Abstract

This is the User's Guide for the MySQL Enterprise Backup product, the successor to the InnoDB Hot Backup product. This manual describes the procedures to back up and restore MySQL databases. It covers techniques for minimizing time and storage overhead during backups, and to keep the database available during backup operations. It illustrates the features and syntax of the `mysqlbackup` command, for example, how to back up selected databases or tables, how to back up only the changes since a previous backup, and how to transfer the backup data efficiently to a different server.

The 3.6 release contains major new features and changes to command syntax. If you were a user of MySQL Enterprise Backup 3.5, see Appendix B, Compatibility Information for MySQL Enterprise Backup Releases and InnoDB Hot Backup and Section D.2, “Changes in MySQL Enterprise Backup 3.6.0 (2011-07-01)” for information about the changes.

For legal information, see the Legal Notices.

Document generated on: 2014-10-13 (revision: 5163)
Table of Contents

Preface and Legal Notice ... ix
I Getting Started with MySQL Enterprise Backup 1
 1 Introduction to MySQL Enterprise Backup 5
 1.1 Types of Backups ... 5
 1.2 The `mysqlbackup` Command 6
 1.3 Making Backups Faster and Smaller 6
 1.4 Files that Are Backed Up 7
 1.5 Overview of Restoring a Database 12
 2 Installing MySQL Enterprise Backup 13
II Using MySQL Enterprise Backup .. 15
 3 Backing Up a Database Server ... 19
 3.1 Before the First Backup ... 19
 3.1.1 Collect Database Information 19
 3.1.2 Grant MySQL Privileges to Backup Administrator 20
 3.1.3 Designate a Location for Backup Data 21
 3.2 The Typical Backup / Verify / Restore Cycle 21
 3.2.1 Backing Up an Entire MySQL Instance 22
 3.2.2 Verifying a Backup .. 23
 3.2.3 Restoring a Database at its Original Location 23
 3.3 Backup Scenarios and Examples 24
 3.3.1 Making a Full Backup 24
 3.3.2 Making an Incremental Backup 25
 3.3.3 Making a Compressed Backup 27
 3.3.4 Making a Partial Backup 28
 3.3.5 Making a Single-File Backup 31
 3.3.6 Backing Up In-Memory Database Data 34
 4 `mysqlbackup` Command Reference 37
 4.1 `mysqlbackup` Command-Line Options 39
 4.1.1 Subcommands ... 39
 4.1.2 Standard Options ... 42
 4.1.3 Connection Options ... 43
 4.1.4 Server Repository Options 44
 4.1.5 Backup Repository Options 44
 4.1.6 Metadata Options .. 45
 4.1.7 Compression Options ... 45
 4.1.8 Incremental Backup Options 46
 4.1.9 Partial Backup Options .. 46
 4.1.10 Single-File Backup Options 48
 4.1.11 Capacity Options .. 49
 4.1.12 Options for Special Backup Types 50
 4.2 Configuration Files and Parameters 51
 4.2.1 Source Repository Parameters 52
 4.2.2 Backup Repository Parameters 53
 4.2.3 Other Parameters ... 56
 5 Recovering or Restoring a Database 59
 5.1 Preparing the Backup to be Restored 59
 5.2 Performing a Restore Operation 60
 5.3 Point-in-Time Recovery from a Hot Backup 61
 5.4 Setting Up a New Replication Slave 61
 5.5 Restoring a Master Database in Replication 62
 5.6 Restoring a Single `.ibd` File 63
List of Tables

1.1 Files in a MySQL Enterprise Backup Output Directory ... 7
3.1 Information Needed to Back Up a Database ... 19
6.1 OS Errors for Linux and other Unix-Like Systems .. 66
6.2 OS Errors for Windows Systems .. 66
B.1 New and Changed mysqlbackup Options in MySQL Enterprise Backup 3.6 78
List of Examples

3.1 Making an Uncompressed Backup of InnoDB Tables ... 29
3.2 Making an Uncompressed Partial Backup of InnoDB Tables 29
3.3 Making a Compressed Partial Backup ... 30
3.4 Single-File Backup to Absolute Path .. 31
3.5 Single-File Backup to Relative Path ... 31
3.6 Single-File Backup to Standard Output ... 31
3.7 Convert Existing Backup Directory to Single Image ... 31
3.8 Extract Existing Image to Backup Directory ... 32
3.9 List Single-File Backup Contents ... 32
3.10 Extract Single-File Backup into Current Directory .. 32
3.11 Extract Single-File Backup into a Backup Directory .. 32
3.12 Selective Extract of Single File .. 32
3.13 Selective Extract of Single Directory .. 32
3.14 Dealing with Absolute Path Names .. 33
3.15 Single-File Backup to a Remote Host .. 33
3.16 Sample mysqlbackup Commands Using MySQL Enterprise Backup with Oracle Secure Backup ... 34
4.1 Simple Backup with Connection Parameters from Default Configuration File 40
4.2 Basic Incremental Backup ... 40
4.3 Apply Log to Full Backup ... 41
4.4 Incremental Backup ... 46
4.5 Example backup-my.cnf file ... 51
5.1 Applying the Log to a Backup .. 60
5.2 Applying the Log to a Compressed Backup .. 60
5.3 Applying an Incremental Backup to a Full Backup ... 60
5.4 Shutting Down and Restoring a Database ... 60
5.5 Steps to Back Up on MySQL 5.1 and Restore on MySQL 5.5 64
B.1 Simple Backup Emulating libbackup Behavior .. 80
Preface and Legal Notice

This is the User Manual for the MySQL Enterprise Backup product.

For license information, see the Legal Notice. This product may contain third-party code. For license information on third-party code, see Appendix E, Licenses for Third-Party Components.

Legal Notices

Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products, see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation Library.
Part I Getting Started with MySQL Enterprise Backup
Table of Contents

1 Introduction to MySQL Enterprise Backup ... 5
 1.1 Types of Backups .. 5
 1.2 The `mysqlbackup` Command ... 6
 1.3 Making Backups Faster and Smaller ... 6
 1.4 Files that Are Backed Up ... 7
 1.5 Overview of Restoring a Database ... 12
2 Installing MySQL Enterprise Backup ... 13
Chapter 1 Introduction to MySQL Enterprise Backup

Table of Contents

1.1 Types of Backups ... 5
1.2 The mysqlbackup Command ... 6
1.3 Making Backups Faster and Smaller .. 6
1.4 Files that Are Backed Up .. 7
1.5 Overview of Restoring a Database ... 12

The MySQL Enterprise Backup product performs backup operations for MySQL data. It can back up all kinds of MySQL tables. It has special optimizations for fast and convenient backups of InnoDB tables. Because of the speed of InnoDB backups, and the reliability and scalability features of InnoDB tables, we recommend that you use InnoDB tables for your most important data.

This book describes the best practices regarding MySQL backups and documents how to use MySQL Enterprise Backup features to implement these practices. This book teaches you:

• Why backups are important.
• The files that make up a MySQL database and the roles they play.
• How to keep the database running during a backup.
• How to minimize the time, CPU overhead, and storage overhead for a backup job. Often, minimizing one of these aspects increases another.
• How to restore your data when disaster strikes. You learn how to verify backups and practice recovery, so that you can stay calm and confident under pressure.
• Other ways to use backup data for day-to-day administration and in deploying new servers.

1.1 Types of Backups

The various kinds of backup techniques are classified on a scale ranging from hot (the most desirable) to cold (the most disruptive). Your goal is to keep the database system, and associated applications and web sites, operating and responsive while the backup is in progress.

Hot backups are performed while the database is running. This type of backup does not block normal database operations. It captures even changes that occur while the backup is happening. For these reasons, hot backups are desirable when your database “grows up”: when the data is large enough that the backup takes significant time, and when your data is important enough to your business so that you must capture every last change, without taking your application, web site, or web service offline.

MySQL Enterprise Backup does a hot backup of all InnoDB tables. MyISAM and other non-InnoDB tables are backed up last, using the warm backup technique: the database continues to run, but the system is in a read-only state during that phase of the backup.

You can also perform cold backups while the database is stopped. To avoid service disruption, you would typically perform such a backup from a replication slave, which can be stopped without taking down the entire application or web site.
Points to Remember

To back up as much data as possible during the hot backup phase, you can designate InnoDB as the default storage engine for new tables, or convert existing tables to use the InnoDB storage engine. (In MySQL 5.5 and higher, InnoDB is now the default storage engine for new tables.)

During hot and warm backups, information about the structure of the database is retrieved automatically through a database connection. For a cold backup, you must specify file locations through configuration files or command-line options.

1.2 The `mysqlbackup` Command

When using the MySQL Enterprise Backup product, you primarily work with the `mysqlbackup` command. Based on the options you specify, this command performs all the different types of backup operations, and restore operations too. `mysqlbackup` can do other things that you would otherwise code into your own backup scripts, such as creating a timestamped subdirectory for each backup, compressing the backup data, and packing the backup data into a single file for easy transfer to another server.

For usage information about `mysqlbackup` features, see Chapter 3, *Backing Up a Database Server*. For option syntax, see Chapter 4, `mysqlbackup` Command Reference.

1.3 Making Backups Faster and Smaller

In your backup strategy, performance and storage space are key aspects. You want the backup to complete quickly, with little CPU overhead on the database server. You also want the backup data to be compact, so you can keep multiple backups on hand to restore at a moment's notice. Transferring the backup data to a different system should be quick and convenient. All of these aspects are controlled by options of the `mysqlbackup` command.

Sometimes you must balance the different kinds of overhead -- CPU cycles, storage space, and network traffic. Always be aware how much time it takes to restore the data during planned maintenance or when disaster strikes. For example, here are factors to consider for some of the key MySQL Enterprise Backup features:

- **Incremental backups** are faster than full backups, save storage space on the database server, and save on network traffic to transfer the backup data on a different server. Incremental backup requires additional processing to make the backup ready to restore, which you can perform on a different system to minimize CPU overhead on the database server.

- **Compressed backups** save on storage space for InnoDB tables, and network traffic to transfer the backup data on a different server. They do impose more CPU overhead than uncompressed backups. During restore, you need the compressed and uncompressed data at the same time, so take into account this additional storage space and the time to uncompress the data.

 In addition to compressing data within InnoDB tables, compressed backups also skip unused space within InnoDB tablespace files. Uncompressed backups include this unused space.

- **When space is limited, or you have a storage device such as tape that is cheap, large, but also slow, the performance and space considerations are different.** Rather than aiming for the fastest possible backup, you want to avoid storing an intermediate copy of the backup data on the database server. MySQL Enterprise Backup can produce a single-file backup and stream that file directly to the other server or device. Since the backup data is never saved to the local system, you avoid the space overhead on the database server. You also avoid the performance overhead of saving a set of backup files and then bundling them into an archive for transport to another server or storage device. For details, see Section 3.3.5.1, “Streaming the Backup Data to Another Device or Server”.
When streaming backup data to tape, you typically do not compress the backup, because the CPU overhead on the database server to do the compression is more expensive than the additional storage space on the tape device. When streaming backup data to another server, you might compress on the original server or the destination server depending on which server has more spare CPU capacity and how much network traffic the compression could save. Or, you might leave the backup data uncompressed on the destination server so that it is ready to be restored on short notice.

For disaster recovery, when speed to restore the data is critical, you might prefer to have critical backup data already prepared and uncompressed, so that the restore operation involves as few steps as possible.

It is during a disaster recovery that speed is most critical. For example, although a logical backup performed with the `mysqldump` command might take about the same time as a physical backup with the MySQL Enterprise Backup product (at least for a small database), the MySQL Enterprise Backup restore operation is typically faster. Copying the actual data files back to the data directory skips the overhead of inserting rows and updating indexes that comes from replaying the SQL statements from `mysqldump` output.

To minimize any impact on server performance on Linux and Unix systems, MySQL Enterprise Backup writes the backup data without storing it in the operating system's disk cache, by using the `posix_fadvise()` system call. This technique minimizes any slowdown following the backup operation, by preserving the data blocks in the disk cache rather than filling up the cache with the output from the backup.

1.4 Files that Are Backed Up

DBA and development work typically involves logical structures such as tables, rows, columns, the data dictionary, and so on. For backups, you must understand the physical details of how these structures are represented by files.

<table>
<thead>
<tr>
<th>File Name, Pattern, or Extension</th>
<th>Relation to Original Data Files</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ibdata*</code></td>
<td>The InnoDB system tablespace, containing multiple InnoDB tables and associated indexes.</td>
<td>Because the original files might change while the backup is in progress, the apply-log step applies the same changes to the corresponding backup files.</td>
</tr>
<tr>
<td><code>*.ibd</code></td>
<td>InnoDB file-per-table tablespaces, each containing a single InnoDB table and associated indexes.</td>
<td>Used for tables created under the <code>innodb_file_per_table</code>. Because the original files might change while the backup is in progress, the apply-log step applies the same changes to the corresponding backup files.</td>
</tr>
<tr>
<td><code>*.ibz</code></td>
<td>Compressed form of InnoDB data files from the MySQL data directory.</td>
<td>Produced instead of <code>.ibd</code> files in a compressed backup. The <code>ibdata*</code> files representing the InnoDB system tablespace also receive this extension in a compressed backup. The <code>.ibz</code> files are uncompressed for the apply-log step.</td>
</tr>
</tbody>
</table>
Files that Are Backed Up

<table>
<thead>
<tr>
<th>File Name, Pattern, or Extension</th>
<th>Relation to Original Data Files</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>*.frm</td>
<td>Hold metadata about all MySQL tables.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.MYD</td>
<td>MyISAM table data.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.MYI</td>
<td>MyISAM index data.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.CSM</td>
<td>Metadata for CSV tables.</td>
<td>These files are copied without changes. The <code>backup_history</code> and <code>backup_progress</code> tables created by <code>mysqlbackup</code> use the CSV format, so the backup always includes some files with this extension.</td>
</tr>
<tr>
<td>*.CSV</td>
<td>Data for CSV tables.</td>
<td>These files are copied without changes. The <code>backup_history</code> and <code>backup_progress</code> tables created by <code>mysqlbackup</code> use the CSV format, so the backup always includes some files with this extension.</td>
</tr>
<tr>
<td>*.MRG</td>
<td>MERGE storage engine references to other tables.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.TRG</td>
<td>Trigger parameters.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.TRN</td>
<td>Trigger namespace information.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.opt</td>
<td>Database configuration information.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.par</td>
<td>Definitions for partitioned tables.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>*.ARM</td>
<td>Archive storage engine metadata.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td>File Name, Pattern, or Extension</td>
<td>Relation to Original Data Files</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>copied. These files are copied without changes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>*.ARZ</code></td>
<td>Archive storage engine data.</td>
<td>The database is put into a read-only state while these files are copied. These files are copied without changes.</td>
</tr>
<tr>
<td><code>backup-my.cnf</code></td>
<td>Records the configuration parameters that specify the layout of the MySQL data files.</td>
<td>Used in restore operations to reproduce the same layout as when the backup was taken.</td>
</tr>
<tr>
<td><code>ibbackup_logfile</code></td>
<td>A condensed version of the <code>ib_logfile*</code> files from the MySQL data directory.</td>
<td>The InnoDB log files (<code>ib_logfile*</code>) are fixed-size files that are continuously updated during database operation. For backup purposes, only the changes that are committed while the backup is in progress are needed. These changes are recorded in <code>ibbackup_logfile</code>, and used to re-create the <code>ib_logfile*</code> files during the apply-log phase.</td>
</tr>
<tr>
<td><code>ib_logfile*</code></td>
<td>Created in the backup directory during the apply-log phase after the initial backup.</td>
<td>These files are not copied from the original data directory, but rather re-created in the backup directory during the apply-log phase after the initial backup, using the changes recorded in the <code>ibbackup_logfile</code> file.</td>
</tr>
<tr>
<td>Timestamped directory, such as 2011-05-26_13-42-02</td>
<td>Created by the <code>--with-timestamp</code> option. All the backup files go inside this subdirectory.</td>
<td>Use the <code>--with-timestamp</code> option whenever you intend to keep more than one set of backup data available under the same main backup directory.</td>
</tr>
<tr>
<td><code>datadir directory</code></td>
<td>A subdirectory that stores all the data files and database subdirectories from the original MySQL instance.</td>
<td>Created under the backup directory by the <code>mysqlbackup</code> command.</td>
</tr>
<tr>
<td><code>image file</code></td>
<td>A single-file backup produced by the <code>backup-to-image</code> option, with a name specified by the <code>--backup-image</code> option.</td>
<td>If your backup data directory consists only of zero-byte files, with a single giant data file in the top-level directory, you have a single-file backup. You can move the image file without losing or damaging the contents inside it, then unpack it with the <code>mysqlbackup</code> command using the <code>extract</code> option and specifying the same image name with the <code>--backup-image</code> option.</td>
</tr>
</tbody>
</table>
Files that Are Backed Up

<table>
<thead>
<tr>
<th>File Name, Pattern, or Extension</th>
<th>Relation to Original Data Files</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>any other files</td>
<td>Copied from the MySQL data directory.</td>
<td>By default, any unrecognized files in the MySQL data directory are copied to the backup. To omit such files, specify the <code>--only-known-file-types</code> option.</td>
</tr>
<tr>
<td>meta directory</td>
<td>A subdirectory that stores files with metadata about the backup.</td>
<td>Created under the backup directory by the <code>mysqlbackup</code> command. All files listed below go inside the <code>meta</code> subdirectory.</td>
</tr>
<tr>
<td>backup_variables.txt</td>
<td>Holds important information about the backup. For use by the <code>mysqlbackup</code> command only. Prior to MySQL Enterprise Backup 3.6, this information was in a file named <code>ibbackup_binlog_info</code>.</td>
<td>The <code>mysqlbackup</code> command consults and possibly updates this file during operations after the initial backup, such as the apply-log phase or the restore phase.</td>
</tr>
<tr>
<td>image_files.xml</td>
<td>Contains the list of all the files (except itself) that are present in the single-file backup produced by the <code>backup-to-image</code> or <code>backup-dir-to-image</code> options. For details about this file, see Section 6.5, “Using the MySQL Enterprise Backup Manifest”.</td>
<td>This file is not modified at any stage once generated.</td>
</tr>
<tr>
<td>backup_create.xml</td>
<td>Lists the command line arguments and environment in which the backup was created. For details about this file, see Section 6.5, “Using the MySQL Enterprise Backup Manifest”.</td>
<td>This file is not modified once it is created. You can prevent this file from being generated by specifying the <code>--disable-manifest</code> option.</td>
</tr>
<tr>
<td>backup_content.xml</td>
<td>Essential metadata for the files and database definitions of the backup data. For details about this file, see Section 6.5, “Using the MySQL Enterprise Backup Manifest”.</td>
<td>This file is not modified once created. You can prevent this file from being generated by specifying the <code>--disable-manifest</code> option.</td>
</tr>
<tr>
<td>comments.txt</td>
<td>Produced by the <code>--comments</code> or <code>--comments-file</code> option.</td>
<td>The comments are specified by you to document the purpose or special considerations for this backup job.</td>
</tr>
</tbody>
</table>
InnoDB Data

Data managed by the InnoDB storage engine is always backed up. The primary InnoDB-related data files that are backed up include the ibdata* files that represent the system tablespace and possibly the data for some user tables; any .ibd files, containing data from user tables created with the file-per-table setting enabled; data extracted from the ib_logfile* files (the redo log information representing changes that occur while the backup is running), which is stored in a new backup file ibbackup_logfile.

If you use the compressed backup feature, the .ibd files are renamed in their compressed form to .ibz files.

The files, as they are originally copied, form a raw backup that requires further processing before it is ready to be restored. You then run the apply step, which updates the backup files based on the changes recorded in the ibbackup_logfile file, producing a prepared backup. At this point, the backup data corresponds to a single point in time. The files are now ready to be restored to their original location, or for some other use, such as testing, reporting, or deployment as a replication slave.

To restore InnoDB tables to their original state, you must also have the corresponding .frm files along with the backup data. Otherwise, the table definitions could be missing or outdated, if someone has run ALTER TABLE or DROP TABLE statements since the backup. The mysqlbackup command automatically copies the .frm files back and forth during backup and restore operations.

Data from MyISAM and Other Storage Engines

The mysqlbackup command can also back up the .MYD files, .MYI files, and associated .frm files for MyISAM tables. The same applies to files with other extensions, as shown in this list.

MyISAM tables and these other types of files cannot be backed up in the same non-blocking way as InnoDB tables can. This phase is a warm backup: changes to these tables are prevented while they are being backed up, possibly making the database unresponsive for a time, but no shutdown is required during the backup.

Note

To avoid concurrency issues during backups of busy databases, you can use the --only-innodb option to back up only InnoDB tables and associated data.

Generated Files Included in the Backup

The backup data includes some new files that are produced during the backup process. These files are used to control later tasks such as verifying and restoring the backup data. The files generated during the backup process include:

- backup-my.cnf: Records the crucial configuration parameters that apply to the backup. These parameter values are used during a restore operation, so that the original values are used regardless of changes to your my.cnf file in the meantime.
- meta/backup_create.xml: Lists the command line arguments and environment in which the backup was created.
- meta/backup_content.xml: Essential metadata for the files and database definitions of the backup data.

For details about all the files in the backup directory, see Table 1.1, “Files in a MySQL Enterprise Backup Output Directory”.
Single-File Backups

Depending on your workflow, you might perform a single-file backup rather than the typical backup that produces a separate file for every file in the original instance. The single-file format is easier to transfer to a different system, compress and uncompress, and ensure that no backed-up files are deleted later by mistake. It is just as fast as a multi-file backup to do a full restore; restoring individual files can be slower than in a multi-file backup. For instructions, see Section 3.3.5, “Making a Single-File Backup”.

1.5 Overview of Restoring a Database

To initiate the restore process, you run the `mysqlbackup` command with the `copy-back` subcommand. The MySQL server must be shut down during the restore process. You can restore all the data for a MySQL server -- multiple databases, each containing multiple tables. Or, you can restore selected databases, tables, or both.

To repair a problem such as data corruption, you restore the data back to its original location on the original server machine. You might restore to a different server machine or a different location to set up a new replication slave with the data from a master server, or to clone a database for reporting purposes.

See Chapter 5, Recovering or Restoring a Database for instructions on restore techniques.
Chapter 2 Installing MySQL Enterprise Backup

Install the MySQL Enterprise Backup product on each database server whose contents you intend to back up. You can also install the MySQL Enterprise Backup product on a computer that is used for storing backup data rather than as a database server. You can still perform the apply-log process to bring the backup data up-to-date, after performing the initial backup on a database server, then moving the raw backup data to a different system.

The MySQL Enterprise Backup product is packaged as either an archive file (.tgz, archived with tar and compressed with gzip), or as a platform-specific installer that is more automated and convenient than with the former InnoDB Hot Backup product.

Installing on Unix and Linux Systems

For all Linux and Unix systems, the product is available as a .tgz file. Unpack this file as follows:

```
tar xvzf package.tgz
```

The mysqlbackup command is unpacked into a subdirectory. You can either copy them into a system directory (preserving their execute permission bits), or add to your $PATH setting the directory where you unpacked it.

For certain Linux distributions, the product is also available as an RPM archive. When you install the RPM, using the command `sudo rpm -i package_name.rpm`, the mysqlbackup command is installed in the directory /opt/mysql/meb-3.6. You must add this directory to your $PATH setting.

Installing on Windows Systems

Specify the installation location, preferably relative to the directory where the MySQL Server product is installed.

Choose the option to add this directory to the windows %PATH% setting, so that you can run the mysqlbackup command from a command prompt.

Verify the installation by selecting the menu item Start > Programs > MySQL Enterprise Backup 3.6 > MySQL Enterprise Backup Command Line. This menu item opens a command prompt and runs the mysqlbackup command to display its help message showing the option syntax.

mysqlbackup Syntax Changes in MySQL Enterprise Backup 3.6

In MySQL Enterprise Backup 3.6 and higher, the mysqlbackup command takes over the functions formerly performed by the ibbackup and innobackup commands. As a result, option syntax has changed, and you might need to modify backup scripts to use the new options and remove references to the ibbackup command. The new options enable more features and flexibility, and are more consistent with the options used by the mysqld client. For the latest syntax information, see Chapter 4, *mysqlbackup Command Reference*. For differences between mysqlbackup syntax and ibbackup/innobackup syntax, see Section B.5, “New and Changed Options in MySQL Enterprise Backup 3.6”. For how to use the former ibbackup and innobackup commands during a transition period, see Section B.7, “ibbackup and innobackup Commands”.
Part II Using MySQL Enterprise Backup
Table of Contents

3 Backing Up a Database Server ... 19
 3.1 Before the First Backup .. 19
 3.1.1 Collect Database Information .. 19
 3.1.2 Grant MySQL Privileges to Backup Administrator 20
 3.1.3 Designate a Location for Backup Data ... 21
 3.2 The Typical Backup / Verify / Restore Cycle 21
 3.2.1 Backing Up an Entire MySQL Instance .. 22
 3.2.2 Verifying a Backup ... 23
 3.2.3 Restoring a Database at its Original Location 23
 3.3 Backup Scenarios and Examples ... 24
 3.3.1 Making a Full Backup .. 24
 3.3.2 Making an Incremental Backup ... 25
 3.3.3 Making a Compressed Backup ... 27
 3.3.4 Making a Partial Backup ... 28
 3.3.5 Making a Single-File Backup ... 31
 3.3.6 Backing Up In-Memory Database Data .. 34
 3.4 Verifying the Backup .. 39
 3.5 Restoring a Database .. 40
 3.5.1 Restoring a Database at its Original Location 41
 3.5.2 Using the MySQL Enterprise Backup Logs 43
 3.6 Using the MySQL Enterprise Backup Manifest 44

4 mysqlbackup Command Reference .. 37
 4.1 mysqlbackup Command-Line Options ... 39
 4.1.1 Subcommands .. 39
 4.1.2 Standard Options ... 42
 4.1.3 Connection Options ... 43
 4.1.4 Server Repository Options .. 44
 4.1.5 Backup Repository Options ... 44
 4.1.6 Metadata Options .. 45
 4.1.7 Compression Options .. 45
 4.1.8 Incremental Backup Options .. 46
 4.1.9 Partial Backup Options ... 46
 4.1.10 Single-File Backup Options ... 48
 4.1.11 Capacity Options ... 49
 4.1.12 Options for Special Backup Types ... 50
 4.2 Configuration Files and Parameters .. 51
 4.2.1 Source Repository Parameters ... 52
 4.2.2 Backup Repository Parameters ... 53
 4.2.3 Other Parameters ... 56

5 Recovering or Restoring a Database ... 59
 5.1 Preparing the Backup to be Restored ... 59
 5.2 Performing a Restore Operation .. 60
 5.3 Point-in-Time Recovery from a Hot Backup .. 61
 5.4 Setting Up a New Replication Slave .. 61
 5.5 Restoring a Master Database in Replication .. 62
 5.6 Restoring a Single .ibd File .. 63
 5.7 Restoring a Backup to a Different Database Version 64

6 Troubleshooting for MySQL Enterprise Backup 65
 6.1 Monitoring Backups with MySQL Enterprise Monitor 65
 6.2 Error codes of MySQL Enterprise Backup .. 65
 6.3 Working Around Corruption Problems ... 67
 6.4 Using the MySQL Enterprise Backup Logs .. 68
 6.5 Using the MySQL Enterprise Backup Manifest 70
Chapter 3 Backing Up a Database Server

Table of Contents

3.1 Before the First Backup ... 19
 3.1.1 Collect Database Information .. 19
 3.1.2 Grant MySQL Privileges to Backup Administrator .. 20
 3.1.3 Designate a Location for Backup Data ... 21
3.2 The Typical Backup / Verify / Restore Cycle ... 21
 3.2.1 Backing Up an Entire MySQL Instance ... 22
 3.2.2 Verifying a Backup .. 23
 3.2.3 Restoring a Database at its Original Location ... 23
3.3 Backup Scenarios and Examples ... 24
 3.3.1 Making a Full Backup ... 24
 3.3.2 Making an Incremental Backup ... 25
 3.3.3 Making a Compressed Backup ... 27
 3.3.4 Making a Partial Backup ... 28
 3.3.5 Making a Single-File Backup .. 31
 3.3.6 Backing Up In-Memory Database Data .. 34

This section describes the different kinds of backups that MySQL Enterprise Backup can create and
the techniques for producing them, with examples showing the relevant syntax for the mysqlbackup
command. It also includes a full syntax reference for the mysqlbackup command.

3.1 Before the First Backup

The best practices for backups involve planning and strategies. This section outlines some of the
preparation needed to put such plans and strategies in place.

3.1.1 Collect Database Information

Before backing up a particular database server for the first time, gather some information and decide on
some directory names, as outlined in the following table.

Table 3.1 Information Needed to Back Up a Database

<table>
<thead>
<tr>
<th>Information to Gather</th>
<th>Where to Find It</th>
<th>How Used</th>
</tr>
</thead>
</table>
| Path to MySQL config. | Default locations, | This is the preferred way to
<p>| file | hardcoded locations, or from --defaults-file option in mysql startup script. | convey database configuration |
| | | information to the mysqlbackup |
| | | command, using the -- |
| | | defaults-file option. When |
| | | connection and data layout |
| | | information is available from the |
| | | configuration file, you can skip |
| | | most of the other choices listed |
| | | below. |
| MySQL port | MySQL config. fil | Used to connect to the database |
| | e or mysql start | instance during backup |
| | script. | operations. Specified via the -- |
| | | port option of mysqlbackup. -- |
| | | port is not needed if available. |</p>
<table>
<thead>
<tr>
<th>Information to Gather</th>
<th>Where to Find It</th>
<th>How Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path to MySQL data directory</td>
<td>MySQL configuration file or mysqld startup script.</td>
<td>Used to retrieve files from the database instance during backup operations, and to copy files back to the database instance during restore operations. Automatically retrieved from database connection for hot and warm backups. Taken from MySQL configuration file for cold backups.</td>
</tr>
<tr>
<td>ID and password of privileged MySQL user</td>
<td>You record this during installation of your own databases, or get it from the DBA when backing up databases you do not own. Not needed when doing an offline (cold) backup, which works directly on the files using OS-level file permissions. For cold backups, you log in as an administrative user.</td>
<td>Specified via the --password option of the mysqlbackup. Prompted from the terminal if the --password option is present without the password argument.</td>
</tr>
<tr>
<td>Path under which to store backup data</td>
<td>You choose this. See Section 3.1.3, "Designate a Location for Backup Data" for details.</td>
<td>By default, this directory must be empty for mysqlbackup to write data into it, to avoid overwriting old backups or mixing up data from different backups. Use the --with-timestamp option to automatically create a subdirectory with a unique name, when storing multiple sets of backup data under the same main directory.</td>
</tr>
<tr>
<td>Owner and permission information for backed-up files (for Linux, Unix, and OS X systems)</td>
<td>In the MySQL data directory</td>
<td>If you do the backup using a different OS user ID or a different umask setting than applies to the original files, you might need to run commands such as chown and chmod on the backup data. See Section A.1, “Limitations of mysqlbackup Command” for details.</td>
</tr>
</tbody>
</table>

3.1.2 Grant MySQL Privileges to Backup Administrator

For most backup operations, the mysqlbackup command connects to the MySQL server through --user and --password options. This user requires certain privileges. You can either create a new user with a minimal set of privileges, or use an administrative account such as the root user.
The minimum privileges for the MySQL user that `mysqlbackup` connects are:

- **RELOAD** on all databases and tables.
- **CREATE**, **INSERT**, and **DROP** on the tables `mysql.ibbackup_binlog_marker`, `mysql.backup_progress`, and `mysql.backup_history`, and also **SELECT** on `mysql.backup_history`.
- **SUPER**, used to optimize locking and minimize disruption to database processing. This privilege is only needed to back up MySQL 5.5 and higher servers.
- **CREATE TEMPORARY TABLES** for the `mysql` database. This privilege is only needed to back up MySQL 5.5 and higher servers.
- **REPLICATION CLIENT**, to retrieve the binlog position, which is stored with the backup.

To set these privileges for a MySQL user (`dba` in this example) connecting from localhost, issue statements like the following from the `mysql` client program:

```bash
$ mysql -u root
mysql> GRANT RELOAD ON *.* TO 'dba'@'localhost';
mymysql> GRANT CREATE, INSERT, DROP ON mysql.ibbackup_binlog_marker TO 'dba'@'localhost';
mymysql> GRANT CREATE, INSERT, DROP ON mysql.backup_progress TO 'dba'@'localhost';
mymysql> GRANT CREATE, INSERT, SELECT, DROP ON mysql.backup_history TO 'dba'@'localhost';
mymysql> GRANT REPLICATION CLIENT ON *.* TO 'dba'@'localhost';
mymysql> GRANT SUPER ON *.* TO 'dba'@'localhost';
mymysql> GRANT CREATE TEMPORARY TABLES ON mysql.* TO 'dba'@'localhost';
mymysql> FLUSH PRIVILEGES;
```

3.1.3 Designate a Location for Backup Data

All backup-related operations either create new files or reference existing files underneath a specified directory that holds backup data. Choose this directory in advance, on a file system with sufficient storage. (It could even be remotely mounted from a different server.) You specify the path to this directory with the `--backup-dir` option for many invocations of the `mysqlbackup` command.

Once you establish a regular backup schedule with automated jobs, it is preferable to keep each backup within a timestamped subdirectory underneath the main backup directory. To make the `mysqlbackup` command create these subdirectories automatically, specify the `--with-timestamp` option each time you run `mysqlbackup`.

For one-time backup operations, for example when cloning a database to set up a replication slave, you might specify a new directory each time, or specify the `--force` option of `mysqlbackup` to overwrite older backup files.

3.2 The Typical Backup / Verify / Restore Cycle

To illustrate the basic steps in making and using a backup, the following examples show how to do a full backup, examine the data files in the backup directory, and then restore the backup to correct an issue with corruption or lost data.
3.2.1 Backing Up an Entire MySQL Instance

In this example, we specify all required options on the command line for illustration purposes. After testing and standardizing the backup procedure, we could move some options to the MySQL configuration file. The options specify connection information for the database and the location to store the backup data. The final option `backup` specifies the type of operation, because `mysqlbackup` can perform several kinds of backup, restore, and pack/unpack operations.

For this example, we specify the final option as `backup-and-apply-log`. This option performs an extra stage after the initial backup, to bring all InnoDB tables up-to-date with any changes that occurred during the backup operation, so that the backup is immediately ready to be restored. For backups of huge or busy databases, you might split up these stages to minimize load on the database server. That is, run `mysqlbackup` first with the `backup` option, transfer the backup to another server, then run `mysqlbackup` with the `apply-log` option to perform the final processing.

The output echoes all the parameters used by the backup operation, including several that are retrieved automatically using the database connection. The unique ID for this backup job is recorded in special tables that `mysqlbackup` creates inside the instance, allowing you to monitor long-running backups and view the results of previous backups. The final output section repeats the location of the backup data, and LSN values that you might use when you graduate from doing full backups to incremental backups.

```bash
$ mysqlbackup --port=13000 --protocol=tcp --user=root --password \
    --backup-dir=/home/admin/backups backup-and-apply-log
MySQL Enterprise Backup version 3.6.0 [2011/06/22]
Copyright (c) 2003, 2011, Oracle and/or its affiliates. All Rights Reserved.
INFO: Starting with following command line ...
mysqlbackup --port=13000 --protocol=tcp --user=root --password 
    --backup-dir=/home/admin/backups
    backup

...informational messages...
--------------------------------------------------------------------
Server Repository Options:
--------------------------------------------------------------------
datadir                          =  /home/mysql/data/
innodb_data_home_dir             =  /home/mysql/data
innodb_data_file_path            =  ibdata1:20M;ibdata2:20M:autoextend
innodb_log_group_home_dir        =  /home/mysql/data
innodb_log_files_in_group        =  4
innodb_log_file_size             =  20971520
--------------------------------------------------------------------
Backup Config Options:
--------------------------------------------------------------------
datadir                          =  /home/admin/backups/datadir
innodb_data_home_dir             =  /home/admin/backups/datadir
innodb_data_file_path            =  ibdata1:20M;ibdata2:20M:autoextend
innodb_log_group_home_dir        =  /home/admin/backups/datadir
innodb_log_files_in_group        =  4
innodb_log_file_size             =  20971520
mysqlbackup: INFO: Unique generated backup id for this is 13071379168342780
...output showing backup progress...
110604 0:51:59 mysqlbackup: INFO: Full backup completed!
mysqlbackup: INFO: Backup created in directory '/home/admin/backups'
--------------------------------------------------------------------
Parameters Summary
--------------------------------------------------------------------
```
Start LSN : 36864
End LSN : 50335

mysqlbackup completed OK!

Now the backup subdirectory is created under the backup-dir we specified. The directory name for each new backup is formed from the date and the clock time when the backup run was started, in the local time zone. The backup directory contains the backed-up ibdata files and ibbackup_logfile. Each subdirectory corresponds to a MySQL database, and contains copies of .frm, .MYD, .MYI, and similar files. For an example of the layout of such a backup directory, see Section C.1, "Sample Directory Structure for Full Backup".

3.2.2 Verifying a Backup

To verify the backup, restore the backup data on a different server and run the MySQL daemon (mysqld) on the new data directory. Then you can execute SHOW statements to verify the database and table structure, and execute queries to verify the number of rows, latest updates, and so on.

This is the same general technique to use when you intend to put the backup data to some other use. For example, you might set up a replication slave by making a backup of the master server, or turn a backup into a new MySQL instance for running report queries.

Note

Always do verification against restored data, rather than running mysqld with datadir pointing to the backup directory. The SQL statements you use to verify the data change the underlying logical sequence number, which would interfere with using the backup directory for subsequent incremental backups.

If you did the backup with the backup-and-apply-log option as in the previous example, the backup data is fully consistent and ready to verify. If you only ran the first stage by using the backup option, run mysqlbackup a second time with the apply-log option before doing this verification. (Typically, you run this second phase on the other server after transferring the backup data there, to minimize the load on the original database server.)

See Chapter 5, Recovering or Restoring a Database for the procedure to restore the database files on a different server.

Running the mysqld daemon on the restored data requires a valid configuration file, which you specify with the --defaults-file option of the mysqld command. You can reuse most of the settings from the original my.cnf file, combined with the backup-my.cnf in the backup directory, which contains only the small subset of parameters required by mysqlbackup. Create a new configuration file by concatenating those two files into a new one, and use that configuration file on the server where you do the verification. Edit the resulting file to make sure the datadir parameter points to the right location on the verification server. Edit the values for port, socket, and so on if you need to use different connection settings on the verification server.

3.2.3 Restoring a Database at its Original Location

To restore a MySQL instance from a backup:

• Shut down the database server using your usual technique, such as the mysqladmin shutdown command.

• Make sure the backup data is fully consistent, by either using the backup-and-apply-log option to perform the backup, or running mysqlbackup with the apply-log option after the initial backup.
• Use the `mysqlbackup` command with the `copy-back` option. This operation copies tables, indexes, metadata, and any other required files back to their original locations as defined by the original MySQL configuration file.

• If the MySQL data directory already contains files (damaged or out of date, so that you need to replace them), also specify the `--force` option to enable overwriting.

```bash
$ mysqlbackup --defaults-file=path_to_my.cnf \
   --datadir=path_to_data_directory \
   --innodb_log_files_in_group=N \
   --innodb_log_file_size=N \
   --backup-dir=path_to_backup_directory copy-back
...many lines of output...
mysqlbackup: Finished copying backup files.
```

Now the original database directory is restored from the backup, and you can restart the database server.

3.3 Backup Scenarios and Examples

All of the following tasks and examples make use of the `mysqlbackup` command. For detailed syntax information, see Chapter 4, `mysqlbackup Command Reference`.

3.3.1 Making a Full Backup

Most backup strategies start with a complete backup of the MySQL server, from which you can restore all databases and tables. After you do one full backup, you might do incremental backups (which are smaller and faster) for the next several backup jobs. Periodically, you then do another full backup to begin the cycle again.

This section outlines some of the considerations for making this most basic kind of backup. Because a full backup can take longer and produce larger backup files then other kinds of backups, your decisions about speed, capacity, and convenience are especially important for this part of the backup strategy.

For examples showing the commands to make a full backup, see Section 3.2.1, “Backing Up an Entire MySQL Instance”.

Options on Command Line or in Configuration File?

For clarity, the examples in this manual typically show command-line options to demonstrate connection parameters and other information that might be the same for each backup job. For convenience and consistency, you can include these options in the `[mysqlbackup]` section of the MySQL configuration file that you pass to the `mysqlbackup` command; `mysqlbackup` also picks them up from the `[mysqld]` section if they are present. For example, relying on the port information in the configuration file avoids the need to edit your backup scripts if the database instance switches to a different port.

Output in Single Directory or Timestamped Subdirectories?

For convenience, the `--with-timestamp` option creates uniquely named subdirectories under the backup directory, to hold the output from each backup job. This option is not the default, only for backward compatibility for users who relied on the behavior of the former `ibbackup` command, which wrote its output to the top-level backup directory. The timestamped subdirectories make it simpler to establish retention periods, for example by removing or archiving backup data past a certain age. If you do use a single backup directory (that is, if you omit the `--with-timestamp` option), either specify a new unique directory name for each backup job, or specify the `--force` option to overwrite existing backup files.
Always Full Backup, or Full Backup plus Incremental Backups?

If your InnoDB data volume is small, or if your database is so busy that a high percentage of data changes between backups, you might run a full backup each time. Typically, you can save time and storage space by running periodic full backups, and in between running several incremental backups, as described in Section 3.3.2, “Making an Incremental Backup”.

Use Compression or Not?

Doing a compressed backup can save considerable space, allowing you to keep more sets of backup data on a single server. The tradeoff is that you need extra storage space (to hold both compressed and uncompressed data) while preparing the backup to be restored, and in an emergency you might find you do not have spare storage space or the time to decompress a huge backup. For that reason, compression is more practical for data that is not urgently needed, or while the backup is in transit to another server, where it will be uncompressed for the apply-log phase.

3.3.2 Making an Incremental Backup

An incremental backup only backs up data that changed since the previous backup. This technique provides additional flexibility in designing a backup strategy and reduces required storage for backups. Because an incremental backup always adds to an existing set of backup files, make at least one full backup before doing any incremental backups.

Incremental backups are typically smaller and take less time than a full backup, making them a good choice for frequent backup jobs. Taking frequent incremental backups ensures you can always restore the database to the same state as a few hours or days in the past, without as much load or storage overhead on the database server as taking frequent full backups.

Incremental backup is enabled through the --incremental option of the mysqlbackup command. You also indicate the point in time of the previous full or incremental backup, through the --start-lsn option, where you specify the highest log sequence number from a previous full or incremental backup.

To prepare the backup data to be restored, you combine each incremental backup with an original full backup. To simplify the process of storing and tracking a sequence of incremental backups, typically you perform a new full backup after a designated period of time, after which you can discard the older incremental backup data. Or, rather than tracking the ending LSN value for each incremental backup and specifying that number with the --start-lsn option of the next incremental backup, you could reuse the same ending LSN value from the full backup each time. In this case, your incremental backups become larger each time because more and more data has changed, but you can prepare the backup to be restored using the full backup and one incremental backup, rather than several sets of incremental backup data.

When running the “apply log” step for an incremental backup, you specify the option sequence --incremental apply-log, and the paths to 2 MySQL configuration files, first the .cnf file pointing to the full backup that you are updating, then the .cnf file pointing to the incremental backup data files. If you have taken several incremental backups since the last full backup, you might run several such “apply log” steps, one after the other, to bring the full backup entirely up to date.

Space Considerations for Incremental Backups

The incremental backup feature is primarily intended for InnoDB tables, or non-InnoDB tables that are read-only or rarely updated. For non-InnoDB files, the entire file is included in an incremental backup if that file changed since the previous backup.

You cannot perform incremental backups with the --compress option.
Incremental backups detect changes at the level of pages in the InnoDB data files, as opposed to table rows; each page that has changed is backed up. Thus, the space and time savings are not exactly proportional to the percentage of changed InnoDB rows or columns.

When an InnoDB table is dropped and you do a subsequent incremental backup, the apply-log step removes the corresponding .ibd file from the full backup directory. Since the backup program cannot have the same insight into the purpose of non-InnoDB files, when a non-InnoDB file is removed between the time of a full backup and a subsequent incremental backup, the apply-log step does not remove that file from the full backup directory. Thus, restoring a backup could result in a deleted file reappearing.

Examples of Incremental Backups

This example uses the mysqlbackup command to make an incremental backup of a MySQL server, including all databases and tables.

```bash
$ mysqlbackup --defaults-file=/home/pekka/.my.cnf --incremental --start-lsn=2654255716 --incremental-backup-dir=/incr-backup --with-timestamp backup
...many lines of output...
mysqlbackup: Backup created in directory '/incr-backup/2010-12-08_17-14-48'
mysqlbackup: start_lsn: 2654255717
mysqlbackup: incremental_base_lsn: 2666733462
mysqlbackup: end_lsn: 2666736714
101208 17:14:58 mysqlbackup: mysqlbackup completed OK!
```


Once again, we apply to the full backup any changes that occurred while the backup was running:

```bash
$ mysqlbackup --backup-dir=/full-backup/2010-12-08_17-14-11 apply-log
...many lines of output...
101208 17:15:10 mysqlbackup: Full backup prepared for recovery successfully!
101208 17:15:10 mysqlbackup: mysqlbackup completed OK!
```

Then, we apply the changes from the incremental backup:

```bash
$ mysqlbackup --incremental-backup-dir=/incr-backup/2010-12-08_17-14-48 --backup-dir=/full-backup/2010-12-08_17-14-11 apply-incremental-backup
...many lines of output...
101208 17:15:12 mysqlbackup: mysqlbackup completed OK!
```

Now, the data files in the full backup directory are fully up-to-date, as of the time of the last incremental backup.

This example shows an incremental backup. The last full backup we ran reported that the highest LSN was 2638548215:

```bash
mysqlbackup: Was able to parse the log up to lsn 2638548215
```

We specify that number again in the command here; the incremental backup includes all changes that came after the specified LSN.
Making a Compressed Backup

Next steps:

- Make a note of the LSN value in the message at the end of the backup, for example, `ibbackup: Was able to parse the log up to lsn LSN_number`. You specify this value when performing incremental backups of changes that occur after this incremental backup.

- **Apply the incremental backup** to the backup files, so that the backup is ready to be restored at any time. You can move the backup data to a different server first, to avoid the CPU and I/O overhead of this operation on the database server itself.

- On a regular schedule, determined by date or amount of database activity, take further **take incremental backups**.

- Optionally, periodically start the cycle over again by taking a full **uncompressed** or **compressed** backup. Typically, this milestone happens when you can archive and clear out your oldest backup data.

3.3.3 Making a Compressed Backup

To save disk space, you can compress InnoDB backup data files by using the `--compress` option of `mysqlbackup`. Compression lets you keep more sets of backup data on hand, and saves on transmission time when sending the backup data to another server. The downside is extra CPU overhead during the backup itself, and extra time needed during the restore process as the data is uncompressed.

The backup compression feature only applies to InnoDB tables. MySQL 5.5 and higher make InnoDB the default storage engine, because of its high concurrency, reliability, and fast crash recovery. The hot backup and incremental backup features of MySQL Enterprise Backup also apply only to InnoDB tables; For these reasons, Oracle recommends using InnoDB tables for your biggest, busiest, and most important data.

When InnoDB tablespace files are compressed during backup, they receive the extension `.ibz` rather than the usual `.ibd` extension. To avoid wasting CPU cycles without saving additional disk space, `--compress` does not attempt to compress already-compressed tables that use the Barracuda file format; such tablespace files keep the usual `.ibd` extension.

Note

If there is unused space within an InnoDB tablespace file, the entire file is copied during an uncompressed backup. Do a compressed backup to avoid the storage overhead for this unused space.

You can only use the `--compress` option for **full backups**, not for **incremental backups**.

```bash
$ mysqlbackup --defaults-file=/home/pekka/my.cnf --compress backup
...many lines of output...
mysqlbackup: Compressed 488 MB of data files to 53 MB (compression 89%).
101208 15:48:09 mysqlbackup: Full backup completed!
```

The backup directory is shown below. Compressed data files have the suffix `.ibz`. Typically, compression ratios of more than 70% are achieved:
Making a Partial Backup

```
$ ls -l /sqldata-backup
 total 54676
-rw-r--r-- 1 pekka pekka 158 2010-12-08 15:48 ibbackup_export_variables.txt
-rw-r----- 1 pekka pekka     1024 2010-12-08 15:48 ibbackup_logfile
-rw-r----- 1 pekka pekka 1095854 2010-12-08 15:47 ibdata1.ibz
-rw-r----- 1 pekka pekka  811625 2010-12-08 15:47 ibdata2.ibz
-rw-r----- 1 pekka pekka 54058462 2010-12-08 15:48 ibdata3.ibz
```

Next steps:

- Make a note of the LSN value in the message at the end of both full and incremental backups, for example, `ibbackup: Was able to parse the log up to lsn LSN_number`. You specify this value when performing incremental backups of changes that occur after this full backup.

- Apply the log to the compressed backup files, so that the full backup is ready to be restored at any time. You can move the backup data to a different server first, to avoid the CPU and I/O overhead of performing this operation on the database server.

- After applying the log, periodically take incremental backups, which are much faster and smaller than a full backup like this.

3.3.4 Making a Partial Backup

When the multiple tablespaces feature is enabled, you can make a partial backup of the InnoDB tables. The multiple tablespaces feature allows storing each InnoDB table in a separate file, `table_name.ibd`, holding the data and indexes of one table only. Those InnoDB tables for which the multiple tablespaces feature is not enabled, are stored as usual in the system tablespace defined by the `innodb_data_file_path` and `innodb_data_home_dir` parameters in the `my.cnf` file.

With its `--include` option, `mysqlbackup` can make a partial backup including selected per-table datafiles, those whose table names match the include pattern. A partial backup always contains the InnoDB system tablespace and all the tables inside it.

For each table with a per-table data file a string of the form `db_name.table_name` is checked against the regular expression specified with the `--include` option. If the regular expression matches the complete string `db_name.table_name`, the table is included in the backup. The regular expression uses the POSIX extended form. On Unix-like systems, quote the regular expression appropriately to prevent interpretation of shell meta-characters. This feature has been implemented with Henry Spencer's regular expression library.

IMPORTANT: Although the `mysqlbackup` command supports taking partial backups, be careful when restoring a database from a partial backup. `mysqlbackup` copies also the `.frm` files of those tables that are not included in the backup. If you use `mysqlbackup` with `--include` option, before restoring the database, delete from the backup data the `.frm` files for any tables that are not included in the backup.

IMPORTANT: If no tables match the regular expression pattern specified with the `--include` option, the backup currently includes all the file-per-table tables. This behavior might change; do not rely on it as part of your backup procedure.

3.3.4.1 Backing Up Data from Different Storage Engines

By default, all the files in the data directory are included in the backup, so the backup includes data from all MySQL storage engines, any third-party storage engines, and even any non-database files in that directory. This section explains options you can use to selectively back up or exclude data from particular storage engines.
Making a Partial Backup

Omitting Unknown Files

The --only-known-file-types option of the mysqlbackup command limits the backup to only those files that represent known data files from MySQL or its built-in storage engines, such as .frm, .ibd, .myd, and so on. (See the full list of extensions.) By default, the mysqlbackup command backs up all file extensions within the data directory, which could include files produced by many different storage engines. Use this option to omit the additional data files from other storage engines from the backup, for performance or space reasons.

Back up Only InnoDB Tables

The --only-innodb option backs up InnoDB tables only, skipping those of other storage engines. You might use this option for some backup operations based on the following considerations:

- The InnoDB tables are backed up using the hot backup technique, which does not interfere with database processing.
- The --compress and --incremental options offer benefits only for InnoDB data.
- In a busy production environment, InnoDB tables might represent the bulk of your important data because of the importance of high concurrency and crash recovery.
- In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables.

Example 3.1 Making an Uncompressed Backup of InnoDB Tables

In this example, the options file /home/pekka/.my.cnf defines the MySQL installation to back up. Running mysqlbackup performs the first phase of the process:

```
$ mysqlbackup --defaults-file=/home/pekka/.my.cnf --only-innodb backup
...many lines of output...
mysqlbackup: Scanned log up to lsn 32164666892.
mysqlbackup: Was able to parse the log up to lsn 32164666892.
mysqlbackup: Maximum page number for a log record 0 101208 15:33:11 mysqlbackup: Full backup completed!
```

The backup directory now contains a backup log file and copies of InnoDB data files.

Next Steps:

- Make a note of the LSN value in the message at the end of both full and incremental backups, for example, mysqlbackup: Was able to parse the log up to lsn LSN_number. You specify this value when performing incremental backups of changes that occur after this full backup.
- Apply the log to the uncompressed backup files, so that the full backup is ready to be restored at any time. You can move the backup data to a different server first, to avoid the CPU and I/O overhead of performing this operation on the database server.
- After applying the log, periodically take incremental backups, which are much faster and smaller than a full backup like this.

Example 3.2 Making an Uncompressed Partial Backup of InnoDB Tables

In this example, we have configured MySQL so that some InnoDB tables have their own tablespaces. We make a partial backup including only those InnoDB tables in test database whose name starts with ib. The contents of the database directory for test database are shown below. The directory contains...
Making a Partial Backup

a MySQL description file (.frm file) for each of the tables (alex1, alex2, alex3, blobt3, ibtest0, ibtest09, ibtest11a, ibtest11b, ibtest11c, and ibtest11d) in the database. Of these 10 tables six (alex1, alex2, alex3, blobt3, ibtest0, ibtest09) are stored in per-table datafiles (.ibd files).

We run the mysqlbackup with the --include option:

```
$ mysqlbackup --defaults-file=/home/pekka/.my.cnf --include='test\..ib.*' --only-innodb backup
...many lines of output...
mysqlbackup: Scanned log up to lsn 2666737471.
mysqlbackup: Was able to parse the log up to lsn 2666737471.
mysqlbackup: Maximum page number for a log record 0
101208 17:17:45  mysqlbackup: Full backup completed!
```

The backup directory contains only backups of ibstest and ibtest09 tables. Other InnoDB tables did not match the include pattern test\..ib.*. Notice, however, that the tables ibtest11a, ibtest11b, ibtest11c, ibtest11d are in the backup even though they are not visible in the directory shown below, because they are stored in the system tablespace (ibdata1 file) which is always included in the backup.

```
$ ls /sqldata-backup/test
ibstest0.ibd   ibtest09.ibd
```

Example 3.3 Making a Compressed Partial Backup

We have configured MySQL so that every InnoDB table has its own tablespace. We make a partial backup including only those InnoDB tables whose name starts with alex or blob. The contents of the database directory for test database is shown below.

```
$ ls /sqldata/mts/test
alex1.frm  alex2.ibd  blobt3.frm  ibstest0.ibd  ibtest11a.frm  ibtest11d.frm
alex1.ibd  alex3.frm  blobt3.ibd  ibstest09.ibd  ibtest11b.frm
alex2.frm  alex3.ibd  ibstest0.frm  ibtest09.ibd  ibtest11c.frm
```

We run mysqlbackup with the --compress and --include options:

```
$ mysqlbackup --defaults-file=/home/pekka/.my.cnf --compress --include='.*\.(alex|blob).*' --only-innodb backup
...many lines of output...
mysqlbackup: Scanned log up to lsn 2666737471.
mysqlbackup: Was able to parse the log up to lsn 2666737471.
mysqlbackup: Maximum page number for a log record 0
mysqlbackup: Compressed 147 MB of data files to 15 MB (compression 89%).
101208 17:18:04  mysqlbackup: Full backup completed!
```

The backup directory for the database test is shown below. The .ibz files are compressed per-table datafiles.

```
$ ls /sqldata-backup/test
alex1.ibz   alex2.ibz   alex3.ibz   blobt3.ibz
```
3.3.4.2 Backing Up Selected Databases

The `--databases` option of the `mysqlbackup` command lets you back up non-InnoDB tables only from selected databases, rather than across the entire MySQL instance. (To filter InnoDB tables, use the `--include` option.) You can specify a space-separated list of database names, with the entire list enclosed in double quotation marks, or the absolute path (starting with a `/`) of a file containing the list of names, one per line.

Some or all of the database names can be qualified with table names, to only back up selected tables from those databases.

If you specify this option, make sure to include the same set of databases for every backup (especially incremental backups), so that you do not restore out-of-date versions of any databases.

3.3.5 Making a Single-File Backup

To avoid a large number of backup files to track and keep safe, and to simplify moving backup data around, the `mysqlbackup` command can create a backup in a single-file format, pack an existing backup into a single file, unpack the single file back to the original backup directory structure, list the contents of a single-file backup, or extract a single file or directory tree. For the syntax of the relevant `mysqlbackup` options, see Section 4.1.10, “Single-File Backup Options”.

Because the single-file backup can be streamed or piped to another process, such as a tape backup or a command such as `scp`, you can use this technique to put the backup on another storage device or server without significant storage overhead on the original database server. (During preparation of the single-file backup, some small work files are prepared temporarily inside the specified backup directory.)

To create a single-file backup, specify the `mysqlbackup` option `backup-to-image`. All the original data files must be under a single directory, rather than spread across different paths. Specify the same path for the `datadir`, `innodb_log_group_home_dir`, and `innodb_data_home_dir` configuration options.

Example 3.4 Single-File Backup to Absolute Path

This command creates a single backup image in the given absolute path. It still requires `--backup-dir`, which is used to hold temporary output, status, and metadata files.

```plaintext
mysqlbackup --backup-image=/backups/sales.mbi --backup-dir=/backup-tmp backup-to-image
```

Example 3.5 Single-File Backup to Relative Path

This command specifies `--backup-image` with a relative path underneath the backup directory. The resulting single-file backup is created as `/backups/sales.mbi`.

```plaintext
mysqlbackup --backup-image=sales.mbi --backup-dir=/backups backup-to-image
```

Example 3.6 Single-File Backup to Standard Output

The following command dumps the backup output to standard output. Again, the `--backup-dir` directory specified in `my.cnf` is used as a temporary directory.

```plaintext
mysqlbackup --backup-dir=/backups --backup-image= backup-to-image > /backup/mybackup.mbi
```

Example 3.7 Convert Existing Backup Directory to Single Image

The `backup-dir` directory specified in `my.cnf` is bundled into the `/backup/my.mbi` file. The directory can contain anything, not necessarily a backup produced by MySQL Enterprise Backup.
Making a Single-File Backup

Example 3.8 Extract Existing Image to Backup Directory

The image contents are unpacked into `backup-dir`.

```
mysqlbackup --backup-dir=/var/mysql/backup backup-dir-to-image
```

Example 3.9 List Single-File Backup Contents

The image contents are listed with each line indicating a file or directory entry.

```
mysqlbackup --backup-image=/backup/my.mbi list-image
```

Example 3.10 Extract Single-File Backup into Current Directory

The following command extracts all contents from a single-file backup into the current working directory.

```
mysqlbackup --backup-image=/var/my.mbi extract
```

Example 3.11 Extract Single-File Backup into a Backup Directory

This command behaves like the `image-to-backup-dir` option, by extracting all contents of a single-file backup into the `--backup-dir` directory.

```
mysqlbackup --backup-image=/var/my.mbi --backup-dir=/var/backup extract
```

Example 3.12 Selective Extract of Single File

The following command extracts the single file `meta/comments.txt` into the local path `.meta/comments.txt`.

```
mysqlbackup --backup-image=/var/my.mbi \
--src-entry=meta/comments.txt extract
```

The following command extracts the `meta/comments.txt` file into a specified path `/tmp/mycomments.txt` by using the `--dst-entry` option.

```
mysqlbackup --backup-image=/var/my.mbi \
--src-entry=meta/comments.txt \
--dst-entry=/tmp/mycomments.txt extract
```

The following command dumps the contents of `meta/comments.txt` (inside a single-file backup) to standard output.

```
mysqlbackup --backup-image=/var/my.mbi --src-entry=meta/comments.txt --dst-entry=- extract
```

Example 3.13 Selective Extract of Single Directory

The following command extracts a single directory `meta` into a local file system path `.meta`. Extracting a directory extracts all its contents, including any subdirectories.
Making a Single-File Backup

The following command extracts all `meta` directory contents (all its files and subdirectories) into the directory `/tmp/my-meta`.

```
mysqlbackup --backup-image=/backup/my.mbi --src-entry=meta extract
```

Example 3.14 Dealing with Absolute Path Names

Since absolute pathnames are extracted to the same paths in local system, it could be a problem if you do not have write permission for that path. You can remap absolute paths as follows:

```
mysqlbackup --backup-image=/backup/my.mbi --src-entry=/ --dst-entry=/myroot extract
mysqlbackup --backup-image=/backup/my.mbi --src-entry=. extract
```

The first command extracts all absolute paths to `/myroot` directory in the local system. The second command extracts all relative paths to the current directory.

3.3.5.1 Streaming the Backup Data to Another Device or Server

To limit the storage overhead on the database server, you can transfer the backup data to a different server without ever storing it locally. The primary MySQL Enterprise Backup feature related to streaming is the single-image backup. To send the single-file backup to standard output, specify by the `mysqlbackup` option `backup-to-image` with no `--backup-dir` option or `--backup-image` option. (You can also specify `--backup-image=` to make it obvious that the data is sent to stdout.) To stream the data, you use the single-file backup in combination with operating system features such as pipes, `ssh/scp`, and so on that can take input from standard output and create an equivalent file on a remote system. You can either store the single-file backup directly on the remote system, or invoke the `mysqlbackup` command with the `image-to-backup-dir` option on the other end to reproduce the directory structure of a regular backup.

Example 3.15 Single-File Backup to a Remote Host

The following command streams the backup output to a remote host, where it is saved directly to a tape device. For simplicity, all the connection, `backup-dir`, and other necessary options are assumed to be taken from the default configuration file. For the operation to run on the remote system, substitute the combination of command, device, and so on that you use as part of your normal archiving procedure, such as `dd` or `tar`.

```
mysqlbackup --backup-image= backup-to-image | ssh user@host command arg1 arg2...
```

3.3.5.2 Backing Up to Tape with Oracle Secure Backup

Tape drives are affordable, high-capacity storage devices for backup data. The MySQL Enterprise Backup product can interface with media management software (MMS) such as Oracle Secure Backup (OSB) to drive MySQL backup and restore jobs. The media management software must support Version 2 or higher of the System Backup to Tape (SBT) interface.

On the MySQL Enterprise Backup side, you run the backup job as a single-file backup using the `--backup-image` parameter, with the prefix `sbt:` in front of the filename, and optionally pass other `--sbt-*` parameters to the `mysqlbackup` command to control various aspects of the SBT processing.

On the OSB side, you can schedule MySQL Enterprise Backup jobs by specifying a configurable command that calls `mysqlbackup`. You control OSB features such as encryption by defining a “storage selector” that
applies those features to a particular backup, and passing the name of the storage selector to OSB using
the MySQL Enterprise Backup parameter --sbt-database-name=storage_selector.

To back up MySQL data to tape:

- Specify the --backup-image=sbt:name parameter of the mysqlbackup command to uniquely
 identify the backup data. The sbt: prefix sends the backup data to the MMS rather than a local file, and
 the remainder of the argument value is used as the unique backup name within the MMS.

- Specify the --sbt-database-name parameter of the mysqlbackup command to enable the OSB
 operator to configure a storage selector for backups from this MySQL source. (This parameter refers
 to a “storage selector” defined by the OSB operator, not to any MySQL database name.) By default,
 mysqlbackup supplies a value of MySQL for this MMS parameter. The argument to this option is limited
 to 8 bytes.

- If you have multiple media management programs installed, to select the specific SBT library to use,
 specify the --sbt-lib-path parameter of the mysqlbackup command. If you do not specify the
 --sbt-lib-path parameter, mysqlbackup uses the normal operating system paths and environment
 variables to locate the SBT library, which is named libobk.so on Linux and Unix systems and
 ORASBT.DLL on Windows systems. When you specify --sbt-lib-path, you can use a different
 filename for the library in addition to specifying the path.

To restore MySQL data from tape:

- Specify the --backup-image=sbt:name parameter of the mysqlbackup command as part of the
 restore operation. Use the same name value as during the original backup. This single parameter
 retrieves the appropriate data from the appropriate tape device.

- Optionally use the --sbt-lib-path option, using the same values as for the backup operation.

For product-specific information about Oracle Secure Backup, see the Oracle Secure Backup
documentation.

Example 3.16 Sample mysqlbackup Commands Using MySQL Enterprise Backup with Oracle
Secure Backup

```
# Uses libobk.so or ORASBT.DLL in standard places):
mysqlbackup --port=3306 --protocol=tcp --user=root --password \
  --backup-image=sbt:backup-shoeprod-2011-05-30 \
  --backup-dir=/backup backup-to-image

# Associates this backup with storage selector 'shoeprod':
mysqlbackup --port=3306 --protocol=tcp --user=root --password \
  --backup-image=sbt:backup-shoeprod-2011-05-30 \
  --sbt-database-name=shoeprod \
  --backup-dir=/backup backup-to-image

# Uses an alternative SBT library, /opt/Other-MMS.so:
mysqlbackup --port=3306 --protocol=tcp --user=root --password \
  --backup-image=sbt:backup-shoeprod-2011-05-30 \
  --sbt-lib-path=/opt/Other-MMS.so \
  --backup-dir=/backup backup-to-image
```

3.3.6 Backing Up In-Memory Database Data

The --exec-when-locked option of the mysqlbackup command lets you specify a command and
arguments to run near the end of the backup, while the database is still locked. This command can copy
or create additional files in the backup directory. For example, you can use this option to back up MEMORY
tables with the `mysqldump` command, storing the output in the backup directory. To delay any redirection or variable substitution until the command is executed, enclose the entire parameter value within single quotes.
Chapter 4 mysqlbackup Command Reference

Table of Contents

4.1 mysqlbackup Command-Line Options ... 39
 4.1.1 Subcommands .. 39
 4.1.2 Standard Options ... 42
 4.1.3 Connection Options ... 43
 4.1.4 Server Repository Options .. 44
 4.1.5 Backup Repository Options .. 44
 4.1.6 Metadata Options .. 45
 4.1.7 Compression Options ... 45
 4.1.8 Incremental Backup Options ... 46
 4.1.9 Partial Backup Options .. 46
 4.1.10 Single-File Backup Options ... 48
 4.1.11 Capacity Options ... 49
 4.1.12 Options for Special Backup Types ... 50
4.2 Configuration Files and Parameters ... 51
 4.2.1 Source Repository Parameters ... 52
 4.2.2 Backup Repository Parameters .. 53
 4.2.3 Other Parameters .. 56

The mysqlbackup command is an easy-to-use tool for all backup and restore operations. During backup operations, mysqlbackup backs up:

- All InnoDB tables and indexes, including:
 - The InnoDB system tablespace, which by default contains all the InnoDB tables.
 - Any separate data files produced under the InnoDB file-per-table setting. Each one contains one table and its associated indexes. Each data file can use either the original Antelope or the new Barracuda file format.
- All MyISAM tables and indexes.
- Tables managed by other storage engines.
- Other files underneath the MySQL data directory, such as the .frm files that record the structure of each table.

In addition to creating backups, mysqlbackup can pack and unpack backup data, apply to the backup data any changes to InnoDB tables that occurred during the backup operation, and restore data, index, and log files back to their original locations.

Sample command line arguments to start mysqlbackup are:

```bash
# Information about data files can be retrieved through the database connection.
# Specify connection options on the command line.
mysqlbackup --user=dba --password --port=3306 \
  --with-timestamp --backup-dir=/export/backups \
  backup

# Or we can include the above options in the configuration file
# under [mysqlbackup], and just specify the configuration file
# and the 'backup' operation.
```
mysqlbackup --defaults-file=/usr/local/mysql/my.cnf backup

Or we can specify the configuration file as above, but
override some of those options on the command line.
mysqlbackup --defaults-file=/usr/local/mysql/my.cnf \
 --compress --user=backupadmin --password --port=18080 \
 backup

The --user and the --password you specify are used to connect to the MySQL server. This MySQL user must have certain privileges in the MySQL server, as described in Section 3.1.2, "Grant MySQL Privileges to Backup Administrator".

The --with-timestamp option places the backup in a subdirectory created under the directory you specified above. The name of the backup subdirectory is formed from the date and the clock time of the backup run.

For the meanings of other command-line options, see Section 4.1, "mysqlbackup Command-Line Options". For information about configuration parameters, see Section 4.2, "Configuration Files and Parameters".

Make sure that the user or the cron job running mysqlbackup has the rights to copy files from the MySQL database directories to the backup directory.

Make sure that your connection timeouts are long enough so that the command can keep the connection to the server open for the duration of the backup run. mysqlbackup pings the server after copying each database to keep the connection alive.

IMPORTANT:

- Although the mysqlbackup command backs up InnoDB tables without interrupting database use, the final stage that copies non-InnoDB files (such as MyISAM tables and .frm files) temporarily puts the database into a read-only state, using the statement `FLUSH TABLES WITH READ LOCK`. For best backup performance and minimal impact on database processing:
 1. Do not run long `SELECT` queries or other SQL statements at the time of the backup run.
 2. Keep your MyISAM tables relatively small and primarily for read-only or read-mostly work.

Then the locked phase at the end of a mysqlbackup run is short (maybe a few seconds), and does not disturb the normal processing of mysqld much. If the preceding conditions are not met in your database application, use the `--only-innodb` option to back up only InnoDB tables, or use the `--no-locking` option to back up non-InnoDB files. Note that MyISAM, .frm, and other files copied under the `--no-locking` setting cannot be guaranteed to be consistent, if they are updated during this final phase of the backup.

- For a large database, a backup run might take a long time. Always check that mysqlbackup has completed successfully, either by verifying that the mysqlbackup command returned exit code 0, or by observing that mysqlbackup has printed the text "mysqlbackup completed OK!".

- The mysqlbackup command is not the same as the former "MySQL Backup" open source project from the MySQL 6.0 source tree. The MySQL Enterprise Backup product supersedes the MySQL Backup initiative.
• Schedule backups during periods when no DDL operations involving tables are running. See Section A.1, “Limitations of mysqlbackup Command” for restrictions on backups at the same time as DDL operations.

4.1 mysqlbackup Command-Line Options

The following sections describe the different modes of operation for the mysqlbackup, then explain the applicable options for each mode, and the purpose and operation of each option. For the sets of options that are typically specified together for the various backup and restore tasks, see Section 4.1.1, “Subcommands”.

4.1.1 Subcommands

These options represent the major operations or modes for the mysqlbackup command. Only one can be specified for each mysqlbackup invocation, it must always be the last option on the command line, and the name is not preceded by any dashes.

Each of these major options has its own set of required or allowed command parameters. For example, the backup* options require connection information to the database server. The apply-log, and other options that operate on the backup data after it is produced, require options to specify where the backup data is located.

The major groups of subcommands are:

• Backup operations: backup, backup-and-apply-log, backup-to-image
• Apply operations: apply-log, apply-incremental-backup
• Restore operations: copy-back
• Single-file backup operations: image-to-backup-dir, backup-dir-to-image, list-image, extract

4.1.1.1 Backup Operations

This is the syntax to use when performing a backup, the most frequent kind of operation, and the most flexible with various options such as --compress and --incremental. For usage information and examples, see Section 3.3, “Backup Scenarios and Examples”.

Subcommands

backup
Performs the initial phase of a backup. The second phase is performed later by running `mysqlbackup` again with the `apply-log` option.

backup-and-apply-log
A combination of `backup` and `apply-log`. Not compatible with incremental backups. Any `--compress` option is ignored.

backup-to-image
Produces a single-file backup rather than a directory structure holding the backup files. Requires the `--backup-image` option to specify the destination file. Can be used to stream the backup to a storage device or another system without ever storing the data on the database server. You can specify `--backup-image=-`, representing standard output, allowing the output to be piped to another command. To avoid mixing normal informational messages with backup output, the `--help` message, errors, alerts, and normal informational messages are always printed to standard error.

Example 4.1 Simple Backup with Connection Parameters from Default Configuration File

The following example shows a minimal backup with the `mysqlbackup` command, with any necessary connection parameters for the database in the `[mysqlbackup]` section of the default MySQL configuration file:

```
mysqlbackup --backup-dir=/export/backups/latest backup
```

Example 4.2 Basic Incremental Backup

```
mysqlbackup --incremental --start-lsn=12345 --incremental-backup-dir=/path/to/incbackup backup
```

There is a separate directory dedicated to incremental backup. Both this directory and the one for full backups can be specified in the `my.cnf` file, and the appropriate directory is used depending on the type of backup. Both the incremental backup data and an earlier full backup are needed to do a successful restore operation.

4.1.1.2 Apply-Log Operations for Existing Backup Data

These operations bring the backup files up-to-date with any changes to InnoDB tables that happened while the backup was in progress. Although for convenience you can combine this operation with the initial backup using the `backup-and-apply-log` option, you must use run the stages separately when performing incremental or compressed backups.

```
```

```
```
apply-log

Brings the InnoDB tables in the backup up-to-date, including any changes made to the data while the backup was running.

apply-incremental-backup

Brings the backup up-to-date using the data from an incremental backup.

Example 4.3 Apply Log to Full Backup

```bash
grep --backup-dir=/path/to/backup apply-log
```

It reads the `backup-my.cnf` file inside `backup-dir` to understand the backup. The `my.cnf` default files have no effect other than supplying the `limit-memory=MB` value, which limits usage of memory while doing the `apply-log` operation.

Because the `apply-log` operation does not apply to incremental backups, no `incremental-backup-dir` is needed for this operation.

4.1.1.3 Restore an Existing Backup

Restores the data files from a backup to their original locations within the database server. The MySQL instance must be shut down first. For usage and examples, see Chapter 5, Recovering or Restoring a Database.

```bash
grep [STD-OPTIONS] [SERVER-REPOSITORY-OPTIONS] [--backup-dir=PATH] copy-back
```

copy-back

Restores files from a backup to their original locations within the MySQL server. The database must be shut down before this operation is performed.

4.1.1.4 Work with Single-File Backups

To simplify transfer and management of backup data, you can keep each backup in a single file (the backup image). The `backup-to-image` option performs a backup directly to a single file, or the options here can pack an existing backup into a single file or unpack a single-file backup to a full backup directory structure. For usage and examples, see Section 3.3.5, “Making a Single-File Backup”.

```bash
```
Standard Options

image-to-backup-dir
Unpacks a single-file backup to a full backup directory structure. You specify the paths to both the image file and the destination directory in which to unpack.

backup-dir-to-image
Packs an existing backup into a single file. Specify a --backup-image value of - (standard output) to stream an existing backup directory structure to a tape device or a command that transfers the backup to another server. The --backup-image parameter is either - or an absolute path outside the backup-dir directory.

list-image
Display the contents of a single-file backup. Lists all files and directories in the image. The --src-entry=name can be used to list a specific file or directory. If the name is a directory, all its files and subdirectories inside the image are recursively listed.

extract
Unpacks an individual file or directory from a single-file backup. For troubleshooting or restoration operations that do not require the full set of backup data. The resulting file or directory goes in the current directory, or in backup-dir if specified. All files and directory contents in the image with absolute path names are extracted into the same absolute path names on the local system.

The --src-entry=path option can be used for selective extraction of a single file or single directory in image. Specify the path as it appears in the image.

The --dst-entry=path option, along with --src-entry=path option can be used to extract a single file or single directory into a user-specified file or directory respectively. If the --src-entry option is used, but --dst-entry option is omitted, then the selected file or directory is extracted to the same path in the local file system.

The default destination for the extract is the current working directory. It can be overridden by the --backup-dir option. All the files with relative pathnames in the image are extracted to pathnames relative to the destination directory.

If the image contains some entries with absolute pathnames, those entries are extracted to the same absolute path names even if --backup-dir option is specified. The --dst-entry option must be used to relocate an absolute pathname.

4.1.2 Standard Options

These options are the same as for the mysql command. When present, they must be specified ahead of any other mysqlbackup options.

--print-defaults Print the program argument list and exit.
--no-defaults Don’t read default options from any option file.
--defaults-file=PATH Only read default options from the given file.
--defaults-extra-file=PATH Read this file after the global files are read.
--help, --verbose, --version, --debug : Common standard options.
By default, both backup and restore operation halt rather than overwrite any user data or log files, either during backup or restore. To confirm that you intend to overwrite previous backup data during a backup, or your existing database instance during a restore, specify the --force option.

4.1.3 Connection Options

When `mysqlbackup` creates a backup, it sends SQL commands to MySQL server using a database connection. The general connection details are the same as described in Connecting to the MySQL Server in the MySQL Reference Manual.

As part of the `mysqlbackup` invocation, specify the appropriate --user, --password, --port, and/or --socket options that are necessary to connect to the MySQL server.

You can specify the following connection-specific options in the [mysqlbackup] or [client] sections of a MySQL configuration file, or through `mysqlbackup` command-line options. `mysqlbackup` reads your default configuration files and then the `my.cnf` file specified on the command line. `mysqlbackup` reads only --user, --password, --port, and --socket options from the [client] group, and ignores any other options. If you do not provide a value for the --password, the command prompts for one from the keyboard.

Options Common to mysqld

--port=port-num
--protocol=tcp|socket|pipe|memory
--pipe [alias for --protocol=pipe]
--user=name [short option: -u]
--host=hostname
--socket=name
--shared-memory-base-name=value [Windows only]
--character-sets-dir=PATH
--default-character-set=VALUE
--secure-auth [Don't connect to pre-4.1.1 server]
--password[=value] [short option: -p]
--connect_timeout

Connection Options Specific to mysqlbackup

--no-connection [43]
--connect-if-online [43]

Most other connection parameters used by the `mysql` command (such as those starting with `ssl`) are recognized, but silently ignored. Unknown connection parameters cause the `mysqlbackup` command to stop.

The **--no-connection** option supersedes the other connection options and uses file-level operations to perform the backup. When you use this option, you must specify in the configuration file or on the command line many options whose values are normally retrieved automatically through the database connection.

This option also turns on the --no-history-logging and --no-locking options, which might result in inconsistencies in non-InnoDB data if those tables are modified during the backup operation.

By default, a database connection is used for backup operations both during the initial stage to retrieve source repository configuration, and to lock tables while copying non-InnoDB data. This option allows `mysqlbackup` to attempt the connection attempt in both phases, but continues even if the connection...
cannot be established. If a connection cannot be established, the processing is the same as with the \texttt{--no-connection} \texttt{[43]} option. This option can be useful in emergency situations, for example if the database server goes down during the backup operation.

4.1.4 Server Repository Options

The repository options specify various parameters related to the database server (the source) and the backup directory (the destination).

These options are used only with the following operations:

- Backup creation operations: \texttt{backup}, \texttt{backup-and-apply-log}, \texttt{backup-to-image}.
- Restore operations: \texttt{copy-back}.

When a database connection is available during a backup, the parameters describing the source repository are ignored, overridden by the corresponding values retrieved from the database connection.

The following parameters describe the Source Repository:

- \texttt{--datadir=PATH}
- \texttt{--innodb_data_file_path=VALUE} [Example: ibdata1:32M:autoextend]
- \texttt{--innodb_data_home_dir=PATH}
- \texttt{--innodb_log_group_home_dir=PATH}
- \texttt{--innodb_log_files_in_group=N}
- \texttt{--innodb_log_file_size=SIZE}

4.1.5 Backup Repository Options

These options specify various parameters related to the layout of the backup directory. Several of these option values can be derived automatically from the corresponding configuration option without the \texttt{backup} prefix, thus the \texttt{--backup-dir} option is the only one from this group that you typically specify.

These options are used only with the following operations:

- Backup creation operations: \texttt{backup}, \texttt{backup-and-apply-log}, \texttt{backup-to-image}.
- Restore operations: \texttt{copy-back}.

When a database connection is available during a backup, the parameters describing the source repository are ignored, overridden by the corresponding values retrieved from the database connection.

The following parameters describe the layout of files in the backup directory:

- \texttt{--backup-dir=PATH}
- \texttt{--backup_innodb_data_file_path=VALUE} [Example: ibdata1:32M:autoextend]
- \texttt{--backup_innodb_data_home_dir=PATH}
- \texttt{--backup_innodb_log_group_home_dir=PATH}
- \texttt{--backup_innodb_log_files_in_group=N}
- \texttt{--backup_innodb_log_file_size=SIZE}
Metadata Options

--backup-dir=PATH

The directory under which to store the backup data. This is a crucial parameter required for most kinds of backup operations. An additional level of subdirectory is created when the --with-timestamp option is also specified.

--with-timestamp

Creates a subdirectory underneath the backup directory, with a name formed from the timestamp of the backup operation. Useful to maintain a single backup directory containing many backup snapshots.

Default: no timestamped subdirectory is created. To reuse the same backup directory for a new backup, either remove the previous backup files manually or specify the --force option to overwrite them.

4.1.6 Metadata Options

These options control the generation of metadata about backups. Some metadata is stored in the backup directory, other metadata is stored in tables within the mysql database of the backed-up instance.

--no-history-logging

Turns off the recording of backup progress and history in logging tables inside the backed-up database. See Section 6.4, "Using the MySQL Enterprise Backup Logs" for details about these tables.

Default: history logging is enabled. When --no-connection is specified, history logging is automatically disabled. When --connect-if-online is specified, history logging only works if a database connection is successfully established during the backup.

--comments=STRING

Specify a comment string that describes or identifies the backup. Surround multi-word comments with appropriate quotation marks. The string is saved in a file meta/comments.txt in the backup. For example: --comments="Backup of HR data on 2010/12/10".

--comments-file=PATH

4.1.7 Compression Options

For instructions about using these options, see Section 3.3.3, “Making a Compressed Backup”.

--compress

Create backup in compressed format. For a regular backup, only the InnoDB data files are created in compressed format, using the .ibz extension.

For a single-image backup, all files (including InnoDB, MyISAM, .frm files, and so on) are compressed using the default compression level.

Default: compression is disabled. Default compression level is 1 when compression is enabled. You can change the amount of compression with the compress-level option.

--compress-level=LEVEL

Specifies the level of compression. Value 0 disables compression. Value 1 is fastest compression, and value 9 is highest (and slowest) compression.
Incremental Backup Options

Default: 1 (lowest and fastest compression). Explicitly specifying a non-zero value through configuration file or command line automatically enables the --compress option as well.

--uncompress

When used with the apply-log operation, uncompresses the compressed backup before applying the InnoDB log.

4.1.8 Incremental Backup Options

For an overview of incremental backups and usage information about these options, see Section 3.3.2, "Making an Incremental Backup".

To take an incremental backup, specify the --incremental, --incremental-backup-dir, and --start-lsn options together. All InnoDB data modified after the specified LSN is copied in the incremental backup.

--incremental

Specifies that the associated backup or backup-to-image. operation is incremental. Also requires the --start-lsn and --incremental-backup-dir options.

The incremental aspect applies to InnoDB tables. By default, all non-InnoDB and .frm files are also included in incremental backup. To exclude non-InnoDB data in an incremental backup, use the --only-innodb option.

--start-lsn=LSN

In an incremental backup, specifies the highest LSN value included in a previous backup. You can get this value from the output of the previous backup operation, or from the backup_history table's end_lsn column for the previous backup operation. Always used in combination with the --incremental option.

--incremental-backup-dir=PATH

Specifies the location under which to store data from an incremental backup.

Example 4.4 Incremental Backup

```bash
mysqlbackup --incremental --start-lsn=12345 \
--incremental-backup-dir=/var/mysql/backup/inc ... backup
```

4.1.9 Partial Backup Options

For an overview of partial backups and usage information about these options, see Section 3.3.4, "Making a Partial Backup".

--include=REGEXP

Back up only those InnoDB tables whose fully qualified names match a regular expression. If the REGEXP matches db_name.table_name, the table is included. The regular expression syntax is the extended form specified in the POSIX 1003.2 standard.

For example, --include=mydb.t[12] matches the tables t1 and t2 in the database mydb. Only applies to InnoDB tables created with
the MySQL option `innodb_file_per_table` enabled, which are in separate files that can be included or excluded from the backup. All tables in the InnoDB system tablespace are always backed up.

Default: Backs up all InnoDB tables.

```
--databases=LIST
```

Filters the list of non-InnoDB tables to back up. To filter InnoDB tables, use the `--include` option. The argument specifies a space-separated list of database/table names of the following form:

```
"db_name[.table_name] db_name1[.table_name1] ...".
```

If this option is not specified, all databases are backed up. If the specified database does not match any database or table, then all databases are backed up. See Section 3.3.4.2, “Backing Up Selected Databases” for details.

By default, all databases are backed up.

```
--databases-list-file=PATH
```

Filters the list of non-InnoDB tables to back up. The specified file contains entries for databases or fully qualified table names separated by newline or space. The format of the entries is the same as for the `--databases` option:

```
db_name[.table_name]
db_name1[.table_name1]
...
```

If this option is not specified, all databases are backed up. If the specified entries do not match any database or table, then all databases are backed up.

Pathname to the file that contains the list of databases to be backed up separated by newlines. Remove any surrounding whitespace, because those characters are not removed automatically. Begin a line with the `#` character to include a comment. No regular expressions are allowed.

By default, all tables are backed up.

```
--only-known-file-types
```

By default, all files in the data directory are included in the backup. (See Section 1.4, “Files that Are Backed Up” for details.) If the `--only-known-file-types` option is specified, the backup includes only the files with these file extensions:

- `.ARM`: Archive storage engine metadata.
- `.ARZ`: Archive storage engine data.
- `.CSM`: CSV storage engine data.
- `.CSV`: CSV storage engine data.
- `.frm`: table definitions.
- `.MRG`: Merge storage engine references to other tables.
Single-File Backup Options

- `.MYD`: MyISAM data.
- `.MYI`: MyISAM indexes.
- `.OPT`: database configuration information
- `.PAR`: partition definitions.
- `.TRG`: trigger parameters.
- `.TRN`: trigger namespace information.

`--only-innodb`

Back up only InnoDB data and log files. All `.frm` files and files created by other storage engines are excluded. Typically used when no connection to `mysqld` is allowed or when there is no need to copy MyISAM or `.frm` files, for example, when you are sure there are no DDL changes during the backup. See `Backing Up Only InnoDB Tables` for instructions and examples.

Can be used in combination with the `--suspend-at-end` option to allow customized scripting at the end of backup.

Default: backups include files from all storage engines.

4.1.10 Single-File Backup Options

These options are associated with single-file backups. You use them in combination with the `mysqlbackup` subcommands `backup-to-image`, `image-to-backup-dir`, `backup-dir-to-image`, `list-image`, and `extract` that pack or unpack single-image backups. For usage information, see `Section 3.3.5, "Making a Single-File Backup"`.

`--backup-image=IMAGE`

Specify the path name of the file used for a single-file backup. By default, the single-file backup is streamed to standard output, so that you can pipe it directly to other commands such as tape backup or `ssh`-related network commands.

You can optionally prefix the image name with `file:` to signify file I/O (the default). For tape backups, prefix the image name with `sbt:`. See `Section 3.3.5.2, "Backing Up to Tape with Oracle Secure Backup"` for details about tape backups.

`--src-entry=PATH`

Identifies a file or directory to extract from a single-file backup. This option is used with the `extract` command. If the argument is a directory, all its files and subdirectory contents are extracted. No pattern matching expression is allowed for the argument. Optionally, you can also specify the `--dst-entry` option to extract the file or directory in a location different from its original path name.

For example: `src-entry=meta/comments.txt` extracts only one file, `comments.txt`, while `src-entry=meta` extracts the entire directory tree for the `meta` subdirectory.

Default: All entries are extracted.
Capacity Options

--dst-entry=PATH

Used with single-file backups to extract a single file or directory to a user-specified path. Use of this option requires specifying the --src-entry option. This option specifies the destination path for the selected entry in backup image corresponding to entry specified by --src-entry=PATH option. The entry could point to a single file or single directory. For example, to retrieve the comments file from a backup image and store it as /tmp/my-comments.txt, use a command like the following:

```
mysqlbackup --src-entry=meta/comments.txt \
--dst-entry=/tmp/my-comments.txt \
--backup-image=/var/myimage.bki extract
```

Similarly, to extract all the contents of the meta directory in a single-file backup as /data/my-meta, use a command like the following:

```
mysqlbackup --src-entry=meta \
--dst-entry=/data/my-meta \
--backup-image=/var/myimage.bki extract
```

The specified path is a simple path name without any wildcard expansion or or regular expressions.

Default: By default, original pathnames are used to create files in the local file system.

--sbt-database-name=NAME

For tape backups, this option can be used as a hint to the Media Management Software (MMS) for the selection of media and policies. This name has nothing to do with MySQL database names. It is a term used by the MMS. See Section 3.3.5.2, “Backing Up to Tape with Oracle Secure Backup” for usage details.

--sbt-lib-path=PATH

Path name of the SBT library used by software that manages tape backups. If this is not specified, operating system-specific search methods are used to locate libobk.so (UNIX) or orasbt.dll (Windows). See Section 3.3.5.2, “Backing Up to Tape with Oracle Secure Backup” for usage details.

--disable-manifest

4.1.11 Capacity Options

These options limit the resources used by the backup process, to minimize backup overhead for busy or huge databases.

--limit-memory=MB

Specify maximum memory in megabytes that can be used in the apply-log operation. Do not include any suffixes such as mb or kb in the option value.

Default: 100 (that is, 100 Megabytes).

--sleep=MS
Specify the number in milliseconds to sleep after copying a certain amount of data from InnoDB tables. Each block of data is 1024 InnoDB data pages, typically totalling 16MB. This is to limit the CPU and I/O overhead on the database server.

Default = 0 (no voluntary sleeps).

--no-locking

Disables locking during backup of non-InnoDB files, even if a connection is available. Can be used to copy non-InnoDB data with less disruption to normal database processing. There could be inconsistencies in non-InnoDB data if any changes are made while those files are being backed up.

4.1.12 Options for Special Backup Types

These options are for backing up database servers that play specific roles in replication, or contain certain kinds of data that require special care in backing up.

--slave-info

This option is useful when backing up a replication slave server. It prints the binary log position and name of the binary log file of the master server. It also creates a file `meta/ibbackup_slave_info` inside the backup directory, containing a `CHANGE MASTER` statement with the same information. A new slave for this master can be set up by starting a slave server on this backup and issuing a `CHANGE MASTER` command with the binary log position saved in the `ibbackup_slave_info` file. See Section 5.4, “Setting Up a New Replication Slave” for instructions.

--suspend-at-end

This option pauses the `mysqlbackup` command when the backup procedure is close to ending. It creates a file called `ibbackup_suspended` in the backup log group home directory and waits until you delete that file before proceeding. This option is useful to customize locking behavior and backup of non-InnoDB files through custom scripting.

All tables are locked before suspending, putting the database into a read-only state, unless you turn off locking with the **--no-locking** or **--no-connection** option. The **--only-innodb** option also prevents the locking step. Because locking all tables could be problematic on a busy server, you might use a combination of **--only-innodb** and **--suspend-at-end** to back up only certain non-InnoDB tables.

--exec-when-locked="utility arg1 arg2 ..."

You can use this option to write a script that backs up any information that is not part of the usual backup, for example by using `mysqldump` to back up tables from the MEMORY storage engine that are not on disk. Within your script, the `BACKUP_DIR` environment variable is set and points to the current backup directory. For example, on Unix or Linux systems, using single quotes to prevent premature expansion of `$BACKUP_DIR`: **--exec-when-locked="mysqldump mydb t1 > $BACKUP_DIR/t1.sql"**. Or on Windows systems: **--exec-when-locked="mysqldump mydb t1 > %BACKUP_DIR%/t1.sql"**
If the utility cannot be executed or returns a non-zero exit status, then the whole backup process is cancelled. If `--suspend-at-end` option is also used, the utility specified by `--exec-when-locked` is executed after suspending.

4.2 Configuration Files and Parameters

You can specify many `mysqlbackup` options either on the command line or as configuration parameters inside a configuration file. This section describes the use of configuration files and the meanings of the configuration options. For options that are typically specified on the command line, the primary descriptions and examples are in Section 4.1, "`mysqlbackup` Command-Line Options".

In general, `mysqlbackup` follows the `mysql` style of processing configuration options: `[mysqlbackup]` and `[client]` group options are passed as command-line options. Any command-line options that you specify override the values from the configuration file. `mysqlbackup` also reads options in the `[mysqld]` group to detect parameters related to the source repository when no connection to `mysqld` is available.

Options Files

The `mysqlbackup` command reads the location of the MySQL data to back up from (in order of priority):

- The connection information from the running database, whenever possible. Thus, in most cases, you can avoid specifying most options on the command line or in a configuration file.

- Parameters you specify on the `mysqlbackup` command line. You can specify certain options for individual backup jobs this way.

- The MySQL configuration file (by default, `my.cnf` on Unix and `my.ini` on Windows). The parameters are searched for first under the `[mysqlbackup]` group, then under the `[client]` group. You can put common parameters that apply to most backup jobs in the configuration file.

Because `mysqlbackup` does not overwrite any files during the initial backup step, the backup directory must not contain any old backup files. `mysqlbackup` stops when asked to create a file that already exists, to avoid harming an existing backup. For convenience, specify the `--with-timestamp` option, which always creates a unique timestamped subdirectory for each backup job underneath the main backup directory.

Configuration Files Stored with the Backup Data

Each set of backup data includes a configuration file, `backup-my.cnf`, containing a minimal set of configuration parameters. The `mysqlbackup` command generates this file to record the settings that apply to this backup data. Subsequent operations, such as the `apply-log` process, read options from this file to determine how the backup data is structured.

Example 4.5 Example `backup-my.cnf` file

Here is an example `backup-my.cnf` file generated by `mysqlbackup`:

```
[mysqld]
innoib_data_file_path=ibdata1:256M;ibdata2:256M:autoextend
innodb_log_file_size=256M
innodb_log_files_in_group=3
```
All paths in the generated `backup-my.cnf` file point to a single backup directory. For ease of verification and maintenance, you typically store all data for a backup inside a single directory rather than scattered among different directories.

During a backup, the configuration parameters that are required for later stages (such as the restore operation) are recorded in the `backup-my.cnf` file that is generated in the backup directory. Only the minimal required parameters are stored in `backup-my.cnf`, to allow you to restore the backup to a different location without extensive changes to that file. For example, although the `innodb_data_home_dir` and `innodb_log_group_home_dir` options can go into `backup-my.cnf`, they are omitted when those values are the same as the `backup-dir` value.

4.2.1 Source Repository Parameters

The following parameters are supported in configuration files under the `[mysqlbackup]` group. The underscore characters in parameter names can be replaced with dashes and treated as synonyms, similar to `mysqld` parameters that use this same convention. (See Using Options on the Command Line in the MySQL Reference Manual for details.) The documentation typically lists the names with underscores, to match the output of the `SHOW VARIABLES` statement.

For information about how these options are specified for the MySQL server, click the option name to see the description in the MySQL Reference Manual.

datadir

This is the `datadir` value used by the MySQL instance. The `.frm` files live here inside subdirectories named after the databases inside the instance.

When a database connection exists, the value is retrieved automatically and overrides any value you specify. This is a crucial parameter for both the MySQL server and MySQL Enterprise Backup.

innodb_data_home_dir

Specifies dir where InnoDB data files live. Usually the same as `datadir`, but can be different.

This parameter, together with `innodb_data_file_path`, determines where the InnoDB data files such as `ibdata1`, `ibdata2`, and so on, are situated within the MySQL server.

Typically, you do not need to specify this option, because its value is retrieved automatically using the database connection.

Its value is derived as follows:

- If `innodb_data_home_dir` is not specified, it inherits the value of `datadir`.
- If `innodb_data_home_dir` is a relative path, that path is located relative to (that is, underneath) the `datadir` value.
- An `innodb_data_home_dir` of "" refers to the / root directory.
- If `innodb_data_home_dir` is an absolute path, its value is used as-is.

innodb_data_file_path

Specifies InnoDB data file names and sizes. Examples:
Backup Repository Parameters

\begin{verbatim}
ibdata1:32M;ibdata2:32M:autoextend
/abs/path/ibdata1:32M:autoextend
innodb-dir/ibdata1:32M:autoextend
\end{verbatim}

When a database connection exists, the value is retrieved automatically and overrides any value you specify.

This parameter together with innodb_data_home_dir determines where the InnoDB data files (such as \texttt{ibdata1}, \texttt{ibdata2}, and so on) live in server repository.

Typically, you do not need to specify this option, because its value is retrieved automatically using the database connection. If no database connection is available, you must specify it.

Whether the initial filename begins with a \texttt{/} character or not, the files are located relative to the innodb_data_home_dir value.

\textbf{innodb_log_group_home_dir} Specifies where InnoDB logs live within the server repository. Usually same as \texttt{datadir}, but can be different.

Its value is derived as follows:

- If \texttt{innodb_log_group_home_dir} is not specified, it inherits the value of \texttt{datadir}.
- If \texttt{innodb_log_group_home_dir} is a relative path, that path is located relative to (that is, underneath) the \texttt{datadir} value.
- If \texttt{innodb_log_group_home_dir} is an absolute path, its value is used as-is.

\textbf{innodb_log_files_in_group} Specifies the number of InnoDB log files before being rotated.

Typically, you do not need to specify this option, because its value is retrieved automatically using the database connection. If no database connection is available, you must specify it.

When a database connection exists, the value is retrieved automatically and overrides any value you specify.

\textbf{innodb_log_file_size} Specifies maximum single InnoDB log file size before switching to next log file. Example: 20M.

Typically, you do not need to specify this option, because its value is retrieved automatically using the database connection. If no database connection is available, you must specify it.

When a database connection exists, the value is retrieved automatically and overrides any value you specify.

\section*{4.2.2 Backup Repository Parameters}

The following parameters are supported in configuration files under the \texttt{[mysqlbackup]} group. The underscore characters in parameter names can be replaced with dashes and treated as synonyms, similar to \texttt{mysqld} parameters that use this same convention. (See \texttt{Using Options on the Command Line} in the
MySQL Reference Manual for details.) The documentation typically lists the names with underscores, to match the output of the `SHOW VARIABLES` statement.

The parameters marked as having "No Default" value are specified through `my.cnf` files, command-line parameters, or can be obtained automatically once the `mysqlbackup` command establishes a database connection.

backup_dir

The location under which backup destination files go. Typically retrieved automatically through the database connection. Must be specified if a database connection is not available. Same as the `--backup-dir` command-line option.

backup_innodb_data_home_dir

Specifies the directory where backup InnoDB data files live. Usually same as `backup-dir`, but can be different.

This parameter together with `backup_innodb_data_file_path` determines where the InnoDB data files (such as `ibdata1`, `ibdata2`, ...) are stored inside the backup directory structure.

This parameter is applicable only for backup operations, not restore.

For the backup operations (such as `backup`, `backup-and-apply-log`, `backup-to-image`), the value of the backup destination directory is derived as follows:

- If `backup_innodb_data_home_dir` is not specified, it inherits the value of `backup-dir`.
- If `backup_innodb_data_home_dir` is a relative path, that path is located relative to (that is, underneath) the `backup-dir` value.
- An `backup_innodb_data_home_dir` of "" refers to the / root directory.
- If `backup_innodb_data_home_dir` is an absolute path, its value is used as-is.

To make it easy to relocate the backup directory and avoid editing the `backup-my.cnf` file, the backup operation writes this value into `backup-my.cnf` only if it is different than the `backup-dir` value, and using a relative path if possible.

For `backup-to-image` operations, the final value of the `backup_innodb_data_home_dir` option must be a relative path, so that the single-file backup is machine-independent.

backup_innodb_data_file_path

Specifies InnoDB data file names and sizes. Examples:

```
ibdata1:32M;ibdata2:32M:autoextend
/abs/path/ibdata1:32M:autoextend
innodb-dir/ibdata1:32M:autoextend
```

This parameter together with `backup_innodb_data_home_dir` determines where the InnoDB data files (such as `ibdata1`, `ibdata2`, ...) live in the backup repository.
Backup Repository Parameters

Within the backup directory, any data files specified with relative paths are located relative to the `backup_dir` path. Any data files specified with absolute paths are placed inside the `backup_innodb_data_home` directory.

When the parameter is not specified, it inherits the value from the value of the `innodb_data_file_path` option. If both source and destination attempt to use an absolute path that resolve to the same files, the backup is cancelled.

To specify absolute paths for InnoDB datafiles in backup, you must also set the `backup_innodb_data_home` option to "".

`backup_innodb_log_group_home_dir` specifies where backup InnoDB logs live. Usually the same as `backup-dir`, but can be different.

The names of the log files are fixed and not reconfigurable.

This parameter is applicable only for backup operations (not restore).

The backup operation uses this value and writes it as `innodb_log_group_home_dir=value` in `backup-my.cnf`.

For `copy-back` and `apply-log` operations, `innodb_log_group_home_dir` in `backup-my.cnf` is treated in a way that is compatible with how it was created.

`backup_innodb_log_files_in_group` specifies the number of InnoDB log files in backup before being rotated.

Example: 5.

Usually same as `innodb_log_files_in_group`, but can be different.

The value for this parameter is derived as:

- Specified `backup_innodb_log_files_in_group` value from command line or configuration file.
- Else `innodb_log_files_in_group` value from the database connection, if available.
- Else the `innodb_log_files_in_group` value from the command line or configuration file.

`backup_innodb_log_file_size` specifies maximum single InnoDB log file size in backup before switching to next log file. Example: 20M.

Usually the same as `innodb_log_file_size`, but can be different.

The value for this parameter is derived as:

- Specified `backup_innodb_log_file_size` value from command line or configuration file.
- Else `innodb_log_file_size` value from database connection, if available.
Other Parameters

- Else specified `innodb_log_file_size` value from command line or configuration file.

incremental-backup-dir

Specifies backup destination directory for incremental backup. Default: No Default.

backup-image

Specifies the path for a single-file backup. Specifying any non-seekable device is also OK. The value `-` specifies standard output (stdout).

If the path is relative, it is interpreted relative to the `backup-dir` value. The extension `.mbi` extension that we use in documentation examples is not required.

4.2.3 Other Parameters

compress

Generates a compressed backup. Same as the `--compress` option.

compress-level

Specifies the level of compression, 0 (none) to 9 (maximum). Same as the `--compress-level` option.

only-innodb

Back up only InnoDB data and log files. Same as the `--only-innodb` option.

no-history-logging

Turns off the recording of backup progress and history in logging tables inside the backed-up database. Same as the `--no-history-logging` option.

no-locking

Disables locking during backup of non-InnoDB files, even if a connection is available. Same as the `--no-locking` option.

no-connection

Prohibits making a connection to the `mysqld` server, for compatibility with previous behavior of the `ibbackup` command. Same as the `--no-connection` option.

connect-if-online

Use the database connection if possible, but continue using file system operations to copy the data files if a connection cannot be established. Same as the `--connect-if-online` option.

include

Specifies the regular expression to do a partial backup, including certain InnoDB tables only. Same as the `--include` option.

with-timestamp

Creates a subdirectory underneath the backup directory, with a name formed from the timestamp of the backup operation. Same as the `--with-timestamp` option.

slave-info

Assists in setting up a new slave instance using a backup of the master. Same as the `--slave-info` option. Same as that of existing innobackup option.

databases=list

Space-separated list of non-InnoDB tables from selected databases to back up. Same as the `--databases` option.

databases-list-file=path

Specifies a file containing names of non-InnoDB tables from selected databases to back up. Same as the `--databases-list-file` option.

suspend-at-end

Pauses the backup so that you can code your own additional backup steps while the MySQL server is in a read-only state. Same as the `--suspend-at-end` option.
Other Parameters

- **exec-when-locked="utility arg1 arg2 ..."**
 Specifies the command to run while the MySQL server is in a read-only state and the backup is suspended. Same as the --exec-when-locked option.

- **incremental**
 Performs an incremental backup. Same as the --incremental option.

- **start-lsn**
 Specifies the starting point for an incremental backup, in terms of a logical sequence number value. Same as the --start-lsn option.

- **only-known-file-types**
 Limits copying of non-InnoDB files to a specific set of file extensions. Same as the --only-known-file-types option.

- **limit-memory=MB**
 Specify maximum memory in megabytes that can be used in the apply-log operation. Same as the --limit-memory option.

- **sleep=MS**
 Specify the number in milliseconds to sleep after copying a certain amount data. Same as the --sleep option.

- **comments=string**
 Stores a user-specified string to identify the backup. Same as the --comments option.

- **comments-file=path**
 Stores a user-specified file to identify the backup. Same as the --comments-file option.

- **src-entry=path**
 Identifies a file or directory to extract from a single-file backup. Same as the --src-entry option.

- **dst-entry=path**
 Specifies the destination for the file or directory extracted from a single-file backup. Same as the --dst-entry option.
Chapter 5 Recovering or Restoring a Database

Table of Contents

5.1 Preparing the Backup to be Restored .. 59
5.2 Performing a Restore Operation .. 60
5.3 Point-in-Time Recovery from a Hot Backup ... 61
5.4 Setting Up a New Replication Slave .. 61
5.5 Restoring a Master Database in Replication .. 62
5.6 Restoring a Single .ibd File ... 63
5.7 Restoring a Backup to a Different Database Version 64

The ultimate purpose of backup data is to help recover from a database issue, or to create a clone of the original database in another location (typically to run report queries or to create a new replication slave). This section describes the procedures to handle those various scenarios.

After a serious database issue, you might need to perform a recovery under severe time pressure. It is critical to confirm in advance:

• How long the recovery will take, including any steps to transfer, unpack, and otherwise process the data.

• That you have practiced and documented all steps of the recovery process, so that you can do it correctly in one try. If a hardware issue requires restoring the data to a different server, verify all privileges, storage capacity, and so on, on that server ahead of time.

• That you have periodically verified the accuracy and completeness of the backup data, so that the system will be up and running properly after being recovered.

5.1 Preparing the Backup to be Restored

Immediately after the backup job completes, the backup files might not be in a consistent state, because data could be inserted, updated, or deleted while the backup is running. These initial backup files are known as the raw backup.

You must update the backup files so that they reflect the state of the database corresponding to a specific InnoDB log sequence number. (The same kind of operation as crash recovery.) When this step is complete, these final files are known as the prepared backup.

During the backup, mysqlbackup copies the accumulated InnoDB log to a file called ibbackup_logfile. This log file is used to “roll forward” the backed-up data files, so that every page in the data files corresponds to the same log sequence number of the InnoDB log. This phase also creates new ib_logfiles that correspond to the data files.

The mysqlbackup option for turning a raw backup into a prepared backup is apply-log. You can run this step on the same database server where you did the backup, or transfer the raw backup files to a different system first, to limit the CPU and storage overhead on the database server.

Note

Since the apply-log operation does not modify any of the original files in the backup, nothing is lost if the operation fails for some reason (for example, insufficient disk space). After fixing the problem, you can safely retry apply-log.
Performing a Restore Operation

and by specifying the `--force` option, which allows the data and log files created by the failed `apply-log` operation to be overwritten.

For simple backups (without compression or incremental backup), you can combine the initial backup and the `apply-log` step using the option `backup-and-apply-log`.

Example 5.1 Applying the Log to a Backup

This example runs `mysqlbackup` to roll forward the data files so that the data is ready to be restored:

```
mysqlbackup --backup-dir=/export/backups/2011-06-21__8-36-58 apply-log
```

That command creates InnoDB log files (`ib_logfile*`) within the backup directory and applies log records to the InnoDB data files (`ibdata*` and `*.ibd`).

Example 5.2 Applying the Log to a Compressed Backup

If the backup is compressed, as in Section 3.3.3, "Making a Compressed Backup", specify the `--uncompress` option to `mysqlbackup` when applying the log to the backup:

```
mysqlbackup --backup-dir=/export/backups/compressed --uncompress apply-log
```

Example 5.3 Applying an Incremental Backup to a Full Backup

After you take an incremental backup, as in Section 3.3.2, “Making an Incremental Backup”, the changes reflected in those backup files must be applied to a full backup to bring the full backup up-to-date, in the same way that you apply changes from the binary log.

To bring the data files from the full backup up to date, first run the apply log step so that the data files include any changes that occurred while the full backup was running. Then apply the changes from the incremental backup to the data files produced by the full backup:

```
mysqlbackup --backup-dir=/export/backups/full apply-log
mysqlbackup --backup-dir=/export/backups/full \
  --incremental-backup-dir=/export/backups/incremental \
  apply-incremental-backup
```

Now the data files in the `full-backup` directory are fully up-to-date, as of the time of the incremental backup.

5.2 Performing a Restore Operation

As explained in Section 1.5, “Overview of Restoring a Database”, the `mysqlbackup` option to perform a restore operation is `copy-back`. It requires the database server to be already shut down, then copies the data files, logs, and other backed-up files from the backup directory back to their original locations, and performs any required postprocessing on them.

Example 5.4 Shutting Down and Restoring a Database

```
mysqladmin --defaults-file=/usr/local/mysql/my.cnf --user=root --password shutdown
mysqlbackup --defaults-file=/usr/local/mysql/my.cnf \
```

60
5.3 Point-in-Time Recovery from a Hot Backup

Using MySQL Enterprise Backup on its own, you can restore your data as it was at certain moments in time: every N hours, every day at 2 AM, and so on depending on your backup schedule. To reproduce data based on an arbitrary time somewhere in between backup jobs, you can use MySQL Enterprise Backup in combination with the MySQL binary log feature.

To recover the database to a specific point in time:

- Binary logging must be enabled in MySQL, before taking the backup that serves as the base for this restore operation.

- Find the binlog position that corresponds to the time of the backup. InnoDB only stores the binlog position information to its tablespace at a transaction commit. To make InnoDB aware of the current binlog position, you must run at least one transaction while binlogging is enabled. When you run the apply-log operation on your backup, `mysqlbackup` prints the latest MySQL binlog position the backup knows of. Also, `mysqld` prints it when you start it on the restored data:

  ```
  $ mysqld --defaults-file=/export/mysql/my.cnf
  040122 15:41:57  InnoDB: Database was not shut down normally!
  InnoDB: Starting crash recovery.
  ...
  InnoDB: Last MySQL binlog file position 0 27183537, file name ./binlog.000005
  ...
  mysqld: ready for connections.
  
  The MySQL version must be >= 5.1.
  
  The printed position is the MySQL binlog byte position from the moment when MySQL Enterprise Backup finished copying your data files.

- Use the `mysqlbinlog` to dump all the SQL activity that happened after the binlog position of the backup. Direct the output of the `mysqlbinlog` command to an output file, instead of piping it directly to `mysql`. This output file contains timestamps for all SQL statements in the binlog:

  ```
 $ mysqlbinlog --start-position=27183537 /sqldata/binlog.000005 >partial_binlog

 • In an editor, remove all statements after the point in time to which you intend to restore.

 • Replay the SQL statements to update the backup data with the same operations that happened after the backup. Process the modified file with `mysql`, like this:

  ```
  $ mysql < partial_binlog
  
  • To recover the database to the latest possible time, skip the steps of saving the `mysqlbinlog` output in a file and removing recent SQL statements from it. Pipe the output from `mysqlbinlog` directly to `mysql` to replay all the SQL statements after the last backup.

5.4 Setting Up a New Replication Slave

If you use MySQL replication, MySQL Enterprise Backup allows you to set up a slave database without stopping the master, by backing up the master and restoring that backup on a new slave server.
1. Take the backup, transfer it to the slave server, use `mysqlbackup` with the `apply-log` option to prepare it, and put the restored backup and the log files in the right directories for the new slave.

2. Edit the `my.cnf` file of the new slave and put `skip-slave-start` under the `[mysqld]` section.

3. Start the new slave `mysqld` (version >= 5.1). It prints the latest MySQL binlog position the backup knows of.

   ```
 InnoDB: Last MySQL binlog file position 0 128760128, file name ./hundin-bin.006
 ...
   ```

   Note that InnoDB only stores the binlog position information to its tablespace at a transaction commit. To make InnoDB aware of the current binlog position, you must run at least one transaction while binlogging is enabled.

4. Use the `CHANGE MASTER` SQL command on the slave to initialize it properly. For example:

   ```
 CHANGE MASTER TO
 MASTER_LOG_FILE='hundin-bin.006',
 MASTER_LOG_POS=128760128;
   ```

5. Set the statuses of any events that were copied from the master to ` SLAVESIDE_DISABLED`. For example:

   ```
 mysql> UPDATE TABLE mysql.event SET status = 'SLAVESIDE_DISABLED';
   ```

6. Start replication in the new slave with the `SLAVE START` SQL command.

7. Remove the line `skip-slave-start` from the `my.cnf` file of the slave.

### 5.5 Restoring a Master Database in Replication

To fix a corruption problem in a replication master database, you can restore the backup, taking care not to propagate unnecessary SQL operations to the slave servers:

1. Using the backup of the master database, do the `apply-log` operation, shut down the database, and do the `copy-back` operation.

2. Edit the master `my.cnf` file and comment out `log-bin`, so that the slaves do not receive twice the binlog needed to recover the master.

3. Replication in the slaves must be stopped temporarily while you pipe the binlog to the master. In the slaves, do:

   ```
 mysql> STOP SLAVE;
   ```

4. Start the master `mysqld` on the restored backup:

   ```
 $ mysqld
 ...
 InnoDB: Doing recovery: scanned up to log sequence number 0 64300044
 InnoDB: Last MySQL binlog file position 0 5585832, file name
 ./onnibook-bin.002
 ...
   ```

   InnoDB printed the binlog file and position it was able to recover to.
5. Now pipe the remaining binlog files to the restored backup:

```bash
$ mysqlbinlog --start-position=5585832 mysql_datadir/omnibook-bin.002 | mysql
$ mysqlbinlog /mysql_datadir/omnibook-bin.003 | mysql
```

6. The master database is now recovered. Shut down the master and edit `my.cnf` to uncomment `log-bin`.

7. Start the master again.

8. Start replication in the slaves again:

```bash
mysql> START SLAVE;
```

### 5.6 Restoring a Single `.ibd` File

A table with a table-specific tablespace (stored in an `.ibd` file) can be restored individually without taking down the MySQL server. If you have a clean backup of an `.ibd` file, you can restore it to the MySQL installation from which it originated as follows:

1. The table must already exist and not have been dropped or truncated since taking the backup. When an InnoDB table is truncated, or dropped and recreated, it gets a new table ID. Any ID mismatch between the table in the database and the backed-up table can prevent it from being restored. The requirement for matching table IDs is also the reason why you must restore to the same MySQL server from which the backup data came, not another server with a similar set of databases and tables.

2. Prevent write operations for the table to be restored. This prevents users from modifying the table while the restore is in progress.

   ```sql
 LOCK TABLES tbl_name WRITE;
   ```

3. Issue this `ALTER TABLE` statement:

   ```sql
 ALTER TABLE tbl_name DISCARD TABLESPACE;
   ```

   Caution: This deletes the current `.ibd` file.

4. Copy the backup `.ibd` file back to the appropriate database directory.

5. Issue this `ALTER TABLE` statement:

   ```sql
 ALTER TABLE tbl_name IMPORT TABLESPACE;
   ```

6. Release the write lock to complete the restore procedure:

   ```sql
 UNLOCK TABLES;
   ```

In this context, a clean `.ibd` file backup means:

- There are no uncommitted modifications by transactions in the `.ibd` file.
- There are no unmerged insert buffer entries in the `.ibd` file.
- Purge has removed all delete-marked index records from the `.ibd` file.
**5.7 Restoring a Backup to a Different Database Version**

You can back up a server running one MySQL version, and restore on a server running a different MySQL version. After the restore, perform the appropriate upgrade steps as if you were running the new MySQL version for the first time. (Or, if you installed on a server running an older MySQL, perform the appropriate downgrade steps.) For information about upgrading and downgrading after doing the restore, see [Upgrading MySQL](https://dev.mysql.com/doc/refman/8.0/en/upgrading.html) and [Downgrading MySQL](https://dev.mysql.com/doc/refman/8.0/en/downgrading.html).

**Note**

After upgrading between certain combinations of MySQL versions, you might see error messages about missing or mismatching definitions for system tables. Use the `mysql_upgrade` command as directed in the upgrade instructions to correct such issues. See [mysql_upgrade — Check and Upgrade MySQL Tables](https://dev.mysql.com/doc/refman/8.0/en/mysql-upgrade.html) for instructions on this command.

**Example 5.5 Steps to Back Up on MySQL 5.1 and Restore on MySQL 5.5**

- Back up on MySQL 5.1.
- Install MySQL 5.5.
- Restore on MySQL 5.5.
- Run `upgrade steps` as documented in the MySQL reference manual.
- Check data.
Chapter 6 Troubleshooting for MySQL Enterprise Backup

Table of Contents

6.1 Monitoring Backups with MySQL Enterprise Monitor .......................................................... 65
6.2 Error codes of MySQL Enterprise Backup ............................................................................ 65
6.3 Working Around Corruption Problems .................................................................................. 67
6.4 Using the MySQL Enterprise Backup Logs ......................................................................... 68
6.5 Using the MySQL Enterprise Backup Manifest .................................................................. 70

To troubleshoot issues regarding backup and restore with the MySQL Enterprise Backup product, consider the following aspects:

• If the mysqlbackup command encounters problems during operating system calls, it returns the corresponding OS error codes. You might need to consult your operating system documentation for the meaning and solution of these error codes.

• Incremental backups require care to specify a sequence of time periods. You must record the final LSN value at the end of each backup, and specify that value in the next incremental backup. You must also make sure that the full backup you restore is prepared correctly first, so that it contains all the changes from the sequence of incremental backups.

• As the mysqlbackup command proceeds, it writes progress information into the mysql.backup_progress table. When the command finishes the backup operation, it records status information in the mysql.backup_history table. You can query these tables to monitor ongoing jobs, see how much time was needed for various stages, and check if any errors occurred.

6.1 Monitoring Backups with MySQL Enterprise Monitor

With the combination of the MySQL Enterprise Backup and MySQL Enterprise Monitor products, you can monitor the progress and history of backup jobs without writing your own queries or scripts:

• The MySQL Enterprise Monitor graphs Backup Run Time and Backup Locked Time chart how long the phases of backup jobs take.

• The MySQL Enterprise Monitor rules MySQL Enterprise Backup Failed, MySQL Enterprise Backup Succeeded, MySQL Enterprise Backup Lock Time Excessive, Incremental MySQL Enterprise Backups Not Enabled, and Last Full MySQL Enterprise Backup Too Old alert you to issues related to backup jobs.

The monitoring capability requires MySQL Enterprise Backup 3.5.3 and higher, and MySQL Enterprise Monitor 2.3.4 and higher. For information about these MySQL Enterprise Monitor features, see the MySQL Enterprise Monitor User’s Guide.

6.2 Error codes of MySQL Enterprise Backup

The return code of the MySQL Enterprise Backup (mysqlbackup) process is 0 if the backup or restore run succeeds. If the run fails for any reason, the return code is set to the OS error code.

If mysqlbackup fails, because an operating system call fails, mysqlbackup usually displays the operating systems error code along with a detailed error message.

On Linux and other Unix-like systems, the operating system error codes are POSIX error codes. Those POSIX error codes that are possible with mysqlbackup are shown in Table 6.1, “OS Errors for Linux.
and other Unix-Like Systems”. A complete list of all POSIX errors is available in the file `/usr/include/errno.h` on your system.

### Table 6.1 OS Errors for Linux and other Unix-Like Systems

<table>
<thead>
<tr>
<th>Error code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPERM</td>
<td>1</td>
<td>Operation not permitted</td>
</tr>
<tr>
<td>ENOENT</td>
<td>2</td>
<td>No such file or directory</td>
</tr>
<tr>
<td>ESRCH</td>
<td>3</td>
<td>No such process</td>
</tr>
<tr>
<td>EINTR</td>
<td>4</td>
<td>Interrupted system call</td>
</tr>
<tr>
<td>EIO</td>
<td>5</td>
<td>I/O error</td>
</tr>
<tr>
<td>ENXIO</td>
<td>6</td>
<td>No such device or address</td>
</tr>
<tr>
<td>EBADF</td>
<td>9</td>
<td>Bad file number</td>
</tr>
<tr>
<td>EAGAIN</td>
<td>11</td>
<td>Try again</td>
</tr>
<tr>
<td>ENOMEM</td>
<td>12</td>
<td>Out of memory</td>
</tr>
<tr>
<td>EACCESS</td>
<td>13</td>
<td>Permission denied</td>
</tr>
<tr>
<td>EBUSY</td>
<td>16</td>
<td>Device or resource busy</td>
</tr>
<tr>
<td>EEXIST</td>
<td>17</td>
<td>File exists</td>
</tr>
<tr>
<td>ENODEV</td>
<td>19</td>
<td>No such device</td>
</tr>
<tr>
<td>ENOTDIR</td>
<td>20</td>
<td>Not a directory</td>
</tr>
<tr>
<td>EMFILE</td>
<td>24</td>
<td>Too many open files</td>
</tr>
<tr>
<td>EFBIG</td>
<td>27</td>
<td>File too large</td>
</tr>
<tr>
<td>ENOSPC</td>
<td>28</td>
<td>No space left on device</td>
</tr>
<tr>
<td>EROFS</td>
<td>30</td>
<td>Read-only file system</td>
</tr>
<tr>
<td>ENAMETOOLONG</td>
<td>36</td>
<td>File name too long</td>
</tr>
<tr>
<td>ENODATA</td>
<td>61</td>
<td>No data available</td>
</tr>
<tr>
<td>ETIME</td>
<td>62</td>
<td>Timer expired</td>
</tr>
<tr>
<td>EBADFD</td>
<td>77</td>
<td>File descriptor in bad state</td>
</tr>
<tr>
<td>EDQUOT</td>
<td>122</td>
<td>Quota exceeded</td>
</tr>
</tbody>
</table>


### Table 6.2 OS Errors for Windows Systems

<table>
<thead>
<tr>
<th>Error code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR_SUCCESS</td>
<td>0</td>
<td>The operation completed successfully.</td>
</tr>
<tr>
<td>ERROR_FILE_NOT_FOUND</td>
<td>2</td>
<td>The system cannot find the file specified.</td>
</tr>
<tr>
<td>ERROR_PATH_NOT_FOUND</td>
<td>3</td>
<td>The system cannot find the path specified.</td>
</tr>
<tr>
<td>ERROR_TOO_MANY_OPEN_FILES</td>
<td>4</td>
<td>The system cannot open the file.</td>
</tr>
</tbody>
</table>
### Error Codes and Descriptions

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR_ACCESS_DENIED</td>
<td>5</td>
<td>Access is denied.</td>
</tr>
<tr>
<td>ERROR_NOT_ENOUGH_MEMORY</td>
<td>8</td>
<td>Not enough storage is available to process this command.</td>
</tr>
<tr>
<td>ERROR_OUTOFMEMORY</td>
<td>14</td>
<td>Not enough storage is available to complete this operation.</td>
</tr>
<tr>
<td>ERROR_INVALID_DRIVE</td>
<td>15</td>
<td>The system cannot find the drive specified.</td>
</tr>
<tr>
<td>ERROR_WRITE_PROTECT</td>
<td>19</td>
<td>The media is write protected.</td>
</tr>
<tr>
<td>ERROR_BAD_UNIT</td>
<td>20</td>
<td>The system cannot find the device specified.</td>
</tr>
<tr>
<td>ERROR_NOT_READY</td>
<td>21</td>
<td>The device is not ready.</td>
</tr>
<tr>
<td>ERROR_SEEK</td>
<td>25</td>
<td>The drive cannot locate a specific area or track on the disk.</td>
</tr>
<tr>
<td>ERROR_WRITE_FAULT</td>
<td>29</td>
<td>The system cannot write to the specified device.</td>
</tr>
<tr>
<td>ERROR_READ_FAULT</td>
<td>30</td>
<td>The system cannot read from the specified device.</td>
</tr>
<tr>
<td>ERROR_GEN_FAILURE</td>
<td>31</td>
<td>A device attached to the system is not functioning.</td>
</tr>
<tr>
<td>ERROR_HANDLE_DISK_FULL</td>
<td>39</td>
<td>The disk is full.</td>
</tr>
<tr>
<td>ERROR_BAD_NETPATH</td>
<td>53</td>
<td>The network path was not found.</td>
</tr>
<tr>
<td>ERROR_DEV_NOT_EXIST</td>
<td>55</td>
<td>The specified network resource or device is no longer available.</td>
</tr>
<tr>
<td>ERROR_FILE_EXISTS</td>
<td>80</td>
<td>The file exists.</td>
</tr>
</tbody>
</table>

### 6.3 Working Around Corruption Problems

Sometimes the operating system or the hardware can corrupt a data file page, in a location that does not cause a database error, but prevents `mysqlbackup` from completing:

`mysqlbackup: Re-reading page at offset 0 3185082368 in /sqldata/mts/ibdata15
bbackup: Re-reading page at offset 0 3185082368 in /sqldata/mts/ibdata15
bbackup: Error: page at offset 0 3185082368 in /sqldata/mts/ibdata15 seems corrupt!`

Scrambled data in memory can produce this error, even though the data on disk is correct. Reboot the database server and storage device to see if the problem persists.

If the data really is corrupt on disk, you can restore from an earlier backup and “roll forward” the recent changes to bring the database back to its current state.

To make an additional backup before investigating the cause of the corruption, you can compile and run a troubleshooting utility, `innodb_page_checksum_reset.c`, to reset the LSN and checksum fields in one data page, so that `mysqlbackup` can complete the backup.

**Download** `innodb_page_checksum_reset.c`.

The sample program resets page 22357 in a datafile `ibdata1`. Edit these values according to the values in your error message.
To compile on Linux:

```bash
$ gcc -o ibreset innodb_page_checksum_reset.c
```

If your data file is larger than 2 GB, compile with large file support:

```bash
$ gcc -D_XOPEN_SOURCE=600 D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -o ibreset \
innodb_page_checksum_reset.c
```

The command produces an executable file called `ibreset`.

**IMPORTANT:** Do not treat corruption problems as a minor annoyance. Find out what is wrong with the OS or the hardware that causes corrupt pages to appear. (Such troubleshooting is beyond the scope of this manual.)

## 6.4 Using the MySQL Enterprise Backup Logs

The `mysql.backup_progress` table lets you monitor backup jobs as they run. The `mysql.backup_history` table lets you see the results of completed jobs. Because these tables are created with the CSV storage engine, you can query them from SQL, or parse the text files from an application or script.

To skip updating these tables for a backup operation, use the `--no-history-logging` option.

### backup_progress Table

Each row in the `backup_progress` table records a state change or message from a running backup job. The `backup_progress` table has the following columns:

- **backup_id**
- **tool_name**
- **error_code**
- **error_message**
- **current_time**
- **current_state**

Because the CSV storage engine cannot represent NULL values directly, the logs use a -1 value instead, for example in the `binlog_pos` column if binary logging is not enabled.

Use the `backup_id` value to group together the information for a single backup operation, and to correlate with the corresponding row in the `backup_history` table after the job is finished.

Use the `error_code` and `error_message` values to track the progress of the job, and detect if a serious error occurs that requires stopping the backup operation.

Use the `current_time` and `current_state` values to measure how long each part of the backup operation takes, to help with planning the time intervals for future backups.

### backup_history Table

Each row in the `backup_history` table records the details of one completed backup job, produced by the `mysqlbackup` command. The `backup_history` table has the following columns:
Use the `end_lsn` value to automate operations related to incremental backups. When you take a full or incremental backup, you specify the end LSN from that backup as the starting LSN for the next incremental backup.

Use the values that correspond to backup-related configuration settings, such as `mysql_data_dir`, `innodb_data_home_dir`, and `backup_destination`, to confirm that the backups are using the right source and destination directories.

Use the values `exit_state`, `last_error`, and `last_error_code` to evaluate the success or failure of each backup.

If `last_error` is 'NO_ERROR', the backup operation was successful. In case of any errors, you can retrieve the full list of errors for that backup operation from the `backup_progress` table.
6.5 Using the MySQL Enterprise Backup Manifest

Each backup directory includes some files in the meta subdirectory that detail how the backup was produced, and what files it contains. The files containing this information are known collectively as the manifest.

mysqlbackup produces these files for use by database management tools; it does not consult or modify the manifest files after creating them. Management tools can use the manifest during diagnosis and troubleshooting procedures, for example where the original MySQL instance has been lost entirely and the recovery process is more substantial than copying files back to a working MySQL server.

The files in the manifest include:

- **backup_create.xml**: information about the backup operation.

- **backup_content.xml**: information about the files in the backup. This information is only complete and consistent when the backup operation succeeds. The contents of this file might be expanded in the future. A management tool might use this information to confirm which tables are part of a full backup, or a partial backup performed with the --databases option. (The information is not present for partial backups taken with the --include, --incremental, or --only-innodb options.) A management tool might compare the checksum recorded in the manifest for a single-file backup, against the checksum for the file after the single-file backup is unpacked.

- **image_files.xml**: information about the files in a single-file backup. (Only produced for backups taken with the backup-to-image and backup-dir-to-image options.) A management tool might use the paths recorded in this file to plan or automate the unpacking of a single-file backup using the image-to-backup-dir or extract options, or to remap the paths of extracted files with the --src-entry and --dst-entry options.
Part III Appendixes
# Table of Contents

A MySQL Enterprise Backup Limitations ................................................................. 75  
A.1 Limitations of `mysqlbackup` Command ......................................................... 75  
B Compatibility Information for MySQL Enterprise Backup Releases and InnoDB Hot Backup .................................................. 77  
B.1 Compatibility with Older MySQL or InnoDB Versions ........................................ 77  
B.2 Compatibility of Backup Data with Other MySQL Enterprise Backup Versions ........... 77  
B.3 Expanded Use of Configuration Files .............................................................. 77  
B.4 Relative and Absolute Paths .............................................................................. 78  
B.5 New and Changed Options in MySQL Enterprise Backup 3.6 ................................. 78  
B.6 Comparison of MySQL Enterprise Backup and InnoDB Hot Backup ....................... 79  
B.7 `ibbackup` and `innobackup` Commands ............................................................ 80  
C Extended Examples ............................................................................................... 83  
C.1 Sample Directory Structure for Full Backup ..................................................... 83  
C.2 Sample Directory Structure for Compressed Backup .......................................... 87  
C.3 Sample Directory Structure for Incremental Backup ........................................ 87  
D MySQL Enterprise Backup Change History ......................................................... 89  
D.1 Changes in MySQL Enterprise Backup 3.6.1 (2011-09-28) ................................... 89  
D.2 Changes in MySQL Enterprise Backup 3.6.0 (2011-07-01) .................................. 90  
D.3 Changes in MySQL Enterprise Backup 3.5.4 (2011-04-21) .................................. 91  
D.4 Changes in MySQL Enterprise Backup 3.5.2 (2010-12-16) .................................. 92  
D.5 Changes in MySQL Enterprise Backup 3.5.1 (2010-11-01) .................................. 92  
E Licenses for Third-Party Components ................................................................. 95  
E.1 RegEX-Spencer Library License ........................................................................... 95  
E.2 zlib License ....................................................................................................... 95  
E.3 Percona Multiple I/O Threads Patch License ..................................................... 96  
E.4 Google SMP Patch License ............................................................................... 96  
E.5 Google Controlling Master Thread I/O Rate Patch License ................................... 97  
E.6 RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License .................................... 98  
MySQL Enterprise Backup Glossary ....................................................................... 99
Appendix A MySQL Enterprise Backup Limitations

Table of Contents

A.1 Limitations of mysqlbackup Command ......................................................... 75

Please refer to the MySQL Enterprise Backup version history in Appendix D, MySQL Enterprise Backup Change History for a list of fixed mysqlbackup bugs.

A.1 Limitations of mysqlbackup Command

• When restoring an individual InnoDB table, as described in Section 5.6, “Restoring a Single .ibd File”, the table must not have been dropped or truncated in the MySQL server after the backup. Dropping or truncating an InnoDB table changes its internal table ID, and when the table is re-created the ID will not match the table ID from the backup data.

• In Linux, Unix, and OS X systems, the mysqlbackup command does not record file ownership or permissions of the files that are backed up. Upon restore, these files might have different ownership, for example being owned by root rather than mysql. They might also have different read/write permissions, for example being readable by anyone rather than just the file owner. When planning your backup strategy, survey the files in the MySQL data directory to ensure they have consistent owner and permission settings. When executing a restore operation, use an appropriate combination of su, umask, chown, and chmod on the restored files to set up the same owners and privileges as on the original files.

• In some cases, backups of non-transactional tables such as MyISAM tables could contain additional uncommitted data. If autocommit is turned off, and both InnoDB tables and non-transactional tables are modified within the same transaction, data can be written to the non-transactional table before the binlog position is updated. The binlog position is updated when the transaction is committed, but the non-transactional data is written immediately. If the backup occurs while such a transaction is open, the backup data contains the updates made to the non-transactional table.

• If the mysqlbackup process is interrupted, such as by a Unix kill -9 command, a FLUSH TABLES WITH READ LOCK operation might remain running. In this case, use the KILL QUERY statement from the mysql command line to kill the FLUSH TABLES WITH READ LOCK statement. This issue is more likely to occur if the FLUSH TABLES operation is stalled by a long-running query or transaction. Refer to Chapter 4, mysqlbackup Command Reference for guidelines about backup timing and performance.

• Do not run the DDL operations ALTER TABLE, TRUNCATE TABLE, OPTIMIZE TABLE, REPAIR TABLE, or RESTORE TABLE while a backup operation is going on. The resulting backup might be corrupted.

  The only ALTER TABLE operations that can be safely run in parallel with a backup are those that do not influence the physical representation of records on disk, such as changing column names or default column values.

• The maximum number of subdirectories allowed in the --backup-dir path is 21. This limit could be exceeded by a deeply nested backup directory, or by an anomalous condition such as symbolic links forming an infinite recursive path.

• If you take a backup when there are temporary tables in the database, and you use those temporary tables to update or insert into normal tables, then applying the MySQL binlog to a backup can fail. That is, you might not be able to roll forward the backup to a particular point in time using the MySQL binlog. Temporary tables are not copied to the backup because the physical filenames #sql*.frm do not correspond to the logical table names that MySQL writes to the binlog. This problem might be removed in the future, if MySQL implements “row-level binlogging”.


• Currently, if the regular expression for the --include option does not match any table names, all file-per-table tables are included in the backup.
Appendix B Compatibility Information for MySQL Enterprise Backup Releases and InnoDB Hot Backup

Table of Contents

B.1 Compatibility with Older MySQL or InnoDB Versions ................................................................. 77
B.2 Compatibility of Backup Data with Other MySQL Enterprise Backup Versions .............................. 77
B.3 Expanded Use of Configuration Files .............................................................................................. 77
B.4 Relative and Absolute Paths ........................................................................................................... 78
B.5 New and Changed Options in MySQL Enterprise Backup 3.6 .......................................................... 78
B.6 Comparison of MySQL Enterprise Backup and InnoDB Hot Backup ............................................... 79
B.7 ibbackup and innobackup Commands ............................................................................................... 80

This section describes changes to options and procedures in MySQL Enterprise Backup 3.6, for users migrating from the innobackup and ibbackup commands available in the MySQL Enterprise Backup 3.5 and InnoDB Hot Backup products.

B.1 Compatibility with Older MySQL or InnoDB Versions

From time to time, changes are made to the format of MySQL data and log files. These changes can make older MySQL Enterprise Backup versions incompatible with the new MySQL version.

Currently, these are the major MySQL/InnoDB versions: 3.23 (first released in May 12, 2001), 4.0 (December 23, 2001), 4.1 (April 3, 2003), 5.0 (December 24, 2003), 5.1 (November 29, 2005), and 5.5 (December 15, 2010).

MySQL Enterprise Backup 3.6 is compatible with MySQL/InnoDB version 5.0 and up.

MySQL Enterprise Backup 3.5 is compatible with MySQL/InnoDB version 5.0 and up.

IMPORTANT: Backing up tables using the Barracuda file format, which is available with the combination of MySQL and the InnoDB Plugin, requires MySQL Enterprise Backup 3.5 or newer.

For MySQL versions prior to 5.0, the corresponding backup product is the InnoDB Hot Backup product, which is the ancestor of MySQL Enterprise Backup. InnoDB Hot Backup continues to be compatible with MySQL 5.0, 5.1, and 5.5, with the exception of InnoDB tables in the Barracuda format. For compatibility information, see the InnoDB Hot Backup documentation.

B.2 Compatibility of Backup Data with Other MySQL Enterprise Backup Versions

Backups produced with any 3.x version of MySQL Enterprise Backup can be restored using any higher MySQL Enterprise Backup version.

To restore a MySQL Enterprise Backup 3.6 backup using MySQL Enterprise Backup 3.5, copy the files and directories from the datadir subdirectory of the backup into the main backup directory. MySQL Enterprise Backup 3.5 expects the files to restore to be at the top level of the backup directory.

B.3 Expanded Use of Configuration Files

In MySQL Enterprise Backup 3.5 and earlier, only a limited set of configuration parameters were recognized in the my.cnf file, and the backup commands required the paths to one or two configuration
files as command-line parameters. In MySQL Enterprise Backup 3.6 and higher, many more parameters
are recognized from the configuration file, and the configuration file is automatically located using the
same mechanism as the `mysqld` server. For example, connection settings for the database can now
be read from the configuration file rather than specified as command-line parameters. Settings such as
innodb_data_home_dir are now determined from the database connection, rather than required to be
specified in the configuration file. Because of the enhanced processing of configuration files and additional
command-line options, the second configuration file used by the former `ibbackup` command is no longer
needed.

B.4 Relative and Absolute Paths

Prior to MySQL Enterprise Backup 3.6, all file specifications for backup and restore used absolute paths.
In MySQL Enterprise Backup 3.6 and higher, you can specify a top-level directory for backups, and the
backup process constructs relative paths underneath that directory.

B.5 New and Changed Options in MySQL Enterprise Backup 3.6

<table>
<thead>
<tr>
<th>Old Option</th>
<th>New Option</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--lsn=LSN</code></td>
<td><code>--start-lsn=LSN</code></td>
<td>The option name is changed for clarity.</td>
</tr>
<tr>
<td><code>--use-memory=MB</code></td>
<td><code>--limit-memory=MB</code></td>
<td>The option name is changed for clarity.</td>
</tr>
</tbody>
</table>
| `--compress[=LEVEL]`     | `--compress` and `--compress-
level=LEVEL`                        | The former single option is split into two, with an explicit option to
enable compression.                                                   |
| `--no-timestamp`         | `--with-timestamp`                | The default is reversed: no timestamp subdirectory is created.        |
|                          |                                   | To preserve the former behavior, specify `--with-timestamp` to put the backup data in a subdirectory named based on the backup timestamp. |
| `--backup-dir=PATH`      |                                   | New option.                                                           |
| `--backup-image=IMAGE`   |                                   | New option.                                                           |
| `--only-innodb`          |                                   | New option.                                                           |
| `--no-history-logging`   |                                   | New option.                                                           |
| `--no-connection [43]`   |                                   | New option.                                                           |
| `--connect-if-online [43]` |                                | New option.                                                           |
| `--no-locking`           |                                   | New option.                                                           |
| `--databases-list-
file=LIST` |                                   | New option.                                                           |
| `--comments`             |                                   | New option.                                                           |
| `--comments-file=PATH`   |                                   | New option.                                                           |
| `--copy-back`            | `copy-back`                       | This option is promoted to a mode of operation. Instead of specifying a configuration file and
Comparison of MySQL Enterprise Backup and InnoDB Hot Backup

<table>
<thead>
<tr>
<th>Old Option</th>
<th>New Option</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a path to the backup data, now you specify the location of the backup data with the --backup-dir option, and the configuration parameters are read from your default configuration file.</td>
<td></td>
</tr>
<tr>
<td>--apply-log</td>
<td>apply-log</td>
<td>This option is promoted to a mode of operation. Instead of specifying a configuration file, now you specify the location of the backup data with the --backup-dir option, and the configuration parameters are read from the backup-my.cnf configuration file that mysqlbackup creates in that directory.</td>
</tr>
<tr>
<td>--apply-log --incremental</td>
<td>apply-incremental-backup</td>
<td>This former combination of options is promoted to a mode of operation. Instead of supplying the paths of two user-created configuration files, you specify the location of the incremental and full backup directories with the --incremental-backup-dir and --backup-dir options. The configuration parameters are read from the backup-my.cnf files that mysqlbackup creates in those directories.</td>
</tr>
</tbody>
</table>

B.6 Comparison of MySQL Enterprise Backup and InnoDB Hot Backup

In terms of features, the MySQL Enterprise Backup product is a superset of the InnoDB Hot Backup product that it supersedes:

- The `mysqlbackup` command, a cross-platform replacement for the `innobackup` command, is now available on Windows. Windows users can back up tables from other storage engines besides InnoDB, such as MyISAM tables, without writing their own wrapper scripts.

- The `mysqlbackup` command now includes all the capabilities of the former `ibbackup` command, making that command obsolete.

This documentation refers to the `mysqlbackup` command exclusively.

- The `mysqlbackup` command is a C program connecting to the server through the MySQL API, rather than a Perl script that runs the `mysql` command. Because it does not run the actual `mysql` command, it does not support the `--mysql-extra-args` option of the `innobackup`, but otherwise the syntax is compatible.

If this implementation change presents any issues for former users of the InnoDB Hot Backup product (for example, if you customized the `innobackup` script or relied on specific `mysqld` options... |
passed through the `--mysql-extra-args` option), please submit requirements against the new `mysqlbackup` command.

- Currently, the old `ibbackup` and `innobackup` commands are still supplied as aliases or copies of the `mysqlbackup` command. When `mysqlbackup` is run under these names, it accepts the same old option syntax from those commands. This backward compatibility is for troubleshooting in case of upgrade issues as you transition to the `mysqlbackup` command.

- Backups produced by the InnoDB Hot Backup product can be restored by the MySQL Enterprise Backup product.

- The streaming backup feature is new to MySQL Enterprise Backup.

- The single-file backup feature is new to MySQL Enterprise Backup.

- The incremental backup feature is new to MySQL Enterprise Backup.

- Support for the Barracuda file format is new to MySQL Enterprise Backup. Once you upgrade your database servers to MySQL 5.1 with the InnoDB Plugin, or MySQL 5.5 and higher where support for the new file format is built in, you need to use MySQL Enterprise Backup to ensure you can back up all InnoDB tables.

- The MySQL Enterprise Backup product includes some new performance optimizations, such as the `posix_fadvise()` system call.

- A new logging capability records the progress of running backup jobs, and historical details for completed backup jobs. For details, see Section 6.4, “Using the MySQL Enterprise Backup Logs”.

- The `mysqlbackup` command has extra flexibility for specifying the MySQL connection information. It can read the user, password, port and socket options from the `[client]` group of your default or user-specified configuration file. If you supply the `--password` option without an argument, you are prompted to enter the password interactively.

- The optimization within the `ibbackup` command that skipped copying unused space within InnoDB tablespace files, is available within `mysqlbackup` only in combination with the `--compressed` option. Use compressed backups if this storage overhead is significant for your data.

### B.7 `ibbackup` and `innobackup` Commands

For convenience while upgrading to the latest `mysqlbackup` syntax, you can use the previous `ibbackup` and `innobackup` command names and syntax. When the `mysqlbackup` command is run under one of those other names, either through a symbolic link or by copying the executable file to a new filename, it supports the same option syntax, output filenames, and other behavior as in MySQL Enterprise Backup 3.5. These alternative command names are included in the MySQL Enterprise Backup installation, using the appropriate mechanism for each operating system. For information about the older command names and option syntax, see MySQL Enterprise Backup User's Guide (Version 3.5.4).

---

**Important**

We strongly advise our customers to upgrade to the new `mysqlbackup` syntax. We intend to deprecate the old `ibbackup` and `innobackup` syntax soon.

**Example B.1 Simple Backup Emulating `ibbackup` Behavior**

If you have older scripts that use the `ibbackup` command with 2 configuration files specified on the command line, a corresponding `mysqlbackup` command looks like:
**ibbackup and innobackup Commands**

```mysql
mysqlbackup --only-innodb --no-connection --backup-dir=/path/to/backup backup
```

The above command does not back up `.frm` and MyISAM files as `ibbackup` does.

The `my.cnf` must include 6 essential parameters in the `[mysqld]` section or in the `[mysqlbackup]` section. For example, the `my.cnf` might look like:

```ini
[mysqld]
datadir = /backup/mysql
innodb_data_file_path = ibdata1:256M;ibdata2:256M:autoextend
innodb_log_group_home_dir = /backup/mysql/innodb/log
innodb_data_home_dir = /backup/mysql/innodb/data
innodb_log_file_size = 256M
innodb_log_files_in_group = 3

[mysqlbackup]
backup_innodb_log_group_home_dir = /backup/mysql/innodb/log [Optional]
backup_innodb_data_file_path = ibdata1:256M;ibdata2:256M:autoextend [Optional]
backup_innodb_data_home_dir = /backup/mysql/innodb/data [Optional]
backup_innodb_log_file_size = 256M [Optional]
backup_innodb_log_files_in_group = 3 [Optional]
```

The `backup_innodb_*` options typically have the same values as the corresponding `innodb_*` options, in which case you do not need to specify them.
Appendix C Extended Examples

Table of Contents

C.1 Sample Directory Structure for Full Backup .................................................................................. 83
C.2 Sample Directory Structure for Compressed Backup .................................................................... 87
C.3 Sample Directory Structure for Incremental Backup ...................................................................... 87

This section illustrates the commands and associated output for various backup and restore operations.

C.1 Sample Directory Structure for Full Backup

Here is an example of the subdirectories and files underneath a typical backup directory. The --with-timestamp option creates a new subdirectory for each backup, named according to the timestamp of the job. This example shows a backup of the databases from an installation of the MySQL Enterprise Monitor product, which like MySQL Enterprise Backup is available to customers with MySQL Enterprise subscriptions. The backups contain the files for the InnoDB system tablespace, .idb, .frm, .MYD, .MYI, .CSV, and .CSM files representing table and index data from various storage engines, and .par and #P# files representing partitioned tables.

$ find ~/backups
/Users/cirrus/backups
/Users/cirrus/backups/2011-06-16_10-33-47
/Users/cirrus/backups/2011-06-16_10-33-47/datadir/ib_logfile0
/Users/cirrus/backups/2011-06-16_10-33-47/datadir/ib_logfile1
/Users/cirrus/backups/2011-06-16_10-33-47/datadir/ibdata1
/Users/cirrus/backups/2011-06-16_10-33-47/datadir/mem/dc_p_double#P#p0.ibd
/Users/cirrus/backups/2011-06-16_10-33-47/datadir/mem/dc_p_long#P#p0.ibd
/Users/cirrus/backups/2011-06-16_10-33-47/datadir/mem/dc_p_string#P#p0.ibd
/Users/cirrus/backups/2011-06-16_10-33-47/datadir/mem/dc_p_string#P#p0.ibd
Sample Directory Structure for Full Backup

Here is an excerpt from the file listing under `backup-dir/datadir/mem` for a backup from a MySQL Enterprise Monitor repository database. Notice how the `.ibd` files for InnoDB tables are now compressed to `.ibz` files, while other kinds of files are left unchanged.

C.2 Sample Directory Structure for Compressed Backup

C.3 Sample Directory Structure for Incremental Backup

An incremental backup produces a directory structure containing a subset of the files from a full backup. All non-InnoDB files such as `*.frm`, `*.MYD`, and so on are included. `*.ibd` files are included only if they changed since the full backup, that is, if their maximum logical sequence number is higher than the value specified by the `--start-lsn` option.
Sample Directory Structure for Incremental Backup

$ find /tmp/backups
/tmp/backups
/tmp/backups/backup-my.cnf
/tmp/backups/datadir
/tmp/backups/datadir/ibbackup_lbd_files
/tmp/backups/datadir/ibbackup_logfile
/tmp/backups/datadir/ibdata1
/tmp/backups/datadir/mem
/tmp/backups/datadir/mem/db.opt
/tmp/backups/datadir/mem/dc_p_double.frm
/tmp/backups/datadir/mem/dc_p_double.par
/tmp/backups/datadir/mem/dc_p_long.frm
/tmp/backups/datadir/mem/dc_p_long.par
/tmp/backups/datadir/mem/dc_p_string.frm
/tmp/backups/datadir/mem/dc_p_string.par
/tmp/backups/datadir/mem/graph_dc_schedules.frm
/tmp/backups/datadir/mem/graph_schedules.frm
... many more files...
This appendix lists the changes to the MySQL Enterprise Backup, beginning with the most recent release. Each release section covers added or changed functionality, bug fixes, and known issues, if applicable. All bug fixes are referenced by bug number and include a link to the bug database. Bugs are listed in order of resolution. To find a bug quickly, search by bug number.

D.1 Changes in MySQL Enterprise Backup 3.6.1 (2011-09-28)

Functionality Added or Changed

- MySQL Enterprise Backup can now authenticate to the server being backed up using the Enterprise authentication plugins available in the commercial distributions for MySQL 5.5.16 and higher. For example:
  - With the Windows Native authentication plugin, you can set up a MySQL user ID named the same as the Windows user ID, grant MySQL privileges as described in Section 3.1.2, “Grant MySQL Privileges to Backup Administrator”, and then perform backups from that Windows account by specifying the \texttt{--user} option without a \texttt{--password} option.
  - With the PAM authentication plugin, you can connect to the MySQL server using a flexible system to map user IDs and associated privileges.

For more details about the MySQL pluggable authentication feature, see Pluggable Authentication.

Bugs Fixed

- Under some circumstances, the \texttt{mysqlbackup} with the \texttt{--no-locking} option halted with the message \texttt{Backup of non-innodb tables failed}. Now, the \texttt{--no-locking} option prevents this issue. (Bug #12952150)

- Under MySQL 5.5.8 and higher, a full backup using the \texttt{mysqlbackup} command could fail with the combination of settings \texttt{binlog_format=ROW} and \texttt{transaction-isolation=READ-COMMITTED}. The error message was:

  ~~~sql
  mysqlbackup: ERROR: Backup of non-innodb tables failed.!
  ~~~

  (Bug #12922167, Bug #62268)

- Specifying \texttt{mysqlbackup} options incorrectly could cause a fatal error. For example, using an underscore (\texttt{apply_log}) instead of a dash (\texttt{apply-log}), or misspelling an option (for example, \texttt{copy-back}), caused \texttt{mysqlbackup} to halt. Now, incorrect options produce a descriptive error message rather than an assertion failure. (Bug #12780833)
Changes in MySQL Enterprise Backup 3.6.0 (2011-07-01)

- The *mysqlbackup* options *copy-back*, *apply-log*, and *apply-incremental-backup* did not print the success message “mysqlbackup completed OK!”, even when the operation was successful. (Bug #12710941)

- This fix changes the way non-InnoDB files are handled when applying an incremental backup to a full backup. The behavior differs depending on whether or not the incremental backup was taken with the *--only-innodb* option.

  In MySQL Enterprise Backup 3.5, when applying an incremental backup, *.frm* files were deleted from the full backup, if they were not present in the incremental backup. In MySQL Enterprise Backup 3.6.0, this behavior changed, so that applying an incremental backup to a full backup would never delete *.frm* and other non-InnoDB files. This change made it more convenient to take a full backup, followed by incremental backups of InnoDB tables using the *--only-innodb* option. But if a table was dropped, its *.frm* file would not be removed when subsequent incremental backups were taken and applied to the full backup. The table would be reported by the *SHOW TABLES* statement, but would give an error when accessed by SQL statements.

  With this bug fix, an incremental backup using default options reverts to the original behavior, synchronizing the *.frm* files with the full backup, including deleting them when appropriate. Incremental backups with the *--only-innodb* option retain the cautious behavior that never deletes *.frm* and other non-InnoDB files when applied to full backups. If you use *--only-innodb* with incremental backups, you must handle the deletion of non-InnoDB files yourself in the full backup directory. (Bug #12636719)

- The *backup-to-image* option to produce a single-file backup left behind zero-byte temporary files *ibdata1* and *mysql/ibbackup_binlog_marker.ibd* after completing. These files were left behind in the work directory specified by the *--backup-dir* option, and in the image file. Now these files are removed as intended. (Bug #12408255)

D.2 Changes in MySQL Enterprise Backup 3.6.0 (2011-07-01)

This section documents changes and bug fixes that have been applied in MySQL Enterprise Backup, version 3.6. This release has substantial enhancements to *mysqlbackup* syntax and processing over MySQL Enterprise Backup 3.5 and the older InnoDB Hot Backup product. For details, see Appendix B, *Compatibility Information for MySQL Enterprise Backup Releases and InnoDB Hot Backup*.

Functionality Added or Changed

- The *mysqlbackup* command gains enhanced capabilities to do cold backups, with the *--connect-if-online* option.

- The *mysqlbackup* command can now interface with Media Management Software (MMS) products such as Oracle Secure Backup, using the System Backup to Tape (SBT) protocol.

- The backup operation now is much more “online” than in the past.

  Several new options specify connection information and credentials for the database being backed up.

  The connection-related options are made consistent with the corresponding options used for other MySQL client programs.

  You no longer need to construct a dummy configuration file for use with MySQL Enterprise Backup. The *mysqlbackup* command reads options from the standard MySQL configuration file, either from its own *[mysqlbackup]* group or the generic *[client]* group. Details about the layout and locations of files in the MySQL server are retrieved automatically using the database connection, so that you do not need to specify them in the configuration file.
For simplicity in managing and transferring backup data, you can produce a single-file backup as an alternative to a directory tree of backup files. The single-file backup is a foundational feature that is the basis for other important MySQL Enterprise Backup capabilities, such as streaming the backup data to another server and managing the backup data through a Media Management Software product such as Oracle Secure Backup.

A new meta subdirectory inside the backup data contains information about the backup itself. This metadata is known collectively as the manifest. You can use this information to build additional reporting or management features on top of MySQL Enterprise Backup.

You can associate comments with each set of backup data, either a single string specified on the command line, or through a separate text file.

For the fastest backup with the least disruption to MySQL server processing, options such as --innodb-only and --no-locking let you back up InnoDB tables exclusively. By skipping the backup of non-InnoDB files such as MyISAM tables and .frm files, you can avoid the final phase of the backup that waits for other operations in the server to complete, then puts the server into a read-only state.

### Bugs Fixed

- The `mysqlbackup` command could fail when the size of the `ibbackup_logfile` file in the backup directory exceeded 4GB. (Bug #12590463)

- Fixed a potential syntax error in the `CHANGE MASTER` statement written to the `ibbackup_slave_info` file by the --slave-info option. (Bug #12540081)

- When applying the log to a compressed backup, the operation could crash if the --uncompress option was omitted. Now, instead of the crash, an error message is displayed about the required option. (Bug #11780068)

- Documented the maximum number of subdirectories (21) allowed in the backup-dir path. (Bug #11766768, Bug #59958)

- If the MySQL server was running with the setting `SQL_MODE='TRADITIONAL'`, the `mysqlbackup` command could not create the backup_history table. This was a minor issue that did not halt the backup operation. (Bug #11766646, Bug #59800)

- The `mysqlbackup` command could crash during the apply-log stage when a database was dropped between a full backup and a subsequent incremental backup. (Bug #11766499, Bug #59623)

- The `mysqlbackup` command could fail on Windows systems if the path to the MySQL configuration file contained spaces. (Bug #11764927, Bug #57824)

### D.3 Changes in MySQL Enterprise Backup 3.5.4 (2011-04-21)

This section documents changes and bug fixes that have been applied in MySQL Enterprise Backup, version 3.5.4.

### Bugs Fixed

- The apply-log operation for an incremental backup could fail on Windows with error similar to:

```
110406 9:43:23 InnoDB: Operating system error number 0 in a file operation.
...
ibbackup: Error: cannot delete
```

(Bug #12328828)
• If an error occurred during a backup, the `start_time` and `end_time` of the backup run could be incorrect in the `backup_history` table. (Bug #11900590)

• When an incremental backup was taken of a database using per-table tablespace, while `ALTER TABLE` statements were running, the apply-log phase could fail, leaving the full backup in an inconsistent state. (Bug #11766088, Bug #59126)

• Running an incremental backup on a database with per-table tablespace could fail on Windows systems. (Bug #11765740, Bug #58734)

• A blank value for the `innodb_data_home_dir` configuration option would cause the `ibbackup` command to fail. This fix allows you to specify multiple directory names in the `innodb_data_file` configuration option and specify `innodb_data_home_dir` with a blank value. (Bug #59394, Bug #11766307)

• For a system where the LSN has reached a value exceeding $2^{31}$, an incremental backup could fail with the error message:

```
mysqlbackup: Error: --incremental is given but --lsn is not or wrong value
```

(Bug #59090)

• Minor fixes for copyright notices.

D.4 Changes in MySQL Enterprise Backup 3.5.2 (2010-12-16)

This section documents changes and bug fixes that have been applied in MySQL Enterprise Backup, version 3.5.2.

Functionality Added or Changed

• A call to `posix_fadvise()` can be used to reduce the flush cycle of the operating system cache and improve backup performance. This option is set on by default.

• The combined InnoDB and MyISAM backup functionality of the `innobackup` command is now available on Windows systems. The former Perl script is rewritten in C/C++ as the `mysqlbackup` command. This release continues to include the `innobackup` command, which may be deprecated by the next release. There are also some changes to the syntax as specified in the manual.

• Backup history and progress information is logged to the `mysql.backup_history` and `mysql.backup_progress` tables, so that it can be used by the MySQL Enterprise Monitor product and other tools to easily monitor backup operations. For the details of the backup history table, see Chapter 6, Troubleshooting for MySQL Enterprise Backup.

Bugs Fixed

• The apply-log step for an incremental backup would fail if the `innodb_log_group_home_dir` and `datadir` values specified in the configuration file were not the same. (Bug #57375)

• The file `ibbackup_binlog_info` in the backup directory is now updated when an incremental backup is applied, to reflect the updated `binlog` position and LSN of the full backup. (Bug #57286)

D.5 Changes in MySQL Enterprise Backup 3.5.1 (2010-11-01)

This section documents changes and bug fixes that have been applied in MySQL Enterprise Backup, version 3.5.1.
Functionality Added or Changed

- Incremental backup.

- Support for the Barracuda file format of InnoDB. MySQL Enterprise Backup can now backup tables that use recent InnoDB features such as table compression and the dynamic row format.

Bugs Fixed

- The innobackup or mysqlbackup command could create an orphaned table in the backup directory. The file mysql/ibbackup_binlog_marker.ibd was created in the backup directory, but not mysql/ibbackup_binlog_marker.frm. The resulting table mysql.ibbackup_binlog_marker could not be dropped or re-created, which could prevent subsequent backups from succeeding. This condition could occur when a partial backup was created with the --databases option, and the database had multiple tablespaces from the setting --innodb-file-per-table=1. Now, the .frm file for this internally produced table is copied into the backup without the table being specified as part of the --databases argument list. (Bug #54454)
Appendix E Licenses for Third-Party Components

Table of Contents

E.1 RegEX-Spencer Library License ................................................................. 95
E.2 zlib License ................................................................................................. 95
E.3 Percona Multiple I/O Threads Patch License .................................................. 96
E.4 Google SMP Patch License ............................................................................. 96
E.5 Google Controlling Master Thread I/O Rate Patch License ............................... 97
E.6 RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License .............................. 98

Oracle acknowledges that certain Third Party and Open Source software has been used to develop or is incorporated in the MySQL Enterprise Backup product. This appendix includes required third-party license information.

E.1 RegEX-Spencer Library License

The following software may be included in this product:

Henry Spencer's Regular-Expression Library (RegEX-Spencer)

Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved. This software is not subject to any license of the American Telephone and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on any computer system, and to alter it and redistribute it, subject to the following restrictions:

1. The author is not responsible for the consequences of use of this software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by explicit claim or by omission. Since few users ever read sources, credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software. Since few users ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

E.2 zlib License

The following software may be included in this product:

zlib

Oracle gratefully acknowledges the contributions of Jean-loup Gailly and Mark Adler in creating the zlib general purpose compression library which is used in this product.

zlib.h -- interface of the 'zlib' general purpose compression library
Copyright (C) 1995-2004 Jean-loup Gailly and Mark Adler
E.3 Percona Multiple I/O Threads Patch License

The following software may be included in this product:

Percona Multiple I/O threads patch

Copyright (c) 2008, 2009 Percona Inc
All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of Percona Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of Percona Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

E.4 Google SMP Patch License

The following software may be included in this product:
Google SMP Patch

Google SMP patch

Copyright (c) 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

E.5 Google Controlling Master Thread I/O Rate Patch License

The following software may be included in this product:

Google Controlling master thread I/O rate patch

Copyright (c) 2009, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

E.6 RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License

The following software may be included in this product:

RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement
Funding for the RFC Editor function is currently provided by the Internet Society.
MySQL Enterprise Backup Glossary

These terms are commonly used in information about the MySQL Enterprise Backup product.

A

.ARM file
Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup.

.ARZ file
Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup.

Antelope
The code name for the original InnoDB file format. It supports the redundant and compact row formats, but not the newer dynamic and compressed row formats available in the Barracuda file format.

If your application could benefit from InnoDB table compression, or uses BLOBs or large text columns that could benefit from the dynamic row format, you might switch some tables to Barracuda format. You select the file format to use by setting the innodb_file_format option before creating the table.
See Also Barracuda, compression, file format.

apply
The operation that transforms a raw backup into a prepared backup by incorporating changes that occurred while the backup was running, using data from the log.
See Also log, prepared backup, raw backup.

B

backup
The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical backups are performed by the mysqldump command. These techniques have different characteristics in terms of size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup, warm backup.

backup repository
Contrast with server repository.
See Also repository, server repository.

backup-my.cnf
A small configuration file generated by MySQL Enterprise Backup, containing a minimal set of configuration parameters. This file records the settings that apply to this backup data. Subsequent operations, such as the apply process, read options from this file to determine how the backup data is structured. This file always has the extension .cnf, rather than .cnf on Unix-like systems and .ini on Windows systems.
See Also apply, configuration file.
Barracuda

The code name for an InnoDB file format that supports compression for table data. This file format was first introduced in the InnoDB Plugin. It supports the compressed row format that enables InnoDB table compression, and the dynamic row format that improves the storage layout for BLOB and large text columns. You can select it through the innodb_file_format option.

Because the InnoDB system tablespace is stored in the original Antelope file format, to use the Barracuda file format you must also enable the file-per-table setting, which puts newly created tables in their own tablespaces separate from the system tablespace.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespace that use the Barracuda file format.
See Also Antelope, file format, MySQL Enterprise Backup, row format, system tablespace.

binary log

A file containing a record of all statements that attempt to change table data. These statements can be replayed to bring slave servers up to date in a replication scenario, or to bring a database up to date after restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery, by using the mysqlbinlog command. For full information about the binary log, see The Binary Log. For MySQL configuration options related to the binary log, see Binary Log Options and Variables.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the file are important details. To record this information for the master server when taking a backup in a replication context, you can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog

An informal name for the binary log file. For example, you might see this abbreviation used in e-mail messages or forum discussions.
See Also binary log.

C

cold backup

A backup taken while the database is shut down. For busy applications and web sites, this might not be practical, and you might prefer a warm backup or a hot backup.
See Also backup, connection, hot backup, warm backup.

compression

A technique that produces smaller backup files, with size reduction influenced by the compression level setting. Suitable for keeping multiple sets of non-critical backup files. (For recent backups of critical data, you might leave the data uncompressed, to allow fast restore speed in case of emergency.)

MySQL Enterprise Backup can apply compression to the contents of InnoDB tables during the backup process, turning the .ibd files into .ibz files.

Compressing adds CPU overhead to the backup process, and requires additional time and disk space during the restore process.
See Also backup, compression level, .ibd file, .ibz file, InnoDB, MySQL Enterprise Backup, restore.
compression level
A setting that determines how much compression to apply to a compressed backup. This setting ranges from 0 (none), 1 (default level when compression is enabled) to 9 (maximum). The amount of compression for a given compression level depends on the nature of your data values. Higher compression levels do impose additional CPU overhead, so ideally you use the lowest value that produces a good balance of compression with low CPU overhead.
See Also compression.

collection file
The file that holds the startup options of the MySQL server and related products and components. Often referred to by its default file name, my.cnf on Linux, Unix, and OS X systems, and my.ini on Windows systems. The MySQL Enterprise Backup stores its default configuration settings in this file, under a [mysqlbackup] section. For convenience, MySQL Enterprise Backup can also read settings from the [client] section, for configuration options that are common between MySQL Enterprise Backup and other programs that connect to the MySQL server.
See Also my.cnf, my.ini, MySQL Enterprise Backup.

connection
The mechanism used by certain backup operations to communicate with a running MySQL server. For example, the mysqlbackup command can log into the server being backed up to insert and update data in the progress table and the history table. A hot backup typically uses a database connection for convenience, but can proceed anyway if the connection is not available. A warm backup always uses a database connection, because it must put the server into a read-only state. A cold backup is taken while the MySQL server is shut down, and so cannot use any features that require a connection.
See Also cold backup, history table, hot backup, progress table, server, warm backup.

crash recovery
The cleanup activities for InnoDB tables that occur when MySQL is started again after a crash. Changes that were committed before the crash, but not yet written to the tablespace files, are reconstructed from the doublewrite buffer. When the database is shut down normally, this type of activity is performed during shutdown by the purge operation.

data dictionary
A set of tables, controlled by the InnoDB storage engine, that keeps track of InnoDB-related objects such as tables, indexes, and table columns. These tables are part of the InnoDB system tablespace.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups include the contents of the data dictionary.
See Also hot backup, MySQL Enterprise Backup, system tablespace.

database
A set of tables and related objects owned by a MySQL user. Equivalent to “schema” in Oracle Database terminology. MySQL Enterprise Backup can perform a partial backup that includes some databases and not others. The full set of databases controlled by a MySQL server is known as an instance.
See Also instance, MySQL Enterprise Backup, partial backup.

downtime
A period when the database is unresponsive. The database might be entirely shut down, or in a read-only state when applications are attempting to insert, update, or delete data. The goal for your backup strategy is to minimize downtime, using techniques such as hot backup for InnoDB tables, cold backup using slave servers in a replication configuration, and minimizing the duration of the suspend stage where you run customized backup logic while the MySQL server is locked.
See Also cold backup, hot backup, InnoDB, locking, replication, slave, suspend.
exclude
In a partial backup, to select a set of tables, databases, or a combination of both to be omitted from the backup.
Contrast with include.
See Also partial backup.

extract
The operation that retrieves some content from an image file produced by a single-file backup. It can apply to a single file (unpacked to an arbitrary location) or to the entire backup (reproducing the original directory structure of the backup data). These two kinds of extraction are performed by the mysqlbackup options extract and image-to-backup-dir, respectively.
See Also image, single-file backup.

.frm file
A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system tablespace; the .frm files are not needed for InnoDB to operate on InnoDB tables.

These files are backed up by the MySQL Enterprise Backup product. These files must not be modified by an ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up the .frm files. Restoring a backup can result in .frm files being created, changed, or removed to match the state of the database at the time of the backup.
See Also MySQL Enterprise Backup.

file format
The format used by InnoDB for its data files named ibdata1, ibdata2, and so on. Each file format supports one or more row formats.
See Also Antelope, Barracuda, ibdata file, row format.

full backup
A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup and incremental backup. Full backups take the longest, but also require the least amount of followup work and administration complexity. Thus, even when you primarily do partial or incremental backups, you might periodically do a full backup.
See Also backup, incremental backup, partial backup, table.

history table
The table mysql.backup_history that holds details of completed backup operations. While a backup job is running, the details (especially the changing status value) are recorded in the progress table.
See Also backup, progress table.

hot backup
A backup taken while the MySQL instance and is running and applications are reading and writing to it. Contrast with warm backup and cold backup.
A hot backup involves more than simply copying data files: it must include any data that was inserted or updated while the backup was in process; it must exclude any data that was deleted while the backup was in process; and it must ignore any changes started by transactions but not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and other storage engines, is MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the InnoDB data files produces a raw backup. The apply step incorporates any changes to the database that happened while the backup was running. Applying the changes produces a prepared backup; these files are ready to be restored whenever necessary.

A full backup consists of a hot backup phase that copies the InnoDB data, followed by a warm backup phase that copies any non-InnoDB data such as MyISAM tables and .frm files.

See Also apply, cold backup, .frm file, full backup, InnoDB, instance, MySQL Enterprise Backup, prepared backup, raw backup, warm backup.

.ibd file

Each InnoDB tablespace created using the file-per-table setting has a filename with a .ibd extension. This extension does not apply to the system tablespace, which is made up of files named ibdata1, ibdata2, and so on.

See Also .ibz file, system tablespace, tablespace.

.ibz file

When the MySQL Enterprise Backup product performs a compressed backup, it transforms each tablespace file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data compressed during normal operation. An InnoDB tablespace that is already in compressed row format is not compressed a second time, because that would save little or no space.

See Also .ibd file, .ibz file, MySQL Enterprise Backup, tablespace.

ibdata file

A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system tablespace. These files contain metadata about InnoDB tables, and can contain some or all of the table and index data also (depending on whether the file-per-table option is in effect when each table is created). For backward compatibility these files always use the Antelope file format.

See Also Antelope, system tablespace.

image

The file produced as part of a single-file backup operation. It can be a real file that you store locally, or standard output (specified as -) when the backup data is streamed directly to another command or remote server. This term is referenced in several mysqlbackup options such as backup-dir-to-image and image-to-backup-dir.

See Also single-file backup, streaming.

include

In a partial backup, to select a set of tables, databases, or a combination of both to be backed up. Contrast with exclude.

See Also partial backup.

incremental backup

A backup that captures only data changed since the previous backup. It has the potential to be smaller and faster than a full backup. The incremental backup data must be merged with the contents of the previous backup before it can be restored. See Section 3.3.2, “Making an Incremental Backup” for usage details.
The `mysqlbackup` options are `--incremental`, `--incremental-with-redo-log-only`, `--incremental-backup-dir`, `--incremental-base`, and `--start-lsn`.

See Also full backup.

**InnoDB**

The type of MySQL table that works best with MySQL Enterprise Backup. These tables can be backed up using the hot backup technique that avoids interruptions in database processing. For this reason, and because of the higher reliability and concurrency possible with InnoDB tables, most deployments should use InnoDB for the bulk of their data and their most important data. In MySQL 5.5 and higher, the `CREATE TABLE` statement creates InnoDB tables by default.

See Also hot backup, MySQL Enterprise Backup, table.

**instance**

The full contents of a MySQL server, possibly including multiple databases. A backup operation can back up an entire instance, or a partial backup can include selected databases and tables.

See Also database, partial backup.

**L**

locking

See Also suspend, warm backup.

log

Several types of log files are used within the MySQL Enterprise Backup product. The most common is the InnoDB redo log that is consulted during incremental backups.

See Also incremental backup, redo log.

log sequence number

See LSN.

logical backup

A backup that reproduces table structure and data, without copying the actual data files. For example, the `mysqldump` command produces a logical backup, because its output contains statements such as `CREATE TABLE` and `INSERT` that can re-create the data. Contrast with physical backup.

See Also backup, physical backup.

**LSN**

Acronym for log sequence number. This arbitrary, ever-increasing value represents a point in time corresponding to operations recorded in the redo log. (This point in time is regardless of transaction boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash recovery and for managing the buffer pool.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which to take an incremental backup. The relevant LSN is displayed by the output of the `mysqlbackup` command. Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a subsequent incremental backup, whose output contains another LSN for the next incremental backup.

See Also crash recovery, hot backup, incremental backup, redo log.

**M**

.MRG file

A file containing references to other tables, used by the MERGE storage engine. Files with this extension are always included in backups produced by the `mysqlbackup` command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup.

**.MYD file**
A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup.

**.MYI file**
A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup.

**manifest**
The record of the environment (for example, command-line arguments) and data files involved in a backup, stored in the files `meta/backup_create.xml` and `meta/backup_content.xml`, respectively. This data can be used by management tools during diagnosis and troubleshooting procedures.

**master**
In a replication configuration, a database server that sends updates to a set of slave servers. It typically dedicates most of its resources to write operations, leaving user queries to the slaves. With MySQL Enterprise Backup, typically you perform backups on the slave servers rather than the master, to minimize any slowdown of the overall system.
See Also MySQL Enterprise Backup, replication, slave.

**media management software**
A class of software programs for managing backup media, such as libraries of tape backups. One example is *Oracle Secure Backup*. Abbreviated MMS.
See Also Oracle Secure Backup.

**my.cnf**
The typical name for the MySQL configuration file on Linux, Unix, and OS X systems.
See Also configuration file, my.ini.

**my.ini**
The typical name for the MySQL configuration file on Windows systems.
See Also configuration file, my.cnf.

**MyISAM**
A MySQL storage engine, formerly the default for new tables. In MySQL 5.5 and higher, InnoDB becomes the default storage engine. MySQL Enterprise Backup can back up both types of tables, and tables from other storage engines also. The backup process for InnoDB tables (hot backup) is less disruptive to database operations than for MyISAM tables (warm backup).
See Also hot backup, InnoDB, MySQL Enterprise Backup, warm backup.

**MySQL Enterprise Backup**
A licensed products that performs hot backups of MySQL databases. It offers the most efficiency and flexibility when backing up InnoDB tables; it can also back up MyISAM and other kinds of tables. It is included as part of the MySQL Enterprise Edition subscription.
See Also Barracuda, hot backup, InnoDB.

**mysqlbackup**
The primary command of the MySQL Enterprise Backup product. Different options perform backup and restore operations.
See Also backup, MySQL Enterprise Backup, restore.

**mysqldump**
A MySQL command that performs logical backups, producing a set of SQL commands to recreate tables and data. Suitable for smaller backups or less critical data, because the restore operation takes longer than with a physical backup produced by MySQL Enterprise Backup.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

**O**

*.opt file*
A file containing database configuration information. Files with this extension are always included in backups produced by the backup operations of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup.

**offline**
A type of operation performed while the database server is stopped. With the MySQL Enterprise Backup product, the main offline operation is the restore step. You can optionally perform a cold backup, which is another offline operation. Contrast with online.
See Also cold backup, MySQL Enterprise Backup, online, restore.

**online**
A type of operation performed while the database server is running. A hot backup is the ideal example, because the database continues to run and no read or write operations are blocked. For that reason, sometimes “hot backup” and “online backup” are used as synonyms. A cold backup is the opposite of an online operation; by definition, the database server is shut down while the backup happens. A warm backup is also a kind of online operation, because the database server continues to run, although some write operations could be blocked while a warm backup is in progress. Contrast with offline.
See Also cold backup, hot backup, offline, warm backup.

**Oracle Secure Backup**
An Oracle product for managing backup media, and so classified as media management software (MMS). Abbreviated OSB. For MySQL Enterprise Backup, OSB is typically used to manage tape backups.
See Also backup, media management software, MySQL Enterprise Backup, OSB.

**OSB**
Abbreviation for Oracle Secure Backup, a media management software product (MMS).
See Also Oracle Secure Backup.

**P**

*.par file*
A file containing partition definitions. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup.

**parallel backup**
The default processing mode in MySQL Enterprise Backup 3.8 and higher, employing multiple threads for different classes of internal operations (read, process, and write). See Section 1.3, “Making Backups Faster and Smaller” for an overview, Section 4.1.11, “Capacity Options” for the relevant mysqlbackup options, and Performance Considerations for MySQL Enterprise Backup for performance guidelines and tips.

**partial backup**
A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL instance. Contrast with full backup.
See Also backup, full backup, partial restore, table.

**partial restore**
A restore operation that applies to one or more tables or databases, but not the entire contents of a MySQL server. The data being restored could come from either a partial backup or a full backup.
See Also database, full backup, partial backup, restore, table.
physical backup
   A backup that copies the actual data files. For example, the MySQL Enterprise Backup command produces a physical backup, because its output contains data files that can be used directly by the mysqld server. Contrast with logical backup.
   See Also backup, logical backup, MySQL Enterprise Backup.

point in time
   The time corresponding to the end of a backup operation. A prepared backup includes all the changes that occurred while the backup operation was running. Restoring the backup brings the data back to the state at the moment when the backup operation completed.
   See Also backup, prepared backup, restore.

prepared backup
   The set of backup data that is entirely consistent and ready to be restored. It is produced by performing the apply operation on the raw backup.
   See Also apply, raw backup.

progress table
   The table mysql.backup_progress that holds details of running backup operations. When a backup job finishes, the details are recorded in the history table.
   See Also backup, history table.

raw backup
   The initial set of backup data, not yet ready to be restored because it does not incorporate changes that occurred while the backup was running. The apply operation transforms the backup files into a prepared backup that is ready to be restored.
   See Also apply, prepared backup.

redo log
   A set of files, typically named ib_logfile0 and ib_logfile1, that record statements that attempt to change data in InnoDB tables. These statements are replayed automatically to correct data written by incomplete transactions, on startup following a crash. The passage of data through the redo logs is represented by the ever-increasing LSN value. The 4GB limit on maximum size for the redo log is raised in MySQL 5.6.
   See Also LSN.

regular expression
   Some MySQL Enterprise Backup features use POSIX-style regular expressions, for example to specify tables, databases, or both to include or exclude from a partial backup. Regular expressions require escaping for dots in filenames, because the dot is the single-character wildcard; no escaping is needed for forward slashes in path names. When specifying regular expressions on the command line, surround them with quotation marks as appropriate for the shell environment, to prevent expansion of characters such as asterisks by the shell wildcard mechanism.
   See Also exclude, include, partial backup.

replication
   A common configuration for MySQL deployments, with data and DML operations from a master server synchronized with a set of slave servers. With MySQL Enterprise Backup, you might take a backup on one server, and restore on a different system to create a new slave server with the data already in place. You might also back up data from a slave server rather than the master, to minimize any slowdown of the overall system.
   See Also master, MySQL Enterprise Backup, slave.

repository
   We distinguish between the server repository and the backup repository.
See Also backup repository, server repository.

restore
The converse of the backup operation. The data files from a prepared backup are put back into place to repair a data issue or bring the system back to an earlier state.
See Also backup, prepared backup.

row format
The disk storage format for a row from an InnoDB table. As InnoDB gains new capabilities such as compression, new row formats are introduced to support the resulting improvements in storage efficiency and performance.

Each table has its own row format, specified through the ROW_FORMAT option. To see the row format for each InnoDB table, issue the command SHOW TABLE STATUS. Because all the tables in the system tablespace share the same row format, to take advantage of other row formats typically requires setting the innodb_file_per_table option, so that each table is stored in a separate tablespace.

S

SBT
Acronym for system backup to tape.
See Also system backup to tape.

server
A MySQL instance controlled by a mysql daemon. A physical machine can host multiple MySQL servers, each requiring its own backup operations and schedule. Some backup operations communicate with the server through a connection.
See Also connection, instance.

server repository
Contrast with backup repository.
See Also backup repository, repository.

single-file backup
A backup technique that packs all the backup data into one file (the backup image), for ease of storage and transfer. The streaming backup technique requires using a single-file backup.
See Also image, streaming.

slave
In a replication configuration, a database server that receives updates from a master server. Typically used to service user queries, to minimize the query load on the master. With MySQL Enterprise Backup, you might take a backup on one server, and restore on a different system to create a new slave server with the data already in place. You might also back up data from a slave server rather than the master, to minimize any slowdown of the overall system.
See Also master, replication.

streaming
A backup technique that transfers the data immediately to another server, rather than saving a local copy. Uses mechanisms such as Unix pipes. Requires a single-file backup, with the destination file specified as – (standard output).
See Also single-file backup.

suspend
An optional stage within the backup where the MySQL Enterprise Backup processing stops, to allow for user-specific operations to be run. The mysqlbackup command has options that let you specify commands to be run while the backup is suspended. Most often used in conjunction with backups of InnoDB tables only, where you might do your own scripting for handling .frm files.
See Also .frm file, InnoDB.

system backup to tape
   An API for media management software. Abbreviated SBT. Several mysqlbackup options (with sbt in their names) pass information to media management software products such as Oracle Secure Backup.
   See Also Oracle Secure Backup, SBT.

system tablespace
   By default, this single data file stores all the table data for a database, as well as all the metadata for InnoDB-related objects (the data dictionary).

   Turning on the innodb_file_per_table option causes each newly created table to be stored in its own tablespace, reducing the size of, and dependencies on, the system tablespace.

   Keeping all table data in the system tablespace has implications for the MySQL Enterprise Backup product (backing up one large file rather than several smaller files), and prevents you from using certain InnoDB features that require the newer Barracuda file format. on the
   See Also Barracuda, data dictionary, file format, ibdata file, tablespace.

T

.TRG file
   A file containing trigger parameters. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
   See Also MySQL Enterprise Backup.

table
   Although a table is a distinct, addressable object in the context of SQL, for backup purposes we are often concerned with whether the table is part of the system tablespace, or was created under the file-per-table setting and so resides in its own tablespace.
   See Also backup, system tablespace, tablespace.

tablespace
   For InnoDB tables, the file that holds the data and indexes for a table. Can be either the system tablespace containing multiple tables, or a table created with the file-per-table setting that resides in its own tablespace file.
   See Also InnoDB, system tablespace.

W

warm backup
   A backup taken while the database is running, but that restricts some database operations during the backup process. For example, tables might become read-only. For busy applications and web sites, you might prefer a hot backup.
   See Also backup, cold backup, hot backup.
Index

Symbols

.ARM file, 99
.ARZ file, 99
.frm file, 28, 102
.ibd file, 103
.ibz file, 103
.MRG file, 104
.MYD file, 105
.MYI file, 105
.opt file, 106
.par file, 106
.TRG file, 109

A
Antelope, 37, 99
apply, 99
apply-incremental-backup option, 41, 60
--apply-log option, 41

B
backup, 99
backup option, 40
backup repository, 99
backup-and-apply-log option, 40
--backup-dir option, 45
backup-dir-to-image option, 42
backup-image option, 48
backup-my.cnf, 99
backup-my.cnf file, 7
backup-to-image option, 40, 48
backups
cold, 5
compressed, 6, 27, 30, 45, 60, 87
full, 24, 83
hot, 5
incremental, 6, 25, 46, 87
InnoDB tables only, 37
limiting overhead on the MySQL server, 49
logical, 6
monitoring, 65
partial, 28, 46
physical, 6
prepared, 7, 59
preparing to restore, 59
raw, 7, 59
single-file, 6, 31
streaming, 6, 33
to tape, 33
troubleshooting, 65
uncompressed, 6, 29, 29

D
 data dictionary, 101
database, 101
--databases option, 47
--databases-list-file option, 47
datadir directory, 7
--datadir option, 52
--data_home_dir option, 52
--disable-manifest option, 49
disk storage for backup data, 6, 33
downtime, 101
--dst-entry option, 49

E
error codes, 65
exclude, 102
--exec-when-locked option, 50

verifying, 23
warm, 5
backup_content.xml, 7
backup_content.xml file, 70
backup_create.xml, 7
backup_create.xml file, 70
BACKUP_HISTORY table, 68
BACKUP_PROGRESS table, 68
backup_variables.txt file, 7
Barracuda, 37, 100
binary log, 61, 100
binlog, 100
change history, 89
cold backup, 5, 100
command-line tools, 6
--comments option, 45
--comments-file option, 45
comments.txt file, 7,
--compress option, 27, 45
--compress-level option, 27, 45
compressed backup, 87
compressed backups, 6, 27, 30, 45, 60
compression, 100
compression level, 101
configuration file, 101
configuration options, 51
connection, 101
connection options, 43
copy-back option, 12, 23, 41, 59
corruption problems, 67
crash recovery, 59, 101

111
extract, 102
extract option, 42, 48

file format, 102
files backed up, 7
.frm file, 7
full backup, 24, 83, 102

GRANT statement, 20

history table, 102
hot backup, 5, 102

ibbackup command, 79
.ibd file, 7, 63
ibdata file, 7, 103
ibreset command, 67
.ibz file, 7
.ib_logfile file, 7
image, 103
image-to-backup-dir option, 42, 48, 48
image_files.xml file, 7, 70
include, 103
--include option, 28, 46
incremental backup, 6, 46, 87, 103
--incremental option, 46
--incremental-backup-dir option, 46
innobackup command, 79
InnoDB, 104
InnoDB Hot Backup, 79
InnoDB tables, 5, 7, 37, 37
  backing up only InnoDB data, 29
  compressed backup feature, 27
  incremental backup feature, 25
installing MySQL Enterprise Backup, 13
instance, 104

--limit-memory option, 49
Linux
  error codes, 65
list-image option, 42, 48
locking, 104
log, 7, 40, 104
logical backup, 6, 104
logs
  of backup operations, 68

LSN, 25, 46, 104

manifest, 7, 70, 105
master, 62, 105
media management software, 105
MEMORY tables, 34
meta directory, 7
monitoring backup jobs, 65
my.cnf, 105
my.ini, 105
.MYD file, 7
.MYI file, 7
MyISAM, 105
MyISAM tables, 37
MySQL Enterprise Backup, 105
MySQL Enterprise Monitor, 65
mysqldump, 34, 105

configuration options, 51
examples, 24
files produced, 7
modes of operation, 39
options, 39
overview, 6
required privileges, 20
using, 19

MySQLbinlog command, 61
mysqldump, 34, 105

--no-history-logging option, 45
--no-locking option, 50

offline, 106
online, 106
--only-innodb option, 48
--only-known-file-types option, 47
.opt file, 7
options, mysqlbackup, 39

connection, 43
for compression, 45
for generating metadata, 45
for incremental backups, 46
for limiting backup overhead, 49
for partial backups, 46
for single-file backups, 48
for special types of backups, 50
in configuration files, 51
layout of backup files, 44
layout of database files, 44
modes of operation, 39
new and changed, 78
options in common with mysql, 42
Oracle Secure Backup, 106
OSB, 106

P
.par file, 7
parallel backup, 106
partial backup, 28, 46, 106
partial restore, 106
performance of backup operations, 6
physical backup, 6, 107
point in time, 107
point-in-time recovery, 61
posix_fadvise() system call, 6
prepared backup, 7, 59, 107
privileges, 20
progress table, 107

R
raw backup, 7, 59, 107
redo log, 107
regular expression, 107
replication, 61, 62, 107
repository, 107
restore, 108
restoring a backup, 59
  at original location, 23
  examples, 60
  mysqlbackup options, 41
  overview, 12
  point-in-time recovery, 61
  preparation, 59
  single .ibd file, 63
  row format, 108

S
SBT, 108
  --sbt-database-name option, 49
  --sbt-lib-path option, 49
server, 108
server repository, 108
single-file backup, 6, 31, 41, 48, 108
slave, 61, 108
  --slave-info option, 50
  --sleep option, 49
space for backup data, 6
  --src-entry option, 48
  --start-lsn option, 46
streaming, 33, 108
streaming backups, 6
suspend, 108
  --suspend-at-end option, 50
system backup to tape, 109
system tablespace, 7, 109

T
table, 109
tablespace, 109
tape backups, 33
.TRG file, 7
.TRN file, 7
troubleshooting for backups, 65

U
--uncompress option, 46
uncompressed backups, 6, 29, 29
Unix
  error codes, 65
upgrading from InnoDB Hot Backup to MySQL Enterprise Backup, 79

V
verifying a backup, 23

W
warm backup, 5, 109
Windows
  error codes, 65
  --with-timestamp option, 45

113