MySQL AI User Guide
          To learn more about model metadata in the model catalog, see
          Model
          Metadata. The model metadata includes
          onnx_inputs_info and
          onnx_outputs_info.
        
              onnx_inputs_info includes
              data_types_map. See
              Model
              Metadata for the default value.
            
              onnx_outputs_info includes
              predictions_name,
              prediction_probabilities_name, and
              labels_map.
            
            Use the data_types_map to map the data
            type of each column to an ONNX model data type. For example,
            to convert inputs of the type
            tensor(float) to
            float64:
          
data_types_map = {"tensor(float)": "float64"}
            AutoML first checks the user
            data_types_map, and then the default
            data_types_map to check if the data type
            exists. AutoML supports the following numpy data types:
          
Table 4.1 Supported numpy data types
str_ | 
                unicode_ | 
                int8 | 
                int16 | 
                int32 | 
                int64 | 
                int_ | 
                uint16 | 
              
uint32 | 
                uint64 | 
                byte | 
                ubyte | 
                short | 
                ushort | 
                intc | 
                uintc | 
              
uint | 
                longlong | 
                ulonglong | 
                intp | 
                uintp | 
                float16 | 
                float32 | 
                float64 | 
              
half | 
                single | 
                longfloat | 
                double | 
                longdouble | 
                bool_ | 
                datetime64 | 
                complex_ | 
              
complex64 | 
                complex128 | 
                complex256 | 
                csingle | 
                cdouble | 
                clongdouble | 
                
The use of any other numpy data type causes an error.
            Use predictions_name to determine which
            of the ONNX model outputs is associated with predictions.
            Use prediction_probabilities_name to
            determine which of the ONNX model outputs is associated with
            prediction probabilities. Use use a
            labels_map to map prediction
            probabilities to predictions, known as labels.
          
For regression tasks:
                If the ONNX model generates only one output, then
                predictions_name is optional.
              
                If the ONNX model generates more than one output, then
                predictions_name is required.
              
                Do not provide
                prediction_probabilities_name as this
                causes an error.
              
For classification tasks:
                Use predictions_name,
                prediction_probabilities_name, or
                both. Failure to provide at least one causes an error.
              
                The model explainers SHAP, Fast SHAP, and Partial
                Dependence require
                prediction_probabilities_name.
              
            Only use a labels_map with classification
            tasks. A labels_map requires
            predictions_probabilities_name. The use
            of a labels_map with any other task, or
            with predictions_name or without
            predictions_probabilities_name causes an
            error.
          
            If the task is NULL, do not provide
            predictions_name or
            prediction_probabilities_name as this
            causes an error.
          
            An example of a
            predictions_probabilities_name with a
            labels_map produces these labels:
          
predictions_probabilities_name = array([[0.35, 0.50, 0.15], [0.10, 0.20, 0.70], [0.90, 0.05, 0.05], [0.55, 0.05, 0.40]], dtype=float32)labels_map = {0:'Iris-virginica', 1:'Iris-versicolor', 2:'Iris-setosa'}labels=['Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-virginica']
AutoML adds a note for ONNX models that have inputs with four dimensions about the reshaping of data to a suitable shape for an ONNX model. This would typically be for ONNX models that are trained on image data.
            An example of this note added to the
            ml_results column:
          
mysql>CALL sys.ML_PREDICT_TABLE('mlcorpus_v5.mnist_test_temp', @model, 'mlcorpus_v5.`mnist_predictions`', NULL);Query OK, 0 rows affected (20.6296 sec) mysql>SELECT ml_results FROM mnist_predictions;;+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ml_results | +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | {'predictions': {'prediction': 7}, 'Notes': 'Input data is reshaped into (1, 28, 28).', 'probabilities': {0: -552.7100219726562, 1: 138.27000427246094, 2: 2178.510009765625, 3: 2319.860107421875, 4: -3466.5400390625, 5: -1778.3499755859375, 6: -6441.83984375, 7: 8062.9599609375, 8: -1860.2099609375, 9: 1034.239990234375}} | +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Review The Model Catalog.