ORACLE

JD Edwards EnterpriseOne Tools
Connectors Guide

Release 8.98 Update 4

E14696-02

March 2011

JD Edwards EnterpriseOne Tools Connectors Guide, Release 8.98 Update 4
E14696-02
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PlOIACE ...ttt ettt e e et e e s e e e s s e s et s s e s s s s s s s s as s s s s sn s s rsarneneens

AUAIEIICE ...ttt ettt ettt et et e e te e s e eseessessaesseessesbeessasbeessesbeessasseessesssensesreenbesseensenreans
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e
Related DOCUIMENTESccueeviriiiiieieieietetetete et e e s sessesbeste st esseseeseasaesaasassessessessessessessessassessnsessensenses
CONVENTIONS ..vvieitieiieiieesteeteesteeteesttessteesteesteesteesseeassaeassassseesssaesseesssessseesssesssessssesssessseesseesssessssessseessesans

1 Introduction to JD Edwards EnterpriseOne Tools Connectors

1.1 JD Edwards EnterpriseOne Tools Connectors OVerviewc.c.coccoeueueiiccieieiccieeeennnne,
1.2 Connectors Implementation...........cccccevieiiiiiiniiiiiiiiii e

2 Understanding COM Interoperability

2.1 COM INteroperabilitycccccciuiiiiiiiiiiiiiiiiiciicr e
2.2 JD Edwards EnterpriseOne COM Interoperabilityc.cococorvininieinininenciciicccccnenns
2.2.1 COM ODJECES.....vviiiiiiiiiiiicit st
222 COM Interoperability USage.........cccccceuiuiiiiiiiiiiiiiiiiiiiiciciicicceieieiceeeeeeeeeseneenaes

3 Understanding the COM Solution for Business Function Execution

3.1 JD Edwards EnterpriseOne COM SEIVETcoviiiiiiiiiiiniiiiiiiiicissseccsiscesaenes
3.2 COM CONNECEOT ...ttt
3.3 GenCOM COMPONENES.......coiiiiieieieietitiiete s
3.3.1 Understanding GeNCOMc.ccocouviiiiiiininiiiniiiiiinsnsss s
3.3.2 Installation INformationccceiiiiiiiiii s
3.3.3 PrOGID ..o
3.3.4 Setting Up an Environment for GenCOM..........cccccccuiiiiiiiiiiiiininiiiiciccccecceens
3.3.4.1 Setting Up an Environment for GenCOM on Microsoft Visual Studio 6.0..........
3.3.4.2 Example: Include Directories...........oourueiiiicieiiioiicicce
3.3.4.3 Example: Lib DireCtories ...
3.3.4.4 Example: MSDeV Directoriescccvveiiiiiiiiiniiiiiiiiciiccccccccceceenn
3.3.4.5 Example: Paths.........coooiiiii s
3.3.4.6 Setting Up an Environment for GenCOM on Microsoft Visual Studio.NET.......
3.3.4.7 Example: Include Directories..........ccviiuimiiiiiiiiiiiiiiiiiiiiiccccicee e
3.3.4.8 Example: Lib Directories ...
3.3.4.9 Example: Paths........cccoooiiiiiiiiii e
3.3.4.10 Example: Basemake Directories ...
3.3.4.11 Example: Bkoffice Directories..........cocoreiiiiiieioiiicicieiicce e

3-4
3-5

3.3.4.12 Example: DXSDKROOT Directories..........ccviuiuieueiiieieiiiiieicieeeeieeeeeneeieenenennes 3-8

3.3.4.13 Example: INETSDK Directoriescccccevvviiiiiiiiiniiiiiiniiiinnnnns 3-8
3.3.5 Setting Up an Environment for GenCOM on Microsoft Visual Studio 2005............... 3-8
3.3.5.1 Example: Include Directories..........cooviiimiiiiiiiiiiiciiiiciciccicic e 3-8
3.3.5.2 Example: Lib Directoriesccoceuiioiirieiiiicieicct i 3-9
3.3.5.3 Example: Pathis........ccoociiiiiiiiicccce e 3-9
3.3.5.4 Example: Basemake Directoriesccoouiiiiiiieieiiiiiiiniiciieeeeeeeeeeeenes 3-9
3.3.5.5 Example: Bkoffice Directories. ..ot 3-9
3.3.5.6 Example: DXSDKROOT DIrectories........ccocceueueucucucuememiueieieicereneieieienenenenenenenenenenes 3-9
3.35.7 INETSDK dir€Ctory ...ovoviviiiiiiiiriiiciiiiicinicsssnssssss s 3-9
3.3.6 Running GeNCOM ... 3-9
3.3.7 Using GeNCOM OUtpUL......cccuiviiiiiiiiiiiiic s 3-11
3.3.7.1 Vistal BasiC.....oouiiiiiiiiiiicc s 3-11
3.3.7.2 VISUAL C oo 3-12
3.4 COM Wrapper CheckVEr ..o 3-14
3.4.1 Running CheckVer ... e 3-14
3.4.1.1 SYIEAX oottt 3-14
3.4.1.2 EXQMIPLE....oiiiiiiicicce s 3-14
3.4.1.3 OPLIONS ..ot s 3-14

4 Deploying the COM Solution for Business Function Execution

4.1 Understanding COM Server Deployment for Business Function Execution..................... 4-1
4.2 Setting Up the DCOM Server for Business Function Execution.........c.cccooooeiiiiinnninne. 4-2
4.2.1 Understanding DCOM Server Set UP ... ereeeneeneneenenenenenes 4-2
4.2.2 Setting Up DCOM for a Server Environment.............cooooeueiiiiiiiiiceiicceec 4-2
4.2.3 Setting Up Security on the COM Server ..o 4-3
424 Setting Up the Identity as Interactive USercccccooiiiiiiiciiicicececccceenenenes 4-3
4.2.5 Setting Up DCOM for a Client Environmentc.ccooooiuiiiineiiiceiccee 4-3
4.3 Installing COM CONNECLOT..........cooiurieiiiecteie ittt 4-4
4.3.1 Installing COM Connector on a Non-JD Edwards EnterpriseOne

Client ENVIrONMENtooviiiiiiiiiiiieiiticicci e 4-4
4.4 Using OCM Support with COM CONNECLOTccvvivirmeieiiieieieece s 4-5
4.41 [INTEROP] ..ottt e 4-6
4.4.2 [OCMI e 4-6
4.5 Using BHVRCOM with COMccooiiiiiiiiiiiciciccc s 4-6
4.6 Use IJDETImMeZONe INtEIfaceccvcoveieirieiiiiiiesieieeteteteeeeste e sre st s b tessesaessssessassessessenss 4-7
4.6.1 XML File generated by GenCOM for IJ]DETimeZonecccccevviririiiinciciiiiniene, 4-8
4.7 Requesting Inbound XML Using COM Server...........cccovvviriinininnininiiinnissnssesesisisesenens 4-8
4.8 Using COM ReHabilityccccooviriiiiiiiiiiiiiiccccccce e 4-10
4.9 Using COM Tracing and LOZGINgccceviiieieiiiiiiiciie i 4-10
4.91 Resolving Tracing ISSUESccccciuiiiiiiiiiiiiiiiiiicicicece s 4-11

5 Using COM Transactions

5.1 Understanding COM Interoperability Transactions...........c.ccceceveveiiininneninnnnnnncincneenn. 5-1
5.1.1 Outline for Calling Prepare and Commuit...........ccccooiiiiiiiiiiiiicccecceecceenennes 5-1
51.2 COM+ Two-Phase Commit TranSactioncceeceevvereeriesiecieseeieseesieseeseeseeesessessessens 5-2
5.2 Setting Up the COM+ ENvironment..........cccccceuiiiiiiiiiiiiiiiiiniiiicicciciciceeccceeeseieeeeeens 5-2

5.3 Running a COM+ Transactionscccoeevevniiiiiiiiniiii s 5-3

5.3.1 Understanding COM+ Transactions............ccceuiieieieiiicicieiicce e 5-3
5.3.2 Creating a Transactional Object (SOEPT0].VDP)ccovvuvivirininiirnreiree e 5-4
5.3.2.1 Modulel : Modulel.bas ... 5-7
5.3.3 Creating a Transactional Clientccooiii 5-7
5.4 Running a Distributed Transactionccccccoecuiieiiiiiiieecceeceeeeeeeee e 5-7
5.4.1 Understanding COM+ Transaction ..o 5-7
542 Creating MTStest for a Distributed Transaction (MTStest.vbp)cccccvvvvviiiiiiiiiiinnnns 5-8
5.4.21 MTSTestClass : MTSteSt.bascccvvviiiiiiiiiiiiciici e 5-8
5.4.2.2 Modulel : Modulel.basccocieiiiiiiiiiiiiiiiiccic e 5-9
5.4.3 Creating ClientPrj for a Distributed Transaction...........ccccccevvvnivivniiinnnninnne 5-10
54.4 Registering the COM+ .dll........ccccoiiiiiiiiiiiiicreerr s 5-10

6 Using COM Connector Solution for Events - Guaranteed Events

6.1 Understanding COM Connector Guaranteed EVentsccccccccccciciiicinciinnnns 6-1
6.2 Setting Up the COM Connector for Guaranteed Events - 8.94............c.cccooiiirnnn, 6-3
6.2.1 Understanding COM Connector Set Up for Guaranteed Events - 8.94 6-3
6.2.2 Installing and Setting Up the COM Connector for Guaranteed Events - 8.94............ 6-3
6.2.3 Registering Components for COM Connector - 8.94............ccooeeiiiiiieiiiinciiic, 6-5
6.2.4 Subscribing to Events - 8.94..........c.ccooi 6-6
6.2.5 Logging COM Events - 8.94cccoviiiiiiiiiiiiic s 6-6
6.3 Setting Up the COM Connector for Guaranteed Events - 8.95..........c.cccccovviniiiiiinninns 6-6
6.3.1 Understanding COM Connector Setup for Guaranteed Events - 8.95........................ 6-6
6.3.2 Installing and Setting Up the COM Connector for Guaranteed Events - 8.95............ 6-7
6.3.3 Registering Components for COM Connector - 8.95...........ccooreioiiiniiiiiciic, 6-9
6.3.4 Subscribing to Events - 8.95.........c.ccooii e, 6-9
6.3.5 Logging COM Events - 8.95 ..o 6-9
6.4 Installing and Setting Up the COM Connector for Guaranteed Events - 8.96 &

later TEIEASES.c.cuiviiiiiiiicc s 6-10
6.5 Implementing JD Edwards EnterpriseOne Interfaces..........cccccocovevvrvnvnnnnnnnncecncnes 6-10
6.6 Implementing a JD Edwards EnterpriseOne Interface...........ccccoooviiiiniinvniiininiinnnns 6-10
6.6.1 Creating a COM+ COMPONENL.......ccovvviiiuiiiiiiiiiriiiec s 6-11
6.6.1.1 EventSink: OneWorldTransientEventSink.cls..........ccccooviviiniiiiniinnen, 6-11
6.6.2 Logging on to the COM Connector.........cccuiirieiiiiciciccce e 6-11
6.6.2.1 COMConnector: frmLogiN.fIm.......ccccccccuiiviiiiiiiiiiiiiis 6-11
6.6.2.2 COMConnector COmMMOIN.DASccceveveveririreieieieieiceee s 6-12
6.6.2.3 COMConnector: SubscriptionManagerccoccueveiinieieiinicience e 6-14
6.6.3 Subscribing to an EVent ... 6-16
6.6.3.1 Subscriber: MainFOrmM.fImccccooviiiiii e, 6-17
6.6.4 Integrating with BizTalkccooooiiiiiii 6-24
6.6.4.1 Subscriber: BizTalk.ClSccciririiiiiiiiiiieccrecerreerree e 6-24
6.6.5 Adding a New APPLlCationc.cccccuiucuiiiiiiiiciieiccccieeceeeeee s 6-27
6.6.6 Installing the Event Classccoocueuiiiieiiiiici e 6-27
6.7 Registering EventSink for Persistent SUbSCIIptioncccccceciiiiiiiicciiiiiiicee, 6-28

7 Understanding jdeinterop.ini for COM Connector

71 Settings for jdeinterop.ini File for the COM Connectorccooevoiieieiiiccieeiccciee
711 [OCMI e e
7.1.2 DENET] ..ottt e
7.1.3 [SERVER] ..ottt
714 [SECURITY] oottt
7.1.5 [DEBUG] oottt
7.1.6 [INTEROP.....omi ettt
717 [EVENTS] ..ot e
7.1.8 [JMSEVENTS] ...ttt s
7.1.8.1 WEDSPRETe. ...
7.1.8.2 Oracle Application SEIVETc.cccccuiuiuiiiiiiciiicieicieeeicee et

8 Understanding Java Interoperability Solution

8.1 Java Interoperability SOIULIONccccceuiiiiiiiiiiiiiiiiiic e

9 Working with the Dynamic Java Connector

9.1 Understanding the Dynamic Java CONNECLOTcccciuiiiiiiiiiciciceeeceeeneeenenenenes
9.2 Designing the Dynamic Java CONNECtOT.........cccveiirieieiiiiicieicic s
9.2.1 Business Function Spec Metadata Introspection..............ccoocreieiiiiiiniiicccice
9.2.1.1 BSFNMELOQ ..ot
9.21.2 BSEINParameter.........ccoiiiiiiiiiiiiiiiicciciii s
9.21.3 BSENSPECSOUICE ..ottt
9.21.4 SPECDICHONATY ..ot
9.2.2 Business Function Spec Metadata Validation............cccccovnvnninnnninnne,
9.2.3 SpecImageConSOle....... ...
9.2.3.1 Generate Spec IMage.........cociiviiiiiniiiii s
9.2.3.2 USAZE ...ttt
9.2.3.3 OPHIONS ..ottt
9.2.34 EXPlanation......c.cccucciuiiiiiicccecceee ettt
9.2.3.5 EXQMIPLe....ciiiiiiiiiiiiiicicc s
9.2.3.6 Update Spec Image..........coovuvviiiiiiiiiniiiiiiiiiicnicsc e
9.2.3.7 USAZE ...t
9.2.3.8 OPLIONS ..ot
9.2.3.9 EXPlanation........ccccciiiiiiiiiiiiccc e
9.2.3.10 EXQIMIPLE....oiiiiiiiiiicc s
9.2.3.11 Validate Spec IMageccovvurueiiiiciciic
9.2.3.12 USAZE ..ttt
9.2.3.13 OPHONS .
9.2.3.14 EXPlanation.......cccciiiiiiiiiiiicccc s
9.2.3.15 EXQMIPLE....iiiiiiiiiiiiiicc s
9.2.3.16 Synchronize Spec IMage..........cccceiiiiiiiiiiiiiccece s
9.2.3.17 USAZE oottt
9.2.3.18 OPHIONS ..
9.2.3.19 EXPlanation......c.cccuiciiiiiiiiiccccce e
9.2.3.20 EXaMIPLe....iiiiiiiiiiiii s

vi

10

9.3 Installing the Dynamic Java CONNECtOrccccovoiiiiiiiiic e 9-11

94 Running the Dynamic Java Connectorccooiiiiiic 9-13
9.4.1 Calling a Business FUNCHONccccciiiiiiiiiiiiiiicecccecccceeeeeeeeeeeeeees 9-14
9.4.2 BSFN CaChecoviiiiiiiiii s 9-15
9.4.3 Transaction Using the Dynamic Java Connectorcocoooireieineiciccccccieee 9-15
9.4.4 OCM Support for the Dynamic Java CONNECLOTcccueuiueuemcmeuemememcicieieenencieieneneneens 9-16
9.5 Managing the User Session for the Dynamic Java Connector...........c.cccooveveveiicuereinnnne, 9-16
9.5.1 User Session Management for the Dynamic Java Connector............ccocevevrueueiennnne. 9-16
9.5.2 Inbound XML Request Using the Dynamic Java Connector...........ccccccccecueuricucucnnne. 9-18
9.5.3 Logging for the Dynamic Java Connector...........cccooeeieiiicieiiiiceec e 9-18
954 Exception Handling for the Dynamic Java Connector............ccccccvviviviiiniiiiiiiennnnnne, 9-19
9.6 Using Sample APPLCALIONSccovviueiiiiiiccicccccccceeee e 9-19
9.6.1 Sample APPLICAtIONScoeviviiiiiiiiiicicicic s 9-20
9.6.2 Setting Up Sample Applications............ccoueiiiieioiicicieiccc s 9-20
9.6.3 Running the Sample APPLCAtIONSc.ccceueuemiiiiiiciiiiieiiceececeee s 9-21

Understanding the Java Connector

10.1 Java Connector and JD Edwards EnterpriseOne...........ccccoeiiiemiicccecccceeeenenennen 10-1
10.1.1 JDEDAGLE ...ttt ettt sttt ettt ettt 10-2
10.1.2 JTDEMAathINUINETIC . ..vvviiiiieieeieiceeisteeeees sttt 10-2
10.2 Designing the Java CONMECTOTccccoiuiiiiiiiiiccccce e 10-3
10.2.1 GBIJAVEA .ttt ettt ettt h bbbt b e b st et et et et et e b e e bt e bt eb e ebe b nbens 10-3
10.2.2 GenJava Client ENVITONMENTcc.ovuiriiiiiieieieieeie ettt 10-3
10.2.2.1 PATH oottt ettt sttt 10-3
10.2.2.2 CLASSPATH ..ottt es 10-4
10.2.3 Java VerSioning ..ot 10-4
10.2.3.1 Migrating from Previous Releasescccccevveviiriririininirnncncrrrereeeeeeeenes 10-5
10.2.3.2 Java Connector Static and Dynamic Modesccccceevvviiinnnnnnnnine, 10-5
10.2.3.3 Using the Java Wrapper Version Checker (CheckVer) ..o 10-5
10.2.3.4 Running CheckVer (Genjava)........cccceeeerurrieiiicerinieieeeeeeeeeeieeeeeeeeeeeeeeeeeseees 10-6
10.2.3.5 SYIEAX covvviiiri s 10-6
10.2.3.6 EXQMIPLE.....oiiiiiiiiiiiiiici s 10-6
10.3 Installing a Java CONNECTOTccuoviiiiiiic s 10-6
10.4 Running the Java CONNECLOTcoooiimimiiiiiiiiitiiictc s 10-8
10.4.1 USING GENJAVA....viuiiiiiiiiiiicicicece s 10-8
10.4.1.1 RUnning GenJava.........cccccviiiiiiiiiiiiiiiiiccc e 10-9
10.4.1.2 SYNEAX c.vviviiieicie s 10-9
10.4.1.3 OPHONS ..o 10-9
10.4.1.4 Generate Java WIapPers ... 10-10
10.4.2 Using GenJava OUtpuUL.......ccooiiiiiiniii s 10-10
10.4.3 Transactions Using the Java CONNECLOT...........ccccvuviviiiiirinininiiiiciccccenes 10-13
10.4.4 Using BHVRCOM through the Java Connector............cccococeueccuccececeeeccneennnes 10-15
10.4.5 OCM Support for the Java CONNECLOTcceveveiiviieiiiiiiiciciecc s 10-16
10.5 Managing the User Session for the Java Connector...........c.cccoeveiiiniiiiiiiiiiiicnne. 10-16
10.5.1 Understanding User Session Management for the Java Connector 10-16
10.5.2 Inbound XML Request Using the Java Connector.............cccocevvivvinnnnnnninnnnn 10-18
10.6 Using Exception Handling for the Java Connector.............ccccoeceiiiiiiiiiinicciccne, 10-18

vii

11

12

viii

10.6.1 Understanding Exception Handling for the Java Connectorcccooovviinnnnn. 10-18

10.6.2 Fatal EXCEPLIONc.cviuiiiiiciiicie e 10-19
10.6.3 Recoverable EXCEPHONc.cocuiiiiiiiiiiiiiicicicciece s 10-19
10.6.4 REJECE oottt s 10-19
10.6.5 Exception Detailscccoeuiiiiiiiiiiiiniiiiiiiii e 10-19
10.6.6 Example: Java Connector Exception Handling Sample Code..........ccovveiiinunnnncs 10-22

Using Java Connector Events - Guaranteed Events

11.1 Understanding Java Connector EVENts............cccccccoiiiiiiiiiiiieeceeeeeeeeeeenenens 11-1
11.1.1 PrerequiSites ..ot 11-2
11.2 Developing a Java Connector Events Application...........c.cccoooieiiiiiiiiinic 11-4
11.2.1 Understanding Java Connector Events Application Developmentc.c.c.c........ 11-4
11.2.2 Introspection OPerations ... 11-4
11.2.21 EventIntrospectioNAPP.javaccccucueiiieicicicicieiccce e 11-4
11.2.3 Asynchronous EVent SESSIONScccoccucurucieiciciiiiiiiiicieieicieeieecieeee s 11-5
11.2.3.1 My LiSteNner java......cccoceueiiiiiiieieiiieieieieiete s 11-6
11.2.3.2 EventASYyNCAPP JaAVA. ..ot 11-7
11.2.4 Synchronous EVent SESSIONSc.cccccucciiiiiiiiciiieiiiciccecicecceeeeeeee s 11-8
11.2.4.1 EventSYyNCAPP.JaVa ..cccvveieieiiiiicccccccc s 11-8
11.3 Using the Sample Connector Events Clientc.cccocooiiiiiiicc 11-10
11.3.1 Understanding Connector Events Client TOOl ... 11-10
11.3.2 Prerequisites for Using the Sample Connector Events Client............cccccoevvvnininnne 11-10
11.3.3 Using the Connector Events Client TOOL.........ccoooiiiiiiiiiic 11-10
11.3.4 Configuring the Sample Connector Events Client.............cccoooioiiiiiiicccinccenns 11-11
11.3.4.1 To configure the Sample Connector Events Client............ccccocoevvrniinnirinnnnnn. 11-11
11.3.5 Running the Sample Connector Events Client............coccoceioiiiiiiniciicccee 11-12
11.3.6 Resolving Java Connector Events Client Tool ISSU€Sccccvueuvuveviirnnnnrenicnnes 11-12

Understanding J2EE Connector Architecture Resource Adapter

12.1]J2EE Connector Architecture Resource Adapter ..o 12-1
12.2 JCA 1.0 Specification Optional Features............cccccovviviiiiniiininnniniiiicccccne, 12-2
12.3 Assembly and COMPONENLSccciimimiiiiiiiiiiiiiiceeeee e 12-3
12.3.1 COMPONENLS.....oiiiiiiiiii s 12-4
12.4 Deployment and Configuration............ccoeoueiiiiioiiiiiiic s 12-5
12.4.1 Security PermiSSioNnsccccciiiiiiiiiiiiiiiiiicccccc s 12-5
12.4.2 JAeiNterop.ini SEHNGSc.cuoviviiiiiiiicicicicecec e 12-6
12.4.3 JAD] ML SEHNGS ..o 12-6
12.4.4 jdelog.properties SEttNgscccciiiiiiiiiiiiiiiii s 12-6
12.4.5 CLASSPATH Settingscevevevererereieieieieieeieieie s 12-6
12.4.6 Configurable Properties........c...cooceioiiicieiiiciciece e 12-7
12.4.7 Java Naming and Directory Interface Settings...........ccccoeeueivviicvininnnniinne. 12-7
12.5 Common Client Interface..........coooiviiiiiiiiiiiiii s 12-8
12.5.1 Implementing the Common Client Interface...........cccoooiiieiiiii 12-8
12.6 SIgNON TYPES wovvieiiiiciciicc e 12-9
12.6.1 Container-Managed SIgNONccccccviviiiiiiiiiiii s 12-9
12.6.2 Component-Managed Signom............ccooirieiiiiinieiiccie e 12-10
12,7 SUDCIASSES ...ttt 12-10

13

14

15

12.7.1 ImageBSFNInteractionSpecImplcccccooeiiiiiiiiiiiiiiiii 12-10

12.7.2 OWBSENInteractionSpecImplc.oooiiiiiiiiiic 12-11
12.8 Input and Output Data.........ccccciiiiiiiiiiiccccceeeee e 12-11
12,9 LO@S i 12-12
12,10 EXCEPHIONS ..ottt 12-12
12,11 SAMIPLES. .. 12-12
12.11.1 Prepare the Samples for Deployment..........cccccoeveiiiiiiiiiiiiii 12-12
12.11.1.1 JDBC Driver jar File.......occciiiiiiiiiiiiiciicniece s 12-12
12.11.1.2 Configuration Files........ccooiiiiiii e 12-13
12.11.1.3 Samples for the Application Server ... 12-13
12.11.2 Deploy the Sample Applications..........cccouiiiurieieiiicieieiccie e 12-13
12.11.3 Deploy the Sample Applications to WebSphere 5.X.......cccccceeuruvvevvinnnnnrrneenes 12-13
12.11.4 Run the Sample Applicationsccccevvviviiiiiiiiiniiiiii e 12-15
12.12 Checklist for Resolving ISSUES.........ccccovrueieiiiiicieiiccicec e 12-15

Understanding jdeinterop.ini for Java Connector

13.1 Settings for the jdeinterop.ini File for the Java Connector...........ccccoovriiiiiciiiiiinnn, 13-1
13.1.1 [OCMI o s 13-1
13.1.2 [CACHE] ..ot 13-2
13.1.3 DENET ...t 13-2
13.1.4 [SERVER] ..ottt 13-2
13.1.5 [SECURITY] oottt 13-2
13.1.6 [INTEROPYT ..ottt 13-3
13.1.7 [EVENTS] ..ot 13-3

Understanding jdelog.properties File

14.1 Settings for the jdelog.properties File ... 14-1
14.1.1 [EILOG oot 14-2
14.1.2 [LOGIL] ot 14-2
14.1.3 [LOG2] o 14-2

Understanding iJDEScript

15,1 GJDESCIIPL ..o s 15-1
15.2 iJDEScript Commands..........cccoouviiiiiiiiiiiiicccc s 15-2
15.2.1 Build COmMMANdoovieeieiicieeieeeeee ettt ettt e e et be b e ba s e ereens 15-2
15.2.1.1 SYNEAX 1o 15-2
15.2.2 Call COMMANGoeiniiiieiecieieeeete ettt ettt e e e e b e se e b e ereessesseessesssessesssessenseans 15-2
15.2.2.1 SYNEAX 1ottt 15-2
156.2.2.2 EXQMIPLE....oiiiiiiicc s 15-2
15.2.3 Define COmMMAN........cccveiiiiieeiieiereete ettt ste et se et e s e e se s e esesreessesseessesseessessenssessenns 15-2
15.2.3.1 SYNEAX 1ottt 15-2
15.2.3.2 EXAQIMIPLE....oiiiiiiic s 15-3
15.2.4 Define! COMMANG........cceeiiiiiieriieieie ettt e e e e e reeeesseesaesseessessesssesseessessenns 15-3
15.2.4.1 SYNEAX 1ottt 15-3
15.2.4.2 EXQMIPLE....oiiiiiiiicc s 15-3
15.2.5 EXit COMMANA ..ovviiiiiiieiieicieeeete ettt ettt te et e st e e et e sreessesseessesseessassaessensenns 15-3

15.2.5.1 SYNEAX c.vvviiiieieieicc s 15-3

15.2.6 Help Command.........cccccevuiiiiiiiininiiiiiiiiiii s 15-4
15.2.6.1 SYNEAX 1ot 15-4
15.2.7 Import Commandcoeiiiiiiiiiiiiii s 15-4
15.2.7.1 SYIEAX oottt 15-4
15.2.7.2 EXQMIPIE. ... 15-4
15.2.8 Importlib Command...........cccoeiiiiiiiii s 15-4
15.2.8.1 SYIEAX vttt 15-5
15.2.8.2 EXQMIPLE....oiiiiiiiciccc s 15-5
15.2.9 Interface CoMMANdcoouiiiiiiiiiiii s 15-5
15.2.9.1 Syntax fOr COM ..o 15-5
15.2.9.2 COM EXQIMIPLE...coiiiiiiiiciiiciieicieee et 15-5
15.2.10 Library Commandcccceveiiiieiiiiiiiiiieee s 15-5
15.2.10.1 SYIEAX oottt 15-5
15.2.10.2 EXQIMIPLE....oiiiiiiiiccc s 15-6
15.2.11 Login Commandcccoeiiiiiiiiiiniiiii s 15-6
15.2.11.1 SYIEAX vt 15-6
15.2.11.2 EXQIMIPLE....oiiiiiiiciciec s 15-6
15.2.12 Logout Command...........cceeeiiiiiiniiiiiiiiee s 15-6
15.2.12.1 SYIEAX oot 15-6
15.2.13 Opt COMMAN......coiiiiiiiiiiiiiicc e eeees 15-6
15.2.13.1 SYNEAX c.vvviiiiiieeee s 15-6
15.2.13.2 EXAMPLe ..o 15-7
15.2.14 Rename Command ..o 15-7
15.2.14.1 SYNEAX ottt 15-7
15.2.14.2 EXAMPI ..o 15-7
15.2.15 Say COMMANAoiiiiiiiiiicice et 15-7
15.2.15.1 SYNEAX oottt 15-7
15.2.15.2 EXAIMPIE...oiiiiiiiii s 15-7
15.2.16 SUD COMMAN.....oiiiiiiiiiiicc et 15-8
15.2.16.1 SYIEAX ottt 15-8
15.2.16.2 EXQMIPLE....oiiiiiiiiiiiiiiicc s 15-8
15.2.17 System COmMMAN........c.ccceueuiuiiiiiiriiiiiieeceeeeeee e 15-9
15.2.17.1 SYIEAX ottt 15-9
15.2.17.2 EXQMIPLE....oiiiiiiiiiiiciic s 15-9

A Using the COM Connector Solution for Classic Events

AA Understanding COM Connector Classic EVents...........ccooooveiiniciiiccccecce, A-1
A2 Setting Up the COM Connector for Classic EVENtsc.cccccccecciiiiieicciicceecene A-2
A2A1 Understanding COM Connector Set Up for Classic Events ..o A-2
A22 Installing and Setting Up the COM Connector for Classic Events............cccccoeueueneen. A-2
A3 Registering COMPONENLS.........ccceuiiiiiiiiiiiiiiic e A-5
A4 Subscribing t0 EVENESooviiiiii A-5
A5 Logging COM EVENtS.......cccciiiiiiiiiiiiiciciccc e A-6
A6 Implementing JD Edwards EnterpriseOne Interfaces...........ccccoeevevrvnnnnnncnnncnceccncnes A-6
A7 Implementing a JD Edwards EnterpriseOne Interface...........ccccccovvvivvnnnnnnnnnnnnn A-6
A7A1 Creating a COM+ COMPONENL ..ottt A-7

A7.1A1 EventSink: OneWorldTransientEventSinkK.clS........ccocvvivvviiiieieiciiiieeee e A-7

A7.2 Logging on to the COM ConNector........cc.ouiiririiiiciciecc s A-7
A7.2A1 COMConnector: frmLOgIN.fImM.......cccoeuiuiiririiiiicrreceree s A-7
A722 COMConnector COMMOINLDAScccvvvviiiviiiiiiiiiicicicc s A-8
A7.23 COMConnector: SubscriptionManagercc.covreieieiiceieicicce e, A-8
A7.3 Subscribing t0 EVENESc.cccuiiiiiiiiiiiicicicccrcceeceeee s A-10
A.7.31 Subscriber: MainFOrm.frm ... A-10
A7.4 Adding a New Application..........cooueviiiieiiiiieece s A-13
A75 Installing the EVent Classccocociiiiiiiiiicccceceeiceeeeeeee s A-14
A.8 Registering EventSink for Persistent SUbscription ..., A-14

B Using the Java Connector Solution for Classic Events

B.1 Understanding Java Connector EVents...........cccooiiiiiiiiiiicicccc e B-1
B.2 Developing the Java Client to Use the Java Connector Event Source...........ccccccevvvuvnnnne B-3
B.2.1 Creating a Java Class to Implement an Interfacecccococevvvvnvvinnnnnvinne B-3
B.2.2 Creating a Java Client Application to Subscribe to an Event.........c.cccccoceveiiinnnnnn. B-4
B.2.2.1 Example: Using the Java Client to Subscribe to an Event Using the
Java Connector Outbound Event Source ... B-4
B.2.3 Compiling the Java CHENtcccccciiiiiiiiicceccecee s B-6
B.24 Running the Java Client ... B-6
Glossary
Index

xi

Xii

Preface

Welcome to the JD Edwards EnterpriseOne Tools Connectors Guide.

Audience

This guide is intended for system administrators and technical consultants who are
responsible for enabling third-party applications and JD Edwards EnterpriseOne to
share logic and data.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

You can access related documents from the JD Edwards EnterpriseOne Release
Documentation Overview pages on My Oracle Support. Access the main
documentation overview page by searching for the document ID, which is 876932.1, or
by using this link:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id
=876932.1

To navigate to this page from the My Oracle Support home page, click the Knowledge
tab, and then click the Tools and Training menu, JD Edwards EnterpriseOne, Welcome
Center, Release Information Overview.

This guide contains references to server configuration settings that JD Edwards
EnterpriseOne stores in configuration files (such as jde.ini, jas.ini, jdbj.ini,
jdelog.properties, and so on). Beginning with the JD Edwards EnterpriseOne Tools
Release 8.97, it is highly recommended that you only access and manage these settings
for the supported server types using the Server Manager program. See the Server
Manager Guide on My Oracle Support.

xiii

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1

Conventions

Xiv

The following text conventions are used in this document:

Convention Meaning

Bold Indicates field values.

Italics Indicates emphasis and JD Edwards EnterpriseOne or other
book-length publication titles.

Monospace Indicates a JD Edwards EnterpriseOne program, other code
example, or URL.

1

Introduction to JD Edwards EnterpriseOne
Tools Connectors

This chapter contains the following topics:
= Section 1.1, "JD Edwards EnterpriseOne Tools Connectors Overview"

= Section 1.2, "Connectors Implementation”

1.1 JD Edwards EnterpriseOne Tools Connectors Overview

Connectors are point-to-point component-based interoperability models that enable
third-party applications and JD Edwards EnterpriseOne to share logic and data.
Oracle's JD Edwards EnterpriseOne connector architecture includes Java and
Component Object Model (COM) connectors and provides:

= Access to business functions

= Session management

= Point of entry

= Connection pooling

= Inbound transaction functionality

= Outbound event functionality

Using connectors provides additional benefits, such as:
= Connectors are scalable

= Connectors provide multi-threading

s Connectors enable concurrent users

Oracle's JD Edwards EnterpriseOne supports the COM connector, a Java connector,
and a dynamic Java connector. The COM connector is fully compliant with the
Microsoft Component Object Model. You can easily tie JD Edwards EnterpriseOne
functionality to Visual Basic and VC++ applications. The Java connector is a portable
language, so you can easily tie JD Edwards EnterpriseOne functionality to Java
applications. The dynamic Java connector provides the same type of functionality as
the Java connector but does not require you to generate business functions.

The JD Edwards EnterpriseOne connectors can receive and send XML documents. The
connector architecture provides the capability to expose C and Java APIs for XML
documents. Some of the benefits of using XML documents are:

= You can use XML documents to aggregate business function calls into one object,
which reduces network traffic.

Introduction to JD Edwards EnterpriseOne Tools Connectors 1-1

Connectors Implementation

= Because XML processing is based on the connector architecture, XML processing is
scalable and multiple connections can be opened.

s XML processing supports XML CallObject, XMLList, and XMLTrans.
To decide which connector is best for you:
= Identify the logic or data that you want to access in JD Edwards EnterpriseOne.

= Decide whether you want to use business functions exposed through a connector
directly or XML documents.

Then decide whether to use a COM connector or a Java connector. If you are using an
application server, these guidelines can help you decide which connector to select:

s If you are using Site Server, Commerce Server, or .NET, consider the COM
connector.

s If you are using a J2EE-based application server, consider the Java connector.
» The Java connector supports Java Connector Architecture Resource Adapter (JCA).

After you determine which connector you should use, you must install and configure
the connector. Installation and configuration information for COM, dynamic Java, and
Java connectors is provided in this document.

1.2 Connectors Implementation

This section provides an overview of the steps that are required to implement a JD
Edwards EnterpriseOne Connector.

In the planning phase of the implementation, take advantage of all JD Edwards
sources of information, including the installation guides, reference guides, and
troubleshooting information.

The following implementation steps need to be performed before working with JD
Edwards EnterpriseOne connectors:

1. Install JD Edwards EnterpriseOne and set up a user account.

See JD Edwards EnterpriseOne Tools Server Manager Guide on the My Oracle Support
Web site

2. Install JD Edwards EnterpriseOne applications.

See JD Edwards EnterpriseOne Tools Applications Installation Guide on the My Oracle
Support Web site

1-2 JD Edwards EnterpriseOne Tools Connectors Guide

2

Understanding COM Interoperability

This chapter contains the following topics:
= Section 2.1, "COM Interoperability"
» Section 2.2, "]D Edwards EnterpriseOne COM Interoperability"

2.1 COM Interoperability

COM enables developers to build systems by assembling reusable components from
different vendors. COM provides logic and data sharing among disparate applications.
COM is a binary interoperability specification and communication convention for
software components. It is a single-vendor technology that is available on Microsoft
platforms only. Since most independent software components are also self-contained,
they are frequently called objects or servers.

Being a binary specification, COM is inherently independent of programming
languages. Unlike software libraries or DLLs, which are compiled to specific language
or linkage conventions, COM-based software components are created ready to work
with any COM client. For example, a Visual C++ application can use COM objects
created in Visual Basic, or a VBScript within an intranet web page to control a COM
object written in MicroFocus COBOL.

The COM connector provides these two types of services on the JD Edwards
EnterpriseOne server:

= Business function execution.
These chapters discuss business function execution:
- Understanding JD Edwards EnterpriseOne COM Server.
— Deploying the COM Server for Business Functions.
- Using COM Transactions.
= Asynchronous event notifications and introspection operations.
These chapters discuss event notifications and introspection operations:
- Using COM Connector Events - Classic Events
- Using COM Connector Events - Guaranteed Events

The COM connector provides a mechanism for executing business functions on the JD
Edwards EnterpriseOne server. You use the GenCOM utility on the Microsoft
Windows client to generate wrappers for business function objects. The wrappers can
be deployed on any machine. You can develop application code for the generated
wrappers using Visual Basic (VB) or C++. Once the objects change in the package, the

Understanding COM Interoperability 2-1

JD Edwards EnterpriseOne COM Interoperability

connector communicates with the JD Edwards EnterpriseOne server for login, logoff,
transactions, and for each business function execution call. Distributed Component
Object Model (DCOM) enables COM objects in a distributed environment. COM+
transactions enables COM applications and third-party applications to take part in
distributed transactions.

The COM connector supports subscribe and publish functionality for JD Edwards
EnterpriseOne events. These software releases are supported by the COM connector:

= JD Edwards EnterpriseOne Tools 8.98
= JD Edwards EnterpriseOne Tools 8.97
= JD Edwards EnterpriseOne Tools 8.96
= JD Edwards EnterpriseOne Tools 8.95
= JD Edwards EnterpriseOne Tools 8.94
= JD Edwards EnterpriseOne 8.93

Note: Business function execution is the same in all these releases.

2.2 JD Edwards EnterpriseOne COM Interoperability

This section provides an overview about JD Edwards EnterpriseOne COM
interoperability and discusses:

s COM objects
s COM interoperability usage

2.2.1 COM Objects

Using COM, JD Edwards EnterpriseOne exposes all master and major business
functions through the interface definition language (IDL) standard. A business
function is a logical collection of C functions and their associated data structures
grouped together to produce a unit of work. With COM, JD Edwards EnterpriseOne
can pass logic and data requests to other applications using COM wrappers. COM
objects are wrappers around these business functions and data structures. These
wrappers provide common interoperability methods across dissimilar systems. A
wrapper is attached to each master and major business function and provides stubs for
third-party applications to access.

The interface provided by the COM wrappers has a one-to-one correspondence with
the business functions. For example, if within the system library a business function
named B550001 exists, and within this business function two C functions, named fool
and foo?2 exist with data structures for each function, named DS1 and DS2, the
corresponding COM object would be:

Interface IDS1

{

}

Interface IDS2

{

}

Interface IB550001

{

HRESULT fool {IDS1 * param, IConnector* conn, long accessNumber) ;
HRESULT foo2 (IDS2 * param, IConnector* conn, long accessNumber) ;

2-2 JD Edwards EnterpriseOne Tools Connectors Guide

JD Edwards EnterpriseOne COM Interoperability

Their associated program IDs (ProgID) would be:
IDS1 - DS1.jdeDS1.1

IDS2 - DS2.jdeDS2.1

IB550001 - B550001.3jdeB550001.1

2.2.2 COM Interoperability Usage

This illustration shows how the COM interoperability solution for business function
execution typically flows:

Figure 2-1 COM interoperability solution for business function execution

3 Application Suites
Interqurabmty Manufacturing
Administrator 3 Financial

1 COM Server Dist./Logistics
HR
Generate 2
GenCOM — Deploy-» Generated ;
wrappers Wrappers < . > EnterpriseOne
Communicate
Component Component Technology Layer
Architecture Architecture S”S_/ 400
4 UNIX
1
6
A

Interop Clients/Third-

DLL/Class/IDL/tlb | ——5—> o
party applications
Interoperability Interoperability
Developers Developers

1. The administrator generates the COM wrappers.
2. The administrator deploys the COM objects to the COM server.

3. The COM server enables communication with the application server so that the
generated COM objects can be used in applications.

4. The COM objects are configured to communicate with the application server once
the COM objects are on the COM server.

5. The DLLs or IDLs from the generated COM objects are copied so that developers
can use them.

6. The application developers create the applications.

7. The applications communicate with the COM server.

Understanding COM Interoperability 2-3

JD Edwards EnterpriseOne COM Interoperability

This illustration shows how the COM interoperability solution for event notification
and introspection typically flows:

Figure 2-2 COM interoperability solution — event notification and introspection

Windows Client

Install EnterpriseOne

@ Configure

Set Up a Non-
EnterpriseOne
Environment

Interoperability
Client/Third Party

'O
@ COM Connector COMl

@ >

(2)

COM Component

Component
Architecture

EnterpriseOne

Install a JD Edwards EnterpriseOne Client.

Configure the COM connector.

COM Connector enables communications with JD Edwards EnterpriseOne so that
clients can introspect and subscribe to events

Applications developer crates applications to subscribe to and receive events.

2-4 JD Edwards EnterpriseOne Tools Connectors Guide

3

Understanding the COM Solution for
Business Function Execution

This chapter contains the following topics:

= Section 3.1, "JD Edwards EnterpriseOne COM Server"
s Section 3.2, "COM Connector"

m Section 3.3, "GenCOM Components"

= Section 3.4, "COM Wrapper CheckVer"

3.1 JD Edwards EnterpriseOne COM Server

The JD Edwards EnterpriseOne COM server contains two parts:

s COM connector.

= Generated]D Edwards EnterpriseOne COM components (wrappers).
This diagram shows the two parts of the COM server:

Figure 3—1 Parts of the COM server

Q @47 Connector

O @47 EnterpriseOne Interface

JDENET middleware
access to EnterpriseOne

@
O
O

Generated
Business Functions COM Connector
Wrappers

Understanding the COM Solution for Business Function Execution 3-1

COM Connector

3.2 COM Connector

The COM server provides an interface to JD Edwards EnterpriseOne, executes
business functions within valid transactions, and provides error processing for
interoperability clients. The main component of the COM server is the COM connector.
The COM connector provides COM components that interface with JD Edwards
EnterpriseOne and hosts the business component DLL generated by the GenCOM
tool. The COM connector also provides the connector component that enables an
interoperability client to log in and log out from JD Edwards EnterpriseOne. It
manages all user sessions connected to the COM server. This table identifies the
binaries that combine to comprise the COM connector:

Binary Explanation

JDECOMConnector2.exe Primary interface for login and createBusinessObjects. Also maintains the
created users and business objects.

JDECOMMN.AI Interface for JDEMathNumeric and JDETimeZone.

Callobject.dll Internal to JDECOMConnector.exe.

Comlog.dll Used for logging, cache, and OCM lookup.

EventClass.dll JD Edwards EnterpriseOne event class that is implemented to receive events.

EventListener.dll Receives events from the JD Edwards EnterpriseOne server and publishes the
events to COM+ Events.

EventManager.dll Provides the interface for subscribe, unsubscribe, getList, and getTemplate for
events.

jdeunicode.dll The Unicode library, which is internal to JD Edwards EnterpriseOne.

OneWorldInterfaceTx.dll

Provides the interface for JD Edwards EnterpriseOne transactions and COM+
two-phase commit transactions.

Xmlinterop.dll

Contains the JDENET transport mechanism and the XMLRequest.

ClientService.dll Enables event notification and introspection using XML over HTTP protocol.
Applicable for JD Edwards EnterpriseOne 8.95 and later Tools releases only.

EventHandler.dll Receives events from the Transaction server and publishes events to COM+.
Applicable for JD Edwards EnterpriseOne 8.95 and later Tools releases only.

JMSEvent.dll Receives JMS events from the Transaction server and publishes events to

COM+. Applicable for JD Edwards EnterpriseOne 8.94 only.

The JDECOMConnector2.idl defines the COM interfaces of the COM connector.
JDECOMConnector2.idl is available under the Include directory.

The COM connector is available with the JD Edwards EnterpriseOne server and client

install.

3.3 GenCOM Components

This section provides an overview of GenCOM and discusses:

s Installation information.

= ProgID.

= Setting up an environment for GenCOM.
s Running GenCOM.
s Using GenCOM output.

3-2 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

3.3.1 Understanding GenCOM

GenCOM is a client tool that uses a multipass process to generate JD Edwards
EnterpriseOne COM components. GenCOM is included in the client installation. The
COM Generation Tool is in <install>\system \bin32\GenCOM.exe.

GenCOM is a command line tool that reads a script file to determine which
components to generate. GenCOM uses an iJDEScript file as input to generate a COM
DLL that is hosted by the COM connector. The iJDEScript file specifies wrapper
components for business functions. Once the generated wrapper components are
registered to the COM environment, they can be used to access business function
functionality.

This illustration shows the process:

Figure 3-2 GenCOM process

Client Workstation ‘ Enterprise Server
iJDEScript > Enterp.rlseOne 3 EnterpriseOne
Client | Server
{ |
1 2 1
v |
GenCOM ———6——> Makefile
A | |
4 7 |
v 5 v
COM Wrapper l
Source l
IDL |
Emitter Tree COM DLLs i

1. GenCOM reads the iJDEScript file.

2. GenCOM retrieves the metadata for the business functions specified in the
iJDEScript file.

3. GenCOM resolves dependency on the data structure.
4. GenCOM creates an internal emitter tree for the library to be generated.

5. GenCOM reads each node of the internal emitter tree and generates the
appropriate COM code.

6. GenCOM generates a make file.

Understanding the COM Solution for Business Function Execution 3-3

GenCOM Components

7. GenCOM compiles and builds the COM DLL from the generated code.
See Understanding iJDEScript.

3.3.2 Installation Information

Because the GenCOM application produces interfaces based on the package currently
installed on the machine, installation plans must be made on a site-by-site basis. The
DLLs produced are business function release-dependent and can be installed only on
machines with the identical packages available.

The GenCOM output is COM servers in the form of DLLs. You can use these DLLs to
create an interface with the JD Edwards EnterpriseOne system. You should not assume
that a client has installed these servers as part of the standard JD Edwards
EnterpriseOne installation. You should provide a full installation of any of the servers
the applications require.

3.3.3 ProgID

Each time GenCOM generates a wrappet, it creates a ProgID for each COM
component. The ProgID identifies the COM component in the registry. The ProgID is
independent of JD Edwards EnterpriseOne and is based on the library and the
interface specifications in the script file. The key, OneWorldRelease, contains the JD
Edwards EnterpriseOne release and environment information. For example, if the
library name is AddressBook and the interface name is JDEAddressBook, then the
ProgID will be AddressBook.JDE AddressBook. If GenCOM is run with environment
DVONIS2, then the OneWorldRelease key contains DVONIS2. If a type mismatch exists,
you receive a warning.

The CompatibleEnvironment key remembers the list of JD Edwards EnterpriseOne
environments with which the wrapper is compatible. If an environment is not on the
list or is listed as incompatible, the COM client receives an error message when trying
to create the object with the environment.

This sample code illustrates the standard ProgID naming conventions:

HKEY CLASSES ROOT\

CLSID\{77454442-7941-44BB-9BCB-4253E80AC8B3) }

\InprocServer32 C:\B9\System\IDA\Samples\AddressBook\AddressBook.dll
\ProgID AddressBook.JDEAddressBook

\VersionIndependentProgID AddressBook.JDEAddressBook
\OneWorldRelease DVINIS2

\CompatibleEnvironment DVINIS2

3.3.4 Setting Up an Environment for GenCOM

You can use one of these platforms:
= Microsoft Studio 6.0

= Microsoft NET

= Microsoft Visual Studio 2005

3.3.4.1 Setting Up an Environment for GenCOM on Microsoft Visual Studio 6.0

Setting up a Microsoft Windows NT client environment involves several steps. You
should make sure that these items are set up appropriately:

s Include directories

3-4 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

s Lib directories
s MSDev directories

s Paths

Note: Set up this environment for GenGOM if you are using JD
Edwards EnterpriseOne Tools 8.94 or an earlier release of JD Edwards
EnterpriseOne Tools.

3.3.4.2 Example: Include Directories
< Directory where Microsoft SDK files are located>\include

Example: C:\ Program Files\Microsoft SDK\include

< Directory where Microsoft program files are located>\VC98\atl\include
Example: C:\ Program Files\Microsoft Visual Studio\VC98\atI\include

< Directory where Microsoft program files are located>\VC98\mfc\include
Example: C:\Program Files\Microsoft Visual Studio\VC98\mfc\include

< Directory where Microsoft program files are located>\VC98\include
Example: C:\Program Files\Microsoft Visual Studio\VC98\include

< Directory where JD Edwards EnterpriseOne is located and release either Master,
Prod, or Pristine>\include

Example 1: D:\B9\MSTB9\include
Example 2: D:\B9\PRODA\include

< Directory where JD Edwards EnterpriseOne is located and release either Master,
Prod, or Pristine>\includeV

Example: D:\BI\SYSTEM\includeV

< Directory where JD Edwards EnterpriseOne is located and release either Master,
Prod, or Pristine>\include

Example: D:\BO\SYSTEM\include

3.3.4.3 Example: Lib Directories
< Directory where Microsoft SDK files are located>\lib

Example: C:\ Program Files\Microsoft SDK\lib

< Directory where Microsoft program files are located >\VC98\mfc\lib

Example: C:\Program Files\Microsoft Visual Studio\VC98\mfc\lib

< Directory where Microsoft program files are located >\VC98\lib

Example: C:\Program Files\Microsoft Visual Studio\VC98\lib

< Directory where Microsoft program files are located >\Common\MSDev98\Bin
Example: C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin

< Directory where JD Edwards EnterpriseOne is located>\System\Lib32
Example: D:\B9\System\Lib32

Understanding the COM Solution for Business Function Execution 3-5

GenCOM Components

3.3.4.4 Example: MSDev Directories

< Directory where Microsoft program files are located >\Common\MSDev98
Example: C:\Program Files\Microsoft Visual Studio\Common\MSDev98

< Directory where Microsoft DevStudio is located>\SharedIDE

Example: C:\Program Files\ DevStudio\SharedIDE

3.3.4.5 Example: Paths

< Directory where Microsoft SDK files are located>\bin

Example: C:\ Program Files\Microsoft SDK\bin

< Directory where Windows NT is located>\System32

Example: C:\Winnt\System32

< Directory where Microsoft program files are located >\Common\Tools\Winnt
Example: C:\Program Files\Microsoft Visual Studio\Common\Tools\ Winnt

< Directory where Microsoft program files are located >\Common\Msdev98\Bin
Example: C:\Program Files\Microsoft Visual Studio\Common\Msdev98\Bin

< Directory where Microsoft program files are located >\Common\Tools
Example: C:\Program Files\Microsoft Visual Studio\Common\Tools

< Directory where Microsoft program files are located >\ Vc98\Bin

Example: C:\Program Files\Microsoft Visual Studio\ Vc98\Bin

< Directory where Microsoft DevStudio is located>\SharedIDE\Bin\Ide
Example: C:\Program Files\ DevStudio\SharedIDE\Bin\Ide

< Directory where Microsoft DevStudio is located>\SharedIDE\Bin

Example: C:\Program Files\ DevStudio\SharedIDE\Bin

< Directory where JD Edwards EnterpriseOne is located>\System \ Bin32
Example: D:\B9\System\ Bin32

In an Microsoft Windows NT environment, binaries are not compatible between the
client and server machine. Do not copy .dll files or .exe files compiled on an NT
workstation to an NT server. The struct alignments required by the JD Edwards
EnterpriseOne server and the JD Edwards EnterpriseOne client are different.

3.3.4.6 Setting Up an Environment for GenCOM on Microsoft Visual Studio.NET

Setting up a Microsoft Windows NT client environment involves several steps. You
should make sure that these items are set up appropriately:

s Include directories

= Lib directories

= Paths

= Basemake directory

= Bkoffice directory

= DXSDKROOT directory
s INETSDK directory

3-6 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

Important: Set up this environment for GenCom if you are using JD
Edwards EnterpriseOne Tools 8.95 or later Tools releases. To avoid
path-related issues, uninstall Visual Studio 6.0. If you require both
Visual Studio.NET and Visual Studio 6.0, avoid path-related issues by
ensuring that the Visual Studio.NET items precede the Visual Studio
6.0 items.

3.3.4.7 Example: Include Directories
<Directory where Microsoft Visual Studio .NET files are located>\include

Example: C:\Program Files\Microsoft Visual Studio .NET
2003\ Vc7\PlatformSDK\Include

Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\atlmfc\include
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\include

<Directory where JD Edwards EnterpriseOne is located and release either Master,
Prod, or Pristine>\include

Example: C:\B9\System\include
Example: C:\B9\System \includev
Example: C:\BO\STAGINGA \include
Example: C:\E11\System\include
Example: C:\E11\System\includev
Example: C:\E11\STAGINGA\include

3.3.4.8 Example: Lib Directories
< Directory where Microsoft Visual Studio .NET files are located>\1ib

Example: C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\Lib\
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\lib
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\atlmfc\lib
< Directory where JD Edwards EnterpriseOne is located>\System\ Lib32
Example: C:\B9\system\ Lib32

Example: C:\E11\system\Lib32

3.3.4.9 Example: Paths

< Directory where Microsoft Visual Studio .NET files are located>

Example: C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Common7\Tools
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Common?7\Tools\Bin
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\bin

Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\PlatformSDK

< Directory where Windows NT is located>

Example: C:\Winnt\System32

Understanding the COM Solution for Business Function Execution 3-7

GenCOM Components

3.3.4.10 Example: Basemake Directories

Example: C:\Program Files\Microsoft Visual Studio .NET
2003\ Vc7\PlatformSDK\Include \BKOffice. Mak

3.3.4.11 Example: Bkoffice Directories
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\PlatformSDK

3.3.4.12 Example: DXSDKROOT Directories
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\PlatformSDK

3.3.4.13 Example: INETSDK Directories
Example: C:\Program Files\Microsoft Visual Studio .NET 2003\ Vc7\PlatformSDK

3.3.5 Setting Up an Environment for GenCOM on Microsoft Visual Studio 2005

Setting up a Microsoft Windows NT client environment involves several steps. You
should make sure that these items are set up appropriately:

s Include directories

s Lib Directories

= Paths

= Basemake directory

= BKoffice directory

= DXSDKROOT directory
s INETSDK directory

Important: Set up this environment for GenCom if you are using JD
Edwards EnterpriseOne Tools 8.95 or later Tools release. To avoid
path-related issues, uninstall Visual Studio.NET. If you require both
Visual Studio 2005 and Visual Studio.NET, avoid path-related issues
by ensuring that the Visual Studio 2005 items precede the Visual
Studio.NET items.

3.3.5.1 Example: Include Directories
<Directory where Microsoft Visual Studio 2005 files are located>\include

Example: C:\Program Files\Microsoft Visual Studio 8\ VC\PlatformSDK\Include
Example: C:\Program Files\Microsoft Visual Studio 8\VC\atlmfc\include
Example: C:\Program Files\Microsoft Visual Studio 8\VC\include

<Directory where JD Edwards EnterpriseOne is located and release either Master,
Prod, or Pristine>\include

Example: C:\B9\System\include
Example: C:\B9\System\includev
Example: C:\BO\STAGINGA\include
Example: C:\E811\System\include
Example: C:\E811\System\includev

3-8 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

Example: C:\E811\STAGINGA\include
Example: C:\E812\System\include
Example: C:\E812\System\includev
Example: C:\E812\STAGINGA\include

3.3.5.2 Example: Lib Directories
< Directory where Microsoft Visual Studio 2005 files are located>\1ib

Example: C:\Program Files\Microsoft Visual Studio 8 \SDK\v2.0\Lib
Example: C:\Program Files\Microsoft Visual Studio 8\VC\lib

Example: C:\Program Files\Microsoft Visual Studio 8\VC\atlmfc\lib

< Directory where]D Edwards EnterpriseOne is located>\System\Lib32
Example: C:\B9\system\ Lib32

Example: C:\E811\system\Lib32

Example: C:\E812\system\Lib32

3.3.5.3 Example: Paths

< Directory where Microsoft Visual Studio 2005 files are located>

Example: C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin
Example: C:\Program Files\Microsoft Visual Studio 8\Common7\Tools
Example: C:\Program Files\Microsoft Visual Studio 8\CommonZ7\Tools\Bin
Example: C:\Program Files\Microsoft Visual Studio 8\VC\bin

Example: C:\Program Files\Microsoft Visual Studio 8\ VC\PlatformSDK\

< Directory where Windows NT is located>

Example: C:\Winnt\System32

3.3.5.4 Example: Basemake Directories

Example: C:\Program Files\Microsoft Visual Studio 8\ VC\PlatformSDK\Include\BK
Office.Mak

3.3.5.5 Example: Bkoffice Directories
Example: C:\Program Files\Microsoft Visual Studio 8\ VC\PlatformSDK

3.3.5.6 Example: DXSDKROOT Directories
Example: C:\Program Files\Microsoft Visual Studio 8\ VC\PlatformSDK

3.3.5.7 INETSDK directory
Example: C:\Program Files\Microsoft Visual Studio 8\ VC\PlatformSDK

3.3.6 Running GenCOM

You run GenCOM from the command line to expose objects through COM. In a
development environment, developers may run the COM Generation tool. In a

Understanding the COM Solution for Business Function Execution 3-9

GenCOM Components

production environment, a system administrator should run the COM Generation
Tool.

To run GenCOM in Visual Studio 2005, include this setting in the JD Edwards
EnterpriseOne Client jde.ini File, [JDE_CG] section:

VisualStudioVersion=8

When you use GenCOM, use the iJDEScript scripting language to script code
generation activities. The syntax is:

GenCOM [options] [libraries]
For example, if you want to see available libraries that you can run GenCOM against,

you enter the command C:\B9\System\Bin32>gencom /ListLibraries from
the system command line.

To generate COM wrappers for Category 1 business functions in the CAEC library,
enter this command from the command line:

GenCOM /Cat 1 /UserID Devuserl /Password Devuserl /Environment ADEVHP02 CAEC

Options available for generation include:

Option Description

/? Lists the options available for generation.

/C++ <option> Provides GenCOM with the compiler options you want to use in the generation
of the COM servers.

/Cat <category> Tells GenCOM to generate wrappers based on these categories:

master business functions
major business functions
minor business functions

uncategorized business functions

/CL <file> Tells GenCOM what compiler (.exe) to use for compilation.

/Cmd * Processes code generation commands from the console.

/Cmd <filename> Processes code generation commands from <filename>.

/Debug Builds debug information (.pdb and .bsc files) into the libraries so that the Visual

Studio debugger can access source information.

/EnvironmentID <env> Provides GenCOM with the environment in which you want to sign in to JD
Edwards EnterpriseOne.

/ErrFile <file> Provides GenCOM with the filename to log errors produced by GenCOM during
the generation process, for example, errors.log.

/MIDL Provides GenCOM with the MIDL compiler options you wish to use in the
generation of the COM servers.

/MTL <file> Tells which MIDL compiler (.exe) to use for compilation.

/ListLibraries Lists all the available libraries against which you can run GenCOM.

/MsgFile <file> Provides GenCOM with the filename to log messages produced by GenCOM

during the generation process, for example, messages.log.

/NoBSFN Tells GenCOM not to create wrappers for business functions. This option is for
generating parameter sets only.

/NoCompile Tells GenCOM to generate the source files without compiling.

3-10 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

Option Description
/NoDebug Optimizes libraries for space using the /O1 Visual C++ compiler option.
/Out <path> Provides GenCOM with the directory path in which to place the output files, for

example C:\winnt\system32.

/OWRelease flag for You can override the OWRelease information by activating this flag and typing a

GenCOM string that specifies the version information. The recommendation is that you
follow a naming convention that is consistent throughout the implementation or
use the default version information that is generated by GenCOM.

/Password <password> Provides GenCOM with the password with which you want to sign in to JD

Edwards EnterpriseOne.

/Role Provides GenCOM with the role with which you want to sign in to JD Edwards
EnterpriseOne.

/STA Generates STA components. (By default, all generated components are MTA and

are optimized for scalability and performance. /STA enables you to generate STA
components if you need them.)

/TempOut <path> Provides GenCOM with the directory path in which to place temporary files
needed for the build process, for example, C:\temp.

/UserlD <userid> Provides GenCOM with the user name with which you wish to sign in to JD
Edwards EnterpriseOne.

3.3.7 Using GenCOM Output

The output for GenCOM produces fully functional COM servers based on the library
to which you generate wrappers. Because you are interacting with the JD Edwards
EnterpriseOne system, you must follow security and installation procedures to gain
access to the system.

You must have a fully licensed copy of JD Edwards EnterpriseOne properly installed
on the target machine. You must also sign in to the JD Edwards EnterpriseOne
environment. For the sign-in process, you use the jdeCOMConnector interface.

3.3.7.1 Visual Basic

This code example demonstrates how to use a generated COM business function
wrapper in Visual Basic. This example creates business objects. Refer to the
AddressBook sample included with the COM interoperability software for a complete
working example of this functionality.

Dim WithEvents OW As OneWorldInterface '//OneWorldInterface

Dim conn As New Connector '//COM Connector

Dim connRole As IConnector2 '//Connector Interface with role

Dim AB as JDEAddressBook '//AddressBook

Dim phone as D0100032 '//Data Source

Dim Mailing As D0100031 '//Data Source

Dim AddressAs D0100033 '//Data Source

Dim EffectiveDate As D0100019 '//Data Source

DimParentAddress As D0100381 '//Data Source

Dim sessionID As Long '//server Session ID

Private Sub Form_Load()

Set connRole = conn

'sessionID=conn.Login("Foo", "Bar", "DVI9NIS2", "*ALL")
sessionID=connRole.Login("Foo", "Bar", "DVINIS2", "*ALL")

Set OW = conn.CreateBusinessObject ("OneWorld.FunctionHelper.1l", sessionID)
Set AB = conn.CreateBusinessObject ("AddressBook.JDEAddressBook", sessionID)
Set phone = AB.CreateGetPhoneParameterset

Set Mailing = AB.CreateGetMailingNameParameterset

Understanding the COM Solution for Business Function Execution 3-11

GenCOM Components

SetAddress = AB.CreateGetEffectiveAddressParameterset

Set EffectiveDate = AB.CreateGetABEffectiveDateParameterset
Set ParentAddress = AB.CreateGetParentAddressParameterset
End Sub

3.3.7.2 Visual C++

This Visual C++ code example demonstrates how to create the connector and how to
create a business function on the COM server. This example creates an AddressBook
business function and uses GenCOM objects from C++.

#include <windows.h>
#include <stdio.h>
#include <objbase.h>
#include <comdef.h>
#include <wchar.h>
#include addressbook.h
#include AddressBook_i.c
#include jdecomconnector2.h
#include jdecomconnector2_i.c
#define IPhone ID0100032
#define IMailing ID0100031
#define IAddress ID0100033
#define IEffectiveDate ID0100019
#define IParentAddress ID0100381
#define SERVER OLESTR("COMSRV") //Change to the COM server.
#define ABNO 4242 //change this according to user input.
HRESULT CreateConnector(IConnector **ppConnector)
{
HRESULT hr = E FAIL;

*ppConnector = 0;

//NOTE: Pass a COSERVERINFO struct to activate on a remote machine
COSERVERINFO csi = {0, SERVER, 0, 0};
MULTI_QI mgi = { &IID_IConnector, 0, 0 };
hr = CoCreatelInstanceEx(CLSID_Connector, 0, CLSCTX_LOCAL_SERVER,
0, // &csi,
1, &mgi);

if (SUCCEEDED (hr) && SUCCEEDED (mgi.hr))
{

ppConnector = reinterpret_cast<IConnector*> (mgi.pItf);
}

return hr;

}

HRESULT Login(IConnector **pConnector, IOneWorldInterface **ow,
long *accessno)
{

HRESULT hr;

IDispatch *idsptch = 0;

printf ("Login started\n");

bstr_t User (L "Foo "), PassWord(L"Bar "), Env("DVINIS2");
hr = (*pConnector)->Login(User, PassWord, Env, accessno);

if (!'SUCCEEDED (hr))

printf("Login failed with hr = %$x", hr);

3-12 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

return E_FAIL;
}
_bstr_t bo("OneWorld_FunctionHelper.1l");
hr=(*pConnector) ->CreateBusinessObject (bo, *accessno, &idsptch);
if(!SUCCEEDED (hr) || (!ow))
{
Printf ("CreateBusinessObject (OneWorld.FunctionHelper.1l) failed
with hr %x", hr);
return E_FATL;
}
hr=idsptch->QueryInterface (IID_IOneWorldInterface, (void **)ow);
1f (! SUCCEEDED (hr) | | (!ow))
{
Printf(QueryInterface for IOneWorldInterface failed with hr "%x", hr);
return E_FATL
}
printf ("Login completed \n");
return S_OK;
}
HRESULT UseAddressBook (IConnector *pConnector, IOneWorldInterface
*ow, long*accessno)
{
HRESULT hr;
IJDEAddressBook *ab;
IDispatch *idsptch;
IPhone *phone;
IMailing *Mailing;
IAddress *Address;
IEffectiveDate *EffectiveDate;
IParentAddress ParentAddress;

printf("Starting to use AddressBook\n");
_bstr_t bo("AddressBook.JDEAddressBook") ;
hr = pConnector->CreateBusinessObject (bo, *accessno, &idsptch);
hr = idsptch->QueryInterface(IID_IJDEAddressBook, (void **&ab);

if (! SUCCEEDED (hr) | | (tab))

printf("CreateBusinessObject(AddressBook) has failed with hr %x",
hr);

return E_FATL;

}

return S_OK;

}

This code creates the connector object and uses it to create a business function with its
associated ParameterSet. The code then calls a method, Fool, on the business object
with the ParameterSet, the connector, and the access code returned by the act of
logging on to the connector.

Int main(int argc, char *argv[])
{
HRESULT hr;
IOneWorldInterface *ow;
long accessno;
IConnector *pConnector;
hr - CoInitializeEx (0, COINIT MULTITHREADED) ;
if (SUCCEEDED (hr))
(
hr = CreateConnector (&pConnector) ;

Understanding the COM Solution for Business Function Execution 3-13

COM Wrapper CheckVer

1f (SUCCEEDED (hr))

{

Login(&pConnector, &ow, &accessno);

//Do more processing with AddressBook and logoff at the end.
}

CoUninitialize();

}

3.4 COM Wrapper CheckVer

You can run CheckVer to verify whether a previously generated COM object is
compatible with another environment. Typically, a system administrator performs this
task.

The XML files generated by GenCOM are the signatures of the objects generated
against specific JD Edwards EnterpriseOne environments. These XML files can be used
with CheckVer to verify that the wrappers on the COM server are compatible with
these environments.

When you introduce a new JD Edwards EnterpriseOne environment, you run
GenCOM against the new environment by using the /NoCompile option. You also use
the iJDEScript that you used to generate the wrappers on the COM server to generate
XML signature files for the objects in the new environment. Run CheckVer on the
COM server with the newly generated XML files to verify that the new environment is
compatible with wrappers on the COM server that was previously generated with a
different environment. CheckVer updates the registry settings for the wrapper on the
COM server according to the result of the compatibility test. If the new environment is
incompatible, the COM client cannot create business objects with the new
environment.

3.4.1 Running CheckVer

CheckVer compares the XML signature file that is produced from GenCOM with the
spec definitions on the local JD Edwards EnterpriseOne client machine. You can run
CheckVer from the command line on the COM server, or CheckVer can be run
automatically as part of the GenCOM process.

To see the options that CheckVer provides, run this command from the command line:

c:\>CheckVer.exe -?

3.4.1.1 Syntax

CheckVer [option] <filename>

3.4.1.2 Example

CheckVer -r addressbook.xml

3.4.1.3 Options

-1 -- CheckVer reports only whether the environment is compatible with the server. It
does not update the registry settings for the wrapper on the COM server with the
result, and CheckVer does not validate the wrapper DLL.

3-14 JD Edwards EnterpriseOne Tools Connectors Guide

4

Deploying the COM Solution for Business

Function Execution

This chapter contains the following topics:

Section 4.1, "Understanding COM Server Deployment for Business Function
Execution”

Section 4.2, "Setting Up the DCOM Server for Business Function Execution”
Section 4.3, "Installing COM Connector"

Section 4.4, "Using OCM Support with COM Connector"

Section 4.5, "Using BHVRCOM with COM"

Section 4.6, "Use IJDETimeZone Interface"

Section 4.7, "Requesting Inbound XML Using COM Server"

Section 4.8, "Using COM Reliability"

Section 4.9, "Using COM Tracing and Logging"

4.1 Understanding COM Server Deployment for Business Function

Execution

The COM server uses socket-based middleware to access the JD Edwards
EnterpriseOne application server. The jdeinterop.ini file must be configured to specify
the JD Edwards EnterpriseOne server. The COM server reads the jdeinterop.ini file
and opens the socket connection to the specified application server.

This diagram illustrates COM server deployment:

Deploying the COM Solution for Business Function Execution 4-1

Setting Up the DCOM Server for Business Function Execution

Figure 4-1 COM server deployment

Interop Server

Interop Client

Generated
Wrappers

Interop Client «<—JDENet—>»{ EnterpriseOne

Interop Client » Architecture

Qi Component |

4.2 Setting Up the DCOM Server for Business Function Execution
This section provides an overview of the DCOM server and discusses how to:
s Setup DCOM for a server environment.
= Set up security on the COM server.
= Set up the identity as interactive user.

s Set up DCOM for a client environment.

4.2.1 Understanding DCOM Server Set Up

You can set up a DCOM server on a JD Edwards EnterpriseOne server machine.
DCOM enables COM objects in a distributed environment. To ensure that the
interoperability client works properly, you must set up DCOM for both a server
environment and for a client environment.

4.2.2 Setting Up DCOM for a Server Environment

Use these steps to set up DCOM for a server environment:
1. Run GenCOM on a JD Edwards EnterpriseOne client machine, with these options:
gencom /out <path> /tempout <path> /cmd App.cmd

Because GenCOM is a JD Edwards EnterpriseOne client-side only tool, you must
perform this step on a JD Edwards EnterpriseOne client machine.

2. Copy the App.dll file and the App.tlb file generated by GenCOM to the COM
server machine.

3. On the COM server machine, from the command line:
- Runjdecomconnector2.exe /RegServer.
- Runregsvr32 App.dll.

— Set the correct security level for jdecomconnector2.exe and App.dlL

4-2 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the DCOM Server for Business Function Execution

4.2.3 Setting Up Security on the COM Server

Use these steps to set up security on the COM server:

1. From the Start menu, select Run.

2. Enter Dcomcenfg.exe.

3. On Distributed COM Configuration Properties, click the Default Security tab.
4. Click the Edit Default Button in Default Access Permissions group.

The Registry Value Permissions form appears. Some entries might already be
present.

5. On Registry Value Permissions, click Add.

6. On Add Users and Groups, select the appropriate domain from the List Names
From option.

7. Click Everyone, and then click Add.
Type of access should be Allow Access.
8. Click OK.

Repeat Steps 4 through 7 for default launch permissions. No setup is required for
default configuration permissions.

4.2.4 Setting Up the Identity as Interactive User

Use these steps to set up the identity as interactive user:
1. Run DCOMCnfg.

2. On Distributed COM Configuration Properties, select JDECOMConnector2, and
then click Properties.

3. OnJDECOMConnector2Properties, click the Identity tab, and then select the
interactive user option.

4. Click Apply to apply the change.

Note: You must perform this task every time you register the
connector. If you copy the JDECOMConnector2.exe using Explorer,
Explorer reruns the registration, and you must repeat these steps.

To use Callbacks (Connection Points) with the COM solution, repeat the same
procedure on the COM client machine. Most of the shipped examples use Callbacks
and require that you open the security on the client machine.

4.2.5 Setting Up DCOM for a Client Environment

Use these steps to set up DCOM for a client environment:

1. From a DOS prompt on the DCOM client machine, run jdecomconnector2.exe
/RegServer.

2. At the prompt, enter oleview.exe.
3. From the menu bar, select oleview.

4. Click View and select Expert Mode.

Deploying the COM Solution for Business Function Execution 4-3

Installing COM Connector

10.
11.

In the oleview window under Object Classes, double-click All Objects, and wait
for all objects to appear.

Under All Objects, find and click Connector Class.

Click the Implementation tab on the right-side panel, and then click the local
server and remove anything that appears in the editing window.

On the Activation tab, select the Launch as Interactive User option.
In Remote Machine Name, enter the COM server machine name.
Repeat steps 5 through 8 for MathNumeric Class.

Start the DCOM client application.

Note: Client-only business functions are not reachable.

4.3 Installing COM Connector

This section discusses how to install the COM connector in a non-JD Edwards
EnterpriseOne client environment.

4.3.1 Installing COM Connector on a Non-JD Edwards EnterpriseOne Client

Environment

Use these steps to install the COM connector on a non-JD Edwards EnterpriseOne
client machine:

1.

Copy these files from the JD Edwards EnterpriseOne server (system\bin32) to a
directory on the desired machine. For example, copy the files in c:\program
files\]DEdwards to a non-JD Edwards EnterpriseOne client machine.

Note: To use these DLLs for JD Edwards EnterpriseOne 8.97 you
must upgrade your system with the ESU associated with SAR
8531543. These DLLs are applicable for JD Edwards EnterpriseOne
8.96, too.

~ CallObject.dll

— ClientService.dll — JD Edwards EnterpriseOne Tools 8.95 and later Tools
releases only

- comlog.dll

- EventHandler.dll — JD Edwards EnterpriseOne Tools 8.95 and later Tools
releases only

— EventListner.dll

- icuil8n.dll

— icuucdll

— JDECOMConnector2.exe
- jdecommn.dll

- jdel.dll

- jdeunicode.dll

4-4 JD Edwards EnterpriseOne Tools Connectors Guide

Using OCM Support with COM Connector

— PSThread.dll

- ustdio.dll

- XERCES4C.dll

- XercesWrapper.dll
- XERCESDDOM.dII
- xmlinterop.dll

- XMLRequest.dll

2. Create a new directory Icu\data\ on the machine where the COM server is
located. Copy all of the files from the JD Edwards EnterpriseOne server in folder
system\Locale\xml** into Icu\data\. Create a new system variable, ICU_DATA,
in the environment variables of the system properties and specify the path to the
Icu\data\ as the value.

3. Execute this command on the target location to register the COM connector
components:

JDECOMConnector2.exe /RegServer

4. Run GenCOM on a JD Edwards EnterpriseOne client machine and copy the
output DLL and the wrapper components (for example, wrapper.dll).

5. Execute this command to register the COM wrapper components:

regsvr32 wrapper.dll

6. Create the JDEinterop.ini file.

Set the]D Edwards EnterpriseOne server and port values to the JD Edwards
EnterpriseOne application server with which you want the COM server to
communicate.

The COM server is now ready:.
To unregister the COM server, use the /unreserved option. For example:

JDECOMConnector2.exe /unreserved

To unregister the COM wrapper, use the /u option. For example:

regsvr32 /u wrapper.dll

See Also:

= Understanding jdeinterop.ini for COM Connector.

4.4 Using OCM Support with COM Connector

You use Object Configuration Manager (OCM) to map business functions to a JD
Edwards EnterpriseOne server so that the COM connector can access OCM to run
business functions. You no longer configure the jdeinterop.ini file to define the JD
Edwards EnterpriseOne server from which you want to execute business functions.
Using OCM support should result in increased performance, scalability, and load
balancing. OCM mapping enables the COM interoperability server to distribute the
processes of the COM connector client to various JD Edwards EnterpriseOne servers'
requests, depending on the user, environment, and role name.

To take advantage of COM connector OCM support, the system administrator should:

Deploying the COM Solution for Business Function Execution 4-5

Using BHYRCOM with COM

4.4.1 [INTEROP]

Get the GenCOM JD Edwards EnterpriseOne 8.10 (or later) version and regenerate
the business wrapper function.

Configure the OCM and map the business function on the enterprise server.

Add these settings in the jdeinterop.ini configuration file.

Setting Explanation

EnterpriseServer = ntroptl For COM events and backward compatibility.
SecurityServer = ntroptl Validates the login.

Port = 6079 The port number.

The database administrator or JD Edwards EnterpriseOne administrator can provide
these settings for the [OCM] section of the jdeinterop.ini configuration file. This
information is used for database connectivity.

4.4.2 [OCM]

Setting Explanation

DSN=0ODA ITTND17 The data source name from the system DSN of the ODBC setting.

OCM Datasource = COM OCM System data source for JD Edwards EnterpriseOne client.

DB User = JDE User for the data source connection.

DB Pwd = JDE Password for the data source connection.

Object Owner = SYS9 For UNIX platforms, this is the object owner in the [DB SYSTEM
SETTINGS].

Seperator=. For Oracle, SQL and UDB databases, the separator is a period (.);

for IBM i, the separator is a slash (/).

If you use a client machine, the settings can be found in the client jde.ini file. An
example of the database name and object owner is: JDE9.SYS9, where JDE9 is the
database name and SYS9 is the object owner.

4.5 Using BHVYRCOM with COM

JD Edwards EnterpriseOne clients use the BHVRCOM structure to control the
execution of business functions. A COM client can use the IBHVRCOM interface to set
and get BHVRCOM values for business functions. The interface definition is in the
jdeconnector2.idl file.

This Visual Basic code demonstrates how to query the IBHVRCOM interface and pass
values to business functions:

Dim
DIM
Dim
Dim
Dim
1 =
Set

conn As New Connector '//COM Connector

WithEvents OW As OneWorldInterface '//OneWorldInterface
myBHVRCOM As IOneWorldBHVRCOM '//BHVRCOM

AB As JDEAddressBook '// AddressBook

phone As D0100032 '//Data source

conn.Login("JDE", "JDE", "M7332RS02")

OW = conn.CreateBusinessObject ("OneWorld.FunctionHelper.1",1)

4-6 JD Edwards EnterpriseOne Tools Connectors Guide

Use IJDETimeZone Interface

Set myBHVRCOM = OW '// query the IOneWorldBHVRCOM interface
MyBHVRCOM.iBobMode = 8 '// set BHVRCOM values

MyBHVRCOM. szApplication = "myApp"

MyBHVRCOM. szVersion = "myVersion"

Set AB = conn.CreateBusinessObject ("AddressBook.JDEAddressBook", 1)

Set phone = AB.CreateGetPhoneParameterset

Phone.mnAddressNumber = 1

AB.GetPhone phone, OW, conn, 1 '// business function is executed with
the BHVRCOM values

This table explains some of the code:

Code Explanation

myBHVRCOM.iBobMode= BobMode is the mode (add, update, delete) of the interactive
application. Values for BobMode are:

BOB_MODE_UNDEFINED = 0
BOB_MODE_SPECIAL =1
BOB_MODE_ADD =2
BOB_MODE_ADD_PRIMARY =3
BOB_MODE_ADD_SPECIAL =4
BOB_MODE_DELETE =5
BOB_MODE_UPDATE = 6
BOB_MODE_UPDATE_SPECIAL =7
BOB_MODE_INQUIRE = 8
BOB_MODE_COPY =9

myBHVRCOM.szApplication= The value is the name of the interactive application.

MyBHVRCOM .szVersion= The value is the version of the interactive application. This field
can be used for localizations of the applications.

4.6 Use IUDETimeZone Interface

To modify and display the JDEUTIME data type in the appropriate format, the COM
client and GenCOM must use the JDEUTIME APIs. Date and time information is
displayed in a time based on the date and time that is in the personal profile or a time
zone specified by an application.

These steps, along with sample code, illustrate how to use the IJDETimeZone Interface.
n Create the IJ]DETimeZone interface.

MULTI_QI mgi = { &IID_IJDETimeZone, 0, 0 };
hr = CoCreatelInstanceEx (CLSID_JDETimeZone, 0, CLSCTX_ALL, 0, 1, &mgi);
if (SUCCEEDED (hr) && SUCCEEDED (mgi.hr))
{
ppJdeTimeZone = reinterpret_cast<IJDETimeZone> (mgi.pItf);
.

m Set the time for a time zone (UTC-5:30) for the data structure DXXXXXX.

If a time zone is not specified, the time is considered to be at UTC. If an invalid
time zone string is passed, then an error occurs.

DATE dt;
BSTR bstrUTC = SysAllocString (L"UTC-5:30");
pJDETimeZone->put_DateTime (bstrUTC, &dt) ;

Deploying the COM Solution for Business Function Execution 4-7

Requesting Inbound XML Using COM Server

DXXXXXX->put_jdOrderDate (pJDETimeZone) ;

= Get a time for a given time zone from JD Edwards EnterpriseOne.

If a time zone string is not passed, the time and date stored in JD Edwards
EnterpriseOne, which is at UTC, is returned. If an invalid time string is passed,
then an error occurs.

DXXXXXX->get_jdOrderDate (pJDETimeZone) ;
DATE dt;

BSTR bstrUTC = SysAllocString(L"UTC-5:30");
pJDETimeZone->get_DateTime (bstrUTC, *dt) ;

4.6.1 XML File generated by GenCOM for IUDETimeZone

For each data item whose data type is JDEUTIME in the data structure DXXXXXX,
GenCOM generates this XML file:

<Signature environment="Environment Name">
<Interface name="Interface Name">
<Method name="BSFN">
<Param name="DXXXXXX" type="u" />
</Method>
</Interface>
</Signature>

4.7 Requesting Inbound XML Using COM Server

You can use the COM connector to send inbound synchronous XML requests (such as
XML CallObject, XML List, and XML UBE) to the JD Edwards EnterpriseOne server.

See Also
= "Submit a UBE from XML" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

s "Understanding XML CallObject" in the |D Edwards EnterpriseOne Tools
Interoperability Guide.

s "Understanding XML List" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

This sample code shows how to use the COM connector to execute an inbound XML
request.

// File: testDriver.cpp

// Purpose: a test driver to submit the xml request document to OneWorld through
// ThinNet

// Usage: testDriver <input xml doc> <host> <port> <timeout>

// Platform: Win32 Console Program.

// DLL requirement: xmlinterop.dll, jdeunicode.dll, jdel.dll, jdethread.dll.

#include "iostream"
#include "fstream"
#include "string"
#include <jde.h>
#include <jdeunicode.h>

extern "C" ZCHAR * JDEWINAPI jdeXMLRequest (const JCHAR *szHostName, unsigned short

4-8 JD Edwards EnterpriseOne Tools Connectors Guide

Requesting Inbound XML Using COM Server

usPort, const int nNetTimeout, void *xml, int size);
extern "C" void JDEWINAPI jdeFreeXMLResponse (ZCHAR *szResp);

int _cdecl wmain(int argc, wchar_t* argv[], wchar_t* envp[])

{

ZCHAR *buf;

DWORD dwSize;
DWORD dwBytesRead;
HANDLE hFile;

if(argc !=5)

{

std: :wcout << _J("Usage: cotest <input xml doc> <host> <port> <timeout>");
return 0;

// read the <XML input doc>.
// Note: the APIs for reading the file are only avaliable in win32.

if (INVALID_HANDLE_VALUE == (hFile = CreateFile(argv[1l], GENERIC_READ,
0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL)))
return 0;

if (OXFFFFFFFF == (dwSize = ::GetFileSize(hFile, NULL)))
return 0;

buf = new ZCHAR[dwSize + 1];

memset (buf, 0, dwSize+l);

if (!ReadFile (hFile, buf, dwSize, &dwBytesRead, NULL))
return 0;

CloseHandle (hFile);

// call C thinNet API to send XML request document
ZCHAR* presp = jdeXMLRequest (argv([2], jdeAtoi(argv([3]), jdeAtoi(argv[4]), buf,
0);

// write the XML response into a log file <xmlDoc.log>

// Note: the APIs for writing the file are only avaliable in win32.
std: :wstring outFile((JCHAR*)argv[1l]);

std: :wstring outExt (_J(".log"));

int 1;
if((i = outFile.find(_J("."))) > 0)
{

outFile.replace(1, 4, outExt);

}
else
{
outFile.append(outExt);
}

ZCHAR *outfile = new ZCHAR[jdeStrlen(outFile.c_str())+1];
jdeFromUnicode (outfile, outFile.c_str(), jdeStrlen(outFile.c_str())+1, NULL);

std::ofstream outf (outfile);

Deploying the COM Solution for Business Function Execution 4-9

Using COM Reliability

outf << presp;

// free the resource
delete [] buf;

delete[] outfile;
jdeFreeXMLResponse (presp) ;

return 0;

}

4.8 Using COM Reliability

Graceful fail-over and fault tolerance mechanisms are important, especially for
applications that require high availability. The COM connector provides basic support
for fault tolerance at the protocol level.

You should take additional precautions to provide further reliability. After you use the
COM connector to enter an order or execute a business function, the process should:

s Handle transaction failures.

Transactions can fail because of communication line failures. Sometimes
transactions must be aborted because of errors in input or deadlocks. These
failures must be handled appropriately.

s Wait for the confirmation or success notification from the business function to
ascertain that the call was successfully committed.

= Query on the order entered to make sure that it has been committed to the
database.

Due to high network traffic, a business function can properly execute, but the
confirmation message might not reach you.

4.9 Using COM Tracing and Logging

You use COM tracing and logging to help you debug the COM applications. You use
the jdeinterop.ini file to configure tracing and logging settings. The logging format is
similar to the JD Edwards EnterpriseOne logging format. For example, both logging
formats include the Time Thread ID [User ID] and Description, as illustrated:

Thu Mar 02 14:48:01 2000 294 [AR618238] Failed to Login to Environment
<ADEVHPO2>

Errors are written to the JobFile and trace messages are written to the Debug File.
When trace is enabled, error messages go into both trace and error logs.

You can change the jdeinterop.ini settings while the connector is running by
completing these the steps:

1. Modify the jdeinterop.ini file.
2. Right-click the Connector System Tray button.
3. Select the menu item ChangelniSettings.

If an option in the jdeinterop.ini file does not have an entry, the default value is
used.

4-10 JD Edwards EnterpriseOne Tools Connectors Guide

Using COM Tracing and Logging

4.9.1 Resolving Tracing Issues

Tracing affects performance. You do not need to use tracing unless you are debugging
an application. If performance is negatively affected, ensure that the tracing level is set
to zero.

If no logs are generated, complete these steps:

= Ensure that you have specified the proper path in the ini file.

= Verify that disk space and the permissions on the file system are correct.
s Verify whether the default log files have been generated.

s Check the interop.log to see if any errors corresponding to logging have been
generated.

s Check the interop.log file to see if the ini settings that are being used are the same
as what you have specified elsewhere.

Deploying the COM Solution for Business Function Execution 4-11

Using COM Tracing and Logging

4-12 JD Edwards EnterpriseOne Tools Connectors Guide

O

Using COM Transactions

This chapter contains the following topics:

= Section 5.1, "Understanding COM Interoperability Transactions"
» Section 5.2, "Setting Up the COM+ Environment"

s Section 5.3, "Running a COM+ Transactions"

= Section 5.4, "Running a Distributed Transaction"

5.1 Understanding COM Interoperability Transactions

COM interoperability transactions include COM connector prepare, commit, and
rollback functionality. The COM transaction interoperability solution supports these
types of transactions:

s Auto commit transactions
s Manual commit transactions

A transaction can be started as auto commit or manual commit. In auto commit, JD
Edwards EnterpriseOne automatically commits the transaction that has been started. If
a transaction is started in manual commit, you have to explicitly call prepare and
commit functionality for the transaction to be committed.

The COM connector also supports manual commit. Typically, a transaction is started in
manual commit by calling BeginTransaction with the flag set to 1. Subsequent calls to
prepare and commit commits the transaction. The COM connector prepare and
commit does not support distributed transactions that involve transactions other than
JD Edwards EnterpriseOne.

5.1.1 Outline for Calling Prepare and Commit

This table provides an outline for calling prepare and commit:

Function Description

Dim soeOWInterface As OneWorldInterface Declare the OneWorldInterface.

soeOWInterface.BeginTransaction Start the transaction in manual commit by
(accessNumber, connector, txMode) calling begin transaction and setting the
txMode to 1. 0 is for auto commit.

/ /execute all BSFNs like the After a call to Begin Transaction is made, do

all the transactions that you want to enclose
//enddoc and other BSFNs within this manual commit before calling
prepare.

Using COM Transactions 5-1

Setting Up the COM+ Environment

Function Description

soeOWInterface.Prepare Call prepare when all of the transactions are
done.

soeOWInterface.Commit Call Commit to commit the transaction

(or) (or)

soeOWInterface.RollBack Rollback to roll back the transaction if an error
occurs.

The default timeout value for a manual transaction is 5 minutes. If you do not commit
the transaction within 5 minutes, the transaction context is freed and the transaction is
rolled back. You can change the default timeout by setting the manual_timeout value
in the [INTEROP] section of the jdeinterop.ini file. The value is in milliseconds.

5.1.2 COM+ Two-Phase Commit Transaction

The COM connector can participate in distributed transactions. The COM connector's
ability to participate in distributed transactions enables any application that uses the
COM connector to participate in the two-phase commit transaction. Applications that
have the capability to participate in distributed transactions can also use the COM
connector.

5.2 Setting Up the COM+ Environment

Typically, when you use COM+ for two-phase commit, you must set up the
environment for these three computers:

s COM connector
= JD Edwards EnterpriseOne server
s Database server

A distributed transaction coordinator (DTC) is expected to run on each of the
machines. Before testing the COM+ two-phase commit, you must make sure that the
DTCs on each machine are correctly configured and that the DTCs talk to each other.

This illustration shows the physical configuration:

5-2 JD Edwards EnterpriseOne Tools Connectors Guide

Running a COM+ Transactions

Figure 5-1 COM+ Environment Configuration

Interop EnterpriseOne
Server Server
DTC DTC
4 A
DTC
MS SQL -
EnterpriseOne
Data
.

Note: Typically, administrative rights are required for you to run the
examples, which talk to DTCs on different machines. For more
information about setting up DTC and various configurations, refer to
the Microsoft documentation.

5.3 Running a COM+ Transactions

This section provides an overview of JD Edwards EnterpriseOne participating in a
COM+ transaction and discusses how to:

» Create a Transactional Object

s Create a Transactional Client

5.3.1 Understanding COM+ Transactions

This code outline explains how to develop code for COM connector and JD Edwards
EnterpriseOne participation in COM+ transactions:

Code Explanation

Dim ow As OneWorldTx Declare new OneWorldTx.

Set ow = New OneWorldTx Initialize the transaction by passing the access
number returned from a successful logon and the

ow.Initialize laccessNumber, connRole
connector.

Using COM Transactions 5-3

Running a COM+ Transactions

Code Explanation

ow.BeginTransaction laccessNumber, Start a transaction in Manual Commit.

connRole, 1 1 Manual commit

0 Auto Commit

EditLine, EndDoc Do all the processing here like BeginDoc.

GetObjectContext().SetComplete Use SetComplete to commit the transaction through
DTC

or

GetObjectContext().SetAbort or

use SetAbort to abort the transaction.

Note: In COM+, an AutoCommit attribute exists that implicitly
commits a transaction if no errors exist. This attribute is in the
Component Services Administration tool. However, if an explicit call
to SetAbort is made, the transaction aborts.

These code examples illustrate how to create a sales order entry transactional object
(SOETxObject) and a sales order entry transactional client (SOETxClient). After you
create the transactional object and transactional client, you can run the transactions.
Use these steps to run a sales order entry transaction in COM+ where the COM
connector and JD Edwards EnterpriseOne participate:

1. Run the SOETxObject.

2. Run the SOETxClient.

3. Note the Sales Order Entry number that is displayed.

4. When the message box appears for Commit or Abort, select the appropriate action.
5

Verify in JD Edwards EnterpriseOne whether the sales order has been entered. The
sales order should be entered only when committed.

5.3.2 Creating a Transactional Object (SOEProj.vbp)

This sample code shows how to create a SalesOrderEntry transactional object
(SOETxObject => SOEClass2.cls).

Public Sub run()
On Error GoTo errorhandler
Dim ow As OneWorldTx

Dim bhvr As IOneWorldBHVRCOM

Dim conn As New Connector '// COM Connector
Dim connRole As IConnector2 '// Connector Interface with Roles

Dim soeObject As JDESalesOrderEntry '// SalesOrderEntry
Dim soeBeginDoc As D4200310H

Dim soeEndDoc As D4200310G

Dim soeEditLine As D4200310F

Dim soeClearWF As D4200310T

Dim s As String

Dim d As New MathNumeric

Dim mnQuanityOrdered As New MathNumeric

Dim mnUnitPrice As New MathNumeric

5-4 JD Edwards EnterpriseOne Tools Connectors Guide

Running a COM+ Transactions

Dim response

Dim laccessNunber As Long

' Name Information

Dim strComputerName As String
Dim lngNameLength As Long

Const WRITE_FLAG = "2"

Dim i As Boolean
Set connRole = conn

laccessNumber = connRole.Login("UserID", "PWD", "ENV",

Set ow = New OneWorldTx

ow.Initialize laccessNumber, connRole
'oneworld transaction initialized to manual
ow.BeginTransaction laccessNumber, connRole, 1

Set bhvr = ow
bhvr.szApplication = "COM+"

"ROLE")

Set soeObject = connRole.CreateBusinessObject ("SalesOrderEntry.

JDESalesOrderEntry", laccessNumber)
' please change the progid to correct progId

Set soeBeginDoc = soeObject.CreateF4211FSBeginDocParameterset
Set soeEditLine = soeObject.CreateF4211FSEditLineParameterset
Set soeEndDoc = soeObject.CreateF4211FSEndDocParameterset

Set soeClearWF = soeObject.CreateF4211ClearWorkFileParameterset

' Get computer name for use later
strComputerName = Space(30)
IngNameLength = 30

p_ret = GetComputerName (strComputerName, lngNameLength)

If p_ret <> 1 Then
MsgBox (GetComputerName failed!)
'End

Else

strComputerName = Mid(strComputerName, 1, lngNameLength)

End If
' MsgBox (Create Biz Object Done!)

"////17///111/7]//BEGIN DOC///////1///]]/
soeBeginDoc.Reset

soeBeginDoc.cCMDocAction = "A"
soeBeginDoc.cCMProcessEdits = "1"
soeBeginDoc.cCMUpdateWriteToWF = WRITE_FLAG
soeBeginDoc.szCMProgramID = "VB"
soeBeginDoc.szCMVersion = "ZJDE0OOOL"
soeBeginDoc.szOrderCo = "00200"
soeBeginDoc.szOrderType = "SO"

szBUnit = "M30"

soeBeginDoc.szBusinessUnit = Space(l12 - Len(szBUnit)) + szBUnit

d = Vval("4242")

soeBeginDoc .mnAddressNumber = d
soeBeginDoc.mnShipToNo = d
soeBeginDoc.jdOrderDate = Date

soeBeginDoc.cMode = "F"
soeBeginDoc.szUserID = "JDE"
soeBeginDoc.cRetrieveOrderNo = "1"

Using COM Transactions 5-5

Running a COM+ Transactions

If strComputerName <> "" Then
soeBeginDoc.szCMComputerID = strComputerName
End If

' MsgBox ("Before F4211FSBeginDoc")
soeObject.F4211FSBeginDoc soeBeginDoc, ow, connRole, laccessNumber

MsgBox Round (soeBeginDoc.mnOrderNo, 0)
*//////////EDIT LINE///////]]/]/

soeEditLine.mnCMJobNo = soeBeginDoc.mnCMJobNumber
orderNum = soeBeginDoc.mnOrderNo

soeEditLine.mnOrderNo = soeBeginDoc.mnOrderNo
soeEditLine.szBusinessUnit = soeBeginDoc.szBusinessUnit
soeEditLine.szCMComputerID = soeBeginDoc.szCMComputerID
soeEditLine.cCMWriteToWFFlag = WRITE_FLAG

soeEditLine.szOrderType = soeBeginDoc.szOrderType
' Load items from UI into edit line structure
soeEditLine.szItemNo = "1001"

mnQuanlityOrdered = "2"

soeEditLine.mnQtyOrdered = mnQuanityOrdered

' MsgBox ("Before F4211FSEditLine.")

' Call business function
soeObject.F4211FSEditLine soeEditLine, ow, connRole, laccessNumber
' MsgBox ("After F4211FSEditLine.")

“//11177777711//ENDDOC//////1111111]]

soeEndDoc .mnCMJobNo = soeBeginDoc.mnCMJobNumber
soeEndDoc.mnSalesOrderNo = soeBeginDoc.mnOrderNo
soeEndDoc.szOrderType = soeBeginDoc.szOrderType
soeEndDoc.szCMComputerID = strComputerName
soeEndDoc.cCMUseWorkFiles = WRITE_FLAG

'Call business function

'MsgBox ("Before F4211FSEndDoc.")
soeObject.F4211FSEndDoc soeEndDoc, ow, connRole, laccessNumber
'MsgBox ("After F4211FSEndDoc.")
MsgBoxRes = MsgBox ("Do you want to abort?", vbYesNo, "Transaction
Decision")
If MsgBoxRes = vbYes Then
GetObjectContext.SetAbort
Else
GetObjectContext.SetComplete
MsgBox ("Order Saved")
End If

"///////CLEAR WORK FILE//////////////]]

soeClearWF.cClearDetailWF = WRITE_FLAG

soeClearWF.cClearHeaderWF = WRITE_FLAG

soeClearWF.mnJobNo = soeBeginDoc.mnCMJobNumber
soeClearWF.szComputerID = strComputerName

'Call business function

'MsgBox ("Before F4211ClearWorkFile.")

ow.BeginTransaction laccessNumber, connRole, 0
soeObject.F4211ClearWorkFile soeClearWF, ow, connRole, laccessNumber
'MsgBox ("After F4211ClearWorkFile.")

5-6 JD Edwards EnterpriseOne Tools Connectors Guide

Running a Distributed Transaction

Set soeObject = Nothing

Set soeBeginDoc = Nothing

Set soeEditLine = Nothing

Set soeEndDoc = Nothing

Set ow = Nothing
connRole.Logoff (laccessNumber)
Set connRole = Nothing

Exit Sub

errorhandler:
GetObjectContext () .SetAbort
connRole.Logoff (laccessNumber)
Set ow = Nothing

End Sub

5.3.2.1 Module1 : Modulei.bas

Create a module file and declare the GetComputerName function.

Public Declare Function GetComputerName Lib "kernel32" Alias
"GetComputerNameA" (ByVal lpBuffer As String, nSize As Long) As Long

5.3.3 Creating a Transactional Client

This sample code shows how to create a SalesOrderEntry transactional client
(SOETxClient => SOETxClient.vbp):

'////SOETxClient////

Private Sub Form_Load()

Dim ¢ As SOEClass2 '// VB SOE transactional object
Set ¢ = New SOEClass2

c.run

Set ¢ = Nothing

End Sub

5.4 Running a Distributed Transaction

This section provides an overview of JD Edwards EnterpriseOne participating in a
distributed transaction and discusses how to:

» Create MTStest for a Distributed Transaction.
» Create ClientPrj for a Distributed Transaction.

= Register a New COM+ .dll.

5.4.1 Understanding COM+ Transaction

This sample code, called MTStest.vbp, shows how to create a distributed transaction
using COM+. This project contains these two classes:

s MTSTestClass, which queries and updates a test SQL database.
s OWTxClass, which runs the Sales Order Entry.

OWTxClass is almost identical to the previous SOETxObject, except that the message
box for commit or abort is no longer necessary.

Using COM Transactions 5-7

Running a Distributed Transaction

MTStest.dll must be registered in the COM+ Component Services, and the transaction
property should be set to required; it might have been set already.

Create a sample SQL test database table SOE2PCTest. SOE2PCTest table has two
columns, SONum and LastSONum. The test selects the LastSONum and then updates
the table by incrementing the previous value by 1 when commit is called.

Sample code called ClientPrj.vbp will call the transactional object.

Both of the transactions are committed by the DTC when the SetComplete call is made.
The DTC aborts the transaction when the SetAbort call is made or if any part of the
transaction fails.

Use these steps to run a sales order entry as a distributed transaction in COM+ where
the COM connector, JD Edwards EnterpriseOne, and an SQL database participate.

1. Run the MTStest.vbp.

Run the ClientPrj.vbp.

Click the Call Database_ Test_ Method button.

Switch back to the MTStest and note the sales order number.

When a message box appears to Commit or Abort, select the appropriate action.

o g k& 0 b

Verify in JD Edwards EnterpriseOne whether the sales order has been entered.
When the transaction is aborted, the sales order should not be in JD Edwards
EnterpriseOne, and the test database should not increment the count.

5.4.2 Creating MTStest for a Distributed Transaction (MTStest.vbp)

This code sample provides detail code for creating MTStest.

Note: This sample code has message box statements to help better
understand the step-by-step flow of the code. Since DTC is managing
the transactions, it is necessary not to lock the tables for a long time.
When you use message boxes, you stop the program flow. When
regression testing, you must remove all of the message boxes. You can
write to a log file instead.

5.4.2.1 MTSTestClass : MTStest.bas

You can use this sample code to create MTStest:

Option Explicit
Public Function Database_Test_Method(_ByVal szConnect As String) As String

Dim stmt As String
On Error GoTo errhandler

Dim ctxObject As ObjectContext
Set ctxObject = GetObjectContext ()

Dim MsgBoxRes

Dim cn As ADODB.Connection

Dim rsSelect As ADODB.Recordset
Dim rs As ADODB.Recordset

Set cn = New ADODB.Connection
With cn

5-8 JD Edwards EnterpriseOne Tools Connectors Guide

Running a Distributed Transaction

.ConnectionTimeout = 10
.ConnectionString = szConnect
.Open

End With

' SONUM and LASTSONUM are columns created in a database called '

' COMPLUS.

' Database server is called soe2pctest. !

' LASTSONUM gets incremented when commit is used.

' Change these values according to Database created

Set rs = New ADODB.Recordset

Set rsSelect = New ADODB.Recordset

rsSelect.Open "SELECT LASTSONUM FROM soe2pctest", cn, adOpenDynamic,
_ adLockReadOnly

Dim i As Integer

For i =1 To 3

stmt = "Update SOE2PCTest set LASTSONUM=" & rsSelect(0).Value + 1& &
" where SONUM = 1"

cn.Execute stmt, 1, -1

rsSelect.Close

Dim ¢ As OWTXClass
Set ¢ = New OWTXClass

c.run

Set ¢ = Nothing
cn.Close

Set rs = Nothing
Set cn = Nothing
MsgBoxRes = MsgBox("Do you want to Commit?", vbYesNo, "Transaction
Decision")
If MsgBoxRes = vbYes Then
ctxObject.SetComplete
Else
ctxObject.SetAbort
End If
Next I

Exit Function

errhandler:

Err.Raise vbObjectError, "MTSTest.MTStest.Database_Test_Method", _
Err.Description

ctxObject.SetAbort

Exit Function

End Function

5.4.2.2 Module1 : Modulei.bas

Create a module file and declare the GetComputerName function.

Public Declare Function GetComputerName Lib "kernel32" Alias
"GetComputerNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Using COM Transactions 5-9

Running a Distributed Transaction

5.4.3 Creating ClientPrj for a Distributed Transaction

This code sample provides detail code for creating ClientPrj.vbp.

Note: This sample code has message box statements to help better
understand the step-by-step flow of the code. Since DTC is managing
the transactions, it is necessary not to lock the tables for a long time.
When you use message boxes, you stop the program flow. When
regression testing, you must remove all of the message boxes. You can
write to a log file instead.

Private Sub Command2_Click()

Dim szConnect As String
szConnect = "Driver={SQL Server};" & _

"Server=AServerName; Uid=UserID; Pwd=Passwd; Database=DBName"

' (NOTE: You may need to change the connection

information to connect to the database.)

Dim obj As Object
Set obj = CreateObject ("MTStest.MTSTestClass")

MsgBox obj.Database_Test_Method (szConnect)
Set obj = Nothing
Unload Me

End Sub

Private Sub Form_Load()

Command?2.Caption = "Call Database_Test_Method"

End Sub

5.4.4 Registering the COM+ .dlII

A new COM+ dll (OneWorldinterfaceTx.dll) is provided to be used along with the
COM connector to participate in a two-phase commit. OneWorldInterfaceTx.dll must
be registered with the COM+ component services.

Use these steps to register OneWorldInterfaceTx.dll:

1.

On the PC, navigate to COM+ Applications:

Control Panel > Administrative Tools > Component Services

Expand these buttons and folders:

Component Services > Computers > My Computer

Select COM+ Applications.

Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears.

On Install or Create a New Application, select Create an empty application and
then click Next.

On Create Empty Application, enter the name of the application
(OneWorldInterfaceTx) that you are registering.

Select an Activation type, and then press Next.

5-10 JD Edwards EnterpriseOne Tools Connectors Guide

Running a Distributed Transaction

8. On Set Application Identity, select Interactive User, and then click Next.
9. Click Finish to close the wizard.
10. On the PC, expand these folders:
COM+ Applications > OneWorldInterfaceTx
11. Select Components.
12. Right-click Components, select New, and then select Component.
13. The COM Component Install Wizard appears.

14. On Import or Install a Component, select Install New Component(s), and then
click Next.

15. On Select New Files to Install, browse to the application
(OneWorldInterfaceTx.dll) on the client install directory or the COM
interoperability server.

16. Add the application and then click Next.
17. Click Finish to close the wizard.
The application (OneWorldInterfaceTx.dll) is registered.

18. On the PC, expand the Components folder and then right-click the application
(OneWorldInterfaceTx.dll) you just registered.

19. Select Properties.

20. On OneWorldInterfaceTx Properties, click the Transactions tab.
21. For the Transaction support field, select the Required option.
22, Click OK.

23. Close the component servers.

The COM connector should be registered using the method described in the chapter
titled Installing COM Connector on a Non-JD Edwards EnterpriseOne Client
Environment.

The SalesOrderEntry and other wrapper dlls should be registered using the standard
RegSvr32 command.

A new transactional object that is going to participate in the COM+ transactions (for
example, SOEClass2.dll) must be created and registered through the COM+
component services of the administrative tools. The transactions property of this object
should be set to Required. This transactional object will use the new
OneWorldInterfaceTx.dll for starting a transaction, executing a business function, and
so on. The code outline is explained in Casel:]D Edwards EnterpriseOne Participates
in COM+ Transaction. Detail sample code for the SalesOrderEntry transaction object
(SOETxObject) is provided.

After the transactional object is created, open a new VB sample SalesOrderEntry client
and call the SOEClass2 object. The VB SOETxClient code is provided.

Two cases of the Sales Order Entry application are discussed. Case 1 is when JD
Edwards EnterpriseOne participates in the COM+ transaction. Case 2 is when JD
Edwards EnterpriseOne participates in a distributed transaction.

Using COM Transactions 5-11

Running a Distributed Transaction

5-12 JD Edwards EnterpriseOne Tools Connectors Guide

6

Using COM Connector Solution for Events -
Guaranteed Events

This chapter contains the following topics:

= Section 6.1, "Understanding COM Connector Guaranteed Events"

= Section 6.2, "Setting Up the COM Connector for Guaranteed Events - 8.94"
= Section 6.3, "Setting Up the COM Connector for Guaranteed Events - 8.95"

= Section 6.4, "Installing and Setting Up the COM Connector for Guaranteed Events
- 8.96 & later releases"

= Section 6.5, "Implementing JD Edwards EnterpriseOne Interfaces"
= Section 6.6, "Implementing a JD Edwards EnterpriseOne Interface"

= Section 6.7, "Registering EventSink for Persistent Subscription”

Note: This chapter is applicable only if you use guaranteed event
delivery. Guaranteed event delivery is available when you use JD
Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
Tools releases with JD Edwards EnterpriseOne Applications 8.10 and
later Applications releases. Headings in this chapter that have an 8.94
after them are applicable for Tools release 8.94 with Applications
release 8.11 only. Headings in this chapter that have 8.95 after them are
applicable for Tools release 8.95 and later Tools releases.

Refer to the Classic Events chapters if you use JD Edwards
EnterpriseOne 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

6.1 Understanding COM Connector Guaranteed Events

The COM connector events solution uses the Microsoft COM+ Events Service. COM+
Events Loosely Coupled Events, which matches and connects publishers and
subscribers, is part of the Microsoft Windows 2000 Component Services. The
EventClass is a COM+ component that contains interfaces and methods that are used
by the publisher to initiate events. The EventClass manages the connection between
publisher and subscribers. The EventClass.dll, which contains the IOWEvent interface,
is provided. The COM servers and COM clients must implement this interface so that
when an event is initiated, this interface is called by the COM+ Events Service and the
implementation is executed. The implementation decides what the delivered event

Using COM Connector Solution for Events - Guaranteed Events 6-1

Understanding COM Connector Guaranteed Events

and the event data should do. This implementation is COM server or COM client

specific.

To support guaranteed event delivery for JD Edwards EnterpriseOne Tools release
8.94, the COM connector uses the Java Connector to access JD Edwards EnterpriseOne.
This illustration shows the COM connector architecture for guaranteed events using
JD Edwards EnterpriseOne Tools 8.94:

Figure 6—-1 COM connector architecture-guaranteed event delivery for JD Edwards EnterpriseOne Tools

release 8.94

Client Server

EnterpriseOne
JNI
COM Connector — and —»{ Java Connector > Transaction
JMS Server

To support guaranteed event delivery for JD Edwards EnterpriseOne Tools release 8.95

and later

Tools releases, the COM connector uses XML. This illustration shows the

COM connector architecture for guaranteed events using JD Edwards EnterpriseOne
Tools 8.95 and later Tools releases:

Figure 6—2 COM connector architecture-guaranteed event delivery for JD Edwards EnterpriseOne Tools
release 8.95 and later Tools releases

Client Server

EnterpriseOne
XML
COM Connector — over » Transaction
HTTP Server

Note: You should have a basic understanding of the COM+ Events
Service.

COM+ events supports Z events, real-time events, and XAPI events.
COM+ Events Service is not dependent on JD Edwards EnterpriseOne
setup for event generation.

See Also:

Microsoft MSDN, http: //www.msdn.microsoft.com.

"Using Guaranteed Events" in the /D Edwards EnterpriseOne Tools
Interoperability Guide.

"Using Real-Time Events - Guaranteed" in the |D Edwards
EnterpriseOne Tools Interoperability Guide.

"Using XAPI Events - Guaranteed" in the D Edwards
EnterpriseOne Tools Interoperability Guide.

6-2 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the COM Connector for Guaranteed Events - 8.94

6.2 Setting Up the COM Connector for Guaranteed Events - 8.94

This section provides an overview of the process for setting up the COM connector to
receive guaranteed events when you use JD Edwards EnterpriseOne Tools 8.94 with JD
Edwards EnterpriseOne Applications 8.11 and discusses how to:

= Install and set up the COM connector for guaranteed events - 8.94
= Register components for the COM connector for guaranteed events - 8.94
= Subscribe to guaranteed events - 8.94

= Log COM guaranteed events - 8.94

6.2.1 Understanding COM Connector Set Up for Guaranteed Events - 8.94

You can install the COM connector so that you can receive guaranteed events using JD
Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne Applications 8.11.
Setting up the COM connector includes setting up security and setting up the identity
as an interactive user. After you install and set up the COM connector, you set up a
DCOM server on a JD Edwards EnterpriseOne server machine. DCOM enables COM
objects in a distributed environment. To ensure that the interoperability client works
properly, you must set up DCOM for both a server environment and for a client
environment. You also register the COM connector components, subscribe to events,
and log errors and messages.

6.2.2 Installing and Setting Up the COM Connector for Guaranteed Events - 8.94

Use these steps to install and set up the COM connector so that you can receive
guaranteed event using JD Edwards EnterpriseOne Tools 8.94 with JD Edwards
EnterpriseOne Applications 8.11.

Note: All of the COM connector required files will be installed with
the JD Edwards EnterpriseOne client. If you have the JD Edwards
EnterpriseOne client, ignore Step 1 and start with Step 2. If you do not
have the JD Edwards EnterpriseOne client and you want to set up the
COM connector on a third-party machine, start with Step 1.

1. Copy these files from the JD Edwards EnterpriseOne server (system\bin32) to a
directory on the desired machine.

For example, copy the files in c:\program files\]D Edwards to a non-JD Edwards
EnterpriseOne client machine.

— JDECOMConnector2.exe
- JDECOMMN.dI

- callobject.dll

- comlog.dll

- EventManager.dll

- OneWorldInterfaceTx.dll
- xmlinterop.dll

- jdel.dll

- jdethread.dll

Using COM Connector Solution for Events - Guaranteed Events 6-3

Setting Up the COM Connector for Guaranteed Events - 8.94

- jdeunicode.dll

— ustdio.dll

— icuil8n.dll

- jdeinterop.ini to c:\(root directory)
— checkver.exe

- ICUuUCdl

— Icu\data*.*

- XERCES4C.dll

— EventClass.dll

— EventListener.dll

2. Create a new directory Icu\data\ on the machine where the COM server is
located.

Copy all of the files from the JD Edwards EnterpriseOne server in folder
system\Locale\xml** into Icu\data\. Create a new system variable, ICU_DATA,
in the environment variables of the system properties and specify the path to the
Icu\data\ as the value.

3. Add]JVM.dll path from IBM JDK1.4 in the path variable of the environment
variables.

This is required only for 8.94.
4. Use these steps to register the COM connector:
a. Run this command:

c:\programfiles\JDEdwards\JDECOMConnector2.exe /RegServer

b. Go to c:\programfiles\]DEdwards\ Or c:\b9\system\bin32 and run these
commands:

regsvr32 EventManager.dll
regsvr32 EventClass.dll

5. Create the JDEinterop.ini file by setting the JD Edwards EnterpriseOne server and
port values to the JD Edwards EnterpriseOne application server with which you
want the COM server to communicate.

The COM server is now ready.

6. Use these steps to set up security on the COM server:
a. From the Start menu, select Run.

b. Enter Dcomcnfg.exe.

c. On Distributed COM Configuration Properties, click the Default Security tab.

e

Click the Edit Default Button in Default Access Permissions group.

e. The Registry Value Permissions form appears. Some entries might already be
present.

f. On Registry Value Permissions, click Add.

g. On Add Users and Groups, select the appropriate domain from the List
Names From option.

6-4 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the COM Connector for Guaranteed Events - 8.94

h.

Click Everyone, and then click Add.Type of access should be Allow Access.
Click OK.

No setup is required for default configuration permissions.

7. Use these steps to set up the identity as interactive user:

a.

b.

Run DCOMCnfg.

On Distributed COM Configuration Properties, select JDECOMConnector2,
and then click Properties.

On JDECOMConnector2Properties, click the Identity tab, and then select the
interactive user option.

Click Apply to apply the change.

Note: Every time you register the connector, you must set up the
identity as an interactive user. If you copy the
JDECOMConnector2.exe using Explorer, Explorer reruns the
registration, and you must set up the identity as an interactive user.

To use Callbacks (Connection Points) with the COM solution, repeat
these steps for setting up the identity as an interactive user on the
COM client machine. Most of the shipped examples use Callbacks and
require that you open the security on the client machine.

8. Use these steps to set up DCOM for a client environment:

a.

h.

From a DOS prompt on the DCOM client machine, run jdecomconnector2.exe
/RegServer.

At the prompt, enter oleview.exe.
From the menu bar, select oleview.
Click View and select Expert Mode.

In the oleview window under Object Classes, double-click All Objects, and
wait for all objects to appear.

Under All Objects, find and click Connector Class.

Click the Implementation tab on the right-side panel, and then click the local
server and remove anything that appears in the editing window.

On the Activation tab, select the Launch as Interactive User option.

In Remote Machine Name, enter the COM server machine name.

Repeat steps 5 through 8 for MathNumeric Class.Start the DCOM client application.

Start the DCOM client application.

6.2.3 Registering Components for COM Connector - 8.94

So that subscribers can find an event class and subscribe to it, the JD Edwards
EnterpriseOne event class must be registered with COM+. In addition, COM+ requires
a type library that describes the event interface and methods so that subscribers and
publishers can be properly matched and connected. The type library must reside in or
be accompanied by a self-registering DLL.

Using COM Connector Solution for Events - Guaranteed Events 6-5

Setting Up the COM Connector for Guaranteed Events - 8.95

To register the JD Edwards EnterpriseOne Events Class with COM+ Services, you
must:

s Add anew COM-+ application for the JD Edwards EnterpriseOne event class.

s Install the JD Edwards EnterpriseOne event class.

Note: Before you register the JD Edwards EnterpriseOne Event Class
with COM+ Services, set up the COM server. The COM server can be
set up on either a JD Edwards EnterpriseOne machine or a non-JD
Edwards EnterpriseOne machine (third-party machine), or both.

See Also:

s Installing COM Connector.

6.2.4 Subscribing to Events - 8.94

The COM connector supports event subscriptions from JD Edwards EnterpriseOne (JD
Edwards EnterpriseOne server and Transaction server). The COM connector connects
to the JD Edwards EnterpriseOne Transaction server to receive its subscribed events.

You must set up the jdeinterop.ini file, including the [[MSEVENTS] section. Also, you
must add the path (not including the file name) to the appropriate jvm.dll file in the
system's path environment variable. For connecting to a JD Edwards EnterpriseOne
Transaction server running in WebSphere, you must use the jvm.dll provided by
WebSphere.

6.2.5 Logging COM Events - 8.94

Logging for COM events is entered in the interopDebug.log file. The error log is
interop.log.

6.3 Setting Up the COM Connector for Guaranteed Events - 8.95

This section provides an overview of the process for setting up the COM connector to
receive guaranteed events when you use JD Edwards EnterpriseOne Tools 8.95 and
later Tools releases with JD Edwards EnterpriseOne Applications 8.10 and later
releases.

6.3.1 Understanding COM Connector Setup for Guaranteed Events - 8.95

You can install the COM connector so that you can receive guaranteed events using JD
Edwards EnterpriseOne Tools 8.95 and later Tools releases with JD Edwards
EnterpriseOne Applications 8.10 and later Applications releases. Setting up the COM
connector includes setting up security and setting up the identity as an interactive
user. After you install and set up the COM connector, you set up a DCOM server on a
JD Edwards EnterpriseOne server machine. DCOM enables COM objects in a
distributed environment. To ensure that the interoperability client works properly, you
must set up DCOM for both a server environment and for a client environment. You
also register the COM connector components, subscribe to events, and log errors and
messages.

6-6 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the COM Connector for Guaranteed Events - 8.95

6.3.2 Installing and Setting Up the COM Connector for Guaranteed Events - 8.95

Use these steps to install and set up the COM connector so that you can receive
guaranteed event using JD Edwards EnterpriseOne Tools 8.95 and later Tools releases
with JD Edwards EnterpriseOne Applications 8.10 and later Applications releases.

Note: All of the COM connector required files will be installed with
the JD Edwards EnterpriseOne client. If you have the JD Edwards
EnterpriseOne client, ignore Step 1 and start with Step 2. If you do not
have the JD Edwards EnterpriseOne client and you want to set up the
COM connector on a third-party machine, start with Step 1.

1. Copy these files from the JD Edwards EnterpriseOne server (system\bin32) to a
directory on the desired machine. For example, copy the files in c:\program
files\]DEdwards to a non-JD Edwards EnterpriseOne client machine.

— JDECOMConnector2.exe
- JDECOMMN.dII

- callobject.dll

- comlog.dll

- EventManager.dll

— OneWorldInterfaceTx.dll
- xmlinterop.dll

- jdel.dll

- jdethread.dll

- jdeunicode.dll

— ustdio.dll

- icuil8n.dll

- jdeinterop.ini to c:\(root directory)
— checkver.exe

- IcuuC.dl

- Icu\data*.*

- IXXML4C2_3.dl

— EventClass.dll

- EventListener.dll

- EventHandler.dll

— ClientService.dll

2. Create a new directory Icu\data\ on the machine where the COM server is
located.

Copy all of the files from the JD Edwards EnterpriseOne server in folder
system\Locale\xml** into Icu\data\. Create a new system variable, ICU_DATA,
in the environment variables of the system properties and specify the path to the
Icu\data\ as the value.

Using COM Connector Solution for Events - Guaranteed Events 6-7

Setting Up the COM Connector for Guaranteed Events - 8.95

3. Use these steps to register the COM Connector:
a. Run this command:

c:\programfiles\JDEdwards\JDECOMConnector2.exe /RegServer

b. Go to c:\programfiles\]DEdwards\ Or c:\b9\system\bin32 and run these
commands:

regsvr32 EventManager.dll
regsvr32 EventClass.dll

4. Create the JDEinterop.ini file by setting the JD Edwards EnterpriseOne server and
port values to the JD Edwards EnterpriseOne application server with which you
want the COM server to communicate.

The COM server is now ready.

5. Use these steps to set up security on the COM server:
a. From the Start menu, select Run.

b. Enter Dcomcnfg.exe.

c. On Distributed COM Configuration Properties, click the Default Security tab.

e

Click the Edit Default Button in Default Access Permissions group.

e. The Registry Value Permissions form appears. Some entries might already be
present.

f. On Registry Value Permissions, click Add.

dg. On Add Users and Groups, select the appropriate domain from the List
Names From option.

h. Click Everyone, and then click Add.Type of access should be Allow Access.
i. Click OK.
No setup is required for default configuration permissions.
6. Use these steps to set up the identity as an interactive user:
a. Run DCOMCnfg.

b. On Distributed COM Configuration Properties, select JDECOMConnector2,
and then click Properties.

c. OnJDECOMConnector2Properties, click the Identity tab, and then select the
interactive user option.

d. Click Apply to apply the change.

Note: Every time you register the connector, you must set up the
identity as an interactive user. If you copy the
JDECOMConnector2.exe using Explorer, Explorer reruns the
registration, and you must set up the identity as an interactive user.

To use Callbacks (Connection Points) with the COM solution, repeat
these steps for setting up the identity as an interactive user on the
COM client machine. Most of the shipped examples use Callbacks and
require that you open the security on the client machine.

7. Use these steps to set up DCOM for a client environment:

6-8 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the COM Connector for Guaranteed Events - 8.95

- From a DOS prompt on the DCOM client machine, run jdecomconnector2.exe
/RegServer.

— At the prompt, enter oleview.exe.
— From the menu bar, select oleview.
— Click View and select Expert Mode.

— In the oleview window under Object Classes, double-click All Objects, and
wait for all objects to appear.

— Under All Objects, find and click Connector Class.

- Click the Implementation tab on the right-side panel, and then click the local
server and remove anything that appears in the editing window.

— On the Activation tab, select the Launch as Interactive User option.

— In Remote Machine Name, enter the COM server machine name.
Repeat steps 5 through 8 for MathNumeric Class.Start the DCOM client application.
Start the DCOM client application.

6.3.3 Registering Components for COM Connector - 8.95

So that subscribers can find an event class and subscribe to it, the JD Edwards
EnterpriseOne event class must be registered with COM+. In addition, COM+ requires
a type library that describes the event interface and methods so that subscribers and
publishers can be properly matched and connected. The type library must reside in or
be accompanied by a self-registering DLL.

To register the JD Edwards EnterpriseOne Events Class with COM+ Services, you
must:

s Add anew COM-+ application for the JD Edwards EnterpriseOne event class.

s Install the JD Edwards EnterpriseOne event class.

Note: Before you register the JD Edwards EnterpriseOne Event Class
with COM+ Services, set up the COM server. The COM server can be
set up on either a JD Edwards EnterpriseOne machine or a non-JD
Edwards EnterpriseOne machine (third-party machine), or both.

See Also:

= Installing COM Connector.

6.3.4 Subscribing to Events - 8.95

The COM connector supports event subscriptions from JD Edwards EnterpriseOne (JD
Edwards EnterpriseOne server and Transaction server). The COM connector connects
to the JD Edwards EnterpriseOne Transaction server to receive its subscribed events.

6.3.5 Logging COM Events - 8.95

Logging for COM events is entered in the interopDebug.log file. The error log is
interop.log.

Using COM Connector Solution for Events - Guaranteed Events 6-9

Installing and Setting Up the COM Connector for Guaranteed Events - 8.96 & later releases

6.4 Installing and Setting Up the COM Connector for Guaranteed Events -
8.96 & later releases

Installing and setting up the COM connector for guaranteed events is done the same
way for JD Edwards EnterpriseOne Version 8.96 and later releases.

See Deploying the COM Solution for Business Function Execution.

6.5 Implementing JD Edwards EnterpriseOne Interfaces

This section provides an overview about implementing the JD Edwards EnterpriseOne
interface and discusses how to:

s Create a COM+ component.

= Log on to the COM connector.
= Subscribe to an event.

= Integrate with BizTalk.

= Add anew application.

s Install the event class.

6.6 Implementing a JD Edwards EnterpriseOne Interface

You must develop an object that implements the IOWEvent interface. For further
discussion and for code samples in this document, the name EventSink is used as the
object name. The object that you develop to implement the IOWEvent can have a
different name. EventSink implements the IOWEvent interface and the method within
the interface, and then consumes the JD Edwards EnterpriseOne event. The EventSink
implementation is client specific. EventSink receives the event from JD Edwards
EnterpriseOne by implementing the interface specified in EventClass.

This code outline shows how to develop an EventSink component:

Option Explicit
Implements IOWEvent
Public Event OneWorldEvent (ByVal EventName As String, ByVal Data As String)

Public Sub IOWEvent_OneWorldEvent (ByVal EventName As String, ByVal Data
As String)
'// Add code specific to the client implementation here
RaiseEvent OneWorldEvent (EventName, Data)
End Sub

This list outlines the steps for you to follow to use the EventManager library and
MessageHandler Interface to subscribe to events.

1. Log on to the connector. Successful logon returns an access number.

2. Create the EventSink object.

3. Create the MessageHandler object.

4

Call methods on the MessageHandle for Subscribe, Unsubscribe, GetTemplate,
and GetEventList for the respective event.

5. To keep the session alive and not time out from receiving events, call the
UpdateOutBoundSessionTime method on the connector interface.

This method updates the user session time to the current time.

6-10 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

6. To subscribe to the events as persistent, register VB EventSink in the COM+
Component Services and add the subscription for the EventClass.

6.6.1 Creating a COM+ Component

This sample code is for creating a COM+ component named EventSink.dll. EventSink
implements the EventClass interface IOWEvent(). You can use a name other than
EventSink.

6.6.1.1 EventSink: OneWorldTransientEventSink.cls
This code illustrates how to create a COM+ component:

Option Strict Off
Option Explicit On
<System.Runtime.InteropServices.ProgId
("OneWorldTransientEventSink NET.OneWorldTransientEventSink")>
Public Class OneWorldTransientEventSink

Implements EventClass.IOWEvent

Public Event OneWorldEvent (ByVal EventName As String, ByVal
Data As String)

Public Sub IOWEvent_OneWorldEvent (ByVal EventName As String,
ByVal Data As String) Implements EventClass.IOWEvent.OneWorldEvent
Dim flsObject As New Scripting.FileSystemObject

Dim varEventFile As Scripting.TextStream
Dim strEventFile As String
strEventFile = "C:\temp\eventDataPer.xml"
'UPGRADE_WARNING: Dir has a new behavior. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword=
"vbupl041"'
If Dir(strEventFile) = "" Then
varEventFile = flsObject.CreateTextFile(strEventFile,
False, False)
Else
varEventFile = flsObject.OpenTextFile(strEventFile,
Scripting.IOMode.ForWriting, False)
End If

varEventFile.WriteLine (Data)
varEventFile.Close()
RaiseEvent OneWorldEvent (EventName, Data)
End Sub
End Class

6.6.2 Logging on to the COM Connector

This sample code logs on to the COM connector, creates the MessageHandler object,
and performs Subscribe, Unsubscribe, GetTemplate, and GetList. Before executing the
subscriber, use the Regsvr32 command to register COMConnector.dlL

6.6.2.1 COMConnector: frmLogin.frm

This code sample shows logging on to the COM connector:

Option Strict Off
Option Explicit On

Using COM Connector Solution for Events - Guaranteed Events 6-11

Implementing a JD Edwards EnterpriseOne Interface

Friend Class frmLogin
Inherits System.Windows.Forms.Form

Public bLoginEnv As Boolean

Private Sub cmdCancel_Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdCancel.Click
'set the global var to false
'to denote a failed login
bLoginEnv = False
Me.Hide ()
End Sub

Private Sub cmdOK_Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdOK.Click
'check for correct password
If txtUserName.Text = "" Or txtenvironment.Text = "" Then
bLoginEnv = False
MsgBox ("Must Enter User Name and Environment to

continue")
Else
bLoginEnv = True
Me.Hide ()
End If
End Sub
End Class

6.6.2.2 COMConnector Common.bas

This code sample shows creating the message handler:

Option Strict Off
Option Explicit On
Module Common
Dim conn As New JDECOMCONNECTOR2Lib.Connector
Dim connRole As JDECOMCONNECTOR2Lib.IConnector?2
'Dim messageHandler As New messageHandler
'Dim mHandlerInterface As ImessageHandler
Dim lngAccessNumber As Integer
Public Sub comm_Initialize()
connRole = conn
On Error GoTo errorHandler
frmLogin.DefInstance.blLoginEnv = False
frmLogin.DefInstance.Show ()
While Not frmLogin.DefInstance.bLoginEnv
System.Windows.Forms.Application.DoEvents ()
End While
IngAccessNumber = connRole.El_Event_Login (frmLogin.
DefInstance.
txtUserName.Text, frmLogin.DefInstance.txtPassword.Text, frmLogin.
DefInstance.txtenvironment.Text, frmLogin.DeflInstance.txtrole.Text)
'Debugging Purpose
'IngAccessNumber = connRole.El_Event_Login("JP6849777",
"PASSWORD", "TDEVNIS2", "*ALL")
connRole = conn
Exit Sub
errorHandler:
MsgBox ("Login Failed. You can't Use this Application")

End Sub

6-12 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

' NOTE: the code in this module is particular to this prototype.
' Different code is used in a production version to send messages to
' JD Edwards EnterpriseOne using JD Edwards communication protocols.

Public Sub SendSubscriptionToOneWorld (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
'mHandlerInterface.SubscribeEvent IngAccessNumber, conn,
eventName, oneworldevent, mode
On Error GoTo errorHandler
connRole.El_Event_Subscribe (1ngAccessNumber, oneworldevent)
Exit Sub
errorHandler:
MsgBox ("Subscirbe Method Failed. You can't Use this
Application")
End Sub
Public Sub SendUnSubscribeToOneWorld(ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
On Error GoTo errorHandler
'mHandlerInterface.UnSubscribeEvent lngAccessNumber, conn,
eventName, oneworldevent, mode
connRole.El_Event_UnSubscribe (1ngAccessNumber)
Exit Sub
errorHandler:
MsgBox ("UnSubscirbe Method Failed. You can't Use this
Application")
End Sub
Public Sub SendLogoffToOneWorld ()
'mHandlerInterface.SubscribeEvent lngAccessNumber, conn,
eventName, oneworldevent, mode
On Error GoTo errorHandler
connRole.El_Event_Logoff (1lngAccessNumber)
Exit Sub
errorHandler:
MsgBox ("LogOff Method Failed. Terminate ComConnector
Process and End the Application")
End Sub
Public Sub getEventListFromOneWorld(ByRef eventList As String)
On Error GoTo errorHandler
'mHandlerInterface.GetEventList lngAccessNumber, conn,
eventList
eventList = connRole.El_Event_GetEventList (1lngAccessNumber)
Exit Sub
errorHandler:
MsgBox ("GetEventList Method Failed. You can't Use this
Application")
End Sub
Public Sub getEventTemplateFromOneWorld (ByRef eventName As
String, ByRef eventTemplate As String)
On Error GoTo errorHandler
'mHandlerInterface.GetEventTemplate lngAccessNumber,
eventName, conn, eventTemplate
Exit Sub
errorHandler:
MsgBox ("GetEventTemplate Method Failed. You can't Use this
Application")
End Sub
End Module

Using COM Connector Solution for Events - Guaranteed Events 6-13

Implementing a JD Edwards EnterpriseOne Interface

6.6.2.3 COMConnector: SubscriptionManager

This code sample shows event subscription and unsubscribe:

Option Strict Off

Option Explicit On
<System.Runtime.InteropServices.ProgId("SubscriptionManager_ NET.
SubscriptionManager")> Public Class SubscriptionManager

'Private Const m_OneWorldEventCLSID = "{1E645180-6C93-4704-85C6-
57775E2ED2FC}"
Private m_SubscribedEvents As Collection

'UPGRADE_NOTE: Class_Initialize was upgraded to Class_Initialize_
Renamed. Click for more: 'ms-help://MS.VSCC.2003/commoner/redir/
redirect.htm?keyword="vbupl061""'

Private Sub Class_Initialize Renamed()

m_SubscribedEvents = New Collection
comm_Initialize()

End Sub

Public Sub New()

MyBase.New ()
Class_Initialize_Renamed()

End Sub

Public Sub GetEventList (ByRef eventList As String)

getEventListFromOneWorld (eventList)

End Sub

Public Sub Logoff ()
SendLogoffToOneWorld ()
End Sub

Public Sub CreateTransientSubscription (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent)
SubscribeToOneWorldEvent (eventName, oneworldevent, 0)
End Sub
Public Sub CreatePersistentSubscription(ByRef eventName As
String, ByRef oneworldevent As EventClass.IOWEvent)
SubscribeToOneWorldEvent (eventName, oneworldevent, 1)
End Sub
Public Sub RemoveTransientSubscription (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent)
UnSubscribeToOneWorldEvent (eventName, oneworldevent, 0)
End Sub
Public Sub RemovePersistentSubscription(ByRef eventName As
String, ByRef oneworldevent As EventClass.IOWEvent)
UnSubscribeToOneWorldEvent (eventName, oneworldevent, 1)
End Sub
Public Sub GetEventTemplate (ByRef eventName As String, ByRef
eventTemplate As String)
getEventTemplateFromOneWorld (eventName, eventTemplate)
End Sub
Public Sub SubscribeToOneWorldEvent (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
'Private Function SubscribeToOneWorldEvent (EventName As
String) As Boolean
' we've already subscribed if the subscription is in our

list

Dim alreadySubscribed As Boolean

'UPGRADE_WARNING: Couldn't resolve default property of
object CollectionContainsString(). Click for more: 'ms-help:

6-14 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'
alreadySubscribed = (CollectionContainsString
(m_SubscribedEvents, eventName) = True)

' now do the right thing...
If (alreadySubscribed = False) Then

' this instance of the COMConnector has not seen this

' event before, so add it to our list...

m_SubscribedEvents.Add ((eventName))

' ...and go ahead and subscribe to the event from
JD Edwards EnterpriseOne

SendSubscriptionToOneWorld (eventName,
oneworldevent, mode)
End If

'SubscribeToOneWorldEvent = alreadySubscribed
End Sub

'UPGRADE_NOTE: str was upgraded to str_Renamed. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl061""
Private Function CollectionContainsString (ByRef col As
Collection, ByRef str_Renamed As String) As Object
Dim colItem As Object
For Each colItem In col
'UPGRADE_WARNING: Couldn't resolve default
property of object colItem. Click for more: 'ms-help:
//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'
If (colItem = str_Renamed) Then
'"UPGRADE_WARNING: Couldn't resolve default
property of object CollectionContainsString. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""
CollectionContainsString = True
Exit Function
End If
Next colItem
'UPGRADE_WARNING: Couldn't resolve default property of
object CollectionContainsString. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'
CollectionContainsString = False
End Function

Public Sub UnSubscribeToOneWorldEvent (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
Dim alreadySubscribed As Boolean
'alreadySubscribed = (CollectionContainsString
(m_SubscribedEvents.Item, eventName))

' now do the right thing...
'If (alreadySubscribed = True) Then
' this instance of the COMConnector has not seen this

event before, so
' remove it from the list...
alreadySubscribed = (RemoveFromCollection
(m_SubscribedEvents, eventName))
If (alreadySubscribed = False) Then
MsgBox ("Event Not Subscribed")
Else

Using COM Connector Solution for Events - Guaranteed Events 6-15

Implementing a JD Edwards EnterpriseOne Interface

'm_SubscribedEvents.Remove ()

' ...and go ahead and subscribe to the event from
JD Edwards EnterpriseOne
SendUnSubscribeToOneWorld (eventName, oneworldevent,
mode)
End If
' End If
End Sub
'UPGRADE_NOTE: str was upgraded to str_Renamed. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl061""'
Private Function RemoveFromCollection(ByRef col As Collection,
ByRef str_Renamed As String) As Object
Dim colItem As Object
Dim count As Short
count = 0
For Each colItem In col
count = count + 1
'UPGRADE_WARNING: Couldn't resolve default
property of object colItem. Click for more: 'ms-help:
//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'
If (colItem = str_ Renamed) Then

col.Remove (count)

'"UPGRADE_WARNING: Couldn't resolve default
property of object RemoveFromCollection. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""

RemoveFromCollection = True

Exit Function

End If

Next colItem

'UPGRADE_WARNING: Couldn't resolve default property of
object RemoveFromCollection. Click for more: 'ms-help:
//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'

RemoveFromCollection = False

End Function

End Class

6.6.3 Subscribing to an Event

Subscriber is the GUI that gets the EventsList, EventTemplate, Subscribe, and
Unsubscribe. Subscriber is built as a VB executable. Typical usage is to get the
EventList first, which populates the list of options with the events that are supported
by the JD Edwards EnterpriseOne server. Select the event that needs to be subscribed
from the JD Edwards EnterpriseOne server and the type of subscription. Click
Subscribe to add a Subscription, or click Unsubscribe to unsubscribe from the JD
Edwards EnterpriseOne server. The Subscribed events and the Received events are in
separate boxes. The received event is displayed in the window on the right. The event
received can be integrated with BizTalk by choosing the Enable BizTalk Integration
option. You should have previously set up BizTalk; if not already installed, install the
BizTalk Server 2000 Developer. If the Module 1 tutorial in the BizTalk Server
documentation runs properly, then the BizTalk Server is properly installed. Before
building the subscriber, you should use the Regsvr32 command to register
EventSink.dll and COMConnector.dll.

6-16 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

6.6.3.1 Subscriber: MainForm.frm

This code sample is for the GUI and the control buttons on the GUI. This code should
be built along with the BizTalk.cls, after registering the COMConnector.dll and

MyEventSink.dll.
VERSION 5.00
Object = "{EAB22AC0-30C1-11CF-A7EB-0000C05BAEOB}#1.1#0"; "shdocvw.dll"
Object = "{831FDD16-0C5C-11D2-A9FC-0000F8754DA1}#2.0#0"; "mscomctl.ocx"
Begin VB.Form MainForm
Caption = "Subscriber Client"
ClientHeight = 7470
ClientLeft = 3555
ClientTop = 2820
ClientWidth = 11655
LinkTopic = "Forml"
ScaleHeight = 7470
ScaleWidth = 11655
Begin VB.Frame grpSubscribedEvents
Caption = "Subscribed Events"
Height = 2895
Index = 1
Left = 120
TabIndex = 17
Top = 2160
width = 2775
Begin VB.CommandButton Commandl
Caption = "Clear"
Height = 375
Left = 4560
TabIndex = 18
Top = 2280
width = 975
End
Begin MSComctlLib.ListView lvwSubscribedEvents
Height = 1695
Left = 120
TabIndex = 19
Top = 360
width = 2535
_ExtentX = 4471
_ExtentY = 2990
View = 2
LabelWrap = -1 'True
HideSelection = -1 'True
_Version = 393217
ForeColor = -2147483640
BackColor = -2147483643
BorderStyle = 1
Appearance = 1
NumItems = 2
BeginProperty ColumnHeader (1) {BDD1F052-858B-11D1-B16A-
00C0F0283628}
Key = "colEventName"
Text = "Event Name"
Object.Width = 2540
EndProperty
BeginProperty ColumnHeader (2) {BDD1F052-858B-11D1-B16A-
00C0F0283628}
SubItemIndex = 1
Key = "colData"

Using COM Connector Solution for Events - Guaranteed Events

Implementing a JD Edwards EnterpriseOne Interface

Text = "Data"
Object.width = 6174
EndProperty

End

End

Begin VB.CommandButton btnGetEventTemplate
Caption = "Get Template"
Height = 375
Left = 3720
TabIndex = 14
Top = 120
width = 1455

End

Begin VB.CommandButton btnGetEventList
Caption = "Get Event List"
Height = 375
Left = 600
TabIndex = 13
Top = 120
width = 1455

End

Begin SHDocVwCtl.WebBrowser wbEventData
Height = 6375
Left = 6240
TabIndex = 12
Top = 360
width = 5175
ExtentX = 9128
ExtentY = 11245
ViewMode = 0
Offline = 0
Silent = 0
RegisterAsBrowser= 0
RegisterAsDropTarget= 1
AutoArrange = 0 'False
NoClientEdge = 0 'False
AlignLeft = 0 'False
NoWebView = 0 'False
HideFileNames = 0 'False
SingleClick = 0 'False
SingleSelection = 0 'False
NoFolders = 0 'False
Transparent = 0 'False
ViewID = "{0057D0E0-3573-11CF-AE69-08002B2E1262} "
Location = e

End

Begin VB.CheckBox chkEnableBizTalkIntegration
Caption = "Enable BizTalk Integration"
Height = 255
Left = 240
TabIndex = 8
Top = 5280
width = 2535

End

Begin VB.Frame grpEnableBizTalkIntegration
Height = 975
Left = 120
TabIndex = 7
Top = 5640
width = 5775

6-18 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

Begin VB.TextBox txtScheduleFile

Height = 375
Left = 1440
TabIndex = 10
Text = "sked:///\vbeventsdemo\Products\
VBCOMConnector\BlzTalk\Buyerl skx"
Top = 360
width = 4095
End
Begin VB.Label 1blScheduleFile
Alignment = 1 'Right Justify
Caption = "Schedule File:"
Height = 255
Left = 240
TabIndex = 9
Top = 480
width = 1095
End
End
Begin VB.CommandButton btnClose
Caption = "Close"
Height = 375
Left = 5760
TabIndex = 3
Top = 6960
width = 975
End
Begin VB.Frame grpReceivedEvents
Caption = "Received Events"
Height = 2895
Index = 0
Left = 3000
TabIndex = 6
Top = 2160
width = 2895
Begin VB.CommandButton btnClear
Caption = "Clear"
Height = 375
Index = 0
Left = 1680
TabIndex = 2
Top = 2280
width = 975
End
Begin MSComctlLib.ListView lvwReceivedEvents
Height = 1695
Left = 120
TabIndex = 1
Top = 360
width = 2655
_ExtentX = 4683
_ExtentY = 2990
View = 2
LabelWrap = -1 'True
HideSelection = -1 'True
_Version = 393217
ForeColor = -2147483640
BackColor = -2147483643
BorderStyle = 1
Appearance = 1

Using COM Connector Solution for Events - Guaranteed Events 6-19

Implementing a JD Edwards EnterpriseOne Interface

NumItems = 2
BeginProperty ColumnHeader (1) {BDD1F052-858B-11D1-B16A-
00C0F0283628}
Key = "colEventName"
Text = "Event Name"
Object.Width = 2540
EndProperty
BeginProperty ColumnHeader (2) {BDD1F052-858B-11D1-B16A-
00C0F0283628}
SubItemIndex = 1
Key = "colData"
Text = "Data"
Object.width = 6174
EndProperty
End
End
Begin VB.Frame grpSubscriptions
Caption = "Subscriptions"
Height = 1215
Left = 120
TabIndex = 4
Top = 720
Width = 5775
Begin VB.CheckBox chkPersist
Caption = "Persist"
Height = 255
Left = 1560
TabIndex = 16
Top = 840
width = 975
End
Begin VB.ComboBox cEventList
Height = 315
Left = 1560
Sorted = -1 'True
TabIndex = 15
Top = 360
width = 2295
End
Begin VB.CommandButton btnUnsubscribe
Caption = "UnSubscribe"
Height = 375
Left = 4200
TabIndex = 11
Top = 720
width = 1095
End
Begin VB.CommandButton btnSubscribe
Caption = "Subscribe"
Height = 375
Left = 4200
TabIndex = 0
Top = 240
width = 1095
End
Begin VB.Label 1lblEventName
Alignment = 1 'Right Justify
Caption = "Event Name:"
Height = 255
Left = 360

6-20 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

TabIndex = 5
Top = 360
width = 1095
End
End
End

Attribute VB_Name = "MainForm"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Option Explicit

Private m_SubscriptionManager As SubscriptionManager
Private WithEvents m_OneWorldTransientEventSink As
OneWorldTransientEventSink

Attribute m_OneWorldTransientEventSink.VB_VarHelpID = -1
Private Sub Combol_Change ()

End Sub
Private Sub Checkl_Click()

End Sub

Private Sub btnClear Click(Index As Integer)
lvwReceivedEvents.ListItems.Clear
End Sub

Private Sub btnGetEventTemplate Click()
Dim EventName As String
Dim EventTemplate As String
EventName = cEventList.List (cEventList.ListIndex)

'm_SubscriptionManager.GetEventTemplate EventName, EventTemplate

Dim flsObject As New Scripting.FileSystemObject
Dim varTemplateFile As TextStream
Dim strTemplateFile As String
strTemplateFile = "C:\temp\event_template.xml"
If Dir(strTemplateFile) = "" Then
Set varTemplateFile = flsObject.CreateTextFile
(strTemplateFile, False, False)
Else
Set varTemplateFile = flsObject.OpenTextFile
(strTemplateFile,ForWriting, False)
End If

varTemplateFile.WriteLine EventTemplate
varTemplateFile.Close

wbEventData.Navigate "c:\temp\event_template.xml"
End Sub

Event Handlers

Using COM Connector Solution for Events - Guaranteed Events

6-21

Implementing a JD Edwards EnterpriseOne Interface

Private Sub Form_Load()
Set m_SubscriptionManager = New SubscriptionManager
Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink

'EnableBizTalkIntegrationGroup
End Sub

Private Sub m_OneWorldTransientEventSink_OneWorldEvent (ByVal EventName
As String, ByVal Data As String)
' add the event name and payload to the list
Dim mTempItem As ListItem
Set mTempItem = lvwReceivedEvents.ListItems.Add()
mTempItem.Text = EventName
'mTempItem.SubItems (1) = Data
Dim flsObject As New Scripting.FileSystemObject
Dim varEventFile As TextStream
Dim strEventFile As String
strEventFile = "C:\temp\eventData.xml"
If Dir(strEventFile) = "" Then
Set varEventFile = flsObject.CreateTextFile(strEventFile,
False, False)
Else
Set varEventFile = flsObject.OpenTextFile(strEventFile,
ForWriting, False)
End If

varEventFile.WriteLine Data
varEventFile.Close
wbEventData.Navigate "c:\temp\eventdata.xml"

' send the event to BizTalk (if it is enabled)
'If (chkEnableBizTalkIntegration.Value = Checked) Then
'Dim oBizTalk As BizTalk
'Set oBizTalk = New BizTalk
'oBizTalk.RunSchedule txtScheduleFile.Text, Data
' End If
End Sub

e * K

Private Sub btnGetEventList_Click()
Dim events As String
Dim myValue As String
Dim myString As String
Set m_SubscriptionManager = New SubscriptionManager
m_SubscriptionManager.GetEventList events

cEventList.Clear
events = "RTSOOUT"
myString = events

'Do Until events = ""

'If InStr(l, myString, ":") > 0 Then

' myValue = Left(myString, InStr(l, myString, ":") - 1)
! myString = Mid(myString, InStr(l, myString, ":") + 1)
'Else

' myValue = myString

! events = ""

6-22 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

'End If

'cEventList.AddItem myValue
' Loop
cEventList.AddItem myString
cEventList.ListIndex = 0
End Sub

L U * %

Private Sub btnSubscribe Click()
' subscribe to the named event.
Dim EventName As String
EventName = cEventList.List (cEventList.ListIndex)
If (chkPersist.Value = Checked) Then
m_SubscriptionManager.CreatePersistentSubscription EventName,
m_OneWorldTransientEventSink
Else
m_SubscriptionManager.CreateTransientSubscription EventName,
m_OneWorldTransientEventSink
End If
Dim mTempItem As ListItem
Set mTempItem = lvwSubscribedEvents.ListItems.Add()
mTempItem.Text = EventName
End Sub

N o * %

Private Sub btnUnsubscribe_Click()
Dim EventName As String
EventName = cEventList.List (cEventList.ListIndex)
Dim lstItem As ListItem
Dim count As Integer
Dim found As Boolean
count = 0
found = False
For Each lstItem In lvwSubscribedEvents.ListItems
count = count + 1
If 1stItem = EventName Then
lvwSubscribedEvents.ListItems.remove (count)
GoTo remove
found = True
End If
Next
If found = False Then
MsgBox "Event Not Subscribed"
End If
remove: If (chkPersist.Value = Checked) Then
m_SubscriptionManager.RemovePersistentSubscription EventName,
m_OneWorldTransientEventSink
Else
m_SubscriptionManager.RemoveTransientSubscription EventName,
m_OneWorldTransientEventSink
End If

End Sub

Private Sub chkEnableBizTalkIntegration_Click()

Using COM Connector Solution for Events - Guaranteed Events 6-23

Implementing a JD Edwards EnterpriseOne Interface

'EnableBizTalkIntegrationGroup
End Sub

N o * %

Private Sub btnClear0_Click()
' clear the events from the list
lvwReceivedEvents.ListItems.Clear
End Sub

Private Sub btnClose_Click()
m_SubscriptionManager.Logoff
Unload Me
End

End Sub

b e e e e KK e e e e e
Private Sub Initialize()
' Create the event sink

Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink
End Sub

Private Sub EnableBizTalkIntegrationGroup ()
'Dim blnEnable As Boolean
'blnEnable = (chkEnableBizTalkIntegration.Value = Checked)
'1blScheduleFile.Enabled = blnEnable
"txtScheduleFile.Enabled = blnEnable

End Sub

6.6.4 Integrating with BizTalk

This code is for the BizTalk integration for the received event.

6.6.4.1 Subscriber: BizTalk.cls

This code sample shows BizTalk subscription:

VERSION 1.0 CLASS

BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone

DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject
END

Attribute VB_Name = "BizTalk"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False

Option Explicit

Thhkkkkhkhhhhhhhhkhkrhkrhhhhhhhkhkhxhhhhhdhhkhkrhkxhhhhhkhkdrrxrhrhkhxk

'k*%%% ExecuteTutorial
Tk kk ok ok

'**%%% puyrpose: This component is used to exercise
Vhk oKk x the XLANG schedule portion of tutorial accompanying

6-24 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

T k) k kK
T kK kK%
Tk k%%
1%k k%%
Thkkk k%
k) kk Kk
T k) kkk
T kK kKK
T kK kK%
1%k k%%
Thkkk k%
Thkkkx%x
T k) kkk
T kK kKK
T kK kK%
1%k k%%
Thkkx%x
Thkkx%x
k) k kK
T kK kKK
T kK kK%
Txx k%%

Thkk k%

Private
Private
Private
Private
Private

Private
Set
Set
End Sub

Public

strData
Dim o
On Er

BizTalk Server (this is the Module 1 Tutorial).
The component launches the specified schedule
file and passes the data file specified
to it using MSMQ.
NOTE: the source code in this component is a direct
adoption of the code found in the Module 1
Tutorial in the BizTalk Server 2000 documentation.
The default location for the original version of this
source is found in: C:\Program Files\Microsoft
BizTalk Server\Tutorial\Schedule\Solution\
ExecuteTutorial.vbp
Inputs:
Schedule File - Contains the Moniker used to
launch the schedule
Data File - Contains the location of the
XML document to be passed to
the schedule for processing.
Outputs:
Data File - Data file is passed to MSMQ
for later retrieval by the schedule.
g_MSMTxDisp As MSMQ.MSMQTransactionDispenser
g_MSMQQueue As MSMQ.MSMQQueue
g_MSMQInfo As MSMQ.MSMQQueueInfo
g_CurSkedDir As String
g_CurDataDir As String
Sub Class_Initialize()
g_MSMQInfo = CreateObject ("MSMQ.MSMQQueuelInfo")
g_MSMTxDisp = CreateObject ("MSMQ.MSMQTransactionDispenser")
Sub RunSchedule (ByVal strScheduleFile As String, ByVal
As String)
bjfs As New FileSystemObject

ror GoTo cmdRunSked Click_err

'Connect To MSMQ and Remove Any Existing Messages

Purge

'Send

MSMQ "DIRECT=0S:.\private$\ReceivePoReq"

Selected message to MSMQ

ExecuteMSMQ "DIRECT=0S:.\private$\ReceivePoReq", strData

'Start Schedule which reads message from MSMQ
ExecuteSchedule strScheduleFile

Exit

cmdRunS

Sub

ked_Click_err:

MsgBox Err.Description & vbCrLf & "Error: " & Err.Number & "

(0x" &

Hex (Err.Number) & ")", vbCritical, "Error " & Err.Source

Err.Clear

End Sub

Private

Sub PurgeMSMQ (ByVal strQueuePath As String)

Dim 1_MSMQMsg As MSMQMessage

Using COM Connector Solution for Events - Guaranteed Events 6-25

Implementing a JD Edwards EnterpriseOne Interface

On Error GoTo Err_ConnectMSMQ
g_MSMQInfo.FormatName = strQueuePath
Set g_MSMQQueue = g_MSMQInfo.Open (MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

On Error GoTo Err_PurgeMSMQ

Do

Set 1_MSMQMsg = g_MSMQQueue.Receive(, , , 1)
Loop While Not 1_MSMQMsg Is Nothing
Exit Sub

Err_ConnectMSMOQ:

Err.Raise Err.Number, "Connecting To MSMQ", "Could Not Open the
MSMQ Queue """ & strQueuePath & """." & vbCrLf & vbCrLf &
Err.Description

Exit Sub
Err_PurgeMSMQ:

Err.Raise Err.Number, "Cleaning MSMQ", "Could Not Remove
Existing Messages from MSMQ Queue """ & strQueuePath & """." &
vbCrLf & vbCrLf & Err.Description

Exit Sub
End Sub

Private Sub ExecuteMSMQ (ByVal strQueuePath As String, DataToQueue
As String)
Dim QueueMsg As New MSMQMessage

Dim strData As String
Dim fSend As Boolean
Dim txt As TextStream
Dim mybyte() As Byte

On Error GoTo Err_SendMSMQ

g_MSMQInfo.FormatName = strQueuePath

Set g_MSMQQueue = g_MSMQInfo.Open (MQ SEND_ACCESS, MQ_DENY_NONE)
mybyte = StrConv(DataToQueue, vbFromUnicode)

QueueMsg.Body = DataToQueue

Dim MSMQTx As Object

Set MSMQTxX = g_MSMTxDisp.BeginTransaction
QueueMsg.Send g_MSMQQueue, MSMQTX
MSMQTx . Commi t

Set QueueMsg = Nothing
Set MSMQTx = Nothing
Exit Sub

Err_SendMSMQ:

Err.Raise Err.Number, "Sending Message To MSMQ", "Could Not
Send Message To MSMQ Queue """ & strQueuePath & """." & vbCrLf &
vbCrLf & Err.Description

Exit Sub
End Sub

Private Sub ExecuteSchedule (ByVal strSchedule)
Dim SendPAQ As Object

On Error GoTo Err_ExecSched

Set SendPAQ = GetObject (strSchedule)

6-26 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

If SendPAQ Is Nothing Then

Err.Raise vbObjectError + 1, , "Invalid Schedule Handle
Returned."
End If
Set SendPAQ = Nothing
Exit Sub

Err_ExecSched:

Err.Raise Err.Number, "Starting Schedule", "Could Not Launch
the XLANG Schedule" & vbCrLf & "Please verify the path to the SKX
file and the path to the data are correct. Also make sure the private
queues have been created." & vbCrLf & vbCrLf & Err.Description

Exit Sub
End Sub

6.6.5 Adding a New Application

From the Microsoft Windows 2000 machine, navigate to COM+ Applications (Control
Panel > Administrative Tools > Component Services), and then expand these buttons
and folders:

Component Services > Computers > My Computer > COM+ Applications
To add a new application:
1. On Component Services, select COM+ Applications.
2. Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears. These steps apply to the wizard.
3. On Install or Create a New Application, select Create an empty application.

4. On Create Empty Application, enter the name of the application (for example,
JDECOMConnectorEvents).

5. Select an option for Activation Type, and then click Next.
6. On Set Application Identity, select the Interactive User option, and then click Next.
7. Click Finish.

A new application, with the name you entered in Step 4, is added to COM+
Applications.

6.6.6 Installing the Event Class

On Component Services, expand the folder for the new application (for example,
JDECOMConnectorEvents).

To install the event class:
1. On Component Services, select Components.
2. Right-click Components, select New, and then select Component.
The COM Component Install Wizard appears. These steps apply to the wizard.
3. OnImport or Install a Component, select Install new event class(es).

4. On Select Files to Install, browse to the EventClass.dll on the Microsoft Windows
2000 machine.

5. Select EventClass.dll, and then click Open.

Using COM Connector Solution for Events - Guaranteed Events 6-27

Registering EventSink for Persistent Subscription

Install new event class appears with information in these fields:
- Files to install
- Event classes found

6. Click Next, and then click Finish.

EventClass.dll is successfully added to Component Services.

6.7 Registering EventSink for Persistent Subscription

After you register an event class in the COM+ catalog, you can add subscribers to the
event class and subscriptions to the subscribers. For persistent event subscription:

= Add anew application for EventSink.
= Install the type library component for EventSink.
= Add a subscription.

Note: To add EventSink, follow the steps in the task named To add a
new application in the Connectors Guide. The name of the application
is EventSink, or a name that you prefer.

To install the EventSink component:

On Component Services, expand the folder for the new application (for example,
EventSink).

1. Select Components.
2. Right-click Components, select New, and then select Component.

The COM Component Install Wizard appears. These steps are for the wizard.
3. OnImport or Install a Component, select Install new component(s).

4. On Select Files to Install, browse to the EventSink.dll that you previously
developed.

5. Select EventSink.dll, and then click Open.
Install new component appears with information in these fields:
- Files to install
- Event classes found
6. Click Next, and then click Finish.
EventSink.dll is successfully added to Component Services.
To add a subscription:
In COM+ Applications, expand these folders:
JDECOMConnectorEvents > Components > EventSink.OneWorldTransientEventSink
1. Select Subscription.
2. Right-click Subscription, select New, and then select Subscription.
The COM New Subscription Wizard appears. These steps apply to the wizard.
3. On Select Subscription Method(s), chose IOWEvent, and then click Next.

6-28 JD Edwards EnterpriseOne Tools Connectors Guide

Registering EventSink for Persistent Subscription

10.
11.
12.

13.

If appropriate, select the Use all interfaces for this component option.

On Select Event Class, select the event class (for example,
JDEdwards.EventClass.OneWorldEventClass.1), and then click Next.

If multiple EventSink classes have implemented the event interface, then use all
event classes that implement that specified interface. If only one EventSink class
has implemented the event interface, then just select that specific class.

On Subscription Options, enter the name of the subscription (for example,
MySubscription).

In the Options area, select the Enable this subscription immediately option, and
then click Next.

Click Finish.

A new subscription, with the name you entered in Step 6, is added to COM+
Services. You must define the name of the event for the subscription.

Right-click the subscription (for example, MySubscription), and then select
Properties.

On MySubscription Properties, click the Options tab.
Chose the Enabled option.

In the Filter criteria field, enter the name of the event for which you want a
subscription.

Enter all of the events for which you want to subscribe. The filter criteria string
supports relational operations (=, ==, !, |=, ~, ~=, <>), nested parentheses, and
logical words (AND, OR, and NOT); for example:

EventName=="RTSOOUT' OR EventName==RTPOOUT"
Click OK.

Using COM Connector Solution for Events - Guaranteed Events 6-29

Registering EventSink for Persistent Subscription

6-30 JD Edwards EnterpriseOne Tools Connectors Guide

7

Understanding jdeinterop.ini for COM

Connector

This chapter contains the following topic:

Section 7.1, "Settings for jdeinterop.ini File for the COM Connector"

7.1 Settings for jdeinterop.ini File for the COM Connector

The jdeinterop.ini file includes settings the server might need. The default location for
the file is ¢ : \; however, you can configure this location. Information is organized by
section, for example [JDENET].

7.1.1 [OCM]

These sections are configured for the COM connector:

ocM
JDENET
Server
Security
Debug
Interop
Events

JMSEVENTS (Only for guaranteed events delivery method using JD Edwards
EnterpriseOne Tools 8.94)

Note: Unless otherwise indicated, the sections and the settings for
the COM connector are for all JD Edwards EnterpriseOne releases.

Configure these [OCM] settings for the COM connector:

Applicable
Setting and Typical Value Purpose Release
DSN=ODA ITTND17 The data source name from the system DSN of the All

ODBC setting.

OCM Datasource=COM System data source for JD Edwards EnterpriseOne client. All

oM

Understanding jdeinterop.ini for COM Connector 7-1

Settings for jdeinterop.ini File for the COM Connector

Applicable
Setting and Typical Value Purpose Release
DB User=jde User for the data source connection. All
DB Pwd=jde Password for the data source connection. All
Object Owner=sysb9 For UNIX platforms, this is the object owner in the [DB All
SYSTEM SETTINGS].
Seperator=. Separator used in SQL query. All
For Oracle, SQL, and UDB databases, the separator is
period (.); for IBM i, the separator is a slash (/).
7.1.2 [JDENET]
Configure these [JDENET] settings for the COM connector:
Applicable
Setting and Typical Value Purpose Release
enterpriseServerTimeout=90000 Timeout value for a request to the JD Edwards All
EnterpriseOne enterprise server.
maxPoolSize=30 JDENET socket connection pool size. All
7.1.3 [SERVER]
Configure these [SERVER] settings for the COM connector:
Applicable
Setting and Typical Value Purpose Release
glossaryTextServer=]JDED:6010 The JD Edwards EnterpriseOne enterprise All
server and port that provide glossary text
information.
codePage=1252 The encoding scheme, such as: All
1252 English and Western European.
932 Japanese.
950 Traditional Chinese.
936 Simplified Chinese.
949 Korean.

7.1.4 [SECURITY]
Configure this [SECURITY] setting for the COM connector.

Applicable
Setting and Typical Value Purpose Release
NumServers=1 Number of security servers set. All

7.1.5 [DEBUG]
Configure these [DEBUG] settings for the COM connector:

7-2 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for jdeinterop.ini File for the COM Connector

Setting and Typical Value

Applicable

Purpose Release

JobFile=c:\Interop.log

Location of error file. All

DebugFile=c:\InteropDebug.log

Location of debug file. All

log=c:\net.log

Location of log file. All

debugLevel=0 - 12

Defines the level of tracing provided by the All

COM connector and the CallObject
component in the specified log file, in the
COM server only.

0 None: Logging is turned off and only errors
are written to the JobFile.

2 Errors (error messages).
4 System Errors (exception messages).
6 Warning Information.

8 Min Trace (Key operations; for example,
Login, Logoff, Business Function calls).

10 Trouble Shooting Information (Help).

12 Complete Debug Information (Logs
everything).

Note: The odd values are reserved for future
levels to be added.

You typically do not need to use tracing.
However, tracing is useful for debugging.

netTraceLevel=0

Defines the level of tracing provided by the All
ThinNet component in the specified log file, in

the COM server only.
0 No trace.

1 Record process ID, thread ID, and the
available socket status when a new connection
is added and the socket pool is searched.

2 Includes the information in trace level 1 and
also traces every call made in the Connection
Manager class.

3 Includes all information in trace level 2, and
also traces getPort calls and getHost calls.

Note: You typically do not need to use tracing.
However, tracing is useful for debugging.

7.1.6 [INTEROP]

Configure these [[INTEROP] settings for the COM connector:

Setting and Typical

Value Purpose

Applicable
Release

SettingTime=10

Enables the connector to access and retrieve event
information from the F90703 and F90704 tables. Defines

JD Edwards
EnterpriseOne

the time for the connector applications to start up before Tools 8.93 with

the connector starts recovering an event.

ESU

This value is seconds.

Understanding jdeinterop.ini for COM Connector 7-3

Settings for jdeinterop.ini File for the COM Connector

7.1.7 [EVENTS]

7-4

Setting and Typical Applicable
Value Purpose Release
RecoveryInterval=60 Enables the connector to access and retrieve event JD Edwards
information from the F90703 and F90704 tables. Defines EnterpriseOne
the time for the connector applications to start up before Tools 8.93 with
the connector starts recovering an event. ESU
This value is seconds.
enterpriseServer=JDE The JD Edwards EnterpriseOne server. All
port=6010 The port number of the JD Edwards EnterpriseOne All
server.
manual_ The time-out value for a transaction in manual commit All
timout=300000 mode.
Repository=c:\]DEdw Points to the location of the repository directory All
ards\ containing business object libraries (generated JAR
Interop \repository files).
Configure these [EVENTS] settings for the COM connector:
Applicable
Setting and Typical Value Purpose Release
UseGuaranteedEvents System= Indicates guaranteed event delivery. Values are JD Edwards
True true and false. EnterpriseOne
Tools 8.95 and

Must be set to true when using JD Edwards
EnterpriseOne Tools 8.95 and later Tools
releases with JD Edwards EnterpriseOne

later Tools
releases with

Applications 8.10 and later Applications Eitr; fg?si(iCs)ne
releases, and you want to use guaranteed event Applicati
delivery. bpAcanons
8.10 and later
Applications
releases.
Transport=HTTP Defines the event transport mechanism. Valid ~ JD Edwards
values are HTTP and JMS. The default valueis EnterpriseOne
HTTP. Tools 8.95 and

later Tools
releases with
JD Edwards
EnterpriseOne
Applications
8.10 and later
Applications
releases.

eventServiceURL=http://
hpdev1:9081/elevents/
EventClientService

Locates the event service. If the value for the
Transport= setting is HTTP, then this setting
must be configured.

JD Edwards
EnterpriseOne
Tools 8.95 and
later Tools
releases with
JD Edwards
EnterpriseOne
Applications
8.10 and later
Applications
releases.

JD Edwards EnterpriseOne Tools Connectors Guide

Settings for jdeinterop.ini File for the COM Connector

Setting and Typical Value

jndiProviderURL=jndiProvider
URL=corbaloc::denmlps14.
mlab.jdedwards.com:9810/
NameServiceServerRoot

Applicable
Purpose Release
Locates the event service. If the value for the JD Edwards
Transport= setting is JMS, then this setting EnterpriseOne
must be configured. Tools 8.95 and

later Tools
releases with
JD Edwards
EnterpriseOne
Applications
8.10 and later
Applications
releases.

eventReceiveTimeout=60000

Maximum number of milliseconds that the JD Edwards
event receiver waits before unsubscribing the ~ EnterpriseOne
event from the JD Edwards EnterpriseOne Tools 8.95 and
server. later Tools
releases with
JD Edwards
EnterpriseOne
Applications
8.10 and later
Applications
releases.

initialContextFactory=com.ibm.
websphere.naming.
Wsnlnitial ContextFactory

The initial Context Factory JD Edwards
EnterpriseOne
Tools 8.94 with
JD Edwards
EnterpriseOne
Applications
8.11 and COM
connection is
through
WebSphere.

jndiProviderURL=corbaloc::
<server_name:server_port/
NameServiceServerRoot

Replace <server_name:server_port> with JD Edwards
actual values relevant to the WebSphere server. EnterpriseOne
A common value for the server_port for Tools 8.94 with
WebSphere is 9810, but consult the WebSphere JD Edwards
administrator to confirm this port value. EnterpriseOne
Applications
8.11 and COM
connection is
through
WebSphere.

port=6002

The socket port number where the All
EventListener receives the events from the JD
Edwards EnterpriseOne server. This port

should not be used by any other resource.

Also, the port should not be changed

dynamically when the connector is running, as

this causes subsequent subscriptions to be lost.

ListenerMaxConnection=10

The maximum number of connections allowed All
by the EventListener. The default number of
connections is 10, but you can change this

number. The maximum number of connections
allowed is 64.

Understanding jdeinterop.ini for COM Connector 7-5

Settings for jdeinterop.ini File for the COM Connector

Applicable

Setting and Typical Value Purpose Release
ListenerMaxQueueEntry=10 The maximum number of events that the All

EventListener can hold before processing by

the EventManager. The default number of

events for the queue is 10, but you can change

this number. The maximum number of events

that can be held in the queue is 100.
Outbound_timeout=1200000 Maximum number of milliseconds that the All

EventManager waits before unsubscribing the
transient event from the JD Edwards
EnterpriseOne server.

7.1.8 [UMSEVENTS]

Use this section only if you use the COM connector with JD Edwards EnterpriseOne
Tools 8.94 and JD Edwards EnterpriseOne Applications 8.11.

This section has a single setting, CLASSPATH. Note that you must include the full
directory path of each file, separating each file by a semicolon. For example,
CLASSPATH=connector.jar;log4j.jar;System_JAR jar.

Unless otherwise noted, these files can be found in the <JD Edwards EnterpriseOne
Windows client installation directory>\system\classes folder:

= ApplicationAPIs_JAR jar

= ApplicationLogic_JARjar

= Base JARjar

= BizLogicContainer_JARjar

» BizLogicContainerClient_]JAR jar

» BusinessLogicServices_JARjar

= castorjar

= commons-httpclient-3.0.jar

= commons-logging jar

s Connector.jar

s EventProcessor_JAR jar

This file can be found in the <Transaction server installation
directory>\EventProcessor\app folder.

= Generator.jar
s j2eel_3jar
= JdbjBase_JAR jar

= JdbjInterfaces_JARjar

= JdeNet_JARjar

= jmxremote.jar

= jmxremote_optional.jar

= jmxrijar

s logdjjar

7-6 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for jdeinterop.ini File for the COM Connector

ManagementAgent_JAR jar
Metadata.jar
Metadatalnterface jar
PMApi_JARjar

Spec_JAR jar
System_JAR jar
SystemlInterfaces_JAR jar
xerces.jar

xmlparserv2.jar

The path to the directory where the jdeinterop.ini, jdbj.ini, and jdelog.properties
files exist, which must all be in one directory.

The full path to the JDBC driver files, including the filenames.

The CLASSPATH entry must end with a slash (\), which indicates it is a directory
name and not a file name.

Note: The files on the client side and Transaction server side must
always match. This is important if the Transaction server is updated.

7.1.8.1 WebSphere

Normally IBM WebSphere MQ is included as part of other WebSphere applications,
including the WebSphere Application Client. If you use WebSphere for the Java
connection, you must include these additional files.

com.ibm.mgjms.jar

Normally located in the <IBM WebSphere MQ installation directory>/Java/lib
folder.

com.ibm.mgq.jar

Normally located in the <IBM WebSphere MQ installation directory>/Java/lib
folder.

bootstrap.jar

Normally located in the <WebSphere installation directory>\lib folder.
com.ibm.ws.runtime_6.1.0.jar

Normally located in the <Websphere installation directory>\plugins folder.
com.ibm.ws.admin.client_6.1.0.jar

Normally located in the <WebSphere installation directory>\runtime folder.
ibmorb.jar

Normally located in the <WebSphere installation directory>\Java/endorsed
folder.

ibmext.jar

Normally located in the <WebSphere installation directory>\Java/endorsed
folder.

ibmcfw.jar

Understanding jdeinterop.ini for COM Connector 7-7

Settings for jdeinterop.ini File for the COM Connector

Normally located in the <WebSphere installation directory>\Java/endorsed
folder.

You must also include the <WebSphere installation directory>/properties directory in
the CLASSPATH.

7.1.8.2 Oracle Application Server

If you use Oracle Application Server for the Java connection, you must include
additional files.

These files are normally located in the Oracle installation directories:
= ocdjjar

= ocdjclientjar

= jmsjar

» javax77jar

7-8 JD Edwards EnterpriseOne Tools Connectors Guide

8

Understanding Java Interoperability Solution

This chapter contains the following topic:

= Section 8.1, "Java Interoperability Solution"

8.1 Java Interoperability Solution

The JD Edwards EnterpriseOne Java interoperability solution enables you to write
Java applications that interact with the JD Edwards EnterpriseOne system. The Java
interoperability solution includes these types of connectors:

= Dynamic Java connector.
= Java connector.
= Java Connector Architecture (JCA) resource adapter.

The initial Java interoperability solution provided is the Java connector. The Java
connector generates a Java wrapper object around the JD Edwards EnterpriseOne
business function and data structure. A Java application calls the business functions
from the Java wrapper object.

The dynamic Java connector is an enhancement to the Java connector. The dynamic
Java connector enables Java applications to dynamically call business functions
without generating business function wrappers. The dynamic Java connector ensures
that the Java business function is compatible with the server spec. The dynamic Java
connector makes it much easier for the Java application to switch between JD Edwards
EnterpriseOne environments.

The JCA resource adapter is a thin layer built on top of the dynamic Java connector
and provides standard APIs required by the Java connector architecture. The core
functionality for the JCA resource adapter is to interact with JD Edwards
EnterpriseOne, and this functionality is leveraged to the dynamic Java connector. Each
connector has a complete set of APIs that enable Java applications to interact with JD
Edwards EnterpriseOne.

This diagram shows how a Java application interacts with JD Edwards EnterpriseOne
through a connector:

Understanding Java Interoperability Solution 8-1

Java Interoperability Solution

Figure 8-1 Java Application interaction with JD Edwards EnterpriseOne

Java Application

(standalone Java

application, J2EE
application, and so on)

A A

JCA Resource
Adapter

Java Connector

Dynamic Java Connector |«

A 4 A 4

Java CallObject

Java ThinNet

A 4

EnterpriseOne

Generally, each connector provides public interfaces (or APIs) for these services that
can be used by a Java application:

Service Description

Security Management Handles security access to the JD Edwards EnterpriseOne
system.

User Session Management Manages the user session pooling.

Business Function Calls How the Java application calls business functions.

Transaction Management Manages the transaction process to the JD Edwards

EnterpriseOne system.

Error Handling Provides the appropriate exceptions to the connector user
to easily handle error scenarios.

Both the Java connector and the dynamic Java connector support the processing of
outbound events.

8-2 JD Edwards EnterpriseOne Tools Connectors Guide

Java Interoperability Solution

Note: If this is the first implementation of a Java connector, you
should consider the dynamic Java connector instead of the Java
connector. The functional capabilities are the same. The advantage of
implementing the dynamic Java connector is that you are not required
to generate wrappers.

Understanding Java Interoperability Solution 8-3

Java Interoperability Solution

8-4 JD Edwards EnterpriseOne Tools Connectors Guide

9

Working with the Dynamic Java Connector

This chapter contains the following topics:

Section 9.1, "Understanding the Dynamic Java Connector"

Section 9.2, "Designing the Dynamic Java Connector"

Section 9.3, "Installing the Dynamic Java Connector"

Section 9.4, "Running the Dynamic Java Connector"

Section 9.5, "Managing the User Session for the Dynamic Java Connector"

Section 9.6, "Using Sample Applications"

9.1 Understanding the Dynamic Java Connector

The dynamic Java connector enables a Java application to call a business function.
Compared to the Java connector, the dynamic Java connector has these distinguishing
features:

Dynamically introspects business function metadata.

The business function metadata is introspected from the JD Edwards
EnterpriseOne server during application design time by using connector APIs
without pre-generating business function wrappers.

Dynamically calls business functions without pre-generating business function
wrappers.

Since there is no local storage of business function spec metadata, the business
function used by the dynamic Java connector is always compatible with the server
spec metadata.

Easily switches from one environment to another environment.

The Java application can run on any environment that is compatible to the
environment on which the Java application was designed.

The dynamic Java connector provides these services:

For application design, the dynamic Java connector permits client programs to
introspect business function specification metadata.

For application deployment, the dynamic Java connector validates whether a
client application can run through a certain JD Edwards EnterpriseOne server.

For application runtime, the dynamic Java connector provides an interface that
permits the connector client to call the business function on the JD Edwards
EnterpriseOne server.

Working with the Dynamic Java Connector 9-1

Designing the Dynamic Java Connector

Each server is described in detail in corresponding sections of this guide.

9.2 Designing the Dynamic Java Connector

This section provides considerations for designing the dynamic Java connector and
discusses:

= Business function spec metadata introspection.
= Business function spec metadata validation.

= Speclmage console.

9.2.1 Business Function Spec Metadata Introspection

To call a business function method, you need to know the business function methods
that are available to be called, and you need to know about the business function
metadata. This list provides examples of metadata:

= Business function method (such as F4211BeginDoc).

s The module name (C file name) to which a business function method belongs
(such as B123456).

= Description of the business function method (such as sales order).

= Data structure template name that is associated with a business function method
(such as D123456).

» The attributes for all of the data items (parameters) in a business function method,
such as name=szMnAddressbookNumber, itemID=1, data type=Math_Numeric,
length=48, required Type="Yes", IOType="INOUT".

In the dynamic Java connector, metadata is represented by the BSFNMethod and
BSFNParameter interfaces.

9.2.1.1 BSFNMethod

The BSFNMethod interface defines APIs that enable you to retrieve metadata related
to the business function method. The BSFNMethod interface defines these APIs:

= public String getName();

= public String getDSTemplateName();

= public String getBSFNName();

= public String getDescription();

= public BSFNParameter getParameter(String paraName);
= public BSFNParameter[] getParameters();

= public String getFormatString|();

= public ExecutableMethod createExecutable();

= public boolean equals(Object anotherBSFNMethod);

= public void setEqualTo(BSFNMethod anotherBSFNMethod);
= public String getVersion();

= public void setVersion(String version);

9-2 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

9.2.1.2 BSFNParameter

The BSENParameter interface defines APIs that enable you to retrieve metadata
related to the data structure of the business function. The BSFNParameter interface
defines these APIs:

= public int getltemlID();

= public String getName();

= public int getLength();

= public IOType getlOType();

= public RequiredType getRequiredType();
= public BSFNDataType get DataType();

9.2.1.3 BSFNSpecSource
You can write a program to retrieve business function method metadata through an
interface called BSFNSpecSource. The BSFNSpecSource interface defines these APIs:

s Public BSFNMethod getBSFNMethod(String methodName) throws
SpecFailureException

» Public BSFNMethod[] getBSFNMethods() throws SpecFailureException

The class that implements the BSFNSpecSource interface reads the business function
method metadata from an external physical repository and creates the BSFNMethod
object. AbstractBSFNSpecSource is an abstract implementation of BSFNSpecSource
provided by the dynamic Java connector. All customized implementations of
BSFNSpecSource should be a subclass of this class. OneWorldBSFNSpecSource is the
default implementation of AbstractBSFNSpecSource.

See Installing the Dynamic Java Connector.

This illustration shows the BSFNSpecSource, BSFNMethod, and BSFNParameter
relationships:

Working with the Dynamic Java Connector 9-3

Designing the Dynamic Java Connector

Figure 9—-1 Relationships among BSFNSpecSource, BSFNMethod, and BSFNParameter

getBSFNMethod (bsfnMethodName)

Spec Source
Image (XML)

EnterpriseOne
Server

Client
listBSFNMethods() Dynamic Connector
1 Image 1
' ~| BSFNSpecSource 1
3 Y ! BSNFMethod
| <<Interface>> ! getName();
| BSFNSpecSource | getDSTemplate();
| l getBSFNName();
| QO O« | getFormatString();
J | OneWorld 1 getParameters();
- | BSFNSpecSource y l ’
BSNFParameter
getName();
getltemID();
getDataType();
getLength();
getlOType();
getRequiredType();

This code example shows how to retrieve the BSFN spec from BSFNSpecSource:

import com.jdedwards.system.connector.dynamic.spec.source.BSFNSpecSource;

import com.jdedwards.system.connector.dynamic.spec.source.OneworldBSFNSpecSource;
import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.spec.source.*;

import com.jdedwards.system.connector.dynamic.spec.SpecFailureException;

import com.jdedwards.system.connector.dynamic.ServerFailureException;

//Declare class
}
public void execMethod() throws SpecFailureException, ServerFailureException
{
BSFNSpecSource specSource = null;
int sessionID = Connector.getInstance().login("user", "pwd", "env","role");
//specSource = new OneWorldBSFNSpecSource (sessionID); Problem in this
line. World should be small
specSource = new OneworldBSFNSpecSource (sessionID) ;
// or specSource = new ImageBSFNSpecSource("SSI.xml");
//Step 2: Get BSFNMethod by name from specSource
BSFNMethod method = specSource.getBSFNMethod ("GetEffectiveAddress");
String methodName = method.getName () ;
System.out.println("Method name is "+methodName) ;
BSFNParameter[] paralList = method.getParameters();

for (int i=0; i<paralList.length;i++)
{

BSFNParameter para = paraList[i];

9-4 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

String name=para.getName () ;
System.out.println("Name is "+name);
}

}

9.2.1.4 SpecDictionary

A BSFNSpecSource can contain thousands of business function methods. The dynamic
Java connector provides an interface to properly categorize and organize business
function methods. Without proper categorization and organization, it is difficult to
navigate and find the proper business function method. To solve this problem, the
dynamic Java connector provides an interface called SpecDictionary, which provides
these services:

= Categorizes business function methods in a hierarchy.

= Masks the BSFNSpecSource and limits the number of business function methods a
client can view.

The entry of SpecDictionary is called a context. A context is a set of name-to-object
bindings. Every context has an associated naming convention. A context provides a
lookup operation that returns the object. The dynamic Java connector provides these
two concrete classes that implement the SpecDictionary:

= OneWorldSpecDictionary, which gets the hierarchy information from the JD
Edwards EnterpriseOne database.

OneWorldSpecDictionary categorizes business function methods as DLL library -
C file name - C function name.

= ImagespecDictionary, which gets the hierarchy information from Spec Dictionary
Image, which is an XML file.

Like BSFNSpecSource, third-party programs can store the spec dictionary information
in their proprietary format, but they need to implement their own specDictionary to
read the proprietary spec.

This diagram shows the relationship between SpecDictionary and BSFNSpecSource:

Working with the Dynamic Java Connector 9-5

Designing the Dynamic Java Connector

Figure 9-2 Relationship between SpecDictionary and BSFNSpecSource

Customized Customized
Dictionary SpecDictionary
SpecDictionary 1 . Image
Image (XML) 1| SpecDictionary
l OneWorld
! SpecDictionary
EnterpriseOne i o OneWorld
Server .~ | BSFNSpecSource
SpecSource Image | | Image
(XML) 1| BSFNSpecSource

Client

getinitialContext ()
lookupContext("CFIN")
lookupSpec("CFIN.B123.F123")
getspecs();

Dynamic
Connector

<<Interface>>
SpecDictionary

Context
getName();

® ®

.| get Description()
| getSubContext("F42

bindSpecSource()

11BeginDoc")

BSNFMethod
getName();
getDSTemplate();
getBSFNName();

Y

<Interface>
BSFNSpecSource

getFormatString();
getParameters();

getBouﬁdSpec()

This example code shows how to use SpecDictionary and BSFNSpecSource to browse
and lookup information:

import
import
import
import
import
import
import

com.
com.
com.
com.
com.
com.
com.

jdedwards.
jdedwards.
jdedwards.
jdedwards.
jdedwards.
jdedwards.
jdedwards.

system.
system.
system.
system.
system.
system.
system.

connector.
connector.
connector.
connector.
connector.
connector.

connector

dynamic.
dynamic.
dynamic.
dynamic.
dynamic.
dynamic.
.dynamic.

spec.source.BSFNSpecSource;
spec.source.Onewor1dBSFNSpecSource;
Connector;

spec.source.*;
spec.SpecFailureException;
ServerFailureException;
spec.dictionary.Context;

//import com.jdedwards.system.connector.dynamic.spec.dictionary.
InvalidBindingException;
import com.jdedwards.system.connector.dynamic.spec.dictionary.SpecDictionary;
import com.jdedwards.system.connector.dynamic.spec.dictionary.

OneworldSpecDictionary;

. //Declare Class

}

public void execMethod() throws SpecFailureException,ServerFailureException

9-6 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

{
BSFNSpecSource specSource = null;
SpecDictionary specDictionary = null;

//Step 1: Create a SpecDictionary

int sessionID = Connector.getInstance().login("user", "pwd", "env", "role");
specDictionary = new OneworldSpecDictionary (sessionID);

// or specDictionary = new ImagespecDictionary("dict.xml");

//Step 2: Bind the SpecDictionary to a SpecSource
specDictionary.bindSpecSource (specSource) ;

//Step 3a: Lookup the BSFNMethod by giving the full path

//Problem in this line. Extra braces // BSFNMethod method =(BSFNMEthod)
specDictionary.getSpec ("CFIN.F4211.F4211BeginDoc")) ;

//Class name is wrongBSFNMethod method =(BSFNMethod) specDictionary.
getSpec ("CFIN.F4211.F4211BeginDoc") ;

BSFNMethod method =(BSFNMethod) specDictionary.getSpec("CFIN.F4211.
F4211BeginDoc") ;

//Step 3b: or navigate through the dictionary and get the context attributes
Context initContext = specDictionary.getInitialContext();

Context[] subContextList = initContext.getSubcontexts();

//Illegal expression // for (int I=0;I<subContextList>.length; I++)
for (int I=0;I<subContextList.length; I++)

{

Context subContext=subContextList[I];

subContext .getName () ;

subContext.getDescription() ;

method= (BSFNMethod) subContext .getBoundSpec () ;

}

}

9.2.2 Business Function Spec Metadata Validation

If the dynamic Java connector program calls a business function from
OneWorldBSFNSpecSource, you do not need to validate the business function
metadata. The business function metadata in OneWorldBSFNSpecSource is always the
same as the business function metadata that is on the JD Edwards EnterpriseOne
server where the business function runs. You must ensure that all input parameters are
set correctly, according to OneWorldBSFNSpecSource.

If the dynamic Java connector program calls a business function from a spec source
other than OneWorldBSFENSpecSource (such as ImageBSFNSpecSource or a custom
business function spec source), the business function metadata that is in the local spec
source might not be compatible with the business function metadata that is on the JD
Edwards EnterpriseOne server where the business function runs. Local business
function spec metadata can be validated during these conditions:

Condition Explanation

Deploy Time The dynamic Java connector program validates the local spec source against
the JD Edwards EnterpriseOne server spec source before run time. You should
perform this validation, as all business functions in the local spec source are
validated. The program can be redesigned before it is shipped.

Working with the Dynamic Java Connector 9-7

Designing the Dynamic Java Connector

Condition Explanation

Run Time The dynamic Java connector validates the program based on the local spec
design when running business functions. During this condition, only the
business function that is called is validated. Run time validations should be
treated as error handling when incompatible business function specs are found.

The dynamic Java connector provides two ways to validate business function spec
metadata during deploy time: SpecimageValidator APIs and SpecImageConsole
command line.

The APIs for SpecImageValidator are:
= public SpecImageValidator(BSFNSpecSource srcSpecSource).

= public ValidationResultSet validate(SpecDictionary dictionary) throws
SpecFailureException.

= public ValidationResultSet validate(SpecDictionary dictionary, String path) throws
SpecFailureException.

= public ValidationResultSet validate(BSFNSpecSource dstSpecSource) throws
SpecFailureException.

= public ValidationResultSet validate(BSFNSpecSource dstSpecSource, String
bsfnMethodName).

Note: If the SpecImageConsole command line is used, the dynamic
Java connector can only validate business function spec metadata
from ImageBSFNSpecSource; custom business function spec sources
cannot be validated.

9.2.3 SpecimageConsole

You can use the SpecimageConsole command line to generate, update, validate and
synchronize spec images.

9.2.3.1 Generate Spec Image

You use the spec image console to generate or regenerate a spec image. This
information is useful for generating or regenerating a spec image.

9.2.3.2 Usage

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole /Generate
[Other Options]

9.2.3.3 Options

/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/ImageStub <stub file> (required)

/ImageType <image type [SSI|SDI| ALL]> (optional, default is ALL)

/ErrorFile <error file> (optional, default is System.err)

9-8 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

/OutputFile <output file> (optional, default is System.out)

9.2.3.4 Explanation

Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

Load the spec image stub from <stub file>.
Generate the spec image with the image type <image type>.

The spec image is written to the <output file> (or System.out if /OutputFile not
present).

Error messages are written to the <error file> (or System.err if /ErrorFile not present).

9.2.3.5 Example

This shows example code:

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Generate /ImageStub image_stub.xml /ImageType SDI /OutputFile
image.xml /ErrorFile err.log

9.2.3.6 Update Spec Image

You use the spec image console to update or change a spec image. This information is
useful for updating a spec image.

9.2.3.7 Usage

java com.jdedwards.system.connector.dynamic.util. SpecimageConsole /Update
[Other Options]

9.2.3.8 Options

/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/SSI <SSl file> (required)

/SDI <SDI file> (optional)

/AddSpec <BSFNSpec name> (for example, F4211BeginDoc; optional)

/AddContext <full Context name> (for example, CFIN.B3100010 or
CFIN.B3100010.F4211BeginDoc; optional)

/RemoveSpec <BSFNSpec name> (for example, F4211BeginDoc; optional)

/RemoveContext <full Context name> (for example, CFIN.B3100010 or
CFIN.B3100010.F4211BeginDoc; optional)

9.2.3.9 Explanation

Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

Working with the Dynamic Java Connector 9-9

Designing the Dynamic Java Connector

Load the <SDI file> (If option /SDI not present, then load <SSI file>) add /remove the
context and BSEN spec that is specified as <full Context name> and <BSFNSpec
name>.

9.2.3.10 Example

This example shows how to update the Spec Dictionary Image (sdi.xml) and the Spec
Content Image (SSI.xml). The example adds Context CFIN.B00100, removes Context
CFIN.B001002, adds Spec F4211BeginDoc, and removes Spec F4311BeginDoc.

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Update /SDI sdi.xml /SSI ssi.xml /addContext CFIN.B001001
/removeContext CFIN.B001002 /addSpec F4211BeginDoc /removeSpec
F4311BeginDoc

9.2.3.11 Validate Spec Image

You use the spec image console to validate the spec image against the JD Edwards
EnterpriseOne server. This information is useful for validating a spec image.

9.2.3.12 Usage

java com.jdedwards.system.connector.dynamic.util. SpecimageConsole /Validate
[Other Options]

9.2.3.13 Options

/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/SSI <SSl file> (required)

/SDI <SDI file> (optional)

/OutputFile (optional, default to System.out)

9.2.3.14 Explanation

Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

If option /SDI is present, validate all the BSFNSpec that bind to the <SDI file>. If /SDI
is not present, validate all the BSFNSpec in the <SSI file>.

The spec image is written to the <output file> (or System.out if /OutputFile is not
present).

9.2.3.15 Example

This example shows how to validate spec image using ssi.xml as the SpecDictionary
and sdi.xml as the SpecSource. The example writes the validation result to
validateResult.log.

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Validate /SDI sdi.xml /SSI ssi.xml /OutputFile validateResult.log

9-10 JD Edwards EnterpriseOne Tools Connectors Guide

Installing the Dynamic Java Connector

9.2.3.16 Synchronize Spec Image

You use the spec image console to synchronize the spec image with the JD Edwards
EnterpriseOne server. This information is useful for validating a spec image.

9.2.3.17 Usage

java com.jdedwards.system.connector.dynamic.util.SpecimageConsole /Synchronize
[Other Options]

9.2.3.18 Options

/UserName <user> (required)
/Password <pwd> (required)
/Env <environment> (required)
/Role <role> (required)

/SSI <SSl file> (required)

/SDI <SDI file> (optional)

/ErrorFile <err file>(optional, default to System.err)

9.2.3.19 Explanation

Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

If option /SDI present, synchronize all the BSFNSpec that bind to the <SDI file>. If
/SDl is not present, synchronize all the BSFNSpec in the <SSI file>.

The new spec image is written to the <SSI file>. Error messages are written to <err
file> (or System.err if /ErrorFile is not present).

9.2.3.20 Example

This example shows how to synchronize the spec source image, ssi.xml:

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Synchronize /SSI ssi.xml

9.3 Installing the Dynamic Java Connector

These steps illustrate how to install dynamic connector components so that you can
run a dynamic Java connector application.

1. Copy these files from the JD Edwards EnterpriseOne server to a directory on the
machine that you want to use (for example, C:\JDEdwards\Interop):

- ApplicationAPIs_JAR jar

- ApplicationLogic_JARjar

- Base_JARjar

- BizLogicContainer_JAR jar

- BizLogicContainerClient_JAR jar
- BusinessLogicServices_JAR jar

- castorjar

Working with the Dynamic Java Connector 9-11

Installing the Dynamic Java Connector

commons-httpclient-3.0.jar
commons-logging jar
Connector.jar
EventProcessor_JAR jar
Generator.jar

j2eel_3.jar
JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JAR jar
jmxremote.jar
jmxremote_optional.jar
jmxri.jar

log4j.jar
ManagementAgent_JAR jar
Metadata.jar
Metadatalnterface jar
PMApi_JARjar
Spec_JAR jar
System_JAR jar
SystemInterfaces_JAR jar
xerces.jar

xmlparserv2 jar
jdeinterop.ini

jdbj.ini

jdelog.properties

JDBC drivers (obtain the JDBC drivers from the database vendor)

2. Add these files to the CLASSPATH:

ApplicationAPIs_JAR jar
ApplicationLogic_JARjar
Base_JARjar
BizLogicContainer_JAR jar
BizLogicContainerClient_JAR jar
BusinessLogicServices_JARjar
castor.jar
commons-httpclient-3.0.jar
commons-logging jar

Connector.jar

9-12 JD Edwards EnterpriseOne Tools Connectors Guide

Running the Dynamic Java Connector

9.4 Running the Dynamic Java Connector

EventProcessor_JAR jar
Generator.jar

j2eel_3.jar
JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JAR jar
jmxremote.jar
jmxremote_optional.jar
jmxri.jar

log4j.jar
ManagementAgent_JAR jar
Metadata jar
Metadatalnterface jar
PMApi_JAR jar
Spec_JAR jar
System_JAR jar
SystemInterfaces_JAR jar
xerces.jar
xmlparserv2 jar

JDBC drivers

Add the path where the jdelog.properties, jdeinterop.ini, and jdbj.ini files are
located into CLASSPATH.

Edit jdeinterop.ini, jdelog.properties, and jdbj.ini for proper settings.

Note: The ptf.log file contains version information for the Java
Connector. The ptf.log file is located in the Connector.jar file.

See Also:

s Understanding jdeinterop.ini for Java Connector.

s Understanding jdelog.properties File.

This section discusses:

Calling a business function.

BSEN cache.

Transaction using the dynamic Java connector.

OCM support for the dynamic Java connector.

Working with the Dynamic Java Connector

9-13

Running the Dynamic Java Connector

9.4.1 Calling a Business Function

If you know the business function name and the parameters (data items) associated
with the business function, you can use the dynamic Java connector to call the
business function. The dynamic Java connector does not require pre-generated
wrappers. This code sample shows you how to use the dynamic Java connector to call
a business function:

import com.jdedwards.system.connector.dynamic.spec.SpecFailureException;
import com.jdedwards.system.connector.dynamic.ServerFailureException;
import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.spec.source.*;

import com.jdedwards.system.connector.dynamic.SystemException;

import com.jdedwards.system.connector.dynamic.ApplicationException;
import com.jdedwards.system.connector.dynamic.callmethod.*;

...//Declare Class

public void execMethod() throws SpecFailureException, ServerFailureException
{

BSFNSpecSource specSource = null;

// Step 1: Login

int sessionID = Connector.getInstance().login("user", "pwd", "env", "role");

// Pre-condition: create the SpecDictionary or BSFNSpecSource
specSource = new OneworldBSFNSpecSource (sessionID);

// Step 2: Lookup the BSFN method from SpecDictionary or BSFNSpecSource
BSFNMethod bsfnMethod = (BSFNMethod) specSource.getBSFNMethod
("GetEffectiveAddress") ;

// Step 3: create the executable method from the BSFN metadata
ExecutableMethod addressbook = bsfnMethod.createExecutable() ;
try

{

// Step 4: Set parameter values
addressbook.setValue ("mnAddressNumber", "105");

// Step 5: Execute the business function
BSFNExecutionWarning warning = addressbook.execute(sessionID);

// Step 6: Get return parameter values

System.out.println("szNamealpha= " + addressbook.getValueString
("szNamealpha")) ;

System.out.println ("mnAddressNumber= " + addressbook.getValueString
("mnAddressNumber")) ;

}

catch (SystemException e)

{

//SystemException is thrown when system crash, this is a fatal
//error and must be caught

System.exit(1);

}

catch (ApplicationException e)

{

// ApplicationException is thrown when business function

// execution fail, this is RuntimeException and thus can be
// unchecked. But it is strongly recommend to catch this

// exception

}

9-14 JD Edwards EnterpriseOne Tools Connectors Guide

Running the Dynamic Java Connector

finally

{

//Log off and shut down connector if necessary
Connector.getInstance().logoff (sessionID);
Connector.getInstance () .shutDown () ;

}

}

The dynamic Java connector permits you to use hash tables to input parameter values.
This example code illustrates how to use the Hashtable class to input parameter
values:

Map input = new Hashtable();
input.put ("mnAddressNumber", String.valueOf (addressNo));
addressbook.setValues (input) ;

The dynamic Java connector permits you to use hash tables to retrieve output values.
This example code illustrates how to use the Hashtable class to retrieve output values:

Map output = addressbook.getValues();
System.out.println("szNamealpha=" + output.getValueString("szNamealpha"));

9.4.2 BSFN Cache

The dynamic Java connector fetches a business function spec from a SpecSource (JD
Edwards EnterpriseOne server or an XML repository) to create an executable method.
To reduce some of the overhead for creating executable methods during run business
functions, the Java connector caches the executable methods after they are created.

If OneWorldSpecSource is used as SpecSource, the dynamic Java connector gets the
most current business function spec from the JD Edwards EnterpriseOne server the
first time the business function is called. The cache is destructed after the connector is
shutdown. This cache mechanism expedites business function execution by
eliminating the overhead of retrieving the business function spec for every business
function call.

The duration of the cache can be configured in the jdeinterop.ini file. You can
configure the setting to balance the speed of the business function execution and the
update of the business function spec.

9.4.3 Transaction Using the Dynamic Java Connector

You use the dynamic Java connector to do a JD Edwards EnterpriseOne transaction in
either automatic or manual mode. This example code for a purchase order entry
transaction shows the steps for using the dynamic Java connector in manual mode.

int sessionID = Connector.getInstance().login("user", "pwd", "env",
"role");

UserSession userSession = Connector.getInstance().getUserSession
(sessionID) ;

boolean isManulCommit;
//set isManualCommit as true or false

//Step 1: create OneWorldTransaction
OneworldTransaction transaction = userSession.createOneworldTransaction

(isManualCommit) ;

// Step2: create the Purchase Order Entry executable methods (such as
// poeBeginDoc, poeEditLine, poeEndDoc) from the BSFN metadata.

Working with the Dynamic Java Connector 9-15

Managing the User Session for the Dynamic Java Connector

//Step 3: begin the transaction
transaction.begin() ;

//Step 4: run BSFNs in this transaction

//set poeBeginDoc input parameters (code not provided)
BSFNExecutionWarning warning = poeBeginDoc.execute (transaction);
//set poeEditLine input parameters (code not provided)
BSFNExecutionWarning warning = poeEditLine.execute(transaction);
//set poeEndDocinput parameters (code not provided)
BSFNExecutionWarning warning = poeEndDoc.execute (transaction);

//Step 5: Commit or rollback transaction
transaction.commit () ;
//or transaction.rollback();

9.4.4 OCM Support for the Dynamic Java Connector

You use Object Configuration Manager (OCM) to map business functions to an
enterprise server so that the dynamic Java connector can access OCM to run business
functions. You no longer configure the jdeinterop.ini file to define the enterprise server
from which you want to execute business functions. Using OCM support should result
in an increase in performance, scalability, and load balancing. The Java interoperability
server distributes the processes of the Java client to various enterprise servers
depending on user, environment, and role. To take advantage of dynamic Java
connector OCM support:

= Configure the OCM and map the business function on different enterprise servers.
= Set OCMEnabled=true in jdeinterop.ini.

= Configure the settings in jdeinterop.ini regarding the bootstrap data source with
the OCM configuration.

Ensure that OCMEnabled is set in the OCM section of the jdeinterop.ini configuration
file.

See Also:

s Understanding jdeinterop.ini for Java Connector.

9.5 Managing the User Session for the Dynamic Java Connector
This section discusses:
= User session management for the dynamic Java connector.
= Inbound XML request using the dynamic Java connector.
= Logging for the dynamic Java connector.

= Exception handling for the dynamic Java connector.

9.5.1 User Session Management for the Dynamic Java Connector

When the connector user successfully signs on, a valid user session is allocated to that
user signon. The user session has status for two types of connector operations, one is
for inbound business function calls, and the other is for outbound real-time events.
The connector monitors the status of the user session and uses the time out settings in

9-16 JD Edwards EnterpriseOne Tools Connectors Guide

Managing the User Session for the Dynamic Java Connector

the jdeinterop.ini file to stop the user session when a time out setting has been
reached. The connector looks at the these settings:

jdeinterop.ini File Section Setting Explanation

[CACHE] UserSession The maximum connector idle time for an

inbound business function call.

[INTEROP] manual_timeout The maximum idle time for a manual
transaction.
[EVENTS] outbound_timeout The maximum value of connector idle time

for receiving outbound events.

The values for the settings are in milliseconds. A value of zero (0) indicates infinite

time out. The settings are defined in the jdeinterop.ini section of this guide.

If an inbound user session times out, that user session cannot be used to execute a

business function call. Likewise, if an outbound user session times out, that user

session cannot be used for events. When both inbound and outbound sessions time

out, the user session is removed from the connector. Since each user session has a

corresponding handle in the JD Edwards EnterpriseOne server, you should explicitly
call a connector API to log off the user session. The API log off releases the handle in

the JD Edwards EnterpriseOne server when the user session is no longer used.
This sample code shows how to retrieve and manage a user session:

import com.jdedwards.system.connector.dynamic.Connector;
import com.jdedwards.system.connector.dynamic.*;
import com.jdedwards.system.connector.dynamic.ServerFailureException;

// Declare Class
public void execMethod() throws ServerFailureException
{
// Login
int sessionID = Connector.getInstance().login("user", "pwd", "env", "role");

// Use the sessionID. If InvalidSessionException is caught, user session
is not valid any more

//Check the status of the usersession

UserSession session=null;

try

{
session=Connector.getInstance().getUserSession (sessionID);
}

catch(InvalidSessionException ex)

{

System.out.println("Invalid user session");

}

if (session.isInboundTimedout ())

{

System.out.println("User session inbound is timed out");

}

if (session.isOutboundTimedout ())

{

System.out.println("User session outbound is timed out");
}

//Log off and shut down connector to release user session from the server
Connector.getInstance().logoff (sessionID);
Connector.getInstance () .shutDown () ;

}

Working with the Dynamic Java Connector

9-17

Managing the User Session for the Dynamic Java Connector

9.5.2 Inbound XML Request Using the Dynamic Java Connector

You use the dynamic Java connector to send inbound synchronous XML requests (such
as XML CallObject, XML List, and XML UBE) to the JD Edwards EnterpriseOne server.

See Also
s "Submit a UBE from XML" in the /D Edwards EnterpriseOne Tools Interoperability
Guide.

s "Understanding XML CallObject" in the D Edwards EnterpriseOne Tools
Interoperability Guide.

s "Understanding XML List" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

This sample code shows how to use the dynamic Java connector to execute an inbound
XML request:

import com.jdedwards.system.xml.XMLRequest;

/... //Declare Class
xmlInteropTest.EstablishSession(args) ;

}

public void EstablishSession(String[] args) throws Exception {
String xmlDoc = new String();
xmlDoc += "<?xml version='1.0' ?> <jdeRequest type='callmethod' user='user' ";
xmlDoc += "pwd='pwd' environment='env' role='role' session='"' ";
xmlDoc += "sessionidle='1800'> </jdeRequest>";

String requestResult;

try {
XMLRequest xmlRequest = new XMLRequest ("ElServer", 6014, xmlDoc);
requestResult = xmlRequest.execute();
System.out.println("Test Successful");
} catch (Exception e) {
System.out.println("Error in XML request");
System.out.println(e.getMessage());
}
}

9.5.3 Logging for the Dynamic Java Connector

Dynamic Java connector logging is built on top of Apache Open Source Project Log4;j.
Log4j supports five levels of logging, as listed in order of severity, from less to more:

= DEBUG

= INFO

= WARNING
= ERROR

= FATAL

9-18 JD Edwards EnterpriseOne Tools Connectors Guide

Using Sample Applications

The dynamic Java connector provides these APlIs, located in ConnectorLog.java, to
support logging information:

public static void debug(Object source).

public static void info(Object source).

public static void warn(Object source).

public static void warn(Object source, Throwable err).
public static void error(Object source, Throwable err).
public static void error(Object source).

public static void fatal(Object source).

public static void fatal(Object source, Throwable err).

Log properties (such as log file location, level of log messages to include in log file,
and so on) are set in jdelog.properties. The jdelog.properties settings provide flexibility
for dynamic Java connector applications to log messages. For example, you might set
log level to ERROR or FATAL for a production environment or to DEBUG for a
development or test environment.

See Also:

= Log4j Project, Apache Jakarta Project,
http://logging.apache.org/logdj/docs/.

9.5.4 Exception Handling for the Dynamic Java Connector

The dynamic Java connector error handling design provides flexibility for you to
decide how to handle application-level errors. The dynamic Java connector provides
these two types of exceptions to handle errors:

ApplicationException

This is the super class of all exceptions that result from application errors, such as
InvalidConfigurationException (invalid INI settings), Invalid LoginException
(invalid login), InvalidDataTypeException (invalid BSFN data type), and so on.
The ApplicationException is a runtime exception. It is up to the client program to
catch this type of exception.

SystemException

This is the super class of all exceptions that result from system errors, such as
ServerFailureException (server down or connection failure),
BSFNLookupFailureException (unable to find BSFN information in JD Edwards
EnterpriseOne tables), and SpecFailureException (unable to connect to Spec
Source). It is up to the client program to catch this type of exception.

9.6 Using Sample Applications

This section discusses:

Sample applications.
Setting up sample applications.

Running the sample applications.

Working with the Dynamic Java Connector 9-19

Using Sample Applications

9.6.1 Sample Applications

These applications are shipped with the dynamic Java connector in their Java source

form:

Application Description

Address Book Queries an AddressBook entry.

Events Subscribes to events.

Manual Commit Performs a local transaction using a Purchase Order Entry application.
Purchase Order Enters a purchase order.

Sales Order Enters a sales order.

Before you use the sample applications:

Create a directory for the sample applications (for example, C:\connectorsamples).

Install a Java Development Kit (JDK) version 1.4 or higher. Be sure to install a full
JDK and not the Java Runtime Environment (JRE).

See Installing the Dynamic Java Connector.
Set the JAVA_HOME environment variable to the JDK parent directory.

Configure the jdeinterop.ini, jdelog.properties, and jdbj.ini files and place the files
in the directory you created for the sample applications (for example,
C:\connectorsamples).

Note: You can download the JDK from this Oracle website
(http://www.oracle.com/technetwork/java/javase/overv
iew/index.html).

9.6.2 Setting Up Sample Applications

The sample applications are shipped in their Java source form, which provides the
usage of the dynamic Java connector API. You must set up these sample applications
in the environment before you can run them. Use these steps to set up the sample
applications:

1.

Locate the connector_samples_src.jar and connectorsamples.zip files.

These files are on the JD Edwards EnterpriseOne Java Server CD, under the
system/classes/samples directory.

Unzip the entire contents of the connector_samples_src jar file and
connectorsamples.zip into the directory you created (for example,
C:\connectorsamples).

The jar file is a traditional .zip file with the Java .jar extension. The jar file
contains all of the sample application source files (java files). All of the .jar files
that you need for both setting up and running the sample applications are in the
system/classes directory on the JD Edwards EnterpriseOne Java Server CD.

Open each bat file in the samples directory and change the value of JAVA_HOME
to the path where JDK is installed on the system.

Configure the jdeinterop.ini, jdelog.ini, and jdbj.ini files and place them in the
samples directory.

9-20 JD Edwards EnterpriseOne Tools Connectors Guide

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html

Using Sample Applications

You can use .tmpl files as a guide for doing this.

9.6.3 Running the Sample Applications

To run each application, run the .bat file for that application.

Sample Application Bat File name

Address Book runDynConAddressBook.bat
Events runDynConNewEventDriver.bat
Manual Commit runDynConPOEManualCommit.bat
Purchase Order runDynConPOE .bat

Sales Order runDynConSOE.bat

Note: If you are running on a non-windows platform, you can open
the bat file that corresponds to the sample application that you want
to use in a text editor and copy the JAVA command in the bat file. This
command can then be run from the console of your platform. The
correct version of JAVA must be in the system path for you to run the
application.

Working with the Dynamic Java Connector 9-21

Using Sample Applications

9-22 JD Edwards EnterpriseOne Tools Connectors Guide

10

Understanding the Java Connector

This chapter contains the following topics:

= Section 10.1, "Java Connector and JD Edwards EnterpriseOne"

» Section 10.2, "Designing the Java Connector"

= Section 10.3, "Installing a Java Connector"

= Section 10.4, "Running the Java Connector"

= Section 10.5, "Managing the User Session for the Java Connector"

= Section 10.6, "Using Exception Handling for the Java Connector"

Note: If this is the first implementation of a Java connector, it is
suggested that you consider the dynamic Java connector instead of the
Java connector. The functionality is the same. The advantage of
implementing the dynamic Java connector is that you are not required
to generate wrappers

10.1 Java Connector and JD Edwards EnterpriseOne

A business function is a logical collection of C functions and their associated data
structures grouped together to produce a unit of work. JD Edwards EnterpriseOne
Java objects are wrappers, implemented in Java, around these business functions and
data structures.

The method that a Java wrapper provides has a one-to-one correspondence with
business functions. Because all methods must be defined in a Java class, a library must
be defined in the corresponding iJDEScript file.

For example, if library A contains business function B550001, and within this business
function two C functions exist, named fool and foo2, with data structures for each
function named DS1 and DS2, then the corresponding Java class would be as follows:

Public class A
{
public int fool(DS 1 param, OneWorldInterface ow,
Connector ¢, int handle)
{
0
}
public int foo2(DS2 param, OneWorldInterface ow,
Connector ¢, int handle)
{
0

Understanding the Java Connector 10-1

Java Connector and JD Edwards EnterpriseOne

}
public DS1 CreatefoolParameterSet ()

{
0

}
public DS2 Createfoo2ParameterSet ()

{
0

}
}

For each business function X, a method CreateXParameterSet exists in the class that
returns a class for the data structure used by the business function.

Each data structure has a corresponding Java class, and each element in the data
structure has a get and a set method. For example, if DS1 has element A as a char, the
DS1 Java class is as follows:

Public class DS1

{
public void setA()

{

}
public char getA()
{

}
}

The data structure can contain two kinds of compound objects, JDEDate and
JDEMathnumeric, in addition to the primitive data types. The two Java classes
JDEDate and JDEMathnumeric are defined respectively.

10.1.1 JDEDate

This table provides JDEDate methods and a description of the method:

Method Description

JDEDate() Construct a JDEDate.
getDay/() Get the day of the date.
getMonth() Get the month of the date.
getYear() Get the year of the date.
setDay/(short) Set the day of the date.
setMonth(short) Set the month of the date.
setYear (short) Set the year of the date.

10.1.2 JDEMathNumeric

This table shows the JDEMathNumeric methods and provides a description of each

method:
Method Description
getValue() Return the value as a string (for example, -12345.6789).

10-2 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Java Connector

Method Description
setValue(String strValue) Set the value from a string (for example, -12345.6789).
getCurrencyDecimals() Get the currency decimal positions.

setCurrencyDecimals(int aValue) ~ Set the currency decimal positions.

getCurrencyCode() Get the currency code.

setCurrencyCode(String aValue) ~ Set the currency code.

getDecimalPosition() Get the decimal position.
isNegative() Test if the value is negative.
reset() Reset all the internal values.

To set the value of a member in a MathNumeric type in a data structure, use the
method setValue(String) in JDEMathNumeric class. For example, if mnAddressBook is
a member in the data structure, then a class should exist for the data structure with the
public method getmnAddressBook, which returns a JDEMathNumeric object. Then
you use DS. getmnAddressBook () .setValue (1) to set the mnAddressBook value
to 1 in the data structure.

10.2 Designing the Java Connector

This section covers considerations for designing the Java connector solution and
discusses:

s GenJava
= Java versioning

= GenJava client environment

10.2.1 GenJava

The JD Edwards EnterpriseOne system provides a Java generation tool, GenJava, that
you run to expose business functions through Java. A system administrator usually
runs GenJava.

When you run GenJava, you specify a library of business functions to wrap, for
example CAEC. GenJava creates Java class files for all the business functions and
associated data structures. GenJava also compiles the business functions, generates
Java docs, and packages them to two JAR files, one for Java classes and one for Java
documents. For example, if the library is JDEAddressBook, you see
JDEAddressBookInterop.jar and JDEAddressBookInteropDoc.jar in either the
B9\system\classes directory or any directory redirected by GenJava.

10.2.2 GendJava Client Environment

When you set up a client environment for GenJava, ensure the PATH environment
variable and the CLASSPATH environment variable are set up correctly.

10.2.2.1 PATH
<bin directory for JDK>

Example: c:\j2sdk1.4.2_05\bin

Understanding the Java Connector 10-3

Designing the Java Connector

10.2.2.2 CLASSPATH
An example of the CLASSPATH is:

<Directory where JD Edwards EnterpriseOne is located>\System\classes\filename

Create a CLASSPATH for each of the following files using the above CLASSPATH
example, replacing filename with the name of the file:

= ApplicationAPIs_JAR jar

= ApplicationLogic_JARjar

= Base_JARjar

= BizLogicContainer_JARjar
» BizLogicContainerClient_JAR jar
»s BusinessLogicServices_JARjar
= castorjar

= commons-httpclient-3.0.jar
= commons-logging jar

= Connectorjar

s EventProcessor_JAR jar

= Generatorjar

= j2eel_3jar

= JdbjBase_JARjar

= JdbjInterfaces_JAR jar

= JdeNet_JARjar

= jmxremote.jar

= jmxremote_optional.jar

= jmxrijar

s logdjjar

= ManagementAgent_JARjar
= Metadata jar

= Metadatalnterface jar

s PMApi_JARjar

s Spec_JARjar

s System_JARjar

= SystemlInterfaces_JARjar

= Xxerces.jar

» xmlparserv2.jar

10.2.3 Java Versioning

Business object wrappers that are generated for one environment might not be
compatible with another environment. Versioning prevents you from creating Java

10-4 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Java Connector

business objects unless the environment used at logon is the same as the environment
used to generate the wrappers or the environment is compatible with the business
objects. You can use the Java Wrapper Version Checker (CheckVer) to verify that
business object wrappers are compatible with new environments.

10.2.3.1 Migrating from Previous Releases

Previously generated business object wrappers are compatible with the new
versioning code; you do not need to regenerate them. However, in order to use them,
CheckVer must be run, even for the environment used to create the wrappers. The
repository setting in the [INTEROP] section of the ini file must point to the directory
containing the jar files of generated business object wrappers. For example:

[INTEROP]
repository=c:\foo\bar\repository

The repository directory should contain only jar files for generated business object
libraries.

10.2.3.2 Java Connector Static and Dynamic Modes

A Java interoperability client can be configured statically or dynamically. Static mode
is the normal mode of operation and should be used by most client code. Dynamic
mode is better suited for developing tools based on Java interoperability. The two
modes can be used simultaneously in the same process. The granularity is at the
business object library (jar file) level. No matter which mode is used, it is necessary for
the jar files to be placed in the repository directory.

To use static mode for a given business object library, ensure that the jar file is in both
the classpath and repository directory for the client process.

To use dynamic mode for a given business object library, ensure that the jar file is in
the repository directory but not in the classpath. Dynamic mode is for Java
interoperability clients with client code that has no direct use of the business objects. In
dynamic mode, business objects may only be used by the classes in the
java.lang.reflect package. Dynamic mode enables client code to refresh, add, or remove
business object libraries while in operation. These operations are accomplished using
the methods in the OneWorld Version class (for example, generate a new business
object library (or regenerate an existing library) using GenJava). Use the CheckVer tool
to establish the compatible environments for the business objects in the library. Add
the jar file to the repository directory. Finally, the client code must instantiate a
OneWorld Version object, and call the refreshLibrary method. To remove a business
object library, remove it from the repository and call the refreshLibrary method.

After a library is refreshed, all newly created business objects use the new definition.
Business objects created before the refresh use the old definition. No limit exists for the
number of simultaneous business object library versions. The old library definitions
remain in the virtual machine until no more references to the old business objects exist,
which can significantly affect memory use in the virtual machine.

10.2.3.3 Using the Java Wrapper Version Checker (CheckVer)

CheckVer is a Java class and should not be confused with the CheckVer.exe that is a
part of the COM interoperability solution. You run CheckVer to verify whether a
previously generated Java business object library is compatible with another
environment. Typically, the system administrator performs this task. The XML files
generated by GenJava are the signatures of the objects generated against specific JD
Edwards EnterpriseOne environments. These XML files can be used with CheckVer to

Understanding the Java Connector 10-5

Installing a Java Connector

verify that the wrappers in a previously generated jar file are compatible with the
environment.

When you introduce a new JD Edwards EnterpriseOne environment, you run GenJava
against the new environment by using the /XMLOnly option. You also use the
iJDEScript that you used to generate the wrappers to generate XML signature files for
the objects in the new environment. Run CheckVer with the new XML files and
previously generated jar files to verify that the new environment is compatible with
the wrappers. CheckVer updates the jar file according to the result of the compatibility
test. A Java client using the jar file can be dynamically updated to the new
compatibility information, using the OneWorldVersion interface. If the new
environment is incompatible, the client is not allowed to create business objects with
the new environment.

10.2.3.4 Running CheckVer (GenJava)

CheckVer takes two arguments, the jar file name and the XML file name. CheckVer
requires that the connector.jar, base_JAR jar, jdeNet_JAR jar, system_JAR jar, xalan jar,
and xerces jar files be in the CLASSPATH. This can be done either with the
CLASSPATH environment variable or from the command line.

10.2.3.5 Syntax

Java com.jdedwards.system.connector.CheckVer [jarfile] [xmlfile]

10.2.3.6 Example

Java com jdedwards.system.connector.CheckVer JDEAddressBookInterop.jar
JDEAddressBook.xml

10.3 Installing a Java Connector

These steps illustrate how to install Java connector components so that you can run a
Java connector application.

1. Copy these files from the enterprise server to a directory on the desired machine.
For example, copy these files to C:\JDEdwards\Interop on the machine:

- ApplicationAPIs_JARjar

- ApplicationLogic_JAR jar

- Base_JARjar

- BizLogicContainer_JAR jar

- BizLogicContainerClient_JAR jar
- BusinessLogicServices_JAR jar
- castorjar

- commons-httpclient-3.0.jar

- commons-logging jar

- Connector.jar

- EventProcessor_JAR jar

- Generator.jar

- j2eel_3jar

10-6 JD Edwards EnterpriseOne Tools Connectors Guide

Installing a Java Connector

Add these files to the CLASSPATH:

JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JAR jar
jmxremote.jar
jmxremote_optional.jar
jmxri.jar

log4j.jar
ManagementAgent_JAR jar
Metadata.jar
Metadatalnterface jar
PMApi_JARjar
Spec_JAR jar
System_JAR jar
SystemInterfaces_JAR jar
xerces.jar
xmlparserv2 jar
jdeinterop.ini

jdbj.ini

jdelog.properties

JDBC drivers (obtain the JDBC drivers from the database vendor)

ApplicationAPIs_JAR jar
ApplicationLogic_JARjar
Base_JARjar
BizLogicContainer_JAR jar

BizLogicContainerClient_JAR jar

BusinessLogicServices_JAR.jar

castor.jar
commons-httpclient-3.0.jar
commons-logging jar
Connector.jar
EventProcessor_JAR jar
Generator.jar

j2eel_3.jar
JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JAR jar

Understanding the Java Connector

10-7

Running the Java Connector

- jmxremote.jar

- jmxremote_optional jar

- jmxrijar

- logdjjar

- ManagementAgent_JARjar
- Metadata. jar

- Metadatalnterface jar

- PMApi_JARjar

- Spec_JARjar

- System_JARjar

- SystemlInterfaces_JAR jar
- Xercesjar

- xmlparserv2.jar

— JDBC driver

3. Add the path where the jdelog.properties and jdeinterop.ini files are located into
CLASSPATH.

4. Create a separate repository directory for business object jar files.

5. Run GenJava on the client machine and copy the output jar file (for example,
JDEAddressBook jar) to this directory.

Note: The ptf.log file contains version information for the Java
Connector. The ptf.log file is located in the connector jar file.

10.4 Running the Java Connector
This section covers runtime considerations for the Java connector and discusses:
s Using GenJava
s Using GenJava output

» Transactions Using the Java connector

10.4.1 Using Gendava

The Java generator tool, GenJava, provides access to business functions by generating
Java interfaces for business functions. GenJava includes these components:

s GenJava.exe
s Emitter framework

= JDEIDAJavaEmitter.dll

You use iJDEScript scripting language to script code generation activities when you
use GenJava.

10-8 JD Edwards EnterpriseOne Tools Connectors Guide

Running the Java Connector

10.4.1.1 Running GendJava

You run GenJava from the command line. There are several options available for
generation. GenJava is located in <install>\system\bin32.

10.4.1.2 Syntax

GenJava [options] [libraries]

10.4.1.3 Options

You can use these options when running GenJava:

Option

Description

/?

Lists the options available for generation.

/Cat <category>

Generates only <category> function wrappers. Supports these
categories:

/'1/" - Master Business Functions
/'2/" - Major Business Functions
/'3/"' - Minor Business Functions

/'-/" - Uncategorized Business Functions

/Cmd *

Processes code generation commands from the console.

/Cmd <filename>

Processes code generation commands from <filename>.

/Compiler <file>

Uses <file> to compile Java files.

/D name value

Defines a macro value.

/EnvironmentID <env>

Uses <env> to sign on to JD Edwards EnterpriseOne.

/ListLibraries

Lists the available libraries that you can use for GenJava.

/MsgFile <file>

Provides GenJava with the file name to log messages produced by
GenJava during the generation process; for example, messages.log.

/NoBSFN Tells GenJava not to create wrappers for business functions. This option
is for generating parameter sets only.
/Out <path> Provides GenJava with the directory (path) in which to place the output

files; for example, C:\winnt\system32.

/Password <password>

Provides GenJava with the password with which you want to sign on to
JD Edwards EnterpriseOne.

/Role Provides GenJava with the role with which you want to sign on to JD
Edwards EnterpriseOne.
/TempOut <path> Provides GenJava with the directory (path) in which to place temporary

files needed for the build process; for example, C:\temp.

/UserID <userid>

Provides GenJava with the user name that you use to sign on to JD
Edwards EnterpriseOne.

/XMLOnly

Generates only the XML file.

You can also use GenJava by running it with a JDEScript file, such as:

GenJava /cmd AddressBook.cmd

This command prompts a sign-in window for you to enter the user ID, password, role,
and environment. The AddressBook.cmd is:

define library JDEAddressBook

Understanding the Java Connector 10-9

Running the Java Connector

login

library JDEAddressBook
library JDEAddressBook
interface AddressBook
interface AddressBook
import B0100031

import B0100019

import B0100032

import B0100002

import B0100033

build

logout

GenJava generates the wrappers in Java for all business functions imported in the
script file.

10.4.1.4 Generate Java Wrappers

This command generates Java wrappers for Category 1 business functions in the
CAEC library:

GenJava /Cat 1 /UserID Devuserl /Password Devuserl /EnvironmentID ADEVHP02
CAEC

You must use the correct information (including user ID, password, role, and
environment) to log on to JD Edwards EnterpriseOne.

10.4.2 Using GendJava Output

The output for GenJava produces fully functional Java objects based on the library you
use to generate wrappers. GenJava packages these objects in a single jar file such as
XXXXInterop.jar or XXXXInteropDoc.jar, where XXXX is the library name defined in
the script file or from the command line. For example, JDEAddressBookInterop jar is
created for the AddressBook.cmnd. The default location for the jar file is under
B9/System/classes, but it can be somewhere else if you run GenJava using /Out
value. This jar file must be deployed to the machine that uses those wrappers. To
import any wrapper object and class, the jar file must be added to the CLASSPATH.
Because you are interacting with JD Edwards EnterpriseOne, these components,
connector.jar, base.JAR jar, jdeNet_JARjar, system_JAR jar, and jdeinterop.ini file, must
be deployed to the machine.

XXXXInteropDoc jar is the compressed format of all the Java documents (html files) for
all the classes generated by GenJava.unjar. You can also unzip the jar file to see the
APIs that can be called in these classes.

All Java client applications must:

1. Initialize a com.jdedwards.system.connector.Connector.

10-10 JD Edwards EnterpriseOne Tools Connectors Guide

Running the Java Connector

2. Signin to JD Edwards EnterpriseOne using a valid user ID, password, role, and
environment name. The environment must be valid on the JD Edwards
EnterpriseOne server.

3. Get the OneWorldInterface object reference by calling
Connector.CreateBusinessObject with an object name, such as
Connector::OneWorldInterface.

4. Get the object reference for the wrapper for the business function generated by
GenJava, for example AddressBook. The object name passed into
Connector.CreateBusinessObject should be Library (Java package) Name:Object
Name, such as JDEAddressBook:AddressBook.

5. Call CreateXXXParameterSet on the wrapper object for any data structure XXX.
6. Set the needed value in the data structure.

7. Call the business function with the data structure variable as a parameter. Check
the return value. The return value can be one of these:

Successful = 0

Warning =1

Error =2
8. DProcess the data returned by the business function.
9. Disconnect from JD Edwards EnterpriseOne.

These examples illustrate how to use a generated Java business function wrapper in a
Java application.

import com.jdedwards.system.connector.*;
import com.jdedwards.application.interop.jdeaddressbook.*;

. Declare Class
{
Connector connectorProxy = null;
OneWlorldInterface ow;
AddressBook ab;
D0100033 ds;
int sessionID=0;
connectorProxy = new Connector();

try

{

//sessionID = connectorProxy.login("user", "pwd", "role");
sessionID = connectorProxy.Login("user", "pwd", "role");

System.out.println("Log in successfully");
}

catch (reject r)

{

System.out.println("got reject exception");
String s = r.reason;
System.out.println(s);

System.exit (1) ;

}

catch (Exception e)

{

System.out.println("got other exception");
e.printStackTrace() ;

System.exit (1) ;

}

try

Understanding the Java Connector 10-11

Running the Java Connector

{

ow = (OneWorldInterface)connectorProxy.CreateBusinessObject
("Connector: :OneWorldInterface", sessionID);
System.out.println("got OneWorldInterface");

}

catch (reject r)

{

String s = r.reason;

System.out.println(s);

return;

}

//create AddressBook object

try

{

ab = (AddressBook)connectorProxy.CreateBusinessObject
("JDEAddressBook: : AddressBook", sessionID);
System.out.println("got AddressBook");

}

catch (reject r)

{

String s = r.reason;

System.out.println(s);

return;

}

// get data structure D0100033

ds = ab.CreateGetEffectiveAddressParameterSet () ;

// set addressbook number value in D0100033
ds.getmnAddressNumber () .setValue("1");

// get address information

int 1 = 0;

try

{

i = ab.GetEffectiveAddress(ds, ow, connectorProxy, sessionID);
}

catch (reject e)

{

System.out.println(e.reason);

}

if (i!=2)

{

String alphaname = ds.getszNamealpha ()
String address = ds.getszAddressLinel (
String zipcode = ds.getszZipCodePostal
String city = ds.getszCity();
String county = ds.getszCountyAddress();

String state = ds.getszState();

String country = ds.getszCountry();
System.out.println("ALpha Name "+alphaname);

if (i==1)

{

System.out.println("warning count is"+ow.GetWarningCount());
for (int j = 0; j<ow.GetWarningCount(); j++)

{

String s = ow.GetWarningAt(j);
System.out.println("warning" + j +";"+ s);

)i
();

10-12 JD Edwards EnterpriseOne Tools Connectors Guide

Running the Java Connector

for (int j = 0; j<ow.GetErrorCount(); j++)

{

String s =

}

ow.GetErrorAt (j) ;
System.out.println("error" + j + ";

System.out.println("BSFN error");
//log off
connectorProxy.Logoff (1) ;
} // end main

10.4.3 Transactions Using the Java Connector

Transactions are a way to update the JD Edwards EnterpriseOne database. You can use
the Java connector to do a transaction in either auto mode or manual mode. When you
use auto transaction mode, the transaction is immediately committed after the
business function call is completed. The transaction is set to the auto commit mode by
the system. When you use manual transaction mode, the transaction is started by
explicitly calling BeginTransaction in OWInterface, and the transaction is committed
(or rolled back) by calling Commit (or Rollback) in OWInterface.

"+ s)i

Note:

The JD Edwards EnterpriseOne transaction is not really a

two-phase commit. You need to manually roll back the transaction
when the commit statement is reached.

This example shows a basic manual commit transaction:

import
import
import
import
import
import

import

. Declare

private
private
private
private
private
private

com.

com

com.
com.
com.
com.

jdedwards.
.jdedwards.
jdedwards.
jdedwards.
jdedwards.
jdedwards.

java.util.*;

Class

system.
system.
system.
system.
system.
system.

connector.
connector.
connector.
connector.
connector.
connector.

boolean isBegindocCalled =
boolean isEditlineCalled =
ExecutableMethod soeBeginDoc = null;
ExecutableMethod soeEditLine = null;

ExecutableMethod soeEndDoc = null;

dynamic.
dynamic.
dynamic.
.callmethod.ExecutableMethod;
dynamic.
dynamic.

dynamic

false;
false;

ApplicationException;
SystemException;
sample.DynConApplication;

callmethod.BSFNExecutionWarning;
spec.source.BSFNSpecSource;

ExecutableMethod soeClearWF = null;

public SalesOrderEntryApplication(int sessionID, BSFNSpecSource specSource) {
super (sessionID, specSource);

public BSFNExecutionWarning executeBeginDoc (Map inputParams,

Map outputParams) throws SystemException {

soeBeginDoc = getBSFNMethod ("F4211FSBeginDoc") ;

// check the necessary settings

Understanding the Java Connector 10-13

Running the Java Connector

// set the user define values
soeBeginDoc.setValues (inputParams) ;

// set default value

soeBeginDoc.setValue ("cCMDocAction", "A");
soeBeginDoc.setValue ("cCMProcessEdits", "1");
soeBeginDoc.setValue ("cCMUpdateWriteToWF", "2");
soeBeginDoc.setValue ("szCMProgramID", "CORBA");
soeBeginDoc.setValue ("szCMVersion", "ZJDE00O1");
(
(

soeBeginDoc.setValue("cMode", "F");

soeBeginDoc.setValue ("cRetrieveOrderNo", "1");
soeBeginDoc.setValue ("szCMComputerID", getComputerName());
if (isEmpty (inputParams.get ("szOrderType"))) {

soeBeginDoc.setValue ("szOrderType", "S0") ;

if (isEmpty(inputParams.get ("jdOrderDate"))) {
soeBeginDoc.setValue ("jdOrderDate", getCurrentDate());

BSFNExecutionWarning warning = soeBeginDoc.execute (sessionID);
setOutput (outputParams, soeBeginDoc.getValueStrings());
isBegindocCalled= true;

return warning;

public BSFNExecutionWarning executeEditLine (Map inputParams,
Map outputParams) throws SystemException {

// Edit Line
if (!isBegindocCalled) {
throw new ApplicationException("BeginDoc must be called

before editline");

}
soeEditLine = getBSFNMethod("F4211FSEditLine");

// set user input values
soeEditLine.setValues (inputParams) ;

// set default values

soeEditLine.setValue ("mnCMJobNo", soeBeginDoc.getValue ("mnCMJobNumber")) ;
soeEditLine.setValue ("mnOrderNo", soeBeginDoc.getValue ("mnOrderNo"));
soeEditLine.setValue("szBusinessUnit", soeBeginDoc.getValue

("szBusinessUnit"));

soeEditLine.setValue ("szCMComputerID", soeBeginDoc.getValue

("szCMComputerID"));

soeEditLine.setValue ("cCMWriteToWFFlag", "2");
soeEditLine.setValue ("szOrderType", soeBeginDoc.getValue ("szOrderType"));

BSFNExecutionWarning warning = soeEditLine.execute(sessionID) ;
setOutput (outputParams, soeEditLine.getValueStrings());
isEditlineCalled = true;

return warning;

public BSFNExecutionWarning executeEndDoc (Map inputParams,
Map outputParams) throws SystemException {

if (!isBegindocCalled) {

10-14 JD Edwards EnterpriseOne Tools Connectors Guide

Running the Java Connector

throw new ApplicationException("BeginDoc must be called before

EndDoc") ;

}

soeEndDoc = getBSFNMethod ("F4211FSEndDoc") ;

soeEndDoc. setValues (inputParams) ;

soeEndDoc . setValue ("mnCMJobNo", soeBeginDoc.getValue ("mnCMJobNumber") .
toString());

soeEndDoc. setValue ("mnSalesOrderNo", soeBeginDoc.getValue ("mnOrderNo") .
toString());

soeEndDoc.setValue ("szOrderType", soeBeginDoc.getValue("szOrderType"));
soeEndDoc.setValue ("szCMComputerID", getComputerName());
soeEndDoc.setValue ("cCMUseWorkFiles", "2");

BSFNExecutionWarning warning = soeEndDoc.execute(sessionID) ;
isBegindocCalled = false;

isEditlineCalled = false;

setOutput (outputParams, soeEndDoc.getValueStrings()) ;

return warning;

public BSFNExecutionWarning executeClearWF (Map inputParams,
Map outputParams) throws SystemException {

if (isBegindocCalled) {
soeClearWF = getBSFNMethod("F4211ClearWorkFile");
soeClearWF.setValues (inputParams) ;
soeClearWF.setValue("cClearDetailWF", "2");
if (isEditlineCalled) soeClearWF.setValue("cClearHeaderWF", "2");
soeClearWF.setValue ("mnJobNo", soeBeginDoc.getValue ("mnCMJobNumber")) ;
soeClearWF.setValue ("szComputerID", getComputerName());
soeClearWF.setValues (inputParams) ;
BSFNExecutionWarning warning = soeClearWF.execute(sessionID);
setOutput (outputParams, soeClearWF.getValueStrings()) ;
return warning;

}

return null;

10.4.4 Using BHVRCOM through the Java Connector

You use the BHVRCOM structure to control the execution of business functions. You
use the Java connector to call methods in the OWInterface class to set and pass the
BHVRCOM fields to business functions on the server. This table shows the business
function methods and the BHVRCOM fields:

Business Function Method BHVRCOM Field
setBOBMode(int bobMode) IBobMode
setAPPName(StringaName) szApplication
setUserName(String aName) szUser

setDatabaseChanged(Boolean value) bDataBaseChange

This Java code demonstrates how to query the IBHVRCOM interface and pass values
to business functions:

ow = (OneWorldInterface)
connectorProxy.CreateBusinessObject ("Connector: :OneWorld Interface", 1);

Understanding the Java Connector 10-15

Managing the User Session for the Java Connector

ab= (AddressBook) connectorProxy.CreateBusinessObject
("JDEAddress Book::Address Book", 1);
ds.getmnAddressNumber () .setValue("1");
ow.setAppName ("AddressbookApp") ;
ow.setBOBMode (8) ;
ow.setUserName ("Java Connector");
ow. SetDatabaseChanged(false);

i = ab.GetEffectiveAddress(ds, ow, connectorProxy, 1);

10.4.5 OCM Support for the Java Connector

You use Object Configuration Manager (OCM) to map business functions to an
enterprise server so that the Java connector can access OCM to run business functions.
You no longer configure the jdeinterop.ini file to define the enterprise server from
which you want to execute business functions. Using OCM support should result in an
increase in performance, scalability, and load balancing. The Java interoperability
server distributes the processes of the Java client to various enterprise servers
depending on user, environment, and role. To take advantage of Java connector OCM
support:

= Use a B9 or later version of GenJava to regenerate the business wrapper function.
s Configure the OCM and map the business function on different enterprise servers.
s Set OCMEnabled=true in jdeinterop.ini.

= Configure the settings in jdeinterop.ini regarding the bootstrap data source with
the OCM configuration.

Ensure that these settings in the jdeinterop.ini configuration file are set:

jdeinterop.ini File Section Required Settings
ocM OCMEnabled
JDBj-BOOTSTRAP SESSION user, password, environment, and role

JDBj-BOOTSTRAP DATA SOURCE name, databaseType, server, database,
serverPort, physicalDatabase, library, owner

[JDBj-JDBC DRIVERS] ORACLE, IBM i, SQLSERVER, UDB
[JDBj-ORACLE] tns

10.5 Managing the User Session for the Java Connector

This section provides an overview of managing the user session for the Java connector
and discusses inbound XML requests using the Java connector.

10.5.1 Understanding User Session Management for the Java Connector

When the connector user successfully signs on, a valid user session is allocated to that
user signon. The user session has status for two types of connector operations: one for
inbound business function calls and the other for outbound real-time events. The
connector monitors the status of the user session, and uses the timeout settings in the
jdeinterop.ini file to stop the user session when a timeout setting has been reached.
The connector looks at these settings:

10-16 JD Edwards EnterpriseOne Tools Connectors Guide

Managing the User Session for the Java Connector

jdeinterop.ini File Section Setting Explanation

[CACHE] UserSession The maximum connector idle time for an
inbound business function call.

[INTEROP] manual_timeout The maximum idle time for a manual
transaction.
[EVENTS] outbound_timeout = The maximum value of connector idle time

for receiving outbound events.

The value for the settings is in milliseconds. A value of zero (0) indicates infinite
timeout. The settings are defined in the jdeinterop.ini section of this guide.

If an inbound user session times out, that user session cannot be used to execute a
business function call. Likewise, if an outbound user session times out, that user
session cannot be used for events. When both inbound and outbound sessions time
out, the user session is removed from the connector. Since each user session has a
corresponding handle in the JD Edwards EnterpriseOne server, it is highly
recommended that you explicitly call a connector API to log off the user session to
release the handle in the JD Edwards EnterpriseOne server when the user session is no
longer used.

This sample codes shows how to retrieve and manage a user session:

import com.jdedwards.system.connector.dynamic.Connector;
import com.jdedwards.system.connector.dynamic.*;
//Declare Class
{
// Login
int sessionID = Connector.getInstance().login("user", "pwd", "env","role");
// Use the sessionID. If InvalidSessionException is caught, user session is
not valid any more
//Check the status of the usersession
UserSession session=null;
try
{
session=Connector.getInstance().getUserSession (sessionID);
}
catch(InvalidSessionException ex)
{
System.out.println("Invalid user session");
if (session.isInboundTimedout ())
{
System.out.println("User session inbound is timed out");
}
if (session.isOutboundTimedout ())
{
System.out.println("User session outbound is timed out");
}
Connector.getInstance().logoff (sessionlID);
Connector.getInstance() .shutDown() ;
}
}

Understanding the Java Connector 10-17

Using Exception Handling for the Java Connector

10.5.2 Inbound XML Request Using the Java Connector

You use the Java connector to send inbound synchronous XML requests (such as XML
CallObject, XML List and XML UBE) to the JD Edwards EnterpriseOne server. The
Java connector has an API that it calls to send XML documents to JDENET.

See Also
= "Submit a UBE from XML" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

s "Understanding XML CallObject" in the JD Edwards EnterpriseOne Tools
Interoperability Guide.

= "Understanding XML List" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

This example code shows how to use the Java connector to execute an inbound XML
request:

Connector conn = new Connector();
//login into OW

String xmlDoc;

//or byte[] xmlDoc

//Load a String or byte[] into xmlDoc;

String requestResult = conn.executeXMLRequest (xmlDoc) ;
//handle requestResult.

10.6 Using Exception Handling for the Java Connector

This section provides an overview for exception handling for the Java connector and
discusses:

= Fatal exception

= Recoverable exception
= Reject

= Exception details

This section also provides sample code for Java connector exception handling.

10.6.1 Understanding Exception Handling for the Java Connector

When you run the Java connector or the GenJava tool, the program might encounter a
condition that causes unexpected results or system failure. When the program does
not perform as expected, an error occurs; or, using Java terminology, an exception is
thrown. In Java, the system, classes, and programs can throw exceptions. You can
write code to catch exceptions. Catching an exception involves dealing with the
exception conditions so that the program will not crash.

All exceptions in the connector and GenJava code inherit from the reject class. The
program needs to catch only the reject exception conditions for the methods that throw
exceptions. To help minimize manual intervention, the FatalException and the
RecoverableException classes were created so that you can provide a recovery action
in the program for some exceptions.

10-18 JD Edwards EnterpriseOne Tools Connectors Guide

Using Exception Handling for the Java Connector

10.6.2 Fatal Exception

FatalException class conditions are unlikely or impossible to resolve without manual
intervention. If you catch fatal exception conditions in the program, you can include a
string message that indicates the condition that occurred. You use the getMessage
method from the java.lang.Throwable class to retrieve fatal exception messages from
the program. The system uses the INTEROP category to log fatal exception conditions
to the jas.log file.

10.6.3 Recoverable Exception

10.6.4 Reject

You can provide the capability for the system to possibly resolve an exception
condition by catching RecoverableException (and children) class conditions in the
program. The children of recoverable exception conditions indicate through their class
names the category of the exception and include a sting message in the constructor to
provide more exception details. You use the getMessage method from the
java.lang.Throwable class to retrieve recoverable exception messages from the
program. The system uses the INTEROP category to log recoverable exception
conditions to the jasdebug.log file. You can clear recoverable exception messages
through the DEBUG flag in the jdeinterop.ini file. The flag is either true or false.

The method signature for each of the methods listed in this table indicates that the
method only throws reject, even though the exceptions thrown in each method's code
are children of the reject class. Even if you decide to catch all of the exceptions listed in
Exception Details table (which follows), you also need to catch reject as the last in the
series of connector-related catch statements because of the throws clause in the method
signature.

10.6.5 Exception Details

The methods that throw exceptions in each of the main public classes of the connector
(Connector, OneWorldInterface, EventSource, and GenJava-created business object
code) are detailed in this table. The information in this table is also available in the
Javadoc for the connector, which is in the ConnectorDoc jar file.

Class Method Exception Condition Possible Action
Connector Login CallObjectRetryException The error code returned ~ Retry Login
by CallObject is method
TIMEOUT or RETRY_
NEEDED
N/A N/A CallObjectIgnoreException The error code returned Ignore this
by CallOjbect is exception
NOERROR, ALREADY_
EXECUTED, or BAD_
ERRORPACKETS
N/A N/A FatalException The error code returned ~ *
by CallObject is any other
error code
N/A CreateBusiness NotLoggedInException The user is not currently ~ Log in through
Object logged in to JD Edwards Connector class
EnterpriseOne

Understanding the Java Connector 10-19

Using Exception Handling for the Java Connector

Class Method Exception Condition Possible Action
N/A N/A FatalException A Java reflection *
exception is thrown or the
JD Edwards
EnterpriseOne
environment is not in
sync with the business
function wrapper
OneWorld GetNextError NoMoreDataException Error index reaches the End the loop
Interface end of the array searching for the
next error
N/A GetNextWarning NoMoreDataException Warning index reaches the End the loop
end of the array searching for the
next warning
N/A Commit InvalidMethodCall This method is called Call the
Exception before PrepareToCommit
PrepareToCommit() is () method
called
N/A N/A CallObjectRetryException = The error code returned =~ Retry Commit
by CallObject is method
TIMEOUT or RETRY_
NEEDED
N/A N/A CallObjectIgnoreException The error code returned Ignore this
by CallObject is exception
NOERROR, ALREADY_
EXECUTED, or BAD_
ERRORPACKETS
N/A N/A FatalException The error code returned ~ *
by CallObject is any other
error code
N/A Rollback CallObjectRetryException The error code returned ~ Retry Rollback
by CallObject is method
TIMEOUT or RETRY_
NEEDED
N/A N/A CallObjectIgnoreException The error code returned Ignore this
by CallObject is exception
NOERROR, ALREADY_
EXECUTED, or BAD_
ERRORPACKETS
N/A N/A FatalException The error code returned ~ *
by CallObject is any other
error code
N/A PrepareToCommit CallObjectRetryException The error code returned Retry
by CallObject is PrepareToCommit
TIMEOUT or RETRY_ method
NEEDED
N/A N/A CallObjectIgnoreException The error code returned Ignore this
by CallObject is exception
NOERROR, ALREADY_
EXECUTED, or BAD_
ERRORPACKETS
N/A N/A FatalException The error code returned ~ *

by CallObject is any other

error code

10-20 JD Edwards EnterpriseOne Tools Connectors Guide

Using Exception Handling for the Java Connector

Class Method Exception Condition Possible Action

N/A ExecuteBSFN NotLoggedInException The user is not currently ~ Log in through
logged in to JD Edwards ~ Connector class
EnterpriseOne

N/A N/A CallObjectRetryException = The error code returned ~ Retry
by CallObject is ExecuteBSFN
TIMEOUT or RETRY_ method
NEEDED

N/A N/A CallObjectIgnoreException The error code returned Ignore this
by CallObject is exception
NOERROR, ALREADY_
EXECUTED, or BAD_
ERRORPACKETS

N/A N/A FatalException The error code returned ~ *
by CallObject is any other
error code

Event EventSource FatalException The connector cannot *

Source (Constructor) listen on the given port

N/A addListener NotLoggedInException The user is not currently ~ Log in through
logged in to JD Edwards ~ Connector class
EnterpriseOne

N/A N/A FatalException The subscription fails *

N/A removeListener =~ NotLoggedInException The user is not currently ~ Log in through
logged in to JD Edwards =~ Connector class
EnterpriseOne

N/A N/A FatalException The unsubscription fails ~ *

N/A updateSession NotLoggedInException The user is not currently ~ Log in through
logged in to JD Edwards =~ Connector class
EnterpriseOne

N/A getEventTemplate NotLoggedInException The user is not currently ~ Log in through
logged in to JD Edwards =~ Connector class
EnterpriseOne

N/A N/A FatalException A JdeNetException is *
thrown

N/A getEventTypes NotLoggedInException The user is not currently ~ Log in through
logged on to JD Edwards ~ Connector class
EnterpriseOne

N/A N/A FatalException A JdeNetException is *
thrown

GenJava- setString StringTooLongException ~ The value set for the Reset the

created <parameter> parameter is too long parameter using a

Data methods shorter length

Structures

For FatalException conditions, you can send the exception message, which can be
retried by using the getMessage method, to the system administrator. Alternatively,
you can prompt the system administrator to look in the jas.log file for more details
about the exception. It is unlikely that the program can recover associated system or
connector errors during runtime.

Understanding the Java Connector

10-21

Using Exception Handling for the Java Connector

10.6.6 Example: Java Connector Exception Handling Sample Code

This code illustrates some of the features of the enhanced connector exception
handling. The bold-faced items indicate specific exception-handling code.

import com.jdedwards.system.connector.*;
import com.jdedwards.application.interop.jdeaddressbook.*;

//Declare Class
{
if (args.length != 1)
{
System.out.println("Must supply a city to query for AddressBook");
System.exit (-1);
Connector connectorProxy = null;
OneWorldInterface ow = null;
AddressBook ab = null;
D0100033 ds = null;
int accessNumber = 0;
connectorProxy = new Connector();

try

{

accessNumber = connectorProxy.Login("user", "pwd", "env");
System.out.println("Logged in successfully");

}

catch (CallObjectIgnoreException e)
{

// do nothing

}

catch (CallObjectRetryException e)
{

// try one more time

try

{

accessNumber = connectorProxy.Login("user", "pwd", "env");
System.out.println("Logged in successfully");

}

catch (CallObjectIgnoreException ex)

{

// do nothing

}

catch (CallObjectRetryException ex)

{

System.out.println("EXCEPTION: :" + ex.toString());
System.out.println("Nested Exception: "+ex.getChainedException().toString());
System.out.println("Refer to the jasdebug.log file for more details.");
System.exit (-1);

}

catch (FatalException ex)

{

System.out.println("Fatal Exception during login:" + ex.toString());
System.out.println("Refer to the jas.log file for more details.");
System.exit (-1);

}

catch (reject r)

{

System.out.println("Java Connector Exception: " + r.reason);
System.exit (-1);

}

}

catch (FatalException e)

10-22 JD Edwards EnterpriseOne Tools Connectors Guide

Using Exception Handling for the Java Connector

{

System.out.println("Fatal Exception during login: " + e.toString());
System.out.println("Refer to the jas.log file for more details.");
System.exit (-1);

}

catch (reject r)

{

/* This should not happen, as the Java Connector code

* now only throws one of the reject child objects.

* The documentation indicates which methods throw which

* reject child exception objects. All methods continue

* to have a signature of throws reject, however, for

* backwards compatibility (to not break existing client code).

*/

System.out.println("Java Connector Exception: " + r.reason);
System.exit (-1);

}

try

{

ow = (OneWorldInterface)connectorProxy.CreateBusinessObject

("Connector: :OneWorldInterface", accessNumber) ;

System.out.println("Got OneWorldInterface");

}

catch (FatalException e)

{

System.out.println("Fatal Exception during OneWorldInterface creation:
" + e.toString());

System.out.println("Refer to the jas.log file for more details.");

System.exit (-1);

}

catch (reject r)

{

System.out.println("Java Connector Exception: " + r.reason);
System.exit (-1);

}

try

{

ab = (AddressBook)connectorProxy.CreateBusinessObject ("JDEAddressBook: :

AddressBook", accessNumber) ;

System.out.println("Got AddressBook");

}

catch (FatalException e)

{

System.out.println("Fatal Exception during OneWorldInterface creation:
" + e.toString());

System.out.println("Refer to the jas.log file for more details.");

System.exit (-1);

}

catch (reject r)

{

System.out.println("Java Connector Exception: " + r.reason);
System.exit (-1);
}

ds = ab.CreateGetEffectiveAddressParameterSet () ;
ds.getmnAddressNumber () .setValue("1");

try

{

ds.setszCity(args[0]);

}

catch(StringTooLongException e)

Understanding the Java Connector 10-23

Using Exception Handling for the Java Connector

{

System.out.println("Cannot set a city with length of " + args[0].length());
System.exit (-1);

}

catch (reject r)

{

System.out.println("Java Connector Exception: " + r.reason);
System.exit (-1);

}

int 1=0;

try

{

1 = ab.GetEffectiveAddress(ds, ow, connectorProxy, accessNumber);
}

catch (CallObjectIgnoreException e)

{

// do nothing

}

catch (CallObjectRetryException e)

{

// try one more time

try

{

i = ab.GetEffectiveAddress(ds, ow, connectorProxy, accessNumber);
}

catch (CallObjectIgnoreException ex)

{

// do nothing

}

catch (CallObjectRetryException ex)

{

// don't try again after second try

System.out.println("EXCEPTION: " + ex.toString());
System.out.println("Nested Exception: " + ex.getChainedException().
toString());

System.out.println("Refer to the jasdebug.log file for more details.");
System.exit (-1);

}

catch (FatalException ex)

{

System.out.println("Fatal Exception during AddressBook retrieval: " +
ex.toString());

System.out.println("Refer to the jas.log file for more details.");
System.exit (-1);

}

catch (reject r)

{

System.out.println("Java Connector Exception: " + r.reason);
System.exit (-1);

}

}

catch (FatalException e)

{

System.out.println("Fatal Exception during AddressBook retrieval: " +
e.toString());

System.out.println("Refer to the jas.log file for more details.");
System.exit (-1);

}

catch (reject r)

{

10-24 JD Edwards EnterpriseOne Tools Connectors Guide

Using Exception Handling for the Java Connector

System.out.println("Java Connector Exception: " + r.reason);
System.exit (-1);
}

String alphaname = ds.getszNamealphal();

String address = ds.getszAddressLinel();

// get other AddressBook parameters that you want...

if (i == 1)

{ // business function warning

System.out.println("Warning count is " + ow.GetWarningCount());

for (int j=0; j<ow.GetWarningCount(); Jj++)

{

System.out.println("Warning " + j + ": " + ow.GetWarningAt(j));
}

}

else if (1 == 2)

{ // business function error

for (int j=0; j<ow.GetErrorCount(); j++)

{

System.out.println("Error " + j + ": " + ow.GetErrorAt(j));
}

}

connectorProxy.Logoff (accessNumber) ;

}

}

Understanding the Java Connector 10-25

Using Exception Handling for the Java Connector

10-26 JD Edwards EnterpriseOne Tools Connectors Guide

11

Using Java Connector Events - Guaranteed
Events

This chapter contains the following topics:
m Section 11.1, "Understanding Java Connector Events"
ms Section 11.2, "Developing a Java Connector Events Application"

= Section 11.3, "Using the Sample Connector Events Client"

Note: This chapter is applicable only if you use guaranteed events
delivery. Guaranteed event delivery is available when you use JD
Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11, or if you use JD Edwards EnterpriseOne Tools 8.95
and later Tools releases with JD Edwards EnterpriseOne Applications
8.10 and later Applications releases.

Refer to the Classic Events chapters if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10 or earlier releases of the JD Edwards EnterpriseOne
Applications.

11.1 Understanding Java Connector Events

The Java connector provides a set of APIs that you can use to receive events when you
establish a subscriber in JD Edwards EnterpriseOne with a JAVACONN transport
type. When using the events portion of the Java connector, you connect directly to the
JD Edwards EnterpriseOne Transaction server to receive events that have been placed
in the subscriber queue.

Note: When you use the events portion of the Java connector, you do
not call any business functions on the JD Edwards EnterpriseOne
server. This implies that the events portion of the Java connector is not
specific to the Java connector or dynamic Java connector. Therefore,
the term Java connector is used throughout this chapter even though
the APIs and the sample code reside in subpackages underneath the
com.jdedwards.system.connector.dynamic package. All classes for the
Java connector and the dynamic Java connector (not including the
sample applications) reside in the Connector.jar file. Putting the
Connector.jar file on the CLASSPATH is sufficient for working with
either Java connector and the events operations.

Using Java Connector Events - Guaranteed Events 11-1

Understanding Java Connector Events

11.1.1 Prerequisites

Whether you are developing a Java connector events application or using the sample
Java connector events client, these prerequisites must exist on the machine running the
events application or client sample:

= A Java Development Kit (JDK) that corresponds to the version of the JDK under
which the JD Edwards EnterpriseOne Transaction server is running.

For example, when connecting to a JD Edwards EnterpriseOne Transaction server
hosted on WebSphere, you must run the Java connector events client or
application using the same IBM JDK. Generally, the IBM JDK is located in
<WebSphere installation directory>/java).

= Aninstallation of IBM WebSphere MQ, if the JD Edwards EnterpriseOne
Transaction Server is hosted on WebSphere.

This software comes installed as part of the installation of many different
WebSphere-related software, including the WebSphere Application Client.

= A completed set of configured files for the environment:
- jdeinterop.ini
- jdbj.ini
- jdelog.properties
= A JAVA_HOME environment variable that points to this JDK.

= A PATH environment variable that includes the entry, %JAVA_HOME%\bin,
which assumes that JAVA_HOME has already been defined.

Additional prerequisites are required to compile and run the application or client.
s Thesejar files must be in the CLASSPATH:

- ApplicationAPIs_JARjar

- ApplicationLogic_JAR jar

- Base_JARjar

- BizLogicContainer_JAR jar

- BizLogicContainerClient_JAR jar

- BusinessLogicServices_JAR jar

- castorjar

- commons-httpclient-3.0.jar

- commons-logging jar

- Connectorjar

— EventProcessor_JAR jar

- Generator.jar

- j2eel_3jar

- JdbjBase_JARjar

- JdbjInterfaces_JAR jar

— JdeNet_JARjar

- jmxremote jar

11-2 JD Edwards EnterpriseOne Tools Connectors Guide

Understanding Java Connector Events

jmxremote_optional.jar
jmxri.jar

log4j.jar
ManagementAgent_JAR jar
Metadata.jar
Metadatalnterface jar
PMApi_JAR jar
Spec_JAR jar
System_JAR jar
SystemInterfaces_JAR jar
xerces.jar

xmlparserv2.jar

Note: With the exception of the EventProcessor_JAR jar file, the files
can be found at <Windows client installation
directory>\system\classes on the generation machine that is used for
the JD Edwards EnterpriseOne environment to which you are
connecting.

The EventProcessor_]JAR jar file must be copied from the Transaction
server's installation directory, which is typically located in
<Transaction Server

installation>\EventProcessor\app \EventProcessor.ear.

The files that you place on the CLASSPATH must be the exact same
files that are on the Transaction server installation directory.

The JDBC driver files that correspond to the database to which you are connecting.

The directory location for these files:

jdeinterop.ini
jdbj.ini
jdelog.properties

The files must all be in the same directory. It is important to note that you put
the directory in the CLASSPATH without the file names, so there is just one
entry for these three files. Also, this entry must end in a slash (/), indicating
that it is a directory entry and not a file name.

If you connect to a Transaction server hosted on WebSphere, you also need these
files:

com.ibm.mgjms.jar
com.ibm.mgq.jar

bootstrap.jar
com.ibm.ws.runtime_6.1.0.jar

com.ibm.ws.admin.client_6.1.0.jar

Using Java Connector Events - Guaranteed Events 11-3

Developing a Java Connector Events Application

- ibmorb.jar
- ibmextjar
- ibmcfwjar

The files are typically located in the <WebSphere installation directory>/lib
folder. Additionally, you must put the <WebSphere installation
directory>)/properties directory entry in the CLASSPATH, without an ending
slash (/).

s If you connect to a Transaction server hosted on Oracle Application Server, you
also need these files:

- ocdjjar
- oc4jclientjar
- jmsjar

- javax77jar

11.2 Developing a Java Connector Events Application

This section provides an overview of Java connector events application development
and discusses:

s Introspection operations
= Asynchronous event sessions

= Synchronous event sessions

11.2.1 Understanding Java Connector Events Application Development

This list identifies the steps that you use when you write a Java class that serves as a
Java connector subscriber. The steps are further explained in the code samples in this
section.

= Instantiate a connector object.

= Login through the connector to the JD Edwards EnterpriseOne system.

» Instantiate an EventService object (not required for introspection operations).
s Perform introspection operations (optional).

» Create a session and receive events (optional).

s Logoff from JD Edwards EnterpriseOne.

= Shut the connector down.

You can create two types of Event Sessions, asynchronous and synchronous, to receive
events through the Java connector.

11.2.2 Introspection Operations

The Java Connector Events API enables you to perform several introspection requests
as provided in the Event IntrospectionApp.java code sample.

11.2.2.1 EventintrospectionApp.java

This sample code shows example introspection requests:

11-4 JD Edwards EnterpriseOne Tools Connectors Guide

Developing a Java Connector Events Application

import java.util.LinkedList;

import com.jdedwards.system.connector.dynamic.Connector;
import com.jdedwards.system.connector.dynamic.newevents.EventService;
Sample Java Connector Events Introspection application.

public class EventIntrospectionApp {
public static void main(String[] args) {
try {

// Instantiate a Connector object
Connector con = Connector.getInstance();

// Login through the Connector
int sessionID = con.login("username", "password",
"environment", "role");

Get the list of all events in JD Edwards EnterpriseOne. This list is returned as a
LinkedList of Strings.

LinkedList list = EventService.getEventList (sessionID);
Get the template for a particular event type. This is returned as an XML template in a
single String object.

String template = EventService.getEventTemplate(sessionID, "category",
"type", "environment");

Get the list of all subscriptions for the user associated with the given sessionlD. This is
returned as a LinkedList of
com.jdedwards.pt.el.common.events.connectorsvc.Subscription objects. This
Subscription class is located in the Common_JAR jar file.

LinkedList subs = EventService.getSubscriptions(sessionID);

// Logoff the user from JD Edwards EnterpriseOne
con.logoff (sessionID);

// Shut the Connector down
con.shutDown () ;

} catch (Exception e) ({
e.printStackTrace() ;

System.exit (-1);

System.exit (0);

11.2.3 Asynchronous Event Sessions

With an asynchronous event session, you must create a listener class to receive events
and process them according to the requirements for the event data. Once you create
the listener class, you register an instance of that class with the asynchronous event

Using Java Connector Events - Guaranteed Events 11-5

Developing a Java Connector Events Application

session that you request. The details of these steps are listed in the MyListener.java and
EventAsyncApp.java sample programs.

Additionally, the MyListener.java sample code shows that since the Asynchronous
Event Session is created in CLIENT_ACKNOWLEDGE mode (illustrated in
EventAsyncApp.java), the EventObject must be acknowledged to let the Transaction
server know that you received the event.

11.2.3.1 MyListener.java

This sample code for the listener class not only shows the single onEvent(EventObject)
method that the listener must implement, but it also shows what data you can get
from the EventObject.

import javax.jms.IllegalStateException;

import com.jdedwards.base.datatypes.JDECalendar;

import com.jdedwards.system.connector.dynamic.SystemException;

import com.jdedwards.system.connector.dynamic.newevents.EventListener;
import com.jdedwards.system.connector.dynamic.newevents.EventObject;

Sample implementation of a Java Connector Asynchronous Event SessionListener.

public class MyListener implements EventListener {

Permits the listener to receive an event when it has been delivered from the
Transaction Server.

@param event the event

public void onEvent (EventObject event) {

Do some processing here with the event that is sent by the Transaction Server. The
onEvent(EventObject) method is called once for every event that is delivered.

*The event category: "RTE", "XAPI", or "ZFILE".

String category = event.getCategory();

The event type, such as "RTSOOUT".

String type = event.getType();

The JD Edwards EnterpriseOne environment in which the event was generated.

String environment = event.getEnvironment () ;

The global sequence number of the event.

long sequenceNumber = event.getSequenceNumber () ;

The date and time stamp of the event.

JDECalendar date = event.getDateTime();

The XML content of the event as a single String object.*/

String xmlPayload = event.getXMLPayload();

11-6 JD Edwards EnterpriseOne Tools Connectors Guide

Developing a Java Connector Events Application

If you created an EventSession with CLIENT_ACKNOWLEDGE mode, you must
acknowledge each message you receive. Otherwise the event will be redelivered
according to the Transaction Server JMS Provider's logic.

try {
event.acknowledge () ;

} catch (IllegalStateException e) {

This Exception will be thrown if the session associated with this event has already
been closed.

} catch (SystemException e) {

This Exception will be thrown if the original event could not be acknowledged
(duplicate event delivery is likely in this scenario).

}

11.2.3.2 EventAsyncApp.java

The asynchronous-specific calls in this asynchronous event application
(AsyncEventApp.java) are illustrated in this code sample. Between the
eventSession.start and the eventSession.stop method calls, you would normally solicit
user input or wait for some type of intervention to let the class know that event
delivery needs to stop.

import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.newevents.AsyncEventSession;
import com.jdedwards.system.connector.dynamic.newevents.EventService;
import com.jdedwards.system.connector.dynamic.newevents.EventSession;

Sample Java Connector Asynchronous Event application

public class EventAsyncApp {
public static void main(String[] args) {

try {

Instantiate a Connector object.

Connector con = Connector.getInstance();

Login through the Connector to JD Edwards EnterpriseOne.

int sessionID = con.login("username", "password",
"environment", "role");

Instantiate an EventService object

EventService service = EventService.getInstance();

Create a synchronous event session in CLIENT_ACKNOWLEDGE mode.

AsyncEventSession eventSession = service.getAsyncEventSession

Using Java Connector Events - Guaranteed Events 11-7

Developing a Java Connector Events Application

(sessionID, EventSession.CLIENT ACKNOWLEDGE) ;

Register a listener object which you have created

eventSession.registerListener (new MyListener());

Start the delivery of events to the listener.

eventSession.start();

Stop the delivery of events to the listener. Note that you can continuously alternate
between calls to start() and stop() as long as you do not call the close() method.

eventSession.stop();

Close the event session. No other operations on the event session are possible at this
point.

eventSession.close();

Logoff the user from JD Edwards EnterpriseOne.

con.logoff (sessionID);

Shut the Connector down.

con.shutDown () ;
} catch (Exception e) ({

e.printStackTrace();
System.exit (-1);

System.exit (0);

11.2.4 Synchronous Event Sessions

With synchronous event sessions, you receive only one event at a time. No listener
class is involved with this type of session.

11.2.4.1 EventSyncApp.java

The three ways to receive an event, along with an explanation of functionality, are
illustrated in this EventSyncApp.java class sample code. This sample code uses the
AUTO_ACKNOWLEDGE acknowledgement mode:

import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.newevents.EventObject;
import com.jdedwards.system.connector.dynamic.newevents.EventService;
import com.jdedwards.system.connector.dynamic.newevents.EventSession;
import com.jdedwards.system.connector.dynamic.newevents.SyncEventSession;

Sample Java Connector Synchronous Events application.

public class EventSyncApp {

public static void main(String[] args) {

11-8 JD Edwards EnterpriseOne Tools Connectors Guide

Developing a Java Connector Events Application

try {

Instantiate a Connector object.

Connector con = Connector.getInstance();

Login from the Connector to JD Edwards EnterpriseOne.

int sessionID = con.login("username", "password",
"environment", "role");

Instantiate an EventService object.

EventService service = EventService.getInstance();

Create a synchronous event session in AUTO_ACKNOWLEDGE mode.

SyncEventSession eventSession =
service.getSyncEventSession(sessionID,
EventSession.AUTO_ACKNOWLEDGE) ;

Start the delivery of events.

eventSession.start();

The receive() method will not return control to the caller until an event is delivered.
EventObject eventl = eventSession.receive();

Do some processing of the event data here. Refer to the sample class (MyListener.java)

for a list of the methods that can be called on the EventObject class.

The receive(long timeout) method will return control to the caller if the timeout value
(in milliseconds) elapses without an event being delivered. Of course, if an event is
delivered before the timeout value elapses, the EventObject will be returned to the
caller.

EventObject event2 = eventSession.receive(5000);

Do some processing of the event data here. Refer to the sample 'MyListener.java' class
for a list of the methods that can be called on the EventObject class.

The receiveNoWait() method either immediately returns an EventObject to the caller if
an event is waiting to be delivered or returns null if no event is waiting.

EventObject event3 = eventSession.receiveNoWait();

Do some processing of the event data here. Refer to the sample 'MyListener.java' class
for a list of the methods that can be called on the EventObjectclass.

Stop the delivery of events. Note that you can continuously alternate between calls to
start() and stop() as long as you do not call the close() method.

eventSession.stop();

Close the event session. No other operations on the event session are possible at this
point.

eventSession.close();

Logoff the user from JD Edwards EnterpriseOne

con.logoff (sessionID) ;

Using Java Connector Events - Guaranteed Events 11-9

Using the Sample Connector Events Client

Shut the Connector down.

con.shutDown () ;
} catch (Exception e) {

e.printStackTrace() ;
System.exit (-1);

}

System.exit (0);

11.3 Using the Sample Connector Events Client
This section provides an overview of connector events client tool and discusses:
1. Using the Connector Events Client tool.
2. Configuring the sample connector events client.
3. Running the sample connector events client.
4

Resolving Connector Events Client tool issues.

11.3.1 Understanding Connector Events Client Tool

The connector events client is a Java-based graphical tool that enables you to log in to
JD Edwards EnterpriseOne and receive events that you have subscribed to from the JD
Edwards EnterpriseOne Transaction server. This tool enables all possible event
operations, including all of the introspection requests as well as the creation of both
asynchronous and synchronous event sessions.

11.3.2 Prerequisites for Using the Sample Connector Events Client

In addition to meeting the requirements listed in the Prerequisites for Understanding
Java Connector Events section, you must also verify:

s The Transaction server is running.

s The user ID that you use to log in to the tool is a user ID that is an active
subscriber with at least one active subscription.

= A Java Runtime Environment (JRE) version 1.4 or later is installed on the machine.

You can download a valid JRE from Sun Developer Network web site.

See Also:
m Prerequisites.

= Sun Developer Network (SDN),
http://java.sun.com/j2se/downloads/index.html.

11.3.3 Using the Connector Events Client Tool

You sign in to the connector events client tool through the login window. Once you
have successfully signed in, you can perform any of the introspection operations
without creating an event session. All error messages are displayed in the bottom

11-10 JD Edwards EnterpriseOne Tools Connectors Guide

Using the Sample Connector Events Client

pane. If you receive an error message that is not explained sufficiently, you can look in
the debug log file of the tool to obtain more information.

The buttons that enable you to create a new event session prohibit you from entering
an invalid sequence or combination (such as starting event delivery without opening a
session). Once you start receiving events, the event sequence numbers for received
events appear in the Event List window. If you select an event sequence number, the
event details for that event appear in the Event Data window. Additionally, the XML
content for all received events is automatically created as an XML file in the tool's log
directory, regardless of whether you select the sequence number for the event.

To use the tool, you must build, configure, and then run the tool. The tool is shipped to
you as source code so that you can inspect the usage of the connector events APIs. You
can find the entire source code in a single jar file: connector_samples_src.jar. This file
should be located in the <Windows client generation machine installation
directory>/system/classes/samples folder.

11.3.4 Configuring the Sample Connector Events Client

This section provides steps for configuring the sample connector events client.

11.3.4.1 To configure the Sample Connector Events Client
Use these steps to configure the sample connector events client:

1. Create a C:\ConnectorEventsClient directory.

If a directory with this name already exists, rename the existing directory before
you create a new directory.

2. Unzip the Connector Events Client.zip file to the newly created directory on the C
drive.

Make sure to unzip the file with the full path information for each file in the Zip
file.

3. Configure the files in the C:\ConnectorEventsClient\config directory.

Make sure that the configured files have the .templ file extension removed from
them. The proper file names for this directory are:

- jdbj.ini
- jdeinterop.ini
- jdelog.properties

Configure the jdbj.ini and jdelog.properties files according to your
environment. See your JD Edwards EnterpriseOne systems administrator if
you do not know the appropriate values for these files. You should name your
jdbj.ini file with the same file name that is configured on your Transaction
server.

Configure your jdeinterop.ini file with these values:

Section Setting Value

[EVENTS] eventServiceURL http:/ /machine_name:port/elevents/EventClientService

The machine name is the name of your WebSphere
Transaction Server and the port is the port for your
WebSphere Transaction Server.

[SECURITY] SecurityServer Name of your JD Edwards EnterpriseOne Security Server.

Using Java Connector Events - Guaranteed Events 11-11

Using the Sample Connector Events Client

Section Setting Value

[JDENET] serviceNameConnect The port you are connecting to on your JD Edwards

EnterpriseOne Security Server.

Add the appropriate JDBC driver files to the C:\ConnectorEventsClient\lib
directory.

See your JD Edwards EnterpriseOne systems administrator to determine which
driver file to use.

Edit the C:\ConnectorEventsClient\setDynConNewEventDriver.bat file, change it
to point to the location of your installed JRE.

11.3.5 Running the Sample Connector Events Client

Use these steps to run the sample Connector Events Client:

1.
2.
3.

Navigate to the C:\ConnectorEventsClient directory.
Double-click the runDynConNewEventDriver.bat file.

On the Java Connector EnterpriseOne signon window, enter your JD Edwards
EnterpriseOne credentials, and then select the OK button.

Click Open Session and then click Start to receive events for which you have
subscribed.

The event numbers for any events that are waiting for you should appear in the Event
List window. If you select an event number, the event data for the selected event
appears in the Event Data window. The XML content for each event is also placed in
your C:\ConnectorEventsClient\logs directory.

11.3.6 Resolving Java Connector Events Client Tool Issues

This table discusses potential problems that you might encounter when using the Java
Connector Events Client tool, along with possible solutions.

Problem Possible Solution

I can't get past the sign-on screen. Try entering all of your credentials (username,

password, environment, and role) in all capital
letters.

My C:\ConnectorEventsClient\logs directory = You may delete any files that this directory at
is full, and I would like to delete some of the any time. However, if your Connector Events

Jog and .xml files. Client application is running, some of the files
might be locked.

Why are there orbtre...txt files in my These files are created by WebSphere runtime

C:\ConnectorEventsClient directory? code. You may delete these files at any time.

However, if your Connector Events Client
application is running, some of these files

might be locked.
An error message that I don't understand Look in your C:\ConnectorEventsClient\logs
appears in the Error Messages window. directory for the jasdebug_date.log file that

corresponds to the appropriate date. Often a
more explanatory error message can be found
in this file.

11-12 JD Edwards EnterpriseOne Tools Connectors Guide

Using the Sample Connector Events Client

Problem Possible Solution

I clicked the ReceiveAndWait button, and now This happens when you click the

the interface is frozen. ReceiveAndWait button and there is no event
waiting for you on the Transaction Server.
ReceiveAndWait means that you are willing to
wait indefinitely for an event to be generated
and delivered to you. The interface freezes in
this instance until an event is delivered. If you
are not willing to wait, click the
ReceiveNoWait button.

Using Java Connector Events - Guaranteed Events 11-13

Using the Sample Connector Events Client

11-14 JD Edwards EnterpriseOne Tools Connectors Guide

12

Understanding J2EE Connector Architecture
Resource Adapter

This chapter contains the following topics:

= Section 12.1, "J2EE Connector Architecture Resource Adapter”
= Section 12.2, "JCA 1.0 Specification Optional Features"
= Section 12.3, "Assembly and Components"

= Section 12.4, "Deployment and Configuration"

s Section 12.5, "Common Client Interface"

= Section 12.6, "Signon Types"

s Section 12.7, "Subclasses"

= Section 12.8, "Input and Output Data"

= Section 12.9, "Logs"

= Section 12.10, "Exceptions"

= Section 12.11, "Samples"

= Section 12.12, "Checklist for Resolving Issues"

12.1 J2EE Connector Architecture Resource Adapter

The JD Edwards EnterpriseOne J2EE Connector Architecture (JCA) resource adapter
enables Java2 Platform, Enterprise Edition (J2EE) components to use a standard
interface to connect to the JD Edwards EnterpriseOne system. A resource adapter is a
system-level software driver that enables J2EE components to communicate with a
back-end enterprise information system (EIS) through a JCA-compliant application
server when a resource adapter for the specific EIS is deployed to the server. J2EE

components consist of Servlets, JavaServer Pages (JSPs), and Enterprise JavaBeans
(EJBs).

J2EE components and applications built with J2EE components can execute business
functions through the JD Edwards EnterpriseOne JCA resource adapter. JD Edwards
EnterpriseOne business functions are accessed through the JCA standard client
interface, the Common Client Interface (CCI). The JD Edwards EnterpriseOne JCA
resource adapter is fully compliant to the Java2 Platform, Enterprise Edition (J2EE)
JCA 1.0 Specification and should work with any application server that is J2EE 1.4
certified.

Understanding J2EE Connector Architecture Resource Adapter 12-1

JCA 1.0 Specification Optional Features

Note: Some application servers are known to not be J2EE 1.4 certified
but they support some J2EE 1.4 features, including JCA 1.0. Check
with the application server vendor to determine whether the
application server supports JCA1.0.

See Also:

= J2EE Connector Architecture,
http://java.sun.com/j2ee/connector/.

12.2 JCA 1.0 Specification Optional Features

The JCA 1.0 Specification identifies optional features for developing a resource
adapter. This table addresses the level of support that the JD Edwards EnterpriseOne
JCA resource adapter provides for the optional features identified in the JCA 1.0

Specification.
Feature Level of Support
Transactions The JD Edwards EnterpriseOne JCA resource adapter is

classified as an XA Transaction resource adapter. The JD
Edwards EnterpriseOne JCA resource adapter permits either
no transactions during business function calls, transactions
local to JD Edwards EnterpriseOne during those same calls
(local transaction), and one-phase commit (1PC) XA
transactions (transactions that span multiple enterprise
information systems).

Client Interface

The JD Edwards EnterpriseOne JCA resource adapter supports
the optional common client interface (CCI), which is modeled
after the Java Database Connectivity (JDBC) client API. This
relatively simple Java API should significantly reduce the
learning curve for using the JD Edwards EnterpriseOne JCA
resource adapter.

Reauthentication

The JD Edwards EnterpriseOne JCA resource adapter does not
support the switching of a set of JD Edwards EnterpriseOne
user credentials on an existing JD Edwards EnterpriseOne user
session. User credentials are usually a concern of the
application server and should not affect client development.

Input/Output Records

The JD Edwards EnterpriseOne JCA resource adapter supports
the MappedRecord interface, which is a data type of key-value
pairs. The MappedRecord interface is further discussed in the
Input/Output Data section of this document. The CCI
interfaces IndexedRecord and ResultSet are not supported as
they are not relevant to the type of output from business
functions.

Authentication

The JD Edwards EnterpriseOne JCA resource adapter supports
BasicPassword authentication, which indicates to the
application server how to handle container-managed signon.
The resource adapter does not support any other form of
authentication, such as Kerberos authentication through the
GenericCredential interface. The Signon Types section of this
document provides more information about authentication
with the resource adapter.

12-2 JD Edwards EnterpriseOne Tools Connectors Guide

Assembly and Components

Feature

Level of Support

ManagedConnectionFactory
Properties

The JCA Specification identifies these properties as standard;
however, these properties are optional properties for the
ManagedConnectionFactory class, which is the main class
configured with JD Edwards EnterpriseOne specific properties
during deployment of the resource adapter:

s ServerName

s PortNumber

s UserName

s Password

s ConnectionURL

The JD Edwards EnterpriseOne JCA resource adapter supports
the UserName and Password properties, as the other
properties are either irrelevant properties or are configured
elsewhere in the resource adapter. The Deployment Settings
section of this document addresses other properties that are
defined by the JD Edwards EnterpriseOne JCA resource
adapter.

Note: The deployment tool of the particular J2EE application
server might list these properties as configurable for the
resource adapter. The JD Edwards EnterpriseOne JCA resource
adapter does not use values that you assign to these properties
(other than that for UserName and Password).

Number of Deployed
Resource Adapters

The JCA Specification allows for the possibility of deploying
the same resource adapter multiple times on a given
application server. This provides for potential connectivity to
multiple versions of the same EIS for a one resource
adapter-to-many-EIS version ratio. The JD Edwards
EnterpriseOne JCA resource adapter supports the deployment
of only one JD Edwards EnterpriseOne JCA resource adapter
per application server (essentially one resource adapter per
virtual machine).

Note: You can install different JCA resource adapters (those
other than for JD Edwards EnterpriseOne) on the same
application server.

Non-Managed Scenario

The JD Edwards EnterpriseOne JCA resource adapter must be
used with an application server or an application client. If you
want to access JD Edwards EnterpriseOne business functions
through Java outside of an application server or application
client, you should use the Java connector directly.

See Also:

s JCA Java documentation (APIs),
http://java.sun.com/j2ee/apidocs-1_
0-fr/api/index.html.

12.3 Assembly and Components

The packaging of a resource adapter is defined in the JCA 1.0 Specification. However,
because some application servers require additions to the standard Resource Adapter
Archive (RAR) file, it is not possible to distribute a single RAR file that can be
deployed to all application servers. Consult the application server documentation for
instructions on how to use the assembly tool and to understand what additional
components might be required for a resource adapter to be operational with the
application server. Typically, an additional deployment descriptor is required.

Understanding J2EE Connector Architecture Resource Adapter

12-3

http://java.sun.com/j2ee/apidocs-1_0-fr/api/index.html
http://java.sun.com/j2ee/apidocs-1_0-fr/api/index.html

Assembly and Components

Additional information required by an application server is usually for performance
tuning and for configuration settings.

12.3.1 Components

A RAR file is a file that is in Java Archive (JAR) File Format with a .rar extension
instead of a .jar extension. The file structure for a RAR file is:

s /META-INF/ra.xml
s /<all necessary JAR files>

The ra.xml file is the standard resource adapter deployment descriptor and must be
put in the META-INF directory of the RAR file. The ra.xml file must be named exactly
ra.xml. The ra.xml file for the JD Edwards EnterpriseOne JCA resource adapter is
provided in the system/classes/samples directory on the JD Edwards EnterpriseOne
CD. All other JAR files go in the root directory of the RAR file. The JAR files are
provided in the system/classes directory on the same CD. The required resource
adapter JAR files include:

= ApplicationAPIs_JAR jar

= ApplicationLogic_JARjar

s Base JARjar

= BizLogicContainer_JAR jar
s BizLogicContainerClient_JAR jar
= BusinessLogicServices_JAR jar
= castorjar

= commons-httpclient-3.0.jar
= commons-logging jar

= Connectorjar

= Generatorjar

= j2eel_3jar

= JdbjBase_JARjar

s JdbjInterfaces_JAR jar

s JdeNet_JARjar

= jmxremote.jar

= jmxremote_optional.jar

= jmxrijar

s log4jjar

= ManagementAgent_JAR jar
s Metadata jar

s Metadatalnterface jar

= owrajar

= PMApi_JARjar

= Spec_JARjar

12-4 JD Edwards EnterpriseOne Tools Connectors Guide

Deployment and Configuration

= System_JARjar

= SystemlInterfaces_JARjar
= Xerces.jar

= xmlparserv2jar

s JDBC driver jar files supplied by the database vendor.

Note: Only use the versions of these JAR files that come with the JD
Edwards EnterpriseOne distribution.

When the RAR file is finally created, the META-INF directory of the RAR file might
contain a Manifest.mf file. The Java JAR tool usually creates the Manifest.mf file
automatically. The Manifest.mf file complies with the JAR file format, and it is
acceptable for the Manifest.mf file to be in the RAR file.

12.4 Deployment and Configuration

The methods and tools for configuring and deploying a resource adapter vary between
application servers and even between versions of the same application server. Consult
the application server documentation for information about how to configure and
deploy a resource adapter. Two separate methods exist for deploying a resource
adapter. The first method is deploying the resource adapter as a standalone resource
adapter. This permits all applications deployed on the application server to access the
same resource adapter. The second method involves packaging the resource adapter
within an enterprise application (EAR) file. This permits only those components in the
EAR file to have access to the resource adapter. The sample applications provided with
the JD Edwards EnterpriseOne JCA resource adapter use the second method.

Additional settings required for the JD Edwards EnterpriseOne JCA resource adapter
to be deployed and to operate correctly include:

= Security permissions.

= jdeinterop.ini settings.

= jdbj.ini settings.

» jdelog.properties settings.
s CLASSPATH settings.

= Configurable properties.

» Java naming directory interface settings.

Note: Only one JD Edwards EnterpriseOne JCA resource adapter can
be deployed in standalone mode per application server.

12.4.1 Security Permissions

The JCA 1.0 Specification defines the standard Java security permissions that must be
granted to all resource adapters by an application server. The JD Edwards
EnterpriseOne JCA resource adapter needs additional security permissions to operate.
These permissions are listed in the deployment descriptor (ra.xml file). Most
application servers dynamically grant these permissions to the resource adapter
during deployment. Some application servers have other methods of granting the

Understanding J2EE Connector Architecture Resource Adapter 12-5

Deployment and Configuration

resource adapter additional permissions, including modifying a Java security policy
file, which might require that you restart the application server to take effect.

If the application server does not dynamically grant the security permissions to a
resource adapter based on the contents of the deployment descriptor, you need to
grant the resource adapter the permissions listed in the security-permission-spec
elements of the deployment descriptor. If the application server throws a
SecurityException while running an application associated with the JD Edwards
EnterpriseOne JCA Resource Adapter, it is possible that the necessary security
permissions are not being granted to the resource adapter.

12.4.2 jdeinterop.ini Settings

Because the resource adapter is built on top of the Java connector, it is necessary to
configure the appropriate settings in the jdeinterop.ini file to make the Java connector
operational. The resource adapter introduces no new settings into the jdeinterop.ini
file.

12.4.3 jdbj.ini Settings
You must set up the jdbj.ini file.
See JD Edwards EnterpriseOne Tools Release Tools Reference Guide.
See JD Edwards EnterpriseOne Tools Release HTML Web Server Reference Guide.

12.4.4 jdelog.properties Settings

The JCA 1.0 Specification permits resource adapter-specific logging messages to be
sent to a separate log file, which can be configured according to the application server
(see the application server documentation). The messages that are sent to this log file
are redundant to and are a subset of the messages that are sent to the log file defined in
the jdelog.properties file. This redundancy is an intentional JD Edwards EnterpriseOne
JCA resource adapter design decision for this reason:

The JCA logging mechanism does not provide a method for logging messages from
the connector on which the resource adapter is built. The logging properties file
permits all logging messages from the connector as well as the resource adapter to be
logged in a central location.

12.4.5 CLASSPATH Settings

The JD Edwards EnterpriseOne JCA resource adapter requires that the complete path
to the jdelog.properties file be placed in the server's CLASSPATH. This path cannot
include the name of the file, and the path must end with a slash, which designates that
the last item in the path is a directory and not a file. The name of the properties file is
required to be jdelog.properties. The logging mechanism looks for the logging properties
file in all directories in the CLASSPATH.

The JDBC driver for the JD Edwards EnterpriseOne database must be in the server's
CLASSPATH so that the proper database connections can be made.

12-6 JD Edwards EnterpriseOne Tools Connectors Guide

Deployment and Configuration

Note:

Some servers require all of the JAR files within the resource

adapter RAR file to be placed in the server's CLASSPATH. If you
encounter a NoClassDefFoundError while running a Web application
that is using the resource adapter, try putting all of these JAR files in
the server's CLASSPATH and restarting the server. Consult the server
documentation for further ClassLoader issues.

12.4.6 Configurable Properties

The JD Edwards EnterpriseOne JCA resource adapter deployment descriptor (ra.xml
file) contains properties that must be assigned values specific to the environment. This
table identifies the configurable properties and describes the information required.

Property

Required Information

ow Version

The version of JD Edwards EnterpriseOne to which the resource adapter
connects. This property is for display purposes only and can contain any value.
The value you enter in this property is not validated against the JD Edwards
EnterpriseOne installation.

username

Use this property for a JD Edwards EnterpriseOne user when neither the
container nor the application supplies a set of JD Edwards EnterpriseOne user
credentials.

password

Use this property for a JD Edwards EnterpriseOne user when neither the
container nor the application supplies a set of JD Edwards EnterpriseOne user
credentials.

environment

It is possible in a resource adapter web application to map a user's web
credentials to a set of JD Edwards EnterpriseOne user credentials. This
mapping, which is called container-managed signon, prevents the user from
having to present different credentials multiple times while using a single web
application.

Container-managed signon maps a given user name and password to a JD
Edwards EnterpriseOne user name and password. Container-managed sign-on
mapping is specific to each application server.

For JD Edwards EnterpriseOne, the environment property is used to add a valid
JD Edwards EnterpriseOne environment to the user name and password
mapped by the application server, which permits proper JD Edwards
EnterpriseOne signon. If you use container-managed signon, you must assign a
value to this property.

role

In addition to user name, password, and environment, JD Edwards
EnterpriseOne signon requires a role. The role property has a default value of
*ALL, which enables the user to assume all valid roles for the JD Edwards
EnterpriseOne user name. You do not need to assign a value for role if this is the
value you want to use.

Consult the documentation for the application server to determine if other deployment
settings are required.

12.4.7 Java Naming and Directory Interface Settings

For communication between the web application and the JD Edwards EnterpriseOne
JCA resource adapter, the web application must perform a Java Naming and Directory
Interface (JNDI) lookup of the ConnectionFactory of the resource adapter. You are
allowed to configure multiple ConnectionFactory instances for each resource adapter.
This permits setting different values for the configurable properties listed in the
previous section. The web application obtains a JD Edwards EnterpriseOne connection

Understanding J2EE Connector Architecture Resource Adapter 12-7

Common Client Interface

and interacts with JD Edwards EnterpriseOne through the ConnectionFactory. The
method of assigning a JNDI name to the ConnectionFactory for the JD Edwards
EnterpriseOne JCA resource adapter is specific to and documented by the application
server.

When you add a ConnectionFactory through the application server, you are provided
with a method for assigning values to the configurable properties for each
ConnectionFactory.

12.5 Common Client Interface

The Common Client Interface (CCI) is the JCA-recommended client API for all
resource adapters. The JD Edwards EnterpriseOne JCA resource adapter provides an
implementation of CCI as the client interface.

12.5.1 Implementing the Common Client Interface

This example code shows how to implement a CCI for the JD Edwards EnterpriseOne
JCA resource adapter. In the example code, the elements in quotes have descriptive
names and must have values valid to the environment in a real Java class. The line
numbers in the example code are not part of the code but are for reference in
subsequent paragraphs.

import com.jdedwards.system.connector..dynamic.jcaplugin.
ImageBSFNInteractionSpecImpl;
import com.jdedwards.system.jca.cci.ConnectionSpecImpl;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.resource.ResourceException;
import javax.resource.cci.Connection;

import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.MappedRecord;
import javax.resource.cci.RecordFactory;
import javax.resource.cci.ResourceWarning;

public class SomeClass {
public void someMethod() {
try {
// get the naming context
Context nc = new InitialContext();
// lookup the connection factory
ConnectionFactory conFact = (ConnectionFactory)nc.lookup ("Resource
Adapter JNDI Name");
//1. create a ConnectionSpec
ConnectionSpecImpl conSpec = new ConnectionSpecImpl ("username",

"password", "environment", "role");

//2. get the Connection to JD Edwards EnterpriseOne
Connection con = conFact.getConnection (conSpec);

// create an Interaction
Interaction ix = con.createInteraction();

12-8 JD Edwards EnterpriseOne Tools Connectors Guide

Signon Types

// create and populate the InteractionSpec
OWBSFNInteractionSpecImpl ixSpec = new OWBSFNInteractionSpecImpl();
ixSpec.setBusinessFunction ("Business Function Name") ;

// get a RecordFactory
RecordFactory rf = conFact.getRecordFactory();

//3. create the input MappedRecord
MappedRecord inputRecord = rf.createMappedRecord("any descriptive
name") ;

//4. populate the input MappedRecord with the input values
inputRecord.put ("Business Function Parameter Name",
" Business Function Parameter Value");

//5. execute the Business Function, putting the results in the output
// MappedRecord
MappedRecord outputRecord = (MappedRecord)ix.execute (ixSpec, inputRecord);

// get results
Object value = outputRecord.get ("Business Function Parameter Name");

// get Business Function warnings, if any
ResourceWarning warning = ix.getWarnings();

// close the Interaction
ix.close();

// close the Connection
con.close() ;
} catch (ResourceException e) {
// handle resource adapter-related Exceptions here
} catch (NamingException e) {
// handle JNDI-related Exceptions here
}
}
}

12.6 Signon Types

The JD Edwards EnterpriseOne JCA resource adapter provides these types of |D
Edwards EnterpriseOne signons:

» Container-managed signon

= Component-managed signon

12.6.1 Container-Managed Signon

When container-managed signon is used, the application server maps a web
application user to a given JD Edwards EnterpriseOne user. In this case, JD Edwards
EnterpriseOne user credentials are not provided in the CCI code. If you use
container-managed signon, line 1 of the example code would not exist, as you do not
need to create an instance of the ConnectionSpeclmpl class. Line 2 of the example code
would be changed to this:

Connection con = conFact.getConnection();

Understanding J2EE Connector Architecture Resource Adapter 12-9

Subclasses

12.6.2 Component-Managed Signon

When component-managed signon is used, the code provides specific JD Edwards
EnterpriseOne credentials (either through coding specific credentials or by obtaining
JD Edwards EnterpriseOne credentials through user entry in the web application) to
the JD Edwards EnterpriseOne JCA resource adapter for JD Edwards EnterpriseOne
signon. In the example code, lines 1 and 2 illustrate component-managed signon. In
line 1 of the example code, an instance of the ConnectionSpecImpl class is first created
with the JD Edwards EnterpriseOne user credentials. That instance is then passed to
the getConnection method.

Component-managed signon is also known as application-managed signon.

12.7 Subclasses

The import statements at the top of the example code illustrate that most of the classes
that you use to interact with the JD Edwards EnterpriseOne JCA resource adapter are
JCA classes (those classes in the javax.resource package and sub-packages) and not JD
Edwards EnterpriseOne-specific implementations of JCA interfaces. JD Edwards
EnterpriseOne software provides these implementation classes:

s ConnectionSpecImpl
s xxxxInteractionSpecImpl

The ConnectionSpecImpl class supplies the required JD Edwards EnterpriseOne user
credentials to the getConnection method. The ConnectionSpecImpl class is one of the
signon types. Line 1 in the example code shows how to use the ConnectionSpecImpl
class.

The purpose of the xxxxInteractionspeclmpl class is to establish the necessary business
function information before execution in JD Edwards EnterpriseOne. The
xxxxInteractionSpecImpl classes vary, depending on the type of business function spec
source. The business function spec source is a file or location that describes a business
function. Each implementation class, which is a concrete class of the
javax.resource.cci.InteractionSpec interface, includes methods that set values. These
setter methods must be called and given values before executing the business function
through the resource adapter.

12.7.1 ImageBSFNInteractionSpecimpl

The ImageBSFNInteractionSpecImpl implementation class gets the business function
spec from an XML image file, which must be generated by the dynamic Java connector
beforehand.

Class:
com.jdedwards.system.connector.dynamic.jcaplugin.ImageBSFNInteractionSpecImpl

Method: setBusinessFunction(String value)
Sets the exact name of the business function.
Method: setimageFilename(String value)

Sets the complete path and filename of the dynamic Java connector JD Edwards
EnterpriseOne spec image that contains the definition of the corresponding business
function.

12-10 JD Edwards EnterpriseOne Tools Connectors Guide

Input and Output Data

12.7.2 OWBSFNInteractionSpecimpl

The OWBSFENInteractionSpecImpl implementation class gets the business function
spec directly from a call to JD Edwards EnterpriseOne. This method might take a little
longer to execute a business function the first time the business function is called. The
business function is stored in memory, and execution should be quicker in subsequent
calls.

Class:
com.jdedwards.system.connector.dynamic.jcaplugin. OWBSFNInteractionSpecImpl

Method: setBusinessFunction(String value)

Sets the exact name of the business function.

12.8 Input and Output Data

The MappedRecordImpl class handles both sending input data to the resource adapter
and receiving the output data that is the result of executing the business function.
Lines 3 and 4 of the example code illustrate inputting data, and line 5 illustrates
obtaining the output data. A MappedRecord is a correlation of key/value pairs. The
key represents the exact business function parameter name, and value defines the key.

Input data for values can be supplied in one of these ways:
s Use a string.
= Use anative Java data type.

The JD Edwards EnterpriseOne JCA resource adapter examines the input data on a
parameter-by-parameter basis. If the input data type is string, the resource adapter
attempts to convert the input data to the appropriate Java data type for the specified
parameter. If both the actual parameter type and the input data are string, the resource
adapter passes the input data through unchanged. If the input parameter is a native
Java data type, the resource adapter passes the input data through unchanged.

If the native Java data type is incorrect or if the parameter name is invalid for the given
business function, the resource adapter throws an exception.

This table lists the business function types and their corresponding native Java data
type:

JD Edwards EnterpriseOne Data Type Native Java Data Type

ID java.lang.Integer

char (length of only 1) java.lang.Character

JDEDATE java.util.Date

Calendar com.jdedwards.base.datatypes.JDECalendar
MATH_NUMERIC com.jdedwards.system.lib.MathNumericImpl
char (variable length) java.lang.String

The output of all business functions result in the data in the MappedRecordImpl being
in the native Java data types. If you prefer only string-formatted output, you can make
this call on the output MappedRecordImpl for each parameter retrieved:

String value = outputRecord.get("parameter name").toString();

Understanding J2EE Connector Architecture Resource Adapter 12-11

Logs

12.9 Logs

Message logging for the JD Edwards EnterpriseOne JCA resource adapter is controlled
by the jdelog.properties file.

12.10 Exceptions

The parent Exception class for all exceptions thrown by the JD Edwards EnterpriseOne
JCA resource adapter is javax.resource.ResourceException.

See Also:

s JCAJavadoc, http://java.sun.com/j2ee/apidocs-1_
0-fr/api/index.html.

12.11 Samples

The samples supplied with the resource adapter illustrate how to use the resource
adapter's API, as well as the JCA API, and how to demonstrate the functionality of the
resource adapter. Address Book Query, Sales Order Entry, and Purchase Order Entry
are included samples. The source code along with the compiled classes are delivered
on the JD Edwards EnterpriseOne Java Server CD in the system/classes/samples
directory in the JCASamples.ear file and the JCASamples_WebSphere.ear file.

The sample applications consist of a group of servlets, which provide the HTML for
the display of the samples, and a group of stateful session Enterprise JavaBeans (E]Bs)
that access the JD Edwards EnterpriseOne JCA resource adapter. The resource adapter
is bundled inside the .ear files and is only available to the sample applications when
deployed to the application server.

12.11.1 Prepare the Samples for Deployment
These customizations must be performed to the .ear file before it can function correctly.
= JDBC driver jar file.
= Configuration files.

= Samples for the application server.

12.11.1.1 JDBC Driver .jar File

The JDBC driver jar file supplied by the JD Edwards EnterpriseOne database vendor
must be packaged inside the .ear file. Since the .ear file is in a Zip format, you can use
a Zip program to add the necessary files. Place the JDBC driver jar files in the root
directory of the .ear file (no path for those files). The CLASSPATH in the manifest.mf
file on the .ear file includes the expected filenames for the JDBC jar files for three
database vendors without actually being included in the driver files themselves:

= SQL Server: msbase jar, msutil.jar, mssqlserver.jar, sqljdbc.jar.
s Oracle: classes 12 jar, ojdbc.jar, ojdbc4.jar, ojdbc5 jar.
= DB2 for IBM i: jt400 jar.

If the file names of the JDBC driver jar files are different, add those file names to the
manifest.mf file that is located inside the meta-inf directory of the JCA Samples

RAR rar file within the sample application.ear file you are using. Be sure to preserve
the meta-inf path for the manifest.mf file when you add it back into the file.

12-12 JD Edwards EnterpriseOne Tools Connectors Guide

http://java.sun.com/j2ee/apidocs-1_0-fr/api/index.html
http://java.sun.com/j2ee/apidocs-1_0-fr/api/index.html

Samples

12.11.1.2 Configuration Files

You must configure these files:
= jdbj.ini

= jdeinterop.ini

= jdelog.properties.

These configuration files are in the config directory of the sample application EAR file.
After you customize the settings, be sure to place the files back into the EAR file in the
config directory.

12.11.1.3 Samples for the Application Server

A generic JCASamples.ear file and a WebSphere 5.x-specific JCASamples_
websphere.ear file are provided. The application server might need additional
information for some of the components contained in the EAR file. This is a list of the
sample components:

s JCASamplesE]Bjar
A JAR file that contains the Enterprise JavaBean (E]JB) classes used by the samples.
s JCASamplesRAR.rar

A rar file that contains only the resource adapter deployment descriptor. The
dependent JAR files for the resource adapter are contained in the parent directory
of the EAR file, as they need to be used by the entire application.

s JCASamplesWeb.war
A WAR file containing the servlets for the sample applications.

If you use the generic JCASamples.ear file to deeply the sample applications to the
application server, and they do not operate correctly, you might need to unpack each
of the files individually (.ear, .jar, .rar, and .war files) and repack them with the
application server's assembly tool. This step usually enables the tool to place new files
and information in existing files that enable the application to operate correctly for that
application server.

12.11.2 Deploy the Sample Applications

These general steps must be completed for deploying the sample applications to any
application server:

= Start the application server.

= Start the administrative console (whatever application that ships with the
application server that enables you to deploy applications).

= Install the enterprise application.

= Add a connection factory for the resource adapter with a JNDI name of
OneWorldJCAAdapter (with that exact spelling).

= Restart the application server.

The application server may require additional steps not listed here (see the application
server documentation for deploying enterprise applications).

12.11.3 Deploy the Sample Applications to WebSphere 5.x
Use these steps to deploy the sample applications on WebSphere 5.x:

Understanding J2EE Connector Architecture Resource Adapter 12-13

Samples

10.

11.

12.

13.
14.

15.

16.

17.

18.
19.

Start WebSphere.
Start the WebSphere Administrative Console.

Log on to the WebSphere Application Server Administrative Console using any
ID.

On the WebSphere Administrative Console, expand the applications node on the
left side of the screen, and then click the Install New Applications link.

Preparing for the Application Installation appears on the right side of the screen.

In the Preparing for the application installation portion of the screen, click Browse,
and then select JCASamples_WebSphere.ear file.

Click Next.

Continue to click Next on all successive screens until the final Summary screen
presents a Finish button at the bottom of the screen. Accept the default values
provided on each of the screens without altering any of them.

On the final Summary screen, click Finish.
WebSphere automatically generates the necessary EJB deployment code.

At the bottom of the screen, after the notice that the Application JCA samples
installed successfully, click the Save to Master Configuration link.

A Message box (indicating that changes have been made to the local
configuration) and an Enterprise Application Save section that includes a Save to
Master Configuration box appear.

In the Save to Master Configuration box, click the Save button.
You are returned to the main screen.

On the left side of the main screen, click the Enterprise Applications link from the
menu.

A list of the installed applications appears on the right side of the screen.

On the right side of the screen, click JCASamples from the list that appears under
Enterprise Applications.

In the Related Items area at the bottom of the next screen, click the Connector
Modules link.

On Connector Modules, click JCASamplesRAR rar.

On the screen with a Configuration tab, scroll to the Additional Properties area
and click the Resource Adapter link.

On the next screen with a Configuration tab, scroll to the Additional Properties
area, and then click the J2C Connection Factories link.

On the J2C Connection Factories screen, click the New button to establish a new
J2C Connection Factory.

Under the Configuration tab on the New screen, enter any value for the Name
field and OneWorldJCA Adapter for the JNDI name.

The value you enter for the Name field is used for display purposes only.
Scroll to the bottom of the screen, and then click the OK button.

In the Message box at the top of J2C Connection Factories screen, click the Save
link.

12-14 JD Edwards EnterpriseOne Tools Connectors Guide

Checklist for Resolving Issues

20. In the Save to Master Configuration area on the Save screen, click the Save button.
21. From the menu bar (at the top of the screen), click Logout.

22, Stop and restart the sever to make the application is available to run.

12.11.4 Run the Sample Applications

After you configure and deploy the sample applications, you can run each of the
sample applications, provided that the JD Edwards EnterpriseOne Server you are
accessing is operational. Use these URLs to access the samples:

s AddressBook Query: http:/ /<app http://<app server name> | <app server
port>/JCASamplesWeb/ABLogin

s SalesOrder Entry: http://<app server name> | <app server port>/JCASamples
Web /SOLogin

s PurchaseOrder Entry: http://<app server name> | <app server
port>/JCASamplesWeb /POLogin

12.12 Checklist for Resolving Issues
If the system is not working, use this checklist to ensure you have the proper setup:

= The directory location of the jdelog.properties file must be in the server's
CLASSPATH.

For example, if the jdelog.properties file is in this location:
C:\JCA\logs\jdelog.properties

you must have this entry in the server's CLASSPATH:
C:/JCA/logs/

Be sure to include a slash at the end of the path to indicate that logs is a directory
and not a file. When you make a change to the server's CLASSPATH, you must
restart the server.

= Some servers read the <security-permission-spec> element of the resource
adapter's deployment descriptor (the ra.xml file) and dynamically grant the
resource adapter the security permissions listed in those elements.

If you are executing a resource adapter-based application and experience a
java.xxx.xxxPermission Exception, you have to manually add the contents of the
<security-permission-spec> elements to the server's policy file. Consult the
server's documentation for the location and format for editing the policy file. You
should be able to simply copy and paste the elements into the server's policy file.
Any changes to the policy generally require a server restart to take effect.

If you make the changes and still experience Permission Exceptions, you might
need to move some of the permission elements that you copied from the resource
adapter domain in the policy file to the default domain in the policy file. This is
because the resource adapter classes, especially if present in the server's
CLASSPATH, might reside in the default domain and not the resource adapter
domain.

Understanding J2EE Connector Architecture Resource Adapter 12-15

Checklist for Resolving Issues

12-16 JD Edwards EnterpriseOne Tools Connectors Guide

13

Understanding jdeinterop.ini for Java
Connector

This chapter contains the following topic:

= Section 13.1, "Settings for the jdeinterop.ini File for the Java Connector”

13.1 Settings for the jdeinterop.ini File for the Java Connector

The jdeinterop.ini file includes settings the server might need. The default location for
the file is ¢ : \; however, you can configure this location. This section provides details
about the jdeinterop.ini file settings for the Java and dynamic Java connectors.
Information is organized by section, for example [JDENET]. These settings are

discussed:

= OCM

» Cache

= JDENET
s Server

= Security
s Interop

s Events

Note: Unless otherwise indicated, the sections and settings are for all
JD Edwards EnterpriseOne releases.

When you use Java interoperability connectors, you must also set up
jdbj.ini file sections.

See Also:
» /D Edwards EnterpriseOne Tools HTML Web Server Reference Guide.

13.1.1 [OCM]

Configure this [OCM] setting for the dynamic Java connector:

Understanding jdeinterop.ini for Java Connector 13-1

Settings for the jdeinterop.ini File for the Java Connector

Applicable

Setting and Typical Value Purpose Release
OCMEnabled=True Selects or clears OCM inside the dynamic Java All

connector. A value of true indicates turned on.

13.1.2 [CACHE]
Configure these [CACHE] settings for the dynamic Java connector:
Applicable

Setting and Typical Value Purpose Release
UserSession=0 Time out value (in milliseconds) for the All

dynamic Java connector user session. A zero (0)

indicates infinite time out.
SpecExpire=30000000 Maximum time (in milliseconds) that the All

dynamic Java connector keeps the fetched spec
in the cache.

13.1.3 [JDENET]

Configure these [JDENET] settings for the Java and dynamic Java connectors:

Applicabl
Setting and Typical Value Purpose e Release

enterpriseServerTimeout=90000 Timeout value for a request to the JD Edwards All
EnterpriseOne enterprise server.

maxPoolSize=30 JDENET socket connection pool size. All

serviceNameConnect=6004 Port number used by the JD Edwards All
EnterpriseOne security server.

13.1.4 [SERVER]

Configure these [SERVER] settings for Java and dynamic Java connectors:

Applicable
Setting and Typical Value Purpose Release

glossaryTextServer=]JDED:6010 The JD Edwards EnterpriseOne enterprise ~ All
server and port that provide glossary text
information.

codePage=1252 The encoding scheme, such as: All
1252 English and Western European.
932 Japanese.
950 Traditional Chinese.
936 Simplified Chinese.
949 Korean.

13.1.5 [SECURITY]

Configure these [SECURITY] settings for Java and dynamic Java connectors:

13-2 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for the jdeinterop.ini File for the Java Connector

Applicable
Setting and Typical Value Purpose Release
NumServers=1 Number of security servers set. All
SecurityServer=]JDED The JD Edwards EnterpriseOne security server. All

13.1.6 [INTEROP]

Configure these INTEROP] settings for Java and dynamic Java connectors:

Setting and Typical Value Purpose Applicable Release

Setting Time=60000 Enables the connector to access and JD Edwards
retrieve event information from the F90703 EnterpriseOne Tools
and F90704 tables. Defines the time for the 8.95 and later Tools
connector applications to start up before releases with JD
the connector starts recovering an event. Edwards

EnterpriseOne

Applications 8.10

and later

Applications

releases.

JD Edwards
EnterpriseOne Tools
8.94 and JD Edwards
EnterpriseOne
Applications 8.11.

This value is milliseconds.

RecoverylInterval=10000 Enables the connector to access and JD Edwards
retrieve event information from the F90703 EnterpriseOne Tools
and F90704 tables. Defines the time for the 8.95 and later Tools
connector applications to start up before releases with JD

the connector starts recovering an event. Edwards
. o EnterpriseOne
This value is milliseconds. Applications 8.10
and later
Applications
releases.
JD Edwards
EnterpriseOne Tools
8.94 with JD
Edwards
EnterpriseOne
Applications 8.11.
enterpriseServer=JDED The JD Edwards EnterpriseOne server. All
port=6010 The port number of the JD Edwards All
EnterpriseOne server.
manual_timout=300000 The time-out value for a transaction in All
manual commit mode.
Repository=c:\jdedwards\ Points to the location of the repository All

Interop \repository directory containing business object
libraries (generated JAR files).

13.1.7 [EVENTS]

Configure these [EVENTS] settings for Java and dynamic Java connectors:

Understanding jdeinterop.ini for Java Connector 13-3

Settings for the jdeinterop.ini File for the Java Connector

Setting and Typical Value Purpose

Applicable Release

UseGuaranteedEvents
System=True

Indicates guaranteed event delivery using
JD Edwards EnterpriseOne Tools 8.95 or
later Tools release with JD Edwards
EnterpriseOne Applications 8.10 or later
Applications release. Values are true and
false.

JD Edwards
EnterpriseOne Tools
8.95 and later Tools
releases with JD
Edwards
EnterpriseOne
Applications 8.10
and later
Applications
releases.

Transport=HTTP Defines the event transport mechanism.
Valued values are HTTP and JMS. The

default value is HTTP.

JD Edwards
EnterpriseOne Tools
8.95 and later Tools
releases with JD
Edwards
EnterpriseOne
Applications 8.10
and later
Applications
releases.

JD Edwards
EnterpriseOne Tools
8.94 with JD
Edwards
EnterpriseOne
Applications 8.11.

Locates the event service. If the value for
the Transport= setting is HTTP, then this
setting is configured.

eventServiceURL=eventSer
viceURL=http:/ /hpdev1:90
81/elevents/EventClientSe
rvice

JD Edwards
EnterpriseOne Tools
8.95 and later Tools
releases with JD
Edwards
EnterpriseOne
Applications 8.10
and later
Applications
releases.

JD Edwards
EnterpriseOne Tools
8.94 with JD
Edwards
EnterpriseOne
Applications 8.11.

jndiProviderURL=corbaloc:: Locates the event service. If the value for
denmlpsl4.mlab.jdedwards. the Transport= setting is JMS, then this
com:9810/NameServiceServ setting is configured.

er Root

JD Edwards
EnterpriseOne Tools
8.95 and later Tools
releases with JD
Edwards
EnterpriseOne
Applications 8.10
and later
Applications
releases.

JD Edwards
EnterpriseOne Tools
8.94 with JD
Edwards
EnterpriseOne
Applications 8.11.

13-4 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for the jdeinterop.ini File for the Java Connector

Setting and Typical Value Purpose Applicable Release

port=6002 The socket port number where the All
EventListener receives the events from the
JD Edwards EnterpriseOne server. This
port should not be used by any other
resource. Also, the port should not be
changed dynamically when the connector
is running, as this causes subsequent
subscriptions to be lost.

ListenerMaxConnection=10 The maximum number of connections All
allowed by the EventListener. The default
number of connections is 10, but you can
change this number. The maximum
number of connections allowed is 64.

ListenerMaxQueueEntry=10 The maximum number of events that the ~ All
EventListener can hold before processing
by the EventManager. The default number
of events for the queue is 10, but you can
change this number. The maximum
number of events that can be held in the
queue is 100.

Outbound_ Maximum number of milliseconds that the All
timeout=1200000 EventManager waits before unsubscribing
the transient event from the JD Edwards
EnterpriseOne server.

Understanding jdeinterop.ini for Java Connector 13-5

Settings for the jdeinterop.ini File for the Java Connector

13-6 JD Edwards EnterpriseOne Tools Connectors Guide

14

Understanding jdelog.properties File

This chapter contains the following topic:

» Section 14.1, "Settings for the jdelog.properties File"

14.1 Settings for the jdelog.properties File

The logging utility in the dynamic Java connector, the Java connector, and Java
connector Architecture (JCA) is built on top of Apache Open Source Project Log4j. The
jdelog.properties file defines the settings for the logging configuration. The
jdelog.properties file should be physically located in CLASSPATH.

The jdelog.properties File consists of three log files:

« [EILOG]
= [LOGI]
= [LOG2]

The following table provides a description of the parameters in each of the log files:

Parameter Description
FILE Set this value to the location of the log file.
LEVEL Set this value to one of the following;:

= SEVERE

= WARN

= APP

=« DEBUG

Note: The levels are listed above in the order of their priority, with
SEVERE being the highest priority and DEBUG being the lowest
priority. The default setting is APP.

FORMAT Set this value to one of the following:
s APPS
= TOOLS

= TOOLS_THREAD

Note: In a Production environment, the FORMAT parameter should be
set to APPS.

MAXFILESIZE Set this value to the maximum file size of the log file. The default
setting is 10MB. System performance can be affected if this value is set
too high.

Understanding jdelog.properties File 14-1

Settings for the jdelog.properties File

Parameter Description

MAXBACKUPINDEX Set this value to the maximum number of backups that need to be
maintained. The default value is 20. System performance can be
affected if this value is set too high.

COMPONENTS Identify the components that need to be logged in the file. Components
that you might use with a Java connector for interoperability include:
JDBC, RUNTIME, INTEROP, JDBJ, EVENTPROCESSOR.

The Tools Reference and HTML Web Server Reference guides provide information for
creating and managing jdelog.properties files.

See JD Edwards EnterpriseOne Tools Release Tools Reference Guide.
See JD Edwards EnterpriseOne Tools Release HTML Web Server Reference Guide.

14.1.1 [E1LOG]

14.1.2 [LOGT]

14.1.3 [LOG2]

This is the section name for the root log. The following sample configuration logs all
SEVERE and WARN messages to the jderoot.log file on the C drive.

[E1ILOG]

FILE=C:\\ConnectorEventsClient\ \log\ \jderoot.log
LEVEL=WARN

FORMAT=APPS

MAXFILESIZE=10MB

MAXBACKUPINDEX=20

COMPONENT=ALL

APPEND=TRUE

Logging RUNTIME and INTEROP components at the APP level is helpful for
application developers. Application developers can use this log to analyze the flow of
events in the web client. The following sample configuration logs all SEVERE, WARN,
and APP messages to the jas.log file on the C drive.

[LOG1]

FILE=C:\\ConnectorEventsClient\ \log\ \jas.log LEVEL=APP FORMAT=APPS
MAXFILESIZE=10MBMAXBACKUPINDEX=20 COMPONENT=RUNTIME |
INTEROP | JDBJ APPEND=TRUE

Logging RUNTIME and INTEROP components at the DEBUG level is helpful for tools
developers. Tools developers can use this log to debug tool level issues.

[LOG2]

FILE=C:\\ConnectorEventsClient\ \log\ \jasdebug.log LEVEL=DEBUG
FORMAT=TOOLS_THREAD MAXFILESIZE=10MBMBMAXBACKUPINDEX=20
COMPONENT=RUNTIME | INTEROP | JDB] APPEND=TRUE

14-2 JD Edwards EnterpriseOne Tools Connectors Guide

15

Understanding iJDEScript

This chapter contains the following topics:

Section 15.1, "iJDEScript"
Section 15.2, "iJDEScript Commands"

15.1 iJDEScript

GenCOM and GenJava use a scripting language called iJDEScript that enables you to
script code generation activities. Other than a few small differences, the scripting
language is the same for these generators. You can use iJDEScript to:

Rename business function libraries or select different business functions to create a
custom interface; for example:

library MyTestLibrary

interface MytestInterface

import B4200310 F4211FSEditLine
import B000042

This example selects the single business functions B4200310 F4211FSEditLine and
B000042 for exposure.

Use JD Edwards EnterpriseOne object aliases for more meaningful names.
Select business functions to expose; for example:

library MyAnotherLibrary

importlib CAEC

importlib CRUNTIME 1

This example selects all of the business functions in the CAEC and CRUNTIME 1
libraries for exposure.

iJDEScript scripts have a simple syntax:

comments begin with # and proceed to the end of line

whitespace is ignored

login

importlib CAEC

build

Understanding iJDEScript 15-1

iJDEScript Commands

15.2 iJDEScript Commands

i]DEScript supports a standard set of commands. These commands vary slightly for
GenCOM and GenJava. These variations are indicated in these command descriptions:

15.2.1 Build Command

The build command tells the generator to generate code for all defined interfaces and
to build the appropriate libraries.

When the build command is complete, the interface definitions are released. Using the
build command again only generates code for interfaces defined after the last build
command.

15.2.1.1 Syntax

This is an example of the syntax:

build

15.2.2 Call Command

The call command tells the generator to evaluate a subroutine with the given
parameters. Parameters appear within the subroutine in order as special macros
named %1%, %2%, and so on.

15.2.2.1 Syntax

This is an example of the syntax:

call sub [param [...]]

15.2.2.2 Example

This is an example:

login

call GenerateLib CAEC
call GenerateLib CALLBSFN
build

logout

15.2.3 Define Command

The define command tells the generator to optionally define a macro expansion. The
value is expanded first, and then stored as the expansion of macro name. If name
already has an expansion, the generator ignores this command.

15.2.3.1 Syntax

This is an example of the syntax:

15-2 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

define name value

15.2.3.2 Example

This is an example:

define vall This is a test
define val2 %vall%!

define val2 This is ignored
say %val2%

generates the output

This is a test

15.2.4 Define! Command

The define! command tells the generator to define a macro expansion. The value is
expanded first, and then stored as the expansion of macro name. If name already has
an expansion, the generator replaces the current expansion with the new expansion.

15.2.4.1 Syntax

This is an example of the syntax:

define name value

15.2.4.2 Example

This is an example:

define vall This is a test
define val2 %vall%!

define! val2 This is not ignored
say %val2%

generates the output

This is not ignored

15.2.5 Exit Command

The exit command tells the generator to exit the current subroutine or command file.

15.2.5.1 Syntax

This is an example of the syntax:

exit

Understanding iJDEScript 15-3

iJDEScript Commands

15.2.6 Help Command

The help command requests help information from the generator on all available
commands. Syntax information and a brief description are presented for each
command. If command is specified, only help for command is provided.

15.2.6.1 Syntax

This is an example of the syntax:

help [command]

15.2.7 Import Command

The import command tells the generator to retrieve the specification of a function or
group of business functions from the database and add them to the current interface
definition. If only the business function name is specified, all functions from the
specified business-function are retrieved and added to the current interface definition.
If a function name is specified, only that function is retrieved and added to the current
interface definition.

The alias option enables you to rename the function within the interface definition.
The implementation still uses the original name when invoking the business function;
however, the function is exposed as name through the interface.

15.2.7.1 Syntax

This is an example of the syntax:

import business-function [function [alias name]]

15.2.7.2 Example

This is an example:

library General

interface ReleaseMgmt

Load GetReleaseAndVersion from B9800890; call it GetRV in
ReleaseMgmt

import B4200310 F4211FSEditLine alias GetRV

Load all functions from B000042

import B000042

15.2.8 Importlib Command

The importlib command tells the generator to import all business functions from the
specified JD Edwards EnterpriseOne library, such as CAEC or CALLBSEN, into the
current library definition. Each business function group results in the definition of an
interface with the same name as the business function group and exposes as methods
the functions within that group.

15-4 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

The category parameters enables you to restrict the import to one or more specific
categories (1, 2, 3 and -; see the /Cat command line option).

15.2.8.1 Syntax

This is an example of the syntax:

importlib library [category [...]]

15.2.8.2 Example

This is an example:

library JDECOMInterfaceCAECCatl
Load all category 1 functions from CAEC
importlib CAEC 1

build

15.2.9 Interface Command

The interface command tells the generator to begin the definition of an interface. All
business functions retrieved using subsequent import commands become members of
this interface.

15.2.9.1 Syntax for COM

This is an example of the syntax:

interface interface [ProgID prog-id] [vi-prog-id]

15.2.9.2 COM Example

This is an example:

interface ReleaseMgmt ProgID SOA.ReleaseMgmt.5 SOA.ReleaseMgmt

import B4200310 F4211FSEditLine

15.2.10 Library Command

The library command tells the generator that subsequent interface and import
commands will generate definitions that belong in the library (DLL) named narme. If
the parameterset tag is also supplied, the library is used solely for parameterset
definitions.

Note: When the library command without the parameter set tag is
evaluated, parametersets for subsequent interface and import
commands appear in that library until a library command with the
parameterset tag is evaluated.

15.2.10.1 Syntax

This is an example of the syntax:

Understanding iJDEScript 15-5

iJDEScript Commands

library name [parameterset]

15.2.10.2 Example

This is an example:

library Libl

library LiblParams parameterset

Parametersets for CALLBSFN go in LiblParams, but the
business function interfaces go in Libl

importlib CALLBSFN 2 3

15.2.11 Login Command

The login command tells the generator to log on to JD Edwards EnterpriseOne. If user,
password, environment, and role are not specified, the user is prompted for the
information.

15.2.11.1 Syntax

This is an example of the syntax:

login [user password environment role]

15.2.11.2 Example

This is an example:

login me mypassword demo

15.2.12 Logout Command

The logout command tells the generator to log off of JD Edwards EnterpriseOne.

15.2.12.1 Syntax

This is an example of the syntax:

logout

15.2.13 Opt Command

The opt command tells the generator to set the value of a generator command line
parameter. The option parameter should not begin with the usual /. The value
parameter does not undergo macro expansion.

15.2.13.1 Syntax

This is an example of the syntax:

opt option value

15-6 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

15.2.13.2 Example

This is an example:

Do not generate business function interfaces, only
parameterset interfaces

opt NoBSFN

15.2.14 Rename Command

The rename command tells the generator to rename an interface or a method within an
interface. If a method is renamed, the correct business function is still called to build
the implementation, but the method is exposed through the interface with a different
name.

15.2.14.1 Syntax

This is an example of the syntax:

rename interface new

rename interface method new

15.2.14.2 Example

This is an example:

library Libl

importlib CALLBSFN

rename B000042 BatchControl

rename BatchControl FSOpenBatch Open

rename BatchControl FSCloseBatch Close

15.2.15 Say Command

The say command tells the generator to display a message on the console.

15.2.15.1 Syntax

This is an example of the syntax:

say message

15.2.15.2 Example

This is an example:

say This is a test (%OwRelease%)
generate the output

This is a test (B9)

Understanding iJDEScript 15-7

iJDEScript Commands

15.2.16 Sub Command

The sub command creates a subroutine definition. The call command may be used to
invoke the subroutine. Parameters passed to the subroutine are as special macros
named %1%, %2%, and so on.

15.2.16.1 Syntax

This is an example of the syntax:

sub name
commands

end

15.2.16.2 Example

This is an example:

sub GenerateLibrary
define source %1%
library JDECOMInterface%source%Catl
importlib %source$ 1
Create a library of category 2 business functions in source
opt NoOBSFN
library JDECOMInterface%$source%Cat2
importlib %source$ 2
Create a library of category 3 business functions in source
library JDECOMInterface%source%Cat3
importlib $%source% 3
system del /g c:\temp*.*
build
Move the libraries to a staging area
system mkdir d:\build
system mkdir d:\build\Catl
system mkdir d:\build\Cat2
system mkdir d:\build\Cat3
system move JDECOMInterface%source%Catl.* d:\build\Catl

system move JDECOMInterface%source%Cat2.* d:\build\Cat2

15-8 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

system move JDECOMInterface%source$Cat3.* d:\build\Cat3
end

call GenerateLibrary CAEC

15.2.17 System Command

The system command tells the generator to evaluate a command in the shell.

15.2.17.1 Syntax

This is an example of the syntax:

system command

15.2.17.2 Example

This is an example:

say This is a test
generates the output

This is a test

Understanding iJDEScript 15-9

iJDEScript Commands

15-10 JD Edwards EnterpriseOne Tools Connectors Guide

A

Using the COM Connector Solution for
Classic Events

This appendix contains the following topics:

»s Section A.1, "Understanding COM Connector Classic Events"

= Section A.2, "Setting Up the COM Connector for Classic Events"

m Section A.3, "Registering Components"

m Section A .4, "Subscribing to Events"

= Section A.5, "Logging COM Events"

= Section A.6, "Implementing JD Edwards EnterpriseOne Interfaces"

= Section A.8, "Registering EventSink for Persistent Subscription"

Note: This chapter is applicable only if you use classic event
delivery. Classic event delivery is available if you use JD Edwards
EnterpriseOne 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

Refer to the Guaranteed Events chapters if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 or a later
Tools release with JD Edwards EnterpriseOne Applications 8.10 or a
later Applications release.

A.1 Understanding COM Connector Classic Events

The COM connector events solution uses Microsoft's COM+ Events Service. COM+
Events Loosely Coupled Events, which matches and connects publishers and
subscribers, is part of the Microsoft Windows 2000 Component Services. The
EventClass is a COM+ component that contains interfaces and methods that are used
by the publisher to initiate events. The EventClass manages the connection between
publisher and subscribers. The EventClass.dll, which contains the IOWEvent interface,
is provided. The COM servers and COM clients must implement this interface so that
when an event is initiated, this interface is called by the COM+ Events Service and the
implementation is executed. The implementation decides what the delivered event
and the event data should do. This implementation is COM server or COM client
specific.

This illustration shows the COM connector architecture for classic events:

Using the COM Connector Solution for Classic Events A-1

Setting Up the COM Connector for Classic Events

Figure A-1 COM Connector Architecture for Classic Events (Software releases prior to JD Edwards
EnterpriseOne Tools 8.94)

4

Client Server » COM Connector IEO Kernel » EnterpriseOne

To support classic event delivery (JD Edwards EnterpriseOne Tools releases prior to
8.94), the COM connector uses the IEO kernel.

Note: You should have a basic understanding of the COM+ Events
Service.

COM+ events supports Z events, real-time events, and XAPI events.
COM+ Events Service is not dependent on JD Edwards EnterpriseOne
setup for event generation.

See Also:
s Microsoft MSDN, http://msdn.microsoft.com/.

s "Understanding Classic Events" in the JD Edwards EnterpriseOne
Tools Interoperability Guide.

s "Understanding Real-Time Events - Classic" in the JD Edwards
EnterpriseOne Tools Interoperability Guide.

s "Understanding XAPI Events - Classic" in the JD Edwards
EnterpriseOne Tools Interoperability Guide.

A.2 Setting Up the COM Connector for Classic Events

This section provides an overview of the process for setting up the COM connector
and discusses how to install and set up the COM connector to receive classic events.

A.2.1 Understanding COM Connector Set Up for Classic Events

These steps provide information for installing the COM connector so that you can
receive classic events. Once the COM connector is installed, you set up the COM
connector. Setting up the COM server includes setting up security and setting up the
identity as an interactive user. After you install and set up the COM connector, you set
up a DCOM server on a JD Edwards EnterpriseOne server machine. DCOM enables
COM objects in a distributed environment. To ensure that the interoperability client
works properly, you must set up DCOM for both a server environment and for a client
environment.

A.2.2 Installing and Setting Up the COM Connector for Classic Events

Use these steps to install and set up the COM connector so that you can receive classic
events.

A-2 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the COM Connector for Classic Events

Note: All of the COM connector required files will be installed with
the JD Edwards EnterpriseOne client. If you have the JD Edwards
EnterpriseOne client, ignore Step 1 and start with Step 2. If you do not
have the JD Edwards EnterpriseOne client and you want to set up the
COM connector on a third-party machine, start with Step 1.

Copy these files from the JD Edwards EnterpriseOne server (system\bin32) to a
directory on the desired machine.

For example, copy the files in c:\program files\]JD Edwards to a non-JD Edwards
EnterpriseOne client machine.

JDECOMConnector2.exe
JDECOMMN.dlI
callobject.dll

comlog.dll
EventManager.dll
OneWorldInterfaceTx.dll
xmlinterop.dll

jdel.dll

jdethread.dll
jdeunicode.dll

ustdio.dll

icuil8n.dll

jdeinterop.ini to c:\(root directory)
checkver.exe

ICuUC.dll

Icu\data*.*
IXXML4C2_3.d11
EventClass.dll

EventListener.dll

Create a new directory called Icu\data\ on the machine where the COM server is
located.

Copy all of the files from the JD Edwards EnterpriseOne server in folder
system\Locale\xml** into Icu\data\. Create a new system variable, ICU_DATA,
in the environment variables of the system properties and specify the path to the
Icu\data\ as the value.

Use these steps to register the COM connector:

a.

Run this command

c:\programfiles\JDEdwards\JDECOMConnector2.exe /RegServer

b. Go to c:\programfiles\jdedwards\ Or c:\b9\system\bin32 and run these

commands:

Using the COM Connector Solution for Classic Events A-3

Setting Up the COM Connector for Classic Events

regsvr32 EventManager.dll
regsvr32 EventClass.dll

4. Create the JDEinterop.ini file by setting the JD Edwards EnterpriseOne server and
port values to the JD Edwards EnterpriseOne application server with which you
want the COM server to communicate.

The COM server is now ready:.
5. Use these steps to set up security on the COM server:
a. From the Start menu, select Run.
b. Enter Dcomcnfg.exe.
c. On Distributed COM Configuration Properties, click the Default Security tab.
d. Click the Edit Default Button in Default Access Permissions group.

The Registry Value Permissions form appears. Some entries might already be
present.

e. On Registry Value Permissions, click Add.

f. On Add Users and Groups, select the appropriate domain from the List
Names From option.

g. Click Everyone, and then click Add.
Type of access should be Allow Access.
h. Click OK.
No setup is required for default configuration permissions.
6. Use these steps to set up the identity as interactive user:
a. Run DCOMCnfg.

b. On Distributed COM Configuration Properties, select JDECOMConnector2,
and then click Properties.

c. OnJDECOMConnector2Properties, click the Identity tab, and then select the
interactive user option.

d. Click Apply to apply the change.

Note: Every time you register the connector, you must set up the
identity as an interactive user. If you copy the
JDECOMConnector2.exe using Explorer, Explorer reruns the
registration, and you must set up the identity as an interactive user.

To use Callbacks (Connection Points) with the COM solution, repeat
these steps for setting up the identity as an interactive user on the
COM client machine. Most of the shipped examples use Callbacks and
require that you open the security on the client machine.

7. Use these steps to set up DCOM for a client environment:

a. From a DOS prompt on the DCOM client machine, run jdecomconnector2.exe
/RegServer.

b. At the prompt, enter oleview.exe.

c. From the menu bar, select oleview.

A-4 JD Edwards EnterpriseOne Tools Connectors Guide

Subscribing to Events

d. Click View and select Expert Mode.

e. In the oleview window under Object Classes, double-click All Objects, and
wait for all objects to appear.

f. Under All Objects, find and click Connector Class.

g. Click the Implementation tab on the right-side panel, and then click the local
server and remove anything that appears in the editing window.

h. On the Activation tab, select the Launch as Interactive User option.
i. In Remote Machine Name, enter the COM server machine name.
j- Repeat steps 5 through 8 for MathNumeric Class.
The COM connector is installed and set up. You can start the DCOM client application.

A.3 Registering Components

So that subscribers can find an event class and subscribe to it, the J]D Edwards
EnterpriseOne event class must be registered with COM+. In addition, COM+ requires
a type library that describes the event interface and methods so that subscribers and
publishers can be properly matched and connected. The type library must reside in or
be accompanied by a self-registering DLL.

To register the JD Edwards EnterpriseOne Events Class with COM+ Services, you
must:

s Add a new COM+ application for the JD Edwards EnterpriseOne event class.

» Install the JD Edwards EnterpriseOne event class.

Note: Before you register the JD Edwards EnterpriseOne Event Class
with COM+ Services, set up the COM server. The COM server can be
set up on either a JD Edwards EnterpriseOne machine or a non-JD
Edwards EnterpriseOne machine (third-party machine), or both.

See Also:

= Installing COM Connector.

A.4 Subscribing to Events

The COM connector supports both persistent and transient event subscriptions from
the JD Edwards EnterpriseOne server. The events are subscribed from the JD Edwards
EnterpriseOne server that is specified in the [INTEROP] section of the jdeinterop.ini
file. The events are received through the EventListener. The EventListener runs as long
as the COM connector is up and running. The COM connector runs as a small globe in
the bottom right corner of the Microsoft Windows taskbar.

You must also set up the [EVENTS] section of the jdeinterop.ini file.

Note: The COM connector does not support subscription of events
from multiple JD Edwards EnterpriseOne servers.

Using the COM Connector Solution for Classic Events A-5

Logging COM Events

A.5 Logging COM Events

Logging for COM events is entered in the interopDebug.log file. The error log is
interop.log.

A.6 Implementing JD Edwards EnterpriseOne Interfaces
This section discusses how to:
= Implement a JD Edwards EnterpriseOne interface.
s Create a COM+ component.
= Log on to the COM connector.
= Subscribe to an event.
= Add anew application.

s Install the event class.

A.7 Implementing a JD Edwards EnterpriseOne Interface

You must develop an object that implements the IOWEvent interface. For further
discussion and for code samples in this document, the name EventSink is used as the
object name. The object that you develop to implement the IOWEvent can have a
different name. EventSink implements the IOWEvent interface and the method within
the interface, and then consumes the JD Edwards EnterpriseOne event. The EventSink
implementation is client specific. EventSink receives the event from JD Edwards
EnterpriseOne by implementing the interface specified in EventClass.

This outline shows how to develop an EventSink component:

Option Explicit
Implements IOWEvent
Public Event OneWorldEvent (ByVal EventName As String, ByVal Data As String)

Public Sub IOWEvent_OneWorldEvent (ByVal EventName As String, ByVal Data
As String)
'// Add code specific to the client implementation here
RaiseEvent OneWorldEvent (EventName, Data)
End Sub

This list outlines the steps for you to follow to use the EventManager library and
MessageHandler Interface to subscribe to events.
1. Log on to the connector.
Successful logon returns an access number.
2. Create the EventSink object.
3. Create the MessageHandler object.

4. Call methods on the MessageHandle for Subscribe, Unsubscribe, GetTemplate,
and GetEventList for the respective event.

5. To keep the session alive and not time out from receiving events, call the
UpdateOutBoundSessionTime method on the connector interface.

This method updates the user session time to the current time.

6. To subscribe to the events as persistent, register VB EventSink in the COM+
Component Services and add the subscription for the EventClass.

A-6 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

A.7.1 Creating a COM+ Component

This sample code is for creating a COM+ component named EventSink.dll. EventSink
implements the EventClass interface IOWEvent(). You can use a name other than
EventSink.

A.7.1.1 EventSink: OneWorldTransientEventSink.cls

This is the sample code for creating a COM+ component:

Option Explicit

Implements IOWEvent
Public Event OneWorldEvent (ByVal EventName As String, ByVal Data As
String)

Public Sub IOWEvent_OneWorldEvent (ByVal EventName As String, ByVal
Data As String)

Dim flsObject As New Scripting.FileSystemObject

Dim varEventFile As TextStream

Dim strEventFile As String

strEventFile = "C:\temp\eventDataPer.xml". ' change this to a
valid directory
If Dir(strEventFile) = "" Then Set varEventFile =
flsObject.CreateTextFile(strEventFile, False, False)
Else

Set varEventFile = flsObject.OpenTextFile(strEventFile,
ForWriting, False)
End If

varEventFile.WriteLine Data

varEventFile.Close

RaiseEvent OneWorldEvent (EventName, Data)
End Sub

A.7.2 Logging on to the COM Connector

This sample code logs on to the COM connector, creates the MessageHandler object,
and performs Subscribe, Unsubscribe, GetTemplate, and GetList. Before executing the
subscriber, use the Regsvr32 command to register COMConnector.dll

A.7.2.1 COMConnector: frmLogin.frm
This code sample shows logging on to the COM connector:

Option Explicit
Public bLoginEnv As Boolean

Private Sub cmdCancel_Click()
'set the global var to false
'to denote a failed login
bLoginEnv = False
Me.Hide

End Sub

Private Sub cmdOK_Click()
'check for correct password
If txtUserName = "" Or txtenvironment = "" Then
bLoginEnv = False

Using the COM Connector Solution for Classic Events A-7

Implementing a JD Edwards EnterpriseOne Interface

MsgBox "Must Enter User Name and Environment to continue"
Else
bLoginEnv = True
Me.Hide
End If
End Sub

A.7.2.2 COMConnector Common.bas
This code sample shows creating the message handler:

Option Explicit
Dim conn As New Connector
Dim connRole As IConnector2
Dim messageHandler As New messageHandler
Dim mHandlerInterface As ImessageHandler
Dim lngAccessNumber As Long
Public Sub comm_Initialize()
Set connRole = conn
frmLogin.bLoginEnv = False
frmLogin. Show
While Not frmLogin.bLoginEnv
DoEvents
Wend
IngAccessNumber = connRole.Login (frmLogin.txtUserName,
frmLogin.txtPassword, frmLogin.txtenvironment, frmLogin.txtrole)
Set mHandlerInterface = messageHandler
End Sub

' NOTE: the code in this module is particular to this prototype.

' Different code would be used in a production version to send

' messages to JD Edwards EnterpriseOne using appropriate communication
' prototocols

Public Sub SendSubscriptionToOneWorld (eventName As String,
oneworldevent As IOWEvent, mode As Long)
mHandlerInterface.SubscribeEvent lngAccessNumber, conn, eventName,
oneworldevent, mode
End Sub
Public Sub SendUnSubscribeToOneWorld(eventName As String,
oneworldevent As IOWEvent, mode As Long)
mHandlerInterface.UnSubscribeEvent lngAccessNumber, conn,
eventName, oneworldevent, mode
End Sub
Public Sub getEventListFromOneWorld(eventList As String)
mHandlerInterface.GetEventList lngAccessNumber, conn, eventList
End Sub
Public Sub getEventTemplateFromOneWorld(eventName As String,
eventTemplate As String)
mHandlerInterface.GetEventTemplate 1ngAccessNumber, eventName,
conn, eventTemplate
End Sub

A.7.2.3 COMConnector: SubscriptionManager

This code sample shows event subscription and unsubscribe:

Option Explicit

A-8 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

Private m_SubscribedEvents As Collection

Private Sub Class_Initialize()
Set m_SubscribedEvents = New Collection
comm_Initialize

End Sub

Public Sub GetEventList (eventList As String)
getEventListFromOneWorld eventList

End Sub

Public Sub CreateTransientSubscription(eventName As String,
oneworldevent As IOWEvent)

SubscribeToOneWorldEvent eventName, oneworldevent, 0
End Sub
Public Sub CreatePersistentSubscription(eventName As String,
oneworldevent As IOWEvent)

SubscribeToOneWorldEvent eventName, oneworldevent, 1
End Sub
Public Sub RemoveTransientSubscription(eventName As String,
oneworldevent As IOWEvent)

UnSubscribeToOneWorldEvent eventName, oneworldevent, 0
End Sub
Public Sub RemovePersistentSubscription(eventName As String,
oneworldevent As IOWEvent)

UnSubscribeToOneWorldEvent eventName, oneworldevent, 1

End Sub
Public Sub GetEventTemplate (eventName As String, eventTemplate As
String)
getEventTemplateFromOneWorld eventName, eventTemplate
End Sub

Public Sub SubscribeToOneWorldEvent (eventName As String, oneworldevent
As IOWEvent, mode As Long)
'Private Function SubscribeToOneWorldEvent (EventName As String) As
'Boolean we've already subscribed if the subscription is in our list
Dim alreadySubscribed As Boolean
alreadySubscribed = (CollectionContainsString
(m_SubscribedEvents, eventName) = True)

" now do the right thing...

If (alreadySubscribed = False) Then
' this instance of the COMConnector has not seen this event
' before, so add it to our list...
m_SubscribedEvents.Add (eventName)

' and go ahead and subscribe to the event from JD Edwards

' EnterpriseOne

SendSubscriptionToOneWorld eventName, oneworldevent, mode
End If

'SubscribeToOneWorldEvent = alreadySubscribed
End Sub

Private Function CollectionContainsString(col As Collection, str As
String)
Dim colIltem As Variant
For Each colItem In col
If (colItem = str) Then
CollectionContainsString = True
Exit Function
End If

Using the COM Connector Solution for Classic Events

A-9

Implementing a JD Edwards EnterpriseOne Interface

Next
CollectionContainsString = False
End Function

Public Sub UnSubscribeToOneWorldEvent (eventName As String,
oneworldevent As IOWEvent, mode As Long)
Dim alreadySubscribed As Boolean
alreadySubscribed = (RemoveFromCollection (m_SubscribedEvents,
eventName))
If (alreadySubscribed = False) Then
MsgBox "Event Not Subscribed"
Else
' and go ahead and subscribe to the event from
' JD Edwards EnterpriseOne
SendUnSubscribeToOneWorld eventName, oneworldevent, mode
End If
' End If
End Sub
Private Function RemoveFromCollection(col As Collection, str As
String) Dim colIltem As Variant
Dim count As Integer
count = 0
For Each colItem In col
count = count + 1
If (colItem = str) Then
col.Remove count
RemoveFromCollection = True
Exit Function
End If
Next
RemoveFromCollection = False
End Function

A.7.3 Subscribing to Events

Subscriber is the GUI that gets the EventsList, EventTemplate, Subscribe, and
Unsubscribe. Subscriber is built as a VB executable. Typical usage is to get the
EventList first, which populates the option list with the events that are supported by
the JD Edwards EnterpriseOne server. Select the event that needs to be subscribed
from the JD Edwards EnterpriseOne server and the type of subscription. Click
Subscribe to add a Subscription, or click Unsubscribe to unsubscribe from the JD
Edwards EnterpriseOne server. The Subscribed events and the Received events are
depicted in separate boxes. The received event is displayed in the window on the
right. Before building the subscriber, you should use the Regsvr32 command to
register EventSink.dll and COMConnector.dll.

A.7.3.1 Subscriber: MainForm.frm

This code sample is for the GUI and the control buttons on the GUI. This code should
be built after registering the COMConnector.dll and MyEventSink.dll.

Option Explicit

Private m_SubscriptionManager As SubscriptionManager
Private WithEvents m_OneWorldTransientEventSink As
OneWlorldTransientEventSink

Private Sub Combol_Change/()

A-10 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

End Sub
Private Sub Checkl Click()

End Sub

Private Sub btnClear_Click(Index As Integer)
lvwReceivedEvents.ListItems.Clear
End Sub

N o * %

Private Sub btnGetEventTemplate Click()
Dim EventName As String
Dim EventTemplate As String
EventName = cEventList.List (cEventList.ListIndex)
m_SubscriptionManager.GetEventTemplate EventName, EventTemplate
Dim flsObject As New Scripting.FileSystemObject
Dim varTemplateFile As TextStream
Dim strTemplateFile As String
strTemplateFile = "C:\temp\event_template.xml"
If Dir(strTemplateFile) = "" Then
Set varTemplateFile = flsObject.CreateTextFile(strTemplateFile
False, False)
Else
Set varTemplateFile = flsObject.OpenTextFile(strTemplateFile,
ForWriting, False)
End If

varTemplateFile.WriteLine EventTemplate
varTemplateFile.Close

wbEventData.Navigate "c:\temp\event_template.xml"
End Sub

L **

Private Sub m_OneWorldTransientEventSink_OneWorldEvent (ByVal EventName
As String, ByVal Data As String)
' add the event name and payload to the list
Dim mTempItem As ListItem
Set mTempItem = lvwReceivedEvents.ListItems.Add()
mTempItem.Text = EventName
'mTempItem.SubItems (1) = Data
Dim flsObject As New Scripting.FileSystemObject
Dim varEventFile As TextStream
Dim strEventFile As String
strEventFile = "C:\temp\eventData.xml"
If Dir(strEventFile) = "" Then
Set varEventFile = flsObject.CreateTextFile(strEventFile,
False,False)
Else
Set varEventFile = flsObject.OpenTextFile(strEventFile,
ForWriting, False)
End If

varEventFile.WriteLine Data
varEventFile.Close

Using the COM Connector Solution for Classic Events A-11

Implementing a JD Edwards EnterpriseOne Interface

wbEventData.Navigate "c:\temp\eventdata.xml"
End Sub

N o * %

Private Sub btnGetEventList_Click()
Dim events As String
Dim myValue As String
Dim myString As String
Set m_SubscriptionManager = New SubscriptionManager
m_SubscriptionManager.GetEventList events

cEventList.Clear
myString = events
Do Until events = ""

If InStr(l, myString, ":") > 0 Then
myValue = Left (myString, InStr(l, myString, ":") - 1)
myString = Mid(myString, InStr(l, myString, ":") + 1)
Else
myValue = myString
events = ""
End If

cEventList.AddItem myValue
Loop
cEventList.ListIndex = 0
End Sub

N o * %

Private Sub btnSubscribe Click()
' subscribe to the named event.
Dim EventName As String
EventName = cEventList.List (cEventList.ListIndex)
If (chkPersist.Value = Checked) Then
m_SubscriptionManager.CreatePersistentSubscription EventName,
m_OneWorldTransientEventSink
Else
m_SubscriptionManager.CreateTransientSubscription EventName,
m_OneWorldTransientEventSink
End If
Dim mTempItem As ListItem
Set mTempItem = lvwSubscribedEvents.ListItems.Add()
mTempItem.Text = EventName
End Sub

N o * %

Private Sub btnUnsubscribe_Click()

Dim EventName As String

EventName = cEventList.List (cEventList.ListIndex)

Dim lstItem As ListItem

Dim count As Integer

Dim found As Boolean

count = 0

found = False

For Each lstItem In lvwSubscribedEvents.ListItems
count = count + 1
If 1stItem = EventName Then

lvwSubscribedEvents.ListItems.remove (count)

A-12 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing a JD Edwards EnterpriseOne Interface

GoTo remove
found = True
End If
Next
If found = False Then
MsgBox "Event Not Subscribed"
End If
remove: If (chkPersist.Value = Checked) Then
m_SubscriptionManager.RemovePersistentSubscription EventName,
m_OneWorldTransientEventSink
Else
m_SubscriptionManager.RemoveTransientSubscription EventName,
m_OneWorldTransientEventSink
End If

End Sub

D **

Private Sub btnClear0_Click()
' clear the events from the list
lvwReceivedEvents.ListItems.Clear
End Sub

Private Sub btnClose_Click()
Unload Me
End

End Sub

A.7.4 Adding a New Application

From a Microsoft Windows 2000 machine, navigate to COM+ Applications (Control
Panel > Administrative Tools > Component Services), and then expand these buttons
and folders:

Component Services > Computers > My Computer > COM+ Applications
To add a new application:
1. On Component Services, select COM+ Applications.
2. Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears. These steps apply to the wizard.
3. OnInstall or Create a New Application, select Create an empty application.

4. On Create Empty Application, enter the name of the application (for example,
JDECOMConnectorEvents).

5. Select an option for Activation Type, and then click Next.
6. On Set Application Identity, select the Interactive User option, and then click Next.
7. Click Finish.

A new application, with the name you entered in Step 4, is added to COM+
Applications.

Using the COM Connector Solution for Classic Events A-13

Registering EventSink for Persistent Subscription

A.7.5 Installing the Event Class

On Component Services, expand the folder for the new application (for example,
JDECOMConnectorEvents).

To install the event class:
1. On Component Services, select Components.
2. Right-click Components, select New, and then select Component.
The COM Component Install Wizard appears. These steps apply to the wizard.
3. OnImport or Install a Component, select Install new event class(es).

4. On Select Files to Install, browse to the EventClass.dll on the Windows 2000
machine.

5. Select EventClass.dll, and then click Open.
Install new event class appears with information in these fields:
- Files to install
- Event classes found

6. Click Next, and then click Finish.

EventClass.dll is successfully added to Component Services.

A.8 Registering EventSink for Persistent Subscription

After you register an event class in the COM+ catalog, you can add subscribers to the
event class and subscriptions to the subscribers. For persistent event subscription:

= Add anew application for EventSink.
= Install the type library component for EventSink.
= Add a subscription.

Note: To add EventSink, follow the steps in the task To add a new
application in the Connectors Guide. The name of the application is
EventSink, or a name that you prefer.

To install the EventSink component:

On Component Services, expand the folder for the new application (for example,
EventSink).

1. Select Components.
2. Right-click Components, select New, and then select Component.

The COM Component Install Wizard appears. These steps are for the wizard.
3. OnImport or Install a Component, select Install new component(s).

4. On Select Files to Install, browse to the EventSink.dll that you previously
developed.

5. Select EventSink.dll, and then click Open.
Install new component appears with information in these fields:

— Files to install

A-14 JD Edwards EnterpriseOne Tools Connectors Guide

Registering EventSink for Persistent Subscription

- Event classes found
6. Click Next, and then click Finish.
EventSink.dll is successfully added to Component Services.
To add a subscription:
In COM+ Applications, expand these folders:
JDECOMConnectorEvents > Components > EventSink.OneWorldTransientEventSink
1. Select Subscription.
2. Right-click Subscription, select New, and then select Subscription.
The COM New Subscription Wizard appears. These steps apply to the wizard.
3. On Select Subscription Method(s), chose IOWEvent, and then click Next.
4, If appropriate, select the Use all interfaces for this component option.

5. On Select Event Class, select the event class (for example,
JDEdwards.EventClass.OneWorldEventClass.1), and then press Next.

If multiple EventSink classes have implemented the event interface, then use all
event classes that implement that specified interface. If only one EventSink class
has implemented the event interface, then just select that specific class.

6. On Subscription Options, enter the name of the subscription (for example,
MySubscription).

7. In the Options area, select the Enable this subscription immediately option, and
then click Next.

8. Click Finish.

A new subscription, with the name you entered in Step 6, is added to COM+
Services. You must define the name of the event for the subscription.

9. Right-click the subscription (for example, MySubscription), and then select
Properties.

10. On MySubscription Properties, click the Options tab.
11. Chose the Enabled option.

12. In the Filter criteria field, enter the name of the event for which you want a
subscription.

Enter all of the events for which you want to subscribe. The filter criteria string
supports relational operations (=, ==, !, |=, ~, ~=, <>), nested parentheses, and
logical words (AND, OR, and NOT); for example:

EventName=="RTSOOUT' OR EventName==RTPOOUT"
13. Click OK.

Using the COM Connector Solution for Classic Events A-15

Registering EventSink for Persistent Subscription

A-16 JD Edwards EnterpriseOne Tools Connectors Guide

B

Using the Java Connector Solution for
Classic Events

This appendix contains the following topics:
m Section B.1, "Understanding Java Connector Events"

= Section B.2, "Developing the Java Client to Use the Java Connector Event Source"

Note: This chapter is applicable only if you use classic event
delivery. Classic event delivery is available when you use JD Edwards
EnterpriseOne 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10 or earlier releases of the JD Edwards EnterpriseOne
Applications.

Refer to the Guaranteed Events chapters if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 or a later
Tools release with JD Edwards EnterpriseOne Applications 8.10 or a
later Applications release.

B.1 Understanding Java Connector Events

The Java connector outbound event source architecture enables Java clients to use
either the Java connector or the dynamic Java connector to subscribe to various
transaction types in JD Edwards EnterpriseOne and receive notification upon
completion of those transactions. For example, a client can subscribe to the event
JDESOOUT and then receive notification when a sales order transaction is complete in
JD Edwards EnterpriseOne.

This diagram illustrates the subscription and notification process:

Using the Java Connector Solution for Classic Events B-1

Understanding Java Connector Events

Figure B-1 Subscription and notification process

1,
Event Subscriber - —> Event Listener
\
\\ k |
2, o

| |

| 4 |

| |

| |

|

l Java Connector |

l Dynamic Java Connector |

| |

| |

| k |

\ J

\ /

3 4
\ /
\ /
/

Event Distribution

Event Generation

Enterprise Server

1. JD Edwards EnterpriseOne clients create different types of EventListeners.

2.]D Edwards EnterpriseOne clients subscribe to various event types with the Java
connector.

3. When the Java connector receives a subscription for a given event, it subscribes to
the same event type with the event distribution kernel.

4.]D Edwards EnterpriseOne events originate from the real-time events kernel or
from callback functions in Uses.

When the event distribution kernel receives an event to which the Java connector
has subscribed, it sends the event to the Java connector.

5. The Java connector sends the event to all subscribers for that event.

The EventListener callback function is executed to receive the subscribed event.

B-2 JD Edwards EnterpriseOne Tools Connectors Guide

Developing the Java Client to Use the Java Connector Event Source

Note: The outbound events architecture is the same for the Java
connector and the dynamic Java connector. The difference is that
corresponding package location for the dynamic Java connector is
comjdedwards.system.connector.dynamic.* and
com.jdedwards.system.connector.dynamic.events.*.

For purposes of discussion in this document, the Java connector is
used to illustrate the outbound events architecture. Special notes are
added to discuss any API differences between the Java connector and
dynamic Java connector.

Do not mix the usage of APIs from the two connectors in one
application.

B.2 Developing the Java Client to Use the Java Connector Event Source

You use the Java connector outbound event source to subscribe to an outbound event.
This list identifies the tasks for setting up and using the Java client to subscribe to JD
Edwards EnterpriseOne transaction types and notify you upon completion of the
transaction:

» Create a Java class to implement an interface.
s Create a Java client application to subscribe to an event.
= Compile the Java client.

= Run the Java client.

B.2.1 Creating a Java Class to Implement an Interface

You create a Java class to implement an interface to JD Edwards EnterpriseOne.
Depending on the purpose for which you are using the Java class, implement one of
these interfaces:

s com.jdedwards.system.connector.events.CountedListener

Implement this interface if you want to know the subscription count, when the
subscription count is reached, and when the subscribed event is dropped.

s com.jdedwards.system.connector.events.PersistentListener

Implement this interface if you want the real-time event kernel to persist the
subscription when the kernel goes down and comes up, and the connection to the
Java connector is reestablished.

» com.jdedwards.system.connector.events.EventListener
Implement this interface for most other situations.

No matter which interface you implement, the implementation Java class must contain
these five methods:

//set the event type to subscribe
void setEventType(String type);
String getEventType();

//stop/start the event coming in the Java connector
void setPause(boolean pause);

boolean isPaused();

//the callback function when the event arrives

Using the Java Connector Solution for Classic Events B-3

Developing the Java Client to Use the Java Connector Event Source

void onOneWorldEvent (EventObject event);

B.2.2 Creating a Java Client Application to Subscribe to an Event

You create a Java client application to subscribe to an event. The Java client application
must:

1.
2.

N o a &

Create a new instance of the Connector class.

Use the connector object to verify the client's user ID, password, and environment,
and then log the client into JD Edwards EnterpriseOne.

Do one of these:

- For Java connector, create an EventSource object by calling the
CreateBusinessObject method of the Connector class, passing in an
Events::EventSource string identifier.

- For dynamic Java connector, Get EventSource instance by using this
command:

com. jdedwards.system.connector.dynamic.connector.events.EventSource.
getInstance()

Create an EventListener object.

Specify the specific event type to which to subscribe.
Register the EventListener object with the EventSrc object.
Develop a callback function.

When the subscribed to event arrives, the EventListener calls this callback
function. This step is optional.

B.2.2.1 Example: Using the Java Client to Subscribe to an Event Using the Java
Connector Outbound Event Source

This example illustrates how to write code for a Java client to subscribe to an event
using the Java connector outbound event source.

import java.io.*;

import javax.swing.*;

import com.jdedwards.system.connector.*;

import com.jdedwards.system.connector.events.*;

{

. //Declare Class

Connector m_connector = null;
EventSource m_theSource = null;
ListenerImpl_Pagel32 m_listener = null;

try

{

m_connector = new Connector();
int m_Access = 0;
m_Access = m_connector.Login("user", "pwd", "env");

// passing in an "Events::EventSource" string identifier.
m_theSource = (EventSource)m_connector.CreateBusinessObject
("Events: :EventSource", m_Access);

B-4 JD Edwards EnterpriseOne Tools Connectors Guide

Developing the Java Client to Use the Java Connector Event Source

m_listener = new ListenerImpl (this);
m_listener.setEventType ("JDESOOUT") ;

m_theSource.addListener(m_listener, m_Access);
}

catch (Exception e)

{

System.out.println(e.toString());
System.out.println(e.getMessage());
e.printStackTrace();

}

}

public synchronized void executeCallBack (EventObject event)
{

System.out.println("Getting the event:"+event.getData());
//execute the call back function;

}

}

class ListenerImpl_Pagel32 implements EventListener

{

String m_eventType;

boolean m_paused = false;

EventClient_Pagel32 m_client;

/** Creates new Listener*/

public ListenerImpl ()

{3}

public ListenerImpl (EventClient

{ this.m_client=client;

}

public synchronized String getEventType()

{

return m_eventType;

}

public void setEventType(java.lang.String eventType)

{

this.m_eventType = eventType;

}

public synchronized boolean isPaused/()

{

return m_paused;

}

public synchronized void setPause(boolean pause)

{

m_paused = pause;

}

public synchronized void onOneWorldEvent (EventObject pl)
{

System.out.println("Received event: " + pl.getType());
// if the arrival event is the one that client subscribes,
// the EventListner can trigger the call back function in the client
if (pl.getType().equalsIgnoreCase (m_eventType)) {
m_client.executeCallBack(pl);

}

}

Using the Java Connector Solution for Classic Events B-5

Developing the Java Client to Use the Java Connector Event Source

B.2.3 Compiling the Java Client

To compile the Java client, use this command:

set JAVA_HOME = <the path of JDK>

set OneWorld HOME = <the installation path>

set CLASSPATH=%0OneWorld_ HOME$\system\classes\base_JAR.jar

set CLASSPATH=%OneWorld_HOME%\system\classes\jdeNet_JAR.jar

set CLASSPATH=%OneWorld_ HOME%\system\classes\system JAR.jar

set CLASSPATH=%CLASSPATH%; %$OneWorld_ HOME$\system\classes\Connector.jar
set CLASSPATH=%CLASSPATH%;%OneWorld_Home%\system\classes\log4j.jar
set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xalan.jar
set CLASSPATH=%CLASSPATH$%;%OneWorld_HOME%\system\classes\xerces.jar
$JAVA_HOME%\bin\javac -classpath $CLASSPATH% EventClient.java
EventListenerImpl

B.2.4 Running the Java Client

To run the Java client, use this command:

set JAVA_HOME = <the path of JDK>

set OneWorld HOME = <the installation path>

set CLASSPATH=%0OneWorld_HOME$\system\classes\base_JAR.jar

set CLASSPATH=%OneWorld_HOME%\system\classes\jdeNet_UJAR.jar

set CLASSPATH=%OneWorld_ HOME%\system\classes\system JAR.jar

set CLASSPATH=%CLASSPATH%; %OneWorld_HOME%\system\classes\Connector.jar
set CLASSPATH=%CLASSPATH$%;%OneWorld_Home%\system\classes\log4j.jar
set CLASSPATH=%CLASSPATH$%;%OneWorld_HOME%\system\classes\xalan.jar
set CLASSPATH=%CLASSPATH%; %$OneWorld_HOME%\system\classes\xerces.jar
set CLASSPATH=%CLASSPATH%;%OneWorld HOME$\system\classes\castor.jar
$JAVA_HOME%\bin\java -classpath %cp%

EventClient

B-6 JD Edwards EnterpriseOne Tools Connectors Guide

Glossary

Accessor Methods/Assessors

Java methods to “get” and “set” the elements of a value object or other source file.

activity rule

The criteria by which an object progresses from one given point to the next in a flow.

add mode

A condition of a form that enables users to input data.

Advanced Planning Agent (APAg)

A JD Edwards EnterpriseOne tool that can be used to extract, transform, and load
enterprise data. APAg supports access to data sources in the form of rational
databases, flat file format, and other data or message encoding, such as XML.

application server

Software that provides the business logic for an application program in a distributed
environment. The servers can be Oracle Application Server (OAS) or WebSphere
Application Server (WAS).

Auto Commit Transaction

A database connection through which all database operations are immediately written
to the database.

batch processing

A process of transferring records from a third-party system to JD Edwards
EnterpriseOne.

In JD Edwards EnterpriseOne Financial Management, batch processing enables you to
transfer invoices and vouchers that are entered in a system other than JD Edwards
EnterpriseOne to JD Edwards EnterpriseOne Accounts Receivable and JD Edwards
EnterpriseOne Accounts Payable, respectively. In addition, you can transfer address
book information, including customer and supplier records, to JD Edwards
EnterpriseOne.

batch server

A server that is designated for running batch processing requests. A batch server
typically does not contain a database nor does it run interactive applications.

Glossary-1

batch-of-one

Glossary-2

batch-of-one

A transaction method that enables a client application to perform work on a client
workstation, then submit the work all at once to a server application for further
processing. As a batch process is running on the server, the client application can
continue performing other tasks.

best practices

Non-mandatory guidelines that help the developer make better design decisions.

BPEL

Abbreviation for Business Process Execution Language, a standard web services
orchestration language, which enables you to assemble discrete services into an
end-to-end process flow.

BPEL PM

Abbreviation for Business Process Execution Language Process Manager, a
comprehensive infrastructure for creating, deploying, and managing BPEL business
processes.

Build Configuration File

Configurable settings in a text file that are used by a build program to generate ANT
scripts. ANT is a software tool used for automating build processes. These scripts
build published business services.

build engineer

An actor that is responsible for building, mastering, and packaging artifacts. Some
build engineers are responsible for building application artifacts, and some are
responsible for building foundation artifacts.

Build Program

A WINB32 executable that reads build configuration files and generates an ANT script
for building published business services.

business analyst

An actor that determines if and why an EnterpriseOne business service needs to be
developed.

business function

A named set of user-created, reusable business rules and logs that can be called
through event rules. Business functions can run a transaction or a subset of a
transaction (check inventory, issue work orders, and so on). Business functions also
contain the application programming interfaces (APIs) that enable them to be called
from a form, a database trigger, or a non-JD Edwards EnterpriseOne application.
Business functions can be combined with other business functions, forms, event rules,
and other components to make up an application. Business functions can be created
through event rules or third-generation languages, such as C. Examples of business
functions include Credit Check and Item Availability.

business function event rule

See named event rule (NER).

Business Service Property Admin Tool

business service

EnterpriseOne business logic written in Java. A business service is a collection of one
or more artifacts. Unless specified otherwise, a business service implies both a
published business service and business service.

business service artifacts

Source files, descriptors, and so on that are managed for business service development
and are needed for the business service build process.

business service class method

A method that accesses resources provided by the business service framework.

business service configuration files

Configuration files include, but are not limited to, interop.ini, JDBj.ini, and
jdelog.properties.

business service cross reference

A key and value data pair used during orchestration. Collectively refers to both the
code and the key cross reference in the WSG/XPI based system.

business service cross-reference utilities

Utility services installed in a BPEL/ESB environment that are used to access JD
Edwards EnterpriseOne orchestration cross-reference data.

business service development environment

A framework needed by an integration developer to develop and manage business
services.

business services development tool

Otherwise known as JDeveloper.

business service EnterpriseOne object

A collection of artifacts managed by EnterpriseOne LCM tools. Named and
represented within EnterpriseOne LCM similarly to other EnterpriseOne objects like
tables, views, forms, and so on.

business service framework

Parts of the business service foundation that are specifically for supporting business
service development.

business service payload

An object that is passed between an enterprise server and a business services server.
The business service payload contains the input to the business service when passed to
the business services server. The business service payload contains the results from the
business service when passed to the Enterprise Server. In the case of notifications, the
return business service payload contains the acknowledgement.

business service property

Key value data pairs used to control the behavior or functionality of business services.

Business Service Property Admin Tool

An EnterpriseOne application for developers and administrators to manage business
service property records.

Glossary-3

business service property business service group

Glossary-4

business service property business service group

A classification for business service property at the business service level. This is
generally a business service name. A business service level contains one or more
business service property groups. Each business service property group may contain
zero or more business service property records.

business service property key

A unique name that identifies the business service property globally in the system.

business service property utilities

A utility API used in business service development to access EnterpriseOne business
service property data.

business service property value

A value for a business service property.

business service repository

A source management system, for example ClearCase, where business service artifacts
and build files are stored. Or, a physical directory in network.

business services server

The physical machine where the business services are located. Business services are
run on an application server instance.

business services source file or business service class

One type of business service artifact. A text file with the java file type written to be
compiled by a Java compiler.

business service value object template

The structural representation of a business service value object used in a C-business
function.

Business Service Value Object Template Utility

A utility used to create a business service value object template from a business service
value object.

business services server artifact

The object to be deployed to the business services server.

business view

A means for selecting specific columns from one or more JD Edwards EnterpriseOne
application tables whose data is used in an application or report. A business view does
not select specific rows, nor does it contain any actual data. It is strictly a view through
which you can manipulate data.

central objects merge

A process that blends a customer's modifications to the objects in a current release
with objects in a new release.

central server

A server that has been designated to contain the originally installed version of the
software (central objects) for deployment to client computers. In a typical JD Edwards
EnterpriseOne installation, the software is loaded on to one machine—the central

database credentials

server. Then, copies of the software are pushed out or downloaded to various
workstations attached to it. That way, if the software is altered or corrupted through its
use on workstations, an original set of objects (central objects) is always available on
the central server.

charts

Tables of information in JD Edwards EnterpriseOne that appear on forms in the
software.

check-in repository

A repository for developers to check in and check out business service artifacts. There
are multiple check-in repositories. Each can be used for a different purpose (for
example, development, production, testing, and so on).

checksum

A fixed-size datum computed from an arbitrary block of digital data for the purpose of
detecting accidental errors that may have been introduced during its transmission or
storage. JD Edwards EnterpriseOne uses the checksum to verify the integrity of
packages that have been downloaded by recomputing the checksum of the
downloaded package and comparing it with the checksum of the original package.
The procedure that yields the checksum from the data is called a checksum function or
checksum algorithm. JD Edwards EnterpriseOne uses the MD5 and STA-1 checksum
algorithms.

connector

Component-based interoperability model that enables third-party applications and JD
Edwards EnterpriseOne to share logic and data. The JD Edwards EnterpriseOne
connector architecture includes Java and COM connectors.

Control Table Workbench

An application that, during the Installation Workbench processing, runs the batch
applications for the planned merges that update the data dictionary, user-defined
codes, menus, and user override tables.

control tables merge

A process that blends a customer's modifications to the control tables with the data
that accompanies a new release.

correlation data

The data used to tie HTTP responses with requests that consist of business service
name and method.

credentials

A valid set of]D Edwards EnterpriseOne username/password/environment/role,
EnterpriseOne session, or EnterpriseOne token.

cross-reference utility services

Utility services installed in a BPEL/ESB environment that access EnterpriseOne
cross-reference data.

database credentials

A valid database username/password.

Glossary-5

database server

Glossary-6

database server

A server in a local area network that maintains a database and performs searches for
client computers.

Data Source Workbench

An application that, during the Installation Workbench process, copies all data sources
that are defined in the installation plan from the Data Source Master and Table and
Data Source Sizing tables in the Planner data source to the system-release number data
source. It also updates the Data Source Plan detail record to reflect completion.

deployment artifacts

Artifacts that are needed for the deployment process, such as servers, ports, and such.

deployment server

A server that is used to install, maintain, and distribute software to one or more
enterprise servers and client workstations.

direct connect

A transaction method in which a client application communicates interactively and
directly with a server application.

See also batch-of-one and store-and-forward.

Do Not Translate (DNT)

A type of data source that must exist on the iSeries because of BLOB restrictions.

embedded application server instance
An OC4] instance started by and running wholly within JDeveloper.

edit code

A code that indicates how a specific value for a report or a form should appear or be
formatted. The default edit codes that pertain to reporting require particular attention
because they account for a substantial amount of information.

edit mode

A condition of a form that enables users to change data.

edit rule

A method used for formatting and validating user entries against a predefined rule or
set of rules.

Electronic Data Interchange (EDI)

An interoperability model that enables paperless computer-to-computer exchange of
business transactions between JD Edwards EnterpriseOne and third-party systems.
Companies that use EDI must have translator software to convert data from the EDI
standard format to the formats of their computer systems.

embedded event rule

An event rule that is specific to a particular table or application. Examples include
form-to-form calls, hiding a field based on a processing option value, and calling a
business function. Contrast with the business function event rule.

Environment Workbench

Employee Work Center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user. Each
user has a mailbox that contains workflow and other messages, including Active
Messages.

enterprise server

A server that contains the database and the logic for JD Edwards EnterpriseOne.

Enterprise Service Bus (ESB)

Middleware infrastructure products or technologies based on web services standards
that enable a service-oriented architecture using an event-driven and XML-based
messaging framework (the bus).

EnterpriseOne administrator

An actor responsible for the EnterpriseOne administration system.

EnterpriseOne credentials

A user ID, password, environment, and role used to validate a user of EnterpriseOne.

EnterpriseOne development client

Historically called “fat client,” a collection of installed EnterpriseOne components
required to develop EnterpriseOne artifacts, including the Microsoft Windows client
and design tools.

EnterpriseOne extension

A JDeveloper component (plug-in) specific to EnterpriseOne. A JDeveloper wizard

is a specific example of an extension.

EnterpriseOne object

A reusable piece of code that is used to build applications. Object types include tables,
forms, business functions, data dictionary items, batch processes, business views,
event rules, versions, data structures, and media objects.

EnterpriseOne process

A software process that enables JD Edwards EnterpriseOne clients and servers to
handle processing requests and run transactions. A client runs one process, and
servers can have multiple instances of a process. JD Edwards EnterpriseOne processes
can also be dedicated to specific tasks (for example, workflow messages and data
replication) to ensure that critical processes don't have to wait if the server is
particularly busy.

EnterpriseOne resource

Any EnterpriseOne table, metadata, business function, dictionary information, or
other information restricted to authorized users.

Environment Workbench

An application that, during the Installation Workbench process, copies the
environment information and Object Configuration Manager tables for each
environment from the Planner data source to the system-release number data source. It
also updates the Environment Plan detail record to reflect completion.

Glossary-7

escalation monitor

Glossary-8

escalation monitor

A batch process that monitors pending requests or activities and restarts or forwards
them to the next step or user after they have been inactive for a specified amount of
time.

event rule

A logic statement that instructs the system to perform one or more operations based
on an activity that can occur in a specific application, such as entering a form or exiting
a field.

explicit transaction

Transaction used by a business service developer to explicitly control the type (auto or
manual) and the scope of transaction boundaries within a business service.

exposed method or value object

Published business service source files or parts of published business service source
files that are part of the published interface. These are part of the contract with the
customer.

fast path

A command prompt that enables the user to move quickly among menus and
applications by using specific commands.

file server

A server that stores files to be accessed by other computers on the network. Unlike a
disk server, which appears to the user as a remote disk drive, a file server is a
sophisticated device that not only stores files, but also manages them and maintains
order as network users request files and make changes to these files.

final mode

The report processing mode of a processing mode of a program that updates or creates
data records.

foundation

A framework that must be accessible for execution of business services at runtime.
This includes, but is not limited to, the Java Connector and JDB;.

FTP server

A server that responds to requests for files via file transfer protocol.

HTTP Adapter

A generic set of services that are used to do the basic HTTP operations, such as GET,
POST, PUT, DELETE, TRACE, HEAD, and OPTIONS with the provided URL.
instantiate

A Java term meaning “to create.” When a class is instantiated, a new instance

is created.

integration developer

The user of the system who develops, runs, and debugs the EnterpriseOne business
services. The integration developer uses the EnterpriseOne business services to
develop these components.

jde.ini

integration point (IP)

The business logic in previous implementations of EnterpriseOne that exposes a
document level interface. This type of logic used to be called XBPs. In EnterpriseOne
8.11, IPs are implemented in Web Services Gateway powered by webMethods.
integration server

A server that facilitates interaction between diverse operating systems and
applications across internal and external networked computer systems.

integrity test
A process used to supplement a company’s internal balancing procedures by locating
and reporting balancing problems and data inconsistencies.

interface table
See Z table.

internal method or value object

Business service source files or parts of business service source files that are not part of
the published interface. These could be private or protected methods. These could be
value objects not used in published methods.

interoperability model

A method for third-party systems to connect to or access JD Edwards EnterpriseOne.

in-your-face error

In JD Edwards EnterpriseOne, a form-level property which, when enabled, causes the
text of application errors to appear on the form.

jargon
An alternative data dictionary item description that JD Edwards EnterpriseOne
appears based on the product code of the current object.

Java application server

A component-based server that resides in the middle-tier of a server-centric
architecture. This server provides middleware services for security and state
maintenance, along with data access and persistence.

JDBNET

A database driver that enables heterogeneous servers to access each other's data.

JDEBASE Database Middleware

A JD Edwards EnterpriseOne proprietary database middleware package that provides
platform-independent APIs, along with client-to-server access.

JDECallObject

An API used by business functions to invoke other business functions.

jde.ini

A JD Edwards EnterpriseOne file (or member for iSeries) that provides the runtime
settings required for JD Edwards EnterpriseOne initialization. Specific versions of the

file or member must reside on every machine running JD Edwards EnterpriseOne.
This includes workstations and servers.

Glossary-9

JDEIPC

Glossary-10

JDEIPC

Communications programming tools used by server code to regulate access to the
same data in multiprocess environments, communicate and coordinate between
processes, and create new processes.

jde.log

The main diagnostic log file of JD Edwards EnterpriseOne. This file is always located
in the root directory on the primary drive and contains status and error messages from
the startup and operation of JD Edwards EnterpriseOne.

JDENET

A JD Edwards EnterpriseOne proprietary communications middleware package. This
package is a peer-to-peer, message-based, socket-based, multiprocess communications
middleware solution. It handles client-to-server and server-to-server communications
for all JD Edwards EnterpriseOne supported platforms.

JDeveloper Project

An artifact that JDeveloper uses to categorize and compile source files.

JDeveloper Workspace

An artifact that JDeveloper uses to organize project files. It contains one or more
project files.

JMS Queue

A Java Messaging service queue used for point-to-point messaging.

listener service
A listener that listens for XML messages over HTTP.

local repository

A developer’s local development environment that is used to store business service
artifacts.

Location Workbench

An application that, during the Installation Workbench process, copies all locations
that are defined in the installation plan from the Location Master table in the Planner
data source to the system data source.

logic server

A server in a distributed network that provides the business logic for an application
program. In a typical configuration, pristine objects are replicated on to the logic
server from the central server. The logic server, in conjunction with workstations,
actually performs the processing required when JD Edwards EnterpriseOne software
runs.

MailMerge Workbench

An application that merges Microsoft Word 6.0 (or higher) word-processing
documents with JD Edwards EnterpriseOne records to automatically print business
documents. You can use MailMerge Workbench to print documents, such as form
letters about verification of employment.

Object Librarian

Manual Commit transaction

A database connection where all database operations delay writing to the database
until a call to commit is made.

master business function (MBF)

An interactive master file that serves as a central location for adding, changing, and
updating information in a database. Master business functions pass information
between data entry forms and the appropriate tables. These master functions provide a
common set of functions that contain all of the necessary default and editing rules for
related programs. MBFs contain logic that ensures the integrity of adding, updating,
and deleting information from databases.

master table
See published table.

media storage object

Files that use one of the following naming conventions that are not organized into
table format: Gxxx, xxxGT, or GTxxx.

message center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user.

messaging adapter

An interoperability model that enables third-party systems to connect to JD Edwards
EnterpriseOne to exchange information through the use of messaging queues.

messaging server

A server that handles messages that are sent for use by other programs using a
messaging API. Messaging servers typically employ a middleware program to
perform their functions.

Monitoring Application

An EnterpriseOne tool provided for an administrator to get statistical information for
various EnterpriseOne servers, reset statistics, and set notifications.

named event rule (NER)

Encapsulated, reusable business logic created using event rules, rather that C
programming. NERs are also called business function event rules. NERs can be reused
in multiple places by multiple programs. This modularity lends itself to streamlining,
reusability of code, and less work.

Object Configuration Manager (OCM)

In JD Edwards EnterpriseOne, the object request broker and control center for the
runtime environment. OCM keeps track of the runtime locations for business

functions, data, and batch applications. When one of these objects is called, OCM
directs access to it using defaults and overrides for a given environment and user.

Object Librarian

A repository of all versions, applications, and business functions reusable in building
applications. Object Librarian provides check-out and check-incapabilities for
developers, and it controls the creation, modification, and use of JD Edwards
EnterpriseOne objects. Object Librarian supports multiple environments (such as

Glossary-11

Object Librarian merge

Glossary-12

production and development) and enables objects to be easily moved from one
environment to another.

Object Librarian merge

A process that blends any modifications to the Object Librarian in a previous release
into the Object Librarian in a new release.

Open Data Access (ODA)

An interoperability model that enables you to use SQL statements to extract JD
Edwards EnterpriseOne data for summarization and report generation.

Output Stream Access (OSA)

An interoperability model that enables you to set up an interface for JD Edwards
EnterpriseOne to pass data to another software package, such as Microsoft Excel, for
processing.

package

JD Edwards EnterpriseOne objects are installed to workstations in packages from the
deployment server. A package can be compared to a bill of material or kit that
indicates the necessary objects for that workstation and where on the deployment
server the installation program can find them. It is point-in-time snapshot of the
central objects on the deployment server.

package build

A software application that facilitates the deployment of software changes and new
applications to existing users. Additionally, in JD Edwards EnterpriseOne, a package
build can be a compiled version of the software. When you upgrade your version of
the ERP software, for example, you are said to take a package build.

Consider the following context: “Also, do not transfer business functions into the
production path code until you are ready to deploy, because a global build of business
functions done during a package build will automatically include the new functions.”
The process of creating a package build is often referred to, as it is in this example,
simply as “a package build.”

package location

The directory structure location for the package and its set of replicated objects. This is
usually \\deployment server\release\path_code\package\package name. The
subdirectories under this path are where the replicated objects for the package are
placed. This is also referred to as where the package is built or stored.

Package Workbench

An application that, during the Installation Workbench process, transfers the package
information tables from the Planner data source to the system-release number data
source. It also updates the Package Plan detail record to reflect completion.

Pathcode Directory
The specific portion of the file system on the EnterpriseOne development client where
EnterpriseOne development artifacts are stored.

patterns

General repeatable solutions to a commonly occurring problem in software design. For
business service development, the focus is on the object relationships and interactions.

published business service

For orchestrations, the focus is on the integration patterns (for example, synchronous
and asynchronous request/response, publish, notify, and receive/reply).

print server

The interface between a printer and a network that enables network clients to connect
to the printer and send their print jobs to it. A print server can be a computer, separate
hardware device, or even hardware that resides inside of the printer itself.

pristine environment

A JD Edwards EnterpriseOne environment used to test unaltered objects with JD
Edwards EnterpriseOne demonstration data or for training classes. You must have this
environment so that you can compare pristine objects that you modify.

processing option

A data structure that enables users to supply parameters that regulate the running of a
batch program or report. For example, you can use processing options to specify
default values for certain fields, to determine how information appears or is printed,
to specify date ranges, to supply runtime values that regulate program execution, and
SO on.

production environment

A JD Edwards EnterpriseOne environment in which users operate EnterpriseOne
software.

Production Published Business Services Web Service

Published business services web service deployed to a production application server.

program temporary fix (PTF)

A representation of changes to JD Edwards EnterpriseOne software that your
organization receives on magnetic tapes or disks.

project

In JD Edwards EnterpriseOne, a virtual container for objects being developed in Object
Management Workbench.

promotion path

The designated path for advancing objects or projects in a workflow. The following is
the normal promotion cycle (path):

11>21>26>28>38>01

In this path, 11 equals new project pending review, 21 equals programming, 26 equals
QA test/review, 28 equals QA test/review complete, 38 equals in production, 01
equals complete. During the normal project promotion cycle, developers check objects
out of and into the development path code and then promote them to the prototype
path code. The objects are then moved to the productions path code before declaring
them complete.

proxy server

A server that acts as a barrier between a workstation and the internet so that the
enterprise can ensure security, administrative control, and caching service.
published business service

EnterpriseOne service level logic and interface. A classification of a published business
service indicating the intention to be exposed to external (non-EnterpriseOne) systems.

Glossary-13

published business service identification information

Glossary-14

published business service identification information

Information about a published business service used to determine relevant
authorization records. Published business services + method name, published business
services, or *ALL.

published business service web service

Published business services components packaged as J2EE Web Service (namely, a
J2EE EAR file that contains business service classes, business service foundation,
configuration files, and web service artifacts).

published table

Also called a master table, this is the central copy to be replicated to other machines.
Residing on the publisher machine, the FO98DRPUB table identifies all of the published
tables and their associated publishers in the enterprise.

publisher

The server that is responsible for the published table. The FO8DRPUB table identifies
all of the published tables and their associated publishers in the enterprise.

QBE

An abbreviation for query by example. In JD Edwards EnterpriseOne, the QBE line is
the top line on a detail area that is used for filtering data.

real-time event

A message triggered from EnterpriseOne application logic that is intended for external
systems to consume.

refresh

A function used to modify JD Edwards EnterpriseOne software, or subset of it, such as
a table or business data, so that it functions at a new release or cumulative update
level.

replication server

A server that is responsible for replicating central objects to client machines.

rules

Mandatory guidelines that are not enforced by tooling, but must be followed in order
to accomplish the desired results and to meet specified standards.

secure by default

A security model that assumes that a user does not have permission to execute an
object unless there is a specific record indicating such permissions.

Secure Socket Layer (SSL)

A security protocol that provides communication privacy. SSL enables client and
server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

selection

Found on JD Edwards EnterpriseOne menus, a selection represents functions that you
can access from a menu. To make a selection, type the associated number in the
Selection field and press Enter.

super class

serialize

The process of converting an object or data into a format for storage or transmission
across a network connection link with the ability to reconstruct the original data or
objects when needed.

Server Workbench

An application that, during the Installation Workbench process, copies the server
configuration files from the Planner data source to the system-release number data
source. The application also updates the Server Plan detail record to reflect
completion.

SOA

Abbreviation for Service Oriented Architecture.

softcoding

A coding technique that enables an administrator to manipulate site-specific variables
that affect the execution of a given process.

source repository

A repository for HTTP adapter and listener service development environment
artifacts.

Specification merge

A merge that comprises three merges: Object Librarian merge, Versions List merge,
and Central Objects merge. The merges blend customer modifications with data that
accompanies a new release.

specification

A complete description of a JD Edwards EnterpriseOne object. Each object has its own
specification, or name, which is used to build applications.

Specification Table Merge Workbench

An application that, during the Installation Workbench process, runs the batch
applications that update the specification tables.

SSL Certificate

A special message signed by a certificate authority that contains the name of a user
and that user's public key in such a way that anyone can "verify" that the message was
signed by no one other than the certification authority and thereby develop trust in the
user's public key.

store-and-forward

The mode of processing that enables users who are disconnected from a server to enter
transactions and then later connect to the server to upload those transactions.
subscriber table

Table F98DRSUB, which is stored on the publisher server with the FO8DRPUB table
and identifies all of the subscriber machines for each published table.

super class

An inheritance concept of the Java language where a class is an instance of something,
but is also more specific. “Tree” might be the super class of “Oak” and “Elm,” for
example.

Glossary-15

table access management (TAM)

Glossary-16

table access management (TAM)

The JD Edwards EnterpriseOne component that handles the storage and retrieval of
use-defined data. TAM stores information, such as data dictionary definitions;
application and report specifications; event rules; table definitions; business function
input parameters and library information; and data structure definitions for running
applications, reports, and business functions.

Table Conversion Workbench

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table conversion

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table event rules

Logic that is attached to database triggers that runs whenever the action specified by
the trigger occurs against the table. Although JD Edwards EnterpriseOne enables
event rules to be attached to application events, this functionality is application
specific. Table event rules provide embedded logic at the table level.

terminal server

A server that enables terminals, microcomputers, and other devices to connect to a
network or host computer or to devices attached to that particular computer.

transaction processing (TP) monitor

A monitor that controls data transfer between local and remote terminals and the
applications that originated them. TP monitors also protect data integrity in the
distributed environment and may include programs that validate data and format
terminal screens.

transaction processing method

A method related to the management of a manual commit transaction boundary (for
example, start, commit, rollback, and cancel).

transaction set

An electronic business transaction (electronic data interchange standard document)
made up of segments.

trigger

One of several events specific to data dictionary items. You can attach logic to a data
dictionary item that the system processes automatically when the event occurs.
triggering event

A specific workflow event that requires special action or has defined consequences or
resulting actions.

user identification information

User ID, role, or *public.

web service softcoding template

User Overrides merge

Adds new user override records into a customer’s user override table.

value object

A specific type of source file that holds input or output data, much like a data
structure passes data. Value objects can be exposed (used in a published business
service) or internal, and input or output. They are comprised of simple and complex
elements and accessories to those elements.

versioning a published business service

Adding additional functionality /interfaces to the published business services without
modifying the existing functionality /interfaces.

Versions List merge

The Versions List merge preserves any non-XJDE and non-Z]DE version specifications
for objects that are valid in the new release, as well as their processing options data.
visual assist

Forms that can be invoked from a control via a trigger to assist the user in determining
what data belongs in the control.

vocabulary override

An alternate description for a data dictionary item that appears on a specific JD
Edwards EnterpriseOne form or report.

web application server

A web server that enables web applications to exchange data with the back-end
systems and databases used in eBusiness transactions.

web server

A server that sends information as requested by a browser, using the TCP/IP set of
protocols. A web server can do more than just coordination of requests from browsers;
it can do anything a normal server can do, such as house applications or data. Any
computer can be turned into a web server by installing server software and connecting
the machine to the internet.

Web Service Description Language (WSDL)

An XML format for describing network services.

Web Service Inspection Language (WSIL)

An XML format for assisting in the inspection of a site for available services and a set
of rules for how inspection-related information should be made.

web service softcoding record

An XML document that contains values that are used to configure a web service proxy.
This document identifies the endpoint and conditionally includes security
information.

web service softcoding template

An XML document that provides the structure for a soft coded record.

Glossary-17

Where clause

Glossary-18

Where clause

The portion of a database operation that specifies which records the database
operation will affect.

Windows terminal server

A multiuser server that enables terminals and minimally configured computers to
display Windows applications even if they are not capable of running Windows
software themselves. All client processing is performed centrally at the Windows
terminal server and only display, keystroke, and mouse commands are transmitted
over the network to the client terminal device.

wizard

A type of JDeveloper extension used to walk the user through a series of steps.

workbench

A program that enables users to access a group of related programs from a single entry
point. Typically, the programs that you access from a workbench are used to complete
a large business process. For example, you use the JD Edwards EnterpriseOne Payroll
Cycle Workbench (P07210) to access all of the programs that the system uses to process
payroll, print payments, create payroll reports, create journal entries, and update
payroll history. Examples of JD Edwards EnterpriseOne workbenches include Service
Management Workbench (P90CD020), Line Scheduling Workbench (P3153), Planning
Workbench (P13700), Auditor's Workbench (P09E115), and Payroll Cycle Workbench.

workflow

The automation of a business process, in whole or in part, during which documents,
information, or tasks are passed from one participant to another for action, according
to a set of procedural rules.

workgroup server
A server that usually contains subsets of data replicated from a master network server.
A workgroup server does not perform application or batch processing.

XAPI events

A service that uses system calls to capture JD Edwards EnterpriseOne transactions as
they occur and then calls third-party software, end users, and other JD Edwards
EnterpriseOne systems that have requested notification when the specified
transactions occur to return a response.

XML CallObject

An interoperability capability that enables you to call business functions.

XML Dispatch

An interoperability capability that provides a single point of entry for all XML
documents coming into JD Edwards EnterpriseOne for responses.

XML List

An interoperability capability that enables you to request and receive JD Edwards
EnterpriseOne database information in chunks.

Z transaction

XML Service

An interoperability capability that enables you to request events from one JD Edwards
EnterpriseOne system and receive a response from another JD Edwards EnterpriseOne
system.

XML Transaction

An interoperability capability that enables you to use a predefined transaction type to
send information to or request information from JD Edwards EnterpriseOne. XML
transaction uses interface table functionality.

XML Transaction Service (XTS)

Transforms an XML document that is not in the JD Edwards EnterpriseOne format
into an XML document that can be processed by JD Edwards EnterpriseOne. XTS then
transforms the response back to the request originator XML format.

Z event

A service that uses interface table functionality to capture JD Edwards EnterpriseOne
transactions and provide notification to third-party software, end users, and other JD
Edwards EnterpriseOne systems that have requested to be notified when certain
transactions occur.

Z table

A working table where non-JD Edwards EnterpriseOne information can be stored and
then processed into JD Edwards EnterpriseOne. Z tables also can be used to retrieve JD
Edwards EnterpriseOne data. Z tables are also known as interface tables.

Z transaction

Third-party data that is properly formatted in interface tables for updating to the JD
Edwards EnterpriseOne database.

Glossary-19

Z transaction

Glossary-20

Symbols

)/ 7-6
) for Oracle application server, 7-8
) for WebSphere, 7-7

A

adding new application for COM classic
events, A-13
adding new application for COM guaranteed
events, 6-27
auto commit
Java connector, 10-13
automatic transaction
dynamic Java connector, 9-15

BHVRCOM

COM, 4-6

Java connector, 10-15
BizTalk

guaranteed events, 6-24
BizTalk sample code, 6-24
BSEN cache

dynamic Java connector, 9-15
BSFNMethod

dynamic Java connector, 9-2
BSFNParameter

dynamic Java connector, 9-3
BSFNSpecSource

dynamic Java connector, 9-3
business function

dynamic Java connector, 9-14

using BHVRCOM, 10-15

validating spec metadata, 9-7
business function execution

COM, 3-1
business function metadata

dynamic Java connector, 9-2

Cc

jdeinterop.ini
section settings
, 132

Index

cache
dynamic Java connector, 9-15
CheckVer
COM, 3-14
Java, 10-5,10-6
Java connector
migrating from previous release, 10-5
running GenJava CheckVer, 10-8
classic events
COM, A-1
installing event class, A-14
registering a component, A-14
subscribe to, A-5, A-10
COM component
new application, A-13
COM+, A-7
compile Java client, B-6
installing the COM connector, A-2
Java, B-1
implement an interface, B-3
logging on to COM connector, A-7
registering components
COM, A-5
run Java client, B-6
setting up Java client, B-3
subscription, B-4
classpath settings
resource adapter, 12-6
code sample
classic events
COM connector log on, A-7
COM+ component, A-7
create message handler, A-8
subscriber, A-10
subscription, A-8
guaranteed events
BizTalk, 6-24
COM connector log on, 6-11
COM+ component, 6-11
create message handler, 6-12
subscriber, 6-17
subscription, 6-14
COM
BHVRCOM, 4-6
CheckVer, 3-14
running, 3-14

Index-1

classic events, A-1
EnterpriseOne interface, A-6
installing event class, A-14
new application, A-13

registering a component, A-14
subscribe to, A-5, A-10
guaranteed events, 6-1, 6-2
EnterpriseOne interface, 6-10
installing event class, 6-27
new application, 6-27
registering a component, 6-28

subscribe to, 6-16
IJDETimeZone, 4-7
inbound XML request, 4-8
installation, 4-4
interoperability process flow, 2-3
logging
classic events, A-6
guaranteed events,
logging on to
classic events, A-7
guaranteed events, 6-11
objects, 2-2
OCM support, 4-5
overview, 2-1,2-2
prepare and commit transaction, 5-1
registering components
classic events, A-5

6-6, 6-9

guaranteed events, 6-5,6-9
reliability, 4-10
server, 3-1,3-2
server deployment, 4-1
tracing

resolving issues, 4-11
tracing and logging, 4-10

COM connector

installation and set up, A-2
installation and set up for 8.94, 6-3
installation and set up for 8.95, 6-6
COM connector login sample code, A-7
COM interoperability solution
business function execution, 3-1
COM transactions, 5-1
auto commit, 5-1
calling prepare and commit, 5-1
manual commit, 5-1
COM+
classic events, A-7
guaranteed events, 6-11
COM+ component creation sample code,

Com+ two-phase commit transaction, 5-2

COMConnector login sample code, 6-11
common client interface
resource adapter, 12-8
configurable properties
resource adapter, 12-7
configure Java static and dynamic modes,

Index-2

6-11, A-7

10-5

D

data

resource adapter,
DCOM

client environment, 4-3

identity, 4-3

server, 4-2

security, 4-3

DCOM server

setting up for classic events,

12-11

A-2

setting up for guaranteed events 8.94, 6-3
setting up for guaranteed events 8.95, 6-6

jdeinterop.ini
section settings
, 72
design considerations

dynamic Java connector, 9-2

Java connector, 10-3
distributed transaction
COM+, 5-7

distributed transaction sample code,

dynamic Java connector, 9-1
BSFN cache, 9-15
BSFNMethod, 9-2
BSFNParameter, 9-3
BSFNSpecSource, 9-3
business function, 9-14
business function metadata,
design considerations, 9-2
exception handling, 9-19
generate spec image, 9-8
inbound XML request,
installation, 9-11
logging, 9-18
OCM support,
overview, 9-1
running, 9-13
SpecDictionary, 9-5

9-16

5-8,5-10

9-2

9-18

synchronize spec image, 9-11

transactions, 9-15
update spec image, 9-9
user session management,
validate spec image, 9-10
dynamic mode configuration
Java connector, 10-5

E

9-16, 9-17

EnterpriseOne interface
COM
classic events, A-6
guaranteed events,
error handling

6-10

dynamic Java connector, 9-19

Java connector, 10-18

event subscription sample code,

jdeinterop.ini
section settings
, 7-4,13-3
events client tool

6-14, A-8

Java guaranteed events, 11-10, 11-11
prerequisites, 11-10

events subscription

COM classic events, A-5, A-10
eventsclassic events, A-1
eventsguaranteed events, 6-1
exception handling

dynamic Java connector, 9-19

exception details, 10-19

fatal exception, 10-19

Java connector, 10-18

recoverable exception, 10-19

reject, 10-19

resource adapter, 12-12

G

GenCOM, 3-2,3-3
business function
using C++, 3-12
using Visual Basic, 3-11
environment
include directories, 3-5, 3-7, 3-8
lib directories, 3-5, 3-7,3-9
MSDev directories, 3-6
paths, 3-6,3-7,3-9
environment setup
Microsoft Visual Studio 2005, 3-8
Microsoft Visual Studio 6.0, 3-4
Microsoft Visual Stuidio.NET, 3-6
installation, 3-4
options, 3-9
output, 3-11

ProgID, 3-4

running, 3-9

syntax, 3-9
GenJava

environment, 10-3
classpath, 10-4
path, 10-3
options, 10-9
overview, 10-3
running, 10-8,10-9
syntax, 10-9
GenJava CheckVer
CheckVer
running, 10-6
GenJava output, 10-10
guaranteed events
asynchronous events, 11-6
BizTalk, 6-24
COM, 6-1,6-2
installing event class, 6-27
registering a component, 6-28
subscribe to, 6-16
COM component
new application, 6-27
COM+, 6-11
introspection operations for Java, 11-4
Java, 11-1

prerequisites, 11-2

Java events client tool, 11-10
configuring, 11-11
running, 11-12
using, 11-11

Java events client tool prerequisites, 11-10

logging on to COM connector, 6-11
registering components

COM, 6-5,6-9
setting up Java client, 11-4
synchronous events, 11-8

identity

COM, 4-3
iJDEScript, 15-1
iJDEScript commands, 15-2

build, 15-2

call, 15-2

define, 15-2

define!, 15-3

exit, 15-3

help, 15-4

import, 15-4

importlib, 15-4

interface, 15-5

library, 15-5

login, 15-6

logout, 15-6

opt, 15-6

rename, 15-7

say, 15-7

sub, 15-8

system, 15-9
IJDETimeZone

COM, 4-7
ImageBSFNInteractionSpecImpl, 12-10
implement an interface

Java classic events, B-3
include directories

GenCOM, 3-5,3-7,3-8
installation

COM connector, 4-4

dynamic Java connector, 9-11

Java connector, 10-6
installing event class for COM classic events,
installing event class for COM guaranteed

events, 6-27
jdeinterop.ini

section settings

, 4-6,7-3,13-3
interoperability

COM process flow, 2-3

Java connector, 8-1

Java process flow, 8-1
issues resolution

resource adapter, 12-15

A-14

Index-3

J

Java connector, 10-1
BHVRCOM, 10-15
CheckVer, 10-6
classic events, B-1
design considerations, 10-3
exception handling, 10-18
guaranteed events, 11-1
inbound XML request, 10-18
installation, 10-6
interoperability process flow, 8-1
JDEDate, 10-2
JDEMathNumeric, 10-2
OCM support, 10-16
overview, 10-1
running GenJava, 10-8,10-9
subscribing to classic events, B-4
transaction, 10-13
user session management, 10-16
versioning, 10-5
static and dynamic modes, 10-5
Java connector architecture resource adapter
overview, 12-1
Java connector exception handling
exception details, 10-19
fatal errors, 10-19
recoverable errors, 10-19
reject, 10-19
Java exception handling sample code, 10-22
Java wrapper version checker, 10-6
JDEDate
Java, 10-2
jdeinterop
resource adapter, 12-6
jdeinterop.ini, 7-1,13-1
jdelog.properties, 14-1
resource adapter, 12-6
JDEMathNumeric
Java, 10-2
jdeinterop.ini
section settings
, 7-2,13-2,7-6,7-7,7-8
JNDI
resource adapter, 12-8

L

lib directories
GenCOM, 3-5,3-7,3-9
logging
COM, 4-10
dynamic Java connector, 9-18
resource adapter, 12-12

manual commit

Java connector, 10-13
manual transaction

dynamic Java connector, 9-15

Index-4

message handle sample code, 6-12
message handler sample code, A-8
messages

dynamic Java connector, 9-18
MSDEYV directories

GenCOM, 3-6

(o)

jdeinterop.ini
section settings
, 4-6,7-1,13-1
OCM support
COM connector, 4-5
dynamic Java connector, 9-16
Java connector, 10-16

Oracle application server jdeinterop.ini additional

files, 7-8
overview
coM, 2-1,2-2

dynamic Java connector, 9-1

GenJava, 10-3

iJDEScript, 15-1

Java connector, 10-1

Java connector architecture resource

adapter, 12-1

jdeinterop.ini, 7-1,13-1

jdelog.properties, 14-1
OWBSFENInteractionSpecImpl, 12-10

P

paths
GenCOM, 3-6,3-7,39
prepare and commit transaction
coM, 5-1

R
registering components
COM
classic events, A-5, A-14
guaranteed events, 6-5,6-9, 6-28
reliability
COM, 4-10
resolving tracing issues
COM, 4-11

resource adapter, 12-1
assembly, 12-4
classpath settings, 12-6
common client interface, 12-8
components, 12-4
configurable properties, 12-7
configuration, 12-5
deployment, 12-5
exceptions, 12-12
features, 12-2
input and output data, 12-11
JCA 1.0 specification, 12-2
jdeinterop settings, 12-6
jdelog.properties, 12-6

JNDI, 12-8
samples, 12-12
deploying, 12-13
deploying to WebSphere, 12-13
preparing, 12-12
running, 12-15
security permissions, 12-6
signon types, 12-9

component-managed signon, 12-10

container-managed signon, 12-9

subclasses, 12-10

troubleshooting, 12-15
running CheckVer

coM, 3-14

Java, 10-6
running events client tool

Java guaranteed events, 11-12
running GenJava, 10-8,10-9

S

sample applications
running, 9-21
setting up, 9-20
shipped, 9-20

sample code

COM business function wrapper, 3-11

COM IJDETimeZone, 4-7
COM query IBHVRCOM, 4-6
common client interface, 12-8
distributed transaction, 5-8

creating ClientPrj, 5-10
guaranteed events

introspection, 11-4

listener, 11-6

receive events, 11-8
Java connector exception handling,
sales order entry transactional client,
sales order entry transactional object,
subscribe to classic event

Java, B-4
using BHVRCOM, 10-15

jdeinterop.ini

section settings

, 7-2,13-2
security
COM, 4-3

jdeinterop.ini
section settings
, 7-2,13-2
server
COM, 3-1
GenCOM, 3-3
COM connector, 3-2
DCOM, 4-2
signon types
resource adapter, 12-9
spec image

dynamic Java connector, 9-8, 9-9, 9-10, 9-11

SpecDictionary

dynamic Java connector, 9-5
static mode configuration
Java connector, 10-5

subscribe to classic event sample code, B-4

T
tracing
COM, 4-10
tracing and logging
COM

classic events, A-6
guaranteed events, 6-6, 6-9
transactional client sample code, 5-7
transactional object sample code, 5-4
transactions
COM connector, 5-1
COM+, 5-3
COM+ environment, 5-2
dynamic Java connector, 9-15
Java connector, 10-13
registering COM+, 5-10
troubleshooting
resource adapter, 12-15

U

user session management
dynamic Java connector, 9-16, 9-17
Java connector, 10-16

using events client tool
Java guaranteed events, 11-11

\'}

versioning
Java connector, 10-5

w

WebSphere jdeinterop.ini additional files,

X

7-7

XML request
COM, 4-8
dynamic Java connector, 9-18
using Java connector, 10-18

Index-5

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to JD Edwards EnterpriseOne Tools Connectors
	1.1 JD Edwards EnterpriseOne Tools Connectors Overview
	1.2 Connectors Implementation

	2 Understanding COM Interoperability
	2.1 COM Interoperability
	2.2 JD Edwards EnterpriseOne COM Interoperability
	2.2.1 COM Objects
	2.2.2 COM Interoperability Usage

	3 Understanding the COM Solution for Business Function Execution
	3.1 JD Edwards EnterpriseOne COM Server
	3.2 COM Connector
	3.3 GenCOM Components
	3.3.1 Understanding GenCOM
	3.3.2 Installation Information
	3.3.3 ProgID
	3.3.4 Setting Up an Environment for GenCOM
	3.3.4.1 Setting Up an Environment for GenCOM on Microsoft Visual Studio 6.0
	3.3.4.2 Example: Include Directories
	3.3.4.3 Example: Lib Directories
	3.3.4.4 Example: MSDev Directories
	3.3.4.5 Example: Paths
	3.3.4.6 Setting Up an Environment for GenCOM on Microsoft Visual Studio.NET
	3.3.4.7 Example: Include Directories
	3.3.4.8 Example: Lib Directories
	3.3.4.9 Example: Paths
	3.3.4.10 Example: Basemake Directories
	3.3.4.11 Example: Bkoffice Directories
	3.3.4.12 Example: DXSDKROOT Directories
	3.3.4.13 Example: INETSDK Directories

	3.3.5 Setting Up an Environment for GenCOM on Microsoft Visual Studio 2005
	3.3.5.1 Example: Include Directories
	3.3.5.2 Example: Lib Directories
	3.3.5.3 Example: Paths
	3.3.5.4 Example: Basemake Directories
	3.3.5.5 Example: Bkoffice Directories
	3.3.5.6 Example: DXSDKROOT Directories
	3.3.5.7 INETSDK directory

	3.3.6 Running GenCOM
	3.3.7 Using GenCOM Output
	3.3.7.1 Visual Basic
	3.3.7.2 Visual C++

	3.4 COM Wrapper CheckVer
	3.4.1 Running CheckVer
	3.4.1.1 Syntax
	3.4.1.2 Example
	3.4.1.3 Options

	4 Deploying the COM Solution for Business Function Execution
	4.1 Understanding COM Server Deployment for Business Function Execution
	4.2 Setting Up the DCOM Server for Business Function Execution
	4.2.1 Understanding DCOM Server Set Up
	4.2.2 Setting Up DCOM for a Server Environment
	4.2.3 Setting Up Security on the COM Server
	4.2.4 Setting Up the Identity as Interactive User
	4.2.5 Setting Up DCOM for a Client Environment

	4.3 Installing COM Connector
	4.3.1 Installing COM Connector on a Non-JD Edwards EnterpriseOne Client Environment

	4.4 Using OCM Support with COM Connector
	4.4.1 [INTEROP]
	4.4.2 [OCM]

	4.5 Using BHVRCOM with COM
	4.6 Use IJDETimeZone Interface
	4.6.1 XML File generated by GenCOM for IJDETimeZone

	4.7 Requesting Inbound XML Using COM Server
	4.8 Using COM Reliability
	4.9 Using COM Tracing and Logging
	4.9.1 Resolving Tracing Issues

	5 Using COM Transactions
	5.1 Understanding COM Interoperability Transactions
	5.1.1 Outline for Calling Prepare and Commit
	5.1.2 COM+ Two-Phase Commit Transaction

	5.2 Setting Up the COM+ Environment
	5.3 Running a COM+ Transactions
	5.3.1 Understanding COM+ Transactions
	5.3.2 Creating a Transactional Object (SOEProj.vbp)
	5.3.2.1 Module1 : Module1.bas

	5.3.3 Creating a Transactional Client

	5.4 Running a Distributed Transaction
	5.4.1 Understanding COM+ Transaction
	5.4.2 Creating MTStest for a Distributed Transaction (MTStest.vbp)
	5.4.2.1 MTSTestClass : MTStest.bas
	5.4.2.2 Module1 : Module1.bas

	5.4.3 Creating ClientPrj for a Distributed Transaction
	5.4.4 Registering the COM+ .dll

	6 Using COM Connector Solution for Events - Guaranteed Events
	6.1 Understanding COM Connector Guaranteed Events
	6.2 Setting Up the COM Connector for Guaranteed Events - 8.94
	6.2.1 Understanding COM Connector Set Up for Guaranteed Events - 8.94
	6.2.2 Installing and Setting Up the COM Connector for Guaranteed Events - 8.94
	6.2.3 Registering Components for COM Connector - 8.94
	6.2.4 Subscribing to Events - 8.94
	6.2.5 Logging COM Events - 8.94

	6.3 Setting Up the COM Connector for Guaranteed Events - 8.95
	6.3.1 Understanding COM Connector Setup for Guaranteed Events - 8.95
	6.3.2 Installing and Setting Up the COM Connector for Guaranteed Events - 8.95
	6.3.3 Registering Components for COM Connector - 8.95
	6.3.4 Subscribing to Events - 8.95
	6.3.5 Logging COM Events - 8.95

	6.4 Installing and Setting Up the COM Connector for Guaranteed Events - 8.96 & later releases
	6.5 Implementing JD Edwards EnterpriseOne Interfaces
	6.6 Implementing a JD Edwards EnterpriseOne Interface
	6.6.1 Creating a COM+ Component
	6.6.1.1 EventSink: OneWorldTransientEventSink.cls

	6.6.2 Logging on to the COM Connector
	6.6.2.1 COMConnector: frmLogin.frm
	6.6.2.2 COMConnector Common.bas
	6.6.2.3 COMConnector: SubscriptionManager

	6.6.3 Subscribing to an Event
	6.6.3.1 Subscriber: MainForm.frm

	6.6.4 Integrating with BizTalk
	6.6.4.1 Subscriber: BizTalk.cls

	6.6.5 Adding a New Application
	6.6.6 Installing the Event Class

	6.7 Registering EventSink for Persistent Subscription

	7 Understanding jdeinterop.ini for COM Connector
	7.1 Settings for jdeinterop.ini File for the COM Connector
	7.1.1 [OCM]
	7.1.2 [JDENET]
	7.1.3 [SERVER]
	7.1.4 [SECURITY]
	7.1.5 [DEBUG]
	7.1.6 [INTEROP]
	7.1.7 [EVENTS]
	7.1.8 [JMSEVENTS]
	7.1.8.1 WebSphere
	7.1.8.2 Oracle Application Server

	8 Understanding Java Interoperability Solution
	8.1 Java Interoperability Solution

	9 Working with the Dynamic Java Connector
	9.1 Understanding the Dynamic Java Connector
	9.2 Designing the Dynamic Java Connector
	9.2.1 Business Function Spec Metadata Introspection
	9.2.1.1 BSFNMethod
	9.2.1.2 BSFNParameter
	9.2.1.3 BSFNSpecSource
	9.2.1.4 SpecDictionary

	9.2.2 Business Function Spec Metadata Validation
	9.2.3 SpecImageConsole
	9.2.3.1 Generate Spec Image
	9.2.3.2 Usage
	9.2.3.3 Options
	9.2.3.4 Explanation
	9.2.3.5 Example
	9.2.3.6 Update Spec Image
	9.2.3.7 Usage
	9.2.3.8 Options
	9.2.3.9 Explanation
	9.2.3.10 Example
	9.2.3.11 Validate Spec Image
	9.2.3.12 Usage
	9.2.3.13 Options
	9.2.3.14 Explanation
	9.2.3.15 Example
	9.2.3.16 Synchronize Spec Image
	9.2.3.17 Usage
	9.2.3.18 Options
	9.2.3.19 Explanation
	9.2.3.20 Example

	9.3 Installing the Dynamic Java Connector
	9.4 Running the Dynamic Java Connector
	9.4.1 Calling a Business Function
	9.4.2 BSFN Cache
	9.4.3 Transaction Using the Dynamic Java Connector
	9.4.4 OCM Support for the Dynamic Java Connector

	9.5 Managing the User Session for the Dynamic Java Connector
	9.5.1 User Session Management for the Dynamic Java Connector
	9.5.2 Inbound XML Request Using the Dynamic Java Connector
	9.5.3 Logging for the Dynamic Java Connector
	9.5.4 Exception Handling for the Dynamic Java Connector

	9.6 Using Sample Applications
	9.6.1 Sample Applications
	9.6.2 Setting Up Sample Applications
	9.6.3 Running the Sample Applications

	10 Understanding the Java Connector
	10.1 Java Connector and JD Edwards EnterpriseOne
	10.1.1 JDEDate
	10.1.2 JDEMathNumeric

	10.2 Designing the Java Connector
	10.2.1 GenJava
	10.2.2 GenJava Client Environment
	10.2.2.1 PATH
	10.2.2.2 CLASSPATH

	10.2.3 Java Versioning
	10.2.3.1 Migrating from Previous Releases
	10.2.3.2 Java Connector Static and Dynamic Modes
	10.2.3.3 Using the Java Wrapper Version Checker (CheckVer)
	10.2.3.4 Running CheckVer (GenJava)
	10.2.3.5 Syntax
	10.2.3.6 Example

	10.3 Installing a Java Connector
	10.4 Running the Java Connector
	10.4.1 Using GenJava
	10.4.1.1 Running GenJava
	10.4.1.2 Syntax
	10.4.1.3 Options
	10.4.1.4 Generate Java Wrappers

	10.4.2 Using GenJava Output
	10.4.3 Transactions Using the Java Connector
	10.4.4 Using BHVRCOM through the Java Connector
	10.4.5 OCM Support for the Java Connector

	10.5 Managing the User Session for the Java Connector
	10.5.1 Understanding User Session Management for the Java Connector
	10.5.2 Inbound XML Request Using the Java Connector

	10.6 Using Exception Handling for the Java Connector
	10.6.1 Understanding Exception Handling for the Java Connector
	10.6.2 Fatal Exception
	10.6.3 Recoverable Exception
	10.6.4 Reject
	10.6.5 Exception Details
	10.6.6 Example: Java Connector Exception Handling Sample Code

	11 Using Java Connector Events - Guaranteed Events
	11.1 Understanding Java Connector Events
	11.1.1 Prerequisites

	11.2 Developing a Java Connector Events Application
	11.2.1 Understanding Java Connector Events Application Development
	11.2.2 Introspection Operations
	11.2.2.1 EventIntrospectionApp.java

	11.2.3 Asynchronous Event Sessions
	11.2.3.1 MyListener.java
	11.2.3.2 EventAsyncApp.java

	11.2.4 Synchronous Event Sessions
	11.2.4.1 EventSyncApp.java

	11.3 Using the Sample Connector Events Client
	11.3.1 Understanding Connector Events Client Tool
	11.3.2 Prerequisites for Using the Sample Connector Events Client
	11.3.3 Using the Connector Events Client Tool
	11.3.4 Configuring the Sample Connector Events Client
	11.3.4.1 To configure the Sample Connector Events Client

	11.3.5 Running the Sample Connector Events Client
	11.3.6 Resolving Java Connector Events Client Tool Issues

	12 Understanding J2EE Connector Architecture Resource Adapter
	12.1 J2EE Connector Architecture Resource Adapter
	12.2 JCA 1.0 Specification Optional Features
	12.3 Assembly and Components
	12.3.1 Components

	12.4 Deployment and Configuration
	12.4.1 Security Permissions
	12.4.2 jdeinterop.ini Settings
	12.4.3 jdbj.ini Settings
	12.4.4 jdelog.properties Settings
	12.4.5 CLASSPATH Settings
	12.4.6 Configurable Properties
	12.4.7 Java Naming and Directory Interface Settings

	12.5 Common Client Interface
	12.5.1 Implementing the Common Client Interface

	12.6 Signon Types
	12.6.1 Container-Managed Signon
	12.6.2 Component-Managed Signon

	12.7 Subclasses
	12.7.1 ImageBSFNInteractionSpecImpl
	12.7.2 OWBSFNInteractionSpecImpl

	12.8 Input and Output Data
	12.9 Logs
	12.10 Exceptions
	12.11 Samples
	12.11.1 Prepare the Samples for Deployment
	12.11.1.1 JDBC Driver .jar File
	12.11.1.2 Configuration Files
	12.11.1.3 Samples for the Application Server

	12.11.2 Deploy the Sample Applications
	12.11.3 Deploy the Sample Applications to WebSphere 5.x
	12.11.4 Run the Sample Applications

	12.12 Checklist for Resolving Issues

	13 Understanding jdeinterop.ini for Java Connector
	13.1 Settings for the jdeinterop.ini File for the Java Connector
	13.1.1 [OCM]
	13.1.2 [CACHE]
	13.1.3 [JDENET]
	13.1.4 [SERVER]
	13.1.5 [SECURITY]
	13.1.6 [INTEROP]
	13.1.7 [EVENTS]

	14 Understanding jdelog.properties File
	14.1 Settings for the jdelog.properties File
	14.1.1 [E1LOG]
	14.1.2 [LOG1]
	14.1.3 [LOG2]

	15 Understanding iJDEScript
	15.1 iJDEScript
	15.2 iJDEScript Commands
	15.2.1 Build Command
	15.2.1.1 Syntax

	15.2.2 Call Command
	15.2.2.1 Syntax
	15.2.2.2 Example

	15.2.3 Define Command
	15.2.3.1 Syntax
	15.2.3.2 Example

	15.2.4 Define! Command
	15.2.4.1 Syntax
	15.2.4.2 Example

	15.2.5 Exit Command
	15.2.5.1 Syntax

	15.2.6 Help Command
	15.2.6.1 Syntax

	15.2.7 Import Command
	15.2.7.1 Syntax
	15.2.7.2 Example

	15.2.8 Importlib Command
	15.2.8.1 Syntax
	15.2.8.2 Example

	15.2.9 Interface Command
	15.2.9.1 Syntax for COM
	15.2.9.2 COM Example

	15.2.10 Library Command
	15.2.10.1 Syntax
	15.2.10.2 Example

	15.2.11 Login Command
	15.2.11.1 Syntax
	15.2.11.2 Example

	15.2.12 Logout Command
	15.2.12.1 Syntax

	15.2.13 Opt Command
	15.2.13.1 Syntax
	15.2.13.2 Example

	15.2.14 Rename Command
	15.2.14.1 Syntax
	15.2.14.2 Example

	15.2.15 Say Command
	15.2.15.1 Syntax
	15.2.15.2 Example

	15.2.16 Sub Command
	15.2.16.1 Syntax
	15.2.16.2 Example

	15.2.17 System Command
	15.2.17.1 Syntax
	15.2.17.2 Example

	A Using the COM Connector Solution for Classic Events
	A.1 Understanding COM Connector Classic Events
	A.2 Setting Up the COM Connector for Classic Events
	A.2.1 Understanding COM Connector Set Up for Classic Events
	A.2.2 Installing and Setting Up the COM Connector for Classic Events

	A.3 Registering Components
	A.4 Subscribing to Events
	A.5 Logging COM Events
	A.6 Implementing JD Edwards EnterpriseOne Interfaces
	A.7 Implementing a JD Edwards EnterpriseOne Interface
	A.7.1 Creating a COM+ Component
	A.7.1.1 EventSink: OneWorldTransientEventSink.cls

	A.7.2 Logging on to the COM Connector
	A.7.2.1 COMConnector: frmLogin.frm
	A.7.2.2 COMConnector Common.bas
	A.7.2.3 COMConnector: SubscriptionManager

	A.7.3 Subscribing to Events
	A.7.3.1 Subscriber: MainForm.frm

	A.7.4 Adding a New Application
	A.7.5 Installing the Event Class

	A.8 Registering EventSink for Persistent Subscription

	B Using the Java Connector Solution for Classic Events
	B.1 Understanding Java Connector Events
	B.2 Developing the Java Client to Use the Java Connector Event Source
	B.2.1 Creating a Java Class to Implement an Interface
	B.2.2 Creating a Java Client Application to Subscribe to an Event
	B.2.2.1 Example: Using the Java Client to Subscribe to an Event Using the Java Connector Outbound Event Source

	B.2.3 Compiling the Java Client
	B.2.4 Running the Java Client

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	G
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

