer pool could show an invalid page type for read-fixed blocks. This fix will show the unknown page type for blocks that are I/O-fixed for reading. (Bug #16859867)

- **InnoDB:** During an insert buffer merge, InnoDB would invoke `lock_rec_restore_from_page_infinum()` on a potentially invalid record pointer. (Bug #16806366)

- **InnoDB:** Valgrind testing returned memory leak errors which resulted from a regression introduced by the fix for Bug #11753153. The `dict_create_add_foreign_to_dictionary` function would call `pars_info_create` but failed to call `pars_info_free`. (Bug #16754901)

- **InnoDB:** The `page_zip_validate()` consistency check failed after compressing a page, in `page_zip_compress()`. This problem was caused by `page_zip_decompress()`, which failed to set `heap_no` correctly when a record contained no user data bytes. A record with no user data bytes occurs when, for example, a primary key is an empty string and all secondary index fields are NULL or an empty string. (Bug #16736929)

- **InnoDB:** Some characters in the identifier for a **foreign key constraint** are modified during table exports. (Bug #16722314, Bug #69062)

- **InnoDB:** During a transaction commit, `prepare_commit_mutex` is acquired to preserve the commit order. If the commit operation failed, the transaction would be rolled back but the mutex would not be released. Subsequent insert operations would not be able to acquire the same mutex. This fix frees `prepare_commit_mutex` during `innobase_rollback`. (Bug #16513588)

- **InnoDB:** When the InnoDB shutdown mode (`innodb_fast_shutdown`) is set to 2 and the master thread enters the flush loop, the thread would not be able to exit under some circumstances. This could lead to a shutdown hang. (Bug #16411457)

- **InnoDB:** After disabling foreign key checks with `SET foreign_key_checks=0` and performing a `DROP INDEX`, the table was no longer accessible after restarting the server. This fix allows the table with missing foreign key indexes to be accessed when `SET foreign_key_checks=0`. When the table is accessible, the user must recreate the missing indexes to fulfill the foreign key constraints. (Bug #16208542, Bug #68148)

- **InnoDB:** Successive deletes in descending key order would lead to under-filled InnoDB index pages. When an InnoDB index page is under-filled, it is merged with the left or right sibling node. The check performed to determine if a sibling node is available for merging was not functioning correctly. (Bug #68501, Bug #16417635)

- **InnoDB:** Setting `foreign_key_checks=0` and running **ALTER TABLE** to change the character set of foreign key columns for a database with multiple tables with foreign key constraints would leave the database in an inconsistent state. Subsequent **ALTER TABLE** operations (using the **COPY** algorithm) with `foreign_key_checks=1` would fail due to the detected inconsistency. Reversion of the partially executed **ALTER TABLE** operation would also fail, resulting in the loss of the table being altered. When
running the same `ALTER TABLE` operation with a `RENAME` clause, the inconsistency would not be detected but if the `ALTER TABLE` operation failed for some other reason, reversion of the partially executed `ALTER TABLE` failed with the same result.

The bug fix temporarily disables `foreign_key_checks` while the previous table definition is restored. (Bug #65701, Bug #14227431)

- **InnoDB**: Creating a table with a comment or default textual value containing an apostrophe that is escaped with a backslash would sometimes cause the InnoDB storage engine to omit foreign key definitions. (Bug #61656, Bug #12762377)

- **InnoDB**: The `pthread_mutex, commit_threads_m`, which was initialized but never used, has been removed from the code base. (Bug #60225, Bug #11829813)

- **Partitioning**: When upgrading to MySQL 5.5.31 or higher, a message is written into the output of `mysql_upgrade` when encountering a partitioned table for which the `ALGORITHM` option is required to maintain binary compatibility with the original; the message includes the `ALTER TABLE` statement required to make the change. For such a table having a sufficiently large number of partitions, the message was truncated with an error before the complete `ALTER TABLE` statement could be written. (Bug #16589511)

- **Partitioning**: When a range was specified in the `WHERE` condition of a query against a table partitioned by range, and the specified range was entirely within one of the partitions, the next partition was also checked for rows although it should have been pruned away.

Suppose we have a range-partitioned table `t` created using the following SQL statement:

```sql
CREATE TABLE t (
 id INT AUTO_INCREMENT,
 dt DATETIME,
 PRIMARY KEY (dt,id),
 UNIQUE KEY (id,dt)
) PARTITION BY RANGE COLUMNS(dt) (
 PARTITION p0 VALUES LESS THAN ('2013-01-01'),
 PARTITION p1 VALUES LESS THAN ('2013-01-15'),
 PARTITION p2 VALUES LESS THAN ('2013-02-01'),
 PARTITION p3 VALUES LESS THAN ('2013-02-15'),
 PARTITION pmax VALUES LESS THAN (MAXVALUE)
);
```

An example of a query that exhibited this issue when run against `t` is shown here:

```sql
SELECT COUNT(*) FROM t
WHERE dt >= '2013-02-01' AND dt < '2013-02-15';
```

In this case, partition `pmax` was checked, even though the range given in the `WHERE` clause lay entirely within partition `p3`. (Bug #16447483)

- **Partitioning**: When dropping a partitioned table, the table's `.par` file was deleted first, before the table definition or data. This meant that, if the server failed during the drop operation, the table could be left in an inconsistent state in which it could neither be accessed nor dropped.

The fix for this problem makes the following changes:

- Now, when dropping a partitioned table, the table's `.par` file is not removed until all table data has been deleted.

- When executing `DROP TABLE` of a partitioned table, in the event that its `.par` file is determined to be missing, the table's `.frm` file is now immediately deleted, in effect forcing the drop to complete.
MySQL 5.5 Release Notes

(Bug #13548704, Bug #63884)

- **Replication:** Some expressions employing variables were not handled correctly by `LOAD DATA`. (Bug #16753869)

- **Replication:** Linker errors occurred if the header file `log_event.h` was included in an application containing multiple source files, because the file `rpl_tblmap.cc` was included in `log_event.h`. This fix moves the inclusion of `rpl_tblmap.cc` into the source files that use `log_event.h`. (Bug #16607258)

- Installation of Solaris PKG packages could fail to execute `mysql_install_db` because it was invoked with the `--random-passwords` option (which does not exist until MySQL 5.6). (Bug #17160741)

- Initialization of `keycache_*` variables (see Multiple Key Caches) during server startup could write to incorrect memory. (Bug #16945503)

- Removing a server RPM package did not shut down the existing server if it was running. (Bug #16798868)

- The code base was modified to account for new warning checks introduced by `gcc 4.8`. (Bug #16729109)

- Upgrading from community SLES RPM packages to commercial packages for the same MySQL version failed with conflict errors. (Bug #16545296)

- A user variable referenced during execution of a prepared statement is set to memory that is freed at the end of execution. A second execution of the statement could result in Valgrind warnings when accessing this memory. (Bug #16119355)

- Misoptimization of left expressions in prepared statements could cause a server exit. (Bug #16095534)

- Out-of-bounds reads could occur within `filename_to_tablename()`. (Bug #14834378)

- When running a query on `INFORMATION_SCHEMA.INNODB_BUFFER_PAGE` that requested `table_name` and `index_name` values, query results would include index pages without `table_name` or `index_name` values. (Bug #14529666)

- With the thread pool plugin in use, normal connection termination caused the `Aborted_clients` status variable to be incremented. (Bug #14081240)

- MySQL Installer, if run in custom install or change mode, offered installation options that had no effect. (Bug #12928601)

- Incorrect results could be returned from queries that used several `aggr_func(DISTINCT)` functions (where `aggr_func()` is an aggregate function such as `COUNT()`) when these referred to different columns of the same composite key. (Bug #12328597)

- RPM source packages did not list `libaio-devel` as a dependency, causing builds to fail. (Bug #69158, Bug #16785036)

- Comparison of a `DATETIME` value and a string did not work correctly for the `utf8_unicode_ci` collation. (Bug #68795, Bug #16567381)

- `mysqldump` assumed the existence of the `general_log` and `slow_log` tables in the `mysql` database. It failed if invoked to dump tables from an older server where these tables do not exist. (Bug #65670, Bug #14236170)

- Attempts to build from a source RPM package could fail because the build process attempted to refer to a `pb2user` that might not exist. (Bug #64641, Bug #13865797, Bug #69339, Bug #16874980)
MySQL 5.5 Release Notes

- A typo in `cmake/dtrace.cmake` prevented DTrace support from being enabled by `-DENABLE_DTRACE-on`. (Bug #60743, Bug #12325449)
- Assigning the result of a subquery to a user variable raised an assertion when the outer query included `DISTINCT` and `GROUP BY`. (Bug #57196, Bug #11764371)

Changes in MySQL 5.5.32 (2013-06-03, General Availability)

A known limitation of this release:

**Important**

**InnoDB** may fail to open a tablespace that has multiple data files due to newly introduced corruption checking functionality. It is recommended that you do not upgrade to this version if you have more than one file for your shared **InnoDB** tablespace. If you have upgraded to an affected version and the server no longer starts, you can upgrade to a later version when it becomes available or downgrade to an earlier version.

**Functionality Added or Changed**

- **Bugs Fixed**

**Functionality Added or Changed**

- `mysql_upgrade` now verifies that the server version matches the version against which it was compiled, and exits if there is a mismatch. In addition, a `--version-check` option permits specifying whether to enable version checking (the default), or disable checking if given as `--skip-version-checking`. (Bug #16500013)

**Bugs Fixed**

- **Important Change: Replication**: When the server was running with `--binlog-ignore-db` and `SELECT DATABASE()` returned `NULL` (that is, there was no currently selected database), statements using fully qualified table names in `dbname.tblname` format were not written to the binary log. This was because the lack of a currently selected database in such cases was treated as a match for any possible ignore option rather than for no such option; this meant that these statements were always ignored.

  Now, if there is no current database, a statement using fully qualified table names is always written to the binary log. (Bug #11829838, Bug #60188)

- **InnoDB**: When calling the `lock_rec_block_validate()` function after releasing the kernel mutex, there is a chance the lock might be invalid and result in a Valgrind error due to an invalid read on `lock->index`. This fix copies the `lock->index` when the kernel mutex is being held and passes the `lock->index` to `lock_rec_block_validate()`. (Bug #17022398, Bug #69413, Bug #16268289, Bug #68244)

- **InnoDB**: After a clean shutdown, **InnoDB** does not check `.ibd` file headers at startup. As a result, in a crash recovery scenario, **InnoDB** could load a corrupted tablespace file. This fix implements consistency and status checks to avoid loading corrupted files. (Bug #16720368)

- **InnoDB**: The `page_zip_available` function would count some fields twice. (Bug #16463505)

- **InnoDB**: In debug builds, an insert failed with an invalid assertion: `sync_thread_levels_g(array, level - 1, TRUE)`. (Bug #16409715)
• **InnoDB:** Multiple concurrent calls to `dict_update_statistics()` would result in unnecessary server load. (Bug #16400412)

• **InnoDB:** When tables are linked by foreign key constraints, loading one table would open other linked tables recursively. When numerous tables are linked by foreign key constraints, this would sometimes lead to a thread stack overflow causing the server to exit. Tables linked by foreign key constraints are now loaded iteratively. Cascade operations, which were also performed in a recursive manner, are now performed iteratively using an explicit stack. (Bug #16244691, Bug #65384)

• **InnoDB:** When a transaction is in `READ COMMITTED` isolation level, gap locks are still taken in the secondary index when a row is inserted. This occurs when the secondary index is scanned for duplicates. The function `row_ins_scan_sec_index_for_duplicate()` always calls the function `row_ins_set_shared_rec_lock()` with `LOCK_ORDINARY` irrespective of the transaction isolation level. This fix modifies the `row_ins_scan_sec_index_for_duplicate()` function to call `row_ins_set_shared_rec_lock()` with `LOCK_ORDINARY` or `LOCK_REC_NOT_GAP`, based on the transaction isolation level. (Bug #16133801, Bug #68021)

• **InnoDB:** Starting `mysqld` with `--innodb-log-buffer-size=50GB` failed to allocate memory and returned NULL. For non-debug builds there was no check in place and a segmentation fault occurred. This fix adds a log message stating that memory failed to be allocated, and adds an assertion. (Bug #16069598, Bug #68025)

• **InnoDB:** When `UNIV_DEBUG` is enabled in debug builds, `buf_validate()` is often called which sometimes results in false alarms in tests on semaphore wait timeout. This fix increases counter values to reduce false alarms. (Bug #16068056)

• **InnoDB:** The `explain_filename` function, which provides information about a partition by parsing the file name, would return an error when attempting to parse a file name with no partition information. (Bug #16051728)

• **InnoDB:** An overflow would occur for `innodb_row_lock_time_max` and `innodb_row_lock_current_waits`. This fix modifies code logic in `storage/innobase/srv/srv0srv.c`. (Bug #16005310)

• **InnoDB:** For `UPDATE` statements in which an error occurred, it was possible for a temporary file opened during the update not to be closed. (Bug #15978766)

• **Replication:** Point-in-time recovery could fail when trying to restore a single database from a binary log in row-based format using `mysqlbinlog` with the `--database` option. (Bug #16698172)

• **Replication:** When used with the options `--dump-slave` `--include-master-host-port`, `mysqldump` printed the port number within quotation marks, as if it were a string value rather than an integer. (Bug #16615117)

• **Replication:** Running the server with `--log-slave-updates` together with `--replicate-wild-ignore-table` or `--replicate-ignore-table` in some cases caused updates to user variables not to be logged. (Bug #16541422)

• **Replication:** Following disconnection from the master, the slave could under certain conditions report erroneously on reconnection that it had received a packet that was larger than `slave_max_allowed_packet`, causing replication to fail. (Bug #16438800, Bug #68490)

• **Replication:** When semisynchronous replication was enabled, the automatic dropping on the master of an event created using `ON COMPLETION NOT PRESERVE` caused the master to fail. (Bug #15948818, Bug #67276)

• **Replication:** Setting a `SET` column to `NULL` inside a stored procedure caused replication to fail. (Bug #14593883, Bug #66637)
• **Replication:** The binary log contents got corrupted sometimes, because the function `MYSQL_BIN_LOG::write_cache` always thought it had reached the end-of-cache when the function `my_b_fill()` reported a '0,' while that could also mean an error had occurred. This fix makes sure that whenever `my_b_fill()` returns a '0,' an error check is performed on `info->error`. (Bug #14324766, Bug #60173)

• **Replication:** When replicating to a BLACKHOLE table using the binary logging format, updates and deletes cannot be applied and so are skipped. Now a warning is generated for this whenever it occurs.

  **Note**

  `binlog_format=STATEMENT` is recommended when replicating to tables that use the BLACKHOLE storage engine.

  (Bug #13004581)

• **Solaris:** Installation using Solaris packages ran `mysql_install_db` during upgrade operations (this should occur only for new installations). (Bug #14747671, Bug #16534721)

• The WKB reader for spatial operations could fail and cause a server exit. (Bug #16451878)

• For debug builds, `DEBUG_EXPLAIN` resulted in a buffer overflow when the `debug` system variable value was more than 255 characters. (Bug #16402143)

• Several scripts in the `sql-bench` directory that were supposed to be executable did not have the executable access bit set. (Bug #16395606)

• `EXPORT_SET()` or `MAKE_SET()` with many `COUNT(*)` arguments could cause a server exit. (Bug #16359402)

• For debug builds, `GROUP_CONCAT(... ORDER BY)` within an `ORDER BY` clause could cause a server exit. (Bug #16347426)

• A `GROUP_CONCAT()` invocation containing subquery having an outer reference caused the server to exit. (Bug #16347343)

• `thread_pool_high_priority_connection` could not be set at server startup. (Bug #16310373)

• Oracle RPM packages were unusable by `yum` due to issues with the `obsoletes` line in the `.spec` file causing `yum` to interpret the package as obsoleting itself. (Bug #16298542)

• If Loose Index Scan was used on a query that used `MIN()`, a segmentation fault could occur. (Bug #16222245)

• If multiple statements were sent in a single request, the audit log plugin logged only the last one. Now it logs each statement separately. (Bug #16169063)

• A prepared statement that used `GROUP_CONCAT()` and an `ORDER BY` clause that named multiple columns could cause the server to exit. (Bug #16075310)

• `ORDER BY MATCH ... AGAINST` could cause a server exit. (Bug #16073689)

• The `mysql.server` script exited with an error if the `status` command was executed with multiple servers running. (Bug #15852074)

• A query with a union and a join could crash the parser. (Bug #14786792, Bug #16076289)

• When processing row-based-replication events in the old binary log format from prior to MySQL 5.1 GA builds, `mysqlbinlog` could result in out-of-bounds heap buffer reads and undefined behaviour. (Bug #14771299)
The MySQL 5.5 client allocated but did not free a string after reading each line in interactive mode, resulting in a memory leak. (Bug #14685362)

**INSERT ... ON DUPLICATE KEY UPDATE** on a view could cause a server exit. (Bug #14261010)

Grouping by an outer BLOB column in a subquery caused a server exit. (Bug #13966809, Bug #14700180)

The server could exit due to improper handling of the error from an invalid comparison. (Bug #13009341)

The CMake check for unsigned time_t failed on all platforms. (Bug #11766815)

If an UPDATE containing a subquery caused a deadlock inside InnoDB, the deadlock was not properly handled by the SQL layer. The SQL layer then tried to unlock the row after InnoDB rolled back the transaction, raising an assertion inside InnoDB. (Bug #69127, Bug #16757869)

**MD5()** code did not properly initialize one of its data structures. (Bug #68909, Bug #16626742)

When specified in an option file, the plugin-dir client option was ignored. (Bug #68800, Bug #16680313)

Using range access with an index prefix could produce incorrect results. (Bug #68750, Bug #16540042)

If Loose Index Scan was used to evaluate a query that compared an integer column to an integer specified as a quoted string (for example, col_name = '1'), the query could return incorrect results. (Bug #68473, Bug #16394084)

MySQL Configuration Wizard did not anticipate existing files from a previous MySQL install operation, causing it to fail starting the MySQL service. (Workaround: Manually delete MySQL data in the ProgramData folder.) (Bug #62106, Bug #16777237)

The url columns in the mysql database help tables were too short to hold some of the URLs in the help content. For new installations, these columns are now created as type TEXT to accommodate longer URLs.

For upgrades, mysql_upgrade does not update the columns. Modify them manually using these statements:

```sql
ALTER TABLE mysql.help_category MODIFY url TEXT NOT NULL;
ALTER TABLE mysql.help_topic MODIFY url TEXT NOT NULL;
```

(Bug #61520, Bug #12671635)

It is now possible to suppress installation of the mysql-test directory after compiling MySQL from source by invoking CMake with the INSTALL_MYSQLTESTDIR option explicitly set to empty:

```bash
cmake . -DINSTALL_MYSQLTESTDIR=
```

Previously, attempts to do this resulted in an error. (Bug #58615, Bug #11765629)

On 64-bit OS X systems, CMake used x86 rather than x86_64 when determining the machine type. (Bug #58462, Bug #11765489)

The parser rejected legal queries that involved a **UNION** where the right hand side query term has a table in parenthese. (Bug #54382, Bug #11761854)

**IF()** function evaluations could produce different results when executed in a prepared versus nonprepared statement. (Bug #45370, Bug #11753852)

---

**Changes in MySQL 5.5.31 (2013-04-18, General Availability)**
RPM Notes

- It was not possible to upgrade a community RPM to a commercial RPM using `rpm -uvh` or `yum localupdate`. To deal with this, the RPM spec file has been updated in MySQL 5.5.31, which has the following consequences:
  - For a non-upgrade installation (no existing MySQL version installed), it is possible to install MySQL using `yum`.
  - For upgrades, it is necessary to clean up any earlier MySQL installations. In effect, the update is performed by removing the old installations and installing the new one.

Additional details follow.

For a non-upgrade installation of MySQL 5.5.31, it is possible to install using `yum`:

```
shell> yum install MySQL-server-NEWVERSION.glibc23.i386.rpm
```

For upgrades to MySQL 5.5.31, the upgrade is performed by removing the old installation and installing the new one. To do this, use the following procedure:

1. Remove the existing 5.5.X installation. `OLDVERSION` is the version to remove.

   ```
 shell> rpm -e MySQL-server-OLDVERSION.glibc23.i386.rpm
   ```

   Repeat this step for all installed MySQL RPMs.

2. Install the new version. `NEWVERSION` is the version to install.

   ```
 shell> rpm -ivh MySQL-server-NEWVERSION.glibc23.i386.rpm
   ```

Alternatively, the removal and installation can be done using `yum`:

```
shell> yum remove MySQL-server-OLDVERSION.glibc23.i386.rpm
shell> yum install MySQL-server-NEWVERSION.glibc23.i386.rpm
```

(Bug #16445097, Bug #16445125, Bug #16587285)

Functionality Added or Changed

- MySQL no longer uses the default OpenSSL compression. (Bug #16235681)

Bugs Fixed

- **Incompatible Change; Partitioning**: Changes in the `KEY` partitioning hashing functions used with numeric, date and time, `ENUM`, and `SET` columns in MySQL 5.5 makes tables using partitioning or subpartitioning by `KEY` on any of the affected column types and created on a MySQL 5.5 or later server incompatible with a MySQL 5.1 server. This is because the partition IDs as calculated by a MySQL 5.5 or later server almost certainly differ from those calculated by a MySQL 5.1 server for the same table definition and data as a result of the changes in these functions.
The principal changes in the KEY partitioning implementation in MySQL 5.5 resulting in this issue were as follows: 1. The hash function used for numeric and date and time columns changed from binary to character-based. 2. The base used for hashing of ENUM and SET columns changed from latin1 ci characters to binary.

The fix involves adding the capability in MySQL 5.5 and later to choose which type of hashing to use for KEY partitioning, which is implemented with a new ALGORITHM extension to the PARTITION BY KEY option for CREATE TABLE and ALTER TABLE. Specifying PARTITION BY KEY ALGORITHM=1 ([columns]) causes the server to use the hashing functions as implemented in MySQL 5.1; using ALGORITHM=2 causes the server to use the hashing functions from MySQL 5.5 and later. ALGORITHM=2 is the default. Using the appropriate value for ALGORITHM, you can perform any of the following tasks:

- Create KEY partitioned tables in MySQL 5.5 and later that are compatible with MySQL 5.1, using CREATE TABLE ... PARTITION BY KEY ALGORITHM=1 (...).

- Downgrade KEY partitioned tables that were created in MySQL 5.5 or later to become compatible with MySQL 5.1, using ALTER TABLE ... PARTITION BY KEY ALGORITHM=1 (...).

- Upgrade KEY partitioned tables originally created in MySQL 5.1 to use hashing as in MySQL 5.5 and later, using ALTER TABLE ... PARTITION BY KEY ALGORITHM=2 (...).

Important: After such tables are upgraded, they cannot be used any longer with MySQL 5.1 unless they are first downgraded again using ALTER TABLE ... PARTITION BY KEY ALGORITHM=1 (...) on a MySQL server supporting this option.

This syntax is not backward compatible, and causes errors in older versions of the MySQL server. When generating CREATE TABLE ... PARTITION BY KEY statements, mysqldump brackets any occurrence of ALGORITHM=1 or ALGORITHM=2 in conditional comments such that it is ignored by a MySQL server whose version is not at least 5.5.31. An additional consideration for upgrades is that MySQL 5.6 servers prior to MySQL 5.6.11 do not ignore the ALGORITHM option in such statements when generated by a MySQL 5.5 server, due to the that the conditional comments refer to version 5.5.31; in this case, you must edit the dump manually and remove or comment out the option wherever it occurs before attempting to load it into a MySQL 5.6.10 or earlier MySQL 5.6 server. This is not an issue for dumps generated by MySQL 5.6.11 or later version of mysqldump, where the version used in such comments is 5.6.11. For more information, see ALTER TABLE Partition Operations.

As part of this fix, a spurious assertion by InnoDB that a deleted row had previously been read, causing the server to assert on delete of a row that the row was in the wrong partition, was also removed. (Bug #14521864, Bug #66462, Bug #16093958, Bug #16274455)

References: See also: Bug #11759782.

- Important Note; Replication: Using row-based logging to replicate from a table to a same-named view led to a failure on the slave. Now, when using row-based logging, the target object type is checked prior to performing any DML, and an error is given if the target on the slave is not actually a table.

  Note

  It remains possible to replicate from a table to a same-named view using statement-based logging.

  (Bug #11752707, Bug #43975)

- Performance; InnoDB: Performance was improved for operations on tables with many rows that were deleted but not yet purged. The speedup applies mainly to workloads that perform bulk deletes, or
updates to the primary key columns, and where the system is busy enough to experience purge lag. (Bug #16138582, Bug #68069)

- **Performance; InnoDB:** The DROP TABLE statement for a table using compression could be slower than necessary, causing a stall for several seconds. MySQL was unnecessarily decompressing pages in the buffer pool related to the table as part of the DROP operation. (Bug #16067973)

- **InnoDB:** Crash recovery failed with a !recv_no_log_write assertion when reading a page. (Bug #16405422)

- **InnoDB:** For InnoDB tables, if a PRIMARY KEY on a VARCHAR column (or prefix) was empty, index page compression could fail. (Bug #16400920)

- **InnoDB:** RENAME TABLE would result in a hang due to a MySQL mutex acquisition deadlock. (Bug #16305265)

- **InnoDB:** For debug builds, InnoDB status exporting was subject to a race condition that could cause a server exit. (Bug #16292043)

- **InnoDB:** InnoDB now aborts execution on Windows by calling the abort() function directly, as it does on other platforms. (Bug #16263506)

- **InnoDB:** Internal read operations could be misclassified as synchronous when they were actually asynchronous. When the I/O requests returned sooner than expected, threads could be scheduled inefficiently. This issue mainly affected read-ahead requests, and thus had relatively little impact on I/O performed by user queries. (Bug #16249505, Bug #68197)

- **InnoDB:** If the MySQL server halted at a precise moment when a purge operation was being applied from the change buffer, the operation could be incorrectly performed again during the next restart. A workaround was to set the configuration option innodb_change_buffering=changes, to turn off change buffering for purge operations. (Bug #16183892, Bug #14636528)

- **InnoDB:** Arithmetic underflow during page compression for CREATE TABLE on an InnoDB table could cause a server exit. (Bug #16089381)

- **InnoDB:** If the server was started with the skip-innodb option, or InnoDB otherwise failed to start, query any of these Information Schema tables would cause a severe error:
  - INNODB_BUFFER_PAGE
  - INNODB_BUFFER_PAGE_LRU
  - INNODB_BUFFER_POOL_STATS
(Bug #14144290)

- **InnoDB:** When printing out long semaphore wait diagnostics, sync_array_cell_print() ran into a segmentation violation (SEGV) caused by a race condition. This fix addresses the race condition by allowing the cell to be freed while it is being printed. (Bug #13997024)

- **InnoDB:** Killing a query caused an InnoDB assertion failure when the same table (cursor) instance was used again. This is the result of a regression error introduced by the fix for Bug#14704286. The fix introduced a check to handle kill signals for long running queries but the cursor was not restored to the proper state. (Bug #68051, Bug #16088883)

- **InnoDB:** The length of internally generated foreign key names was not checked. If internally generated foreign key names were over the 64 character limit, this resulted in invalid DDL from SHOW CREATE TABLE. This fix checks the length of internally generated foreign key names and reports an error message if the limit is exceeded. (Bug #44541, Bug #11753153)
MySQL 5.5 Release Notes

- **Partitioning:** A query on a table partitioned by range and using `TO_DAYS()` as a partitioning function always included the first partition of the table when pruning. This happened regardless of the range employed in the `BETWEEN` clause of such a query. (Bug #15843818, Bug #49754)

- **Partitioning:** Execution of `ALTER TABLE ... DROP PARTITION` against a view caused the server to crash, rather than fail with an error as expected. (Bug #14653504)

- **Replication:** A zero-length name for a user variable (such as `@```) was incorrectly considered to be a sign of data or network corruption when reading from the binary log. (Bug #16200555, Bug #68135)

- **Replication:** Backtick (``) characters were not always handled correctly in internally generated SQL statements, which could sometimes lead to errors on the slave. (Bug #16084594, Bug #68045)

  References: This issue is a regression of: Bug #14548159, Bug #66550.

- **Replication:** Using the `--replicate-*` options (see Replication Slave Options and Variables) could in some cases lead to a memory leak on the slave. (Bug #16056813, Bug #67983)

- **Replication:** It was possible in certain cases—immediately after detecting an EOF in the dump thread read event loop, and before deciding whether to change to a new binary log file—for new events to be written to the binary log before this decision was made. If log rotation occurred at this time, any events that occurred following EOF detection were dropped, resulting in loss of data. Now in such cases, steps are taken to make sure that all events are processed before allowing the log rotation to take place. (Bug #13545447, Bug #67929)

  References: See also: Bug #16016886.

- **Microsoft Windows:** On Microsoft Windows, the MSI package would now allow a license switch (community to or from the commercial edition) when the switched MySQL Server versions were identical. (Bug #13071597)

- **SHOW ENGINE PERFORMANCE_SCHEMA STATUS** could report incorrect memory-allocation values when the correct values exceeded 4GB. (Bug #16414644)

- The server could exit if a prepared statement attempted to create a table using the name of an existing view while an SQL handler was opened. (Bug #16385711)

- A long database name in a `GRANT` statement could cause the server to exit. (Bug #16372927)

- On Linux, a race condition involving `epoll()` could cause the thread pool plugin to miss events. This was most likely on systems with greater than 16 cores. (Bug #16367483)

- Incorrect results were returned if a query contained a subquery in an `IN` clause which contained an `XOR` operation in the `WHERE` clause. (Bug #16311231)

- For upgrade operations, RPM packages produced unnecessary errors about being unable to access `.err` files. (Bug #16235828)

- yaSSL did not perform proper padding checks, but instead examined only the last byte of cleartext and used it to determine how many bytes to remove. (Bug #16218104)

- Invocation of the range optimizer for a `NULL` select caused the server to exit. (Bug #16192219)

- With the thread pool plugin enabled, large numbers of connections could lead to a Valgrind panic or failure of clients to be able to connect. (Bug #16088658, Bug #16196591)

- The initial `test` database contained a `dummy.bak` file that prevented `DROP DATABASE` from working. This file is no longer included. Also, a `db.opt` file is now included that contains these lines:
ISSUING A PREPARE STATEMENT USING CERTAIN COMBINATIONS OF STORED FUNCTIONS AND USER VARIABLES CAUSED THE SERVER TO EXIT. (BUG #16056537)

SETTING A SYSTEM VARIABLE TO DEFAULT COULD CAUSE THE SERVER TO EXIT. (BUG #16044655)

WHEN A PARTITION IS MISSING, CODE IN ha_innodb.cc WOULD RETRY 10 TIMES AND SLEEP FOR A MICROSECOND EACH TIME WHILE HOLDING LOCK_OPEN. THE RETRY LOGIC FOR PARTITIONED TABLES WAS INTRODUCED AS A FIX FOR BUG#33349 BUT DID NOT INCLUDE A TEST CASE TO VALIDATE IT. THIS FIX REMOVES THE RETRY LOGIC FOR PARTITIONED TABLES. IF THE PROBLEM REPORTED IN BUG#33349 REAPPEARS, A DIFFERENT SOLUTION WILL BE EXPLORED. (BUG #15973904)

CONTENTION IN THE THREAD POOL DURING KILL PROCESSING COULD LEAD TO A VALGRIND PANIC. (BUG #15921866)

THE MSI INSTALLER INSTALLED MYSQL IN “PER-USER” MODE, WHICH COULD RESULT IN CONFLICTS OR FAILURE TO DETECT AN EXISTING INSTALLATION IF TWO USERS INSTALLED MYSQL ON THE SAME MACHINE. NOW THE MSI INSTALLER USES “PER-MACHINE” INSTALLATION MODE. (BUG #14711808)

WHEN A CLIENT PROGRAM LOSES THE CONNECTION TO THE MYSQL SERVER OR IF THE SERVER BEGINS A SHUTDOWN AFTER THE CLIENT HAS EXECUTED MYSQL_STMT_PREPARE(), THE NEXT MYSQL_STMT_PREPARE() RETURNS AN ERROR (AS EXPECTED) BUT SUBSEQUENT MYSQL_STMT_EXECUTE() CALLS CRASH THE CLIENT. (BUG #14553380)

SHOW COLUMNS ON A VIEW DEFINED AS A UNION OF GEOMETRY COLUMNS COULD CAUSE THE SERVER TO EXIT. (BUG #14362617)

A LIKE PATTERN WITH TOO MANY ‘%’ WILDCARDS COULD CAUSE A SEGMENTATION FAULT. (BUG #14303860)

SET VAR_NAME = VALUES(COL_NAME) COULD CAUSE THE SERVER TO EXIT. THIS SYNTAX IS NOW PROHIBITED BECAUSE IN SET CONTEXT THERE IS NO COLUMN NAME AND THE STATEMENT RETURNS ER_BAD_FIELD_ERROR. (BUG #14211565)

THE COM_CHANGE_USER COMMAND IN THE CLIENT/SERVER PROTOCOL DID NOT PROPERLY USE THE CHARACTER SET NUMBER IN THE COMMAND PACKET, LEADING TO INCORRECT CHARACTER SET CONVERSION OF OTHER VALUES IN THE PACKET. (BUG #14163155)

SUBQUERIES WITH OUTER JOIN COULD RETURN INCORRECT RESULTS IF THE SUBQUERY REFERRED TO A COLUMN FROM ANOTHER SELECT. (BUG #13068506)

MYSQL_INSTALL_DB DID NOT ESCAPE ‘_’ IN THE HOST NAME FOR STATEMENTS WRITTEN TO THE GRANT TABLES. (BUG #11746817)

CMAKE DID NOT CHECK WHETHER THE SYSTEM ZLIB HAD CERTAIN FUNCTIONS REQUIRED FOR MYSQL, RESULTING IN BUILD ERRORS. NOW IT CHECKS AND FALLS BACK TO THE BUNDLED ZLIB IF THE FUNCTIONS ARE MISSING. (BUG #65856, BUG #14300733)

IF A DUMP FILE CONTAINED A VIEW WITH ONE CHARACTER SET AND COLLATION DEFINED ON A VIEW WITH A DIFFERENT CHARACTER SET AND COLLATION, ATTEMPTS TO RESTORE THE DUMP FILE FAILED WITH AN “ILLEGAL MIX OF COLLATIONS” ERROR. (BUG #65382, BUG #14117025)

INCORRECT METADATA COULD BE PRODUCED FOR COLUMNS RETURNED FROM SOME VIEWS. (BUG #65379, BUG #14096619)

IF THE SERVER WAS STARTED WITHOUT A --DATADIR OPTION, SHOW VARIABLES COULD SHOW AN EMPTY VALUE FOR THE DATADIR SYSTEM VARIABLE. (BUG #60995, BUG #12546953)
• For debug builds, some queries with `SELECT ... FROM DUAL` nested subqueries raised an assertion. (Bug #60305, Bug #11827369)

• `UNION ALL` on `BLOB` columns could produce incorrect results. (Bug #50136, Bug #11758009)

• An out-of-memory condition could occur while handling an out-of-memory error, leading to recursion in error handling. (Bug #49514, Bug #11757464)

• The `REPLACE()` function produced incorrect results when a user variable was supplied as an argument and the operation was performed on multiple rows. (Bug #49271, Bug #11757250)

• Setting `max_connections` to a value less than the current number of open connections caused the server to exit. (Bug #44100, Bug #11752803)

• The optimizer used Loose Index Scan for some queries for which this access method is inapplicable. (Bug #42785, Bug #11751794)

• View access in low memory conditions could raise a debugging assertion. (Bug #39307, Bug #11749556)

**Changes in MySQL 5.5.30 (2013-02-05, General Availability)**

Known limitations of this release:

On Microsoft Windows, when using the MySQL Installer to install MySQL Server 5.5.30 on a host with an existing MySQL Server of a different version (such as 5.6.10), that also has a different license (community versus commercial), you must first update the license type of the existing MySQL Server. Otherwise, MySQL Installer will remove MySQL Server(s) with different licenses from the one you chose with MySQL Server 5.5.30.

On Microsoft Windows 8, updating a community release to a commercial release requires you to manually restart the MySQL service after the update.

• **Functionality Added or Changed**

• **Bugs Fixed**

**Functionality Added or Changed**

• **InnoDB:** When compressed tables were used, the calculation to compute memory usage within the buffer pool was complex because the compressed pages could be smaller than 16KB or the user-specified page size. Although this information can be retrieved from the `INFORMATION_SCHEMA.INNODB_BUFFER_PAGE` table, that operation is expensive. The following new status variables help to simplify calculations involving buffer pool memory usage:

  • `Innodb_buffer_pool_bytes_data`, to supplement `Innodb_buffer_pool_pages_data`.

  • `Innodb_buffer_pool_bytes_dirty`, to supplement `Innodb_buffer_pool_pages_dirty`.

  (Bug #15842637)

• **InnoDB:** The `innodb_print_all_deadlocks` configuration option from MySQL 5.6 was backported to MySQL 5.5. This option records each deadlock condition in the MySQL error log, allowing easier troubleshooting if frequent deadlocks point to application coding issues. (Bug #14515889)

• In RPM packages built for Unbreakable Linux Network, `libmysqld.so` now has a version number. (Bug #15972480)
Bugs Fixed

- **Performance; InnoDB**: Some data structures related to undo logging could be initialized unnecessarily during a query, although they were only needed under specific conditions. (Bug #14676084)

- **Performance; InnoDB**: Optimized read operations for compressed tables by skipping redundant tests. The check for whether any related changes needed to be merged from the insert buffer was being called more often than necessary. (Bug #14329288, Bug #65886)

- **Performance; InnoDB**: Immediately after a table was created, a query against it would not use a Loose Index Scan. The same query might use a Loose Index Scan following an `ALTER TABLE` on the table. The fix improves the accuracy of the cost estimate for queries involving the grouping functions `min()` and `max()`, and prevents the query plan from being changed by the `ALTER TABLE` statement. (The more stable query plan might or might not use a Loose Index Scan.) (Bug #14200010)

- **InnoDB; Partitioning**: Previously, when attempting to optimize one or more partitions of a partitioned table that used a storage engine that does not support partition-level `OPTIMIZE`, such as InnoDB, MySQL reported `Table does not support optimize, doing recreate + analyze instead`, then re-created the entire table, but did not actually analyze it. Now in such cases, the warning message is, `Table does not support optimize on partitions. All partitions will be rebuilt and analyzed`. In addition, the entire table is analyzed after first being rebuilt. (Bug #11751825, Bug #42822)

- **InnoDB**: On systems that cannot handle unaligned memory access, depending on the stack frame alignment, a `SIGBUS` error could occur during startup. This issue was observed on Solaris 64-bit systems. (Bug #16021177)

- **InnoDB**: Creating an index on a CHAR column could fail for a table with a character set with varying length, such as `utf8`, if the table was created with the `ROW_FORMAT=REDUNDANT` clause. (Bug #15874001)

- **InnoDB**: The status variable `Innodb_buffer_pool_read_ahead_evicted` could show an inaccurate value, higher than expected, because some pages in the buffer pool were incorrectly considered as being brought in by read-ahead requests. (Bug #15859402, Bug #67476)

- **InnoDB**: The server could halt with an assertion error when creating an index on a column prefix for a column using a multibyte character set:

```
InnoDB: Assertion failure in thread thread_num in file row0merge.cc line 465
InnoDB: Failing assertion: len == ifield-<fixed_len
```

(Bug #14753402)

- **InnoDB**: The server could halt with an assertion error while creating an index:

```
InnoDB: Assertion failure in thread thread_num in file row0merge.cc line 465
```

This issue affected tables with a combination of `ROW_FORMAT=REDUNDANT off-page columns`, and an index on a column prefix. (Bug #14753402)

- **InnoDB**: A regression introduced by the fix for Bug#14100254 would result in a “!BPAGE->FILE_PAGE_WAS_FREED” assertion. (Bug #14676249)

- **InnoDB**: If the server crashed at a precise moment during an `ALTER TABLE` operation that rebuilt the clustered index for an InnoDB table, the original table could be inaccessible afterward. An example of such an operation is `ALTER TABLE ... ADD PRIMARY KEY` The fix preserves the original table if the server halts during this operation. You might still need to rename the `.ibd` file manually to restore...
the original table contents: in MySQL 5.6 and higher, rename from \#sql-ib$new_table_id.ibd to table_name.ibd within the database directory; prior to MySQL 5.6, the temporary file to rename is table_name#1 or #2. (Bug #14669848)

- **InnoDB:** An error at the filesystem level, such as too many open files, could cause an unhandled error during an `ALTER TABLE` operation. The error could be accompanied by Valgrind warnings, and by this assertion message:

  ```plaintext
 Assertion `! is_set()' failed.
 mysqld got signal 6;
  ```

  (Bug #14628410, Bug #16000909)

- **InnoDB:** A `RENAME TABLE` statement could stall for several minutes before timing out. This issue could occurred for a table using `compression`, with change buffering enabled. (Bug #14556349)

- **InnoDB:** A DML operation performed while a `RENAME TABLE` operation waits for pending I/O operations on the tablespace to complete would result in a deadlock. (Bug #14556349)

- **InnoDB:** During shutdown, with the `innodb_purge_threads` configuration option set greater than 1, the server could halt prematurely with this error:

  ```plaintext
 mysqld got signal 11
  ```

  A workaround was to increase `innodb_log_file_size` and set `innodb_purge_threads=1`. The fix was backported to MySQL 5.5 and 5.1, although those versions do not have the `innodb_purge_threads` configuration option so the error was unlikely to occur. (Bug #14234028)

- **InnoDB:** If the value of `innodb_force_recovery` was less than 6, opening a corrupted table might loop forever if a corrupted page was read when calculating statistics for the table. Information about the corrupted page was written repeatedly to the error log, possibly causing a disk space issue. The fix causes the server to halt after a fixed number of failed attempts to read the page. To troubleshoot such a corruption issue, set `innodb_force_recovery=6` and restart. (Bug #14147491, Bug #65469)

- **InnoDB:** The value of the `innodb_version` variable was not updated consistently for all server releases for the InnoDB Plugin in MySQL 5.1, and the integrated InnoDB component in MySQL 5.5, 5.6, and higher. Since InnoDB and MySQL Server development cycles are fully integrated and synchronized, now the value returned by the `innodb_version` variable is the same as for the `version` variable. (Bug #13463493, Bug #63435)

- **Partitioning:** Concurrent `ALTER TABLE ... REBUILD PARTITION` operations could interfere with one another, even when not running against the same table, because they both used global memory for storage. Now each partition rebuild operation stores intermediate data in memory that is local to that process. (Bug #14589559, Bug #66645)

- **Partitioning:** Inserting any number of rows into an `ARCHIVE` table that used more than 1000 partitions and then attempting to drop the table caused the MySQL Server to fail. (Bug #13819630, Bug #64580)

- **Replication:** When a binary log is replayed on a server (for example, by executing a command like `mysqlbinlog binlog.000001 | mysql`), it sets a pseudo-slave mode on the client connection used, so that the server can read binary log and apply binary log events correctly. However, the pseudo-slave mode was not disabled after the binary log dump was read, which caused unexpected filtering rules to be applied to SQL statements subsequently executed on the same connection. (Bug #15891524)

- **Replication:** After dropping a column from the slave's version of a table, then altering the same column of this table on the master (so that a type conversion would have been required had the column not been dropped on the slave), inserts into this table caused replication to fail. (Bug #15888454)
MySQL 5.5 Release Notes

- **Replication:** When using statement-based replication, and where the master and the slave used table schemas having different `AUTO_INCREMENT` columns, inserts generating `AUTO_INCREMENT` values logged for a given table on the master could be applied to the wrong table on the slave. (Bug #12669186)

- **Replication:** Repeated execution of `CHANGE MASTER TO` statements using invalid `MASTER_LOG_POS` values could lead to errors and possibly a crash on the slave. Now in such cases, the statement fails with a clear error message. (Bug #11764602, Bug #57454)

- **Replication:** If the disk becomes full while writing to the binary log, the server hangs until space is freed up manually. It was possible after this was done for the MySQL server to fail, due to an internal status value being set when not needed. Now in such cases, rather than trying to set this status, a warning is written in the error log instead. (Bug #11753923, Bug #45449)

- **Microsoft Windows:** Dynamic file names (with colons) are no longer allowed. Static file names using the Alternate Data Stream (ADS) NTFS functionality of Microsoft Windows may continue to be used. (Bug #11761752)

  - Directory name manipulation could result in stack overflow on OS X and Windows. (Bug #16066243)

  - Joins of exactly 32 tables and containing a `HAVING` clause returned an empty result. (Bug #15972635)

  - A buffer-handling problem in yaSSL was fixed. (Bug #15965288)

  - A `mysys` library string-formatting routine could mishandle width specifiers. (Bug #15960005)

  - Metadata locking and table definition cache routines did not always check length of names passed to them. (Bug #15954872)

  - In certain cases, `UpdateXML()` could return `NULL` incorrectly. (Bug #15948580)

    References: See also: Bug #13007062.

- **XA START** had a race condition that could cause a server crash. (Bug #14729757)

- Enabling the query cache during high client contention could cause the server to exit. (Bug #14727815)

- There was a performance regression for queries using `SELECT ... INTO` user variables and a `WHERE` condition on one or more of the variables in the `INTO` list. (Bug #14664077)

    References: This issue is a regression of: Bug #12408412.

- The server sometimes failed to respect `MAX_CONNECTIONS_PER_HOUR` limits on user connections. (Bug #14627287)

- Output generated with `mysqldump --routines` could produce syntax errors when reloaded. (Bug #14463669)

- With the thread pool plugin installed, a workload consisting of concurrent `KILL` statements and ping queries caused the server to exit. (Bug #14458232, Bug #14458002)

- `CHECK TABLE` and `REPAIR TABLE` could crash if a `MyISAM` table had a corrupt key `.MYI` file. Now the server produces an error. (Bug #13556107, Bug #13556000)

- Passing an unknown time zone specification to `CONVERT_TZ()` resulted in a memory leak. (Bug #12347040)

- Configuring the server with `performance_schema_events_waits_history_size=0` and `performance_schema_events_waits_history_long_size=0` could cause a Performance Schema segmentation fault. (Bug #68008, Bug #16060864)
MySQL 5.5 Release Notes

- **mysqld_safe** used the nonportable `-e` test construct. (Bug #67976, Bug #16046140)
- For subqueries executing using a *filesort*, the optimizer could produce an incorrect result containing wrong rows. (Bug #66845, Bug #14636211)

  References: See also: Bug #12667154.

- The **mysql** client could mishandle the `delimiter` command if it occurred on a line during which `mysql` was looking for the end of a quoted string. (Bug #64135, Bug #13639125)
- For dumps of the **mysql** database, `mysqldump` skips the `event` table unless the `--events` option is given. `mysqldump` now prints a warning if invoked without `--events` that the `mysql.event` table is not dumped without that option. (Bug #55587, Bug #11762933)
- For **MEMORY** tables with **HASH** indexes, **DELETE** sometimes failed to delete all applicable rows. (Bug #51763, Bug #11759445)
- **UNION** type conversion could incorrectly turn unsigned values into signed values. (Bug #49003, Bug #11757005)
- **DECIMAL** multiplication operations could produce significant inaccuracy. (Bug #45860, Bug #11754279)
- During the startup process, `mysql` could incorrectly remove the PID file of an already running `mysqld`. (Bug #23790, Bug #11746142)

  References: See also: Bug #14726272.

### Changes in MySQL 5.5.29 (2012-12-21, General Availability)

Beginning with MySQL 5.5.29, Oracle no longer provides binaries for OS X 10.5, Debian 5, RHEL/OL 4, FreeBSD 7, Windows XP, or Windows 2003.

#### Functionality Added or Changed

- **Functionality Added or Changed**
- **Bugs Fixed**

#### Functionality Added or Changed

- The **SHOW AUTHORS** and **SHOW CONTRIBUTORS** statements are now deprecated in MySQL 5.5 and have been removed in MySQL 5.6.

#### Bugs Fixed

- **Incompatible Change**: `LAST_INSERT_ID(expr)` did not work for `expr` values greater than the largest signed **BIGINT** value. Such arguments now are accepted, with some consequences for compatibility with previous versions:
  - `LAST_INSERT_ID()` now returns a **BIGINT UNSIGNED** value, not a **BIGINT** (signed) value.
  - `LAST_INSERT_ID(expr)` now returns an unsigned integer value, not a signed integer value.
  - For **AUTO_INCREMENT** columns, negative values are no longer supported.

  (Bug #20964, Bug #11745891)

- **Important Change**: **InnoDB**: A **DML** statement using the index merge access method could lock many rows from the table, even when those rows were not part of the final result set. This fix reduces the excessive **locking** by releasing the locks of unmatched rows. This optimization affects only transactions
with isolation level equal to or less strict than READ COMMITTED; it does not apply to transactions using REPEATABLE READ or SERIALIZABLE isolation level. (Bug #14226171)

- **Performance; InnoDB**: The timing values for low-level InnoDB read operations were adjusted for better performance with fast storage devices, such as SSD. This enhancement primarily affects read operations for BLOB columns in compressed tables. (Bug #13702112, Bug #64258)

- **InnoDB**: An online DDL operation for an InnoDB table incorrectly reported an empty value ('') instead of the correct key value when it reported a duplicate key error for a unique index using an index prefix. (Bug #14729221)

- **InnoDB**: If a CREATE TABLE statement failed due to a disk full error, some memory allocated during the operation was not freed properly. (Bug #14708715)

- **InnoDB**: This fix makes MySQL more responsive to KILL QUERY statements when the query is accessing an InnoDB table. (Bug #14704286)

- **InnoDB**: If the server crashed at the specific point when a change buffer entry was being merged into a buffer pool page, the transaction log and the change buffer were left in an inconsistent state. After a restart, MySQL could crash after reading the corresponding secondary index page. The problem was more likely to occur in MySQL 5.5 or later, where the original insert buffering mechanism was generalized to cover other operations. (Bug #14636528, Bug #66819, Bug #58571, Bug #61104, Bug #65443)

- **InnoDB**: With the innodb_file_per_table setting enabled, a DROP TABLE operation could cause a crash, due to a race condition that depended on the timing of pending I/O requests. (Bug #14594600, Bug #66718)

- **InnoDB**: If a table was defined with an index key length very close to the upper length limit of 3072, a query against that table could cause a serious error. (Bug #14500557, Bug #14537695)

- **InnoDB**: When an auto-increment column used a FLOAT or DOUBLE data type, if the auto-increment value became very large (larger than the maximum unsigned long long value), subsequent inserts could fail or cause the server to halt. (Bug #14145950, Bug #55071)

- **InnoDB**: If a transaction was started with a consistent snapshot, then new indexes were added to the table while the transaction was in progress, a subsequent UPDATE statement could incorrectly encounter the error:

  ```
 ER_TABLE_DEF_CHANGED: insufficient history for index
  ```

  This issue could cause an assertion error in debug builds. (Bug #14036214)

- **InnoDB**: The error message was improved for the case where an UPDATE failed because the row included several BLOB values greater than 768 bytes each, causing the size of a row to exceed half the page size. The old message, was misleading; it suggested using BLOBs, when the 768-byte prefix for each BLOB column was the cause of the limit error:

  ```
 ER_TABLE_DEF_CHANGED: insufficient history for index
  ```

  This issue could cause an assertion error in debug builds. (Bug #14036214)

- **InnoDB**: The error message was improved for the case where an UPDATE failed because the row included several BLOB values greater than 768 bytes each, causing the size of a row to exceed half the page size. The old message, was misleading; it suggested using BLOBs, when the 768-byte prefix for each BLOB column was the cause of the limit error:

  ```
 ERROR Code 1118: Row size too large. The maximum row size for the used table type, not counting BLOBs, is 8126. You have to change some columns to TEXT or BLOBs.
  ```

  A workaround for the problem was to create the table with the Row_FORMAT=DYNAMIC or Row_FORMAT=COMPRESSED clause, which is now suggested in the message. (Bug #13453036, Bug #63507)

- **InnoDB**: In rare circumstances, MySQL could apply InnoDB undo records out of order during a ROLLBACK of an operation that modified a BLOB column. This issue could cause an assertion error in debug builds:
MySQL 5.5 Release Notes

• **InnoDB**: In debug builds, a mismatch in the InnoDB PAGE_FREE list would cause an assertion. (Bug #12701488)

• **Replication**: Updates writing user variables whose values were never set on a slave while using --replicate-ignore-table could cause the slave to fail. (Bug #14597605)

  References: This issue is a regression of: Bug #14275000.

• **Replication**: Following an insert into a nontransactional table that failed due to insufficient disk space, the server did not properly clean up all pending events, leading to an assert or possibly to other errors. (Bug #11750014)

• **Replication**: Backtick (`) characters were not always handled correctly in internally generated SQL statements, which could sometimes lead to errors on replication slaves or cause failure of restore operations from binary log files. (Bug #66550, Bug #14548159, Bug #29422, Bug #11746883)

• Within a stored procedure, executing a multiple-table `DELETE` statement that used a very long table alias could cause the server to exit. (Bug #15954896)

• Very long table aliases in queries could cause the server to exit. (Bug #15948123)

• Very long database names in queries could cause the server to exit. (Bug #15912213, Bug #16900358)

• Attempting to create an `auto-increment` column in an InnoDB table with a `NULL` type attribute could cause a serious error. (Bug #14758479)

• A `DELETE` statement for an InnoDB table could write incorrect transaction metadata into a record, causing the server to halt with an error. To work around this issue, reduce the specified length of the primary key to less than 1K bytes. (Bug #14731482)

• Repeated execution of a query containing a subquery that used `MAX()` could result in increasing memory consumption. (Bug #14683676)

• `USE dbname` could fail with Unknown database when dbname contained multiple backtick (`) characters. (Bug #14645196)

• Within a stored program, memory allocated to hold condition information was not released until program exit, leading to excessive memory use. (Bug #14640599)

• **SHOW PROFILE** could be used to cause excessive server memory consumption. (Bug #14629232)

• The thread cache implementation worked in LIFO rather than FIFO fashion and could result in a thread being denied service (although this was a remote possibility). (Bug #14621627)

• The configure.pl script that converts GNU configure options to CMake equivalents generated erroneous output for the --with-client-ldflags and --with-mysqld-ldflags options. It now ignores those options. (Bug #14593123)

• Improper memory cleanup could cause the server to exit. (Bug #14536113)

• Granting or revoking the PROXY privilege caused the server to exit if the server was started with the skip_name Resolve system variable enabled. (Bug #14211140)

• **CREATE USER** and **DROP USER** could fail to flush the privileges, requiring **FLUSH PRIVILEGES** to be used explicitly. (Bug #13864642)
• Access to `INFORMATION_SCHEMA` tables through a view could leak memory. (Bug #13734987)

• A memory leak could occur for queries containing a subquery that used `GROUP BY` on an outer column. (Bug #13724099)

• On Microsoft Windows with CMake 2.6, the build process would not stop if the `create_initial_db` step failed. (Bug #13713525)

• `CHECK TABLE` and `REPAIR TABLE` could crash if a `MyISAM` table had a corrupt key (.MYI) file. Now the server produces an error. (Bug #13556441)

• The test in `mysqld_safe` for the presence of the `--plugin_dir` option and assignment of a default value to it were performed before the actual argument parsing took place. (Bug #13548161)

• Improper memory cleanup could cause the server to exit. (Bug #13340270)

• A memory leak occurred due to failure to clean up after `QUICK_INDEX_MERGE_SELECT/Unique`. (Bug #12694872, Bug #14542543)

• A “buffer too small” error message from the `myisamchk` command referred to the `myisam_sort_buffer_size` configuration option, when it should have referred to `sort_buffer_size`.

  `myisamchk` now has a `myisam_sort_buffer_size` variable available as an alternative name to `sort_buffer_size`. `myisam_sort_buffer_size` is preferable to `sort_buffer_size` because its name corresponds to the `myisam_sort_buffer_size` server system variable that has a similar meaning. `sort_buffer_size` should be considered deprecated. (Bug #11754894, Bug #46578)

• The number of connection errors from a given host as counted by the server was periodically reset, with the result that `max_connect_errors` was never reached and invalid hosts were never blocked from trying to connect. (Bug #11753779)

  References: See also: Bug #38247, Bug #43006, Bug #45584, Bug #45606.

• RHEL RPM packages had a conflict between `mysql-libs` and `mysql-shared`. (Bug #67965, Bug #16041010)

• In debug builds, an `InnoDB` assertion was overly aggressive about prohibiting an open range. (Bug #66513, Bug #14547952)

• On Windows, the Perl version of `mysql_install_db` created system tables in the `mysql` database that were not populated properly. (Bug #65584, Bug #14181049)

• `mysql_safe` ignored the value of the `UMASK` environment variable, leading to behavior different from `mysqld` with respect to the access mode of created files. Now `mysql_safe` (and `mysql_multi`) attempt to approximate the same behavior as `mysqld`. (Bug #57406, Bug #11764559)

• During optimization, `ZEROFILL` values may be converted to string constants. However, `CASE` expressions did not handle switching data types after the planning stage, leading to `CASE` finding a null pointer instead of its argument. (Bug #57135, Bug #11764313)

Changes in MySQL 5.5.28 (2012-09-28, General Availability)

  • Audit Log Notes
  • Functionality Added or Changed
  • Bugs Fixed
Audit Log Notes

• MySQL Enterprise Edition now includes MySQL Enterprise Audit, implemented using a server plugin named `audit_log`. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection and query activity executed on specific MySQL servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution for applications that are governed by both internal and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record of server activity. The log contents include when clients connect and disconnect, and what actions they perform while connected, such as which databases and tables they access.

For more information, see MySQL Enterprise Audit.

Functionality Added or Changed

• The internal interface of the Thread Pool plugin has changed. Old versions of the plugin will work with current versions of the server, but versions of the server older than 5.5.28 will not work with current versions of the plugin.

Bugs Fixed

• **InnoDB**: Inserting data of varying record lengths into an InnoDB table that used compression could cause the server to halt with an error. (Bug #14554000, Bug #13523839, Bug #63815, Bug #12845774, Bug #61456, Bug #12595091, Bug #61208)

• **InnoDB**: Under heavy load of concurrent DML and queries, an InnoDB table with a unique index could return nonexistent duplicate rows to a query. (Bug #14399148, Bug #66134)

• **InnoDB**: Deleting from an InnoDB table containing a prefix index, and subsequently dropping the index, could cause a crash with an assertion error. (Bug #13807811)

• **InnoDB**: Certain INFORMATION_SCHEMA tables originally introduced in MySQL 5.6 are now also available in MySQL 5.5 and MySQL 5.1: `INNODB_BUFFER_PAGE`, `INNODB_BUFFER_PAGE_LRU`, and `INNODB_BUFFER_POOL_STATS`. (Bug #13113026)

• **InnoDB**: When a SELECT ... FOR UPDATE, UPDATE, or other SQL statement scanned rows in an InnoDB table using a < or <= operator in a WHERE clause, the next row after the affected range could also be locked. This issue could cause a lock wait timeout for a row that was not expected to be locked. The issue occurred under various isolation levels, such as READ COMMITTED and REPEATABLE READ. (Bug #11765218)

• **Partitioning**: When used with a table having multiple columns in its primary key, but partitioned by KEY using a column that was not part of the primary key as the partitioning column, a query using an aggregate function and DISTINCT such as `SELECT SUM(DISTINCT pk_column_1) FROM table WHERE pk_column_2 = constant` was not handled correctly. (Bug #14495351)

• **Partitioning**: For tables using PARTITION BY HASH or PARTITION BY KEY, when the partition pruning mechanism encountered a multi-range list or inequality using a column from the partitioning key, it continued with the next partitioning column and tried to use it for pruning, even if the previous column could not be used. This caused partitions which possibly matched one or more of the previous partitioning columns to be pruned away, leaving partitions that matched only the last column of the partitioning key.

This issue was triggered when both of the following conditions were met:
1. The columns making up the table's partitioning key were used in the same order as in the partitioning key definition by a `SELECT` statement's `WHERE` clause as in the column definitions;

2. The `WHERE` condition used with the last column of the partitioning key was satisfied only by a single value, while the condition testing some previous column from the partitioning key was satisfied by a range of values.

An example of a statement creating a partitioned table and a query against this for which the issue described above occurred is shown here:

```sql
CREATE TABLE t1 (
c1 INT,
c2 INT,
PRIMARY KEY(c2, c1)
) PARTITION BY KEY() # Use primary key as partitioning key
PARTITIONS 2;
SELECT * FROM t1 WHERE c2 = 2 AND c1 <> 2;
```

This issue is resolved by ensuring that partition pruning skips any remaining partitioning key columns once a partition key column that cannot be used in pruning is encountered. (Bug #14342883)

- **Partitioning**: The buffer for the row currently read from each partition used for sorted reads was allocated on open and freed only when the partitioning handler was closed or destroyed. For `SELECT` statements on tables with many partitions and large rows, this could cause the server to use excessive amounts of memory.

This issue has been addressed by allocating buffers for reads from partitioned tables only when they are needed and freeing them immediately once they are no longer needed. As part of this fix, memory is now allocated for reading from rows only in partitions that have not been pruned (see Partition Pruning). (Bug #13025132)

References: See also: Bug #11764622, Bug #14537277.

- **Replication; Microsoft Windows**: On 64-bit Windows platforms, values greater than 4G for the `max_binlog_cache_size` and `max_binlog_stmt_cache_size` system variables were truncated to 4G. This caused `LOAD DATA` to fail when trying to load a file larger than 4G in size, even when `max_binlog_cache_size` was set to a value greater than this. (Bug #13961678)

- **Replication**: In master-master replication with `--log-slave-updates` enabled, setting a user variable and then performing inserts using this variable caused the `Exec_master_log_position` column in the output of `SHOW SLAVE STATUS` not to be updated. (Bug #13596613)

- When resolving outer fields, `Item_field::fix_outer_fields()` creates new `Item_ref`s for each execution of a prepared statement, so these must be allocated in the runtime memroot. The memroot switching before resolving `JOIN::having` caused these to be allocated in the statement root, leaking memory for each prepared statement execution. (Bug #14409015)

- The RPM spec file now also runs the test suite on the new binaries, before packaging them. (Bug #14318456)

- The argument for `LIMIT` must be an integer, but if the argument was given by a placeholder in a prepared statement, the server did not reject noninteger values such as '5'. (Bug #13868860)

- The Thread Pool plugin did not respect the `wait_timeout` timeout for client sessions. (Bug #13699303)
MySQL 5.5 Release Notes

• **CHECK TABLE** and **REPAIR TABLE** could crash if a key definition differed in the .frm and .MYI files of a MyISAM table. Now the server produces an error. (Bug #13555854)

• A query for a FEDERATED table could return incorrect results when the underlying table had a compound index on two columns and the query included an AND condition on the columns. (Bug #12876932)

• The argument to the **--ssl-key** option was not verified to exist and be a valid key. The resulting connection used SSL, but the key was not used. (Bug #62743, Bug #13115401)

• **mysqlhotcopy** failed for databases containing views. (Bug #62472, Bug #13006947, Bug #12992993)

• Adding a LIMIT clause to a query containing GROUP BY and ORDER BY could cause the optimizer to choose an incorrect index for processing the query, and return more rows than required. (Bug #54599, Bug #11762052)

• **mysqlbinlog** did not accept input on the standard input when the standard input was a pipe. (Bug #49336, Bug #11757312)

Changes in MySQL 5.5.27 (2012-08-02, General Availability)

• **Functionality Added or Changed**

• **Bugs Fixed**

Functionality Added or Changed

• **Important Change:** The **YEAR(2)** data type is now deprecated because it is problematic. Support for **YEAR(2)** will be removed in a future MySQL release. For more information, see 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR.

• The **mysql_clear_password** cleartext client-side authentication plugin is intended for authentication schemes that require the server to receive the password as entered on the client side, without hashing. Because the password is sent in the clear, this plugin should be used within the context of an encrypted connection, such as an SSL connection, to avoid exposing the password over the network. To make inadvertent use of this plugin less likely, it is now required that clients explicitly enable it. This can be done several ways:

  • Set the **LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN** environment variable to a value that begins with 1, Y, or y. This enables the plugin for all client connections.

  • The mysql, mysqladmin, and mysqlslap client programs support an **--enable-cleartext-plugin** option that enables the plugin on a per-invocation basis.

  • The mysql_options() C API function supports a **MYSQL_ENABLE_CLEARTEXT_PLUGIN** option that enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient and reads option files can enable the plugin by including an **enable-cleartext-plugin** option in an option group read by the client library.

Bugs Fixed

• **InnoDB:** A race condition could cause assertion errors during a **DROP TABLE** statement for an InnoDB table. Some internal InnoDB functions did not correctly determine if a tablespace was missing; other functions did not handle the error code correctly if a tablespace was missing. (Bug #14251529)

• **InnoDB:** If a row was deleted from an InnoDB table, then another row was re-inserted with the same primary key value, an attempt by a concurrent transaction to lock the row could succeed when it should
have waited. This issue occurred if the locking select used a `WHERE` clause that performed an index scan using a secondary index. (Bug #14100254, Bug #65389)

- **InnoDB:** An assertion could be raised if an InnoDB table was moved to a different database using `ALTER TABLE ... RENAME` while the database was being dropped by `DROP DATABASE`. (Bug #13982017)

- **InnoDB:** Using the `KILL` statement to terminate a query could cause an unnecessary message in the error log:

  ```
 [ERROR] Got error -1 when reading table `table_name`
  ```

  (Bug #13933132)

- **InnoDB:** For an InnoDB table with a trigger, under the setting `innodb_autoinc_lock_mode=1`, sometimes auto-increment values could be interleaved when inserting into the table from two sessions concurrently. The sequence of auto-increment values could vary depending on timing, leading to data inconsistency in systems using replication. (Bug #12752572, Bug #61579)

- **Partitioning:** Insertion of an out-of-range value into a partitioned table was not handled correctly in all cases. This is a regression that first appeared in MySQL 5.5.23. (Bug #14005441, Bug #65587)

- **Replication:** An event whose length exceeded the size of the master dump thread’s `max_allowed_packet` caused replication to fail. This could occur when updating many large rows and using row-based replication.

  As part of this fix, a new `slave_max_allowed_packet` system variable is added, which permits `max_allowed_packet` to be exceeded by the slave SQL and I/O threads. Now the size of a packet transmitted from the master to the slave is checked only against this value, and not against the value of `max_allowed_packet`. (Bug #12400221, Bug #60926)

- **Replication:** Statements such as `UPDATE ... WHERE primary_key_column = constant LIMIT 1` are flagged as unsafe for statement-based logging, despite the fact that such statements are actually safe. In cases where a great many such statements were run, this could lead to disk space becoming exhausted do to the number of such false warnings being logged. To prevent this from happening, a warning suppression mechanism is introduced. This warning suppression acts as follows: Whenever the 50 most recent `ER_BINLOG_UNSAFE_STATEMENT` warnings have been generated more than 50 times in any 50-second period, warning suppression is enabled. When activated, this causes such warnings not to be written to the error log; instead, for each 50 warnings of this type, a note is written to the error log stating The last warning was repeated N times in last S seconds. This continues as long as the 50 most recent such warnings were issued in 50 seconds or less; once the number of warnings has decreased below this threshold, the warnings are once again logged normally.

  The fix for this issue does not affect how these warnings are reported to MySQL clients; a warning is still sent to the client for each statement that generates the warning. This fix also does not make any changes in how the safety of any statement for statement-based logging is determined. (Bug #11759333, Bug #51638)

  References: See also: Bug #11751521, Bug #42415.

- **Replication:** After upgrading a replication slave to MySQL 5.5.18 or later, enabling the query cache eventually caused the slave to fail. (Bug #64624, Bug #14005409)

- The server did not build with `gcc` 4.7. (Bug #14238406)

- Certain arguments to `RPAD()` could lead to “uninitialized variable” warnings. (Bug #14039955)
• When the index enforcing a foreign key constraint was dropped while `foreign_key_checks=0`, further operations involving the foreign key column could cause a serious error after the `foreign_key_checks` option was re-enabled. (Bug #14025221)

• `COUNT(DISTINCT(SELECT 1))` could be evaluated incorrectly if the optimizer used Loose Index Scan. (Bug #13444084)

  References: See also: Bug #13813126.

• The presence of a file named `.empty` in the `test` database prevented that database from being dropped. (Bug #12845091)

• For some subqueries that should be executed using a range scan on a nonprimary index and required use of filesort, only the first execution of the subquery was done as a range scan. All following executions were done as full table scans, resulting in poor performance. (Bug #12667154)

• If an account had a nonzero `MAX_USER_CONNECTIONS` value, that value was not always respected. (Bug #65104, Bug #14003080)

• MySQL builds failed with CMake 2.8.8. (Bug #65050, Bug #14017376)

• `COUNT(DISTINCT(IF ...))` could be evaluated incorrectly if the optimizer used Loose Index Scan. (Bug #64445, Bug #13813126)

  References: See also: Bug #13444084.

• File access by the `ARCHIVE` storage engine was not instrumented and thus not shown in Performance Schema tables. (Bug #63340, Bug #13417440)

• Sessions could end up deadlocked when executing a combination of `SELECT, DROP TABLE, KILL, and SHOW ENGINE INNODB STATUS`. (Bug #60682, Bug #12636001)

• Using `CONCAT()` to construct a pattern for a `LIKE` pattern match could result in memory corrupting and match failure. (Bug #59140, Bug #11766101)

• `mysqlbinlog` exited with no error code if file write errors occurred. (Bug #55289, Bug #11762667)

• yaSSL rejected valid SSL certificates that OpenSSL accepts. (Bug #54348, Bug #11761822)

• `mysqldump` could dump views and the tables on which they depend in such an order that errors occurred when the dump file was reloaded. (Bug #44939, Bug #11753490)

### Changes in MySQL 5.5.26 (Not released)

MySQL 5.5.26 was not released, and has been replaced by MySQL 5.5.27. All changes that should have appeared in MySQL 5.5.26 appear instead in MySQL 5.5.27.

Users of MySQL 5.5.25a and previous MySQL 5.5 releases should upgrade to MySQL 5.5.27.

For a complete list of fixes, improvements, and other changes made in MySQL 5.5.27, see Changes in MySQL 5.5.27 (2012-08-02, General Availability).

### Changes in MySQL 5.5.25a (2012-07-05, General Availability)

Note

Due to MSI restrictions, the MSI packages of MySQL 5.5.25a will treat the version as 5.5.26 internally; for example, as displayed by the Installation Wizard. MySQL
itself reports the version as 5.5.25a; for example, if you check the value of the
VERSION() SQL function or the version system variable.

Bugs Fixed

- A regression bug in the optimizer could cause excessive disk usage for UPDATE statements on InnoDB tables. For tables created with innodb_file_per_table enabled, OPTIMIZE TABLE can be used to recover excessive space used. For tables created in the InnoDB system tablespace, it is necessary to perform a dump and restore into a new instance of the system tablespace. (Bug #65745, Bug #14248833)

Changes in MySQL 5.5.25 (2012-05-30, General Availability)

Note
MySQL 5.5.25 is superseded by MySQL 5.5.25a due to a regression bug that can cause excessive disk usage (for details, see Bug #65745). Current users of 5.5.25: Upgrade to 5.5.25a. Users contemplating an upgrade to 5.5.25: Upgrade to 5.5.25a instead.

- Functionality Added or Changed
- Bugs Fixed

Functionality Added or Changed

- Important Change; Replication: The SHOW BINARY LOGS statement (and its equivalent SHOW MASTER LOGS) may now be executed by a user with the REPLICATION CLIENT privilege. (Formerly, the SUPER privilege was necessary to use either form of this statement.)

- The --safe-mode server option now is deprecated and will be removed in MySQL 5.6.

Bugs Fixed

- Performance; InnoDB: Improved the algorithm related to adaptive flushing. This fix increases the rate of flushing in cases where compression is used and the data set is larger than the buffer pool, leading to eviction. (Bug #13990648, Bug #65061)

- InnoDB: In a transaction using the REPEATABLE READ isolation level, an UPDATE or DELETE statement for an InnoDB table could sometimes overlook rows recently committed by other transactions. As explained in Consistent Nonlocking Reads, DML statements within a REPEATABLE READ transaction apply to rows committed by other transactions, even if a query could not see those rows. (Bug #14007649, Bug #65111)

- InnoDB: The Innodb_buffer_pool_pages_flushed status variable was incorrectly set to twice the value it should be. Its value should never exceed the value of Innodb_pages_written. (Bug #14000361, Bug #65030)

- InnoDB: The error handling and message was improved for attempting to create a foreign key with a column referencing itself. The message suggested a potential problem with the data dictionary, when no such problem existed. (Bug #12902967)

- InnoDB: The CHECK TABLE statement could fail for a large InnoDB table due to a timeout value of 2 hours. For typical storage devices, the issue could occur for tables that exceeded approximately 200
or 350 GB, depending on I/O speed. The fix relaxes the locking performed on the table being checked, which makes the timeout less likely. It also makes InnoDB recognize the syntax `CHECK TABLE QUICK`, which avoids the possibility of the timeout entirely. (Bug #11758510, Bug #50723)

- **Replication**: It was theoretically possible for concurrent execution of more than one instance of `SHOW BINLOG EVENTS` to crash the MySQL Server. (Bug #13979418)

- **Replication**: Statements using `AUTO_INCREMENT`, `LAST_INSERT_ID()`, `RAND()`, or user variables could be applied in the wrong context on the slave when using statement-based replication and replication filtering server options (see How Servers Evaluate Replication Filtering Rules). (Bug #11761686, Bug #54201)

References: See also: Bug #11754117, Bug #45670, Bug #11746146, Bug #23894.

- **Replication**: An `INSERT` into a table that has a composite primary key that includes an `AUTO_INCREMENT` column that is not the first column of this composite key is not safe for statement-based binary logging or replication. Such statements are now marked as unsafe and fail with an error when using the `STATEMENT` binary logging format. For more information, see Determination of Safe and Unsafe Statements in Binary Logging, as well as Replication and AUTO_INCREMENT.

Note

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an AUTO_INCREMENT column requires at least one key where the auto-increment column is the only or leftmost column.

(Bug #11754117, Bug #45670)

References: See also: Bug #11761686, Bug #54201, Bug #11746146, Bug #23894.

- For queries with `ORDER BY COUNT(*)` and `LIMIT`, the optimizer could choose an execution plan that produced incorrect results. (Bug #12713907)

- **SHOW TABLES** was very slow unless the required information was already in the disk cache. (Bug #60961, Bug #12427262)

- When dumping the mysql database, mysqldump did not include the general_log and slow_query_log tables because they cannot be locked. This caused a problem after reloading the dump file if that file contained a DROP_DATABASE statement for the mysql database: The database no longer contained the log tables and attempts to log to them failed. Now mysqldump includes statements to re-create the general_log and slow_query_log tables so that they exist after loading the dump file. Log table contents still are not dumped. (Bug #45740, Bug #11754178)

**Changes in MySQL 5.5.24 (2012-05-07, General Availability)**

- Functionality Added or Changed
- Bugs Fixed

**Functionality Added or Changed**

- **Important Change; Replication**: `INSERT ON DUPLICATE KEY UPDATE` is now marked as unsafe for statement-based replication if the target table has more than one primary or unique key. For more information, see Determination of Safe and Unsafe Statements in Binary Logging. (Bug #58637, Bug #11765650, Bug #13038678)
Bugs Fixed

- **Security Fix:** A security bug was fixed. (Bug #64884)

- **InnoDB; Replication:** When binary log statements were replayed on the slave, the `Com_insert`, `Com_update`, and `Com_delete` counters were incremented by `BEGIN` statements initiating transactions affecting InnoDB tables but not by `COMMIT` statements ending such transactions. This affected these statements whether they were replicated or they were run using `mysqlbinlog`. (Bug #12662190)

- **InnoDB:** Running concurrent bulk inserts on a server with `auto_increment_offset=1`, `auto_increment_increment` greater than 1, and `innodb_autoinc_lock_mode=1` could result in intermittent errors like the following, even with the primary key set to `auto_increment` and omitted from the `INSERT` statement:

  ```
 Duplicate entry 'value' for key 'PRIMARY'
  ```

  The workaround was to set `auto_increment_offset=1` or `innodb_autoinc_lock_mode=0` ("traditional"). (Bug #13817703, Bug #61209)

- **Microsoft Windows:** On Windows, `mysqlslap` crashed for attempts to connect using shared memory. (Bug #31173, Bug #11747181, Bug #59107, Bug #11766072)

- Passing a user variable as an argument to `GROUP_CONCAT()` could cause a server exit if the variable value changed during query execution. (Bug #12408412)

- `mysql_store_result()` and `mysql_use_result()` are not for use with prepared statements and are not intended to be called following `mysql_stmt_execute()`, but failed to return an error when invoked that way in `libmysqld`. (Bug #62136, Bug #13738989)

  References: See also: Bug #47485.

- If the `--bind-address` option was given a host name value and the host name resolved to more than one IP address, the server failed to start. For example, with `--bind-address=localhost`, if `localhost` resolved to both `127.0.0.1` and `::1`, startup failed. Now the server prefers the IPv4 address in such cases. (Bug #61713, Bug #12762885)

Changes in MySQL 5.5.23 (2012-04-12, General Availability)

- **Functionality Added or Changed**

- **Bugs Fixed**

Functionality Added or Changed

- The `MySQL-shared-compat` RPM package enables users of Red Hat-provided `mysql-*-5.1` RPM packages to migrate to Oracle-provided `MySQL-*-5.5` packages. `MySQL-shared-compat` now replaces the Red Hat `mysql-libs` package by replacing `libmysqlclient.so` files of the latter package, thus satisfying dependencies of other packages on `mysql-libs`. This change affects only users of Red Hat (or Red Hat-compatible) RPM packages. Nothing is different for users of Oracle RPM packages. (Bug #13867506)

Bugs Fixed

- **Security Fix:** A security bug was fixed. (Bug #59533)

- **Important Change; Partitioning:** The query cache did not always function correctly with partitioned tables in a transactional context. For this reason, the query cache is now disabled for any queries using
partitioned tables, and such queries can no longer be cached. For more information, see Restrictions and Limitations on Partitioning. (Bug #11761296, Bug #53775)

- **Performance; InnoDB; Partitioning:** The statistics used by the optimizer for queries against partitioned InnoDB tables were based only on the first partition of each such table, leading to use of the wrong execution plan. (Bug #13694811)

  References: This issue is a regression of: Bug #11756867.

- **Performance; InnoDB:** This fix improves the speed of `DROP TABLE` for InnoDB tables by removing a scan of the buffer pool to remove entries for the adaptive hash index. This improvement is most noticeable on systems with very large buffer pools and the `innodb_adaptive_hash_index` option enabled. (Bug #13704145, Bug #64284)

- **InnoDB:** The `performance_schema` counters for InnoDB RW-locks did not record some cases where mini-transactions acquired locks. (Bug #13860722)

- **InnoDB:** Deleting a huge amount of data from InnoDB tables within a short time could cause the purge operation that removes delete-marked records to stall. This issue could result in unnecessary disk space use, but does not cause any problems with data integrity. If this issue causes a disk space shortage, restart the server to work around it. This issue is only likely to occur on 32-bit platforms. (Bug #13847885)

- **InnoDB:** Running concurrent bulk inserts on a server with `auto_increment_offset=1`, `auto_increment_increment` greater than 1, and `innodb_autoinc_lock_mode=1` could result in intermittent errors like the following, even with the primary key set to auto_increment and omitted from the `INSERT` statement:

  ```
 Duplicate entry 'value' for key 'PRIMARY'
  ```

  The workaround was to set `auto_increment_offset=1` or `innodb_autoinc_lock_mode=0` ("traditional"). (Bug #13817703, Bug #61209)

- **InnoDB:** If the server crashed during a `TRUNCATE TABLE` or `CREATE INDEX` statement for an InnoDB table, or a `DROP DATABASE` statement for a database containing InnoDB tables, an index could be corrupted, causing an error message when accessing the table after restart:

  ```
 InnoDB: Error: trying to load index index_name for table table_name
 InnoDB: but the index tree has been freed!
  ```

  In MySQL 5.1, this fix applies to the InnoDB Plugin, but not the built-in InnoDB storage engine. (Bug #12861864, Bug #11766019)

- **InnoDB:** When data was removed from an InnoDB table, newly inserted data might not reuse the freed disk blocks, leading to an unexpected size increase for the system tablespace or `.ibd` file (depending on the setting of `innodb_file_per_table`. The `OPTIMIZE TABLE` could compact a `.ibd` file in some cases but not others. The freed disk blocks would eventually be reused as additional data was inserted. (Bug #11766634, Bug #59783)

- **InnoDB:** When shutting down the MySQL server, the cleanup operations of the InnoDB shutdown could take a long time with no output, making the server appear to be hung.

  ```
 [Note] mysqld: Normal shutdown
 InnoDB: Starting shutdown...
 InnoDB: Shutdown completed; log sequence number ...
  ```

  Now additional progress messages are displayed between the “starting” and “completed” messages:

  ```
 InnoDB: Waiting for srv_monitor_thread (srv_lock_timeout_thread/ srv_error_monitor_thread) to exit
  ```
InnoDB: Waiting for %lu active transactions to exit
InnoDB: Waiting for master thread (worker threads) to be suspended
InnoDB: Pending checkpoint_writes: %lu
InnoDB: Waiting for %lu buffer page I/Os to complete
InnoDB: Waiting for dirty buffer pages to be flushed

For both fast shutdown and slow shutdown, a progress messages is printed every 60 seconds:

InnoDB: Waiting for %lu tables to be dropped

During a slow shutdown, two additional messages are printed if certain phases take longer than normal:

InnoDB: Waiting for %lu undo logs to be purged
InnoDB: number of pages just purged: %lu
InnoDB: Waiting for change buffer merge to complete
InnoDB: number of bytes of change buffer just merged: %lu

(Bug #11755873, Bug #47707)

• **InnoDB**: Fast index creation in the InnoDB Plugin could fail, leaving the new secondary index corrupted. (Bug #54330)

• **Replication**: Formerly, the default value shown for the Port column in the output of SHOW SLAVE HOSTS was 3306 whether the port had been set incorrectly or not set at all. Now, when the slave port is not set, the actual port used by the slave is shown. This change also affects the default shown for the --report-port server option. (Bug #13333431)

• **Replication**: The --relay-log-space-limit option was sometimes ignored.

More specifically, when the SQL thread went to sleep, it allowed the I/O thread to queue additional events in such a way that the relay log space limit was bypassed, and the number of events in the queue could grow well past the point where the relay logs needed to be rotated. Now in such cases, the SQL thread checks to see whether the I/O thread should rotate and provide the SQL thread a chance to purge the logs (thus freeing space).

Note that, when the SQL thread is in the middle of a transaction, it cannot purge the logs; it can only ask for more events until the transaction is complete. Once the transaction is finished, the SQL thread can immediately instruct the I/O thread to rotate. (Bug #12400313, Bug #64503)

References: See also: Bug #13806492.

• An infinite thread loop could develop within Performance Schema, causing the server to become unresponsive. (Bug #13898343)

• Incorrect stored program caching could cause statements within a stored program that included a GROUP BY clause to return different results across multiple program invocations. (Bug #13805127)

• Mishandling of NO_BACKSLASH_ESCAPES SQL mode within stored procedures on slave servers could cause replication failures. (Bug #12601974)

• **SAVEPOINT** statements were incorrectly disallowed within XA transactions. (Bug #64374, Bug #13737343)

References: See also: Bug #11766752.

• The Performance Schema incorrectly displayed some backslashes in Windows file names (by doubling them). (Bug #63339, Bug #13417446)
MySQL 5.5 Release Notes

- On OS X 10.5, the MySQL Preference Pane did not run on Intel-based systems. (Bug #60712, Bug #13788147)
- `SHOW` statements treated stored procedure, stored function, and event names as case sensitive. (Bug #56224, Bug #11763507)

**Changes in MySQL 5.5.22 (2012-03-21, General Availability)**

- Functionality Added or Changed
- Bugs Fixed

**Functionality Added or Changed**

- **InnoDB**: A deprecation warning is now issued when `--ignore-builtin-innodb` is used. (Bug #13586262)
- yaSSL was upgraded from version 1.7.2 to 2.2.0. (Bug #13706828)

  References: See also: Bug #13713205.

**Bugs Fixed**

- **Security Fix**: A security bug was fixed. (Bug #63775)

- **Important Change; InnoDB**: When a row grew in size due to an `UPDATE` operation, other (non-updated) columns could be moved to off-page storage so that information about the row still fit within the constraints of the InnoDB page size. The pointer to the new allocated off-page data was not set up until the pages were allocated and written, potentially leading to lost data if the system crashed while the column was being moved out of the page. The problem was more common with tables using `ROW_FORMAT=DYNAMIC` or `ROW_FORMAT=COMPRESSED` along with the Barracuda file format, particularly with the `innodb_file_per_table` setting enabled, because page allocation operations are more common as the `.ibd` tablespace files are extended. Still, the problem could occur with any combination of InnoDB version, file format, and row format.

  A related issue was that during such an `UPDATE` operation, or an `INSERT` operation that reused a delete-marked record, other transactions could see invalid data for the affected column, regardless of isolation level.

  The fix corrects the order of operations for moving the column data off the original page and replacing it with a pointer. Now if a crash occurs at the precise moment when the column data is being transferred, the transfer will not be re-run during crash recovery.

  In MySQL 5.1, this fix applies to the InnoDB Plugin, but not the built-in InnoDB storage engine. (Bug #13721257, Bug #12612184, Bug #12704861)

- **InnoDB**: An erroneous assertion could occur, in debug builds only, when creating an index on a column containing zero-length values (that is, ''). (Bug #13654923)

- **InnoDB**: A DDL operation such as `ALTER TABLE ... ADD COLUMN` could stall, eventually timing out with an `Error 1005: Can't create table` message referring to `file_rename_tablespace`. (Bug #13636122, Bug #62100, Bug #63553)

- **InnoDB**: A DDL operation for an InnoDB table could cause a busy MySQL server to halt with an assertion error:

  ```
 InnoDB: Failing assertion: trx->error_state == DB_SUCCESS
  ```
The error occurred if the DDL operation was run while all 1023 undo slots were in use by concurrent transactions. This error was less likely to occur in MySQL 5.5 and 5.6, because raising the number of InnoDB undo slots increased the number of simultaneous transactions (corresponding to the number of undo slots) from 1K to 128K. (Bug #12739098, Bug #62401)

- **InnoDB**: Server startup could produce an error for temporary tables using the InnoDB storage engine, if the path in the $TMPDIR variable ended with a / character. The error log would look like:

  ```
 120202 19:21:26 InnoDB: Operating system error number 2 in a file operation.
 InnoDB: The error means the system cannot find the path specified.
 InnoDB: If you are installing InnoDB, remember that you must create
 InnoDB: directories yourself, InnoDB does not create them.
 120202 19:21:26 InnoDB: Error: trying to open a table, but could not
 InnoDB: open the tablespace file './t/#sql7750_1_0.ibd'!
 InnoDB: Have you moved InnoDB .ibd files around without using the
 InnoDB: commands DISCARD TABLESPACE and IMPORT TABLESPACE?
 InnoDB: It is also possible that this is a temporary table #sql...,
 InnoDB: and MySQL removed the .ibd file for this.
  ```

  The workaround for the problem was to create a similar temporary table again, copy its .frm file to tmpdir under the name mentioned in the error message (for example, #sql123.frm) and restart mysqld with tmpdir set to its normal value without a trailing slash, for example /var/tmp. On startup, MySQL would see the .frm file and issue DROP TABLE for the orphaned temporary table. (Bug #11754376, Bug #45976)

- **Replication**: Statements that wrote to tables with AUTO_INCREMENT columns based on an unordered SELECT from another table could lead to the master and the slave going out of sync, as the order in which the rows are retrieved from the table may differ between them. Such statements include any INSERT ... SELECT, REPLACE ... SELECT, or CREATE TABLE ... SELECT statement. Such statements are now marked as unsafe for statement-based replication, which causes the execution of one to throw a warning, and forces the statement to be logged using the row-based format if the logging format is MIXED. (Bug #11758263, Bug #50440)

- After using an ALTER TABLE statement to change the KEY_BLOCK_SIZE property for an InnoDB table, for example when switching from an uncompressed to a compressed table, subsequent server restarts could fail with a message like:

  ```
 InnoDB: Error: data file path/ibdata2 uses page size 1024,
 InnoDB: but the only supported page size in this release is=16384
  ```

  This issue is a regression introduced in MySQL 5.5.20. (Bug #13698765, Bug #64160)

- The contents of the shared and shared-compat RPM packages had been changed in versions 5.5.6 and 5.6.1 to avoid the overlap which they traditionally had (and still have in MySQL 5.0 and 5.1). However, the RPM meta information had not been changed in accordance, and so RPM still assumed a conflict between shared and shared-compat RPM packages. This has been fixed. (Bug #60855, Bug #12368215)

  References: See also: Bug #56150.

- **myisam_sort_buffer_size** could not be set larger than 4GB on 64-bit systems. (Bug #45702, Bug #11754145)

- Due to improper locking, concurrent inserts into an ARCHIVE table at the same time as repair and check operations on the table resulted in table corruption. (Bug #37280, Bug #11748748)

### Changes in MySQL 5.5.21 (2012-02-17, General Availability)
• Functionality Added or Changed

Functionality Added or Changed

• OS X; Microsoft Windows: A new CMake option, MYSQL_PROJECT_NAME, can be set on Windows or OS X to be used in the project name. (Bug #13551687)

• New utf8_general_mysql500_ci and ucs2_general_mysql500_ci collations have been added that preserve the behavior of utf8_general_ci and ucs2_general_ci from versions of MySQL previous to 5.1.24. Bug #27877 corrected an error in the original collations but introduced an incompatibility for columns that contain German ‘ß’ LATIN SMALL LETTER SHARP S. (As a result of the fix, that character compares equal to characters with which it previously compared different.) A symptom of the problem after upgrading to MySQL 5.1.24 or newer from a version older than 5.1.24 is that CHECK TABLE produces this error:

Table upgrade required.
Please do REPAIR TABLE `t` or dump/reload to fix it!

Unfortunately, REPAIR TABLE could not fix the problem. The new collations permit older tables created before MySQL 5.1.24 to be upgraded to current versions of MySQL.

To convert an affected table after a binary upgrade that leaves the table files in place, alter the table to use the new collation. Suppose that the table t1 contains one or more problematic utf8 columns. To convert the table at the table level, use a statement like this:

```
ALTER TABLE t1
CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;
```

To apply the change on a column-specific basis, use a statement like this (be sure to repeat the column definition as originally specified except for the COLLATE clause):

```
ALTER TABLE t1
MODIFY c1 CHAR(N) CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;
```

To upgrade the table using a dump and reload procedure, dump the table using mysqldump, modify the CREATE TABLE statement in the dump file to use the new collation, and reload the table.

After making the appropriate changes, CHECK TABLE should report no error. (Bug #43593, Bug #11752408)

References: See also: Bug #27877.

Bugs Fixed

• Incompatible Change: An earlier change (in MySQL 5.1.59 and 5.5.16) was found to modify date-handling behavior in General Availability-status series (MySQL 5.1 and 5.5). This change has been reverted.

The change was that several functions became more strict when passed a DATE() function value as their argument, thus they rejected incomplete dates with a day part of zero. These functions were affected: CONVERT_TZ(), DATE_ADD(), DATE_SUB(), DAYOFYEAR(), LAST_DAY(), TIMESTAMPDIFF(), TO_DAYS(), TO_SECONDS(), WEEK(), WEEKDAY(), WEEKOFYEAR(), YEARWEEK(). The previous behavior has been restored. (Bug #13458237)

• Performance; InnoDB: Memory allocation for InnoDB tables was reorganized to reduce the memory overhead for large numbers of tables or partitions, avoiding situations where the “resident set size” could
MySQL 5.5 Release Notes

grow regardless of `FLUSH TABLES` statements. The problem was most evident for tables with large row size. Some of the memory that was formerly allocated for every open table is now allocated only when the table is modified for the first time. (Bug #11764622, Bug #57480)

- **InnoDB**: A Valgrind error was fixed in the function `os_aio_init()`. (Bug #13612811)

- **InnoDB**: The server could crash when creating an InnoDB temporary table under Linux, if the `$TMPDIR` setting points to a tmpfs filesystem and `innodb_use_native_aio` is enabled, as it is by default in MySQL 5.5.4 and higher. The entry in the error log looked like:

  101123  2:10:59  InnoDB: Operating system error number 22 in a file operation.
  InnoDB: Error number 22 means 'Invalid argument'.

  The crash occurred because asynchronous I/O is not supported on tmpfs in some Linux kernel versions. The workaround was to turn off the `innodb_use_native_aio` setting or use a different temporary directory. The fix causes InnoDB to turn off the `innodb_use_native_aio` setting automatically if it detects that the temporary file directory does not support asynchronous I/O. (Bug #13593888, Bug #11765450, Bug #58421)

- **InnoDB**: References to C preprocessor symbols and macros `HAVE_purify`, `UNIV_INIT_MEM_TO_ZERO`, and `UNIV_SET_MEM_TO_ZERO` were removed from the InnoDB source code. They were only used in debug builds instrumented for Valgrind. They are replaced by calls to the `UNIV_MEM_INVALID()` macro. (Bug #13418934)

- **InnoDB**: The MySQL server could halt with an assertion error:

  InnoDB: Failing assertion: page_get_n_recs(page) > 1

  Subsequent restarts could fail with the same error. The error occurred during a `purge` operation involving the InnoDB change buffer. The workaround was to set the configuration option `innodb_change_buffering=inserts`. (Bug #13413535, Bug #61104)

- **InnoDB**: With 1024 concurrent InnoDB transactions running concurrently and the `innodb_file_per_table` setting enabled, a CREATE TABLE operation for an InnoDB table could fail. The `.ibd` file from the failed CREATE TABLE was left behind, preventing the table from being created later, after the load had dropped.

  The fix adds error handling to delete the erroneous `.ibd` file. This error was less likely to occur in MySQL 5.5 and 5.6, because raising the number of InnoDB undo slots increased the number of simultaneous transactions needed to trigger the bug, from 1K to 128K. (Bug #12400341)

- **InnoDB**: When copying a partitioned InnoDB table from a Linux system to a Windows system, you could encounter this error:

  101115 14:19:53 [ERROR] Table .\test\d has no primary key in InnoDB data dictionary, but has one in MySQL!

  Normally, the solution to copy InnoDB tables from Linux to Windows is to create the tables on Linux with the `lower_case_table_names` option enabled. Partitioned tables, with #P# appended to the filename, were not covered by that solution. (Bug #11765438, Bug #58406)

- **Replication**: Executing `mysqlbinlog` with the `--start-position=N` option, where N was equal either to 0 or to a value greater than the length of the dump file, caused it to crash.

  This issue was introduced in MySQL 5.5.18 by the fix for Bug #32228 and Bug #11747416. (Bug #13593869, Bug #64035)

  References: This issue is a regression of: Bug #32228, Bug #11747416.
• **Replication:** It was possible on replication slaves where **FEDERATED** tables were in use to get timeouts on long-running operations, such as Error 1160 Got an error writing communication packets. The **FEDERATED** tables did not need to be replicated for the issue to occur. (Bug #11758931, Bug #51196)

  References: See also: Bug #12896628, Bug #61790.

• **Replication:** On Windows replication slave hosts, **STOP SLAVE** took an excessive length of time to complete when the master was down. (Bug #11752315, Bug #43460)

• **Microsoft Windows:** On Windows, the server incorrectly constructed the full path name of the plugin binary for **INSTALL PLUGIN** and **CREATE FUNCTION ... SONAME**. (Bug #45549, Bug #11754014)

  The shared version of **libmysqlclient** did not export these functions for linking by client programs: `get_tty_password()`, `handle_options()`, `my_print_help()`.(Bug #13604121)

  A query that used an index on a **CHAR** column referenced in a **BETWEEN** clause could return invalid results. (Bug #13463488, Bug #63437)

  Expressions that compared a **BIGINT** column with any non-integer constant were performed using integers rather than decimal or float values, with the result that the constant could be truncated. This could lead to any such comparison that used `<`, `>`, `<=`, `=`, `!=`/`<>`, **IN**, or **BETWEEN** yielding false positive or negative results. (Bug #13463415, Bug #11758543, Bug #63502, Bug #50756)

  When the optimizer performed conversion of **DECIMAL** values while evaluating range conditions, it could produce incorrect results. (Bug #13453382)

  When running **mysqldump** with both the **--single-transaction** and **--flush-logs** options, the flushing of the log performed an implicit **COMMIT** (see **Statements That Cause an Implicit Commit**), causing more than one transaction to be used and thus breaking consistency. (Bug #12809202, Bug #61854)

  It was possible in the event of successive failures for **mysqld_safe** to restart quickly enough to consume excessive amounts of CPU. Now, on systems that support the **sleep** and **date** system utilities, **mysqld_safe** checks to see whether it has restarted more than 5 times in the current second, and if so, waits 1 second before attempting another restart. (Bug #11761530, Bug #54035)

  When used with the **--xml** option, **mysqldump --routines** failed to dump any stored routines, triggers, or events. (Bug #11760384, Bug #52792)

  If an attempt to initiate a statement failed, the issue could not be reported to the client because it was not prepared to receive any error messages prior to the execution of any statement. Since the user could not execute any queries, they were simply disconnected without providing a clear error.

  After the fix for this issue, the client is prepared for an error as soon as it attempts to initiate a statement, so that the error can be reported prior to disconnecting the user. (Bug #11755281, Bug #47032)

  The **libmysql.dll** library was missing several symbols: `my_init`, `mysql_client_find_plugin`, `mysql_client_register_plugin`, `mysql_load_plugin`, `mysql_load_plugin_v`, `mysql_options4`, and `mysql_plugin_options`. (Bug #69204, Bug #16797982, Bug #62394)

  Using **myisamchk** with the sort recover method to repair a table having fixed-width row format could cause the row pointer size to be reduced, effectively resulting in a smaller maximum data file size. (Bug #48848, Bug #11756869)

  The stored routine cache was subject to a small memory leak that over time or with many routines being used could result in out-of-memory errors.
The fix for this issue also introduces a new global server system variable `stored_program_cache` which can be used for controlling the size of the stored routine cache. (Bug #44585, Bug #11753187)

- Under some circumstances, the result of `SUBSTRING_INDEX()` incorrectly depended on the contents of the previous row. (Bug #42404, Bug #11751514)

### Changes in MySQL 5.5.20 (2012-01-10, General Availability)

- **Functionality Added or Changed**
- **Bugs Fixed**

#### Functionality Added or Changed

- **Microsoft Windows:** A new server option, `--slow-start-timeout`, controls the Windows service control manager’s service start timeout. The value is the maximum number of milliseconds that the service control manager waits before trying to kill the MySQL service during startup. The default value is 15000 (15 seconds). If the MySQL service takes too long to start, you may need to increase this value. A value of 0 means there is no timeout. (Bug #45546, Bug #11754011)

#### Bugs Fixed

- **Important Change; Replication:** Setting an empty user in a `CHANGE MASTER TO` statement caused an invalid internal result and is no longer permitted. Trying to use `MASTER_USER=''` or setting `MASTER_PASSWORD` while leaving `MASTER_USER` unset causes the statement to fail with an error. (Bug #13427949)

- **Important Change; Replication:** Moving the binary log file, relay log file, or both files to a new location, then restarting the server with a new value for `--log-bin`, `--relay-log`, or both, caused the server to abort on start. This was because the entries in the index file overrode the new location. In addition, paths were calculated relative to datadir (rather than to the `--log-bin` or `--relay-log` values). The fix for this problem means that, when the server reads an entry from the index file, it now checks whether the entry contains a relative path. If it does, the relative part of the path is replaced with the absolute path set using the `--log-bin` or `--relay-log` option. An absolute path remains unchanged; in such a case, the index must be edited manually to enable the new path or paths to be used. (Bug #11745230, Bug #12133)

- **Performance; InnoDB:** This fix improved the efficiency and concurrency of freeing pages in the InnoDB buffer pool when performing a `DROP TABLE` for an InnoDB table when the `innodb_file_per_table` option is enabled.

  This change is most noticeable for systems with large buffer pools. During the drop operation, one traversal of the buffer pool memory structure is changed from the LRU list (the entire buffer pool) to the flush list (a much smaller structure). The LRU scanning is reduced, but not entirely eliminated. The buffer pool mutex is also released periodically, so that if the drop operation takes significant time, other threads can proceed concurrently. (Bug #11759044, Bug #51325)

- **InnoDB:** When doing a live downgrade from MySQL 5.6.4 or later, with `innodb_page_size` set to a value other than 16384, now the earlier MySQL version reports that the page size is incompatible with the older version, rather than crashing or displaying a “corruption” error. (Bug #13116225)

- **InnoDB:** Certain `CREATE TABLE` statements could fail for InnoDB child tables containing foreign key definitions. This problem affected Windows systems only, with the setting...
lower_case_table_names=0. It was a regression from MySQL bug #55222. (Bug #13083023, Bug #60229)

- **InnoDB:** Issuing **INSERT...ON DUPLICATE KEY** statements for InnoDB tables from concurrent threads could cause a **deadlock**, particularly with the **INSERT...ON DUPLICATE KEY UPDATE** form. The problem could also be triggered by issuing multiple **INSERT IGNORE** statements. The fix avoids deadlocks caused by the same row being accessed by more than one transaction. Deadlocks could still occur when multiple rows are inserted and updated simultaneously by different transactions in inconsistent order; those types of deadlocks require the standard error handling on the application side, of re-trying the transaction. (Bug #11759688, Bug #52020, Bug #12842206)

- An incorrect InnoDB assertion could cause the server to halt. This issue only affected debug builds. The assertion referenced the source file `btr0pcur.ic` and the variable `cursor->pos_state`. (Bug #13358468)

- **LOAD INDEX INTO CACHE** could cause a server exit if the index cache was too small. (Bug #12361113)

- Locale information for **FORMAT()** function instances was lost in view definitions. (Bug #63020, Bug #13344643)

- The **handle_segfault()** signal-handler code in `mysqld` could itself crash due to calling unsafe functions. (Bug #54082, Bug #11761576)

- Enabling `myisam_use_mmap` could cause the server to crash. (Bug #48726, Bug #11756764)

- Concurrent access to **ARCHIVE** tables could cause corruption. (Bug #42784, Bug #11751793)

### Changes in MySQL 5.5.19 (2011-12-08, General Availability)

- **Functionality Added or Changed**
- **Bugs Fixed**

**Functionality Added or Changed**

- **Replication:** Previously, replication slaves could connect to the master server through master accounts that use nonnative authentication, except Windows native authentication. This is now also true for Windows native authentication.

- Performance of metadata locking operations on Windows XP systems was improved by instituting a cache for metadata lock objects. This permits the server to avoid expensive operations for creation and destruction of synchronization objects on XP. A new system variable, `metadata_locks_cache_size`, permits control over the size of the cache. The default size is 1024. (Bug #12695572)

**Bugs Fixed**

- **Important Change; InnoDB:** If an **ALTER TABLE** statement failed for an InnoDB table due to an error code from an underlying file-renaming system call, InnoDB could lose track of the `.ibd` file for the table. This issue only occurred when the `innodb_file_per_table` configuration option was enabled, and when the low-level error persisted through thousands of retry attempts. In MySQL 5.1, this issue applied to the InnoDB Plugin but not the built-in InnoDB storage engine.

For example, if you encounter an error like the following:

```sql
mysql> ALTER TABLE sb2 ADD COLUMN d2 INT;
ERROR 1025 (HY000): Error on rename of './sbtest/#sql-1eb9_1' to './sbtest/sb2' (errno: -1)
```
you might be able to access the `sql*` table by copying an `.frm` file from a table with an identical schema. The table name to use for the `.frm` file would be `sbtest.mysql50##sql-1eb9_1` in the preceding example. (Bug #12884631, Bug #62146)

- **InnoDB**: An internal deadlock could occur within InnoDB, on a server doing a substantial amount of change buffering for DML operations, particularly `DELETE` statements. (Bug #13340047)

- **Replication**: When a statement containing a large number of rows to be applied on a slave table that does not contain a primary key, a considerable amount of time can be needed to find and change all the rows that are to be changed. The current fix helps diagnose this issue by printing a message to the error log if the execution time for a given statement replicated using row-based replication takes more than 60 seconds. `log_warnings` must be greater than 1 for this message to be printed to the error log. (Bug #11760927, Bug #53375)

- **Rounding**: `DBL_MAX` returned `DBL_MAX`, not `inf`. (Bug #13261955)

- **Writes to MyISAM temporary tables could include uninitialized data, which could contain sensitive information. Now only bytes containing initialized data are copied, which also improves performance.** (Bug #12997905)

- **mysql_upgrade** did not upgrade the system tables or create the `mysql_upgrade_info` file when run with the `--write-binlog` or `--skip-write-binlog` option. (Bug #60223, Bug #11827359)

- **If a plugin was uninstalled, thread local variables for plugin variables of string type with with `PLUGIN_VAR_MEMALLOC` flag were not freed.** (Bug #56652, Bug #11763882)

- **Deadlock could occur when these four things happened at the same time:** 1) An old dump thread was waiting for the binary log to grow. 2) The slave server that replicates from the old dump thread tried to reconnect. During reconnection, the new dump thread tried to kill the old dump thread. 3) A `KILL` statement tried to kill the old dump thread. 4) An `INSERT` statement caused a binary log rotation. (Bug #56299, Bug #11763573)

**Changes in MySQL 5.5.18 (2011-11-16, General Availability)**

Beginning with MySQL 5.5.18, Debian packages for MySQL are available.

- **Functionality Added or Changed**
- **Bugs Fixed**

**Functionality Added or Changed**

- Upgrading from an Advanced GPL RPM package to an Advanced RPM package did not work. Now on Linux it is possible to use `rpm -U` to replace any installed MySQL product by any other of the same release family. It is not necessary to remove the old produce with `rpm -e` first. (Bug #11886309)

**Bugs Fixed**

- **Incompatible Change; Replication**: The statements in the following list are now marked as unsafe for statement-based replication. This is due to the fact that each of these statements depends on the results of a `SELECT` statement whose order cannot always be determined. When using `STATEMENT` logging mode, a warning is issued in the binary log for any of these statements; when using `MIXED` logging mode, the statement is logged using the row-based format.

  - `INSERT ... SELECT ... ON DUPLICATE KEY UPDATE`
  - `REPLACE ... SELECT`
• CREATE TABLE ... IGNORE SELECT
• CREATE TABLE ... REPLACE SELECT
• INSERT IGNORE ... SELECT
• UPDATE IGNORE

When upgrading, you should note the use of these statements in your applications, keeping in mind that a statement that inserts or replaces rows obtained from a SELECT can take up many times as much space in the binary log when logged using row-based format than when only the statement itself is logged. Depending on the number and size of the rows selected and inserted (or replaced) by any such statements, the difference in size of the binary log after the logging of these statements is switched from statement-based to row-based can potentially be several orders of magnitude. See Advantages and Disadvantages of Statement-Based and Row-Based Replication. (Bug #11758262, Bug #50439)

• Performance; InnoDB: The process of deallocating the InnoDB Adaptive Hash Index was made faster, during shutdown or when turning off the AHI with the statement:

  SET GLOBAL innodb_adaptive_hash_index=OFF;

  (Bug #13006367, Bug #62487)

• InnoDB: Fixed a compilation problem that affected the InnoDB source code with gcc 4.6.1. The affected InnoDB source file was btr/btr0cur.c. (Bug #13116045)

• InnoDB: An UPDATE statement for an InnoDB table could hang. The issue affects tables using the Barracuda file format and having multiple indexes on column prefixes. The size of an undo log record could exceed the page size, even though the total size of the column prefixes was less than the page size (usually 16KB). In MySQL 5.5 and higher, this error is now reported using the new code ER_UNDO_RECORD_TOO_BIG. In MySQL 5.1 with the InnoDB Plugin, this error is reported using the existing code ER_TOO_BIG_ROWSIZE. (Bug #12547647)

• Replication: A replication master could send damaged events to slaves after the binary log disk on the master became full. To correct this issue, only complete events are now pushed by the master dump thread to the slave I/O thread. In addition, the error text that the master sends to the slave when an incomplete event is found now states that the incomplete event may have been caused by running out of disk space on the master, and provides coordinates of the first and the last event bytes read. (Bug #11747416, Bug #32228)

References: See also: Bug #64035, Bug #13593869.

• During the table-opening process, memory was allocated and later freed that was needed view loading, even for statements that did not use views. These unnecessary allocation and free operations are no longer done. (Bug #13116518)

• mysql_plugin mishandled the --plugin-ini, --mysqld, and --my-print-defaults options under some circumstances. (Bug #12968815)

• mysql_plugin returned the wrong error code from failed server bootstrap execution. (Bug #12968567)

• Several improvements were made to the libedit library bundled with MySQL distributions, and that is available for all platforms that MySQL supports except Windows.

• Navigation keys did not work for UTF-8 input.

• Word navigation and delete operations did not work for UTF-8 input with Cyrillic characters.
• Nonlatin characters were corrupted in overwrite mode for UTF-8 input.
• Long queries caused the statement history file to become corrupted.
• The Alt key caused history operations to fail.

(Bug #12605400, Bug #12613725, Bug #12618092, Bug #12624155, Bug #12617651, Bug #12605388)

• `decimal_round()` could cause a server exit when processing long numeric strings. (Bug #12563865)

• `ARCHIVE` tables with `NULL` columns could cause server crashes or become corrupt under concurrent load. (Bug #51252, Bug #11758979)

• `OPTIMIZE TABLE` could corrupt `MyISAM` tables if `myisam_use_mmap` was enabled. (Bug #49030, Bug #1175032)

• A query that selected a `GROUP_CONCAT()` function result could return different values depending on whether an `ORDER BY` of the function result was present. (Bug #41090, Bug #11750518)

• For `FEDERATED` tables, loss of connection to the remote table during some insert operations could cause a server crash. (Bug #34660, Bug #11747970)

Changes in MySQL 5.5.17 (2011-10-19, General Availability)

• Functionality Added or Changed
• Bugs Fixed

Functionality Added or Changed

• **Replication:** Previously, replication slaves could connect to the master server only through master accounts that use native authentication. Now replication slaves can also connect through master accounts that use nonnative authentication (except Windows native authentication) if the required client-side plugin is installed on the slave side in the directory named by the slave `plugin_dir` system variable. The exception for Windows is lifted in MySQL 5.5.19. (Bug #12897501)

• The `make_win_bin_dist` script is no longer used and has been removed from MySQL distributions and the manual. (Bug #58241)

• `MEMORY` table creation time is now available in the `CREATE_TIME` column of the `INFORMATION_SCHEMA.TABLES` table and the `Create_time` column of `SHOW TABLE STATUS` output. (Bug #51655, Bug #11759349)

Bugs Fixed

• **Performance; InnoDB:** This fix improves the performance of instrumentation code for InnoDB buffer pool operations. (Bug #12950803, Bug #62294)

• InnoDB: Lookups using secondary indexes could give incorrect matches under a specific set of conditions. The conditions involve an index defined on a column prefix, for a BLOB or other long column stored outside the index page, with a table using the Barracuda file format. (Bug #12601439, Bug #12543666)

• InnoDB: This fix corrects cases where the MySQL server could hang or abort with a long semaphore wait message. (This is a different issue than when these symptoms occurred during a `CHECK TABLE` statement.) (Bug #11766591, Bug #59733)
• Internal conversion of zero to binary and back could yield a result with incorrect precision. (Bug #12911710)

• Valgrind warnings generated by `filesort` operations were fixed. (Bug #12856915)

• `mysqld_safe` did not properly check for an already running instance of `mysql`. (Bug #11878394)

• With Valgrind enabled, `InnoDB` semaphore wait timeouts were too low and could expire. (Bug #11765460)

• The help message for `mysql_install_db` did not indicate that it supports the `--defaults-file`, `--defaults-extra-file` and `--no-defaults` options. (Bug #58898, Bug #11765888)

• An assertion designed to detect zero-length sort keys also was raised when the entire key set fit in memory. (Bug #58200, Bug #11765254)

• `myisampack` could create corrupt `FULLTEXT` indexes when compressing tables. (Bug #53646, Bug #11761180)

• A linking problem prevented the `FEDERATED` storage engine plugin from loading. (Bug #40942, Bug #11750417)

Changes in MySQL 5.5.16 (2011-09-15, General Availability)

• Pluggable Authentication

• Thread Pool Notes

• Functionality Added or Changed

• Bugs Fixed

Pluggable Authentication

• MySQL Enterprise Edition now includes two plugins that enable MySQL Server to use external authentication methods to authenticate MySQL users:

  • PAM (Pluggable Authentication Modules) enables a system to access various kinds of authentication methods through a standard interface. A PAM authentication plugin enables MySQL Server to use PAM to authenticate MySQL users.

  The PAM plugin uses the information passed to it by the MySQL server (such as user name, host name, password, and authentication string), plus whatever is available for PAM lookup (such as Unix passwords or an LDAP directory). The plugin checks the user credentials against PAM and returns success or failure.

  The PAM authentication plugin has been tested on Linux and OS X.

  Note

  The PAM plugin works with a client-side plugin that simply sends the password to the server in clear text so it can be passed to PAM. This may be a security problem in some configurations, but is necessary to use the server-side PAM library. To avoid problems if there is any possibility that the password would be intercepted, clients should connect to MySQL Server using SSL. See Client-Side Cleartext Pluggable Authentication.
• MySQL Enterprise Edition distributions for Windows include an authentication plugin that enables MySQL Server to use native Windows services to authenticate client connections. Users who have logged in to Windows can connect from MySQL client programs to the server based on the information in their environment without specifying an additional password.

The client and server exchange data packets in the authentication handshake. As a result of this exchange, the server creates a security context object that represents the identity of the client in the Windows OS. This identity includes the name of the client account. The Windows authentication plugin uses the identity of the client to check whether it is a given account or a member of a group. By default, negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

The Windows authentication plugin is supported on any version of Windows supported by MySQL 5.5.

These authentication plugins enable MySQL Server to accept connections from users defined outside the MySQL grant tables. They also support the MySQL proxy-user capability. Each plugin can return to MySQL a username different from the login user, which means that the plugin can return the MySQL user that defines the privileges the externally authenticated user should have. For example, an external user named joe can connect and have the privileges of the MySQL user named developer.

The server-side PAM and Windows authentication plugins are included only in commercial distributions. The client-side plugins with which they communicate are included in all distributions, including community distributions. This permits clients from any release to connect to a server that has the server-side plugin loaded.

For more information about these plugins, see PAM Pluggable Authentication, and Windows Pluggable Authentication. For general information about pluggable authentication in MySQL, see Pluggable Authentication. For proxy user information, see Proxy Users.

Thread Pool Notes

• The default thread-handling model in MySQL Server executes statements using one thread per client connection. As more clients connect to the server and execute statements, overall performance degrades. Commercial distributions of MySQL now include a thread pool plugin that provides an alternative thread-handling model designed to reduce overhead and improve performance. The plugin implements a thread pool that increases server performance by efficiently managing statement execution threads for large numbers of client connections.

The thread pool addresses several problems of the one thread per connection model:

• Too many thread stacks make CPU caches almost useless in highly parallel execution workloads. The thread pool promotes thread stack reuse to minimize the CPU cache footprint.

• With too many threads executing in parallel, context switching overhead is high. This also presents a challenging task to the operating system scheduler. The thread pool controls the number of active threads to keep the parallelism within the MySQL server at a level that it can handle and that is appropriate for the server host on which MySQL is executing.

• Too many transactions executing in parallel increases resource contention. In InnoDB, this increases the time spent holding central mutexes. The thread pool controls when transactions start to ensure that not too many execute in parallel.

On Windows, the thread pool plugin requires Windows Vista or newer. On Linux, the plugin requires kernel 2.6.9 or newer.

For more information, see MySQL Enterprise Thread Pool.
Functionality Added or Changed

- **Important Change; Replication:** The `RESET SLAVE` statement has been extended with an `ALL` keyword. In addition to deleting the `master.info`, `relay-log.info`, and all relay log files, `RESET SLAVE ALL` also clears all connection information otherwise held in memory following execution of `RESET SLAVE`. (Bug #11809016, Bug #11763210)

- The thread pool plugin should be loaded at server startup, and not loaded or unloaded at runtime. An error now occurs for attempts to load or unload it with the `INSTALL PLUGIN` or `UNINSTALL PLUGIN` statement.

- Some plugins operate in such a matter that they should be loaded at server startup, and not loaded or unloaded at runtime. The plugin API now supports marking plugins this way. The `st_mysql_plugin` structure now has a `flags` member, which can be set to the OR of the applicable flags. The `PLUGIN_OPT_NO_INSTALL` flag indicates that the plugin cannot be loaded at runtime with the `INSTALL PLUGIN` statement. This is appropriate for plugins that must be loaded at server startup with the `--plugin-load` option. The `PLUGIN_OPT_NO_UNINSTALL` flag indicates that the plugin cannot be unloaded at runtime with the `UNINSTALL PLUGIN` statement.

The new member changes the interface, so the plugin interface version, `MYSQL_PLUGIN_INTERFACE_VERSION`, has been incremented from `0x0102` to `0x0103`. Plugins that require access to the new member must be recompiled to use version `0x0103` or higher.

- A new utility, `mysql_plugin`, enables MySQL administrators to manage which plugins a MySQL server loads. It provides an alternative to manually specifying the `--plugin-load` option at server startup or using the `INSTALL PLUGIN` and `UNINSTALL PLUGIN` statements at runtime. See `mysql_plugin — Configure MySQL Server Plugins`.

Bugs Fixed

- **Incompatible Change:** The `mysql_affected_rows()` C API function returned 3 (instead of 2) for `INSERT ... ON DUPLICATE KEY UPDATE` statements where there was a duplicated key value.

Now the affected-rows value per row is 1 if the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current values. If you specify the `CLIENT_FOUND_ROWS` flag to `mysql_real_connect()` when connecting to `mysqld`, the affected-rows value is 1 (not 0) if an existing row is set to its current values. (Bug #46675, Bug #11754979)

- **Incompatible Change:** Handling of a date-related assertion was modified.

However, a consequence of this change is that several functions become more strict when passed a `DATE()` function value as their argument and reject incomplete dates with a day part of zero. These functions are affected: `CONVERT_TZ()`, `DATE_ADD()`, `DATE_SUB()`, `DAYOFYEAR()`, `LAST_DAY()`, `TIMESTAMPDIFF()`, `TO_DAYS()`, `TO_SECONDS()`, `WEEK()`, `WEEKDAY()`, `WEEKOFYEAR()`, `YEARWEEK()`. Because this changes date-handling behavior in General Availability-status series (MySQL 5.1 and 5.5), it was reverted in 5.1.62 and 5.5.21. The change is retained in MySQL 5.6.

References: See also: Bug #13458237.

- **Performance; InnoDB:** This fix improves the performance of operations on `VARCHAR(N)` columns in InnoDB tables, where `N` is declared as a large value but the actual string values in the table are short. (Bug #12835650)

- **Performance; InnoDB:** The “random read-ahead” feature that was removed from the InnoDB Plugin is now available again. Because it is only helpful for certain workloads, it is turned off by default. To turn it on, enable the `innodb_random_read_ahead` configuration option. Because this feature can improve...
performance in some cases and reduce performance in others, before relying on this setting, benchmark both with and without the setting enabled. (Bug #12356373)

- **InnoDB**: The `DATA_LENGTH` column in the `INFORMATION_SCHEMA.TABLES` table now correctly reports the on-disk sizes of tablespaces for InnoDB compressed tables. (Bug #12770537)

- **InnoDB**: With the configuration settings `innodb_file_per_table=1` and `innodb_file_format=Barracuda`, inserting a column value greater than half the page size, and including that column in a secondary index, could cause a crash when that column value was updated. (Bug #12637786)

- **InnoDB**: Unused functions were removed from the internal InnoDB code related to mini-transactions, to clarify the logic. (Bug #12626794, Bug #61240)

- **Replication**: Processing of corrupted table map events could cause the server to crash. This was especially likely if the events mapped different tables to the same identifier, such as could happen due to Bug #56226.

  Now, before applying a table map event, the server checks whether the table has already been mapped with different settings, and if so, an error is raised and the slave SQL thread stops. If it has been mapped with the same settings, or if the table is set to be ignored by filtering rules, there is no change in behavior: the event is skipped and IDs are not checked. (Bug #44360, Bug #11753004)

  References: See also: Bug #56226, Bug #11763509.

- **OS X**: Compilation failed on OS X 10.7 (Lion) with a warning: Implicit declaration of function 'pthread_init' (Bug #12779790)

  The metadata locking subsystem added too much overhead for `INFORMATION_SCHEMA` queries that were processed by opening only `.frm` or `.TRG` files and had to scan many tables. For example, `SELECT COUNT(*) FROM INFORMATION_SCHEMA.TRIGGERS` was affected. (Bug #12828477)

  With profiling disabled or not compiled in, `set_thd_proc_info()` unnecessarily checked file name lengths. (Bug #12756017)

  References: This issue is a regression of: Bug #59273.

- A `DBUG_ASSERT` added by Bug #11792200 was overly aggressive in raising assertions. (Bug #12537160)

  References: See also: Bug #11792200.

- **CHECK TABLE** and **REPAIR TABLE** failed to find problems with `MERGE` tables that had underlying tables missing or with the wrong storage engine. Issues were reported only for the first underlying table. (Bug #11754210)

- **(5 DIV 2)** and **(5.0 DIV 2)** produced different results (2 versus 3) because the result of the latter expression was not truncated before conversion to integer. This differed from the behavior in MySQL 5.0 and 5.1. Now both expressions produce 2. (Bug #61676, Bug #12711164)

- For a `lower_case_table_names` value of 1 or 2 and a database having a mixed-case name, calling a stored function using a fully qualified name including the database name failed. (Bug #60347, Bug #11840395)

- **SELECT DISTINCT** with a deterministic stored function in the **WHERE** clause could produce incorrect results. (Bug #59736, Bug #11766594)

- The embedded server crashed when `argc = 0`. (Bug #57931, Bug #12561297)
MySQL 5.5 Release Notes

- **CREATE TABLE** without an **ENGINE** option determined the default engine at parse rather than execution time. This led to incorrect results if the statement was executed within a stored program and the default engine had been changed in the meantime. (Bug #50614, Bug #11758414)

- Upgrades using an RPM package recreated the **test** database, which is undesirable when the DBA had removed it. (Bug #45415, Bug #11753896)

### Changes in MySQL 5.5.15 (2011-07-28, General Availability)

**Functionality Added or Changed**

**Bugs Fixed**

**Functionality Added or Changed**

- The undocumented **--all** option for **perror** is deprecated and will be removed in MySQL 5.6.

**Bugs Fixed**

- **Performance:** **InnoDB:** The **DROP TABLE** command for an **InnoDB** table could be very slow, in a configuration with a combination of table compression, partitioning, and a large buffer pool. (Bug #12635227, Bug #61188)

- **InnoDB:** A failed **CREATE INDEX** operation for an **InnoDB** table could result in some memory being allocated but not freed. This memory leak could affect tables created with the **ROW_FORMAT=DYNAMIC** or **ROW_FORMAT=COMPRESSED** setting. (Bug #12699505)

- **Partitioning:** Auto-increment columns of partitioned tables were checked even when they were not being written to. In debug builds, this could lead to a server crash. (Bug #11765667, Bug #58655)

- **Partitioning:** The **UNIX_TIMESTAMP()** function was not treated as a monotonic function for purposes of partition pruning. (Bug #11746819, Bug #28928)

- **Replication:** If a **LOAD DATA** statement—replicated using statement-based replication—featured a **SET** clause, the name-value pairs were regenerated using a method (**Item::print()**) intended primarily for generating output for statements such as **EXPLAIN EXTENDED**, and which cannot be relied on to return valid SQL. This could in certain cases lead to a crash on the slave.

  To fix this problem, the server now names each value in its original, user-supplied form, and uses that to create **LOAD DATA** statements for statement-based replication. (Bug #60580, Bug #11902767)

  References: See also: Bug #34283, Bug #11752526, Bug #43746.

- Compiling the server with maintainer mode enabled failed for **gcc** 4.6 or higher. (Bug #12727287)

- The option-parsing code for empty strings leaked memory. (Bug #12589928)

- **mysql_list_fields()** returned incorrect character set information for character columns of views. (Bug #12337762)

- Previously, an inappropriate error message was produced if a multiple-table update for an **InnoDB** table with a clustered primary key would update a table through multiple aliases, and perform an update that may physically move the row in at least one of these aliases. Now the error message is: **Primary key/partition key update is not permitted since the table is updated both as 'tbl_name1' and 'tbl_name2'** (Bug #11882110)

  References: See also: Bug #11764529.
MySQL 5.5 Release Notes

• **ALTER TABLE (MODIFY|CHANGE) ... FIRST** did nothing except rename columns if the old and new versions of the table had exactly the same structure with respect to column data types. As a result, the mapping of column name to column data was incorrect. The same thing happened for **ALTER TABLE DROP COLUMN ... ADD COLUMN** statements intended to produce a new version of the table with exactly the same structure as the old version. (Bug #61493, Bug #12652385)

• Incorrect handling of metadata locking for **FLUSH TABLES WITH READ LOCK** for statements requiring prelocking caused two problems:
  
  • Execution of any data-changing statement that required prelocking (that is, involved a stored function or trigger) as part of a transaction slowed down somewhat all subsequent statements in the transaction. Performance in a transaction that periodically involved such statements gradually degraded over time.
  
  • Execution of any data-changing statement that required prelocking as part of a transaction prevented a concurrent **FLUSH TABLES WITH READ LOCK** from proceeding until the end of the transaction rather than at the end of the particular statement.
  
  (Bug #61401, Bug #12641342)

• The fractional part of the “Queries per second” value could be displayed incorrectly in MySQL status output (for example, in the output from `mysqladmin status` or the `mysql STATUS` command). (Bug #61205, Bug #12565712)

• **LOAD DATA** incorrectly parsed relative data file path names that ascended more than three levels in the file system and as a consequence was unable to find the file. (Bug #60987, Bug #12403662)

• For unknown users, the native password plugin reported incorrectly that no password had been specified even when it had. (Bug #59792, Bug #11766641)

• For **MyISAM** tables, attempts to insert incorrect data into an indexed **GEOMETRY** column could result in table corruption. (Bug #57323, Bug #11764487)

• In debug builds, `Field_new_decimal::store_value()` was subject to buffer overflows. (Bug #55436, Bug #11762799)

• A race condition between loading a stored routine using the name qualified by the database name and dropping that database resulted in a spurious error message: **The table mysql.proc is missing, corrupt, or contains bad data**. (Bug #47870, Bug #11756013)

### Changes in MySQL 5.5.14 (2011-07-05, General Availability)

**Functionality Added or Changed**

• Bugs Fixed

**Functionality Added or Changed**

• **Incompatible Change:** In the audit plugin interface, the `event_class` member was removed from the `mysql_event_general` structure and the calling sequence for the notification function was changed. Originally, the second argument was a pointer to the event structure. The function now receives this information as two arguments: an event class number and a pointer to the event. Corresponding to these changes, `MYSQL_AUDIT_INTERFACE_VERSION` was increased to **0x0300**.

  The `plugin_audit.h` header file, and the NULL_AUDIT example plugin in the `plugin/audit_null` directory were modified per these changes. See [Writing Audit Plugins](https://dev.mysql.com/doc/refman/5.5/en/audit.html).
• **InnoDB:** InnoDB now permits concurrent reads while creating a secondary index. (Bug #11853126)

  References: See also: Bug #11751388, Bug #11784056, Bug #11815600.

• **CMake** configuration support on Linux now provides a boolean `ENABLE_GCOV` option to control whether to include support for `gcov`. (Bug #12549572)

• Client programs now display more information for SSL errors to aid in diagnosis and debugging of connection problems. (Bug #21287, Bug #11745920)

### Bugs Fixed

**Replication:** A mistake in thread cleanup could cause a replication master to crash. (Bug #12578441)

**Replication:** When using row-based replication and attribute promotion or demotion (see Replication of Columns Having Different Data Types), memory allocated internally for conversion of BLOB columns was not freed afterwards. (Bug #12558519)

**Microsoft Windows:** Adding support for Windows authentication to `libmysqlclient` introduced a link dependency on the system Secur32 library. The Microsoft Visual C++ link information now pulls in this library automatically. (Bug #12612143)

• Subsequent to Prepared statement needs to be re-prepared errors, inserts into DECIMAL columns caused a server exit. (Bug #12608543)

• In some cases, memory allocated for `Query_tables_list::sroutines()` was not freed properly. (Bug #12429877)

• After the fix for Bug #11889186, `MAKEDATE()` arguments with a year part greater than 9999 raised an assertion. (Bug #12403504)

  References: This issue is a regression of: Bug #11889186.

• An assertion could be raised due to a missing NULL value check in `Item_func_round::fix_length_and_dec()`. (Bug #12392636)

• An assertion could be raised during two-phase commits if the binary log was used as the transaction coordinator log. (Bug #12346411)

• `Field_geom::reset()` failed to reset its base `Field_blob`. The range optimizer used the uninitialized field during optimization and execution, causing the server to exit. (Bug #11908153)

• A problem introduced in MySQL 5.5.11 caused very old (MySQL 4.0) clients to be unable to connect to the server. (Bug #61222, Bug #12563279)

• Using `CREATE EVENT IF NOT EXISTS` for an event that already existed and was enabled caused multiple instances of the event to run. (Bug #61005, Bug #12546938)

• An embedded client aborted rather than issuing an error message if it issued a TEE command (`\T file_name`) and the directory containing the file did not exist. This occurred because the wrong error handler was called. (Bug #57491, Bug #11764633)

• `ALTER EVENT` could change the event status. (Bug #57156, Bug #11764334)

• On some platforms, the Incorrect value: xxx for column yyy at row zzz error produced by LOAD DATA could have an incorrect value of zzz. (Bug #46895, Bug #11755168)

• An attempt to install nonexistent files during installation was corrected. (Bug #43247, Bug #11752142)
• On FreeBSD 64-bit builds of the embedded server, exceptions were not prevented from propagating into the embedded application. (Bug #38965, Bug #11749418)

Changes in MySQL 5.5.13 (2011-05-31, General Availability)

Note
Very old (MySQL 4.0) clients are not working temporarily due to a problem discovered after the release of MySQL 5.5.12. We are looking at fixing the problem. Update: This is fixed in MySQL 5.5.14.

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• The client-side plugin that accompanies the server-side Windows authentication plugin is now included in all MySQL distributions. This will permit clients from any release, whether commercial or community, to connect to a server that has the server-side plugin loaded. See Windows Pluggable Authentication (Bug #59780, Bug #11766631)

Bugs Fixed

• InnoDB: If the server crashed while an XA transaction was prepared but not yet committed, the transaction could remain in the system after restart, and cause a subsequent shutdown to hang. (Bug #11766513, Bug #59641)

• InnoDB: The MySQL server could hang during CREATE TABLE, OPTIMIZE TABLE, or ALTER TABLE or other DDL operation that performs a table copy for an InnoDB table, if such operations were performed by multiple sessions simultaneously. The error was reported as: InnoDB: Error: semaphore wait has lasted > 600 seconds
  (Bug #11760042, Bug #52409)

• InnoDB: With the setting lower_case_table_names=2, inserts into InnoDB tables covered by foreign key constraints could fail after a server restart. This is a similar problem to the foreign key error in Bug #11831040 / Bug #60196 / Bug #60909, but with a different root cause and occurring on OS X.

• Partitioning: The internal get_partition_set() function did not take into account the possibility that a key specification could be NULL in some cases. (Bug #12380149)

• Partitioning: When executing a row-ordered retrieval index merge, the partitioning handler used memory from that allocated for the table, rather than that allocated to the query, causing table object memory not to be freed until the table was closed. (Bug #11766249, Bug #59316)

• Replication: When mysqlbinlog was invoked using --base64-output=decode-row and --start-position=pos, (where pos is a point in the binary log past the format description log event), a spurious error of the type shown here was generated:
  malformed binlog: it does not contain any Format_description_log_event...
  However, since there is nothing unsafe about not printing the format description log event, the error has been removed for this case. (Bug #12354268)
• **Replication**: Typographical errors appeared in the text of several replication error messages. (The word “position” was misspelled as “postion”.) (Bug #11762616, Bug #55229)

• Assignments to `NEW.var_name` within triggers, where `var_name` had a `BLOB` or `TEXT` type, were not properly handled and produced incorrect results. (Bug #12362125)

• `XA COMMIT` could fail to clean up the error state if it discovered that the current XA transaction had to be rolled back. Consequently, the next XA transaction could raise an assertion when it checked for proper cleanup of the previous transaction. (Bug #12352846)

• An internal client macro reference was removed from the `client_plugin.h` header file. This reference made the file unusable. (Bug #60746, Bug #12325444)

• For repeated invocation of some stored procedures, the server consumed memory that it did not release until the connection terminated. (Bug #60025, Bug #11848763)

• The server did not check for certain invalid out of order sequences of XA statements, and these sequences raised an assertion. (Bug #59936, Bug #11766752, Bug #12348348)

• With the conversion from GNU autotools to `CMake` for configuring MySQL, the `USE_SYMDIR` preprocessor symbol was omitted. This caused failure of symbolic links (described at Using Symbolic Links). (Bug #59408, Bug #11766320)

• An incorrect `max_length` value for `YEAR` values could be used in temporary result tables for `UNION`, leading to incorrect results. (Bug #59343, Bug #11766270)

• In `Item_func_in::fix_length_and_dec()`, a Valgrind warning for uninitialized values was corrected. (Bug #59270, Bug #11766212)

• In `ROUND()` calculations, a Valgrind warning for uninitialized memory was corrected. (Bug #58937, Bug #11765923)

References: This issue is a regression of: Bug #33143.

• Valgrind warnings caused by comparing index values to an uninitialized field were corrected. (Bug #58705, Bug #11765713)

• `LOAD DATA` errors could leak I/O cache memory. (Bug #58072, Bug #11765141)

• For `LOAD DATA`, multibyte character sequences could be pushed onto a stack too small to accommodate them. (Bug #58069, Bug #11765139)

• Internal Performance Schema header files were unnecessarily installed publicly. (Bug #53281)

• On Linux, the `mysql` client built using the bundled `libedit` did not read `~/.editrc`. (Bug #49967, Bug #11757855)

• The optimizer sometimes incorrectly processed `HAVING` clauses for queries that did not also have an `ORDER BY` clause. (Bug #48916, Bug #11756928)

• `PROCEDURE ANALYSE()` could leak memory for `NULL` results, and could return incorrect results if used with a `LIMIT` clause. (Bug #48137, Bug #11756242)

• With `DISTINCT`, `CONCAT(col_name,...)` returned incorrect results when the arguments to `CONCAT()` were columns with an integer data type declared with a display width narrower than the values in the column. (For example, if an `INT(1)` column contained `1111`.) (Bug #4082)

**Changes in MySQL 5.5.12 (2011-05-05, General Availability)**
**Functionality Added or Changed**

- When invoked with the `--auto-generate-sql` option, `mysqlslap` dropped the schema specified with the `--create-schema` option at the end of the test run, which may have been unexpected by the user. `mysqlslap` now has a `--no-drop` option that prevents any schema created during the test run from being dropped. (Bug #58090, Bug #11765157)

**Bugs Fixed**

- **InnoDB; Replication:** Trying to update a column, previously set to `NULL`, of an InnoDB table with no primary key caused replication to fail on the slave with `Can't find record in 'table'`.  

  Note: This issue was inadvertently reintroduced in MySQL 5.6.6, and fixed again in MySQL 5.6.12.  

  (Bug #11766865, Bug #60091) References: See also: Bug #16566658.

- **InnoDB:** The server could halt if InnoDB interpreted a very heavy I/O load for 15 minutes or more as an indication that the server was hung. This change fixes the logic that measures how long InnoDB threads were waiting, which formerly could produce false positives. (Bug #11877216, Bug #11755413, Bug #47183)

- **InnoDB:** With the setting `lower_case_table_names=2`, inserts into InnoDB tables covered by foreign key constraints could fail after a server restart. (Bug #11831040, Bug #60196, Bug #60909)

- **Replication:** Using the `--server-id` option with `mysqlbinlog` could cause format description log events to be filtered from the binary log, leaving `mysqlbinlog` unable to read the remainder of the log. Now such events are always read without regard to the value of this option. 

  As part of the fix for this problem, `mysqlbinlog` now also reads rotate log events without regard to the value of `--server-id`. (Bug #59530, Bug #11766427)

- **Microsoft Windows:** On Windows, the server rejected client connections if no DNS server was available. (Bug #12325375)

- **mysql_upgrade** did not properly upgrade the `authentication_string` column of the `mysql.user` table. (Bug #11936829)

- **InnoDB** invoked some `zlib` functions without proper initialization. (Bug #11849231)

- **CREATE TABLE** permitted a `TABLESPACE` table option but did not write the option value to the `.frm` file. (Bug #11769356)

- Comparison of a `DATETIME` stored program variable and `NOW()` resulted in “Illegal mix of collations error” when `character_set_connection` was set to `utf8`. (Bug #60625, Bug #11926811)

- Selecting from a view for which the definition included a `HAVING` clause failed with an error:

  ```
 1356: View '...' references invalid table(s) or column(s)
 or function(s) or definer/invoker of view lack rights to use them
  ```

  (Bug #60091)
CREATE TABLE syntax permits specification of a STORAGE {DEFAULT|DISK|MEMORY} option. However, this value was not written to the .frm file, so that a subsequent CREATE TABLE ... LIKE for the table did not include that option.

Also, ALTER TABLE of a table that had a tablespace incorrectly destroyed the tablespace. (Bug #60111, Bug #11766883, Bug #34047, Bug #11747789)

The server permitted max_allowed_packet to be set lower than net_buffer_length, which does not make sense because max_allowed_packet is the upper limit on net_buffer_length values. Now a warning occurs and the value remains unchanged. (Bug #59959, Bug #11766769)

A missing variable initialization for Item_func_set_user_var objects could raise an assertion. (Bug #59527, Bug #11766424)

When the server was started with the --skip-innodb option, it initialized the have_innodb system variable to YES rather than DISABLED. (Bug #59393, Bug #11766306)

In Item_func_month::val_str(), a Valgrind warning for a too-late NULL value check was corrected. (Bug #59166, Bug #11766126)

In Item::get_date, a Valgrind warning for a missing NULL value check was corrected. (Bug #59164, Bug #11766124)

In extract_date_time(), a Valgrind warning for a missing end-of-string check was corrected. (Bug #59151, Bug #11766112)

In string context, the MIN() and MAX() functions did not take into account the unsignedness of a BIGINT UNSIGNED argument. (Bug #59132, Bug #11766094)

In Item_func::val_decimal, a Valgrind warning for a missing NULL value check was corrected. (Bug #59125, Bug #11766087)

In Item_func_str_to_date::val_str, a Valgrind warning for an uninitialized variable was corrected. (Bug #58154, Bug #11765216)

An assertion could be raised in Item_func_int_val::fix_num_length_and_dec() due to overflow for geometry functions. (Bug #57900, Bug #11764994)

With prepared statements, the server could attempt to send result set metadata after the table had been closed. (Bug #56115, Bug #11763413)

With lower_case_table_names=2, resolution of objects qualified by database names could fail. (Bug #50924, Bug #11765216)

SHOW EVENTS did not always show events from the correct database. (Bug #41907, Bug #11751148)

Changes in MySQL 5.5.11 (2011-04-07, General Availability)

Functionality Added or Changed

Bugs Fixed

Functionality Added or Changed

InnoDB now permits concurrent reads on a table while creating nonprimary unique indexes. (This was found to create problems and was reverted in 5.5.12.) (Bug #11784056)
• Previously, Performance Schema instrumentation for both the binary log and the relay log used these instruments:

```plaintext
wait/io/file/sql/binlog
wait/io/file/sql/binlog_index
wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_index
wait/synch/cond/sql/MYSQL_BIN_LOG::update_cond
```

Now instrumentation for the relay log uses these instruments, which makes it possible to distinguish binary log and relay log events:

```plaintext
wait/io/file/sql/relaylog
wait/io/file/sql/relaylog_index
wait/synch/mutex/sql/MYSQL_RELAY_LOG::LOCK_index
wait/synch/cond/sql/MYSQL_RELAY_LOG::update_cond
```

(Bug #59658, Bug #11766528)

• MySQL distributions now include an `INFO_SRC` file that contains information about the source distribution, such as the MySQL version from which it was created. MySQL binary distributions additionally include an `INFO_BIN` file that contains information about how the distribution was built, such as compiler options and feature flags. In RPM packages, these files are located in the `/usr/share/doc/packages/MySQL-server` directory. In `tar.gz` and derived packages, they are located in the `Docs` directory under the location where the distribution is unpacked. (Bug #42969, Bug #11751935)

• Previously, for queries that were aborted due to a sort problem or terminated with `KILL` in the middle of a sort, the server wrote the message `Sort aborted` to the error log. Now the server writes more information about the cause of the error. These causes include:

  • Insufficient disk space in the temporary file directory prevented a temp file from being created
  • Insufficient memory for `sort_buffer_size` to be allocated
  • Somebody ran `KILL id` in the middle of a filesort operation
  • The server was shut down while some queries were sorting
  • A transaction was rolled back or aborted due to a lock wait timeout or deadlock
  • Unexpected errors, such as a source table or even temp table was corrupt
  • Processing of a subquery failed which was also sorting

(Bug #30771, Bug #11747102)

• A new system variable, `max_long_data_size`, now controls the maximum size of parameter values that can be sent with the `mysql_stmt_send_long_data()` C API function. If not set at server startup, the default is the value of the `max_allowed_packet` system variable. This variable is deprecated. In MySQL 5.6, it is removed and the maximum parameter size is controlled by `max_allowed_packet`.

• For the Windows installer, debug information files and the embedded MySQL server have been removed from the standard MSI distribution file to reduce the download size for the majority of users.

If these files are needed, the Zip distribution must be downloaded separately and be extracted in the installation directory, which is most probably `C:\Program Files\MySQL\MySQL Server 5.5` on English systems.

Please note that upon product de-installation, these extracted files from the Zip distribution must be removed from the system manually.
MySQL 5.5 Release Notes

- The undocumented `SHOW NEW MASTER` statement has been removed, and the `Com_show_new_master` status variable along with it.

**Bugs Fixed**

- **Important Change:** The length of the `plugin` column of the `mysql.user` system table is increased to 64 characters. This is now the same size as the `name` column of the `mysql.plugin` table. (Bug #11766610, Bug #59752)

- **Partitioning:** A problem with a previous fix for poor performance of `INSERT ON DUPLICATE KEY UPDATE` statements on tables having many partitions caused the handler function for reading a row from a specific index to fail to store the ID of the partition last used. This caused some statements to fail with `Can't find record` errors. (Bug #59297, Bug #11766232)

  References: This issue is a regression of: Bug #52455.

- **Replication:** A failed `DROP DATABASE` statement could break statement-based replication. (Bug #58381, Bug #11765416)

- **Microsoft Windows:** On Windows, the `authentication_string` column recently added to the `mysql.user` table caused the Configuration Wizard to fail. (Bug #59038, Bug #11766011)

- **Microsoft Windows:** On Windows, an object in thread local storage could be used before the object was created. (Bug #55730, Bug #11763065)

- Two unused test files in `storage/ndb/test/sql` contained incorrect versions of the GNU Lesser General Public License. The files and the directory containing them have been removed. (Bug #11810224)

  References: See also: Bug #11810156.

- Division of large numbers could cause stack corruption. (Bug #11792200)

- Queries that used `COALESCE()` with `cp1251` strings could result in an "illegal mix of collations" error. (Bug #60101, Bug #11766874)

- The `mysql_load_plugin()` C API function did not clear the previous error. (Bug #60075, Bug #11766854)

- An assertion was raised if an `XA COMMIT` was issued when an XA transaction had already encountered an error (such as a deadlock) that required the transaction to be rolled back. (Bug #59986, Bug #11766788)

- On some systems, debug builds of `comp_err` could fail due to an uninitialized variable. (Bug #59906, Bug #11766729)

- The server read one byte too many when trying to process an XML string lacking a closing single quote (`'`) or double quote (`"`) character used as an argument for `UpdateXML()` or `ExtractValue()`. (Bug #59901, Bug #11766725)

  References: See also: Bug #44332, Bug #11752979.

- Attempting to create a spatial index on a `CHAR` column longer than 31 bytes led to an assertion failure if the server was compiled with safemutex support. (Bug #59888, Bug #11766714)

- Aggregation followed by a subquery could produce an incorrect result. (Bug #59839, Bug #11766675)

- An incorrect character set pointer passed to `my_strtoll10_mb2()` caused an assertion to be raised. (Bug #59648, Bug #11766519)
MySQL 5.5 Release Notes

- **FIND_IN_SET()** could work differently in MySQL 5.5 than in 5.1. (Bug #59405, Bug #11766317)
- **mysqldump** did not quote database names in **ALTER DATABASE** statements in its output, which could cause an error at reload time for database names containing a dash. (Bug #59398, Bug #11766310)
- The **MYSQL_HOME** environment variable was being ignored. (Bug #59280, Bug #11766219)
- An invalid pathname argument for the **--defaults-extra-file** option of MySQL programs caused a program crash. (Bug #59234, Bug #11766184)
- **CREATE TRIGGER** and **DROP TRIGGER** can change the prelocking list of stored routines, but the routine cache did not detect such changes, resulting in routine execution with an inaccurate locking list. (Bug #58674, Bug #11765684)
- The code for **PROCEDURE ANALYSE()** had a missing **DBG_RETURN** statement, which could cause a server crash in debug builds. (Bug #58140, Bug #11765202)
- An assertion was raised if a statement tried to upgrade a metadata lock while there was an active **FLUSH TABLE tbl_list WITH READ LOCK** statement. Now if a statement tries to upgrade a metadata lock in this situation, the server returns an **ER_TABLE_NOT_LOCKED_FOR_WRITE** error to the client. (Bug #57649, Bug #11764779)
- If a multiple-table update updated a row through two aliases and the first update physically moved the row, the second update failed to locate the row. This resulted in different errors depending on the storage engine, although these errors did not accurately describe the problem:
  - **MyISAM**: Got error 134 from storage engine
  - **InnoDB**: Can't find record in 'tbl'

For **MyISAM**, which is nontransactional, the update executed first was performed but the second was not. In addition, for two equal multiple-table update statements, one could succeed and the other fail depending on whether the record actually moved, which is inconsistent.

Now such an update returns an error if it will update a table through multiple aliases, and perform an update that may physically move the row in at least one of these aliases. (Bug #57373, Bug #11764529, Bug #55385, Bug #11762751)

- **SHOW WARNINGS** output following **EXPLAIN EXTENDED** could include unprintable characters. (Bug #57341, Bug #11764503)
- In some cases, **SHOW WARNINGS** returned an empty result when the previous statement failed. (Bug #55847, Bug #11763166)
- For a client connected using SSL, the **Ssl_cipher_list** status variable was empty and did not show the possible cipher types. (Bug #52596, Bug #11760210)
- When used to upgrade tables, **mysqlcheck** (and **mysql_upgrade**, which invokes **mysqlcheck**) did not upgrade some tables for which table repair was found to be necessary. In particular, it failed to upgrade **InnoDB** tables that needed repair, leaving them in a nonupgraded state. This occurred because:
  - **mysqlcheck --check-upgrade --auto-repair** checks for tables that are incompatible with the current version of MySQL. It does this by issuing the **CHECK TABLE ... FOR UPGRADE** statement and examining the result.
• For any table found to be incompatible, `mysqlcheck` issues a `REPAIR TABLE` statement. But this fails for storage engines such as `InnoDB` that do not support the repair operation. Consequently, the table remained unchanged.

To fix the problem, the following changes were made to `CHECK TABLE ... FOR UPGRADE` and `mysqlcheck`. Because `mysql_upgrade` invokes `mysqlcheck`, these changes also fix the problem for `mysql_upgrade`.

• `CHECK TABLE ... FOR UPGRADE` returns a different error if a table needs repair but its storage engine does not support `REPAIR TABLE`:

  Previous:

  ```sql
 Error: ER_TABLE_NEEDS_UPGRADE
 Table upgrade required. Please do "REPAIR TABLE `tbl_name`" or dump/reload to fix it!
  ```

  Now:

  ```sql
 Error: ER_TABLE_NEEDS_REBUILD
 Table rebuild required. Please do "ALTER TABLE `tbl_name` FORCE" or dump/reload to fix it!
  ```

• `mysqlcheck` recognizes the new error and issues an `ALTER TABLE ... FORCE` statement. The `FORCE` option for `ALTER TABLE` was recognized but did nothing; now it is implemented and acts as a “null” alter operation that rebuilds the table.

  (Bug #47205, Bug #11755431)

• When `CASE ... WHEN` arguments had different character sets, 8-bit values could be referenced as `utf16` or `utf32` values, raising an assertion. (Bug #44793, Bug #11753363)

• Bitmap functions used in one thread could change bitmaps used by other threads, raising an assertion. (Bug #43152, Bug #11752069)

Changes in MySQL 5.5.10 (2011-03-15, General Availability)

• C API Notes

  • Pluggable Authentication

  • Functionality Added or Changed

  • Bugs Fixed

C API Notes

• **Incompatible Change:** The shared library version of the client library was increased to 18 to reflect ABI changes, and avoid compatibility problems with the client library in MySQL 5.1. Note that this is an incompatible change between 5.5.10 and earlier 5.5 versions, so client programs that use the 5.5 client library should be recompiled against the 5.5.10 client library. (Bug #60061, Bug #11827366)

Pluggable Authentication

• MySQL distributions now include `auth_socket`, a server-side authentication plugin that authenticates clients that connect from the local host through the Unix socket file. The plugin uses the `SO_PEERCRED`
socket option to obtain information about the user running the client program (and thus can be built only on systems that support this option). For a connection to succeed, the plugin requires a match between the login name of the connecting client user and the MySQL user name presented by the client program. For more information, see Socket Peer-Credential Pluggable Authentication. (Bug #59017, Bug #11765993, Bug #9411, Bug #11745104)

- MySQL distributions now include mysql_clear_password, a client-side authentication plugin that sends the password to the server without hashing or encryption. Although this is insecure, and thus appropriate precautions should be taken (such as using an SSL connection), the plugin is useful in conjunction with server-side plugins that must have access to the original password in clear text. For more information, see Client-Side Cleartext Pluggable Authentication.

Functionality Added or Changed

- The mysql_upgrade, mysqlbinlog, mysqlcheck, mysqlimport, mysqlshow, and mysqlslap clients now have --default-auth and --plugin-dir options for specifying which authentication plugin and plugin directory to use. (Bug #58139)

- Boolean system variables can be enabled at run time by setting them to the value ON or OFF, but previously this did not work at server startup. Now at startup such variables can be enabled by setting them to ON or TRUE, or disabled by setting them to OFF or FALSE. Any other nonnumeric value is invalid. (Bug #46393)

References: See also: Bug #11754743, Bug #51631.

- Previously, for queries that were aborted due to a sort problem, the server wrote the message Sort aborted to the error log. Now the server writes more information to provide a more specific message, such as:

  ```
 Sort aborted: Out of memory (Needed 24 bytes)
 Out of sort memory, consider increasing server sort buffer size
 Sort aborted: Out of sort memory, consider increasing server sort buffer size
 Sort aborted: Incorrect number of arguments for FUNCTION test.f1;
 expected 0, got 1
  ```

In addition, if the server was started with --log-warnings=2, the server writes information about the host, user, and query. (Bug #36022, Bug #11748358)

- mysqldump --xml now displays comments from column definitions. (Bug #13618, Bug #11745324)

Bugs Fixed

- Security Fix: A security bug was fixed. (Bug #36544)

- Important Change; InnoDB: The libaio library, which has been used on Linux systems since MySQL 5.5.4, is now linked into mysqld dynamically rather than statically. If the library is not already on your Linux system, install it using the appropriate package manager for your distribution. The libaio-dev library is not sufficient; you must have the libaio library. (Bug #11893055, Bug #60544)

- InnoDB: Raised the number of I/O requests that each AIO helper thread could process, from 32 to 256. The new limit applies to Linux and Unix platforms; the limit on Windows remains 32. (Bug #59472)

- InnoDB: InnoDB returned values for “rows examined” in the query plan that were higher than expected. NULL values were treated in an inconsistent way. The inaccurate statistics could trigger “false positives” in combination with the max_join_size setting, because the queries did not really examine as many rows as reported.
A new configuration option `innodb_stats_method` lets you specify how `NULL` values are treated when calculating index statistics. Allowed values are `nulls_equal` (the default), `nulls_unequal` and `null_ignored`. The meanings of these values are similar to those of the `myisam_stats_method` option. (Bug #30423)

**Replication:** When using the statement-based logging format, `INSERT ON DUPLICATE KEY UPDATE` and `INSERT IGNORE` statements affecting transactional tables that did not fail were not written to the binary log if they did not insert any rows. (With statement-based logging, all successful statements should be logged, whether they do or do not cause any rows to be changed.) (Bug #59338, Bug #11766266)

**Replication:** Formerly, `STOP SLAVE` stopped the slave I/O thread first and then stopped the slave SQL thread; thus, it was possible for the I/O thread to stop after replicating only part of a transaction which the SQL thread was executing, in which case—if the transaction could not be rolled back safely—the SQL thread could hang.

Now, `STOP SLAVE` stops the slave SQL thread first and then stops the I/O thread; this guarantees that the I/O thread can fetch any remaining events in the transaction that the SQL thread is executing, so that the SQL thread can finish the transaction if it cannot be rolled back safely. (Bug #58546, Bug #11765563)

- Setting the `optimizer_switch` system variable to an invalid value caused a server crash. (Bug #59894, Bug #11766719)

- `DES_DECRYPT()` could crash if the argument was not produced by `DES_ENCRYPT()`. (Bug #59632, Bug #11766505)

- The server and client did not always properly negotiate authentication plugin names. (Bug #59453, Bug #11766356)

- `--autocommit=ON` did not work (it set the global `autocommit` value to 0, not 1). (Bug #59432, Bug #11766339)

- A query of the following form returned an incorrect result, where the values for `col_name` in the result set were entirely replaced with `NULL` values:

  ```sql
 SELECT DISTINCT col_name ... ORDER BY col_name DESC;
  ```

  (Bug #59308, Bug #11766241)

- `SHOW PRIVILEGES` did not display a row for the `PROXY` privilege. (Bug #59275, Bug #11766216)

- `SHOW PROFILE` could truncate source file names or fail to show function names. (Bug #59273, Bug #11766214)

- `DELETE` or `UPDATE` statements could fail if they used `DATE` or `DATETIME` values with a year, month, or day part of zero. (Bug #59173)

- The `ESCAPE` clause for the `LIKE` operator permits only expressions that evaluate to a constant at execution time, but aggregate functions were not being rejected. (Bug #59149, Bug #11766110)

- Memory leaks detected by Valgrind, some of which could cause incorrect query results, were corrected. (Bug #59110, Bug #11766075)

- There was an erroneous restriction on file attributes for `LOAD DATA`. The requirement that a file be located in the database directory or world readable is now that the be located in the database directory or readable by the user account used to run the server. (Bug #59085, Bug #11766052)
MySQL 5.5 Release Notes

- The `DEFAULT_CHARSET` and `DEFAULT_COLLATION` CMake options did not work. (Bug #58991, Bug #11765967)

- An `OUTER JOIN` query using `WHERE col_name IS NULL` could return an incorrect result. (Bug #58490, Bug #11765513)

- Starting the server with the `--defaults-file=file_name` option, where the file name had no extension, caused a server crash. (Bug #58455, Bug #11765482)

- Outer joins with an empty table could produce incorrect results. (Bug #58422, Bug #11765451)

- In debug builds, `SUBSTRING_INDEX(FORMAT(...), FORMAT(...))` could cause a server crash. (Bug #58371, Bug #11765406)

- When `mysqladmin` was run with the `--sleep` and `--count` options, it went into an infinite loop executing the specified command. (Bug #58221, Bug #11765270)

- Some string-manipulating SQL functions use a shared string object intended to contain an immutable empty string. This object was used by the SQL function `SUBSTRING_INDEX()` to return an empty string when one argument was of the wrong data type. If the string object was then modified by the SQL function `INSERT()`, undefined behavior ensued. (Bug #58165, Bug #11765225)

- Parsing nested regular expressions could lead to recursion resulting in a stack overflow crash. (Bug #58026, Bug #11765099)

- The fix for Bug #25192 caused `load_defaults()` to add an argument separator to distinguish options loaded from option files from those provided on the command line, whether or not the application needed it. (Bug #57953, Bug #11765041)

  References: See also: Bug #25192, Bug #11746296.

- The `mysql` client went into an infinite loop if the standard input was a directory. (Bug #57450, Bug #11764998)

- Outer joins on a unique key could return incorrect results. (Bug #57034, Bug #11764219)

- The expression `const1 BETWEEN const2 AND field` was optimized incorrectly and produced incorrect results. (Bug #57030, Bug #11764215)

- Some RPM installation scripts used a hardcoded value for the data directory, which could result in a failed installation for users who have a nonstandard data directory location. The same was true for other configuration values such as the PID file name. (Bug #56581, Bug #11763817)

- On FreeBSD and OpenBSD, the server incorrectly checked the range of the system date, causing legal values to be rejected. (Bug #55755, Bug #11763089)

- Sorting using `ORDER BY AVG(DISTINCT decimal_col)` caused a server crash or incorrect results. (Bug #52123, Bug #11759784)

- When using `ExtractValue()` or `UpdateXML()`, if the XML to be read contained an incomplete XML comment, MySQL read beyond the end of the XML string when processing, leading to a crash of the server. (Bug #44332, Bug #11752979)

- `DATE_ADD()` and `DATE_SUB()` return a string if the first argument is a string, but incorrectly returned a binary string. Now they return a character string with a collation of `connection_collation`. (Bug #31384, Bug #11747221)

Changes in MySQL 5.5.9 (2011-02-07, General Availability)
Functionality Added or Changed

- The `mysqladmin` and `mysqldump` clients now have `--default-auth` and `--plugin-dir` options for specifying which authentication plugin and plugin directory to use. (Bug #58139, Bug #11765201)

- `sql_priv.h` now includes an `OPTION_ALLOW_BATCH` flag for the `transaction_allow_batching` feature of MySQL NDB Cluster. (Bug #57604)

- Boolean system variables can be enabled at run time by setting them to the value `ON` or `OFF`, but previously this did not work at server startup. Now at startup such variables can be enabled by setting them to `ON` or `TRUE`. Any other nonnumeric value is interpreted as `OFF`. (Bug #46393 improves on this such that `ON`, `TRUE`, `OFF`, and `FALSE` are recognized, and other values are invalid.) (Bug #51631, Bug #11759326)

References: See also: Bug #46393, Bug #11754743.

- In the audit plugin interface, the `MYSQL_AUDIT_CONNECTION_CLASS` event class was added, and the `MYSQL_AUDIT_GENERAL_STATUS` subclass was added to the `MYSQL_AUDIT_GENERAL_CLASS` event class. The new symbol definitions can be found in the `plugin_audit.h` header file.

Bugs Fixed

- **Security Fix**: A security bug was fixed. (Bug #57952)

- **Incompatible Change**: When `auto_increment_increment` is greater than one, values generated by a bulk insert that reaches the maximum column value could wrap around rather producing an overflow error.

As a consequence of the fix, it is no longer possible for an auto-generated value to be equal to the maximum `BIGINT UNSIGNED` value. It is still possible to store that value manually, if the column can accept it. (Bug #39828, Bug #11749800)

- **Important Change; Partitioning**: Date and time functions used as partitioning functions now have the types of their operands checked; use of a value of the wrong type is now disallowed in such cases. In addition, `EXTRACT(WEEK FROM col_name)`, where `col_name` is a `DATE` or `DATETIME` column, is now disallowed altogether because its return value depends on the value of the `default_week_format` system variable. (Bug #54483, Bug #11761948)

References: See also: Bug #57071, Bug #11764255.

- **Performance; InnoDB**: An `UPDATE` statement for an InnoDB table could be slower than necessary if it changed a column covered by a prefix index, but did not change the prefix portion of the value. The fix improves performance for InnoDB 1.1 in MySQL 5.5 and higher, and the InnoDB Plugin for MySQL 5.1. (Bug #58912, Bug #11765900)

- **Performance; InnoDB**: Synchronization inside InnoDB frequently involves the use of `spin` loops: while waiting, InnoDB executes a tight loop of instructions repeatedly to avoid having the InnoDB process and threads be rescheduled by the operating system. If the spin loops are executed too quickly, system resources are wasted, imposing a performance penalty on transaction throughput. Most modern processors implement the `PAUSE` instruction for use in spin loops, so the processor can be more efficient.
InnoDB now uses the `PAUSE` instruction in its spin loops on all platforms where such an instruction is available. Previously, InnoDB used the `PAUSE` instruction only on Windows systems. Use of the `PAUSE` instruction increases overall performance with CPU-bound workloads, and provides the added benefit of minimizing power consumption during the execution of the spin loops. (Bug #58666)

- **Performance:** Queries involving InnoDB tables in the INFORMATION_SCHEMA tables `TABLE_CONSTRAINTS`, `KEY_COLUMN_USAGE`, or `REFERENTIAL_CONSTRAINTS` were slower than necessary because statistics were rechecked more often than required, even more so when many foreign keys were present. The improvement to this may be of particular benefit to users of MySQL Enterprise Monitor with many monitored servers or tens of thousands of tables. (Bug #43818, Bug #11752585)

- **InnoDB; Partitioning:** The partitioning handler did not pass locking information to a table's storage engine handler. This caused high contention and thus slower performance when working with partitioned InnoDB tables. (Bug #59013)

- **InnoDB:** The presence of a double quotation mark inside the COMMENT field for a column could prevent a foreign key constraint from being created properly. (Bug #59197, Bug #11766154)

- **InnoDB:** When multiple InnoDB buffer pools were enabled, SHOW ENGINE INNODB statements displayed information about each one, but not summary information combining statistics for the entire buffer pool subsystem. Now, the aggregated information is displayed in the BUFFER POOL AND MEMORY section, and information about individual buffer pool instances is displayed in a new INDIVIDUAL BUFFER POOL INFO section. (Bug #58461)

- **InnoDB:** The command to create a debug build (`cmake -DWITH_DEBUG ...`) now automatically sets the InnoDB debugging flag UNIV_DEBUG on all platforms. Formerly, the UNIV_DEBUG flag might not be set for Windows platforms with Visual Studio and not on OS X with Xcode. (Bug #58279)

- **InnoDB:** In InnoDB status output, the value for I/O sum[] could be incorrect, displayed as a very large number. (Bug #57600)

- **InnoDB:** The server could crash with an assertion error, if a stored procedure, stored function, or trigger modified one InnoDB table containing an auto-increment column, and dropped another InnoDB table containing an auto-increment column. (Bug #56228)

- **InnoDB:** It was not possible to query the information_schema.INNODB_TRX table while other connections were running queries involving BLOB types. (Bug #55397, Bug #11762763)

- **InnoDB:** When the `lower_case_table_names` variable was set to 2, InnoDB could fail to restore a mysqldump dump of a table with foreign key constraints involving case-sensitive names. (Bug #55222)

- **InnoDB:** The OPTIMIZE TABLE statement reset the auto-increment counter for an InnoDB table. Now the auto-increment value is preserved across this operation. (Bug #18274)

- **Partitioning:** Failed ALTER TABLE ... TRUNCATE PARTITION statements were written to the binary log. (Bug #58147)

- **Partitioning:** Failed ALTER TABLE ... PARTITION statements could cause memory leaks. (Bug #56380, Bug #11763641)

  References: See also: Bug #46949, Bug #11755209, Bug #56996, Bug #11764187.

- **Replication:** While an INSERT DELAYED statement with a single inserted value does not return any visible warnings, such a warning could be still written into the error log. (Bug #57666, Bug #11764793)
MySQL 5.5 Release Notes

- **Replication:** When closing a session that used temporary tables, binary logging could sometimes fail with a spurious Failed to write the DROP statement for temporary tables to binary log. (Bug #57288)

- **Replication:** Due to changes made in MySQL 5.5.3, settings made in the `binlog_cache_size` and `max_binlog_cache_size` server system variables affected both the binary log statement cache (also introduced in that version) and the binary log transactional cache (formerly known simply as the binary log cache). This meant that the resources used as a result of setting either or both of these variables were double the amount expected. To rectify this problem, these variables now affect only the transactional cache. The fix for this issue also introduces two new system variables `binlog_stmt_cache_size` and `max_binlog_stmt_cache_size`, which affect only the binary log statement cache.

  In addition, the `Binlog_cache_use` status variable was incremented whenever either cache was used, and `Binlog_cache_disk_use` was incremented whenever the disk space from either cache was used, which caused problems with performance tuning of the statement and transactional caches, because it was not possible to determine which of these was being exceeded when attempting to troubleshoot excessive disk seeks and related problems. This issue is solved by changing the behavior of these two status variables such that they are incremented only in response to usage of the binary log transactional cache, as well as by introducing two new status variables `Binlog_stmt_cache_use` and `Binlog_stmt_cache_disk_use`, which are incremented only by usage of the binary log statement cache.

  The behavior of the `max_binlog_cache_size` system variable with regard to active sessions has also been changed to match that of the `binlog_cache_size` system variable: Previously, a change in `max_binlog_cache_size` took effect in existing sessions; now, as with a change in `binlog_cache_size`, a change in `max_binlog_cache_size` takes effect only in sessions begun after the value was changed.

  For more information, see System Variables Used with Binary Logging, and Server Status Variables. (Bug #57275, Bug #11764443)

- **Replication:** By default, a value is generated for an `AUTO_INCREMENT` column by inserting either `NULL` or 0 into the column. Setting the `NO_AUTO_VALUE_ON_ZERO` server SQL mode suppresses this behavior for 0, so that it occurs only when `NULL` is inserted into the column.

  This behavior is also followed on a replication slave (by the slave SQL thread) when applying events that have been logged on the master using the statement-based format. However, when applying events that had been logged using the row-based format, `NO_AUTO_VALUE_ON_ZERO` was ignored, which could lead to an assertion.

  To fix this issue, the value of an `AUTO_INCREMENT` column is no longer generated when applying an event that was logged using the row-based row format, as this value is already contained in the changes applied on the slave. (Bug #56662)

- **Replication:** The `Binlog_cache_use` and `Binlog_cache_disk_use` status variables were incremented twice by a change to a table using a transactional storage engine. (Bug #56343, Bug #11763611)

  References: This issue is a regression of: Bug #50038.

- **Replication:** The BINLOG statement modified the values of session variables, which could lead to problems with operations such as point-in-time recovery. One such case occurred when replaying a row-based binary log which relied on setting `foreign_key_checks = OFF` at the session level to create and populate a set of InnoDB tables having foreign key constraints. (Bug #54903)
• **Replication:** `mysqlbinlog` printed `USE` statements to its output only when the default database changed between events. To illustrate how this could cause problems, suppose that a user issued the following sequence of statements:

```sql
CREATE DATABASE mydb;
USE mydb;
CREATE TABLE mytable (column_definitions);
DROP DATABASE mydb;
CREATE DATABASE mydb;
USE mydb;
CREATE TABLE mytable (column_definitions);
```

When played back using `mysqlbinlog`, the second `CREATE TABLE` statement failed with **Error: No Database Selected** because the second `USE` statement was not played back, due to the fact that a database other than `mydb` was never selected.

This fix ensures that `mysqlbinlog` outputs a `USE` statement whenever it reads one from the binary log. (Bug #50914, Bug #11758677)

• **Replication:** Previously, when a statement failed with a different error on the slave than on the master, the slave SQL thread displayed a message containing:

  • The error message for the master error code
  • The master error code
  • The error message for the slaves error code
  • The slave error code

However, the slave has no information with which to fill in any print format specifiers for the master message, so it actually displayed the message format string. To make it clearer that the slave is not displaying the actual message as it appears on the master, the slave now indicates that the master part of the output is the message format, not the actual message. For example, previously the slave displayed information like this:

```sql
Error: "Query caused different errors on master and slave. Error on master: 'Duplicate entry '%-.192s' for key %d' (1062), Error on slave: 'no error' (0). Default database: 'test'. Query: 'insert into t1 values(1),(2)'" (expected different error codes on master and slave)
```

Now the slave displays this:

```sql
Error: "Query caused different errors on master and slave. Error on master: message format='Duplicate entry '%-.192s' for key %d' error code=1062 ; Error on slave: actual message='no error', error code=0. Default database: 'test'. Query: 'insert into t1 values(1),(2)'" (expected different error codes on master and slave)
```

(Bug #46697)

• **Replication:** When an error occurred in the generation of the name for a new binary log file, the error was logged but not shown to the user. (Bug #46166)

References: See also: Bug #37148, Bug #11748696, Bug #40611, Bug #11750196, Bug #43929, Bug #51019.

• **OS X:** On OS X, a configuration error caused the preference pane to fail. (Bug #51264)
MySQL 5.5 Release Notes

- **Solaris:** On Solaris, the MySQL build failed if it was configured with debugging enabled. (Bug #58699)
- **Solaris:** On Solaris, time-related functions such as `NOW()` or `SYSDATE()` could return a constant value. (Bug #42054)
- Comparisons of aggregate values with `TIMESTAMP` values were incorrect. (Bug #59330, Bug #11766259)
- For `DIV` expressions, assignment of the result to multiple variables could cause a server crash. (Bug #59241, Bug #11766191)

  References: See also: Bug #8457.

- `MIN(year_col)` could return an incorrect result in some cases. (Bug #59211, Bug #11766165)
- `mysqlslap` failed to check for a NULL return from `mysql_store_result()` and crashed trying to process the result set. (Bug #59109, Bug #11766074)
- In a subquery, a `UNION` with no referenced tables (or only a reference to the `DUAL` virtual table) did not permit an `ORDER BY` clause. (Bug #58970, Bug #11765950)

- `cmake -DBUILD_CONFIG=mysql_release` on Linux previously required `libaio` to be linked in. Now it is possible to specify `--IGNORE_AIO_CHECK` to build without `libaio`. (Bug #58955, Bug #11765940)
- Configuring MySQL with `--WITHOUT_PERFSCHHEMA_STORAGE_ENGINE=1` caused build failures. (Bug #58953)
- Several Valgrind warnings were fixed. (Bug #58948, Bug #59021)
- `OPTIMIZE TABLE` for an `InnoDB` table could raise an assertion if the operation failed because it had been killed. (Bug #58933, Bug #11765920)
- If `max_allowed_packet` was set larger than 16MB, the server failed to reject too-large packets with “Packet too large” errors. (Bug #58887, Bug #11765878)
- A `NOT IN` predicate with a subquery containing a `HAVING` clause could retrieve too many rows, when the subquery itself returned `NULL`. (Bug #58818, Bug #11765815)
- Release builds on Linux now are compiled with `WITH_FAST_MUTEXES` enabled. (Bug #58766, Bug #11765769)

- `EXPLAIN` could crash for queries that accessed two derived tables. (Bug #58730)
- Issuing `EXPLAIN EXTENDED` for a query that would use condition pushdown could cause `mysqld` to crash. (Bug #58553, Bug #11765570)

- An assertion could be raised for queries for which the optimizer could choose between Index Merge range access or const ref access methods. (Bug #58456)
- If MySQL was built with Visual Studio Express, the project wixca was not built. (Bug #58411)

- `EXPLAIN` could crash for queries that used `GROUP_CONCAT()`. (Bug #58396)
- `CMake` polluted the source tree by writing installation-related temporary files there. (Bug #58372)

- Security context references in `sp_head.cc` were rewritten for improved DTrace compatibility. (Bug #58350)

- The `ucs2` character set does not support characters outside the Basic Multilingual Plane (BMP), but converting to `ucs2` a string containing such characters did not produce a conversion-failure warning. (Bug #58321)
MySQL 5.5 Release Notes

- A Valgrind failure occurred in fn_format when called from archive_discover. (Bug #58205, Bug #11765259)
- CMake did not add LINK_LIBRARIES for MYSQL_ADD_PLUGIN for libmysql. (Bug #58158)
- An assertion could be raised if the server was closing a session at the same time the session was being killed by another thread. (Bug #58136)
- Condition pushdown optimization could push down conditions with incorrect column references. (Bug #58134, Bug #11765196)
- Configuration with maintainer mode enabled resulted in errors when compiling with icc. (Bug #57991, Bug #58871)
- An ORDER BY clause was bound to the incorrect substatement when used in UNION context. (Bug #57986)
- The BIT_AND() function could return incorrect results when a join returned no matching rows. (Bug #57954)
- If the set of values aggregated with AVG(DISTINCT) contained a NULL value, the function result could be incorrect. (Bug #57932)
- In rare cases, LIKE expressions failed for an indexed column that used a collation containing contractions. (Bug #57737)
- Unnecessary subquery evaluation in contexts such as statement preparation or view creation could cause a server crash. (Bug #57703)
- View creation could produce Valgrind warnings. (Bug #57352)
- NULL geometry values could cause a crash in Item_func.spatial_collection::fix_length_and_dec. (Bug #57321)
- It was possible to compile mysqld with Performance Schema support but with a dummy atomic-operations implementation, which caused a server crash. This problem does not affect binary distributions. It is helpful as a safety measure for users who build MySQL from source. (Bug #56769)
- The cp1251 character set did not properly support the Euro sign (0x88). For example, converting a string containing this character to utf8 resulted in '?' rather than the utf8 Euro sign. (Bug #56639)
- Some unsigned system variables could be displayed with negative values. (Bug #55794)
- CREATE DATABASE and DROP DATABASE caused mysql --one-database to lose track of the statement-filtering context. (Bug #54899)
- An assertion could be raised during concurrent execution of DROP DATABASE and REPAIR TABLE if the drop deleted a table’s .TMD file at the same time the repair tried to read details from the old file that was just removed.
  
  A problem could also occur when DROP TABLE tried to remove all files belonging to a table at the same time REPAIR TABLE had just deleted the table’s .TMD file. (Bug #54486)
- After compilation from source, all header files were installed in the same directory, even those that should be installed into subdirectories of the installation include directory. (Bug #51925)
- When mysqld printed crash dump information, it incorrectly indicated that some valid pointers were invalid. (Bug #51817)
MySQL 5.5 Release Notes

- On FreeBSD, if `mysqld` was killed with a SIGHUP signal, it could corrupt InnoDB .ibd files. (Bug #51023, Bug #11758773)

- An assertion could be raised if _1 was inserted into an AUTO_INCREMENT column by a statement writing more than one row. (Bug #50619, Bug #11758417)

- If a client supplied a user name longer than the maximum 16 characters permitted for names stored in the MySQL grant tables, all characters were being considered significant when checking for a match. Historically, only the first 16 characters were used for matching; this behavior was restored. (Bug #49752)

- The `my_seek()` and `my_tell()` functions ignored the `MY_WME` flag when they returned an error, which could cause client programs to hang. (Bug #48451)

- During assignment of values to system variables, legality checks on the value range occurred too late, preventing proper error checking. (Bug #43233)

- If the remote server for a FEDERATED table could not be accessed, queries for the `INFORMATION_SCHEMA.TABLES` table failed. (Bug #35333)

Changes in MySQL 5.5.8 (2010-12-03, General Availability)

- Configuration Notes
- Functionality Added or Changed
- Bugs Fixed

Configuration Notes

- MySQL releases are now built on all platforms using CMake rather than the GNU autotools, so autotools support has been removed. For instructions on building MySQL with CMake, see Installing MySQL from Source. If you are familiar with autotools but not CMake, you might find this transition document helpful: Autotools to CMake Transition Guide. Third-party tools that need to extract the MySQL version number formerly found in configure.in can use the VERSION file. See MySQL Configuration and Third-Party Tools.

Functionality Added or Changed

- **Microsoft Windows:** The time zone tables available at https://dev.mysql.com/downloads/timezones.html have been updated. These tables can be used on systems such as Windows or HP-UX that do not include zoneinfo files. (Bug #40230)

- Support for the IBMDB2I storage engine has been removed. (Bug #58079)

- The following words are no longer reserved words the way they are in earlier MySQL 5.5 releases: SLOW, GENERAL, IGNORE_SERVER_IDS, MASTER_HEARTBEAT_PERIOD (Bug #57899)

- For an upgrade to MySQL 5.5.7 from a previous release, the server exited if the `mysql.proxies_priv` table did not exist, making upgrades inconvenient. Now the server treats a missing proxies_priv table as equivalent to an empty table. However, after starting the server, you should still run `mysql_upgrade` to create the table. (Bug #57551)

- The `autocommit` system variable is enabled by default for all user connections, and the session value can be set for each new connection by setting the `init_connect` system variable to SET autocommit=0. However, this has no effect for users who have the SUPER privilege.
Now the global `autocommit` value can be set at server startup, and this value is used to initialize the session value for all new connections, including those for users with the `SUPER` privilege. The variable is treated as a boolean value so it can be enabled with `--autocommit`, `--autocommit=1`, or `--enable-autocommit`. It can be disabled with `--autocommit=0`, `--skip-autocommit`, or `--disable-autocommit`. (Bug #57316)

- The client/server protocol now includes a `SERVER_QUERY_WAS_SLOW` flag to indicate when a query is slow; that is, when query execution exceeds the value of the `long_query_time` system variable. (Bug #57058)

- Changes to replication in MySQL 5.6 make `mysqlbinlog` output generated by the `--base64-output=ALWAYS` option unusable, so `ALWAYS` is now deprecated and will be an invalid option value in MySQL 5.6. This should not be a significant problem because `--base64-output` values other than `AUTO` are supposed to be used only for debugging, not for production environments.

References: See also: Bug #28760.

- A `--bind-address` option has been added to a number of MySQL client programs: `mysql`, `mysqldump`, `mysqldadmin`, `mysqlbinlog`, `mysqldump`, `mysqlcheck`, `mysqlimport`, and `mysqlshow`. This is for use on a computer having multiple network interfaces, and enables you to choose which interface is used to connect to the MySQL server.

A corresponding change was made to the `mysql_options()` C API function, which now has a `MYSQL_OPT_BIND` option for specifying the interface. The argument is a host name or IP address (specified as a string).

**Bugs Fixed**

- **Security Fix; InnoDB**: A failed `CREATE TABLE` statement for an InnoDB table could allocate memory that was never freed. (Bug #56947)
- **Security Fix**: A security bug was fixed. (Bug #58005)
- **Security Fix**: A security bug was fixed. (Bug #57687)
- **Security Fix**: A security bug was fixed. (Bug #57659)
- **Security Fix**: A security bug was fixed. (Bug #57477)
- **Security Fix**: A security bug was fixed. (Bug #57272)
- **Security Fix**: A security bug was fixed. (Bug #57130)
- **Security Fix**: A security bug was fixed. (Bug #56814)
- **Security Fix**: A security bug was fixed. (Bug #55146, Bug #56287)
- **Security Fix**: A security bug was fixed. (Bug #54484)

- **Incompatible Change**: Previously, tables in the `performance_schema` database had uppercase names. This was incompatible with the `lower_case_table_names` system variable, and caused issues when the variable value was changed after installing or upgrading.

Now `performance_schema` table names are lowercase, so they appear in uniform lettercase regardless of the `lower_case_table_names` setting. References to these tables in SQL statements should be given in lowercase. This is an incompatible change, but provides compatible behavior across different values of `lower_case_table_names`. 
If you upgrade to MySQL 5.5.8 from an earlier version of MySQL 5.5, be sure to run `mysql_upgrade` (and restart the server) to change the names of existing `performance_schema` tables from uppercase to lowercase. If `mysql_upgrade` does not work, use this procedure:

1. Stop `mysqld`.
2. Remove the `performance_schema/*.frm` files from the data directory.
3. Create a separate “dummy” MySQL 5.5.8 installation.
4. Copy the `performance_schema/*.frm` files from the dummy installation to the installation you are upgrading.
5. Restart `mysqld` and run `mysql_upgrade --force` and check that it does not produce errors.
6. Remove the dummy installation.

(Bug #57609)

**Incompatible Change:** The following changes were made to the `performance_schema.threads` table for conformance with the implementation in MySQL 5.6:

- **ID** column: Renamed to `PROCESSLIST_ID`, removed `NOT NULL` from definition.
- **NAME** column: Changed from `VARCHAR(64)` to `VARCHAR(128)`.

(Bug #57154)

**Incompatible Change:** Starvation of `FLUSH TABLES WITH READ LOCK` statements occurred when there was a constant load of concurrent DML statements in two or more connections. Deadlock occurred when a connection that had some table open through a `HANDLER` statement tried to update data through a DML statement while another connection tried to execute `FLUSH TABLES WITH READ LOCK` concurrently.

These problems resulted from the global read lock implementation, which was reimplemented with the following consequences:

- To solve deadlock in event-handling code that was exposed by this patch, the `LOCK_event_metadata` mutex was replaced with metadata locks on events. As a result, DDL operations on events are now prohibited under `LOCK TABLES`. This is an incompatible change.

- The global read lock (`FLUSH TABLES WITH READ LOCK`) no longer blocks DML and DDL on temporary tables. Before this patch, server behavior was not consistent in this respect: In some cases, DML/DDL statements on temporary tables were blocked; in others, they were not. Since the main use cases for `FLUSH TABLES WITH READ LOCK` are various forms of backups and temporary tables are not preserved during backups, the server now consistently permits DML/DDL on temporary tables under the global read lock.

- The set of thread states has changed:
  - `Waiting for global metadata lock` is replaced by `Waiting for global read lock`.
  - Previously, `Waiting for release of readlock` was used to indicate that DML/DDL statements were waiting for release of a read lock and `Waiting to get readlock` was used to
indicate that `FLUSH TABLES WITH READ LOCK` was waiting to acquire a global read lock. Now `Waiting for global read lock` is used for both cases.

- Previously, `Waiting for release of readlock` was used for all statements that caused an explicit or implicit commit to indicate that they were waiting for release of a read lock and `Waiting for all running commits to finish` was used by `FLUSH TABLES WITH READ LOCK`. Now `Waiting for commit lock` is used for both cases.

- There are two other new states, `Waiting for trigger metadata lock` and `Waiting for event metadata lock`.

(Bug #57006, Bug #11764195, Bug #54673, Bug #11762116)

- **Performance; InnoDB**: Improved concurrency when several `ANALYZE TABLE` or `SHOW TABLE STATUS` statements are run simultaneously for InnoDB tables. (Bug #53046)

- **InnoDB**: Values could be truncated in certain `INFORMATION_SCHEMA` columns, such as `REFERENTIAL_CONSTRAINTSREFERENCED_TABLE_NAME` and `KEY_COLUMN_USAGEREFERENCED_TABLE_NAME`. (Bug #57960)

- **InnoDB**: For an InnoDB table created with `ROW_FORMAT=COMPRESSED` or `ROW_FORMAT=DYNAMIC`, a query using the `READ UNCOMMITTED` isolation level could cause the server to stop with an assertion error, if `BLOB` or other large columns that use off-page storage were being inserted at the same time. (Bug #57799)

- **InnoDB**: The server could stop with an assertion error on Windows Vista and Windows 7 systems. (Bug #57720)

- **InnoDB**: A followup fix to bug #54678. `TRUNCATE TABLE` could still cause a crash (assertion error) in the debug version of the server. (Bug #57700)

  References: See also: Bug #54678.

- **InnoDB**: If the MySQL Server crashed immediately after creating an InnoDB table, the server could quit with a `signal 11` during the subsequent restart. The issue could occur if the server halted after InnoDB created the primary index for the table, but before the index definition was recorded in the MySQL metadata. (Bug #57616)

  References: This issue is a regression of: Bug #54582.

- **InnoDB**: The InnoDB system tablespace could grow continually for a server under heavy load. (Bug #57611)

- **InnoDB**: Heavy concurrent updates of a `BLOB` column in an InnoDB table could cause a hang. (Bug #57579)

- **InnoDB**: Turning off the `innodb_stats_on_metadata` option could prevent the `ANALYZE TABLE` statement from updating the cardinality statistics of InnoDB tables. (Bug #57252)

- **InnoDB**: A query for an InnoDB table could return the wrong value if a column value was changed to a different case, and the column had a case-insensitive index. (Bug #56680, Bug #11763909)

- **InnoDB**: An existing InnoDB table could be switched to `ROW_FORMAT=COMPRESSED` implicitly by a `KEY_BLOCK_SIZE` clause in an `ALTER TABLE` statement. Now, the row format is only switched to compressed if there is an explicit `ROW_FORMAT=COMPRESSED` clause on the `ALTER TABLE` statement.

  Any valid, nondefault `ROW_FORMAT` parameter takes precedence over `KEY_BLOCK_SIZE` when both are specified. `KEY_BLOCK_SIZE` only enables `ROW_FORMAT=COMPRESSED` if `ROW_FORMAT` is not specified.
on either the `CREATE_TABLE` or `ALTER_TABLE` statement, or is specified as `DEFAULT`. In case of a conflict between the `KEY_BLOCK_SIZE` and `ROW_FORMAT` clauses, the `KEY_BLOCK_SIZE` is ignored if `innodb_strict_mode` is off, and the statement causes an error if `innodb_strict_mode` is on. (Bug #56632)

- InnoDB: The clause `KEY_BLOCK_SIZE=0` is now permitted on `CREATE_TABLE` and `ALTER_TABLE` statements for InnoDB tables, regardless of the setting of `innodb_strict_mode`. The zero value has the effect of resetting the `KEY_BLOCK_SIZE` table parameter to its default value, depending on the `ROW_FORMAT` parameter, as if it had not been specified. That default is 8 if `ROW_FORMAT=COMPRESSED`. Otherwise, `KEY_BLOCK_SIZE` is not used or stored with the table parameters.

As a consequence of this fix, `ROW_FORMAT=FIXED` is not permitted when `innodb_strict_mode` is enabled. (Bug #56628)

- InnoDB: A large number of foreign key declarations could cause the output of the `SHOW CREATE STATEMENT` statement to be truncated. (Bug #56143)

- InnoDB: Clarified the message when a `CREATE_TABLE` statement fails because a foreign key constraint does not have the required indexes. (Bug #16290)

- Partitioning: In-place `ALTER_TABLE` operations (that do not involve a table copy) on a partitioned table could leave the table in an unusable state. (Bug #57985)

- Partitioning: In debug builds, an `INSERT ... ON DUPLICATE KEY UPDATE col_name = 0` statement on an `AUTO_INCREMENT` column caused the server to crash. (Bug #57890)

- Partitioning: Issuing `ALTER_TABLE ... ADD PRIMARY KEY` on a partitioned InnoDB table could cause the MySQL Server to crash. (Bug #57778)

- Replication: Concurrent statements using a stored function and a `DROP_DATABASE` statement that caused the same stored function to be dropped could cause statement-based replication to fail. This problem is resolved by making sure that `DROP_DATABASE` takes an exclusive metadata lock on all stored functions and stored procedures that it causes to be dropped. (Bug #57663)

References: See also: Bug #30977.

- Replication: When `STOP_SLAVE` is issued, the slave SQL thread rolls back the current transaction and stops immediately if the transaction updates only tables which use transactional storage engines. Previously, this occurred even when the transaction contained `CREATE_TEMPORARY_TABLE` statements, `DROP_TEMPORARY_TABLE` statements, or both, although these statements cannot be rolled back. Because temporary tables persist for the lifetime of a user session (in the case, the replication user), they remain until the slave is stopped or reset. When the transaction is restarted following a subsequent `START_SLAVE` statement, the SQL thread aborts with an error that a temporary table to be created (or dropped) already exists (or does not exist, in the latter case).

Following this fix, if an ongoing transaction contains `CREATE_TEMPORARY_TABLE` statements, `DROP_TEMPORARY_TABLE` statements, or both, the SQL thread now waits until the transaction ends, then stops. (Bug #56118, Bug #11763416)

- Replication: If there exist both a temporary table and a nontemporary table having the same name, updates normally apply only to the temporary table, with the exception of a `CREATE_TABLE ... SELECT` statement that creates a nontemporary table having the same name as an existing temporary
table. When such a statement was replicated using the `MIXED` logging format, and the statement was unsafe for row-based logging, updates were misapplied to the temporary table.

Updates were also applied wrongly when a temporary table that used a transactional storage engine was dropped inside a transaction, followed by updates within the same transaction to a nontemporary table having the same name. (Bug #55478)

References: See also: Bug #47899, Bug #55709.

- **Replication**: When making changes to relay log settings using `CHANGE MASTER TO`, the I/O cache was not cleared. This could result in replication failure when the slave attempted to read stale data from the cache and then stopped with an assertion. (Bug #55263)

- **Replication**: Replication of `SET` and `ENUM` columns represented using more than 1 byte (that is, `SET` columns with more than 8 members and `ENUM` columns with more than 256 constants) between platforms using different endianness failed when using the row-based format. This was because columns of these types are represented internally using integers, but the internal functions used by MySQL to handle them treated them as strings. (Bug #52131)

References: See also: Bug #53528.

- **Replication**: Trying to read from a binary log containing a log event of an invalid type caused the slave to crash. (Bug #38718)

- **Replication**: When replicating the `mysql.tables_priv` table, the `Grantor` column was not replicated, and was thus left empty on the slave. (Bug #27606)

- **Microsoft Windows**: The Windows sample option files contained values more appropriate for Linux. (Bug #50021)

- **Solaris**: `SET GLOBAL debug` could cause a crash on Solaris if the server failed to open the trace file. (Bug #57274)

- **Solaris**: The `ARCHIVE` storage engine could not be loaded with DTrace enabled on Solaris. (Bug #47739, Bug #11755901)

- Setting the `read_only` system variable at server startup did not work. (Bug #58669)

- `mysql_upgrade` failed after an upgrade from MySQL 5.1. (Bug #58514)

- When configuring the build with `-DBUILD_CONFIG=mysql_release` and building with Visual Studio Express, the build failed if `signtool.exe` was not present. (Bug #58313)

- With `CMake` 2.8.3, the `-DBUILD_CONFIG=mysql_release` option did not work. (Bug #58272)

- When configuring the build with `-DBUILD_CONFIG=mysql_release` on Linux, `libaio` is required, but the error message if it was missing was uninformative. (Bug #58227)

- Use of `NAME_CONST()` in a `HAVING` clause caused a server crash. (Bug #58199)

- `BETWEEN` did not use indexes for `DATE` or `DATETIME` columns. (Bug #58190)

- Memory was allocated in `fn_expand()` for storing path names, but not freed anywhere. (Bug #58173)

- In debug builds, inserting a `FLOAT` value into a `CHAR(0)` column could cause a server crash. (Bug #58137)

- Failure to create a thread to handle a user connection could cause a server crash. (Bug #58080)
• During configuration, ADD_VERSION_INFO in cmake/mysql_version.cmake failed if LINK_FLAGS was modified. (Bug #58074)

• The Performance Schema did not count I/O for the binary log file. (Bug #58052)

• Several compilation problems were fixed. (Bug #57992, Bug #57993, Bug #57994, Bug #57995, Bug #57996, Bug #57997, Bug #58057)

• After creation of a table with two foreign key constraints, the INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS table displayed only one of them. (Bug #57904)

• Incorrect error handling raised an assertion if character set conversion wrapped an item that failed. (Bug #57882)

• In debug builds, a missing DBG_FALSE macro in sql/client.c caused mysql to be unable to connect to the server. (Bug #57744)

• Clients using a client library older than MySQL 5.5.7 suffered loss of connection after executing mysql_change_user() while connected to a 5.5.7 server. (Bug #57689)

• The MySQL-shared RPM package failed to provide the lowercase virtual identifier 'mysql-shared' in the RPM 'Provides' tags (usually used for backward compatibility). (Bug #57596)

• SHOW PROCESSLIST displayed non-ASCII characters improperly. (Bug #57306)

• Passing a string that was not null-terminated to UpdateXML() or ExtractValue() caused the server to fail with an assertion. (Bug #57279, Bug #11764447)

• In debug builds, an assertion could be raised during conversion of strings to floating-point values. (Bug #57203)

• If the file_name argument to the --defaults-file or --defaults-extra-file option was not a full path name, it could be interpreted incorrectly in some contexts and cause a server crash. Now the file_name argument is interpreted as relative to the current working directory if given as a relative path name rather than as a full path name. (Bug #57108)

• A user with no privileges on a stored routine or the mysql.proc table could discover the routine's existence. (Bug #57061)

• Queries executed using the Index Merge access method and a temporary file could return incorrect results. (Bug #56862)

• Previously, a negative timeout value to GET_LOCK() was interpreted as infinite timeout, but only on Windows. This is now the case on all platforms. (Bug #56836, Bug #11764049)

• The server could crash inside memcpy() when reading certain Performance Schema tables. (Bug #56761, Bug #58003)

• The server could crash as a result of accessing freed memory when populating INFORMATION_SCHEMA.VIEWS if a view could not be opened properly. (Bug #56540)

• Valgrind warnings about overlapping memory when double-assigning the same variable were corrected. (Bug #56138)

• If a STOP SLAVE statement was issued while the slave SQL thread was executing a statement that invoked the SLEEP() function, both statements hung. (Bug #56096)

• OPTIMIZE TABLE for InnoDB tables could raise an assertion. (Bug #55930)
MySQL 5.5 Release Notes

- Warnings raised by a trigger were not cleared upon successful completion. Now warnings are cleared if the trigger completes successfully, per the SQL standard. (Bug #55850)

- For CMake builds, some parts of the source were unnecessarily compiled twice if the embedded server was built. (Bug #55647)

- In debug builds, an assertion could be raised if a send_eof() method was called after an error occurred. (Bug #54812)

- Boolean command options caused an error if given with an option value and the loose- option prefix. (Bug #54569)

- An error in a stored procedure could leave the session in a different default database. (Bug #54375)

- The CMake “wrapper” for configure (configure.pl) did not handle the --with-comment option properly. (Bug #52275)

- Grouping by a TIME_TO_SEC() function result could cause a server crash or incorrect results. Grouping by a function returning a BLOB could cause an unexpected “Duplicate entry” error and incorrect result. (Bug #52160)

- The find_files() function used by SHOW statements performed redundant and unnecessary memory allocation. (Bug #51208)

- A failed RENAME TABLE operation could prevent a FLUSH TABLES WITH READ LOCK from completing. (Bug #47924)

- Error messages for several delegate-related initialization error conditions that should not occur were changed to help identify the area of failure and to instruct the user to file a bug report if they do occur. A delegate is a set of internal data structures and algorithms. (Bug #47027)

- On file systems with case insensitive file names, and lower_case_table_names=2, the server could crash due to a table definition cache inconsistency. (Bug #46941)

- DELETE with FORCE INDEX did not always force the index. (Bug #42209, Bug #11751370)

- Handling of host name lettercase in GRANT statements was inconsistent. (Bug #36742)

- SET NAMES utf8 COLLATE utf8_sinhala_ci did not work. (Bug #26474)

- The utf16_bin collation uses code-point order, not byte-by-byte order, as described at Unicode Character Sets. (The order was byte-by-byte in MySQL 5.5.7.)

Changes in MySQL 5.5.7 (2010-10-14, Release Candidate)

- Authentication Notes
- Configuration Notes
- Functionality Added or Changed
- Bugs Fixed

Authentication Notes

- MySQL now supports pluggable authentication, such that the server uses plugins to authenticate incoming client connections. Client programs load an authentication plugin that interacts properly with the corresponding server plugin.

Pluggable authentication enables two important capabilities, external authentication and proxy users:
MySQL 5.5 Release Notes

- Pluggable authentication makes it possible for clients to connect to the MySQL server with credentials that are appropriate for authentication methods other than native authentication based on passwords stored in the `mysql.user` table. For example, plugins can be created to use external authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

- If a user is permitted to connect, an authentication plugin can return to the server a user name different from the name of the connecting user, to indicate that the connecting user is a proxy for another user. While the connection lasts, the proxy user is treated, for purposes of access control, as having the privileges of a different user. In effect, one user impersonates another.

Pluggable authentication entails these changes:

- For user specifications in the `CREATE USER` and `GRANT` statements, there is a new `IDENTIFIED WITH` clause for specifying the authentication plugin.

- For the `mysql.user` table, there are new columns that specify plugin information. The `plugin` column, if nonempty, indicates which plugin authenticates connections for an account. The `authentication_string` column is a string that the server passes to the plugin for connections by clients that authenticate using the plugin.

- For the `mysql_options()` C API function, there are new `MYSQL_DEFAULT_AUTH` and `MYSQL_PLUGIN_DIR` options that enable client programs to load authentication plugins.

- For the `mysql` client, there are new `--default-auth` and `--plugin-dir` options for specifying which authentication plugin and plugin directory to use. These options will be added to other clients in future releases.

- For the `mysqltest` client, there is a new `--plugin-dir` option for specifying which plugin directory to use, and a new `connect()` command argument to specify an authentication plugin.

- For the server plugin API, there is a new `MYSQL_AUTHENTICATION_PLUGIN` plugin type.

- A new client plugin API enables client programs to manage plugins.

- The native authentication methods previously supported in MySQL have been reimplemented as plugins. These methods provide against the current password format and pre-MySQL 4.1.1 format that uses shorter password hash values. This change reimplements the native methods as plugins that cannot be unloaded. Existing clients authenticate as before with no changes needed. In particular, starting the server with the `--secure-auth` option still prevents clients that have pre-4.1.1 password hashes from connecting, and `--skip-grant-tables` still disables all password checking.

Proxy user capability entails these changes:

- There is a new `PROXY` privilege that can be managed with the `GRANT` and `REVOKE` statements.

- The new `proxy_user` and `external_user` system variables indicate whether the current session uses proxying.

- A new `mysql.proxies_priv` grant table records proxy information for MySQL accounts.

Due to these changes, the server requires that a new grant table, `proxies_priv`, be present in the `mysql` database. If you are upgrading to MySQL 5.5.7 from a previous MySQL release rather than
performing a new installation, the server will find that this table is missing and exit during startup with the following message:

```
Table 'mysql.proxies_priv' doesn't exist
```

To create the `proxies_priv` table, start the server with the `--skip-grant-tables` option to cause it to skip the normal grant table checks, then run `mysql_upgrade`. For example:

```
shell> mysqld --skip-grant-tables &
shell> mysql_upgrade
```

Then stop the server and restart it normally.

You can specify other options on the `mysqld` command line if necessary. Alternatively, if your installation is configured so that the server normally reads options from an option file, use the `--defaults-file` option to specify the file (enter each command on a single line):

```
shell> mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --skip-grant-tables &
shell> mysql_upgrade
```

With the `--skip-grant-tables` option, the server does no password or privilege checking, so any client can connect and effectively have all privileges. For additional security, enable the `skip_networking` system variable as well to prevent remote clients from connecting.

**Note**

The upgrade problem just described is fixed in MySQL 5.5.8. The server treats a missing `proxies_priv` table as equivalent to an empty table.

For additional information, consult these references:

- Information about pluggable authentication, including installation and usage instructions: [Pluggable Authentication](#).
- Information about proxy users: [Proxy Users](#).
- Information about the server and client plugin API: [Writing Plugins](#).
- Information about the C API functions for managing client plugins: See [C API Client Plugin Functions](#).
- Information about current restrictions on the use of pluggable authentication, including which connectors support which plugins: See [Restrictions on Pluggable Authentication](#). Third-party connector developers should read that section to determine the extent to which a connector can take advantage of pluggable authentication capabilities and what steps to take to become more compliant.

---

**Configuration Notes**

- MySQL releases now are built using CMake rather than the GNU autotools. Accordingly, the instructions for installing MySQL from source have been updated to discuss how to build MySQL using CMake. See [Installing MySQL from Source](#). If you are familiar with autotools but not CMake, you might find these transition instructions helpful: [Autotools to CMake Transition Guide](#).

The build process is now similar enough on all platforms, including Windows, that there are no longer sections dedicated to notes for specific platforms.

The default installation layout when compiling from source now matches that used for binary distributions. You will notice these differences for installations from source distributions:
• **mysqld** is installed in *bin*, not *libexec*.
• **mysql_install_db** is installed in *scripts*, not *bin*.
• The data directory is *data*, not *var*.

The **make_binary_distribution** and **make_win_bin_dist** scripts are now obsolete. To create a binary distribution, use **make package**.

### Functionality Added or Changed

• **Incompatible Change:** Previously, if you flushed the logs using **FLUSH LOGS** or **mysqladmin flush-logs** and **mysqld** was writing the error log to a file (for example, if it was started with the **--log-error** option), it renamed the current log file with the suffix **-old**, then created a new empty log file. This had the problem that a second log-flushing operation thus caused the original error log file to be lost unless you saved it under a different name. For example, you could use the following commands to save the file:

```shell
shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory
```

To avoid the preceding file-loss problem, renaming no longer occurs. The server merely closes and reopens the log file. To rename the file, you can do so manually before flushing. Then flushing the logs reopens a new file with the original file name. For example, you can rename the file and create a new one using the following commands:

```shell
shell> mv host_name.err host_name.err-old
shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory
```

(Bug #29751)

References: See also: Bug #56821.

• The unused and undocumented **thread_pool_size** system variable was removed. (Bug #57338)

• The **pstack** library was nonfunctional and has been removed, along with the **--with-pstack** option for **configure** and the **--enable-pstack** option for **mysqld**. (Bug #57210)

• Added a new **SHOW PROCESSLIST** state, **Waiting for query cache lock**. This indicates that a session is waiting to take the query cache lock while it performs some query cache operation. (Bug #56822)

• A new status variable, **Handler_read_last**, displays the number of requests to read the last key in an index. With **ORDER BY**, the server issues a first-key request followed by several next-key requests, whereas with **ORDER BY DESC**, the server issues a last-key request followed by several previous-key requests. (Bug #52312)

• Previously, the server supported values of **OFF**, **ON**, and **FORCE** for the **--plugin_name=value** option format for controlling plugin loading using an option named after the plugin. Such options now support a **FORCE_PLUS_PERMANENT** value. This value is like **FORCE**, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to do so with **UNINSTALL PLUGIN**, an error occurs. See Installing and Uninstalling Plugins.

In addition, the **INFORMATION_SCHEMA.PLUGINS** table now has a **LOAD_OPTION** column that indicates the plugin loading value (**OFF**, **ON**, **FORCE**, or **FORCE_PLUS_PERMANENT**). See The **INFORMATION_SCHEMA PLUGINS** Table.
Bugs Fixed

- **Security Fix; Incompatible Change; InnoDB:** Issuing `TRUNCATE TABLE` and examining the same table's information in the `INFORMATION_SCHEMA` database at the same time could cause a crash in the debug version of the server.

  As a result of this change, InnoDB always uses the fast truncation technique, equivalent to `DROP TABLE` and `CREATE TABLE`. It no longer performs a row-by-row delete for tables with parent-child foreign key relationships. `TRUNCATE TABLE` returns an error for such tables. Modify your SQL to issue `DELETE FROM table_name` for such tables instead. (Bug #54678)

- **Security Fix:** The server crashed for assignment of values of types other than `Geometry` to items of type `GeometryCollection` (`MultiPoint`, `MultiCurve`, `MultiSurface`). Now the server checks the value type and fails with `bad geometry value` if it detects incorrect parameters. (Bug #55531)

- **Security Fix:** The `CONVERT_TZ()` function crashed the server when the timezone argument was an empty `SET` column value. (Bug #55424)

- **Security Fix:** `EXPLAIN EXTENDED` caused a server crash with some prepared statements. (Bug #54494)

- **Security Fix:** In prepared-statement mode, `EXPLAIN` for a `SELECT` from a derived table caused a server crash. (Bug #54488)

- **Security Fix:** The `PolyFromWKB()` function could crash the server when improper WKB data was passed to the function. (Bug #51875, Bug #11759554)

- **Incompatible Change; Replication:** The behavior of `INSERT DELAYED` statements when using statement-based replication has changed as follows:

  Previously, when using `binlog_format=STATEMENT`, a warning was issued in the client when executing `INSERT DELAYED`; now, no warning is issued in such cases.

  Previously, when using `binlog_format=STATEMENT`, `INSERT DELAYED` was logged as `INSERT DELAYED`; now, it is logged as an `INSERT`, without the `DELAYED` option.

  However, when `binlog_format=STATEMENT`, `INSERT DELAYED` continues to be executed as `INSERT` (without the `DELAYED` option). The behavior of `INSERT DELAYED` remains unchanged when using `binlog_format=ROW`. `INSERT DELAYED` generates no warnings, is executed as `INSERT DELAYED`, and is logged using the row-based format.

  This change also affects `binlog_format=MIXED`, because `INSERT DELAYED` is no longer considered unsafe. Now, when the logging format is `MIXED`, no switch to row-based logging occurs. This means that the statement is logged as a simple `INSERT` (that is, without the `DELAYED` option), using the statement-based logging format. (Bug #54579, Bug #11762035)

  References: See also: Bug #56678, Bug #11763907, Bug #57666. This issue is a regression of: Bug #39934, Bug #11749859.

- **Incompatible Change:** `HANDLER ... READ` statements that invoke stored functions can cause replication errors. Such statements are now disallowed and result in an `ER_NOT_SUPPORTED_YET` error. (Bug #54920)

- **Important Change; InnoDB:** The server could crash with an assertion, possibly leading to data corruption, while updating the primary key of an InnoDB table containing `BLOB` or other columns requiring off-page storage. This fix applies to the InnoDB Plugin in MySQL 5.1, and to InnoDB 1.1 in MySQL 5.5. (Bug #55543)
MySQL 5.5 Release Notes

- **Performance; InnoDB**: The master **InnoDB** background thread could sometimes cause transient performance drops due to excessive flushing of modified pages. (Bug #56933)

- **InnoDB; Replication**: If the master had `innodb_file_per_table=OFF`, `innodb_file_format=Antelope` (and `innodb_strict_mode=OFF`), or both, certain `CREATE TABLE` options, such as `KEY_BLOCK_SIZE`, were ignored. This could permit the master to avoid raising `ER_TOO_BIG_ROWSIZE` errors.

  However, the ignored `CREATE TABLE` options were still written into the binary log, so that, if the slave had `innodb_file_per_table=ON` and `innodb_file_format=Barracuda`, it could encounter an `ER_TOO_BIG_ROWSIZE` error while executing the record from the log, causing the slave SQL thread to abort and replication to fail.

  In the case where the master was running MySQL 5.1 and the slave was MySQL 5.5 (or later), the failure occurred when both master and slave were running with default values for `innodb_file_per_table` and `innodb_file_format`. This could cause problems during upgrades.

  To address this issue, the default values for `innodb_file_per_table` and `innodb_file_format` are reverted to the MySQL 5.1 default values—that is, `OFF` and `Antelope`, respectively. (Bug #56318, Bug #11763590)

- **InnoDB**: The server could crash with a high volume of concurrent `LOCK TABLES` and `UNLOCK TABLES` statements. (Bug #57345)

- **InnoDB**: **InnoDB** incorrectly reported an error when a cascading foreign key constraint deleted more than 250 rows. (Bug #57255)

- **InnoDB**: If the server crashed during an `ALTER TABLE` operation on an **InnoDB** table, examining the table through `SHOW CREATE TABLE` or querying the `INFORMATION_SCHEMA` tables could cause the server to stop with an assertion error. (Bug #56982)

- **InnoDB**: The output from the `SHOW ENGINE INNODB STATUS` command can now be up to 1MB. Formerly, it was truncated at 64KB. Monitoring applications that parse that output can check whether it exceeds this new, larger limit by testing the `Innodb_truncated_status_writes` status variable. (Bug #56922)

- **InnoDB**: For debug builds, a `SELECT ... FOR UPDATE` statement affecting a range of rows in an **InnoDB** table could cause a server crash. (Bug #56716)

- **InnoDB**: Improved the performance of `UPDATE` operations on **InnoDB** tables, when only non-indexed columns are changed. (Bug #56340)

- **InnoDB**: When MySQL was restarted after a crash with the option `innodb_force_recovery=6`, certain queries against **InnoDB** tables could fail, depending on `WHERE` or `ORDER BY` clauses.

  Usually in such a disaster recovery situation, you dump the entire table using a query without these clauses. During advanced troubleshooting, you might use queries with these clauses to diagnose the position of the corrupted data, or to recover data following the corrupted part. (Bug #55832)

- **InnoDB**: The `CHECK TABLE` command could cause a time-consuming verification of the **InnoDB** adaptive hash index memory structure. Now this extra checking is only performed in binaries built for debugging. (Bug #55716)

- **InnoDB**: A heavy workload with a large number of threads could cause a crash in the debug version of the server. (Bug #55699)

- **InnoDB**: The server could crash on shutdown, if started with `--innodb-use-system-malloc=0`. (Bug #55627)
MySQL 5.5 Release Notes

- **InnoDB**: If the server crashed during a `RENAME TABLE` operation on an InnoDB table, subsequent crash recovery could fail. This problem could also affect an `ALTER TABLE` statement that caused a rename operation internally. (Bug #55027)

- **InnoDB**: Setting the `PACK_KEYS=0` table option for an InnoDB table prevented new indexes from being added to the table. (Bug #54606)

- **InnoDB**: The server could crash when opening an InnoDB table linked through foreign keys to a long chain of child tables. (Bug #54582, Bug #11762038)

- **InnoDB**: Changed the locking mechanism for the InnoDB data dictionary during `ROLLBACK` operations, to improve concurrency for `REPLACE` statements. (Bug #54538)

- **InnoDB**: With multiple buffer pools enabled, InnoDB could flush more data from the buffer pool than necessary, causing extra I/O overhead. (Bug #54346)

- **InnoDB**: InnoDB transactions could be incorrectly committed during recovery, rather than rolled back, if the server crashed and was restarted after performing `ALTER TABLE ... ADD PRIMARY KEY` on an InnoDB table, or some other operation that involves copying the entire table. (Bug #53756)

- **InnoDB**: InnoDB startup messages now include the start and end times for buffer pool initialization, and the total buffer pool size. (Bug #48026)

- **Partitioning**: An `ALTER TABLE` statement acting on table partitions that failed while the affected table was locked could cause the server to crash. (Bug #56172)

- **Partitioning**: Multiple-table `UPDATE` statements involving a partitioned MyISAM table could cause this table to become corrupted. Not all tables affected by the `UPDATE` needed to be partitioned for this issue to be observed. (Bug #55458)

- **Partitioning**: `EXPLAIN PARTITIONS` returned bad estimates for range queries on partitioned MyISAM tables. In addition, values in the `rows` column of `EXPLAIN PARTITIONS` output did not take partition pruning into account. (Bug #53806, Bug #46754)

- **Replication**: `SET PASSWORD` caused failure of row-based replication between a MySQL 5.1 master and a MySQL 5.5 slave.

  This fix makes it possible to replicate `SET PASSWORD` correctly, using row-based replication between a master running MySQL 5.1.53 or a later MySQL 5.1 release to a slave running MySQL 5.5.7 or a later MySQL 5.5 release. (Bug #57098)

  References: See also: Bug #55452, Bug #57357.

- **Replication**: Prepared multiple-row `INSERT DELAYED` statements were written to the binary log without `DELAYED`. (Bug #56678, Bug #11763907)

  References: This issue is a regression of: Bug #54579, Bug #11762035.

- **Replication**: Backticks used to enclose identifiers for savepoints were not preserved in the binary log, which could lead to replication failure when the identifier, stripped of backticks, could be misinterpreted, causing a syntax or other error.

  This could cause problems with MySQL application programs making use of generated savepoint IDs. If, for instance, `java.sql.Connection.setSavepoint()` is called without any parameters, Connector/J automatically generates a savepoint identifier consisting of a string of hexadecimal digits \(0-F\) encased in backtick (`\`\`) characters. If such an ID took the form `\`NeN\` (where \(N\) represents a string of the decimal digits \(0-9\), and \(e\) is a literal uppercase or lowercase “E” character). Removing the backticks when writing the identifier into the binary log left behind a substring which the slave MySQL server tried to interpret as
a floating point number, rather than as an identifier. The resulting syntax error caused loss of replication. (Bug #55961)

References: See also: Bug #55962.

- **Replication:** When a slave tried to execute a transaction larger than the slave's value for `max_binlog_cache_size`, it crashed. This was caused by an assertion that the server should roll back only the statement but not the entire transaction when the error `ER_TRANS_CACHE_FULL` occurred. However, the slave SQL thread always rolled back the entire transaction whenever any error occurred, regardless of the type of error. (Bug #55375)

- **Replication:** The error message for `ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE` was hard coded in English in `sql_yacc.yy`, so that it could not be translated in `errmsg.txt` for other languages.

Additionally, this same error message was used for three separate error conditions:

- When the heartbeat period exceeded the value of `slave_net_timeout`.
- When the heartbeat period was nonnegative but shorter than 1 millisecond.
- When the value for the heartbeat period was either negative or greater than the maximum permitted.

These issues have been addressed as follows:

- By using three distinct error messages for each of the conditions listed previously.
- By moving the sources for these error messages into the `errmsg-utf8.txt` file to facilitate translations into languages other than English.

(Bug #54144)

- **OS X:** On OS X, `RENAME TABLE` raised an assertion if the `lower_case_table_names` system variable was 2 and the old table name was specified in uppercase. (Bug #56595)

- **Microsoft Windows:** When `mysqld` was started as a service on Windows and `mysqld` was writing the error log to a file (for example, if it was started with the `--log-error` option), the server reassigned the file descriptors of the `stdout` and `stderr` streams to the file descriptor of the log file. On Windows, if `stdout` or `stderr` is not associated with an output stream, the file descriptor returns a negative value. Previously, this caused the file descriptor reassignment to fail and the server to abort. To avoid this problem on Windows, the server now first assigns the `stdout` and `stderr` streams to the log file stream by opening this file. This causes the `stdout` and `stderr` file descriptors to be nonzero and the server can successfully reassign them to the file descriptor of the log file. (Bug #56821)

References: This issue is a regression of: Bug #29751.

- **Solaris:** On Solaris with `gcc 3.4.6`, `ha_example.so` was built with DTrace support even if the server was not, causing plugin loading problems. (Bug #55966)

- **Solaris:** A bad `DBUG_PRINT` statement in `fill_schema_schemata()` caused server crashes on Solaris. (Bug #54478)

- `mysqlld` segfaulted if compiled with `gcc 4.6`. (Bug #61509, Bug #14548064)

- A buffer overrun could occur when formatting `DBL_MAX` numbers. (Bug #57209)

- `COALESCE()` in MySQL 5.5 could return a result different from MySQL 5.1 for some arguments. (Bug #57095)

- Constant `SUBTIME()` expressions could return incorrect results. (Bug #57039)
• The server could crash inside `memcpy()` when reading certain Performance Schema tables. (Bug #56761, Bug #58003)

• Deadlock could occur for heavily concurrent workloads consisting of a mix of DML, DDL, and `FLUSH TABLES` statements affecting the same set of tables. (Bug #56715, Bug #56404, Bug #56405)

• Memory leaks detected by Valgrind were corrected. (Bug #56709)

• Performance for certain read-only queries, in particular `point_select`, had deteriorated compared to previous versions. (Bug #56585)

• It was possible to compile `mysqld` with Performance Schema support but with a dummy atomic-operations implementation, which caused a server crash. This problem does not affect binary distributions. It is helpful as a safety measure for users who build MySQL from source. (Bug #56521)

• Executing `XA END` after an XA transaction was already ended raised an assertion. (Bug #56448)

• A `SELECT` statement could produce a number of rows different from a `CREATE TABLE ... SELECT` that was supposed to select the same rows. (Bug #56423)

References: This issue is a regression of: Bug #38999.

• The server crashed if a table maintenance statement such as `ANALYZE TABLE` or `REPAIR TABLE` was executed on a `MERGE` table and opening and locking a child table failed. For example, this could happen if a child table did not exist or if a lock timeout happened while waiting for a conflicting metadata lock to disappear.

As a consequence of this bug fix, it is now possible to use `CHECK TABLE` for log tables without producing an error. (Bug #56422, Bug #56494)

• `ALTER TABLE` on a `MERGE` table could result in deadlock with other connections. (Bug #56292, Bug #57002)

• Comparison of one `STR_TO_DATE()` result with another could return incorrect results. (Bug #56271)

• The `tcmalloc` library was missing from binary MySQL packages for Linux. (Bug #56267)

• An `INSERT DELAYED` statement for a `MERGE` table could cause deadlock if it occurred as part of a transaction or under `LOCK TABLES`, and there was a concurrent DDL or `LOCK TABLES ... WRITE` statement that tried to lock one of its underlying tables. (Bug #56251)

• In debug builds, the server raised an assertion for `DROP DATABASE` in installations that had an outdated or corrupted `mysql.proc` table. For example, this affected `mysql_upgrade` when run as part of a MySQL 5.1 to 5.5 upgrade. (Bug #56137)

• A negative `TIME` argument to `MIN()` or `MAX()` could raise an assertion. (Bug #56120)

• The ordering for supplementary characters in the `utf8mb4_bin`, `utf16_bin`, and `utf32_bin` collations was incorrect. (Bug #55980)

• Short (single-letter) command-line options did not work. (Bug #55873)

• If a query specified a `DATE` or `DATETIME` value in a format different from 'YYYY-MM-DD hh:mm:ss', a greater-than-or-equal (>=) condition matched only greater-than values in an indexed `TIMESTAMP` column. (Bug #55777, Bug #50774, Bug #11758558)

• If a view was named as the destination table for `CREATE TABLE ... SELECT`, the server produced a warning whether or not `IF NOT EXISTS` was used. Now it produces a warning only when `IF NOT EXISTS` is used, and an error otherwise. (Bug #55777)
MySQL 5.5 Release Notes

- **CASE** expressions with a mix of operands in different character sets sometimes returned incorrect results. (Bug #55744)

- After the fix for Bug #39653, the shortest available secondary index was used for full table scans. The primary clustered key was used only if no secondary index could be used. However, when the chosen secondary index includes all columns of the table being scanned, it is better to use the primary index because the amount of data to scan is the same but the primary index is clustered. This is now taken into account. (Bug #55656)

  References: See also: Bug #39653.

- The server entered an infinite loop with high CPU utilization after an error occurred during flushing of the I/O cache. (Bug #55629)

- For the Performance Schema, the default number of rwlock classes was increased to 30, and the default number of rwlock and mutex instances was increased to 1 million. These changes were made to account for the volume of data instrumented when the InnoDB storage engine is used (because of the InnoDB buffer pool). (Bug #55576)

- If there was an active SELECT statement, an error arising during trigger execution could cause a server crash. (Bug #55421)

- Assignment of InnoDB scalar subquery results to a variable resulted in unexpected S locks in READ COMMITTED transaction isolation level. (Bug #55382)

- In debug builds, FLUSH TABLE table_list WITH READ LOCK for a MERGE table led to an assertion failure if one of the table’s children was not present in the list of tables to be flushed. (Bug #55273)

- The server could crash during shutdown due to a race condition relating to Performance Schema cleanup. (Bug #55105, Bug #56324)

- Queries involving predicates of the form `const NOT BETWEEN not_indexed_column AND indexed_column` could return incorrect data due to incorrect handling by the range optimizer. (Bug #54802)

- With an UPDATE IGNORE statement including a subquery that was evaluated using a temporary table, an error transferring the data from the temporary was ignored, causing an assertion to be raised. (Bug #54543)

- **MIN()** or **MAX()** with a subquery argument could raise a debug assertion for debug builds or return incorrect data for nondebug builds. (Bug #54465)

- If one session attempted to drop a database containing a table which another session had opened with HANDLER, any instance of ALTER DATABASE, CREATE DATABASE, or DROP DATABASE issued by the latter session produced a deadlock. (Bug #54360)

- INFORMATION_SCHEMA plugins with no deinit() method resulted in a memory leak. (Bug #54253)

- Row subqueries producing no rows were not handled as **UNKNOWN** values in row-comparison expressions. (Bug #54190)

- Setting **SETUP_INSTRUMENTS.TIMER = 'NO'** caused TIMER_WAIT values for aggregations to be NULL rather than 0. (Bug #53874)

- The **max_length** metadata value of MEDIUMBLOB types was reported as 1 byte greater than the correct value. (Bug #53296)
MySQL 5.5 Release Notes

- If an application using the embedded server called `mysql_library_init()` a second time after calling `mysql_library_init()` and `mysql_library_end()` to start and stop the server, the application crashed when reading option files. (Bug #53251)

- The fix for Bug #30234 caused the server to reject the `DELETE tbl_name.*` ... Access compatibility syntax for multiple-table `DELETE` statements. (Bug #53034)

  References: See also: Bug #30234.

- The `plugin_ftparser.h` and `plugin_audit.h` include files are part of the public API/ABI, but were not tested by the ABI check. (Bug #52821)

- An atomic “compare and swap” operation using x86 assembly code (32 bit) could access incorrect data, which would make it work incorrectly and lose the intended atomicity. This in turn caused the MySQL server to work on inconsistent data structures and return incorrect data. That code affected only 32-bit builds; the effect has been observed when `icc` was used to build binaries. With `gcc`, no incorrect results have been observed during tests, so this fix is a proactive one. Other compilers do not use this assembly code. (Bug #52419)

- In `LOAD DATA`, using a `SET` clause to set a column equal to itself caused a server crash. (Bug #51850)

- An assertion could be raised by `DELETE` on a view that referenced another view which in turn (directly or indirectly) referenced more than one table. (Bug #51099)

- In some cases, when the left part of a `NOT IN` subquery predicate was a row and contained `NULL` values, the query result was incorrect. (Bug #51070)

- `CHECKSUM TABLE` for Performance Schema tables could cause a server crash due to uninitialized memory reads. (Bug #50557)

- For some queries, the optimizer produced incorrect results using the Index Merge access method with InnoDB tables. (Bug #50402)

- `EXPLAIN` produced an incorrect `rows` value for queries evaluated using an index scan and that included `LIMIT`, `GROUP BY`, and `ORDER BY` on a computed column. (Bug #50394)

- `mysql_store_result()` and `mysql_use_result()` are not for use with prepared statements and are not intended to be called following `mysql_stmt_execute()`, but failed to return an error when invoked that way. (Bug #47485)

- Using `REPAIR TABLE tbl_name USE_FRM` on a `MERGE` table caused the server to crash. (Bug #46339)

- If the global and session `debug` system variables had the same value, the debug trace file could be closed twice, leading to freeing already freed memory and a server crash. (Bug #46165)

- If `ALTER EVENT` failed to load an event after altering it, an assertion could be raised. This could occur, for example, if `ALTER EVENT` was killed with `KILL QUERY`. (Bug #44171)

- Many type-punning warnings during compilation were silenced. (Bug #42733, Bug #11751755)

- Trailing space removal for `utf32` strings was done with non-multibyte-safe code, leading to incorrect result length and assertion failure. (Bug #42511)

- A malformed packet sent by the server when the query cache was in use resulted in lost-connection errors. (Bug #42503)

- Multiple-statement execution could fail. (Bug #40877)
MySQL 5.5 Release Notes

• **CREATE_TABLE** failed if a column referred to in an index definition and foreign key definition had different lettercases in the two definitions. (Bug #39932)

• **mysqlcheck** behaved differently depending on the order in which options were given on the command line. (Bug #35269)

• When invoked to display a help message, **mysqld** also displayed spurious warning or error messages. (Bug #30025)

**Changes in MySQL 5.5.6 (2010-09-13, Release Candidate)**

• **Functionality Added or Changed**

• **Bugs Fixed**

**Functionality Added or Changed**

• **Incompatible Change:** The **SHA2()** function now returns a character string with the connection character set and collation. Previously, it returned a binary string. This is the same change made for several other encryption functions in MySQL 5.5.3. (Bug #54661)

• **InnoDB:** The mechanism that checks if there is enough space for redo logs was improved, reducing the chance of encountering this message: `ERROR: the age of the last checkpoint is x, which exceeds the log group capacity y`. (Bug #39168)

• **InnoDB:** Improved performance and scalability on Windows systems, especially for Windows Vista and higher. Re-enabled the use of atomic instructions on Windows systems. For Windows Vista and higher, reduced the number of event handles used. To compile on Windows systems now requires Windows SDK v6.0 or later; either upgrade to Visual Studio 2008 or 2010, or for Visual Studio 2005, install Windows SDK Update for Windows Vista. (Bug #22268)

• **REPAIR_TABLE** and **OPTIMIZE_TABLE** table now catch and throw any errors that occur while copying table statistics from the old corrupted file to newly created file. For example, if the user ID of the owner of the `.frm`, `.MYD`, or `.MYI` file is different from the user ID of the **mysqld** process, **REPAIR_TABLE** and **OPTIMIZE_TABLE** generate a "cannot change ownership of the file" error unless **mysqld** is started by the **root** user. (Bug #61598, Bug #13600058)

• Previously, **MySQL-shared-compat** RPMs for Linux contained both the current and previous client library versions for the target platform. Thus, the package contents overlapped with **MySQL-shared** RPMs, which contain only the current client library version. This can result in problems in two cases:

  • When the **MySQL-shared** RPM is installed but later it is determined that the **MySQL-shared-compat** RPM is needed (an application is installed that was linked against an older client library). Installing the **MySQL-shared-compat** RPM results in a conflict because both include the current library version. This can be overcome by using the **--force** option to RPM, or by first uninstalling the **MySQL-shared** RPM (which breaks dependencies).

  • When the **MySQL-shared-compat** RPM is installed, but old applications that require it are removed or upgraded to the current library version. In this case, **MySQL-shared-compat** cannot be replaced with **MySQL-shared** as long as current applications are installed. This can be overcome by using the **--force** option to RPM, which incurs the risk of breaking dependencies.

Now the **MySQL-shared-compat** RPMs include only older client library versions and no longer include the current version, so that the **MySQL-shared** and **MySQL-shared-compat** RPM contents no longer overlap. The **MySQL-shared-compat** RPM can be installed even if the **MySQL-shared** RPM is installed, without producing conflicts related to the current library version. The **MySQL-shared-compat**
RPM can be uninstalled when old applications are removed or upgraded to the current library version, without breaking applications that already use the current library version.

If you previously installed the MySQL-shared-compat RPM because you needed both the current and previous libraries, you should install both the MySQL-shared and MySQL-shared-compat RPMs now. (Bug #56150)

References: See also: Bug #12368215.

• Overhead for the Performance Schema interface was reduced. (Bug #55087)
• Within stored programs, LIMIT clauses now permit integer-valued routine parameters or local variables as parameters. (Bug #11918)
• Code was removed for the following no-longer-supported platforms: NetWare, MS-DOS, VMS, QNX, and 32-bit SPARC.

Bugs Fixed

• Security Fix; InnoDB: After changing the values of the innodb_file_format or innodb_file_per_table configuration parameters, DDL statements could cause a server crash. (Bug #55039)

• Security Fix: During evaluation of arguments to extreme-value functions such as LEAST() and GREATEST(), type errors did not propagate properly, causing the server to crash. (Bug #55826)

• Security Fix: The server could crash after materializing a derived table that required a temporary table for grouping. (Bug #55568)

• Security Fix: A user-variable assignment expression that is evaluated in a logical expression context can be precalculated in a temporary table for GROUP BY. However, when the expression value is used after creation of the temporary table, it was re-evaluated, not read from the table, and a server crash resulted. (Bug #55564)

• Security Fix: Joins involving a table with a unique SET column could cause a server crash. (Bug #54575)

• Security Fix: Pre-evaluation of LIKE predicates during view preparation could cause a server crash. (Bug #54568, Bug #11762026)

• Security Fix: Incorrect handling of NULL arguments could lead to a crash for IN() or CASE operations when NULL arguments were either passed explicitly as arguments (for IN()) or implicitly generated by the WITH ROLLUP modifier (for IN() and CASE). (Bug #54477)

• Security Fix: GROUP_CONCAT() and WITH ROLLUP together could cause a server crash. (Bug #54476)

• Security Fix: Queries could cause a server crash if the GREATEST() or LEAST() function had a mixed list of numeric and LONGBLOB arguments, and the result of such a function was processed using an intermediate temporary table. (Bug #54461)

• Security Fix: A malformed argument to the BINLOG statement could result in Valgrind warnings or a server crash. (Bug #54393)

• Security Fix: After ALTER TABLE was used on a temporary transactional table locked by LOCK TABLES, any later attempts to execute LOCK TABLES or UNLOCK TABLES caused a server crash. (Bug #54117)

• Security Fix: Use of TEMPORARY InnoDB tables with nullable columns could cause a server crash. (Bug #54044)
• **Security Fix:** Queries with nested joins could cause an infinite loop in the server when used from stored procedures and prepared statements. (Bug #53544)

• **Security Fix:** Using `EXPLAIN` with queries of the form `SELECT ... UNION ... ORDER BY (SELECT ... WHERE ...)` could cause a server crash. (Bug #52711)

• **Security Fix:** A security bug was fixed. (Bug #49124)

• **Incompatible Change; Replication:** As of MySQL 5.5.6, handling of `CREATE TABLE IF NOT EXISTS ... SELECT` statements has been changed for the case that the destination table already exists:

  - Previously, for `CREATE TABLE IF NOT EXISTS ... SELECT`, MySQL produced a warning that the table exists, but inserted the rows and wrote the statement to the binary log anyway. By contrast, `CREATE TABLE ... SELECT` (without `IF NOT EXISTS`) failed with an error, but MySQL inserted no rows and did not write the statement to the binary log.

  - MySQL now handles both statements the same way when the destination table exists, in that neither statement inserts rows or is written to the binary log. The difference between them is that MySQL produces a warning when `IF NOT EXISTS` is present and an error when it is not.

This change in handling of `IF NOT EXISTS` results in an incompatibility for statement-based replication from a MySQL 5.1 master with the original behavior and a MySQL 5.5 slave with the new behavior. Suppose that `CREATE TABLE IF NOT EXISTS ... SELECT` is executed on the master and the destination table exists. The result is that rows are inserted on the master but not on the slave. (Row-based replication does not have this problem.)

To address this issue, statement-based binary logging for `CREATE TABLE IF NOT EXISTS ... SELECT` is changed in MySQL 5.1 as of 5.1.51:

  - If the destination table does not exist, there is no change: The statement is logged as is.

  - If the destination table does exist, the statement is logged as the equivalent pair of `CREATE TABLE IF NOT EXISTS` and `INSERT ... SELECT` statements. (If the `SELECT` in the original statement is preceded by `IGNORE` or `REPLACE`, the `INSERT` becomes `INSERT IGNORE` or `REPLACE`, respectively.)

This change provides forward compatibility for statement-based replication from MySQL 5.1 to 5.5 because when the destination table exists, the rows will be inserted on both the master and slave. To take advantage of this compatibility measure, the 5.1 server must be at least 5.1.51 and the 5.5 server must be at least 5.5.6.

To upgrade an existing 5.1-to-5.5 replication scenario, upgrade the master first to 5.1.51 or higher. Note that this differs from the usual replication upgrade advice of upgrading the slave first.

A workaround for applications that wish to achieve the original effect (rows inserted regardless of whether the destination table exists) is to use `CREATE TABLE IF NOT EXISTS` and `INSERT ... SELECT` statements rather than `CREATE TABLE IF NOT EXISTS ... SELECT` statements.

Along with the change just described, the following related change was made: Previously, if an existing view was named as the destination table for `CREATE TABLE IF NOT EXISTS ... SELECT`, rows were inserted into the underlying base table and the statement was written to the binary log. As of MySQL 5.1.51 and 5.5.6, nothing is inserted or logged. (Bug #47442, Bug #47132, Bug #48814, Bug #49494)

• **Incompatible Change:** Several changes were made to Performance Schema tables:

  - The `SETUP_OBJECTS` table was removed.
MySQL 5.5 Release Notes

- The `PROCESSLIST` table was renamed to `THREADS`.
- The `EVENTS_WAITS_SUMMARY_BY_EVENT_NAME` table was renamed to `EVENTS_WAITS_SUMMARY_GLOBAL_BY_EVENT_NAME`.
  (Bug #55416)

- **Incompatible Change**: Handling of warnings and errors during stored program execution was problematic:
  - If one statement generated several warnings or errors, only the handler for the first was activated, even if another might be more appropriate. Now the server chooses the more appropriate handler.
  - Warning or error information could be lost.
  (Bug #36185, Bug #5889, Bug #9857, Bug #23032)

- **Incompatible Change**: If the server was started with `character_set_server` set to `utf16`, it crashed during full-text stopword initialization. Now the stopword file is loaded and searched using `latin1` if `character_set_server` is `ucs2`, `utf16`, or `utf32`.

If any table was created with `FULLTEXT` indexes while the server character set was `ucs2`, `utf16`, or `utf32`, it should be repaired using this statement:

```sql
REPAIR TABLE tbl_name QUICK;
```

(Bug #32391)

- **Important Change; Replication**: The `LOAD DATA` statement is now considered unsafe for statement-based replication. When using statement-based logging mode, the statement now produces a warning; when using mixed-format logging, the statement is made using the row-based format. (Bug #34283)

- **Performance; InnoDB**: The setting `innodb_change_buffering=all` could produce slower performance for some operations than the previous default, `innodb_change_buffering=inserts`.
  (Bug #54914)

- **Performance; InnoDB**: An `EXPLAIN` plan for an `InnoDB` table could vary greatly in the estimated cost for a `BETWEEN` clause. (Bug #53761)

- **InnoDB**: An assertion was raised if (1) an `InnoDB` table was created using `CREATE TABLE ... SELECT` where the query used an `INFORMATION_SCHEMA` table and a view existed in the database; or (2) any statement that modified an `InnoDB` table had a subquery referencing an `INFORMATION_SCHEMA` table. (Bug #55973)

- **InnoDB**: The `InnoDB` storage engine was not included in the default installation when using the `configure` script. (Bug #55547)

- **InnoDB**: For an `InnoDB` table with an auto-increment column, the server could crash if the first statement that references the table after a server restart is a `SHOW CREATE TABLE` statement. (Bug #55277)

- **InnoDB**: The `mysql_config` tool did not output the requirement for the `aio` library for `mysqld-libs`. (Bug #55215)

- **InnoDB**: Some memory used for `InnoDB` asynchronous I/O was not freed at shutdown. (Bug #54764)

- **InnoDB**: Implementation of the 64-bit `dulint` structure in `InnoDB` was not optimized for 64-bit processors, resulting in excessive storage and reduced performance. (Bug #54728)
MySQL 5.5 Release Notes

• **InnoDB**: The output from the `SHOW ENGINE INNODB STATUS` command now includes information about “spin rounds” for RW-locks (both shared and exclusive locks). (Bug #54726)

• **InnoDB**: An `ALTER TABLE` statement could convert an InnoDB compressed table (with `row_format=compressed`) back to an uncompressed table (with `row_format=compact`). (Bug #54679)

• **InnoDB**: InnoDB could issue an incorrect message on startup, if tables were created under the setting `innodb_file_per_table=ON`. The message was of the form `InnoDB: Warning: allocated tablespace n, old maximum was 0`. If you encounter this message after upgrading, create an InnoDB table with `innodb_file_per_table = ON` and restart the server. The message should not be displayed any more. If you continue to encounter this message, or if you get it and haven't used a version without this fix, you might have corruption in your shared tablespace. If so, back up and reload your data. (Bug #54658)

• **InnoDB**: For debug builds, the database server could crash when renaming a table that had active transactions. (Bug #54453)

• **InnoDB**: The server could crash during the recovery phase of startup, if it previously crashed while inserting BLOB or other large columns that use off-page storage into an InnoDB table created with `ROW_FORMAT=REDUNDANT` or `ROW_FORMAT=COMPACT`. (Bug #54408)

• **InnoDB**: For an InnoDB table created with `ROW_FORMAT=COMPRESSED` or `ROW_FORMAT=DYNAMIC`, a query using the `READ UNCOMMITTED` isolation level could cause the server to stop with an assertion error, if BLOB or other large columns that use off-page storage were being inserted at the same time. (Bug #54358)

• **InnoDB**: If a session executing `TRUNCATE TABLE` on an InnoDB table was killed during `open_tables()`, an assertion could be raised. (Bug #53757)

• **InnoDB**: The `Lock_time` field in the slow query log now reports a larger value, including the time for InnoDB lock waits at the statement level. (Bug #53496)

• **InnoDB**: Misimplementation of the `os_fast_mutex_trylock()` function in InnoDB resulted in unnecessary blocking and reduced performance. (Bug #53204)

• **InnoDB**: InnoDB could not create tables that used the utf32 character set. (Bug #52199)

• **InnoDB**: Performing large numbers of `RENAME TABLE` statements caused excessive memory use. (Bug #47991)

• **Partitioning**: With `innodb_thread_concurrency = 1`, `ALTER TABLE ... REORGANIZE PARTITION` and `SELECT` could deadlock. There were unreleased latches in the `ALTER TABLE ... REORGANIZE PARTITION` thread which were needed by the `SELECT` thread to be able to continue. (Bug #54747)

• **Partitioning**: An `ALTER TABLE ... ADD PARTITION` statement run concurrently with a read lock caused spurious `ER_TABLE_EXISTS_ERROR` and `ER_NO_SUCH_TABLE` errors on subsequent attempts. (Bug #53676)

  References: See also: Bug #53770.

• **Partitioning**: `UPDATE` and `INSERT` statements affecting partitioned tables performed poorly when using row-based replication. (Bug #52517)

  References: This issue is a regression of: Bug #39084.
• **Partitioning:** `INSERT ON DUPLICATE KEY UPDATE` statements performed poorly on tables having many partitions. The handler function for reading a row from a specific index was not optimized in the partitioning handler. (Bug #52455)

• **Partitioning:** `ALTER TABLE ... TRUNCATE PARTITION`, when called concurrently with transactional DML on the table, was executed immediately and did not wait for the concurrent transaction to release locks. As a result, the `ALTER TABLE` statement was written into the binary log before the DML statement, which led to replication failures when using row-based logging. (Bug #49907)

  References: See also: Bug #42643.

• **Partitioning:** When the storage engine used to create a partitioned table was disabled, attempting to drop the table caused the server to crash. (Bug #46086)

• **Replication:** When using the row-based logging format, a failed `CREATE TABLE ... SELECT` statement was written to the binary log, causing replication to break if the failed statement was later re-run on the master. In such cases, a `DROP TABLE ... IF EXISTS` statement is now logged in the event that a `CREATE TABLE ... SELECT` fails. (Bug #55625)

• **Replication:** When using the row-based logging format, a `SET PASSWORD` statement was written to the binary log twice. (Bug #55452)

• **Replication:** When closing temporary tables, after the session connection was already closed, if the writing of the implicit `DROP TABLE` statement into the binary log failed, it was possible for the resulting error to be mishandled, triggering an assertion. (Bug #55387)

• **Replication:** Executing `SHOW BINLOG EVENTS` increased the value of `max_allowed_packet` applying to the session that executed the statement. (Bug #55322)

• **Replication:** Setting `binlog_format` to `ROW`, then creating and dropping a temporary table led to an assertion. (Bug #54925)

• **Replication:** When using mixed-format replication, changes made to a nontransactional temporary table within a transaction were not written into the binary log when the transaction was rolled back. This could lead to a failure in replication if the temporary table was used again afterwards. (Bug #54872)

  References: See also: Bug #53259.

• **Replication:** If `binlog_format` was explicitly switched from `STATEMENT` to `ROW` following the creation of a temporary table, then on disconnection the master failed to write the expected `DROP TEMPORARY TABLE` statement into the binary log. As a consequence, temporary tables (and their corresponding files) accumulated as this scenario was repeated. (Bug #54842)

  References: See also: Bug #52616.

• **Replication:** If the SQL thread was started while the I/O thread was performing rotation of the relay log, the two threads could begin to race for the same I/O cache, leading to a server crash. (Bug #54509)

  References: See also: Bug #50364.
MySQL 5.5 Release Notes

- **Replication:** Two related issues involving temporary tables and transactions were introduced by a fix made in MySQL 5.1.37:

  1. When a temporary table was created or dropped within a transaction, any failed statement that following the `CREATE TEMPORARY TABLE` or `DROP TEMPORARY TABLE` statement triggered a rollback, which caused the slave to diverge from the master.

  2. When a `CREATE TEMPORARY TABLE ... SELECT * FROM ...` statement was executed within a transaction in which only tables using transactional storage engines were used and the transaction was rolled back at the end, the changes—including the creation of the temporary table—were not written to the binary log.

The current fix restores the correct behavior in both of these cases. (Bug #53560)

References: This issue is a regression of: Bug #43929.

- **Replication:** The value of `binlog_direct_non_transactional_updates` had no effect on statements mixing transactional tables and nontransactional tables, or mixing temporary tables and nontransactional tables.

  As part of the fix for this issue, updates to temporary tables are now handled as transactional or nontransactional according to their storage engine types. (In effect, the current fix reverts a change made previously as part of the fix for Bug #53259.)

  In addition, unsafe mixed statements (that is, statements which access transactional table as well nontransactional or temporary tables, and write to any of them) are now handled as transactional when the statement-based logging format is in use. (Bug #53452)

References: See also: Bug #51894, Bug #53259.

- **Replication:** A number of statements generated unnecessary warnings as potentially unsafe statements. (Due to the fix for Bug #51894, a temporary table is treated in this context as a transactional table, so that any mixed statement such as `t_innodb + t_myisam` or `t_temp + t_myisam` is flagged as unsafe.)

  To reduce the number of spurious warnings produced when this happened, some of the criteria used to classify a statements as safe or unsafe have been changed. For more information about handling of mixed statements, see Transactional, nontransactional, and mixed statements. (Bug #53259)

References: See also: Bug #51894, Bug #53452, Bug #54872.

- **Replication:** When `binlog_format=STATEMENT`, any statement that is flagged as being unsafe, possibly causing the slave to go out of sync, generates a warning. This warning is written to the server log, the warning count is returned to the client in the server's response, and the warnings are accessible through `SHOW WARNINGS`.

  The current bug affects only the counts for warnings to the client and that are visible through `SHOW WARNINGS`; it does not affect which warnings are written to the log. The current issue came about because the fix for an earlier issue caused warnings for substatements to be cleared whenever a new substatement was started. However, this suppressed warnings for unsafe statements in some cases. Now, such warnings are no longer cleared. (Bug #50312)

References: This issue is a regression of: Bug #36649.

- **Replication:** Replication could break if a transaction involving both transactional and nontransactional tables was rolled back to a savepoint. It broke if a concurrent connection tried to drop a transactional table which was locked after the savepoint was set. This `DROP TABLE` completed when `ROLLBACK TO`
SAVEPOINT was executed because the lock on the table was dropped by the transaction. When the slave later tried to apply the binary log events, it failed because the table had already been dropped. (Bug #50124)

- **Replication:** When CURRENT_USER() or CURRENT_USER was used to supply the name and host of the affected user or of the definer in any of the statements DROP USER, RENAME USER, GRANT, REVOKE, and ALTER EVENT, the reference to CURRENT_USER() or CURRENT_USER was not expanded when written to the binary log. This resulted in CURRENT_USER() or CURRENT_USER being expanded to the user and host of the slave SQL thread on the slave, thus breaking replication. Now CURRENT_USER() and CURRENT_USER are expanded prior to being written to the binary log in such cases, so that the correct user and host are referenced on both the master and the slave. (Bug #48321)

- **Microsoft Windows:** The Windows MSI installer failed during installation to preserve custom settings, such as the configured data directory. (Bug #55169)

- **Microsoft Windows:** Use of uint in typelib.h caused compilation problems in Windows. This was changed to unsigned int. (Bug #52959)

- **Microsoft Windows:** The mysql-debug.pdb supplied with releases did not match the corresponding mysqld.exe. (Bug #52850)

- **Microsoft Windows:** The PERFORMANCE_SCHEMA database was not correctly created and populated on Windows. (Bug #52809)

- **Solaris:** The -features=no%except option was missing from the build for Solaris/x86. (Bug #55250)

- **Solaris:** A signal-handler redefinition for SIGUSR1 was removed. The redefinition could cause the server to encounter a kernel deadlock on Solaris when there are many active threads. Other POSIX platforms might also be affected. (Bug #54667)

- For the general query log and slow query log, logging to tables incurred excessive overhead beginning with MySQL 5.1.21. This overhead has been eliminated. (Bug #11747038, Bug #30414)

References: See also: Bug #29129.

- After an RPM installation, mysqld would be started with the root user, rather than the mysql user. (Bug #56574)

- The embedded server raised an assertion when it attempted to load plugins. (Bug #56085)

- FORMAT() did not respect the decimal point character if the locale was changed and always returned an ASCII value. (Bug #55912)

- CMake produced bad dependencies for the sql/lex_hash.h file during configuration. (Bug #55842)

- mysql_upgrade did not handle the --ssl option properly. (Bug #55672)

- Using MIN() or MAX() on a column containing the maximum TIME value caused a server crash. (Bug #55648)

- Incorrect handling of user variable assignments as subexpressions could lead to incorrect results or server crashes. (Bug #55615)

- The default compiler options for OS X 10.5 were set incorrectly. (Bug #55601)

- The server was not checking for errors generated during the execution of Item::val_xxx() methods when copying data to a group, order, or distinct temp table's row. (Bug #55580)

- ORDER BY clauses that included user-variable expressions could raise a debug assertion. (Bug #55565)
• **SHOW CREATE TRIGGER** took a stronger metadata lock than required. This caused the statement to be blocked unnecessarily. For example, **LOCK TABLES ... WRITE** in one session blocked **SHOW CREATE TRIGGER** in another session.

Also, a **SHOW CREATE TRIGGER** statement issued inside a transaction did not release its metadata locks at the end of statement execution. Consequently, **SHOW CREATE TRIGGER** was able to block other sessions from accessing the table (for example, using **ALTER TABLE**). (Bug #55498)

• A single-table **DELETE** ordered by a column that had a hash-type index could raise an assertion or cause a server crash. (Bug #55472)

• A call to **mysql_library_init()** following a call to **mysql_library_end()** caused a client crash. (Bug #55345)

• A statement that was aborted by **KILL QUERY** while it waited on a metadata lock could raise an assertion in debug builds, or send OK to the client instead of **ER_QUERY_INTERRUPTED** in regular builds. (Bug #55223)

• **GROUP BY** operations used **max_sort_length** inconsistently. (Bug #55188)

• **InnoDB** produced no warning at startup about illegal **innodb_file_format_check** values. (Bug #55095)

• **IF()** with a subquery argument could raise a debug assertion for debug builds under some circumstances. (Bug #55077)

• Building MySQL on Solaris 8 x86 failed when using Sun Studio due to **gcc** inline assembly code. (Bug #55061)

• When upgrading an existing install with an RPM on Linux, the MySQL server might not have been restarted properly. This was due to a naming conflict when upgrading from a **community** named RPM. Previous installations are now correctly removed, the MySQL initialization script is recreated, and the MySQL server is restarted as normal. (Bug #55015)

• The **thread_concurrency** system variable was unavailable on non-Solaris systems. (Bug #55001)

• **mysqld_safe** contained a syntax error that prevented it from restarting the server. (Bug #54991)

• If audit plugins were installed that were interested in **MYSQL_AUDIT_GENERAL_CLASS** events and the general query log was disabled, failed **INSTALL PLUGIN** or **UNINSTALL PLUGIN** statements caused a server crash. (Bug #54989)

• Some functions did not calculate their **max_length** metadata value correctly. (Bug #54916)

• A **SHOW CREATE TABLE** statement issued inside a transaction did not release its metadata locks at the end of statement execution. Consequently, **SHOW CREATE TABLE** was able to block other sessions from accessing the table (for example, using **ALTER TABLE**). (Bug #54905)

• **INFORMATION_SCHEMA.ENGINES** and **SHOW ENGINES** described **MyISAM** as the default storage engine, but this is not true as of MySQL 5.5.5. (Bug #54832)

• The **MERGE** storage engine tried to use memory mapping on the underlying **MyISAM** tables even on platforms that do not support it and even when **myisam_use_mmap** was disabled. This led to a hang for **INSERT INTO ... SELECT FROM** statements that selected from a **MyISAM** table into a **MERGE** table that contained the same **MyISAM** table. (Bug #54811, Bug #50788)

• Incorrect error handling could result in an **OPTIMIZE TABLE** crash. (Bug #54783)
• Performance Schema event collection for a thread could “leak” from one connection to another if the thread was used for one connection, then cached, then reused for another connection. (Bug #54782)

• In debug builds, an assertion could be raised when the server tried to send an OK packet to the client after having failed to detect errors during processing of the WHERE condition of an UPDATE statement. (Bug #54734)

• In a slave SQL thread or Event Scheduler thread, the SLEEP() function could not sleep more than five seconds. (Bug #54729)

• SET sql_select_limit = 0 did not work. (Bug #54682)

• Assignments of the PASSWORD() or OLD_PASSWORD() function to a user variable did not preserve the character set of the function return value. (Bug #54668)

• Queries that named view columns in a GROUP BY clause could cause a server crash. (Bug #54515)

• The Performance Schema displayed spurious startup error messages when the server was run in bootstrap mode. (Bug #54467)

• For distributions built with CMake rather than the GNU autotools, mysql lacked pager support, and some scripts were built without the execute bit set. (Bug #54466, Bug #54129)

• The server failed to disregard sort order for some zero-length tuples, leading to an assertion failure. (Bug #54459)

• A join with an aggregated function and impossible WHERE condition returned an extra row. (Bug #54416)

• Errors during processing of WHERE conditions in HANDLER ... READ statements were not detected, so the handler code still tried to send EOF to the client, raising an assertion. (Bug #54401)

• If a session tried to drop a database containing a table opened with HANDLER in another session, any DATABASE statement (CREATE, DROP, ALTER) executed by that session produced a deadlock. (Bug #54360)

• Deadlocks involving INSERT DELAYED statements were not detected. The server could crash if the delayed handler thread was killed due to a conflicting shared metadata lock. (Bug #54332)

• After ALTER TABLE was used on a temporary transactional table locked by LOCK TABLES, any later attempts to execute LOCK TABLES or UNLOCK TABLES caused a server crash. (Bug #54117)

• INSERT IGNORE INTO ... SELECT statements could raise a debug assertion. (Bug #54106)

• SHOW CREATE EVENT released all metadata locks held by the current transaction. This invalidated any existing savepoints and raised an assertion if ROLLBACK TO SAVEPOINT was executed. (Bug #54105)

• A client could supply data in chunks to a prepared statement parameter other than of type TEXT or BLOB using the mysql_stmt_send_long_data() C API function (or COM_STMT_SEND_LONG_DATA command). This led to a crash because other data types are not valid for long data. (Bug #54041)

• mysql_secure_installation did not properly identify local accounts and could incorrectly remove nonlocal root accounts. (Bug #54004)

• A client with automatic reconnection enabled saw the error message Lost connection to MySQL server during query if the connection was lost between the mysql_stmt_prepare() and mysql_stmt_execute() C API functions. However, mysql_stmt_errno() returned 0, not the corresponding error number 2013. (Bug #53899)

• INFORMATION_SCHEMA.COLUMNS reported incorrect precision for BIGINT UNSIGNED columns. (Bug #53814)
MySQL 5.5 Release Notes

- The patch for Bug #36569 caused performance regressions and incorrect execution of some `UPDATE` statements. (Bug #53737, Bug #53742)

  References: See also: Bug #36569.

- Missing Performance Schema tables were not reported in the error log at server startup. (Bug #53617)

- `mysql_upgrade` could incorrectly remove `TRIGGER` privileges. (Bug #53613)

- `SHOW ENGINE PERFORMANCE_SCHEMA STATUS` underreported the amount of memory allocated by the Performance Schema. (Bug #53566)

- Portability problems in `SHOW STATUS` could lead to incorrect results on some platforms. (Bug #53493)

- Builds of MySQL generated a large number of warnings. (Bug #53445)

- Performance Schema header files were not installed in the correct directory. (Bug #53255)

- The server could crash when processing subqueries with empty results. (Bug #53236)

- With `lower_case_table_names` set to a nonzero value, searches for table or database names in `INFORMATION_SCHEMA` tables could produce incorrect results. (Bug #53095)

- The `large_pages` system variable was tied to the `--large-files` command-line option, not the `--large-pages` option. (Bug #52716)

- Attempts to access a nonexistent Performance Schema table resulted in a misleading error message. (Bug #52586)

- The ABI check for MySQL failed to compile with `gcc 4.5`. (Bug #52514)

- The Performance Schema could enter an infinite loop if required to create a large number of mutex instances. (Bug #52502)

- `mysql_secure_installation` sometimes failed to locate the `mysql` client. (Bug #52274)

- Some queries involving `GROUP BY` and a function that returned `DATE` raised a debug assertion. (Bug #52159)

- If a symbolic link was used in a file path name, the Performance Schema did not resolve all file I/O events to the same name. (Bug #52134)

- `PARTITION BY KEY` on a `utf32 ENUM` column raised a debugging assertion. (Bug #52121, Bug #11759782)

- A pending `FLUSH TABLES tbl_list WITH READ LOCK` statement unnecessarily aborted transactions. (Bug #52117)

- `FLUSH TABLES WITH READ LOCK` in one session and `FLUSH TABLES tbl_list WITH READ LOCK` in another session were mutually exclusive.

  This bug fix involved several changes to the states displayed by `SHOW PROCESSLIST`:

  - `Table lock` was replaced with `Waiting for table level lock`.
  - `Waiting for table` and `Flushing tables` were replaced with `Waiting for table flush`.
  - These states are new: `Waiting for global metadata lock`, `Waiting for schema metadata lock`, `Waiting for stored function metadata lock`, `Waiting for stored procedure metadata lock`, `Waiting for table metadata lock`.
• Reading a `ucs2` data file with `LOAD DATA` was subject to three problems. 1) Incorrect parsing of the file as `ucs2` data, resulting in incorrect length of the parsed string. This is fixed by truncating the invalid trailing bytes (incomplete multibyte characters) when reading from the file. 2) Reads from a proper `ucs2` file did not recognize newline characters. This is fixed by first checking whether a byte is a newline (or any other special character) before reading it as a part of a multibyte character. 3) When using user variables to hold column data, the character set of the user variable was set incorrectly to the database charset. This is fixed by setting it to the character set specified in the `LOAD DATA` statement, if any. (Bug #51876)

• `XA START` had a race condition that could cause a server crash. (Bug #51855)

• The results of some `ORDER BY ... DESC` queries were sorted incorrectly. (Bug #51431)

• `Index Merge` between three indexes could return incorrect results. (Bug #50389)

• `MIN()` and `MAX()` returned incorrect results for `DATE` columns if the set of values included `'0000-00-00'`. (Bug #49771)

• Searches in `INFORMATION_SCHEMA` tables for rows matching a nonexistent database produced an error instead of an empty query result. (Bug #49542)

• `DROP DATABASE` failed if there was a `TEMPORARY` table with the same name as a non-`TEMPORARY` table in the database. (Bug #48067)

• An assertion occurred in `ha_myisammrg.cc` line 1137:

```c
DBG_ASSERT(this->file->children_attached);
```

The problem was found while running RQG tests and the assertion occurred during `REPAIR`, `OPTIMIZE`, and `ANALYZE` operations. (Bug #47633)

• The optimization method of the `ARCHIVE` storage engine did not preserve the `.frm` file embedded in the `.ARZ` file when rewriting the `.ARZ` file for optimization. This meant an `ARCHIVE` table that had been optimized could not be discovered.

The `ARCHIVE` engine stores the `.frm` file in the `.ARZ` file so it can be transferred from machine to machine without also needing to copy the `.frm` file. The engine subsequently restores the embedded `.frm` during discovery. (Bug #45377)

• With `character_set_connection` set to `utf16` or `utf32`, `CREATE TABLE t1 AS SELECT HEX() ...` caused a server crash. (Bug #45263)

• The `my_like_range_xxx()` functions returned badly formed maximum strings for Asian character sets, which caused problems for storage engines. (Bug #45012)

• A debugging assertion could be raised after a write failure to a closed socket. (Bug #42496)

• Enumeration plugin variables were subject to a type-casting error, causing inconsistent results between different platforms. (Bug #42144)

• `Sort-index_merge` for join tables other than the first table used excessive memory. (Bug #41660)

• `DROP TABLE` held a lock during `unlink()` file system operations, causing performance problems if `unlink()` took a long time. (Bug #41158)
• Rows inserted in a table by one session were not immediately visible to another session that queried the
table, even if the insert had committed. (Bug #37521)

• Statements of the form `UPDATE ... WHERE ... ORDER BY` used a `filesort` even when not
required.
Prior to this fix, index hints were accepted for `UPDATE` statements but were ignored. Now they are used.
(Bug #36569)

References: See also: Bug #53737, Bug #53742.

• Reading from a temporary `MERGE` table, with two nontemporary child `MyISAM` tables, resulted in the
error:

```plaintext
ERROR 1168 (HY000): Unable to open underlying table which is differently
defined or of non-MyISAM type or doesn't exist
```
(Bug #36171)

• `safemalloc` was excessively slow under certain conditions and has been removed. The `--skip-
safemalloc` server option has also been removed, and the `--with-debug=full` configuration option
is no different from `--with-debug`. (Bug #34043)

• Threads that were calculating the estimated number of records for a range scan did not respond to the
`KILL` statement. That is, if a `range` join type is possible (even if not selected by the optimizer as a join
type of choice and thus not shown by `EXPLAIN`), the query in the `statistics` state (shown by the
`SHOW PROCESSLIST`) did not respond to the `KILL` statement. (Bug #25421)

• Problems in the atomic operations implementation could lead to server crashes. (Bug #22320, Bug
#52261)

### Changes in MySQL 5.5.5 (2010-07-06, Developer Milestone)

- icc Notes
- InnoDB Notes
- Platform-Specific Notes
- Functionality Added or Changed
- Bugs Fixed

#### icc Notes

• This is the final release of MySQL 5.5 for which Generic Linux MySQL binary packages built with the
`icc` compiler on x86 and x86_64 will be offered. These were previously produced as an alternative to
our main packages built using `gcc`, as they provided noticeable performance benefits. In recent times
the performance differences have diminished and build and runtime problems have surfaced, thus it is
no longer viable to continue producing them.

We continue to use the `icc` compiler to produce our distribution-specific RPM packages on ia64.

#### InnoDB Notes

• `InnoDB` has been upgraded to version 1.1.1. This version is considered of “early adopter” quality.

  `InnoDB` is now the default storage engine, rather than `MyISAM`, in the regular and enterprise versions of
MySQL. This change has the following consequences:
• Existing tables are not affected by this change, only new tables that are created.

• Some of the InnoDB option settings also change, so that the default configuration represents the best practices for InnoDB functionality, reliability, and file management: `innodb_file_format=Barracuda` rather than `Antelope`, `innodb_strict_mode=ON` rather than `OFF`, and `innodb_file_per_table=ON` rather than `OFF`.

• The system tables remain in MyISAM format.

• MyISAM remains the default storage engine for the embedded version of MySQL.

Follow these steps to ensure a smooth transition when upgrading:

• Familiarize yourself with the new default setting for the `innodb_file_per_table` variable, which creates a tablespace file (an `.idb` file) for each user table. Adapt any backup procedure to include these files. For details, see File-Per-Table Tablespaces.

• Test the installation and operation for any applications that you run on the database server, to determine if they use any features specific to MyISAM that cause problems during installation (when the tables are created) or at runtime (when MyISAM-specific features might fail, or reliance on MyISAM settings for performance might become apparent). The InnoDB “strict” mode might also alert you to problems while setting up tables for an application.

• As a preliminary test for individual tables rather than an entire application, you can use the statement `ALTER TABLE table_name ENGINE=INNODB;` to convert an existing table to use the InnoDB storage engine, and then run compatibility and performance tests.

• Where necessary, add `ENGINE=MYISAM` clauses to `CREATE TABLE` statements, for tables that require features specific to MyISAM, such as full-text search.

• Benchmark the most important queries, to check whether you need to make changes to the table indexes.

• Measure the performance of applications under typical load, to check whether you need to change any additional InnoDB configuration settings.

• As a last resort, if a database server is devoted entirely to applications that can only run with MyISAM tables, you could add a `default-storage-engine` line in the configuration file, or a `--default-storage-engine` option in the database server startup command, to re-enable MyISAM as the default storage engine for that server. For details about setting the default storage engine, see Setting the Storage Engine.

Platform-Specific Notes

• Ubuntu 12.04 LTS: This is the last release in the MySQL 5.5 series to support Ubuntu 12.04 LTS. As per the MySQL Support Lifecycle policy regarding ending support for OS versions that are obsolete or have reached end of life, we plan to discontinue building binaries for the Linux distribution in future releases. (Bug #25828475)

Functionality Added or Changed

• Incompatible Change: All numeric operators and functions on integer, floating-point and DECIMAL values now throw an “out of range” error (ER_DATA_OUT_OF_RANGE) rather than returning an incorrect value or NULL, when the result is out of the supported range for the corresponding data type. See Out-of-Range and Overflow Handling. (Bug #8433)
MySQL 5.5 Release Notes

• **InnoDB:** The `INFORMATION_SCHEMA.INNODB_TRX` table now includes a number of fields that duplicate information from the `SHOW ENGINE INNODB STATUS` output. You no longer need to parse that output to get complete transaction information. (Bug #53336)

• **InnoDB:** InnoDB stores redo log records in a hash table during recovery. On 64-bit systems, this hash table was 1/8 of the buffer pool size. To reduce memory usage, the dimension of the hash table was reduced to 1/64 of the buffer pool size (or 1/128 on 32-bit systems). (Bug #53122)

• **Microsoft Windows:** Windows MSI package installers create and set up the data directory that the installed server will use, but now also create a pristine “template” data directory named `data` under the installation directory. This directory can be useful when the machine will be used to run multiple instances of MySQL: After an installation has been performed using an MSI package, the template data directory can be copied to set up additional MySQL instances. See Running Multiple MySQL Instances on One Machine.

• Previously, the `innodb_file_format_check` system variable served a dual purpose. Setting it at server startup would keep InnoDB from starting if any tables used a more recent file format than supported by the current level of InnoDB. If InnoDB could start, the same system variable was set to the “highest” file format value used by any InnoDB table in the database. Thus, its value could change from the value you specified.

Now, checking and recording the file format tag are handled using separate variables. `innodb_file_format_check` can be set to 1 or 0 at server startup to enable or disable whether InnoDB checks the file format tag in the system tablespace. If the tag is checked and is higher than that supported by the current version of InnoDB, an error occurs and InnoDB does not start. If the tag is not higher, InnoDB sets the value of `innodb_file_format_max` to the file format tag.

For background information about InnoDB file-format management, see InnoDB File-Format Management. (Bug #49792, Bug #53654)

• The `Rows_examined` value in slow query log rows now is nonzero for `UPDATE` and `DELETE` statements that modify rows. (Bug #49756)

• For events of `MYSQL_AUDIT_GENERAL_CLASS`, the event subclass was not passed to audit plugins even though the server passed the subclass to the plugin handler. The subclass is now available through the following changes:

  • The `struct mysql_event_general` structure has a new `event_subclass` member.

  • The new member changes the interface, so the audit plugin interface version, `MYSQL_AUDIT_INTERFACE_VERSION`, has been incremented from `0x0100` to `0x0200`. Plugins that require access to the new member must be recompiled to use version `0x0200` or higher.

The `NULL_AUDIT` example plugin in the `plugin/audit_null` directory has been modified to count events of each subclass, based on the `event_subclass` value. See Writing Audit Plugins. (Bug #47059)

• The deprecated `mysql_fix_privilege_tables` script has been removed. (Bug #42589)

• A new system variable, `skip_name_resolve`, is set from the value of the `--skip-name-resolve` server option. This provides a way to determine at runtime whether the server uses name resolution for client connections. (Bug #37168)

• Added the `SHA2()` function, which calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). (Contributed by Bill Karwin) (Bug #13174)
It is now possible to build MySQL on all platforms using CMake instead of the GNU autotools. (Prior to MySQL 5.5.5, CMake support was limited to Windows.) For instructions on using CMake to build MySQL, see Installing MySQL from Source.

Bugs Fixed

- **Security Fix:** The server could crash if there were alternate reads from two indexes on a table using the HANDLER interface. (Bug #54007)

- **Security Fix:** A security bug was fixed. (Bug #53933)

- **Security Fix:** A security bug was fixed. (Bug #53907)

- **Security Fix:** The server failed to check the table name argument of a COM_FIELD_LIST command packet for validity and compliance to acceptable table name standards. This could be exploited to bypass almost all forms of checks for privileges and table-level grants by providing a specially crafted table name argument to COM_FIELD_LIST.

  In MySQL 5.0 and above, this permitted an authenticated user with SELECT privileges on one table to obtain the field definitions of any table in all other databases and potentially of other MySQL instances accessible from the server's file system.

  Additionally, for MySQL version 5.1 and above, an authenticated user with DELETE or SELECT privileges on one table could delete or read content from any other table in all databases on this server, and potentially of other MySQL instances accessible from the server's file system. (Bug #53371)

- **Security Fix:** The server was susceptible to a buffer-overflow attack due to a failure to perform bounds checking on the table name argument of a COM_FIELD_LIST command packet. By sending long data for the table name, a buffer is overflown, which could be exploited by an authenticated user to inject malicious code. (Bug #53237)

- **Security Fix:** LOAD DATA did not check for SQL errors and sent an OK packet even when errors were already reported. Also, an assert related to client/server protocol checking in debug servers sometimes was raised when it should not have been. (Bug #52512)

- **Security Fix:** A security bug was fixed. (Bug #52357)

- **Security Fix:** A security bug was fixed. (Bug #52315)

- **Security Fix:** Privilege checking for UNINSTALL PLUGIN was incorrect. (Bug #51770)

- **Security Fix:** The server could be tricked into reading packets indefinitely if it received a packet larger than the maximum size of one packet. (Bug #50974)

- **Security Fix:** A security bug was fixed. (Bug #48157)

- **Incompatible Change:** TRUNCATE TABLE did not take an exclusive lock on a table if truncation was done by deleting all rows in the table. For InnoDB tables, this could break proper isolation because InnoDB ended up aborting some granted locks when truncating a table. Now an exclusive metadata lock is taken before TRUNCATE TABLE can proceed. This guarantees that no other transaction is using the table.

  Incompatible change: Truncation using delete no longer fails if sql_safe_updates is enabled (this was an undocumented side effect). (Bug #42643)

- **Incompatible Change:** After SET TRANSACTION ISOLATION LEVEL to set the isolation level for the next transaction, the session value of the tx_isolation system variable could appear to change to the transaction isolation level after completion of statements within the transaction. Now the current
transaction isolation level is now established at transaction start. If there was a `SET TRANSACTION ISOLATION LEVEL` statement, the value is taken from it. Otherwise, the session `tx_isolation` value is used. A change in the session value while a transaction is active is still permitted, but no longer affects the current transaction isolation level. This is an incompatible change. A change in the session isolation level made while there is no active transaction overrides a `SET TRANSACTION ISOLATION LEVEL` statement, if there was any. (Bug #20837)

- **Important Change; Replication:** It was possible to set `sql_log_bin` with session scope inside a transaction or subquery. (Bug #53437)

- **Important Change; Replication:** When changing `binlog_format` or `binlog_direct_non_transactional_updates`, permissions were not checked prior to checking the scope and context of the variable being changed. As a result of this fix, an error is no longer reported when—in the context of a transaction or a stored function—you try to set a value for a session variable that is the same as its previous value, or for a variable whose scope is global only. (Bug #51277)

- **Important Change; Replication:** When invoked, `CHANGE MASTER TO` and `SET GLOBAL sql_slave_skip_counter` now cause information to be written to the error log about the slave’s state prior to execution of the statement. For `CHANGE MASTER TO`, this information includes the previous values of `MASTER_HOST`, `MASTER_PORT`, `MASTER_LOG_FILE`, and `MASTER_LOG_POS`. For `SET GLOBAL sql_slave_skip_counter`, this information includes the previous values of `RELAY_LOG_FILE`, `RELAY_LOG_POS`, and `sql_slave_skip_counter`. (Bug #43406, Bug #43407)

- **Important Change:** When using fast `ALTER TABLE`, different internal ordering of indexes in the MySQL optimizer and the InnoDB storage engine could cause error messages about possibly mixed up `.frm` files and incorrect index use. (Bug #47622)

- **Performance; InnoDB:** Deadlock detection could be a bottleneck in InnoDB processing, if many transactions attempted to update the same row simultaneously. The algorithm has been improved to enhance performance and scalability, in the InnoDB Plugin for MySQL 5.1, and in InnoDB 1.1 for MySQL 5.5. (Bug #49047)

- **Performance:** While looking for the shortest index for a covering index scan, the optimizer did not consider the full row length for a clustered primary key, as in InnoDB. Secondary covering indexes are now preferred, making full table scans less likely. (Bug #39653)

References: See also: Bug #55656.

- **InnoDB; Replication:** `TRUNCATE TABLE` performed on a temporary table using the InnoDB storage engine was logged even when using row-based mode. (Bug #51251)

- **InnoDB; Replication:** Reading from a table that used a self-logging storage engine and updating a table that used a transactional engine (such as InnoDB) generated changes that were written to the binary log using statement format which could make slaves diverge. However, when using mixed logging format, such changes should be written to the binary log using row format. (This issue did not occur when reading from tables using a self-logging engine and updating MyISAM tables, as this was already handled by checking for combinations of nontransactional and transactional engines.) Now such statements are classified as unsafe, and in mixed mode, cause a switch to row-based logging. (Bug #49019)

- **InnoDB:** The server could crash with a message **InnoDB: Assertion failure in thread nnnn**, typically during shutdown on a Windows system. (Bug #53947)

- **InnoDB:** Some combinations of `SELECT` and `SELECT FOR UPDATE` statements could fail with errors about locks, or incorrectly release a row lock during a semi-consistent read operation. (Bug #53674)
MySQL 5.5 Release Notes

- **InnoDB**: Adding a unique key on multiple columns, where one of the columns is `NULL`, could mistakenly report duplicate key errors. (Bug #53290)

- **InnoDB**: Fixed a checksum error reported for compressed tables when the `--innodb-checksums` option is enabled. Although the message stated that the table was corrupted, the table is actually fine. (Bug #53248)

- **InnoDB**: When reporting a foreign key constraint violation during `INSERT`, InnoDB could display uninitialized data for the `DB_TRX_ID` and `DB_ROLL_PTR` system columns. (Bug #53202)

- **InnoDB**: The values of `innodb_buffer_pool_pages_total` and `innodb_buffer_pool_pages_misc` in the `information_schema.global_status` table could be computed incorrectly. (Bug #52983)

- **InnoDB**: InnoDB page splitting could enter an infinite loop for compressed tables. (Bug #52964)

- **InnoDB**: An overly strict assertion could fail during the purge of delete-marked records in `DYNAMIC` or `COMPRESSED` InnoDB tables that contain column prefix indexes. (Bug #52746)

- **InnoDB**: InnoDB attempted to choose off-page storage without ensuring that there was an “off-page storage” flag in the record header. To correct this, in `DYNAMIC` and `COMPRESSED` formats, InnoDB stores locally any non-`BLOB` columns having a maximum length not exceeding 256 bytes. This is because there is no room for the “external storage” flag when the maximum length is 255 bytes or less. This restriction trivially holds in `REDUNDANT` and `COMPACT` formats, because there InnoDB always stores locally columns having a length up to `local_len = 788` bytes. (Bug #52745)

- **InnoDB**: The server could crash during shutdown, if started with the option `--innodb-use-sys-malloc=0`. (Bug #52546)

- **InnoDB**: Connections waiting for an InnoDB row lock ignored `KILL` until the row lock wait ended. Now, `KILL` during lock wait results in “query interrupted” instead of “lock wait timeout exceeded”. The corresponding transaction is rolled back. (Bug #51920)

- **InnoDB**: InnoDB checks to see whether a row could possibly exceed the maximum size if all columns are fully used. This produced `Row size too large` errors for some tables that could be created with the built-in InnoDB from older MySQL versions. Now the check is only done when `innodb_strict_mode` is enabled or if the table is dynamic or compressed. (Bug #50495)

- **InnoDB**: Multi-statement execution could fail with an error about foreign key constraints. This problem could affect calls to `mysql_query()` and `mysql_real_query()`, and `CALL` statements that invoke stored procedures. (Bug #48024)

- **InnoDB**: A mismatch between index information maintained within the `.frm` files and the corresponding information in the InnoDB system tablespace could produce this error: `[ERROR] Index index of table has n columns unique inside InnoDB, but MySQL is asking statistics for m columns. Have you mixed up .frm files from different installations?` (Bug #44571)

- **Partitioning; Replication**: Attempting to execute `LOAD DATA` on a partitioned `MyISAM` table while using statement-based logging mode caused the master to hang or crash. (Bug #51851)

- **Partitioning; Replication**: The `NO_DIR_IN_CREATE` server SQL mode was not enforced when defining subpartitions. In certain cases, this could lead to failures on replication slaves. (Bug #42954)

- **Partitioning**: Rows inserted into a table created using a `PARTITION BY LIST COLUMNS` option referencing multiple columns could be inserted into the wrong partition. (Bug #52815)
MySQL 5.5 Release Notes

• **Partitioning:** Partition pruning on range-partitioned tables did not always work correctly; the last partition was not excluded if the range was beyond it (when not using `MAXVALUE`). Now the last partition is not included if the partitioning function value is not within the range. (Bug #51830)

• **Partitioning:** Attempting to partition a table using a `DECIMAL` column caused the server to crash; this was not supported and is now specifically not permitted. (Bug #51347)

• **Partitioning:** `ALTER TABLE` statements that cause table partitions to be renamed or dropped (such as `ALTER TABLE ... ADD PARTITION`, `ALTER TABLE ... DROP PARTITION`, and `ALTER TABLE ... REORGANIZE PARTITION`) — when run concurrently with queries against the `INFORMATION_SCHEMA.PARTITIONS` table — could fail, cause the affected partitioned tables to become unusable, or both. This was due to the fact that the `INFORMATION_SCHEMA` database ignored the name lock imposed by the `ALTER_TABLE` statement on the partitions affected. In particular, this led to problems with InnoDB tables, because InnoDB would accept the rename operation, but put it in a background queue, so that subsequent rename operations failed when InnoDB was unable to find the correct partition. Now, `INFORMATION_SCHEMA` honors name locks imposed by ongoing `ALTER_TABLE` statements that cause partitions to be renamed or dropped. (Bug #50561)

References: See also: Bug #47343, Bug #45808.

• **Partitioning:** The `insert_id` server system variable was not reset following an insert that failed on a partitioned MyISAM table having an `AUTO_INCREMENT` column. (Bug #50392)

• **Partitioning:** Foreign keys are not supported on partitioned tables. However, it was possible using an `ALTER TABLE` statement to set a foreign key on a partitioned table; it was also possible to partition a table with a single foreign key. (Bug #50104)

• **Partitioning:** It was possible to execute a `CREATE TEMPORARY TABLE tmp LIKE pt` statement, where `pt` is a partitioned table, even though partitioned temporary tables are not permitted. This caused the server to crash. Now a check is performed to prevent such statements from being executed. (Bug #49477)

• **Partitioning:** When attempting to perform DDL on a partitioned table and the table’s `.par` file could not be found, the server returned the inaccurate error message `Out of memory; restart server and try again (needed 2 bytes).` Now in such cases, the server returns the error `Failed to initialize partitions from .par file.` (Bug #49161)

• **Partitioning:** `GROUP BY` queries performed poorly for some partitioned tables. This was due to the block size not being set for partitioned tables, thus the keys per block was not correct, which could cause such queries to be optimized incorrectly. (Bug #48229)

References: See also: Bug #37252.

• **Partitioning:** `REPAIR TABLE` failed for partitioned `ARCHIVE` tables. (Bug #46565)

• **Replication:** When using unique keys on `NULL` columns in row-based replication, the slave sometimes chose the wrong row when performing an update. This happened because a table having a unique key on such a column could have multiple rows containing `NULL` for the column used by the unique key, and the slave merely picked the first row containing `NULL` in that column. (Bug #53893)

• **Replication:** When a `CREATE TEMPORARY TABLE ... SELECT` statement was executed within a transaction that updated only transactional engines and was later rolled back (for example, due to a deadlock) the changes—including the creation of the temporary table—were not written to the binary log, which caused subsequent updates to this table to fail on the slave. (Bug #53421)

• **Replication:** When using the statement-based logging format, statements that used `CONNECTION_ID()` were always kept in the transaction cache; consequently, nontransactional changes that should have been flushed before the transaction were kept in the transaction cache. (Bug #53075)
References: This issue is a regression of: Bug #51894.

- **Replication:** In some cases, attempting to update a column with a value of an incompatible type resulted in a mismatch between master and slave because the column value was set to its implicit default value on the master (as expected), but the same column on the slave was set to NULL. (Bug #52868)

- **Replication:** ACK packets in semisynchronous replication were not checked for length and malformed packets could cause a server crash. (Bug #52748)

- **Replication:** When temporary tables were in use, switching the binary logging format from **STATEMENT** to **ROW** did not take effect until all temporary tables were dropped. (The existence of temporary tables should prevent switching the format only from **ROW** to **STATEMENT** from taking effect, not the reverse.) (Bug #52616)

- **Replication:** A buffer overrun in the handling of **DATE** column values could cause mysqlbinlog to fail when reading logs containing certain combinations of DML statements on a table having a **DATE** column followed by dropping the table. (Bug #52202)

- **Replication:** The failure of a **REVOKE** statement was logged with the wrong error code, causing replication slaves to stop even when the failure was expected on the master. (Bug #51987)

- **Replication:** Issuing any DML on a temporary table `temp` followed by **DROP TEMPORARY TABLE temp**, both within the same transaction, caused replication to fail.

The fix introduces a change to statement-based binary logging with respect to temporary tables. Within a transaction, changes to temporary tables are saved to the transaction cache and written to the binary log when the transaction commits. Otherwise, out-of-order logging of events could occur. This means that temporary tables are treated similar to transactional tables for purposes of caching and logging. This affects assessment of statements as safe or unsafe and the associated error message was changed from:

```
Unsafe statement written to the binary log using statement format since BINLOG_FORMAT = STATEMENT. Statements that read from both transactional and non-transactional tables and write to any of them are unsafe.
```

To:

```
Unsafe statement written to the binary log using statement format since BINLOG_FORMAT = STATEMENT. Statements that read from both transactional (or a temporary table of any engine type) and non-transactional tables and write to any of them are unsafe.
```

(Bug #51894)

References: See also: Bug #51291, Bug #53075, Bug #53259, Bug #53452, Bug #54872. This issue is a regression of: Bug #46364.

- **Replication:** The internal flag indicating whether a user value was signed or unsigned (**unsigned_flag**) could sometimes change between the time that the user value was recorded for logging purposes and the time that the value was actually written to the binary log, which could lead to inconsistency. Now **unsigned_flag** is copied when the user variable value is copied, and the copy of **unsigned_flag** is then used for logging. (Bug #51426, Bug #11759138)

References: See also: Bug #49562, Bug #11757508.
MySQL 5.5 Release Notes

• **Replication:** Enabling `binlog_direct_non_transactional_updates` causes nontransactional changes to be written to the binary log upon committing the statement. However, even when not enabled, the addition of this variable introduced a number of undesired changes in behavior:

  1. When using **ROW** or **MIXED** logging mode: Nontransactional changes executed within a transaction prior to any transactional changes were written to the statement cache, but those following any transactional changes were written to the transactional cache instead, causing these (later) nontransactional changes to be lost.

  2. When using **ROW** or **MIXED** logging mode: When rolling back a transaction, any nontransactional changes that might be in the transaction cache were disregarded and truncated along with the transactional changes.

  3. When using **STATEMENT** logging mode: A statement that combined transactional and nontransactional changes prior to any other transactional changes within the transaction, but failed, was kept in the transactional cache until the transaction ended, rather than being written to the binary log at the instant of failure (and not deferred to the end of the transaction).

These problems have been handled as follows:

• The setting for `binlog_direct_non_transactional_updates` no longer has any effect when the value of `binlog_format` is either **ROW** or **MIXED**. This addresses the first two issues previously listed.

• When using statement-based logging with `binlog_direct_non_transactional_updates` set to **ON**, any statement combining transactional and nontransactional changes within the same transaction is now stored in the transaction cache, whether or not it succeeds, and regardless of its order of execution among any transactional statements within that transaction. This means that such a statement is now written to the binary log only on transaction commit or rollback.

(Bug #51291)

References: This issue is a regression of: Bug #46364.

• **Replication:** When using temporary tables, the binary log needs to insert a pseudo-thread ID for threads that are using temporary tables, each time a switch happens between two threads, both of which are using temporary tables. However, if a thread issued a failing statement before exit, its ID was not recorded in the binary log, and this in turn caused the ID for the next thread that tried to do something with a temporary table not to be logged as well. Subsequent replays of the binary log failed with the error `Table ... doesn't exist`. (Bug #51226)

References: This issue is a regression of: Bug #35583.

• **Replication:** If the master was using `sql_mode='TRADITIONAL'`, duplicate key errors were not sent to the slave, which received 0 rather than the expected error code. This caused replication to fail even when such an error was expected. (Bug #51055)

• **Replication:** DDL statements that lock tables (such as `ALTER TABLE`, `CREATE INDEX`, and `CREATE TRIGGER`) caused spurious `ER_BINLOG_ROW_MODE_AND_STMT_ENGINE` or `ER_BINLOG_STMT_MODE_AND_ROW_ENGINE` errors, even though they did not insert rows into any tables.

**Note**

The error `ER_BINLOG_ROW_MODE_AND_STMT_ENGINE` is generated when `binlog_format=ROW` and a statement modifies a table restricted to statement-based logging; `ER_BINLOG_STMT_MODE_AND_ROW_ENGINE` is generated when
MySQL 5.5 Release Notes

- `binlog_format=STATEMENT` and a statement modifies a table restricted to row-based logging.
  (Bug #50479)

References: This issue is a regression of: Bug #39934, Bug #11749859.

- **Replication:** When run with the `--database` option, `mysqlbinlog` printed `ROLLBACK` statements but did not print any corresponding `SAVEPOINT` statements. (Bug #50407)

- **Replication:** When a `CREATE EVENT` statement was followed by an additional statement and the statements were executed together as a single statement, the `CREATE EVENT` statement was padded with “garbage” characters when written to the binary log. This led to a syntax error when the event was read from the log. (Bug #50095)

- **Replication:** When using a nontransactional table on the master with autocommit disabled, no `COMMIT` was recorded in the binary log following a statement affecting this table. If the slave's copy of the table used a transactional storage engine, the result on the slave was as though a transaction had been started, but never completed. (Bug #49522)

  References: See also: Bug #29288.

- **Microsoft Windows:** During MySQL server installation using the MSI package on Windows, the `default-character-set` option would be included in the default configuration template file. This caused the MySQL server to fail to start properly. (Bug #52380)

- **Microsoft Windows:** On Windows, `LOAD_FILE()` could cause a crash for some pathnames. (Bug #51893)

  - The `make_binary_distribution` target to `make` could fail on some platforms because the lines generated were too long for the shell. (Bug #54590)

  - Inconsistent checking of the relationship between `SHOW` statements and `INFORMATION_SCHEMA` queries caused such queries to fail sometimes. (Bug #54422)

  - A crash occurred if a table that was locked with `LOCK TABLES` was listed twice in a `DROP TABLE` statement. (Bug #54282)

  - `ALTER TABLE` for views is not legal but did not produce an error. (If you need to rename a view, use `RENAME TABLE`.) (Bug #53976)

  - Valgrind warnings resulting from passing incomplete `DATETIME` values to the `TIMESTAMP()` function were corrected. (Bug #53942)

  - Builds of the embedded `mysqld` failed due to a missing element of the `struct NET`. (Bug #53908, Bug #53912)

  - The definition of the `MY_INIT` macro in `my_sys.h` included an extraneous semicolon, which could cause compilation failure. (Bug #53906)

  - Queries that used `MIN()` or `MAX()` on indexed columns could be optimized incorrectly. (Bug #53859)

  - `UPDATE` on an InnoDB table modifying the same index that was used to satisfy the `WHERE` condition could trigger a debug assertion under some circumstances. (Bug #53830)

  - MySQL incorrectly processed `ALTER DATABASE `#mysql50#special` UPGRADE DATA DIRECTORY NAME` where `special` was `.,..,` or a sequence starting with `./` or `../`. It used the server data directory (which contains other regular databases) as the database directory. (Bug #53804)
MySQL 5.5 Release Notes

- **OPTIMIZE TABLE** could be run on a table in use by a transaction in a different session, causing repeatable read to break. (Bug #53798)

- **InnoDB** crashed when replacing duplicates in a table after a fast **ALTER TABLE** added a unique index. (Bug #53592)

- For **InnoDB** tables, the error handler for a fast **CREATE INDEX** did not reset the error state of the transaction before attempting to undo a failed operation, resulting in a crash. (Bug #53591)

- For single-table **DELETE** statements that used quick select and index scan simultaneously caused a server crash or assertion failure. (Bug #53450)

- Certain path names passed to **LOAD_FILE()** could cause a server crash. (Bug #53417)

- If the **completion_type** session variable was changed after a stored procedure or prepared statement had been cached, the change had no effect on subsequent executions of the procedure or statement. (Bug #53346)

- The **AND_CHAIN** option for **COMMIT** and **ROLLBACK** failed to preserve the current transaction isolation level. Setting **completion_type** to 1 also failed to do so. (Bug #53343)

- Incorrect results could be returned for **LEFT JOIN** of **InnoDB** tables with an impossible **WHERE** condition. (Bug #53334)

- The **Lock_time** value in the slow query log was negative for stored routines. (Bug #53191)

- Setting the **innodb_change_buffering** system variable to **DEFAULT** produced an incorrect result. (Bug #53165)

- **mysqldump** and **SELECT ... INTO OUTFILE** truncated long **BLOB** and **TEXT** values to 766 bytes. (Bug #53088)

- On some systems, such as OS X, the **sockaddr_in** and **sockaddr_in6** structures contain a non-standard field (**sin_len**/**sin6_len**) that must be set but was not. This resulted in host name lookup failure. (Bug #52923)

- In the debug version of the server, the **FreeState()** function could in some circumstances be called twice, leading to an assertion failure. (Bug #52884)

- Concurrent **SHOW COLUMNS** statements could cause a server crash. (Bug #52856)

- With a non-**latin1** ASCII-based current character set, the server inappropriately converted **DATETIME** values to strings. This resulted in the optimizer not using indexes on such columns. (Bug #52849)

- **mysqld_safe** set **plugin_dir** using a hardcoded default path name rather than a path depending on **basedir**. (Bug #52737)

- Semi-consistent read was implemented for **InnoDB** to address Bug #3300. Semi-consistent reads do not block when a nonmatching record is already locked by some other transaction. If the record is not locked, a lock is acquired, but is released if the record does not match the **WHERE** condition. However, semi-consistent read was attempted even for **UPDATE** statements having a **WHERE** condition of the form **pk_col1=constant1, ..., pk_colN=constantN**. Some code failed that was designed with the assumption that semi-consistent read would be only attempted on table scans. (Bug #52663)

- References: See also: Bug #3300.

- Setting **@@GLOBAL.debug** to an empty string failed to clear the current debug settings. (Bug #52629)

- **SHOW CREATE TABLE** was blocked if the table was write locked by another session. (Bug #52593)
• The `length` and `max_length` metadata values were incorrect for columns with the `TEXT` family of data types that used multibyte character sets. This bug was introduced in MySQL 5.5.3. (Bug #52520)

• `mysql_upgrade` attempted to work with stored routines before they were available. (Bug #52444)

• The `check_table_is_closed()` debugging function did not protect access to the `MyISAM` open tables list, with the result that server crashes could occur during table drop or rename operations. (Bug #52432)

• Spurious duplicate-key errors occurred for multiple-column indexes on `BINARY` columns. (Bug #52430)

• `EXPLAIN EXTENDED` crashed trying to resolve references to freed temporary table columns for `GROUP_CONCAT()` `ORDER BY` arguments. (Bug #52397)

• Two sessions trying to set the global `event_scheduler` system variable to `OFF` resulted in one of them hanging waiting for the event scheduler to stop. (Bug #52367)

• There was a race condition between flags used for signaling that a query was killed, which led to error-reporting and lock-acquisition problems. (Bug #52356)

• For a concurrent load of 16 or more connections containing many `LOCK TABLES WRITE` statements for the same table, server throughput was significantly lower for MySQL 5.5.3 and 5.5.4 than for earlier versions (10%–40% lower depending on concurrency). (Bug #52289)

• Operations on geometry data types failed on some systems for builds compiled with Sun Studio. (Bug #52208)

• The optimizer could attempt to evaluate the `WHERE` clause before any rows had been read, resulting in a server crash. (Bug #52177)

• Cast operations on `NULL DECIMAL` values could cause server crashes or Valgrind warnings. (Bug #52168)

• An assertion was raised as a result of a `NULL` string being passed to the `dtoa` code. (Bug #52165)

• A memory leak occurred due to missing deallocation of the `comparators` array (a member of the `Arg_comparator` class). (Bug #52124)

• For debug builds, creating a view containing a subquery that might require collation adjustment caused an assertion to be raised. For example, this could occur if some items had different collations but the result collation could be adjusted to the one of them. (Bug #52120)

• Aggregate functions could incorrectly return `NULL` in outer join queries. (Bug #52051)

• For outer joins, the optimizer could fail to properly calculate table dependencies. (Bug #52005)

• A `COUNT(DISTINCT)` query on a view could cause a server crash. (Bug #51980)

• For LDML-defined collations, some data structures were not initialized properly to enable `UPPER()` and `LOWER()` to work correctly. (Bug #51976)

• Invalid memory reads occurred for `HANDLER ... READ NEXT` after a failed `HANDLER ... READ FIRST`. (Bug #51877)

• After `TRUNCATE TABLE` of a `MyISAM` table, subsequent queries could crash the server if `myisam_use_mmap` was enabled. (Bug #51868)

• If `myisam_sort_buffer_size` was set to a small value, table repair for `MyISAM` tables with `FULLTEXT` indexes could crash the server. (Bug #51866)
• Stored routine DDL statements were written to the binary log using statement-based format regardless of
the current logging format. (Bug #51839)

• A problem with equality propagation optimization for prepared statements and stored procedures caused
a server crash upon re-execution of the prepared statement or stored procedure. (Bug #51650)

  References: See also: Bug #8115, Bug #8849.

• The optimizer performed an incorrect join type when COALESCE() appeared within an IN() operation.
  (Bug #51598)

• Locking involving the LOCK_plugin, LOCK_global_system_variables, and LOCK_status
  mutexes could deadlock. (Bug #51591)

• Executing a LOAD XML statement could sometimes lead to a server crash. (Bug #51571)

• The server crashed when the optimizer attempted to determine constant tables but a table storage
  engine did not support exact record count. (Bug #51494)

• The server could crash populating the INFORMATION_SCHEMA.PROCESSLIST table due to lack of
  mutex protection. (Bug #51377)

• Use of HANDLER statements with tables that had spatial indexes caused a server crash. (Bug #51357)

• With an XA transaction active, SET autocommit = 1 could cause side effects such as memory
  corruption or a server crash. (Bug #51342)

• Corrupt MyISAM tables were automatically repaired even when myisam_recover_options was set to
  OFF. (Bug #51327)

• Following a bulk insert into a MyISAM table, if MyISAM failed to build indexes using repair by sort, data
  file corruption could occur. (Bug #51307)

• CHECKSUM TABLE could compute the checksum for BIT columns incorrectly. (Bug #51304)

• ALTER TABLE on InnoDB tables (including partitioned tables) acquired exclusive locks on rows of
  the table being altered. If there was a concurrent transaction that did locking reads from this table, this
  sometimes led to a deadlock that was not detected by the metadata lock subsystem or by InnoDB (and
  was reported only after exceeding innodb_lock_wait_timeout). (Bug #51263)

• A HAVING clause on a joined table in some cases failed to eliminate rows which should have been
  excluded from the result set. (Bug #51242)

• Two sessions trying to set the global event_scheduler system variable to different values could
  deadlock. (Bug #51160)

• InnoDB fast index creation could incorrectly use a table copy in some cases. (Bug #50946)

• The Loose Index Scan optimization method assumed that it could depend on the partitioning engine to
  maintain interval endpoint information, as if it were a storage engine. (Bug #50939)

• The type inference used for view columns caused some columns in views to be handled as the wrong
  type, as compared to the same columns in base tables. DATE columns in base tables were treated as
  TIME columns in views, and base table TIME columns as view DATETIME columns. (Bug #50918)

• A syntactically invalid trigger could cause the server to crash when trying to list triggers. (Bug #50755)

• Previously, the server held a global mutex while performing file operations such as deleting an .frm
  or data file, or reading index statistics from a data file. Now the mutex is not held for these operations.
  Instead, the server uses metadata locks. (Bug #50589, Bug #51557, Bug #49463)
• User-defined variables of type REAL that contained NULL were handled improperly when assigned to a column of another type. (Bug #50511)

• Setting the secure_file_priv system variable to the empty string left the value unaffected. (Bug #50373)

• Calculation of intervals for Event Scheduler events was not portable. (Bug #50087)

• The YEAR values 2000 and 0000 could be treated as equal. (Bug #49910)

• Performing a single in-place ALTER TABLE containing ADD INDEX and DROP INDEX options that used the same index name could result in a corrupt table definition file. Now such ALTER TABLE statements are no longer performed in place. (Bug #49838)

• mysql_upgrade did not detect when CSV log tables incorrectly contained columns that could be NULL. Now these columns are altered to be NOT NULL. (Bug #49823)

• support-files/mysql.spec.sh had unnecessary Perl dependencies. (Bug #49723)

• Selecting from INFORMATION_SCHEMA_ROUTINES or INFORMATION_SCHEMA_PARAMETERS resulted in a memory leak. (Bug #48729)

• In MySQL 5.1, READ COMMITTED was changed to use less locking due to the availability of row-based binary logging (see the Note under READ COMMITTED at SET TRANSACTION Statement). However, READ UNCOMMITTED did not have the same change, so it was using more locks than the higher isolation level, which is unexpected. This was changed so that READ UNCOMMITTED now also uses the lesser amount of locking and has the same restrictions for binary logging. (Bug #48607)

• On Intel x86 machines, the optimizer could choose different execution plans for a query depending on the compiler version and optimization flags used to build the server binary. (Bug #48537)

• A trigger could change the behavior of assigning NULL to a NOT NULL column. (Bug #48525)

• The server crashed when it could not determine the best execution plan for queries involving outer joins with nondeterministic ON clauses such as the ones containing the RAND() function, a user-defined function, or a NOT DETERMINISTIC stored function. (Bug #48483)

• EXPLAIN could cause a server crash for some queries with subqueries. (Bug #48419)

• The MERGE engine failed to open a child table from a different database if the child table or database name contained characters that were subject to table name to file name encoding.

  Further, the MERGE engine did not properly open a child table from the same database if the child table name contained characters such as '/', or '#'. (Bug #48265)

• On Windows, the server failed to find a description for Event ID 100. (Bug #48042)

• A query that read from a derived table (of the form SELECT ... FROM (SELECT ...)) produced incorrect results when the following conditions were present:

  • The table subquery contained a derived query ((SELECT ...) AS column).

  • The derived query could potentially produce zero rows or a single NULL (that is, no rows matched, or the query used an aggregate function such as SUM() running over zero rows).

  • The table subquery joined at least two tables.

  • The join condition involved an index.
The optimization to read `MIN()` or `MAX()` values from an index did not properly handle comparisons with `NULL` values. This could produce incorrect results for `MIN()` or `MAX()` when the `WHERE` clause tested a `NOT NULL` column for `NULL`. (Bug #47762)

Killing a query during the optimization phase of a subquery could cause a server crash. (Bug #47761)

Using `REPLACE` to update a previously inserted negative value in an `AUTO_INCREMENT` column of an `InnoDB` table caused the table auto-increment value to be updated to 2147483647. (Bug #47720)

The query shown by `EXPLAIN EXTENDED` plus `SHOW WARNINGS` could produce results different from the original query. (Bug #47669)

`MyISAM` could write uninitialized data to new index pages. Now zeros are written to unused bytes in the pages. (Bug #47598)

`OPTIMIZE TABLE` for an `InnoDB` table could raise an assertion if another session issued a concurrent `DROP TABLE`. (Bug #47459)

For updates to `InnoDB` tables, `TIMESTAMP` columns could be updated even when no values actually changed. (Bug #47453)

Setting `myisam_repair_threads` larger than 1 could result in the cardinality for all indexes of a `MyISAM` table being set to 1 after parallel index repair. (Bug #47444)

`mysqld_safe` did not always pass `--open-files-limit` through to `mysqld`. `mysqld_safe` did not treat dashes and underscores as equivalent in option names. (Bug #47095)

When the transaction isolation level was `REPEATABLE READ` and binary logging used statement or mixed format, `SELECT` statements with subqueries referencing `InnoDB` tables unnecessarily acquired shared locks on rows in these tables. (Bug #46947)

In debug builds, if the listed columns in the view definition of the table used in an `INSERT ... SELECT` statement mismatched, an assertion was raised in the query cache invalidation code following the failing statement. (Bug #46615)

For the `COMMIT` and `ROLLBACK` statements, the `AND CHAIN` and `RELEASE` modifiers should be mutually exclusive, but the parser permitted both to be specified. (Bug #46527)

If the server is started with `--skip-grant-tables`, plugin loading and unloading should be prohibited, but the server failed to reject `INSTALL PLUGIN` and `UNINSTALL PLUGIN` statements. (Bug #46261)

`gcc` 4.4.0 could fail to compile `dtoa.c`. (Bug #45882)

`ALTER TABLE ... ADD COLUMN` for a table with multiple foreign keys caused a server crash. (Bug #45052)

Manual pages for a few little-used programs were missing from RPM packages. (Bug #44370)

Using an initial command with `mysql_options(..., MYSQL_INIT_COMMAND, ...)` that generated multiple result sets (such as a stored procedure or a multi-statement command) left the connection unusable. (Bug #42373)

The server could crash with an out of memory error when trying to parse a query that was too long to fit in memory. Now the parser rejects such queries with an `ER_OUT_OF_RESOURCES` error. (Bug #42064)

`InnoDB` could fail to create a unique index on `NULL` columns. (Bug #41904)
• For a query that selected from a view and used an alias for the view, the metadata used the alias name rather than the view name in the `MYSQL_FIELD.table` member. (Bug #41788)

• `mysql_upgrade` did not create temporary files properly. (Bug #41057)

• It was possible for `DROP TABLE` of one `MyISAM` table to remove the data and index files of a different `MyISAM` table. (Bug #40980)

• If the arguments to a `CONCAT()` call included a local routine variable, selecting the return value into a user variable could produce an incorrect result. (Bug #40625)

• Column names displayed from the `PARTITION_EXPRESSION` column of the `INFORMATION_SCHEMA.PARTITIONS` table did not include escape characters as necessary. (Bug #39338)

• When `SET TRANSACTION ISOLATION LEVEL` was used to set the isolation level for the next transaction, the level could persist for subsequent transactions. (Bug #39170)

• When using `UNINSTALL PLUGIN` to remove a loaded plugin, open tables and connections caused `mysqld` to hang until the open connections had been closed. (Bug #39053)

• Valgrind warnings in the `InnoDB` `compare_record()` function were corrected. (Bug #38999)

• The optimizer sometimes used `filesort` for `ORDER BY` when it should have used an index. (Bug #38745)

• Setting the session value of the `debug` system variable also set the global value. (Bug #38054)

• Accessing a `MERGE` table with an empty underlying table list incorrectly resulted in a “wrong index” error message rather than “end of file.” (Bug #35274)

• The test for `readline` during configuration failed when trying to build MySQL in a directory other than the source tree root. (Bug #35250)

• `mysqld` could fail during execution when using SSL. (Bug #34236)

• A query on a `FEDERATED` table in which the data was ordered by a `TEXT` column returned incorrect results. For example, a query such as the following produced incorrect results if column `column1` was a `TEXT` column:

```sql
SELECT * FROM table1 ORDER BY column1;
```

(Bug #32426)

• MySQL Makefiles relied on GNU extensions. (Bug #30708)

• The parser allocated too much memory for a query string containing multiple statements. (Bug #27863)

• The behavior of the RPM installation for both new installations and upgrade installations has changed.

  During a new installation, the server boot scripts are installed, but the MySQL server is not started at the end of the installation, since the status of the system during an unattended installation is not known.

  During an upgrade installation using the RPM packages, if the server is running when the upgrade occurs, the server is stopped, the upgrade occurs, and server is restarted. If the server is not already running when the RPM upgrade occurs, the server is not started at the end of the installation.

  The boot scripts for MySQL are installed in the appropriate directories in `/etc`, so the MySQL server will be restarted automatically at the next machine reboot. (Bug #27072)
• ROW_COUNT() returned a meaningful value only for some DML statements. Now it returns a value as follows:

  • DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.

  • DML statements other than SELECT: The number of affected rows. This applies to statements such as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER TABLE and LOAD DATA.

  • SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.

  • SIGNAL statements: 0.

(Bug #21818)

Changes in MySQL 5.5.4 (2010-04-09, Developer Milestone)

• InnoDB Notes

• RPM Notes

• Functionality Added or Changed

• Bugs Fixed

InnoDB Notes

• InnoDB has been upgraded to version 1.1. This version is considered of Beta quality.

RPM Notes

• debuginfo RPM packages are no longer being built or published.

Functionality Added or Changed

• InnoDB: Starting with InnoDB 1.1 with MySQL 5.5, concurrent access to the buffer pool is faster. Operations involving the flush list, a data structure related to the buffer pool, are now controlled by a separate mutex and do not block access to the buffer pool.

• InnoDB: The mutex known as the log sys mutex has historically done double duty, controlling access to internal data structures related to log records and the LSN, as well as pages in the buffer pool that are changed when a mini-transaction is committed. Starting in InnoDB 1.1 with MySQL 5.5, these two kinds of operations are protected by separate mutexes, with a new log_buf mutex controlling writes to buffer pool pages due to mini-transactions.

• InnoDB: Starting in InnoDB 1.1 with MySQL 5.5, the asynchronous I/O capability that InnoDB has had on Windows systems is available on Linux systems. (Other Unix-like systems continue to use synchronous I/O calls.) This feature improves the scalability of heavily I/O-bound systems, which typically show many pending reads/writes in the output of the command SHOW ENGINE INNODB STATUS\G.

If there is a problem with the asynchronous I/O subsystem in the OS that prevents InnoDB from starting, the new innodb_use_native_aio system variable, which is enabled by default, can be disabled at
startup. This variable applies to Linux systems only, where the MySQL server now has a dependency on the `libaio` library.

**Bugs Fixed**

- **Performance; InnoDB**: The redo scan during InnoDB recovery used excessive CPU. The efficiency of this scan was improved, significantly speeding up crash recovery. For additional details, see Optimizing InnoDB Configuration Variables. (Bug #49535, Bug #29847)
- **Performance; InnoDB**: InnoDB page-freeing operations were made faster for compressed blocks, speeding up `ALTER TABLE`, `DROP TABLE`, and other operations on compressed tables that free compressed blocks. One symptom of the older behavior could be 100% CPU use during these operations. (Bug #35077)
- **InnoDB**: The AIX implementation of `readdir_r()` caused InnoDB errors. (Bug #50691)
- **InnoDB**: The limit of 1023 concurrent data-modifying transactions has been raised. The limit is now `128 × 1023` concurrent transactions that generate undo records. You can remove any workarounds that require changing the proper structure of your transactions, such as committing more frequently or delaying DML operations to the end of a transaction.

The limit of 1023 concurrent data-modifying transactions was due to a bottleneck with the InnoDB rollback segment. Previously, a single rollback segment supported 1023 transactions that perform writes. The single rollback segment is now divided into 128 segments, each of which can support up to 1023 transactions that perform writes, for a total of approximately 128K concurrent transactions. Read-only transactions do not count against that maximum.

Each transaction is assigned to one of the rollback segments, and remains tied to that rollback segment for the duration. This enhancement improves both scalability (higher number of concurrent transactions) and performance (less contention when different transactions access the rollback segments).

If upgrading to from MySQL 5.1 or earlier, do a slow shutdown before upgrading or some time afterward to take advantage of this feature. InnoDB makes the required changes inside the system tablespace automatically, the first time you restart after performing a slow shutdown. (Bug #26590)

- A unique index on a column prefix could not be upgraded to a primary index even if there was no primary index already defined. (Bug #51378)
- **InnoDB** did not reset table `AUTO_INCREMENT` values to the last used values after a server restart. (Bug #49032)
- When using the `EXAMPLE` storage engine, when the engine had been built as a plugin (instead of built in), and DTrace probes had been enabled during the build, loading the storage engine library failed due to a missing object table entry.

**Changes in MySQL 5.5.3 (2010-03-24, Milestone 3)**

- InnoDB Notes
- IPv6 Support
- Performance Schema Notes
- Functionality Added or Changed
- Bugs Fixed
InnoDB Notes

• This release includes InnoDB 1.0.6. This version is considered of Release Candidate (RC) quality.

IPv6 Support

• MySQL Server now can accept TCP/IP connections from clients connecting over IPv6. See IPv6 Support. For example, this command connects over IPv6 to the MySQL server on the local host:

  shell> mysql -h ::1

To use this capability, two things must be true:

• Your system must be configured to support IPv6.

• The default MySQL server configuration permits only IPv4 connections, so the server must be configured for IPv6 connections. To permit IPv6 connections in addition to or instead of IPv4 connections, start the server with an appropriate --bind-address option.

MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that connect to the server over IPv6. See Specifying Account Names. IPv6 addresses can be specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For example:

  mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
  mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';

The default set of accounts created during MySQL installation now include an account for 'root'@'::1'. See Securing the Initial MySQL Accounts. This account can be used to make connections as root if the server is bound to ::1 and accepts only local IPv6 connections. (Bug #8836)

Performance Schema Notes

• MySQL Server now includes the Performance Schema, a feature for monitoring server execution at a low level. The implementation uses the PERFORMANCE_SCHEMA storage engine and the performance_schema database. The Performance Schema focuses primarily on performance data. This differs from INFORMATION_SCHEMA, which serves for inspection of metadata. For more information, see MySQL Performance Schema.

Performance Schema support is included in binary MySQL distributions but is disabled by default. To enable it, start the server with the --performance_schema option.

To create the performance_schema database if you are upgrading from an earlier release, run mysql_upgrade and restart the server. See mysql_upgrade — Check and Upgrade MySQL Tables.

Functionality Added or Changed

• Incompatible Change: CREATE VIEW and DROP VIEW now are prohibited while a LOCK TABLES statement is in effect. (Bug #56571)

• Incompatible Change: The following obsolete constructs have been removed. Where alternatives are shown, applications should be updated to use them.

  • The log_bin_trust_routine_creators system variable (use log_bin_trust_function_creators).
  • The myisam_max_extra_sort_file_size system variable.
• The `record_buffer` system variable (use `read_buffer_size`).
• The `sql_log_update` system variable.
• The `table_lock_wait_timeout` system variable.
• The `table_type` system variable (use `storage_engine`).
• The `FRAC_SECOND` modifier for the `TIMESTAMPADD()` function (use `MICROSECOND`).
• The `TYPE` table option to specify the storage engine for `CREATE TABLE` or `ALTER TABLE` (use `ENGINE`).
• The `SHOW TABLE TYPES` SQL statement (use `SHOW ENGINES`).
• The `SHOW INNODB STATUS` and `SHOW MUTEX STATUS` SQL statements (use `SHOW ENGINE INNODB STATUS SHOW ENGINE INNODB MUTEX`).
• The `SHOW PLUGIN` SQL statement (use `SHOW PLUGINS`).
• The `LOAD TABLE ... FROM MASTER` and `LOAD DATA FROM MASTER` SQL statements (use `mysqldump` or `mysqlhotcopy` to dump tables and `mysql` to reload dump files).
• The `BACKUP TABLE` and `RESTORE TABLE` SQL statements (use `mysqldump` or `mysqlhotcopy` to dump tables and `mysql` to reload dump files).
• `TIMESTAMP(N)` data type: The ability to specify a display width of `N` (use without `N`).
• The `--default-character-set` and `--default-collation` server options (use the `character_set_server` and `collation_server` system variables).
• The `--delay-key-write-for-all-tables` server option (use `--delay-key-write=ALL`).
• The `--enable-locking` and `--skip-locking` server options (use `--external-locking` and `--skip-external-locking`).
• The `--log-long-format` server option.
• The `--log-update` server option.
• The `--master-xxx` server options to set replication parameters (use the `CHANGE MASTER TO` statement instead): `--master-host`, `--master-user`, `--master-password`, `--master-port`, `--master-connect-retry`, `--master-ssl`, `--master-ssl-ca`, `--master-ssl-capath`, `--master-ssl-cert`, `--master-ssl-cipher`, `--master-ssl-key`.
• The `--safe-show-database` server option.
• The `--skip-symlink` and `--use-symbolic-links` server options (use `--skip-symbolic-links` and `--symbolic-links`).
• The `--sql-bin-update-same` server option.
• The `--warnings` server option (use `--log-warnings`).
• The `--no-named-commands` option for `mysql` (use `--skip-named-commands`).
• The `--no-pager` option for `mysql` (use `--skip-pager`).
MySQL 5.5 Release Notes

- The `--no-tee` option for `mysql` (use `--skip-tee`).
- The `--position` option for `mysqlbinlog` (use `--start-position`).
- The `--all` option for `mysqldump` (use `--create-options`).
- The `--first-slave` option for `mysqldump` (use `--lock-all-tables`).
- The `--config-file` option for `mysqld_multi` (use `--defaults-extra-file`).
- The `--set-variable=var_name=value` and `-O var_name=value` general-purpose options for setting program variables (use `--var_name=value`).

(Bug #48048)

References: See also: Bug #47974, Bug #56408.

- **Incompatible Change:** Aliases for wildcards (as in `SELECT t.* AS 'alias' FROM t`) are no longer accepted and result in an error. Previously, such aliases were ignored silently. (Bug #27249)

- **Incompatible Change:** Implicit conversion of a number or temporal value to string now produces a value that has a character set and collation determined by the `character_set_connection` and `collation_connection` system variables. (These variables commonly are set with `SET NAMES`. For information about connection character sets, see Connection Character Sets and Collations.)

This change means that such a conversion results in a character (nonbinary) string (a `CHAR`, `VARCHAR`, or `LONGTEXT` value), except when the connection character set is set to `binary`. In that case, the conversion result is a binary string (a `BINARY`, `VARBINARY`, or `LONGBLOB` value).

Previously, an implicit conversion always produced a binary string, regardless of the connection character set. Such implicit conversions to string typically occur for functions that are passed numeric or temporal values when string values are more usual, and thus could have effects beyond the type of the converted value. Consider the expression `CONCAT(1, 'abc')`. The numeric argument `1` was converted to the binary string `'1'` and the concatenation of that value with the nonbinary string `'abc'` produced the binary string `'1abc'`.

This change in conversion behavior affects several functions that expect string arguments because a numeric or temporal argument converted to a string now results in a character rather than binary string argument:

- **String functions:** `CONCAT()`, `CONCAT_WS()`, `ELT()`, `EXPORT_SET()`, `INSERT()`, `LCASE()`, `LEFT()`, `LOWER()`, `LPAD()`, `LTRIM()`, `MID()`, `QUOTE()`, `REPEAT()`, `REPLACE()`, `REVERSE()`, `RIGHT()`, `RPAD()`, `RTRIM()`, `SOUNDEX()`, `SUBSTRING()`, `TRIM()`, `UCASE()`, `UPPER()`.
• Date and time functions: `ADDDATE()`, `ADDTIME()`, `DATE_ADD()`, `DATE_SUB()`, `DAYNAME()`, `GET_FORMAT()`, `MONTHNAME()`, `SUBDATE()`, `SUBTIME()`, `TIMESTAMPADD()`.

These functions remain unaffected:

• `CHAR()` without a `USING` clause still returns `VARBINARY`.

• Functions that previously returned `utf8` strings still do so. Examples include `CHARSET()` and `COLLATION()`.

Encryption and compression functions that expect string arguments and previously returned binary strings are affected depending on the content of the return value:

• If the return value contains only ASCII characters, the function now returns a character string with the connection character set and collation: `MD5()`, `OLD_PASSWORD()`, `PASSWORD()`, `SHA()`, `SHA1()`.
  The `ASTEXT()` and `ASWKT()` spatial functions also fall into this category.

• If the return value can contain non-ASCII characters, the function still returns a binary string: `AES_ENCRYPT()`, `COMPRESS()`, `DES_ENCRYPT()`, `ENCODE()`, `ENCRYPT()`.

The `INET_NTOA()` return value contains only ASCII characters, and this function now returns a character string with the connection character set and collation rather than a binary string.

• **Incompatible Change:** Several changes were made to processing of server system variables and command-line options to make their treatment more consistent.

General changes:

• The help message text displayed by `mysqld --verbose --help` now consistently uses dashes to show the names of options and system variables that can be set at server startup. Previously, the message used both dashes and underscores (generally with dashes for options and underscores for system variables). For example, the help message now displays `--log-output` and `--general-log`, whereas previously it displayed `--log-output` and `--general_log`.

This is a display-only change. The permissible syntax for setting options and variables remains unchanged:

• At server startup, you can specify options and variables on the command line or in option files using either dashes or underscores.

• For those system variables that can be set at runtime (for example, using `SET`), you must specify them using underscores.

• There are fewer session-only system variables. These variables now have a global value: `autocommit`, `foreign_key_checks`, `profiling`, `sql_auto_is_null`, `sql_big_selects`, `sql_buffer_result`, `sql_log_bin`, `sql_log_off`, `sql_notes`, `sql_quote_show_create`, `sql_safe_updates`, `sql_warnings`, `unique_checks`.

For those variables, you can now set the global value to change the value from which the session value is initialized for new sessions.

The following list shows the variables that remain session-only. They apply only in the context of a specific session so that a global value is of no use: `debug_sync`, `error_count`, `identity`,
insert_id, last_insert_id, pseudo_thread_id, rand_seed1, rand_seed2, timestamp, warning_count.

- All system variables are accessible at runtime using @@ syntax (@@GLOBAL.var_name, @@SESSION.var_name, @@var_name). Previously, this syntax produced an error for some variables.

- All system variables are included as appropriate in the output from SHOW {GLOBAL, SESSION} VARIABLES and the INFORMATION_SCHEMA.GLOBAL_VARIABLES and INFORMATION_SCHEMA.SESSION_VARIABLES tables. Previously, some variables were not displayed.

  “As appropriate” in the preceding item means that SHOW GLOBAL VARIABLES and INFORMATION_SCHEMA.GLOBAL_VARIABLES no longer include session-only system variables. Previously, these included the global value of a variable if it had one, and the session value if not. (SHOW SESSION VARIABLES still includes global-only variables.)

- The server now enforces type checking for assignments to system variables, so it is more consistent and strict about rejecting invalid values.

- For attempts to assign a negative value to an unsigned system variable, the server truncates the value to the minimum permitted value. Previously, there was sometimes wraparound to a large positive value.

- Some system variables (typically those that control memory or disk allocation) are permitted to take only values that are a multiple of a given block size, and assigning a value not a block size multiple causes truncation to the nearest multiple. (For example, net_buffer_length must be a multiple of 1024. Assigning 16384 results in a value of 16384, whereas assigning 16383 results in a value
A warning now occurs when adjustment of the specified value takes place. Previously, adjustment was silent.

- More system variables can be assigned the value `DEFAULT` to set them to their default value. Previously, this syntax produced an error in some cases.

- All variables that have a `SET` data type value can be set to an integer value that is treated like a bit mask. Previously, this did not work for some SET-type variables.

- The default value for several system variables no longer differs between 32-bit and 64-bit builds. Previously, the values differed by about 100 bytes for some variables.

- There are no longer any write-only system variables. For example, `SELECT @@rand_seed1` returns 0, not `Variable 'rand_seed1' can only be set, not read`.

Variable-specific changes:

- The `concurrent_insert` system variable now is handled as an enumeration with the permissible values `NEVER`, `AUTO`, and `ALWAYS`. The corresponding integer values 0, 1, and 2 are still recognized.

- The `completion_type` system variable now is handled as an enumeration with the permissible values `NO_CHAIN`, `CHAIN`, and `RELEASE`. The corresponding integer values 0, 1, and 2 are still recognized.

- For `concurrent_insert` and `completion_type`, the string form of the value is displayed by `SHOW VARIABLES` and `SELECT @@var_name`.

- The unused `rpl_recovery_rank` system variable is deprecated.

- The `storage_engine` system variable is deprecated in favor of the new system variable `default_storage_engine`. This enables pairing of the `--default-storage-engine` command-line option with a system variable of a more closely corresponding name.

- The `--myisam-recover` option is renamed to the `myisam_recover_options` system variable. The old option name still works because it is recognized as an unambiguous prefix of the new name. (Option prefix recognition occurs as described in Specifying Program Options.)

- `myisam_recover_options` has a new permissible value `OFF`.

- Attempts to drop the default key cache produce an error. Previously, it produced only a warning and status of success even though the attempt failed.

References: See also: Bug #34437, Bug #34635, Bug #11747961, Bug #34829, Bug #34878, Bug #25430.

- **Incompatible Change:** The server now includes `dtoa`, a library for conversion between strings and numbers by David M. Gay. In MySQL, this library provides the basis for improved conversion between string or `DECIMAL` values and approximate-value (`FLOAT`/`DOUBLE`) numbers:

  - Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows conversion differences.

  - Accurate representation of values in cases where results previously did not provide sufficient precision, such as for values close to IEEE limits.

  - Conversion of numbers to string format with the best possible precision. The precision of `dtoa` is always the same or better than that of the standard C library functions.
Because the conversions produced by this library differ in some cases from previous results, the potential exists for incompatibilities in applications that rely on previous results. For example, applications that depend on a specific exact result from previous conversions might need adjustment to accommodate additional precision.

For additional information about the properties of dtoa conversions, see Type Conversion in Expression Evaluation.

References: See also: Bug #12860, Bug #21497, Bug #26788, Bug #24541, Bug #34015.

• **Incompatible Change:** The Unicode implementation has been extended to provide support for supplementary characters that lie outside the Basic Multilingual Plane (BMP). Noteworthy features:

  • utf16 and utf32 character sets have been added. These correspond to the UTF-16 and UTF-32 encodings of the Unicode character set, and they both support supplementary characters.

  • The utf8mb4 character set has been added. This is similar to utf8, but its encoding allows up to four bytes per character to enable support for supplementary characters.

  • The ucs2 character set is essentially unchanged except for the inclusion of some newer BMP characters.

In most respects, upgrading to MySQL 5.5 should present few problems with regard to Unicode usage, although there are some potential areas of incompatibility. These are the primary areas of concern:

  • For the variable-length character data types (VARCHAR and the TEXT types), the maximum length in characters is less for utf8mb4 columns than for utf8 columns.

  • For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of characters that can be indexed is less for utf8mb4 columns than for utf8 columns.

Consequently, if you want to upgrade tables from utf8 to utf8mb4 to take advantage of supplementary-character support, it may be necessary to change some column or index definitions.

For additional details about the new Unicode character sets and potential incompatibilities, see Unicode Support, and Converting Between 3-Byte and 4-Byte Unicode Character Sets.

• **Incompatible Change:** Several columns were added to the INFORMATION_SCHEMA.ROUTINES table to provide information about the RETURNS clause data type for stored functions: DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH, NUMERIC_PRECISION, NUMERIC_SCALE, CHARACTER_SET_NAME, and COLLATION_NAME.

This change produces an incompatibility for applications that depend on column order in the ROUTINES table because the new columns appear between the ROUTINE_TYPE and DTD_IDENTIFIER columns. Such applications may need to be adjusted to account for the new columns.

• **Important Change; Replication:** RESET MASTER and RESET SLAVE now reset the values shown for Last_IO_Error, Last_IO_Errno, Last_SQL_Error, and Last_SQL_Errno in the output of SHOW SLAVE STATUS. (Bug #34654)

References: See also: Bug #44270.

• **Important Change:** The --skip-thread-priority option is now deprecated such that the server will not change the thread priorities by default. Giving threads different priorities might yield marginal improvements in some platforms (where it actually works), but it might instead cause significant degradation depending on the thread count and number of processors. Meddling with the thread
priorities is not a safe bet as it is very dependent on the behavior of the CPU scheduler and system
where MySQL is being run. (Bug #35164, Bug #37536)

• **Performance:** The performance of internal functions that trim multiple spaces from strings when
comparing them has been improved. (Bug #14637)

• **Replication; NDB Replication:** MySQL Replication now supports attribute promotion and demotion for
row-based replication between columns of different but similar types on the master and the slave. For
example, it is possible to promote an `INT` column on the master to a `BIGINT` column on the slave, and
to demote a `TEXT` column to a `VARCHAR` column.

The implementation of type demotion distinguishes between lossy and non-lossy type conversions,
and their use on the slave can be controlled by setting the `slave_type_conversions` global server
system variable.

For more information, see [Row-based replication: attribute promotion and demotion.](https://bugs.mysql.com/bug.php?id=47163) (Bug #47163, Bug #46584)

• **Replication:** For replication based on row-based and mix-format binary logging, it is now safe to mix
transactional and nontransactional statements within a transaction. The nontransactional statements are
logged immediately rather than waiting until the transaction ends, ensuring that their results are logged
and replicated correctly regardless of the result of the transaction.

• **Microsoft Windows:** `SHOW PROFILE CPU` has been ported to Windows. Thanks to Alex Budovski for
the patch. (Bug #50057)

• `mysqltest` has a new `--max-connections` option to set a higher number of maximum permitted
server connections than the default 128. This option can also be passed using `mysql-test-run.pl`. (Bug #51135)

• `mysql-test-run.pl` has a new `--portbase` option and a corresponding `MTR_PORT_BASE`
environment variable for setting the port range, as an alternative to the existing `--build-thread`
option. (Bug #50182)

• `mysql-test-run.pl` now has a `--gprof` option that runs the server through the `gprof` profiler, much
the same way the currently supported `--gcov` option runs it through `gcov`. (Bug #49345)

• `mysqltest` now has a `lowercase_result` command that converts the output of the next statement to
lowercase. This is useful for test cases where the lettercase may vary between platforms. (Bug #48863)

• `mysqltest` now has a `remove_filesWildcard` command that removes files matching a pattern
from a directory. (Bug #39774)

• MySQL support for adding collations using LDML specifications did not support the `<i>` identity rule that
indicates one character sorts identically to another. The `<i>` rule now is supported. See [LDML Syntax Supported in MySQL.](https://bugs.mysql.com/bug.php?id=37129) (Bug #37129)

• For boolean options, the option-processing library now prints additional information in the `--help`
message: If the option is enabled by default, the message says so and indicates that the `--skip`
form of the option disables the option. This affects all compiled MySQL programs that use the library. (Bug
#35224)

• The use of the `SQL_CACHE` and `SQL_NO_CACHE` options in `SELECT` statements now is checked more
restrictively: 1) Previously, both options could be given in the same statement. This is no longer true;
only one can be given. 2) Previously, these options could be given in `SELECT` statements that were not
at the top-level. This is no longer true; the options are not permitted in subqueries (including subqueries
in the `FROM` clause, and `SELECT` statements in unions other than the first `SELECT`. (Bug #35020)
• The `mysql` client now has an `--auto-vertical-output` option, which causes result sets to be displayed vertically if they are too wide for the current window, and uses normal tabular format otherwise. (This applies to statements terminated by `;` or `\G`). (Bug #26780)

• `TRUNCATE TABLE` now is permitted for a table for which a `WRITE` lock has been acquired with `LOCK TABLES`. (Bug #20667)

References: See also: Bug #46452.

• `FLUSH LOGS` now takes an optional `log_type` value so that `FLUSH log_type LOGS` can be used to flush only a specified log type. These `log_type` options are permitted:

  • `BINARY` closes and reopens the binary log files.
  • `ENGINE` closes and reopens any flushable logs for installed storage engines.
  • `ERROR` closes and reopens the error log file.
  • `GENERAL` closes and reopens the general query log file.
  • `RELAY` closes and reopens the relay log files.
  • `SLOW` closes and reopens the slow query log file.

Thanks to Eric Bergen for the patch to implement this feature. (Bug #14104)

• Previously, prepared `CALL` statements could be used through the C API only for stored procedures that produce at most one result set, and applications could not use placeholders for `OUT` or `INOUT` parameters. For prepared `CALL` statements used using `PREPARE` and `EXECUTE`, placeholders could not be used for `OUT` or `INOUT` parameters.

For the C API, prepared `CALL` support now is expanded in the following ways:

• A stored procedure can produce any number of result sets. The number of columns and the data types of the columns need not be the same for all result sets.

• The final values of `OUT` and `INOUT` parameters are available to the calling application after the procedure returns. These parameters are returned as an extra single-row result set following any result sets produced by the procedure itself. The row contains the values of the `OUT` and `INOUT` parameters in the order in which they are declared in the procedure parameter list.

• A new C API function, `mysql_stmt_next_result()`, is available for processing stored procedure results. See C API Prepared CALL Statement Support.

• The `CLIENT_MULTI_RESULTS` flag now is enabled by default. It no longer needs to be enabled when you call `mysql_real_connect()`. (This flag is necessary for executing stored procedures because they can produce multiple result sets.)

For `PREPARE` and `EXECUTE`, placeholder support for `OUT` and `INOUT` parameters is now available. See CALL Statement. (Bug #11638, Bug #17898)

• Code that produces query IDs and updates the value of the `Threads_running` status variable no longer acquires a global lock that also protects the list of all connections. Instead, it relies on atomic increment and decrement instructions. This improves scalability and to a certain extent alleviates the problem described in Bug #11751904.

References: See also: Bug #42930, Bug #11751904.
MySQL 5.5 Release Notes

- The optimizer_switch system variable now has an engine_condition_pushdown flag to control whether storage engine condition pushdown optimization is used. As a consequence, the engine_condition_pushdown system variable now is deprecated.

- The server now provides a pluggable audit interface that enables information about server operations to be reported to interested parties. Audit plugins may register with the audit interface to receive notification about server operations. When an auditable event occurs within the server, the server determines whether notification is needed. For each registered audit plugin, the server checks the event against those event classes in which the plugin is interested and passes the event to the plugin if there is a match. For more information, see Audit Plugins.

- Some conversions between Japanese character sets are more efficient.

- Three options were added to mysqldump make it easier to generate a dump from a slave server:
  - `--dump-slave` is similar to `--master-data`, but the `CHANGE MASTER TO` statement contains binary log coordinates for the slave's master host, not the slave itself.
  - `--apply-slave-statements` causes `STOP SLAVE` and `START SLAVE` statements to be added before the `CHANGE MASTER TO` statement and at the end of the output, respectively.
  - `--include-master-host-port` causes the `CHANGE MASTER TO` statement to include `MASTER_PORT` and `MASTER_HOST` options for the slave's master.

(Bug #8368)

- When the server detects MyISAM table corruption, it now writes additional information to the error log, such as the name and line number of the source file, and the list of threads accessing the table. Example: Got an error from thread_id=1, mi_dynrec.c:368. This is useful information to include in bug reports.

- `mysqladmin` now permits the password value to be omitted following the `password` command. In this case, `mysqladmin` prompts for the password value, which enables you to avoid specifying the password on the command line. Omitting the password value should be done only if `password` is the final command on the `mysqladmin` command line. Otherwise, the next argument is taken as the password. (Bug #5724)

- The TABLESPACES table has been added to INFORMATION_SCHEMA for tracking tablespace details.

- Added the PARAMETERS table to INFORMATION_SCHEMA. The PARAMETERS table provides information about stored procedure and function parameters, and about return values for stored functions.

- The maximum length of table comments was extended from 60 to 2048 characters. The maximum length of column comments was extended from 255 to 1024 characters. Index definitions now can include a comment of up to 1024 characters.

**Bugs Fixed**

- **Security Fix**: The server crashed if an account with the CREATE ROUTINE privilege but not the EXECUTE privilege attempted to create a stored procedure. (Bug #44798)

- **Security Enhancement**: When the DATA DIRECTORY or INDEX DIRECTORY clause of a CREATE TABLE statement referred to a subdirectory of the data directory through a symbolically linked component of the data directory path, it was accepted, when for security reasons it should be rejected. (Bug #39277)
• **Incompatible Change; Replication:** The `binlog_format` system variable can no longer be set inside a transaction. In other words, the binary logging format can no longer be changed while a transaction is in progress. (Bug #47863)

• **Incompatible Change; Replication:** Concurrent statements using a stored function and `DROP FUNCTION` for that function could break statement-based replication.

    DDL statements for stored procedures and functions are now prohibited while a `LOCK TABLES` statement is in effect. (Bug #30977)

    References: See also: Bug #57663.

• **Incompatible Change:** For debug builds, attempts to execute `RESET` statements within a transaction that had acquired metadata locks led to an assertion failure.

    As a result of this bug fix, `RESET` statements now cause an implicit commit. (Bug #51336)

• **Incompatible Change:** A deadlock occurred for this sequence of events: Session 1 locked a table using `LOCK TABLES`; Session 2 dropped the database containing the table; Session 1 created any database.

    As a consequence of this bug fix, `CREATE DATABASE` is not permitted within a session that has an active `LOCK TABLES` statement. (Bug #49988)

• **Incompatible Change:** `CREATE TABLE` statements (including `CREATE TABLE ... LIKE`) are now prohibited whenever a `LOCK TABLES` statement is in effect.

    One consequence of this change is that `CREATE TABLE ... LIKE` makes the same checks as `CREATE TABLE` and does not just copy the `.frm` file. This means that if the current SQL mode is different from the mode in effect when the original table was created, the table definition might be considered invalid for the new mode and the statement will fail. (Bug #42546, Bug #11751609)

• **Incompatible Change:** Due to work done for Bug #989, `FLUSH TABLES` is not permitted when there is an active `LOCK TABLES ... READ`. This caused a problem with `mysqlhotcopy`, which used that sequence of statements. `mysqlhotcopy` now uses `FLUSH TABLES tbl_list WITH READ LOCK` to flush and lock tables. If `mysqlhotcopy` is used with a server older than MySQL 5.5.3 that does not support this statement, it has a new option `--old_server` that causes it to use the previous statement sequence.

    To provide a workaround for the restriction that `FLUSH TABLES` is no longer permitted when there is an active `LOCK TABLES ... READ`, `FLUSH TABLES` has a new variant, `FLUSH TABLES tbl_list WITH READ LOCK`, that enables tables to be flushed and locked in a single operation. As a result of this change, applications that previously used this statement sequence to lock and flush tables will fail:

```
LOCK TABLES tbl_list READ;
FLUSH TABLES tbl_list;
```

    Such applications should now use this statement instead:

```
FLUSH TABLES tbl_list WITH READ LOCK;
```

    (Bug #42465)

    References: See also: Bug #989.

• **Incompatible Change:** For application compatibility reasons, when `sql_auto_is_null` is 1, MySQL converts `auto_inc_col IS NULL` to `auto_inc_col = LAST_INSERT_ID()`. However, this was being done regardless of whether the predicate was alone or at the top level. Now it occurs only when it is a single top-level predicate.
In conjunction with this bug fix, the default value of the `sql_auto_is_null` system variable has been changed from 1 to 0, which may cause incompatibilities with existing applications. (Bug #41371)

**Incompatible Change:** The parser accepted illegal syntax in a `FOREIGN KEY` clause:

- Multiple `MATCH` clauses.
- Multiple `ON DELETE` clauses.
- Multiple `ON UPDATE` clauses.
- `MATCH` clauses specified after `ON UPDATE` or `ON DELETE`. In case of multiple redundant clauses, this leads to confusion, and implementation-dependent results.

These illegal syntaxes are now properly rejected. Existing applications that used them will require adjustment. (Bug #34455)

**Incompatible Change:** The parser accepted an `INTO` clause in nested `SELECT` statements, which is invalid because such statements must return their results to the outer context. This syntax is no longer permitted. (Bug #33204)

**Incompatible Change:** The `Locked` thread state was equivalent to the `Table lock` state and has been removed. It no longer appears in `SHOW PROCESSLIST` output. (Bug #28870)

**Incompatible Change:** Several changes were made to alias resolution in multiple-table `DELETE` statements so that it is no longer possible to have inconsistent or ambiguous table aliases.

- In MySQL 5.1.23, alias declarations outside the `table_references` part of the statement were disallowed for the `USING` variant of multiple-table `DELETE` syntax, to reduce the possibility of ambiguous aliases that could lead to ambiguous statements that have unexpected results such as deleting rows from the wrong table.

Now alias declarations outside `table_references` are disallowed for all multiple-table `DELETE` statements. Alias declarations are permitted only in the `table_references` part.

Incorrect:

```
DELETE FROM t1 AS a2 USING t1 AS a1 INNER JOIN t2 AS a2;
DELETE t1 AS a2 FROM t1 AS a1 INNER JOIN t2 AS a2;
```

Correct:

```
DELETE FROM t1 USING t1 AS a1 INNER JOIN t2 AS a2;
DELETE t1 FROM t1 AS a1 INNER JOIN t2 AS a2;
```

- Previously, for alias references in the list of tables from which to delete rows in a multiple-table delete, the default database is used unless one is specified explicitly. For example, if the default database is `db1`, the following statement does not work because the unqualified alias reference `a2` is interpreted as having a database of `db1`:

```
DELETE a1, a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=a2.id;
```

To correctly match an alias that refers to a table outside the default database, you must explicitly qualify the reference with the name of the proper database:

```
DELETE a1, db2.a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=db2.a2.id;
```
Now alias resolution does not require qualification and alias references should not be qualified with the database name. Qualified names are interpreted as referring to tables, not aliases.

Statements containing alias constructs that are no longer permitted must be rewritten. (Bug #27525)

References: See also: Bug #30234.

• **Incompatible Change:** DROP TABLE now is permitted only if you have acquired a WRITE lock with LOCK TABLES, or if you hold no locks, or if the table is a TEMPORARY table.

Previously, if other tables were locked, you could drop a table with a read lock or no lock, which could lead to deadlocks between clients. The new stricter behavior means that some usage scenarios will fail when previously they did not. (Bug #25858)

• **Incompatible Change:** If a data definition language (DDL) statement occurred for a table that was being used by another session in an active transaction, statements could be written to the binary log in the wrong order. For example, this could happen if DROP TABLE occurred for a table being used in a transaction. This is now prevented by deferring release of metadata locks on tables used within a transaction until the transaction ends.

This bug fix results in some incompatibilities with previous versions:

• A table that is being used by a transaction within one session cannot be used in DDL statements by other sessions until the transaction ends.

• FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ. Use FLUSH TABLES tbl_list WITH READ LOCK instead. This causes a problem with mysqlhotcopy, fixed in Bug #42465.

(Bug #989, Bug #39675)

References: See also: Bug #42465.

• **Important Change; Replication:** For an engine that supported only row-based replication, replication stopped with an error when executing row events.

For information about changes in how the binary logging format is determined in relation to statement type and storage engine logging capabilities, see Mixed Binary Logging Format.

As part of the fix for this issue, the EXAMPLE storage engine is now changed so that it supports statement-based logging only. Previously, it supported row-based logging only. (Bug #39934, Bug #11749859)

• **Important Change; Microsoft Windows:** The IPv6 loopback address ::1 was interpreted as a hostname rather than a numeric IP address.

In addition, the IPv6-enabled server on Windows interpreted the hostname localhost as ::1 only, which failed to match the default root'@'127.0.0.1' account in the mysql.user privilege table.

![Note]

As a result of this fix, a root'@'::1' account is added to the mysql.user table as one of the default accounts created during MySQL installation.

(Bug #43006)

References: See also: Bug #38247, Bug #11753779, Bug #45584, Bug #45606.
• **Performance; Replication**: When writing events to the binary log, transactional events (that is, events that operate on transactional tables) are written to a thread-specific transaction cache, which is then written to the binary log on commit. To handle nontransactional events, there was a lock taken on the binary log (when entering the function `MYSQL_BIN_LOG::write()`), even when the event was written to the transaction cache instead of the binary log, causing a major bottleneck in replication performance. (Bug #42757)

• **InnoDB; Replication**: Column length information generated by InnoDB did not match that generated by MyISAM, which caused invalid metadata to be written to the binary log when trying to replicate `BIT` columns. (Bug #49618)

• **InnoDB**: `SHOW INNODB STATUS` could display incorrect information about deadlocks, when the deadlock detection routine stops early (to avoid excessive CPU usage). (Bug #49001)

• **InnoDB**: Concurrent execution of `ALTER TABLE` for InnoDB table and a transaction that tried to read and then update the table could result in a deadlock between table-level locks and InnoDB row locks, which was detected only after the `innodb_lock_wait_timeout` timeout occurred. (Bug #37346)

• **Partitioning**: When using a debug build of MySQL, if a query against a partitioned table having an index on one or more `DOUBLE` columns used that index, the server failed with an assertion. (Bug #45816)

• **Partitioning**: The first time that a query against the `INFORMATION_SCHEMA.TABLES` table for partitioned tables using the `ARCHIVE` engine was run, it returned invalid data. If the server had been restarted since such a table had been created, or if the table had never actually been opened, its `DATA_LENGTH` was reported as 0 bytes. (The second and subsequent attempts to issue the same query returned the expected result.) (Bug #44622)

• **Partitioning**: `ALTER TABLE` on a partitioned table caused unnecessary deadlocks. (Bug #43867)

  References: See also: Bug #46654. This issue is a regression of: Bug #40181.

• **Partitioning**: Attempting to drop a partitioned table from one connection while waiting for the completion of an `ALTER TABLE` that had been issued from a different connection, and that changed the storage engine used by the table, could cause the server to crash. (Bug #42438)

• **Partitioning**: After attempting to create a duplicate index on a partitioned table (and having the attempt fail as expected), a subsequent attempt to create a new index on the table caused the server to hang. (Bug #40181)

• **Partitioning**: When used on a partitioned table, `ALTER TABLE` produced the wrong error message when the name of a nonexistent storage engine was used in the `ENGINE` clause. (Bug #35765)

• **Partitioning**: When one user was in the midst of a transaction on a partitioned table, a second user performing an `ALTER TABLE` on this table caused the server to hang. (Bug #34604)

• **Partitioning**: Portions of the partitioning code were refactored in response to potential regression issues uncovered while working on the fix for Bug #31210. (Bug #32115)

  References: See also: Bug #31210, Bug #40281.

• **Replication**: When using the row-based or mixed replication format with a debug build of the MySQL server, inserts into columns using the `utf32` character set on the master caused the slave to crash. (Bug #51787)

  References: See also: Bug #51716.

• **Replication**: When using the row-based or mixed replication format, column values using the `utf16` character set on the master were padded incorrectly on the slave. (Bug #51716)
References: See also: Bug #51787.

- **Replication**: An issue internal to the code, first seen in Bug #49132 but not completely resolved in the fix for that bug, was removed. This should prevent similar issues to those in the previous bug with `binlog_format` changes following DDL statements.

For developers working with the MySQL Server code: the public class variable `THD::current_stmt_binlog_row_based` was supposed to have been removed as part of the fix for Bug #39934, but was still present in the code. If a developer later tried to use this variable, it could cause the previous issues to re-occur, and possibly new ones to arise. The variable has now been removed; the previously added class functions `THD::is_current_stmt_binlog_format_row()`, `THD::set_current_stmt_binlog_format_row()`, and `THD::clear_current_stmt_binlog_format_row()` should be used instead. (Bug #51021)

References: See also: Bug #49132, Bug #39934, Bug #11749859.

- **Replication**: Adding an index to a table on the master caused the slave to stop logging slow queries to the slow query log. (Bug #50620)

- **Replication**: If a `CHANGE MASTER TO` statement set `MASTER_HEARTBEAT_PERIOD` to 30 or higher, `Slave_received_heartbeats` did not increase on the slave. This caused the slave to reconnect before the time indicated by `slave_net_timeout` had elapsed.

  This issue affected big-endian 64-bit platforms such as Solaris/SPARC. (Bug #50296)

- **Replication**: The error message given when trying to replicate (using statement-based mode) insertions into an `AUTO_INCREMENT` column by a stored function or a trigger was improved. (Bug #50192)

- **Replication**: The server could deadlock when `FLUSH LOGS` was executed concurrently with DML statements. To fix this problem, nontransactional changes are now always flushed before transactional changes. (Bug #50038)

- **Replication**: Metadata for `GEOMETRY` fields was not properly stored by the slave in its definitions of tables. (Bug #49836)

  References: See also: Bug #48776.

- **Replication**: Statement-based replication of user variables having numeric data types did not always work correctly. (Bug #49562, Bug #11757508)

- **Replication**: When using the semisynchronous replication plugin on Windows, the wait time calculated when the master was waiting for reply from the slave was incorrect. In addition, when the wait time was less than the current time, the master did not wait for a reply at all.

  This issue was caused by the fact that a different internal function was used to get current time by the plugin on Windows as opposed to other platforms, and this function was not correctly implemented. Now the Windows version of the plugin uses the same function as other platforms for this purpose. (Bug #49557)

- **Replication**: Due to a change in the format of the information used by the slave to connect to the master, which could cause to reject connection attempts to older masters by newer slaves. (Bug #49259)

  References: This issue is a regression of: Bug #13963.

- **Replication**: When using row-based logging, a failing `INSERT ... SELECT` statement on a nontransactional table was not flagged correctly, such that, if a rollback was requested and no other nontransactional table had been updated, nothing was written to the binary log. (Bug #47175)
Replication: When using row-based replication, the incomplete logging of a group of events involving both transaction and nontransactional tables could cause `STOP SLAVE` to hang. (Bug #45940)

References: See also: Bug #319, Bug #38205.

Replication: There were two related issues concerning handling of unsafe statements and setting of the binary logging format when there were open temporary tables on the master, and the existing replication format was row-based or mixed:

1. When using `binlog_format=ROW`, and an unsafe statement was executed while there were open temporary tables on the master, the statement `SET @@SESSION.binlog_format = MIXED` failed with the error `Cannot switch out of the row-based binary log format when the session has open temporary tables.

2. When using `binlog_format=MIXED`, and an unsafe statement was executed while there were open temporary tables on the master, the statement `SET @@SESSION.binlog_format = STATEMENT` caused any subsequent DML statements to be written to the binary log using the row-based format instead of the statement-based format.

(Bug #45855, Bug #45856)

Replication: Statements that updated `AUTO_INCREMENT` columns in multiple tables were logged using the row-based format when `--binlog_format` was set to `MIXED`, but did not cause an Unsafe statement warning to be generated when `--binlog_format` was set to `STATEMENT`. (Bug #45827)

References: See also: Bug #39934, Bug #11749859.

Replication: Even though `INSERT DELAYED` statements are unsafe for statement-based replication, they caused the statement only to be logged in row format when the binary logging format was `MIXED`, but did not cause a warning to be generated when the binary logging format was `STATEMENT`. (Bug #45825)

Replication: When using `MIXED` binary logging format, statements containing a `LIMIT` clause and occurring in stored routines were not written to the log as row events. (Bug #45785)

Replication: When using statement-based replication, database-level character sets were not always honored by the replication SQL thread. This could cause data inserted on the master using `LOAD DATA` to be replicated using the wrong character set.

Note

This was not an issue when using row-based replication.

(Bug #45516)

Replication: `STOP SLAVE` did not flush the relay log or the `master.info` or `relay-log.info` files, which could lead to corruption if the server crashed. (Bug #44188)
MySQL 5.5 Release Notes

- **Replication**: Large transactions and statements could corrupt the binary log if the size of the cache (as set by `max_binlog_cache_size`) was not large enough to store the changes.

  Now, for transactions that do not fit into the cache, the statement is not logged, and the statement generates an error instead.

  For nontransactional changes that do not fit into the cache, the statement is also not logged—an incident event is logged after committing or rolling back any pending transaction, and the statement then raises an error.

  **Note**

  If a failure occurs before the incident event is written the binary log, the slave does not stop, and the master does not report any errors.

  (Bug #43929, Bug #11752675)

  References: See also: Bug #37148, Bug #11748696, Bug #46166, Bug #11754544.

- **Replication**: On Windows, `RESET MASTER` failed in the event of a missing binary log file rather than issuing a warning and completing the rest of the statement. (Bug #42150, Bug #42218)

- **Replication**: Executing the sequence of statements `RESET SLAVE`, `RESET MASTER`, and `FLUSH LOGS`, when binary log or relay log files listed in the index file could not be found, could cause the server to crash. This could happen, for example, when these files had been moved or deleted manually. (Bug #41902)

- **Replication**: MySQL creates binary logs in a numbered sequence, with a maximum possible 4294967295 concurrent log files, 4294967295 being the maximum value for an unsigned long integer. However, binary log file extensions were turned into negative numbers once the variable used to hold the value reached the maximum value for a signed long integer (2147483647). Consequently, when the sequence value was incremented to the next (negative) number, MySQL tried to create the file using a `.000000` extension, causing the server to fail since this file already existed.

  Negative file extensions are no longer permitted, and an error is returned when the limit is reached. In addition, `FLUSH LOGS` now also reports warnings to the user, if the extension number has reached the limit, and warnings are printed to the error log when the limit is approaching. (Bug #40611)

- **Replication**: Issuing concurrent `STOP SLAVE`, `START SLAVE`, and `RESET SLAVE` statements using different connections caused the replication slave to crash. (Bug #38716)

  References: See also: Bug #38715, Bug #44312.

- **Replication**: A slave compiled using `--with-libevent` and run with `--thread-handling=pool-of-threads` could sometimes crash. (Bug #36929)

- **Replication**: `mysqlbinlog` sometimes failed when trying to create temporary files; this was because it ignored the specified temp file directory and tried to use the system `/tmp` directory instead. (Bug #35546)

  References: See also: Bug #35543.

- **Replication**: A `CHANGE MASTER TO` statement with no `MASTER_HEARTBEAT_PERIOD` option failed to reset the heartbeat period to its default value. (Bug #34686)

- **Replication**: Formerly, only slaves that had been started with the `--report-hosts` option were visible in the output of `SHOW SLAVE HOSTS`. Now, all slaves that are registered with the master appear in `SHOW SLAVE HOSTS` output.
As part of the fix for this issue, the `rpl_recovery_rank` column, which had appeared in the output of `SHOW SLAVE HOSTS` in some MySQL releases, was removed because the corresponding server variable `rpl_recovery_rank` (now deprecated) was never actually used. (Bug #13963)

References: See also: Bug #21132, Bug #21869.

- **Microsoft Windows**: For debug builds on Windows, warnings about incorrect use of debugging directives were written to the error log. The directives were rewritten to eliminate these messages. (Bug #49025)

- **Microsoft Windows**: A Windows Installation using the GUI installer failed with:

  MySQL Server 5.1 Setup Wizard ended prematurely
  The wizard was interrupted before MySQL Server 5.1. could be completely installed.
  Your system has not been modified. To complete installation at another time, please run setup again.
  Click Finish to exit the wizard

  This was due to a step in the MSI installer that could fail to execute correctly on some environments. (Bug #45418)

- **Microsoft Windows**: The patch for Bug #10374 broke named-pipe and shared-memory connections on Windows. (Bug #41860)

  References: See also: Bug #10374.

- For an IPv6-enabled MySQL server, privileges specified using standard IPv4 addresses for hosts were not matched (only IPv4-mapped addresses were handled correctly).

  As part of the fix for this bug, a new build option `--disable-ipv6` has been introduced. Compiling MySQL with this option causes all IPv6-specific code in the server to be ignored.

  **Important**
  If the server has been compiled using `--disable-ipv6`, it is not able to resolve hostnames correctly when run in an IPv6 environment.

  (Bug #11754062, Bug #45606)

  References: See also: Bug #38247, Bug #43006, Bug #45584.

- `mysqld_safe` did not pass the correct default value of `plugin_dir` to `mysqld`. (Bug #51938)

- `mysqld_multi` failed due to a syntax error in the script. (Bug #51468)

- `ALTER TABLE` on a `MERGE` table that has been locked using `LOCK TABLES ... WRITE` incorrectly produced an `ER_TABLE_NOT_LOCKED_FOR_WRITE` error. (Bug #51240)

- The `mysql` could default to the `ascii` character set, which is not a valid character set choice for MySQL. The `latin1` character set will now be used when an ASCII environment has been identified. (Bug #51166)

- On some Unix/Linux platforms, an error during build from source could be produced, referring to a missing `LT_INIT` program. This is due to versions of `libtool` 2.1 and earlier. (Bug #51009)

- Referring to a subquery result in a `HAVING` clause could produce incorrect results. (Bug #50995)
• Aggregate functions on `TIMESTAMP` columns could yield incorrect or undefined results. (Bug #5088)

• The optimizer normally prefers use of `filesort` plus the join cache to a full index scan. But this combination was used even if the index is clustered, in which case, the clustered index scan can be faster. (Bug #50843)

• For debug builds, `SHOW BINARY LOGS` raised an assertion if binary logging was not enabled. (Bug #50780)

• The server did not recognize that the stored procedure cache became invalid if a view was created or modified within a procedure, resulting in a crash. (Bug #50624)

• Incorrect handling of `BIT` columns in temporary tables could lead to spurious duplicate-key errors. (Bug #50591)

• The second or subsequent invocation of a stored procedure containing `DROP TRIGGER` could cause a server crash. (Bug #50423)

• The return values for calls to put information into the stored routine cache were not consistently checked, raising an assertion. (Bug #50412)

• Full-text queries that used the truncation operator (`*`) could enter an infinite loop. (Bug #50351)

• For debug builds, an assertion was incorrectly raised in the optimizer when matching `ORDER BY` expressions. (Bug #50335)

• Queries optimized with `GROUP_MIN_MAX` did not clean up `KEYREAD` optimizations properly, causing subsequent queries to return incomplete rows. (Bug #49902)

• `mysql --show-warnings` crashed if the server connection was lost. (Bug #49646)

• For string-valued system variables containing multibyte characters, the byte length was used in contexts where the character length was more appropriate. (Bug #49645)

• `SHOW VARIABLES` did not correctly display string-valued system variables that contained `\0` characters. (Bug #49644)

• MySQL program option-processing code incorrectly displayed some options when printing ambiguous-option errors. (Bug #49640)

• For dynamic format `MyISAM` tables containing `LONGTEXT` columns, a bulk `INSERT ... ON DUPLICATE KEY UPDATE` or bulk `REPLACE` could cause corruption. (Bug #49628)

• Setting `binlog_format` to `DEFAULT` assigned a value different from the default. (Bug #49540)

• For debug builds, with `sql_safe_updates` enabled, a multiple-table `UPDATE` with the `IGNORE` modifier could raise an assertion. (Bug #49534)

• `EXPLAIN EXTENDED` crashed trying to print column names for a subquery in the `FROM` clause when the table had gone out of scope. (Bug #49487)

• For `InnoDB` tables, the test for using an index for `ORDER BY` sorting did not distinguish between primary keys and secondary indexes and expected primary key values to be concatenated to index values the way they are to secondary key values. (Bug #49324)

• `mysqltest` no longer permits you to execute an SQL statement on a connection after doing a `send` command, unless you do a `reap` first. This was previously accepted but could produce unpredictable results. (Bug #49269)
MySQL 5.5 Release Notes

- Valgrind warnings for several logging messages were corrected. (Bug #49130)
- Plugins in a binary release could not be installed into a debug version of the server. (Bug #49022)
- On POSIX systems, calls to `select()` with a file descriptor set larger than `FD_SETSIZE` resulted in unpredictable I/O errors; for example, when a large number of tables required repair. (Bug #48929)
- A dependent subquery containing `COUNT(DISTINCT col_name)`) could be evaluated incorrectly. (Bug #48920)
- If a stored function contained a `RETURN` statement with an `ENUM` value in the `ucs2` character set, `SHOW CREATE FUNCTION` and `SELECT DTD_IDENTIFIER FROM INFORMATION_SCHEMA.ROUTINES` returned incorrect values. (Bug #48766)
- An `.ARZ` file missing from the database directory caused the server to crash. (Bug #48757)
- Running `SHOW CREATE TABLE` on a view `v1` that contained a function which accessed another view `v2` could trigger an infinite loop if the view referenced within the function (`v2`) caused a warning to be raised while being opened. (Bug #48449)
- Invalid memory reads could occur following a query that referenced a `MyISAM` table multiple times with a write lock. (Bug #48438)
- For debug builds, creating a view containing a row constructor raised an assertion. (Bug #48294)
- An aliasing violation in the C API could lead to a crash. (Bug #48284)
- Slow `CALL` statements were not always logged to the slow query log because execution time for multiple-statement stored procedures was assessed incorrectly. (Bug #47905)
- For debug builds, killing a `SELECT` retrieving from a view that was processing a function raised an assertion. (Bug #47736)
- Failure to open a view with a nonexistent `DEFINER` was improperly handled and the server crashed later attempting to lock the view. (Bug #47734)
- If a prepared statement used both a `MERGE` table and a stored function or trigger, execution sometimes failed with a `No such table` error. (Bug #47648)
- `CREATE VIEW` raised an assertion if a temporary table existed with the same name as the view. (Bug #47635)
- Renaming a column of an `InnoDB` table caused the server to go out of sync with the `InnoDB` data dictionary. To avoid this issue, renaming a column uses the older technique of copying all the table data rather than updating the table in-place. (Bug #47621)
- If a temporary table was created with the same name as a view referenced in a stored routine, routine execution could raise an assertion. (Bug #47313)
- Selecting from the process list in the embedded server caused a crash. (Bug #47304)
- Programs did not exit if the option file specified by `--defaults-file` was not found. (Bug #47216)
- Attempts to print octal numbers with `my_vsnprintf()` could cause a crash. (Bug #47212)
- Corrected a potential problem of unintended file overwriting when the `MY_DONT_OVERWRITE_FILE` flag was used. (Bug #47126)
• Deadlock occurred if one session was running a multiple-statement transaction that involved a single partitioned table and another session attempted to alter the table. (Bug #46654)

• Valgrind warnings about memory allocation overruns for handling CREATE FUNCTION statements for UDFs were corrected. (Bug #46570)

• The server could crash attempting to flush privileges after receipt of a SIGHUP signal. (Bug #46495)

• If INSERT INTO tbl_name invoked a stored function that modified tbl_name, the server crashed. (Bug #46374)

• HANDLER statements within a transaction that already holds metadata locks could lead to deadlocks. Before this fix, all handlers for TEMPORARY tables were reset whenever any base table was opened. (Bug #46224)

• For queries that used GROUP_CONCAT(DISTINCT ...), the value of max_heap_table_size was used for memory allocation, which could be excessive. Now the minimum of max_heap_table_size and tmp_table_size is used. (Bug #46018)

• Improperly closing tables when INSERT DELAYED needed to reopen tables could cause an assertion failure. (Bug #45949)

References: See also: Bug #18484.

• Grouping by a subquery in a query with a DISTINCT aggregate function led to incorrect and unordered grouping values. (Bug #45640)

• The hostname cache failed to work correctly. (Bug #45584)

References: See also: Bug #38247, Bug #43006, Bug #11753779, Bug #45606.

• Propagation of a large unsigned numeric constant in WHERE expressions could lead to incorrect results. This also affected EXPLAIN EXTENDED, which printed incorrect numeric constants in such transformed WHERE expressions. (Bug #45360)

• There was no timeout for attempts to acquire metadata locks (for example, a DROP TABLE attempt for a table that was open in another transaction would not time out).

To handle such situations, there is now a lock_wait_timeout system variable that specifies the timeout in seconds for attempts to acquire metadata locks. The permitted values range from 1 to 31536000 (1 year). The default is 31536000.

This timeout applies to all statements that use metadata locks. These include DML and DDL operations on tables, views, stored procedures, and stored functions, as well as LOCK TABLES, FLUSH TABLES WITH READ LOCK, and HANDLER statements.

The timeout value applies separately for each metadata lock attempt. A given statement can require more than one lock, so it is possible for the statement to block for longer than the lock_wait_timeout value before reporting a timeout error. When lock timeout occurs, ER_LOCK_WAIT_TIMEOUT is reported.

lock_wait_timeout does not apply to delayed inserts, which always execute with a timeout of 1 year. This is done to avoid unnecessary timeouts because a session that issues a delayed insert receives no notification of delayed insert timeouts.

In addition: The unused table_lock_wait_timeout system variable was removed. The LOW_PRIORITY modifier for LOCK TABLES ... WRITE locks now has no effect. The meaning of LOW_PRIORITY remains as before in other contexts, such as for INSERT or DELETE statements.
innodb_table_locks=0 no longer has an effect for tables locked explicitly with LOCK TABLES ... WRITE. It still has an effect for tables locked for read or write by LOCK TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ. (Bug #45225, Bug #56272)

• Valgrind warnings about uninitialized variables in optimizer code were corrected. (Bug #45195)

• Killing a delayed-insert thread could cause a server crash. (Bug #45067)

• Execution of FLUSH TABLES or FLUSH TABLES WITH READ LOCK concurrently with LOCK TABLES resulted in deadlock. (Bug #45066)

• The mysql_real_connect() C API function only attempted to connect to the first IP address returned for a hostname. This could be a problem if a hostname mapped to multiple IP address and the server was not bound to the first one returned. Now mysql_real_connect() attempts to connect to all IPv4 or IPv6 addresses that a domain name maps to. (Bug #45017)

References: See also: Bug #47757.

• For plugins that did not have command-line options other than the ones to select the plugin itself, those options were not displayed in the mysqld help message. (Bug #44797)

• Some plugins configured as mandatory could be disabled at server startup. (Bug #44691)

• InnoDB took a shared row lock when executing SELECT statements inside a stored function as a part of a transaction using REPEATABLE READ. This prevented other transactions from updating the row. (Bug #44613)

• MySQL Server permitted the creation of a merge table based on views but crashed when attempts were made to read from that table. The following example demonstrates this:

```sql
#Create a test table
CREATE TABLE tmp (id int, c char(2));

#Create two VIEWs upon it
CREATE VIEW v1 AS SELECT * FROM tmp;
CREATE VIEW v2 AS SELECT * FROM tmp;

#Finally create a MERGE table upon the VIEWs
CREATE TABLE merge (id int, c char(2)) ENGINE=MERGE UNION(v1, v2);

#Reading from the merge table lead to a crash
SELECT * FROM merge;
```

The final statement generated the crash. (Bug #44040)

• A natural join of INFORMATION_SCHEMA tables could cause an assertion failure. (Bug #43834)

• When used in conjunction with LOCK TABLES, FLUSH TABLES tbl_list waited for all tables with old versions to clear from the table definition list, rather than only the named tables. (Bug #43685)

• HANDLER statements are now not permitted if a table lock has been acquired with LOCK TABLES. (Bug #43272)

• In the embedded server, stack overflow checks for recursive stored procedure calls did not work and stack overflow could occur. (Bug #43201)

• The server could crash if an attempt to open a MERGE table child MyISAM table failed. (Bug #42862)

• Sign loss could occur in several contexts:
• **SEC_TO_TIME()** could lose the sign of negative arguments.

• **MAKETIME()** could lose the sign of negative arguments.

• Comparison of **TIME** values could lose the sign of operands.

  (Bug #42661, Bug #42662, Bug #42664)

• Setting **key_buffer_size** to a negative value could lead to very large allocations. Now an error occurs. (Bug #42103)

• An assertion failure could occur if **OPTIMIZE TABLE** was started on an **InnoDB** table and the table was altered to a different storage engine during the optimization operation. (Bug #42074)

• The state of a thread for the embedded server was always displayed as **Writing to net**, which is incorrect because there is no network connection for the embedded server. (Bug #41971)

• Purging the stored-routine cache could take a long time and render the server unresponsive. (Bug #41804)

• Command-line options for enumeration-type plugin variables were not honored. (Bug #41010)

• System variables could be set to invalid values. (Bug #40988)

• The **CSV** storage engine did not parse `'\X'` characters when they occurred in unquoted fields. (Bug #40814)

• When archive tables were joined on their primary keys, a query returned no result if the optimizer chose to use this index. (Bug #40677)

• **mysql_safe** did not treat dashes and underscores as equivalent in option names. Thanks to Erik Ljungstrom for the patch to fix this bug. (Bug #40368)

• **SHOW CREATE VIEW** returned invalid SQL if the definition contained a **SELECT 'string'** statement where the **string** was longer than the maximum length of a column name, due to the fact that this text was also used as an alias (in the **AS** clause).

  Because not all names retrieved from arbitrary **SELECT** statements can be used as view column names due to length and format restrictions, the server now checks the conformity of automatically generated column names and rewrites according to a predefined format any names that are not acceptable as view column names before storing the final view definition on disk.

  In such cases, the name is now rewritten as **Name_exp_pos**, where **pos** is the position of the column. To avoid this conversion scheme, define explicit, valid names for view columns using the **column_list** clause of the **CREATE VIEW** statement.

  As part of this fix, aliases are now generated only for top-level statements. (Bug #40277)

• Threads were set to the **Table lock** state in such a way that use of this state by other threads to check for a lock wait was subject to a race condition. (Bug #39897)

• Plugin shutdown could lead to an assertion failure caused by using an already destroyed mutex in the metadata locking subsystem. (Bug #39674)

• Dropping a locked **Maria** table leads to an assertion failure. (Bug #39395)

• Host name lookup failure could lead to a server crash. (Bug #39153)
• `flush_cache_records()` did not correctly check for errors that should cause statement execution to stop, leading to a server crash. (Bug #39022)

• InnoDB logged an error repeatedly trying to load a page into the buffer pool, filling the error log and using excessive disk space. Now the number of attempts is limited to 100, after which the operation aborts with a message. (Bug #38901)

• Valgrind warnings that occurred for `SHOW TABLE STATUS` with InnoDB tables were silenced. (Bug #38479)

• An IPv6-enabled MySQL server did not resolve the IP addresses of incoming connections correctly, with the result that a connection that attempted to match any privilege table entries using fully qualified domain names for hostnames or hostnames using wildcards were dropped. (Bug #38247)

References: See also: Bug #43006, Bug #11753779, Bug #45584, Bug #45606.

• For `CREATE TABLE ... LIKE` with a `MERGE` source table that included a `UNION` clause, that clause was omitted from the definition of the destination table. (Bug #37371)

• Previously, statements inside a stored program did not clear the warning list. For example, warnings or errors generated by statements within a trigger or stored function would be accumulated and added to the message list for the statement that activated the trigger or invoked the function, “polluting” the output of `SHOW WARNINGS` or `SHOW ERRORS` for the outer statement. Normally, messages for a statement that can generate messages replace messages from the previous such statement. The effect was that a statement could have a different effect on the message list depending on whether it executed inside or outside of a stored program.

Now within a stored program, successive statements that can generate messages update the message list and replace messages from the previous such statement. Only messages from the last of these statements is copied to the message list for the outer statement. (Bug #36649)

• `myisampack --join` did not create the destination table `.frm` file. (Bug #36573)

• The parser incorrectly permitted MySQL error code 0 to be specified for a condition handler. (This is incorrect because the condition must be a failure condition and 0 indicates success.) (Bug #36510)

• When parsing or formatting interval values of `DAY_MICROSECOND` type, fractional seconds were not handled correctly when more-significant fields were implied or omitted. (Bug #36466)

• `mysql_install_db` failed if run as root and the root directory (`/`) was not writable. (Bug #36462)

• `mysql_stmt_prepare()` did not reset the list of messages (those messages available using `SHOW WARNINGS`). (Bug #36004)

• A global read lock obtained with `FLUSH TABLES WITH READ LOCK` did not prevent sessions from creating tables. (Bug #35935)

• `mysqlbinlog` left temporary files on the disk after shutdown, leading to the pollution of the temporary directory, which eventually caused `mysqlbinlog` to fail. This caused problems in testing and other situations where `mysqlbinlog` might be invoked many times in a relatively short period of time. (Bug #35543)

• When building MySQL when using a different target directory (for example using the `VPATH` environment variable), the build of the embedded `readline` component failed. (Bug #35250)

• String-valued system variables could be assigned literal values, but could not be assigned values using expressions. Now expressions are legal. (Bug #34883, Bug #46314)
MySQL 5.5 Release Notes

• The sql_mode system variable could be assigned the illegal value of '?'. (Bug #34834)

• Compiling MySQL on FreeBSD failed due to missing definitions for certain network constants. (Bug #34292)

• Creation of a temporary BLOB or TEXT column could create a column with the wrong maximum length. (Bug #33969)

• INSERT INTO ... VALUES(DEFAULT) failed to insert the correct value for ENUM columns. For MyISAM tables, an empty value was inserted. For CSV tables, the table became corrupt. (Bug #33717)

• When read_only was enabled, the server incorrectly prevented data modifications to TEMPORARY tables belonging to transactional storage engines such as InnoDB. (Bug #33669)

• Constant expressions in WHERE, HAVING, or ON clauses were not cached, but were evaluated for each row. This caused a slowdown of query execution, especially if constant user-defined functions or stored functions were used. (Bug #33546)

• Plugins could find the unqualified form of their system variables but not the qualified form. For example, a plugin p with a system variable sv could find sv but not p_sv. (Bug #32902)

• Killing a statement that invoked a stored function could return an incorrect error message indicating table corruption rather than that the statement had been interrupted. (Bug #32140)

• Occurrence of an error within a stored routine did not always cause immediate statement termination. (Bug #31881)

• For DROP FUNCTION db_name.func_name (that is, when the function name is qualified with the database name), the statement should apply only to a stored function named func_name in the given database. However, if a UDF with the same name existed, the statement dropped the UDF instead. (Bug #31767)

• mysqld sometimes miscalculated the number of digits required when storing a floating-point number in a CHAR column. This caused the value to be truncated, or (when using a debug build) caused the server to crash. (Bug #26788)

References: See also: Bug #12860.

• ALTER TABLE could not be used to add columns to a table if the table had an index on a utf8 column with a TEXT data type. (Bug #26180)

• If an operation had an InnoDB table, and two triggers, AFTER UPDATE and AFTER INSERT, competing for different resources (such as two distinct MyISAM tables), the triggers were unable to execute concurrently. In addition, INSERT and UPDATE statements for the InnoDB table were unable to run concurrently. (Bug #26141)

• Statements to create, alter, or drop a view were not waiting for completion of statements that were using the view, which led to incorrect sequences of statements in the binary log when statement-based logging was enabled. (Bug #25144)

• Previously, the server handled character data types for a stored routine parameter, local routine variable created with DECLARE, or stored function return value as follows: If the CHARACTER SET attribute was present, the COLLATE attribute was not supported, so the character set's default collation was used. (This includes use of BINARY, which in this context specifies the binary collation of the character set.) If there was no CHARACTER SET attribute, the database character set and its default collation were used.

Now for character data types, if there is a CHARACTER SET attribute in the declaration, the specified character set and its default collation is used. If the COLLATE is also present, that collation is used...
rather than the default collation. If there is no `CHARACTER SET` attribute, the database character set and collation in effect at routine creation time are used. (The database character set and collation are given by the value of the `character_set_database` and `collation_database` system variables.) (Bug #24690)

- **Data truncated for column col_num at row row_num** warnings were generated for some (constant) values that did not have too high precision. (Bug #24541)

- A statement that caused a circular wait among statements did not return a deadlock error. Now the server detects deadlock and returns `ER_LOCK_DEADLOCK`. (Bug #22876)

- `CREATE TABLE ... LIKE` did not always produce an error if the source table column defaults were illegal for the current version of MySQL. (This could occur if the table was created using an older server that was less restrictive about legal default values.) (Bug #22090)

- Several data-modification statements were not being counted toward the `MAX_UPDATES_PER_HOUR` user resource limit. (Bug #21793)

- When inserting an extraordinarily large value into a `DOUBLE` column, the value could be truncated in such a way that the new value cannot be reloaded manually or from the output of `mysqldump`. (Bug #21497)

- The value of `sql_slave_skip_counter` was empty when displayed by `SHOW VARIABLES` or `INFORMATION_SCHEMA.GLOBAL_VARIABLES`. (Bug #20413, Bug #37187)

- For `INSERT DELAYED` statements issued for a table while an `ALTER TABLE` operation on the table was in progress, the server could return a spurious `Server shutdown in progress` error. (Bug #18484)

References: See also: Bug #45949.

- Delayed-insert threads were counted as connected but not as created, incorrectly leading to a `Threads_connected` value greater than the `Threads_created` value. (Bug #17954)

- The character set was not being properly initialized for `CAST()` with a type such as `CHAR(2) BINARY`, which resulted in incorrect results or a server crash. (Bug #17903)

- Stored procedure exception handlers were catching fatal errors (such as out of memory errors), which could cause execution not to stop to due a continue handler. Now fatal errors are not caught by exception handlers and a fatal error is returned to the client. (Bug #15192)

- Zero-padding of exponent values was not the same across platforms. (Bug #12860)

- For `CREATE TABLE`, the parser did not enforce that parentheses were present in a `CHECK (expr)` clause; now it does. The parser did not enforce that `CONSTRAINT [symbol]` without a following `CHECK` clause was illegal; now it does. (Bug #11714, Bug #35578, Bug #38696)

- If a connection was waiting for a `GET_LOCK()` lock or a `SLEEP()` call, and the connection aborted, the server did not detect this and thus did not close the connection. This caused a waste of system resources allocated to dead connections. Now the server checks such a connection every five seconds to see whether it has been aborted. If so, the connection is killed (and any lock request is aborted). (Bug #10374)

- `perror` did not work for errors described in the `sql/share/errmsg.txt` file. (Bug #10143)

- The grammar for `GROUP BY`, when used with `WITH CUBE` or `WITH ROLLUP`, caused a conflict with the grammar for view definitions that included `WITH CHECK OPTION`. (Bug #9801)

- Previously, for some Asian CJK character sets, the `UPPER()` and `LOWER()` functions worked only for basic Latin letters (A-Z, a-z). The affected character sets are `ujis`, `sjis`, `gb2312`, `cp932`, `eucjpms`, `big5`, `euckr`, and `gbk`. 
Now `UPPER()` and `LOWER()` perform case conversion correctly for all characters in these character sets, with the exception that if a character set contains a character in only one lettercase, conversion to the other lettercase cannot be done.

- For the `DIV` operator, incorrect results could occur for noninteger operands that exceed `BIGINT` range. Now, if either operand has a noninteger type, the operands are converted to `DECIMAL` and divided using `DECIMAL` arithmetic before converting the result to `BIGINT`. If the result exceeds `BIGINT` range, an error occurs. (Bug #8457, Bug #11745058)

References: See also: Bug #59241.

- Labels in stored routines did not work if the character set was not `latin1`. (Bug #7088)

**Changes in MySQL 5.5.2 (2010-02-12, Developer Milestone)**

- **InnoDB Notes**
- **Functionality Added or Changed**
- **Bugs Fixed**

**InnoDB Notes**

- This release includes InnoDB 1.0.6. This version is considered of Release Candidate (RC) quality.

**Functionality Added or Changed**

- **Replication**: Introduced the `binlog_direct_non_transactional_updates` system variable. Enabling this variable causes updates using the statement-based logging format to tables using nontransactional engines to be written directly to the binary log, rather than to the transaction cache.

Before enabling this variable, be certain that you have no dependencies between transactional and nontransactional tables. A statement that both selects from an InnoDB table and inserts into a MyISAM table is an example of such a dependency. For more information, see Binary Log Options and Variables. (Bug #46364)

References: See also: Bug #28976, Bug #40116.

**Bugs Fixed**

- **Security Fix**: For servers built with yaSSL, a preauthorization buffer overflow could cause memory corruption or a server crash. We thank Evgeny Legerov from Intevydis for providing us with a proof-of-concept script that permitted us to reproduce this bug. (Bug #50227)

- **Incompatible Change**: In `plugin.h`, the `MYSQL_REPLICATION_PLUGIN` symbol was out of synchrony with its value in MySQL 6.0 because the lower-valued `MYSQL_AUDIT_PLUGIN` was not present. To correct this, `MYSQL_AUDIT_PLUGIN` has been added in MySQL 5.5, changing the value of `MYSQL_REPLICATION_PLUGIN` from 5 to 6. Attempts to load the audit plugin produce an error occurs because only the `MYSQL_AUDIT_PLUGIN` symbol was added, not the audit plugin itself. This error will go away when the audit plugin is added to MySQL 5.5 (in 5.5.3). Replication plugins from earlier 5.5.x releases must be recompiled against the current release before they will work with the current release. (Bug #49894)

- **Important Change; Replication**: The `RAND()` function is now marked as unsafe for statement-based replication. Using this function now generates a warning when `binlog_format=STATEMENT` and causes the format to switch to row-based logging when `binlog_format=MIXED`. 
This change is being introduced because, when `RAND()` was logged in statement mode, the seed was also written to the binary log, so the replication slave generated the same sequence of random numbers as was generated on the master. While this could make replication work in some cases, the order of affected rows was still not guaranteed when this function was used in statements that could update multiple rows, such as `UPDATE` or `INSERT ... SELECT`; if the master and the slave retrieved rows in different order, they began to diverge. (Bug #49222)

- **Performance; Partitioning:** When used on partitioned tables, the `records_in_range` handler call checked more partitions than necessary. The fix for this issue reduces the number of unpruned partitions checked for statistics in partition range checking, which has resulted in some partition operations being performed up to 2-10 times faster than before this change was made, when testing with tables having 1024 partitions. (Bug #48846)

  References: See also: Bug #37252, Bug #47261.

- **Performance:** The method for comparing `INFORMATION_SCHEMA` names and database names was nonoptimal and an improvement was made: When the database name length is already known, a length check is made first and content comparison skipped if the lengths are unequal. (Bug #49501)

- **Performance:** The `MD5()` and `SHA1()` functions had excessive overhead for short strings. (Bug #49491, Bug #11757443, Bug #60227, Bug #14134662)

- **InnoDB; Partitioning:** When an `ALTER TABLE ... REORGANIZE PARTITION` statement on an `InnoDB` table failed due to `innodb_lock_wait_timeout` expiring while waiting for a lock, `InnoDB` did not clean up any temporary files or tables which it had created. Attempting to reissue the `ALTER TABLE` statement following the timeout could lead to storage engine errors, or possibly a crash of the server. (Bug #47343)

- **InnoDB:** Creating or dropping a table with 1023 transactions active caused an assertion failure. (Bug #49238)

- **InnoDB:** If `innodb_force_recovery` was set to 4 or higher, the server could crash when opening an `InnoDB` table containing an auto-increment column. MySQL versions 5.1.31 and later were affected. (Bug #46193)

- **Replication:** `FLUSH LOGS` could in some circumstances crash the server. This occurred because the I/O thread could concurrently access the relay log I/O cache while another thread was performing the `FLUSH LOGS`, which closes and reopens the relay log and, while doing so, initializes (or re-initializes) its I/O cache. This could cause problems if some other thread (in this case, the I/O thread) is accessing it at the same time.

  Now the thread performing the `FLUSH LOGS` operation takes a lock on the relay log before actually flushing it. (Bug #50364)

  References: See also: Bug #53657.

- **Replication:** With semisynchronous replication, memory allocated for handling transactions could be freed while still in use, resulting in a server crash. (Bug #50157)

- **Replication:** In some cases, inserting into a table with many columns could cause the binary log to become corrupted. (Bug #50018)

  References: See also: Bug #42749.

- **Replication:** When using row-based replication, setting a `BIT` or `CHAR` column of a `MyISAM` table to `NULL`, then trying to delete from the table, caused the slave to fail with the error `Can't find record in table`. (Bug #49481, Bug #49482)
MySQL 5.5 Release Notes

- **Replication:** A `LOAD DATA` statement that loaded data into a table having a column name that had to be quoted (such as `key` INT) caused replication to fail when logging in mixed or statement mode. In such cases, the master wrote the `LOAD DATA` event into the binary log without quoting the column name. (Bug #49479)

  References: See also: Bug #47927. This issue is a regression of: Bug #43746.

- **Replication:** When logging in row-based mode, DDL statements are actually logged as statements; however, statements that affected temporary tables and followed DDL statements failed to reset the binary log format to `ROW`, with the result that these statements were logged using the statement-based format. Now the state of `binlog_format` is restored after a DDL statement has been written to the binary log. (Bug #49132)

- **Replication:** Spatial data types caused row-based replication to crash. (Bug #48776)

- **Replication:** When using row-based logging, the statement `CREATE TABLE t IF NOT EXIST ... SELECT` was logged as `CREATE TEMPORARY TABLE t IF NOT EXIST ... SELECT` when `t` already existed as a temporary table. This was caused by the fact that the temporary table was opened and the results of the `SELECT` were inserted into it when a temporary table existed and had the same name.

  Now, when this statement is executed, `t` is created as a base table, the results of the `SELECT` are inserted into it—even if there already exists a temporary table having the same name—and the statement is logged correctly. (Bug #47418)

  References: See also: Bug #47442.

- **Replication:** Due to a change in the size of event representations in the binary log, when replicating from a MySQL 4.1 master to a slave running MySQL 5.0.60 or later, the `START SLAVE UNTIL` statement did not function correctly, stopping at the wrong position in the log. Now the slave detects that the master is using the older version of the binary log format, and corrects for the difference in event size, so that the slave stops in the correct position. (Bug #47142)

- **Replication:** Manually removing entries from the binary log index file on a replication master could cause the server to repeatedly send the same binary log file to slaves. (Bug #28421)

- **Solaris:** The `printstack` function does not exist on Solaris 8 or earlier, which led to a compilation failure. (Bug #50409)

- The SSL certificates in the test suite were about to expire. They have been updated with expiration dates in the year 2015. (Bug #50642)

- **SPATIAL** indexes were permitted on columns with nonspatial data types, resulting in a server crash for subsequent table inserts. (Bug #50574)

- Index prefixes could be specified with a length greater than the associated column, resulting in a server crash for subsequent table inserts. (Bug #50542)

- Use of Loose Index Scan optimization for an aggregate function with `DISTINCT` (for example, `COUNT(DISTINCT)` ) could produce incorrect results. (Bug #50539)

- A user could see tables in `INFORMATION_SCHEMA.TABLES` without appropriate privileges for them. (Bug #50276)

- Debug output for join structures was garbled. (Bug #50271)

- The server crashed when an InnoDB background thread attempted to write a message containing a partitioned table name to the error log. (Bug #50201)
• Within a stored routine, selecting the result of `CONCAT_WS()` with a routine parameter argument into a user variable could return incorrect results. (Bug #50096)

• The `filesort` sorting method applied to a `CHAR(0)` column could lead to a server crash. (Bug #49897)

• `EXPLAIN EXTENDED UNION ... ORDER BY` caused a crash when the `ORDER BY` referred to a nonconstant or full-text function or a subquery. (Bug #49734)

• Some prepared statements could raise an assertion when re-executed. (Bug #49570)

• `sql_buffer_result` had an effect on non-`SELECT` statements, contrary to the documentation. (Bug #49552)

• In some cases a subquery need not be evaluated because it returns only aggregate values that can be calculated from table metadata. This sometimes was not handled by the enclosing subquery, resulting in a server crash. (Bug #49512)

• Mixing full-text searches and row expressions caused a crash. (Bug #49445)

• `mysql-test-run.pl` now recognizes the `MTR_TESTCASE_TIMEOUT`, `MTR_SUITE_TIMEOUT`, `MTR_SHUTDOWN_TIMEOUT`, and `MTR_START_TIMEOUT` environment variables. If they are set, their values are used to set the `--testcase-timeout`, `--suite-timeout`, `--shutdown-timeout`, and `--start-timeout` options, respectively. (Bug #49210)

• Several `strmake()` calls had an incorrect length argument (too large by one). (Bug #48983)

• On Fedora 12, `strmov()` did not guarantee correct operation for overlapping source and destination buffer. Calls were fixed to use an overlap-safe version instead. (Bug #48866)

• With one thread waiting for a lock on a table, if another thread dropped the table and created a new table with the same name and structure, the first thread did not notice that the table had been re-created and tried to used cached metadata that belonged to the old table but had been freed. (Bug #48157)

• If an invocation of a stored procedure failed in the table-open stage, subsequent invocations that did not fail in that stage could cause a crash. (Bug #47649)

• A crash occurred when a user variable that was assigned to a subquery result was used as a result field in a `SELECT` statement with aggregate functions. (Bug #47371)

• When the `mysql` client was invoked with the `--vertical` option, it ignored the `--skip-column-names` option. (Bug #47147)

• The optimizer could continue to execute a query after a storage engine reported an error, leading to a server crash. (Bug #46175)

• If `EXPLAIN` encountered an error in the query, a memory leak occurred. (Bug #45989)

• A race condition on the privilege hash tables permitted one thread to try to delete elements that had already been deleted by another thread. A consequence was that `SET PASSWORD` or `FLUSH PRIVILEGES` could cause a crash. (Bug #35589, Bug #35591)

• 1) In rare cases, if a thread was interrupted during a `FLUSH PRIVILEGES` operation, a debug assertion occurred later due to improper diagnostics area setup. 2) A `KILL` operation could cause a console error message referring to a diagnostic area state without first ensuring that the state existed. (Bug #33982)

• `ALTER TABLE` with both `DROP COLUMN` and `ADD COLUMN` clauses could crash or lock up the server. (Bug #31145)
Changes in MySQL 5.5.1 (2010-01-04, Developer Milestone)

When the publishing process for MySQL 5.5.1 was already running, the MySQL team was informed about a security problem in the SSL connect area (a possibility to crash the server). The problem is caused by a buffer overflow in the yaSSL library. MySQL Servers using OpenSSL are not affected; it can occur only when SSL (using yaSSL) is enabled.

This problem is under detailed investigation with the various versions, configurations, and platforms. When that has finished, the problem will be fixed as soon as possible, and new binaries for the affected versions will be released. However, building and testing these binaries in the various configurations on the various platforms will take some time. The bug is tracked with CVE ID CVE-2009-4484. We repeat the general security hint: If it is not absolutely necessary that external machines can connect to your database instance, we recommend that the server’s connection port be blocked by a firewall to prevent any such illegitimate accesses.

Update: This bug is fixed in MySQL 5.5.2.

Functionality Added or Changed

Partitioning: The \( \text{UNIX\_TIMESTAMP()} \) function is now supported in partitioning expressions using \( \text{TIMESTAMP} \) columns. For example, it now possible to create a partitioned table such as this one:

```sql
CREATE TABLE t (c TIMESTAMP)
PARTITION BY RANGE (\text{UNIX_TIMESTAMP}(c)) (
 PARTITION p0 VALUES LESS THAN (631148400),
```
PARTITION p1 VALUES LESS THAN (946681200),
PARTITION p2 VALUES LESS THAN (MAXVALUE);

All other expressions involving `TIMESTAMP` values are now rejected with an error for attempts to create a
new partitioned table or to alter an existing partitioned table.

When accessing an existing partitioned table having a timezone-dependent partitioning function (where
the table was using a previous version of MySQL), a warning rather than an error is issued. In such
cases, you should fix the table. One way of doing this is to alter the table’s partitioning expression so that
it uses `UNIX_TIMESTAMP()`. (Bug #42849)

**Bugs Fixed**

- **Incompatible Change; Replication**: The file names for the semisynchronous plugins were prefixed with
  `lib`, unlike file names for other plugins. The file names no longer have a `lib` prefix.

This change introduces an incompatibility if the plugins had been installed using the previous names.
To handle this, uninstall the older version before installing the newer version. For example, use these
statements for the master side plugins on Unix:

```sql
mysql> UNINSTALL PLUGIN rpl_semi_sync_master;
mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
```

If you do not uninstall the older version first, attempting to install the newer version results in an error:

```sql
mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1125 (HY000): Function 'rpl_semi_sync_master' already exists
```

For the slave side, similar statements apply:

```sql
mysql> UNINSTALL PLUGIN rpl_semi_sync_slave;
mysql> INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';
```

- **Important Change; Replication**: The following functions have been marked unsafe for statement-based
  replication:

  - `GET_LOCK()`
  - `IS_FREE_LOCK()`
  - `IS_USED_LOCK()`
  - `MASTER_POS_WAIT()`
  - `RELEASE_LOCK()`
  - `SLEEP()`
  - `SYSDATE()`
  - `VERSION()`

None of the functions just listed are guaranteed to replicate correctly when using the statement-based
format because they can produce different results on the master and the slave. The use of any of these
functions while `binlog_format` is set to `STATEMENT` is logged with the warning, `Statement is not
safe to log in statement format`. When `binlog_format` is set to `MIXED`, the binary logging
format is automatically switched to the row-based format whenever one of these functions is used. (Bug
#47995)
• **Important Change:** After a binary upgrade to MySQL 5.1 from a MySQL 5.0 installation that contains `ARCHIVE` tables:

  - Before MySQL 5.1.42, accessing those tables will cause the server to crash, even if you have run `mysql_upgrade` or `CHECK TABLE ... FOR UPGRADE.`
  - As of MySQL 5.1.42, the server will not open 5.0 `ARCHIVE` tables at all.

  In either case, the solution is to use `mysqldump` to dump all 5.0 `ARCHIVE` tables before upgrading, and reload them into MySQL 5.1 after upgrading. The same problem occurs for binary downgrades from MySQL 5.1 to 5.0. (Bug #47012)

• **Performance:** When the query cache is fragmented, the size of the free block lists in the memory bins grows, which causes query cache invalidation to become slow. There is now a 50ms timeout for a `SELECT` statement waiting for the query cache lock. If the timeout expires, the statement executes without using the query cache. (Bug #39253)

  References: See also: Bug #21074.

• **InnoDB; Microsoft Windows:** When compiling on Windows, an error in the CMake definitions for InnoDB caused the engine to be built incorrectly. (Bug #49502)

• **Partitioning:** When `SHOW CREATE TABLE` was invoked for a table that had been created using the `COLUMNS` keyword or the `TO_SECONDS()` function, the output contained the wrong MySQL version number in the conditional comments. (Bug #49591)

  **Partitioning:** A query that searched on a `ucs2` column failed if the table was partitioned. (Bug #48737)

  **Partitioning:** In some cases, it was not possible to add a new column to a table that had subpartitions. (Bug #48276)

  **Partitioning:** `SELECT COUNT(*)` from a partitioned table failed when using the `ONLY_FULL_GROUP_BY` SQL mode. (Bug #46923)

  References: This issue is a regression of: Bug #45807.

• **Partitioning:** `SUBPARTITION BY KEY` failed with `DEFAULT CHARSET=utf8`. (Bug #45904)

• **Replication:** With row-based binary logging, the server crashed for statements of the form `CREATE TABLE IF NOT EXISTS existing_view LIKE temporary_table`. This occurred because the server handled the existing view as a table when logging the statement. (Bug #48506)

• **Replication:** When using row-based logging, `TRUNCATE TABLE` was written to the binary log even if the affected table was temporary, causing replication to fail. (Bug #48350)

• **Replication:** A flaw in the implementation of the purging of binary logs could result in orphaned files being left behind in the following circumstances:

  - If the server failed or was killed while purging binary logs.

    If the server failed or was killed after creating of a new binary log when the new log file was opened for the first time.

  In addition, if the slave was not connected during the purge operation, it was possible for a log file that was in use to be removed; this could lead data loss and possible inconsistencies between the master and slave. (Bug #45292)

• **Replication:** When using the `STATEMENT` or `MIXED` logging format, the statements `LOAD DATA CONCURRENT LOCAL` and `LOAD DATA CONCURRENT` were logged as `LOAD DATA LOCAL` and `LOAD
DATA, respectively (in other words, the CONCURRENT keyword was omitted). As a result, when using replication with either of these logging modes, queries on the slaves were blocked by the replication SQL thread while trying to execute the affected statements. (Bug #34628)

- **Microsoft Windows:** For debug builds on Windows, SAFEMALLOC was defined inconsistently, leading to mismatches when using my_malloc() and my_free(). (Bug #49811)

- **Microsoft Windows:** On Windows, InnoDB could not be built as a statically linked library. (Bug #48317)

- **Microsoft Windows:** On some Windows systems, InnoDB could report Operating system error number 995 in a file operation due to transient driver or hardware problems. InnoDB now retries the operation and adds Retry attempt is made to the error message. (Bug #3139)

- **Solaris:** mysql_secure_installation did not work on Solaris. (Bug #48086)

- **Solaris:** On Solaris, the server printed no stack trace to the error log after a crash. (Bug #47391)

- **NDB Replication:** When expire_logs_days was set, the thread performing the purge of the log files could deadlock, causing all binary log operations to stop. (Bug #49536)

- The mysql.server script had incorrect shutdown logic. (Bug #49772)

- The push_warning_printf() function was being called with an invalid error level, MYSQL_ERROR::WARN_LEVEL_ERROR, causing an assertion failure. To fix the problem, MYSQL_ERROR::WARN_LEVEL_ERROR has been replaced by MYSQL_ERROR::WARN_LEVEL_WARN. (Bug #49638)

- The result of comparison between nullable BIGINT and INT columns was inconsistent. (Bug #49517)

- A Valgrind error in make_cond_for_table_from_pred() was corrected. Thanks to Sergey Petrunya for the patch to fix this bug. (Bug #49506)

- Incorrect cache initialization prevented storage of converted constant values and could produce incorrect comparison results. (Bug #49489)

- Comparisons involving YEAR values could produce incorrect results. (Bug #49480)

  References: See also: Bug #43668.

- Valgrind warnings for CHECKSUM TABLE were corrected. (Bug #49465)

- Specifying an index algorithm (such as BTREE) for SPATIAL or FULLTEXT indexes caused a server crash. These index types do not support algorithm specification, and it is no longer permitted to do so. (Bug #49250)

- The optimizer sometimes incorrectly handled conditions of the form WHERE col_name='const1' AND col_name='const2'. (Bug #49199)

- Execution of DECODE() and ENCODE() could be inefficient because multiple executions within a single statement reinitialized the random generator multiple times even with constant parameters. (Bug #49141)

- With binary logging enabled, REVOKE ... ON (PROCEDURE|FUNCTION) FROM ... could cause a crash. (Bug #49119)

- The LIKE operator did not work correctly when using an index for a ucs2 column. (Bug #49028)

- check_key_in_view() was missing a DBUG_RETURN in one code branch, causing a crash in debug builds. (Bug #48995)
• If a query involving a table was terminated with `KILL`, a subsequent `SHOW CREATE TABLE` for that table caused a server crash. (Bug #48985)

• Privileges for stored routines were ignored for mixed-case routine names. (Bug #48872)
  References: See also: Bug #41049.

• Building MySQL on Fedora Core 12 64-bit failed, due to errors in `comp_err`. (Bug #48864)

• Concurrent `ALTER TABLE` operations on an InnoDB table could raise an assertion. (Bug #48782)

• Incomplete reset of internal `TABLE` structures could cause a crash with `eq_ref` table access in subqueries. (Bug #48709)

• During query execution, ranges could be merged incorrectly for `OR` operations and return an incorrect result. (Bug #48665)

• The InnoDB Table Monitor reported the `FLOAT` and `DOUBLE` data types incorrectly. (Bug #48526)

• Re-execution of a prepared statement could cause a server crash. (Bug #48508)

• The error message for `ER_UPDATE_INFO` was subject to buffer overflow or truncation. (Bug #48500)

• `DISTINCT` was ignored for queries with `GROUP BY WITH ROLLUP` and only `const` tables. (Bug #48475)

• Loose index scan was inappropriately chosen for some `WHERE` conditions. (Bug #48472)

• The server could crash and corrupt the tablespace if the InnoDB tablespace was configured with too small a value, or if `innodb_file_per_table` was enabled and many `CREATE TEMPORARY TABLE` statements were executed and the temporary file directory filled up. (Bug #48469)

• Parts of the range optimizer could be initialized incorrectly, resulting in Valgrind errors. (Bug #48459)

• A bad typecast could cause query execution to allocate large amounts of memory. (Bug #48458)

• `SHOW BINLOG EVENTS` could fail with a error: `Wrong offset or I/O error`. (Bug #48357)

• Valgrind warnings related to binary logging of `LOAD DATA` statements were corrected. (Bug #48340)

• When running `mysql_secure_installation`, the command failed if the root password contained multiple space, '"', '#', or quote characters. (Bug #48031)

• `MATCH IN BOOLEAN MODE` searches could return too many results inside a subquery. (Bug #47930)

• User-defined collations with an ID less than 256 were not initialized correctly when loaded and caused a server crash. (Bug #47756)

• If a session acquired a global read lock with `FLUSH TABLES WITH READ LOCK`, acquired a lock for one table with `LOCK TABLES`, and issued an `INSERT DELAYED` statement for another table, deadlock could occur. (Bug #47682)

• The `mysql` client `status` command displayed an incorrect value for the server character set. (Bug #47671)

• Connecting to a 4.1.x server from a 5.1.x or higher `mysql` client resulted in a memory-free error when disconnecting. (Bug #47655)

• Queries containing `GROUP BY ... WITH ROLLUP` that did not use indexes could return incorrect results. (Bug #47650)
MySQL 5.5 Release Notes

• Assignment of a system variable sharing the same base name as a declared stored program variable in the same context could lead to a crash. (Bug #47627)
• The first execution of STOP SLAVE UNTIL stopped too early. (Bug #47210)
• The innodb_file_format_check system variable could not be set at runtime to DEFAULT or to the value of a user-defined variable. (Bug #47167)
• The IGNORE clause on a DELETE statement masked an SQL statement error that occurred during trigger processing. (Bug #46425)
• Valgrind errors for InnoDB were corrected. (Bug #45992, Bug #46656)
• The return value was not checked for some my_hash_insert() calls. (Bug #45613)
• It was possible for init_availableCharsets() not to initialize correctly. (Bug #45058)
• GROUP BY on a constant (single-row) InnoDB table joined to other tables caused a server crash. (Bug #44886)
• For a VARCHAR(N) column, ORDER BY BINARY(col_name) sorted using only the first N bytes of the column, even though column values could be longer than N bytes if they contained multibyte characters. (Bug #44131)
• For YEAR(2) values, MIN(), MAX(), and comparisons could yield incorrect results. (Bug #43668)
• Comparison with NULL values sometimes did not produce a correct result. (Bug #42760)
• In debug builds, killing a LOAD XML statement raised an assertion.
  Implemented in the course of fixing this bug, mysqltest has a new send_eval command that combines the functionality of the existing send and eval commands. (Bug #42520)
• The server could crash when attempting to access a non-conformant mysql.proc system table. For example, the server could crash when invoking stored procedure-related statements after an upgrade from MySQL 5.0 to 5.1 without running mysql_upgrade. (Bug #41726)
• The mysql_upgrade command added three columns to the mysql.proc table (character_set_client, collation_connection, and db_collation), but did not populate the columns with correct values. This led to error messages reported during stored procedure execution. (Bug #41569)
• Use of InnoDB monitoring (SHOW ENGINE INNODB STATUS or one of the InnoDB Monitor tables) could cause a server crash due to invalid access to a shared variable in a concurrent environment. (Bug #38883)
• When compressed MyISAM files were opened, they were always memory mapped, sometimes causing memory-swapping problems. To deal with this, a new system variable, myisam_mmap_size, was added to permit limiting the amount of memory used for memory mapping of MyISAM files. (Bug #37408)
• On Windows, the mysql_secure_installation command failed to load the Term::ReadKey module, which was required for correct operation. (Bug #35106)
• If the --log-bin server option was set to a directory name with a trailing component separator character, the basasename of the binary log files was empty, so that the created files were named .000001 and .index. The same thing occurred with the --log-bin-index, --relay-log, and --relay-log-index options. Now the server reports and error and exits. (Bug #34739)
• If a comparison involved a constant value that required type conversion, the converted value might not be cached, resulting in repeated conversion and poorer performance. (Bug #34384)
MySQL 5.5 Release Notes

- **SHOW ENGINE INNODB STATUS** displayed partition names for partitioned tables incorrectly. (Bug #32430)

- Using the **SHOW ENGINE INNODB STATUS** statement when using partitions in InnoDB tables caused "Invalid (old?) table or database name" errors to be logged. (Bug #32430)

- Output from `mysql --html` did not encode the '"', '>', or '&' characters. (Bug #27884)

- Under heavy load with a large query cache, invalidating part of the cache could cause the server to freeze (that is, to be unable to service other operations until the invalidation was complete). (Bug #21074)

References: See also: Bug #39253.

### Changes in MySQL 5.5.0 (2009-12-07, Milestone 2)

Previously, MySQL development proceeded by including a large set of features and moving them over many versions within a release series through several stages of maturity (Alpha, Beta, and so forth). This development model had a disadvantage in that problems with only part of the code could hinder timely release of the whole. As you might have found when testing MySQL Server 6.0, alpha quality code could jeopardize the stability of the entire release. (One consequence of this was that MySQL Server 6.0 has been withdrawn.)

MySQL development now uses a milestone model. The move to this model provides for more frequent milestone releases, with each milestone proceeding through a small number of releases having a focus on a specific subset of thoroughly tested features. Following the releases for one milestone, development proceeds with the next milestone; that is, another small number of releases that focuses on the next small set of features, also thoroughly tested.

MySQL 5.5.0-m2 is the first release for Milestone 2. The new features of this milestone may be considered to be initially of beta quality. For subsequent Milestone 2 releases, we plan to use increasing version numbers (5.5.1 and higher) while continuing to employ the "-m2" suffix. For Milestone 3, we plan to change the suffix to "-m3". Version designators with "-alpha" or "-beta" suffixes are no used.

You may notice that the MySQL 5.5.0 release is designated as Milestone 2 rather than Milestone 1. This is because MySQL 5.4 was actually designated as Milestone 1, although we had not yet begun referring to milestone numbers as part of version numbers at the time.

- **InnoDB Notes**
- **Plugin Notes**
- **Security Notes**
- **Functionality Added or Changed**
- **Bugs Fixed**

### InnoDB Notes

- The **InnoDB Plugin** is included in MySQL 5.5 releases as the built-in version of InnoDB. The version of the InnoDB in this release is 1.0.5 and is considered of Release Candidate (RC) quality.

  This version of InnoDB offers new features, improved performance and scalability, enhanced reliability and new capabilities for flexibility and ease of use. Among the features are "Fast index creation," table and index compression, file format management, new **INFORMATION_SCHEMA** tables, capacity tuning, multiple background I/O threads, and group commit.
In this version of InnoDB, the `innodb_file_io_threads` system variable has been removed and replaced with `innodb_read_io_threads` and `innodb_write_io_threads`. If you upgrade from MySQL 5.1 to MySQL 5.5 and previously explicitly set `innodb_file_io_threads` at server startup, you must change your configuration. Either remove any reference to `innodb_file_io_threads` or replace it with references to `innodb_read_io_threads` and `innodb_write_io_threads`.

**Plugin Notes**

- **Incompatible Change**: MySQL Server now includes a plugin services interface that complements the plugin API. The services interface enables server functionality to be exposed as a “service” that plugins can access using function calls. The `libmysqlservices` library provides access to the available services and dynamic plugins now must be linked against this library (use the `--lmysqlservices` flag). See MySQL Services for Plugins. (Bug #48461)

**Security Notes**

- **Important Change**: It was possible to circumvent privileges through the creation of MyISAM tables employing the `DATA DIRECTORY` and `INDEX DIRECTORY` options to overwrite existing table files in the MySQL data directory. Use of the MySQL data directory in `DATA DIRECTORY` and `INDEX DIRECTORY` is no longer permitted. This is now also true of these options when used with partitioned tables and individual partitions of such tables. (Bug #32167)

  References: See also: Bug #39277.

**Functionality Added or Changed**

- **Incompatible Change**: Two status variables have been added to `SHOW STATUS` output. `Innodb_buffer_pool_read_ahead` and `Innodb_buffer_pool_read_ahead_evicted` indicate the number of pages read in by the InnoDB read-ahead background thread, and the number of such pages evicted without ever being accessed, respectively. Also, the status variables `Innodb_buffer_pool_read_ahead_rnd` and `Innodb_buffer_pool_read_ahead_seq` status variables have been removed. (Bug #42885)

- **Incompatible Change**: The deprecated `--default-table-type` server option has been removed (use `--default-storage-engine`). (Bug #34818)

- **Incompatible Change**: The TRADITIONAL SQL mode now includes `NO_ENGINE_SUBSTITUTION`. (Bug #21099)

- **Incompatible Change**: Several changes have been made regarding the language and character set of error messages:

  - The `language` system variable has been removed and replaced with the new `lc_messages_dir` and `lc_messages` system variables. `lc_messages_dir` has only a global value and is read only. `lc_messages` has global and session values and can be modified at runtime, so the error message language can be changed while the server is running, and individual clients each can have a different error message language by changing their session `lc_messages` value to a different locale name.

  - The `--language` option for specifying the directory for the error message file is now deprecated. The new `lc_messages_dir` and `lc_messages` system variables should be used instead, and the server treats `--language` as an alias for `lc_messages_dir`.

  - Error messages previously were constructed in a mix of character sets. This issue is resolved by constructing error messages internally within the server using UTF-8 and returning them to the client.
in the character set specified by the `character_set_results` system variable. The content of error messages therefore may in some cases differ from the messages returned previously.

See Setting the Error Message Language, and Error Message Character Set.

References: See also: Bug #46218, Bug #46236.

• **Partitioning:** New `PARTITION BY RANGE COLUMNS(column_list)` and `PARTITION BY LIST COLUMNS(column_list)` options are added for the `CREATE TABLE` and `ALTER TABLE` statements.

A major benefit of `RANGE COLUMNS` and `LIST COLUMNS` partitioning is that they make it possible to define ranges or lists based on column values that use string, date, or datetime values.

These new extensions also broaden the scope of partition pruning to provide better coverage for queries using comparisons on multiple columns in the `WHERE` clause, some examples being `WHERE a = 1 AND b < 10` and `WHERE a = 1 AND b = 10 AND c < 10`.

See RANGE Partitioning, LIST Partitioning, and Partition Pruning.

• **Partitioning:** A new `ALTER TABLE` option, `TRUNCATE PARTITION`, makes it possible to delete rows from one or more selected partitions only. Unlike the case with `ALTER TABLE ... DROP PARTITION`, `ALTER TABLE ... TRUNCATE PARTITION` merely deletes all rows from the specified partition or partitions, and does not change the definition of the table.

• **Partitioning:** It is now possible to assign indexes on partitioned MyISAM tables to key caches using the `CACHE INDEX` and to preload such indexes into the cache using `LOAD INDEX INTO CACHE` statements. Cache assignment and preloading of indexes for such tables can be performed for one, several, or all partitions of the table.

This functionality is supported for only those partitioned tables that employ the MyISAM storage engine.

• **Replication:** The global server variable `sync_relay_log` is introduced for use on replication slaves. Setting this variable to a nonzero integer value \( N \) causes the slave to synchronize the relay log to disk after every \( N \) events. Setting its value to 0 permits the operating system to handle synchronization of the file. The action of this variable, when enabled, is analogous to how the `sync_binlog` variable works with regard to binary logs on a replication master.

The global server variables `sync_master_info` and `sync_relay_log_info` are introduced for use on replication slaves to control synchronization of, respectively, the `master.info` and `relay.info` files.

In each case, setting the variable to a nonzero integer value \( N \) causes the slave to synchronize the corresponding file to disk after every \( N \) events. Setting its value to 0 permits the operating system to handle synchronization of the file instead.

The actions of these variables, when enabled, are analogous to how the `sync_binlog` variable works with regard to binary logs on a replication master.

An additional system variable `relay_log_recovery` is also now available. When enabled, this variable causes a replication slave to discard relay log files obtained from the replication master following a crash.

These variables can also be set in `my.cnf`, or by using the `--sync-relay-log`, `--sync-master-info`, `--sync-relay-log-info`, and `--relay-log-recovery` server options.

For more information, see Replication Slave Options and Variables. (Bug #31665, Bug #35542, Bug #40337)
MySQL 5.5 Release Notes

- **Replication:** Because `SHOW BINLOG EVENTS` cannot be used to read events from relay log files, a new `SHOW RELAYLOG EVENTS` statement has been added for this purpose. (Bug #28777)

- **Replication:** In circular replication, it was sometimes possible for an event to propagate such that it would be reapplied on all servers. This could occur when the originating server was removed from the replication circle and so could no longer act as the terminator of its own events, as normally happens in circular replication.

  To prevent this from occurring, a new `IGNORE_SERVER_IDS` option is introduced for the `CHANGE MASTER TO` statement. This option takes a list of replication server IDs; events having a server ID which appears in this list are ignored and not applied. For more information, see `CHANGE MASTER TO Statement`.

  In conjunction with the introduction of `IGNORE_SERVER_IDS`, `SHOW SLAVE STATUS` has two new fields. `Replicate_Ignore_Server_Ids` displays information about ignored servers. `Master_Server_Id` displays the server_id value from the master. (Bug #25998)

  References: See also: Bug #27808.

- **Replication:** A replication heartbeat mechanism has been added to facilitate monitoring. This provides an alternative to checking log files, making it possible to detect in real time when a slave has failed.

  Configuration of heartbeats is done using a new `MASTER_HEARTBEAT_PERIOD = interval` clause for the `CHANGE MASTER TO` statement (see `CHANGE MASTER TO Statement`); monitoring can be done by checking the values of the status variables `Slave_heartbeat_period` and `Slave_received_heartbeats` (see `Server Status Variables`).

  The addition of replication heartbeats addresses a number of issues:

  - Relay logs were rotated every `slave_net_timeout` seconds even if no statements were being replicated.

  - `SHOW SLAVE STATUS` displayed an incorrect value for `Seconds_Behind_Master` following a `FLUSH LOGS` statement.

  - Replication master-slave connections used `slave_net_timeout` for connection timeouts.

    (Bug #20435, Bug #29309, Bug #30932)

- **Replication:** MySQL now supports an interface for semisynchronous replication: A commit performed on the master side blocks before returning to the session that performed the transaction until at least one slave acknowledges that it has received and logged the events for the transaction. Semisynchronous replication is implemented through an optional plugin component. See Semisynchronous Replication.

- **Microsoft Windows:** On Windows, use of POSIX I/O interfaces in `mysys` was replaced with Win32 API calls (`CreateFile()`, `WriteFile()`, and so forth) and the default maximum number of open files has been increased to 16384. The maximum can be increased further by setting the `open_files_limit` system variable at server startup. (Bug #24509)

  On Linux (and perhaps other systems), the performance of MySQL Server can be improved by using a different `malloc()` implementation, developed by Google and called `tcmalloc`. The gain is noticeable with a higher number of simultaneous users. To support use of this library, the following changes have been made:

  - The server is linked against the default `malloc()` provided by the respective platform.
MySQL 5.5 Release Notes

• Binary distributions for Linux include `libtcmalloc_minimal.so` (a shared library that can be linked against at runtime) in `pkglibdir` (that is, the same directory within the package where server plugins and similar object files are located). The version of `tcmalloc` included with MySQL comes from `google-perftools 1.4`.

If you want to try `tcmalloc` but are using a binary distribution for a non-Linux platform or a source distribution, you can install Google’s `tcmalloc`. Some distributions provide it in a `google-perftools` package or with a similar name, or you can download it from Google at `http://code.google.com/p/google-perftools/` and compile it yourself.

• `mysqld_safe` now supports a `--malloc-lib` option that enables administrators to specify that `mysqld` should use `tcmalloc`.

The `--malloc-lib` option works by modifying the `LD_PRELOAD` environment value to affect dynamic linking to enable the loader to find the memory-allocation library when `mysqld` runs:

• If the option is not given, or is given without a value (`--malloc-lib=`), `LD_PRELOAD` is not modified and no attempt is made to use `tcmalloc`.

• If the option is given as `--malloc-lib=tcmalloc`, `mysqld_safe` looks for a `tcmalloc` library in `/usr/lib` and then in the MySQL `pkglibdir` location (for example, `/usr/local/mysql/lib` or whatever is appropriate). If `tcmalloc` is found, its path name is added to the beginning of the `LD_PRELOAD` value for `mysqld`. If `tcmalloc` is not found, `mysqld_safe` aborts with an error.

• If the option is given as `--malloc-lib=/path/to/some/library`, that full path is added to the beginning of the `LD_PRELOAD` value. If the full path points to a nonexistent or unreadable file, `mysqld_safe` aborts with an error.

• For cases where `mysqld_safe` adds a path name to `LD_PRELOAD`, it adds the path to the beginning of any existing value the variable already has.

As a result of the preceding changes, Linux users can use the `libtcmalloc_minimal.so` now included in binary packages by adding these lines to the `my.cnf` file:

```ini
[mysqld_safe]
malloc-lib=tcmalloc
```

Those lines also suffice for users on any platform who have installed a `tcmalloc` package in `/usr/lib`. To use a specific `tcmalloc` library, specify its full path name. Example:

```ini
[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so
```

(Bug #47549)

• The `mysql` client now supports an `--init-command=sql` option. The option value is an SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the statement is executed again after reconnection occurs. (Bug #45634, Bug #11754087)

• The InnoDB buffer pool is divided into two sublists: A new sublist containing blocks that are heavily used by queries, and an old sublist containing less-used blocks and from which candidates for eviction are taken. In the default operation of the buffer pool, a block when read in is loaded at the midpoint and then moved immediately to the head of the new sublist as soon as an access occurs. In the case of a table scan (such as performed for a `mysqldump` operation), each block read by the scan ends up moving to the head of the new sublist because multiple rows are accessed from each block. This occurs even for a one-time scan, where the blocks are not otherwise used by other queries. Blocks may also be loaded
by the read-ahead background thread and then moved to the head of the new sublist by a single access. These effects can be disadvantageous because they push blocks that are in heavy use by other queries out of the new sublist to the old sublist where they become subject to eviction.

**InnoDB** now provides two system variables that enable LRU algorithm tuning:

- **innodb_old_blocks_pct**
  
  Specifies the approximate percentage of the buffer pool used for the old block sublist. The range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool).

- **innodb_old_blocks_time**
  
  Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. The default value is 0: A block inserted into the old sublist moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion the access occurs. If the value is greater than 0, blocks remain in the old sublist until an access occurs at least that many ms after the first access. For example, a value of 1000 causes blocks to stay in the old sublist for 1 second after the first access before they become eligible to move to the new sublist.

See **Buffer Pool**. (Bug #45015)

- The **have_community_features** system variable was renamed to **have_profiling**.

Previously, to enable profiling, it was necessary to run **configure** with the **--enable-community-features** and **--enable-profiling** options. Now only **--enable-profiling** is needed. (Bug #44651)

- Columns that provide a catalog value in **INFORMATION_SCHEMA** tables (for example, **TABLES.TABLE_CATALOG**) now have a value of def rather than NULL. (Bug #35427)

- Previously, **mysqldump** would not dump the **INFORMATION_SCHEMA** database and ignored it if it was named on the command line. Now, **mysqldump** will dump **INFORMATION_SCHEMA** if it is named on the command line. Currently, this requires that the **--skip-lock-tables** (or **--skip-opt**) option be given. (Bug #33762)

- Several undocumented C API functions were removed: **mysql_manager_close()**, **mysql_manager_command()**, **mysql_manager_connect()**, **mysql_manager_fetch_line()**, **mysql_manager_init()**, **mysql_disable_reads_from_master()**, **mysql_disable_rpl_parse()**, **mysql_enable_reads_from_master()**, **mysql_enable_rpl_parse()**, **mysql_master_query()**, **mysql_master_send_query()**, **mysql_reads_from_master_enabled()**, **mysql_rpl_parse_enabled()**, **mysql_rpl_probe()**, **mysql_rpl_query_type()**, **mysql_set_master()**, **mysql_slave_query()**, and **mysql_slave_send_query()**. (Bug #31952, Bug #31954)

- Sinhala collations **utf8_sinhala_ci** and **ucs2_sinhala_ci** were added for the **utf8** and **ucs2** character sets. (Bug #26474)

- If the value of the **--log-warnings** option is greater than 1, the server now writes access-denied errors for new connection attempts to the error log (for example, if a client user name or password is incorrect). (Bug #25822)

- MySQL now implements the SQL standard **SIGNAL** and **RESIGNAL** statements. See **Condition Handling**. (Bug #11661)
MySQL 5.5 Release Notes

- The `libmysqlclient` client library is now built as a thread-safe library. The `libmysqlclient_r` client library is still present for compatibility, but is just a symbolic link to `libmysqlclient`.

- The `FORMAT()` function now supports an optional third parameter that enables a locale to be specified to be used for the result number's decimal point, thousands separator, and grouping between separators. Permissible locale values are the same as the legal values for the `lc_time_names` system variable (see MySQL Server Locale Support). For example, the result from `FORMAT(1234567.89,2,'de_DE')` is `1.234.567,89`. If no locale is specified, the default is `'en_US'`.

- The Greek locale `'el_GR'` is now a permissible value for the `lc_time_names` system variable.

- Previously, in the absence of other information, the MySQL client programs `mysql`, `mysqladmin`, `mysqlcheck`, `mysqlimport`, and `mysqlshow` used the compiled-in default character set, usually `latin1`. Now these clients can autodetect which character set to use based on the operating system setting, such as the value of the `LANG` or `LC_ALL` locale environment language on Unix system or the code page setting on Windows systems. For systems on which the locale is available from the OS, the client uses it to set the default character set rather than using the compiled-in default. Thus, users can configure the locale in their environment for use by MySQL clients. For example, setting `LANG` to `ru_RU.KOI8-R` causes the `koi8r` character set to be used. The OS character set is mapped to the closest MySQL character set if there is no exact match. If the client does not support the matching character set, it uses the compiled-in default. (For example, `ucs2` is not supported as a connection character set.) An implication of this change is that if your environment is configured to use a non-`latin1` locale, MySQL client programs will use a different character set than previously, as though you had issued an implicit `SET NAMES` statement. If the previous behavior is required, start the client with the `--default-character-set=latin1` option.

- Third-party applications that wish to use character set autodetection based on the OS setting can use the following `mysql_options()` call before connecting to the server:

```c
mysql_options(mysql,
 MYSQL_SET_CHARSET_NAME,
 MYSQL_AUTODETECT_CHARSET_NAME);
```

See Connection Character Sets and Collations.

- `mysql_upgrade` now has an `--upgrade-system-tables` option that causes only the system tables to be upgraded. With this option, data upgrades are not performed.

- The `CREATE TABLESPACE` privilege has been introduced. This privilege exists at the global (superuser) level and enables you to create, alter, and drop tablespaces and logfile groups.

- The server now supports a Debug Sync facility for thread synchronization during testing and debugging. To compile in this facility, configure MySQL with the `--enable-debug-sync` option. The `debug_sync` system variable provides the user interface Debug Sync. `mysqld` and `mysql-test-run.pl` support a `--debug-sync-timeout` option to enable the facility and set the default synchronization point timeout.

- The undocumented, deprecated, and not useful `SHOW COLUMN TYPES` statement has been removed. (Bug #5299)

- Added the `TO_SECONDS()` function, which converts a date or datetime value to a number of seconds since the year 0. This is a general-purpose function, but is useful for partitioning. You may use this function in partitioning expressions, and partition pruning is supported for tables defined using such expressions.

- Parser performance was improved for identifier scanning and conversion of ASCII string literals.
- The `LOAD XML` statement was added. This statement makes it possible to read data directly from XML files into database tables. For more information, see `LOAD XML Statement`.

### Bugs Fixed

- **Security Fix**: MySQL clients linked against OpenSSL could be tricked not to check server certificates. (Bug #47320)

- **Security Fix**: The server crashed if an account without the proper privileges attempted to create a stored procedure. (Bug #44658)

- **Incompatible Change; Replication**: Concurrent transactions that inserted rows into a table with an `AUTO_INCREMENT` column could break statement-based or mixed-format replication error 1062 Duplicate entry '...' for key 'PRIMARY' on the slave. This was especially likely to happen when one of the transactions activated a trigger that inserted rows into the table with the `AUTO_INCREMENT` column, although other conditions could also cause the issue to manifest.

  As part of the fix for this issue, any statement that causes a trigger or function to update an `AUTO_INCREMENT` column is now considered unsafe for statement-based replication. For more information, see `Replication and AUTO_INCREMENT`.

  (Bug #45677)

  References: See also: Bug #42415, Bug #48608, Bug #50440, Bug #53079.

- **Incompatible Change**: For system variables that take values of `ON` or `OFF, OF` was accepted as a legal variable. Now system variables that take “enumeration” values must be assigned the full value. This affects some other variables that previously could be assigned using unambiguous prefixes of permissible values, such as `tx_isolation`. (Bug #34828)

- **Incompatible Change**: In binary installations of MySQL, the supplied `binary-configure` script would start and configure MySQL, even when command help was requested with the `--help` command-line option. The `--help` option, if provided, no longer starts and installs the server. (Bug #30954)

- **Incompatible Change**: Access privileges for several statements are more accurately checked:
  - `CHECK TABLE` requires some privilege for the table.
  - `CHECKSUM TABLE` requires `SELECT` for the table.
  - `CREATE TABLE ... LIKE` requires `SELECT` for the source table and `CREATE` for the destination table.
  - `SHOW COLUMNS` displays information only for those columns for which you have some privilege.
  - `SHOW CREATE TABLE` requires some privilege for the table (previously required `SELECT`).
  - `SHOW CREATE VIEW` requires `SHOW VIEW` and `SELECT` for the view.
  - `SHOW INDEX` requires some privilege for any column.
  - `SHOW OPEN TABLES` displays only tables for which you have some privilege on any column.

  (Bug #27145)

- **Important Change; Replication**: `MyISAM` transactions replicated to a transactional slave left the slave in an unstable condition. This was due to the fact that, when replicating from a nontransactional storage engine to a transactional engine with `autocommit` disabled, no `BEGIN` and `COMMIT` statements were written to the binary log; thus, on the slave, a never-ending transaction was started.
The fix for this issue includes enforcing autocommit mode on the slave by replicating all autocommit=1 statements from the master. (Bug #29288)

- **Important Change; Replication:** The CHANGE MASTER TO statement required the value for RELAY_LOG_FILE to be an absolute path, whereas the MASTER_LOG_FILE path could be relative.

  The inconsistent behavior is resolved by permitting relative paths for RELAY_LOG_FILE, in which case the path is assumed to be relative to the slave's data directory. (Bug #12190, Bug #11745232)

- **Important Change:** An option that requires a value, when specified in an option file without a value, was assigned the text of the next line in the file as the value. Now, if you fail to specify a required value in an option file, the server aborts with an error.

  This change does not effect how options are handled by the server when they are used on the command line. For example, starting the server using `mysqld_safe --relay-log --relay-log-index &` causes the server to create relay log files named `--relay-log-index.000001`, `--relay-log-index.000002`, and so on, because the `--relay-log` option expects an argument. (Bug #25192)

- **Performance:** The server unnecessarily acquired a query cache mutex even with the query cache disabled, resulting in a small performance decrement which could show up as threads often in the "invalidating query cache entries (table)" state, particularly on a replication slave with row-based replication. Now if the server is started with `query_cache_type` set to 0, it does not acquire the query cache mutex. This has the implication that the query cache cannot be enabled at runtime. (Bug #38551)

  - **Performance:** The InnoDB adaptive hash latch is released (if held) for several potentially long-running operations. This improves throughput for other queries if the current query is removing a temporary table, changing a temporary table from memory to disk, using CREATE TABLE ... SELECT, or performing a MyISAM repair on a table used within a transaction. (Bug #32149)

- **Partitioning:** An ALTER TABLE ... ADD PARTITION statement that caused open_files_limit to be exceeded led to a MySQL server crash. (Bug #46922)

  References: See also: Bug #47343.

- **Partitioning:** When performing an INSERT ... SELECT into a partitioned table, read_buffer_size bytes of memory were allocated for every partition in the target table, resulting in consumption of large amounts of memory when the table had many partitions (more than 100).

  This fix changes the method used to estimate the buffer size required for each partition and limits the total buffer size to a maximum of approximately 10 times read_buffer_size. (Bug #45840)

- **Partitioning:** The cardinality of indexes on partitioned tables was calculated using the first partition in the table, which could result in suboptimal query execution plans being chosen. Now the partition having the most records is used instead, which should result in better use of indexes and thus improved performance of queries against partitioned tables in many if not most cases. (Bug #44059)

- **Partitioning:** Truncating a partitioned MyISAM table did not reset the AUTO_INCREMENT value. (Bug #35111)

- **Partitioning:** For partitioned tables with more than ten partitions, a full table scan was used in some cases when only a subset of the partitions were needed. (Bug #33730)

- **Replication:** When using statement-based or mixed-format replication, the database name was not written to the binary log when executing a LOAD DATA statement. This caused problems when the table being loaded belonged to a database other than the current database; data could be loaded into the wrong table (if a table having the same name existed in the current database) or replication could fail.
MySQL 5.5 Release Notes

(If no table having that name existed in the current database). Now a table referenced in a \texttt{LOAD DATA} statement is always logged using its fully qualified name when the database to which it belongs is not the current database. (Bug \#48297)

\textbf{Replication:} When a session was closed on the master, temporary tables belonging to that session were logged with the wrong database names when either of the following conditions was true:

1. The length of the name of the database to which the temporary table belonged was greater than the length of the current database name.
2. The current database was not set.

(Bug \#48216)

References: See also: Bug \#46861, Bug \#48297.

\textbf{Replication:} When using row-based replication, changes to nontransactional tables that occurred early in a transaction were not immediately flushed upon committing a statement. This behavior could break consistency since changes made to nontransactional tables become immediately visible to other connections. (Bug \#47678)

References: See also: Bug \#47287, Bug \#46864, Bug \#43929, Bug \#11752675, Bug \#46129. This issue is a regression of: Bug \#40116.

\textbf{Replication:} When \texttt{mysqlbinlog} --verbose was used to read a binary log that had been written using row-based format, the output for events that updated some but not all columns of tables was not correct. (Bug \#47323)

\textbf{Replication:} Performing \texttt{ALTER TABLE ... DISABLE KEYS} on a slave table caused row-based replication to fail. (Bug \#47312)

\textbf{Replication:} When using the row-based format to replicate a transaction involving both transactional and nontransactional engines, which contained a DML statement affecting multiple rows, the statement failed. If this transaction was followed by a \texttt{COMMIT}, the master and the slave could diverge, because the statement was correctly rolled back on the master, but was applied on the slave. (Bug \#47287)

References: See also: Bug \#46864.

\textbf{Replication:} \texttt{BEGIN} statements were not included in the output of \texttt{mysqlbinlog}. (Bug \#46998)

\textbf{Replication:} A problem with the \texttt{BINLOG} statement in the output of \texttt{mysqlbinlog} could break replication; statements could be logged with the server ID stored within events by the \texttt{BINLOG} statement rather than the ID of the running server. With this fix, the server ID of the server executing the statements can no longer be overridden by the server ID stored in the binary log's \texttt{format description} statement. (Bug \#46640)

References: This issue is a regression of: Bug \#32407.

\textbf{Replication:} When using row-based replication, \texttt{DROP TEMPORARY TABLE IF EXISTS} was written to the binary log if the table named in the statement did not exist, even though a \texttt{DROP TEMPORARY} \texttt{TABLE} statement should never be logged in row-based logging mode, whether the table exists or not. (Bug \#46572)

\textbf{Replication:} The internal function \texttt{get_master_version_and_clock()} (defined in sql/slave.cc) ignored errors and passed directly when queries failed, or when queries succeeded but the result retrieved was empty. Now this function tries to reconnect the master if a query fails due to transient network problems, and to fail otherwise. The I/O thread now prints a warning if the same system
variables do not exist on master (in the event the master is a very old version of MySQL, compared to the slave.) (Bug #45214)

- **Replication:** Replicating TEXT or VARCHAR columns declared as NULL on the master but NOT NULL on the slave caused the slave to crash. (Bug #43789)

  References: See also: Bug #38850, Bug #43783, Bug #43785, Bug #47741, Bug #48091.

- **Replication:** By default, all statements executed by the mysql_upgrade program on the master are written to the binary log, then replicated to the slave. In some cases, this can result in problems; for example, it attempted to alter log tables on replicated databases (this failed due to logging being enabled).

  As part of this fix, a mysql_upgrade option, --write-binlog, is added. Its inverse, --skip-write-binlog, can be used to disable binary logging while the upgrade is in progress. (Bug #43579)

- **Replication:** Two issues encountered on replication slaves during startup were fixed:
  1. A failure while allocating the master info structure caused the slave to crash.
  2. A failure during recovery caused the relay log file not to be properly initialized which led to a crash on the slave.

  (Bug #43075)

- **Replication:** When the logging format was set without binary logging being enabled, the server failed to start. Now in such cases, the server starts successfully, binlog_format is set, and a warning is logged instead of an error. (Bug #42928)

- **Replication:** On the master, if a binary log event is larger than max_allowed_packet, the error message ER_MASTER_FATAL_ERROR_READING_BINLOG is sent to a slave when it requests a dump from the master, thus leading the I/O thread to stop. On a slave, the I/O thread stops when receiving a packet larger than max_allowed_packet.

  In both cases, however, there was no Last_IO_Error reported, which made it difficult to determine why the slave had stopped in such cases. Now, Last_IO_Error is reported when max_allowed_packet is exceeded, and provides the reason for which the slave I/O thread stopped. (Bug #42914)

  References: See also: Bug #14068, Bug #47200, Bug #47303.

- **Replication:** When using statement-based replication and the transaction isolation level was set to READ COMMITTED or a less strict level, InnoDB returned an error even if the statement in question was filtered out according to the --binlog-do-db or --binlog-ignore-db rules in effect at the time. (Bug #42829)

- **Replication:** When using row-based format, replication failed with the error Could not execute Write_rows event on table ...; Field '...' doesn't have a default value when an INSERT was made on the master without specifying a value for a column having no default, even if strict server SQL mode was not in use and the statement would otherwise have succeeded on the master. Now the SQL mode is checked, and the statement is replicated unless strict mode is in effect. For more information, see Server SQL Modes. (Bug #38173)

  References: See also: Bug #38262, Bug #43992.

- **Replication:** When autocommit was set equal to 1 after starting a transaction, the binary log did not commit the outstanding transaction. This happened because the binary log commit function saw only the values of the new settings, and decided that there was nothing to commit.
This issue was first observed when using the **Falcon** storage engine, but it is possible that it affected other storage engines as well. (Bug #37221)

- **Replication:** **FLUSH LOGS** did not close and reopen the binary log index file. (Bug #34582)
  
  References: See also: Bug #48738.

- **Replication:** An error message relating to permissions required for **SHOW SLAVE STATUS** was confusing. (Bug #34227)

- **Replication:** The **--base64-output** option for **mysqlbinlog** was not honored for all types of events. This interfered in some cases with performing point-in-time recovery. (Bug #32407)
  
  References: See also: Bug #46640, Bug #34777.

- **Replication:** The value of **Slave_IO_running** in the output of **SHOW SLAVE STATUS** did not distinguish between all 3 possible states of the slave I/O thread (not running; running but not connected; connected). Now the value **Connecting** (rather than **No** ) is shown when the slave I/O thread is running but the slave is not connected to a replication master.

  The server system variable **Slave_running** also reflects this change, and is now consistent with what is shown for **Slave_IO_running**. (Bug #30703, Bug #41613, Bug #51089)

- **Replication:** Queries written to the slow query log on the master were not written to the slow query log on the slave. (Bug #23300)
  
  References: See also: Bug #48632.

- **Replication:** Valgrind revealed an issue with **mysqld** that was corrected: memory corruption in replication slaves when switching databases. (Bug #19022)

- **OS X; Microsoft Windows:** On OS X or Windows, sending a **SIGHUP** signal to the server or an asynchronous flush (triggered by **flush_time**) caused the server to crash. (Bug #47525)

- **Microsoft Windows:** Server shutdown failed on Windows. (Bug #48047)

- **Microsoft Windows:** The **mysys/mf_strip.c** file, which defines the **strip_sp()** function, has been removed from the MySQL source. The function was no longer used within the main build, and the supplied function was causing symbol errors on Windows builds. (Bug #47857)

- **Microsoft Windows:** When building storage engines on Windows it was not possible to specify additional libraries within the **CMake** file required for the build. An **${engine}_LIBS** macro has been included in the files to support these additional storage-engine specific libraries. (Bug #47797)

- **Microsoft Windows:** When building a pluggable storage engine on Windows, the engine name could be based on the directory name where the engine was located, rather than the configured storage engine name. (Bug #47795)

- **Microsoft Windows:** The **pthread_cond_wait()** implementations for Windows could deadlock in some rare circumstances. (Bug #47768)

- **Microsoft Windows:** On Windows, when an idle named pipe connection was forcibly closed with a **KILL** statement or because the server was being shut down, the thread that was closing the connection would hang infinitely.

  As a result of the work done for this bug, the **net_read_timeout, net_write_timeout, and wait_timeout**, system variables now apply to connections over all transports, not just to TCP/IP. (Bug #47571, Bug #31621)
• **Microsoft Windows:** On Windows, when a failed I/O operation occurred with return code of `ERROR_WORKING_SET_QUOTA`, InnoDB intentionally crashed the server. Now InnoDB sleeps for 100ms and retries the failed operation. (Bug #47055)

• **Microsoft Windows:** When creating a new instance on Windows using `mysqld-nt` and the `--install` parameter, the value of the service would be set incorrectly, resulting in a failure to start the configured service. (Bug #46917)

• **Microsoft Windows:** The `socket` system variable was unavailable on Windows. (Bug #45498)

• **Microsoft Windows:** For the embedded server on Windows, InnoDB crashed when `innodb_file_per_table` was enabled and a table name was in full path format. (Bug #42383)

• **Microsoft Windows:** The `mysql-stress-test.pl` test script was missing from the `noinstall` packages on Windows. (Bug #41546)

• **Microsoft Windows:** When building MySQL on Windows from source, the `WITH_BERKELEY_STORAGE_ENGINE` option would fail to configure `BDB` support correctly. (Bug #27693)

• **Solaris:** Debug builds could not be compiled with the Sun Studio compiler. (Bug #47474)

• **Solaris:** Solaris binary packages now are compiled with `-g0` rather than `-g`. (Bug #47137)

• **Solaris:** InnoDB did not compile on some Solaris systems. (Bug #47058)

• **Solaris:** Configuring MySQL for DTrace support resulted in a build failure on Solaris if the directory for the `dtrace` executable was not in `PATH`. (Bug #45810)

• **API:** The fix for Bug #24507 could lead in some cases to client application failures due to a race condition. Now the server waits for the “dummy” thread to return before exiting, thus making sure that only one thread can initialize the POSIX threads library. (Bug #42850)

  References: This issue is a regression of: Bug #24507.

• Certain `INTERVAL` expressions could cause a crash on 64-bit systems. (Bug #48739)

• Following a literal, the `COLLATE` clause was mishandled such that different results could be produced depending on whether an index was used. (Bug #48447)

• `SUM()` artificially increased the precision of a `DECIMAL` argument, which was truncated when a temporary table was created to hold the results. (Bug #48370)

  References: See also: Bug #45261.

• `GRANT` and `REVOKE` crashed if a user name was specified as `CURRENT_USER()`. (Bug #48319)

• If an outer query was invalid, a subquery might not be set up. `EXPLAIN EXTENDED` did not expect this and caused a crash by trying to dereference improperly set up information. (Bug #48295)

• A query containing a view using temporary tables and multiple tables in the `FROM` clause and `PROCEDURE ANALYSE()` caused a server crash.

  As a result of this bug fix, `PROCEDURE ANALYSE()` is legal only in a top-level `SELECT`. (Bug #48293)

  References: See also: Bug #46184.

• Error handling was missing for `SELECT` statements containing subqueries in the `WHERE` clause and that assigned a `SELECT` result to a user variable. The server could crash as a result. (Bug #48291)

• An assertion could fail if the optimizer used a `SPATIAL` index. (Bug #48258, Bug #47019)
- **InnoDB** mishandled memory-allocation failures in the `os_mem_alloc_large()` function. (Bug #48237)
- `WHERE` clauses with `outer_value_list NOT IN subquery` were handled incorrectly if the outer value list contained multiple items at least one of which could be `NULL`. (Bug #48177)
- Searches using a nondefault collation could return different results for a table depending on whether partitioning was used. (Bug #48161)
- A combination of `GROUP BY WITH ROLLUP, DISTINCT` and the `const` join type in a query caused a server crash when the optimizer used a temporary table to resolve `DISTINCT`. (Bug #48131)
- The subquery optimizer had a memory leak. (Bug #48060)
- In some cases, using a null microsecond part in a `WHERE` condition (for example, `WHERE date_time_field <= 'YYYY-MM-DD hh:mm:ss.0000'`) could lead to incorrect results due to improper `DATETIME` comparison. (Bug #47963)
- A build configured using the `--without-server` option did not compile the yaSSL code, so if `--with-ssl` was also used, the build failed. (Bug #47957)
- When a query used a `DATE` or `DATETIME` value formatted using any separator characters other than hyphen (`'-'`) and a `>=` condition matching only the greatest value in an indexed column, the result was empty if an index range scan was employed. (Bug #47925)
- `mysys/mf_keycache.c` requires threading, but no test was made for thread support. (Bug #47923)
- For debug builds, an assertion could fail during the next statement executed for a temporary table after a multiple-table `UPDATE` involving that table modified an `AUTO_INCREMENT` column with a user-supplied value. (Bug #47919)
- During cleanup of a stored procedure's internal structures, the flag to ignore the errors for `INSERT IGNORE` or `UPDATE IGNORE` was not cleaned up, which could result in a server crash. (Bug #47788)
- If the first argument to `GeomFromWKB()` function was a geometry value, the function just returned its value. However, it failed to preserve the argument's `null_value` flag, which caused an unexpected `NULL` value to be returned to the caller, resulting in a server crash. (Bug #47780)
- **InnoDB** could crash when updating spatial values. (Bug #47777)
- The encoding of values for `SET system_variable = identifier` statements was incorrect, resulting in incorrect error messages. (Bug #47597)
- Queries of the form `SELECT SUM(DISTINCT varchar_key) FROM tbl_name` caused a server crash. (Bug #47421)
- A function call could end without throwing an error or setting the return value. For example, this could happen when an error occurred while calculating the return value. This is fixed by setting the value to `NULL` when an error occurs during evaluation of an expression. (Bug #47412)
- `mysqladmin debug` could crash on 64-bit systems. (Bug #47382)
- A simple `SELECT` with implicit grouping could return many rows rather than a single row if the query was ordered by the aggregated column in the select list. (Bug #47280)
- An assertion could be raised for `CREATE TABLE` if there was a pending `INSERT DELAYED` or `REPLACE DELAYED` for the same table. (Bug #47274)
- **InnoDB** raised errors in some cases in a manner not compatible with `SIGNAL` and `RESIGNAL`. (Bug #47233)
MySQL 5.5 Release Notes

• A multiple-table \texttt{UPDATE} involving a natural join and a mergeable view raised an assertion. (Bug \#47150)

• On FreeBSD, memory mapping for \texttt{MERGE} tables could fail if underlying tables were empty. (Bug \#47139)

• If an \texttt{InnoDB} table was created with the \texttt{AUTO_INCREMENT} table option to specify an initial auto-increment value, and an index was added in a separate operation later, the auto-increment value was lost (subsequent inserts began at 1 rather than the specified value). (Bug \#47125)

• Incorrect handling of predicates involving \texttt{NULL} by the range optimizer could lead to an infinite loop during query execution. (Bug \#47123)

• \texttt{EXPLAIN} caused a server crash for certain valid queries. (Bug \#47106)

• Repair by sort or parallel repair of \texttt{MyISAM} tables might not fail over to repair with key cache. (Bug \#47073)

• The \texttt{mysql_config} script contained a reference to \texttt{@innodb_system_libs@} that was not replaced with the corresponding library flags during the build process and ended up in the output of \texttt{mysql_config --libs}. (Bug \#47007)

• The \texttt{configure} option \texttt{--without-server} did not work. (Bug \#46980)

• \texttt{InnoDB} now ignores negative values supplied by a user for an \texttt{AUTO_INCREMENT} column when calculating the next value to store in the data dictionary. Setting \texttt{AUTO_INCREMENT} columns to negative values is undefined behavior and this change should bring the behavior of \texttt{InnoDB} closer to what users expect. (Bug \#46965)

• Failed multiple-table \texttt{DELETE} statements could raise an assertion. (Bug \#46958)

• When MySQL crashed (or a snapshot was taken that simulates a crash), it was possible that internal XA transactions (used to synchronize the binary log and \texttt{InnoDB}) could be left in a \texttt{PREPARED} state, whereas they should be rolled back. This occurred when the \texttt{server_id} value changed before the restart, because that value was used to construct XID values. Now the restriction is relaxed that the \texttt{server_id} value be consistent for XID values to be considered valid. The rollback phase should then be able to clean up all pending XA transactions. (Bug \#46944)

• The test suite was missing from RPM packages. (Bug \#46834)

• For \texttt{InnoDB} tables, an unnecessary table rebuild for \texttt{ALTER TABLE} could sometimes occur for metadata-only changes. (Bug \#46760)

• The server could crash for queries with the following elements: 1. An “impossible where” in the outermost \texttt{SELECT}; 2. An aggregate in the outermost \texttt{SELECT}; 3. A correlated subquery with a \texttt{WHERE} clause that includes an outer field reference as a top-level \texttt{WHERE} sargable predicate; (Bug \#46749)

• \texttt{InnoDB} did not compile using \texttt{gcc} 4.1 on PowerPC systems. (Bug \#46718)

• If \texttt{InnoDB} reached its limit on the number of concurrent transactions (1023), it wrote a descriptive message to the error log but returned a misleading error message to the client, or an assertion failure occurred. (Bug \#46672)

References: See also: Bug \#18828.

• A Valgrind error during index creation by \texttt{InnoDB} was corrected. (Bug \#46657)

• Concurrent \texttt{INSERT INTO \ldots SELECT} statements for an \texttt{InnoDB} table could cause an \texttt{AUTO_INCREMENT} assertion failure. (Bug \#46650)
• The Serbian locale name 'sr_YU' is obsolete. It is still recognized for backward compatibility, but 'sr_RS' now should be used instead. (Bug #46633)

• On Solaris and HP-UX systems with the environment set to the default C locale, MySQL client programs issued an Unknown OS character set error. (Bug #46619)

• SHOW CREATE TRIGGER for a MERGE table trigger caused an assertion failure. (Bug #46614)

• DIV operations that are out of range generated an error Error (Code 1264): Out of range value (correct), but also an error: Error (Code 1041): Out of memory (incorrect). (Bug #46606)

• If a transaction was rolled back inside InnoDB due to a deadlock or lock wait timeout, and a statement in the transaction had an IGNORE clause, the server could crash at the end of the statement or on shutdown. (Bug #46539)

• TRUNCATE TABLE for a table that was opened with HANDLER did not close the handler and left it in an inconsistent state that could lead to a server crash. Now TRUNCATE TABLE for a table closes all open handlers for the table. (Bug #46456)

• Trailing spaces were not ignored for user-defined collations that mapped spaces to a character other than 0x20. (Bug #46448)

References: See also: Bug #29468.

• The server crashed if a shutdown occurred while a connection was idle. This happened because of a NULL pointer dereference while logging to the error log. (Bug #46267)

• Dropping an InnoDB table that used an unknown collation (created on a different server, for example) caused a server crash. (Bug #46256)

• The GPL and commercial license headers had different sizes, so that error log, backtrace, core dump, and cluster trace file line numbers could be off by one if they were not checked against the version of the source used for the build. (For example, checking a GPL build backtrace against commercial sources.) (Bug #46216)

• A query containing a subquery in the FROM clause and PROCEDURE ANALYSE() caused a server crash. (Bug #46184)

References: See also: Bug #48293.

• After an error such as a table-full condition, INSERT IGNORE could cause an assertion failure for debug builds. (Bug #46075)

• On 64-bit systems, --skip-innodb did not skip InnoDB startup. (Bug #46043)

• InnoDB did not disallow creation of an index with the name GEN_CLUST_INDEX, which is used internally. (Bug #46000)

• CREATE TABLE ... SELECT could cause a server crash if no default database was selected. (Bug #45998)

• An infinite hang and 100% CPU usage occurred after a handler tried to open a merge table.

If the command mysqladmin shutdown was executed during the hang, the debug server generated the following assert:

```
mysqld: table.cc:407: void free_table_share(TABLE_SHARE*): Assertion `share->ref_count == 0' failed.
090610 14:54:04 - mysqld got signal 6 ;
```
MySQL 5.5 Release Notes

(Bug #45781)

• During the build of the Red Hat IA64 MySQL server RPM, the system library link order was incorrect. This made the resulting Red Hat IA64 RPM depend on "libc.so.6.1(GLIBC_PRIVATE)(64bit)", thus preventing installation of the package. (Bug #45706)

• The caseinfo member of the CHARSET_INFO structure was not initialized for user-defined Unicode collations, leading to a server crash. (Bug #45645)

• Appending values to an ENUM or SET definition is a metadata change for which ALTER TABLE need not rebuild the table, but it was being rebuilt anyway. (Bug #45567)

• The combination of MIN() or MAX() in the select list with WHERE and GROUP BY clauses could lead to incorrect results. (Bug #45386)

• Truncation of DECIMAL values could lead to assertion failures; for example, when deducing the type of a table column from a literal DECIMAL value. (Bug #45261)

References: See also: Bug #48370.

• Client flags were incorrectly initialized for the embedded server, causing several tests in the.jp test suite to fail. (Bug #45159)

• Concurrent execution of statements requiring a table-level lock and statements requiring a non-table-level write lock for a table could deadlock. (Bug #45143)

• For settings of lower_case_table_names greater than 0, some queries for INFORMATION_SCHEMA tables left entries with incorrect lettercase in the table definition cache. (Bug #44738)

• mysqld_safe could fail to find the logger program. (Bug #44736)

• Some Perl scripts in AIX packages contained an incorrect path to the perl executable. (Bug #44643)

• With InnoDB, renaming a table column and then creating an index on the renamed column caused a server crash to the .frm file and the InnoDB data directory going out of sync. Now InnoDB 1.0.5 returns an error instead: ERROR 1034 (HY000): Incorrect key file for table 'tbl_name'; try to repair it. To work around the problem, create another table with the same structure and copy the original table to it. (Bug #44571)

• For debug builds, executing a stored procedure as a prepared statement could sometimes cause an assertion failure. (Bug #44521)

• Using mysql_stmt_execute() to call a stored procedure could cause a server crash. (Bug #44495)

• InnoDB did not always disallow creating tables containing columns with names that match the names of internal columns, such as DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR, and DB_MIX_ID. (Bug #44369)

• An InnoDB error message incorrectly referred to the nonexistent innodb_max_files_open variable rather than to innodb_open_files. (Bug #44338)

• SELECT ... WHERE ... IN (NULL, ...) was executed using a full table scan, even if the same query without the NULL used an efficient range scan. (Bug #44139)

References: See also: Bug #18360.

• InnoDB use of SELECT MAX(autoinc_column) could cause a crash when MySQL data dictionaries went out of sync. (Bug #44030)
• **LOAD DATA** statements were written to the binary log in such a way that parsing problems could occur when re-executing the statement from the log. (Bug #43746)

• Selecting from the process list in the embedded server caused a crash. (Bug #43733)

  References: See also: Bug #47304.

• Attempts to enable **large_pages** with a shared memory segment larger than 4GB caused a server crash. (Bug #43606)

• For **ALTER TABLE**, renaming a **DATETIME** or **TIMESTAMP** column unnecessarily caused a table copy operation. (Bug #43508)

• The weekday names for the Romanian **lc_time_names** locale 'ro_RO' were incorrect. Thanks to Andrei Boros for the patch to fix this bug. (Bug #43207)

• **XA START** could cause an assertion failure or server crash when it is called after a unilateral rollback issued by the Resource Manager (both in a regular transaction and after an XA transaction). (Bug #43171)

• Redefining a trigger could cause an assertion failure. (Bug #43054)

• The **FORCE INDEX FOR ORDER BY** index hint was ignored when join buffering was used. (Bug #43029)

• **DROP DATABASE** did not clear the message list. (Bug #43012, Bug #43138)

• The **NUM_FLAG** bit of the **MYSQL_FIELD.flags** member now is set for columns of type **MYSQL_TYPE_NEWDECIMAL**. (Bug #42980)

• Incorrect handling of range predicates combined with **OR** operators could yield incorrect results. (Bug #42846)

• Failure to treat **BIT** values as unsigned could lead to unpredictable results. (Bug #42803)

• **SHOW ERRORS** returned an empty result set after an attempt to drop a nonexistent table. (Bug #42364)

• If the server was started with an option that had a missing or invalid value, a subsequent error that normally would cause the server to shut down could cause it to crash instead. (Bug #42244)

• Some queries with nested outer joins could lead to crashes or incorrect results because an internal data structure was handled improperly. (Bug #42116)

• The server used the wrong lock type (always **TL_READ** instead of **TL_READ_NO_INSERT** when appropriate) for tables used in subqueries of **UPDATE** statements. This led in some cases to replication failure because statements were written in the wrong order to the binary log. (Bug #42108)

• A Valgrind warning in **open_tables()** was corrected. (Bug #41759)

• In a replication scenario with **innodb_locks_unsafe_for_binlog** enabled on the slave, where rows were changed only on the slave (not through replication), in some rare cases, many messages of the following form were written to the slave error log: **InnoDB: Error: unlock row could not find a 4 mode lock on the record**. (Bug #41756)

• After renaming a user, granting that user privileges could result in the user having privileges additional to those granted. (Bug #41597)

• With a nonstandard **InnoDB** page size, some error messages became inaccurate.
Note

Changing the page size is not a supported operation and there is no guarantee that InnoDB will function normally with a page size other than 16KB. Problems compiling or running InnoDB may occur. In particular, `ROW_FORMAT=COMPRESSED` in InnoDB assumes that the page size is at most 16KB and uses 14-bit pointers.

A version of InnoDB built for one page size cannot use data files or log files from a version built for a different page size.

(Bug #41490)

- In some cases, the server did not recognize lettercase differences between `GRANT` attributes such as table name or user name. For example, a user was able to perform operations on a table with privileges of another user with the same user name but in a different lettercase.

In consequence of this bug fix, the collation for the `Routine_name` column of the `mysql.proc` table is changed from `utf8_bin` to `utf8_general_ci`. (Bug #41049)

References: See also: Bug #48872.

- When a storage engine plugin failed to initialize before allocating a slot number, it would accidentally unplug the engine installed in slot 0. (Bug #41013)

- Optimized builds of `mysqld` crashed when built with Sun Studio on SPARC platforms. (Bug #40244)

- `CREATE TABLE` failed if a column name in a `FOREIGN KEY` clause was given in a lettercase different from the corresponding index definition. (Bug #39932)

- The `mysql_stmt_close()` C API function did not flush all pending data associated with the prepared statement. (Bug #39519)

- `INFORMATION_SCHEMA` access optimizations did not work properly in some cases. (Bug #39270)

- `ALTER TABLE` neglected to preserve `ROW_FORMAT` information from the original table, which could cause subsequent `ALTER TABLE` and `OPTIMIZE TABLE` statements to lose the row format for InnoDB tables. (Bug #39200)

- Simultaneous `ANALYZE TABLE` operations for an InnoDB tables could be subject to a race condition. (Bug #38996)

- `mysqlbinlog` option-processing code had a memory leak. (Bug #38468)

- The `ALTER ROUTINE` privilege incorrectly permitted `SHOW CREATE TABLE`. (Bug #38347)

- Setting the `general_log_file` or `slow_query_log_file` system variable to a nonconstant expression caused the variable to become unset. (Bug #38124)

- For certain `SELECT` statements using `ref` access, MySQL estimated an incorrect number of rows, which could lead to inefficient query plans. (Bug #38049)

- A workload consisting of `CREATE TABLE ... SELECT` and DML operations could cause deadlock. (Bug #37433)

- The MySQL client library mishandled `EINPROGRESS` errors for connections in nonblocking mode. This could lead to replication failures on hosts capable of resolving both IPv4 and IPv6 network addresses, when trying to resolve `localhost`. (Bug #37267)
• Previously, InnoDB performed REPLACE INTO T SELECT ... FROM S WHERE ... by setting shared next-key locks on rows from S. Now InnoDB selects rows from S with shared locks or as a consistent read, as for INSERT ... SELECT. This reduces lock contention between sessions. (Bug #37232)

• Some warnings were being reported as errors. (Bug #36777)

• Privileges for SHOW CREATE VIEW were not being checked correctly. (Bug #35996)

• Different invocations of CHECKSUM TABLE could return different results for a table containing columns with spatial data types. (Bug #35570)

• Result set metadata for columns retrieved from INFORMATION_SCHEMA tables did not have the db or org_table members of the MYSQL_FIELD structure set. (Bug #35428)

• SHOW CREATE EVENT output did not include the DEFINER clause. (Bug #35297)

• For its warning count, the mysql_info() C API function could print the number of truncated data items rather than the number of warnings. (Bug #34898)

• Concurrent execution of FLUSH TABLES along with SHOW FUNCTION STATUS or SHOW PROCEDURE STATUS could cause a server crash. (Bug #34895)

• Executing SHOW MASTER LOGS as a prepared statement without binary logging enabled caused a crash for debug builds. (Bug #34741)

• There were spurious warnings about "Truncated incorrect DOUBLE value" in queries with MATCH ... AGAINST and > or < with a constant (which was reported as an incorrect DOUBLE value) in the WHERE condition. (Bug #34374)

• A COMMENT longer than 64 characters caused CREATE PROCEDURE to fail. (Bug #34197)

• mysql_real_connect() did not check whether the MYSQL connection handler was already connected and connected again even if so. Now a CR_ALREADY_CONNECTED error occurs. (Bug #33831)

• INSTALL PLUGIN and UNINSTALL PLUGIN did not handle plugin identifiers consistently with respect to lettercase. (Bug #33731)

• The default values for the general query log and slow query log file are documented to be based on the server host name and located in the data directory. However, they were in fact being based on the basename and location of the process ID (PID) file. The name and location defaults for the PID file are based on the server host name and data directory, so if it was not assigned a different name explicitly, its defaults were used and the general query log and slow query log file defaults were as documented. But if the PID file was assigned a value with the --pid-file option, the defaults for the general query log and slow query log file were incorrect. This has been rectified so that the defaults for all three files are based on the server host name and data directory.

A remaining problem is that the binary log and relay log .NNNNNN and .index basename defaults are based on the PID file basename, contrary to the documentation. This issue is to be addressed as Bug #45359. (Bug #33693)

References: See also: Bug #45359.

• The SHOW FUNCTION CODE and SHOW PROCEDURE CODE statements are not present in nondebug builds, but attempting to use them resulted in a "syntax error" message. Now the error message indicates that the statements are disabled and that you must use a debug build. (Bug #33637)
MySQL 5.5 Release Notes

• The `LAST_DAY()` and `MAKEDATE()` functions could return `NULL`, but the result metadata indicated `NOT NULL`. Thanks to Hiromichi Watari for the patch to fix this bug. (Bug #33629)

• Instance Manager (`mysqlmanager`) has been removed, but a reference to it still appeared in the `mysql.server` script. (Bug #33472)

• There was a race condition between the event scheduler and the server shutdown thread. (Bug #32771)

• When an InnoDB tablespace filled up, an error was logged to the client, but not to the error log. Also, the error message was misleading and did not indicate the real source of the problem. (Bug #31183)

• `ALTER TABLE` statements that added a column and added a nonpartial index on the column failed to add the index. (Bug #31031)

• For `const` tables that were optimized away, `EXPLAIN EXTENDED` displayed them in the `FROM` clause. Now they are not displayed. If all tables are optimized away, `FROM DUAL` is displayed. (Bug #30302)

• There were cases where string-to-number conversions would produce warnings for `CHAR` values but not for `VARCHAR` values. (Bug #28299)

• In `mysql`, using `Control+C` to kill the current query resulted in an ERROR 1053 (08S01): Server shutdown in progress message if the query was waiting for a lock. (Bug #28141)

• The default database is no longer changed to `NULL` ("no database") if `DROP DATABASE` for that database failed. (Bug #26704)

• `DROP TABLE` for `INFORMATION_SCHEMA` tables produced an Unknown table error rather than the more appropriate Access denied. (Bug #24062)

• `SELECT COUNT(DISTINCT)` was slow compared with `SELECT DISTINCT`. Now the server can use Loose Index Scan for certain forms of aggregate functions that use DISTINCT. See Loose Index Scan. (Bug #21849, Bug #38213)

• Referring to a stored function qualified with the name of one database and tables in another database caused a “table doesn't exist” error. (Bug #18444)

• A Table ... doesn't exist error could occur for statements that called a function defined in another database. (Bug #17199)

Index

Symbols

!=, 60
--auto-vertical-output, 152
--base64-output, 88, 189
--binary-as-hex, 4, 7
--bind-address, 152
--binlog-do-db, 189
--binlog-ignore-db, 44, 189
--binlog-format, 152
--database, 44, 135
--debug-sync-timeout, 189
--default-auth, 95, 98
--default-table-type, 189
--defaults-extra-file, 91, 105
--defaults-file, 95, 105
--dump-slave, 44
--enable-cleartext-plugin, 19
--enable-debug-sync, 189
--enable-pstack, 112
--flush-logs, 72
--help, 31, 152
--include-master-host-port, 44
--log-bin, 76, 189
--log-slave-updates, 44, 60
--myisam-recovery, 152
--myisam-recovery-options, 152
--no-beep, 4
--one-database, 99
--plugin-dir, 57, 95, 99
--relay-log, 76
--relay-log-space-limit, 68
--replicate-ignore-table, 57
--replicate-wild-ignore-table, 44
--report-hosts, 152
--report-port, 68
--routines, 72
--safe-mode, 66
--server-id, 89
--single-transaction, 72
--skip-innodb, 89
--slow-start-timeout, 76
--ssl, 16
--ssl-key, 60
--ssl-mode, 9, 16
--ssl-verify-server-cert, 16
--start-position, 72, 88
--thread-handling, 152
--with-libevent, 152
--with-pstack, 112
--write-binlog, 189
--xml, 72
.frn, 40
.par, 40
.par files, 135
64-bit, 60

A
access-denied errors, 189
ADD COLUMN, 183
ADD FOREIGN KEY, 27
ADD INDEX, 135, 152
ADD PARTITION, 123, 189
AFTER INSERT, 152
AFTER UPDATE, 152
aggregate functions, 60, 189
aio, 95, 123, 151
AIX, 189
ALGORITHM, 40
aliases, 152
ALTER DATABASE, 91, 112
ALTER DATABASE ... UPGRADE DATA DIRECTORY NAME, 135
ALTER EVENT, 86, 112
ALTER ROUTINE, 189
ALTER TABLE, 19, 20, 25, 27, 28, 37, 40, 44, 47, 85, 91, 99, 105, 112,
123, 135, 152, 179, 189
ALTER TABLE ... DISABLE KEYS, 189
ANALYZE TABLE, 112, 189
API, 189
apply-slave-statements, 152
ARCHIVE, 30, 53, 63, 71, 76, 78, 105, 152, 183
ARM64, 20
AS, 152
assertion, 37, 47, 57
atomic operations, 123
attribute demotion, 152
attribute promotion, 86, 152
audit_log plugin, 27, 44, 60
authentication, 95, 99, 112
authentication plugins, 95, 99
auto-increment, 31
autocommit, 95, 105, 135, 189
automatic_sp_privileges, 5
autotools, 105
AUTO_INCREMENT, 53, 66, 85, 99, 135, 151, 152, 189

B

B-tree, 25
backticks, 47, 57, 112
BACKUP TABLE, 152
bdb, 189
BEGIN, 67, 189
BETWEEN, 72, 105
BIGINT, 72
BINARY, 135
binary log, 24, 33, 35, 37, 47, 53, 81, 89, 99, 112, 123, 135, 152, 179, 183,
189
bind-address, 105
binlog, 25, 28, 30, 44, 47, 53, 123, 189
BINLOG, 99
Binlog_cache_disk_use, 99
binlog_cache_size, 99
Binlog_cache_use, 99
binlog_cache_use, 99
binlog_direct_non_transactional_updates, 123, 135, 179
binlog_direct_non_trans_update, 123
binlog_format, 44, 112, 123, 135, 152, 189
Binlog_stmt_cache_disk_use, 99
binlog_stmt_cache_size, 99
Binlog_stmt_cache_use, 99
binlong_format, 152
BIN_LOG_HEADER_SIZE, 72
BIT, 152, 179
BIT_AND(), 99
BLACKHOLE, 44
BLOB, 31, 37, 86
boolean mode, 16
buffer pool, 31, 37, 40
buf_page_get_gen, 37
buf_validate, 44
Build, 123
build, 123, 135, 152, 189

C
C API, 7, 9, 14, 16, 19, 30, 35, 47, 72, 95, 123, 152, 189
CACHE INDEX, 189
CALL, 152
Can't find record, 91
cardinality, 189
CASE, 112, 123
CAST(), 152
CHANGE MASTER TO, 76, 105, 135, 152, 189
CHAR, 72, 152, 179, 189
character sets, 12, 15, 18, 20, 24, 27, 30, 31, 33, 40, 89, 91, 105, 123,
135, 152, 183
character_set_connection, 123
charsets, 152, 183
CHECK, 152
CHECK TABLE, 35, 40, 53, 57, 60, 81, 91, 112, 189
CHECKSUM TABLE, 135, 183, 189
cleartext_plugin, 63
client, 72, 152
clients, 23
CLIENT_MULTI_RESULTS, 152
CMake, 9, 40, 57, 86, 99, 105, 112, 123, 135
cmp_dtuple_rec_with_match, 31
COALESCE(), 112
collations, 72, 105, 112, 123, 135, 152, 183, 189
COLUMNS, 183
command-line options, 152
comment, 40
comments, 95, 183
COMMIT, 67, 135
COMMIT AND CHAIN, 135
commit_threads_m, 40
comparison operators, 72
compilation, 91
compiling, 6, 7, 9, 12, 16, 18, 23, 24, 24, 25, 27, 28, 30, 31, 40,
63, 99, 112, 183, 189
completion_type, 135, 152
compressed table, 31
compression, 4
comp_err, 40
COM_BINLOG_DUMP, 72
COM_CHANGE_USER, 35
COM_FIELD_LIST, 135
Com_xxx, 67
CONCAT(), 63, 88
CONCAT_WS(), 179
concurrency, 179
CONCURRENT, 183
concurrent operations, 53
concurrent_insert, 152
condition pushdown, 99
configuration, 6, 9, 28, 31, 33, 35, 44, 47, 57, 72, 81, 85, 88, 95, 99, 105, 123, 135, 151, 189
configure, 123
connections, 81, 152
CONNECTION_ID(), 135
consistency, 30
CONSTRAINT, 152
constraint violation, 20
constraints, 40
CONV(), 35
conversion, 35
conversions, 189
CONVERT_TZ(), 53, 112
corruption, 44
crash recovery, 47
CREATE DATABASE, 112
CREATE EVENT, 86, 135
CREATE INDEX, 19, 152
CREATE TABLE, 7, 9, 20, 23, 25, 40, 47, 89, 112, 123, 152, 189
CREATE TABLE ... IF NOT EXIST, 179
CREATE TABLE ... LIKE, 152, 189
CREATE TABLE ... SELECT, 71, 105, 123, 135, 179, 189
CREATE TABLE LIKE, 37, 135
CREATE USER, 57, 112
CREATE VIEW, 152
CREATE_TIME, 23
cross-version, 179
CSV, 152
current_thd, 24
CURRENT_USER(), 123, 189

D
DATA DIRECTORY, 152, 189
data file size, 31
data types, 47, 135
DATA_DIRECTORY, 135
DATE, 135
DATE(), 72, 81
DATETIME, 99, 135
DAY_MICROSECOND, 152
DDL, 179
debug, 25, 105, 135
debug build, 31, 57
Debug Sync, 9, 189
debuga-sync, 189
DECIMAL, 5, 37, 78, 135, 189
DECODE(), 183
DEFAULT, 189
default database, 44
default storage engine, 35
default_storage_engine, 152
DELETE, 5, 24, 112, 123, 152, 179
deprecation, 25
derived tables, 135
DES_DECRYPT(), 95
DES_ENCRYPT(), 95
dictionary, 22
DICT_FK_MAX_RECURSIVE_LOAD, 44
dict_set_corrupted, 25
dict_update_statistics, 44
DISCARD TABLESPACE, 35
disk full, 53, 57
DISTINCT, 60
DIV, 99, 152, 189
DML, 18, 53, 72, 135, 152, 189
Docker, 6, 7
DOUBLE, 152
DROP DATABASE, 63, 91, 99, 105, 112, 123, 189
DROP FUNCTION, 152
DROP INDEX, 40, 135
DROP TABLE, 40, 53, 123, 135, 152, 189
DROP TEMPORARY TABLE, 37, 99, 135, 189
DROP TRIGGER, 31
DROP USER, 57
DROP VIEW, 152
DTrace, 28, 99, 105, 112, 151, 189
dump thread, 35
dump-slave, 152
duplicate key value, 27

E

e15, 9
e16, 7
embedded, 135
 ENCODE(), 183
encryption, 13, 18, 19, 20, 24, 25
endian, 105
ENGINE, 123
engine_condition_pushdown, 152
ENUM, 47, 105, 152
EOF, 47
Error 1160, 72
error 2006, 72
error 2013, 72
error log, 63, 189
error message, 37, 88, 112
error messages, 189
errors, 4, 5, 12, 14, 16, 31, 35, 37, 40, 44, 47, 57, 63, 76, 85, 91, 95, 99, 105, 123, 135, 152, 179, 183, 189
ER_BINLOG_UNSAFE_STATEMENT, 63
ER_MASTER_FATAL_ERROR_READING_BINLOG, 189
ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE, 112
ER_TRANS_CACHE_FULL, 112
event offsets, 33
event scheduler, 37, 44
Event Scheduler, 135
events, 72, 189
event scheduler, 135
exact search, 35
EXAMPLE, 152
EXECUTE, 152
Exec_master_log_position, 60
expire_logs_days, 183
EXPLAIN, 30, 99, 112, 123, 135, 152, 179, 189
EXPLAIN EXTENDED, 91, 99, 112, 189
EXPLAIN PARTITIONS, 112
explain_filename, 44
external authentication, 81, 112
EXTRACT(), 99
ExtractValue(), 105
F
Falcon, 189
FEDERATED, 14, 16, 24, 24, 33, 60, 72, 78, 80, 99
Fedora 12, 179, 183
FILE_PAGE_WAS_FREED, 53
FIND_IN_SET(), 91
FLOAT, 152
flush, 6
FLUSH, 112, 152
flush list mutex, 151
FLUSH LOGS, 152, 179, 189
flush method, 22
FLUSH TABLES, 189
FOREIGN KEY, 40
foreign key constraint, 37
foreign keys, 16, 22, 23, 28, 40, 47, 112, 135, 152, 189
foreign_key_checks, 40
format description, 189
FORMAT(), 123, 189
formatting, 7
FreeBSD, 86, 95, 99, 152, 189
full-text, 44, 123, 152, 183
full-text search, 16, 189
function, 25
functions, 183
G
GCC, 20
I/O thread, 123
IBMDB2I, 105
icc, 135
identifiers, 47, 57, 179
IF EXISTS, 37
IF(), 44, 123
implicit commit, 72
Important Change, 40, 44, 57, 63, 66, 67, 68, 71, 76, 77, 81, 91, 95, 99, 112, 123, 135, 152, 179, 183, 189
Important Note, 47
IN(), 123
include-master-host-port, 152
Incompatible Change, 12, 13, 15, 47, 57, 72, 78, 81, 86, 95, 99, 105, 112, 123, 135, 152, 179, 183, 189
index, 35, 40, 72, 152, 189
INDEX_DIRECTORY, 152, 189
index files, 76
index key, 57
index merge, 88
index page, 40
index record, 20
INDEX_DIRECTORY, 135
index_merge, 33
index_next, 35
index_read_map, 35
infinite loop, 37
INFORMATION_SCHEMA, 23, 24, 30, 99, 105, 112, 123, 135, 152, 179, 189
INFORMATION_SCHEMA.PARTITIONS, 23, 37
INFORMATION_SCHEMA.TABLES, 23, 152
init_command, 72
innobase_rollback, 40
InnoDB, 5, 6, 9, 12, 16, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 33, 35, 37, 40, 44, 47, 53, 57, 60, 63, 66, 67, 68, 71, 72, 76, 77, 78, 80, 81, 85, 86, 88, 89, 95, 99, 105, 112, 123, 135, 151, 152, 179, 183, 189
InnoDB Plugin, 68, 135, 183, 189
innodb_change_buffering, 135
innodb_fast_shutdown, 40
innodb_file_format, 112
innodb_file_format_check, 123, 135, 183
innodb_file_format_max, 135
innodb_file_per_table, 112
innodb_force_recovery, 179
innodb_limit_optimistic_insert_debug, 25
innodb_lock_wait_timeout, 179
innodb_log_buffer_size, 44
innodb_row_lock_current_waits, 44
innodb_row_lock_time_max, 44
innodb_stats_on_metadata, 37
innodb_strict_mode, 25
innodb_use_native_aio, 95, 151
INSERT, 5, 31, 37, 44, 66, 152, 189
INSERT ... SELECT, 71, 189
insert buffer, 20
insert buffer merge, 40
INSERT DELAYED, 99, 112, 152
INSERT IGNORE, 95
INSERT ON DUPLICATE KEY UPDATE, 67, 91, 95
insert operations, 57
INSERT SELECT, 152, 179
INSERT_ID, 53
insert_id, 135
INSTALL PLUGIN, 15, 123, 189
installing, 5, 7, 9, 12, 15, 19, 22, 24, 25, 27, 31, 33, 40, 44, 47, 78, 80, 81, 86, 91, 95, 99, 123, 135, 152
Instance Manager, 189
internationalization, 112
INTO, 152
invalid page type, 40
invalid pointer, 40
IPv6, 152, 189
IS NULL, 95
isolation level, 37
IS_FREE_LOCK(), 25
IS_USED_LOCK(), 25
Item::print, 85

J

java.sql.Connection.setSavepoint(), 112
joins, 135
K

KEY, 60
key_buffer_size, 152
KILL, 35, 112, 123

L

large_files, 123
large_pages, 123
LAST_DAY(), 189
LAST_INSERT_ID, 35
LAST_INSERT_ID(), 57, 66
Last_IO_Error, 189
libedit, 78, 88
libmysqldclient version, 95
libmysqld, 67, 86, 112, 123, 152, 189
licensing, 91
LIKE, 47, 63, 95, 99, 183
LIMIT, 60, 63, 152
LIST, 6
LIST COLUMNS, 28, 135, 189
LOAD DATA, 28, 40, 85, 86, 88, 95, 112, 123, 135, 152, 179, 183, 189
LOAD DATA ... SET, 35
LOAD INDEX INTO CACHE, 76, 189
LOAD TABLE FROM MASTER, 152
LOAD XML, 7, 20, 135, 183, 189
LOAD_FILE(), 135
locale, 123, 189
LOCK TABLES, 112, 123, 152
locking, 5, 24, 25, 28, 31, 37, 53, 57, 63, 71, 77, 78, 81, 85, 91, 99, 105, 112, 123, 135, 152, 179, 183, 189
LOCK_ORDINARY, 44
lock_rec_block_validate, 44
LOCK_REC_NOT_GAP, 44
lock_rec_restore_from_page_infimum, 40
lock_rec_validate_page, 44
log buf mutex, 151
log buffer, 35
log events, 105
log rotation, 47
log sys mutex, 151
log-slave-updates, 37
logfile groups, 189
logging, 12, 14, 16, 24, 27, 31, 105, 112, 123, 135, 152, 179, 183, 189
log_bin_trust_function_creators, 152
log_bin_trust_routine_creators, 152
log_event.h, 40
log_warnings, 33
LOWER(), 152
lower_case_table_names, 20, 81, 89, 105, 112, 189
LPAD(), 27

M

mac os x, 123
MAKEDATE(), 189  
MAKETIME(), 152  
make_win_bin_dist, 80  
malloc-lib, 189  
Maria, 152  
master.info, 189  
MASTER_HEARTBEAT_PERIOD, 152  
MASTER_LOG_FILE, 189  
MASTER_PASSWORD, 76  
MASTER_USER, 76  
math, 152  
MAX(), 89, 123, 183  
max_allowed_packet, 63, 89, 91, 99, 123, 189  
max_binlog_cache_size, 60, 99, 112, 152  
max_binlog_stmt_cache_size, 60, 99  
max_connections, 47  
max_connect_errors, 57  
max_long_data_size, 91  
max_sort_length, 123  
MAX_USER_CONNECTIONS, 63  
MD5(), 179  
MDEV-6615, 20  
MEMORY, 4, 53, 80  
memory, 31  
memory access violation, 27  
memory leak, 40  
memset, 30  
MEM_HEAP_CREATE_BLOCK, 44  
merge, 40  
MERGE, 81, 112, 135, 152, 189  
metadata, 123, 152, 179, 189  
Microsoft Windows, 6, 9, 18, 20, 25, 33, 47, 53, 60, 67, 72, 76, 86, 89, 91, 105, 112, 123, 135, 152, 183, 189  
MIN(), 89, 99, 123, 183  
MIXED, 152  
mixed format, 123  
mixed statements, 123  
MOD, 27  
MODIFY, 19  
MSI, 47, 135  
multiple PK columns, 28  
mutex, 40  
mutex deadlock, 16  
MyISAM, 5, 19, 35, 152, 179, 189  
myisamchk, 72  
myisampack, 80, 152  
myisam mmap size, 183  
myisam recover options, 135  
myisam repair threads, 135  
myisam sort buffer size, 71, 135  
myisam use mmap, 6, 78  
myisam use mmap TABLE, 135  
mysql, 105, 152  
mysql client, 57
MySQL 5.5 Release Notes

mysql-systemd-start, 22
mysql-test-run.pl, 152, 179, 189
mysql.plugin, 91
mysql.server, 183
mysql.tables_priv, 105
mysql.user, 91
mysqlaccess, 7
mysqladmin, 20, 28, 95, 105, 152, 189
mysqlbinlog, 14, 25, 33, 44, 53, 60, 63, 72, 88, 89, 99, 105, 135, 152, 189
mysqlbinlog --verbose, 189
mysqlcheck, 91, 105, 112
mysql, 44, 123, 189
mysql.q.err, 33
mysqldump, 5, 7, 9, 28, 37, 40, 44, 47, 53, 63, 66, 72, 91, 95, 105, 112, 135, 152, 189
mysqld_multi, 16, 152
mysqld_safe, 9, 12, 14, 53, 57, 72, 80, 123, 135, 152, 189
mysqld_safe.pid, 9
mysqlhotcopy, 60, 152
mysqlimport, 20, 105
mysqlshow, 105
mysqslap, 22, 67, 89, 99
mysqltest, 152
mysql_affected_rows(), 81
mysql_change_user(), 105
mysql_config, 31, 189
mysql_fix_privilege_tables, 135
MYSQL_GROUP_SUFFIX, 6
mysql_info(), 189
mysql_install_db, 31, 33, 44, 47, 57, 80, 152
mysql_library_end(), 123
mysql_library_init(), 112, 123
mysql_list_fields(), 85
mysql_load_plugin(), 91
mysql_options, 135
mysql_options(), 9, 16, 35
mysql_plugin, 19, 33, 78, 81
mysql_real_connect(), 189
mysql_secure_installation, 9, 123, 135
mysql_setpermission, 25
mysql_stmt_close(), 7, 189
mysql_stmt_errno(), 7, 123
mysql_stmt_error(), 7
mysql_stmt_execute(), 67, 112, 189
mysql_stmt_next_result(), 152
mysql_stmt_prepare(), 152
mysql_stmt_send_long_data(), 91, 123
mysql_stmt_sqlstate(), 7
mysql_store_result(), 67, 112
mysql_upgrade, 19, 40, 44, 77, 89, 91, 105, 123, 135, 183, 189
mysql_use_result(), 67, 112
my_charset_filename, 40
m_ordered_rec_buffer, 60

220
NAME_CONST(), 7, 15, 105
NDB Replication, 152, 183
net_buffer_length, 89
net_read_timeout, 189
net_write_timeout, 189
NOT NULL, 189
NOW(), 99
NO_AUTO_VALUE_ON_ZERO, 99
NO_BACKSLASH_ESCAPES, 68
NO_DIR_ON_CREATE, 135
NO_ENGINE_SUBSTITUTION, 189
NULL, 6, 53, 89, 135, 189
ON DUPLICATE KEY UPDATE, 105
ONLY_FULL_GROUP_BY, 183
OpenBSD, 95
OpenSSL, 22, 47, 63
openssl, 135
open_files_limit, 189
optimization, 99, 179
OPTIMIZE, 53
OPTIMIZE TABLE, 78, 99, 105, 123, 135, 152, 189
optimizer, 6, 7, 9, 12, 14, 18, 19, 22, 23, 24, 27, 28, 31, 33, 35, 37, 40, 44, 47, 53, 57, 60, 63, 66, 68, 72, 76, 77, 80, 81, 86, 88, 91, 95, 99, 105, 112, 123, 135, 152, 179, 183, 189
optimizer_switch, 95, 152
option files, 189
option processing, 152
options, 5, 9, 20, 44, 85, 95, 99, 189
ORDER BY, 6, 183
OS X, 72, 81, 99, 112, 189
OUTER JOIN, 95
overflow, 44
O_DIRECT, 22
packaging, 4, 6, 7, 7, 9, 12, 13, 16, 18, 20, 23, 27, 30, 35, 37, 40, 44, 47, 57, 60, 68, 71, 91, 105, 112, 135
Packaging, 6
PACK_KEYS, 112
PAGE_FREE, 57
page_zip_available, 44
page_zip_decompress, 40
page_zip_validate, 40
PARAMETERS table, 152
parent table, 28
parser, 4, 7, 16, 22, 28, 31, 44, 91, 95, 99, 135, 183, 189
partition, 19
PARTITION BY KEY, 60
PARTITION BY KEY ALGORITHM, 47
PARTITION BY LIST, 37
PARTITION BY RANGE, 47
partition pruning, 47, 60
Partitioning, 6, 20, 23, 28, 33, 35, 37, 40, 47, 53, 60, 63, 68, 85, 88, 91, 99, 105, 112, 123, 135, 152, 179, 183, 189
Performance, 19, 40, 47, 53, 57, 66, 68, 72, 76, 78, 80, 81, 85, 99, 105, 112, 123, 135, 151, 152, 179, 183, 189
performance, 31, 77, 112, 123
Perl, 189
perror, 85, 152
pluggable authentication, 23, 77, 80, 81, 88, 95, 105, 112
plugin API, 81
plugins, 5, 9, 19, 27, 37, 44, 60, 72, 77, 81, 86, 88, 99, 112, 123, 135, 152, 179, 189
plugin_dir, 135
PolyFromWBK(), 112
Port, 68
POSIX, 189
PowerPC, 189
precision, 152
PREPARE, 152
prepared statements, 6, 14, 16, 18, 19, 35, 44, 47, 89, 112, 183
prepare_commit_mutex, 40
PRIMARY KEY, 60, 66, 105
primary keys, 67, 77
priority queue, 33
privileges, 5, 5, 9, 16, 19, 20, 23, 25, 28, 31, 35, 47, 57, 105, 135, 152, 179, 183, 189
procedure, 25
PROCEDURE ANALYSE(), 20, 88, 91, 189
proxies_priv, 105, 112
PROXY, 95
proxy users, 112
pruning, 40, 179
pseudo-slave mode, 53
pstack, 112
pthreads, 189
purge, 37
PURGE BINARY LOGS, 28
PURGE MASTER LOGS, 183
push_warning_printf, 24

Q
query cache, 53, 63, 68, 112, 135, 183, 189
query performance, 40
query_alloc_block_size, 19
query_cache_min_res_unit, 20
quotation mark, 28
QUOTE(), 9

R
RAND(), 66, 179
MySQL 5.5 Release Notes

range, 40, 135
RANGE COLUMNS, 189
RBR, 28, 37, 44, 47, 63, 77, 112, 152, 183, 189
READ COMMITTED, 20, 27
readline, 152
read_buffer_size, 189
read_only, 7, 105
REBUILD PARTITION, 35, 53
record format, 19
records_in_range, 179
recovery, 24, 27, 44
redo log, 35
REGEXP, 22
regular expressions, 22
relay log, 105, 179, 189
RELAY_LOG_FILE, 189
RENAME TABLE, 33, 47, 53, 112, 135
REORGANIZE PARTITION, 179
REPAIR TABLE, 53, 57, 60, 81, 112, 123, 135
REPEATEABLE_READ, 123
REPLACE, 5, 16
REPLACE ... SELECT, 71
REPLACE INTO, 20
replace utility, 25
Replication, 5, 7, 7, 14, 15, 16, 16, 18, 24, 24, 25, 28, 30, 31, 33, 35, 37, 40, 44, 47, 53, 57, 60, 63, 66, 67, 68, 71, 72, 76, 77, 78, 80, 81, 85, 86, 88, 89, 91, 95, 99, 105, 112, 123, 135, 152, 179, 183, 189
REPLICATION CLIENT, 66
replication filters, 35
reservation, 23
RESET, 152
RESET MASTER, 152
RESET SLAVE, 81, 152
RESIGNAL, 189
resource usage, 60
restarts, 24, 72
RESTORE TABLE, 152
REVOKE, 112, 135, 189
rollback, 22, 37, 105, 152
ROLLBACK, 135
ROLLBACK AND CHAIN, 135
ROLLUP, 123, 152, 183, 189
ROUTINES table, 152
ROW, 123, 189
row event corruption, 33
row format, 16
row-based, 179
ROW_COUNT(), 135
row_upd_changes_ord_field_binary, 31
RPAD(), 27, 63
Rpl_recovery_rank, 152
rpl_recovery_rank, 152
rpl_semi_sync_master_enabled, 35
rpl_semi_sync_master_wait_no_slave, 35
safemalloc, 123
SAVEPOINT, 135
savepoints, 112
SBR, 44, 66, 71, 85, 135, 152
scope, 25, 135
secondary index, 40
Seconds_Behind_Master, 189
secure_file_priv, 13, 135
Security Enhancement, 152
Security Fix, 67, 68, 71, 95, 99, 105, 112, 123, 135, 152, 179, 189
SEC_TO_TIME(), 152
SELECT, 60, 68, 152
SELECT ... INTO OUTFILE, 135
semaphore wait, 44
semisynchronous, 28, 44, 135, 152, 179
server ID, 33
SERVER_QUERY_WAS_SLOW, 105
SET, 47, 60, 105, 152
SET PASSWORD, 112, 123
SET TRANSACTION ISOLATION LEVEL, 135
SET type, 44
SHA1(), 179
SHA2(), 135
SHOW, 135
SHOW AUTHORS, 57
SHOW BINARY LOGS, 66, 152
SHOW BINLOG EVENTS, 66, 123, 183, 189
SHOW COLUMN TYPES, 189
SHOW COLUMNS, 47, 135, 189
SHOW CONTRIBUTORS, 57
SHOW CREATE EVENT, 189
SHOW CREATE TABLE, 47, 135, 152, 183, 189
SHOW CREATE TRIGGER, 189
SHOW CREATE VIEW, 152, 189
SHOW ENGINE INNODB_MUTEX, 152
SHOW ENGINE INNODB STATUS, 23, 33, 35, 152, 183
SHOW ENGINE PERFORMANCE_SCHEMA STATUS, 123
SHOW ENGINES, 123
SHOW ERRORS, 152
SHOW EVENTS, 89
SHOW FUNCTION CODE, 189
SHOW FUNCTION STATUS, 189
SHOW INDEX, 37, 189
SHOW INNODB STATUS, 152
SHOW MASTER LOGS, 66
SHOW MUTEX STATUS, 152
SHOW NEW MASTER, 91
SHOW OPEN TABLES, 189
SHOW PRIVILEGES, 95
SHOW PROCEDURE CODE, 189
SHOW PROCEDURE STATUS, 189
SHOW PROCESSLIST, 28, 105
SHOW PROFILE, 57, 95, 152
SHOW RELAYLOG EVENTS, 189
SHOW SLAVE HOSTS, 68, 152
SHOW SLAVE STATUS, 60, 189
SHOW STATUS, 91, 123, 189
SHOW TABLE STATUS, 152
SHOW TABLE TYPES, 152
SHOW TABLES, 66
SHOW VARIABLES, 47, 152
SHOW WARNINGS, 91, 135, 152
shutdown, 23, 189
shutdown hang, 40
signal, 23
SIGNAL, 189
skip-thread-priority, 152
skip_name_resolve, 135
slave error, 24
slave options, 47
slave reconnection, 44
slave.cc, 189
Slave_IO_running, 189
slave_max_allowed_packet, 44, 63
slave_net_timeout, 152, 189
Slave_received_heartbeats, 152
Slave_running, 189
slave_type_conversions, 152
SLEEP(), 105, 123, 152
slow query log, 152, 189
slow_query_log, 66
slow_query_log_file, 189
socket, 189
Solaris, 9, 31, 44, 99, 105, 112, 123, 179, 183, 189
solaris 8, 123
sorting, 33
SQL functions, 189
SQL mode, 183
SQL thread, 123
sql_auto_is_null, 152
sql_buffer_result, 179
SQL_CACHE, 152
sql_log_bin, 25, 135
sql_mode, 135, 189
SQL_NO_CACHE, 152
sql_safe_updates, 152
sql_select_limit, 123
sql_slave_skip_counter, 152
srv_master_thread, 37
SSL, 5, 16, 16, 20, 24, 27, 60, 86, 189
Ssl_cipher_list, 91
stack size, 9
Table 'mysql.proxies_priv' doesn't exist, 113
Table ... doesn't exist, 135
table corruption, 152
table map events, 81
table name, 20
tablespace, 40, 44
tablespaces, 189
Table_locks_waited, 179
table_type, 152
tcmalloc, 16, 189
temporary files, 152
temporary tables, 15, 19, 25, 105, 123, 135, 152, 179, 183
test suite, 16, 24, 63, 189
TEXT, 152, 189
THD::clear_current_stmt_binlog_format_row(), 152
THD::current_stmt_binlog_row_based, 152
THD::is_current_stmt_binlog_format_row(), 152
THD::set_current_stmt_binlog_format_row(), 152
thread cache, 57
thread concurrency, 40
thread locking, 28
thread pool plugin, 5, 9, 37, 40, 47, 53, 60, 81
thread stack overflow, 44
Threads_connected, 152
Threads_created, 152
thread_concurrency, 27, 35, 123
thread_pool_high_priority_connection, 44
tIME, 135, 152
timed_mutexes, 28
TIMESTAMP, 99, 135, 183
TO_DAYS(), 47
TO_SECONDS(), 183, 189
tracing, 112
TRADITIONAL, 135, 189
transaction isolation level, 189
transaction log, 35
transactions, 31, 99, 105, 112, 123, 135, 152, 179, 189
transaction_prealloc_size, 24
triggers, 72, 88, 105, 135, 152, 183, 189
TRUNCATE, 183
TRUNCATE PARTITION, 99, 123, 189
TRUNCATE TABLE, 30, 135, 152, 189
type conversion, 152
type conversions, 53, 152
types, 95, 183

U
UBSAN, 9
UCS-2, 152
ucs2, 123, 152
ULN, 53
UMASK, 57
undo log, 6
Unicode, 152
UNINSTALL PLUGIN, 123, 135, 189
uninstall plugin, 135
UNION, 5, 30, 47, 53, 99
UNIQUE INDEX LOCK, 44
UNIQUE KEY, 135
unique keys, 67
unique secondary index, 27
UNIV_DEBUG, 44
UNIV_SYNC_DEBUG, 44
UNIX_TIMESTAMP(), 85, 183
unsafe statements, 71, 123, 152
unsigned_flag, 135
UPDATE, 89, 91, 112, 152, 179
updates, 189
UpdateXML(), 53, 105
UPDATE_TIME, 23
upgrades, 24, 112
upgrades and downgrades, 47
UPPER(), 152
USE, 57, 99
user variables, 44, 47, 66, 123, 135, 152
user-defined functions, 152
user-defined variables, 57
UTF-16, 152
UTF-32, 152
UTF-8, 152
utf16, 152
utf32, 152
UTF8, 5
utf8, 152, 183
utf8mb4, 152

V
Valgrind, 18, 19, 40, 44, 47, 53, 72, 80, 88, 89, 95, 99, 105, 112, 123, 135, 152, 183, 189
VALUES IN (NULL), 37
VALUES(), 47
VARCHAR, 19, 189
variables, 40, 99
views, 20, 28, 47, 89, 135, 152, 183
Visual C++ Redistributable, 9
VPATH, 152

W
wait_timeout, 189
warnings, 31, 63, 123, 152
WEEK, 99
WHERE, 40
whitespace, 7
WITH CHECK OPTION, 152
WITH CONSISTENT SNAPSHOT, 37
WITH_SSL, 9

X
XA, 86, 112, 189
XA COMMIT, 88
XA PREPARE, 23
XA transactions, 68, 88
XML, 9, 91, 95

Y
yaSSL, 7, 13, 18, 20, 24, 25, 27, 48, 53, 63, 71, 179
YEAR, 63, 135, 183

Z
zip_mutex, 31
zlib, 4, 89