ORACLE

JD Edwards EnterpriseOne Tools

Business Services Development Methodology Guide
Release 8.98 Update 4

E14694-02

March 2011

JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide, Release 8.98 Update 4
E14694-02
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ... e e e ettt aen iX
AN Lo 1= V< T SURSRRTT ix
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiiici e iX
ReElated DOCUITIEIESeoveieeiieceeeeeeeeeee ettt eee et e et eae et e e ae e st e eteseseeenbeesseesnseesessnseensessnseenteesneesnees iX
(@03 4 T£<3 015 (o) 0 - I RR R ORPRRORPRRN X

1 Introduction to JD Edwards EnterpriseOne Tools Business Services
Development Methodology

1.1 JD Edwards EnterpriseOne Tools Business Services Development Methodology Overview
1-1

1.2 JD Edwards EnterpriseOne Tools Business Services Development Methodology
Implementation 1-1

2 Understanding Business Services

2.1 JD Edwards EnterpriseOne Business SErvices............coooiiiiinicimiiiiiiccicneenccneeenenes 2-1
2.1.1 Published BUSINESS SEIVICES.......c.ccoiiiiiiiiiiiiiiiiiiiciceectc s 2-1
21.2 BUSINESS SEIVICES.cviniiiiiiiiiiieiicce et 2-1
2.2 Development MethodOLOgccccucriiiiiiiiirriiieereeeere e 2-1
2.3 Valie ODBJECtSc.ouiiiiiiiiiiiic s 2-2
2.3.1 COMPONENLES.....ooviiiiiiiiic s 2-3
2.3.2 COMPOUNAS ..ot 2-3
2.3.3 FIELdS....viiiiiiii s 2-4
2.4 Package Naming and StructUreccccccciiiiiiiiiiiiicccceas 2-4
2.5 Java Coding Standards............ccoeeueiiiiiciiic 2-5

3 Creating a Published Business Service

3.1 Understanding Published Business Servicescccovvviiiviiiiiiiiiiiiniincn, 3-1
3.2 Developing a Published Business Service.............cocooeueiiiirieieiiiiieicicceeecece 3-2
3.2.1 Creating a Transaction in a Published Business Service...........ccccccoeuvuriiiiivinnininnnninns 3-3
3.3 Managing Published Business Service Components............cccccovvvvvviniiiininnnnnnininnen, 3-4
3.3.1 Published Business Service Class NamMES.ccccevveeiirieeienieeieieeeenreeeereeeesaeeveeaesenes 3-4
3.3.2 Published Business Service Method NaAmMEScoceeueecviirieiieereeiieeeeieeeeee e 3-4
3.3.3 Published Business Service Value Object Namescccocovvvvivinnninnnininnninine, 3-5
3.3.3.1 Published Business Service Variable Names.........c.cccccevvieveeniieiineeceenieeeesieeeennenns 3-5
3.34 Creating a Published Business Service Class..........cccccooeuviiiiinniiiiiiiiiininiiiiiiicinene 3-6

3.3.4.1 RUIES .o 3-6
3.3.5 Declaring Public Methods for a Published Business Servicec.cccocovvinniiinininnn. 3-6
3.3.6 Creating a Published Value ODbjectccccccccciiiiiiiiiiicccccecereeecee 3-7
3.3.6.1 Published Value Object Structure and Data Typesccccccovvvvvinnnnnininine, 3-7
3.3.6.2 Web Service Considerations for Data Types and Variable Names....................... 3-8
3.3.6.3 RUIES ..o 3-10
3.3.6.4 Published Input Value Object........c.cooieieiiiiiiiiiiiiiiiicccees 3-11
3.3.6.5 Published Response Value Objectc.ccoceuiriiiiiiiiiieiicciece, 3-11
3.3.6.6 MAPPINGS ...cviiiiiiiiiicc e 3-12
3.3.6.7 Data Type Transformation..........ccoriiieiiicieiiic e, 3-14
3.3.6.8 Integer to and from MathNumeric and BigDecimal to and

from MathNUINETIC «..covvviiiiiiiicc e 3-14
3.3.6.9 Boolean to and from String ..., 3-14
3.3.6.10 Data FOrmattercooiiiiiiiiicccc e 3-15
3.4 Calling a BUSINESS SEIVICE........ccooiuimimiiiiiiiiicccccccce e 3-16
3.4.1 RUIES .o 3-16
3.5 Handling Errors in the Published Business Service.........coocooouiriiiniiiciciiccecc 3-17
3.6 Testing a Published BUSINess SEIVICe.........cccccvuiuiuiuiiiiiiiiiiiiciiccccecee e 3-18
3.6.1 Testing the Web Service.........ooooiiiiii 3-19
3.6.2 WSI Compliance TeSHNGcooeuiiiiiiiiice e 3-19
3.7 Customizing a Published Business Service ... 3-19
3.7.1 Published Business Service Model ... 3-20
3.7.2 Extending a Published Business Serviceccccooeoeuiieiiiicieiiiicieeccc 3-21
3.8 Deprecating a Published Business SErvice...........cccccovvvuriiirnnninnnennrrcreeseeeeceenes 3-23

4 Creating a Business Service

41

4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1
4.3.3.2
434
4.3.4.1
4.3.5
4.3.5.1
4.3.5.2
4.3.6
4.3.6.1
4.3.6.2
4.4

4.5

4.6

4.7

Understanding Business SErVICES.........cccouiiiiiiiiiiiiiiccccicccicceceeeseesce e 4-1
Developing a Business Service...........corueieiiriciiiiicieicie e 4-2
IContext and IConnection Objects.........ccoouiiriiiiiieic 4-3
Managing Business Service COMPONENtS..........cccccvveuiuiiiiiiiiiiniiiiiiies 4-3
Business Service Class NAINESccccoiiiiiiiiiiiiiiiiiie e 4-3
Business Service Method Names............ccccccciiiiiiiiiiiiiicceeeees 4-4
Business Service Internal Value Object Namescccccoeeceeiiieeceeceeeccccienes 4-4
Field INAMESc.ovoviiiiiiiic e 4-4
Compound and Component Names for a Business Servicecccccceueueueurinnnne 4-4
Creating a Business Service Classccccoeeierrinirrnnnnrre e 4-5
RUIES ..o 4-5
Declaring a Business Service Public Method. ..o, 4-6
Rules for Declaring a Business Service Public Method...........cccccccoeiiiiiiiccnnes 4-6

Best Practices for Private and Protected Methods ..o 4-6
Creating Internal Value ODbjects..........cccccoiiiiiiiiiiiiiiiiccccceeas 4-7
Rules for Internal Value ODbJectccccccueuiuiiiiiiiiiiiiiiciciccceeeeeeeeeeeeeeeeeenes 4-7

Best Practices for Internal Value Object ..o 4-8

Calling Business FUNCHONScccciiuiiiiiiiiiiiiiicice s 4-11
Calling Database Operations...........cccccceuecuieiiiiiiiiiicieeiceeieeeieneiee e eeeseeeeaeees 4-14
Calling Other BUSINESS SEIVICES..........oorueieiieiieieiiicic s 4-15
Managing Business Service Properties ... 4-16

4.71 Standard Naming Conventions for the Property Key.......ccccoovviiiiiiinininnnnn 4-16

4711 System-Level Business Service Properties.........c.cccooceeiiieieiiiicicicicceeee, 4-16
471.2 Business Service Level Business Service Properties...........ccccoeviiviiiiinininnnns 4-17
4.7.2 Business Service Property Methods............cooeueiiiiiiiiiiie 4-17
4.8 Handling Errors in the Business SeIviceoooiueieiiiiiiiiiicieeccc e 4-19
4.8.1 RUIES .o s 4-19
4.8.2 Best Practices ..o 4-19
4.8.3 Collecting BITOIScuiviiiiieicce e 4-20
4.9 Modifying a BUSINESS SEIVICE........cceuiuiiiiiiiiiiiiiiiciciicicieicce e 4-22
4.10 Documenting a BuSIness SeIviCeccouoiirieieiiiiiieiiccie e 4-22

5 Creating Business Services That Call Database Operations

5.1 Understanding Database Operations............ccceuouiiiiiiiiiiiciiiccec 5-1
5.1.1 Data TYPES c..ovvieiiiiete s 5-1
5.1.1.1 Database EXCEPHIONS........coiuiiiiiiiiiiiici s 5-2
5.2 Creating a Query Database Operation Business Service...........cccoeoveurieiiccieiiccicicne 5-3
5.2.1 Published Value Object for QUETYccccoiuiiiiiiiiiiiiiiiiis 5-3
5.2.1.1 Naming CONVeNtions ... 5-3
5.2.1.2 Data Types and Structure...........ccooieueieiiiiiciiicic e 5-3
5.2.1.3 Error Handling ... 5-4
52.1.4 Class DIAGTamc.ccuvueuiuiiiiiiriieieiciceeeteeeee e 5-4
5.2.2 Internal Value Object for QUETYccoeiiiiiiiiiiie s 5-5
5.2.3 Empty Where Clause and Max Rows Returnedccoooiic 5-7
5.3 Creating an Insert Database Operation Business SErvicecccccccueeucueieeicrniccennnennns 5-8
5.3.1 Published Value Object for INSert..........ccoeuiviiiiiiiiiiiiiiiiiiccas 5-8
5.3.11 Naming CONVENtiONScccoeviiiiiiiiiiiii s 5-8
5.3.1.2 Data Types and SErUCHUTE..........c.cecuriiiiiiieiricicicieceeceeeeeeeeee e 5-8
5.3.1.3 Class DIagramc.cceueiiiuiiiiiiiiicect s 5-9
5.3.2 Internal Value Object for INSert ..o 5-10
5.3.3 Inserting Multiple ReCOTAS.......c.cccouiiiiiiiiiiiiiiiiiicceccec s 5-10
5.4 Creating an Update Database Operation Business Serviceccccooeeveviiiiiiiiiniinennnn, 5-12
5.4.1 Published Value Object for Update.........ccccccoiiuiiiiiiiiiiiiiiiicccccccccccees 5-12
5.4.1.1 Naming Conventions ... 5-12
54.1.2 Data Types and Structure...........ccooiiiiiiiiiic e 5-12
54.1.3 Class DIaGramccccccucuiiiiiiiiiiiiiiiieiece s 5-12
542 Internal Value Object for Updateccccocuiuiciiiiiiiiiicccceecceceeecneeenees 5-13
5.5 Creating a Delete Database Operation Business Service ..o, 5-15
5.5.1 Published Value Object for Delete ..o 5-16
5.56.1.1 Naming Conventions ... 5-16
55.1.2 Data Types and Structure..........oocoiiiiiiiic 5-16
5.5.1.3 Class DIaGramcccceucuiuiiiiiiiiiiiiiiiiicee s 5-16
55.2 Internal Value Object for Deleteccciiiiiiiiiiiiiicecccceeeeeeeeeeeeees 5-17

6 Versioning JD Edwards EnterpriseOne Web Services

6.1 (@ 273 74 T 7 R 6-1
6.2 Published BUSINESS S@IVICESooovuvviiiiiiiieiiiieee ettt s e e et e seaaeeeeaaeeesnaeeean 6-1

6.2.1 Determining if Versioning Is Requiredccoooiiieiiiiiiiiii, 6-2

6.2.2 Naming Conventions for Versions..........c..ccocrueiiiiieiiioiicicicceee e 6-2
6.2.3 Creating a Published Business Service VEISionccccceiecucuiecccececceeeenenenes 6-3
6.2.4 Example: Correct Field Names and Format of Interface...........ccococvvvvvinnnnninnnnnn, 6-3
6.3 BUSINESS SEIVICES......oiuiiiiiiiiiiiiic s 6-4
6.3.1 Determining if Versioning is Required............ccccoiiiiiiiiiiiiicceecececceenenes 6-4
6.3.2 Example: Enhancement that Includes New Fields and Associated Processing 6-5
6.4 JD Edwards EnterpriseOne as a Web Service CONSUMET ... 6-6
6.4.1 Determining if Versioning is Required............cccocoiiiiiiiiiieiiicceecccccceenennes 6-7
6.4.2 Creating a Version to a Consumer Business Service ..., 6-8
6.4.3 Example: Enhancement to Call Latest Version of a Third-Party Service 6-8

7 Understanding Transaction Processing

71 Transaction ProCeSSING........ccocurieieieiiiiiiieieie s 7-1
711 AUL0 COMIMUL....voviieieiiieiee s 7-1
712 Manual ComMMUL......ccoviiiiiiiiii s 7-1
7.2 Default Transaction Processing Behavior............ccoocuoioiiiiiiiiiiicc 7-2
7.2.1 Published Business Service Boundary for Manual Commit...........cccccoeveirrnnnenncnnnce. 7-2
722 Published Business Service Boundary for Auto Commitccooviiiiiiiiiiiiiinnen, 7-2
7.3 Explicit Transaction Processing Behavior ... 7-3
7.3.1 Creating a New CONNECtiON ... 7-4
7.3.2 Using an Explicit Transaction ... 7-4
7.3.21 SCONATIO T oot 7-4
7.3.2.2 SCONATIO 2.t 7-6

8 Understanding Logging

8.1 LOGZINE ..ttt 8-1
8.1.1 Default LOZZINGouoviiiiicieici ettt 8-1
8.1.2 EXPlicit LOGEINGooiiiiiiiiiiiiiiiiiiiiici s 8-2

9 Understanding JD Edwards EnterpriseOne as a Web Service Consumer

10

vi

9.1 JD Edwards EnterpriseOne as a Web Service CONSUMETcocvoveemeviiicnreiiceeiennee, 9-1
9.2 C Business Function Calling a Business Service...........cccccoeeeueiiceinicicnnnneccrceeeeenes 9-2
9.2.1 Best Practices for Business Functions Calling Business Services.............ccccceueviunnnnen. 9-2
9.3 Creating a Business Service for JD Edwards EnterpriseOne as a Web Service Consumer-......
9-2
9.3.1 Naming Convention for Consumer Business Services..........c.cococovveverrrrrerenrnerenencn. 9-2
9.3.2 Rules for Value Object for JD Edwards EnterpriseOne as a Web Service Consumer 9-3
9.4 USING SOFECOAINGovviiiiiiiiciic s 9-3
9.4.1 Softcoding Template Naming CONVENtIONScccevvuveverirerirerenenerirrrirrreeee e 9-3
9.5 Testing the Business Service for JD Edwards EnterpriseOne as a Web Service Consumer.....
9-4

Using Business Services with HTTP Request/Reply

10.1 Understanding Business Services and HTTP POST ..., 10-1
10.2 Using Business Services with HTTP Request/Replyccccccovvvvivivnvnnnnninnniccnes 10-1

10.3

Testing the Serviet..........o 10-2

A Utility Business Services

A1
A1
A2
A2A1
A22
A221
A222
A223
A224
A23
A2.3.1
A23.2
A.2.3.3
A3
A.3.1
A3.2
A3.2.1
A3.22
A.3.2.3
A3.24
A3.3
A.3.3.1
A3.3.2
A.3.3.3
A4
A4A
A4.2
A4.21
A422
A4.2.3
A424
A43
A.4.3.1
A43.2
A.4.3.3
A5
A.5.1
Ab52
Ab5.2.1
Ab22
A523
Ab524
Ab5.25
A5.26

Understanding Utility Business Servicescoooeuoiieieiiiiiiciiiiccecee e A-1
Implementing Utility Business Services............coooveieiiiiiieiniiiciciceccee A-1
Entity Processor Business Service...........cocoviiiiiiniiiiiiniiiicincsns A-2
Understanding the Entity Processor Business Service..........cccooeeueiiicieiiiinicininnne, A-2
Implementation Detailc.ccoooiiiii e A-2
MeEthOdS ..o A-2
SIGNATULE ..ot e A-2

Value Object Classesccocueuiiricieiiicieec e A-2
Functional Processingcccoviiiviniiiiiiiniiiiiicciicccccsenens A-2

Value Object Classes..........coouviiiiiiiiiiiccci s A-3
Business Service Value Objectoooiiiiiiiii e, A-3
Published Reusable Value Object...........ccccccuiiiiiiiiiiiiiiiiiiiccicceceeeceeeeceeees A-3

Output from Business Service to Published Value Objectcccccevvvvviviinnnnnn A-3

GL Account Processor Business Service...........ccovveiinininicinininieicncccceicceeevenen A-4
Understanding the GL Account Processor Business Servicec.cccccovvvvverrnecnee A-4
Implementation Detailcccoeviiiiiiiiiiiiiiii A-4
MEthOdsS ..o A-4
SIENATUTE ...eiiiiiic s A-4

Value Object Class ..o s A-4
Functional ProCessingcocouoiirucieiiiiieieiiccie e A-5

Value ODbject CIasses........coviiuiiiiiiiiiceceeiee et aseeees A-5
Business Service Input and Output Interface..........cccccoeveveiiiieciiiniiiinn, A-5
Published Reusable Value Object.........c.ccoeviruiioiiiiiiiiicc A-6
Published to Business Service Value Objectcccccccoccucuciiiiciiiiiriicnene A-6
Inventory Item ID Processor Business Service ..., A-6
Understanding the Inventory Item ID Processor Business Service............cccccevvunnene A-6
Implementation Detailcccccciiiiiiiiiiiiiiiice s A-7
MEthOdsS ..o A-7
SINATUTE ..eiiie s A-7

Value ODbject CLasSeS ...t eeeees A-7
Functional Processingcoccuiirucieiiiiicieiiccie e A-7

Value Object CIasses..........ccouiiiiiiiiiiiicciee e A-8
Business Service Value ODJectccccociiuiiiiiiiiiiiiccecceceeeeeeeeeeeeeeeeeas A-8
Published Reusable Value Object............cccooeiiiiiiiiniiiiiiiiiiciccccs A-9

Input Business Service Processing ... A-9

Net Change Processor Business SEIviCeccccucuvuieieiiieieriiiciirccececeeeeeeeeeeeeeeeeees A-10
Understanding the Net Change Processor Business Service..........c.cccocoevevevevinniennen. A-10
Implementation Detailcccccceiiiiiiiiiiiiiis A-11
Method ... A-11
SIGNAULE ..ot A-11

Value ODJECtS.....c.ovimiiiiiiiiiiic s A-11
Functional Processingccccocvviiiiniiiiiiiniiiiiicscnscscscennes A-11
Methodoviiiiii A-11
SINATUTE ...viiic e A-11

vii

Ab.27 Value ODJectS.......cocviiiiiiiicc s A-11

A5.28 Functional ProCessingccoovoccueioiicicieieicciescie e A-11
A53 Value ODbject CLasses. ...ttt aenees A-12
A.6 Processing Version Processor Business Service............cooceueviiiieiiiiiceiiicieccce A-12
A.6.1 Understanding the Processing Version Processor Business Service............c............ A-12
A6.2 Implementation Detailccccciuiiiiiiiiiiiiiic s A-12
A6.21 MethOd ... e A-12
A6.2.2 SIGNATUTE ..ottt A-12
A.6.2.3 Value ObJect ... A-12
A6.2.4 Functional Processingceiccueiiiiiiicieiicciecice e A-12
A.6.3 Value Object Classes..........ccceuiiiiuiiciiicieecc e A-13
A.6.3.1 Business Service Value ODJectccccoiiiiiiiiiiiieeceeeeeeceeeeeeenenens A-13

Glossary

Index

viii

Audience

Preface

Welcome to the JD Edwards EnterpriseOne Tools Business Services Development
Methodology Guide.

This guide is intended for system administrators and technical consultants who are
responsible for creating and customizing JD Edwards EnterpriseOne business services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

You can access related documents from the JD Edwards EnterpriseOne Release
Documentation Overview pages on My Oracle Support. Access the main
documentation overview page by searching for the document ID, which is 876932.1, or
by using this link:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id
=876932.1

To navigate to this page from the My Oracle Support home page, click the Knowledge
tab, and then click the Tools and Training menu, JD Edwards EnterpriseOne, Welcome
Center, Release Information Overview.

This guide contains references to server configuration settings that JD Edwards
EnterpriseOne stores in configuration files (such as jde.ini, jas.ini, jdbj.ini,
jdelog.properties, and so on). Beginning with the JD Edwards EnterpriseOne Tools
Release 8.97, it is highly recommended that you only access and manage these settings
for the supported server types using the Server Manager program. See the Server
Manager Guide on My Oracle Support.

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1

Conventions

The following text conventions are used in this document:

Convention Meaning

Bold Indicates field values.

Italics Indicates emphasis and JD Edwards EnterpriseOne or other
book-length publication titles.

Monospace Indicates a JD Edwards EnterpriseOne program, other code
example, or URL.

1

Introduction to JD Edwards EnterpriseOne
Tools Business Services Development
Methodology

This chapter contains the following topics:

= Section 1.1, "JD Edwards EnterpriseOne Tools Business Services Development
Methodology Overview"

= Section 1.2, "JD Edwards EnterpriseOne Tools Business Services Development
Methodology Implementation”

1.1 JD Edwards EnterpriseOne Tools Business Services Development
Methodology Overview

Oracle's D Edwards EnterpriseOne Tools Business Services Development Methodology Guide
provides rules, best practices, example code pieces, and steps that you can follow to
create business services that enable interoperability between JD Edwards
EnterpriseOne and other Oracle applications or third-party applications and systems.
You create business services using the JD Edwards EnterpriseOne toolset and the Java
programming language.

Rules are guidelines that you must follow when creating or customizing JD Edwards
EnterpriseOne business services. Although the JD Edwards EnterpriseOne toolset does
not enforce rules, these are mandatory guidelines that you must follow to accomplish
the desired results and to meet specified standards.

Best practices are guidelines that you should follow when creating or customizing JD
Edwards EnterpriseOne business services. These are guidelines, which are not
mandatory, that help you make good design decisions.

This guide provides an overview of business services and information for creating and
modifying business services.

This guide does not preclude the use of other standard development methodologies.

1.2 JD Edwards EnterpriseOne Tools Business Services Development
Methodology Implementation

The Business Services Development Guide provides concepts and information for
creating business services. The Business Services Development Methodology Guide
supports the Business Services Development Guide by providing naming conventions,
best practices, guidelines, and other information for developing business services. Use

Introduction to JD Edwards EnterpriseOne Tools Business Services Development Methodology 1-1

JD Edwards EnterpriseOne Tools Business Services Development Methodology Implementation

the Business Services Development Methodology Guide in conjunction with the
Business Services Development Guide if you are developing business services.

See the |D Edwards EnterpriseOne Tools Business Services Development Guide

1-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

2

Understanding Business Services

This chapter contains the following topics:

= Section 2.1, "JD Edwards EnterpriseOne Business Services"
= Section 2.2, "Development Methodology"

» Section 2.3, "Value Objects"

» Section 2.4, "Package Naming and Structure"

» Section 2.5, "Java Coding Standards"

2.1 JD Edwards EnterpriseOne Business Services

JD Edwards EnterpriseOne provides interoperability with other Oracle applications
and third-party systems by natively producing and consuming web services. Web
services enable software applications written in various programming languages and
running on various platforms to exchange information. JD Edwards EnterpriseOne
exposes business services as web services. A web service is a standardized way of
integrating web-based applications, and in JD Edwards EnterpriseOne, web services
are referred to as published business services. Business services enable JD Edwards
EnterpriseOne to expose transactions as a basic service that can expose an XML
document-based interface.

2.1.1 Published Business Services

A published business service is a JD Edwards EnterpriseOne Object Management
Workbench (OMW) object that represents one Java class that publishes multiple
business services. When you create a web service, you identify the Java class. The
published business service also contains value object classes that make up the
signature for the published business service.

2.1.2 Business Services

A business service is a JD Edwards EnterpriseOne OMW object that represents one or
more classes that expose public methods. Each method performs a business process. A
business service also contains internal value object classes that make up the signature
for the business service methods. These public methods can be called from other
business service classes and published business service classes.

2.2 Development Methodology

JD Edwards EnterpriseOne provides tools to help you create business services and
published business services. You access Oracle's JDeveloper from JD Edwards

Understanding Business Services 2-1

Value Objects

EnterpriseOne OMW. You should have one business service workspace based on the
JD Edwards EnterpriseOne path code in JDeveloper. This workspace should have been
created when JDeveloper was launched from OMW. Each business service and
published business service has its own project under the business service workspace,
where you can add and modify code for business services and published business
services that were created using OMW. JDeveloper provides wizards that generate
Java code to help you create business services and published business services. All
business services and published business services are written in the Java programming
language.

The JD Edwards EnterpriseOne business services framework provides a set of
foundation packages. Each foundation package contains a set of interfaces and related
classes that provide building blocks that you use to create the business service or
published business service. Business service classes extend the BusinessService
foundation class. Business service classes call business functions and database
operations. The published business service class extends the PublishedBusinessService
foundation class. This class exposes public methods that represent JD Edwards
EnterpriseOne business processes as web services.

The business services framework also supports business service properties. Business
service properties provide flexibility in the code by enabling users to set a value
without changing the code. The business service framework includes wizards that
provide building blocks to help you create business function calls and database
operation calls. You also can access code templates. Code templates generate skeleton
code that you modify and finalize. You can use code templates to generate skeleton
code for creating public and private methods for a published business service, creating
public methods for a business service, formatting data, calling a business service
property, and testing a published business service.

JD Edwards EnterpriseOne business service and published business service classes use
value object classes. A value object is an interface to a business service or a published
business service. A value object is the high-level component that contains the business
data that defines a business process. Business services use internal value objects, and
published business services use published value objects. Internal value objects and
published value objects and their components extend the ValueObject foundation
class. Published response value objects, which are used by published business services,
extend the MessageValueObject foundation class and contain warning messages that
are returned from business function and database operation calls.

2.3 Value Objects

Value objects are a specific type of source file that holds input and output data, much
like a data structure passes data. The input and output parameters of business service
operations are called internal value objects. Business service internal value objects are
not published interfaces. Business service operations use one internal value object for
both input and output. Examples of internal value objects include
Internal Add AddressBook, InternalProcessPurchaseOrder, InternalEntity, and so on.

The input and output parameters of the published business service business
operations are called value objects. These parameters are the payload of the web
service. A business operation defined in a published business service takes one value
object as its input parameter and returns one value object as its output parameter.
Examples of published business service value objects include AddAddressBook,
ProcessSalesOrder, ProcessPurchaseOrder, GetCustomer,
ConfirmProcessPurchaseOrder, and so on.

2-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Value Objects

The structure of a value object is modeled after the business object document (BOD)
defined by Open Applications Group, Inc. (OAGIS). The structure represents the
hierarchy of a business process. The following example value object shows the
hierarchy for Add AddressBook:

Figure 2—1 Value object structure

AddAddressBook
entityName
| entityTypeCode Field
version
EntityAddress
Entity entityld
entityLongld
entityTaxld
y Compound
Address
mailingName
addressLine1
addressLine2
addressLine3 Field
addressLine4
city
countyCode
stateCode
postalCode
countryCode
Compound
Component
Phones|[]
phoneNumberType
phoneAreaCode
phoneNumber Compound

Value objects are made up of components, compounds, and fields.

2.3.1 Components

Components are extensible building blocks of a value object and consist of compounds
and fields or just fields. Examples of components are PurchaseOrderHeader,
PurchaseOrderDetail, and Entity Address.

2.3.2 Compounds

Compounds are collections of related fields and are implemented as classes.
Compounds are basic, shared building blocks. Examples of compounds are
purchaseOrderKeys, supplier, and item.

Understanding Business Services 2-3

Package Naming and Structure

2.3.3 Fields

Fields are the lowest-level elements that are defined. Components and compounds, if
used, consist of fields.

2.4 Package Naming and Structure

You use JD Edwards EnterpriseOne OMW to create new JD Edwards EnterpriseOne
business service and published business service objects and to access existing business
service and published business service objects. When you name a business service or
published business service, you must use naming conventions that are compatible
with OMW. You create business service and published business service objects in
OMW, and then you start JDeveloper from OMW. JDeveloper automatically creates a
project for the last OMW object that you created; using JDeveloper and the Project
wizard, you create projects for each OMW object that you created.

The Java package that is created for business services and published business services
is determined when you create an OMW object. The following are examples of
package names:

package oracle.el.bssv.JP010000
package oracle.el.bssv.util.J0100020

A business service can be created in a utilities package (oracle.el.bssv.util) if the
business service provides a repeatable task that is consumed by multiple other
business services. All other business services and published business services are
created with the root package name (oracle.el.bssv).

In the preceding examples, the portion of the name in italic font is the business service
object name. To be compatible with OMW object names, this portion of the package
name must be eight characters. The naming convention for the OMW object name is
different for business service and published business service packages.

For a business service package, the OMW object name is J, system code, and numbers,
where the numbers are a number that you assign to each business service; for example,
J0100001, J0200002, J0100010, J0100020, J0100100, J0100110, and so on. The OMW object
name must be eight characters. The following diagram shows the structure for a
business service.

Figure 2-2 Business service package structure

=[] st
=5 20100010
=1~ application Sources
=1/ oracle.e1.sbF.10100010
-1 diagrams
I:"lf]ﬁ valueobject
: @ InternaladdaddressBook. java
B @ AddressBookProcessor. java

For a published business service package, the OMW object name is JP, system code,
and zeros (for example, JP010000). The OMW object name must be a total of eight
characters. The naming standards do not preclude the creation of a second published
business service per system code; however, our guideline is to create one service per
system code. The naming convention for the OMW object is also part of the name of
the package where the published business service class resides. Within the JDeveloper

2-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Java Coding Standards

tree structure, a published business service must be directly under the package name.
For example, the published business service AddressBookManager.java can be under
oracle.el.bssv.JP010020 only; it cannot be under a subpackage of JP010020. The
following diagram shows the structure for a published business service:

Figure 2-3 Published business service package structure

= |_—| Application Sources
---[ifl oracle.e.bssy
=] JU JFO10000
+|-[{fl diagrams
=1 valueobject
@ fddfddressBook.java
E Address, java
@ AddressBiook, java
E AddressCodes.java
E CategoryCodes java
@ Classifications, java
@ CompletePhone java
@ ConfirmndddaddressBock. javs
@ ElectronicAddress.java
@ Entity java
@ EntityAddress. java
5] GetaddressBook. java
E Phone. java
Felatedaddress java

ShowdddressBook, jawa
E Statiskics . java
@ Stock.java
@ UserReservedData.java

@ AddrescBookiManager, java

Each business service and published business service must have its own package
name. You cannot include both a business service name and a published business
service name together as one package. For example, the package name
oracle.el.bssv.JP010000.J0100020 is invalid.

2.5 Java Coding Standards

You use JDeveloper and the Java programming language to create JD Edwards
EnterpriseOne business service and published business service classes that run in a
J2EE environment. The business services foundation package provides classes that you
extend when you write your code. The business services foundation and JDeveloper
provide wizards that help you structure your code. JDeveloper enables you to set
preferences for placing braces and then reformats the code to your desired style.

You use basic Java programming style conventions when you write your code. For
example, instead of sprinkling literals and constant values throughout the code, you
should define these values as private static final variables at the beginning of a method

Understanding Business Services 2-5

Java Coding Standards

or function or define them globally. Another convention is to use uppercase letters for
each word. You should separate each pair of words with an underscore when naming
constants, as illustrated in this code sample:

private static final String DEFAULT_ERROR = "c39f495121b...etc";
You should include meaningful comments consistently throughout your code. For

easier readability when you create a Java class, order the elements in the following
way:

1. Attributes
2. Constructors
3. Methods

The code that you write should check for null and empty strings, as illustrated in this
example code:

if ((string != null) && (string.length() !=0))
or

if ((string == null) || (string.length() == 0))
or

if ((string == null) || (string.equals("")))

Your code should check for null objects. You can use this sample code to check for null
objects:

if (object !=null)
{
doSomething ()

}

When you compare strings, use equals(). This code sample shows the correct way and
the wrong way to compare strings:

String abc = "abc"; String def = "def";
// Correct way
if ((abc + def).equals("abcdef"))

// Wrong way
if ((abc + def) == "abcdef")

When you create published value objects, the code should test for null objects in the
set methods. This code sample shows how to test for null objects:

public void setCarrier (Entity carrier)
{
if (carrier != null)
this.carrier = carrier;
else
this.carrier = new Entity();

2-6 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Java Coding Standards

Understanding Business Services 2-7

Java Coding Standards

2-8 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

3

Creating a Published Business Service

This chapter contains the following topics:

= Section 3.1, "Understanding Published Business Services"

= Section 3.2, "Developing a Published Business Service"

» Section 3.3, "Managing Published Business Service Components"
= Section 3.4, "Calling a Business Service"

= Section 3.5, "Handling Errors in the Published Business Service"
» Section 3.6, "Testing a Published Business Service"

» Section 3.7, "Customizing a Published Business Service"

» Section 3.8, "Deprecating a Published Business Service"

3.1 Understanding Published Business Services

A published business service gives exposure to one or more business services by
providing an interface that is available to the public as a consumable web service. A
published business service is a Java class that contains business service methods where
the actual business logic is performed.

You use JDeveloper, JD Edwards EnterpriseOne business services framework, and the
Java programming language to create published business services. The business
service framework provides a set of foundation packages that helps you create
published business services. Each foundation package contains a set of interfaces and
related classes. All published business service classes extend from the
PublishedBusinessService foundation class. Code samples are provided throughout
this chapter to demonstrate the general concepts for creating a published business
service. Rules and best practices are discussed for each topic, if appropriate.

The following class diagram shows the main published business service class
(AddressBookManager) and the value object class (Add AddressBook) and its
components:

Creating a Published Business Service 3-1

Developing a Published Business Service

Figure 3—1 Published business service class diagram

oracle.e1.bssvfoundation.base
PublishedBusinessService

AddressBookManager
oracle.e1.bssvfoundation.base
ValueObject
oracle.e1.bssv.JP010000.valueobject ﬁ Z%
AddAddressBook oracle.e1.bssvfoundation.base
‘ MessageValueObject

{ 1 .

oracle.e1.bssv.JP010000.valueobject < oracle.e1.bssv.JP010000.valueobject

Phone * ConfirmAddAddressBook

A
oracle.e1.bssv.JP010000.valueobject |
EntityAddress
i oracle.e1.bssv.JP010000.valueobject

Address

oracle.e1.bssv.JP010000.valueobject
Entity

These features are illustrated in the published business service class diagram:

= AddressBookManager extends foundation class PublishedBusinessService.
s AddAddressBook extends ValueObject.

s ConfirmAddAddressBook extends MessageValueObject.

= All components of AddAddressBook and ConfirmAddAddressBook extend
ValueObject.

3.2 Developing a Published Business Service

A published business service contains multiple Java classes, including a published
business service class and value object classes. The published business service class
contains public methods that are exposed to the public. These public Java methods are
wrappers for business services where the actual business logic is performed.

After a business service is published, you cannot change the name and signature of the
business service without affecting the consumers of that service. If you change an
underlying business service that the published method exposes, then you change the
signature and contract of the published business service. Because JD Edwards
EnterpriseOne is not providing a merge of new and existing software, when you
update or upgrade your system, any business services that you have changed will be
overwritten by new JD Edwards EnterpriseOne code. If you need to change an
underlying business service, copy the existing business service into a new Object
Management Workbench (OMW) object and name the OMW object as a version of the

3-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Developing a Published Business Service

original business service. You also create a new published business service method
that includes the versioned business service.

3.2.1 Creating a Transaction in a Published Business Service

A published business service class has a public method and a protected method that
work together to expose a web service operation. The public method is exposed as the
web service and acts as a wrapper method that passes a null to the context and
connection parameters of the protected method. By passing null for these objects, the
wrapper method identifies that this is the outermost call; that is, this is the web
service. When a null context is passed, the protected method creates a context object
that contains either a default manual connection or an auto commit connection for
processing a transaction. Two methods with the same context name but different
parameters exist. The context object that is used depends on whether you initiate a
manual commit or auto commit connection. After the context object is created, the
protected method starts processing by calling startPublishedMethod. All calls after
startPublishedMethod are tied together by the context object. By passing null for the
connection object, the wrapper method indicates that the default connection should be
used for all operations. If a JD Edwards EnterpriseOne customer needs to extend a
published business service by creating their own published business service and
calling an existing JD Edwards EnterpriseOne published business service, the
connection must be passed and it would not be null.

See Auto Commit.

The context object and the connection object are passed to the business service method
where the business function call is made. After returning from the business service, the
context object is sent to finishPublishedMethod to commit the default transaction in
the case of manual commit, and then to the close method to close and clean up all
outstanding connections.

This code sample shows creating and passing the context object:

public ConfirmAddAddressBook addAddressBook (AddAddressBook vo)
throws BusinessServiceException {
return (addAddressBook(null,null, vo));
}
protected ConfirmAddAddressBook addAddressBook
(IContext context,IConnection
connection, AddAddressBook vo) throws
BusinessServiceException{
//perform all work within try block, finally will clean up any
//connections
try {
// call start published method, passing null,
//will return context object so BSFN can be called later
//used to indicate transaction boundary as well as used for
//logging
//RI: Start Implicit Transaction
context = startPublishedMethod (context,
"addAddressBook") ;
// create a new internal vo based on the external vo passed
InternalAddAddressBook internalVO= new
InternalAddAddressBook () ;
messages.addMessages (vo.mapFromPublished (context,
internalVvo)) ;
// start business service addAddressBook passing context
and internal VO
//RI: Published Business Service Calling Business Service

Creating a Published Business Service 3-3

Managing Published Business Service Components

ElMessageList messages = AddressBookProcessor.addAddressBook

(context, connection, internalvo) ;

// Published Business Service will send either warnings in
the Confirm Value Object or throw a published business
service Exception.

//a return status of 2 is an error, throw the exception

if (messages.hasErrors()) {

// get the string representation of all the messages
//RI: Error Handling

String error = messages.getMessagesAsString());

// Throw new BusinessServiceException (error) ;

throw new BusinessServiceException (error,context) ;

}

// exception was not thrown, so create the confirm VO from
internal VO

ConfirmAddAddressBook confirmVO = new ConfirmAddAddressBook
(internalVo) ;

confirmvO.setElMessagelList (messages) ;

// call finish published method, passing the context

//to commit transaction(if no exceptions), as well as use

//in logging

finishPublishedMethod (context, "addAddressBook");

// return confirm VO, filled with return values and messages

return confirmvo;

} finally {

//clean up any remaining connections and resources.

close(context, "addAddressBook") ;

3.3 Managing Published Business Service Components

Naming conventions and concepts for creating published business service classes,
methods, value objects, and fields are discussed in the following sections. Code
samples are provided as examples for you to follow. Rules and best practices are also
discussed where appropriate.

3.3.1 Published Business Service Class Names

The naming convention for a published business service class is the description name
of the system code with Manager added to the end of the name; for example,
AddressBookManager. Other examples of published business service class names are
ProcurementManager and SalesOrderManager.

This code sample shows the naming convention for a published business service class:

public class AddressBookManager extends
PublishedBusinessService {

3.3.2 Published Business Service Method Names

The naming convention for a published business service method is to use a functional
description prefaced by an action verb that describes the processing that will occur.
For example, for a published business service method that adds an address book
record to the database, an appropriate published business service method name is

3-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Published Business Service Components

addAddressBook. The business service public method uses the same name as the
published business service method.

This code sample shows the naming convention for a published business service
method:

public ConfirmAddAddressBook addAddressBook
(AddAddressBook vo) throws BusinessServiceException{

}

3.3.3 Published Business Service Value Object Names

The input and output parameters of the published business service are called
published value objects. The published business service method takes one value object
as its input parameter and returns one value object as its output parameter.

This code sample shows the naming convention for published value objects:

public ConfirmAddAddressBook addAddressBook
(AddAddressBook vo) throws BusinessServiceException {

}

3.3.3.1 Published Business Service Variable Names

The variable name should clarify the type of data in the field or compound. For
example, if multiple entity type objects exist, the class called Entity would be the data
type, but ProcessPurchaseOrder would contain objects of type Entity called supplier
and shipTo. In this example, the Entity class can be reused from the EntityProcessor
utility business service.

In the following code sample, the AddAddressBook value object has three top-level
field names and contains an entity Address, which is subsequently made up of an
entity with three fields and an address with ten fields:

public class AddAddressBook extends ValueObject implements
Serializable{
private EntityAddress entityAddress = new EntityAddress();
private String entityName;
private String entityTypeCode;
private String version;

}
public class EntityAddress extends ValueObject implements
Serializable {

private Entity entity = new Entity();

private Address address = new Address();

}

public class Address extends ValueObject implements Serializable{
private String mailingName;
private String addressLinel;
private String addressLine2;
private String addressLine3;
private String addressLine4;
private String city;
private String countyCode;
private String stateCode;
private String postalCode;

Creating a Published Business Service 3-5

Managing Published Business Service Components

private String countryCode;

}

public class Entity extends ValueObject implements Serializablef{
private Integer entityId;
private String entityLongId;
private String entityTaxId;

3.3.4 Creating a Published Business Service Class

The business service foundation provides a Published Business Service wizard that
helps you create published business service classes. The wizard prompts you for a
published business service name, an input value object name, an output value object
name, and a method name. The wizard creates a Java code structure for a published
business service class that can be published as a web service. This structure contains
comments and TODO: tags to help you add the code to call mapping methods and
business service methods.

See "Understanding Business Services" in the JD Edwards EnterpriseOne Tools Business
Services Development Methodology Guide.

3.3.4.1 Rules

The published business service class extends the PublishedBusinessService foundation
class, and the constructor must be public. This extension provides access to the
transaction methods (startPublishedMethod and finishPublishedMethod) that are used
in all of the published methods of a published business service class.

This code sample shows how to extend the published business service foundation
class:

public class AddressBookManager extends PublishedBusinessService {
public AddressBookManager () {
}

3.3.5 Declaring Public Methods for a Published Business Service

Published business service classes expose public, nonstatic methods. Declaring a
public method exposes it to third-party systems.

This code sample shows a published business service declaring a business service
method:

public ConfirmAddAddressBook addAddressBook
(AddAddressBook vo) throws BusinessServiceException{

}

When you use the Published Business Service wizard to create the published business
service class, the wizard also creates a public and protected method. For additional
methods, you can use code templates to generate Java code. The EIPM -
EnterpriseOne Published Business Service Method code template generates code for
both public and protected methods of a published business service class. You use a
code template in the source code. After you generate code using the code template,

3-6 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Published Business Service Components

you press the Tab key to move through the highlighted fields to complete the
generated code. The generated code contains TODO: tags that help you.

3.3.6 Creating a Published Value Object

The business service foundation provides value object wizards that help you create
value object classes that follow methodology rules for published value objects. The
Value Object wizard creates objects based on database tables and business views for
database operations or from the data structures defined within a business function.

When the wizard generates member variables for the published value object class, it
uses the description that comes from the data dictionary item in the business function
data structure or from table or business view columns as the variable name. If these
are not the names that you want to use in your published interface, you can change
them.

This code sample shows a generated variable:
/ * %
* Business Unit
* An alphanumeric code that identifies a separate entity within a
* business for which you want to track costs. For example, a

* business unit might be a warehouse location, job, project, work
* center, branch, or plant.

* EnterpriseOne Key Field: false

* EnterpriseOne Alias: MCU

* EnterpriseOne field length: 12

*/

private String businessUnit = null;

You use the standard JDeveloper wizard to generate the get and set methods for the
variables because the Value Object wizard does not generate these methods. For web
services to be generated and deployed successfully, you must use J2EE standards for
naming the get and set methods. J2EE standards for writing a field such as private
String description would be:

public String getDescription() {
return description;
}
public void setDescription(String description) {
this.description = description;
}

For Boolean fields, the pattern is slightly different. J2EE standards for writing a field
such as private Boolean isCreditExempt; would be:

public Boolean isIsCreditExempt () {
return isCreditExempt;
}
public void setIsCreditExempt (Boolean isCreditExempt) {
this.isCreditExempt = isCreditExempt;
}

3.3.6.1 Published Value Object Structure and Data Types

The published input value object must extend the ValueObject foundation class. The
published confirm or response value object contains warning messages that were

Creating a Published Business Service 3-7

Managing Published Business Service Components

returned from the business processing and must extend the MessageValueObject
foundation class. All published value objects must have a default constructor.

This table lists the valid data types for published value objects:

Valid Data Type Usage

java.lang.String Use for string or char fields in JD Edwards EnterpriseOne.

java.util.Calendar Use for JDEDate or UTIME fields in JD Edwards EnterpriseOne.

java.lang.Integer Use for MathNumeric fields defined with 0 decimals, for example,
mnAddressNumber, mnShortltemNumber, and so on.

java.lang.BigDecimal Use for MathNumeric fields defined with >0 decimals, for example,
mnPurchaseUnitPrice.

java.lang.Boolean Use for char fields specified only as true/false or 0/1 Boolean fields.

Value object classes can be reused when a business service calls a utility or for calls
between business services that depend on one another—such as AddressBook and
Supplier. For example, you can reuse the Entity class from the EntityProcessor utility
business service by importing the class from the utility's package.

3.3.6.2 Web Service Considerations for Data Types and Variable Names

A published business service class is the foundation for creating a web service. The
web services description language (WSDL) is an XML-based language that describes a
web service. The WSDL describes all methods of the published business service as
well as the input and output value objects for these methods. All classes that make up
the highest-level value object are included in the WSDL description. For example, for
the Procurement Manager web service, the operations that the WSDL exposes are
processPurchaseOrder, getPurchaseOrder, and processPurchaseOrderAcknowledge.
All value object classes that are associated with these operations are defined in the
WSDL as well.

All classes that are used within a published business service must have a unique
name, which you should consider when you reuse value objects across published
business services. Member variable names within the published business service value
object class must be unique if they are of different object types. For example, the
hierarchy of ProcessPurchaseOrder contains two classes representing financial
data—one at the header level and one at the detail level. The header and detail are
represented by unique classes because they are structured differently. Because both
header and detail belong under the interface ProcessPurchaseOrder, the variable name
referencing these object types must be unique; for example, financial and
financialDetail.

The requirement for using unique variable names applies only to classes that have the
same parent value object. You are not required to use unique variable names across
value object classes. For example, both ProcessPurchaseOrder and
ProcessPurchaseOrderAcknowledge have a header class, but the header classes are
structured differently. Both of the member variables representing these classes can use
the name header because they belong to different parent value objects. Classes that can
be reused, such as PurchaseOrderKey, can have the same variable name across value
objects.

The following examples show uniquely named classes that have member variables
that are named the same:

3-8 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Published Business Service Components

Type Member Variable Name
ProcessPurchaseOrder
PurchaseOrderHeader header
PurchaseOrderKey purchaseOrderKey
Integer documentNumber
String documentCompany
String documentType
UserReservedData userReservedData
String userReservedCode
Integer userReservedNumber
BigDecimal userReservedAmount
Calendar userReservedDate
PurchaseOrderFinancial financial
PurchaseOrderDetail detail
PurchaseOrderFinancialDetail financialDetail

Type

Member Variable Name

ConfirmProcessPurchaseOrder
ConfirmPurchaseOrderHeader

PurchaseOrderKey

Integer

String

String
UserReservedData

String

Integer

BigDecimal

Calendar
ConfirmPurchaseOrderFinancial
ConfirmPurchaseOrderDetail

ConfirmPurchaseOrderFinancialDetail

header

purchaseOrderKey
documentNumber
documentCompany
documentType

userReservedData
userReservedCode
userReservedNumber
userReservedAmount
userReservedDate

financial

detail
financialDetail

Type

Member Variable Name

ProcessPurchaseOrderAcknowledge
PurchaseOrderAcknowledgeHeader

PurchaseOrderKey

Integer

String

String
UserReservedData

String

Integer

BigDecimal

Calendar
PurchaseOrderAcknowledgeFinancial
PurchaseOrderAcknowledgeDetail

PurchaseOrderAcknowledgeFinancialDetail

header

purchaseOrderKey
documentNumber
documentCompany
documentType

userReservedData
userReservedCode
userReservedNumber
userReservedAmount
userReservedDate

financial

detail
financialDetail

Creating a Published Business Service 3-9

Managing Published Business Service Components

Type Member Variable Name
GetPurchaseOrder
PurchaseOrderGetHeader purchaseOrderGetHeader
PurchaseOrderKey purchaseOrderKey
Integer documentNumber
String documentCompany
String documentType
UserReservedData userReservedData
String userReservedCode
Integer userReservedNumber
BigDecimal userReservedAmount
Calendar userReservedDate
PurchaseOrderGetFinancial financial
PurchaseOrderGetDetail detail
PurchaseOrderGetFinancialDetail financialDetail

Type Member Variable Name
ShowPurchaseOrder
PurchaseOrderShowHeader header
PurchaseOrderKey purchaseOrderKey
Integer documentNumber
String documentCompany
String documentType
UserReservedData userReservedData
String userReservedCode
Integer userReservedNumber
BigDecimal userReservedAmount
Calendar userReservedDate
PurchaseOrderShowFinancial financial
PurchaseOrderShowDetail detail
PurchaseOrderShowFinancialDetail financialDetail

3.3.6.3 Rules

Follow these rules when you develop published business service value object classes:

Implement the serialize interface for all published value objects. This facilitates
exposing the published business service as a web service.

Initialize published business service value object compound attributes. This is to
prevent null pointer exceptions when the method calls accessors.

Expose published business service value object compound collections as arrays.
Collection objects such as an ArrayList cannot be exposed from a web service at
this time.

Do not change published value objects, because the change breaks the contract
that was created by the original value object. This is to support backwards
compatibility.

Do not add a new field, because this breaks the original contract that was set by
the value object. You must create a new version of the value object and method.

Create response value objects that contain a complete message (more than just
keys).

3-10 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Published Business Service Components

s Place mappings between published and internal value objects in a method in the
published value object.

3.3.6.4 Published Input Value Object

This code sample illustrates the code for a published input value object class:

public class AddAddressBook extends ValueObject implements
Serializable{
private EntityAddress entityAddress = new EntityAddress();
// Compound attribute is initialized
private String entityName; //Leaf attribute not initialized
private String entityTypeCode;
private String version;

}
public class EntityAddress extends ValueObject implements
Serializable {
private Entity entity = new Entity();
private Address address = new Address();

}
public class Address extends ValueObject implements
Serializable({

private String mailingName;
private String addressLinel;
private String addressLine2;
private String addressLine3;
private String addressLine4;
private String city;
private String countyCode;
private String stateCode;
private String postalCode;
private String countryCode;

}
public class Entity extends ValueObject implements
Serializable{
private Integer entityId;
private String entityLongId;
private String entityTaxId;

3.3.6.5 Published Response Value Object

This code sample illustrates the code for a published response value object class:

public class ConfirmAddAddressBook extends MessageValueObject implements
Serializable({

private EntityAddress entityAddress = new EntityAddress();

// Compound attribute is initialized

private String entityName;

//Leaf attribute not initialized

private String entityTypeCode;

private String version;

}

public class EntityAddress extends ValueObject implements Serializable {
private Entity entity = new Entity();

Creating a Published Business Service 3-11

Managing Published Business Service Components

private Address address = new Address();

}

public class Address extends ValueObject implements Serializablef{
private String mailingName;
private String addressLinel;
private String addressLine2;
private String addressLine3;
private String addressLined;
private String city;
private String countyCode;
private String stateCode;
private String postalCode;
private String countryCode;

}

public class Entity extends ValueObject implements Serializablef{
private Integer entityId;
private String entityLongId;
private String entityTaxId;

3.3.6.6 Mappings

The mapping between the published value object and the internal value object takes
place in the published value object. You create a method for mapping fields from the
published value object to the corresponding fields of the internal value object.

If you call the Formatter utility or a business service utility when mapping data from
published to internal value objects, Oracle recommends that you create a method
named mapFromPublished that returns an E1MessageList. The mapFromPublished
method takes at a minimum the internal value object as a parameter. This method
holds all of the mappings between the published value object and the internal value
object. If a message could be returned to the published business service, you should
create a method for mappings. You should always create a method to return messages
when you call a business service utility or the Formatter utility during mapping. If no
messages would be returned from mappings, you can have the method return void.

This code sample uses the mapFromPublished method and returns an E1MessagleList:

public ElMessageList mapFromPublished(IContext context, RI_InternalAdd
AddressBook vo) {
ElMessageList messages = new ElMessagelist();
//set all internal VO attributes based on external VO passed in

vo.setSzMailingName (this.getEntityAddress () .getAddress ().

getMailingName ()) ;

vo.setSzAddressLinel (this.getEntityAddress () .getAddress() .
getAddressLinel());

vo.setSzAddressLine2 (this.getEntityAddress () .getAddress() .
getAddressLine2());

vo.setSzAddressLine3 (this.getEntityAddress () .getAddress ().
getAddressLine3 ()) ;

vo.setSzAddressLine4d (this.getEntityAddress () .getAddress ().
getAddressLined ()) ;

vo.setSzCity(this.getEntityAddress () .getAddress() .getCity());

vo.setSzState (this.getEntityAddress () .getAddress () .getStateCode());

vo.setSzCountry (this.getEntityAddress () .getAddress () .getCountryCode());

vo.setSzCounty (this.getEntityAddress () .getAddress () .getCountyCode());

3-12 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Published Business Service Components

vo.setSzPostalCode (this.getEntityAddress () .getAddress() .
getPostalCode());
vo.setMnAddressBookNumber (this.getEntityAddress () .getEntity ().
getEntityId());
vo.setSzLongAddressNumber (this.getEntityAddress () .getEntity ().
getEntityLongId());
vo.setSzTaxId(this.getEntityAddress () .getEntity () .getEntityTaxId());
vo.setSzAlphaName (this.getEntityName()) ;
vo.setSzSearchType (this.getEntityTypeCode()) ;
vo.setSzVersion (this.getVersion());
vo.setJdDateEffective (this.getEffectiveDate());
//format business unit coming from published vo.
String formattedMCU = null;
String bu = this.getBusinessUnit();
if (bu!=null && !bu.equals("")){
try {
formattedMCU = context.getBSSVDataFormatter () .format (this.
getBusinessUnit (), "MCU");
vo.setSzBusinessUnit (formattedMCU) ;
}
catch (BSSVDataFormatterException e) {
context.getBSSVLogger () .app (context, "Error when formatting Business
Unit.",null,vo,e);
//Create new El Message with error from exception
messages .addMessage (new ElMessage (context, "002FIS",this.
getBusinessUnit()));

}

//phones loop through array
//new arraylist
RI_Phone phones[] = this.getPhones();
if (this.getPhones() !=null) {
ArrayList phonesList = new ArrayList();
for (int i=0; i<phones.length; i++){
//create internal phone and add to array list

If an E1MessageList would never be returned, and the mappings are from internal to
published response value objects, you can use an overloaded constructor for the
internal value object mappings. If you have no calls to utilities or formatters, mapping
can be done in the constructor. If the mappings are from published to internal value
objects and no messages are being returned, you should create a mapFromPublished
method that returns void.

This code sample uses an overloaded constructor for mapping:

public ShowAddressBook (InternalGetAddressBook internalVO) {
if (internalVO.getQueryResults () !=null) {
this.setNumberRowsReturned (internalVO.getQueryResults () .size());
this.addressBook = new AddressBook[internalVO.getQueryResults().
size()];

for(int 1 = 0;i<internalV0O.getQueryResults().size();i++){
AddressBook ab = new AddressBook (internalVO.getQueryResults(i));
this.setAddressBook(1,ab);

Creating a Published Business Service 3-13

Managing Published Business Service Components

3.3.6.7 Data Type Transformation

When you map data between published and internal value objects, data type
transformations may be required. The business service foundation provides methods
and constructors that format data and transform data types. Data type transformations
that are done in the mappings are:

= Integer to and from MathNumeric
= BigDecimal to and from MathNumeric

= Boolean to and from String

3.3.6.8 Integer to and from MathNumeric and BigDecimal to and from MathNumeric

Mapping between published integer fields and internal math numeric fields requires a
data type transformation. You use the set methods of the internal value object to make
these transformations. An overloaded method takes either an integer or a math
numeric data type when setting the field value.

The same rule applies to mapping between big decimal and math numeric fields. The
business service foundation provides multiple math numeric constructors. The null
check is performed because the constructor throws an error if a null parameter is
passed.

This code sample shows set methods where a new math numeric data type is created
by passing an integer type value or a big decimal type value:

public void setNumberField(Integer numberField) {
if (numberField!=null)
this.numberField= new MathNumeric (numberField);

public void setNumberField(BigDecimal numberField) {
if (numberField!=null)
this.numberField= new MathNumeric (numberField);

public void setNumberField(MathNumeric numberField) {
if (numberField!= null)
this.numberField= numberField.asBigDecimal();

public void setNumberField (MathNumeric numberField) {
if (numberField!= null)
this.numberField= new Integer (numberField.intValue());

3.3.6.9 Boolean to and from String

A published Boolean field must be translated to an internal String type field. The
business service foundation provides three ValueObject methods to assist you with
this transformation. Because these methods are in the ValueObject class, they are
available from all value objects. The methods are:

Method Usage

transformBooleanYN(Boolean) Returns a string of Y for passed value of true. Returns N for
passed value of false. Returns null string for null Boolean.

3-14 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Published Business Service Components

Method Usage

transformBoolean01(Boolean) Returns a string of 1 for passed value of true. Returns 0 for
passed value of false. Returns null string for null Boolean.

transformToBoolean(String) Returns a Boolean value that takes a string. A string of 1,Y)y
returns true. A string of 0,N,n returns false. A null or
incorrect string returns null.

This code sample shows the structure for each of the methods:

//Use ValueObject (tools provided method) transformToBoolean.
//Tools method will account for both Y,y,N,n,0,1 values, null values
//set Boolean to null
public void setIsSomething(String isSomething) {

this.isSomething= transformToBoolean (isSomething) ;

//El needs to be researched to determine what values are valid for
//true and false values
//Use ValueObject (tools provided methods) transformBoolean¥YN or
//transform Boolean01.
//Tools method will provide proper Boolean value for either Y/N or
//0/1, null will result in null String
public void setIsSomething(Boolean isSomething) {

this.isSomething = transformBooleanYN(isSomething) ;

OR
public void setIsSomething(Boolean isSomething) {
this.isSomething = transformBoolean01 (isSomething) ;

3.3.6.10 Data Formatter

In addition to mappings, you might need to format data coming from the published
value object. For example, the JD Edwards EnterpriseOne database stores fields such
as company (CO) and business unit (MCU) with preceding spaces or zeros. These
fields should be formatted so that the preceding spaces and zeros are hidden from the
published business service. The business service foundation utilities package provides
formatting methods that enable you to pass in a value, and based on the data
dictionary rules for the data dictionary item being passed in, formats the value
accordingly.

You can use the code template E1DF — EnterpriseOne Data Formatter to generate code
for data that requires formatting. The formatter code template generates the code and
highlights variable names that you must change.

This sample code is generated by the EnterpriseOne Data formatter code template:

//format business unit coming from published vo.
String formattedMCU = null;
String bu = this.getBusinessUnit();
if (bu!=null && 'bu.equals("")){
try {
formattedMCU = context.getBSSVDataFormatter () .format (
this.getBusinesUnit (), "MCU");
vo.setSzBusinessUnit (formattedMCU) ;
}
catch (BSSVDataFormatterException e) {
context.getBSSVLogger () .app (context, "Error when

Creating a Published Business Service 3-15

Calling a Business Service

formatting BusinessUnit.",null,vo,e);
//Create new El1 Message with error from exception
messages.addMessage (new ElMessage (context,
"002FIS", this.getBusinessUnit()));
}

3.4 Calling a Business Service

3.4.1 Rules

The published business service class exposes a public method as a web service
operation. The business service method that the published business service class calls
acts as a controller to the business logic.

These are the rules for a published business service method calling a business service
method:

= The signature for the business service static method must contain an IContext
object, an IConnection object, and an internal value object.

s The published business service method passes the IContext and IConnection
objects to the business service, enabling the published business service to keep
track of transaction information throughout the entire processing of the published
business service.

s The published business service method creates a new internal value object that is
based on the external value object.

= The business service static method returns an E1MessageList object, which
contains an array of all error, warning, and information messages that occurred
during processing and were set by the business function.

» If the array contains an error message, the published business service must throw
an exception using the text from the E1MessageList

= If no error messages exist in the array, the business service returns a confirm value
object to the published business service method caller.

The confirm object is created when the business service passes the internal value
object to the constructor for the published confirm value. All warnings and
information messages that are returned from calling the business service are
mapped to the confirm object.

This code sample shows implementation of these rules:

public ConfirmAddAddressBook addAddressBook (AddAddressBook vo) throws
BusinessServiceException {
return (addAddressBook(null, null, vo));
}
protected ConfirmAddAddressBook addAddressBook (IContext context,
IConnection connection,
AddAddressBook vo) throws
BusinessServiceException {
//perform all work within try block, finally will clean up any
connections
try {
//Call start published method, passing context of null
//will return context object so BSFN or DB operation can
//be called later.

3-16 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Handling Errors in the Published Business Service

//Context will be used to indicate default transaction
//boundary, as well as access to formatting and logging
//operations.
context = startPublishedMethod (context, "addAddressBook",
vo) ;
//Create new published business service messages object for
//holding errors and warnings that occur during processing.
ElMessageList messages = new ElMessageList();
// Create a new internal value object.
InternalAddAddressBook internalVO =
new InternalAddAddressBook();
vo.mapFromPublished (context, internalVO);
//Call business service passing context, connection and
//internal VO
ElMessageList bssvMessages = AddressBookProcessor.addAddressBook
(context, connection, internalVO);
//Add messages returned from business service to message list
//for published business service.
messages.addMessages (bssvMessages) ;
//Published Business Service will send either warnings in the
//Confirm Value Object or throw a published business service
//Exception.
//I1f messages contains errors, throw the exception
if (messages.hasErrors()) {
//Get the string representation of all the messages.
String error = messages.getMessagesAsString();
//Throw new BusinessServiceException
throw new BusinessServiceException(error, context);
}
//Exception was not thrown, so create the confirm VO from
//internal VO
ConfirmAddAddressBook confirmvo =
new ConfirmAddAddressBook (internalVo) ;
confirmvO.setElMessagelList (messages) ;
finishPublishedMethod (context, "addAddressBook");
//return outVO, filled with return values and messages
return confirmvo;
} finally {
//Call close to clean up all remaining connections and
//resources.
close(context, "addAddressBook");

3.5 Handling Errors in the Published Business Service

The published business service class is the JD Edwards EnterpriseOne object that is
exposed as a web service. Upon invocation, the published business service returns
either a value object that contains data and warning messages, or it throws a
BusinessServiceException that contains all errors and warnings that occurred during
business processing. The published business service throws BusinessServiceException
if any messages of the type error occur in the collection of messages that are returned
from the call to the business service method. System errors and database failures are
thrown as runtime exceptions. A runtime exception is not handled, but it will cause
the published business service to fail and return to the original caller. Throwing an
exception causes any database operations that were performed between the default
transaction boundaries to roll back, and an error message is sent to the log files.

Creating a Published Business Service 3-17

Testing a Published Business Service

This code sample shows how to handle errors in the published business service:

ElMessageList messages = AddressBookProcessor.addAddress

Book (context, connection, internalVO);
//published business service will send either warnings in the
Confirm Value Object or throw a published business service

exception.
//a return status of 2 is an error, throw the exception
if (messages.hasErrors()) {

//get the string representation of all the messages
//RI: Error Handling
String error = messages.getMessagesAsString();
//Throw new BusinessServiceException (error);
throw new BusinessServiceException(error, context);
}
//exception was not thrown, so create the confirm VO from internal VO
ConfirmAddAddressBook confirmVO = new ConfirmAddAddressBook
(internalVo) ;
confirmvO.setElMessageList (messages) ;
//return confirm VO, filled with return values and messages
return confirmvo;

3.6 Testing a Published Business Service

You must perform unit testing for the published business service (and business
service) that you develop to ensure that the service works as intended. Because
published business services depend on the JD Edwards EnterpriseOne system, most of
the testing is actually integrated testing. Unit testing should include scenarios that test
all decision points in the code. Here are some possible unit tests:

» Test for each action code that is passed, for example, add, change, cancel.
s Test1line, 5 lines, 0 lines.

s Perform negative tests.

You can use any of the following methods to test objects in your code:

» Create a test harness class to test the different functions of the published business
service.

If you create a test harness, you must call business service foundation methods at
the start and finish of the test to shut down the process within JDeveloper. You can
use the code template E1Test — EnterpriseOne Test Harness Class to generate the
framework for your test harness application. You can use this code sample as a
model for creating a test harness:

public static void main(String([] args) throws BusinessServiceException{
try{
//call required prior to starting test from application (main())
TestBusinessService.startTest () ;
//call test method
testAddNoPhone () ;
}
finally({
//call required after completing test from application (main())
TestBusinessService.finishTest () ;

3-18 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Customizing a Published Business Service

= Use the JUnit extension for JDeveloper and create test cases that test the
functionality of the published business service.

JUnit provides a way of running all tests in a suite and can write assertions to
determine whether a test passed or failed.

s Test all functionality through the web service graphical user interface that the
embedded OC4]J within JDeveloper offers.

When you use this method, you can save and rerun XML documents.

3.6.1 Testing the Web Service

After unit testing is complete, you create a web service from the public methods in the
published business service. You should verify that no problems occur when generating
or invoking the web service. Testing the web service is critical because it is possible to
pass all tests from a test harness and fail at creating or running a web service.

Use the JDeveloper wizard to test the web service. You access this wizard from
JDeveloper New Gallery when you add an object to your project.

3.6.2 WSI Compliance Testing

After the published business service is tested as a web service, you verify that the
WSDL is WSI compliant. You use JDeveloper for this task.

See Also:

» Oracle JDeveloper Guide,
http://www.oracle.com/technology/index.html.

3.7 Customizing a Published Business Service

The published business services that are delivered with your JD Edwards
EnterpriseOne software provide a specific, described unit of work. Although these
published business services should cover the functionality that you require, you might
need to run additional business logic to meet your specific business requirements. This
additional business logic could require processing before, after, or during the delivered
published business services unit of work. If you require additional business logic, you
should create a custom published business service.

When you customize a published business service, upgrades and updates should be a
primary consideration. For example, if your customizations include code changes
within the published business service or business service classes that are delivered by
JD Edwards EnterpriseOne, then when an upgrade or update is applied to your
system, a merge of the code itself would be required. Code merging is extremely
difficult to perform and is error prone, and good tooling is hard to find.

To keep updates and upgrades simple, Oracle recommends that you create a new
published business service that extends the delivered published business service. You
use OMW to create and manage your new, custom published business service. When
you extend the delivered published business service, you can add your business logic
either before or after the delivered published business service's unit of work. By
extending the delivered published business service, your custom classes can access the
published business service's functionality, control the transaction scope, and share its
context. Extending from a published business service class instead of the internal
business service class is significant. Published classes have an explicit contract. When
you extend a published class, you can be sure that your customizations will continue
to work when your system is updated because the published business service

Creating a Published Business Service 3-19

Customizing a Published Business Service

signature and behavior will not change when JD Edwards EnterpriseOne is updated.
Internal (business service) classes have no contract and can be changed by JD Edwards
EnterpriseOne application development for an update or upgrade.

Extending from published business service classes allows for customizations before
and after the delivered published business service's unit of work. If you require
custom business logic that processes during the delivered published business service's
unit of work, you must create a new published business service and manually copy
the delivered published business service and associated business services and modify
them as necessary. You use OMW to create and manage your new published business
service.

3.7.1 Published Business Service Model

Two methods are required to expose a published business service class as a web
service: a public method and a protected method. The sole purpose of the public
method is to be called as a web service. The protected method manages and processes
the call to the business service classes.

You can use this code sample as a model for your published business service class:
/ * %
* RI_AddressBookManager is the published business service class exposing
* functionality within Address Book processes.
*/
public class AddressBookManager extends PublishedBusinessService {
/ * %
* published business service Public Constructor
*/
public AddressBookManager () {
}
/ * %
* Published method for Adding an AddressBook Record.
* Acts as wrapper method, passing null context and null connection,
* will call protected addAddressBook.
* @param vo the value object representing input data for Adding an
* AddressBook record
* @return confirmvVO the response data from the business process for adding an
* AddressBook record.
* @throws BusinessServiceException
*/
public ConfirmAddAddressBook addAddressBook (AddAddressBook vo) throws
BusinessServiceException {
return (addAddressBook (null, null, vo));

* Protected method for RI_AddressBookManager published business

* gervice.

* addAddressBook will make calls to business service classes

* for completing business process.

* @param vo the value object representing input data for adding an
* AddressBook record.

* @param context conditionally provides the connection for the

* database operation and logging information

* @param connection can either be an explicit connection or null.
* If null, the default connection is used.

* @return response value object is the data returned from the

* business process for adding an AddressBook record.

* @throws BusinessServiceException

3-20 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Customizing a Published Business Service

protected ConfirmAddAddressBook addAddressBook (IContext context,
IConnection connection,
AddAddressBook vo) throws BusinessServiceException {
//perform all work within try block, finally will clean up any
//connections
try {
//Call start published method, passing context of null will
//return context object so BSFN or DB operation can be called
//later.
//Context will be used to indicate default transaction
//boundary, as well as access to formatting and logging
//operations.
context = startPublishedMethod (context, "addAddressBook", vo);
//Create new published business service messages object for holding
//errors and warnings that occur during processing.
ElMessageList messages = new ElMessageList();
// Create a new internal value object.
InternalAddAddressBook internalVO =
new InternalAddAddressBook();
vo.mapFromPublished (context, internalVO);
//Call business service passing context, connection and
//internal VO
ElMessageList bssvMessages = AddressBookProcessor.
addAddressBook (context, connection, internalVoO);
//Add messages returned from business service to message list
//for published business service.
messages.addMessages (bssvMessages) ;
//A published business service will send either warnings in
//the Confirm Value Object or throw a published business
//service Exception.
//I1f messages contains errors, throw the exception
if (messages.hasErrors()) {
//Get the string representation of all the messages.
String error = messages.getMessagesAsString();
//Throw new BusinessServiceException
throw new BusinessServiceException(error, context);
}
//Exception was not thrown, so create the confirm VO from
internal VO ConfirmAddAddressBook confirmvO =
new ConfirmAddAddressBook (internalVo) ;
confirmvO.setElMessagelList (messages) ;
finishPublishedMethod (context, "addAddressBook");
//return outVO, filled with return values and messages
return confirmvo;
} finally {
//Call close to clean up all remaining connections and
//resources.
close(context, "addAddressBook");

3.7.2 Extending a Published Business Service

You can add functionality to an existing published business service. Custom
processing must take place either before or after the business service call and typically,
all processing is within the same transaction boundary. You extend a published
business service by doing the following tasks:

1. Create a new class that extends the original published business service class.

Creating a Published Business Service 3-21

Customizing a Published Business Service

2. Create a new public method that calls the inherited method for which you are
extending functionality.

3. Create custom processing that takes place either before or after the business
service call. Typically, all processing will be within the same transaction boundary.
/ * %
* Published method for Customized Add Address Book
* This exposed method will call the method addAddressBook from
* parent class.
* @param vo the value object representing input data for adding
* AddressBook record
* @return confirmVO the response data from the business process for
* adding an address book record.
* @throws BusinessServiceException
*/
public ConfirmAddAddressBook customAddAddressBook
(AddAddressBook vo) throws BusinessServiceException {
//perform all work within try block, finally will clean up
//any connections
IContext context = null;
IConnection connection = null;
try {
//Call start published method, passing context of null
//will return context object so BSFN or DB operation can
//be called later.
//Context will be used to indicate default transaction
//boundary, as well as access to formatting and logging
//operations.
context = startPublishedMethod (context,
"customAddAddressBook" ,vo) ;
//Create new published business service messages object
//for holding errors and warnings that occur during
//processing.
ElMessagelList messages = new ElMessageList();

//TODO: This is where a customer customization would be
//coded.

//Whatever is coded here is included within the
//transaction but occurs prior to calling the published
//business service.

//Call published business service method
ConfirmAddAddressBook confirmVO = this.addAddressBook
(context, connection, vo);

//TODO: This is where a customer customization would be
//coded.

//Whatever is coded here is included within the
//transaction but occurs after calling the published
//business service.

//published business service will send either warnings
//in the Confirm Value Object or throw a published
//business service Exception.

//1f messages contains errors, throw the exception

if (messages.hasErrors()) {
//get the string representation of all the messages
String error = messages.getMessagesAsString();
//Throw new BusinessServiceException

3-22 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Deprecating a Published Business Service

throw new BusinessServiceException(error, context);

}

//Call finish published method, passing the context
//to commit default implicit transaction(in case of no
//exceptions)
finishPublishedMethod (context, "customAddAddressBook");
//return confirmvO, mapped with return values and
/ /messages
return confirmvo;

} finally {

//Call close to clean up all remaining connections and
//resources.
close(context, "customAddAddressBook") ;

3.8 Deprecating a Published Business Service

When the signature of a published business service is modified, a new published
business service is created to replace the original published business service. The JD
Edwards EnterpriseOne deprecation policy for published business services is to ship
and support both the original and the replacement published business service for the
first release of the replacement published business service. For the second release of
the replacement published business service, only the replacement published business
service is shipped, but both the original and replacement published business services
are supported. For the third release, only the replacement published business service is
shipped and supported. The original published business service is no longer
supported. For example, oracle.el.bssv.JP010003 is shipped with 9.0. For 9.1,
oracle.el.bssv.JP010022 is created to replace JP010003. Both published business services
are shipped and supported for Release 9.1. For Release 9.2, only the replacement
published business service (JP010022) is shipped, but both published business services
(JP010022 and JP010003) are supported. For Release 9.3, only JP010022 is shipped and
supported. The original published business service (JP010003), which was shipped
with 9.0 and 9.1, is no longer supported.

Creating a Published Business Service 3-23

Deprecating a Published Business Service

3-24 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

4

Creating a Business Service

This chapter contains the following topics:

= Section 4.1, "Understanding Business Services"

= Section 4.2, "Developing a Business Service"

= Section 4.3, "Managing Business Service Components"
= Section 4.4, "Calling Business Functions"

= Section 4.5, "Calling Database Operations"

= Section 4.6, "Calling Other Business Services"

s Section 4.7, "Managing Business Service Properties”

= Section 4.8, "Handling Errors in the Business Service"
= Section 4.9, "Modifying a Business Service"

= Section 4.10, "Documenting a Business Service"

4.1 Understanding Business Services

Business services are JD Edwards EnterpriseOne Object Management Workbench
(OMW) objects that are called by a published business service to accomplish a specific
task. Business service classes are written in Java programming language and provide
methods that access the business logic in JD Edwards EnterpriseOne for many
supported business transactions, such as journal entries, exchange rates, accounts
payable vouchers, inventory lookups, pricing, sales orders, and so on. A business
service method can call a business function or a database operation. A utility business
service performs a repeatable task and can be called by multiple business service
classes.

This chapter focuses on business services that call a business function. Because many
of the rules and best practices are the same for business services that call business
functions and business services that call database operations, discussions in this
chapter are applicable to both types of business services. However, some differences
and exceptions exist, and Chapter 5, Creating a Business Service That Calls a Database
Operation focuses on differences for each type of database operation.

You use wizards, which are provided by JDeveloper and the business services
framework, and the Java programming language to create business service classes. If
you are creating a new business service, you first create an OMW object. When you
launch JDeveloper from OMW, the project should be created automatically. If the
project is not created, you use the Project wizard that is provided by JDeveloper to
create a project for your business service. You use the Business Service Class wizard to

Creating a Business Service 4-1

Developing a Business Service

create a business service class that has one or more methods. A method can call a
business function, a database operation, or another business service (for example, a
utility business service method) to accomplish a specific task. The business services
framework provides two wizards: the Create Business Function Call wizard to help
you create methods that call business functions and the Create Database Call wizard to
help you create methods that call database operations.

In addition to wizards, the business services framework provides a set of foundation
packages that help you create a business service method. Each foundation package
contains a set of interfaces and related classes. All business service classes extend from
the BusinessService foundation class. The wizards that are provided by the business
service framework enable you to create code that is specific for calling a business
function or a database operation. Code samples, using a specific example of adding an
address book record that uses AddressBook master business function, are provided
throughout this chapter to demonstrate general concepts. Rules and best practices are
discussed if they are applicable to the topic.

This business service class diagram shows the main business service class
(AddressBookProcessor) and the internal value object class (Internal Add AddressBook)
and its components:

Figure 4-1 Business service class diagram

oracle.e1.bssvfoundation.base
BusinessService

]

oracle.e1.bssv.J0100010

AddressBookProcessor
T
|
\ 4 .
oracle.e1.bssvfoundation.base
: ValueObiject
oracle.e1.bssv.J0100010.valueobject ZF
InternalAddAddressBook
. oracle.e1.bssv.J0100030.valueobject
InternalPhone

These features are illustrated in the diagram:
s AddressBookProcessor extends BusinessService class.

» InternalAddAddressBook and its components extend ValueObject class.

4.2 Developing a Business Service

A business service represents one or more Java classes that expose public methods. A
business service class can expose multiple methods, such as add AddressBook,
addAddressBookWithPhones, changeAddressBook, and so on. The methods access
logic in JD Edwards EnterpriseOne and support a specific step in a business process,
for example, adding an address book record. When you create the business service,
you should consider including methods that have similar functionality and

4-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Business Service Components

manageability in the same business service. If multiple processes are similar and can
reuse code, then these methods should exist in the same business service.

4.2.1 IContext and IConnection Objects

A business service public method must contain two objects, IContext and IConnection,
as part of its signature. The IContext object provides the default connection for the
business function call and holds an identifier that ties together all processing for the
business service. The IConnection object enables the business service method to be run
under an explicit transaction; and if the connection is null, the default transaction is
used. The context and connection objects are passed to the public methods of the
business service class, which in turn passes these objects to any of the methods that
call a business function. To indicate the boundaries of the internal method, business
service public methods must call the inherited methods, startInternalMethod(context,
"methodName", valueObject) before any other logic and finishInternalMethod(context,
"methodName", valueObject) when all other processing is finished.

This code sample shows how to use IContext and IConnection:

public static ElMessageList addAddressBook (IContext context, IConnection
connection, InternalAddAddressBook internalVO) {
//call start internal method, passing the context (which was
//passed from published business service)
startInternalMethod (context, "addAddressBook",internalVo) ;

// calls method which then executes BSFN AddressBookMBF
ElMessageList messages = callAddressBookMasterMBF
(context,connection, internalVO, programId);

// call finish internal method passing context
finishInternalMethod (context, "addAddressBook");
//return status code from BSFN call

return messages;

See Also:

= Transaction Processing.

4.3 Managing Business Service Components

This section discusses naming conventions and concepts for creating business service
classes, methods, internal value objects, and fields. Code samples are provided as
examples for you to follow. Rules and best practices are also discussed.

4.3.1 Business Service Class Names

The naming convention for a business service class is to use the functional description
with Processor added at the end of the name, for example, AddressBookProcessor and
AddressBookQueryProcessor.

This code sample shows the naming convention for a business service class:

public abstract class AddressBookProcessor extends BusinessService {

}

Creating a Business Service 4-3

Managing Business Service Components

4.3.2 Business Service Method Names

A method is an operation that performs a business process. The naming convention for
a business service public method is to name the public method the same name as the
method in the published business service, for example, add AddressBook.

This code sample shows the naming convention for a public method:

public static ElMessageList addAddressBook (IContext context,
IConnection connection, InternalAddAddressBook internalVO) {

}

4.3.3 Business Service Internal Value Object Names

Internal value object classes are the input and output parameters of the business
service methods. These value objects are not published interfaces. You use these
internal value objects to map values to and from a business function. Internal value
objects can be composed of fields, compounds, and components.

The naming convention for an internal value object class is to use the published value
object name with Internal added to the beginning of the name. Some examples of
names for internal value objects are Internal Add AddressBook,
InternalProcessPurchaseOrder, and InternalEntity.

This code sample shows the naming convention for an internal value object class:

public class InternalAddAddressBook extends ValueObject {
}

Database operations use a different convention for naming internal value objects.

See Understanding Database Operations.

4.3.3.1 Field Names

The naming convention for field names in the internal value object is to use a name
that matches the data structure member names of the business function that is being
called, for example, mnAddressNumber and szMailingName. The number of fields
exposed through the internal value object may be larger than the published value
object, and you should include all of the possible business data fields and flag fields in
the internal value object because this object can be used by internal applications.

4.3.3.2 Compound and Component Names for a Business Service

By design, the internal value object has a flat hierarchical structure, meaning that the
structure contains few, if any, compounds and components. Compounds and
components that exist within an internal value object should be named similarly; for
example, the compound name should be prefaced with the word Internal (such as,
InternalPhones).

The following code sample shows an internal value object class that has one
compound (internalPhones) and many field names (szAlphaName, szSearchType, and
so on) at the top level that correspond to business function data structure member
names.

public class InternalAddAddressBook extends ValueObject {
private String szLongAddressNumber;
private MathNumeric mnAddressBookNumber;
private String szTaxId;

4-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Business Service Components

private String szMailingName;
private String szAddressLinel;
private String szAddressLine2;
private String szAddressLine3;
private String szAddressLine4;
private String szPostalCode;
private String szCity;

private String szCounty;
private String szState;
private String szCountry;
private String szAlphaName;
private String szSearchType;
private String szVersion;
private String szBusinessUnit;
private Date jdDateEffective;
private ArrayList internalPhones;

4.3.4 Creating a Business Service Class

The business service foundation provides the Business Service Object wizard, which
you use to create new business service classes. This wizard follows the methodology
discussed in this document. The Business Service Object wizard prompts you for the
class name, an internal input value object class, and a method name, and then it
generates code for a business service class. The wizard also generates comments and
TODO: statements where necessary to help you complete the generated code.

See "Creating Business Service Classes" in the JD Edwards EnterpriseOne Tools Business
Services Development Guide.

4.3.4.1 Rules

When you create a business service class, follow these rules:

= Business service classes are abstract classes and must extend the foundation class
BusinessService. BusinessService is the parent class that provides foundation
support for transactions and logging.

= Business service classes have only static methods, so to reinforce static behavior
and prevent the class from being instantiated, declare an abstract class.

This code sample illustrates extending the BusinessService class and declaring the
class as abstract:

public abstract class AddressBookProcessor extends BusinessService {

You design and develop a business service as a static class that processes multiple
requests simultaneously. A static class means that only one instance of the class exists
in Java virtual memory (JVM), regardless of the number of simultaneous requests
being processed. These requests are also called threads.

Static classes reduce object creation. If a business service was not static, one business
service would exist for each request. As each request finishes, the class would be
released and eventually the system reclaims the memory that the class used. Creating
and releasing objects repeatedly causes performance degradation, because more
memory is used and more CPU cycles are required.

Creating a Business Service 4-5

Managing Business Service Components

To ensure that the business service provides a thread-safe environment, you cannot
use instance variables in the business service class. An instance variable is a value that
is useful to only one request, for example, a counter. A thread-safe environment means
that the multiple requests (threads) that are being processed simultaneously do not
interfere with each other. The absence of instance variables helps ensure thread safety
at compile time. You can include static variables in the business service class. A static
variable is a value that is useful to all requests, for example, a cached value that is used
to specify a language. A static variable is shared data, independent of a request.

4.3.5 Declaring a Business Service Public Method

A public method is an operation that can be used by other classes and methods. The
signature takes IContext, IConnection, and an internal value object and returns
E1MessageList.

You can add additional public methods to a business service class by accessing the
JDeveloper Code Templates and selecting E1SM — EnterpriseOne Business Service
Method Call. This template generates code for a public method. You press Tab to move
through the highlighted fields and complete the code. This template enforces
methodology and gives you a head start for developing a new public method.

This code sample shows how to declare a public message:

public static ElMessageList addAddressBook(IContext context,
IConnection connection, InternalAddAddressBook internalVO) {
startInternalMethod (context, "addAddressBook", internalVO);
// call BSFN AddressBookMBF
ElMessageList messages = callAddressBookMasterMBF (context,
connection, internalVO, programlD);
finishInternalMethod (context, "addAddressBook");
return messages;

4.3.5.1 Rules for Declaring a Business Service Public Method
When you declare a public method for a business service class, follow these rules:
= Business service classes must expose public static methods to a published business

service class. A business service class cannot contain instance variables or
nonstatic methods.

= Business service methods that are to be used by a published business service must
return an E1MessageList object to that published business service. The caller of the
business service determines how to handle the errors and whether to create and
throw an exception. The signature of the business service method must contain
IContext and IConnection objects and a value object class that represents an
internal value object that passes values to the business function calls.

4.3.5.2 Best Practices for Private and Protected Methods

When you declare methods other than the public method (for example, a utility
method), consider these best practices:

= Declare nonpublic methods as protected or private; all methods must be static.

= Keep scope as private as possible.

4-6 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Business Service Components

4.3.6 Creating Internal Value Objects

Internal value object classes and their components extend the foundation ValueObject
class.

The business service foundation provides value object class wizards that help you
create internal value object classes that follow methodology rules. The value object
wizards also assist you by pulling useful information from the JD Edwards
EnterpriseOne data dictionary into the Javadoc for value objects. You must create
accessor methods (get and set methods) because the value object wizards do not
generate these methods. Also, you must provide the description name of the field for
the Javadoc.

The value object wizards enable you to create value object classes from the data
structures that are defined within a business function or from database tables or
business views. Remember that the wizard uses the field name that comes from the
data structure, table, or business view to generate member variables for the internal
value object class. These generated variables look very much like JD Edwards
EnterpriseOne data items.

This code sample is from a business function:
/ * %
* Address Line 1
* EnterpriseOne Alias: ADDI
* EnterpriseOne field length: 40
*/
private String szAddressLinel = null;

This code sample is from a table:
/ * %
* CreditMessage
* A value in the user defined code table
* that indicates the credit status of a customer or supplier
* EnterpriseOne Alias: CM
* EnterpriseOne field length: 2
* EnterpriseOne User Defined Code: 00/CM
*/
private String F0101_CM = null;

See Understanding Database Operations.

See "Creating Business Function Calls" in the JD Edwards EnterpriseOne Tools Business
Services Development Guide.

See "Creating Database Operation Calls" in the JD Edwards EnterpriseOne Tools Business
Services Development Guide.

4.3.6.1 Rules for Internal Value Object

This list identifies the rules for internal value objects:

» The structure of an internal value object has a flatter hierarchy than the published
value object, because the internal value object has few if any compounds or
components.

= The collections within the internal value object can be created using either
ArrayList or Array. An ArrayList is easier to work with because it can be
dynamically sized. Arrays are necessary when the internal value object will be
serialized. A business service that exposes JD Edwards EnterpriseOne
functionality to a third party can use an ArrayList. A business service called from

Creating a Business Service 4-7

Managing Business Service Components

a business function (for example, using web service callout when JD
EnterpriseOne is a web service consumer) must use an Array because the
ArrayList data type cannot be serialized.

For example, you can use the following code sample to declare the compound for
phones:

Private ArrayList internalPhones = null;

ArrayList is populated during business service processing, and in the preceding
code sample, the collection contains InternalPhone objects.

Or you can use this code sample to declare the compound for phones:

Private InternalPhone[] internalPhones = null;

= The data types for internal value object classes match the types used in the JD
Edwards EnterpriseOne data structures, as identified in the following table:

Internal Value Object Data Type Usage

oracle.el.bssvfoundation.util. MathNumeric Use for all fields that are declared as numeric
in JD Edwards EnterpriseOne.

java.lang.String Use for string and char fields.

java.util.Date Use for all JDEDate fields in JD Edwards
EnterpriseOne.

java.util. GregorianCalendar Use for all UTIME fields in JD Edwards
EnterpriseOne.

4.3.6.2 Best Practices for Internal Value Object

When deciding which fields to include in the internal value object class, consider that
all data fields that the application accepts and the function uses are valid fields.

If an internal business function call passes processing fields, you must determine
whether these fields should be exposed in the internal value object class. An example
of this type of processing field would be a field that is used to manipulate a cache. If a
business service is called from another business service and a processing field is
exposed and passed in from the calling business service, will the behavior be as
expected? If not, that processing field should not be exposed in the internal value
object class. Fields that should not be exposed in the internal value object class can be
handled by creating another value object called InternalProcessing. The
InternalProcessing value object can contain all unexposed processing fields as member
variables. The InternalProcessing value object should not be part of the
InternalValueObject class and should not be exposed from the business service method
signature. The InternalProcessing value object can be passed in the business function
method calls but is not passed in or out of the business service method.

This code sample shows an InternalProcessing value object:
/ * %
* InternalProcessing contains processing fields used for
* ProcessPurchaseOrderAcknowledge
* but these will not be exposed fields.
*/
public class InternalProcessing extends ValueObject {
/ * %
* Action Flag
* EnterpriseOne Key Field: false
* EnterpriseOne Alias: ACFL

4-8 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Business Service Components

* EnterpriseOne field length: 1
* EnterpriseOne User Defined Code: 08/AC
*/
private String cProcessHeaderDetailFlag = null;
/**
* Job Number
* EnterpriseOne Key Field: false
* EnterpriseOne Alias: JOBS
* EnterpriseOne field length: 8
* EnterpriseOne decimal places: 0
* EnterpriseOne Next Number: 00/4
*/
private MathNumeric mnF4311JobNumber = null;
/*'k
* Transaction ID
* EnterpriseOne Key Field: false
* EnterpriseOne Alias: TCID
* EnterpriseOne field length: 15
* EnterpriseOne decimal places: 0
*/
private MathNumeric mnTransactionID = null;
/**
* Process ID
* EnterpriseOne Key Field: false
* EnterpriseOne Alias: PEID
* EnterpriseOne field length: 15
* EnterpriseOne decimal places: 0
*/
private MathNumeric mnProcessID = null;
/**
* Job Number
* EnterpriseOne Key Field: false
* EnterpriseOne Alias: JOBS
* EnterpriseOne field length: 8
* EnterpriseOne decimal places: 0
* EnterpriseOne Next Number: 00/4
*/
private MathNumeric mnCacheJobNumber = null;

This code sample shows how to pass the InternalProcessing value object to business

function methods:

public static ElMessageList processPurchaseOrderAcknowledge

(IContext context,IConnection connection, InternalProcessPurchase
OrderAcknowledge internalVO) {

//Call start internal method, passing the context (which was

//passed from published business service).

startInternalMethod (context, "processPurchaseOrderAcknowledge",
internalVo) ;

//Create new message list for business service processing.

ElMessagelList messages = new ElMessageList();

InternalProcessing internalProcessingVO = new
InternalProcessing () ;

//TODO: call method (created by the wizard), which then

//executes Business Function or Database operation.

messages = callPurchaseOrderAcknowledgeNotify (context,
connection, internalVO,internalProcessingVoO) ;

//TODO: add messages returned from El processing to business

//service message list.

//Call finish internal method passing context.

Creating a Business Service

4-9

Managing Business Service Components

finishInternalMethod (context, "processPurchaseOrderAcknowledge

//Call finish internal method passing context.
return messages;

* Calls the PurchaseOrderAcknowledgeNotify (B4302190) business
* function which has the D4302190A data structure.
* @param context conditionally provides the connection for the
* business function call and logging information
* @param connection can either be an explicit connection or null.
* If null the default connection is used.
* @param TODO document input parameters
* @return A list of messages if there were application errors,
* warnings,or informational messages. Returns null if there were
* no messages.
*/
private static ElMessageList callPurchaseOrderAcknowledgeNotify
(IContext context, IConnection connection, InternalProcessPurchase
OrderAcknowledge internal VO, InternalProcessing internalProcessingVO) {
BSFNParameters bsfnParams = new BSFNParameters();
// map input parameters from input value object
bsfnParams.setValue ("cProcessHeaderDetailFlag",
internalProcessingVo.
get CProcessHeaderDetailFlag());
bsfnParams.setValue ("mnF4311JobNumber", internalProcessingVoO.
getMnF4311JobNumber ()) ;
bsfnParams.setValue ("mnTransactionID", internalProcessingVoO.
getMnTransactionID()) ;
bsfnParams.setValue ("mnProcessID", internalProcessingVO.get
MnProcessID());
bsfnParams.setValue ("mnCacheJobNumber", internalProcessingVoO.
getMnCacheJobNumber ()) ;
bsfnParams.setValue ("cHeaderOrderStatusCode", internalVO.get
CHeaderOrderStatusCode()) ;
bsfnParams.setValue ("mnOrderNumber", internalVO.getMnOrder

Number ()) ;

bsfnParams.setValue ("szOrderType", internalVO.
getSzOrderType()) ;

bsfnParams.setValue ("szOrderCompany", internalVO.getSzOrder
Company ()) ;

//get bsfnService from context

IBSFNService bsfnService = context.getBSFNService();

//execute business function

bsfnService.execute (context, connection, "PurchaseOrder
AcknowledgeNotify",bsfnParams) ;

//map output parameters to output value object

internalProcessingV0.setCProcessHeaderDetailFlag (bsfnParams.
getValue ("cProcessHeaderDetailFlag") .toString());

internalProcessingV0.setMnF4311JobNumber ((MathNumeric)bsfn
Params.getValue ("mnF4311JobNumber")) ;

internalProcessingVO0.setMnTransactionID ((MathNumeric)bsfn
Params.getValue ("mnTransactionID"));

internalProcessingVo0.setMnProcessID((MathNumeric)bsfnParams.
getValue ("mn=ProcessID"));

internalProcessingVO0.setMnCacheJobNumber ((MathNumeric)bsfn
Params.getValue ("mnCacheJobNumber")) ;

internalVO.setCHeaderOrderStatusCode (bsfnParams.
getValue ("cHeaderOrderStatusCode") .toString()) ;

4-10 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Calling Business Functions

internalVO0. setMnOrderNumber ((MathNumeric)bsfnParams.getValue
("mnOrderNumber")) ;

//return any errors, warnings, or informational messages to the
//caller
return bsfnParams.getElMessageList () ;

4.4 Calling Business Functions

A business function is an encapsulated set of business rules and logic that can be
reused by multiple applications. Business functions provide a common way to access
the JD Edwards EnterpriseOne database. A business function performs a specific task.

You use the business service foundation Business Function Call Wizard to create a
business function call.

See "Understanding Business Function Calls" in the JD Edwards EnterpriseOne Tools
Business Services Development Guide.

This code sample is generated by the Business Function Wizard:

//calls method which then executes BSFN AddressBookMBF

//RI: This private function is created by the wizard, The
//business function will be executed inside this internal function
messages = callAddressBookMasterMBF (context, internalVO,programId);

The wizard creates a generic method. You modify the signature of the method and
complete the code for the objects that will be accessed for mapping to and from the
business function call. The wizard creates InputVOType as a placeholder in the
signature for the internal value object class name that you provide.

This code sample shows a business function call that was created by the wizard:
/ * %
* Calls the AddressBookMasterMBF (N0100041) business function which has
* the D0100041 data structure.
* @param context provides the connection for the business function call
* and logging information
* @param TODO document input parameters
* @return A list of messages if there were application errors, warnings,
* or informational messages. Returns null if there were no messages.
*/
private static ElMessageList callAddressBookMasterMBF (IContext
context, IConnection connection, InputVOType internalVO) {
BSFNParameters bsfnParams = new BSFNParameters();
// map input parameters from input value object
bsfnParams.setValue("cActionCode", internalVO.getCActionCode());
bsfnParams.setValue("cUpdateMasterFile", internalVO.getCUpdateMaster
File());
bsfnParams.setValue("cProcessEdits", internalVO.getCProcessEdits());
bsfnParams.setValue ("cSuppressErrorMessages", internalVO.getCSuppress
ErrorMessages ()) ;
bsfnParams.setValue("szErrorMessageID", internalVO.getSzErrorMessage

ID());
bsfnParams.setValue ("mnSameAsExcept", internalV0.getMnSameAsExcept());
bsfnParams.setValue ("mnAddressBookNumber", internalVO.getMnAddressBook
Number ()) ;

try {

Creating a Business Service 4-11

Calling Business Functions

4-12

//get bsfnService from context
IBSFNService bsfnService = context.getBSFNService();
//execute business function
bsfnService.execute (context, connection, "AddressBookMasterMBF",
bsfnParams) ;
} catch (BSFNServiceInvalidArgException invalidArgEx) {
//Create error message for Invalid Argument exception and return
//it in ErrorList
ElMessageList returnMessages = new ElMessagelList();
returnMessages.addMessage (new ElMessage(context, "018FIS",
invalidArg
Ex.getMessage()));
return returnMessages;
} catch (BSFNServiceSystemException systemEx) {
//Create error message for System exception and return it in
//ErrorList
ElMessageList returnMessages = new ElMessageList();
returnMessages.addMessage (new ElMessage(context, "019FIS",
systemEx.getMessage()));
return returnMessages;
}
//map output parameters to output value object
internalV0. setMnAddressBookNumber (bsfnParams.getValue ("mnAddressBook
Number") ;
internalVO0.setSzLongAddressNumber (bsfnParams.getValue ("szLongAddress
Number") ;
internalV0.setSzTaxId (bsfnParams.getValue ("szTaxId"));
internalV0.setSzAlphaName (bsfnParams.getValue ("szAlphaName")) ;
internalV0.setSzSecondaryAlphaName (bsfnParams.getValue ("szSecondary
AlphaName")) ;
internalV0.setSzMailingName (bsfnParams.getValue ("szMailingName")) ;
internalVO.setSzSecondaryMailingName (bsfnParams.getValue ("szSecondary
MailingName"));
internalV0.setSzDescriptionCompressed (bsfnParams.getValue
("szDescriptionCompressed")) ;
internalV0.setSzBusinessUnit (bsfnParams.getValue("szBusinessUnit"));
internalV0.setSzAddressLinel (bsfnParams.getValue ("szAddressLinel")) ;
//return any errors, warnings, or informational messages to the caller
return bsfnParams.getElMessagelList () ;

After the wizard creates the code for the generic method, you modify the code as
needed. You might need to:

= Add parameters to be passed.

At a minimum, the internal value object includes an IContext object and an
IConnection object, generated by the wizard, and an internal value object, which
you define. You may need to pass an additional parameter such as an
internalProcessing value object for processing fields that should not be exposed.

= Fix mappings if required.

The generated code assumes that all fields can be mapped directly to and from the
internal value object. If an additional structure exists in the internal value object or
some fields should be mapped from class constant fields, you must fix the
mapping statements where this assumption is not true. JDeveloper identifies
incorrect statements.

= Fix the data type of the object retrieved from bsfnParams.

JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Calling Business Functions

The generated code adds a cast argument when mapping to internalVO by getting
values from the bsfnParams object. The bsfnParams object is a collection of objects
and when an object is retrieved, the type needs to be cast to the correct data type
so that it can be added to the internalVO reference, as illustrated in this code
sample:

private static ElMessageList callAddressBookMasterMBF (IContext context,
IConnection connection,
InternalAddAddressBook internalVo,
String programId) {
// create new bsfnParams object
BSFNParameters bsfnParams = new BSFNParameters();
//set values for bsfn params based on internal vo attribute values
bsfnParams.setValue ("cActionCode", ACTION_CODE_ADD) ;
bsfnParams.setValue ("cUpdateMasterFile", UPDATE_MASTER_TRUE) ;
bsfnParams.setValue ("cProcessEdits", PROCESS_EDITS_TRUE) ;
bsfnParams.setValue ("cSuppressErrorMessages", SUPPRESS_ERROR_FALSE) ;
bsfnParams.setValue("szVersion", internalVO.getSzVersion());
bsfnParams.setValue ("mnAddressBookNumber",
internalV0.getMnAddressBookNumber ()) ;
bsfnParams. setValue ("szLongAddressNumber",
internalVO.getSzLongAddressNumber ()) ;
bsfnParams.setValue("szTaxId", internalV0.getSzTaxId());
bsfnParams.setValue ("szSearchType", internalVO.getSzSearchType());

bsfnParams.setValue("szState", internalVO.getSzState());
bsfnParams.setValue ("szCountry",
internalVO.getSzCountry());
//set program id to value retrieved in business service properties
bsfnParams.setValue ("szProgramId", programID);
try {
//get bsfnService from context
IBSFNService bsfnService = context.getBSFNService();
//execute business function

bsfnService.execute (context, connection, "AddressBookMaster
MBF", bsfnParams);
} catch (BSFNServiceInvalidArgException invalidArgEx) {
//Create error message for Invalid Argument exception and
//return it in ErrorList
ElMessageList returnMessages = new ElMessageList();
returnMessages.addMessage (new ElMessage(context, "018FIS",
invalidArgEx.getMessage()));
return returnMessages;
} catch (BSFNServiceSystemException systemEx) {
//Create error message for System exception and return it in
//ErrorList
ElMessageList returnMessages = new ElMessageList();
returnMessages.addMessage (new ElMessage (context, "019FIS",
systemEx.getMessage()));
return returnMessages;
}
//set internal VO attributes based on values passed back from bsfn
//Must cast object to appropriate data type coming from bsfnParams
collection.
internalVO0. setMnAddressBookNumber ((MathNumeric)bsfnParams.
getValue ("mnAddressBookNumber")) ;
internalVO. setSzLongAddressNumber ((String)bsfnParams.
getValue ("szLongAddressNumber")) ;
internalVO.setSzCountry ((String)bsfnParams.getValue ("szCountry"));

Creating a Business Service 4-13

Calling Database Operations

internalVO.setSzBusinessUnit ((String)bsfnParams.
getValue ("szBusinessUnit")) ;
internalVO.setJdDateEffective ((Date)bsfnParams.
getValue("jdDateEffective"));
ElMessageList messages = bsfnParams.getElMessageList();
//set prefix to the message list being returned to provide more
information on errors
bsfnParams.getElMessagelList () .setMessagePrefix ("AB MBF N0100041");
//return any errors, warnings, or informational messages to the
//caller
return bsfnParams.getElMessageList();

When you run a business function, two exceptions, BSFNServicelnvalid ArgException
and BSFNServiceSystemException, are thrown. The generated code runs the business
function within a try/catch block, and in the event that an invalid argument is passed
to the business function, the error will be caught and added to the message list and
returned to the caller. The same behavior occurs if a database exception occurs within
the business function. This code sample shows a try/catch block:

try {
//get bsfnService from context
IBSFNService bsfnService = context.getBSFNService();
//execute business function
bsfnService.execute (context, connection, "AddressBookMasterMBF",
bsfnParams) ;
} catch (BSFNServiceInvalidArgException invalidArgEx) {
//Create error message for Invalid Argument exception and return it in
ErrorList
ElMessageList returnMessages = new ElMessageList();
returnMessages.addMessage (new ElMessage (context, "018FIS",
invalidArgEx.getMessage()));
return returnMessages;
} catch (BSFNServiceSystemException systemEx) {
//Create error message for System exception and return it in ErrorList
ElMessageList returnMessages = new ElMessageList();
returnMessages.addMessage (new ElMessage (context, "019FIS",
systemEx.getMessage()));
return returnMessages;

4.5 Calling Database Operations

You can create business services that call database operations. You use the business
service foundation Database Call wizard to create these business service methods.
Database operations include query, insert, update, and delete.

This code sample shows code that is generated by the Database Call Wizard:

//calls method which then executes jdbj callto the table
//selected.
messages = selectF0101 (context, internalVO, maxRows);

The wizard creates a generic method. You modify the signature of the method and
complete the code for the objects that will be accessed for mapping to and from the
database operation call. The wizard creates InputVOType as a placeholder in the
signature for the internal value object class name that you provide.

The wizard generates unique code for each type of database operation.

4-14 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Calling Other Business Services

See Also:
s Understanding Database Operations.

s "Understanding Database Operation Calls" in the JD Edwards
EnterpriseOne Tools Business Services Development Guide.

4.6 Calling Other Business Services

A method in one business service can call a method in another business service. For
example, SupplierProcessor.addSupplier could call

AddressBookProcessor.add AddressBook or AddressBookProcessor.add AddressBook
could call PhonesProcessor.addPhones.

In this code sample, the PhonesProcessor.addPhones method takes an
internalProcessPhones value object; this object is created and populated before calling
the method:

//RI: Business service call to business service

//call PhonesProcessor

//only call phones processor if phones exist.

if (internalVO.getInternalPhones() != null) {

//create new internalVO for phones processor
InternalProcessPhone phones = new InternalProcessPhone () ;
//map data from internalVO to phones processor internalVO
phones . setMnAddressBookNumber (internalVO.getMnAddressBook

Number ()) ;
phones.setPhones (internalVO.getInternalPhones()) ;
phones.setSzProgramlId (programId) ;
//call phones processor to add phones
ElMessageList phonesMessages =
RI_PhonesProcessor.addPhones (context, connection, phones);
//1f errors occur, change the error type to WARNING because
//we don't want to stop processing of Address Book record due
//to error while adding phones, interpret as warning instead.
if (phonesMessages.hasErrors()) {
phonesMessages .changeMessageType (ElMessage.ERROR_MSG_TYPE,
ElMessage.WARNING_MSG_TYPE) ;
//set list of phones to list w/ only added phones.
internalVO.setInternalPhones (phones.getPhones());
}
//add messages returned from phones processor
messages.addMessages (phonesMessages) ;

A business service method can call a business service utility method. For example,
PurchaseOrderProcessor. processPurchaseOrder can call ItemProcessor.processitem
and EntityProcessor.processEntity.

This code sample shows a business service call to a business service utility:

//RI: Business service call to business service

//call business service utility

//This business service returns a status code, this example will not

//use the status code to drive functionality, but

//could be evaluated to change processing.

InternalEntityUtility utilityEntity = new InternalEntityUtility();

utilityEntity.setMnAddressBookNumber (internalV0.getMnAddressBook
Number ()) ;

utilityEntity.setSzLongAddressNumber (internalV0.getSzLongAddress
Number ()) ;

Creating a Business Service 4-15

Managing Business Service Properties

utilityEntity.setSzTaxId(internalVO.getSzTaxId());

ElMessageList entityMessages = EntityProcessor.processEntity(context,
connection, utilityEntity);
internalVO. setMnAddressBookNumber (utilityEntity.getMnAddressBook
Number ()) ;
internalV0.setSzLongAddressNumber (utilityEntity.getSzLongAddress
Number ()) ;
internalVO.setSzTaxId(utilityEntity.getSzTaxId());
//Don't stop processing in case of errors from utility, change type to
// warning and add them to error collection.
if (entityMessages.hasErrors())
entityMessages.changeMessageType (E1Message.ERROR_MSG_TYPE, ElMessage.
WARNING MSG_TYPE) ;
//take messages generated from EntityProcessor and add them to the
//high level value object.
if (retMessages == null)
{
retMessages = entityMessages;
}

else

{

retMessages.addMessages (entityMessages) ;

}

4.7 Managing Business Service Properties

Business service properties provide a way for you to change a value in a business
service method without changing the method code. A business service property
consists of a key and a value. The key is the name of the business service property and
cannot be changed. You use OMW to create business service properties.

See Also:

s "Understanding Business Service Properties” in the JD Edwards
EnterpriseOne Tools Business Services Development Guide.

s "Working with Business Services Properties" in the JD Edwards
EnterpriseOne Tools Object Management Workbench Guide.

4.7.1 Standard Naming Conventions for the Property Key

You can organize business service properties at the system level or at the business
service level. Business service properties defined at the system level are used by more
than one business service. Business service properties defined at the business service
level are used by only one business service.

4.7.1.1 System-Level Business Service Properties

The naming convention for system-level business service properties, used by multiple
business services, is to use SYS followed by a meaningful name that you provide. The
naming convention looks like this:

SYS_Free_Form

where Free_Form is a name that you enter.

4-16 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Managing Business Service Properties

This is an example of a name for a system-level business service property that enables
a user to define the program ID that is to be used by any of the master business
functions (MBFs) for processing:

SYS_PROGRAM_ID

4.7.1.2 Business Service Level Business Service Properties

The naming convention for business service-level business service properties, used by
only one business service, is to use the BusinessServiceName followed by a
meaningful name that you provide. The naming convention looks like this:

BusinessServiceName_Free_Form

This table provides examples of names for business service-level business service

properties:

Business Service Property Name Usage

J0100001_AB_MBF_VERSION This business service property allows the user to
define which processing version to use when
running the Address Book MBF when processing
from the AddressBook business service.

J0100021_AB_MBF_VERSION This business service property allows the user to
define which processing version to use when
running the Address Book MBF when processing
from the Customer business service.

J0100021_CUS_MBF_VERSION This business service property allows the user to

define which processing version to use when
running the Customer MBF when processing from
the Customer business service.

J4200040_BYPASS_BSFN_WARNINGS This business service property sets a Bypass
Warning Flag for sales order processing. If 1, the
bypass warning flag is true - treat as warnings, do
not stop processing. If 0, the bypass warning flag is
false - treat warnings as errors, stop processing.

J4200040_PREFIX_1 This business service property adds prefix text to an
error message that is returned from a business
function to give more specific context to the error
message. For example, if an error is returned for a
detail line, the value for the prefix message could be
"Line no. sent in:". This text is then concatenated
with the line number data and added as a prefix to
the error message.

See Handling Errors in the Business Service.

4.7.2 Business Service Property Methods

The ServicePropertyAccess class provides two utility methods for accessing property
values. These methods are:

= Get property value and return null/blank if no value exists in the database,
illustrated in this code sample:

getSvcPropertyValue (IContext context, java.lang.String key)

Example: String processingVersion = ServicePropertyAccess.
getSvcPropertyValue (context, SVC_PROPERTY_AB_MBF_PROC_VERSION) ;

Creating a Business Service 4-17

Managing Business Service Properties

= Get service property value, but if the value is null, use the provided default value,
illustrated in this code sample:

String getSvcPropertyValue (IContext context, java.lang.String key,

java.lang.String defaultVval)

Example: String programID = ServicePropertyAccess.getSvcPropertyValue
((Context)context, SVC_PROPERTY_PROGRAM_ID, "BSSV");

Both of these methods throw a ServicePropertyException message when the property
key is null or does not exist in the database. A business service must call these
methods in a try/catch block and catch the ServicePropertyException. You can handle
business service property errors by creating a new E1Message object that collects the
business service property exception message as well as other errors retrieved from
business function calls. The business service returns the E1Message object to its caller,
and the exception and error messages can be included in the
BusinessServiceException, which is thrown by the published business service. When
you create the business service, you determine whether to continue processing if an
exception is caught. If you allow processing to continue, a failure (an invalid value was
passed because of the ServicePropertyException) could occur in the call to the business
function. Including text for the exception offers more information as to why the error
occurred.

You can use the code template E1SD — EnterpriseOne Add Call to Service Property
with Default Value to generate code that calls the business service property method
where a default value is passed. The template generates the code and highlights the
fields that you need to change.

You can use this code sample as a model for handling business service properties:

public static final String SVC_PROPERTY AB_MBF_PROC_VERSION =
"J010010_AB_MBF_PROC_VERSION";

public static final String SVC_PROPTERY_PROGRAM_ID =
"SYS PROGRAM_ID";

//Call access Business Service Property to retrieve
//Program ID and processing Version
//create string so it can be passed to bsfn call
String programId = null;
//Call to return Business Service Properties - if fails
//to retrieve value, use default and continue.
try {
programId =
BusinessServicePropertyAccess.
getSvcPropertyValue (context, SVC_PROPERTY_PROGRAM_ID, "BSSV");
} catch (BusinessServicePropertyException se) {
context.getBSSVLogger () .app (context, "@@@Attempt to
retrieve Business Service Property failed", "Verify that key exists
in database as entered.", SVC_PROPERTY_PROGRAM_ID, se);
//Create new E1 Message using DD item for business
//service property exception.
ElMessage scMessage = new ElMessage (context,
"001FIS", SVC_PROPERTY_PROGRAM_ID) ;
//Add messages to final message list to be returned.
messages .addMessage (scMessage) ;

4-18 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Handling Errors in the Business Service

4.8 Handling Errors in the Business Service

The business service object exposes public methods that call business functions or
database operations to perform a specific business process. During business
processing, the business service captures errors and warnings in an array list and
returns this information to the published business service in an E1MessageList object.

4.8.1 Rules

All business services must return an E1MessageList object to the published business
service. The E1MessageList object must contain all errors, warnings, and information
messages that were collected throughout the business service processing.

4.8.2 Best Practices

When writing code for handling errors, remember these best practices:

The business service foundation provides methods that you can use to add prefix
messages to errors. You should add useful information such as key information or
detail line information when returning error messages. If you add a prefix to an
E1MessageList object that contains no errors, no prefix will be appended and no
error will be thrown.

This example shows how to add a prefix, which names the business function
where the messages occurred, to the message list:

bsfnParams.getElMessagelList () .setMessagePrefix ("AddressBookMasterMBF
(N0100041): ");

If the prefixed text can be translated to another language, use a business service
property with this naming convention for the text:

BSSVname_PREFIX_sequence

Use this code to attach the business service property as a prefix in an error
message:

private static final String SVC_PROPERTY_PHONE_ERR_PREFIX =
"JRO10030_PREFIX 1";

phonesMessages . setMessagePrefix (SVC_PROPERTY_PHONE_ERR_PREFIX +(i+1));

If an error condition that is not handled by the business function call occurs, you
can use a business service foundation method to create a new error and add the
error to the message list. This can be used when a checked exception is thrown by
business service foundation and you want to collect the exception as a message in
the E1MessageList. Examples of situations requiring a new E1Message are calling
the BSSVDataFormatter utility and retrieving business service properties. Because
the alias for the JD Edwards EnterpriseOne error to be returned must be passed to
the method, an error data dictionary item must exist in JD Edwards
EnterpriseOne.

This code shows creating a new E1Message:

new ElMessage (context, "001FIS", PROGRAM_1ID);

Creating a Business Service 4-19

Handling Errors in the Business Service

4.8.3 Collecting Errors

When multiple business functions are called, a potential exists for several errors and
warnings to be returned by the business functions. You should gather all errors and
warnings in the E1MessageList object for all of the business functions that are called so
that all errors and warnings are sent to the caller.

When a business service calls a business function, the business function collects all
style errors, defined as error messages in the JD Edwards EnterpriseOne data
dictionary, in an ArrayList. The business function always returns an E1MessageList
object to its caller. The E1MessageList object contains an ArrayList of the messages
returned from a business function call. If no messages are returned, the ArrayList is
empty. To determine the state of the E1MessageList object or to determine whether any
errors have occurred, you can use one of these methods to call the E1MessageList:

s hasErrors()
= hasWarning()
= hasInfoMessages()

The business service foundation provides several methods that let you add, remove,
change, and append to the ArrayList messages.

This code sample shows how to use hasErrors() to call the E1MessageList:

if (messages.hasErrors()) {

//Get the string representation of all the messages.
String error = messages.getMessagesAsString();
//Throw new BusinessServiceException

throw new BusinessServiceException(error, context);

This code sample shows adding a prefix to an E1MessageList to show where errors
occurred in a business function:

private static ElMessageList callAddressBookMasterMBF (IContext context,
IConnection connection,
InternalValueObject internalVo,
String programId) {

//create new bsfnParams object

BSFNParameters bsfnParams = new BSFNParameters();

//set values for bsfn params based on internal vo attribute values

bsfnParams.setValue ("mnAddressBookNumber",
internalVO.getMnAddressBookNumber ()) ;

bsfnParams.setValue ("szLongAddressNumber",
internalVO.getSzLongAddressNumber ()) ;

bsfnParams.setValue ("szTaxId", internalVO.getSzTaxId());

//execute the AddressBookMasterMBF business function

bsfnService.execute (context,connection, "AddressBookMasterMBF",bsfnParams) ;

//set internal VO attributes based on values passed back from bsfn
internalVO0. setMnAddressBookNumber ((MathNumeric)bsfnParams.getValue
("mnAddressBookNumber")) ;
internalV0.setSzLongAddressNumber ((String)bsfnParams.getValue
("szLongAddressNumber")) ;

internalVO0.setSzTaxId((String)bsfnParams.getValue("szTaxId") .
toString());

internalVO0.setSzAlphaName ((String)bsfnParams.getValue
("szAlphaName")) ;

4-20 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Handling Errors in the Business Service

bsfnParams.getElMessageList () .setMessagePrefix ("AddressBookMasterMBF
(N0100041): ");
//return any errors, warnings, or informational messages to the
//caller
return bsfnParams.getElMessageList();

This code sample shows calling the PhonesMBF within a loop and handling the errors
that are being collected:

public static ElMessageList addPhones (IContext context, IConnection
connection,
InternalProcessPhone internalVO) {
ElMessageList retMessages = new ElMessageList();

ElMessageList phonesMessages;
//Add All phones passed in
for (int i = 0; i < internalVO.getPhones().length; i++) {
phonesMessages = callPhonesMBFtoAdd (context, connection,
internalvo, 1);
//set message prefix to add line number
phonesMessages.setMessagePrefix ("Phone line no. sent in"+
(i+1));
//collect messages for all phones.
retMessages.addMessages (phonesMessages) ;
}
//send messages back to caller
return retMessages;

This sample code shows returning the messages to the caller and adding them to the
existing message object:

public static ElMessageList addAddressBook (IContext context,
IConnection connection,
InternalAddAddressBook internalVO) {
ElMessageList retMessages = null;

//if no errors in address book, continue and add phones.
if (retMessages != null && !retMessages.hasErrors()) {
ElMessageList phonesMessages;
//RI: Business service call to business service
//call PhonesProcessor

phonesMessages = PhonesProcessor.addPhones (context,
connection, phones) ;

//1f errors occur, change the error type to WARNING

if (phonesMessages != null && phonesMessages.hasErrors()){

phonesMessages .changeMessageType (E1Message.ERROR_MSG_

TYPE,
ElMessage.WARNING_MSG_TYPE) ;

}

if (retMessages == null)

{

retMessages = phonesMessages;

}

else

{

retMessages.addMessages (phonesMessages) ;

return retMessages;

Creating a Business Service 4-21

Modifying a Business Service

4.9 Modifying a Business Service

You can modify a business service providing that the change does not alter the
signature or behavior of the published business service. You can change a business
service in many ways, and how you change the business service depends on the
business service design and the type of change that is required. Any change to a
business service should be determined as part of the design process. You should ask
yourself these questions to determine whether the modifications affect the published
business service:

= Am I adding or removing required fields in the value object?
» Will these changes affect the way the existing published business service behaves?

If the answer is yes, you must create a new business service. You can copy and modify
the existing business service to create a new business service.

4.10 Documenting a Business Service

When you create code, use standard Javadoc practices to document both the business
service and the published business service classes. Javadoc comments should be added
for member variables for all value objects. Most of this is generated by the value object
wizards. However, you are responsible for making sure that the description for
exposed fields is added and is in context with the business process that is being
supported.

This code is an example of Javadoc for a member variable:
/ * %*

* Address Line 1

* Line 1 of the Address.

* EnterpriseOne Key field: false
*

*

*

EnterpriseOne Alias: addl
EnterpriseOne field length: 40
/

private String addressLinel = null;

This documentation is a result of the preceding Javadoc:

Figure 4-2 Javadoc documentation

addressLine
Private java.lang. String addressLine

Address Line 1
Line 1 of the Address
EnterpriseOne Key Field: false

EnterpriseOne Alias: ADD1
EnterpriseOne field length: 40

4-22 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Documenting a Business Service

You should include Javadoc comments for all public methods. The behavior of the
public methods should also be documented.

This code sample shows how to document a method using Javadoc:
/ * %
* Method addAddressBook is used for adding Address Book information
* into EnterpriseOne, this includes basic address information plus
* phones. If a phone cannot be added, the Address Book record will
* still be added, but warning messages will be returned for the
* corresponding phones that caused errors.
* @param context conditionally provides the connection for the database
* operation and logging information
* @param connection can either be an explicit connection or null. If
* null the default connection is used.
@param internalVO represents data that is passed to EnterpriseOne for
* processing an AddressBook record.
* @return an ElMessage containing the text of any errors or warnings
* that may have occurred
*/
public static ElMessageList addAddressBook (IContext context,
IConnection connection,
InternalAddAddressBook internalVO) {

This documentation is a result of the preceding Javadoc code:
Figure 4-3 Generated documentation resulting from Javadoc code

Method Detail

addAddressBook

public static oracle.el.shffoundation.util.ElMessageList addAddressBook{coracle.el. shffoundation. base.I(
oracle.el. shffoundation. connect
EI InternaladdaddressBook inte:

Method addAddressBook is used for adding Address Book information into Enterprise2ne, this includes basic address information plus
phones. If a phone cannot be added, the Address Book record will still be added, but warning messages will be returned for the correspaor
phones that caused errors.

Parameters:
context - conditionally prowides the connection for the database operation and logaing infarmation
connection- can either be an explicit connection or null. If null the default connection is used
internalvo- represents data that is passed to EnterpriseCne for processing an AddressBook record.
Returns:
an Ellessage containing the text of any errars or warnings that may have occurred

Creating a Business Service 4-23

Documenting a Business Service

4-24 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

O

Creating Business Services That Call
Database Operations

This chapter contains the following topics:

= Section 5.1, "Understanding Database Operations"

m Section 5.2, "Creating a Query Database Operation Business Service"

= Section 5.3, "Creating an Insert Database Operation Business Service"

m Section 5.4, "Creating an Update Database Operation Business Service"

= Section 5.5, "Creating a Delete Database Operation Business Service"

5.1 Understanding Database Operations

Database operations include query, insert, update, and delete. Business services that
publish insert, update, and delete database operations should be exposed for staging
tables only. Staging tables are Z files (interface tables) that mimic JD Edwards
EnterpriseOne tables. Some examples of Z files are F0101Z2 Address Book, F03012Z1
Customer Master, and F0401Z1 Supplier Master. Instead of directly updating a JD
Edwards EnterpriseOne database table, data is updated to the appropriate Z file,
where batch processes validate the data before updating the database. If you are not
using a Z file, you should call a business function to process the data so that proper
data validation can be implemented and data integrity maintained.

Many of the rules for business services that call database operations are the same as
the rules for business services that call business functions, but some exceptions and
differences exist. The exceptions and differences are discussed in this chapter for each
of the different types of operations.

5.1.1 Data Types

The data types for the internal value objects for database operations include a long
data type as well as all of the data types that are available for business function calls.
You use the long data type in a database operation to show how many rows were
updated, inserted, or deleted.

This table shows the data types for published value objects that expose database
operations:

Published Value Object Data Type Usage

java.lang.String Use for string and char fields.

Creating Business Services That Call Database Operations 5-1

Understanding Database Operations

Published Value Object Data Type Usage

java.util.Calendar Use for all JDEDate and UTIME fields in JD Edwards
EnterpriseOne.

java.lang.Integer Use for MathNumeric fields defined with 0 decimals,
for example, mnAddressNumber and
mnShortltemNumber.

java.lang.BigDecimal Use for MathNumeric fields defined with >0 decimals,

for example, mnPurchaseUnitPrice.

java.lang.Boolean Use for char fields specified only as true/false or 0/1
Boolean fields.

long Use only in response value object for number of rows
returned, number of rows inserted, number of rows
updated, number of rows deleted, as returned from the
database.

This table shows the data types for internal value objects that expose database
operations:

Internal Value Object Data Type Usage

oracle.el.bssvfoundation.util. MathNumeric Use for all fields declared as numeric in JD
Edwards EnterpriseOne.

java.lang.Integer Use for JD Edwards EnterpriseOne ID fields.

java.util.Date Use for all JDEDate fields.

java.util. GregorianCalendar Use for UTIME fields in JD Edwards
EnterpriseOne.

long Use only in response value object for number of

rows inserted, number of rows updated, number
of rows deleted, as returned from the database.

5.1.1.1 Database Exceptions

The code that runs the database operation is generated within a try/catch block and
catches a DBServiceException. The business service creates a new E1Message that
returns database errors for data dictionary error item 005FIS. When you use the
business service foundation code for E1Message, you can create a new message and
use the sLineSeparator constant to take advantage of text substitution within the
E1Message. The following sample code shows substituting the view name for one
parameter and the exception text for the other. Without text substitution, the E1 DD
Error Item Description reads:

Table - &1,&2
This code sample shows using text substitution:

"Exception in thread "main"
oracle.el.bssvfoundation.exception.BusinessServiceException:

Error: Table/View - F0101Z2

Error during database operation: [DUPLICATE_KEY_ERROR] Duplicate key
error obtained for table F0101Z2., at oracle.el.bssv.JPR01002.AddressBook
StagingManager.insertAddressBookStaging
(AddressBookStagingManager.java:78)

at oracle.el.bssv.JPR01002.AddressBookStagingManager.insertAddress
BookStaging (AddressBookStagingManager.java:39)

at oracle.el.bssv.JTR87011.AddressBookStagingTest.testInsertAddress

5-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating a Query Database Operation Business Service

BookZTablelRecord (AddressBookStagingTest.java:71) at
oracle.el.bssv.JTR87011.AddressBookStagingTest .main (AddressBook
StagingTest.java:110"

This sample shows the code that is generated by business service foundation:

private static final String QUERY_VIEW = "V0101XPI";
try {
//get dbService from context
IDBService dbService = context.getDBService();
//execute db select operation
resultSet = dbService.BSSVDBSelect (context, connection,
"V0101XPI", IDBService.DB_BSVW, selectDistinct,
maxReturnedRows, selectFields, sortOrder,
whereClause) ;
} catch (DBServiceException e) {
//take some action in response to the database exception
returnMessages.addMessage (new ElMessage (context,
"005FIS",
QUERY_VIEW +
ElMessage.sLineSeparator+e.getMessage()));

}

5.2 Creating a Query Database Operation Business Service

The query database operation uses the Database wizard Select operation over a table
or business view to retrieve records from JD Edwards EnterpriseOne.

5.2.1 Published Value Object for Query

The published interface for a select query database operation requires an input value
object and an output value object.

5.2.1.1 Naming Conventions

The naming convention for an input value object is to use the verb get to preface the
type of data to retrieve, for example, GetAddressBook. The naming convention for an
output value object is to use the verb show to preface the type of data retrieved, for
example, ShowAddressbook.

5.2.1.2 Data Types and Structure

The input value object for a query database operation represents a where clause for the
query. The output value object for a query database operation returns the query results
in an array.

This code sample shows the structure for the show value object:

public class ShowAddressBook extends MessageValueObject implements
Serializable {
private AddressBook addressBook[];

Creating Business Services That Call Database Operations 5-3

Creating a Query Database Operation Business Service

5.2.1.3 Error Handling

Any warnings that occurred during business service processing are included with the
results in the show value object. If an error occurs during processing, the error is
returned to the published business service, and the published business service throws
an exception. If no results are returned, a message, without an array of records, is
returned.

If an error occurs in a utility that is called during the mapping from the published to
internal value object, processing should be stopped and the error returned to the
published business service, which can throw an exception. For example, if the Entity
Processor fails to find entity ID when tax ID is passed in, the query will not process
and an error will be returned to the published business service.

5.2.1.4 Class Diagram

The following class diagram shows the published business service objects for
GetAddressBook:

5-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating a Query Database Operation Business Service

Figure 5-1 Published business service, GetAddressBook, class diagram.

PublishedBusinessService
ValueObject
2
AddressBookManager A A
ShowAddressbook MessageValueObject
- AddressBook(] ,
» - E1MessagelList —
GetAddressBook AddressBook E1Messages
- AddressCodes
ad_dress@odes * Statistics
- Entity entity AddressBook
- String entityName . - String revenueRange
- String entityTypeCode | | |- EntityAddress Code
_| - String businessUnit Relnt‘:tygbfdddress - String glBankAccount
- String industryClassifica- - helate ress - String dunBradStreetld
tionCode | relatedAddress N
.) - Integer numberOf
- String languageCode - String entityName Empl
- String entityTypeCode mployees
- CategoryCodes String businessUnit - Integer rateGrowth
- CategoryCodesAddress - oing businessunit | - String yearCompany
- String industryClassifi-
. ; Founded
En“ty cationCode
- Integer entityld - String IanguageCod_e Classifications
| - String entityLongld — - Calendar dateEffective : ——
- String entityTaxId - CategoryCodes | - String classification
categoryCodesAddress N Code001]
CategoryCodes o
P ‘ i - String classification
- String categoryCode001 | | Code005
] . RelatedAddress
- String categoryCode009 - Integer entityldRelated 1 UserReservedData
1 - String userReserved
AddressCodes - Integer entityldRelated6 Code
- String countyCode I - Integer entityldParent - Calendar userReserved
| - String stateCode |y Date —
- String postalCode - BigDecimal user
- String countrycode ReservedAmount
- Integer userReserved
Number
- String userReserved
Reference
Stock
N String stockTicker
Symbol —
- String stockExchange

5.2.2 Internal Value Object for Query

The internal value object for a query database operation contains two components, the
where fields and the result fields.

Creating Business Services That Call Database Operations 5-5

Creating a Query Database Operation Business Service

The names that you use for variables in the internal value object are important because
the generated code uses these names when calling the get and set methods for these
objects.

This code sample shows the structure for the internal value object:

public class InternalGetAddressBook extends ValueObject({
private InternalGetAddressBookWhereFields queryWhereFields =
new InternalGetAddressBookWhereFields () ;
private ArrayList queryResults = null;

}

In the preceding code sample, the variables are named queryResults and
queryWhereFields. The queryResults variable represents an array list that contains
InternalShowAddressBook type objects. The InternalShowAddressBook value object
extends InternalGetAddressBookWhereFields. In the code sample, no additional fields
are added to the InternalShowAddressBook value object. However, more fields could
be returned from the query than were allowed in the where clause.

This class diagram shows the business service objects for GetAddressBook:

5-6 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating a Query Database Operation Business Service

Figure 5-2 Business service, GetAddressbook, class diagram.

BusinessService

‘f

AddressBookQueryProcessor

+ E1MessagelList getAddressBook (lcon)
- E1Messagelist SelectFromV0101XPI

———> ValueObject <

InternalGetAddressBook

- Collection internalShowAddressBook
- InternalGetAddressBookWhereField
- ArrayList queryResults

A 4

InternalGetAddressBookWhereFields

- MathNumeric FO101_ANS +

- String FO101_ALKY InternalShowAddressBook

- String FO101_TAX - String FO101_CM

- String FO101_ALPH - String F0101_DC

- String FO101_MCU <t—— - String FOT01_TAXC

- String FO101_SIC - String FO101_SBLI

- String FO101_LNGP - Date FO101_EFTB

- String FO101_ATT1 - MathNumeric FO150_PAS8

- String FO101_ADDZ - MathNumeric FO150_AN81
- MathNumeric FO150_AN82
- MathNumeric FO150_AN83

5.2.3 Empty Where Clause and Max Rows Returned

Because some tables are too large to return all records without causing significant
performance degradation, the recommended practice is to write a select statement that
prevents empty where clauses or one that does not select all records. Code that is
generated by the wizard follows this recommendation. When you create a query
database operation, you must decide whether to allow an empty where clause. If you
decide that an empty where clause is appropriate for a particular query, you must
modify the generated code to accommodate the empty where clause.

You must include a MaxRowsReturned business service property for all query
database operations. This business service property contains the maximum number of
rows to be returned to the caller from the selected resultSet variable. The business
service property value is passed to the database select statement for processing. If an
exception is caught while the system retrieves the business service property, the
business service should stop all processing and create an E1MessageList object to pass
the exception to the published business service.

Creating Business Services That Call Database Operations 5-7

Creating an Insert Database Operation Business Service

Business services interpret a value of 0 (zero) in the business service property to mean
return all rows. You must add code to check whether the value returned is zero, and if
so, pass a CONSTANT: DBService. DB_FETCH_ALL to the database select call instead
of the actual value retrieved. If zero is passed to the select call, an exception will be
thrown.

This code sample shows how to check for zero:

//Call access property constants for Max Query Rows to be returned.
//create long variable so it can be passed to bsfn call
//initialize to 1 in the event, the business service property
//call fails.
long maxReturnedRows = 0;

//Call to return Business Service Property - if fails to
//retrieve value, use default and continue.
try{
maxReturnedRows = Long.parseLong
(ServicePropertyAccess.getSvcPropertyValue (context,
SVC_PROPERTY_QUERY_MAX_ROWS)) ;
//interpret property value of zero as "return all rows".
//Need to send constant to database call.
if (maxReturnedRows==0) {
maxReturnedRows = DBService.DB_FETCH_ALL;

}

The MaxRowsReturned value does not eliminate the need to check for a null where
clause. On a large table, the entire table is selected for processing regardless of how
many records are returned to the caller. Because the select statement processes the
entire table, performance can be affected.

5.3 Creating an Insert Database Operation Business Service

The insert database operation enables you to add information to a table or business
view. You use the Insert database operation in the Database wizard to create an insert
business service.

5.3.1 Published Value Object for Insert

The published interface for an insert database operation uses an input value object and
an output value object.

5.3.1.1 Naming Conventions

The naming convention for an input value object is to use the verb insert to preface the
type of data to be processed; for example, InsertAddressBookStaging. The naming
convention for an output value object is to use the verb phrase ConfirmlInsert to preface
the information that is processed, for example, ConfirmInsertAddressBookStaging.

5.3.1.2 Data Types and Structure

The input value object for an insert database operation represents a data set to be
inserted into a table. The output value object returns messages and the number of
records inserted, which is represented as a long data type. The output value object also
returns any warnings that occurred during business service processing. If an error
occurs during processing, an error message is sent to the published business service,
and the published business service throws an exception.

5-8 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating an Insert Database Operation Business Service

5.3.1.3 Class Diagram

The following class diagram shows the published business service objects for

InsertAddressBookStaging:

PublishedBusinessService ﬂ—‘

Figure 5-3 Published business service, InsertAddressBookStaging, class diagram.

AddressBookStagingManager

+ AddressBookStagingManager ()

+ ConfirmInsertAddressbookStaging insertAddressBook

ConfirmInsertAddressbookStaging insertAddressBook

+ ConfirmUpdateAddressbookStaging updateAddressBook
ConfirmUpdateAddressbookStaging updateAddressBook
+ ConfirmDeleteAddressbookStaging deleteAddressBook
ConfirmDeleteAddressbookStaging deleteAddressBook

ValueObject

b o

MessageValueObject

?

InsertAddressBookStaging

ConfirmUpdateAddressBookStaging

- long numberRowslInseerted
- insertAddressbookStagingFields[] insertFields

- long numberRowslInserted

+ InsertAddressBookStaging ()

+ void setNumberRowslInserted (long number)

+ long getNumberRowslInserted ()

+ void setinsertFields (InsertAddressBookStaging
+ void setlnsertField (int I, InsertAddressBook

+ InsertAddressBookStagingFields[] getinsert

+ ConfirmInsertAddressBookStaging ()

+ ConfirminsertAddressBookStaging
(Internallnsert

+ void setNumberRowslInserted (long number
Rows

+ long getNumberRowslInserted ()

+ InsertAddressbookStagingFields getinsert

InsertAddressBookStagingFields

- String ediUserld

- Entity entity

- String ediBatchNumber

- String ediTransactNumber
- BigDecimal ediLineNumber
- String entityName

- String description1

- String businessUnit

+ BigDecimal get

« | + void setEdiuserld (String ediUserID)

T+ String getEdiUserld ()

+ void setEdiBatchNumber (String ediBatchNumber)

+ String getEdiBatchNumber ()

+ void setEdiTransactNumber (String ediTransactNumber)
+ String getEdiTransactNumber ()

+ void setEdiLineNumber (BigDecimal ediLineNumber)

EdiLineNumber ()

+ void setEntity (Entity entity)
+ Entity getEntity ()

Creating Business Services That Call Database Operations 5-9

Creating an Insert Database Operation Business Service

5.3.2 Internal Value Object for Insert

The internal value object for an insert database operation includes an array list of
records that need to be inserted. The array list contains a collection of
InternallnsertAddressBook StagingFields objects.

The following class diagram shows the business service objects for

InternallnsertAddressBook Staging:

Figure 5-4 Business service, InternallinsertAddressBookStaging, class diagram.

BusinessService

ValueObject

f

f

AddressBookStagingProcessor

InternallnsertAddressBookStaging

+ E1MessagelList insertAddressBookStaging
- E1Messagelist InsertToF0101Z2 (IContext c)

- Collection internalinsertAddressBookStagingField
- long numberRowslInserted
- ArrayList insertfields

*
4

InternallnsertAddressBookStagingFields

- String FO101Z22_EDUS

- String FO101Z2_EDBT

- String FO101Z2_EDTN

- MathNumeric FO101Z2_EDLN
- MathNumeric FO101Z2_AN8
- String FO101Z2_ALKY

- String FO101Z2_TAX

- String FO101Z2_ALPH

- String FO101Z22_DC

- String FO101Z22_MCU

5.3.3 Inserting Multiple Records

The business service method handles multiple records for an insert database
operation; however, the generated code inserts one record at a time.

This code sample shows the business service method handling multiple records:

public static ElMessageList insertAddressBookStaging(IContext context,
IConnection connection,
InternalInsertAddressBookStaging internalVo) {
//Call start internal method, passing the context (which was passed
//from published business service).

startInternalMethod (context,

internalVo) ;

"insertAddressBookZTable",

//Create new message list for business service processing.
ElMessageList messages = new ElMessageList();

long numRowsInserted = 0;

if (internalVO.getInsertFields() !=null) {
for (int 1 = 0; 1 < internalVO.getInsertFields().size(); 1i++)

5-10 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating an Insert Database Operation Business Service

//call method (created by the wizard), which then
//executes Business Function or Database operation
ElMessageList insertMessages =

InsertToF0101Z2 (context, connection,

internalVO.getInsertFields(1i));

//add messages returned from El processing to business
//service message list.
messages.addMessages (insertMessages) ;
//if no errors occur while inserting, add to counter.
if (!insertMessages.hasErrors()) {

numRowsInserted++;

}

internalV0.setNumberRowsInserted (numRowsInserted) ;
}
//Call finish internal method passing context.
finishInternalMethod (context, "insertAddressBookzTable");
//Return ElMessagelList containing errors and warnings that
//occurred during processing business service.
return messages;

This code sample shows the generated code for the database insert:

private static ElMessagelList InsertToF0101Z2 (IContext context,
IConnection connection, InternallnsertAddressBookStagingFields
internalv0) {
//create return object
ElMessagelList returnMessages = new ElMessagelList();
//specify columns to insert
BSSVDBField[] insertFields =
{new BSSVDBField("F0101Z2.EDUS"), // String - EdiUserId
new BSSVDBField("F0101Z2.EDBT"), // String - EdiBatchNumber
new BSSVDBField("F0101Z2.EDTN"), // String - EdiTransactNumber
new BSSVDBField("F0101Z2.EDLN"), // Numeric - EdiLineNumber

(

(

(
new BSSVDBField("F0101Z2.AN8"), // Numeric - AddressNumber
new BSSVDBField("F0101Z2.ALKY"), // String - AlternateAddressKey
new BSSVDBField("F0101z2.TAX"), // String - TaxId
new BSSVDBField("F0101Z2.ALPH"), // String - NameAlpha
new BSSVDBField("F0101Z2.DC"), // String - DescripCompressed
new BSSVDBField("F0101Z2.MCU") // String - CostCenter

}i
//specify insert values
Object[] insertValues =
{internalV0.getF0101Z2_EDUS (
internalV0.getF0101Z2_EDBT (
internalV0.getF0101Z2_EDTN (
internalvV0.getF0101Z2_EDLN (
)
(
)
(

),
),
),
),
internalV0.getF0101Z2_ANS (
internalV0.getF0101Z2_ALKY
internalv0.getF0101Z2_TAX(
internalV0.getF01017Z2_ALPH
internalvV0.getF0101z2_DC(),
internalvV0O.getF010122_MCU ()
}i
try {

//get dbService from context

IDBService dbService = context.getDBService();

//execute db insert operation

long numRecordsInserted =

dbService.BSSVDBInsert (context, connection, "F0101Z2",

)

).

Creating Business Services That Call Database Operations 5-11

Creating an Update Database Operation Business Service

IDBService.DB_TABLE, insertFields, insertValues);
} catch (DBServiceException e) {
//take some action in response to the database exception
returnMessages.addMessage (new ElMessage (context, "005FIS",
TABLE_NAME + ElMessage.sLineSeparator+e.getMessage()));
}

return returnMessages;

5.4 Creating an Update Database Operation Business Service

The update database operation enables you to modify existing information in a table
or business view. You use the Update database operation in the Database wizard to
create an update business service.

5.4.1 Published Value Object for Update

The published interface for an Update database operation uses an input value object
and an output value object.

5.4.1.1 Naming Conventions

The naming convention for an update value object is to use the verb update to preface
the type of data to be processed, for example, UpdateAddressBookStaging. The naming
convention for an output value object is to use the verb phrase ConfirmUpdate to
preface the information that is processed, for example,
ConfirmUpdateAddressBookStaging.

5.4.1.2 Data Types and Structure

The input value object for an update database operation represents a where clause for
the records to be updated and the fields that need to be updated for those records. The
records and fields are represented by two separate components under the main value
object class. The output value object returns messages about the processing that
occurred and the number of records updated, which is represented as a long data type.
The output value object also returns any warnings that occurred during business
service processing. If an error occurs during processing, an error message is sent to the
published business service, and the published business service throws an exception.

5.4.1.3 Class Diagram

This class diagram shows the published business service objects for
UpdateAddressBookStaging:

5-12 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating an Update Database Operation Business Service

Figure 5-5 Published business service, UpdateAddressBookStaging, class diagram.

PublishedBusinessService

?

AddressBookStagingManager

+ AddressBookStagingManager ()

+ ConfirmInsertAddresBookStaging insertAddressBook

ConfirmInsertAddressbookStaging insertAddressBook

+ ConfirmUpdateAddressbookStaging updateAddressBook
ConfirmUpdateAddressbookStaging updateAddressBook
+ ConfirmDeleteAddressbookStaging deleteAddressBook
ConfirmDeleteAddressbookStaging deleteAddressBook

— 1 ValueObject 2 MessageValueObject

Zr - ConfirmUpdateAddressBookStaging
UpdateAddressBookStaging
- UpdateAddressBookStagingWhereFields
- UpdateAddressBookStagingFields updated
- long numberRowsUpdated

- long numberRowsUpdated

v UpdateAddressBookStagingFields

UpdateAddressBookStagingWhereFields - String entityName
- String description1
- String businessUnit

- String ediUserld

- String ediBatchNumber

- String ediTransactNumber
- BigDecimal ediLineNumber

5.4.2 Internal Value Object for Update

The internal value object for an update database operation contains a component that
represents the where clause for the records to be updated and a component that
represents the fields to be updated. The variable names updateWhereFields and
updateFields for these components are important because the generated code assumes
that the proper naming convention is used. The generated code should require
minimal changes, if any.
This code sample shows the structure for the internal value object:
public class InternalUpdateAddressBookStaging extends ValueObject {
/ *k
* Internal VO representing the where clause for updating the
* F0101Z2 table.
*/
private InternalUpdateAddressBookStagingWhereFields

Creating Business Services That Call Database Operations 5-13

Creating an Update Database Operation Business Service

updateWhereFields = new InternalUpdateAddressBookStagingWhereFields();
/*'k
* Internal VO representing the fields to be updated in the F0101Z2
* table.
*/
private InternalUpdateAddressBookStagingFields updateFields = new
InternalUpdateAddressBookStagingFields () ;
/*'k
* Number of rows updated as returned by the database call.
*/
private long numberRowsUpdated = 0;

This code sample shows the generated code for the update database operation, with
the updates that you are required to make in bold type:

private static ElMessageList UpdateF0101Z2 (IContext context,
IConnection connection, InternalUpdateAddressBookStaging internalVO) {
//create return object
ElMessageList returnMessages = new ElMessagelList();
//specify columns to update
BSSVDBField[] updateFields =
{new BSSVDBField("F0101Z2.ALPH"), // String - NameAlpha
new BSSVDBField("F0101z2.DC"), // String - DescripCompressed
new BSSVDBField("F0101Zz2.MCU") // String - CostCenter
}i
//specify update values
Object[] updatevValues =
{internalVO.getUpdateFields () .getF0101Z2_ALPH(),
internalVO.getUpdateFields () .getF0101Zz2_DC(),
internalVO.getUpdateFields () .getF0101Z2_MCU()
}i
//specify condition records must meet to be updated
BSDBWhereField[] whereFields =
{new BSDBWhereField(null, new BSSVDBField("F0101Z2.EDUS"),
IDBService.EQUALS, internalVO.getUpdateWhereFields().getF0101Z2_EDUS()),
new BSDBWhereField(IDBService.AND, new BSSVDBField("F0101Z72.
EDBT") ,
IDBService.EQUALS, internalVO.getUpdateWhereFields().getF0101Z2_EDBT()),
new BSDBWhereField(IDBService.AND, new BSSVDBField("F0101Z2.
EDTN") ,
IDBService.EQUALS, internalVO.getUpdateWhereFields().getF0101Z2_EDTN()),
new BSDBWhereField(IDBService.AND, new BSSVDBField("F0101Z72.
EDLN") ,
IDBService.EQUALS, internalVO.getUpdateWhereFields().
getF0101Z2_EDLN()) };
BSSVDBWhereClauseBuilder whereClause =
new BSSVDBWhereClauseBuilder (context, whereFields);
try {
//get dbService from context
IDBService dbService = context.getDBService();
//execute db update operation
long numRecordsUpdated =
dbService.BSSVDBUpdate (context, connection, "F0101z2",
IDBService.DB_TABLE, updateFields, updateValues, whereClause);
internalVO. setNumberRowsUpdated (numRecordsUpdated) ;
} catch (DBServiceException e) {
// take some action in response to the database exception
returnMessages.addMessage (new ElMessage (context, "005FIS",
TABLE_NAME + ElMessage.sLineSeparator+e.getMessage())); }
return returnMessages;

5-14 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating a Delete Database Operation Business Service

This class diagram shows the business service objects for UpdateAddressBookStaging:

Figure 5-6 Business service, UpdateAddressBookStaging, class diagram.

BusinessService

i

AddressBookStagingProcessor

+ E1MessagelList insertAddressbookStaging

+ E1Messagel.ist updateAddressBookStaging

+ E1MessagelList deleteAddressbookStaging

- E1MessagelList InsertToF0101Z2 (IContext

- E1MessagelList UpdateF0101Z2 (Icontext

- E1MessagelList DeleteFromF0101Z2 (IContext

ValueObject

-

InternalUpdateAddressbookStaging

A

- InternalUpdateAddressBookStagingWhereFields
- InternalUpdateAddressbookStagingFields updated
- long numberRowsUpdated

InternalUpdateAddressbookStagingFields

- String FO101Z2_ALPH
- String FO101Z22_DC
- String FO101Z22_MCU

Y

InternalUpdateAddressbookStagingWhereFields

- String FO101Z2_ED”US

| - String FO101Z2_EDBT

| - String F0O101Z2_EDTN

- MathNumeric FO101Z2_EDLN

5.5 Creating a Delete Database Operation Business Service

The delete database operation enables you to remove information in a table or
business view. You use the Delete database operation in the Database wizard to create
a delete business service.

Creating Business Services That Call Database Operations 5-15

Creating a Delete Database Operation Business Service

5.5.1 Published Value Object for Delete

The published interface for a delete database operation uses an input value object and
an output value object.

5.5.1.1 Naming Conventions

The naming convention for a delete input value object is to use the verb delete to
preface the type of data to be processed, for example, DeleteAddressBookStaging. The
naming convention for the delete output value object is to use the verb phrase
ConfirmDelete to preface the type of data processed, for example,
ConfirmDeleteAddressBookStaging.

5.5.1.2 Data Types and Structure

The input value object for a delete database operation represents a where clause for the
records to be deleted. The input value object contains key fields to the table or business
view. A value must be passed for each key field so that only one record at a time is
selected for deletion. The where clause is not conditionally created based on whether a
value is sent for a field. The delete operation should not be used for deleting all
records at once; therefore, do not use a null where clause in the code.

The output value object for a delete database operation returns messages and the
number of records deleted, which is represented as a long data type. The output value
object also returns any warnings that occurred during business service processing. If
an error occurs during processing, an error message is sent to the published business
service, and the published business service throws an exception.

5.5.1.3 Class Diagram

This class diagram shows the published business service objects for
DeleteAddressBookStaging:

5-16 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating a Delete Database Operation Business Service

Figure 5-7 Published business service, DeleteAddressBookStaging, class diagram.

PublishedBusinessService

i

AddressBookStagingManager

+ AddressBookStagingManager ()

+ ConfirminsertAddressBookStaging insertAddressBook

ConfirmInsertAddressBookStaging insertAddressBook

+ ConfirmUpdateAddressBookStaging updateAddressBook
ConfirmUpdateAddressBookStaging updateAddressBook
+ ConfirmDeleteAddressBookStaging deleteAddressBook
ConfirmDeleteAddressBookStaging deleteAddressBook

ValueObject |<+———- MessageValueObject

i i
ConfirmUpdateAddressBookStaging
- long numberRowsDeleted

DeleteAddressBookStaging

- String ediUserld

- String ediBatchNumber

- String ediTransactNumber
- BigDecimal ediLineNumber

5.5.2 Internal Value Object for Delete

The internal value object for a delete database operation includes the key fields that
are required for selecting a record to be deleted and the numberRowsDeleted field.

The following class diagram shows the business service objects for
DeleteAddressBookStaging:

Creating Business Services That Call Database Operations 5-17

Creating a Delete Database Operation Business Service

Figure 5-8 Business service, DeleteAddressBookStaging, class diagram.

BusinessService

[F ValueObject

AddressBookStagingProcessor ZF

+ E1MessagelList insertAddressbookStaging (InternalDeleteAddressBookStaging

+ E1MessagelList updateAddressBookStaging
+ E1MessagelL.ist deleteAddressbookStaging | .
- E1MessagelList InsertToF0101Z2 (IContext ¢ > g:r!ng Eg]ggg—ggg?_
- E1MessageList UpdateF0101Z2 (IContext ¢ - olning —

) ; - String F0101Z2_EDTN
E1Messagelist DeleteFromF0101Z2 (IConte - MathNumeric FO10122_EDLN

- long numberRowsDelete

5-18 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Creating a Delete Database Operation Business Service

Creating Business Services That Call Database Operations 5-19

Creating a Delete Database Operation Business Service

5-20 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

6

Versioning JD Edwards EnterpriseOne Web
Services

This chapter contains the following topics:

s Section 6.1, "Overview"

s Section 6.2, "Published Business Services"
m Section 6.3, "Business Services"

= Section 6.4, "JD Edwards EnterpriseOne as a Web Service Consumer"

Important: This chapter is intended primarily for JD Edwards
EnterpriseOne software engineers who design and develop business
services and published business services. If you create your own web
services, you can use this chapter as a guide for creating versioned
web services.

6.1 Overview

When a web service exposes an interface in the form of a WSDL, that interface is
assumed to be static from that point on. The published interface for a web service is
considered as a service contract, and the methods and inputs to those methods are
intended to remain unchanged for the life of that web service. However, over time, it
may become necessary to change the behavior or interface of an existing JD Edwards
EnterpriseOne web service to provide enhanced processing or to add fields. When you
enhance an existing web service, it is very important that you do not change the
original methods and interfaces. This chapter provides concepts and procedures for
enhancing business services by creating a version of the original business service.

6.2 Published Business Services

JD Edwards EnterpriseOne provides web services, called published business services,
for public consumption. The methods and interfaces are exposed in the final web
service WSDL. You cannot change the original method names, the original names of
the published value object classes, and the original web service behavior without
affecting the consumer of the business service. Only new optional processing can be
introduced without versioning. Conceptually, optional processing is a kind of invisible
change where there is some way (for example, a service constant) to get existing
functionality and new functionality from an existing method without changing the
interface, as well as maintaining the availability of the original processing.

Versioning JD Edwards EnterpriseOne Web Services 6-1

Published Business Services

6.2.1 Determining if Versioning Is Required

Basically, any change to the published interface requires that you create a version of
the published business service. The following diagram is provided to help decide
whether you should create a version of the original method name or published value
object class name or whether the processing is changed:

Figure 6—1 Determine whether to version a published business service

Fublished Business Service

.

Field Only Change Processing Only

b=y
k)

Both Field and
Procassing

Kind of Field Kind of
Change Change
Ramove Mew
Fields Required
Processing
Rename Changed
Fields Processing
Mew
Reid e
Figlds Create Mew Meathods and g
' » Walue Objects Named with |«
the Version Mumber
New Optional Fields »
¥
Change Existing Meathods))
and Value Objects without |« MNew Optional Processing
Versioning

6.2.2 Naming Conventions for Versions

If you determine that you must change the behavior or interface of an existing
published business service, you can create a version of the original published business
service. When you create a version of a published business service, the name of the

6-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Published Business Services

versioned published business service must clearly indicate that it is a version of an
original published business service. This enables users of the web service to choose the
version with the desired behavior and interface.

Changes requiring versioning require new methods and value objects with a version
appended to their name; for example, myMethodV2 and ValueObjectV3. For field
changes, you may need to version multiple value objects, depending on the depth of
placement of the new fields.

For example, a published business service exposes the method processAddressBook. An
enhancement request requires that 10 new address book fields be exposed and
processed by the method. The new method name will be processAddressBookV2. The
original value object that will contain the new fields is called AddressBook. You copy
the original value object, AddressBook to a new value object called AddressBookV2. Then
you create a new top-level value object named processAddressBookV2 that contains the
new version of the value object (AddressBookV2) and maps to the new fields.

6.2.3 Creating a Published Business Service Version

The following high-level steps are provided to help you create versions to a published
business service:

1. Determine where new and changed fields exist in the published value object.

Version the containing class and all classes above it in the published value object
hierarchy.

2. Version the methods that use the top-level value object in the published Manager
class.

3. Add and change fields within the internal value object (not a hierarchy.)

4. Add and change internal functionality (business function or input/output calls) in
the internal business service.

5. In the new published value object version, change and add mappings in the
mapFromPublished method.

6. Test both the original and the new version of the business service.

6.2.4 Example: Correct Field Names and Format of Interface

This section provides an example of the process for creating a version of a JD Edwards
EnterpriseOne published business service.

This example change involves modifications made in the published business service
only. The business service is JP010000. A field is incorrectly named
isEntityTypeNettingIndicator but it should be isARAPNettinglsed. Use these steps to
create a version of the published business service.

1. Create a new version of the value object where the field resides.

a. Create a copy of the AddressBookResult value object and name it
AddressBookResultV?2.

b. Inside AddressBookResultV2, change the field isEntityTypeNettingIndicator to
isARAPNettingUsed.

c. Create a copy of ShowAddressBook and name it ShowAddressBookV2.

d. InsideShowAddressBookV2, change all references in mapFromPublishedMethod to
ShowAddressBookV2, including the name change for the isARAPNettingUsed
field.

Versioning JD Edwards EnterpriseOne Web Services 6-3

Business Services

2. Create a new published method.
a. Copy the existing getAddressBook method and paste it at the end of the class.
b. Change the name of the copy to getAddressBookV2.

c. Within getAddressBookV2, change all references to the value object
ShowAddressBook to the new value object ShowAddressBookV2.

6.3 Business Services

Business services, commonly called internal business services, perform a specific task.
Internal business services do not have a public interface; methods and interfaces are
called by published business services. You can change methods and value objects as
long as the change to the internal business service does not affect the behavior of the
published business service that calls it.

Because the methods and interfaces of internal business services are not public, it is
practical that these will be reused, and may be called by both the new version and the
existing version of the published business service. The internal business service can
provide existing behavior for the existing method while still providing new behavior
for the new method; the internal business service does not require renaming or version
numbers. However, if the behavior is different, you create a new method or you could
copy the original method and append a version number to the method that you
copied.

For the internal value object, new non-required fields can be added without affecting
the published business service. Typically the internal value object contains all of the
fields that could potentially be passed into a business function or input/output call. So
it is likely that the field is already included in the internal value object. Fields may be
moved from one internal value object to another. You can make these changes to the
internal business service without affecting the public interface.

6.3.1 Determining if Versioning is Required

Use the following diagram to help decide whether you should create a version of the
original method name and value object class name:

6-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Business Services

Figure 6-2

Remains

!

Functionality

Determine whether to version an internal business service

Internal Business Service

Changes

Baoth Field

Processing

and

Existing
Functionality

Changes

Leave Value Object Names
Unchanged and Reuse
Existing Objects

Create New Value Object
with a Version Number
Appended 1o Use for Mew

Leava Mathad Name
Unchanged and Reuse
Existing Objects

Create New Method with a
Version Number Appended
to use for New Functionality

Functionality

Existing Cha
Funicticnality

Remains

v h 4

Create New Yalue Objects
and Methods with a Version
Number Appended fo Use
for New Functionality

Leave Value Object and
Mithad Names Unchanged
and Reuse Existing Objects

When determining whether to version an internal business service method or internal
value object, you should focus on the behavior of the internal business service. The
goal is to maintain the existing behavior for the existing published methods while still
providing a new behavior.

You may want to employ a technique where a version parameter is passed to the
internal function. When called from the original published business service, a value of
V1 is passed in the parameter and when called from a new version published business
service, a value of V2 is passed. Within the internal business service logic, only new
logic is performed if the parameter is V2. This keeps original logic intact while
allowing additional functionality for V2.

6.3.2 Example: Enhancement that Includes New Fields and Associated Processing

This section provides an example of the process for creating a version of a JD Edwards
EnterpriseOne internal business service and then creating a version of the published
business service that calls the internal business service version.

This example change involves modifications made at all levels of the business service
Java code. This example is approached from the published interface through the

Versioning JD Edwards EnterpriseOne Web Services 6-5

JD Edwards EnterpriseOne as a Web Service Consumer

internal business service to the JD Edwards EnterpriseOne business function calls. The
published business service is JP010020 and the internal business service is J0100021.

Use these steps to create a version of the internal business service and the published
business service that calls it:

1. Determine where the new fields belong in the value object.

In this example, the top-level published value object is called ProcessCustomer. The
fields are related to invoicing information, so the new fields will be updated to the
Invoice object.

2. In]Developer, do the following in the value object folder of the business service:
a. Create a copy of ProcessCustomer and name it ProcessCustomerV2.
b. Create a copy of Invoice and name it InvoiceV2.

c. Inside ProcessCustomerV2, change the current member reference from Invoice to
InvoiceV2.

d. Inside ProcessCustomerV2, change all references in mapFromPublishedMethod to
InvoiceV2.

3. Create a new published method.
a. Copy the existing processCustomer method and paste it at the end of the class.
b. Change the name of the copy to processCustomerV?2.

c. Within processCustomerV2, change all references to the value object
ProcessCustomer to the new value object Process CustomerV2.

4. Evaluate and change the internal business service.

a. The new fields must be added to the internal business service, too. You can
add the new fields to the internal value object, InternalProcessCustomer, by just
adding them as additional members in the class.

b. Modify CustomerProcessor to pass the new value object fields to CustomerMBF,
which is already called. Because these are new non-required fields, it does not
matter if they are blank, as they would be called from the existing business
service. The processing functions as it always has when fields are blank, and
when these new fields are passed in, they will be processed as expected.

5. Return to the value object ProcessCustomerV2 and add new code to
mapFromPublishedMethod that maps the new published value object fields to the
new internal value object fields.

6. Test both the new processCustomerV2 and the original processCustomer methods.

6.4 JD Edwards EnterpriseOne as a Web Service Consumer

JD Edwards EnterpriseOne can consume web services from third-party systems.
Although these web services do not expose a contract in the form of published
methods and interfaces, they may need to be changed to take advantage of third-party
enhancements or new services. Because JD Edwards EnterpriseOne business functions
call the methods of the third-party web services, any new version or method must be
added as new code that is called by the business function. You must determine how to
control which version of the business service the business function calls. You might
consider using a processing option or a service constant to control the behavior.

The only reason for changing a business service that consumes a third-party web
service is that the third-party web service has changed. The following scenarios

6-6 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

JD Edwards EnterpriseOne as a Web Service Consumer

illustrate how to control the behavior of the business services using a processing
option or service constant.

Scenario 1: A third party web service has changed--use a processing option

For this scenario, you should version method or value objects by appending a version
number to the name. Most likely, the third-party service that changed is also
versioned. The new version of the business service method is called directly from the
JD Edwards EnterpriseOne business function, which may or may not pass new data to
the changed third-party web service. You can create a new JD Edwards EnterpriseOne
processing option to control the version of the business service method that is called
and the data that is passed to it.

Scenario 2: A third-party web service has changed--use a service constant

An alternative to Scenario 1, is that the existing method could call the new method
based on a service constant that controls what version is being called. In this scenario,
all of the data passed from the business function must be the same for both versions.
This scenario minimizes the impact to existing business function calls while allowing
you to control what version of the third-party service is called.

Scenario 3: The consumer business service is calling a free web service that has been
updated

You have decided to upgrade the consumer business service to use the new version of
a free web service. There will be no impact to users of the consumer business service if
the business service starts calling the new version of the free web service without
giving the user the option to use the previous version. There is no need to version the
consumer business service. You can enhance the JD Edwards EnterpriseOne web
service to use the new version of the free web service providing no backward
compatibility is required.

6.4.1 Determining if Versioning is Required

Use the following diagram to help decide whether you should create a version of the
original method name and value object class name:

Versioning JD Edwards EnterpriseOne Web Services 6-7

JD Edwards EnterpriseOne as a Web Service Consumer

Figure 6-3 Determine whether to version a consumer business service

Calling & New Version
of Third-Party Service

Mew or Different
Data Passed from
Business Function

Business

Consumer Business
Sarvica

Calling a Mew Service
MNever Used Before

Create a Mew Business

Function SaRrice

Data

Same Data Passed
from Business
Function

Create New Methods and
Value Objects Mamed with
the: Version Mumber
Call tha Mew Mathod from
the Business Function
Based on Processing

Ciption

Create New Methods and
Value Objects Mamed with
the Wersion Mumber
Call tha Mew Mathod fram
Existing Business Service
Method Based on Service
Constant

6.4.2 Creating a Version to a Consumer Business Service

The following high-level steps are provided to help you create versions to business
services that consume third-party web services:

1. Determine where new and changed fields exist in the value object.

Version the containing class and all classes above it in the value object hierarchy.
2. Version the method that uses the top-level value object in the Processor class.
3. Call the new method from a JD Edwards EnterpriseOne business service and do

one of the following;:

= Create a processing option to call the new or old method.

s Create a service constant to call the new method from the existing method.

6.4.3 Example: Enhancement to Call Latest Version of a Third-Party Service

This section provides an example of the process for creating a version of a JD Edwards
EnterpriseOne business service that consumes a third-party web service.

In this example, a JD Edwards EnterpriseOne consumer business service calls a
third-party service for weather forecast. Originally, the web service used only a zip
code as input, but now it accepts city and state, too. The consumer business service is
J8500001.

Use these steps to create a version of the internal business service and the published
business service that calls it:

1. Create a new version of the value object to include the new fields; for example:

6-8 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

JD Edwards EnterpriseOne as a Web Service Consumer

Create a copy of GetWeatherInput and name it Get WeatherInputV2.

Within the WeatherProcessor class, create a copy of the method getWeather and name
it getWeather V2.

Use the endpoint of the new version of the weather forecast service to create a new
proxy for the service, and name the new proxy ProxyV?2.

In the new getWeatherV2 method, change the code to call the method from the new
proxy, ProxyV2.

To support either version of the service, create processing options or system
settings that indicate that city and state can be used.

Enhance the JD Edwards EnterpriseOne applications and business function to
follow the settings and allow users to enter city and state, as well as to include the
values in the XML generated by the business function that calls the business
service.

Modify getWeatherV2 to map the new city and state fields from the value object to
the input of the web service call.

Versioning JD Edwards EnterpriseOne Web Services 6-9

JD Edwards EnterpriseOne as a Web Service Consumer

6-10 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

7

Understanding Transaction Processing

This chapter contains the following topics:
= Section 7.1, "Transaction Processing"
» Section 7.2, "Default Transaction Processing Behavior"

= Section 7.3, "Explicit Transaction Processing Behavior"

7.1 Transaction Processing

You update the JD Edwards EnterpriseOne database by processing a transaction. A
transaction is a logical unit of work performed on the database to complete a common
task and maintain data consistency. A transaction consists of transaction statements
that are closely related and perform interdependent actions. Each transaction
statement performs part of the task, but all of the statements are required for
completing the task. Transaction processing ensures that related data is added to or
deleted from the database simultaneously, thus preserving data integrity. In
transaction processing, data is not written to the database until a commit command is
issued. When this happens, data is permanently written to the database. You can use
one of these ways to commit transactions:

s Auto commit

s Manual commit

7.1.1 Auto Commit

An auto commit transaction encompasses individual table updates within a business
function call or direct database call from the business service. Each individual update
is committed or rolled back immediately. The commitment or rollback does not
depend on success or failure or any other call. Transaction processing that uses auto
commit does not require an explicit call to commit or roll back data. When you use
auto commit, you cannot include another business function or database call as part of
the transaction for rollback. You cannot include multiple table updates called from
within the business function as part of a transaction for rollback.

7.1.2 Manual Commit

When you use manual commit, the record is held until commit or rollback is explicitly
called. Business function and database calls can be strung together and committed or
rolled back based on success or failure of any one of the calls. Although business
function and database operations can be called within the same published business
service or business service transaction boundary, two separate connections are created
in the background. When you code for these two types of operations, consider that one

Understanding Transaction Processing 7-1

Default Transaction Processing Behavior

should not depend on the other's data. For example, if you are calling insert for a
business unit and then you try to add an address book record that contains that
business unit, the transaction will fail because the database call hasn't been committed

yet.

7.2 Default Transaction Processing Behavior

The business service framework provides two types of default transactions: manual
commit connection and auto commit connection.

For a single manual commit transaction, the default behavior is to scope all processing
within the published business service method. If any operation within this scope fails,
all operations are rolled back, and the published business service method throws an
exception. This behavior is recommended when multiple records are committed to
multiple tables.

For a single auto commit transaction, the default behavior is that each operation
commits or rolls back immediately, which means that each table update within each
business function call is either committed or rolled back immediately. This behavior is
recommended for queries for which no transaction is needed or when you are
committing a single record to a single table.

When you are deciding which type of connection to use, you should always consider
the business function behavior.

7.2.1 Published Business Service Boundary for Manual Commit

The startPublishedMethod, finishPublishedMethod, and close methods within the
published business service indicate the boundary of the transaction. All activities that
occur within the startPublishedMethod and finishPublishedMethod calls will be
committed when finishPublishedMethod is called. You must include the close method
to clean up all connections.

7.2.2 Published Business Service Boundary for Auto Commit

The startPublishedMethod, finishPublishedMethod, and close methods within the
published business service are used to create the auto commit connection and to clean
up the connections. All activities that occur within the startPublishedMethod and
finishPublishedMethod calls are committed or rolled back immediately because no
transaction boundary exists that encompasses more than one operation, including the
table updates within the business function. For an auto commit connection, the
purpose of finishPublishedMethod is different than for a manual commit because no
need exists to commit the transaction. The finishPublishedMethod plays a roll in
monitoring and tying the entire business process together. You call the close method to
clean up all connections.

For both manual commit and auto commit, you should use a try block to enclose
startPublishedMethod and finishPublishedMethod. You call the close method from a
finally block to ensure that all transactions are finished and no connections linger.

This code sample shows the structure for defining the transaction processing
boundary for the published business service:

public ConfirmAddAddressBook addAddressBook (AddAddressBook vo) throws
BusinessServiceException {
return (addAddressBook (null, null, vo));

}
protected ConfirmAddAddressBook addAddressBook (IContext context,

7-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Explicit Transaction Processing Behavior

IConnection connection,
AddAddressBook vo) throws BusinessServiceException{
//perform all work within try block, finally will clean up any
//connections
try {
// call start published method, passing null,
//will return context object so BSFN can be called later
//used to indicate transaction boundary as well as used for
//logging
//Start Implicit Transaction
context = startPublishedMethod (context, "addAddressBook");
// create a new internal VO.
InternalAddAddressBook internalVO= new InternalAddAddress
Book () ;
messages .addMessages (vo.mapFromPublsihed (context, internal
Vo)) ;//
// start business service addAddressBook passing context and
// internal VO published business service Calling business
// service
ElMessageList messages = AddressBookProcessor.addAddressBook
(context, connection, internalVO);
// published business service will send either warnings in
// the Confirm Value Object or throw a published business
// serviceException.
if (messages.hasErrors()) {
// get the string representation of all the messages
//RI: Error Handling
String error = messages.getMessagesAsString());
// Throw BusinessServiceException. (
throw new BusinessServiceException (error,context) ;
}
// exception was not thrown, so create the confirm VO from
// internal VO
ConfirmAddAddressBook confirmVO = new ConfirmAddAddressBook
(internalVo) ;
confirmvO.setElMessagelList (messages) ;
//Call to commit default transaction.
finishPublishedMethod (context, "addAddressBook");
// return confirm VO, filled with return values and messages
return confirmvo;
}
finally {
//Call close to clean up all remaining connections and
//resources.
close(context, "addAddressBook") ;

7.3 Explicit Transaction Processing Behavior

Oracle recommends that you use default transaction behavior whenever possible.
However, you can define your published business service or business service to
explicitly manage transactions. To handle the transaction correctly in the business
service, you must understand the detailed transaction behavior of the business
function being called.

The published business service protected method and all business service methods are
required to have both IContext and IConnection as part of their signature, as are any

Understanding Transaction Processing 7-3

Explicit Transaction Processing Behavior

calls to business functions or database operations. If you are using default transaction
processing, the connection can be null. If you use explicit transaction processing, you
must provide an explicit connection, either auto or manual commit. When you use an
explicit connection, you decide whether having multiple transactions is appropriate
and whether they are auto commit or manual commit connections. If you create an
explicit transaction from your business service, you are not required to check for null
on the connection before using it, because the foundation classes ensure that the
connection is never null. If the token is dropped, a runtime connection is thrown,
which is consistent with the default transaction processing.

7.3.1 Creating a New Connection

You can create a new transaction in either the published business service or business
service, depending on where control begins. Typically, the business service controls the
transaction. The context object has exposure to all connections; so to create a new
connection, you call a method from the context object. You create either a manual
commit or an auto commit method. Both methods are illustrated in this code sample:

IConnection soConnection = context.getNewConnection (IConnection.MANUAL)
i)

//manual commit

IConnection soConnection = context.getNewConnection (IConnection.AUTO) ;
//auto commit

A manual commit method holds the record until commit or rollback is explicitly
called. You create a manual commit method by using IConnection. MANUAL (false) as
the parameter in the context object. An auto commit method commits the record
immediately without an explicit call to commit the record. With auto commit, the
record is committed when the Close method is called. You create an auto commit
method by using IConnection.AUTO (true) as the parameter in the context object.

The default connection is available even when an explicit connection is created.

7.3.2 Using an Explicit Transaction

The following scenarios illustrate two ways to use an explicit transaction and achieve
the same result. In these scenarios, a business service processes a sales order. Inventory
records are updated when each record is processed instead of waiting until the end of
the sales order processing to update the inventory records. In each scenario, if an error
occurs before the sales order process is completed and committed, an exception
message is sent to the caller, and updates that were made to the inventory records are
rolled back.

7.3.2.1 Scenario 1

This scenario uses an explicit auto commit transaction that updates the Inventory table
and commits and releases the table immediately before continuing with the remainder
of the sales order processing. Because inventory records are committed before the sales
order is committed, an error could occur during the continued processing of the sales
order. If an error occurs, another business function (referred to as a compensating
business function) must be called to undo the inventory updates.

You use another explicit transaction to call the compensating business function. You
can either reuse the original auto commit connection or create a new connection. The
best option is to reuse the original auto commit connection, because this limits the
number of objects that are created. You cannot use the default transaction because you
want to send an exception message to the caller indicating that the sales order
processing failed, and you want to roll back any updates that were made to the

7-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Explicit Transaction Processing Behavior

inventory records. You use an explicit connection so that you can control the
compensating business function to ensure that updates are rolled back, even if an
exception is thrown.

This code sample illustrates this scenario:

public ElMessageList processSalesOrder (IContext context, IConnection
connection, InternalProcessSalesOrder internalVO) {

//Create new explicit auto commit connection to add inventory

//records

IConnection invConnection = context.getNewConnection
(IConnection.AUTO) ;

//call method (created by the wizard), which then executes
Business Function or Database operation
ElMessageList invMessages = callInventoryMBF (context,
invConnection,
internalVo,
programId) ;
//add messages returned from El processing to business
//service message list.
messages.addMessages (invMessages) ;
if (!invMessages.hasErrors()) {
//No errors continue processing SO
IConnection soConnection = context.getNewConnection
(IConnection.MANUAL) ;

try {

//Call SO

ElMessageList soMessages = callSOMBF (context,
soConnection,
internalVo) ;

//Check for errors, collect in messages.

if (!soMessages.hasErrors()) {

soConnection.commit () ;
telsef{

soConnection.rollback();
//Errors in SO processing, call MBF to compensate for
//added inventory
ElMessagelList compMessages = callInventory
CompensateMBF (context, invConnection, internalVvo) ;
if (compMessages.hasErrors()) {
compMessages .setMessagePrefix ("Unable to
Compensate for Added Inventory");
}

messages .addMessages (compMessages) ;

}

catch (BSSVConnectionException e) {
//Create new error and return ElMessageList
ElMessage txMessage = new ElMessage

(context, "006FIS", e.getMessage());

messages .addMessage (txMessage) ;

}

soConnection.close();

invConnection.close();

Understanding Transaction Processing 7-5

Explicit Transaction Processing Behavior

finishInternalMethod (context, "addAddressBook");
return messages;

7.3.2.2 Scenario 2

This scenario uses an auto commit connection to create a default transaction by calling
startPublishedMethod and passing an additional parameter that specifies the auto
commit connection—startPublishedMethod(context,"processSalesOrder” ,IConnection.
AUTO). Because inventory records are committed before the sales order is committed,
an error could occur during the continued processing of the sales order. If an error
occurs, another business function (referred to as a compensating business function)
must be called to undo the inventory updates.

To control the transaction and handle a sales order failure, you use a manual commit
connection to call the Sales Order Commit business function. Everything within the
business function call will roll back. You can call a compensating business function to
roll back the inventory records that were automatically committed. You want the
default auto commit transaction to call the compensating business function.

This code sample illustrates this scenario:

public ElMessageList processSalesOrder (IContext context, IConnection
connection, InternalProcessSalesOrder internalVO) {

//call method (created by the wizard), which then executes
Business Function or Database operation

ElMessageList invMessages = callInventoryMBF (context,
connection,
internalVo,
programId) ;

//add messages returned from El processing to business

//service message list.

messages.addMessages (invMessages) ;

if (!invMessages.hasErrors()) {
//No errors continue processing SO using manual commit
//connection

IConnection soConnection = context.getNewConnection
(IConnection.MANUAL) ;

try {

//Call SO

ElMessageList soMessages = callSOMBF (context,
soConnection,
internalVo) ;

//Check for errors, collect in messages.

if (!soMessages.hasErrors()) {

soConnection.commit () ;
telsef{

soConnection.rollback() ;
//Errors in SO processing, call MBF to compensate for
//added inventory
ElMessageList compMessages = callInventoryCompensateMBF
(context, connection, internalVo) ;
if (compMessages.hasErrors()) {
compMessages . setMessagePrefix
("Unable to Compensate for Added Inventory");
}

messages .addMessages (compMessages) ;

7-6 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Explicit Transaction Processing Behavior

}
catch (BSSVConnectionException e) {
//Create new error and return ElMessagelList

ElMessage txMessage = new ElMessage

(context, "006FIS", e.getMessage());
messages.addMessage (txMessage) ;

}

soConnection.close();

}
finishInternalMethod (context, "addAddressBook");

return messages;

Understanding Transaction Processing 7-7

Explicit Transaction Processing Behavior

7-8 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Understanding Logging

This chapter contains the following topic:

= Section 8.1, "Logging"

8.1 Logging

You use log files to troubleshoot system behavior. The location of the business service
and published business service log files is defined in the jdelog.properties file under
<pathcode>/ini/bssv. The default location of these log files is <pathcode>/bssv/log,
which you can change.

8.1.1 Default Logging

The business service foundation provides default logging behavior. When
startInternalMethod(IContext context, String methodName, ValueObject internalVO)
is called, the following information is automatically written in the log file:

22 Aug 2006 22:25:24,125 [Line ?] [DEBUG] - [BSSVFRAMEWORK]

[Context ID: 141.144.96.127:1907:1156307000656] startInternalMethod()
executed for addAddressBook

22 Aug 2006 22:25:24,140 [Line ?] [DEBUG] - [BSSVFRAMEWORK]

[Context ID: 141.144.96.127:1907:1156307000656] ValueObject for
addAddressBook:

ValueObject oracle.el.bssv.J0100010.valueobject.InternalAddAddressBook:
InternalPhones[0]:

ValueObject oracle.el.bssv.J0100030.valueobject.InternalPhone:
SzPhoneNumber: 444-5555
SzPhoneAreaCode: 303
SzPhoneNumberType: HOM

ValueObject oracle.el.bssv.J0100030.valueobject.InternalPhone:
SzPhoneNumber: 444-1555
SzPhoneAreaCode: 303
SzPhoneNumberType: 02

ValueObject oracle.el.bssv.J0100030.valueobject.InternalPhone:
SzPhoneNumber: 444-1655
SzPhoneAreaCode: 303
SzPhoneNumberType: HOM

Understanding Logging 8-1

Logging

SzTaxId: 11655018

SzCountry: US

SzState: CO

SzCounty: Arapahoe

SzCity: Denver

SzPostalCode: 80807
SzAddressLined: Line 4
SzAddressLine3: Line 3
SzAddressLine2: Line 2
SzAddressLinel: 223 W. Teller Ave
SzMailingName: Green Tracyl8
MnAddressBookNumber: 0
SzLongAddressNumber: 165346418
JdDateEffective: Mon Sep 04 22:23:20 MDT 2006
SzBusinessUnit: 30
SzVersion: XJDE00O1

SzSearchType: E

SzAlphaName: Tracy, Greenl8

8.1.2 Explicit Logging
You can use this code to provide explicit logging in the business service:

//RI: call to logger - log the beginning of the business service method
processing using app ID
context.getBSSVLogger () .app (context,
"@@@RREBegin call for BSSV AddressBookProcessor.
addAddressBook",
"\n",
internalVO.toString(),
null)

}

Many logging methods exist for signifying APP, DEBUG, WARN, or SEVERE
conditions. Plain text as well as exceptions can be passed as parameters to these
methods for inclusion in the logs.

This information is logged into the jas.log file as a result of the preceding sample code:

17 Jul 2006 16:53:51,125 [Line ?] [APP] - [oracle.el.foundation.util.
IBSSVLogger]

[Context ID: 10.139.87.66:2751:1153176823468]

@@QRE@E@E@Begin call for BSSV AddressBookProcessor.addAddressBook

8-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

9

Understanding JD Edwards EnterpriseOne

as a Web Service Consumer

This chapter contains the following topics:
= Section 9.1, "JD Edwards EnterpriseOne as a Web Service Consumer"
= Section 9.2, "C Business Function Calling a Business Service"

= Section 9.3, "Creating a Business Service for]D Edwards EnterpriseOne as a Web
Service Consumer"

= Section 9.4, "Using Softcoding"

= Section 9.5, "Testing the Business Service for]D Edwards EnterpriseOne as a Web
Service Consumer"

9.1 JD Edwards EnterpriseOne as a Web Service Consumer

JD Edwards EnterpriseOne can call and process external web services. Being a native
consumer of web service enables]D Edwards EnterpriseOne integration with other
Oracle products and third-party systems. To enable JD Edwards EnterpriseOne
integration with other systems, you create a business function that calls a business
service. The business service calls an external web service. You also create a web
service proxy that identifies where the web service can be found. The web service
proxy contains any security information that must be passed in the web service call.
Some web services do not require security. The results of the call are returned to the
business service. The business service passes the results to the business function. This
diagram illustrates JD Edwards EnterpriseOne as a web service consumer.

Figure 9—1 Process flow for JD Edwards EnterpriseOne as a web service consumer.

EnterpriseOne EnterpriseOne
. . . . External
Business Function Business Service .
Web Service
(©) (Java)

Understanding JD Edwards EnterpriseOne as a Web Service Consumer

9-1

C Business Function Calling a Business Service

9.2 C Business Function Calling a Business Service

The C business function builds an XML document that contains required input and
output parameters, and passes the XML document to an API that calls the business
service. The XML document is based on the business service value object. Similarly,
the return from the API includes an XML document with the results of the call.

9.2.1 Best Practices for Business Functions Calling Business Services

When a need for calling a web service from within JD Edwards EnterpriseOne occurs,
a business function is required to make that call. To preserve changes that you have
made to the JD Edwards EnterpriseOne business function when you upgrade or
update your system, Oracle recommends that you create a new business function
specifically for this task. This web service consumer business function can be called by
a JD Edwards EnterpriseOne application or business function. Processing in this web
service business function would include:

» Initialize XML.

s Build XML.

= Call the API that calls the business service.
= Map the response.

= Handle errors.

= Return to the calling business function.

9.3 Creating a Business Service for JD Edwards EnterpriseOne as a Web
Service Consumer

To use JD Edwards EnterpriseOne as a web service consumer, you create a business
service and its value object using methodology and tools discussed in preceding
chapters of this guide and in the Business Services Development guide.

You can use the XML Template utility to create an empty XML document that is based
on a business service value object. The XML Template utility is provided by
JDeveloper and supports these data types:

= javalang.Integer

= java.math.BigDecimal

= oracle.el.bssvfoudnation

= util.MathNumeric

= java.util.GregorianCalendar
= java.util.Date

= java.lang.Short

= javalang.Boolean

= javalang.String

9.3.1 Naming Convention for Consumer Business Services

For a business service that consumes third-party web services, the OMW object name
is JC, system code, and zeros, where the zeros are a number that you assign; for
example JC850001.

9-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Using Softcoding

Note: JCXXXXXX s used to distinguish between JD Edwards
EnterpriseOne published business services (which are JPXXXXXX),
internal business services (J0100003), and consumer business services.
Some early consumer business services are named as J, system code,
and XXXXX (for example, J8500001). These existing consumer
business services will not be changed, only new consumer business
services will include the JC preface.

9.3.2 Rules for Value Object for JD Edwards EnterpriseOne as a Web Service

Consumer

A business service that is called from a business function must represent collections as
arrays. You cannot use the ArrayList data type because it cannot be serialized. This
code sample shows using an array for declaring the compound for phones:

private InternalPhone[] internalPhones = null;

9.4 Using Softcoding

Softcoding is a way to dynamically provide the where and who information to the web
service proxy. The web service proxy needs to know exactly which machine to call for
the service (the where), and it needs to know the credentials to pass for the call (the
who). Also, values you use to test your business server in the development
environment probably will be different from the actual values that are used in the
production environment. Softcoding allows the where and who values to be plugged
in at runtime instead of hard-coding these values into the business service.

A web service proxy has at least one softcoding template and one softcoding record;
but a web service proxy can have many templates and many records. You can use
softcoding templates to create softcoding records. Using a softcoding template is
productive because softcoding records have similar values. Using a template also
helps to minimize typing errors when you are entering record information.

9.4.1 Softcoding Template Naming Conventions

JD Edwards EnterpriseOne softcoding templates are named like this:
= E1 J34A0010
= E1 J34A0010A

E1 indicates that the template was created by JD Edwards EnterpriseOne developers at
Oracle. J34A000, which is the key, is the business service name. The A indicates that a
second template exists for the same business service.

To keep updates and upgrades simple, Oracle recommends that you not modify a JD
Edwards EnterpriseOne softcoding template. Instead, you should copy the JD
Edwards EnterpriseOne template, provide a new name, and make the appropriate
modifications. For example, if you need to add security information to a template that
has the correct right endpoint information, you can copy the existing template, rename
it, and add the security information. You might name the new template similar to the
JD Edwards EnterpriseOne template, for example:

CUST_J34A000

Understanding JD Edwards EnterpriseOne as a Web Service Consumer 9-3

Testing the Business Service for JD Edwards EnterpriseOne as a Web Service Consumer

See Also:

s "Understanding Softcoding" in the /D Edwards EnterpriseOne Tools
Business Services Development Guide.

9.5 Testing the Business Service for JD Edwards EnterpriseOne as a Web
Service Consumer

You test the business service in the development environment. You can test a business
service that calls an external web service using one of these methods:

» Create a test business service.
= Use the development business services server.

Guidelines for using these methods are provided in Appendix B of the Business
Services Development Guide.

See Also:

» "Creating a Test Business Service" in the JD Edwards EnterpriseOne
Tools Business Services Development Guide.

9-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

10

Using Business Services with HTTP
Request/Reply

This chapter contains the following topics:

ms Section 10.1, "Understanding Business Services and HTTP POST"
= Section 10.2, "Using Business Services with HTTP Request/Reply"
= Section 10.3, "Testing the Servlet"

10.1 Understanding Business Services and HTTP POST

JD Edwards EnterpriseOne enables you to use a business service to communicate with
a third-party system using HTTP POST. In this scenario, a business function is invoked
by a request from a JD Edwards EnterpriseOne HTML web client, which in turn calls a
business service to make an HTTP POST request. You provide callback information in
the posted data for the third-party system to send an asynchronous reply to the
request. When the callback reply is received from the third-party system, the
published business service that was included in the callback information is invoked.
The response is returned to the JD Edwards EnterpriseOne HTML web client.

The business services server uses a servlet listener to receive incoming messages from
third-party systems. Received messages contain callback information, which is used to
associate the message with the correct request.

See Also:

s "Understanding Business Services and HTTP POST" in the /D
Edwards EnterpriseOne Tools Business Services Development Guide.

10.2 Using Business Services with HTTP Request/Reply
When you use business services to do an HTTP request/reply, follow these rules:

» The listener servlet checks for authorization before calling the published business
service. Therefore, you must have authorization to invoke the specified method on
the published business service.

= The value object class of the method to be called must have only one string field
and the accessor (getter/setter) method for the string field. The received XML
payload will be passed to the method in this string field.

s The method to be called must have three parameters. This code sample shows the
signature for this method:

public responseVO methodToBeCalled((IContext context, IConnection

Using Business Services with HTTP Request/Reply 10-1

Testing the Servlet

connection, requestVO vo)

Note: This method must have a public modifier. The wizard that you
use to create the structure for a published business service generates a
method with a protected modifier. You must change the method from
protected to public so that the published business service can be called
from the listener service.

» The listener servlet does not wait for a response from the business service call.
Any response is ignored.

= This kind of published business service must be used as the bridge between
getting a response from external sites and calling the processor business service
that does the business logic.

10.3 Testing the Servlet

You should test the servlet to ensure that it receives the return messages. You can do
this by creating an XML document that has the HTTP URL in it and ensuring that the
message is delivered to the URL.

10-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

A

Utility Business Services

This appendix contains the following topics:

= Section A.1, "Understanding Utility Business Services"

= Section A.2, "Entity Processor Business Service"

s Section A.3, "GL Account Processor Business Service"

s Section A.4, "Inventory Item ID Processor Business Service"
= Section A.5, "Net Change Processor Business Service"

= Section A.6, "Processing Version Processor Business Service"

A.1 Understanding Utility Business Services

Utility business services are generic, reusable services that perform standard
operations. Utility business services are called by other business services to process
information that is associated with the calling service. Utility business services
eliminate the need to write the same code in a number of business services, and they
ensure that a specific process is performed in a uniform manner.

The utility business services follow the rules, best practices, and guidelines discussed
in this methodology guide. Utility business service processing should be transparent
to consumers of the published business service that calls them. General information
about each utility business service is provided in this appendix. If you create custom
published business services, you can use these predefined utilities, or you can copy a
predefined utility business service into a new business service object, modify it, and
call it from your new business service.

A.1.1 Implementing Utility Business Services

General information for creating utility business services is provided in this guide.
Here are some key items about utility business services:

» Utility business services are called from more than one business service or
published business service.

= All data mappings are made inside of the utility, not by the service calling the
utility.

= Any errors that are encountered by the utility during processing are returned to
the calling service to handle.

Utility Business Services A-1

Entity Processor Business Service

A.2 Entity Processor Business Service

This section discusses the Entity Processor business service.

A.2.1 Understanding the Entity Processor Business Service

The Entity Processor business service (J0100010) provides a published interface that
exposes three ways to provide address book key information for an entity.

The Entity Processor business service retrieves entity ID, entity long ID, and entity tax
ID based on input that is supplied by the published business service that calls the
utility. This utility business service processes data in these ways:

= Retrieves Entity ID and Entity Long ID when Entity Tax ID is supplied as input.
= Retrieves Entity ID and Entity Tax ID when Entity Long ID is supplied as input.
» Retrieves Entity Tax ID and Entity Long ID when Entity ID is supplied as input.

A.2.2 Implementation Detail

This topic identifies the methods, signature, and value object (VO) classes for the
Entity Processor business service.

A.2.2.1 Methods

Methods for the business service are:
= processEntity(Entity)
= processEntity(InternalEntityUtility)

A.2.2.2 Signature

The signature for the business service is:

Public static ElMessageList processEntity(IContext context, IConnection,
connection, ValueObject inputObject, ValueObject currentObject)

A.2.2.3 Value Object Classes

Value object classes for the business service are:
= Entity
s InternalEntityUtility

The Entity value object class is a published value object that is owned and managed by
the Entity Processor business service. Any published business service that wants to use
the Entity value object class within its interface must import the class.

A.2.2.4 Functional Processing

A published business service calls processEntity and passes an input value to the
method. The processEntity method sets processing parameters based on the input
value. The method compares the input with null or an empty string to determine
which values are not included in the input. The order of null comparison is:

1. Address Number
2, Long Address Number
3. TaxID

A-2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Entity Processor Business Service

If the comparison is successful, the processEntity method calls the internal method,
InternalEntityUtility. The InternalEntityUtility method calls the ScrubAddressNumber
business function (B0100016) passing in the desired action code. The business function
retrieves the appropriate data from the Address Book Master table (F0101).

Note: This method retrieves records from F0101 and ensures that the
ScrubAddressNumber business function selects the appropriate data.
Using the business function instead of using direct table input/output
has no significant performance impact.

A.2.3 Value Object Classes

The tables in this section provide data information for value object classes.

A.2.3.1 Business Service Value Object

InternalEntityUtility N/A

Business Service VO Field Data Type Input/Output
Name

mnAddressNumber MathNumeric I/0
szLongAddressNumber String I/0

szTaxId String 1/0

A.2.3.2 Published Reusable Value Object

Entity N/A N/A N/A N/A

Published Data Type Input Key Javadoc

Business Service

VO Field Name

entityld Integer Yes Yes Address book
number

entityLongld String Yes No NA

entityTaxId String Yes No NA

A.2.3.3 Output from Business Service to Published Value Object

InternalEntityUtility Entity N/A N/A N/A
Business Service VO Data Type Published Data Type Transformer
Field Name Business Service
VO Field Name
mnAddressNumber ~ MathNumeric entityld Integer MathNumeric to
Integer
szLongAddressNumb String entityLongld String Map
er
szTaxId String entityTaxId String Map

Utility Business Services A-3

GL Account Processor Business Service

A.3 GL Account Processor Business Service

This section discusses the GL Account Processor business service.

A.3.1 Understanding the GL Account Processor Business Service

The GL Account Processor business service (J0900010) provides a published interface
that exposes four ways to provide general ledger account information.

The GL Account Processor business service retrieves account information based on
input that is supplied by the published business service that calls the utility. This
utility business service processes data in these ways:

Retrieves GL Account Long ID, GL Account Alternate data, and account
information from objectAccount, businessUnit, and subsidiary fields when GL
Account ID is supplied as the input field.

Retrieves GL Account ID, GL Account Alternate data, and account information
from objectAccount, businessUnit, and subsidiary fields when Account Long ID is
supplied as the input field.

Retrieves GL Account ID, GL Account Long ID data, and account information
from objectAccount, businessUnit, and subsidiary fields when Account Alternate
is supplied as the input field.

Retrieves GL Account ID, GL Account Long ID, and GL Account Alternate data
when account information fields (objectAccount, businessUnit and subsidiary) are
supplied as the input field.

A.3.2 Implementation Detail

This topic identifies the methods, signature, and value object classes for the GL
Account Processor business service.

A.3.2.1 Methods

Methods for the business service are:

processGLAccount(Internal GLAccountUtility)

processGLAccount(ProcessGLAccount)

A.3.2.2 Signature

The signature for the business service is:

Public static ElMessageList processGLAccount (IContext context, IConnection
connection, ValueObject inputObject, ValueObject currentObject)

A.3.2.3 Value Object Class

Value object classes for the business service are:

Internal GLAccountUtility
ProcessGLAccount

— GLAccount

- GLAccountKey

The GLAccount and GLAccountKey classes are published value objects that are
owned and managed by the GL Account Processor business service. Any published

A-4 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

GL Account Processor Business Service

business service that wants to use the GLAccount or GLAccountKey classes within its
interface must import these classes.

A.3.2.4 Functional Processing

A published business service calls processGLAccountUtility and passes an input value
to the method. The processGLAccountUtility method sets processing parameters
based on the input value. The method compares the input with null to determine
which values are not included in the input. The order of null comparison is:

1. Account ID
2. Account Long ID
3. Account Alternate

If all the values are null for these account fields, then the method evaluates these
fields:

= objectAccount
= businessUnit
= subsidiary

If the comparison is successful, the processGLAccountUtility method calls the internal
method, Internal GLAccountUtility. The Internal GLAccountUtility method calls the
ValidateAccountNumber business function (XX0901), passing in the desired action
code. The business function retrieves the appropriate data from the Account Master
table (F0901).

Note: This method retrieves records from F0901. The
ValidateAccountNumber business function selects 19 columns from
the table. Using the business function does not have a significant
performance impact.

A.3.3 Value Object Classes

The tables in this section provide data information for value object classes.

A.3.3.1 Business Service Input and Output Interface

InternalGLAccountUtility N/A N/A

Business Service VO Field Name Data Type Input/Output
szAccountNumber String Input/Output
szAccountld String Input/Output
szUnstructured Account String Input/Output
szDatabaseBusinessUnit String Input/Output
szDatabaseObject String Input/Output
szDatabaseSubsidiary String Input/Output

Note: For the account to be located, business unit, object, and
subsidiary must be passed.

Utility Business Services A-5

Inventory Item ID Processor Business Service

A.3.3.2 Published Reusable Value Object

ProcessGLAccount N/A N/A N/A
Published Business Data Type Input Key
Service VO Field Name

GLAccount N/A N/A N/A
objectAccount String Yes No
businessUnit String Yes No
subsidiary String Yes No
GLAccountKey N/A N/A N/A
accountld String Yes Yes
accountLongld String Yes No
accountAlternate String Yes No

A.3.3.3 Published to Business Service Value Object

InternalGL
ProcessGLAccount AccountUtility N/A N/A N/A
Published VO Field Data Type Business Service VO Data Type Transformer/
Name Field Name Formatter
GL Account N/A N/A N/A N/A
objectAccount String szDatabaseObject String Map
businessUnit String szDatabaseBusinessUnit String Map
subsidiary String szDatabaseSubsidiary =~ String Map
GLAccountKey N/A N/A N/A N/A
accountld String szAccountld String Map
accountLongld String szAccountNumber String Map
accountAlternate String szUnstructuredAccount String Map

A.4 Inventory Item ID Processor Business Service

This section discusses the Inventory Item ID Processor business service.

A.4.1 Understanding the Inventory Item ID Processor Business Service

The Inventory Item ID Processor business service (J4100010) provides a published
interface that exposes five ways to provide item identification information.

The Inventory Item ID Processor business service retrieves all potential identifiers for
an inventory item based on input that is supplied by the published business service
that calls the utility. This utility business service processes data in these ways:

» Retrieves itemProduct and itemCatalog when itemld is supplied as the input field.
s Retrieves itemld and itemCatalog when itemProduct is supplied as the input field.

s Retrieves itemld and itemProduct when itemCatalog is supplied as the input field.

A-6 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Inventory Item ID Processor Business Service

» Retrieves itemld, itemProduct, and itemCatalog when itemCustomer or
itemSupplier and entity ID and cross-reference type code are supplied as input
fields.

= Retrieves itemld, itemProduct, and itemCatalog when itemFreeForm, branch
plant, cross-reference type code, and entityld are supplied as input fields.

A.4.2 Implementation Detail

This topic identifies the methods, signature, and value object classes for the Inventory
Item ID Processor business service.

A.4.2.1 Methods

Methods for the business service are:
= processInventoryltemld (InternallnventoryltemlId)
= processInventoryltemld (ProcessltemCustomer)

= processinventoryltemld (ProcessItemSupplier)

A.4.2.2 Signature

The signature for the business service is:

Public static ElMessageList processInventoryIltemID(IContext context,
IConnection connection, ValueObject inputObject, ValueObject currentObject)

A.4.2.3 Value Object Classes

Value object classes for this business service are:
= Internallnventoryltemld
ms ProcessltemCustomer
— ItemGroupCustomer
= ProcessltemSupplier
— ItemGroupSupplier

The ItemGroupCustomer and ItemGroupSupplier classes are published value objects
that are owned and managed by the Inventory Item ID Processor business service.
Any other business service that wants to use the ItemGroupCustomer and
ItemGroupSupplier classes as part of its interface must import these classes.

A.4.2.4 Functional Processing

The Inventory Item ID Processor determines processing based on whether a supplier
item or a customer item class was passed by the published business service. The utility
retrieves related cross-reference data for the supplier or customer item, if required. The
ProcessltemCustomer or ProcessltemSupplier method compares the input value with
null or an empty string to determine processing. The first match that the utility finds
determines how the utility retrieves the data. The order of null comparison is:

1. ItemCrossReference
2. FreeForm
3. Itemld
4

ItemProduct

Utility Business Services A-7

Inventory Item ID Processor Business Service

5. ItemCatalog

Depending on which field, if any, is selected during the comparison process, the
ProcessltemCustomer or ProcessItemSupplier method calls the internal method,
InternallnventoryltemlID, and makes a call to the appropriate business function,

passing the expected parameters. Finally, all retrieved item numbers

(mnShortltemNumber, sz2ndItemNumber, sz3rdItemNumber) are populated at the

end of the process.

These business functions are used with this utility business service:

s Validate and Retrieve Item Master (X4101)

» Get Item Master Description UOM (B4001040)

s Verify and Get Item Xref (B4100600)

s Verify and Get Branch Plant Constants (B4101390)

Depending on the business function that is used, data is retrieved from these tables:

s F4101 (Item Master)
s F4104 (Item Cross Reference)
= F41001 (Inventory Constants)

Note: Database I/O operations are performed through business
functions in the JD Edwards EnterpriseOne Validate and Retrieve Item
Master module (X4101). This module performs efficient fetches from
F4101, retrieving only the columns needed for each type of fetch.

To prevent recalling the VerifyandGetBranchPlantConstants function,
any cross-reference code that is fetched will be passed back so that

users can pass it in instead of having the utility pass the

cross-reference code.

A.4.3 Value Object Classes

The tables in this section provide data information for value object classes.

A.4.3.1 Business Service Value Object

Internallnventoryltemid N/A N/A

Business Service VO Field Name Data Type Input/Output
mnShortltemNumber MathNumeric Input and Output
sz2ndItemNumber String Input and Output
sz3rdItemNumber String Input and Output
szFreeFormItemNumber String Input
szBranchPlant String Input
szCrossRefltemNumber String Input
mnAddressNumber MathNumeric Input
szCrossRefTypeCode String Input

A-8 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Inventory Item ID Processor Business Service

A.4.3.2 Published Reusable Value Object

Processlitem N/A N/A N/A
Published Business Data Type Input Key
Service VO Field Name

crossReferenceType String Yes No
entityld Integer Yes No
branchPlant String Yes No
ItemGroupCustomer N/A N/A N/A
itemld Integer Yes No
itemProduct String Yes No
itemCatalog String Yes No
itemFreeForm String Yes No
itemCustomer String Yes No
ItemGroupSupplier N/A N/A N/A
itemld Integer Yes No
itemProduct String Yes No
itemCatalog String Yes No
itemFreeForm String Yes No
itemSupplier String Yes No

A.4.3.3 Input Business Service Processing

From

VO/BSFN/Business

Service Property/Other To BSFN/Other N/A N/A N/A
Field Name Data Type Field Name Data Type Transformer
Based on Input VO N/A VerifyAndGetBranchPla N/A N/A
nt Constants (B41001390
/ D41001390A)
szBranchPlant String szBranchPlant String Map
ItemIdsByXref-MODE N/A N/A N/A N/A
N/A N/A VerifyAndGetltemXref N/A N/A
(B4100600 / D4100600)
Business Service Property String szKeys String Map
NUMBER_OF_KEYS =3
Business Service Property String szIndex String Map
INDEX_ID = 4
szCrossRefltemNumber String szCustomerltemNumber String Map
mnAddressNumber MathNumeric ~ mnAddressNumber MathNumeric Map
szCrossRefTypeCode String szCrossRefTypeCode String Map
N/A N/A getltemIdsByItemId N/A N/A

(internal function)

Utility Business Services

A-9

Net Change Processor Business Service

From
VO/BSFN/Business

Service Property/Other To BSFN/Other N/A N/A N/A
mnShortltemNumber MathNumeric =~ mnShortltemNumber MathNumeric Map
ItemIdsByItemFreeform N/A N/A N/A N/A
-MODE
N/A N/A GetltemMasterDescripti N/A N/A
on UOM (B4001040 /
D4001040)
szFreeFormltemNumber String szPrimaryltemNumber String Map
szBranchPlant String szBranchPlant String Map
ItemIdsBylItemId — N/A N/A N/A N/A
MODE
N/A N/A GetltemMasterByShortlt N/A N/A
em (X4101 / DSDX4101B)
mnShortltemNumber MathNumeric =~ mnShortltemNumber MathNumeric Map
ItemIdsbyltemFreeForm N/A N/A N/A N/A
-MODE
N/A N/A GetltemMasterBy2ndIte N/A N/A
m (X4101 / DSDX4101C)
sz2ndItemNumber String sz2ndItemNumber String Map
ItemIdsByItemCatalog— N/A N/A N/A N/A
Mode
N/A N/A GetltemMasterBy3rdIte N/A N/A
m (X4101 / DSDX4101D)
sz3rdItemNumber String sz3rdItemNumber String Map

A.5 Net Change Processor Business Service

This section discusses the Net Change Processor business service.

A.5.1 Understanding the Net Change Processor Business Service

The Net Change Processor business service (J0000020) handles net change processing
for both fields and value objects. The utility processes changes depending on which
method is called:

= Net Change by Field

The Net Change Processor utility determines the value of a field to use to update
an entity. If you do not specify a new value for a field, the utility preserves the
current value.

= Net Change by Value Object

The Net Change Processor utility determines the value of all of the fields within a

value object to use to update an entity. If you do not specify a new value for a field
within a value object, the utility preserves the current value of the field within the

value object.

Blank and zero are valid values for fields in the input object, and the utility preserves
these values. If a field in the input object has a null value, the utility replaces the null
value with the current database value.

A-10 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Net Change Processor Business Service

A.5.2 Implementation Detail

This topic identifies the methods, signature, and value object classes for the Net
Change Processor business service. Each method is discussed separately.

A.5.2.1 Method

The method that handles net change processing for value objects of this business
service is performNetChange.

A.5.2.2 Signature

The signature for the business service is:

public static ElMessageList performNetChange (IContext context,
IConnection connection, ValueObject inputObject, ValueObject currentObject)

A.5.2.3 Value Objects

Value object classes for the business service are:
= ValueObject inputObject

This value object holds the values received from a business service or published
business service.

= ValueObject currentObject

This value object holds the values of an entity as they exist in the database.

A.5.2.4 Functional Processing

When you update an entity in the database, the performNetChange method
determines the value of all fields within the value object that you are using. If no new
value for a field within a value object is specified, the method preserves the current
database value of the field. This method allows processing of value objects of different
types. The performNetChange method assumes that the value object is flat. Field
values of blank and zero are valid values in the input object, and the method
preserves them. Only fields with a value of null in the input object are replaced with
the current database value.

A.5.2.5 Method

The method that handles net change processing for fields of this business service is
performNetChangeOnFields.

A.5.2.6 Signature

The signature for the business service is:

public static Object performNetChangeOnFields (IContext context,
IConnection connection, Object inputFieldValue, Object currentFieldvalue)

A.5.2.7 Value Objects
This utility business service has no specific value objects.
A.5.2.8 Functional Processing

The performNetChangeOnFields method determines the value of a field to use when
you are updating an entity. If no new value for a field is specified in the input field, the

Utility Business Services A-11

Processing Version Processor Business Service

method returns the current value of the field. Field values of blank and zero are valid
values in the input object, and the method preserves them. Only a value of null in the
input object is replaced with the current database value.

Note: The value object net change methods operate on a flat value
object class only. Processing over compound value objects is complex
and negatively affects performance.

The net change processor exposes the performNetChangeOnFields
method to expose a less complex implementation of net change
processing for use in those instances in which processing the full value
object is undesirable.

A.5.3 Value Object Classes

This utility handles all objects that extend the value object super class. Because the
utility is written to handle generic objects, the utility does not have any specific value
object mappings.

A.6 Processing Version Processor Business Service

This section discusses the Processing Version Processor business service.

A.6.1 Understanding the Processing Version Processor Business Service

The Processing Version Processor business service (JO000010) determines the
processing option version that a business service uses when it calls a business
function. The consumer of a published business service is responsible for providing
the service constant key to the Processing Version Processor utility. If no version is
specified in the published business service, the Processing Version Processor utility
retrieves a processing option version from service constants.

A.6.2 Implementation Detail

This topic identifies the methods, signature, and value object classes for the Net
Change Processor business service. Each method is discussed separately.

A.6.2.1 Method

The method for the business service is getProcessingVersion.

A.6.2.2 Signature

The signature for the business service is:

public static ElMessageList getProcessingVersion (IContext context,
IConnection connection, InternalProcessingVersion processingVersionVo))

A.6.2.3 Value Object

The value object for the business service is InternalProcessingVersion.
A.6.2.4 Functional Processing

A business service calls the getProcessingVersion method. This method verifies that
the required input parameters are specified. If all required parameters are passed, the

A-12 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Processing Version Processor Business Service

method checks the processingOptionVersionValue parameter to determine whether it
contains a value. If no value exists, the method looks up the default value in service
constants using a consumer-provided key. The default value must be set up in service
constants. The utility does not validate the value that it retrieves from the service
constants systems. If no errors are encountered, the correct processing option version
value is returned to the published business service consumer.

Note: The Processing Version Processor utility retrieves a value from
the service constants system only when a processing option version
value is not provided by the consumer of the published business
service.

A.6.3 Value Object Classes

The tables in this section provide data information for value object classes.

A.6.3.1 Business Service Value Object

InternalProcessAddressBook N/A N/A N/A

Business Service VO Field Name Data Type Input/Output Comments

processingOptionVersionValue String Input/Output On input, this field
contains the processing
option version value
provided by the
consumer.

defaultValueServiceConstantKey String Input This field contains the
service constant key for
the default processing
option version to use if
no processing option
version is provided by
the consumer.

Utility Business Services A-13

Processing Version Processor Business Service

A-14 JD Edwards EnterpriseOne Tools Business Services Development Methodology Guide

Glossary

Accessor Methods/Assessors

Java methods to “get” and “set” the elements of a value object or other source file.

activity rule

The criteria by which an object progresses from one given point to the next in a flow.

add mode

A condition of a form that enables users to input data.

Advanced Planning Agent (APAg)

A JD Edwards EnterpriseOne tool that can be used to extract, transform, and load
enterprise data. APAg supports access to data sources in the form of rational
databases, flat file format, and other data or message encoding, such as XML.

application server

Software that provides the business logic for an application program in a distributed
environment. The servers can be Oracle Application Server (OAS) or WebSphere
Application Server (WAS).

Auto Commit Transaction

A database connection through which all database operations are immediately written
to the database.

batch processing

A process of transferring records from a third-party system to JD Edwards
EnterpriseOne.

In JD Edwards EnterpriseOne Financial Management, batch processing enables you to
transfer invoices and vouchers that are entered in a system other than JD Edwards
EnterpriseOne to JD Edwards EnterpriseOne Accounts Receivable and JD Edwards
EnterpriseOne Accounts Payable, respectively. In addition, you can transfer address
book information, including customer and supplier records, to JD Edwards
EnterpriseOne.

batch server

A server that is designated for running batch processing requests. A batch server
typically does not contain a database nor does it run interactive applications.

Glossary-1

batch-of-one

Glossary-2

batch-of-one

A transaction method that enables a client application to perform work on a client
workstation, then submit the work all at once to a server application for further
processing. As a batch process is running on the server, the client application can
continue performing other tasks.

best practices

Non-mandatory guidelines that help the developer make better design decisions.

BPEL

Abbreviation for Business Process Execution Language, a standard web services
orchestration language, which enables you to assemble discrete services into an
end-to-end process flow.

BPEL PM

Abbreviation for Business Process Execution Language Process Manager, a
comprehensive infrastructure for creating, deploying, and managing BPEL business
processes.

Build Configuration File

Configurable settings in a text file that are used by a build program to generate ANT
scripts. ANT is a software tool used for automating build processes. These scripts
build published business services.

build engineer

An actor that is responsible for building, mastering, and packaging artifacts. Some
build engineers are responsible for building application artifacts, and some are
responsible for building foundation artifacts.

Build Program

A WINB32 executable that reads build configuration files and generates an ANT script
for building published business services.

business analyst

An actor that determines if and why an EnterpriseOne business service needs to be
developed.

business function

A named set of user-created, reusable business rules and logs that can be called
through event rules. Business functions can run a transaction or a subset of a
transaction (check inventory, issue work orders, and so on). Business functions also
contain the application programming interfaces (APIs) that enable them to be called
from a form, a database trigger, or a non-JD Edwards EnterpriseOne application.
Business functions can be combined with other business functions, forms, event rules,
and other components to make up an application. Business functions can be created
through event rules or third-generation languages, such as C. Examples of business
functions include Credit Check and Item Availability.

business function event rule

See named event rule (NER).

Business Service Property Admin Tool

business service

EnterpriseOne business logic written in Java. A business service is a collection of one
or more artifacts. Unless specified otherwise, a business service implies both a
published business service and business service.

business service artifacts

Source files, descriptors, and so on that are managed for business service development
and are needed for the business service build process.

business service class method

A method that accesses resources provided by the business service framework.

business service configuration files

Configuration files include, but are not limited to, interop.ini, JDBj.ini, and
jdelog.properties.

business service cross reference

A key and value data pair used during orchestration. Collectively refers to both the
code and the key cross reference in the WSG/XPI based system.

business service cross-reference utilities

Utility services installed in a BPEL/ESB environment that are used to access JD
Edwards EnterpriseOne orchestration cross-reference data.

business service development environment

A framework needed by an integration developer to develop and manage business
services.

business services development tool

Otherwise known as JDeveloper.

business service EnterpriseOne object

A collection of artifacts managed by EnterpriseOne LCM tools. Named and
represented within EnterpriseOne LCM similarly to other EnterpriseOne objects like
tables, views, forms, and so on.

business service framework

Parts of the business service foundation that are specifically for supporting business
service development.

business service payload

An object that is passed between an enterprise server and a business services server.
The business service payload contains the input to the business service when passed to
the business services server. The business service payload contains the results from the
business service when passed to the Enterprise Server. In the case of notifications, the
return business service payload contains the acknowledgement.

business service property

Key value data pairs used to control the behavior or functionality of business services.

Business Service Property Admin Tool

An EnterpriseOne application for developers and administrators to manage business
service property records.

Glossary-3

business service property business service group

Glossary-4

business service property business service group

A classification for business service property at the business service level. This is
generally a business service name. A business service level contains one or more
business service property groups. Each business service property group may contain
zero or more business service property records.

business service property key

A unique name that identifies the business service property globally in the system.

business service property utilities

A utility API used in business service development to access EnterpriseOne business
service property data.

business service property value

A value for a business service property.

business service repository

A source management system, for example ClearCase, where business service artifacts
and build files are stored. Or, a physical directory in network.

business services server

The physical machine where the business services are located. Business services are
run on an application server instance.

business services source file or business service class

One type of business service artifact. A text file with the java file type written to be
compiled by a Java compiler.

business service value object template

The structural representation of a business service value object used in a C-business
function.

Business Service Value Object Template Utility

A utility used to create a business service value object template from a business service
value object.

business services server artifact

The object to be deployed to the business services server.

business view

A means for selecting specific columns from one or more JD Edwards EnterpriseOne
application tables whose data is used in an application or report. A business view does
not select specific rows, nor does it contain any actual data. It is strictly a view through
which you can manipulate data.

central objects merge

A process that blends a customer's modifications to the objects in a current release
with objects in a new release.

central server

A server that has been designated to contain the originally installed version of the
software (central objects) for deployment to client computers. In a typical JD Edwards
EnterpriseOne installation, the software is loaded on to one machine—the central

database credentials

server. Then, copies of the software are pushed out or downloaded to various
workstations attached to it. That way, if the software is altered or corrupted through its
use on workstations, an original set of objects (central objects) is always available on
the central server.

charts

Tables of information in JD Edwards EnterpriseOne that appear on forms in the
software.

check-in repository

A repository for developers to check in and check out business service artifacts. There
are multiple check-in repositories. Each can be used for a different purpose (for
example, development, production, testing, and so on).

checksum

A fixed-size datum computed from an arbitrary block of digital data for the purpose of
detecting accidental errors that may have been introduced during its transmission or
storage. JD Edwards EnterpriseOne uses the checksum to verify the integrity of
packages that have been downloaded by recomputing the checksum of the
downloaded package and comparing it with the checksum of the original package.
The procedure that yields the checksum from the data is called a checksum function or
checksum algorithm. JD Edwards EnterpriseOne uses the MD5 and STA-1 checksum
algorithms.

connector

Component-based interoperability model that enables third-party applications and JD
Edwards EnterpriseOne to share logic and data. The JD Edwards EnterpriseOne
connector architecture includes Java and COM connectors.

Control Table Workbench

An application that, during the Installation Workbench processing, runs the batch
applications for the planned merges that update the data dictionary, user-defined
codes, menus, and user override tables.

control tables merge

A process that blends a customer's modifications to the control tables with the data
that accompanies a new release.

correlation data

The data used to tie HTTP responses with requests that consist of business service
name and method.

credentials

A valid set of]D Edwards EnterpriseOne username/password/environment/role,
EnterpriseOne session, or EnterpriseOne token.

cross-reference utility services

Utility services installed in a BPEL/ESB environment that access EnterpriseOne
cross-reference data.

database credentials

A valid database username/password.

Glossary-5

database server

Glossary-6

database server

A server in a local area network that maintains a database and performs searches for
client computers.

Data Source Workbench

An application that, during the Installation Workbench process, copies all data sources
that are defined in the installation plan from the Data Source Master and Table and
Data Source Sizing tables in the Planner data source to the system-release number data
source. It also updates the Data Source Plan detail record to reflect completion.

deployment artifacts

Artifacts that are needed for the deployment process, such as servers, ports, and such.

deployment server

A server that is used to install, maintain, and distribute software to one or more
enterprise servers and client workstations.

direct connect

A transaction method in which a client application communicates interactively and
directly with a server application.

See also batch-of-one and store-and-forward.

Do Not Translate (DNT)

A type of data source that must exist on the iSeries because of BLOB restrictions.

embedded application server instance
An OC4] instance started by and running wholly within JDeveloper.

edit code

A code that indicates how a specific value for a report or a form should appear or be
formatted. The default edit codes that pertain to reporting require particular attention
because they account for a substantial amount of information.

edit mode

A condition of a form that enables users to change data.

edit rule

A method used for formatting and validating user entries against a predefined rule or
set of rules.

Electronic Data Interchange (EDI)

An interoperability model that enables paperless computer-to-computer exchange of
business transactions between JD Edwards EnterpriseOne and third-party systems.
Companies that use EDI must have translator software to convert data from the EDI
standard format to the formats of their computer systems.

embedded event rule

An event rule that is specific to a particular table or application. Examples include
form-to-form calls, hiding a field based on a processing option value, and calling a
business function. Contrast with the business function event rule.

Environment Workbench

Employee Work Center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user. Each
user has a mailbox that contains workflow and other messages, including Active
Messages.

enterprise server

A server that contains the database and the logic for JD Edwards EnterpriseOne.

Enterprise Service Bus (ESB)

Middleware infrastructure products or technologies based on web services standards
that enable a service-oriented architecture using an event-driven and XML-based
messaging framework (the bus).

EnterpriseOne administrator

An actor responsible for the EnterpriseOne administration system.

EnterpriseOne credentials

A user ID, password, environment, and role used to validate a user of EnterpriseOne.

EnterpriseOne development client

Historically called “fat client,” a collection of installed EnterpriseOne components
required to develop EnterpriseOne artifacts, including the Microsoft Windows client
and design tools.

EnterpriseOne extension

A JDeveloper component (plug-in) specific to EnterpriseOne. A JDeveloper wizard

is a specific example of an extension.

EnterpriseOne object

A reusable piece of code that is used to build applications. Object types include tables,
forms, business functions, data dictionary items, batch processes, business views,
event rules, versions, data structures, and media objects.

EnterpriseOne process

A software process that enables JD Edwards EnterpriseOne clients and servers to
handle processing requests and run transactions. A client runs one process, and
servers can have multiple instances of a process. JD Edwards EnterpriseOne processes
can also be dedicated to specific tasks (for example, workflow messages and data
replication) to ensure that critical processes don't have to wait if the server is
particularly busy.

EnterpriseOne resource

Any EnterpriseOne table, metadata, business function, dictionary information, or
other information restricted to authorized users.

Environment Workbench

An application that, during the Installation Workbench process, copies the
environment information and Object Configuration Manager tables for each
environment from the Planner data source to the system-release number data source. It
also updates the Environment Plan detail record to reflect completion.

Glossary-7

escalation monitor

Glossary-8

escalation monitor

A batch process that monitors pending requests or activities and restarts or forwards
them to the next step or user after they have been inactive for a specified amount of
time.

event rule

A logic statement that instructs the system to perform one or more operations based
on an activity that can occur in a specific application, such as entering a form or exiting
a field.

explicit transaction

Transaction used by a business service developer to explicitly control the type (auto or
manual) and the scope of transaction boundaries within a business service.

exposed method or value object

Published business service source files or parts of published business service source
files that are part of the published interface. These are part of the contract with the
customer.

fast path

A command prompt that enables the user to move quickly among menus and
applications by using specific commands.

file server

A server that stores files to be accessed by other computers on the network. Unlike a
disk server, which appears to the user as a remote disk drive, a file server is a
sophisticated device that not only stores files, but also manages them and maintains
order as network users request files and make changes to these files.

final mode

The report processing mode of a processing mode of a program that updates or creates
data records.

foundation

A framework that must be accessible for execution of business services at runtime.
This includes, but is not limited to, the Java Connector and JDB;.

FTP server

A server that responds to requests for files via file transfer protocol.

HTTP Adapter

A generic set of services that are used to do the basic HTTP operations, such as GET,
POST, PUT, DELETE, TRACE, HEAD, and OPTIONS with the provided URL.
instantiate

A Java term meaning “to create.” When a class is instantiated, a new instance

is created.

integration developer

The user of the system who develops, runs, and debugs the EnterpriseOne business
services. The integration developer uses the EnterpriseOne business services to
develop these components.

jde.ini

integration point (IP)

The business logic in previous implementations of EnterpriseOne that exposes a
document level interface. This type of logic used to be called XBPs. In EnterpriseOne
8.11, IPs are implemented in Web Services Gateway powered by webMethods.
integration server

A server that facilitates interaction between diverse operating systems and
applications across internal and external networked computer systems.

integrity test
A process used to supplement a company’s internal balancing procedures by locating
and reporting balancing problems and data inconsistencies.

interface table
See Z table.

internal method or value object

Business service source files or parts of business service source files that are not part of
the published interface. These could be private or protected methods. These could be
value objects not used in published methods.

interoperability model

A method for third-party systems to connect to or access JD Edwards EnterpriseOne.

in-your-face error

In JD Edwards EnterpriseOne, a form-level property which, when enabled, causes the
text of application errors to appear on the form.

jargon
An alternative data dictionary item description that JD Edwards EnterpriseOne
appears based on the product code of the current object.

Java application server

A component-based server that resides in the middle-tier of a server-centric
architecture. This server provides middleware services for security and state
maintenance, along with data access and persistence.

JDBNET

A database driver that enables heterogeneous servers to access each other's data.

JDEBASE Database Middleware

A JD Edwards EnterpriseOne proprietary database middleware package that provides
platform-independent APIs, along with client-to-server access.

JDECallObject

An API used by business functions to invoke other business functions.

jde.ini

A JD Edwards EnterpriseOne file (or member for iSeries) that provides the runtime
settings required for JD Edwards EnterpriseOne initialization. Specific versions of the

file or member must reside on every machine running JD Edwards EnterpriseOne.
This includes workstations and servers.

Glossary-9

JDEIPC

Glossary-10

JDEIPC

Communications programming tools used by server code to regulate access to the
same data in multiprocess environments, communicate and coordinate between
processes, and create new processes.

jde.log

The main diagnostic log file of JD Edwards EnterpriseOne. This file is always located
in the root directory on the primary drive and contains status and error messages from
the startup and operation of JD Edwards EnterpriseOne.

JDENET

A JD Edwards EnterpriseOne proprietary communications middleware package. This
package is a peer-to-peer, message-based, socket-based, multiprocess communications
middleware solution. It handles client-to-server and server-to-server communications
for all JD Edwards EnterpriseOne supported platforms.

JDeveloper Project

An artifact that JDeveloper uses to categorize and compile source files.

JDeveloper Workspace

An artifact that JDeveloper uses to organize project files. It contains one or more
project files.

JMS Queue

A Java Messaging service queue used for point-to-point messaging.

listener service
A listener that listens for XML messages over HTTP.

local repository

A developer’s local development environment that is used to store business service
artifacts.

Location Workbench

An application that, during the Installation Workbench process, copies all locations
that are defined in the installation plan from the Location Master table in the Planner
data source to the system data source.

logic server

A server in a distributed network that provides the business logic for an application
program. In a typical configuration, pristine objects are replicated on to the logic
server from the central server. The logic server, in conjunction with workstations,
actually performs the processing required when JD Edwards EnterpriseOne software
runs.

MailMerge Workbench

An application that merges Microsoft Word 6.0 (or higher) word-processing
documents with JD Edwards EnterpriseOne records to automatically print business
documents. You can use MailMerge Workbench to print documents, such as form
letters about verification of employment.

Object Librarian

Manual Commit transaction

A database connection where all database operations delay writing to the database
until a call to commit is made.

master business function (MBF)

An interactive master file that serves as a central location for adding, changing, and
updating information in a database. Master business functions pass information
between data entry forms and the appropriate tables. These master functions provide a
common set of functions that contain all of the necessary default and editing rules for
related programs. MBFs contain logic that ensures the integrity of adding, updating,
and deleting information from databases.

master table
See published table.

media storage object

Files that use one of the following naming conventions that are not organized into
table format: Gxxx, xxxGT, or GTxxx.

message center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user.

messaging adapter

An interoperability model that enables third-party systems to connect to JD Edwards
EnterpriseOne to exchange information through the use of messaging queues.

messaging server

A server that handles messages that are sent for use by other programs using a
messaging API. Messaging servers typically employ a middleware program to
perform their functions.

Monitoring Application

An EnterpriseOne tool provided for an administrator to get statistical information for
various EnterpriseOne servers, reset statistics, and set notifications.

named event rule (NER)

Encapsulated, reusable business logic created using event rules, rather that C
programming. NERs are also called business function event rules. NERs can be reused
in multiple places by multiple programs. This modularity lends itself to streamlining,
reusability of code, and less work.

Object Configuration Manager (OCM)

In JD Edwards EnterpriseOne, the object request broker and control center for the
runtime environment. OCM keeps track of the runtime locations for business

functions, data, and batch applications. When one of these objects is called, OCM
directs access to it using defaults and overrides for a given environment and user.

Object Librarian

A repository of all versions, applications, and business functions reusable in building
applications. Object Librarian provides check-out and check-incapabilities for
developers, and it controls the creation, modification, and use of JD Edwards
EnterpriseOne objects. Object Librarian supports multiple environments (such as

Glossary-11

Object Librarian merge

Glossary-12

production and development) and enables objects to be easily moved from one
environment to another.

Object Librarian merge

A process that blends any modifications to the Object Librarian in a previous release
into the Object Librarian in a new release.

Open Data Access (ODA)

An interoperability model that enables you to use SQL statements to extract JD
Edwards EnterpriseOne data for summarization and report generation.

Output Stream Access (OSA)

An interoperability model that enables you to set up an interface for JD Edwards
EnterpriseOne to pass data to another software package, such as Microsoft Excel, for
processing.

package

JD Edwards EnterpriseOne objects are installed to workstations in packages from the
deployment server. A package can be compared to a bill of material or kit that
indicates the necessary objects for that workstation and where on the deployment
server the installation program can find them. It is point-in-time snapshot of the
central objects on the deployment server.

package build

A software application that facilitates the deployment of software changes and new
applications to existing users. Additionally, in JD Edwards EnterpriseOne, a package
build can be a compiled version of the software. When you upgrade your version of
the ERP software, for example, you are said to take a package build.

Consider the following context: “Also, do not transfer business functions into the
production path code until you are ready to deploy, because a global build of business
functions done during a package build will automatically include the new functions.”
The process of creating a package build is often referred to, as it is in this example,
simply as “a package build.”

package location

The directory structure location for the package and its set of replicated objects. This is
usually \\deployment server\release\path_code\package\package name. The
subdirectories under this path are where the replicated objects for the package are
placed. This is also referred to as where the package is built or stored.

Package Workbench

An application that, during the Installation Workbench process, transfers the package
information tables from the Planner data source to the system-release number data
source. It also updates the Package Plan detail record to reflect completion.

Pathcode Directory
The specific portion of the file system on the EnterpriseOne development client where
EnterpriseOne development artifacts are stored.

patterns

General repeatable solutions to a commonly occurring problem in software design. For
business service development, the focus is on the object relationships and interactions.

published business service

For orchestrations, the focus is on the integration patterns (for example, synchronous
and asynchronous request/response, publish, notify, and receive/reply).

print server

The interface between a printer and a network that enables network clients to connect
to the printer and send their print jobs to it. A print server can be a computer, separate
hardware device, or even hardware that resides inside of the printer itself.

pristine environment

A JD Edwards EnterpriseOne environment used to test unaltered objects with JD
Edwards EnterpriseOne demonstration data or for training classes. You must have this
environment so that you can compare pristine objects that you modify.

processing option

A data structure that enables users to supply parameters that regulate the running of a
batch program or report. For example, you can use processing options to specify
default values for certain fields, to determine how information appears or is printed,
to specify date ranges, to supply runtime values that regulate program execution, and
SO on.

production environment

A JD Edwards EnterpriseOne environment in which users operate EnterpriseOne
software.

Production Published Business Services Web Service

Published business services web service deployed to a production application server.

program temporary fix (PTF)

A representation of changes to JD Edwards EnterpriseOne software that your
organization receives on magnetic tapes or disks.

project

In JD Edwards EnterpriseOne, a virtual container for objects being developed in Object
Management Workbench.

promotion path

The designated path for advancing objects or projects in a workflow. The following is
the normal promotion cycle (path):

11>21>26>28>38>01

In this path, 11 equals new project pending review, 21 equals programming, 26 equals
QA test/review, 28 equals QA test/review complete, 38 equals in production, 01
equals complete. During the normal project promotion cycle, developers check objects
out of and into the development path code and then promote them to the prototype
path code. The objects are then moved to the productions path code before declaring
them complete.

proxy server

A server that acts as a barrier between a workstation and the internet so that the
enterprise can ensure security, administrative control, and caching service.
published business service

EnterpriseOne service level logic and interface. A classification of a published business
service indicating the intention to be exposed to external (non-EnterpriseOne) systems.

Glossary-13

published business service identification information

Glossary-14

published business service identification information

Information about a published business service used to determine relevant
authorization records. Published business services + method name, published business
services, or *ALL.

published business service web service

Published business services components packaged as J2EE Web Service (namely, a
J2EE EAR file that contains business service classes, business service foundation,
configuration files, and web service artifacts).

published table

Also called a master table, this is the central copy to be replicated to other machines.
Residing on the publisher machine, the FO98DRPUB table identifies all of the published
tables and their associated publishers in the enterprise.

publisher

The server that is responsible for the published table. The FO8DRPUB table identifies
all of the published tables and their associated publishers in the enterprise.

QBE

An abbreviation for query by example. In JD Edwards EnterpriseOne, the QBE line is
the top line on a detail area that is used for filtering data.

real-time event

A message triggered from EnterpriseOne application logic that is intended for external
systems to consume.

refresh

A function used to modify JD Edwards EnterpriseOne software, or subset of it, such as
a table or business data, so that it functions at a new release or cumulative update
level.

replication server

A server that is responsible for replicating central objects to client machines.

rules

Mandatory guidelines that are not enforced by tooling, but must be followed in order
to accomplish the desired results and to meet specified standards.

secure by default

A security model that assumes that a user does not have permission to execute an
object unless there is a specific record indicating such permissions.

Secure Socket Layer (SSL)

A security protocol that provides communication privacy. SSL enables client and
server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

selection

Found on JD Edwards EnterpriseOne menus, a selection represents functions that you
can access from a menu. To make a selection, type the associated number in the
Selection field and press Enter.

super class

serialize

The process of converting an object or data into a format for storage or transmission
across a network connection link with the ability to reconstruct the original data or
objects when needed.

Server Workbench

An application that, during the Installation Workbench process, copies the server
configuration files from the Planner data source to the system-release number data
source. The application also updates the Server Plan detail record to reflect
completion.

SOA

Abbreviation for Service Oriented Architecture.

softcoding

A coding technique that enables an administrator to manipulate site-specific variables
that affect the execution of a given process.

source repository

A repository for HTTP adapter and listener service development environment
artifacts.

Specification merge

A merge that comprises three merges: Object Librarian merge, Versions List merge,
and Central Objects merge. The merges blend customer modifications with data that
accompanies a new release.

specification

A complete description of a JD Edwards EnterpriseOne object. Each object has its own
specification, or name, which is used to build applications.

Specification Table Merge Workbench

An application that, during the Installation Workbench process, runs the batch
applications that update the specification tables.

SSL Certificate

A special message signed by a certificate authority that contains the name of a user
and that user's public key in such a way that anyone can "verify" that the message was
signed by no one other than the certification authority and thereby develop trust in the
user's public key.

store-and-forward

The mode of processing that enables users who are disconnected from a server to enter
transactions and then later connect to the server to upload those transactions.
subscriber table

Table F98DRSUB, which is stored on the publisher server with the FO8DRPUB table
and identifies all of the subscriber machines for each published table.

super class

An inheritance concept of the Java language where a class is an instance of something,
but is also more specific. “Tree” might be the super class of “Oak” and “Elm,” for
example.

Glossary-15

table access management (TAM)

Glossary-16

table access management (TAM)

The JD Edwards EnterpriseOne component that handles the storage and retrieval of
use-defined data. TAM stores information, such as data dictionary definitions;
application and report specifications; event rules; table definitions; business function
input parameters and library information; and data structure definitions for running
applications, reports, and business functions.

Table Conversion Workbench

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table conversion

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table event rules

Logic that is attached to database triggers that runs whenever the action specified by
the trigger occurs against the table. Although JD Edwards EnterpriseOne enables
event rules to be attached to application events, this functionality is application
specific. Table event rules provide embedded logic at the table level.

terminal server

A server that enables terminals, microcomputers, and other devices to connect to a
network or host computer or to devices attached to that particular computer.

transaction processing (TP) monitor

A monitor that controls data transfer between local and remote terminals and the
applications that originated them. TP monitors also protect data integrity in the
distributed environment and may include programs that validate data and format
terminal screens.

transaction processing method

A method related to the management of a manual commit transaction boundary (for
example, start, commit, rollback, and cancel).

transaction set

An electronic business transaction (electronic data interchange standard document)
made up of segments.

trigger

One of several events specific to data dictionary items. You can attach logic to a data
dictionary item that the system processes automatically when the event occurs.
triggering event

A specific workflow event that requires special action or has defined consequences or
resulting actions.

user identification information

User ID, role, or *public.

web service softcoding template

User Overrides merge

Adds new user override records into a customer’s user override table.

value object

A specific type of source file that holds input or output data, much like a data
structure passes data. Value objects can be exposed (used in a published business
service) or internal, and input or output. They are comprised of simple and complex
elements and accessories to those elements.

versioning a published business service

Adding additional functionality /interfaces to the published business services without
modifying the existing functionality /interfaces.

Versions List merge

The Versions List merge preserves any non-XJDE and non-Z]DE version specifications
for objects that are valid in the new release, as well as their processing options data.
visual assist

Forms that can be invoked from a control via a trigger to assist the user in determining
what data belongs in the control.

vocabulary override

An alternate description for a data dictionary item that appears on a specific JD
Edwards EnterpriseOne form or report.

web application server

A web server that enables web applications to exchange data with the back-end
systems and databases used in eBusiness transactions.

web server

A server that sends information as requested by a browser, using the TCP/IP set of
protocols. A web server can do more than just coordination of requests from browsers;
it can do anything a normal server can do, such as house applications or data. Any
computer can be turned into a web server by installing server software and connecting
the machine to the internet.

Web Service Description Language (WSDL)

An XML format for describing network services.

Web Service Inspection Language (WSIL)

An XML format for assisting in the inspection of a site for available services and a set
of rules for how inspection-related information should be made.

web service softcoding record

An XML document that contains values that are used to configure a web service proxy.
This document identifies the endpoint and conditionally includes security
information.

web service softcoding template

An XML document that provides the structure for a soft coded record.

Glossary-17

Where clause

Glossary-18

Where clause

The portion of a database operation that specifies which records the database
operation will affect.

Windows terminal server

A multiuser server that enables terminals and minimally configured computers to
display Windows applications even if they are not capable of running Windows
software themselves. All client processing is performed centrally at the Windows
terminal server and only display, keystroke, and mouse commands are transmitted
over the network to the client terminal device.

wizard

A type of JDeveloper extension used to walk the user through a series of steps.

workbench

A program that enables users to access a group of related programs from a single entry
point. Typically, the programs that you access from a workbench are used to complete
a large business process. For example, you use the JD Edwards EnterpriseOne Payroll
Cycle Workbench (P07210) to access all of the programs that the system uses to process
payroll, print payments, create payroll reports, create journal entries, and update
payroll history. Examples of JD Edwards EnterpriseOne workbenches include Service
Management Workbench (P90CD020), Line Scheduling Workbench (P3153), Planning
Workbench (P13700), Auditor's Workbench (P09E115), and Payroll Cycle Workbench.

workflow

The automation of a business process, in whole or in part, during which documents,
information, or tasks are passed from one participant to another for action, according
to a set of procedural rules.

workgroup server
A server that usually contains subsets of data replicated from a master network server.
A workgroup server does not perform application or batch processing.

XAPI events

A service that uses system calls to capture JD Edwards EnterpriseOne transactions as
they occur and then calls third-party software, end users, and other JD Edwards
EnterpriseOne systems that have requested notification when the specified
transactions occur to return a response.

XML CallObject

An interoperability capability that enables you to call business functions.

XML Dispatch

An interoperability capability that provides a single point of entry for all XML
documents coming into JD Edwards EnterpriseOne for responses.

XML List

An interoperability capability that enables you to request and receive JD Edwards
EnterpriseOne database information in chunks.

Z transaction

XML Service

An interoperability capability that enables you to request events from one JD Edwards
EnterpriseOne system and receive a response from another JD Edwards EnterpriseOne
system.

XML Transaction

An interoperability capability that enables you to use a predefined transaction type to
send information to or request information from JD Edwards EnterpriseOne. XML
transaction uses interface table functionality.

XML Transaction Service (XTS)

Transforms an XML document that is not in the JD Edwards EnterpriseOne format
into an XML document that can be processed by JD Edwards EnterpriseOne. XTS then
transforms the response back to the request originator XML format.

Z event

A service that uses interface table functionality to capture JD Edwards EnterpriseOne
transactions and provide notification to third-party software, end users, and other JD
Edwards EnterpriseOne systems that have requested to be notified when certain
transactions occur.

Z table

A working table where non-JD Edwards EnterpriseOne information can be stored and
then processed into JD Edwards EnterpriseOne. Z tables also can be used to retrieve JD
Edwards EnterpriseOne data. Z tables are also known as interface tables.

Z transaction

Third-party data that is properly formatted in interface tables for updating to the JD
Edwards EnterpriseOne database.

Glossary-19

Z transaction

Glossary-20

A

array, 4-8,5-3,9-3
array list, 4-8,4-20
auto commit, 7-1

best practice
business function calling business service, 9-2
creating business service value object, 4-8
declaring private method, 4-6
declaring public method, 4-6
handling business service error, 4-19
business function call, 4-11, 5-1
Business Function Call Wizard, 4-11
business function calling business service, 9-2
business service
calling business function, 4-11
calling business service, 4-15
calling database operation, 4-14
calling utility business service, 4-15
creating, 2-2,4-2,4-3
defining, 2-1,4-1,4-3
handling errors, 4-19
naming, 2-4
overview, 2-1
utility, A-1
versioning, 6-4
business service property
calling, 4-17
defining, 4-16
handling errors, 4-18
MaxRowsReturned, 5-7
naming, 4-16
organizing, 4-16
property key, 4-16
business servicedatabase operation, 5-1
business serviceHTTP request/reply, 10-1
business services framework, 2-2
business serviceweb service consumer, 9-1

Cc

class
business service

Index

creating, 4-5
naming, 4-3
published business service
creating, 3-6
naming, 3-4
class diagram
business service, 4-2
Delete operation, 5-16, 5-17
Insert operation, 5-9, 5-10
published business service, 3-1
Query operation, 5-4, 5-6
Update operation, 5-12, 5-15
code template
E1DF - EnterpriseOne Data Formatter, 3-15
E1PM - EnterpriseOne Published Business Service
Method, 3-7
E1SD - EnterpriseOne Add Call to Service
Property with Default Value, 4-18
E1SM — EnterpriseOne Business Service Method
Call, 4-6
ElTest — EnterpriseOne Test Harness Class, 3-18
using, 2-2
component, 4-4
compound, 4-4
constructor, 3-13
creating versions
consumer web service, 6-8
published business service, 6-3

D

data formatter, 3-15
data type
business function value object, 4-8
database operation internal value object, 5-2
database operation published value object, 5-1
published value object, 3-8
transforming, 3-14
web service consumer, 9-2
Database Call Wizard, 4-14
database operation, 5-1
business service
Delete class diagram, 5-17
Insert class diagram, 5-10
Query class diagram, 5-6
Update class diagram, 5-13

Index-1

creating Delete operation, 5-15
creating Insert operation, 5-8
creating Query operation, 5-3
creating Update operation, 5-12
Delete operation
error handling, 5-16
internal value object, 5-17
published value object, 5-16
value object processing, 5-16
Insert operation
error handling, 5-8
internal value object, 5-10
multiple records, 5-10
published value object, 5-8
value object processing, 5-8
published business service
Delete class diagram, 5-16
Insert class diagram, 5-9
Query class diagram, 5-4
Update class diagram, 5-12
Query operation
creating, 5-7
error handling, 5-4
internal value object, 5-6
published value object, 5-3
value object processing, 5-3
Update operation
error handling, 5-12
internal value object, 5-13
published value object, 5-12
value object processing, 5-12
database operation call, 4-14
Delete database operation call, 5-15
documenting business service, 4-22

E

E1DF - EnterpriseOne Data Formatter code
template, 3-15
E1lMessageList
adding prefix, 4-20
calling, 4-20
using, 3-12

E1PM - EnterpriseOne Published Business Service

Method code template, 3-7

E1SD - EnterpriseOne Add Call to Service Property

with Default Value code template, 4-18

E1SM - EnterpriseOne Business Service Method Call

code template, 4-6

ElTest — EnterpriseOne Test Harness Class code

template, 3-18
error handling
business function, 4-14, 4-20
business service, 4-19
business service property, 4-18
database operation, 5-2
published business service, 3-17
exceptionerror handling, 4-14

Index-2

F

field, 4-4
format data, 3-15

G

generated code, 4-12,4-14

GL Account Processor business serviceutility business

service, A-4

H

HTTP request/reply
creating, 10-1
overview, 10-1
testing, 10-2

Insert database operation call, 5-8

Inventory Item ID Processor business serviceutility

business service, A-6

J

Java code standards, 2-5
Javadoc, 4-22

L
listener, 10-1
log file
default logging, 8-1
explicit logging, 8-2
M

manual commit, 7-1
mapping data, 3-12
method
accessing business service property, 4-17
business service
naming, 4-4
public, 4-6
published business service
naming, 3-5
protected, 3-7,3-20
public, 3-7,3-20
modify published business service, 3-3,3-21
modifying business service, 4-22
multiple records, 5-10

N

naming
business function value object, 4-4
business service class, 4-3
business service level business service
property, 4-17
business service method, 4-4
consumer business service, 9-2

field, 4-4
package, 2-4
published business service class, 3-4
published business service method, 3-5
published business service value object, 3-5
system level business service property, 4-16
variable, 3-5
versioned consumer web service, 6-7
versioned internal business services, 6-5
versioned published business service, 6-3
namingdatabaseoperation, 5-3
Net Change Processor Business Serviceutility business
service, A-10

P

Processing Version Processor business serviceutility
business service, A-12
published business service
adding functionality, 3-21
changing, 3-3
creating, 2-2,3-1,3-16
customizing, 3-19
defining, 2-1,3-1,3-2
deprecating, 3-23
handling errors, 3-17
naming, 2-4
overview, 2-1
testing, 3-18
versioning, 6-1

Q

Query database operation call, 5-3

R

rule
calling business service, 3-16
creating business service class, 4-5
creating business service value object, 4-7
creating published business service class, 3-6
creating published business service value

object, 3-10

declaring business service public method, 4-6
HTTP request/reply, 10-1
using ElMessageList, 4-19
web service consumer value object, 9-3

S

softcoding
defined, 9-3
naming templates, 9-3
template, 9-3

T

testing
listener, 10-2
published business service, 3-18

web service, 3-19

web service consumer, 9-4
WSI compliance, 3-19

transaction processing, 7-1

U

business service, 4-3

controlling the transaction, 7-4

default behavior, 7-2
explicit behavior, 7-4
published business service,

3-3
transaction processing boundary,

7-2

Update database operation call,
utility business service

\'}

creating, A-1
Entity Processor
method, A-2
overview, A-2
processing, A-2
signature, A-2
value object, A-2, A-3
GL Account Processor
method, A-4
overview, A-4
processing, A-5
signature, A-4
value object, A-4, A-5
Inventory Item ID Processor
method, A-7
overview, A-6
processing, A-7
signature, A-7
value object, A-8
value object class, A-7
Net Change Processor
method, A-11
overview, A-10, A-12
processing, A-11
signature, A-11
value object, A-11, A-12
overview, A-1
Processing Version Processor
method, A-12
overview, A-12
processing, A-13
signature, A-12
value object, A-12, A-13

5-12

value object

business service
creating, 4-7
naming, 4-4
defining, 2-2
mapping data, 3-12
published business service
creating, 3-7,3-10
input, 3-11

Index-3

naming, 3-5
output, 3-11
reusing, 3-8
structure, 2-3
using, 2-2
value objectdatabase operation, 5-3
variable, 3-5,3-7,4-7
version examples
consumer web service, 6-8
internal business service, 6-5, 6-6
published business service, 6-3
version support, 3-23
versioning
consumer web services, 6-6
internal business services, 6-4
overview, 6-1
published business services, 6-1

w

web service, 2-1
web service consumer
calling a business service, 9-2
creating a business service, 9-2
data type, 9-2
overview, 9-1
softcoding, 9-3
testing, 9-4
versioning, 6-6
web service provider, 4-1
web service proxy
softcoding, 9-3
where clause, 5-3, 5-6,5-7,5-12, 5-13, 5-16
wizard
Business Function Call, 4-11
Database Call, 4-14
WSDL, 3-8

X

XML document, 9-2

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to JD Edwards EnterpriseOne Tools Business Services Development Methodology
	1.1 JD Edwards EnterpriseOne Tools Business Services Development Methodology Overview
	1.2 JD Edwards EnterpriseOne Tools Business Services Development Methodology Implementation

	2 Understanding Business Services
	2.1 JD Edwards EnterpriseOne Business Services
	2.1.1 Published Business Services
	2.1.2 Business Services

	2.2 Development Methodology
	2.3 Value Objects
	2.3.1 Components
	2.3.2 Compounds
	2.3.3 Fields

	2.4 Package Naming and Structure
	2.5 Java Coding Standards

	3 Creating a Published Business Service
	3.1 Understanding Published Business Services
	3.2 Developing a Published Business Service
	3.2.1 Creating a Transaction in a Published Business Service

	3.3 Managing Published Business Service Components
	3.3.1 Published Business Service Class Names
	3.3.2 Published Business Service Method Names
	3.3.3 Published Business Service Value Object Names
	3.3.3.1 Published Business Service Variable Names

	3.3.4 Creating a Published Business Service Class
	3.3.4.1 Rules

	3.3.5 Declaring Public Methods for a Published Business Service
	3.3.6 Creating a Published Value Object
	3.3.6.1 Published Value Object Structure and Data Types
	3.3.6.2 Web Service Considerations for Data Types and Variable Names
	3.3.6.3 Rules
	3.3.6.4 Published Input Value Object
	3.3.6.5 Published Response Value Object
	3.3.6.6 Mappings
	3.3.6.7 Data Type Transformation
	3.3.6.8 Integer to and from MathNumeric and BigDecimal to and from MathNumeric
	3.3.6.9 Boolean to and from String
	3.3.6.10 Data Formatter

	3.4 Calling a Business Service
	3.4.1 Rules

	3.5 Handling Errors in the Published Business Service
	3.6 Testing a Published Business Service
	3.6.1 Testing the Web Service
	3.6.2 WSI Compliance Testing

	3.7 Customizing a Published Business Service
	3.7.1 Published Business Service Model
	3.7.2 Extending a Published Business Service

	3.8 Deprecating a Published Business Service

	4 Creating a Business Service
	4.1 Understanding Business Services
	4.2 Developing a Business Service
	4.2.1 IContext and IConnection Objects

	4.3 Managing Business Service Components
	4.3.1 Business Service Class Names
	4.3.2 Business Service Method Names
	4.3.3 Business Service Internal Value Object Names
	4.3.3.1 Field Names
	4.3.3.2 Compound and Component Names for a Business Service

	4.3.4 Creating a Business Service Class
	4.3.4.1 Rules

	4.3.5 Declaring a Business Service Public Method
	4.3.5.1 Rules for Declaring a Business Service Public Method
	4.3.5.2 Best Practices for Private and Protected Methods

	4.3.6 Creating Internal Value Objects
	4.3.6.1 Rules for Internal Value Object
	4.3.6.2 Best Practices for Internal Value Object

	4.4 Calling Business Functions
	4.5 Calling Database Operations
	4.6 Calling Other Business Services
	4.7 Managing Business Service Properties
	4.7.1 Standard Naming Conventions for the Property Key
	4.7.1.1 System-Level Business Service Properties
	4.7.1.2 Business Service Level Business Service Properties

	4.7.2 Business Service Property Methods

	4.8 Handling Errors in the Business Service
	4.8.1 Rules
	4.8.2 Best Practices
	4.8.3 Collecting Errors

	4.9 Modifying a Business Service
	4.10 Documenting a Business Service

	5 Creating Business Services That Call Database Operations
	5.1 Understanding Database Operations
	5.1.1 Data Types
	5.1.1.1 Database Exceptions

	5.2 Creating a Query Database Operation Business Service
	5.2.1 Published Value Object for Query
	5.2.1.1 Naming Conventions
	5.2.1.2 Data Types and Structure
	5.2.1.3 Error Handling
	5.2.1.4 Class Diagram

	5.2.2 Internal Value Object for Query
	5.2.3 Empty Where Clause and Max Rows Returned

	5.3 Creating an Insert Database Operation Business Service
	5.3.1 Published Value Object for Insert
	5.3.1.1 Naming Conventions
	5.3.1.2 Data Types and Structure
	5.3.1.3 Class Diagram

	5.3.2 Internal Value Object for Insert
	5.3.3 Inserting Multiple Records

	5.4 Creating an Update Database Operation Business Service
	5.4.1 Published Value Object for Update
	5.4.1.1 Naming Conventions
	5.4.1.2 Data Types and Structure
	5.4.1.3 Class Diagram

	5.4.2 Internal Value Object for Update

	5.5 Creating a Delete Database Operation Business Service
	5.5.1 Published Value Object for Delete
	5.5.1.1 Naming Conventions
	5.5.1.2 Data Types and Structure
	5.5.1.3 Class Diagram

	5.5.2 Internal Value Object for Delete

	6 Versioning JD Edwards EnterpriseOne Web Services
	6.1 Overview
	6.2 Published Business Services
	6.2.1 Determining if Versioning Is Required
	6.2.2 Naming Conventions for Versions
	6.2.3 Creating a Published Business Service Version
	6.2.4 Example: Correct Field Names and Format of Interface

	6.3 Business Services
	6.3.1 Determining if Versioning is Required
	6.3.2 Example: Enhancement that Includes New Fields and Associated Processing

	6.4 JD Edwards EnterpriseOne as a Web Service Consumer
	6.4.1 Determining if Versioning is Required
	6.4.2 Creating a Version to a Consumer Business Service
	6.4.3 Example: Enhancement to Call Latest Version of a Third-Party Service

	7 Understanding Transaction Processing
	7.1 Transaction Processing
	7.1.1 Auto Commit
	7.1.2 Manual Commit

	7.2 Default Transaction Processing Behavior
	7.2.1 Published Business Service Boundary for Manual Commit
	7.2.2 Published Business Service Boundary for Auto Commit

	7.3 Explicit Transaction Processing Behavior
	7.3.1 Creating a New Connection
	7.3.2 Using an Explicit Transaction
	7.3.2.1 Scenario 1
	7.3.2.2 Scenario 2

	8 Understanding Logging
	8.1 Logging
	8.1.1 Default Logging
	8.1.2 Explicit Logging

	9 Understanding JD Edwards EnterpriseOne as a Web Service Consumer
	9.1 JD Edwards EnterpriseOne as a Web Service Consumer
	9.2 C Business Function Calling a Business Service
	9.2.1 Best Practices for Business Functions Calling Business Services

	9.3 Creating a Business Service for JD Edwards EnterpriseOne as a Web Service Consumer
	9.3.1 Naming Convention for Consumer Business Services
	9.3.2 Rules for Value Object for JD Edwards EnterpriseOne as a Web Service Consumer

	9.4 Using Softcoding
	9.4.1 Softcoding Template Naming Conventions

	9.5 Testing the Business Service for JD Edwards EnterpriseOne as a Web Service Consumer

	10 Using Business Services with HTTP Request/Reply
	10.1 Understanding Business Services and HTTP POST
	10.2 Using Business Services with HTTP Request/Reply
	10.3 Testing the Servlet

	A Utility Business Services
	A.1 Understanding Utility Business Services
	A.1.1 Implementing Utility Business Services

	A.2 Entity Processor Business Service
	A.2.1 Understanding the Entity Processor Business Service
	A.2.2 Implementation Detail
	A.2.2.1 Methods
	A.2.2.2 Signature
	A.2.2.3 Value Object Classes
	A.2.2.4 Functional Processing

	A.2.3 Value Object Classes
	A.2.3.1 Business Service Value Object
	A.2.3.2 Published Reusable Value Object
	A.2.3.3 Output from Business Service to Published Value Object

	A.3 GL Account Processor Business Service
	A.3.1 Understanding the GL Account Processor Business Service
	A.3.2 Implementation Detail
	A.3.2.1 Methods
	A.3.2.2 Signature
	A.3.2.3 Value Object Class
	A.3.2.4 Functional Processing

	A.3.3 Value Object Classes
	A.3.3.1 Business Service Input and Output Interface
	A.3.3.2 Published Reusable Value Object
	A.3.3.3 Published to Business Service Value Object

	A.4 Inventory Item ID Processor Business Service
	A.4.1 Understanding the Inventory Item ID Processor Business Service
	A.4.2 Implementation Detail
	A.4.2.1 Methods
	A.4.2.2 Signature
	A.4.2.3 Value Object Classes
	A.4.2.4 Functional Processing

	A.4.3 Value Object Classes
	A.4.3.1 Business Service Value Object
	A.4.3.2 Published Reusable Value Object
	A.4.3.3 Input Business Service Processing

	A.5 Net Change Processor Business Service
	A.5.1 Understanding the Net Change Processor Business Service
	A.5.2 Implementation Detail
	A.5.2.1 Method
	A.5.2.2 Signature
	A.5.2.3 Value Objects
	A.5.2.4 Functional Processing
	A.5.2.5 Method
	A.5.2.6 Signature
	A.5.2.7 Value Objects
	A.5.2.8 Functional Processing

	A.5.3 Value Object Classes

	A.6 Processing Version Processor Business Service
	A.6.1 Understanding the Processing Version Processor Business Service
	A.6.2 Implementation Detail
	A.6.2.1 Method
	A.6.2.2 Signature
	A.6.2.3 Value Object
	A.6.2.4 Functional Processing

	A.6.3 Value Object Classes
	A.6.3.1 Business Service Value Object

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

