
Cover Page
Oracle® Unversal Records Management
Adapter Services Reference Guide
10g Release 3 (10.1.3.3.0)

March 2007

Adapter Services Reference Guide, 10g Release 3 (10.1.3.3.0)
Copyright © 2007, Oracle. All rights reserved.

Contributing Authors: Eric Raney

Contributors: Darin Anderson, Stuart Edeal, Maple Jiao

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other independently
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may
be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf
of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical
data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim
liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third party,
the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-
party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

T a b l e o f C o n t e n t s

Chapter 1: Introduction
Overview .1-1

About This Guide .1-1
Audience .1-4
Conventions .1-4

Integration Methods .1-5

Chapter 2: Adapter Registration
Overview .2-1

Registering Adapters .2-2

Updating External Field Mappings .2-7

Adding External Custom Fields .2-9

Updating External Custom Fields. .2-13

Setting Up the Extra Metadata Field .2-16

Chapter 3: Repository Monitoring
Overview .3-1

Declaring Items to URM (External Checkin) .3-2
Declaring Items in Batch .3-2
Declaring Individual Items .3-5

Updating Items in URM .3-7
Updating Items in Batch. .3-7
Updating Individual Items .3-10

Declaring or Updating Items in URM .3-12
Declaring or Updating Items in Batch .3-12
Declaring or Updating Individual Items .3-15

Deleting Items from URM. .3-17
Deleting Items in Batch .3-17
Adapter Services Reference Guide iii

Table of Contents
Deleting Individual Items .3-19
Deleting Items by Pattern .3-20

Checking Items into URM (Internal Checkin) .3-22

Transferring Items to URM. .3-25

Chapter 4: Performing URM Tasks
Overview .4-1

Performing Federated Searches .4-1

Performing Dispositions .4-5

Performing Holds/Freezes .4-10

Removing Holds/Freezes. .4-14

Chapter 5: Querying URM
Overview .5-1

Requesting a Retention Schedule .5-1
Downloading the Entire Retention Schedule .5-2
Downloading Parts of the Retention Schedule for Viewing5-3

Requesting URM Metadata for an Item .5-4

Requesting the Lifecycle for an Item .5-5

Chapter 6: Managing Communications
Overview .6-1

Checking the Status of Individual Batch Tasks .6-2

Checking the Status of Multiple Batch Tasks. .6-5

Handling Task Status Errors .6-7

Segmenting Response Data .6-9

Uploading External Log Files .6-11

Pinging the URM Server .6-12

Appendix A: URM Adapter Services
Overview . A-1

About Error Codes . A-2

About the WSDL Generator Component . A-2

Services . A-3
ADD_EXTERNAL_CUSTOM_FIELDS . A-5
iv Adapter Services Reference Guide

Table of Contents
CHECK_MULTIPLE_TASK_STATUS . A-9
CHECK_PENDING_EXTERNAL_TASK . A-11
CHECK_TASK_STATUS. A-14
CHECKIN_EXTERNAL . A-17
CHECKIN_INTERNAL. A-18
CHECKIN_MULTIPLE_EXTERNAL . A-21
CHECKIN_OR_EDIT_EXTERNAL . A-23
CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL A-25
CONVERT_TRANSFERRED_ITEM_TO_LINK. A-27
CREATE_EXTERNAL_SOURCE . A-29
DELETE_BY_PATTERN . A-37
DELETE_EXTERNAL . A-40
DELETE_MULTIPLE_EXTERNAL . A-41
EDIT_EXTERNAL . A-43
EDIT_MULTIPLE_EXTERNAL . A-45
GET_EXTERNAL_DEFAULT_FIELDS . A-47
GET_EXTERNAL_FREEZE_LIST. A-48
GET_EXTERNAL_TABLE_FIELDS . A-51
GET_EXTERNAL_UNFREEZE_LIST . A-53
GET_FILE_PLAN . A-56
GET_FILE_PLAN_ALL . A-57
GET_LIFECYCLE_FOR_EXTERNAL_ITEM. A-58
GET_MAXIMUM_FIELD_LENGTHS. A-59
GET_SEARCH_REQUEST . A-61
INFO_EXTERNAL_ITEM. A-64
LIST_EXTERNAL_APPROVED_DISP_ACTIONS A-65
LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION A-69
MARK_SELECTED_ITEMS_DISP_ACTION A-71
MARK_SELECTED_ITEMS_FROZEN . A-72
MARK_SELECTED_ITEMS_UNFROZEN . A-74
PING_SERVER . A-76
RETURN_SEARCH_RESULTS . A-77
SET_DEFAULT_EXTERNAL_SECURITY_GROUP A-80
SETUP_EXTRA_METADATA_FIELD . A-81
TRANSFER_ITEM_TO_INTERNAL . A-83
UPDATE_EXTERNAL_CUSTOM_FIELDS . A-85
UPDATE_EXTERNAL_FIELD_MAPPING . A-89
UPLOAD_EXTERNAL_ARCHIVE . A-92
UPLOAD_EXTERNAL_LOG_FILE . A-96

WSDL Return Parameter Types (Complex Types) A-99
Adapter Services Reference Guide v

Appendix B: Third Party Licenses
Overview . B-1

Apache Software License . B-1

W3C® Software Notice and License . B-2

Zlib License . B-4

General BSD License. B-5

General MIT License . B-5

Unicode License. B-6

Miscellaneous Attributions . B-7

Index

C h a p t e r

1.INTRODUCTION

OVERVIEW
This section contains the following topics:

About This Guide (page 1-1)

Integration Methods (page 1-5)

ABOUT THIS GUIDE
Universal Records Management (URM) allows organizations to manage their records and
retention policies, disposition processes, and litigation or audit holds in a central
repository known as a URM Server. They can then apply those policies, dispositions, and
holds to content stored in multiple repositories through URM adapters. The repositories
can be any server or application that holds content whose retention is to be controlled.

The repository might hold records that need to be preserved for a retention period,
specified in a corporate retention schedule, and then destroyed according to a corporate
disposition process. The records can be preserved in place if the repository has the ability
to ensure that the record will remain unalterable during the retention period. The
repository also needs to be able to purge the records (overwrite the files on the disk
multiple times) at the end of the retention period. Adapters associated with repositories
that cannot manage records as described might have to move the records to URM for
proper preservation and disposition.

Repositories might also hold content that is not considered a business record; where there
is no requirement that the content be preserved for the retention period. However, it might
Adapter Services Reference Guide 1-1

Introduction
be desirable to ensure that the content is deleted when the cost or risk of maintaining it
outweighs its value to the organization, as defined in the corporate retention policies. At
that time, the content would be disposed of according to the disposition processes stored
within URM.

With both records and non-records, there is an obligation to ensure that any material
subject to a litigation or audit hold (or “freeze”) is not deleted, either by a user or as part of
a disposition process. The adapters enable URM to ensure that does not happen.

Typically, there is one adapter for each repository. The adapter is positioned close to the
repository to ensure that the adapter performs its functions without consuming too much
processing or network bandwidth. Adapters can be written as an application extension
(e.g., a dynamic load library, or DLL) of the repository.

This guide describes how an adapter interacts with URM while performing the following
functions:

1. Adapter Registration—The adapter must register itself to URM so that URM knows
about the repository and is ready to manage content stored within that repository.
For details, see Registering Adapters (page 2-2). The following additional tasks might
be necessary:

a. You might want to update external field mappings after registering the adapter.
For details, see Updating External Field Mappings (page 2-7).

b. You might want to add external custom fields after registering the adapter.
For details, see Adding External Custom Fields (page 2-9).

c. You might want to update external custom fields after registering the adapter.
For details, see Updating External Custom Fields (page 2-13).

d. You might want activate the extra metadata field after registering the adapter.
For details, see Setting Up the Extra Metadata Field (page 2-16).

2. Repository Monitoring—The adapter can monitor the repository and inform URM
of any changes in the repository that affect disposition processes or litigation or audit
holds. The adapter can inform URM when the following events occur:

a. Items that need to be managed externally by URM are added to the repository. For
details, see Declaring Items to URM (External Checkin) (page 3-2).

b. Managed items in the repository have their metadata or properties changed, either
by a user or by the repository. For details, see Updating Items in URM (page 3-7).

c. Items in the repository either need to be managed externally by URM or have their
metadata updated in URM, but the adapter does not know if the items exist
already in URM. In this case, the adapter can provide URM with item metadata
and allow URM to determine whether the items should be declared or updated; if
1-2 Adapter Services Reference Guide

Introduction
the items do not exist URM performs a declaration, and if the items do exist URM
performs an update. For details, see Declaring or Updating Items in URM
(page 3-12).

d. Managed items are deleted from the repository. For details, see Deleting Items
from URM (page 3-17).

e. Items that need to be managed internally by URM are added to the repository. For
details, see Checking Items into URM (Internal Checkin) (page 3-22).

f. Items that are being managed externally by URM need to be moved to URM and
managed internally. For details, see Transferring Items to URM (page 3-25).

3. Performing URM Tasks—The adapter can ask URM periodically for tasks that need
to be performed within the repository. Those tasks enable URM to abide by the
corporate retention policies and disposition processes. The adapter can perform the
following tasks:

a. URM might want the adapter to perform a search within the repository and
provide a list of items matching the search criteria. For details, see Performing
Federated Searches (page 4-1).

a. As part of a scheduled disposition process, URM might want the adapter to purge
(or dispose by some other means) items that are held within the repository. As part
of this process the adapter might create archive zip files, which it can upload to
URM for storage. For details, see Performing Dispositions (page 4-5).

b. When a litigation or audit hold/freeze applies to content stored within a repository,
URM might want the adapter to retrieve a list of affected items and preserve them
to ensure that they are not edited or destroyed. For details, see Performing
Holds/Freezes (page 4-10).

c. When a litigation or audit hold/freeze is removed, URM might want the adapter to
stop preserving the items. For details, see Removing Holds/Freezes (page 4-14).

4. Querying URM—The adapter can retrieve the following information from URM:

a. The adapter can retrieve a retention schedule from URM. It can retrieve either the
entire retention schedule or only part of the schedule for viewing. For details, see
Requesting a Retention Schedule (page 5-1).

b. The adapter can request URM metadata for an item. For details, see Requesting
URM Metadata for an Item (page 5-4).

c. The adapter can retrieve the lifecycle for a particular item. For details, see
Requesting the Lifecycle for an Item (page 5-5).
Adapter Services Reference Guide 1-3

Introduction
5. Managing Communications—The adapter can perform the following tasks related to
communication between the adapter and URM:

a. The adapter can monitor individual batch tasks to determine whether or not each
batch submission was processed successfully and obtain a listing of errors if a task
fails. For details, see Checking the Status of Individual Batch Tasks (page 6-2).

b. The adapter can also check the status of multiple batch tasks. However, the
adapter must check the status of an individual batch task to obtain a listing of any
errors for that task. For details, see Checking the Status of Multiple Batch Tasks
(page 6-5).

c. The adapter can handle errors when trying to communicate with URM. For
details, see Handling Task Status Errors (page 6-7).

d. The adapter can process lists that are too long to transmit in one request by
processing the response in chunks. For details, see Segmenting Response Data
(page 6-9).

e. The adapter can upload log files to URM. For details, see Uploading External Log
Files (page 6-11).

f. The adapter can ping the URM server to see if it is running. For details, see
Pinging the URM Server (page 6-12).

Audience
This guide is intended for application developers who need to develop URM adapters.

Conventions
The following conventions are used throughout this guide:

Forward slashes (/) are used to separate parts of an Internet address. For example,
http://www.oracle.com/en/index.htm. A forward slash might or might not appear at
the end of an Internet address.

Backward slashes (\) are used to separate the levels in a path to a Windows server,
directory, or file. For example, C:\stellent\idcm1\. A backward slash will always
appear after the end of a Windows server, directory, or file path.

Forward slashes (/) are also used to separate the levels in a path to a UNIX server,
directory, or file. For example, /usr/stellent/idcm1.

File names and file paths within text are indicated by the following convention:
<filename> file in the <path_to_directory> directory.
1-4 Adapter Services Reference Guide

http://www.oracle.com/en/index.htm

Introduction
The notation <install_dir> is used to refer to the location on your system where
the URM Server instance is installed.

Notes, technical tips, important notices, and cautions use these conventions:

INTEGRATION METHODS
The URM adapter services documented in this guide can be accessed by any external
program or HTML page using a wide variety of protocols. URM can be integrated with
other enterprise applications using the following integration methods:

Java API (IdcCommand) integration using the IdcCommand Java Command Utility.
For more information, refer to the Idc Command Reference Guide provided with
Content Server.

Component Object Model (COM) integration using the ActiveX utility or the
IntradocClient OCX component. For more information, refer to the Idc Command
Reference Guide provided with Content Server.

Java Server Page (JSP) integration from a JSP running in Content Server, a JSP
through the Content Server JavaBean, or a JSP through the Content Server Enterprise
JavaBean (EJB) deployed on your J2EE application server. For more information,
refer to the documentation provided with Content Integration Suite (CIS), which is a
separate product.

Java 2 Enterprise Edition API (J2EE) integration by deploying the Content Server
Enterprise JavaBean on your J2EE-compliant application server. For more
information, refer to the documentation provided with CIS.

Symbols Description

This is a note. It is used to bring special attention to information.

This is a technical tip. It is used to identify information that can be used
to make your tasks easier.

This is an important notice. It is used to identify a required step or
required information.

This is a caution. It is used to identify information that might cause loss
of data or serious system problems.
Adapter Services Reference Guide 1-5

Introduction
Open Document Management API (ODMA) integration using the ODMAbased plug-
in. For more information, refer to the documentation provided with Desktop
Integration Suite, which is a separate product.

Simple Object Access Protocol (SOAP) integration using the SOAP protocol. For
more information, refer to the Using WSDL Generator and SOAP guide. This guide is
included in the WsdlGenerator.zip file provided with URM.

Virtual Folders integration using the Folders component. For more information, refer
to the Folders and WebDAV Administration Guide provided with the
Folders/WebDAV component.

Web Distributed Authoring and Versioning (WebDAV) integration using the
WebDAV component. For more information, refer to the Folders and WebDAV
Administration Guide provided with the Folders/WebDAV component.
1-6 Adapter Services Reference Guide

C h a p t e r

2.ADAPTER REGISTRATION

OVERVIEW
This section covers the following topics:

Registering Adapters (page 2-2)

Updating External Field Mappings (page 2-7)

Adding External Custom Fields (page 2-9)

Updating External Custom Fields (page 2-13)

Setting Up the Extra Metadata Field (page 2-16)
Adapter Services Reference Guide 2-1

Adapter Registration
REGISTERING ADAPTERS
The adapter must register itself to URM so that URM knows about the repository and is
ready to manage content stored within that repository. The adapter registration process is
as follows (see Figure 2-1):

(AR01) An administrator creates a user for the adapter in URM. The adapter will use
that user's credentials to log onto URM before interacting with URM. In environments
where a single sign on solution, such as Obelix, is in use, there might be no need to
create a user. However, the administrator would still have to configure the adapter user
with the correct role and rights to allow that user to get adapter privileges in URM. In
most cases, using the rmaadmin role is sufficient. However, the correct role and rights
will depend on the purpose of the adapter.

(AR02) The administrator installs the adapter and gives it the previously-created user
credentials. The administrator must provide a source name (dSource) associated with
the repository and can provide a table name (dTable) to be used when creating tables
for the records or non-record items contained within the repository. If the optional
dTable parameter is not specified, dSource will be used for dTable.

The maximum length for dSource is 30 characters, and the maximum length for
dTable is 16 characters. If dTable is not specified, dSource must not exceed
16 characters or dTable will fail its maximum size requirement.

The administrator also has to configure the adapter so that it knows the repository with
which it will be associated. This configuration will vary from adapter to adapter.

(AR03) The newly-installed adapter gathers a listing of the metadata values
associated with items in the repository with which it is associated.

(AR04) The adapter prompts the administrator for a Uniform Resource Identifier
(URI) to use when connecting to URM.

(AR05) The administrator provides the URI.

(AR06) The adapter connects to URM, authenticates itself, and calls the
GET_EXTERNAL_DEFAULT_FIELDS service to request a listing of the default
metadata that URM expects from adapters. For additional details, see
GET_EXTERNAL_DEFAULT_FIELDS (page A-47).
2-2 Adapter Services Reference Guide

Adapter Registration
(AR07) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the default metadata fields to the adapter. If there is
an error, URM sends an error message (ermStatusMessage).

(AR08) The adapter checks the status response.

(AR09) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(AR10) If there is no error, the adapter receives the default metadata fields from
URM. The adapter maps the repository’s metadata fields to the default metadata
fields, creating an externalFieldsMap result set. Please note the following important
considerations when creating this result set:

• The externalFieldsMap result set must map the adapter’s unique ID field to either
URM’s dDocName or dLongName field. By default, dDocName is 100 characters
long. If an adapter needs a long ID field, the optional keysize parameter must be
specified. If the optional keysize parameter is specified, dLongName must be
used.

• By default, dDocTitle is 200 characters long.

• If you want to maintain the original field data when it needs to be truncated,
consider creating a custom field, with the same name as the mapped field, that is
long enough to hold the original data.

For example, consider you have a Subject field that you map to dDocTitle, which
is indicated as a truncated field. You could create a custom field named Subject.
Then you only need to send the Subject field value once, as URM will truncate the
data if it is greater than the length of the field for dDocTitle. The full value will
still be in the Subject field.

The externalFieldsMap result set will be passed to URM with the
CREATE_EXTERNAL_SOURCE service (AR12).
Adapter Services Reference Guide 2-3

Adapter Registration
(AR11) If necessary, the adapter collates any repository metadata that cannot be
mapped to create a custom metadata listing, creating an
externalCustomMetaDefinition result set. Please note the following important
considerations when creating this result set:

• dOptionListType—only the following values are valid: combo, multi, or strict

• dType—only the following values are valid: Date, Int, Text, BigText, or Memo

• dIsDisplayOnly—indicates if the field is a placeholder field. If the field is defined
as a placeholder field, URM does not create the field in the source table.

• dLength—specifies the length of the field. The following are the length ranges
and default lengths for custom fields (if the length is not specified, URM will use
the default length for each field type):
• Text field: 1–100; default 100
• BigText: 101–200; default 200
• Memo field: 201–2Gb (MS SQL), 201–4000 (Oracle),

201–2000 (Oracle Japanese); default 1000 for all

• If you are using Microsoft SQL Server 2005, you should set the
EnableLongMemoFieldForSCS7 configuration variable in the content server
instance where URM is installed.

When the EnableLongMemoFieldForSCS7 configuration variable is set to true,
during table creation the length of the Memo type is 2,000,000,000. When this
configuration variable is set to false, the length of the Memo type is 1000 (note
that is specific to URM; the default Memo type length for Content Server is 255).

It is recommended that you set Content Server configuration variables using
Admin Server. Content Server configuration variables can also be set by editing
the config.cfg file located in the <install_dir>/config directory.

The externalCustomMetaDefinition result set will be passed to URM with the
CREATE_EXTERNAL_SOURCE service (AR12).

Note: When using any database other than Microsoft SQL Server 2005, the
EnableLongMemoFieldForSCS7 configuration variable has no effect on content server
functionality.
2-4 Adapter Services Reference Guide

Adapter Registration
(AR12) The adapter calls the CREATE_EXTERNAL_SOURCE service to request
that URM create an external source.

The adapter must provide the following parameters:
• dSource
• externalFieldMap (result set)

The adapter can specify the following parameters
• dTable
• externalCustomMetaDefinition (result set)
• blocksize
• keysize

• sourceDisplayName

For additional details, see CREATE_EXTERNAL_SOURCE (page A-29).

(AR13) URM creates the external source.

(AR14) URM sends a status response. The status response either indicates that the
creation was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(AR15) The adapter receives and evaluates the status response.

(AR16) Optionally, the administrator can create a default security group in URM.

(AR17) The adapter can call the
SET_DEFAULT_EXTERNAL_SECURITY_GROUP service to set the default
security group. If a default security group is not set, the Public security group is used
if a security group is not specified when items are declared (external checkin). For
additional details, see SET_DEFAULT_EXTERNAL_SECURITY_GROUP
(page A-80).

(AR18) URM sends a status response. The status response either indicates that the
setting of the default security group was successful (ermStatusCode=0), or that there
was an error. If there was an error, URM also sends an error message
(ermStatusMessage).

(AR19) The adapter receives and evaluates the status response.
Adapter Services Reference Guide 2-5

Adapter Registration
Figure 2-1 Adapter registration
2-6 Adapter Services Reference Guide

Adapter Registration
UPDATING EXTERNAL FIELD MAPPINGS
When an adapter is registered, the adapter must provide an externalFieldsMap result set
that maps the repository’s metadata fields to the default URM metadata fields. At the least,
this result set must map the adapter’s unique ID field to either URM’s dDocName or
dLongName field. For details, see Registering Adapters (page 2-2).

To update external field mappings after registering the adapter, complete the following
steps:

(UM01) If necessary, the adapter can call the
GET_EXTERNAL_DEFAULT_FIELDS service to request a listing of the default
metadata that URM expects from adapters. For additional details, see
GET_EXTERNAL_DEFAULT_FIELDS (page A-47).

(UM02) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the default metadata fields to the adapter. If there is
an error, URM sends an error message (ermStatusMessage).

(UM03) The adapter checks the status response.

(UM04) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(UM05) If there is no error, if necessary the adapter can also call the
GET_EXTERNAL_TABLE_FIELDS service to request a listing of existing metadata
definitions. For additional details, see GET_EXTERNAL_TABLE_FIELDS
(page A-51).

(UM06) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(UM07) The adapter checks the status response.

(UM08) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(UM09) If there is no error, the adapter maps the repository’s metadata fields to the
default metadata fields, creating an externalFieldsMap result set. Please note the
following important considerations when creating this result set:

• The externalFieldsMap result set contains the columns rmField, externalField, and
externalCaption; specifying the fields mapping between URM fields and the
adapter’s fields.
Adapter Services Reference Guide 2-7

Adapter Registration
• If rmField already exists, the mapped externalField and externalCaption are
updated. Making changes to external field mappings never results in database
changes; it only affects the metadata mapping for future items. The metadata
mapping for any existing items will not be changed by updating the external field
mappings.

• If you want to maintain the original field data when it needs to be truncated,
consider creating a custom field, with the same name as the mapped field, that is
long enough to hold the original data.

For example, consider you have a Subject field that you map to dDocTitle, which
is indicated as a truncated field. You could create a custom field named Subject.
Then you only need to send the Subject field value once, as URM will truncate the
data if it is greater than the length of the field for dDocTitle. The full value will
still be in the Subject field.

The externalFieldsMap result set will be passed to URM with the
UPDATE_EXTERNAL_FIELD_MAPPING service (UM10).

(UM10) The adapter calls the UPDATE_EXTERNAL_FIELD_MAPPING service to
request that URM update the source. For additional details, see
UPDATE_EXTERNAL_FIELD_MAPPING (page A-89).

(UM11) URM updates the source.

(UM12) URM sends a status response. The status response either indicates that the
update was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(UM13) The adapter receives and evaluates the status response.

Important: Making changes to external field mappings never results in database changes;
it only affects the metadata mapping for future items.
2-8 Adapter Services Reference Guide

Adapter Registration
Figure 2-2 Updating the external field mapping

ADDING EXTERNAL CUSTOM FIELDS
When an adapter is registered, the adapter can collate any repository metadata that cannot
be mapped to default URM metadata fields, creating an externalCustomMetaDefinition
Adapter Services Reference Guide 2-9

Adapter Registration
result set (creating a custom metadata listing). For details, see Registering Adapters
(page 2-2).

To add external custom fields after registering the adapter, complete the following steps:

(AC01) If necessary, the adapter can call the
GET_EXTERNAL_DEFAULT_FIELDS service to request a listing of the default
metadata that URM expects from adapters. For additional details, see
GET_EXTERNAL_DEFAULT_FIELDS (page A-47).

(AC02) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the default metadata fields to the adapter. If there is
an error, URM sends an error message (ermStatusMessage).

(AC03) The adapter checks the status response.

(AC04) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(AC05) If there is no error, if necessary the adapter can also call the
GET_EXTERNAL_TABLE_FIELDS service to request a listing of existing metadata
definitions. For additional details, see GET_EXTERNAL_TABLE_FIELDS
(page A-51).

(AC06) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(AC07) The adapter checks the status response.

(AC08) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(AC09) If there is no error, if necessary the adapter can also call the
GET_MAXIMUM_FIELD_LENGTHS service to determine the maximum field
length for each text type. For additional details, see
GET_MAXIMUM_FIELD_LENGTHS (page A-59).

(AC10) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the maximum field lengths to the adapter. If there is
an error, URM sends an error message (ermStatusMessage).

The maximumFieldLengths result set lists the maximum field length for each text
type. This result set contains two columns:
type
length
2-10 Adapter Services Reference Guide

Adapter Registration
The following text types are returned: Text, BigText, and Memo. The length value for
each text type represents the maximum length for any field of that type.

(AC11) The adapter checks the status response.

(AC12) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(AC13) If there is no error, the adapter collates a list of additional custom metadata
fields, creating an externalCustomMetaDefinition result set. Please note the following
important considerations when creating this result set:

• If a field already exists, you will receive an error.

• dOptionListType—only the following values are valid: combo, multi, or strict

• dType—only the following values are valid: Date, Int, Text, BigText, or Memo

• dIsDisplayOnly—indicates if the field is a placeholder field. If the field is defined
as a placeholder field, URM does not create the field in the source table.

• If you want to maintain the original field data when it needs to be truncated,
consider creating a custom field, with the same name as the mapped field, that is
long enough to hold the original data.

For example, consider you have a Subject field that you map to dDocTitle, which
is indicated as a truncated field. You could create a custom field named Subject.
Then you only need to send the Subject field value once, as URM will truncate the
data if it is greater than the length of the field for dDocTitle. The full value will
still be in the Subject field.

The externalCustomMetaDefinition result set will be passed to URM with the
ADD_EXTERNAL_CUSTOM_FIELDS service (AC10).

(AC14) The adapter calls the ADD_EXTERNAL_CUSTOM_FIELDS service to
request that URM update the source. For additional details, see
ADD_EXTERNAL_CUSTOM_FIELDS (page A-5).

(AC15) URM updates the source.

(AC16) URM sends a status response. The status response either indicates that the
update was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(AC17) The adapter receives and evaluates the status response.

Important: Making changes to external custom fields never results in database changes; it
only affects the metadata mapping for future items.
Adapter Services Reference Guide 2-11

Adapter Registration
Figure 2-3 Adding external custom fields
2-12 Adapter Services Reference Guide

Adapter Registration
UPDATING EXTERNAL CUSTOM FIELDS
When an adapter is registered, the adapter can collate any repository metadata that cannot
be mapped to default URM metadata fields, creating an externalCustomMetaDefinition
result set (creating a custom metadata listing). For details, see Registering Adapters
(page 2-2).

To update external custom fields after registering the adapter, complete the following
steps:

(UC01) If necessary, the adapter can call the
GET_EXTERNAL_DEFAULT_FIELDS service to request a listing of the default
metadata that URM expects from adapters. For additional details, see
GET_EXTERNAL_DEFAULT_FIELDS (page A-47).

(UC02) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the default metadata fields to the adapter. If there is
an error, URM sends an error message (ermStatusMessage).

(UC03) The adapter checks the status response.

(UC04) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(UC05) If there is no error, if necessary the adapter can also call the
GET_EXTERNAL_TABLE_FIELDS service to request a listing of existing metadata
definitions. For additional details, see GET_EXTERNAL_TABLE_FIELDS
(page A-51).

(UC06) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(UC07) The adapter checks the status response.

(UC08) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(UC09)If there is no error, the adapter collates an updated list of existing custom
metadata fields, creating an externalCustomMetaDefinition result set. Please note the
following important considerations when creating this result set:

• If a field does not exist already, you will receive an error.

• dOptionListType—only the following values are valid: combo, multi, or strict

• dType—only the following values are valid: Date, Int, Text, BigText, or Memo
Adapter Services Reference Guide 2-13

Adapter Registration
• dIsDisplayOnly—indicates if the field is a placeholder field. If the field is defined
as a placeholder field, URM does not create the field in the source table.

The externalCustomMetaDefinition result set will be passed to URM with the
UPDATE_EXTERNAL_CUSTOM_FIELDS service (AC10).

(UC10) The adapter calls the UPDATE_EXTERNAL_CUSTOM_FIELDS service to
request that URM update the source. For additional details, see
UPDATE_EXTERNAL_CUSTOM_FIELDS (page A-85).

(UC11) URM updates the source.

(UC12) URM sends a status response. The status response either indicates that the
update was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(UC13) The adapter receives and evaluates the status response.

Important: Making changes to external custom fields never results in database changes; it
only affects the metadata mapping for future items.
2-14 Adapter Services Reference Guide

Adapter Registration
Figure 2-4 Updating external custom fields
Adapter Services Reference Guide 2-15

Adapter Registration
SETTING UP THE EXTRA METADATA FIELD
To activate the extra metadata field after registering the adapter, complete the following
steps:

(SE01) The adapter calls the SETUP_EXTRA_METADATA_FIELD service to
request that URM activate the extra metadata field. URM creates an extra table with a
dExtraMetaData column. It is then possible to pass a dExtraMetaData value during
future item checkins or edits.

It is currently recommended that you pass an XML string with extra metadata field
mappings for dExtraMetaData. The dExtraMetaData string would be included along
with all other field mapping data; this is just a special field that is not created or
mapped.

For additional details, see SETUP_EXTRA_METADATA_FIELD (page A-81).

(SE02) URM activates the extra metadata field.

(SE03) URM sends a status response. The status response either indicates that the
activation was successful (ermStatusCode=0), or that there was an error. If there was
an error, URM also sends an error message (ermStatusMessage).

(SE04) The adapter receives and evaluates the status response.

Figure 2-5 Setting up the extra metadata field

Important: Once SETUP_EXTRA_METADATA_FIELD is called and the extra metadata
field is created, it cannot be removed.
2-16 Adapter Services Reference Guide

C h a p t e r

3.REPOSITORY MONITORING

OVERVIEW
This section covers the following topics:

Declaring Items to URM (External Checkin) (page 3-2)

Updating Items in URM (page 3-7)

Declaring or Updating Items in URM (page 3-12)

Deleting Items from URM (page 3-17)

Checking Items into URM (Internal Checkin) (page 3-22)

Transferring Items to URM (page 3-25)
Adapter Services Reference Guide 3-1

Repository Monitoring
DECLARING ITEMS TO URM (EXTERNAL CHECKIN)
As new items are added to the repository, the adapter should notify URM of their
existence and provide URM with enough metadata to allow URM to manage the retention
of the items. Since URM has some of the capability of Content Server, the administrator
can define a profile that derives additional metadata within URM after the adapter has
provided its metadata. The records can be preserved in place if the repository has the
ability to ensure that the record will remain unalterable during the retention period. The
repository also needs to be able to purge the records at the end of the retention period.
Adapters associated with repositories that cannot manage records as described have to
move the records to URM for proper preservation and disposition. For details, see
Checking Items into URM (Internal Checkin) (page 3-22).

This section covers the following topics:

Declaring Items in Batch (page 3-2)

Declaring Individual Items (page 3-5)

Declaring Items in Batch
New items can be declared to URM in a batch (external checkin; the items are stored
externally in the repository, not in URM). The batch declaration process is as follows
(see Figure 3-1):

(AB01) The adapter gathers a listing and the metadata of items to be declared.

(AB02) The adapter calls the GET_EXTERNAL_TABLE_FIELDS service to ask
URM for metadata definitions so that the adapter knows how to format the metadata it
is about to send to URM. For additional details, see
GET_EXTERNAL_TABLE_FIELDS (page A-51).

(AB03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(AB04) The adapter checks the status response.

(AB05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(AB06) If there is no error, the adapter receives the metadata definitions from URM.
The adapter uses the metadata definitions and the listing and metadata it has collected
to build a declaration request.
3-2 Adapter Services Reference Guide

Repository Monitoring
(AB07) The adapter calls the CHECKIN_MULTIPLE_EXTERNAL service to
declare the batch of items to URM (external checkin). Please note the following
important consideration:

• A record can only be in a category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each record you can only send a
value for one or the other. If you include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

For additional details, see CHECKIN_MULTIPLE_EXTERNAL (page A-21).

(AB08) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the adapter a task ID. If there is an error, URM sends
an error message (ermStatusMessage).

(AB09) The adapter checks the status response.

(AB10) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(AB11) If there is no error, the adapter receives a task ID from URM. The adapter uses
the task ID to monitor the status of the batch checkin. For details, see Checking the
Status of Individual Batch Tasks (page 6-2) and Checking the Status of Multiple Batch
Tasks (page 6-5).
Adapter Services Reference Guide 3-3

Repository Monitoring
Figure 3-1 Declaring items in batch
3-4 Adapter Services Reference Guide

Repository Monitoring
Declaring Individual Items
New items can be declared to URM individually (external checkin; the item is stored
externally in the repository, not in URM). The individual declaration process is as follows
(see Figure 3-2):

(AI01) The adapter collects metadata for the item to be declared.

(AI02) The adapter calls the GET_EXTERNAL_TABLE_FIELDS service to ask
URM for metadata definitions so that the adapter knows how to format the metadata it
is about to send to URM. For additional details, see
GET_EXTERNAL_TABLE_FIELDS (page A-51).

(AI03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(AI04) The adapter checks the status response.

(AI05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(AI06) If there is no error, the adapter receives the metadata definitions from URM.
The adapter uses the metadata definitions and the metadata it has collected to build a
declaration request.

(AI07) The adapter calls the CHECKIN_EXTERNAL service to declare the item to
URM (external checkin). Please note the following important consideration:

• A record can only be in a category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each record you can only send a
value for one or the other. If you include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

For additional details, see CHECKIN_EXTERNAL (page A-17).

(AI08) URM does a declaration (external checkin).

(AI09) URM sends a status response. The status response either indicates that the
checkin was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(AI10) The adapter receives and evaluates the status response.
Adapter Services Reference Guide 3-5

Repository Monitoring
Figure 3-2 Declaring an individual item
3-6 Adapter Services Reference Guide

Repository Monitoring
UPDATING ITEMS IN URM
Items within the repository (that have been declared to URM; external checkin) might
have their metadata changed, either by users interacting with that repository or by the
repository itself. Because that metadata might be used to control retention, it is critical that
the adapter send notification of changes to the metadata to URM.

This section covers the following topics:

Updating Items in Batch (page 3-7)

Updating Individual Items (page 3-10)

Updating Items in Batch
The metadata for items can be updated in URM in a batch (items that have been declared
to URM; external checkin). The batch update process is as follows (see Figure 3-3):

(UB01) The adapter gathers a listing and the metadata of items to be updated.

(UB02) The adapter calls the GET_EXTERNAL_TABLE_FIELDS service to ask
URM for metadata definitions so that the adapter knows how to format the metadata it
is about to send to URM. For additional details, see
GET_EXTERNAL_TABLE_FIELDS (page A-51).

(UB03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(UB04) The adapter checks the status response.

(UB05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(UB06) If there is no error, the adapter receives the metadata definitions from URM.
The adapter uses the metadata definitions and the listing and metadata it has collected
to build an update request. All mapped and custom fields must be included in the
update request. Any fields that are left out will be overwritten with an empty string;
they will not retain their original value.

(UB07) The adapter calls the EDIT_MULTIPLE_EXTERNAL service to update the
batch of items in URM. Please note the following important considerations:

• A record can only be in a category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each record you can only send a
Adapter Services Reference Guide 3-7

Repository Monitoring
value for one or the other. If you include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

• Neither dDocName nor dLongName can be updated.

For additional details, see EDIT_MULTIPLE_EXTERNAL (page A-45).

(UB08) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the adapter a task ID. If there is an error, URM sends
an error message (ermStatusMessage).

(UB09) The adapter checks the status response.

(UB10) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(UB11) If there is no error, the adapter receives a task ID from URM. The adapter uses
the task ID to monitor the status of the batch update. For details, see Checking the
Status of Individual Batch Tasks (page 6-2) and Checking the Status of Multiple Batch
Tasks (page 6-5).
3-8 Adapter Services Reference Guide

Repository Monitoring
Figure 3-3 Updating items in batch
Adapter Services Reference Guide 3-9

Repository Monitoring
Updating Individual Items
The metadata for a single item can be updated in URM (an item that has been declared to
URM; external checkin). The individual update process is as follows (see Figure 3-4):

(UI01) The adapter collects metadata for the item to be updated.

(UI02) The adapter calls the GET_EXTERNAL_TABLE_FIELDS service to ask
URM for metadata definitions so that the adapter knows how to format the metadata it
is about to send to URM. For additional details, see
GET_EXTERNAL_TABLE_FIELDS (page A-51).

(UI03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(UI04) The adapter checks the status response.

(UI05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(UI06) If there is no error, the adapter receives the metadata definitions from URM.
The adapter uses the metadata definitions and the metadata it has collected to build an
update request. All mapped and custom fields must be included in the update request.
Any fields that are left out will be overwritten with an empty string; they will not
retain their original value.

(UI07) The adapter calls the EDIT_EXTERNAL service to update the item in URM.
Please note the following important considerations:

• A record can only be in a category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each record you can only send a
value for one or the other. If you include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

• Neither dDocName nor dLongName can be updated.

For additional details, see EDIT_EXTERNAL (page A-43).

(UI08) URM does a update.

(UI09) URM sends a status response. The status response either indicates that the
update was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(UI10) The adapter receives and evaluates the status response.
3-10 Adapter Services Reference Guide

Repository Monitoring
Figure 3-4 Updating individual items
Adapter Services Reference Guide 3-11

Repository Monitoring
DECLARING OR UPDATING ITEMS IN URM
The adapter can also provide URM with item metadata and allow URM to determine
whether the items should be declared or updated. The adapter does not need to know if the
items exist already in URM; if the items do not exist URM performs a declaration
(external checkin; the items are stored externally in the repository, not in URM), and if the
items do exist (are being managed externally already) URM performs an update.

This section covers the following topics:

Declaring or Updating Items in Batch (page 3-12)

Declaring or Updating Individual Items (page 3-15)

Declaring or Updating Items in Batch
Items can be declared to URM (external checkin; the items are stored externally in the
repository, not in URM) or have their metadata updated in batch. The batch declaration or
update process is as follows (see Figure 3-3):

(XB01) The adapter gathers a listing and the metadata of items to be declared or
updated.

(XB02) The adapter calls the GET_EXTERNAL_TABLE_FIELDS service to ask
URM for metadata definitions so that the adapter knows how to format the metadata it
is about to send to URM. For additional details, see
GET_EXTERNAL_TABLE_FIELDS (page A-51).

(XB03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(XB04) The adapter checks the status response.

(XB05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(XB06) If there is no error, the adapter receives the metadata definitions from URM.
The adapter uses the metadata definitions and the listing and metadata it has collected
to build a declaration/update request.
3-12 Adapter Services Reference Guide

Repository Monitoring
(XB07) The adapter calls the CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL
service to declare the batch of items to URM or edit the batch of items in URM. Please
note the following important considerations:

• A record can only be in a category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each record you can only send a
value for one or the other. If you include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

• Neither dDocName nor dLongName can be updated.

For additional details, see CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL
(page A-25).

(XB08) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the adapter a task ID. If there is an error, URM sends
an error message (ermStatusMessage).

When URM runs the batch job, it checks to see if each item exists in URM already. If
the item does not exist, URM performs a declaration (external checkin). If the item
exists, URM performs an update.

(XB09) The adapter checks the status response.

(XB10) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(XB11) If there is no error, the adapter receives a task ID from URM. The adapter uses
the task ID to monitor the status of the batch task. For details, see Checking the Status
of Individual Batch Tasks (page 6-2) and Checking the Status of Multiple Batch Tasks
(page 6-5).
Adapter Services Reference Guide 3-13

Repository Monitoring
Figure 3-5 Declaring or updating items in batch
3-14 Adapter Services Reference Guide

Repository Monitoring
Declaring or Updating Individual Items
Items can be declared to URM (external checkin; the items are stored externally in the
repository, not in URM) or have their metadata updated individually. The individual
declaration or update process is as follows (see Figure 3-4):

(XI01) The adapter collects metadata for the item to be declared or updated.

(XI02) The adapter calls the GET_EXTERNAL_TABLE_FIELDS service to ask
URM for metadata definitions so that the adapter knows how to format the metadata it
is about to send to URM. For additional details, see
GET_EXTERNAL_TABLE_FIELDS (page A-51).

(XI03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(XI04) The adapter checks the status response.

(XI05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(XI06) If there is no error, the adapter receives the metadata definitions from URM.
The adapter uses the metadata definitions and the metadata it has collected to build a
declaration request.

(XI07) The adapter calls the CHECKIN_OR_EDIT_EXTERNAL service to declare
the item to URM or update the item in URM. Please note the following important
considerations:

• A record can only be in a category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each record you can only send a
value for one or the other. If you include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

• Neither dDocName nor dLongName can be updated.

For additional details, see CHECKIN_OR_EDIT_EXTERNAL (page A-23).

(XI08) If the item does not exist already, URM performs a declaration. If the item
exists, URM performs an update.

(XI09) URM sends a status response. The status response either indicates that the
declaration or update was successful (ermStatusCode=0), or that there was an error. If
there was an error, URM also sends an error message (ermStatusMessage).

(XI10) The adapter receives and evaluates the status response.
Adapter Services Reference Guide 3-15

Repository Monitoring
Figure 3-6 Declaring or updating individual items
3-16 Adapter Services Reference Guide

Repository Monitoring
DELETING ITEMS FROM URM
Non-record items within the repository might be deleted, either by users interacting with
that repository or by the repository itself. Because URM holds metadata for the items, it is
important that adapter inform URM of item deletions so that URM can stop tracking the
retention lifecycle of the items.

This section covers the following topics:

Deleting Items in Batch (page 3-17)

Deleting Individual Items (page 3-19)

Deleting Items by Pattern (page 3-20)

Deleting Items in Batch
Items can be deleted from URM in a batch. The batch deletion process is as follows (see
Figure 3-7):

(DB01) The adapter gathers a listing of items to be deleted.

(DB02) The adapter builds a delete request.

(UB07) The adapter calls the DELETE_MULTIPLE_EXTERNAL service to delete
the batch of items from URM. The adapter must provide a content server result set
(externalRecordsList). The result set column must contain the adapter’s key column.
For additional details, see DELETE_MULTIPLE_EXTERNAL (page A-41).

(DB04) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the adapter a task ID. If there is an error, URM sends
an error message (ermStatusMessage).

(DB05) The adapter checks the status response.

(DB06) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(DB07) If there is no error, the adapter receives a task ID from URM. The adapter uses
the task ID to monitor the status of the batch deletion. For details, see Checking the
Status of Individual Batch Tasks (page 6-2) and Checking the Status of Multiple Batch
Tasks (page 6-5).
Adapter Services Reference Guide 3-17

Repository Monitoring
Figure 3-7 Deleting items in batch
3-18 Adapter Services Reference Guide

Repository Monitoring
Deleting Individual Items
Items can be deleted from URM individually. The individual deletion process is as follows
(see Figure 3-8):

(DI01) The adapter collects the ID (idKey) for the item to be deleted.

(DI02) The adapter builds a delete request.

(DI03) The adapter calls the DELETE_EXTERNAL service to delete the item from
URM. For additional details, see DELETE_EXTERNAL (page A-40).

(DI04) URM does the deletion.

(DI05) URM sends a status response. The status response either indicates that the
deletion was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(DI06) The adapter receives and evaluates the status response.

Figure 3-8 Deleting individual items
Adapter Services Reference Guide 3-19

Repository Monitoring
Deleting Items by Pattern
Items can be deleted from URM by pattern. URM deletes all items where the specified
field starts with the specified pattern (assuming the items are not frozen).

If the optional dateField and dateValue are specified, all items that match the pattern
criteria and are older than the date specified for the dateField will be deleted. Items that
match the pattern criteria but are newer than the date specified will not be deleted.

The pattern deletion process is as follows (see Figure 3-9):

(DT01) The adapter builds a pattern delete request.

(DT02) The adapter calls the DELETE_BY_PATTERN service to delete the batch of
items from URM. Please note the following important considerations:

• The optional operator parameter applies to the field parameter. The dateField and
dateValue parameters do not have an operator. The following operators are
supported: beginsWith (default), endsWith, contains, equals. When the operator
parameter is not passed, a beginsWith will always be performed.

• If the optional dateField and dateValue are specified, all items that match the
pattern criteria and are older than the date specified for the dateField will be
deleted. Items that match the pattern criteria but are newer than the date specified
will not be deleted. The dateValue is defined in the JDBC date format.

For additional details, see DELETE_BY_PATTERN (page A-37).

(DT03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the adapter a task ID. If there is an error, URM sends
an error message (ermStatusMessage).

(DT04) The adapter checks the status response.

(DT05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(DT06) If there is no error, the adapter receives a task ID from URM. The adapter uses
the task ID to monitor the status of the batch deletion. For details, see Checking the
Status of Individual Batch Tasks (page 6-2) and Checking the Status of Multiple Batch
Tasks (page 6-5).
3-20 Adapter Services Reference Guide

Repository Monitoring
Figure 3-9 Deleting items by pattern
Adapter Services Reference Guide 3-21

Repository Monitoring
CHECKING ITEMS INTO URM (INTERNAL CHECKIN)
Records can be preserved in place if the repository has the ability to ensure that the records
will remain unalterable during the retention period. The repository also needs to be able to
purge the records at the end of the retention period. For details, see Declaring Items to
URM (External Checkin) (page 3-2) and Declaring or Updating Items in URM
(page 3-12).

Certain repositories, such as file servers, might not be able to preserve records or
non-records over their retention period or purge the records properly when it is time for
disposal. Adapters associated with these repositories need to check the items into URM
(internal checkin, where the items are moved into URM), so that the records can be
preserved and purged properly.

The process for checking an item from the repository into the URM repository is as
follows (see Figure 3-10):

(CI01) The adapter collects metadata for the item to be checked into URM.

(CI02) If necessary, the adapter asks URM for metadata definitions so that the adapter
knows how to format the metadata it is about to send to URM.

(CI03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata definitions to the adapter. If there is an
error, URM sends an error message (ermStatusMessage).

(CI04) The adapter checks the status response.

(CI05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(CI06) If there is no error, the adapter builds a checkin request that includes the item
to be checked into URM.

(CI07) The adapter calls the CHECKIN_INTERNAL service to check the item into
URM (internal checkin). Please note the following considerations:

• The dDocAuthor field is optional. If it is not passed, URM will use the
authenticated user. The dDocAuthor field can be specified in the profile if you
want to overwrite the value that is used for authentication.

• If you want to use a profile to set values for fields, the profile must be set up in
URM and you must map the xRMProfileTrigger field in the localdata that is
passed to URM with this service.

• The dDocType field must be set using a profile.
3-22 Adapter Services Reference Guide

Repository Monitoring
• The dDocName and dDocTitle fields are usually mapped fields that are handled
outside of profiles.

• If the dSecurityGroup field is not mapped or passed, URM will set it to the default
security group for the source or to Public.

• A record can only be in a category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each record you can only send a
value for one or the other. If you include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

• The file to be checked into URM must be included.

For additional details, see CHECKIN_INTERNAL (page A-18).

(CI08) URM does a checkin.

(CI09) URM sends a status response. If there is no error (ermStatusCode=0), URM
sends the URL for the item to the adapter. If there is an error, URM sends an error
message (ermStatusMessage).

(CI10) The adapter checks the status response.

(CI11) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(CI12) If there is no error, optionally the adapter might then use the URL sent by
URM to replace the item within the repository with a link to the copy of the item that
is managed in URM. This enables users to still view the item if needed.
Adapter Services Reference Guide 3-23

Repository Monitoring
Figure 3-10 Checking in an item
3-24 Adapter Services Reference Guide

Repository Monitoring
TRANSFERRING ITEMS TO URM
Items that are being managed externally by URM (have been declared to URM and are
being stored externally in the repository) can be checked into URM (internal checkin,
where the items are moved into the URM repository), so that the records can be preserved
and purged properly. The process for transferring an item into the URM repository is as
follows (see Figure 3-11):

(TI01) The adapter calls the TRANSFER_ITEM_TO_INTERNAL service to transfer
the item into URM. For additional details, see TRANSFER_ITEM_TO_INTERNAL
(page A-83). Please note the following consideration:

• dDocAuthor is optional. If dDocAuthor is sent, it cannot be the mapped value; it
must be dDocAuthor. If dDocAuthor is not sent, URM will use the author value in
the external table for the item to be transferred.

(TI02) URM sends a status response. If there is no error (ermStatusCode=0), URM
sends the URL for the item to the adapter. If there is an error, URM sends an error
message (ermStatusMessage).

(TI03) The adapter checks the status response.

(TI04) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(TI05) If there is no error, the adapter uses the URL sent by URM to replace the
original item with some sort of placeholder, and creates a new ID.

(TI06) The adapter calls the CONVERT_TRANSFERRED_ITEM_TO_LINK service
to update the external reference in URM with the new ID. URM does not delete the
external reference, and if it is not updated it will point incorrectly to the original item
instead of the placeholder. So, the adapter needs to update the external reference to
point to the ID of the placeholder instead of the ID of the original item that is now
stored in the URM repository. If you want to change any metadata values when the
item is transferred to the URM repository, you can include the editValues parameter
when calling this service. This propertyList only needs to include the metadata fields
that should be changed. Any fields that are not specified will retain their original
value. For additional details, see CONVERT_TRANSFERRED_ITEM_TO_LINK
(page A-27).

(TI07) URM updates the external reference with the new ID.
Adapter Services Reference Guide 3-25

Repository Monitoring
(TI08) URM sends a status response. The status response either indicates that the
update of the external reference was successful (ermStatusCode=0), or that there was
an error. If there was an error, URM also sends an error message (ermStatusMessage).

(TI09) The adapter receives and evaluates the status response.

Figure 3-11 Transferring an item
3-26 Adapter Services Reference Guide

C h a p t e r

4.PERFORMING URM TASKS

OVERVIEW
This section covers the following topics:

Performing Federated Searches (page 4-1)

Performing Dispositions (page 4-5)

Performing Holds/Freezes (page 4-10)

Removing Holds/Freezes (page 4-14)

PERFORMING FEDERATED SEARCHES
As part of a discovery process, organizations might need to search through content across
multiple repositories. URM can perform metadata searches internally using the metadata
provided by adapters when declaring items. However, discovery requests often require
that organizations do full text searches. The URM infrastructure performs full text
searches by sending the search criteria to different adapters. The adapters check
periodically to see if they have pending search criteria, perform the searches, and then
upload the search resuts to URM.

The federated search process is as follows (see Figure 4-1):

(FS01) The adapter retrieves the time (beginDate) when it last processed searches.
The adapter should leave beginDate empty if it is the first call to
CHECK_PENDING_EXTERNAL_TASK.
Adapter Services Reference Guide 4-1

Performing URM Tasks
(FS02) The adapter calls the CHECK_PENDING_EXTERNAL_TASK service to
check URM for pending search tasks that the adapter has not performed. As part of
this check, the adapter sends the time when it last processed searches. For additional
details, see CHECK_PENDING_EXTERNAL_TASK (page A-11).

(FS03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends a Boolean flag (hasTask) indicating whether or not
there are pending searches for the adapter. If there is an error, URM sends an error
message (ermStatusMessage).

(FS04) The adapter checks the status response.

(FS05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(FS06) If there is no error, the adapter checks to see if there are pending searches. If
there are no pending searches (hasTask=false), the adapter stops search processing.

(FS07) If there are pending searches (hasTask=true), the adapter calls the
GET_SEARCH_REQUEST service to request a list of pending search criteria from
URM. For additional details, see GET_SEARCH_REQUEST (page A-61).

(FS08) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends a list of pending search criteria to the adapter. If
there is an error, URM sends an error message (ermStatusMessage).

(FS09) The adapter checks the status response.

(FS10) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(FS11) If there is no error, the adapter starts processing the pending searches,
selecting the first search criteria in the listing.

(FS12) The adapter runs the search against the repository based on that criteria. The
results may be divided into blocks in cases that there are a large amount of files to
upload.

(FS13) The adapter calls the RETURN_SEARCH_RESULTS service to upload the
search result block to URM. For additional details, see
RETURN_SEARCH_RESULTS (page A-77).

(FS14) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM acknowledges the receipt of the search results. If there is
an error, URM sends an error message (ermStatusMessage).

(FS15) The adapter checks the status response.
4-2 Adapter Services Reference Guide

Performing URM Tasks
(FS16) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(FS17) The adapter checks to see if there are remaining result blocks for the search
criteria.

(FS18) If there are more result sets, the adapter selects the next block of results and
repeats the search process (FS12–FS18).

(FS19) If there is no error, the adapter checks to see if there are more search requests
pending. If there are more searches, the adapter gets the next search criteria in the list
and repeats the search process (FS11-FS18).

(FS20) If there are no more searches, the adapter stops search processing.
Adapter Services Reference Guide 4-3

Performing URM Tasks
Figure 4-1 Searching for items
4-4 Adapter Services Reference Guide

Performing URM Tasks
PERFORMING DISPOSITIONS
At the end of the retention period for a set of items stored in a repository, URM needs to
direct the corresponding adapter to dispose of the items. URM directs the adapter to do so
when the adapter checks to see if there are any dispositions for it to perform. Adapters
should be configured to perform that check periodically.

The disposition process is as follows (see Figure 4-1):

(DA01) The adapter determines the time when it last processed dispositions.

If the adapter has not processed dispositions before, it should leave beginDate empty.

If the adapter has processed dispositions before, it should have saved the endDate it
received from URM when it called the
LIST_EXTERNAL_APPROVED_DISP_ACTIONS service (DA07). The adapter must
use this endDate as the beginDate for the next call to the
CHECK_PENDING_EXTERNAL_TASK service (DA02) and the
LIST_EXTERNAL_APPROVED_DISP_ACTIONS service (DA07).

(DA02) The adapter calls the CHECK_PENDING_EXTERNAL_TASK service to
check URM for pending approved dispositions that the adapter has not performed. For
additional details, see CHECK_PENDING_EXTERNAL_TASK (page A-11).

(DA03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends a Boolean flag (hasTask) indicating whether or not
there are any pending approved dispositions for the adapter. If there is an error, URM
sends an error message (ermStatusMessage).

(DA04) The adapter checks the status response.

(DA05) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(DA06) If there is no error, the adapter checks to see if there are any pending approved
dispositions. If there are no pending approved dispositions (hasTask=false), the
adapter stops disposition processing.

(DA07) If there are pending approved dispositions (hasTask=true), the adapter calls
the LIST_EXTERNAL_APPROVED_DISP_ACTIONS service to request a list of
pending approved dispositions from URM. For additional details, see

Note: The beginDate and endDate are defined as the String object type, in the format of a
timestamp representing the milliseconds since 1/1/1970 GMT. This should be a 13-digit
number that starts with 11 (for example, 1163094936297).
Adapter Services Reference Guide 4-5

Performing URM Tasks
LIST_EXTERNAL_APPROVED_DISP_ACTIONS (page A-65). Please note the
following important considerations:

• When calling the LIST_EXTERNAL_APPROVED_DISP_ACTIONS service,
the adapter must include the beginDate that it has determined (DA01). If there is
no error with the service request, URM will return an endDate along with the
approvedDispActionsList result set. The endDate identifies the time that the
disposition query ran. The adapter must save this endDate, as the adapter must use
this endDate as the beginDate the next time it calls the
CHECK_PENDING_EXTERNAL_TASK and
LIST_EXTERNAL_APPROVED_DISP_ACTIONS services.

• The beginDate and endDate are defined as the String object type, in the format of
a timestamp representing the milliseconds since 1/1/1970 GMT. This should be a
13-digit number that starts with 11 (for example, 1163094936297).

(DA08) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends a list of pending approved dispositions and an
endDate to the adapter. If there is an error, URM sends an error message
(ermStatusMessage).

(DA09) The adapter checks the status response.

(DA10) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(DA11) If there is no error, the adapter starts processing the pending approved
dispositions, selecting the first disposition in the listing.

(DA12) The adapter calls the LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION
service to request a list of items subject to that dispostion from URM. For additional
details, see LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION (page A-69).

(DA13) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the list of items to the adapter and a Boolean flag
(hasMore) indicating if there are more items for that disposition. If there is an error,
URM sends an error message (ermStatusMessage).

(DA14) The adapter checks the status response.

Note: The adapter must save the endDate that is returned, as the adapter must use this
endDate as the beginDate the next time it calls the
CHECK_PENDING_EXTERNAL_TASK service (DA02) and the
LIST_EXTERNAL_APPROVED_DISP_ACTIONS service (DA07).
4-6 Adapter Services Reference Guide

Performing URM Tasks
(DA15) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(DA16) If there is no error, the adapter checks to see if the action is an archive action.
URM will return dDispAction=wwRmaArchive for the following action types:

• Accession

• Archive

• Move

• Transfer

(DA17) If the action is an archive action (dDispAction=wwRmaArchive), the adapter
bundles the corresponding items into an archive zip file and calls the
UPLOAD_EXTERNAL_ARCHIVE service. The zip file of items must contain an
index.hda file. For additional details, see UPLOAD_EXTERNAL_ARCHIVE
(page A-92). If the action is not an archive action, skip to DA22.

(DA18) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the adapter a task ID. If there is an error, URM sends
an error message (ermStatusMessage).

URM runs the upload job and marks the disposition as pending. The URM
administrator then needs to evaluation the results and take manual actions to finish the
task and mark it complete, so that the adapter (which is monitoring the task) can
continue with the disposition process (DA21).

(DA19) The adapter checks the status response.

(DA20) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(DA21) If there is no error, the adapter receives a task ID from URM. The adapter
uses the task ID to monitor the status of the archive upload task. When the task is
complete, the adapter checks to see if there are more items for the disposition (DA28).

(DA22) If the action is not an archive action, the adapter disposes of the items in the
list.

(DA23) The adapter calls the MARK_SELECTED_ITEMS_DISP_ACTION service
to request URM to mark the disposition of the items as complete. For additional
details, see MARK_SELECTED_ITEMS_DISP_ACTION (page A-71).

(DA24) URM marks the disposition of the items as complete.
Adapter Services Reference Guide 4-7

Performing URM Tasks
(DA25) URM sends a status response to the adapter. The status response either
indicates that the disposition of the items has been marked as complete
(ermStatusCode=0), or that there was an error. If there was an error, URM also sends
an error message (ermStatusMessage).

(DA26) The adapter checks the status response.

(DA27) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(DA28) If there is no error, the adapter checks to see if there are more items for the
disposition (checks hasMore Boolean flag, returned in DA13). If there are more items
for the disposition, the adapter requests the next set of items and repeats the process on
the next set of items (DA12–DA28).

(DA29) If there are no more items for the disposition, the adapter checks to see if there
are more pending approved dispositions (checks approvedDispActionsList result set,
returned in DA08).

(DA30) If there are more pending approved dispositions, the adapter selects the next
disposition in the list and repeats the process for the next disposition (DA12–DA29).

(DA31) If there are no more pending approved dispositions, the adapter stops
disposition processing.

Note: In the URM user interface, the Transfer action will remain in the My Completion
List for <external_source_name> until the URM administrator downloads the archive zip
file and marks all archived items in the zip file as complete or addresses any errors.
4-8 Adapter Services Reference Guide

Performing URM Tasks
Figure 4-1 Performing dispositions
Adapter Services Reference Guide 4-9

Performing URM Tasks
PERFORMING HOLDS/FREEZES
As part of the discovery process, organizations might need to place a litigation or audit
hold (or “freeze”) on certain items. The URM infrastructure should keep those items from
being edited or deleted. For items stored within external repositories, URM relies on
adapters to communicate the litigation hold status of the items to the repository so that the
items can be preserved properly. URM relays the list of items on hold to the adapter when
the adapter checks to see if any items have been recently placed on hold. Adapters should
be configured to perform that check periodically.

The hold/freeze process is as follows (see Figure 4-2):

(HF01) The adapter determines the time when it last processed freezes.

If the adapter has not processed freezes before, it should leave beginDate empty.

If the adapter has processed freezes before, it should have saved the endDate it received
from URM the last time it called the GET_EXTERNAL_FREEZE_LIST service
(HF07). The adapter must use this endDate as the beginDate for the next call to the
CHECK_PENDING_EXTERNAL_TASK service (HF02) and the
GET_EXTERNAL_FREEZE_LIST service (HF07).

(HF02) The adapter calls the CHECK_PENDING_EXTERNAL_TASK service to
check URM for new freezes. For additional details, see
CHECK_PENDING_EXTERNAL_TASK (page A-11).

(HF03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends a Boolean flag (hasTask) indicating whether or not
there are new freezes for the adapter. If there is an error, URM sends an error message
(ermStatusMessage).

(HF04) The adapter checks the status response.

(HF05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(HF06) If there is no error, the adapter checks to see if there are new freezes. If there
are no new freezes (hasTask=false), the adapter stops freeze processing.

(HF07) If there are new freezes (hasTask=true), the adapter calls the
GET_EXTERNAL_FREEZE_LIST service to request a list of frozen items from

Note: The beginDate and endDate are defined as the String object type, in the format of a
timestamp representing the milliseconds since 1/1/1970 GMT. This should be a 13-digit
number that starts with 11 (for example, 1163094936297).
4-10 Adapter Services Reference Guide

Performing URM Tasks
URM. For additional details, see GET_EXTERNAL_FREEZE_LIST (page A-48).
Please note the following important considerations:

• When calling the GET_EXTERNAL_FREEZE_LIST service, the adapter must
include the beginDate that it has determined (HF01). If there is no error with the
service request, URM will return an externalFreezeList result set listing a block of
frozen items, an endDate identifying when the query ran, and a Boolean flag
(hasMore) indicating if there are more freeze items.
When the adapter is finished processing the block of items, it uses the endDate
that was sent with the block of items as the retrieveDate to mark the items as
frozen.If there are more freeze items, the adapter calls the
GET_EXTERNAL_FREEZE_LIST service again, using the same beginDate as it
did initially. The adapter then receives the next block of items and a new
corresponding endDate, which becomes the retrieveDate for this next block of
items.
When there are no more freeze items, the adapter must save the endDate for the
last block of items received, as the adapter must use this endDate as the beginDate
the next time it calls the CHECK_PENDING_EXTERNAL_TASK and
GET_EXTERNAL_FREEZE_LIST services.

• The beginDate and endDate are defined as the String object type, in the format of
a timestamp representing the milliseconds since 1/1/1970 GMT. This should be a
13-digit number that starts with 11 (for example, 1163094936297).

(HF08) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the list of frozen items to the adapter, an endDate for
the block of items, and a Boolean flag (hasMore) indicating if there are more frozen
items. If there is an error, URM sends an error message (ermStatusMessage).

(HF09) The adapter checks the status response.

(HF10) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(HF11) If there is no error, the adapter starts processing the frozen items, selecting the
first item on the list.

(HF12) The adapter tags the item as frozen in the repository. If the repository cannot
keep the item from being edited or deleted, the adapter might create a "hold" copy of
the item within a part of the repository that users cannot reach to edit the item. It might
relay the location of that hold copy to URM by performing the item update process to
specify that hold location as a metadata value. For details on the update process, see
Updating Items in URM (page 3-7).
Adapter Services Reference Guide 4-11

Performing URM Tasks
(HF13) The adapter checks to see if there are more items on the list.

(HF14) If there are more items on the list, the adapter selects the next item on the list
and repeats the freeze process (HF11–HF13).

(HF15) If there are no more items on the list, the adapter calls the
MARK_SELECTED_ITEMS_FROZEN service to request URM to mark the freeze
of the items as complete. For additional details, see
MARK_SELECTED_ITEMS_FROZEN (page A-72).

(HF16) URM marks the freeze of the items as complete.

(HF17) URM sends a status response to the adapter. The status response either
indicates that the freeze of the items has been marked as complete
(ermStatusCode=0), or that there was an error. If there was an error, URM also sends
an error message (ermStatusMessage).

(HF18) The adapter checks the status response.

(HF19) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(HF20) If there is no error, the adapter checks to see if there are more freeze items
(checks hasMore Boolean flag, returned in HF08). If there are more freeze items, the
adapter requests the next set of items and repeats the freeze process (HF12–HF20).

(HF21) If there are no more freeze items, the adapter stops freeze processing.

Important: When calling the MARK_SELECTED_ITEMS_FROZEN service, you must
include the retrieveDate parameter. It is critical that the retrieveDate match, exactly, the
endDate that was returned by URM for the corresponding block of items when the
GET_EXTERNAL_FREEZE_LIST service was called (HF07–HF08). The retrieveDate is
defined as the String object type, in the format of a timestamp representing the
milliseconds since 1/1/1970 GMT. This should be a 13-digit number that starts with 11
(for example, 1163094936297).

Note: When there are no more freeze items, the adapter must save the endDate for the last
block of items received, as the adapter must use this endDate as the beginDate the next
time it calls the CHECK_PENDING_EXTERNAL_TASK service (HF02) and the
GET_EXTERNAL_FREEZE_LIST service (HF07).
4-12 Adapter Services Reference Guide

Performing URM Tasks
Figure 4-2 Performing a hold/freeze
Adapter Services Reference Guide 4-13

Performing URM Tasks
REMOVING HOLDS/FREEZES
When a litigation or audit hold (or “freeze”) is removed, items that had previously been
marked with that hold need to be unmarked so that they can be edited or deleted normally.
URM relies on adapters to communicate the removal of litigation hold on the items to the
repository. URM relays the list of items for which a hold or freeze has been removed to the
adapter when the adapter checks to see if any items have been had holds removed from
them. Adapters should be configured to perform that check periodically.

The hold/freeze removal process is as follows (see Figure 4-3):

(RH01) The adapter determines the time when it last processed unfreezes.

If the adapter has not processed unfreezes before, it should leave beginDate empty.

If the adapter has processed unfreezes before, it should have saved the endDate it
received from URM the last time it called the GET_EXTERNAL_UNFREEZE_LIST
service (RH07). The adapter must use this endDate as the beginDate for the next call to
the CHECK_PENDING_EXTERNAL_TASK service (RH02) and the
GET_EXTERNAL_UNFREEZE_LIST service (RH07).

(RH02) The adapter calls the CHECK_PENDING_EXTERNAL_TASK service to
check URM for new unfreezes. For additional details, see
CHECK_PENDING_EXTERNAL_TASK (page A-11).

(RH03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends a Boolean flag (hasTask) indicating whether or not
there are new unfreezes for the adapter. If there is an error, URM sends an error
message (ermStatusMessage).

(RH04) The adapter checks the status response.

(RH05) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(RH06) If there is no error, the adapter checks to see if there are new unfreezes. If
there are no new unfreezes (hasTask=false), the adapter stops unfreeze processing.

(RH07) If there are new unfreezes (hasTask=true), the adapter calls the
GET_EXTERNAL_UNFREEZE_LIST service to request a list of unfrozen items

Note: The beginDate and endDate are defined as the String object type, in the format of a
timestamp representing the milliseconds since 1/1/1970 GMT. This should be a 13-digit
number that starts with 11 (for example, 1163094936297).
4-14 Adapter Services Reference Guide

Performing URM Tasks
from URM. For additional details, see GET_EXTERNAL_UNFREEZE_LIST
(page A-53). Please note the following important considerations:

• When calling the GET_EXTERNAL_UNFREEZE_LIST service, the adapter
must include the beginDate that it has determined (RH01). If there is no error with
the service request, URM will return an externalUnFreezeList result set listing a
block of unfrozen items, an endDate identifying when the query ran, and a
Boolean flag (hasMore) indicating if there are more unfreeze items.
When the adapter is finished processing the block of items, it uses the endDate
that was sent with the block of items as the retrieveDate to mark the items as
unfrozen.If there are more unfreeze items, the adapter calls the
GET_EXTERNAL_UNFREEZE_LIST service again, using the same beginDate
as it did initially. The adapter then receives the next block of items and a new
corresponding endDate, which becomes the retrieveDate for this next block of
items.
When there are no more unfreeze items, the adapter must save the endDate for the
last block of items received, as the adapter must use this endDate as the beginDate
the next time it calls the CHECK_PENDING_EXTERNAL_TASK and
GET_EXTERNAL_UNFREEZE_LIST services.

• The beginDate and endDate are defined as the String object type, in the format of
a timestamp representing the milliseconds since 1/1/1970 GMT. This should be a
13-digit number that starts with 11 (for example, 1163094936297).

(RH08) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the list of unfrozen items to the adapter, an endDate
for the block of items, and a Boolean flag (hasMore) indicating if there are more
unfrozen items. If there is an error, URM sends an error message (ermStatusMessage).

(RH09) The adapter checks the status response.

(RH10) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(RH11) If there is no error, the adapter starts processing the unfrozen items, selecting
the first item on the list.

(RH12) The adapter tags the item as unfrozen in the repository. If the adapter had
created a "hold" copy of the item in the repository, the adapter removes that copy since
it is no longer needed. It would also perform an item update on the item to remove the
"hold" copy location from the metadata of the item. For details on the update process,
see Updating Items in URM (page 3-7).

(RH13) The adapter checks to see if there are more items on the list.
Adapter Services Reference Guide 4-15

Performing URM Tasks
(RH14) If there are more items on the list, the adapter selects the next item on the list
and repeats the unfreeze process (RH11–RH13).

(RH15) If there are no more items on the list, the adapter calls the
MARK_SELECTED_ITEMS_UNFROZEN service to request URM to mark the
unfreeze of the items as complete. For additional details, see
MARK_SELECTED_ITEMS_UNFROZEN (page A-74).

(RH16) URM marks the unfreeze of the items as complete.

(RH17) URM sends a status response to the adapter. The status response either
indicates that the unfreeze of the items has been marked as complete
(ermStatusCode=0), or that there was an error. If there was an error, URM also sends
an error message (ermStatusMessage).

(RH18) The adapter checks the status response.

(RH19) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(RH20) If there is no error, the adapter checks to see if there are more unfreeze items
(checks hasMore Boolean flag, returned in RH08). If there are more unfreeze items,
the adapter requests the next set of items and repeats the unfreeze process
(RH12–RH20).

(RH21) If there are no more unfreeze items, the adapter stops unfreeze processing.

Important: When calling the MARK_SELECTED_ITEMS_UNFROZEN service, you
must include the retrieveDate parameter. It is critical that the retrieveDate match, exactly,
the endDate that was returned by URM for the corresponding block of items when the
GET_EXTERNAL_UNFREEZE_LIST service was called (RH07–RH08). The
retrieveDate is defined as the String object type, in the format of a timestamp representing
the milliseconds since 1/1/1970 GMT. This should be a 13-digit number that starts with 11
(for example, 1163094936297).

Note: When there are no more unfreeze items, the adapter must save the endDate for the
last block of items received, as the adapter must use this endDate as the beginDate the next
time it calls the CHECK_PENDING_EXTERNAL_TASK service (RH02) and the
GET_EXTERNAL_UNFREEZE_LIST service (RH07).
4-16 Adapter Services Reference Guide

Performing URM Tasks
Figure 4-3 Removing a hold/freeze
Adapter Services Reference Guide 4-17

C h a p t e r

5.QUERYING URM
OVERVIEW

This section covers the following topics:

Requesting a Retention Schedule (page 5-1)

Requesting URM Metadata for an Item (page 5-4)

Requesting the Lifecycle for an Item (page 5-5)

REQUESTING A RETENTION SCHEDULE
Certain adapters might want to auto-categorize items and associate them with specific
retention schedules within the file plan. To do so they would need to download a file plan.
The setup can be performed by an administrative user who should be able to view the
entire file plan. Alternately, it can be performed by a user who is limited by security and
should only see certain sections of the file plan.

This section covers the following topics:

Downloading the Entire Retention Schedule (page 5-2)

Downloading Parts of the Retention Schedule for Viewing (page 5-3)
Adapter Services Reference Guide 5-1

Querying URM
Downloading the Entire Retention Schedule
The entire retention schedule can be downloaded as a single XML block. The process for
downloading the entire retention schedule is as follows (see Figure 5-1):

(DE01) The adapter calls the GET_FILE_PLAN_ALL service to request the entire
file plan. For additional details, see GET_FILE_PLAN_ALL (page A-57).

(DE02) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the entire file plan to the adapter as a single XML
block. If there is an error, URM sends an error message (ermStatusMessage).

(DE03) The adapter checks the status response.

(DE04) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(DE05) If there is no error, the adapter receives the entire file plan.

Figure 5-1 Downloading the entire retention schedule
5-2 Adapter Services Reference Guide

Querying URM
Downloading Parts of the Retention Schedule
for Viewing
Only aspects of the retention schedule that a particular user can view can be downloaded.
The process for downloading parts of retention schedule is as follows (see Figure 5-2):

(DP01) The adapter calls the GET_FILE_PLAN service to request the file plan. For
additional details, see GET_FILE_PLAN (page A-56).

(DP02) URM filters the file plan using the user’s security.

(DP03) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the file plan to the adapter. If there is an error, URM
sends an error message (ermStatusMessage).

(DP04) The adapter checks the status response.

(DP05) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(DP06) If there is no error, the adapter receives the file plan.

Figure 5-2 Downloading parts of the retention schedule
Adapter Services Reference Guide 5-3

Querying URM
REQUESTING URM METADATA FOR AN ITEM
The process for requesting URM metadata for a specific item is as follows (see
Figure 5-3):

(RM01) The adapter calls the INFO_EXTERNAL_ITEM service to request metadata
for the item from URM. For additional details, see INFO_EXTERNAL_ITEM
(page A-64).

(RM02) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the metadata to the adapter. If there is an error, URM
sends an error message (ermStatusMessage).

(RM03) The adapter checks the status response.

(RM04) If there is an error, the adapter evaluates the status code and error message
and determines how to proceed.

(RM05) If there is no error, the adapter receives the metadata.

Figure 5-3 Requesting item metadata
5-4 Adapter Services Reference Guide

Querying URM
REQUESTING THE LIFECYCLE FOR AN ITEM
The process for requesting the lifecycle for a specific item is as follows (see Figure 5-4):

(RL01) The adapter calls the GET_LIFECYCLE_FOR_EXTERNAL_ITEM service
to request the lifecycle for an item from URM. For additional details, see
GET_LIFECYCLE_FOR_EXTERNAL_ITEM (page A-58).

(RL02) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends the lifecycle to the adapter. If there is an error, URM
sends an error message (ermStatusMessage).

(RL03) The adapter checks the status response.

(RL04) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(RL05) If there is no error, the adapter receives the lifecycle.

Figure 5-4 Requesting the lifecycle for an item
Adapter Services Reference Guide 5-5

C h a p t e r

6.MANAGING COMMUNICATIONS

OVERVIEW
This section covers the following topics:

Checking the Status of Individual Batch Tasks (page 6-2)

Checking the Status of Multiple Batch Tasks (page 6-5)

Handling Task Status Errors (page 6-7)

Segmenting Response Data (page 6-9)

Uploading External Log Files (page 6-11)

Pinging the URM Server (page 6-12)
Adapter Services Reference Guide 6-1

Managing Communications
CHECKING THE STATUS OF INDIVIDUAL BATCH TASKS
When the adapter submits a batch task to URM, URM sends a task id that the adapter can
use to monitor the task and determine whether or not the batch submission was processed
successfully. The process for checking the status of an individual batch task is as follows
(see Figure 6-1):

(CS01) The adapter calls the CHECK_TASK_STATUS service to request the status of
the individual batch task from URM. For additional details, see
CHECK_TASK_STATUS (page A-14).

(CS02) URM sends a status response to the adapter. If there is no error executing the
service call (ermStatusCode=0), URM sends a Boolean flag (isTaskCompleted)
indicating whether or not the task is completed. If the task is completed, URM also
sends a Boolean flag (hasError) indicating whether or not there were errors with the
task. If there is an error executing the service call, URM sends an error message
(ermStatusMessage).

(CS03) The adapter checks the status response.

(CS04) If there is an error executing the service call, the adapter evaluates the status
code and error message and determines how to proceed.

(CS05) If there is no error executing the service call, the adapter checks to see if the
task is complete.

(CS06) If the task is not complete (isTaskCompleted=false), the adapter waits for a
pre-configured period and then repeats the request for the batch task status (MS01).

(CS07) If the task is complete (isTaskCompleted=true), the adapter checks to see if
there were any errors with the task. If hasError is true, the error is either with the batch
(a batchErrorMessage is present), or there is an error with one or more items within
the batch (which will be enumerated in the errorList result set).

If there is an error with the batch, isTaskCompleted will be true, hasError will be true,
and a batchErrorMessage will be present. In this case, the entire batch has failed and
has been removed from the scheduled queue. The batchErrorMessage will describe
what caused the batch failure. The problem will need to be corrected, and the batch
will need to be resubmitted. If there is an error with the batch, no items will have been
processed, and thus the returned errorList will not be of value.

Note: The adapter can also check the status of multiple batch tasks. However, the adapter
must check the status of an individual batch task to obtain a listing of any errors for that
task. For details, see Checking the Status of Multiple Batch Tasks (page 6-5).
6-2 Adapter Services Reference Guide

Managing Communications
If the batch is processed but there is an error with one or more items within the batch,
isTaskCompleted and hasError will be true, however a batchErrorMessage will not be
present. The returned errorList will list the items in the batch that had errors and the
types of the errors. This result set contains three fields:

• idKey—the adapter’s key (String).

• errorCode—the error code (Int).

• errorMessage—the error message (String).

Any items in the batch that are not in the errorList were processed successfully.

(CS08) If there were errors with one or more items within the batch, the adapter
handles the errors before proceeding with the post-task action (CS09). For more
information, see Handling Task Status Errors (page 6-7).

(CS09) If there were no errors with the task (hasError=false), The adapter proceeds
with the post-task action.
Adapter Services Reference Guide 6-3

Managing Communications
Figure 6-1 Checking the status of an individual batch task
6-4 Adapter Services Reference Guide

Managing Communications
CHECKING THE STATUS OF MULTIPLE BATCH TASKS
When the adapter submits a batch task to URM, URM sends a task id that the adapter can
use to monitor the task and determine whether or not the batch submission was processed
successfully. The process for checking the status of multiple batch tasks is as follows (see
Figure 6-2):

(MS01) The adapter calls the CHECK_MULTIPLE_TASK_STATUS service to
request the status of the batch tasks from URM. The adapter sends a result set listing
the task IDs to check. For additional details, see
CHECK_MULTIPLE_TASK_STATUS (page A-9).

(MS02) URM sends a status response to the adapter. If there is no error executing the
service call (ermStatusCode=0), URM sends a result set listing three pieces of
information for each task: if the task is a valid scheduled task, if the task is complete,
and if the task had any errors. If there is an error executing the service call, URM
sends an error message (ermStatusMessage).

(MS03) The adapter checks the status response, and it loops through the
taskStatusList result set (if returned). For each task, the adapter checks to see if the
task is valid, if it is complete, and if there were any errors. If the task is complete but
had errors, the adapter must call the CHECK_TASK_STATUS service for that task ID
to obtain a listing of the errors. For details, see Checking the Status of Individual
Batch Tasks (page 6-2).

Note: The adapter must check the status of an individual batch task to obtain a listing of
any errors for that task. For details, see Checking the Status of Individual Batch Tasks
(page 6-2).
Adapter Services Reference Guide 6-5

Managing Communications
Figure 6-2 Checking the status of multiple batch tasks
6-6 Adapter Services Reference Guide

Managing Communications
HANDLING TASK STATUS ERRORS
There might be errors when a batch task is processed by URM. In this case, URM sends an
errorList result set to the adapter. The adapter must handle the errors before proceeding
with the post-task action. The following is an example process that the adapter could use
to handle the task status errors (see Figure 6-3):

(HE01) URM sends an error code to the adapter. If there were errors, URM also sends
an error list.

(HE02) The adapter checks the error code.

(HE03) If there were no errors, the process is complete.

(HE04) If there were errors, the adapter retrieves a list of errors from the response.

(HE05) The adapter selects the first item on the list.

(HE06) The adapter checks to see if the item includes a retry error code. If the item
does not include a retry error code, the adapter stops retrying that item and checks to
see if there are more items on the list of errors (HE09).

(HE07) If the item has a retry error code, the adapter checks to see whether the
number of retries for that item is less than the maximum number of retries. If the
number of retries for that item is not less than the maximum number of retries, the
adapter stops retrying that item and checks to see if there are more items on the list of
errors (HE09).

(HE08) If the number of retries for that item is less than the maximum number of
retries, the adapter increments the item retry count by one.

(HE09) The adapter checks to see if there are more items on the list of errors.

(HE10) If there are more items on the list of errors, the adapter selects the next item
on the list and processes that item (HE06–HE09).

(HE11) If there are no more items, the process is complete.
Adapter Services Reference Guide 6-7

Managing Communications
Figure 6-3 Handling task status errors
6-8 Adapter Services Reference Guide

Managing Communications
SEGMENTING RESPONSE DATA
The adapter often needs to retrieve a list of items for URM that might be too long to
transmit in one request. For example, the list of items to dispose of or the list of items to
freeze might be too large to send in a single response. When that happens, URM can return
only a portion, or chunk, of the items in the list and tell the adapter to ask for more items
after processing that first chunk.

The process for segmenting response data is as follows (see Figure 6-4):

(SD01) The adapter sends a request to URM.

(SD02) URM sends a status response to the adapter. If there is no error
(ermStatusCode=0), URM sends a partial response list to the adapter, along with a flag
indicating that there are more items in the list that the adapter should retrieve in a
subsequent request. If there is an error, URM sends an error message
(ermStatusMessage).

(SD03) The adapter checks the status response.

(SD04) If there is an error, the adapter evaluates the status code and error message and
determines how to proceed.

(SD05) If there is no error, the adapter processes the response list.

(SD06) The adapter checks to see if the flag indicates that there are more items to
process. If the flag indicates that there are more items, the adapter repeats the process
by sending another request (SD01). If the flag does not indicate that there are more
items to process, the process is complete.

Tech Tip: It is recommended that the adapter also segment large listings that it sends to
the server.
Adapter Services Reference Guide 6-9

Managing Communications
Figure 6-4 Segmenting response data
6-10 Adapter Services Reference Guide

Managing Communications
UPLOADING EXTERNAL LOG FILES
The adapter can upload log files to URM. The process for uploading log files is as follows
(see Figure 6-5):

(UL01) The adapter calls the UPLOAD_EXTERNAL_LOG_FILE service to upload
the log files to URM.

The adapter must include the log ID and a zip file containing the log files and an
index.hda file. For additional details, see UPLOAD_EXTERNAL_LOG_FILE
(page A-96).

(UL02) URM uploads the log files.

By default, URM will store a maximum of 30 external log files. URM will upload up
to 30 external log files, if they are newer than any files already stored and if they do
not already exist. You can change the maximum number of external log files that
URM will store by adding the MaxNumberOfExternalLogFiles configuration variable
to the config.cfg file for the URM Server.

(UL03) URM sends a status response. The status response either indicates that the
upload was successful (ermStatusCode=0), or that there was an error. If there was an
error, URM also sends an error message (ermStatusMessage).

(UL04) The adapter receives and evaluates the status response.

Figure 6-5 Uploading an external log file

Note: You can view external log files in the URM interface by navigating to
Administration—Log Files—URM Logs. Links to all external log files stored in URM are
displayed (by default, this is a maximum of 30 external log files).
Adapter Services Reference Guide 6-11

Managing Communications
PINGING THE URM SERVER
The adapter can ping the URM server to see if it is running. The process for pinging the
URM server is as follows (see Figure 6-6):

(PS01) The adapter calls the PING_SERVER service. No parameters are required for
this service. For additional details, see PING_SERVER (page A-76).

(PS02) If the URM server is running, URM sends a status response.

(PS03) The adapter either receives a status response (indicating that the
communication with the URM server was successful), or the request times out
(indicating that the adapter failed to communicate with the URM server).

Figure 6-6 Pinging the URM server
6-12 Adapter Services Reference Guide

A p p e n d i x

A.URM ADAPTER SERVICES

OVERVIEW
This appendix contains a list of the main services that are used for communications
between URM and adapters:

About Error Codes (page A-2)

About the WSDL Generator Component (page A-2)

Services (page A-3)

WSDL Return Parameter Types (Complex Types) (page A-99)
Adapter Services Reference Guide A-1

URM Adapter Services
ABOUT ERROR CODES
URM error codes (ermStatusCode, which is returned by every service, and
errorCode, which is returned in the errorList result set for each item in a batch task that
had an error) fall into the following three categories:

StatusCode and StatusMessage
StatusCode and StatusMessage are secondary. If ermStatusCode is not returned, there is a
low-level Content Server problem, and the adapter should look at the StatusCode and
StatusMessage that is returned.

ABOUT THE WSDL GENERATOR COMPONENT
A WSDL Generator component is provided with URM. The WSDL Generator component
allows for creating WSDLs for the services that URM adapters use to communicate with
the URM Server. Users can then take the WSDLs and plug them into APIs to create web
services that can be used with the URM Server.

The WsdlGenerator component (WsdlGenerator.zip), the Wsdl function call generator
(WsdlDetails.zip), and samples of custom WSDLs are provided on the URM media. After
installation, they are stored in the <install_dir>/custom directory.

The example WSDL services provided in this appendix for each service were created
using the WSDL Generator component. For more information about using the WSDL
Generator component, refer to the Using WSDL Generator and SOAP guide that is
included in the WsdlGenerator.zip file.

Error Code Description

100–199 Retry error codes.

200–299 Do not retry error codes.

300–399 Setup error codes.

Tech Tip: When URM is installed, a custom WSDL file (wsdl_custom.hda) that includes
the URM API is merged with any custom WSDL files already on the content server. The
URM installer attempts to place the merged wsdl_custom.hda file in the
<install_dir>/data/soap/custom directory. The URM wsdl_custom.hda file is available
with the URM component files in the
<install_dir>/custom/ExternalHelper/data/soap/custom directory.
A-2 Adapter Services Reference Guide

URM Adapter Services
SERVICES
This section covers the following URM adapter services:

ADD_EXTERNAL_CUSTOM_FIELDS (page A-5)

CHECK_MULTIPLE_TASK_STATUS (page A-9)

CHECK_PENDING_EXTERNAL_TASK (page A-11)

CHECK_TASK_STATUS (page A-14)

CHECKIN_EXTERNAL (page A-17)

CHECKIN_INTERNAL (page A-18)

CHECKIN_MULTIPLE_EXTERNAL (page A-21)

CHECKIN_OR_EDIT_EXTERNAL (page A-23)

CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL (page A-25)

CONVERT_TRANSFERRED_ITEM_TO_LINK (page A-27)

CREATE_EXTERNAL_SOURCE (page A-29)

DELETE_BY_PATTERN (page A-37)

DELETE_EXTERNAL (page A-40)

DELETE_MULTIPLE_EXTERNAL (page A-41)

EDIT_EXTERNAL (page A-43)

EDIT_MULTIPLE_EXTERNAL (page A-45)

GET_EXTERNAL_DEFAULT_FIELDS (page A-47)

GET_EXTERNAL_FREEZE_LIST (page A-48)

GET_EXTERNAL_TABLE_FIELDS (page A-51)

GET_EXTERNAL_UNFREEZE_LIST (page A-53)

GET_FILE_PLAN (page A-56)

GET_FILE_PLAN_ALL (page A-57)

GET_LIFECYCLE_FOR_EXTERNAL_ITEM (page A-58)

GET_MAXIMUM_FIELD_LENGTHS (page A-59)

GET_SEARCH_REQUEST (page A-61)

INFO_EXTERNAL_ITEM (page A-64)
Adapter Services Reference Guide A-3

URM Adapter Services
LIST_EXTERNAL_APPROVED_DISP_ACTIONS (page A-65)

LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION (page A-69)

MARK_SELECTED_ITEMS_DISP_ACTION (page A-71)

MARK_SELECTED_ITEMS_FROZEN (page A-72)

MARK_SELECTED_ITEMS_UNFROZEN (page A-74)

PING_SERVER (page A-76)

RETURN_SEARCH_RESULTS (page A-77)

SET_DEFAULT_EXTERNAL_SECURITY_GROUP (page A-80)

SETUP_EXTRA_METADATA_FIELD (page A-81)

TRANSFER_ITEM_TO_INTERNAL (page A-83)

UPDATE_EXTERNAL_CUSTOM_FIELDS (page A-85)

UPDATE_EXTERNAL_FIELD_MAPPING (page A-89)

UPLOAD_EXTERNAL_ARCHIVE (page A-92)

UPLOAD_EXTERNAL_LOG_FILE (page A-96)
A-4 Adapter Services Reference Guide

URM Adapter Services
ADD_EXTERNAL_CUSTOM_FIELDS
This service is used to add external custom fields after registering the adapter. This service
is used in the following process:

Adding External Custom Fields (page 2-9)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter
was registered.

externalCustomMetaDefinition A content server result set. Specify any
adapter-specific metadata fields. Please note the
following important considerations:
• If a field already exists, you will receive an error.
• dOptionListType—only the following values

are valid: combo, multi, or strict
• dType—only the following values are valid:

Date, Int, Text, BigText, or Memo
• dIsDisplayOnly—indicates if the field is a

placeholder field. If the field is defined as a
placeholder field, URM does not create the field
in the source table.

• If you want to maintain the original field data
when it needs to be truncated, consider creating a
custom field, with the same name as the mapped
field, that is long enough to hold the original
data.
For example, consider you have a Subject field
that you map to dDocTitle, which is indicated as
a truncated field. You could create a custom field
named Subject. Then you only need to send the
Subject field value once, as URM will truncate
the data if it is greater than the length of the field
for dDocTitle. The full value will still be in the
Subject field.
Adapter Services Reference Guide A-5

URM Adapter Services
Example externalCustomMetaDefinition Result Set
The following is an example externalCustomMetaDefinition result set in an .hda file
format. Please note that this format is not required; other formats can be used.
<?hda version="7.5.1 (050330)" jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
blFieldTypes=
blDateFormat=M/d/yy {h:mm[:ss] {aa}[zzz]}!mAM,PM!tAmerica/Chicago
@end
@ResultSet externalCustomMetadataDefinition
14
dName
dCaption
dType
dIsRequired
dIsEnabled
dIsSearchable
dIsOptionList
dDefaultValue
dOptionListKey
dOptionListType
dHides
dRequires
dOrder
dIsDisplayOnly
ExternalComments
External Comments
Memo
false
true
true
false

5
false
Department
Department
Text
true
true
true
false

6
false
Color
Color Option List Field
Text
false
A-6 Adapter Services Reference Guide

URM Adapter Services
true
true
true
Red
ColorList
strict

7
false
ExternalBigText
External Big Text Field
BigText
false
true
true
false

8
false
@end
Adapter Services Reference Guide A-7

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
AddExternalCustomFields (String dSource, ExternalCustomMetaDefinition
externalCustomMetaDefinition, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
ExternalCustomMetaDefinition (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.
301 – Setup error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-8 Adapter Services Reference Guide

URM Adapter Services
CHECK_MULTIPLE_TASK_STATUS
This service is used to request the status multiple batch tasks from URM. The adapter
sends a result set to URM listing the task IDs. URM returns a result set that includes three
pieces of information for each task: if the task is a valid scheduled task, if the task is
complete, and if the task had any errors.

This service is used in the following process:

Checking the Status of Multiple Batch Tasks (page 6-5)

Required Parameter
This parameter must be specified:

Note: The adapter must check the status of an individual batch task to obtain a listing of
any errors for that task. For details, see Checking the Status of Individual Batch Tasks
(page 6-2) and CHECK_TASK_STATUS (page A-14).

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

taskList A content server result set that lists the task IDs to check. This
result set contains one field:
• dTaskID—the task ID that URM sent when the adapter

submitted the batch task to URM.
Adapter Services Reference Guide A-9

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

ermStatusCode 0 – No error.
102 – Retrieval error.

taskStatusList A content server result set that lists the status of each task. This
result set contains four fields:
• dTaskID—the task ID (String).
• isValidTaskID—if the task is a valid scheduled task

(Boolean). If the task is not valid, isTaskCompleted and
hasError will be meaningless, although they will be false.

• isTaskCompleted—if the task is complete (Boolean). If the
task has not completed, hasError will be meaningless,
although it will be false.

• hasError—if the task had any errors (Boolean). This field is
only meaningful if the task is valid and complete. If there are
errors for a task, this field only indicates that errors occurred;
this service does not return a listing of errors. The adapter
must check the status of the individual task (using the task ID
that has errors) to obtain a listing of the errors for that task.
For details, see Checking the Status of Individual Batch Tasks
(page 6-2) and CHECK_TASK_STATUS (page A-14).

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-10 Adapter Services Reference Guide

URM Adapter Services
WSDL Service
Function
CheckMultipleTaskStatus (TaskList taskList, String dSource,
IdcProperty[] extraProps)

Returns
TaskListStatus taskStatusList
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
TaskList (page A-101)
IdcProperty (page A-101)
TaskListStatus (page A-101)
StatusInfo (page A-101)

CHECK_PENDING_EXTERNAL_TASK
This service is used to check if there are any pending tasks to perform. Possible tasks are
Search, Disposition, Freeze, and UnFreeze.

This service is used in the following processes:

Performing Federated Searches (page 4-1)

Performing Dispositions (page 4-5)

Performing Holds/Freezes (page 4-10)

Removing Holds/Freezes (page 4-14)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was registered.

dAction Possible actions (tasks) are Search, Disposition, Freeze, or UnFreeze.
Adapter Services Reference Guide A-11

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

beginDate The time when the adapter last performed the specific type of task
(Search, Disposition, Freeze, or UnFreeze). Please note the following
important considerations:
• If it is the adapter’s first time completing that task, the adapter

should leave the beginDate empty.
• If the adapter has completed a Disposition before, it should have

saved the endDate it received from URM when it called the
LIST_EXTERNAL_APPROVED_DISP_ACTIONS service. The
adapter should use this endDate as the beginDate.

• If the adapter has completed a Freeze or Unfreeze before, it
should have saved the endDate it received from URM the last time
it called the GET_EXTERNAL_FREEZE_LIST or
GET_EXTERNAL_UNFREEZE_LIST service. The adapter
should use this endDate as the beginDate.

• The beginDate and endDate are defined as the String object type,
in the format of a timestamp representing the milliseconds since
1/1/1970 GMT. This should be a 13-digit number that starts with
11 (for example, 1163094936297).

Parameter Description

ermStatusCode 0 – No error.
102 – Retrieval error.

hasTask false – No task.
true – Has task.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

Parameter Description
A-12 Adapter Services Reference Guide

URM Adapter Services
WSDL Service
Function
CheckPendingExternalTask (String dSource, String dAction, String beginDate,
IdcProperty[] extraProps)

Returns
boolean hasTask
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

StatusMessage Content Server message.

Parameter Description
Adapter Services Reference Guide A-13

URM Adapter Services
CHECK_TASK_STATUS
This service is used to request the status of an individual batch task from URM. If the task
is not complete, URM sends an incomplete status to the adapter. If the adapter receives an
incomplete status from URM, it waits for a pre-configured period and then repeats the
request for the batch task status. If the task is complete, URM checks to see if there were
any errors when processing the task. If there were no errors, URM sends a complete status
to the adapter.

This service is used in the following process:

Checking the Status of Individual Batch Tasks (page 6-2)

Required Parameter
This parameter must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Note: The adapter can also check the status of multiple batch tasks. However, the adapter
must check the status of an individual batch task to obtain a listing of any errors for that
task. For details, see Checking the Status of Multiple Batch Tasks (page 6-5) and
CHECK_MULTIPLE_TASK_STATUS (page A-9).

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

dTaskID The task ID that URM sent when the adapter submitted the batch
task to URM.

Parameter Description

ermStatusCode 0 – No error.
102 – Retrieval error.

isTaskCompleted false – Not completed.
true – Completed.
A-14 Adapter Services Reference Guide

URM Adapter Services
hasError false – No error.
true – Has error(s). If true, the error is either with the batch (a
batchErrorMessage is present), or there is an error with one or
more items within the batch (which will be enumerated in the
errorList result set).

batchErrorMessage If there is an error with the batch, hasError will be true,
isTaskCompleted will be true, and a batchErrorMessage will be
present. In this case, the entire batch has failed and has been
removed from the scheduled queue. The batchErrorMessage will
describe what caused the batch failure. The problem will need to
be corrected, and the batch will need to be resubmitted.

errorList Content server result set that lists the items in the batch that had
errors and the types of the errors. If there is an error with the batch
(hasError is true and a batchErrorMessage is present) no items
will have been processed, and the returned errorList will not be of
value.
This result set contains three fields:
• idKey—the adapter’s key (String).
• errorCode—the error code (Int).
• errorMessage—the error message (String).
Any items in the batch that are not in the errorList were processed
successfully.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
Adapter Services Reference Guide A-15

URM Adapter Services
WSDL Service
Function
CheckTaskStatus (String dTaskID, String dSource, IdcProperty[] extraProps)

Returns
boolean isTaskCompleted
boolean hasError
ErrorList errorList
int ermStatusCode
String ermStatusMessage
String batchErrorMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
ErrorList (page A-99)
StatusInfo (page A-101)
A-16 Adapter Services Reference Guide

URM Adapter Services
CHECKIN_EXTERNAL
This service is used to declare new items to URM individually. This service is used in the
following process:

Declaring Individual Items (page 3-5)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

propertyList (localdata) The adapter’s metadata field value pairs. Please note the
following important considerations:
• xCategoryID and xFolderID—a record can only be in a

category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each
record you can only send a value for one or the other. If
you include both an xCategoryID and an xFolderID value
for a record, URM will send an error.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.
Adapter Services Reference Guide A-17

URM Adapter Services
WSDL Service
Function
CheckInExternal (String dSource, IdcProperty[] checkInValues,
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

CHECKIN_INTERNAL
When a repository (such as a file server), is not able to preserve a record or non-record
item over its retention period or purge the record properly when it is time for disposal, this
service is used to check the item into the URM repository, so that the record can be
preserved and purged properly. This service is used in the following process:

Checking Items into URM (Internal Checkin) (page 3-22)

Required Parameters
These parameters must be specified:

StatusMessage Content Server message.

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

Parameter Description
A-18 Adapter Services Reference Guide

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

propertyList (localdata) The adapter’s metadata field value pairs. Please note the
following important considerations:
• dDocAuthor—the dDocAuthor field is optional. If it is

not passed, URM will use the authenticated user. The
dDocAuthor field can be specified in the profile if you
want to overwrite the value that is used for
authentication.

• xRMProfileTrigger—if you want to use a profile to set
values for fields, the profile must be set up in URM and
you must map the xRMProfileTrigger field.

• dDocType—the dDocType field must be set using a
profile.

• dDocName and dDocTitle—the dDocName and
dDocTitle fields are usually mapped fields that are
handled outside of profiles.

• dSecurityGroup—if the dSecurityGroup field is not
mapped or passed, URM will set it to the default security
group for the source or to Public.

• xCategoryID and xFolderID—a record can only be in a
category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each
record you can only send a value for one or the other. If
you include both an xCategoryID and an xFolderID value
for a record, URM will send an error.

primaryFile The file to be uploaded to URM.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

Parameter Description
Adapter Services Reference Guide A-19

URM Adapter Services
WSDL Service
Function
CheckInInternal (String dSource, IdcProperty[] checkInValues, IdcFile primaryFile
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
String docUrl
StatusInfo statusInfo

Complex Types
IdcFile (page A-101)
IdcProperty (page A-101)
StatusInfo (page A-101)

docUrl The URL to the item in URM.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-20 Adapter Services Reference Guide

URM Adapter Services
CHECKIN_MULTIPLE_EXTERNAL
This service is used to declare new items to URM in a batch. This service is used in the
following process:

Declaring Items in Batch (page 3-2)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter
was registered.

externalRecordsMetadataList A content server result set of propertyLists. Please
note the following important considerations:
• xCategoryID and xFolderID—a record can

only be in a category or a folder, but not both.
You can map both the xCategoryID and
xFolderID fields, however for each record you
can only send a value for one or the other. If you
include both an xCategoryID and an xFolderID
value for a record, URM will send an error.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

dTaskID The task ID. This task ID is used for checking the status of
the batch checkin.

ermStatusMessage Error message.
Adapter Services Reference Guide A-21

URM Adapter Services
WSDL Service
Function
CheckInMultipleExternal (String dSource,
ExternalMetaDataList externalRecordsMetadataList, IdcProperty[] extraProps)

Returns
String dTaskID
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
ExternalMetaDataList (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-22 Adapter Services Reference Guide

URM Adapter Services
CHECKIN_OR_EDIT_EXTERNAL
This service is used when an item in the repository either needs to be managed externally
by URM or have its metadata updated in URM, but the adapter does not know if the item
exists already in URM. In this case, the adapter can provide URM with item metadata and
allow URM to determine whether the item should be declared or updated. If the item does
not exist URM performs a declaration (external checkin; the items are stored externally in
the repository, not in URM), and if the item does exist (are being managed externally
already) URM performs an update.

This service is used in the following processes:

Declaring or Updating Individual Items (page 3-15)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

propertyList (localdata) The adapter’s metadata field value pairs. Please note the
following important considerations:
• xCategoryID and xFolderID—a record can only be in a

category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each
record you can only send a value for one or the other. If
you include both an xCategoryID and an xFolderID value
for a record, URM will send an error.

• Neither dDocName nor dLongName can be updated.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.
Adapter Services Reference Guide A-23

URM Adapter Services
WSDL Service
Function
CheckInOrEditExternal (String dSource, IdcProperty[] checkInValues,
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-24 Adapter Services Reference Guide

URM Adapter Services
CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL
This service is used when items in the repository either need to be managed externally by
URM or have their metadata updated in URM, but the adapter does not know if the items
exist already in URM. In this case, the adapter can provide URM with item metadata and
allow URM to determine whether the items should be declared or updated. If the items do
not exist URM performs a declaration (external checkin; the items are stored externally in
the repository, not in URM), and if the items do exist (are being managed externally
already) URM performs an update.

This service is used in the following processes:

Declaring or Updating Items in Batch (page 3-12)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

externalRecordsMetadataList A content server result set of propertyLists. Please note
the following important considerations:
• xCategoryID and xFolderID—a record can only be

in a category or a folder, but not both. You can map
both the xCategoryID and xFolderID fields,
however for each record you can only send a value
for one or the other. If you include both an
xCategoryID and an xFolderID value for a record,
URM will send an error.

• Neither dDocName nor dLongName can be
updated.
Adapter Services Reference Guide A-25

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
CheckInOrEditMultipleExternal (String dSource,
ExternalMetaDataList externalRecordsMetadataList, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
String dTaskID
StatusInfo statusInfo

Complex Types
ExternalMetaDataList (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

dTaskID The task ID. This task ID is used for checking the status of the
batch checkin.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.

-1 – Failed.

StatusMessage Content Server message.
A-26 Adapter Services Reference Guide

URM Adapter Services
CONVERT_TRANSFERRED_ITEM_TO_LINK
This service is used to update the external reference in URM with the new ID when an
item being managed externally is transferred to the URM repository. This service is used
in the following processes:

Transferring Items to URM (page 3-25)

Required Parameters
These parameters must be specified:

Optional Parameter
This optional parameter may be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

idKey (localdata) The adapter’s key field value for the original item.

newIdKey (localdata) The adapter’s key field value for the new placeholder for the
docUrl.

Parameter Description

editValues This optional propertyList parameter enables the adapter to specify any
metadata values that should be changed when the item is transferred to
the URM repository. The propertyList only needs to include the
metadata fields that should be changed. Any fields that are not specified
will retain their original value.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.
Adapter Services Reference Guide A-27

URM Adapter Services
WSDL Service
Function
ConvertTransferredItemToLink (String dSource, String idKey, String newIdKey,
IdcProperty[] editValues, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-28 Adapter Services Reference Guide

URM Adapter Services
CREATE_EXTERNAL_SOURCE
This service is used to register an adapter. This service is used to create a table for the
adapter with a table name that is specified. This service is used in the following process:

Registering Adapters (page 2-2)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID). Please note the
following important considerations:
• dSource must be unique.
• The maximum length for dSource is

30 characters. If dTable (optional parameter)
is not specified, dSource is used for dTable.
Because the maximum length for dTable is
16 characters, in this case dSource must not
exceed 16 characters or dTable will fail its
maximum size requirement.
Adapter Services Reference Guide A-29

URM Adapter Services
externalFieldMap A content server result set with the columns
rmField, externalField, and externalCaption.
Specify the fields mapping between URM fields
and the adapter’s fields. Please note the
following important considerations:
• The adapter’s unique ID field must be

mapped to URM’s dDocName or
dLongName field. By default, dDocName is
100 characters long. If an adapter needs a
long ID field, the optional keysize parameter
must be specified. If the optional keysize
parameter is specified, dLongName must be
used.

• By default, dDocTitle is 200 characters long.
• If you want to maintain the original field

data when it needs to be truncated, consider
creating a custom field, with the same name
as the mapped field, that is long enough to
hold the original data.

For example, consider you have a Subject
field that you map to dDocTitle, which is
indicated as a truncated field. You could
create a custom field named Subject. Then
you only need to send the Subject field value
once, as URM will truncate the data if it is
greater than the length of the field for
dDocTitle. The full value will still be in the
Subject field.

Parameter Description
A-30 Adapter Services Reference Guide

URM Adapter Services
Example externalFieldMap Result Set
The following is an example externalFieldMap result set in an .hda file format. Please note
that this format is not required; other formats can be used.
<?hda version="7.5.1 (050330)" jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
blFieldTypes=
blDateFormat=M/d/yy {h:mm[:ss] {aa}[zzz]}!mAM,PM!tAmerica/Chicago
@end
@ResultSet externalFieldMap
3
rmField
externalField
externalCaption
dDocName
exDocName
EX Content ID
dSecurityGroup
exSecurityGroup
EX Security Group
dDocAccount
exDocAccount
EX Account
dDocTitle
exDocTitle
EX Title
dCreateDate
exCreateDate
EX Create Date
dDocAuthor
exAuthor
EX Author
xExternalLocation
exDocLocation
EX Doc Location
dLongName
exLongName
EX Long Name
dDocType
exDocType
EX Type
xIsRecord
exIsRecord
EX Is Record
xCategoryID
exCategoryID
EX Category
xFolderID
exFolderID
Adapter Services Reference Guide A-31

URM Adapter Services
EX Folder
@end

Optional Parameters
These optional parameters may be specified:

Parameter Description

dTable A table name is optional, but specifying a table name is
recommended. Please note the following important considerations:
• If a table name is not specified, the source name (required

dSource parameter) will be used to create a table for the adapter.
• The maximum length for dTable is 16 characters. If dTable is not

specified, dSource is used for dTable. Because the maximum
length for dTable is 16 characters, in this case dSource must not
exceed 16 characters or dTable will fail its maximum size
requirement.
A-32 Adapter Services Reference Guide

URM Adapter Services
externalCustomMetaDefinition A content server result set. Specify any adapter-specific metadata
fields. Please note the following important considerations:
• dOptionListType—only the following values are valid: combo,

multi, or strict
• dType—only the following values are valid: Date, Int, Text,

BigText, or Memo
• dIsDisplayOnly—indicates if the field is a placeholder field. If

the field is defined as a placeholder field, URM does not create
the field in the source table.

• dLength—specifies the length of the field. The following are the
length ranges and default lengths for custom fields (if the length
is not specified, URM will use the default length for each field
type):
• Text field: 1–100; default 100
• BigText: 101–200; default 200
• Memo field: 201–2Gb (MS SQL), 201–4000 (Oracle),

201–2000 (Oracle Japanese); default 1000 for all
• If you are using Microsoft SQL Server 2005, you should set the

EnableLongMemoFieldForSCS7 configuration variable in the
content server instance where URM is installed.
When the EnableLongMemoFieldForSCS7 configuration
variable is set to true, during table creation the length of the
Memo type is 2,000,000,000. When this configuration variable is
set to false, the length of the Memo type is 1000 (note that is
specific to URM; the default Memo type length for Content
Server is 255).
It is recommended that you set Content Server configuration
variables using Admin Server. Content Server configuration
variables can also be set by editing the config.cfg file located in
the <install_dir>/config directory.

Note: When using any database other than Microsoft SQL Server
2005, the EnableLongMemoFieldForSCS7 configuration variable
has no effect on content server functionality.

Parameter Description
Adapter Services Reference Guide A-33

URM Adapter Services
Example externalCustomMetaDefinition Result Set
The following is an example externalCustomMetaDefinition result set in an .hda file
format. Please note that this format is not required; other formats can be used.
<?hda version="7.5.1 (050330)" jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
blFieldTypes=
blDateFormat=M/d/yy {h:mm[:ss] {aa}[zzz]}!mAM,PM!tAmerica/Chicago
@end
@ResultSet externalCustomMetadataDefinition
14
dName
dCaption
dType
dIsRequired
dIsEnabled
dIsSearchable
dIsOptionList
dDefaultValue
dOptionListKey
dOptionListType
dHides
dRequires

blocksize The adapter can specify the blocksize to control the number of rows
in the response result set.

keysize If the adapter needs to have a long ID, the keysize must be specified.
Please note the following important considerations:
• By default, the keysize must be greater than 100 and less than or

equal to 1,000.
• You can change the maximum keysize value using

ExternalMaxKeySize in URM, however this is not
recommended.

• If you specify a keysize, you must map dLongName in
externalFieldMap.

sourceDisplayName If sourceDisplayName is not specified, dSource will be used for the
display name. Specify a sourceDisplayname if you want to use a
different display name or you want to use spaces in the display name
(dSource and dTable cannot contain spaces).

Parameter Description
A-34 Adapter Services Reference Guide

URM Adapter Services
dOrder
dIsDisplayOnly
ExternalComments
External Comments
Memo
false
true
true
false

5
false
Department
Department
Text
true
true
true
false

6
false
Color
Color Option List Field
Text
false
true
true
true
Red
ColorList
strict

7
false
ExternalBigText
External Big Text Field
BigText
false
true
true
false

8
false
@end
Adapter Services Reference Guide A-35

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
CreateExternalSource (String dSource, String dTable,
ExternalFieldMap externalFieldMap,
ExternalCustomMetaDefinition externalCustomMetaDefinition, int blocksize,
int keysize, String sourceDisplayName, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
ExternalFieldMap (page A-100)
ExternalCustomMetaDefinition (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.
301 – Setup error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-36 Adapter Services Reference Guide

URM Adapter Services
DELETE_BY_PATTERN
This service is used to delete items that match a given pattern. It deletes all items where
the specified field starts with the specified pattern (assuming the items are not frozen). If
the optional dateField and dateValue are specified, all items that match the pattern criteria
and are older than the date specified for the dateField will be deleted. Items that match the
pattern criteria but are newer than the date specified will not be deleted.

This service is used in the following processes:

Deleting Items by Pattern (page 3-20)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

field The name of the field to apply the pattern to.
Note: Optionally, you can specify an operator for this parameter.
If you do not specify an operator, a beginsWith will always be
performed. For details, see Optional Parameters.

pattern The pattern string to match against the specified field.
Adapter Services Reference Guide A-37

URM Adapter Services
Optional Parameters
These optional parameters may be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

operator The operator for the field parameter. The following operators
are supported:
• beginsWith (default)
• endsWith
• contains
• equals
The operator parameter is optional, and when it is not passed a
beginsWith will always be performed.

Note: The operator parameter applies to the field parameter.
The dateField and dateValue parameters do not have an
operator.

dateField The name of the date field.

dateValue The date you want to use when matching the pattern criteria.
The dateValue is defined in the JDBC date format. If a
dateField and dateValue are specified, all items that match the
pattern criteria and are older than the date specified for the
dateField will be deleted. Items that match the pattern criteria
but are newer than the date specified will not be deleted.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

dTaskID The task ID. This task ID is used for checking the status of the
batch deletion by pattern.

ermStatusMessage Error message.
A-38 Adapter Services Reference Guide

URM Adapter Services
WSDL Service
Function
DeleteByPattern(String dSource, String field, String pattern, String operator,
String dateField, String dateValue, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
String dTaskID
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
Adapter Services Reference Guide A-39

URM Adapter Services
DELETE_EXTERNAL
This service is used to delete items from URM individually. This service is used in the
following process:

Deleting Individual Items (page 3-19)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
DeleteExternal (String dSource, String idKey, IdcProperty[] extraProps)

Returns
int ermStatusCode

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

idKey (localdata) The adapter’s key field value.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-40 Adapter Services Reference Guide

URM Adapter Services
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

DELETE_MULTIPLE_EXTERNAL
This service is used to delete items from URM in a batch. This service is used in the
following process:

Deleting Items in Batch (page 3-17)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

externalRecordsList A content server result set. The result set column contains
the adapter’s key column.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

dTaskID The task ID. This task ID is used for checking the status of
the batch checkin.

ermStatusMessage Error message.
Adapter Services Reference Guide A-41

URM Adapter Services
WSDL Service
Function
DeleteMultipleExternal (String dSource, IdKeyList externalRecordsList,
IdcProperty[] extraProps)

Returns
String dTaskID
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdKeyList (page A-101)
IdcProperty (page A-101)
StatusInfo (page A-101)

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-42 Adapter Services Reference Guide

URM Adapter Services
EDIT_EXTERNAL
This service is used to update metadata for a single item in URM. This service is used in
the following process:

Updating Individual Items (page 3-10)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

propertyList (localdata) The adapter’s metadata field value pairs. Please note the
following important considerations:
• xCategoryID and xFolderID—a record can only be in a

category or a folder, but not both. You can map both the
xCategoryID and xFolderID fields, however for each
record you can only send a value for one or the other. If
you include both an xCategoryID and an xFolderID value
for a record, URM will send an error.

• Neither dDocName nor dLongName can be updated.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.
Adapter Services Reference Guide A-43

URM Adapter Services
WSDL Service
Function
EditExternal (String dSource, IdcProperty[] editValues, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

StatusMessage Content Server message.

Parameter Description
A-44 Adapter Services Reference Guide

URM Adapter Services
EDIT_MULTIPLE_EXTERNAL
This service is used to update the URM metadata for items in a batch. This service is used
in the following process:

Updating Items in Batch (page 3-7)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter
was registered.

externalRecordsMetadataList A content server result set of propertyLists. Please note
the following important considerations:
• xCategoryID and xFolderID—a record can only

be in a category or a folder, but not both. You can
map both the xCategoryID and xFolderID fields,
however for each record you can only send a value
for one or the other. If you include both an
xCategoryID and an xFolderID value for a record,
URM will send an error.

• Neither dDocName nor dLongName can be
updated.

Parameter Description

ermStatusCode 0 – No error.
102– Retrieval error.

dTaskID The task ID. This task ID is used for checking the status of
the batch update.
Adapter Services Reference Guide A-45

URM Adapter Services
WSDL Service
Function
UpdateMultipleExternal (String dSource,
ExternalMetaDataList externalRecordsMetadataList, IdcProperty[] extraProps)

Returns
String dTaskID
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
ExternalMetaDataList (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-46 Adapter Services Reference Guide

URM Adapter Services
GET_EXTERNAL_DEFAULT_FIELDS
This service is used to get default URM external metadata fields. These fields must be
mapped to the adapter’s fields.

This service is used in the following process:

Adapter Registration (page 2-1)

This service can be used in the following processes:

Updating External Field Mappings (page 2-7)

Adding External Custom Fields (page 2-9)

Updating External Custom Fields (page 2-13)

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

ermStatusCode 0 – No error.
301 – Setup error.

defaultExternalFields A content server result set that lists all default URM fields
that adapters can map.

securityGroups The option list values for the dSecurityGroup field.

docAccounts The option list values for the dDocAccount field.

docTypes The option list values for the dDocTypes field.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
Adapter Services Reference Guide A-47

URM Adapter Services
WSDL Service
Function
GetExternalDefaultFields (IdcProperty[] extraProps)

Returns
ExternalCustomMetaDefinition defaultExternalFields
int ermStatusCode
String ermStatusMessage
ExternalField securityGroups
ExternalField docAccounts
ExternalField docTypes
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
ExternalCustomMetaDefinition (page A-100)
ExternalField (page A-100)
StatusInfo (page A-101)

GET_EXTERNAL_FREEZE_LIST
If there are new freezes, this service is used to request a list of frozen items from URM.
This service is used in the following process:

Performing Holds/Freezes (page 4-10)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.
A-48 Adapter Services Reference Guide

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

beginDate The time when the adapter last processed freezes. Please note
the following important considerations:
• If it is the adapter’s first call to the

GET_EXTERNAL_FREEZE_LIST service, the adapter
should leave beginDate empty.

• If the adapter has called the
GET_EXTERNAL_FREEZE_LIST service before, it
should have saved the endDate it received from URM the
last time it called the GET_EXTERNAL_FREEZE_LIST
service. The adapter must use this endDate as the beginDate
for the next call to the GET_EXTERNAL_FREEZE_LIST
service.

• The beginDate and endDate are defined as the String object
type, in the format of a timestamp representing the
milliseconds since 1/1/1970 GMT. This should be a
13-digit number that starts with 11 (for example,
1163094936297).

Parameter Description

ermStatusCode 0 – No error.
102 – Retrieval error.

externalFreezeList A content server result set that lists all frozen items.

hasMore false – No more frozen items.
true – More frozen items.

Parameter Description
Adapter Services Reference Guide A-49

URM Adapter Services
WSDL Service
Function
GetExternalFreezeList (String dSource, String beginDate, IdcProperty[] extraProps)

Returns
FreezeList externalFreezeList

endDate The time that the freeze query ran. Please note the following
important considerations:
• If there is no error with the service request, URM will return

an externalFreezeList result set listing a block of frozen items,
an endDate identifying when the query ran, and a Boolean
flag (hasMore) indicating if there are more freeze items.
When the adapter is finished processing the block of items, it
uses the endDate that was sent with the block of items as the
retrieveDate to mark the items as frozen.If there are more
freeze items, the adapter calls the
GET_EXTERNAL_FREEZE_LIST service again, using the
same beginDate as it did initially. The adapter then receives
the next block of items and a new corresponding endDate,
which becomes the retrieveDate for this next block of items.
When there are no more freeze items, the adapter must save
the endDate for the last block of items received, as the adapter
must use this endDate as the beginDate the next time it calls
the CHECK_PENDING_EXTERNAL_TASK and
GET_EXTERNAL_FREEZE_LIST services.

• The beginDate and endDate are defined as the String object
type, in the format of a timestamp representing the
milliseconds since 1/1/1970 GMT. This should be a 13-digit
number that starts with 11 (for example, 1163094936297).

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-50 Adapter Services Reference Guide

URM Adapter Services
String endDate
boolean hasMore
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
FreezeList (page A-100)
StatusInfo (page A-101)

GET_EXTERNAL_TABLE_FIELDS
This service is used to retrieve the adapter’s mapped fields and custom fields. The
columns will be the adapter’s column names.

This service is used in the following processes:

Declaring Items in Batch (page 3-2)

Declaring Individual Items (page 3-5)

Updating Items in Batch (page 3-7)

Updating Individual Items (page 3-10)

This service can be used in the following processes:

Updating External Field Mappings (page 2-7)

Adding External Custom Fields (page 2-9)

Updating External Custom Fields (page 2-13)

Checking Items into URM (Internal Checkin) (page 3-22)

Required Parameter
This parameter must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.
Adapter Services Reference Guide A-51

URM Adapter Services
Optional Parameter
This optional parameter may be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Example externalTableFields Result Set
@ResultSet externalTableFields

14

dName

dCaption

dType

dIsRequired

dIsEnabled

dIsSearchable

Parameter Description

customFieldsOnly 1 – Only custom fields to be in the results set.
0 – Both mapped fields and custom fields.

Parameter Description

ermStatusCode 0 – No error.
301 – Setup error.

externalTableFields A content server result set. Specify any adapter-specific
metadata fields. Return parameters for option lists are optional.

securityGroups The option list values for the dSecurityGroup field.

docAccounts The option list values for the dDocAccount field.

docTypes The option list values for the dDocTypes field.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-52 Adapter Services Reference Guide

URM Adapter Services
dIsOptionList

dDefaultValue

dOptionListKey

dOptionListType

dHides

dRequires

dOrder

dIsDisplayOnly
@end

WSDL Service
Function
GetExternalTableFields (String dSource, boolean customFieldsOnly,
IdcProperty[] extraProps)

Returns
ExternalCustomMetaDefinition externalTableFields
int ermStatusCode
String ermStatusMessage
ExternalField securityGroups
ExternalField docAccounts
ExternalField docTypes
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
ExternalCustomMetaDefinition (page A-100)
ExternalField (page A-100)
StatusInfo (page A-101)

GET_EXTERNAL_UNFREEZE_LIST
If there are new unfreezes, this service is used to request a list of unfrozen items from
URM. This service is used in the following process:

Removing Holds/Freezes (page 4-14)
Adapter Services Reference Guide A-53

URM Adapter Services
Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

beginDate The time when the adapter last processed unfreezes. Please
note the following important considerations:
• If it is the adapter’s first call to the

GET_EXTERNAL_UNFREEZE_LIST service, the
adapter should leave beginDate empty.

• If the adapter has called the
GET_EXTERNAL_UNFREEZE_LIST service before, it
should have saved the endDate it received from URM the
last time it called the
GET_EXTERNAL_UNFREEZE_LIST service. The
adapter must use this endDate as the beginDate for the next
call to the GET_EXTERNAL_UNFREEZE_LIST service.

• The beginDate and endDate are defined as the String object
type, in the format of a timestamp representing the
milliseconds since 1/1/1970 GMT. This should be a
13-digit number that starts with 11 (for example,
1163094936297).

Parameter Description

ermStatusCode 0 – No error.
102 – Retrieval error.

externalUnFreezeList A content server result set that lists all unfrozen items.

hasMore false – No more unfrozen items.
true – More unfrozen items.
A-54 Adapter Services Reference Guide

URM Adapter Services
endDate The time that the unfreeze query ran. Please note the following
important considerations:
• If there is no error with the service request, URM will

return an externalUnFreezeList result set listing a block of
unfrozen items, an endDate identifying when the query ran,
and a Boolean flag (hasMore) indicating if there are more
unfreeze items.
When the adapter is finished processing the block of items,
it uses the endDate that was sent with the block of items as
the retrieveDate to mark the items as unfrozen.If there are
more unfreeze items, the adapter calls the
GET_EXTERNAL_FREEZE_LIST service again, using
the same beginDate as it did initially. The adapter then
receives the next block of items and a new corresponding
endDate, which becomes the retrieveDate for this next
block of items.
When there are no more unfreeze items, the adapter must
save the endDate for the last block of items received, as the
adapter must use this endDate as the beginDate the next
time it calls the CHECK_PENDING_EXTERNAL_TASK
and GET_EXTERNAL_UNFREEZE_LIST services.

• The beginDate and endDate are defined as the String object
type, in the format of a timestamp representing the
milliseconds since 1/1/1970 GMT. This should be a
13-digit number that starts with 11 (for example,
1163094936297).

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
Adapter Services Reference Guide A-55

URM Adapter Services
WSDL Service
Function
GetExternalUnfreezeList (String dSource, String beginDate,
IdcProperty[] extraProps)

Returns
FreezList externalUnFreezeList
String endDate
boolean hasMore
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
FreezeList (page A-100)
StatusInfo (page A-101)

GET_FILE_PLAN
This service is used to download, from URM, only aspects of the retention schedule that a
particular user can view. This service is used in the following process:

Downloading Parts of the Retention Schedule for Viewing (page 5-3)

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

filePlan XML file name. File contains partial retention schedule.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-56 Adapter Services Reference Guide

URM Adapter Services
WSDL Service
Function
GetFilePlan (IdcProperty[] extraProps)

Returns
IdcFile filePlan
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcFile (page A-101)
IdcProperty (page A-101)
StatusInfo (page A-101)

GET_FILE_PLAN_ALL
This service is used to download, from URM, the entire retention schedule as a single
XML block. This service is used in the following process:

Downloading the Entire Retention Schedule (page 5-2)

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

ermStatusCode 0 – No error.*
101 – Data error.

filePlan XML file name. File contains entire retention schedule.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
Adapter Services Reference Guide A-57

URM Adapter Services
WSDL Service
Function
GetFilePlanAll (IdcProperty[] extraProps)

Returns
IdcFile filePlan
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcFile (page A-101)
IdcProperty (page A-101)
StatusInfo (page A-101)

GET_LIFECYCLE_FOR_EXTERNAL_ITEM
This service is used to request the lifecycle for a specific item from URM. This service is
used in the following process:

Requesting the Lifecycle for an Item (page 5-5)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

idKey (localdata) The adapter’s key field value.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.
A-58 Adapter Services Reference Guide

URM Adapter Services
WSDL Service
Function
GetLifeCycleForExternalItem (String dSource, String idKey,
IdcProperty[] extraProps)

Returns
Dispositions itemDispositions
CategoryInfo categoryInfo
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
Dispositions (page A-99)
CategoryInfo (page A-99)
StatusInfo (page A-101)

GET_MAXIMUM_FIELD_LENGTHS
This service is used to determine the maximum field length for each text type. This service
is used in the following process:

Adding External Custom Fields (page 2-9)

itemDispositions List of disposition information for the item.

categoryInfo Category information for any categories in
itemDispositions.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
Adapter Services Reference Guide A-59

URM Adapter Services
Required Parameters
No parameters are required.

Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
GetMaximumFieldLengths (IdcProperty[] extraProps)

Returns
FieldLengths maximumFieldLengths
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

maximumFieldLengths A content server result set that lists the maximum field
length for each text type.

This result set contains two columns:
type

length

The following text types are returned: Text, BigText, and
Memo. The length value for each text type represents the
maximum length for any field of that type.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-60 Adapter Services Reference Guide

URM Adapter Services
IdcProperty (page A-101)
FieldLengths (page A-100)
StatusInfo (page A-101)

GET_SEARCH_REQUEST
This service is used to request a list of pending search criteria from URM. This service is
used in the following process:

Performing Federated Searches (page 4-1)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
Adapter Services Reference Guide A-61

URM Adapter Services
Example searchRequest Query Format
The following is an an example searchRequest query:
<query>

<item>
<field>FieldNameOne</field>
<op>equals</op>
<value>value</value>
</item>

<item>
<conj>AND</conj>
</item>

<item>
<field>FieldNameTwo</field>
<op>equals</op>
<value>value</value>
</item>

</query>

Operator Values
The following operators are used in the searchRequest query:

searchRequests The content server search query. Please note the following
important considerations:
• Items in the searchRequest may be a combination

including fields, operators, values.
• Items may also be conjunctions.
• Valid conjunctions are AND and OR

Operator Description

equals Exact match of the search criteria.

notEquals Match of everything except exact match of search criteria.

hasAsSubstring Match contains search criteria.

notHasAsSubstring Match does not contain search criteria.

Parameter Description
A-62 Adapter Services Reference Guide

URM Adapter Services
beginsWith Match starts with search criteria.

endsWith Match ends with search criteria.

dateGE Match items where the date is greater than or equal to the
specified date.

dateLess Match items where the date is less than the specified date.

numberGreater Match items where the number is greater than specified
number.

numberGE Match items where the number is greater or equal than
specified number.

numberLE Match items where the number is less than or equal to
specified number.

numberEquals Match items where the number is equals to specified number.

numberLess Match items where the number is less than specified number.

ftx Match contains the value of a full boolean text search. The
full text search function matches a natural language query
against a text collection. The boolean full-text search
capability supports the following operators:
• A space between search terms matches items only if all

terms are found.
• A comma (,) between search terms matches a result if

either term is found.
• A minus (-) immediately in front of a term indicates that

this word must not be present in any matches.
• Parentheses are used to group search terms into

subexpressions.
• A phrase enclosed in double quotes ("), matches only

items that contain the exact phrase.

Operator Description
Adapter Services Reference Guide A-63

URM Adapter Services
WSDL Service
Function
GetSearchRequest (String dSource, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
SearchRequests (page A-101)
StatusInfo (page A-101)

INFO_EXTERNAL_ITEM
This service is used to request URM metadata for a specific item. This service is used in
the following process:

Requesting URM Metadata for an Item (page 5-4)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

idKey (localdata) The adapter’s key field value.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

externalItemInfo A content server result set that lists the URM metadata for
the item. The columns will be the adapter’s column names.
A-64 Adapter Services Reference Guide

URM Adapter Services
WSDL Service
Function
InfoExternalItem (String dSource, String idKey, IdcProperty[] extraProps)

Returns
ExternalMetaDataList externalItemInfo
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
ExternalMetaDataList (page A-100)
StatusInfo (page A-101)

LIST_EXTERNAL_APPROVED_DISP_ACTIONS
If there are new pending approved dispositions, this service is used to request a list of
pending dispositions from URM. This service is used in the following process:

Performing Dispositions (page 4-5)

Required Parameters
These parameters must be specified:

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

Parameter Description
Adapter Services Reference Guide A-65

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

beginDate The time when the adapter last processed dispositions.
Please note the following important considerations:
• If it is the adapter’s first call to the

LIST_EXTERNAL_APPROVED_DISP_ACTIONS
service, the adapter should leave beginDate empty.

• If the adapter has called the
LIST_EXTERNAL_APPROVED_DISP_ACTIONS
service before, it should have saved the last endDate it
received from URM. This endDate is then used as the
beginDate for the next call to this service.

• The beginDate and endDate are defined as the String
object type, in the format of a timestamp representing
the milliseconds since 1/1/1970 GMT. This should be
a 13-digit number that starts with 11 (for example,
1163094936297).

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

approvedDispActionsList A content server result set that contains a list of
disposition actions that are approved.

Parameter Description
A-66 Adapter Services Reference Guide

URM Adapter Services
Example approvedDispActionsList Result Set
@ResultSet approvedDispActionsList

28

dDispositionID 6 32

dPreviousID 6 32

dCategoryID 6 100

dFolderID 6 100

dDispOrder 3 19

dDispAction 6 32

dDispPeriod 3 19

dDipsPeriodUnits 6 32

dDispEventTrigger 6 100

dDispCutoffCount 3 19

dDispTriggerType 6 32

dIsSystemDerived 1 8

dDispLocation 6 100

dDispLocation2 6 100

dDispReviewer 6 100

dDerivedTriggerType 6 32

endDate The time that the disposition query ran. The adapter must
save this endDate, as it will be used as the beginDate for
the next call to the
CHECK_PENDING_EXTERNAL_TASK and
LIST_EXTERNAL_APPROVED_DISP_ACTIONS
services.
Note: The beginDate and endDate are defined as the
String object type, in the format of a timestamp
representing the milliseconds since 1/1/1970 GMT. This
should be a 13-digit number that starts with 11 (for
example, 1163094936297).

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
Adapter Services Reference Guide A-67

URM Adapter Services
dDerivedEventTrigger 6 100

dDerivedMonthDelay 3 19

dDerivedDayDelay 3 19

dDocAuthor 6 30

dTaskID 6 100

dIsPermanent 1 8

dSingleItemApproval

dAllowScheduling

dActionService1

dActionService1String

dActionService2

dActionService2String

@end

From the approvedDispActionsList result set, the adapter must maintain the
dDispositionID. The dDispositionID is required when calling
LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION (page A-69).

The adapter might also want to maintain the dDispAction. The dDispAction might be
required if you need to map disposition actions between URM and the adapter.

Delete and Scrub the following actions:

• wwRmaDeleteAllRevisions

• wwDeleteRevision

• wwRmaDestroy

Create an archive zip file for the following actions:

• wwRmaAccession

• wwRmaArchive

• wwRmaMove

• wwRmaTransfer

WSDL Service
Function
ListExternalApprovedDispActions (String dSource, String beginDate,
IdcProperty[] extraProps)

Returns
ApprovedDispActions approvedDispActionsList

Note: For more information, see Performing Dispositions (page 4-5).
A-68 Adapter Services Reference Guide

URM Adapter Services
String endDate
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
ApprovedDispActions (page A-99)
StatusInfo (page A-101)

LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION
This service is used to get a list of items that are subject to a specific disposition action.
This service is used in the following processes:

Performing Dispositions (page 4-5)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was registered.

dDispositionID The disposition ID that was included in the
approvedDispActionsList result set returned when
LIST_EXTERNAL_APPROVED_DISP_ACTIONS (page A-65)
was called.

Parameter Description

ermStatusCode 0 – No error.
102 – Retrieval error.
Adapter Services Reference Guide A-69

URM Adapter Services
WSDL Service
Function
ListExternalItemsForDispAction (String dSource, String dDispositionID,
IdcProperty[] extraProps)

Returns
DispositionItemList approvedDispItems
boolean hasMore
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
DispositionItemList (page A-99)
StatusInfo (page A-101)

approvedDispItems A content server result set that lists items that are due for a
specific disposition action. Please note the following important
consideration:
• URM will return dDispAction=wwRmaArchive for the

following action types: Accession, Archive, Move, and
Transfer. This identifies the action as an archive action, and
the adapter must bundle the corresponding items into an
archive zip file and call
UPLOAD_EXTERNAL_ARCHIVE service.

hasMore false – No more dispositions.
true – More dispositions.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
A-70 Adapter Services Reference Guide

URM Adapter Services
MARK_SELECTED_ITEMS_DISP_ACTION
This service is used to mark the disposition of items as complete. This service is used in
the following process:

Performing Dispositions (page 4-5)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

dDispositionID The disposition ID that was included in the
approvedDispActionsList result set returned when
LIST_EXTERNAL_APPROVED_DISP_ACTIONS
(page A-65) was called.

dispositionCompletedList A content server result set that lists items the adapter
disposed of successfully.

dispositionErrors A content server result set that lists items that the adapter
couldn’t dispose of due to errors.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
Adapter Services Reference Guide A-71

URM Adapter Services
WSDL Service
Function
MarkSelectedItemsDispAction (String dSource, String dDispositionID,
DispositionCompletedList dispositionCompletedList,
DispositionErrors dispositionErrors, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
DispositionCompletedList (page A-99)
DispositionErrors (page A-99)
IdcProperty (page A-101)
StatusInfo (page A-101)

MARK_SELECTED_ITEMS_FROZEN
This service is used to mark the freeze of items as complete. This service is used in the
following process:

Performing Holds/Freezes (page 4-10)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

retrieveDate The endDate that was returned by URM for the corresponding
block of items when the GET_EXTERNAL_FREEZE_LIST
service was called. It is critical that the retrieveDate and
endDate match, exactly, the endDate that was returned by URM
for the corresponding block of items.
Note: The retrieveDate is defined as the String object type, in
the format of a timestamp representing the milliseconds since
1/1/1970 GMT. This should be a 13-digit number that starts
with 11 (for example, 1163094936297).
A-72 Adapter Services Reference Guide

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
MarkSelectedItemsFrozen (String dSource, FreezeCompletedList freezeCompletedList,
FreezeErrors freezeErrors, String retrieveDate, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
FreezeCompletedList (page A-100)
FreezeErrors (page A-100)

freezeCompletedList A content server result set that lists items the adapter froze
successfully.

freezeErrors A content server result set that lists items that the adapter
couldn’t freeze due to errors. Please note the following
important consideration:
• errorMessage—This column gives a text description of

the problem.

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.

Parameter Description
Adapter Services Reference Guide A-73

URM Adapter Services
IdcProperty (page A-101)
StatusInfo (page A-101)

MARK_SELECTED_ITEMS_UNFROZEN
This service is used to mark the unfreeze of items as complete. This service is used in the
following process:

Removing Holds/Freezes (page 4-14)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

retrieveDate The endDate that was returned by URM for the
corresponding block of items when the
GET_EXTERNAL_UNFREEZE_LIST service was called.
It is critical that the retrieveDate and endDate match,
exactly, the endDate that was returned by URM for the
corresponding block of items.
Note: The retrieveDate is defined as the String object type,
in the format of a timestamp representing the milliseconds
since 1/1/1970 GMT. This should be a 13-digit number that
starts with 11 (for example, 1163094936297).

unfreezeCompletedList A content server result set that lists items the adapter
unfroze successfully.

unfreezeErrors A content server result set that lists items the adapter
couldn’t unfreeze due to errors. Please note the following
important consideration:
• errorMessage—This column gives a text description

of the problem.
A-74 Adapter Services Reference Guide

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
MarkSelectedItemsUnfrozen (String dSource,
FreezeCompletedList unfreezeCompletedList, FreezeErrors unfreezeErrors,
String retrieveDate, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
FreezeCompletedList (page A-100)
FreezeErrors (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
Adapter Services Reference Guide A-75

URM Adapter Services
PING_SERVER
This service is used to determine if the URM server is running. This service is used in the
following process:

Pinging the URM Server (page 6-12)

Required Parameters
No parameters are required.

Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
PingServer (IdcProperty[] extraProps)

Returns
StatusInfo statusInfo

Complex Types
StatusInfo (page A-101)

Parameter Description

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.
Note: A Failed status code indicates that there was a
problem executing the service. However, this does not
mean that the adapter failed to communicate with the URM
server. Either a returned status code of 0 or 1 indicates that
the adapter was able to communicate with the URM server.

StatusMessage Content Server message.
A-76 Adapter Services Reference Guide

URM Adapter Services
RETURN_SEARCH_RESULTS
This service is used to upload search results to URM. This service is used in the following
process:

Performing Federated Searches (page 4-1)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

dSearchTaskID The identifier (ID) for the requested search query.

searchItemCount The number of items in the returned result set.

fileItemCount Number of items that have a data file inside the .zip file.

firstBlock true – Indicates this is the first block of search results for this
criteria.
false – Indicates this is not the first block of search results for
this criteria. This should be reset for each unique
dSearchTaskID.

hasMore true – Indicates there are more items to be returned for this
search..
false – Indicates there are no more items to be returned for
this search and the results are finished.

searchResultsFile The .zip file containing the search results. The .zip file
contains the following items:
• The metadata.xml file. This file contains the metadata for

the search results to be returned.
• Any files to be returned to the Content Server are sent

inside the .zip file.
Adapter Services Reference Guide A-77

URM Adapter Services
Example metadata.xml File Format
The metadata.xml file contains the metadata results for this block of search criteria. Each
item returned in the search results is represented by <item> followed by the mapped fields
for the item. Note the following considerations:

Each item must include two required mapped fields. Required fields include the
external mapped dDocTitle, and either the dDocName or dLongName (choose the
field that is being used for the Unique Id). For more details on external mapped
fields, see Updating External Field Mappings (page 2-7)

It is recommended to include other external mapped fields for each item.
Including this metadata will allow URM to display the information in the Search
Result Detail Page.

Unmapped fields may also be included with the item, as optional metadata. This
information will stay with the search results, although may not be displayed in the
URM Search Results Page

If a file is being returned with the search results, the metadata.xml must include
<filename> with the item. The filename should give both the name and exact path
to the item within the zip file.

If no file is being returned, <filename> must not be included.

In the following example of the metadata.xml format, there are three search results being
returned. The first and third results are being returned with a file. The following is an an
example searchRequest query:
<metadata>

<item>
<adapter_field1>ExternalMappedContentId</adapter_field1>
<adapter_field2>ExternalMappedContentTitle</adapter_field2>
<adapter_field3>value</adapter_field3>
<adapter_field4>value</adapter_field4>
<adapter_field5>value</adapter_field5>
<filename>filepath</filename>
</item>

<item>
<adapter_field1>ExternalMappedContentId</adapter_field1>
<adapter_field2>ExternalMappedContentTitle</adapter_field2>
<adapter_field3>value</adapter_field3>
<adapter_field4>value</adapter_field4>
<adapter_field5>value</adapter_field5>
</item>

<item>
<adapter_field1>ExternalMappedContentId</adapter_field1>
A-78 Adapter Services Reference Guide

URM Adapter Services
<adapter_field2>ExternalMappedContentTitle</adapter_field2>
<adapter_field3>value</adapter_field3>
<adapter_field4>value</adapter_field4>
<adapter_field5>value</adapter_field5>
<filename>filepath</filename>
</item>

</metadata>

Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
ReturnSearchResults (String dSource, String dSearchTaskID, int searchItemCount,
int fileItemCount, boolean firstBlock, boolean hasMore, IdcFile searchResultsFile,
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage

Complex Types
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.

101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
Adapter Services Reference Guide A-79

URM Adapter Services
SET_DEFAULT_EXTERNAL_SECURITY_GROUP
This service is used during adapter registration to set the default security group. If a
default security group is not set, the Public security group is used if a security group is not
specified when declaring items. This service is used in the following process:

Adapter Registration (page 2-1)

Required Parameters
These parameters must be specified:

Returned Parameters
The adapter expects these parameters to be returned:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

dSecurityGroupName The name of the default security group. This security group
must exist in URM. It must be created in URM by the
administrator manually.

Parameter Description

ermStatusCode 0 – No error.
301– Setup error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-80 Adapter Services Reference Guide

URM Adapter Services
WSDL Service
Function
SetDefaultExternalSecurityGroup (String dSource, String dSecurityGroupName,
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

SETUP_EXTRA_METADATA_FIELD
This service is used to activate the extra metadata field after registering the adapter.
Calling this service creates an extra table with a dExtraMetaData column. It is then
possible to pass a dExtraMetaData value during future item checkins or edits

It is currently recommended that you pass an XML string with extra metadata field
mappings for dExtraMetaData. The dExtraMetaData string would be included along with
all other field mapping data; this is just a special field that is not created or mapped.

This service is used in the following process:

Setting Up the Extra Metadata Field (page 2-16)

Required Parameter
This parameter must be specified:

Important: Once SETUP_EXTRA_METADATA_FIELD is called and the extra metadata
field is created, it cannot be removed.

Parameter Description

dSource The adapter identifier (ID) created when the adapter was registered.
Adapter Services Reference Guide A-81

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
SetupExtraMetadataField (String dSource, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcProperty (page A-101)
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.
301 – Setup error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-82 Adapter Services Reference Guide

URM Adapter Services
TRANSFER_ITEM_TO_INTERNAL
This service is used to move an item that has been declared to URM and is being stored
externally into the URM repository (perform an internal checkin on an item that has been
declared to URM and is being managed externally), so that the item can be preserved and
purged properly.

This service is used in the following processes:

Transferring Items to URM (page 3-25)

Required Parameters
These parameters must be specified:

Optional Parameter
This optional parameter may be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter was
registered.

idKey (localdata) The adapter’s key field value.

primaryFile The file to be uploaded to URM.

Important: If you are using profiles, you need to have mapped xRMProfileTrigger.

Parameter Description

dDocAuthor dDocAuthor is optional. If dDocAuthor is sent, it cannot be the
mapped value; it must be dDocAuthor. If dDocAuthor is not sent,
URM will use the author value in the external table for the item to
be transferred.
Adapter Services Reference Guide A-83

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
TransferItemToInternal (String dSource, String idKey, String dDocAuthor,
IdcFile primaryFile, IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
String docUrl
StatusInfo statusInfo

Complex Types
IdcFile (page A-101)
IdcProperty (page A-101)
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

docUrl The URL to the item in URM.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.

-1 – Failed.

StatusMessage Content Server message.
A-84 Adapter Services Reference Guide

URM Adapter Services
UPDATE_EXTERNAL_CUSTOM_FIELDS
This service is used to update external custom fields after registering the adapter.

This service is used in the following process:

Updating External Custom Fields (page 2-13)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the
adapter was registered.

externalCustomMetaDefinition A content server result set. Specify any
adapter-specific metadata fields. Please note the
following important considerations:
• If a field does not exist already, you will

receive an error.
• dOptionListType—only the following

values are valid: combo, multi, or strict
• dType—only the following values are valid:

Date, Int, Text, BigText, or Memo
• dIsDisplayOnly—indicates if the field is a

placeholder field. If the field is defined as a
placeholder field, URM does not create the
field in the source table.
Adapter Services Reference Guide A-85

URM Adapter Services
Example externalCustomMetaDefinition Result Set
The following is an example externalCustomMetaDefinition result set in an .hda file
format. Please note that this format is not required; other formats can be used.
<?hda version="7.5.1 (050330)" jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
blFieldTypes=
blDateFormat=M/d/yy {h:mm[:ss] {aa}[zzz]}!mAM,PM!tAmerica/Chicago
@end
@ResultSet externalCustomMetadataDefinition
14
dName
dCaption
dType
dIsRequired
dIsEnabled
dIsSearchable
dIsOptionList
dDefaultValue
dOptionListKey
dOptionListType
dHides
dRequires
dOrder
dIsDisplayOnly
ExternalComments
External Comments
Memo
false
true
true
false

5
false
Department
Department
Text
true
true
true
false

6
false
Color
Color Option List Field
Text
false
A-86 Adapter Services Reference Guide

URM Adapter Services
true
true
true
Red
ColorList
strict

7
false
ExternalBigText
External Big Text Field
BigText
false
true
true
false

8
false
@end
Adapter Services Reference Guide A-87

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
UpdateExternalCustomFields (String dSource,
ExternalCustomMetaDefinition externalCustomMetaDefinition,
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
ExternalCustomMetaDefinition (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

Parameter Description

ermStatusCode 0 – No error.
301 – Setup error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-88 Adapter Services Reference Guide

URM Adapter Services
UPDATE_EXTERNAL_FIELD_MAPPING
This service is used to update external field mappings after registering the adapter.

This service is used in the following process:

Updating External Field Mappings (page 2-7)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the
adapter was registered.
Adapter Services Reference Guide A-89

URM Adapter Services
externalFieldMap A content server result set with the columns
rmField, externalField, and externalCaption.
Specify the fields mapping between URM fields
and the adapter’s fields. Please note the
following important considerations:
• If rmField already exists, the mapped

externalField and externalCaption will be
updated. Making changes to external field
mappings never results in database changes;
it only affects the metadata mapping for
future items. The metadata mapping for any
existing items will not be changed by
updating the external field mappings.

• If you want to maintain the original field
data when it needs to be truncated, consider
creating a custom field, with the same name
as the mapped field, that is long enough to
hold the original data.

For example, consider you have a Subject
field that you map to dDocTitle, which is
indicated as a truncated field. You could
create a custom field named Subject. Then
you only need to send the Subject field value
once, as URM will truncate the data if it is
greater than the length of the field for
dDocTitle. The full value will still be in the
Subject field.

Parameter Description
A-90 Adapter Services Reference Guide

URM Adapter Services
Example externalFieldMap Result Set
The following is an example externalFieldMap result set in an .hda file format. Please note
that this format is not required; other formats can be used.
<?hda version="7.5.1 (050330)" jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
blFieldTypes=
blDateFormat=M/d/yy {h:mm[:ss] {aa}[zzz]}!mAM,PM!tAmerica/Chicago
@end
@ResultSet externalFieldMap
3
rmField
externalField
externalCaption
dDocName
exDocName
EX Content ID
dSecurityGroup
exSecurityGroup
EX Security Group
dDocAccount
exDocAccount
EX Account
dDocTitle
exDocTitle
EX Title
dCreateDate
exCreateDate
EX Create Date
dDocAuthor
exAuthor
EX Author
xExternalLocation
exDocLocation
EX Doc Location
dLongName
exLongName
EX Long Name
dDocType
exDocType
EX Type
xIsRecord
exIsRecord
EX Is Record
xCategoryID
exCategoryID
EX Category
xFolderID
exFolderID
Adapter Services Reference Guide A-91

URM Adapter Services
EX Folder
@end

Returned Parameters
The adapter expects these parameters to be returned:

WSDL Service
Function
UpdateExternalFieldMapping (String dSource, ExternalFieldMap externalFieldMap,
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
StatusInfo statusInfo

Complex Types
ExternalFieldMap (page A-100)
IdcProperty (page A-101)
StatusInfo (page A-101)

UPLOAD_EXTERNAL_ARCHIVE
When processing dispositions, if the action is a move action:

• Accession (wwRmaAccession)

• Archive (wwRmaArchive)

• Move (wwRmaMove)

Parameter Description

ermStatusCode 0 – No error.
301 – Setup error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
A-92 Adapter Services Reference Guide

URM Adapter Services
• Transfer (wwRmaTransfer)

the adapter bundles the corresponding items into an archive zip file and calls this service
to upload the archive zip file to URM. The zip file of items must contain an index.hda file.
For an example, see Example index.hda File (page A-94).

This service is used in the following processes:

Performing Dispositions (page 4-5)

Required Parameters
These parameters must be specified:

Parameter Description

dSource The adapter identifier (ID) created when the adapter
was registered.

dDispositionID The disposition ID that was included in the
approvedDispActionsList result set returned when
LIST_EXTERNAL_APPROVED_DISP_ACTIONS
(page A-65) was called.

dispositionCompletedList A content server result set that lists items the adapter
disposed of successfully.

dispositionErrors A content server result set that lists items that the
adapter couldn’t dispose of due to errors. Please note
the following important considerations:
• errorMessage—this column gives a text

description of the problem.
• The errorCode column was removed in

version 7.1.4, as there was no need for it.

archiveFile A zip file containing the item files to be uploaded to
URM for archival and an index.hda file. For an
example index.hda file, see Example index.hda File
(page A-94).
Adapter Services Reference Guide A-93

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

Example index.hda File
An index.hda file must be included in the zip file of document items sent with the
UPLOAD_EXTERNAL_ARCHIVE service. The following is an example of what the
index.hda file might look like:
@ResultSet FileMap
2
filename
idKey
one.doc
one
ac
two.doc
two
jj
@end

WSDL Service
Function
UploadExternalArchive (String dSource, String dDispositionID,
DispositionCompletedList dispositionCompletedList,

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

dTaskID The task ID. This task ID is used for checking the status of the
archive upload.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.

-1 – Failed.

StatusMessage Content Server message.
A-94 Adapter Services Reference Guide

URM Adapter Services
DispositionErrors dispositionErrors, IdcFile archiveFile,
IdcProperty[] extraProps)

Returns
int ermStatusCode
String ermStatusMessage
String dTaskID
StatusInfo statusInfo

Complex Types
DispositionCompletedList (page A-99)
DispositionErrors (page A-99)
IdcFile (page A-101)
IdcProperty (page A-101)
StatusInfo (page A-101)
Adapter Services Reference Guide A-95

URM Adapter Services
UPLOAD_EXTERNAL_LOG_FILE
This service is used to upload external log files to URM. This service is used in the
following processes:

Uploading External Log Files (page 6-11)

Required Parameters
These parameters must be specified:

Parameter Description

logID The ID for the log file.

logFile A zip file containing the external log files to be uploaded to URM and
an index.hda file. For an example index.hda file, see Example
index.hda File (page A-97). Please note the following important
considerations:
• By default, URM will store a maximum of 30 external log files.

URM will upload up to 30 external log files, if they are newer
than any files already stored and if they do not already exist. You
can change the maximum number of external log files that URM
will store by adding the MaxNumberOfExternalLogFiles
configuration variable to the config.cfg file for the URM Server.

• You can view external log files in the URM interface by
navigating to Administration—Log Files—URM Logs.
A-96 Adapter Services Reference Guide

URM Adapter Services
Returned Parameters
The adapter expects these parameters to be returned:

Example index.hda File
An index.hda file must be included in the zip file of external log files sent with the
UPLOAD_EXTERNAL_LOG_FILE service.

If you have a zip file called logFiles.zip, which contains two external log files,
IdcLog01.htm and IdcLog02.htm (which are formatted properly for display in the URM
interface), you would include in this zip file an index.hda file that would look as follows:
@ResultSet LogFiles
2
filename
date
IdcLog01.htm
{ts '2010-08-31 01:36:49.176'}
IdcLog02.htm
{ts '2010-08-30 01:36:49.176'}
@end

You must include the timestamp for each external log file so that URM can determine if
the log file already exists and if it is newer than those it has stored already.

WSDL Service
Function
UploadExternalLogFile (String logID, IdcFile logFile, IdcProperty[] extraProps)

Returns
int ermStatusCode

Parameter Description

ermStatusCode 0 – No error.
101 – Data error.

ermStatusMessage Error message.

StatusCode Content Server status code:
0 – Processed successfully.
-1 – Failed.

StatusMessage Content Server message.
Adapter Services Reference Guide A-97

URM Adapter Services
String ermStatusMessage
StatusInfo statusInfo

Complex Types
IdcFile (page A-101)
IdcProperty (page A-101)
StatusInfo (page A-101)
A-98 Adapter Services Reference Guide

URM Adapter Services
WSDL RETURN PARAMETER TYPES (COMPLEX TYPES)

Complex Type Name Elements

ApprovedDispActions String dDispositionID

String dDispAction

String dFolderID

String dCategoryID

CategoryInfo String dCategoryID

String dCategoryName

String dCategoryDescription

String dSecurityGroup

String dDispositionType

DispositionCompletedList String idKey

String dMarkCompleteDate

DispositionErrors String idKey

String errorMessage

DispositionItemList String idKey

String dApprovedDate

String dLocalParameters

Dispositions Date dActionDate

String dDispEventTrigger

String dDispAction

String dDispReviewer

ErrorList String idKey

int errorCode

String errorMessage
Adapter Services Reference Guide A-99

URM Adapter Services
ExternalCustomMetaDefinition String dName

String dCaption

String dType

boolean dIsRequired

boolean dIsEnabled

boolean dIsSearchable

boolean dIsOptionList

String dDefaultValue

String dOptionListKey

String dOptionListType

String dHides

String dRequires

int dOrder

boolean dIsDisplayOnly

ExternalField String dValue

String dKey

String dOption

String dTooltip

ExternalFieldMap String rmField

String externalField

String externalCaption

ExternalMetaDataList IdcProperty[] metadataValues

FieldLengths String type

int length

FreezeCompletedList String idKey

FreezeErrors String idKey

String errorMessage

FreezeList String idKey

Complex Type Name Elements
A-100 Adapter Services Reference Guide

URM Adapter Services
IdcFile String fileName

byte[] fileContent

IdcProperty String name

String value

IdKeyList String idKey

SearchRequests String dSearchTaskID

int maxNumItems

int maxNumFiles

String searchQuery

StatusInfo int statusCode

String statusMessage

TaskList String dTaskID

TaskListStatus String dTaskID

boolean isValidTaskID

boolean isTaskCompleted

boolean hasError

Complex Type Name Elements
Adapter Services Reference Guide A-101

A p p e n d i x

B.THIRD PARTY LICENSES

OVERVIEW
This appendix includes a description of the Third Party Licenses for all the third party
products included with this product.

Apache Software License (page B-1)

W3C® Software Notice and License (page B-2)

Zlib License (page B-4)

General BSD License (page B-5)

General MIT License (page B-5)

Unicode License (page B-6)

Miscellaneous Attributions (page B-7)

APACHE SOFTWARE LICENSE
* Copyright 1999-2004 The Apache Software Foundation.

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

*
Adapter Services Reference Guide B-1

Third Party Licenses
* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

W3C® SOFTWARE NOTICE AND LICENSE
* Copyright © 1994-2000 World Wide Web Consortium,

* (Massachusetts Institute of Technology, Institut National de

* Recherche en Informatique et en Automatique, Keio University).

* All Rights Reserved. http://www.w3.org/Consortium/Legal/

*

* This W3C work (including software, documents, or other related items) is

* being provided by the copyright holders under the following license. By

* obtaining, using and/or copying this work, you (the licensee) agree that

* you have read, understood, and will comply with the following terms and

* conditions:

*

* Permission to use, copy, modify, and distribute this software and its

* documentation, with or without modification, for any purpose and without

* fee or royalty is hereby granted, provided that you include the following

* on ALL copies of the software and documentation or portions thereof,

* including modifications, that you make:

*

* 1. The full text of this NOTICE in a location viewable to users of the

* redistributed or derivative work.

*

* 2. Any pre-existing intellectual property disclaimers, notices, or terms
B-2 Adapter Services Reference Guide

Third Party Licenses
* and conditions. If none exist, a short notice of the following form

* (hypertext is preferred, text is permitted) should be used within the

* body of any redistributed or derivative code: "Copyright ©

* [$date-of-software] World Wide Web Consortium, (Massachusetts

* Institute of Technology, Institut National de Recherche en

* Informatique et en Automatique, Keio University). All Rights

* Reserved. http://www.w3.org/Consortium/Legal/"

*

* 3. Notice of any changes or modifications to the W3C files, including the

* date changes were made. (We recommend you provide URIs to the location

* from which the code is derived.)

*

* THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS

* MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT

* NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

* PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE

* ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

*

* COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR

* CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR

* DOCUMENTATION.

*

* The name and trademarks of copyright holders may NOT be used in advertising

* or publicity pertaining to the software without specific, written prior

* permission. Title to copyright in this software and any associated

* documentation will at all times remain with copyright holders.

*

Adapter Services Reference Guide B-3

Third Party Licenses
ZLIB LICENSE
* zlib.h -- interface of the 'zlib' general purpose compression library

 version 1.2.3, July 18th, 2005

Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly jloup@gzip.org

 Mark Adler madler@alumni.caltech.edu
B-4 Adapter Services Reference Guide

Third Party Licenses
GENERAL BSD LICENSE
Copyright (c) 1998, Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

"Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

"Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

"Neither the name of the <ORGANIZATION> nor the names of its contributors may be

used to endorse or promote products derived from this software without specific

prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

GENERAL MIT LICENSE
Copyright (c) 1998, Regents of the Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the "Software"), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,

and to permit persons to whom the Software is furnished to do so, subject to the

following conditions:
Adapter Services Reference Guide B-5

Third Party Licenses
B-6 Adapter Services Reference Guide

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

UNICODE LICENSE
UNICODE, INC. LICENSE AGREEMENT - DATA FILES AND SOFTWARE

Unicode Data Files include all data files under the directories

http://www.unicode.org/Public/, http://www.unicode.org/reports/, and

http://www.unicode.org/cldr/data/ . Unicode Software includes any source code

published in the Unicode Standard or under the directories

http://www.unicode.org/Public/, http://www.unicode.org/reports/, and

http://www.unicode.org/cldr/data/.

NOTICE TO USER: Carefully read the following legal agreement. BY DOWNLOADING,

INSTALLING, COPYING OR OTHERWISE USING UNICODE INC.'S DATA FILES ("DATA FILES"),

AND/OR SOFTWARE ("SOFTWARE"), YOU UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY,

ALL OF THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE, DO NOT

DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES OR SOFTWARE.

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2006 Unicode, Inc. All rights reserved. Distributed under the

Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the

Unicode data files and any associated documentation (the "Data Files") or Unicode

software and any associated documentation (the "Software") to deal in the Data

Files or Software without restriction, including without limitation the rights to

use, copy, modify, merge, publish, distribute, and/or sell copies of the Data Files

or Software, and to permit persons to whom the Data Files or Software are furnished

to do so, provided that (a) the above copyright notice(s) and this permission notice

appear with all copies of the Data Files or Software, (b) both the above copyright

notice(s) and this permission notice appear in associated documentation, and (c)

there is clear notice in each modified Data File or in the Software as well as in

the documentation associated with the Data File(s) or Software that the data or

software has been modified.

Third Party Licenses
THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO

EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR

ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH

THE USE OR PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used

in advertising or otherwise to promote the sale, use or other dealings in these Data

Files or Software without prior written authorization of the copyright holder.

__Unicode and the Unicode logo are trademarks

of Unicode, Inc., and may be registered in some jurisdictions. All other trademarks

and registered trademarks mentioned herein are the property of their respective

owners

MISCELLANEOUS ATTRIBUTIONS
Adobe, Acrobat, and the Acrobat Logo are registered trademarks of Adobe Systems
Incorporated.

FAST Instream is a trademark of Fast Search and Transfer ASA.

HP-UX is a registered trademark of Hewlett-Packard Company.

IBM, Informix, and DB2 are registered trademarks of IBM Corporation.

Jaws PDF Library is a registered trademark of Global Graphics Software Ltd.

Kofax is a registered trademark, and Ascent and Ascent Capture are trademarks of
Kofax Image Products.

Linux is a registered trademark of Linus Torvalds.

Mac is a registered trademark, and Safari is a trademark of Apple Computer, Inc.

Microsoft, Windows, and Internet Explorer are registered trademarks of Microsoft
Corporation.

MrSID is property of LizardTech, Inc. It is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Oracle is a registered trademark of Oracle Corporation.

Portions Copyright © 1994-1997 LEAD Technologies, Inc. All rights reserved.

Portions Copyright © 1990-1998 Handmade Software, Inc. All rights reserved.

Portions Copyright © 1988, 1997 Aladdin Enterprises. All rights reserved.
Adapter Services Reference Guide B-7

Third Party Licenses
Portions Copyright © 1997 Soft Horizons. All rights reserved.

Portions Copyright © 1995-1999 LizardTech, Inc. All rights reserved.

Red Hat is a registered trademark of Red Hat, Inc.

Sun is a registered trademark, and Sun ONE, Solaris, iPlanet and Java are trademarks
of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

UNIX is a registered trademark of The Open Group.

Verity is a registered trademark of Autonomy Corporation plc
B-8 Adapter Services Reference Guide

I n d e x

A
about

error codes, A-2
the WSDL Generator component, A-2
this guide, 1-1

adapters
adding external custom fields, 2-9
registering, 2-2
setting up the extra metadata field, 2-16
updating external custom fields, 2-13
updating external field mappings, 2-7

ADD_EXTERNAL_CUSTOM_FIELDS, A-5
adding, external custom fields, 2-9
audience, for this guide, 1-4

B
batch

checking individual task status, 6-2
checking multiple task status, 6-5
declaration of items (external checkin), 3-12
declaration of items to URM (external checkin), 3-2
deletion of items, 3-17
updating of items, 3-7, 3-12

C
CHECK_MULTIPLE_TASK_STATUS, A-9
CHECK_PENDING_EXTERNAL_TASK, A-11
CHECK_TASK_STATUS, A-14
CHECKIN_EXTERNAL, A-17
CHECKIN_INTERNAL, A-18
CHECKIN_MULTIPLE_EXTERNAL, A-21
CHECKIN_OR_EDIT_EXTERNAL, A-23
CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL, A-25
checking

status of individual batch tasks, 6-2
status of multiple batch tasks, 6-5

checking items into URM (internal checkin), 3-22
complex types, A-99

conventions, used in this guide, 1-4
CONVERT_TRANSFERRED_ITEM_TO_LINK, A-27
CREATE_EXTERNAL_SOURCE, A-29

D
data, segementing, 6-9
declaring

individual items to URM (external checkin), 3-5
items in batch (external checkin), 3-12
items individually (external checkin), 3-15
items to URM in batch (external checkin), 3-2

DELETE_BY_PATTERN, A-37
DELETE_EXTERNAL, A-40
DELETE_MULTIPLE_EXTERNAL, A-41
deleting

items by pattern, 3-20
items in batch, 3-17
items individually, 3-19

dispositions, performing, 4-5
downloading

entire retention schedule, 5-2
parts of retention schedule, 5-3

E
EDIT_EXTERNAL, A-43
EDIT_MULTIPLE_EXTERNAL, A-45
error codes, about, A-2
errors, handling, 6-7
external custom fields

adding, 2-9
updating, 2-13

external field mappings, updating, 2-7
external log files, uploading, 6-11
extra metadata field, setting up, 2-16

F
federated searches, performing, 4-1
Adapter Services Reference Guide Index-1

Index
G
GET_EXTERNAL_DEFAULT_FIELDS, A-47
GET_EXTERNAL_FREEZE_LIST, A-48
GET_EXTERNAL_TABLE_FIELDS, A-51
GET_EXTERNAL_UNFREEZE_LIST, A-53
GET_FILE_PLAN, A-56
GET_FILE_PLAN_ALL, A-57
GET_LIFECYCLE_FOR_EXTERNAL_ITEM, A-58
GET_MAXIMUM_FIELD_LENGTHS, A-59
GET_SEARCH_REQUEST, A-61
guide

about, 1-1
audience, 1-4
conventions, 1-4

H
handling, task status errors, 6-7
holds/freezes

performing, 4-10
removing, 4-14

I
individual

declaration of items (external checkin), 3-15
updating of items, 3-15

INFO_EXTERNAL_ITEM, A-64
integration methods, 1-5
items

checking into URM (internal checkin), 3-22
declaring (external checkin) or updating in

batch, 3-12
declaring (external checkin) or updating

individually, 3-15
declaring to URM in batch (external checkin), 3-2
declaring to URM individually (external checkin), 3-5
deleting by pattern, 3-20
deleting in batch, 3-17
deleting individually, 3-19
requesting lifecycle for, 5-5
requesting URM metadata for, 5-4
transferring to URM, 3-25
updating in batch, 3-7
updating individually, 3-10, 3-15

L
lifecycle, requesting for item, 5-5
list, of services, A-3
LIST_EXTERNAL_APPROVED_DISP_ACTIONS, A-65

LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION, A-69
log files, uploading, 6-11

M
MARK_SELECTED_ITEMS_DISP_ACTION, A-71
MARK_SELECTED_ITEMS_FROZEN, A-72
MARK_SELECTED_ITEMS_UNFROZEN, A-74
metadata, requesting for item, 5-4
methods, for integration, 1-5

P
parameter types (complex types), A-99
pattern, deleting items by, 3-20
performing

dispositions, 4-5
federated searches, 4-1
holds/freezes, 4-10

PING_SERVER, A-76
pinging, URM server, 6-12

R
registration, of adapters, 2-2
removing, holds/freezes, 4-14
requesting

lifecycle for item, 5-5
retention schedule, 5-1
URM metadata for item, 5-4

response data, segmenting, 6-9
retention schedule

downloading entire, 5-2
downloading parts of, 5-3
requesting, 5-1

return parameter types (complex types), A-99
RETURN_SEARCH_RESULTS, A-77

S
searches, performing, 4-1
segmenting, response data, 6-9
services

ADD_EXTERNAL_CUSTOM_FIELDS, A-5
CHECK_MULTIPLE_TASK_STATUS, A-9
CHECK_PENDING_EXTERNAL_TASK, A-11
CHECK_TASK_STATUS, A-14
CHECKIN_EXTERNAL, A-17
CHECKIN_INTERNAL, A-18
CHECKIN_MULTIPLE_EXTERNAL, A-21
CHECKIN_OR_EDIT_EXTERNAL, A-23
Index -2 Adapter Services Reference Guide

Index
CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL, A-2
5

CONVERT_TRANSFERRED_ITEM_TO_LINK, A-2
7

CREATE_EXTERNAL_SOURCE, A-29
DELETE_BY_PATTERN, A-37
DELETE_EXTERNAL, A-40
DELETE_MULTIPLE_EXTERNAL, A-41
EDIT_EXTERNAL, A-43
EDIT_MULTIPLE_EXTERNAL, A-45
GET_EXTERNAL_DEFAULT_FIELDS, A-47
GET_EXTERNAL_FREEZE_LIST, A-48
GET_EXTERNAL_TABLE_FIELDS, A-51
GET_EXTERNAL_UNFREEZE_LIST, A-53
GET_FILE_PLAN, A-56
GET_FILE_PLAN_ALL, A-57
GET_LIFECYCLE_FOR_EXTERNAL_ITEM, A-58
GET_MAXIMUM_FIELD_LENGTHS, A-59
GET_SEARCH_REQUEST, A-61
INFO_EXTERNAL_ITEM, A-64
list of, A-3
LIST_EXTERNAL_APPROVED_DISP_ACTIONS,

A-65
LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION, A-

69
MARK_SELECTED_ITEMS_DISP_ACTION, A-71
MARK_SELECTED_ITEMS_FROZEN, A-72
MARK_SELECTED_ITEMS_UNFROZEN, A-74
PING_SERVER, A-76
RETURN_SEARCH_RESULTS, A-77
SET_DEFAULT_EXTERNAL_SECURITY_GROUP,

A-80
SETUP_EXTRA_METADATA_FIELD, A-81
TRANSFER_ITEM_TO_INTERNAL, A-83
UPDATE_EXTERNAL_CUSTOM_FIELDS, A-85
UPDATE_EXTERNAL_FIELD_MAPPING, A-89
UPLOAD_EXTERNAL_ARCHIVE, A-92
UPLOAD_EXTERNAL_LOG_FILE, A-96

SET_DEFAULT_EXTERNAL_SECURITY_GROUP, A-8
0

setting up, the extra metadata field, 2-16
SETUP_EXTRA_METADATA_FIELD, A-81
status

monitoring for individual batch tasks, 6-2
monitoring for multiple batch tasks, 6-5

T
task status errors, handling, 6-7
tasks

checking status of individual tasks, 6-2
checking status of multiple tasks, 6-5

TRANSFER_ITEM_TO_INTERNAL, A-83
transferring items to URM, 3-25

U
UPDATE_EXTERNAL_CUSTOM_FIELDS, A-85
UPDATE_EXTERNAL_FIELD_MAPPING, A-89
updating

external custom fields, 2-13
external field mappings, 2-7
individual items, 3-10, 3-15
items in batch, 3-7, 3-12
items individually, 3-15

UPLOAD_EXTERNAL_ARCHIVE, A-92
UPLOAD_EXTERNAL_LOG_FILE, A-96
uploading, external log files, 6-11
URM server, pinging, 6-12

W
WSDL

about the WSDL Generator component, A-2
return parameter types (complex types), A-99
Adapter Services Reference Guide Index-3

	Cover Page
	Table of Contents
	1. Introduction
	Overview
	About This Guide
	Audience
	Conventions

	Integration Methods

	2. Adapter Registration
	Overview
	Registering Adapters
	Updating External Field Mappings
	Adding External Custom Fields
	Updating External Custom Fields
	Setting Up the Extra Metadata Field

	3. Repository Monitoring
	Overview
	Declaring Items to URM (External Checkin)
	Declaring Items in Batch
	Declaring Individual Items

	Updating Items in URM
	Updating Items in Batch
	Updating Individual Items

	Declaring or Updating Items in URM
	Declaring or Updating Items in Batch
	Declaring or Updating Individual Items

	Deleting Items from URM
	Deleting Items in Batch
	Deleting Individual Items
	Deleting Items by Pattern

	Checking Items into URM (Internal Checkin)
	Transferring Items to URM

	4. Performing URM Tasks
	Overview
	Performing Federated Searches
	Performing Dispositions
	Performing Holds/Freezes
	Removing Holds/Freezes

	5. Querying URM
	Overview
	Requesting a Retention Schedule
	Downloading the Entire Retention Schedule
	Downloading Parts of the Retention Schedule for Viewing

	Requesting URM Metadata for an Item
	Requesting the Lifecycle for an Item

	6. Managing Communications
	Overview
	Checking the Status of Individual Batch Tasks
	Checking the Status of Multiple Batch Tasks
	Handling Task Status Errors
	Segmenting Response Data
	Uploading External Log Files
	Pinging the URM Server

	A. URM Adapter Services
	Overview
	About Error Codes
	About the WSDL Generator Component
	Services
	ADD_EXTERNAL_CUSTOM_FIELDS
	CHECK_MULTIPLE_TASK_STATUS
	CHECK_PENDING_EXTERNAL_TASK
	CHECK_TASK_STATUS
	CHECKIN_EXTERNAL
	CHECKIN_INTERNAL
	CHECKIN_MULTIPLE_EXTERNAL
	CHECKIN_OR_EDIT_EXTERNAL
	CHECKIN_OR_EDIT_MULTIPLE_EXTERNAL
	CONVERT_TRANSFERRED_ITEM_TO_LINK
	CREATE_EXTERNAL_SOURCE
	DELETE_BY_PATTERN
	DELETE_EXTERNAL
	DELETE_MULTIPLE_EXTERNAL
	EDIT_EXTERNAL
	EDIT_MULTIPLE_EXTERNAL
	GET_EXTERNAL_DEFAULT_FIELDS
	GET_EXTERNAL_FREEZE_LIST
	GET_EXTERNAL_TABLE_FIELDS
	GET_EXTERNAL_UNFREEZE_LIST
	GET_FILE_PLAN
	GET_FILE_PLAN_ALL
	GET_LIFECYCLE_FOR_EXTERNAL_ITEM
	GET_MAXIMUM_FIELD_LENGTHS
	GET_SEARCH_REQUEST
	INFO_EXTERNAL_ITEM
	LIST_EXTERNAL_APPROVED_DISP_ACTIONS
	LIST_EXTERNAL_ITEMS_FOR_DISP_ACTION
	MARK_SELECTED_ITEMS_DISP_ACTION
	MARK_SELECTED_ITEMS_FROZEN
	MARK_SELECTED_ITEMS_UNFROZEN
	PING_SERVER
	RETURN_SEARCH_RESULTS
	SET_DEFAULT_EXTERNAL_SECURITY_GROUP
	SETUP_EXTRA_METADATA_FIELD
	TRANSFER_ITEM_TO_INTERNAL
	UPDATE_EXTERNAL_CUSTOM_FIELDS
	UPDATE_EXTERNAL_FIELD_MAPPING
	UPLOAD_EXTERNAL_ARCHIVE
	UPLOAD_EXTERNAL_LOG_FILE

	WSDL Return Parameter Types (Complex Types)

	B. Third Party Licenses
	Overview
	Apache Software License
	W3C® Software Notice and License
	Zlib License
	General BSD License
	General MIT License
	Unicode License
	Miscellaneous Attributions

	Index

