X DevAPI User Guide for MySQL Shell in JavaScript
Mode

Abstract
User documentation for developers using X DevAPI.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2025-10-25 (revision: 83880)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
L OVERIVIBW ..ottt ettt e et oottt oot oottt e e e e e 1
2 Connection and SESSION CONCEPLSccuuuueeiitti i eeeitt ettt e eett et eat e e eett e e eeat e e eeat e eeert e eeertnaaeeens 3
2.1 Database Connection EXAMPIEcooouiiiiiiii e 3

2.2 CONNECLING 10 @ SESSION ...iiiiiieiiiti ettt ettt e e et e e et e et e e e et e e ettt n e et et e e e ere s 4
2.2.1 Connecting to @ Single MYSQL SEIVETiiiiiiiiieiiiii e 4

2.2.2 Connection OPLION SUMIMATYcouuuiiiiiiiieeeiii ettt e e e et e e et e e e eba s 5

2.2.3 CONNECHION AHIDULES ...ooutieiit ettt et et eaan s 5

2.3 Working with @ SeSSION ODJECTuuiiiiii e 6

2.4 USING SQL WItN SESSIONiiiitieeiiiii ettt et e et e e e e s 7

2.5 Setting the CUITENt SCREIMAcciiiii e 7

2.6 DYNAMIC SQL ..etiiiiiti ettt ettt ettt et 8

3 CRUD OPEIALIONSeiiitie ettt ettt e ettt e ettt e ettt e et e e et e bt e et e b e e et e be e e et et e e et et e e e e e ban s 9
3.1 CRUD OPEratiONS OVEIVIEWuuuieiieiieeieiti ettt ettt e et e e e e e et eaa e et eeb e e e enaa e eeenens 9

3.2 Method CR@ININGccuuniiiiii ettt e e et e e et e et e tb e e e et e e eentaaeaees 10

3.3 Parameter BiNOINGoeeeiiiiieeiii ettt ettt e et e et e et e e e e e e eeae 10

3.4 MySQL Shell Automatic Code EXECULIONieiiiriiieiiiiiieet et 12

4 WOorking With COIIECHIONSvuiiiiii ettt e e ettt ettt e e e e et e e e ente e eenes 15
4.1 Basic CRUD Operations 0N COlECLIONSiiiiiiiiieiiiiie e 15

N Ofe] | [=Toi (o] B O] o 1T £ S PP PP PPPPTI 16
4.2.1 Creating @ CoOlECHIONcoeiiiieiii et et 16

4.2.2 Working with EXiSting COIECHONSiiiiiiiiii e 16

4.3 Collection CRUD FUNCHION OVEIVIEWiiiiiiieiiiiiiee ettt e e e e 16
VR B A o] [=Tod 1] ¢ JF=To [o [PSP P TR PPPPTTR 16

4.3.2 COHECON.FINA() +errrneieeti ettt ettt ettt e et e na e ennans 17

4.3.3 ColleCtion.MOGITY() ..eevrueeeeeie ettt et 22

4.3.4 COllECON.IEIMOVE() ..eeriieieiii ettt ettt ettt ettt e et e e e s 27

4.4 INAEXING COlIECLIONS ...ttt ettt ettt e e et e ettt e et e et e e e ent e e eentnaeeeens 28

4.5 Single DOCUMENT OPEIALIONSuuieeiiiin it ee ettt e et et e e et e e ettt e e e eat e e eeat e e eert e eeentnaeeeens 31

4.6 JSON Schema Validationoceeiuiiiiiii ettt eeaens 32

5 WOrking With DOCUMIENTSceeiitiiiiii ettt et e e e et e e e e e e na s 35
5.1 Creating DOCUIMENTSouuuiiiiitii ettt ettt ettt et ettt e et et et e e e e e et e e eenen s 35

5.2 WOrking With DOCUMENT IDSuuiiiiiiiieiiiiie ettt ettt et ettt et et e e e e e eneans 35

5.3 Understanding DOCUMENT IDSiiiiuiiieiiitiieeeeii ettt et e e et e e et e e eebe e eeees 37

6 Working with Relational TabIes ... e 39
6.1 Syntax of the SQL CRUD FUNCLONSccouuiiiiiiiiiiaiiii et et 39

7 Working with Relational Tables and DOCUMENTSuuiiiiiiiiiiiiiii e 43
7.1 Collections as Relational TabIESiiiiiiiiiii e 43

8 STALEMENT EXECULION ...uiiiiii ettt ettt ettt e et e e e et et e e e eaa e e e enaans 45
8.1 Transaction HaNAINGcooiiiiiiiii e ettt e e e aba s 45
8.1.1 ProCeSSING WAaIMINGSccuuuiiiiitiaeiiiti ettt e e et ettt e ettt et ee e e e eab e e eesta e eeenenaaaee 46

8.1.2 Error HANAING ...ccoeveieiiiiiieee ettt e et e e e e e e a7

8.2 WOrking With SAVEPOINTSuuuiiiiiiiei ittt et ettt e et e e e e e 48

8.3 WOrKing WIth LOCKINGieiiitiiieeii et 49

8.4 Working with Prepared State€mMENIScoouuiiiiiiiieiiii e 50

9 WOrKing WIith RESUIT SISiiiiiii i ettt e e e e e e et e eenes 53
9.1 RESUIL SEE CIASSES ...civiiieiiiii ettt ettt ettt e et et a e e e e e e 53

9.2 Working with AUTO- | NCRENMENT VAIUESccuuiiiiiiiieiiiiie ettt 54

9.3 WOrKing WIth DAt SISciiiiiiieiiiiii e et e et e e et e e e et e e e enbaeeeens 54

9.4 Fetching All Data IEMS @ ONCEuiiiiiiieiei ettt et e e e 55

9.5 Working with SQL RESUIL SISuuiiiiiiiiiiii e 56

X DevAPI User Guide for MySQL Shell in JavaScript Mode

9.6 WOrking With Metadatalcccuuiiiiiii e e e e e e e e aans 58

9.7 Support for Language Native ITEratorscccuuiiiiieiiii e e e e e e e e 58

O = T 1] Fo [T Yo T 0 %q o] £ =TT o o 1 PP 59
O o d o] (=TT Y [0 TS 1 1 o 59
10.1.1 Boolean EXPreSSiON STINGS ..uueiiunieiiieiie e e e e e e e e e e e e e et e e e et eeaa e e eaneeeens 59

10.1.2 Value EXPresSSiON SHNGS ..uiiueiiii e e e e e e e e e e e e e e e e e e e anaeeaen 59

11 CRUD EBNF DEFINILIONS .vvvvtiiiiiieeiiie e ettt e e e e e e e e ettt e e e e e e e e e e sttt e e e eeeeeesnnnnnnas 61
11.1 Session Objects and FUNCHONSiiiiiii e e e e e e e e eens 61

11.2 Schema Objects and FUNCLIONSccoouiiiiiici e e e e eaaas 63

11.3 Collection CRUD FUNCHONSc.uuuiiiiiiiiee it e et e et e et e e et a e e e et e e e eett e e e eeta s aeeeeneaeaees 66

11.4 Collection Index Management FUNCLIONSiiiiiiiiiieiie e e e e e e e e eaens 68

11.5 Table CRUD FUNCLONSiiiiiiiiiiiiiis ettt e et e et e e e et e e e et neeeenens 68

11.6 RESUIL FUNCHIONS ...covtiiiiiii et e e ettt e e et e e e et s e e e e et neeeestnneeeentnneeeenes 70

11.7 Other EBNF DefiNItIONSiiiiiiiiiiiii et e e e et e e et e e e aaen s 73

12 Expressions EBNF DefiNItIONScoouiiiiiiiii e e e e e e e e e e e aans 81
RS I [aT o] L= aa =T ol e= L a T T A\ o) (= 97
13.1 MySQL Shell X DEVAPI EXIENSIONScvuuiiiiiieiiiieiiiieee e e e e e e e e e e e et e e e e eeaneees 97

Preface and Legal Notices

This is the X DevAPI User Guide for MySQL Shell in JavaScript mode.

Legal Notices

Copyright © 2015, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation,"” or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Access to Oracle Support for Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=accé& d=tr s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Overview

This guide explains how to use the X DevAPI and provides examples of its functionality. The X DevAPI
is implemented by MySQL Shell and MySQL Connectors that support X Protocol. For more background
information and instructions on how to install and get started using X DevAPI, see Using MySQL as a
Document Store. For quick-start tutorials introducing you to X DevAPI, see JavaScript Quick-Start Guide:
MySQL Shell for Document Store and Python Quick-Start Guide: MySQL Shell for Document Store. In
addition to this documentation, there is developer documentation for all X DevAPI methods in the API
references, available from Connectors and APIs.

This section introduces the X DevAPI and provides an overview of the features available when using it to
develop applications.

The X DevAPI wraps powerful concepts in a simple API.

» A new high-level session concept enables you to write code that can transparently scale from single
MySQL Server to a multiple server environment. See Chapter 2, Connection and Session Concepts.

» Read operations are simple and easy to understand.
» Non-blocking, asynchronous calls follow common host language patterns.
The X DevAPI introduces a hew, modern, and easy-to-learn way to work with your data.

» Documents are stored in Collections and have their dedicated CRUD operation set. See Chapter 4,
Working with Collections and Chapter 5, Working with Documents.

» Work with your existing domain objects or generate code based on structure definitions for strictly typed
languages. See Chapter 5, Working with Documents.

» Focus is put on working with data via CRUD operations. See Section 3.1, “CRUD Operations Overview”.

» Modern practices and syntax styles are used to get away from traditional SQL-String-Building. See
Chapter 10, Building Expressions for details.

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/document-store.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/document-store.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-shell-tutorial-javascript.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-shell-tutorial-javascript.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-shell-tutorial-python.html
https://dev.mysql.com/doc/index-connectors.html

Chapter 2 Connection and Session Concepts

Table of Contents

2.1 Database CoNNECHION EXAMPIE ...ouuiiiii e e e e e e e e e et e et e et e e eaneeeeas 3
YA 2 Oe] a1 o 1= Tox 11 gV B (o T NS Y= T (o] o I 4
2.2.1 Connecting to a SiNgle MYSQL SEIVETu.iiiiiiiii et e e e e e e e raaeees 4
2.2.2 Connection OPLION SUMIMATYccuuiiiiiieeie e ee e e e e e e e e e e e e et e e et e e et e eateeaneeaenns 5
2.2.3 CONNECLION AHMIDULES «.oouuiiiiiii et e e e e et e e et e e e e et e e e e eaaas 5
2.3 Working With @ SeSSION ODJECTuuiiiiiiii e e e e e e e e et e e e ranees 6
2.4 USING SQL WIth SESSION ...iiiiiiii it e e e e e e e et e et e e et e e et e e e e eraaaes 7
2.5 Setting the CUIMENt SCHEMAuii e e e e e e e e e e e ees 7
2L)Y/ =T 1o P 8

This section explains the concepts of connections and sessions as used by the X DevAPI. Code examples
for connecting to a MySQL Document Store (see Using MySQL as a Document Store) and using sessions
are provided.

An X DevAPI session is a high-level database session concept that is different from working with traditional
low-level MySQL connections. Sessions can encapsulate one or more actual MySQL connections when
using the X Protocol. Use of this higher abstraction level decouples the physical MySQL setup from the
application code. Sessions provide full support of X DevAPI and limited support of SQL.

For MySQL Shell, when a low-level MySQL connection to a single MySQL instance is needed this is still
supported by using a ClassicSession, which provides full support of SQL.

Before looking at the concepts in more detail, the following examples show how to connect using a
session.

2.1 Database Connection Example

The code that is needed to connect to a MySQL document store looks a lot like the traditional MySQL
connection code, but now applications can establish logical sessions to MySQL server instances running
the X Plugin. Sessions are produced by the nysql x factory, and the returned sessions can encapsulate
access to one or more MySQL server instances running X Plugin. Applications that use Session objects by
default can be deployed on both single server setups and database clusters with no code changes.

Create an X DevAPI session using the nmysql x. get Sessi on(connecti on) method. You pass in the
connection parameters to connect to the MySQL server, such as the hostname and user, very much like
the code in one of the classic APIs. The connection parameters can be specified as either a URI type
string, for example user: @ ocal host : 33060, or as a data dictionary, for example { user: nyuser,
password: nypassword, host: exanple.com port: 33060}. See Connecting to the Server
Using URI-Like Strings or Key-Value Pairs for more information.

The MySQL user account used for the connection should use either the nysql nati ve password

or cachi ng_sha2_ passwor d authentication plugin, see Pluggable Authentication. The server

you are connecting to should have encrypted connections enabled, the default in MySQL 8.0 and

later. This ensures that the client uses the X Protocol PLAI N password mechanism which works

with user accounts that use either of the authentication plugins. If you try to connect to a server

instance which does not have encrypted connections enabled, for user accounts that use the

nysqgl native_ passwor d plugin authentication is attempted using MYSQL41 first, and for user accounts
that use cachi ng_sha2_ passwor d authentication falls back to SHA256_VEMORY.

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/document-store.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/connecting-using-uri-or-key-value-pairs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/connecting-using-uri-or-key-value-pairs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/pluggable-authentication.html

Connecting to a Session

The following example code shows how to connect to a MySQL server and get a document from the
nmy_col | ecti on collection that has the field nane starting with L. The example assumes that a schema
called t est exists, and the my_col | ect i on collection exists. To make the example work, replace user
with your username, and passwor d with your password. If you are connecting to a different host or
through a different port, change the host from | ocal host and the port from 33060.

var nysqlx = require(' nysql x');

/] Connect to server on |ocal host
var nySession = nysql x. get Sessi on({
host: 'local host', port: 33060,
user: 'wuser', password: 'password' });

var nyDb = nySession. get Schena('test');

/1 Use the collection 'ny_collection'
var nyCol | = nyDb. getCol | ection(' ny_collection');

/1 Specify which docunent to find with Collection.find() and
/] fetch it fromthe database with .execute()
var nyDocs = nyCol|.find('nane like :param).limt(1).

bi nd(' paraml, 'L%).execute();

/] Print docunent
print (nmyDocs. fetchOne());

nySessi on. cl ose();

2.2 Connecting to a Session

There are several ways of using a session to connect to MySQL depending on the specific setup in use.
This section explains the different methods available.

2.2.1 Connecting to a Single MySQL Server

In this example a connection to a local MySQL Server instance running X Plugin on the default TCP/IP port
33060 is established using the MySQL user account user with its password. As no other parameters are
set, default values are used.

/| Passing the paraneters in the { param value } format
var dict Session = nysgl x. get Sessi on({

host: 'local host', 'port': 33060,

user: 'user', password: 'password })

var dbl = dict Session. get Schema('test')

/| Passing the paraneters in the UR format
var uri Session = mysql x. get Sessi on("' user: passwor d@ ocal host : 33060')

var db2 = uri Session. get Schema('test')

The following example shows how to connect to a single MySQL Server instance by providing a TCP/IP
address “localhost” and the same user account as before. You are prompted to enter the user name and
password in this case.

/| Passing the paraneters in the { param value } format

/'l Query the user for the account infornation

print("Please enter the database user information.");

var usr = shell.pronpt("Username: ", {defaultValue: "user"});
var pwd shel | . pronpt (" Password: ", {type: "password"});

/'l Connect to MySQL Server on a network nmachi ne

Connection Option Summary

mySessi on = nysql x. get Sessi on({
host: 'local host', 'port': 33060,
user: usr, password: pwd});

myDb = nySessi on. get Schema('test');
2.2.2 Connection Option Summary

When using an X DevAPI session the following options are available to configure the connection.

Option Name Optional Default Notes

TCP/IP Host host - localhost, IPv4 host
name, no IP-range

TCP/IP Port port Yes 33060 Standard X Plugin
port is 33060

MySQL user user - MySQL database
user

MySQL password |password - The MySQL user's
password

Supported authentication methods are:
e PLAIN

« MYSQL 4.1

URI elements and format.

Figure 2.1 Connection URI

0= O &= 0&

ConnectURI1::='user' "' 'password' '@" 'host' ' 'port’

2.2.3 Connection Attributes

Connection attributes are key-value pairs that application programs can pass to the server during
connection time to be stored in the PERFORMANCE_SCHEMA tables session_account_connect_attrs and
session_connect_attrs. There are two different kinds of connection attributes:

 Client-defined attributes are reserved key-value mappings implicitly encoded by a client. The set of
client-defined attributes differ from client to client—see the X DevAPI references of you client for details.
The client-defined attributes are sent to the server by default.

» User-defined attributes are key-value mappings provided by the user or application.

X DevAPI supports MySQL connection attributes through the connection parameter connect i on-
attributes (xdevapi . connection-attributes for Connector/J), set through the get Sessi on()
and get Cl i ent () methods. Here are the different ways to use the parameter:

e These settings for the parameter are equivalent to the default behavior (that is, sending client-defined
attributes) when the parameter is not used:

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-connection-attribute-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-session-account-connect-attrs-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-session-connect-attrs-table.html

Working with a Session Object

e connection-attributes

e connection-attributes=

e connection-attributes=true
e connection-attributes=[]

e connection-attributes=fal se prevents any connection attributes to be sent, including the client-
defined ones.

e« connection-attributes=[keyl=val uel, key2=val ue2, ...] sends user-defined connection
attributes as key-value pairs alongside the client-defined connection attributes. When a value is missing
from a key-value pair, a null value is set for the attribute

The following is a generic example of a connection string that configures the connection attributes:

nmysql x: // user: passwor d@ ocal host: 33060?connection-attri butes=[keyl=val uel, key2=val ue2, key3=]

2.3 Working with a Session Object

All previous examples used the get Schenma() or get Def aul t Schena() methods of the Session object,
which return a Schema object. You use this Schema object to access Collections and Tables. Most
examples make use of the X DevAPI ability to chain all object constructions, enabling you to get to the
Schema object in one line. For example:

schema = nysql x. get Sessi on(...).get Schema();

This object chain is equivalent to the following, with the difference that the intermediate step is omitted:

sessi on = nysql x. get Sessi on() ;
schema = sessi on. get Schema() .

There is no requirement to always chain calls until you get a Schema object, neither is it always what
you want. If you want to work with the Session object, for example, to call the Session object method
get Schenas(), there is no need to navigate down to the Schema. For example:

session = nysql x. get Sessi on(); session. getSchemas().

In this example the nysql x. get Sessi on() function is used to open a Session. Then the
Sessi on. get Schenas() function is used to get a list of all available schemas and print them to the
console.

/'l Connecting to MySQL and working with a Session
var nysql x = require(' nysql x');

/] Connect to a dedicated MySQL server using a connection URl
var mySessi on = nysql x. get Sessi on(' user: passwor d@ ocal host');

/Il Get a list of all avail abl e schemas
var schemalLi st = mySessi on. get Schemas() ;

print (' Avail able schemas in this session:\n');

/'l Loop over all available schenas and print their nane
for (index in schenaList) {
print (schenaLi st[index].name + "\n');

}

Using SQL with Session

mySessi on. cl ose() ;

2.4 Using SQL with Session

In addition to the simplified X DevAPI syntax of the Session object, the Session object has a sql ()
function that takes any SQL statement as a string.

The following example uses a Session to call an SQL Stored Procedure on the specific node.
var mysql x = require(' mysql x');

/'l Connect to server using a Session
var mySessi on = nysql x. get Sessi on(' user: passwor d@ ocal host');

/!l Switch to use schema 'test’
mySessi on. sql ("USE test").execute();

/'l In a Session context the full SQ |anguage can be used
mySessi on. sql (" CREATE PROCEDURE ny_add_one_procedure " +

" (I'NOUT incr_param I NT) " +

"BEG N " +

SET incr_param = incr_param + 1;" +

"END; ") . execute();
nmySessi on. sql ("SET @ry_var = ?;").bind(10).execute();
mySessi on. sqgl (" CALL nmy_add_one_procedure(@y_var);").execute();
nmySessi on. sql (" DROP PROCEDURE ny_add_one_procedure; ") . execute();

/Il Use an SQL query to get the result
var myResult = mySession. sql ("SELECT @ry_var").execute();

/] Gets the row and prints the first colum
var row = nmyResult.fetchOne();
print(row0]);

mySessi on. cl ose() ;

When using literal/verbatim SQL the common API patterns are mostly the same compared to using DML
and CRUD operations on Tables and Collections. Two differences exist: setting the current schema and
escaping names.

2.5 Setting the Current Schema

A default schema for a session can be specified using the schena attribute in the URI-like
connection string or key-value pairs when opening a connection session. The Sessi on class
get Def aul t Scherma() method returns the default schema for the Sessi on.

If no default schema has been selected at connection, the Sessi on class set Curr ent Schena()
function can be used to set a current schema.

var nmysqlx = require(' mysql x');

/1 Direct connect with no client-side default schema specified
var mySessi on = nysql x. get Sessi on(' user: passwor d@ ocal host ') ;
mySessi on. set Current Schema("test");

Notice that set Cur r ent Schenma() does not change the session's default schema, which remains
unchanged throughout the session, or remains nul | if not set at connection. The schema set by
set Current Schema() can be returned by the get Cur r ent Schena() method.

An alternative way to set the current schema is to use the Sessi on class sql() method and the USE
db_nane statement.

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/connecting-using-uri-or-key-value-pairs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/connecting-using-uri-or-key-value-pairs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/use.html

Dynamic SQL

2.6 Dynamic SQL

A quoting function exists to escape SQL names and identifiers. Sessi on. quot eNane() escapes the
identifier given in accordance to the settings of the current connection.

syntax of Sessi on. sql () instead; see Section 2.4, “Using SQL with Session” for

Note
@ The quoting function must not be used to escape values. Use the value binding
some examples.

function createTest Tabl e(sessi on, nane) {

/] use escape function to quote nanes/identifier
quot ed_nanme = sessi on. quot eNanme(nane) ;

sessi on. sql ("DROP TABLE | F EXI STS " + quot ed_nane) . execute();
var create = "CREATE TABLE ";

create += quot ed_nane;

create += " (id INT NOT NULL PRI MARY KEY AUTO_| NCREMENT) ";

sessi on. sqgl (create). execute();

return session. get Current Schema() . get Tabl e(nane) ;

}
var nysql x = require(' nmysqlx');
var session = nysql x. get Sessi on(' user: passwor d@ ocal host : 33060/ test');

var defaul t_schema = session. get Def aul t Schena() . nang;
sessi on. set Current Schema(def aul t _schems) ;

/] Creates sone tables
var tablel = createTest Tabl e(session, 'testl');
var table2 = createTest Tabl e(session, 'test2');

Code that uses X DevAPI does not need to escape identifiers. This is true for working with collections and
for working with relational tables.

Chapter 3 CRUD Operations

Table of Contents

3.1 CRUD OPEratiONS OVEIVIEWuuieiiiitietiiit ettt e e ettt et e b et et et e et r et e et et e eaea et e nna e eennans 9
3.2 MEthod CR@INING .. .ceeetiei it e ettt e ettt e e et et e e e e e bt r e e e et aeeeeneaeeees 10
3.3 Parameter BiNGINGcieeiii ittt ettt et ettt et eaaas 10
3.4 MySQL Shell Automatic COde EXECULIONcceeutiiiiiiiiee ittt et e e e e e e eees 12

This section explains how to use the X DevAPI for Create Read, Update, and Delete (CRUD) operations.
MySQL's core domain has always been working with relational tables. X DevAPI extends this domain

by adding support for CRUD operations that can be run against collections of documents. This section
explains how to use these.

3.1 CRUD Operations Overview

CRUD operations are available as methods, which operate on Schema objects. The available Schema
objects consist of Collection objects containing Documents, or Table objects consisting of rows and
Collections containing Documents.

The following table shows the available CRUD operations for both Collection and Table objects.

Operation Document Relational

Create Section 4.3.1, “Collection.add()” |Table.insert()

Read Section 4.3.2, “Collection.find()" | Table.select()

Update Section 4.3.3, “Collection.modify()” | Table.update()

Delete Section 4.3.4, Table.delete()
“Collection.remove()”

Database Object Classes

Database Object Classes

Figure 3.1 Database Object - Class Diagram

@ DatabaseObject

General Functions
@ getSession(): XSessionObj
@ getSchemall | SchemaObj
@ getName() : String
o existsinDatabase(l : Boolean|Unknown

"\

|

@ Collection
@ Schema © vkl
CRUD Functions
f @ addl) : CollectioninsertObj Relational SQL CRUD Functions
Etco”Be;t:i:::(;:unctmns o find() : CollectionFindObj @ insertl) . InsertObj
- getTabIesE] @ modifyl] : CollectionUpdateObj @ selectl) : SelectObj
e9g)) @ removel] : CollectionDeleteObj o updatei) : UpdateObj
DECOTIJECE In?;:gn(:cellFchtlgnbs Index Functions o delete() : DeleteObj
g gth:bleec[]I?r]I'aklnlegb?c fontb) @ createlndexi) Index Functions
.) . o dropindex() @ dropindex()
o getCoIIectmnAsTabléU . TableObj o getindexesl) o getindexesl)
" é:rITatS Fui?ctmns Docurment and Structure Functions General Functions
e EEHOT @ newDoc() @ countl) : Integer

@ count() . Integer

3.2 Method Chaining

X DeVvAPI supports a number of modern practices to make working with CRUD operations easier and to
fit naturally into modern development environments. This section explains how to use method chaining
instead of working with SQL strings of JSON structures.

The following example shows how method chaining is used instead of an SQL string when working with
Session objects. The example assumes that the t est schema exists and an enpl oyee table exists.

/1 New net hod chai ning used for executing an SQL SELECT st at ement
/! Recommended way for executing queries
var enpl oyees = db. get Tabl e(' enpl oyee') ;

var res = enpl oyees. select([' nane', 'age']).
where(' nane |ike :param).
orderBy([' nane']).
bi nd(' parami, 'nb).execute();

/] Traditional SQL execution by passing an SQL string
/1 1t should only be used when absol utely necessary
var result = session.sql (' SELECT nane, age ' +

' FROM enpl oyee ' +

'WHERE nane like ? ' +

' ORDER BY nan®'). bind(' n?s). execute();

3.3 Parameter Binding

Instead of using values directly in an expression string it is good practice to separate values from the
expression string. This is done using parameters in the expression string and the bi nd() function to bind
values to the parameters.

Parameters can be specified in the following ways: anonymous and named.

10

Preparing CRUD Statements

Parameter Type Syntax Example Allowed in CRUD [|Allowed in SQL
operations strings

Anonymous ? ‘age > ?' no yes

Named <name> 'age > :age' yes no

The following example shows how to use the bi nd() function before an execut e() function. For each
named parameter, provide an argument to bi nd() that contains the parameter name and its value. The
order in which the parameter value pairs are passed to bi nd() is of no importance. The example assumes
that the t est schema has been assigned to the variable db and that the collection ny_col | ecti on
exists.

/1 Collection.find() function with fixed val ues
var myCol |l = db.getCollection('my_collection');

var myResl = nyCol|l.find('age = 18').execute();

/1 Using the .bind() function to bind paraneters
var myRes2 = nyCol|.find('name = :paraml AND age = :paran®').bind('paranl',' Rohit"').bind(' paran?', 18).exe

/1 Using named paraneters
myCol | . nodi fy(' nane = :param).set('age', 55).
bi nd(' parami, 'Nadya').execute();

/1 Binding works for all CRUD statenments except add()
var myRes3 = nyCol|.find('name |ike :param).
bi nd(' param, 'R%).execute();

Anonymous placeholders are not supported in X DevAPI. This restriction improves code clarity in CRUD
command chains with multiple methods using placeholders. Regardless of the bi nd() syntax variant used
there is always a clear association between parameters and placeholders based on the parameter name.

All methods of a CRUD command chain form one namespace for placeholders. In the following example,
nodi fy() and set () are chained. Both methods take an expression with placeholders. The placeholders
refer to one combined namespace. Both use one placeholder called : par am A single call to bi nd()

with one name value parameter for : par amis used to assign a placeholder value to both occurrences of

. par amin the chained methods.

/'l one bind() per paraneter
var myColl = db.getCollection('relatives');
var juniors = nyColl.find('alias = "jr""').execute().fetchAl();

for (var index in juniors)({
nyCol | . nodi fy(' name = :paramn).
set (' parent _nane', nysql x. expr(': param)).
bi nd(' param , juniors[index].nane).execute();

}

It is not permitted for a named parameter to use a name that starts with a digit. For example, : 1one and
: 1 are not allowed.

Preparing CRUD Statements

Instead of directly binding and executing CRUD operations with bi nd() and execut e() or execut e() it
is also possible to store the CRUD operation object in a variable for later execution.

The advantage of doing so is to be able to bind several sets of variables to the parameters defined in
the expression strings and therefore get better performance when executing a large number of similar
operations. The example assumes that the t est schema has been assigned to the variable db and that
the collection my_col | ect i on exists.

11

MySQL Shell Automatic Code Execution

var myCol |l = db.getCollection(' my_collection');

/Il Only prepare a Coll ection.renove() operation, but do not run it yet
var myRenove = nyCol | .renmove(' nane = :paranml AND age = :paranR');

/] Binding paraneters to the prepared function and .execute()
myRenove. bi nd(' paraml', 'Leon').bind('paranR', 39).execute();
myRenove. bi nd(' paraml', 'Johannes').bind(' paran?', 28).execute();

/1 Binding works for all CRUD statenments but add()
var myFind = nyColl.find('name |ike :paraml AND age > :paranR');

var myDocs = nyFind. bi nd(' paraml', 'L%).bi nd(' paranR', 20).execute();
var MyQt her Docs = nyFi nd. bi nd(' paraml', 'J%). bind(' paran?', 25).execute();

3.4 MySQL Shell Automatic Code Execution

When you use X DevAPI in a programming language that fully specifies the syntax to be used, for
example, when executing SQL statements through an X DevAPI session or working with any of the CRUD
operations, the actual operation is performed only when the execut e() function is called. For example:

var result = nySession. sqgl (' show dat abases'). execut e()
var result2 = nyColl.find().execute()

The call of the execut e() function above causes the operation to be executed and returns a Result
object. The returned Result object is then assigned to a variable, and the assignment is the last operation
executed, which returns no data. Such operations can also return a Result object, which is used to process
the information returned from the operation.

Alternatively, MySQL Shell provides the following usability features that make it easier to work with X
DevAPI interactively:

» Automatic execution of CRUD and SQL operations.
» Automatic processing of results.

To achieve this functionality MySQL Shell monitors the result of the last operation executed every time
you enter a statement. The combination of these features makes using the MySQL Shell interactive mode
ideal for prototyping code, as operations are executed immediately and their results are displayed without
requiring any additional coding. For more information see MySQL Shell 8.0.

Automatic Code Execution

If MySQL Shell detects that a CRUD operation ready to execute has been returned, it automatically calls
the execut e() function. Repeating the example above in MySQL Shell and removing the assignment
operation shows the operation is automatically executed.

nmysql -j s> nySessi on. sqgl (' show dat abases')
nmysql -j s> nyCol | . find()

MySQL Shell executes the SQL operation, and as mentioned above, once this operation is executed a
Result object is returned.

Automatic Result Processing

If MySQL Shell detects that a Result object is going to be returned, it automatically processes it, printing
the result data in the best format possible. There are different types of Result objects and the format
changes across them.

12

https://docs.oracle.com/cd/E17952_01/mysql-shell-8.0-en/

Automatic Result Processing

13

14

Chapter 4 Working with Collections

Table of Contents

4.1 Basic CRUD Operations 0N COEBCHONSiiiuiiiiiiei et e e 15
VA o] [=Tex 101 B @] o] [=Tox £ TP 16
4.2.1 Creating @ COlECHION ... ot et e et et e e e e et e e e e eaa e 16
4.2.2 Working with EXiSting COIECLONScouuiiiiiiiii e 16
4.3 Collection CRUD FUNCLON OVEIVIEWcciiriieeiiiiieeeete ettt e et e e e e e ene s 16
v/ 700 R @] [[=Tex 1 o] o 1= To [o [PP UPPP 16
v T o] | [=Tex 1 o] o i1 o [A PP PTUPPPRPPN 17
4.3.3 ColleCtioN.MOGITY() ... eeeneeie e ettt e anns 22
4.3.4 COllECHON.FEMOVE() ... et ettt ettt ettt e e et e et e e et e et et an e e e et e e eaneeeanas 27
4.4 INdeXING COIECLIONS ...t et e et et et e e e e et e e et e e et e e et e eeaaaeans 28
4.5 Single DOCUMENT OPEIALIONScuuiiet ittt et et et e e e et et e e e et e e et e e et e e et e eanaeenss 31
4.6 JSON Schema Validationoeeeiiiiiiiiieieei et e e e e e ennens 32

The following section explains how to work with Collections, how to use CRUD operations on Collections
and return Documents.

4.1 Basic CRUD Operations on Collections

Working with collections of documents is straightforward when using X DevAPI. The following example
shows the basic usage of CRUD operations (see Section 4.3, “Collection CRUD Function Overview” for
more details) when working with documents: After establishing a connection to a MySQL Server instance,
a new collection that can hold JSON documents is created and several documents are inserted. Then,

a find operation is executed to search for a specific document from the collection. Finally, the collection

is dropped again from the database. The example assumes that the t est schema exists and that the
collection my_col | ect i on does not exist.

/'l Connecting to MySQL Server and working with a Coll ection
var nysqglx = require(' mysql x');

/I Connect to server

var mySessi on = nysql x. get Sessi on({
host: 'local host', port: 33060,

user: 'user', password: 'password'});

var myDb = mySessi on. get Schema('test');

/Il Create a new collection 'ny_collection'
var myCol |l = nyDb.createCollection('m_collection');

/1 Insert docunents

myCol | . add({ name: 'Laurie', age: 19 }).execute();
nmyCol | . add({ name: 'Nadya', age: 54 }).execute();
nmyCol | . add({ name: 'Lukas', age: 32 }).execute();

/1 Find a document
var docs = nyCol | .find(' nane like :paranl AND age < :paranmR').limt(1).
bi nd(' parantl',' L%). bi nd(' paran®', 20). execute();

/1 Print docunent
print (docs. fetchOne());

/1 Drop the collection

15

Collection Objects

myDb. dropCol | ection(' my_col |l ection');

4.2 Collection Objects

Documents of the same type (for example users, products) are grouped together and stored in the
database as collections. X DevAPI uses Collection objects to store and retrieve documents.

4.2.1 Creating a Collection

In order to create a new collection call the cr eat eCol | ecti on() function from a Schema object. It
returns a Collection object that can be used right away to, for example, insert documents into the database.

/] Create a new collection called 'ny_collection'
var nyCol|l = db.createCollection('ny_collection");

4.2.2 Working with Existing Collections

In order to retrieve a Collection object for an existing collection stored in the database call the
get Col | ecti on() function from a Schema object.

I/l Get a collection object for 'ny_collection'
var nyCol| = db.getCollection('ny_collection');

The creat eCol | ecti on(), together with the ReuseExi st i ngObj ect field set to true, can be used to
create a new collection or reuse an existing collection with the given name. See Section 4.2.1, “Creating a
Collection” for details.

time and refrain from creating them on the fly during the production phase of
a database project. Therefore it is best to separate the code that creates the

Note
@ In most cases it is good practice to create database objects during development
collections in the database from the actual user application code.

4.3 Collection CRUD Function Overview

The following section explains the individual functions of the Collection object.

The most common operations to be performed on a Collection are the Create Read Update Delete (CRUD)
operations. In order to speed up find operations it is recommended to make proper use of indexes.

Note

additional functions that operate on single documents identified by their document

S Beyond the CRUD functions described in this section, X DevAPI also provides
IDs; see Section 4.5, “Single Document Operations” for details.

4.3.1 Collection.add()

The Col | ecti on. add() function is for storing documents in a collection, similar to the INSERT
statement for an SQL database. It takes a single document or a list of documents as its argument, and is
executed by the execut e() function.

The collection needs to be created with the Schera. creat eCol | ecti on() function before documents
can be inserted. To insert documents into an existing collection use the Schena. get Col | ecti on()
function to retrieve the Collection object.

16

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html

Collection.find()

The following example shows how to use the Col | ecti on. add() function. The example assumes that
the test schema exists and that the collection my_col | ect i on does not exist.

/]l Create a new collection
var myColl = db.createCollection('ny_collection');

/'l Insert a docunent
myCol | . add({ nanme: 'Laurie', age: 19 }).execute();

/'l Insert several docunents at once
nyCol | . add([

{ nanme: 'Nadya', age: 54 },
{ name: 'Lukas', age: 32 }]).execute();

See also CollectionAddFunction for the syntax of add() in EBNF.

4.3.2 Collection.find()

The fi nd(SearchCondi tionStr) function is for searching documents in a collection, similar to the
SELECT statement for an SQL database. It takes a search condition string (SearchConditionStr) as a
parameter to specify the documents that should be returned from the database. The execut e() function
triggers the actual execution of the f i nd() operation.

The SearchConditionStr can be in one of these forms:

 If no SearchConditionStr is specified, the f i nd() operation returns all the documents in the collection.
/1 Get a collection
var nmyCol | = session. get Schema("worl d_x").getCol | ecti on("countryinfo");

/! To return all docunents in world x:
nyCol | . find().execute();

* The most common form for a SearchConditionStr is:
JSON-path [operator { value | JSON- path}]
Here are some explanations for the different parts of a SearchConditionStr:

¢ JSON- pat h: A JSON path identifies an element in a JISON document; see JSON Path Syntax for
details . Here is a short summary of the JSON path syntax:

* A JSON path starts with a scope: in MySQL's JSON document implementation, the scope of
the path is always the document being operated on, represented as $, which is always implicitly
assumed, so it can be skipped in most cases; for example, the path $. geogr aphy. Regi on is
equivalent to geogr aphy. Regi on.

Note
S In some cases, $ cannot be omitted; for example:

* When the ** wildcard is used (for example, fi nd(" $**. b1") ; see the
discussion on wildcards below),

* When the JSON path only contains a literal string if $ is omitted (for
example, find("$. ' country_name'") for finding all documents that
have a count ry nane field.

« After the scope, a path consists of one or more path legs. A path leg leads from one level of the
JSON tree down to the next, and consecutive paths are separated by a period (.). For example:

17

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/json.html#json-path-syntax

Collection.find()

nyCol | . find("geography. Continent = "Africa'") finds all documents that have the
value Af ri ca for the field Cont i nent under the field geogr aphy .

« Elements in arrays are represented by [N] , where Nis an array index, which has to be a non-
negative integer.

nyCol | . add({ nane:'John', favorNunms: [1, 3, 5, 7, 9] }).execute();
nyCol | . find("favorNuns[0] = 1").execute(); //Returns the docunent just added

}
e The wildcard tokens * and ** can be used in JSON paths as follows:

* 0obj ect . * represents the values of all members under the member obj ect . For example, in the
count ryi nf o collection in the sample wor | d_x schema, geogr aphy. * represents all members
under the object geogr aphy, and nmyCol | . find(""' Africa' in geography.*") returns all
documents that have the value Af r i ca in any of the members under geogr aphy.

e array[*] represents the values of all elements in an array. For example:

nmyCol | . add({ name:'John', favorNunms: [1, 3, 5, 7, 9] }).execute();

nmyCol | . add({ nane:'Jane', favorNums: [2, 4, 6, 8, 10] }).execute();

myCol | . find("1 in favorNuns[*]").execute(); //Returns the first docunent added above
myCol | . find("2 in favorNuns[*]").execute(); //Returns the second docunent added above

}

e [prefix]**suffix represents all paths under the document pr ef i x that end with suf fi x,
regardless of the depth of the path. The following examples illustrate how ** can be used to return
different results:

nmysql -j s> nyCol | . find().execute();

{
"a": "bar",
"b": {
"bl": 6,
"b2": 7,
"b3": {
"b1": 99,
"b2": 98,
"b3": {
"b1": 999,
"b2": 998
}
}
},
"_id": "000061313aa10000000000000001"
}
{
"a": "baz",
"b": {
"b1": 1,
"h2": 7
},
"_id": "000061313aa10000000000000002"
}
{
"a": "bbr",
"c": 37,
'_id": "0000613247ed0000000000000001"
}

3 docunments in set (0.0007 sec)
nysql -js> nyCol | . find("$**. b2"). execute();
{

"a": "bar",

Collection.find()

"b": {
b1l": 6,
"b2": 7,
"b3": {
"b1": 99,
"b2": 98,
"b3": {
"b1": 999,
"b2": 998
}
}
b
"_id": "000061313aa10000000000000001"
}
{
"a": "baz",
"b": {
"b1": 1,
"b2": 7
b
"_id": "000061313aa10000000000000002"
}

2 docunents in set, 1 warning (0.0008 sec)

nysql -js> nmyCol | . find("$**. b3**. b2"). execute();

{
"a": "bar",
"b": {
"bl": 6,
"b2": 7,
"b3": {
"b1": 99,
"b2": 98,
"b3": {
"b1": 999,
"b2": 998
}
}
b
"_id": "000061313aa10000000000000001"
}

1 docunent in set, 1 warning (0.0011 sec)

The following requirements apply when using the ** wildcard:
» prefix should be $ or an element that is a document itself.

» suf fix should be a path leg and is always required (that is, a path expression may not end in

* %)
» A path expression may not contain the sequence ** * .

e val ue is a value to be compared to an element on the JSON- pat h. The %and _ wildcard characters
can be used in val ue with the LI KE operator, just like in a MySQL VWHERE clause. For example:

myCol | . find("Name LIKE ' Austra%")
myCol | . fi nd("geography. Conti nent LIKE 'Asi_"'")

19

Collection.find()

e oper at or : The following operators can be used in a SearchConditionStr: OR (||), AND (&&), XOR,
I S, NOT, BETVEEN, | N, LI KE, OVERLAPS, ! =, <>, > >=,<,<=, &, |, <<, >>,+,-,*,/, ~, and % Here
are some examples for using the operators:

myCol | . find("Nane = 'Australia'")

myCol | . fi nd("denogr aphi cs. Popul ati on >= 1000000")

myCol | . fi nd(" denogr aphi cs. Li f eExpect ancy BETWEEN 50 AND 60")

myCol | . fi nd("government. HeadOf State = 'Elizabeth I1' AND geography. Regi on = ' Cari bbean'")

If no operator and subsequent JSON path is supplied, f i nd() returns all documents for which the
JSON path supplied points to some non-null elements. For example:

nmyCol | . fi nd("denographi cs. Popul ati on").execute();

Returns all documents that have a denogr aphi cs. Popul at i on element:

{

"GN\P": 828,

" _id": "00005de917d80000000000000000",

" Code": "ABW,

“"Nanme": "Aruba",

"l ndepYear": null,

"geogr aphy": {
"Regi on": "Caribbean",
“Continent": "North America",
"SurfaceArea": 193

}

overnment": {
"HeadOf State": "Beatrix",
"Gover nment Forni': "Nonnmetropolitan Territory of The Netherl ands"
IE
"denogr aphi cs": {
"Popul ati on": 103000,
"Li f eExpectancy": 78.4000015258789

"GN\P": 5976,
"_id": "00005de917d80000000000000001",

232 docunents in set, 1 warning (0.0013 sec)

Warni ng (code 3986): Evaluating a JSON value in SQL bool ean context does an inplicit comparison agai nst JS
if this is not what you want, consider converting JSON to an SQ nuneric type with JSON VALUE RETURNI NG

Use the | N operator in the SearchConditionStr to check for a value within all the members covered by
a wildcard:

nysql -j s> nyCol | . find("$**. bl"). execute();

{
"a": "bar",
"b": {
"bl": 6,
"b2": 7,
"b3": {
"b1l": 99,
"b2": 98,
"b3": {
"b1": 999,
"b2": 998
}
}

ba
"_id": "000061313aa10000000000000001"

Collection.find()

{
"a": "baz",
"b": {
"bl": 1,
'b2": 7
B
"_id": "000061313aa10000000000000002"
}

2 docunents in set, 1 warning (0.0012 sec)

nysql -j s> nyCol | . find("99 IN $**.bl").execute();
{

ba
"_id": "000061313aa10000000000000001"
}

1 docunent in set (0.0016 sec)

The OVERLAPS operator compares two JSON fragments and returns true (1) if the two fragments have
any values in any key-value pair or array element in common. For example:

mysql -js> nyCol | . find("list").execute();

{
"id': o "1v,
"list": [
i,
4
]
}
{
"id': 2",
"list": [
4,
7
]
}

2 docunents in set, 1 warning (0.0010 sec)
nysql -js> nyCol | . find("[1,2,3] OVERLAPS $.list")

{
"id': o "1v,
"list": [
i,
4
]
}

1 docunent in set (0.0006 sec)

Several methods such asfi el ds(),sort() ,andlimnit() canbe chained tothefi nd() function to
further refine the result. For example:

nyCol | . find("Nanme LIKE 'Austra%").fiel ds("Code")
nyCol | . fi nd("geography. Continent LIKE 'A% ").linmt(10)

21

Collection.modify()

Parameter binding using bi nd() is also supported. The following example illustrates the use of bi nd()
with f i nd():

/1 Use the collection 'ny_collection'
var nyCol| = db.getCollection('ny_collection');

/1 Find a single docunent that has a field 'nane’ that starts with 'L’
var docs = nyCol|.find('nane |ike :param).
limt(1).bind('param, 'L%).execute();

print (docs. fetchOne());

I/l Get all docunents with a field 'nane’ that starts with 'L’
docs = nyCol | . find(' name |ike :param).
bi nd(' param ,' L%). execute();

var mnyDoc;

whil e (nyDoc = docs. fetchOne()) {
print (nmyDoc) ;

}

See also CollectionFindFunction for the syntax of f i nd() in EBNF.

4.3.3 Collection.modify()

The nodi fy(Sear chCondi ti onSt r) function is for modifying documents in a collection, similar to
an UPDATE statement for an SQL database. It takes a search condition string (SearchConditionStr)
as a parameter to specify the documents that are to be modified—a detailed discussion on the
SearchConditionStr can be found in Section 4.3.2, “Collection.find()".

If one or more documents are matched by the search condition string, they are modified by any of these
methods that are chained after the nodi f y() method. They can be chained one after another and for
multiple times:

Notes
@ e The _i d of a document cannot be modified or removed by the methods below.

¢ For any methods below that take a DocPath expression as one of its arguments,
the following rules apply:

< Within the DocPath expression, any field names containing a space or a
special character must be quoted; for example, set (" nane. ' | ast nane' ",
"Smith"),unset ("nane."' | ast%ane'")

» The DocPath expression cannot contain a wildcard token (either * or **).
« The DocPath expression cannot be null or empty.

e set ("DocPat h", ExprOLiteral): Setthe elements matched by the Document Path (DocPath)
expression with the value represented by the Expression or Literal (ExprOrLiteral) expression.

The DocPath expression is a JSON path expression identifying one or more JSON elements in the
documents found by the nodi f y() function. See discussions on the JSON path in Section 4.3.2,
“Collection.find()". If the element specified by DocPath does not exist, it is added to the document as a
new element.

ExprOrLiteral specifies the value to be set for the element represented by DocPath. It can be any of the
following:

22

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html

Collection.modify()

« A literal value. For example, 10 or "John".

* Any X DeVvAPI Expression, wrapped in the expr () function (or nysql . expr () for MySQL Shell and
some Connectors), so that it is not taken as a literal value. Here are some examples, which do not
exhaust the possibilities of using mysql . expr (Expr essi on) for ExprOrLiteral:

Another DocPath selecting a value from the document that is being modified (for example,
set ("favorNuns[0] ", nysqgl x. expr("favorNuns[1] ")), orset ("nane",
nysql x. expr("$.'last nanme'")).

A functional expression that involves one or more Expressions (for example,

set ("favor Nums[0] ", nysql x. expr ("abs(favorNuns[1])")).

One or more Expressions connected by operators (for example, set (" f avor Nuns[0] ",
nmysql x. expr (" favor Nuns[1] +f avor Nuns[2] +f avor Nuns[3] +3")) , or
set (" SanmeVal ueOr Not ", nysql x. expr ("favorNunms[1] = favorNuns[2]")).

A JSON document (for example, set (" G eeting”, nysql x. expr("{' season':"'winter',
'phrase': 'Happy Holiday'}"))

Note
@ set ("$", nysql x. expr("json_docunent") replaces all documents
matched by nodi f y() with the supplied j son_docunent , except for the original
_ i d field, which is inalterable once set at document creation.
e unset ("DocPat h[, DocPath] ..."):Delete one or more fields or array elements represented

by a list of one or more DocPath (for example, unset (" nane"), unset ("nane. 'l ast nane'",

nane.'first nane

),orunset ("favor Nuns[0] ")).

An error is returned if no DocPath is supplied, or if DocPath is $ (use remove() instead if you want to
delete a whole document).

Warning
O Notice that when multiple array elements are unset or deleted, they are being

removed one after another, and the same array index in a statement might,
therefore, refer to different elements for each unset action. Take that into
consideration when removing array elements. For example, for the document:

nysql -js> nyCol | .find("nane = 'Ann'");

{
"_id": "00006239f 74a0000000000000004",

"nanme": "Ann",
“favor Nums": [
i,
2
3,
4,
5

}

The following statement does not remove the first and second elements of the
array as one might expect:

nysql -j s> nyCol | . nodi fy("name = ' Ann'").unset ("favor Nuns[0] ", "favor Nuns[1] ") ;
Query OK, 1 itemaffected (0.0038 sec)

23

Collection.modify()

nmysqgl -js> nyCol | . find("nane = 'Ann'").fiel ds("favor Nuns");
{

"favor Nunms": [
2
4,
5
]
}
1 docunent in set (0.0007 sec)
Instead, it removed the first and third elements of the array. To delete the first two
elements, you can do the following:

nysql -j s> nyCol | . nodi fy("nane = "Ann'").unset ("favor Nuns[0] ", "favor Nuns[0] ") ;
Query OK, 1 itemaffected (0.0108 sec)

Rows matched: 1 Changed: 1 Warnings: O
nysql-js > nyColl.find("name = 'Ann'").fields("favor Nuns");
{
"favor Nums": [
3,
al;
5
]
}
1 docunent in set (0.0005 sec)

e pat ch(Docunent) : Performs a merge patch for any documents matched by nodi f y() and the JISON
Docurnent supplied as its parameter. The operation follows the RFC 7396 specification for JSON merge
patch created by the Internet Engineering Task Force (IETF). The following table explains the action
on a field, which depends on the field statuses in the two documents (notice that this is a recursive
operation):

Table 4.1 JSON Patch Merge of Document Fields

Field Status in the Original Field Status in Patch Action to be Taken on the Field
Document Document in the Original Document

Any value Value is Null Remove field

Value B Value A (not Null) If either Value A or B is a scalar,

replace Value B with Value A

If both Value A and B are JSON
objects, they are merged using
the same rules described in
this table (that is, the merge is
applied recursively for JSON

documents).
Field does not exist Value A (not Null) Add field with Value A
Value C Field does not exist No change to field

Here is a simple example of a merge using pat ch():

nysql -j s> nyCol | . find("name = ' John Doe'");
{

"DOB": "1970-01-01",

" id": "0000626028c30000000000000002",
“name": "John Doe",

"Phone": 1234567,

Collection.modify()

" Standi ng": " Good",
“favor Nuns": {
"a": 1,
"b":2
}
}
1 docunent in set (0.0009 sec)

nmysql -j s> nyCol | . nodi fy("name = 'John Doe'")
.patch({ name: "Jane Doe", DOB: null, Phone: 9876543, favorNums: { a: 3, b:4} });
Query OK, 1 itemaffected (0.0413 sec)

Rows matched: 1 Changed: 1 Wrnings: O

rTysqI-js> rTyOOII.find("nane = ' Jane Doe' u);

{
"_id": "0000626028c30000000000000002",

"nane": "Jane Doe",
"Phone": 9876543,
" Standi ng": " Good",
“favor Nuns": {
"a": 3,
"b': 4
}
}
1 docunent in set (0.0008 sec)
arrayl nsert (DocPat h, ExprOrLiteral):Insertan ExprOrLiteral (see explanations above) into
an array at the location identified by DocPath, shifting any following values in the array to the right. For
example: arrayl nsert ("favorNuns[1]", 7),arraylnsert("favorNuns[1]", {even: 2,
odd: 3, irrational: 'pi'}).The following rules apply:

« If DocPath does not identify an array element, an error is returned.

« If DocPath identifies an array position past the end of an array, the value is inserted at the end of the
array.

arrayAppend(DocPat h, ExprOrLiteral): Append a value represented by ExprOrLiteral to the end
of an array identified by DocPath. For example, ar r ayAppend(" favor Nuns", 555).

Notice that if DocPath points to a scalar or a document value, that value is autowrapped within an array
and the value represented by ExprOrLiteral is added to that array. For example:

nmysql -j s> nyCol | . find("name='Jane Doe'");

{
"_id": "000062b0Of af 90000000000000001",
"name": "Jane Doe",
"favor Nuni': 2

}

1 docunent in set (0.0011 sec)

nmysql -j s> nyCol | . nodi fy("name="'Jane Doe'").arrayAppend("favor Nuni', 3);
Query OK, 1 itemaffected (0.0094 sec)

Rows matched: 1 Changed: 1 Warnings: O
nysql 'j s> ny(bl | . fi nd(" nane=' Jane Doe' ..);

{
"_id": "000062b0Of af 90000000000000001",
"name": "Jane Doe",
“favor Num': [
2,
3
]
}

25

Collection.modify()

1 docunent in set (0.0006 sec)

The following methods can be chained to the modification methods described above to configure the
modification:

e sort(sortCriterialist): Sortthe order in which documents are to be modified according to
sortCriterialist,which is either a comma-separated list or an array of sort Cri t eri a. Each
sort Criteri a consists of a component name and a search order (asc for ascending, or desc for
descending). For example:

e sort('nanme asc', 'age desc')
e sort(['name asc', 'age desc'])

The method is used in combination with the | i m t () method to determine which of the documents
matched by nodi f y(Sear chCondi ti onStr) are to be modified.

e |imt(int):Limitsthe number of documents to be modified to i nt . When chained after sort (), only
the first i nt of documents in the sorted list are modified.

This is an example of using sort ().l i m t () to limit modifications to the documents:
nysql -j s> nyCol | .find("nane |ike '%oe'");
{

"_id": "000062b0f af 90000000000000001",

"name": "Jane Doe",
"favor Num': [
2,
3
]
}
{
"_id": "000062b372f 80000000000000001",
"nane": "Bob Doe",
"favor Num': [
kg
2
]
}
{
"_id": "000062b372f 80000000000000002",
"nane": "Mark Doe",
"favor Num': [
7,
8
]
}
{
"_id": "000062b372f 80000000000000003",
"nanme": "John Doe",
"favor Num': [
0,
4
]
}

nysql -j s> nyCol | . nodi fy("nane |ike '%bDoe'").unset ("favorNuni').sort("nane asc").linmt(2);
Query OK, 2 itens affected (0.0082 sec)

Rows matched: 2 Changed: 2 Warnings: O
nysql -j s> nyCol | .find("nane |ike '%Doe'").sort (' nane asc');
{

"_id": "000062b372f 80000000000000001",

"nane": "Bob Doe"

26

Collection.remove()

{
"_id": "000062b0Of af 90000000000000001",
"name": "Jane Doe"
}
{
_id": "000062b372f 80000000000000003",
"nane": "John Doe",
"favor Num': [
0,
4
]
}
{
_id": "000062b372f 80000000000000002",
"nane": "Mark Doe",
"favor Num': [
7,
8
]
}

4 docurments in set (0.0068 sec)

Parameter binding using bi nd() is also supported. The execut e() function triggers the actual execution
of the nodi f y() operation. The following example illustrates the use of nodi fy():

/] Use the collection 'ny_collection'
var nyCol| = db.getCollection('ny_collection');

/1 Add a new docurment to the collection
nmyCol | . add({ nane: "John Doe", DOB:"1970-01-01", Phone: 1234567, Standing: "Good" }).execute();

// Patch the added docunent, adding, renoving, and changi ng sone fields
nmyCol | . nodi fy("nane = 'John Doe'").patch({ nane: "Jane Doe", DOB: null, Phone: 9876543, favorNuns: [1, 2,3,

/I Mdify fields with different nmethods

nmyCol | . nodi fy("nane |ike :parant).set("Standing", "Bad").bind("paran, "J%oe").execute();

nmyCol | . nodi fy("nane |ike :parant). unset ("Phone"). bi nd("parant', "J%oe").execute();

myCol | . nodi fy("nane |ike :parant').arrayl nsert ("favorNuns[1]", 7).bind("parant, "J%Doe").execute();
nmyCol | . nodi fy("name |ike :parani').arrayAppend("favorNuns", 99).bind("parant’, "J%oe").execute();
myCol | . nodi fy("nane |ike :parant).unset ("favorNuns[2]"). bi nd("paran, "J%oe").execute();

var doc = nyCol|l.find('nane like :param).limt(1).bind(' param, 'J%Doe').execute();

print (doc.fetchOne());
/* The out put |ooks Iike:

{
"Standi ng": "Bad",
"_id": "0000626718c10000000000000002",
"favor Nuns": [
i,
£
3,
4,
5,
99
Il
"nanme": "Jane Doe"
o

See also CollectionModifyFunction for the syntax of add() in EBNF.

4.3.4 Collection.remove()

27

Indexing Collections

The Col | ection. renove() function is for removing documents in a collection, similar to the DELETE
statement for an SQL database. It takes a search condition string (SearchConditionStr) as a parameter
to specify the documents that should be removed from the collection (a detailed explanation of the
SearchConditionStr can be found in Section 4.3.2, “Collection.find()”). r enove() returns an error if no
search condition string is provided, or if an empty string is provided. All documents in the collection are
removed if any expression that evaluates to true without matching any document (for example, “t r ue” or
“id 'S NOT NULL") is passed as the search condition string.

The following methods can be chained to the r enove() method to configure the deletion:
o |imt(int):Limits the number of documents to be deleted to i nt .

e sort(sortCriterialist): Sortthe order in which documents are to be deleted according to
sort Criterialist, which is either a comma-separated list or an array of sort Cri t eri a. Each
sort Criteria consists of a component name and a search order (asc for ascending, or desc for
descending). For example:

e sort('nanme asc', 'age desc')
e sort(['nanme asc', 'age desc'])

The method is usually used in combination with the | i mi t () method to determine which of the
documents matched by the search condition string are to be deleted.

Parameter binding using bi nd() is also supported, and the execut e() function triggers the actual
execution of the remove operation. The following example shows how to use the Col | ecti on. renove()
function. It assumes some documents have been added to the collection as illustrated by the code
example in Section 4.3.1, “Collection.add()":

/1 Use the collection 'ny_collection'
var nyCol| = db.getCollection('ny_collection');

/'l Renove docunents by criteria

nyCol | . renove(' nane |i ke :name AND age < :age').
limt(1).bind('nane',' N%). bind(' age', 60).execute();

See also CollectionRemoveFunction for the syntax of add() in EBNF.

4.4 Indexing Collections

To make large collections of documents more efficient to navigate you can create an index based on one
or more fields found in the documents in the collection. This section describes how to index a collection.

Creating an Index

Collection indexes are ordinary MySQL indexes on virtual columns that extract data from the

documents in the collection. Because MySQL cannot index JSON values directly, to enable indexing

of a collection, you provide a JSON document that specifies the document's fields to be used by the

index. You pass the JSON document defining the index as the | ndexDef i ni t i on parameter to the

Col | ecti on. creat el ndex(nane, | ndexDefinition) method. This generic example (actual syntax
might vary for different programming languages) shows how to create a mandatory integer type index
based on the field count :

nyCol | ecti on. creat el ndex("count", {fields:[{"field": "$.count", "type":"INT", required:true}]});

This example shows how to create an index based on a text field: a zip code in this case. For a text field,
you must specify a prefix length for the index, as required by MySQL Server:

28

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/delete.html

Defining an Index

nyCol | ecti on. creat el ndex("zi p", {fields: [{field: "$.zip", type: "TEXT(10)"}]})

See Defining an Index for information on the format of | ndexDef i ni t i on and on the supported field
types for indexing.

The Col | ecti on. creat el ndex() method fails with an error if an index with the same name already
exists or if the index definition is not correctly formed. The name parameter is required and must be a valid
index name as accepted by the SQL statement CREATE | NDEX.

To remove an existing index use the col | ecti on. dr opl ndex(string nane) method. This would
delete the index with the passed name, and the operation silently succeeds if the named index does not
exist.

The indexes of a collection are stored as virtual columns. To verify a created index use the SHOW | NDEX
statement. For example to use this SQL from MySQL Shell:

sessi on. runSgl (' SHOW | NDEX FROM nmySchema. nyCol | ection');

Defining an Index

To create an index based on the documents in a collection you need to create an | ndexDef i ni ti on
JSON document. This section explains the valid fields you can use in such a JSON document to define an
index.

To define a document field to index a collection on, the type of that field must be uniform across the whole
collection. In other words, the type must be consistent. The JSON document used for defining an index,
suchas{fields: [{field: '$. usernane', type: 'TEXT }]}, can contain the following:

e fiel ds:an array of at least one | ndexFi el d object, each of which describes a JSON document field
to be included in the index.

A single | ndexFi el d description consists of the following fields:
« fi el d:a string with the full document path to the document member or field to be indexed

* type: a string for one of the supported column types to map the field to (see Field Data Types). For
numeric types, the optional UNSI GNED keyword can follow. For the TEXT type you must define the
length to consider for indexing (the prefix length).

e required: an optional boolean that should be set to t r ue if the field is required to exist in the
document. Defaults to f al se for all types except GEQJ SON, which defaults to t r ue.

e opti ons: an optional integer that is used as a special option flag when decoding GEQJ SON data (see
the description for ST_Geontr onGeoJSON() for details).

« srid: an optional integer to be used as the srid value when decoding GEQJ SON data (see the
description for ST_Geonfr ontze0JSON() for details).

e array: An optional boolean that is set to t r ue if the field contains arrays. The default value is f al se.
See Indexing Array Fields for details.

Important

the index; specifying a field that contains array data does not generate an error

A For MySQL 8.0.16 and earlier, fields that are JSON arrays are not supported in
from the server, but the index does not function correctly.

29

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-geojson-functions.html#function_st-geomfromgeojson

Field Data Types

e type: an optional string that defines the type of index. Value is one of | NDEX or SPATI AL. The default is
| NDEX and can be omitted.

Including any other fields in an | ndexDef i ni ti on or | ndexFi el d JISON document which is not
described above causes col | ecti on. creat el ndex() to fail with an error.

If index type is not specified or is set to | NDEX then the resulting index is created in the same way as it
would be created by issuing CREATE | NDEX. If index type is set to SPATI AL then the created index is the
same as it would be created by issuing CREATE | NDEX with the SPATI AL keyword, see SPATIAL Index
Optimization and Creating Spatial Indexes. For example:

nmyCol | ecti on. creat el ndex(' nyl ndex', //
{fields: [{field: '$. nmyGeoJsonField 6 type: 'GEQISON, required: true}], type:' SPATIAL'})

Important

A When using the SPATI AL type of index the r equi r ed field cannot be setto f al se
in | ndexFi el d entries.

This is an example to create an index based on multiple fields:

nmyCol | ecti on. creat el ndex(' nyl ndex', {fields: [{field: '$. nyField , type: 'TEXT'}, //
{field: '$.nyField2', type: 'TEXT(10)'}, {field: '$.nyField3' , type: '"INT"}]})

The values of indexed fields are converted from JSON to the type specified in the | ndexFi el d description
using standard MySQL type conversions (see Type Conversion in Expression Evaluation), except for the
CGEQJ SON type, which uses the ST_Geontr onze0J SON() function for conversion. That means when using
a numeric type in an | ndexFi el d description, an actual field value that is non-numeric is converted to O.

The opt i ons and sri d fields in | ndexFi el d can only be present if t ype is set to GEQJ SON. If present,
they are used as parameters for ST _CGeonfr once0JSON() when converting GEQJ SON data into MySQL
native GEOVETRY values.

Field Data Types

The following data types are supported for document fields. Type names are case-insensitive when used in
the t ype field.

« | NT [UNSIGNED]

« TI NYI NT [UNSIGNED]

« SMVALLI NT [UNSIGNED]
« VEDI UM NT [UNSIGNED]
« | NTEGER [UNSIGNED]

« Bl G NT [UNSIGNED]

« REAL [UNSIGNED]

« FLOAT [UNSIGNED]

« DOUBLE [UNSIGNED]

- DECI MAL [UNSIGNED]

« NUMERI C[UNSIGNED]

30

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-index-optimization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-index-optimization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/creating-spatial-indexes.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/type-conversion.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-type-overview.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/floating-point-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/floating-point-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/floating-point-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/fixed-point-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/fixed-point-types.html

Indexing Array Fields

» DATE

e TIMVE

o TI MESTAWP

» DATETI ME

e TEXT(!| engt h)

» GEQJSON (extra options: options, srid)

Indexing Array Fields

X DevAPI supports creating indexes based on array fields by setting the boolean ar r ay field in the
I ndexFi el d description to t r ue. For example, to create an index on the enai | s array field:

col l ection. createl ndex("emails_idx", //
{fields: [{"field": "$.emils", "type":"CHAR(128)", "array": true}]});

The following restrictions apply to creating indexes based on arrays:

» For each index, only one indexed field can be an arr ay

» Data types for which index on arrays can be created:
« Numeric types: | NTEGER [UNSI GNED] (I NT is NOT supported)
« Fixed-point types: DECI MAL(m n) (the precision and scale values are mandatory)
« Date and time types: DATE, Tl IVE, and DATETI ME

e String types: CHAR(n) and Bl NARY(n) ; the character or byte length n is mandatory (TEXT is NOT
supported)

4.5 Single Document Operations

The CRUD commands described at Section 4.3, “Collection CRUD Function Overview” all act on a group
of documents in a collection that match a filter. X DevAPI also provides the following operations, which
work on single documents that are identified by their document IDs:

e Col l ection.getOne(string id) returns the document with the given i d. This is a shortcut for
Collection.find("_id = :id").bind("id", id).execute().fetchOne().

* Collection.replaceOne(string id, Docunent doc) updates or replaces the document
identified by i d, if it exists, with the provided document.

* Col I ection.addO Repl aceOne(string id, Docunent doc) adds the given document;
however, if the i d or any other field that has a unique index on it already exists in the collection, the
operation updates the matching document instead.

e Coll ection.renoveOne(string id) removes the document with the given i d. This is a shortcut
forCol | ection.renove(" id = :id").bind("id", id).execute().

Using these operations you can reference a document by its ID (see Section 5.2, “Working with Document
IDs”), making operations on single documents simpler by following a "load, modify, and save" pattern such
as the following:

31

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/time.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/spatial-geojson-functions.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/fixed-point-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/time.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html

Syntax of Single Document Operations

doc = collection.getOne(id); // Load docunent of the specified id into a tenporary docunent called doc
doc["address"] = "123 Long Street"; //Mdify the "address" field of doc
col l ection.replaceOne(id, doc); // Save doc into the docunment with the specified id

Syntax of Single Document Operations
The syntax of the single document operations is as follows:

e Docunent get One(string id),whereid isthe document ID of the document to be retrieved. This
operation returns the document, or NULL if no match is found. Searches for the document that has the
given i d and returns it.

e Result replaceOne(string id, Docunent doc),wherei disthe document ID of the document
to be replaced, and doc, which can contain expressions, is the new document for replacing the
document identified by i d. If doc itself contains an _i d value and it is different from i d, the operation
fails. The operation also fails if the new document contains a unique key value that conflicts with any
other document in the collection. The operation returns a Resul t object, which indicates the number
of affected documents (1 or 0). If no matches are found for i d, the function returns normally with no
changes being made.

* Result addOrRepl aceOne(string id, Docunent doc), wherei disthe document ID of the
document to be replaced or added (if no match can be found for the i d), and doc, which can contain
expressions, is the new document used for replacement or addition. If doc itself contains an _i d value
and it is different from i d, the operation fails. The operation also fails if the new document contains
a unique key value that conflicts with any other document in the collection. This operation returns a
Resul t object, which indicates the number of affected documents (1 or 0).

* Result renoveOne(string id),whereid isthe document ID of the document to be removed. This
operation returns a Resul t object, which indicates the number of removed documents (1 or O, if none).

4.6 JSON Schema Validation

Collections can be configured to verify documents against a JSON schema. This enables you to require
that documents have a certain structure before they can be inserted or updated in a collection. You specify
a JSON schema as described at http://json-schema.org. Schema validation is performed by the server,
which returns an error message if a document in a collection does not validate against the assigned JSON
schema. For more information on JSON schema validation in MySQL, see JSON Schema Validation
Functions. This section describes how to configure a collection to validate documents against a JSON
schema.

To enable or modify JSON schema validation, you supply to a collection a val i dat i on JSON object like

the following:
{
val i dation: {
level : "off|strict",
schema: "json-schem"

}
}

Here, val i dati on is a JSON object that contains the keys you can use to configure JSON schema
validation. The first key is | evel , which can take the value stri ct or of f. The second key, schens,
is a JSON schema, as defined at http://json-schema.org. If the | evel key is setto stri ct, documents
are validated against the | son- schenma when they are added to the collection or, if they are already in
the collection, when they are updated by some operations. If a document does not validate, the server
generates an error and the operation fails. If the | evel key is set to of f , documents are not validated
against the j son- schena.

32

http://json-schema.org
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/json-validation-functions.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/json-validation-functions.html
http://json-schema.org

Creating a Validated Collection

Creating a Validated Collection

To enable JSON schema validation when you create a new collection, supply a val i dati on JSON
object as described above. For example, to create a collection that holds longitude and latitude values and
require validating those values as numbers:

var coll = schema.createCollection("longlang", {
val i dation: {
level: "strict",
schema: {
"id": "http://json-schema. or g/ geo"
"$schema": "http://json-schema. org/draft-06/ schema#"
"description": "A geographi cal coordinate",
"type": "object",
"properties": {
"latitude": {
"type": "nunber"

}

ongi tude": {
"type": "nunber"
}
b
"required": ["latitude", "longitude"]
}

}
b

Modifying Collection Validation

You can modify a collection to control the JISON schema validation of documents. For example you can
enable or disable validation, or change the JSON schema that documents are validated against.

In order to modify the JISON schema validation of a collection, supply a val i dat i on JSON object when
calling the Collection.modify() method. For example, to modify a collection to disable JSON schema
validation, the val i dat i on object would be:

{
val i dation: {
“level ": "off"
}

}

When modifying the JSON schema validation, you can supply the | evel option alone to change just the
level of schema validation. For example, pass the JSON object shown above to disable JSON schema
validation. This makes no change to the JSON schema previously specified and does not remove the
JSON schema from the collection. Alternatively, you can modify the schema only by passing just a new
JSON schema object.

33

34

Chapter 5 Working with Documents

Table of Contents

5.1 Creating DOCUIMENES .. .ceuuiiiiiii ettt ettt ettt e ettt e ettt e e e et b e e e et e e e e et e e e e eaen s 35
5.2 WOrking With DOCUMENT IDSuiiiiiiiiiiiii ettt ettt e et e et e et e e e eba s 35
5.3 Understanding DOCUMENE IDSiiiiiiiiiiiiiie ettt e e e et e e e et e e e eaa e e eenaas 37

5.1 Creating Documents

Once a collection has been created, it can store JSON documents. You store documents by passing

a JSON data structure to the Col | ecti on. add() function. Some languages have direct support for
JSON data, others have an equivalent syntax to represent that data. MySQL Connectors that implement
X DevAPI aim to implement support for all JSON methods that are native to the Connectors' specific
languages.

In addition, in some MySQL Connectors the generic DbDoc objects can be used. The most convenient
way to create them is by calling the Col | ecti on. newDoc() . DbDoc is a data type to represent JSON
documents and how it is implemented is not defined by X DevAPI. Languages implementing X DevAPI are
free to follow an object-oriented approach with getter and setter methods, or use a C struct style with public
members.

For strictly-typed languages it is possible to create class files based on the document structure definition of
collections. MySQL Shell can be used to create those files.

Table 5.1 Different Types of Document Objects, Their Supported Languages, and Their Advantages

Document Objects Supported languages Advantages
Native JSON Scripting languages (JavaScript, |Easy to use
Python)
JSON equivalent syntax C# (Anonymous Types, Easy to use
ExpandoObiject)
DbDoc All languages Unified across languages
Generated Doc Classes Strictly typed languages (C#) Natural to use

The following example shows the different methods of inserting documents into a collection.

/Il Create a new collection 'ny_collection'
var myCol |l = db.createCollection('ny_collection');

/'l Insert JSON data directly
nmyCol | . add({_id: '8901', nane: 'Mats', age: 21}).execute();

/'l Inserting several docs at once
nmyCol | . add([{_id: '8902', nane: 'Lotte', age: 24},
{_id: '8903", nane: 'Vera', age: 39}]).execute();

5.2 Working with Document IDs

This section describes what a document ID is and how to work with it.

Every document has a unique identifier called the document ID, which can be thought of as the equivalent
of a table's primary key. The document ID value is usually automatically generated by the server when

35

Working with Document IDs

the document is added, but can also be manually assigned. The assigned document ID is returned in the
gener at edl ds property of the Resul t (AddResul t for Connector/J) object for the col | ecti on. add()
operation and can be accessed using the get Gener at edl ds() method. See Section 5.3, “Understanding
Document IDs” for more background information on document IDs.

The following example in JavaScript code shows adding a document to a collection, retrieving the added
document's IDs and testing that duplicate IDs cannot be added.

nysqgl-js > var result = nycollection.add({test:' denp01'}). execute()
nysqgl-js > print(result.generatedlds)
[

]
nysqgl-js > var result = nycollection.add({test:' denp02'}).add({test:' denp03'}). execute()
nysqgl-js > print(result.generatedlds)

[

"00006075f 6810000000000000006"

"00006075f 6810000000000000007"
"00006075f 6810000000000000008"

]

nysqgl -js > nycol |l ection.find()

{
" _id": "00006075f 6810000000000000006"
“test": "denpOl"

}

{
" _id": "00006075f 6810000000000000007"
“test": "denp02"

}

{
" _id": "00006075f 6810000000000000008"
“test": "denp0O3"

}

3 docunents in set (0.0102 sec)
nysqgl-js > var result = nycollection.add({_id:"'00006075f 6810000000000000008', test:'denp04'}).execute()
Docunent contains a field value that is not unique but required to be (M/SQ. Error 5116)

As shown in the example above, the document ID is stored in the _i d field of a document. The document
ID is a VARBI NARY() with a maximum length of 32 characters. If an _i d is provided when a document is
created, it is honored; if no _i d is provided, one is automatically assigned to the document.

The following example illustrates how the _i d value can either be provided or autogenerated. It
is assumed that the t est schema exists and is assigned to the variable db, that the collection
nmy_col | ecti on exists and that cust om i d is unique.

/1 If the _idis provided, it will be honored

var result = nyColl.add({ _id: 'customid , a: 1}).execute()
var docunent = nyColl.find("a = 1").execute().fetchOne()
print("User Provided Id:", docunent. _id)

I/l If the _id is not provided, one will be automatical ly assi gned
result = nmyColl.add({ b: 2 }).execute()
print("Autogenerated Id:", result.getGeneratedl ds()[0])

Some documents have a natural unique key. For example, a collection that holds a list of books is likely to
include the International Standard Book Number (ISBN) for each document that represents a book. The
ISBN is a string with a length of 13 characters, which is well within the length limit of 32 characters for the
_i d field.

/'l using a book's unique | SBN as the object ID

nyCol | . add({

_id: "978-1449374020"

title: "MySQL Cookbook: Solutions for Database Devel opers and Admi ni strators”

36

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html

Understanding Document IDs

}) . execute();

Use f i nd() to fetch the newly inserted book from the collection by its document ID.

var book = nyCol | .find(' _id = "978-1449374020""'). execute();

Currently, X DevAPI does not support using any document field other than the implicit i d as the
document ID—there is no way to define another key to perform the same function.

5.3 Understanding Document IDs

This sections describes in detail how document IDs are generated and how to interpret them. X DevAPI
relies on server-based document ID generation, which results in sequentially increasing document IDs
across all clients. | nnoDB uses the document ID as a primary key, resulting in efficient page splits and tree
reorganizations.

This section describes the properties and format of the automatically generated document IDs.

Document ID Properties

The i d field of a document behaves in the same way as any other fields of the document during queries,
except that its value cannot be changed once it has been inserted to the collection. The _i d field is used
as the primary key of the collection . It is possible to override the automatic generation of document IDs by
manually including an ID in an inserted document.

Important

A X Plugin is not aware of the data inserted into the collection, including any manual
document IDs you use. When using manual document IDs, you must ensure that
they do not clash with any IDs that might ever be generated automatically by the
server (see Document ID Generation for details), in order to avoid any errors due to
primary key duplication.

Whenever an _i d field value is not present in an inserted document, the server generates an _i d

value. The generated i d value used for a document is returned to the client as part of the Resul t

(Resul t for Connector/J) object of the add() operation. If you are using X DevAPI on an InnoDB

Cluster, the automatically generated i d must be unique within the whole cluster. By setting the

nysql x_docunent _i d_uni que_pr efi x to a unique value per cluster instance, you can ensure

document IDs are unique across all the instances.

The _i d field must be sequential (always incrementing) for optimal InnoDB insertion performance (at least
within a single server). The sequential nature of i d values is maintained across server restarts.

In a multi-primary Group Replication or InnoDB Cluster environment, the generated _i d values of a table
are unique across instances to avoid primary key conflicts and minimize transaction certification.

Document ID Generation

This section describes how document IDs are formatted.

The format of automatically generated document ID is:

unique_prefix start_timestamp serial
4 bytes 8 bytes 16 bytes
Where:

37

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/x-plugin-options-system-variables.html#sysvar_mysqlx_document_id_unique_prefix

Document ID Generation

e uni que_prefi x is a value assigned by InnoDB Cluster to the instance, which is used to make the
document ID unique across all instances from the same cluster. The range of uni que_pr ef i x is from
Oto 216—1, which is hex encoded. Default value is 0, if it is neither set by InnoDB Cluster nor by the
nysql x_docunent _i d_uni que_pr ef i x system variable.

e start _tinestanp is the time stamp of the startup time of the server instance, which is hex encoded.
In the unlikely event that the value of seri al overflows, the st art ti nmest anp is incremented by 1
and the seri al value then restarts at 0.

» seri al is a per-instance automatically incremented integer serial number value, which is hex encoded
and has a range of 0 to 2%4.1. The initial value of seri al is set to the aut o_increnent of fset
system variable, and the increment of the value is set by the aut o_i ncrenent _i ncr enent system
variable.

This document ID format ensures that:

» The primary key value monotonically increments for inserts originating from a single server instance,
although the interval between values is not uniform within a table.

» When using multi-primary Group Replication or InnoDB Cluster, inserts to the same table from
different instances do not have conflicting primary key values, as long as the instances have the
aut o_i ncrenent _of f set and the aut o_i ncrenment _i ncrenent system variables configured
properly (see descriptions of the variables for details).

38

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/x-plugin-options-system-variables.html#sysvar_mysqlx_document_id_unique_prefix
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-source.html#sysvar_auto_increment_offset
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-source.html#sysvar_auto_increment_increment
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-source.html#sysvar_auto_increment_offset
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-source.html#sysvar_auto_increment_increment

Chapter 6 Working with Relational Tables

Table of Contents

6.1 Syntax of the SQL CRUD FUNCLIONScouuuiiiiiiiieieiii ettt e e et e e e e e enaans 39

The X DevAPI SQL CRUD functions allow you to work with relational tables in manners similar to using
traditional SQL statements. The following code sample shows how to use the add() and sel ect ()
methods of the X DevAPI SQL CRUD functions, which are similar to running | NSERT and SELECT
statements on a table with an SQL client. Compare this with the examples found in Section 4.3, “Collection
CRUD Function Overview” to see the differences and similarities between the CRUD functions for tables
and collections in the X DevAPI.

/Il Working with Rel ati onal Tabl es
var nysql x = require(' nysql x');

/'l Connect to server using a connection URL
var mySessi on = nmysql x. get Sessi on({

host: 'local host', port: 33060,

user: 'wuser', password: 'password'})

var myDb = mySessi on. get Schena('test');

/] Accessing an existing table
var myTabl e = nyDb. get Tabl e(' my_table');

/'l Insert SQL Tabl e data
nmyTabl e.insert(['name', 'birthday', 'age']).
val ues(' Laurie', mysqgl x. dat eVal ue(2000, 5, 27), 19).execute();

/] Find a rowin the SQL Table

var myResult = nyTable.select(['_id, 'name', 'birthday']).
where(' nane |ike :nane AND age < :age').
bi nd(' nanme', 'L%).bind(' age', 30).execute();

/1 Print result
print(nmyResult.fetchOne());

6.1 Syntax of the SQL CRUD Functions

The following SQL CRUD functions are available in X DevAPI.

Table.insert()

The Tabl e. i nsert () method works like an | NSERT statement in SQL. It is used to store data in a
relational table in the database. It is executed by the execut e() function.

The following example shows how to use the Tabl e. i nsert () functi on. The example assumes that
the t est schema exists and is assigned to the variable db, and that an empty table called my_t abl e
exists.

/'l Accessing an existing table
var nmyTabl e = db. get Tabl e(' ny_table');

/1 Insert a row of data.
nmyTable.insert(['id, 'name']).
val ues(1, 'lmani").
val ues(2, 'Adanmi).

39

Table.select()

execute();

Figure 6.1 Table.insert() Syntax Diagram

- 0 oot |=—3) s
U ===

Table.select()

The Tabl e. sel ect () method works like a SELECT statement in SQL. Notice that Tabl e. sel ect ()
and col | ection. find() use different methods for sorting results: Tabl e. sel ect () uses the method
or der By(), reminiscent of the ORDER BY keyword in SQL, while the sort () method is used to sort the
results returned by Col | ection. find().

Figure 6.2 Table.select() Syntax Diagram

1—| ProjectedSea rchE:q}rSI:|1_isl:|—J SearchConditionStr I—.-J

SearchExprStrList I—.-J SearchConditionStr I—.-j

s @) (@)oo J

1 [Placeholdervalues] I . = |

LockContention

Table.update()

The Tabl e. updat e() method works like an UPDATE statement in SQL.
Figure 6.3 Table.update() Syntax Diagram

.set(} TableField 407 ExprOrLiteral @—L[.whem(} SearchConditionStr @
L[.l:m:lerlv()— SortExprstrlist @—j L[.Ilmﬂ:()— NumberOfRows @—j

Lm0 g
eI D=y

40

Table.delete()

Table.delete()

The Tabl e. del et e() method works like a DELETE statement in SQL.

Figure 6.4 Table.delete() Syntax Diagram

SearchConditionstr

Ve =

NumberOfRows

Placeholdervalues

ry

) 9
Lr—n

41

42

Chapter 7 Working with Relational Tables and Documents

Table of Contents

7.1 Collections as RElAtioNaAl TADIEScuouiiiii ettt a e ens 43

After seeing how to work with documents and how to work with relational tables, this section explains how
to combine the two and work with both at the same time.

It can be beneficial to use documents for very specific tasks inside an application and rely on relational
tables for other tasks. Or a very simple document only application can outgrow the document model and
incrementally integrate or move to a more powerful relational database. This way the advantages of both
documents and relational tables can be combined. SQL tables contribute strictly typed value semantics,
predictable and optimized storage. Documents contribute type flexibility, schema flexibility and non-scalar

types.
7.1 Collections as Relational Tables

Applications that seek to store standard SQL columns with Documents can cast a collection to a table. In
this case a collection can be fetched as a Table object with the Schena. get Col | ecti onAsTabl e()
function. From that moment on it is treated as a regular table. Document values can be accessed in SQL
CRUD operations using the following syntax:

doc->'$.field

doc->"'$.field isusedtoaccess the document top level fields. More complex paths can be specified
as well.

doc->'$.sone.field.like[3].this'

Once a collection has been fetched as a table with the Schena. get Col | ecti onAsTabl e() function, all
SQL CRUD operations can be used. Using the syntax for document access, you can select data from the
Documents of the Collection and the extra SQL columns.

The following example shows how to insert a JSON document string into the doc field.

/'l Cet the custoners collection as a table

var customers = db. get Col | ecti onAsTabl e(' custoners');
custoners.insert('doc').values('{"_id":"001", "nane": "Ana", "last_name": "Silva"}"').execute();

/1 Now do a find operation to retrieve the inserted docunment
var result = custoners. sel ect(["doc->'$.name'", "doc->'$.last_nane'"]).where("doc->'$. id = '001"").execu

var record = result.fetchOne();

print ("Nane : " + record[O0]);
print ("Last Name : " + record[1]);

43

44

Chapter 8 Statement Execution

Table of Contents

S 700 R I = g S T= Lo 1 o T = o | T o 45
S 700 I R o o Yot =11 T o T VAV = U g] T £ 46
8.1.2 Error HanAIiNgccouiiiiiiiie e et e e e e e aaaas a7

8.2 WOrking WIith SAVEPOINTS ...t ettt e e et e et e e e et e e et e eean s 48

8.3 WOrKIiNG WIth LOCKING . .vuiiiiii e e e e e e e e e e e e e e et e et ean e eanes 49

8.4 Working with Prepared StatemMENLSoiiuuiiiiiii e et e e e e e e eaa e ees 50

This section explains statement execution, with information on how to handle transactions and errors.

8.1 Transaction Handling

Transactions can be used to group operations into an atomic unit. Either all operations of a transaction
succeed when they are committed, or none. It is possible to roll back a transaction as long as it has not
been committed.

Transactions can be started in a session using the st art Tr ansact i on() method, committed with
conmi t Transacti on() and cancelled or rolled back with r ol | backTr ansacti on() . This is illustrated
in the following example. The example assumes that the t est schema exists and that the collection
nmy_col | ecti on does not exist.

var nysqlx = require(' nysqlx');

/1 Connect to server
var session = nysql x. get Sessi on({
host: 'l ocal host', port: 33060,
user: 'wuser', password: 'password' });

/] Get the Schema test
var db = session. get Schema('test');

/] Create a new coll ection
var nyCol| = db.createCollection('ny_collection');

/]l Start a transaction

sessi on. start Transacti on();

try {
nyCol | . add({nane: 'Rohit', age: 18, height: 1.76}).execute();
nyCol | . add({nane: 'M saki', age: 24, height: 1.65}).execute();
nyCol | . add({nane: 'Leon', age: 39, height: 1.9}).execute();

// Commit the transaction if everything went well
session. comm t();

print('Data inserted successfully.");

}

catch (err) {
/! Roll back the transaction in case of an error
sessi on. rol | back();

// Printing the error nessage
print('Data could not be inserted: ' + err.nessage);

}

45

Processing Warnings

8.1.1 Processing Warnings

Similar to the execution of single statements committing or rolling back a transaction can also trigger
warnings. To be able to process these warnings the replied result object of Sessi on. comm t () ; or
Sessi on. rol I back(); needs to be checked.

This is shown in the following example. The example assumes that the test schema exists and that the
collection my_col | ect i on does not exist.

var nysqlx = require(' mysql x');

/'l Connect to server
var mySessi on = nysql x. get Sessi on({
host: 'local host', port: 33060,
user: 'user', password: 'password' });

/'l Cet the Schema test
var myDb = nmySessi on. get Schema('test');

/] Create a new coll ection
var myCol | = nyDb. createCollection('my_collection');

[/l Start a transaction

nmySessi on. start Transacti on() ;

try

{
myCol | . add({' name': 'Rohit', 'age': 18, 'height': 1.76}).execute();
nmyCol | . add({' name': 'Msaki', 'age': 24, 'height': 1.65}).execute();
myCol | . add({' name': 'Leon', 'age': 39, 'height': 1.9}).execute();

/!l Commit the transaction if everything went well
var reply = nySession.comit();

/1 handl e war ni ngs
if (reply.warningCount) {
var warni ngs = reply.getWarni ngs();
for (index in warnings){
var warni ng = warni ngs[i ndex] ;
print (' Type ['+ warning.level + '] (Code ' + warning.code + '): ' + warning. nessage +
}
}

print ('Data inserted successfully."');

catch(err)

{
/'l Rol | back the transaction in case of an error
reply = nmySession.roll back();
/1 handl e war ni ngs
if (reply.warningCount) {
var warni ngs = reply.getWarni ngs();
for (index in warnings){
var warni ng = warni ngs[i ndex] ;
print (' Type ['+ warning.level + '] (Code ' + warning.code + '): ' + warning. nessage +
}
}
// Printing the error nessage
print ('Data could not be inserted: ' + err.nmessage);
}

By default all warnings are sent from the server to the client. If an operation is known to generate
many warnings and the warnings are of no value to the application then sending the warnings can be

‘\n');

‘\n');

Error Handling

suppressed. This helps to save bandwith. sessi on. set Fet chWar ni ngs() controls whether warnings
are discarded at the server or are sent to the client. sessi on. get Fet chWar ni ngs() is used to learn the
currently active setting.

var nysqglx = require(' mysql x');

function process_warni ngs(resul t){
if (result.getWrningCount()){
var warni ngs = result.getWarni ngs();
for (index in warnings){
var warni ng = warni ngs[i ndex] ;

print (' Type ['+ warning.level + '] (Code ' + warning.code + '): ' + warning.nmessage + '\n');
}
}
el se{
print ("No warnings were returned.\n");
}

}

/'l Connect to server

var mySessi on = nysql x. get Sessi on({
host: 'local host', port: 33060,
user: 'user', password: 'password' });

/] Disabl es warning generation

nmySessi on. set Fet chWar ni ngs(f al se) ;

var result = nySession.sql('drop schema if exists unexisting').execute();
process_war ni ngs(result);

/| Enabl es warni ng generation

mySessi on. set Fet chWar ni ngs(true);

var result = nySession.sql('drop schema if exists unexisting').execute();
process_war ni ngs(result);

8.1.2 Error Handling

When writing scripts for MySQL Shell you can often simply rely on the exception handling done by MySQL
Shell. For all other languages either proper exception handling is required to catch errors or the traditional
error handling pattern needs to be used if the language does not support exceptions.

The default error handling can be changed by creating a custom Sessi onCont ext and passing it to the
nmysqgl x. get Sessi on() function. This enables switching from exceptions to result based error checking.

The following example shows how to perform proper error handling. The example assumes that the test
schema exists and that the collection my_col | ecti on exists.

var nysqglx = require(' mysql x');
var mySessi on;

try {
/'l Connect to server on | ocal host

mySessi on = nysql x. get Sessi on({
host: 'local host', port: 33060,
user: 'user', password: 'password' });
}
catch (err) {
print (' The database session could not be opened: ' + err.nessage);

}

try {
var myDb = mySessi on. get Schema('test');

/1 Use the collection 'my_collection'

47

Working with Savepoints

var myCol | = nyDb. getCollection('ny_collection');

/1 Find a document
var nmyDoc = nyCol | .find('nane like :param).limt(1)
.bind("param ,'L%).execute();

/1 Print docunent
print(myDoc.first());
}
catch (err) {
print('The following error occurred: ' + err.nmessage);
}
finally {
/'l Close the session in any case
mySessi on. cl ose() ;

}

8.2 Working with Savepoints

X DeVvAPI supports savepoints, which enable you to set a named point within a transaction that you can
revert to. By setting savepoints within a transaction, you can later use the rollback functionality to undo
any statements issued after setting the savepoint. Savepoints can be released if you no longer require
them. This section documents how to work with savepoints in X DevAPIl. See SAVEPO NT for background
information.

Setting a Savepoint

Savepoints are identified by a string hame. The string can contain any character allowed for an identifier.
To create a savepoint, use the sessi on. set Savepoi nt () operation, which maps to the SQL statement
SAVEPO NT nane; . If you do not specify a nane, one is automatically generated. For example by issuing:

sessi on. set Savepoi nt ()

a transaction savepoint is created with an automatically generated name and a string is returned

with the name of the savepoint. This name can be used with the sessi on. rol | backTo() or

session. rel easeSavepoi nt () operations. The sessi on. set Savepoi nt () operation can be called
multiple times within a session and each time a unique savepoint name is generated.

It is also possible to manually define the name of the savepoint by passing in a string nane. For example
issuing:

sessi on. set Savepoi nt (' nane')

results in a transaction savepoint with the specified name, which is returned by the operation as a string.
The sessi on. set Savepoi nt (' nane') operation can be called multiple times in this way, and if the

nane has already been used for a savepoint then the previous savepoint is is deleted and a new one is

set.

Rolling Back to a Savepoint

When a session has transaction savepoints, you can undo any subsequent transactions using the
session. rol | backTo() operation, which maps to the ROLLBACK TO narme statement. For example,
issuing:

sessi on. rol | backTo(' nane')

rolls back to the transaction savepoint nane. This operation succeeds as long as the given savepoint has
not been released. Rolling back to a savepoint which was created prior to other savepoints results in the
subsequent savepoints being either released or rolled back. For example:

48

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/savepoint.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/savepoint.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/savepoint.html

Releasing a Savepoint

session. start Transacti on()
(some data nodifications occur...)

sessi on. set Savepoi nt (' poi nt1') <---- succeeds
(some data nodifications occur...)

sessi on. set Savepoi nt (' poi nt2') <---- succeeds
(some data nodifications occur...)

session. rol | backTo(' point1') <---- succeeds

sessi on. rol | backTo(' point1') <---- still succeeds, but position stays the sane

sessi on. rol | backTo(' point2') <---- generates an error because |ines above already cleared point2
sessi on. rol | backTo(' point1') <---- still succeeds

Releasing a Savepoint

To cancel a savepoint, for example when it is no longer needed, use r el easeSavepoi nt () and pass in
the name of the savepoint you want to release. For example, issuing:

sessi on. rel easeSavepoi nt (' nane')

releases the savepoint nane.

Savepoints and Implicit Transaction Behavior

The exact behavior of savepoints is defined by the server, and specifically how autocommit is configured.
See autocommit, Commit, and Rollback.

For example, consider the following statements with no explicit BEG N, sessi on. st art Transacti on()
or similar call:

sessi on. set Savepoi nt (' t est savepoi nt')
sessi on. rel easeSavepoi nt (' t est savepoi nt')

If autocommit mode is enabled on the server, these statements result in an error because the savepoint
named t est savepoi nt does not exist. This is because the call to sessi on. set Savepoi nt () creates
a transaction, then the savepoint and directly commits it. The result is that savepoint does not exist by the
time the call to r el easeSavepoi nt () is issued, which is instead in its own transaction. In this case, for
the savepoint to survive you need to start an explicit transaction block first.

8.3 Working with Locking

X DevAPI supports MySQL locking through the | ockShar ed() and | ockExcl usi ve() methods
for the Collection.find() and Table.select() methods. This enables you to control row locking to
ensure safe, transactional document updates on collections and to avoid concurrency problems, for
example when using the modify() method. This section describes how to use the | ockShar ed()
and | ockExcl usi ve() methods for both the Collection.find() and Table.select() methods. For more
background information on locking, see Locking Reads.

The | ockShared() and | ockExcl usi ve() methods have the following properties, whether they are
used with a Collection or a Table.

» Multiple calls to the lock methods are permitted. If a locking statement executes while a different
transaction holds the same lock, it blocks until the other transaction releases it. If multiple calls
to the lock methods are made, the last called lock method takes precedence. In other words
find().lockShared().|ockExclusive() isequivalenttofind().!| ockExclusive().

e | ockShar ed() has the same semantics as SELECT ... LOCK I N SHARE MODE. Sets a shared
mode lock on any rows that are read. Other sessions can read the rows, but cannot modify them until

49

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-autocommit-commit-rollback.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/commit.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-locking-reads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-locking-reads.html

Locking considerations

your transaction commits. If any of these rows were changed by another transaction that has not yet
committed, your query waits until that transaction ends and then uses the latest values.

| ockExcl usi ve() has the same semantics as SELECT ... FOR UPDATE. For any index records the
search encounters, it locks the rows and any associated index entries, in the same way as if you issued
an UPDATE statement for those rows. Other transactions are blocked from updating those rows, from
doing SELECT ... LOCK I N SHARE MODE, or from reading the data in certain transaction isolation
levels. Consistent reads ignore any locks set on the records that exist in the read view. Old versions of
a record cannot be locked; they are reconstructed by applying undo logs on an in-memory copy of the
record.

Locks are held for as long as the transaction which they were acquired in exists. They are immediately
released after the statement finishes unless a transaction is open or autocommit mode is turned off.

Both locking methods support the NOMI T and SKI P LOCKED | nnoDB locking modes. For more
information see Locking Read Concurrency with NOWAIT and SKIP LOCKED. To use these locking
modes with the locking methods, pass in one of the following:

NOWAI T - if the function encounters a row lock it aborts and generates an ER_LOCK_NOWAI T error
SKI P_LOCKED - if the function encounters a row lock it skips the row and continues

DEFAULT - if the function encounters a row lock it waits until there is no lock. The equivalent of calling
the lock method without a mode.

Locking considerations

When working with locking modes note the following:

aut ocommi t mode means that there is always a transaction open, which is commited automatically
when an SQL statement executes.

By default sessions are in autocommit mode.
You disable autocommit mode implicitly when you call st art Tr ansacti on() .

When in autocommit mode, if a lock is acquired, it is released after the statement finishes. This could
lead you to conclude that the locks were not acquired, but that is not the case.

Similarly, if you try to acquire a lock that is already owned by someone else, the statement blocks until
the other lock is released.

8.4 Working with Prepared Statements

X DevAPI improves performance for each CRUD statement that is executed repeatedly by using a server-
side prepared statement for its second and subsequent executions. This happens internally—applications
do not need to do anything extra to utilize the feature, as long as the same operation object is reused.

When a statement is executed for a second time with changes only in data values or in values that refine
the execution results (for example, different of f set () orlimt () values), the server prepares the
statement for subsequent executions, so that there is no need to reparse the statement when it is being
run again. New values for re-executions of the prepared statement are provided with parameter binding.
When the statement is modified by chaining to it a method that refines the result (for example, sort (),
limt(),oroffset()),the statementis reprepared. The following pseudocode and the comments on
them demonstrate the feature:

var f = coll.find("field = :field");

50

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-locking-reads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-locking-reads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-locking-reads.html#innodb-locking-reads-nowait-skip-locked
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_autocommit

Working with Prepared Statements

.bind("field", 1).execute(); // Normal execution

.bind("field", 2).execute(); // Same statement executed with a different paraneter value triggers statenel
.bind("field", 3).execute(); // Prepared statenent executed with a new val ue

.bind("field", 3).limt(10).execute(); // Statenment reprepared as it is nodified with Iimt()
.bind("field", 4).1imt(20).execute(); // Reprepared statenent executed with new paraneters

—h —h —h —h —h

Notice that to take advantage of the feature, the same operation object must be reused in the repetitions of
the statement. Look at this example

for (i=0; i<100; ++i) {
coll.find("field = :field").bind("field", i).execute();
}

This loop cannot take advantage of the prepared statement feature, because the operation object of
col | . find() isrecreated at each iteration of the f or loop. Now, look at this example:

var f = coll.find("field = :field");

for (i=0; i<100; ++i) {
f.bind("field", i).execute();
}

The repeated statement is prepared once and then reused, as the same operation of col | . fi nd() isre-
executed for each iteration of the f or loop.

Prepared statements are part of a Sessi on. When a Cl i ent resets the Sessi on (by using, for example,
Mysqgl x. Sessi on. Reset), the prepared statements are dropped.

51

52

Chapter 9 Working with Result Sets

Table of Contents

9.1 RESUIL SO CIASSES ...eetuiiiiiti ettt ettt et e et e ettt e ettt e et e et t e et e et r e e e eat e e eenta e aees
9.2 Working with AUTO- | NCRENMENT VAIUESccuuuiiiiiiieeiiit ettt ettt e e e
9.3 WOrKiNg WIth DAt SISiiiiiiiiiiiiii ettt ettt e et ettt et e e e e e ab e eenees
9.4 Fetching All Data ItEMS @t ONCEoiiiii ettt e et ettt e e e
9.5 Working with SQL RESUIT SIS ...ttt e e
9.6 WOrKing WIth MeTATALAuieiiii ettt e e et e e ettt e e e et e e e ent e eees
9.7 Support for Language NAtiVE TLEFALOIScc.uuuiiiiiie i e e

This section explains how to work with result sets returned by database operations.

9.1 Result Set Classes

All database operations return a result. The type of result returned depends on the operation that was
executed. The different types of results are outlined in the following table.

Table 9.1 The Result Classes and the Information They Provide

Result Class Returned By Provides

Resul t add() . execute(), Number of rows affected by
i nsert().execute(), the operation, auto generated
nodi fy() . execute(), document IDs, last auto-
updat e() . execute() , generated AUTO | NCRENVENT
renove() . execute(), column values, or warnings,
del ete(). execute() depending on the operation for

which Resul t is returned.

Sql Resul t session. sql (). execute() Number of rows affected by
the operation, auto generated
document IDs, last auto-
generated AUTO | NCREVENT
column values, warnings, or
fetched data set, depending
on the operation for which

Sql Resul t is returned.

DocResul t find().execute() The fetched data set

RowResul t sel ect. execut e() The fetched data set

The following class diagram gives a basic overview of the result classes and their functions.

53

Working with AUTO- | NCREMENT Values

Figure 9.1 Result Classes

[1 means "list of". This can be any appropriate list type in the target language (Array, Collection,)Iﬁ

| (©) BaseResult |

+getWarnings(): Warnmg[
+getWarningsCount(): int

(©) RowResult
| © Result | | () DocResult |
+getaffectediternsCount(): int PR Rl
H emutolncrement\u’alue(}" int +fetchAll(): Documemt[] +fetchCOnel): Row

g . +fetchOne(): Document +getColumns(): Column(]
+getGeneratedids(): String(]

+nextResult(): boolean

| (©) sqlResult |

+hasData(): boolean
+ getAffectediternsCount(): int
+getAutoincrementvalue(): int

9.2 Working with AUTO- | NCREMENT Values

AUTO | NCREMENT columns can be used in MySQL for generating primary key or i d values, but are not
limited to these uses. This section explains how to retrieve AUTO | NCREMENT values when adding rows
using X DevAPI. For more background information, see Using AUTO_INCREMENT.

X DevAPI provides the get Aut ol ncr enent Val ue() method to return the first AUTO_| NCREMENT
column value that was successfully inserted by the operation, taken from the return value of

tabl e. i nsert (). Inthe following example it is assumed that the table contains a PRI MARY KEY column
for which the AUTO | NCREMENT attribute is set:

res = nyTable.insert(['nanme']).val ues(' Mats').values(' Gto').execute();
print (res. get Aut ol ncrenent Val ue());

Thist abl e. i nsert () operation inserted multiple rows. get Aut ol ncr ement Val ue() returns the
AUTO | NCREMENT column value generated for the first inserted row only, so in this example, for the row
containing “Mats”. The reason for this is to make it possible to reproduce easily the same operation against
some other server.

9.3 Working with Data Sets

Operations that fetch data items return a cursor that can be used to consume those data items from the
result set. Data items can be read from the database using Col | ecti on. find(), Tabl e. sel ect ()
and Sessi on. sql (). Col I ection.find() returns a data set with documents and Tabl e. sel ect ()
respectively Sessi on. sql () return a data set with rows.

All result sets implement a unified way of iterating their data items. The unified syntax supports fetching
items one by one using f et chOne() or retrieving a list of all items using f et chAl | (). fetchOne() and

54

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/example-auto-increment.html

Fetching All Data Items at Once

fetchAl | () follow forward-only iteration semantics. Connectors implementing the X DevAPI can offer
more advanced iteration patterns on top to match common native language patterns.

The following example shows how to access the documents returned by a Col | ecti on. fi nd()
operation by using f et chOne() to loop over all documents.

The first call to f et chOne() returns the first document found. All subsequent calls increment the internal
data item iterator cursor by one position and return the item found making the second call to f et chOne()
return the second document found, if any. When the last data item has been read and f et chOne()

is called again, a NULL value is returned. This ensures that the basic while loop shown works with all
languages that support such an implementation.

When using f et chOne(), it is not possible to reset the internal data item cursor to the first data item
to start reading the data items again. A data item (here a Document) that has been fetched once using
fet chOne() can be discarded by the Connector. The data item's life time is decoupled from the data
set. From a Connector perspective items are consumed by the caller as they are fetched. This example
assumes that the test schema exists.

var nyCol| = db.getCollection('ny_collection');
var res = nyCol|.find('nane |ike :nane').bind('nane','L%).
execute();
var doc;
while (doc = res.fetchOne()) {
print (doc);

}

The following example shows how to directly access the rows returned by a Tabl e. sel ect () operation.
The basic code pattern for result iteration is the same. The difference between the following and the
previous example is in the data item handling. Here, f et chOne() returns Rows. The exact syntax to
access the column values of a Row is language dependent. Implementations seek to provide a language
native access pattern. The example assumes that the t est schema exists and that the employee table
exists in nyTabl e.

var nyRows = nyTabl e. sel ect ([' nane', 'age']).
where(' nane |ike :nane').bind('nane','L%).
execute();

var row

while (row = nyRows. fetchOne()) {
/'l Accessing the fields by array
print('Nanme: ' + rowf'nane'] + '\n');

/'l Accessing the fields by dynamic attribute
print(' Age: ' + row age + '\n');

}

9.4 Fetching All Data Items at Once

In addition to the pattern of using f et chOne() explained at Section 9.3, “Working with Data Sets”,

which enables applications to consume data items one by one, X DevAPI also provides a pattern using
fetchAl' |l (), which passes all data items of a data set as a list to the application. The different X DevAPI
implementations use appropriate data types for their programming language for the list. Because different
data types are used, the language's native constructs are supported to access the list elements. The
following example assumes that the t est schema exists and that the employee table exists in ny Tabl e.

var nmyResult = nyTabl e.select(['nane', 'age']).
where(' name |ike :nane').bind(' nane','L%).

55

Working with SQL Result Sets

execute();
var myRows = nyResult.fetchAll();

for (index in nyRows) {
print (myRows[index].nane + " is " + nyRows[index].age + " years old.");

}

When mixing f et chOne() and f et chAl' | () to read from one data set keep in mind that every call to
fetchOne() orfetchAll () consumes the data items returned. Items consumed cannot be requested
again. If, for example, an application calls f et chOne() to fetch the first data item of a data set, then a
subsequent call to f et chAl | () returns the second to last data item. The first item is not part of the list of
data items returned by f et chAl | () . Similarly, when calling f et chAl | () again for a data set after calling
it previously, the second call returns an empty collection.

The use of f et chAl | () forces a Connector to build a list of all items in memory before the list as a whole
can be passed to the application. The life time of the list is independent from the life of the data set that has
produced it.

9.5 Working with SQL Result Sets

When you execute an SQL operation on a Session using the sql () method, an Sql Resul t is returned.
Iterating over an Sql Resul t is identical to working with results from CRUD operations. The following
example assumes that the users table exists.

var res = nySession. sql (' SELECT nane, age FROM users').execute();

var row,

while (row = res.fetchOne()) {
print('Name: ' + row'nane'] + '\n');
print(' Age: ' + row age + '\n');

}

Sql Resul t differs from results returned by CRUD operations in the way how result sets and data sets
are represented. An Sql Resul t combines a result set produced by, for example, | NSERT, and a data
set, produced by, for example, SELECT in one. Unlike with CRUD operations, there is no distinction
between the two types for Sql Resul t . An Sgl Resul t instance exports methods for accessing data and
to retrieving the last inserted ID or number of affected rows.

Use the hasDat a() method to learn whether an SqLResul t is a data set or a result. The method is
useful when code is to be written that has no knowledge about the origin of an Sgl Resul t . This can
be the case when writing a generic application function to print query results or when processing stored
procedure results. If hasDat a() returnstr ue, then the Sql Resul t origins from a SELECT or similar
command that can return rows.

A return value of t r ue does not indicate whether the data set contains any rows. The data set can be
empty if, for example, f et chOne() returns NULL or f et chAl | () returns an empty list. And if multiple
result sets are returned, any of the result sets may be empty too. The following example assumes that the
procedure ny_pr oc exists.

var res = mnmySession.sql (' CALL nmy_proc()').execute();
if (res.hasbData()){

var row = res.fetchOne();
if (row{
print('List of rows available for fetching."');
do {
print(row);
} while (row = res.fetchOne());

56

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html

Working with SQL Result Sets

}
el se{
print('Enmpty list of rows.");
}
}
el se {
print('No row result."');
}

It is an error to call either f et chOne() orfetchAl | () when hasDat a() indicates that an Sgl Resul t is

not a data set.

function print_result(res) {
if (res.hasbData()) {
/| SELECT
var columms = res. get Col ums();
var record = res.fetchOne();

whi l e (record){
for (index in colums){
print (colums[index].get Col umNanme() + ": " + record[index] + "\n");

}

/] Get the next record
record = res.fetchOne();

}

} else {
/1 | NSERT, UPDATE, DELETE,

print (' Rows affected: ' + res.getAffectedltensCount());
}
}

print_result(mySession.sql (' DELETE FROM users WHERE age < 30').execute());
print_result(mySession.sqgl (' SELECT * FROM users WHERE age = 40'). execute());

Calling a stored procedure might result in having to deal with multiple result sets as part of a single
execution. As a result for the query execution an Sgl Resul t object is returned, which encapsulates the
first result set. After processing the result set you can call next Resul t () to move forward to the next

result, if there is any. Once you advanced to the next result set, it replaces the previously loaded result
which then becomes unavailable.

function print_result(res) {
if (res.hasbData()) {
/| SELECT
var columms = res. get Col ums();
var record = res.fetchOne();

whi l e (record){
for (index in colums){
print (colums[index].get Col umNanme() + ": " + record[index] + "\n");
}

/] Get the next record
record = res.fetchOne();

}

} else {
/] | NSERT, UPDATE, DELETE,
print('Rows affected: ' + res.getAffectedltensCount());

var res = mySession.sql (' CALL my_proc()').execute();

57

Working with Metadata

/1l Prints each returned result

var nore = true;

whi l e (nore){
print_result(res);

more = res. nextResult();

}

The number of result sets is not known immediately after the query execution. Query results can be
streamed to the client or buffered at the client. In the streaming or partial buffering mode a client cannot tell
whether a query emits more than one result set.

9.6 Working with Metadata

Results contain metadata related to the origin and types of results from relational queries. This

metadata can be used by applications that need to deal with dynamic query results or format results for
transformation or display. Result metadata is accessible via instances of Col urm. An array of columns can
be obtained from any RowResult using the get Col utms() method.

For example, the following metadata is returned in response to the query SELECT 1+1 AS a, b FROM
nydb. sone_table with b AS b _table.

Col um[0] . dat abaseNanme = NULL

Col um[0] . t abl eNane = NULL

Col um[0] . t abl eLabel NULL

Col um[0] . col utTmNan® NULL

Col um[0] . col utmLabel = "a"

Col um([0] . type = BI G NT

Col um[O0].length = 3
Colum[O0].fractionalDigits = 0

Col um[0] . nunber Si gned = TRUE

Col um[0] . col | ati onName = "bi nary"
Col um[0] . char act er Set Nane = "bi nary"
Col um|[0] . padded = FALSE

Col um[1] . dat abaseNane = "nmydb"

Col um[1] . t abl eNane = "sone_table_w th_b"
Col umm[1] . t abl eLabel tabl e"

Col umm[1] . col unmNane
Col um[1] . col utmLabel = "b"

Col um[1] . type = STRI NG

Colum[1] .length = 20 (e.g.)

Colum[1] .fractionalDigits = O

Col um[1] . nunber Si gned = TRUE

Col um([1] . col | ati onNane = "utf8nb4_general _ci"
Col um[1] . char act er Set Nane = "ut f 8nmb4"

Col um[1] . padded = FALSE

S U b_
= "p"

9.7 Support for Language Native lterators

All implementations of the DevAPI feature the methods shown in the UML diagram at the beginning

of this chapter. All implementations allow result set iteration using f et chOne(), fetchAl |l () and
next Resul t (). In addition to the unified API drivers should implement language native iteration
patterns. This applies to any type of data set (DocResul t , RowResul t, Sgl Resul t) and to the list of
items returned by f et chAl | () . You can choose whether you want your X DevAPI-based application
code to offer the same look and feel in all programming languages used or go for the natural style of a
programming language.

58

Chapter 10 Building Expressions

Table of Contents

O o d o] (=11 o] IS [0 LRI 59
10.1.1 Boolean EXPreSSION STINQGSccuuiiutiiii ittt e e et e et et e et e e e e e e e aebn e eenaee 59
10.1.2 Value EXPreSSION SENGS .. .oeuuiiiiietieii e ettt e et e et e e et e e et e e ea e e etn e eeaaaennaaes 59

This section explains how to build expressions using X DevAPI.

When working with MySQL expressions used in CRUD, statements can be specified in two ways. The first
is to use strings to formulate the expressions which should be familiar if you have developed code with
SQL before. The other method is to use Expression Builder functionality.

10.1 Expression Strings

Defining string expressions is straightforward as these are easy to read and write. The disadvantage is that
they need to be parsed before they can be transfered to the MySQL server. In addition, type checking can
only be done at runtime. All implementations can use the syntax illustrated here, which is shown as MySQL
Shell JavaScript code.

/1 Using a string expression to get all docunents that

/! have the nane field starting with 'S
var myDocs = nyCol|l.find('nane |ike :nane').bind(' nane', 'S%).execute()

10.1.1 Boolean Expression Strings

Boolean expression strings can be used when filtering collections or tables using operations, such as
find() andrenmove() . The expression is evaluated once for each document or row.

The following example of a boolean expression string uses f i nd() to search for all documents with a “red”
color attribute from the collection “apples”:

apples.find('color = "red""'). execute()

Similarly, to delete all red apples:

appl es. renove(' color = "red"'). execute()

10.1.2 Value Expression Strings

Value expression strings are used to compute a value which can then be assigned to a given field or
column. This is necessary for both nodi f y() and updat e(), as well as computing values in documents
at insertion time.

An example use of a value expression string would be to increment a counter. The expr () function is
used to wrap strings where they would otherwise be interpreted literally. For example, to increment a
counter:

/] the expression is evaluated on the server
collection.modify('true').set("counter", expr(“"counter + 1")).execute()

If you do not wrap the string with expr (), it would be assigning the literal string "counter + 1" to the
“"counter" member:

59

Value Expression Strings

/] equivalent to directly assigning a string: counter = "counter + 1"

collection.modi fy('true').set("counter",

"counter + 1").execute()

60

Chapter 11 CRUD EBNF Definitions

Table of Contents

11.1 Session ODJects and FUNCLONSuiiiiiiiiieiii et 61
11.2 Schema ODJects and FUNCHIONSiiiiiii et e et e e e et e e e ena e eeees 63
11.3 Collection CRUD FUNCHONSttt et e et e e e e e et e e e e en e e et e aeanaaeens 66
11.4 Collection Index Management FUNCLONSccouuuiiiiiiiieiiii ettt et e e et e e een e eeees 68
11.5 Table CRUD FUNCHONSceuiitiieie ettt e ettt et e et e e et e e e e e e ean e e e eaeaeaneaeens 68
11.6 RESUIL FUNCHIONS ...ttt ettt et e et et et e et e e e et s e e et e e ea e e et e ean e eenaeanen 70
11.7 Other EBNF DEefiNITIONS ... ccuniitiieiee ettt et e e e e et e e e e e e e e aeneeennas 73

This chapter provides a visual reference guide to the objects and functions available in the X DevAPI.

11.1 Session Objects and Functions

Session

The syntax for this object shown in EBNF is:

Sessi on
;.= '.getSchena(' StringLiteral ')’
| '.getSchenas()'
| '.createSchena(' StringLiteral ')’
| '.dropSchena(' StringLiteral ")’
| '.getDefaul t Schena()"'
| '.startTransaction()"'
| ".commit()'
| *".rollback()"'
| '.setSavepoint()'
| '.setSavepoint(' StringLiteral ')’
| '.rel easeSavePoint (' StringLiteral ')’
| '.roll backTo(' StringLiteral ")’
| ".close()'
| Sql Execut e

61

SqlExecute

Figure 11.1 Session

StringLiteral —.—N

g

(
o
-

SqlExecute

The syntax for this function shown in EBNF is:

Sql Execut e
c:=".sql (' Sql StatenmentStr ')’
('".bind(" Literal (',"' Literal)* ")')*

('.execute()')?
{ Lit

Figure 11.2 SqlExecute

o=

SQLPlaceholderValues

The syntax for this function shown in EBNF is:

o)

62

SQLPlaceholderName

SQLPI acehol der Val ues
= "'"{'" SQ.Pl acehol derName ':' (SQ.Literal)

Figure 11.3 SQLPlaceholderValues

SQLPlaceholderName @— SQLLiteral

3

-9

SQLPlaceholderName

The syntax for this function shown in EBNF is:

SQLPI acehol der Nane
=

Figure 11.4 SQLPlaceholderName

SQLLiteral
The syntax for this function shown in EBNF is:
SQLLi teral
ii= """ StringLiteral """ | Nunber | Docunent

Figure 11.5 SQLLiteral

StringLiteral

Number

Document

11.2 Schema Objects and Functions

Schema

The syntax for this function shown in EBNF is:

Schema
;= "'.getNanme()'
| '.existslnDatabase()"'
| '.getSession()'
| '.getCollection('" StringLiteral ")’
| '.getCollections()'
| '.getCollectionAsTable(' StringLiteral
| '.dropCollection(" StringLiteral ")’
| '.getTable(' StringLiteral ")’
| '.getTables()'
| '.createCollection(' StringLiteral ")’

e

63

Collection

Figure 11.6 Schema

L[.-.=.::Islzsll1I'.'l-atal:paseljjl \|

J
\—I .getSession() i

.getCollection(StringLiteral

%.gettollectlonAsTable()—/

{.cremcaueﬂ.an(P

L[.gettollectlons())

-
Falai

.getTables()

II

Collection

The syntax for this function shown in EBNF is:

Col | ecti on
;1= "'.get Schema()"'
'.get Nanme()"'
'. get Session()'
' . exi st sl nDat abase()"'

'.replaceOne(' Docunentld ',' Docunent O JSON
' . addOr Repl aceOne(' Docunentld ',' Docunment Or JSON

I

I

I

I

I

| '.getOne(' Docunentld ')’
| '.renoveOne(' Docunentld ')’
| Coll ectionFi ndFuncti on

| Col I ecti onModi fyFunction
| Coll ecti onAddFuncti on

| Coll ecti onRenbveFuncti on
| Coll ectionCreat el ndex

| Col I ecti onDropl ndex

64

Table

Figure 11.7 Collection

»H .getSchema() i |
\—| .getName() i |
\—| .getSession() i ~|

%.existslnnatabase()) ~|

Documentld 407 DocumentOrlSON

.addOrReplaceOne(

DocumentId
=
M CollectionFindFunction -
M CollectionMadifyFunction -1
I~ CollectionAddFunction ~|
M CollectionRemoveFunction -
M CollectionCreatelndex -
~— CollectionDroplndex <

Table

The syntax for this function shown in EBNF is:

Tabl e
;.= "'.get Schema()"'
| '.getNane()’
| '.getSession()'
| '.existslnDatabase()"'
| ".isView)'
| Tabl eSel ect Functi on
| Tabl eUpdat eFuncti on
| Tabl el nsert Functi on
| Tabl eDel et eFuncti on

Collection CRUD Functions

Figure 11.8 Table

.getSchema()
.getName()
.getSession()

‘_(.exlslslnnatabase{))—/

JdsView()

i

F

[~ TableSelectFunction |}—

L

[~ TableUpdateFunction

[~ TablelnsertFunction }—]

~— TableDeleteFunction |}—

11.3 Collection CRUD Functions

CollectionFindFunction

The syntax for this function in EBNF is:

Col | ecti onFi ndFuncti on
o= "'.find(' SearchConditionStr? ')' ('.fields(' ProjectedDocunent ExprStr ')')?

.bind(' Placehol derVvalues ')"')*
.execute()')?

('.groupBy(' SearchExprStrList '")')? ('.having(' SearchConditionStr ")')?

(".sort(' SortExprStrList ")')? (".limt(" NumberOORows ')' ('.offset(' NunmberOfRows ')')?)?
(

(

(

' .l ockExcl usi ve(' LockContention ')' | '.lockShared(' LockContention '")')?

Figure 11.9 CollectionFindFunction

o ooat) 5)
I—{ SearchConditionStr |—j L[.flelds()—{ ProjectedDocumentExprStr
L[.groupby()—{ SearchExprStrlist L[.ha\.ﬂng()—{ SearchConditionStr

L[.sm"l:()—{ SortExprstrlist L[.Ilrnit()—{ NumberOfRows I—@ J
L(.omt(H NumberOfRows

JockExclusive(

[[.hlnd(H PlaceholderValues I—@] L |

JockShared(

66

CollectionModifyFunction

CollectionModifyFunction

The syntax for this function shown in EBNF is:

Col | ecti onModi f yFuncti on
;= "'".nodify(' SearchConditionStr ")’

('.set(' DocPath ',' ExprOrLiteral ')' |
".unset (' DocPath (',' DocPath)* ')' |
‘.arraylnsert(' DocPath ',' ExprOrLiteral "')' |
'.arrayAppend(' DocPath ',' ExprOrLiteral ')' |
' . patch(' DocumentOrJSON ')’
)+
('.sort(' SortExprStrList ")')? ('.limt(" Number O Rows '
('.bind(' Placehol derVvalues ")')*
('.execute()')?

Figure 11.10 CollectionModifyFunction

©)2

»—[.MIW(H SearchConditionStr I—@ [,\

I DocPath I—O—{ ExprOrLiteral I_,_®_l

L[.unut(

DocPath I

L[.|:|al:|:ll()—{ DocumentOr]SON I

(
L[JM(H SortExprStrList I—@—j L[.Ilmllz()—{ NumberOfRows I—@—jl

[.NM(H PlaceholderValues |_®_J7

CollectionAddFunction

The syntax for this function shown in EBNF is:

Col | ecti onAddFuncti on
::= ('.add(' (DocunentOrJSON | '['
('.execute()')?

Docunent Or JSON ('

Figure 11.11 CollectionAddFunction

P
= raa |

Document Or JSON)* 1")2 ')')+

s

DocumentOrlSON

DocumentOrlSON

67

CollectionRemoveFunction

CollectionRemoveFunction

The syntax for this function shown in EBNF is:

Col | ecti onRenpbveFunct

;= '.renove(' SearchConditionStr ')’
(".sort(' SortExprStrList '")')
('.bind(' Placehol derValues ")')

('.execute()

ion

Ty 2

Figure 11.12 CollectionRemoveFunction

DD—(remove()—| SearchConditionStr

?2 (" .limt(" NumberOfRows ')')?

)
1—(sort()—l SortExprStrList

) l{.rmﬂ()—' NumberOfRows

11.4 Collection Index Management Functions

Collection.createlndex() Function

The syntax for this function shown in EBNF is:

Col | ecti onCr eat el ndex
;.= ".creat el ndex

(" StringLiteral ','

Figure 11.13 CollectionCreatelndexFunction

Se)

StringLiteral

Docurment Or JSON ')

—O— DocumentOrlSON —@—N

CollectionDroplindex

The syntax for this function shown in EBNF is:

Col | ecti onDr opl ndex
;= "'.dropl ndex("'

StringLiteral ')'

Figure 11.14 CollectionDropIndex

»—(dropIndex()— StringLiteral

®-

11.5 Table CRUD Functions

TableSelectFunction

Tabl e. sel ect () and col | ecti on. find() use different methods for sorting results.
Tabl e. sel ect () follows the SQL language naming and calls the sort method or der By () .

68

TablelnsertFunction

Col I ection. find() does not. Use the method sor t () to sort the results returned by
Col I ection. find() . Proximity with the SQL standard is considered more important than API uniformity
here.

The syntax for this function shown in EBNF is:

Tabl eSel ect Functi on
::= '.select(' ProjectedSearchExprStrList? ')" ('.where(' SearchConditionStr ')')?

'.groupBy(' SearchExprStrList ')")? ('.having(' SearchConditionStr ')"')?
‘.orderBy(' SortExprStrList ')")? (".limt('" NunberOlRows ')' ('.offset(' NumberOFRows ')')?)
' .l ockExcl usi ve(' LockContention ')' | '.lockShared(' LockContention ')"')?

".bind(" (PlaceholderVvalues) ")')*
'.execute()')?

~~—~—~

Figure 11.15 TableSelectFunction

o ()
G

U
ProjectedSearchExprStriist L(.where()—' SearchConditionStr)

l—(.groupBy/()—| SearchExprStrList) L(-having()—| SearchConditionStr)

L(.orderBy()—| SortExprStriist) L(limit()—| NumberOfRows) I
1—(.ol’f:;et()—' NumberOfRows)

1 [(hiﬂ()—' PIacehoIder\faIuesI—@] J L)

LockContention)

TablelnsertFunction

The syntax for this function shown in EBNF is:

Tabl el nsert Functi on
= "'".insert(' (TableFields)? ')’
('.values(' ExprOrLiteral (',' ExprOrLiteral)* ')")+
('.execute()')?

Figure 11.16 TablelnsertFunction

T
F Y

»—[m)) values(ExprOrLiteral)
Uy

TableUpdateFunction

The syntax for this function shown in EBNF is:

69

TableDeleteFunction

Tabl eUpdat eFuncti on

:i= '".update()"’
'.set(' TableField ','" ExprOLiteral ")')+ '.where(' SearchConditionStr ")’
‘.orderBy(' SortExprStrList ')')? ('.limt(' NunmberOFRows ')')?

'".bind('" (PlaceholderVvalues) ")')*
'.execute()')?

~ A~~~

Figure 11.17 TableUpdateFunction

.set()— TableField —O— ExprorLiteral 4®_J_[_where()— SearchConditionStr
L[.m-.g:iera-,nr()— SortExprStrList L[.llmrt()— NumberOfRows

.b]nd(} PlaceholderValues @] J o]

TableDeleteFunction

The syntax for this function shown in EBNF is:

Tabl eDel et eFuncti on
= "'".delete()" '.where(' SearchConditionStr ')’
(".orderBy(' SortExprStrList ")')? ('.limt(' NunmberOFRows ')')?
('.bind(" (PlaceholderValues) '")"')*
('.execute()')?

Figure 11.18 TableDeleteFunction

bb—(.deleie())—(.where()— SearchConditionStr —@
1—(orderBy()— SortExprstriist —@J

Lam)
1 Q .bind()— Placeholdervalues —@ [
.r-n'n()— NMumberOfRows .execute()

11.6 Result Functions

Result

The syntax for this function shown in EBNF is:

Resul t
;= '.getAffectedltensCount ()"’
| ' .getAutol ncrenent Val ue()'
| '.getGeneratedlds()'
| ' .getWarningsCount ()"’
| *.getWarnings()'

70

DocResult

Figure 11.19 Result

DocResult

The syntax for this function shown in EBNF is:

DocResul t
1= ".getWarni ngsCount ()"
| *.getWarnings()"'
| *.fetchAll()'
| '".fetchOne()'

Figure 11.20 DocResult

RowResult

The syntax for this function shown in EBNF is:

RowResul t
;= "'.getWarni ngsCount ()"’
| '.getWarnings()'
| ".fetchAll()'
| ".fetchOne()'
| '.getColums()"'

Figure 11.21 RowResult

71

Column

Column

The syntax for this function shown in EBNF is:

Col um

;1= '.get SchemaNane()"'

. get Tabl eName()"'
' . get Tabl eLabel ()
' . get Col umNane()"'
' . get Col utmLabel ()
' . get Type()'
‘. getLength()’
‘.getFractional Digits()'
' . i sNunber Si gned()"'
'.getCollationNane()"
' . get Char act er Set Name()"'
'.isPadded()"’

Figure 11.22 Column

SqlResult

(Ul

The syntax for this function shown in EBNF is:

Sql Resul t

' . get War ni ngsCount ()"
' . get Warni ngs()"'

‘. fetchAll ()’

‘. fetchOne()'

. get Col utms() '

' . get Aut ol ncr ement Val ue()'

. hasData()"

72

Other EBNF Definitions

| '.nextResult()’

Figure 11.23 SqlResult

»1—[.get\|lamlngﬂl:qunt())—FP‘

.getWarnings()

!

fetchAll()

I

.fetchOne()

.getColumns()

-

.getAutnIncremanNalue{))—/

.hasData()

i

.nextResult()

11.7 Other EBNF Definitions
SearchConditionStr

The syntax for this function shown in EBNF is:

Sear chCondi ti onStr
::= """ Expression '"'

Figure 11.24 SearchConditionStr

))—O— Expression AO—N

SearchExprStrList

The syntax for this function shown in EBNF is:

Sear chExpr StrLi st

”_.[. T EXpI’ESSiOI’l'"' (2 0 0wo Expression.

Figure 11.25 SearchExprStrList

Expression AOJ—@—-

ProjectedDocumentExprStr

The syntax for this function shown in EBNF is:

Pr oj ect edDocunment Expr St r

Cyx o

73

ProjectedSearchExprStrList

;.= ProjectedSearchExprStrList | '"expr("' JSONDocunent Expression '")'

Figure 11.26 ProjectedDocumentExprStr

ProjectedSearchExprStrlList

e:qlr{“)— JSONDocumentExpression

ProjectedSearchExprStrList

The syntax for this function shown in EBNF is:

Pr oj ect edSear chExpr Str Li st
o= "[" """ Expression ('AS Aias)? '"" ('," '"' Expression ('AS Aias)? """)* ']'

Figure 11.27 ProjectedSearchExprStrList

Expression O—L(D—bd
1—@— Alias J

SortExprStrList

The syntax for this function shown in EBNF is:

Sor t Expr St rLi st

i="[" """ Expression ('ASC | 'DesC)? '"' ('," '"' Expression ('ASC | 'DESC)? '"'

Figure 11.28 SortExprStrList

Expression O—L(D—bd

ExprOrLiteral

The syntax for this function shown in EBNF is:

Expr OrLi t eral
ci= "expr("' Expression '")' | Literal

Figure 11.29 ExprOrLiteral

Elllr(")_ Expression @T.‘

Literal

74

ExprOrLiterals

ExprOrLiterals

The syntax for this function shown in EBNF is:

ExprOrLiteral s
i:= ExprOrLiteral (', ExprOlLiteral)*

Figure 11.30 ExprOrLiterals

ExprOrLiteral

ExprOrLiteralOrOperand

The syntax for this function shown in EBNF is:

Expr Or Li t er al Or Oper and
i:= ExprOrLiteral

Figure 11.31 ExprOrLiteralOrOperand

| ExprOrLiteral |-

PlaceholderValues

The syntax for this function shown in EBNF is:

Pl acehol der Val ues
::='"{'" PlaceholderNane ':' (ExprOrLiteral) '}’

Figure 11.32 PlaceholderValues

PlaceholderName @— ExprOrlLiteral

PlaceholderName

The syntax for this function shown in EBNF is:

Pl acehol der Nane
;.= NanmedPl acehol der Not Quest i onmar kNot Nunber ed

Figure 11.33 PlaceholderName

me— NamedPlaceholderNotQuestionmarkNotNumbered B

DocPath
The syntax for this function shown in EBNF is:
DocPat h
= (C"[*1 1 [t Index "]t) | t.* | ('.' StringLiteral) |

kKt

)+

75

Literal

Figure 11.34 DocPath

[*1]
Index —@-’

StrningLiteral }—

peee

Literal

The syntax for this function shown in EBNF is:

Literal
c:= """ StringLiteral """ | Nunber | true | false | Docunent

Figure 11.35 Literal

B INT |— paq

|

[~ FLOAT

I~ STRING_SQ |

[~ STRING_DQ |

NULL

TRUE

e

Expression

Expr essi on
::= Literal
| DocPat h
| Tabl eField
| FunctionNane '(' Expression (',' Expression)* ')
| ':" Placehol der Nane
| Expression Operator Expression
| JSONEXpressi on

76

Document

Figure 11.36 Expression

pe——— Literal -]
—— DaocPath -
I~ TableField -

I~ FunctionMame 4®7 Expression
L@— PlaceholderName -

M Expression |— Operator |— Expression p———]
~— JSONExpression -
Document

An API call expecting a JSON document allows the use of many data types to describe the document.
Depending on the X DevAPI implementation and language any of the following data types can be used:

 String

Native JSON

JSON equivalent syntax
» DbDoc

» Generated Doc Classes

All implementations of X DevAPI allow expressing a document by the special DbDoc type and as a string.

The syntax for this function shown in EBNF is:

Docunent
;= JSONDocunent | JSONEqui val ent Docunent | DbDoc | Generat edDocunent Cl asses

Figure 11.37 Document

JSOMNDocument

1S0NEquivalentDocument

DbDoc

GeneratedDocumentClasses

JSONEXxpression

The syntax for this function shown in EBNF is:

77

JSONDocumentExpression

JSONExpr essi on

;1= JSONDocunent Expression | '[' Expression (',' Expression)*

Figure 11.38 JSONExpression

1S0ONDocumentExpression

Expression

JSONDocumentExpression

The syntax for this function shown in EBNF is:

JSONDocunent Expr essi on

c:="'"{" StringLiteral ':' JSONExpression (',' StringLiteral

Figure 11.39 JSONDocumentExpression

StringLiteral —O— JSONExpression

FunctionName

The syntax for this function shown in EBNF is:

Funct i onNane
;= StringLiteral | StringLiteral '.' StringLiteral

Figure 11.40 FunctionName
1—0— StringLiteral J

The syntax for this function shown in EBNF is:

e StringLiteral

DocumentOrJSON

Document Or JSON
::= Docunent | "expr("' JSONDocunent Expression '")'

Figure 11.41 DocumentOrJSON

Document

e:lqlr(“)— 1SONDocumentExpression —@-J

The syntax for this function shown in EBNF is:

TableField

e

' JSONExpr essi on) *

3

78

TableFields

Tabl eFi el d
::=(StringLiteral ".")? (StringLiteral '.")? StringLiteral ('@ DocPath)?

Figure 11.42 TableField

#»— StringLiteral J J
1—(D— StringLiteral 1—0— StringLiteral DocPath

TableFields
The syntax for this function shown in EBNF is:
Tabl eFi el ds
::=('[" TableField (',' TableField)* ']"')

Figure 11.43 TableFields

TableField

80

Chapter 12 Expressions EBNF Definitions

This section provides a visual reference guide to the grammar for the expression language used in X
DevAPI.

ident

i dent

::= ID| QUOTED ID

Figure 12.1 ident

QUOTED_ID

schemaQualifiedldent

schemaQual i fi edl dent
::= (ident_schema '.')? ident

Figure 12.2 schemaQualifiedldent

e ident |—ea
ident_schema @—j

columnldent

Figure 12.3 columnldent

col umml dent
ci=(ident ".' (ident '.")?)? ident (('->' "->>') """ '¢ documentPath "'")?

e j ident
ident —O
~— ident O—j
documentPath —O—j

¥
A

documentPathLastltem

docunent Pat hLast |t em
o=
| [INT]
|
I

' docunent Pat hMenber

documentPathltem

Figure 12.4 documentPathLastltem

P ARRAYSTAR -
— LSOQBRACKET | IMNT p— RSOQBRACKET
— DOTSTAR
~— DOT - documentPathMember
documentPathltem

docunent Pat hl t em
;.= docunent Pat hLast | tem

| rxx

Figure 12.5 documentPathltem

documentPathLastItem T
kK

documentPath

docunent Pat h
;.= docunent Pat hl t ent docunent Pat hLast|tem

Figure 12.6 documentPath

[-— documentPathltem —]

documentField

documentPathLastIitern (e

Figure 12.7 documentField

docunent Fi el d
;.= fieldld docunent Pat h*
| '$" docunentPath

documentPath

fieldId

documentPath

argsList

argsList ::=expr (',' expr)*

82

lengthSpec

Figure 12.8 argsList

expr

lengthSpec

lengthSpec ::="(" INT

Figure 12.9 lengthSpec

e

castType

cast Type ::= 'SIG\NED '
' UNSI GNED

' Bl NARY" |
' DECI MAL'
"TI ME

' DATE'

' DATETI ME'
' JSON

I NTEGER *
"I NTEGER *

' CHAR | engt hSpec*

engt hSpec*
(| engt hSpec

L

INT ',°

83

functionCall

Figure 12.10 castType

INTEGER
> stenen) |)

(lengthSpec j
\—| CHAR i -

(lengthSpec j
\—| BINARY\" o

DECIMAL o

TIME

DATE

JSON

functionCall

functionCal |

lengthSpec

INT 407 INT

DATETIME o

ee

::= schemaQual i fiedldent '(' argsList? ')’

Figure 12.11 functionCall

placeholder

pl acehol der :

pe— schemaQualifiedldent @ —

T

argsList

:="':" ID

Figure 12.12 placeholder

~O

-

groupedExpr

gr oupedExpr :

= (0 expr t)!

¥
A

84

unaryOp

Figure 12.13 groupedExpr

unaryOp

unaryCp ::= ("!" | "~ "4 '-') atom cExpr

Figure 12.14 unaryOp

atomicExpr |Hed

béoe

literal

literal = INT

| FLOAT

| STRI NG SQ
| STRI NG DQ
| ' NULL'
| ' FALSE
| ' TRUE

Figure 12.15 literal

B INT |——— e

f

FLOAT —

(

STRING_SQ |

r

STRING_DQ |

NULL

TRUE

dd

jsonKeyValue
j sonKeyVal ue ::= STRING DQ ':"' expr

Figure 12.16 jsonKeyValue

pr— STRING DQ @— expr |-»a

jsonDoc

jsonDoc
jsonDoc ::="'{'" (jsonKeyValue (',' jsonKeyValue)*)* '}'

Figure 12.17 jsonDoc

jsonKeyValue
- e

jsonarray

jsonArray ::="["' (expr (',' expr)*)* ']’

Figure 12.18 jsonarray

expr
0 Ohe

atomicExpr

at om cExpr
;= pl acehol der

| col umOr Pat h

| functionCall

| groupedExpr

| unaryOp

| castOp

Figure 12.19 atomicExpr

pe——— placeholder |———-~—»a

[~ columnOrPath |

[~ functionCall }—

I~ groupedExpr |—]

~— unaryOp -1

[~ castOp |——

I~ literal |————]

I~ jsonDoc |——]

“— jsonArray p——

86

intervalUnit

intervalUnit

I NTERVAL_UNI T

' M CROSECOND'
' SECOND

' M NUTE'

' HOUR

' DAY'

" VEEK'

' MONTH

' QUARTER

' YEAR

' SECOND_M CROSECOND!
' M NUTE_M CROSECOND
' M NUTE_SECOND

' HOUR_M CROSECOND

' HOUR_SECOND'

' HOUR_M NUTE'

' DAY_M CROSECOND!

' DAY_SECOND

' DAY_M NUTE'

' DAY_HOUR

' YEAR_MONTH

87

interval

Figure 12.20 INTERVAL_UNIT

interval

MICROSECOND

!

L

SECOND

MINUTE

L

HOUR

i

o
=
<

\

L

WEEK

L

MONTH

QUARTER

YEAR

bt

T |

SECOND_MICROSECOND

MINUTE_MICROSECOND

MINUTE_SECOND

:

HOUR_MICROSECOND

& b L L
L[/

HOUR_SECOND

HOUR_MINUTE

y

DAY_MICROSECOND

T
T

DAY_SECOND

DAY_MINUTE

DAY_HOUR

YEAR_MONTH

i

interval ::= "INTERVAL' expr |NTERVAL_UN T

Figure 12.21 interval

»—{ nTeRVAL |

expr |— INTERWAL UNIT

88

intervalExpr

intervalExpr

i nt erval Expr
c:= atom cExpr (('+ '-') interval)*

Figure 12.22 intervalExpr

e— atomicExpr interval

mulDivEXxpr

mul Di vExpr
= intervalExpr (("*" | /" | "%) interval Expr)*

Figure 12.23 mulDivExpr

i)

pe——— intervalExpr ——tdq

addSubExpr

addSubExpr
c:= mul D vExpr (("+ '-'") mul D vExpr)*

Figure 12.24 addSubExpr

mulDivExpr

shiftExpr

shi f t Expr
1= addSubExpr (('<<' *>>') addSubExpr)*

Figure 12.25 shiftExpr

addSubExpr

bitExpr

bitExpr

bitExpr ::=shiftExpr (("& | "|" | "~) shiftExpr)*

Figure 12.26 bitExpr

)

pe—-— shiftExpr |——meaq

compExpr

compExpr ::= bitExpr (('>= 'S 't <= ‘< ' t<>! "1="") bitExpr)*

Figure 12.27 compExpr

pe—— bitExpr |——pd

HrEXpr

ilriExpr ::= compExpr 'IS 'NOT'* ('NULL' | 'TRUE | 'FALSE)
compExpr 'NOT"* "IN '(' argsList* ')’

conpExpr 'NOT'* "IN conmpExpr

compExpr 'NOT' * ' LI KE conpExpr ('ESCAPE conpExpr)*
conpExpr ' NOT' * ' BETWEEN conpExpr ' AND' conmpExpr
conpExpr ' NOT' * ' REGEXP' conmpExpr

conpExpr

90

andExpr

Figure 12.28 ilriExpr

compExpr S [] NULL |

oy Lemee HE) (o)
ey
(—@j (argsList j
I~ compExpr IN |—| (i I/;\I' -
({;;}]
I~ compExpr @ compExpr -
@
I~ compExpr IfI.II!E\l compExpr -
-/
({;;}]
I~ compExpr [BETWEEH} compExpr {AHD} compExpr |
({;;}]
I~ compExpr [REGEXF} compExpr -
“— compExpr -
andExpr
andExpr ::=ilriExpr (('& | "AND) ilriExpr)*

Figure 12.29 andExpr

ilfExpr

orExpr

or Expr

o= andExpr (("]’

'"OR) andExpr)*

¥
A

expr

Figure 12.30 orExpr

o

andExpr

expr
expr 1= or Expr

Figure 12.31 expr

ke— orExpr |-

DIGIT

DAT i='0 - '9

Figure 12.32 DIGIT

FLOAT

FLOAT ::=DIGT* '.' DIGT+ ('E ('+ | '-')* DGAT+)*
[

AT+ 'E ('+ | '-')* DAT+

(DIGIT

¥

DIGIT

INT

I NT ;= DA T+

92

QUOTED_ID

Figure 12.34 INT

DIGIT

QUOTED_ID

QUOTED_| D

= |D'
N (T D R

Figure 12.35 QUOTED_ID

IR
o

-0

Figure 12.36 ID

WS

W5 o= [\t\r\in] +

93

SCHAR

Figure 12.37 WS

T

SCHAR

SCHAR ::= [\u0020\ u0021\ u0023\ u0024\ u0025\ u0026\ u0028-\ u0O05B\ UOO5D- \ UOO7E]

94

SCHAR

0

20bohanlbananabbohlabbas

95

STRING_DQ

STRING_DQ

STRI NG_DQ
ci='"' (SCHAR | "'" | ESCAPED DQ)* '"'

Figure 12.39 STRING_DQ

ESCAPED_DQ
SCHAR
STRING_SQ
STRI NG_SQ
i= """ (SCHAR | '"' | ESCAPED SQ)* "'*"

Figure 12.40 STRING_SQ

ESCAPED_SQ

SCHAR

U U)o

96

Chapter 13 Implementation Notes

Table of Contents

13.1 MySQL Shell X DeVAPT ©XIENSIONSueiietiieeiiiiae ettt e et e et e et e et et e e e e e enan s

13.1 MySQL Shell X DevAPI extensions

MySQL Shell deviates from the Connector implementations of X DevAPI in certain places. A Connector
can connect to MySQL Server instances running X Plugin only by means of X Protocol. MySQL Shell
contains an extension of X DevAPI to access MySQL Server instances through X Protocol. An additional
ClassicSession class is available to establish a connection to a single MySQL Server instance using
classic MySQL protocol. The functionality of the ClassicSession is limited to basic schema browsing and
SQL execution.

See MySQL Shell 8.0, for more information.

97

https://docs.oracle.com/cd/E17952_01/mysql-shell-8.0-en/

98

	X DevAPI User Guide for MySQL Shell in JavaScript Mode
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview
	Chapter 2 Connection and Session Concepts
	2.1 Database Connection Example
	2.2 Connecting to a Session
	2.2.1 Connecting to a Single MySQL Server
	2.2.2 Connection Option Summary
	2.2.3 Connection Attributes

	2.3 Working with a Session Object
	2.4 Using SQL with Session
	2.5 Setting the Current Schema
	2.6 Dynamic SQL

	Chapter 3 CRUD Operations
	3.1 CRUD Operations Overview
	3.2 Method Chaining
	3.3 Parameter Binding
	3.4 MySQL Shell Automatic Code Execution

	Chapter 4 Working with Collections
	4.1 Basic CRUD Operations on Collections
	4.2 Collection Objects
	4.2.1 Creating a Collection
	4.2.2 Working with Existing Collections

	4.3 Collection CRUD Function Overview
	4.3.1 Collection.add()
	4.3.2 Collection.find()
	4.3.3 Collection.modify()
	4.3.4 Collection.remove()

	4.4 Indexing Collections
	4.5 Single Document Operations
	4.6 JSON Schema Validation

	Chapter 5 Working with Documents
	5.1 Creating Documents
	5.2 Working with Document IDs
	5.3 Understanding Document IDs

	Chapter 6 Working with Relational Tables
	6.1 Syntax of the SQL CRUD Functions

	Chapter 7 Working with Relational Tables and Documents
	7.1 Collections as Relational Tables

	Chapter 8 Statement Execution
	8.1 Transaction Handling
	8.1.1 Processing Warnings
	8.1.2 Error Handling

	8.2 Working with Savepoints
	8.3 Working with Locking
	8.4 Working with Prepared Statements

	Chapter 9 Working with Result Sets
	9.1 Result Set Classes
	9.2 Working with AUTO-INCREMENT Values
	9.3 Working with Data Sets
	9.4 Fetching All Data Items at Once
	9.5 Working with SQL Result Sets
	9.6 Working with Metadata
	9.7 Support for Language Native Iterators

	Chapter 10 Building Expressions
	10.1 Expression Strings
	10.1.1 Boolean Expression Strings
	10.1.2 Value Expression Strings

	Chapter 11 CRUD EBNF Definitions
	11.1 Session Objects and Functions
	11.2 Schema Objects and Functions
	11.3 Collection CRUD Functions
	11.4 Collection Index Management Functions
	11.5 Table CRUD Functions
	11.6 Result Functions
	11.7 Other EBNF Definitions

	Chapter 12 Expressions EBNF Definitions
	Chapter 13 Implementation Notes
	13.1 MySQL Shell X DevAPI extensions

