JD Edwards EnterpriseOne Tools

Development Standards for Business Function Programming
Guide

Release 8.98 Update 4
E14699-02

March 2011

ORACLE

JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide,
Release 8.98 Update 4

E14699-02
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PrEfaCE e vii
ATAIEIICE ... bbbt Vi
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiii s vii
Related DOCUIMNENESc.cuiuiiiiiiiiieiiiciciree et Vi
CONVENEIONSoviiiiiiiiii bbb sa et sae s viii

1 Introduction to JD Edwards EnterpriseOne Tools Development Standards for

Business Function Programming
1.1 Development Standards for Business Function Programming Overviewc....cco...... 1-1
1.2 Development Standards for Business Function Programming Implementation 1-1
1.2.1 Business Function Programming Implementation Steps..........ccocoooriiiiiiiiiieincnnen. 1-1

2 Understanding Naming Conventions

2.1
2.2
2.3
2.3.1
24

Source and Header File NaIMES.........cc.occveiuieiiiiieieiieceectieeie ettt eae e e sveeaesteesesreesne e 2-1
FUNCHON INAIMES ...ttt te et e e ve e te e st e ebe e seeebeessaeesseasaaesseesssessseensennns 2-1
Variable NAINESoveveeieeieieieieieeee ettt ettt et et eseesessessessessessessessassessessassessnsessensenses 2-2

Example: Hungarian Notation for Variable Names............ccccccooiiiiiiii, 2-3
Business Function Data Structure NameSccccevieeieeiiieriecieecieecieeeeeeve e eieeeveevee e 2-3

3 Ensuring Readability

3.1
3.2
3.3
3.3.1
3.4
3.4.1
3.5
3.5.1
3.5.2
3.5.3
3.5.4

Understanding Readability ... 3-1
Maintaining the Source and Header Code Change Logcccccevuiiiiniiiiiniiiiiiiiiiieinnns 3-1
Inserting COMIMENESc.couiiiiiiiiiciiee s 3-1
Example: Inserting COMMENtS.........cccceuiuiiiiiiiiiiiiiiiiiiieciceeeeeeeee e 3-2
INdenting Code.......oouiiiiiiic e 3-2
Example: Indenting Code..........coouiiiiiiiiiic 3-2
Formatting Compound Statements...............cccceuiiiiiiiiiiiiiicceeeeeeeeeeeeas 3-2
Example: Formatting Compound Statementsccooeueiiiieiiiiiciic 3-3
Example: Using Braces to Clarify FIOWcccccccoiiiiiiiiiiiiiccs 3-3
Example: Using Braces for Ease in Subsequent Modifications.............ccccocevviiinininnee. 3-4
Example: Handling Multiple Logical EXPIessionsccccccocvvivnninnnininnninininienn, 3-5

4 Declaring and Initializing Variables and Data Structures

41

Understanding Variables and Data Structures.............oocoouoiiiiiiiiiccce 4-1

4.2
4.21
422
4.3
4.3.1
4.4
4.41
442
443
444
4.5
4.5.1
4.6
4.6.1
4.7
4.7.1
4.7.2
4.7.3
4.7.3.1

Using Define Statements............cooueuiiiirieiiii e 4-1
Example: #define in Source File...........ccoooiii 4-1
Example: #define in Header File..........c.ccccooiiiiiiiiiiiiiicceccecceecceneeenes 4-2

Using Typedef Statements.............ccouoviiiiiiiiii e 4-2
Example: Using Typedef for a User-Defined Data Structure...........cccccoeiiiiiinnnnnns 4-2

Creating Function Prototypes ... 4-3
Example: Creating a Business Function Prototype..........cccooeieiiiiiiiiicci, 4-3
Example: Creating an Internal Function Prototype........cccoooiiiiiiic 4-3
Example: Creating an External Business Function Definitionccccccccoeeecicnnne. 4-4
Example: Creating an Internal Function Definition ..o 4-4

Initializing Variables..........cc.oii s 4-4
Example: Initializing Variables..........c.cccocoiiiiiiiiiiceecceeeeeeeeeeeeeeeeennes 4-5

Initializing Data StUCHUIES. ..o 4-6
Example: Using Memset to Reset the Data Structure to Null ..., 4-6

Using Standard Variables ...t 4-7
Using Flag Variables............oooiiiiiii 4-7
Using Input and Output Parametersccoooooiiiiiii, 4-7
Using Fetch Variables..........ccooiiicc e 4-8

Example: Using Standard Variablescccoooiiiiii 4-8

5 Applying General Coding Guidelines

5.1
5.1.1
51.1.1
5.1.2
5.1.2.1
5.1.2.2
5.2
5.2.1
5.2.1.1
5.2.2
5.2.2.1
5.2.3
5.2.3.1
5.3
5.3.1
5.4
5.5

5.6
5.6.1
5.6.2
57

5.8
5.8.1
5.9
5.9.1
5.10

Using FUNCtion Callscccoviiiiiiiiiiiiiiiic 5-1
Calling an External Business FUNCHon ..o, 5-1
Example: Calling an External Business Functionc.cccccccocvceciiicicccene. 5-2

Calling an Internal Business FUNCHONccccoiiiiiiii 5-2
Example: Calling an Internal Business Function with No Return Value............. 5-3
Example: Calling an Internal Business Function with a Return Value................. 5-3

Passing Pointers between Business FUNCHONS...........ccciieiiiiiiiiiiiiiiiiiiis 5-4
Storing an Address in an ATTAYccccceueiriicieiiiiiicie e 5-4
Example: Storing an Address in an ATrayccccceeeeeeerreveeennrnsesneeeeescseeenene 5-4
Retrieving an Address from an Array ... 5-5
Example: Retrieving an Address from an Arrayccccccceeeeeeicrieeiiieneeinnns 5-5
Removing an Address from an ATTay ... 5-5
Example: Removing an Address from an Array..........ccoceeirieiniiccieinicieenn, 5-5
Allocating and Releasing MeMOTYcccccciuiiiiiiiiiiiiiiiiiiieiicercieiiereeeeseiiese e 5-5
Example: Allocating and Releasing Memory within a Business Function.................. 5-5
Using hRequest and hUSETcccooeiiiiiiiiiiiiiiiccccc 5-6
TYPECASHINE ..ot 5-6
Comparison TESHNEccooeiiviiiiiiiii s 5-6
Example: Comparison TeStccoviiiiiiiiiiiiiiiiiicc s 5-6
Example: Creating TRUE or FALSE Test Comparison that Uses Boolean Logic....... 5-6
Copying Strings with jdeStrcpy or JAESHNCPYcucveveuiiiiiciiiiccceccceeceee s 5-7
Using the Function Clean Up ATea ..ot 5-7
Example: Using the Function Clean Up Area to Release Memory..........ccccocouevrunnnnne. 5-7
Inserting Function Exit POINtS........cccooiiiiiiiiiiin, 5-8
Example: Inserting an Exit Point in @ FUNCHON.......c.ccooiiiiiiii 5-8
Terminating @ FUNCHON ..o 5-9

6 Coding for Portability

6.1

6.2

6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.2
6.3.3
6.3.3.1
6.3.4
6.3.4.1
6.3.5

Portability CONCEPEScvoviieeieiiici e 6-1
Portability GUIAELINESc.ciiuimiiiiiiiiiiciceeeee e 6-1
Preventing Common Server Build Errors and Warnings ..o, 6-2
Comments within COMMENtScccceiiiiiiiiiiiiiiies 6-2
Example: C Comments that Comply with the ANSI Standardcccccccceeeeee. 6-2
Example: C Comments that Comply with the ANSI Standardcccccceveneinn. 6-3
Example: Comments within Comments Cause Problems on Different Servers. 6-3

New Line Character at the End of a Business Function..........cccccooevviiiniininnnnnn, 6-3
Use of NUll Character.........coceiiiiiiiiiiiiiiiiiie e 6-4
Example: Use of NULL Character..........ccoooeuiiiioiriiiiiicieecciecee e 6-4
Lowercase Letters in Include Statements.............cccoeevviiiiiiiiiiiccc, 6-4
Example: Use of Lowercase Letters in Include Statements.............ccccceeveiiveninnnns 6-4
Initialized Variables that are Not Referenced.............ccccceviiiiiiiiiiiiiiiins 6-4

7 Understanding JD Edwards EnterpriseOne Defined Structures

71
7.2
7.2.1
722

MATH_NUMERIC Data TYPe.....ccooiiiieieiicieieiiccie et 7-1
JDEDATE Data TYPe ...cccovviiiiiiiiiiiciiiicicci s 7-2
Using Memcpy to Assign JDEDATE Variables.............ccooooiiiiiii 7-3
JDEDATECOPY ...ttt s s s 7-3

8 Implementing Error Messages

8.1
8.2
8.2.1
8.3
8.3.1
8.4
8.4.1
8.5

Understanding Error MeSSagescccueueiiriiiiiiiicie et 8-1
Inserting Parameters for Error Messages in IpDS........ccccccciiiiiiiiiiiiiicceeceeeeenas 8-2
Example: Parameters in IpDS for an Error Message..........c.cccoeeueieiiiiiiiciniiiiciciennnn, 8-2
Initializing Behavior EXTOTScooouiiiiiiii e 8-3
Example: Initialize Behavior EXror..........cocooiiiiiiiiiiccieeeecccceeeeeeenenenas 8-3
Using Text Substitution to Display Specific Error Messagescccoeeuvirucieiiininicnciinne. 8-3
Example: Text Substitution in an Error Messagecccoeeveirieieiiicicieicecccece, 8-3
Mapping Data Structure Errors with jdeCallObjectccccocecueuiiriiiiiciiieiiicreccinene 8-4

9 Understanding Data Dictionary Triggers

9.1

Data Dictionary TTIGZEeTrsccoviiiiiiiiiiiiiiiiiii s 9-1

10 Understanding Unicode Compliance Standards

10.1
10.2
10.2.1
10.3
10.3.1
10.4
10.5
10.6
10.7
10.7.1

Unicode Compliance Standards ... 10-1
Unicode String FUNCHONSc.viiiiiiiiciei s 10-2

Example: Using Unicode String FUNCLONSccccoiiiiiiiiiiiiiiicccccccce 10-2
Unicode Memory FUNCHONS ..o 10-3

Example: Using jdeMemset when Setting Characters to Values other than NULL 10-3
Pointer Arithmeticc.coveieeiiiiriciiece ettt 10-3
OffSEES vt 10-4
MATH_NUMERIC APIS.....coiiiimiiiiiiiiiiiiiicssssss s ssssessssssnnes 10-5
Third-Party APISccoiiiiii s 10-6

Example: Third-Party APT ..o 10-6

10.8 FIat-File APIS ..oovoiieiicitctree ettt ettt ettt e 10-6

10.8.1 Example: Flat-File APIS........cccocoiiiiiiiiiiiicc s 10-6

11 Understanding Standard Header and Source Files
11.1 StaNAArd HEAAETocuveiiieeeieece ettt ettt ettt b et b e beera b ens 11-1
11.1.1 Business Function Name and Descriptionccccccceueeiiiciniccnncecceecceeeenes 11-2
11.1.2 Copyright NOICE «..eviieii s 11-2
11.1.3 Header Definition for a Business FUNCHONc.cccceevieiiieieiiicieieceeeeeee e, 11-2
11.1.4 Table Header INCIUSIONScceieuirieiiriiieieieteteteeeeeree e se st esae e saesaeseesassassessens 11-3
11.15 External Business Function Header INCIUSIONSc.ccceecvevieeieriieienieiececeeeieeeens 11-3
11.1.6 GLODAL DEfINTTIONS ..ottt ettt ettt a et sttt e st et et et et e st ebeeaeeaeas 11-3
11.1.7 SrUCtUre DEfINGtiONSccveieieieieieiee ettt st sa s e b e s e b e s esaeseasens 11-3
11.1.8 DS Template Type Definitions..........cccoeiiuiiiiiiiiiiiiiiiiiieiis 11-3
11.1.9 Source Preprocessing Definitions..........c.cooirurieiiiiciiiniiicc 11-3
11.1.10 Business Function Prototypes ..., 11-3
11.1.11 Internal Function Prototypes ... 11-3
11.2 StANAArd SOUICE ...ovviniieiieiectieeetet ettt ettt st esbe e b e beessesaeessesseessesreessessaensensenns 11-4
11.2.1 Business Function Name and Descriptioncccccccoeucciiiiennicinncccereceeeeens 11-5
11.2.2 Copyright NOTICE «..eviiieii e 11-5
11.2.3 INOTES ...ttt t ettt ettt et et ese et essebessebanseb e s ese st esesesessesersesesseseeseneesenesanens 11-6
11.2.4 GLODAl DEfINItIONS .. .euveierierieiieiieeieietietiste et eiest et ettt esaeses e ssessessessessessessessessessesassensens 11-6
11.2.5 Header File for Associated Business FUNCHONccceecveviieiiriiecienieieeceeie e 11-6
11.2.6 Business FUNCHON HEAAETc.ocveiiiiiiieieeceeeeeeeeeeeee ettt 11-6
11.2.7 Variable DeClarationsccieeeierierieieieieieieesestesessessessesssesseesessessessessessessessessssessens 11-6
11.2.8 DEClAre SEIUCTUTIEScveivieieieeietteieste ettt se et te e e teste et e sbeesaessessaessesssessesssessenssans 11-6
11.2.9 POINEETS ..ottt ettt ettt et ettt bbbt e st et e saese et esessesessesersesessesesseseesansasanens 11-6
11.2.10 Check for NULL POINEETSccveieieieiiiietiriisieieieieteteeeae e se e e ssessessesaessesaesassessens 11-6
11.2.11 SEE POINEETS ..vvevviiieieettei ettt ettt ae sttt e e s se e s e seessesseessesseessesseessassenssenseans 11-6
11.2.12 MaiN ProCeSSINGcvcveviiiiitiiiiiietcieieietetet e 11-7
11.2.13 FUNCHON Clean UpPc.cuiuiiiiiiiiciciiccieeeeiee e 11-7
11.2.14 Internal Function Comment BIOCKccoecueiiriieriieieiieceseeeeeeeneeeee et 11-7

Glossary

Index

vi

Preface

Welcome to the JD Edwards EnterpriseOne Tools Development Standards for Business
Function Programming Guide.

Audience

This guide is intended for developers and technical consultants who are responsible
for creating and modifying business functions.

This guide assumes you have a working knowledge of the following:
® The principles and customary practices of your business area.

¢ C++ programing.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

You can access related documents from the JD Edwards EnterpriseOne Release
Documentation Overview pages on My Oracle Support. Access the main
documentation overview page by searching for the document ID, which is 876932.1, or
by using this link:
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id
=876932.1

To navigate to this page from the My Oracle Support home page, click the Knowledge
tab, and then click the Tools and Training menu, JD Edwards EnterpriseOne, Welcome
Center, Release Information Overview.

This guide contains references to server configuration settings that JD Edwards
EnterpriseOne stores in configuration files (such as jde.ini, jas.ini, jdbj.ini,
jdelog.properties, and so on). Beginning with the JD Edwards EnterpriseOne Tools

vii

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1

Release 8.97, it is highly recommended that you only access and manage these settings
for the supported server types using the Server Manager program. See the Server
Manager Guide on My Oracle Support.

Conventions

The following text conventions are used in this document:

Convention Meaning
Bold Indicates field values.
Italics Indicates emphasis and JD Edwards EnterpriseOne or other

book-length publication titles.

Monospace Indicates a JD Edwards EnterpriseOne program, other code
example, or URL.

viii

1

Introduction to JD Edwards EnterpriseOne
Tools Development Standards for Business

Function Programming

This chapter contains the following topics:

= Section 1.1, "Development Standards for Business Function Programming
Overview"

= Section 1.2, "Development Standards for Business Function Programming
Implementation”

1.1 Development Standards for Business Function Programming

Overview

Business Function Programming is an integral part of Oracle's JD Edwards
EnterpriseOne tool set. Application developers can attach custom functionality to
application and batch processing events by using business functions. You program
business functions are programmed in C code, discussed in this guide, or as Named
Event Rules.

1.2 Development Standards for Business Function Programming
Implementation

This section provides an overview of the steps that are required to implement
Development Standards for Business Function Programming.

In the planning phase of your implementation, take advantage of all JD Edwards
EnterpriseOne sources of information, including the installation guides and
troubleshooting information.

1.2.1 Business Function Programming Implementation Steps

This table lists the steps for JD Edwards EnterpriseOne Tools Business Function
Programming implementation.

= Set up default project in OMW.

See "Understanding JD Edwards EnterpriseOne OMW Configuration" in the JD
Edwards EnterpriseOne Tools Object Management Workbench Guide.

= Configure OMW transfer activity rules and allowed actions.

Introduction to JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming 1-1

Development Standards for Business Function Programming Implementation

See "Understanding JD Edwards EnterpriseOne OMW Configuration" in the JD
Edwards EnterpriseOne Tools Object Management Workbench Guide.

= Set up default location and printers.

See |D Edwards EnterpriseOne Tools Development Tools: Report Printing Administration
Technologies Guide.

1-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

2

Understanding Naming Conventions

This chapter contains the following topics:

s Section 2.1, "Source and Header File Names"
m Section 2.2, "Function Names"

s Section 2.3, "Variable Names"

m Section 2.4, "Business Function Data Structure Names"

2.1 Source and Header File Names

Source and header file names can be a maximum of 8 characters and should be
formatted as bxxyyyy, where:

= b =BSFN object
= xx (second two digits) = The system code, such as:
- 01 = Address Book
- 04 = Accounts Payable
= yyyyy (the last five digits) = A sequential number for the system code, such as:
— 00001 = The first source or header file for the system code
— 00002 = The second source or header file for the system code
Both the C source and the accompanying header file should have the same name.

This table shows examples of this naming convention:

System System Code Source Number Source File Header File
Address Book 01 10 b0100010.c b0100010.h
Accounts 04 58 b0400058.c b0400058.h
Receivable

General Ledger 09 2457 b0902457.c b0902457.h

2.2 Function Names

An internal function can be a maximum of 42 characters and should be formatted as
Ixxxxxx_a, where:

s = Aninternal function

. xxxxxx = The source file name

Understanding Naming Conventions = 2-1

Variable Names

= a = The function description

Function descriptions can be up to 32 characters in length, and must not contain
spaces. Be as descriptive as possible and capitalize the first letter of each word,
such as ValidateTransactionCurrencyCode. When possible use the major table
name or purpose of the function.

An example of a Function Name is 14100040_CompareDate

Note: Do not use an underscore after I.

2.3 Variable Names

Variables are storage places in a program and can contain numbers and strings.
Variables are stored in the computer's memory. Variables are used with keywords and
functions, such as char and MATH_NUMERIC, and must be declared at the
beginning of the program.

A variable name can be up to 32 characters in length. Be as descriptive as possible and
capitalize the first letter of each word.

You must use Hungarian prefix notation for all variable names, as shown in this table:

Prefix Description

c JCHAR

Sz NULL-terminated JCHAR string
z ZCHAR

V44 NULL-terminated ZCHAR string
n short

1 long

b Boolean

mn MATH_NUMERIC

jd JDEDATE

Ip long pointer

i integer

by byte

ul unsigned long (identifier)

us unsigned Short

ds data structures

h handle

e enumerated types

id id long integer, JDE data type for returns
ut JDEUTIME

sz VARCHAR

2-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Business Function Data Structure Names

2.3.1 Example: Hungarian Notation for Variable Names

These variable names use Hungarian notation:

Variable Description

JCHAR cPaymentRecieved;
JCHART] szCompanyNumber = _J(00000);
short nLoopCounter;

long int ITaxConstant;

BOOL bIsDateValid;
MATH_NUMERIC mnAddressNumber;
JDEDATE jdGLDate;
LPMATH_NUMERIC IpAddressNumber;
int iCounter;

byte byOffsetValue;
unsigned long ulFunctionStatus;
DO0500575A dsInputParameters;
JDEDB_RESULT idJDEDBResult;

2.4 Business Function Data Structure Names

The data structure for business function event rules and business functions should be
formatted as DxxyyyyA, where:

D = Data structure

xx (second two digits) = The system code, such as
- 01 = Address Book

- 02 = Accounts Payable

yyyy = A next number (the numbering assignments follow current procedures in
the respective application groups)

A = An alphabetical character (such as A, B, C and so on) placed at the end of the
data structure name to indicate that a function has multiple data structures

Even if a function has only one data structure, you should include the A in the
name.

An example of a Business Function Data Structure Name is D050575A.

Understanding Naming Conventions 2-3

Business Function Data Structure Names

2-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

3

Ensuring Readability

This chapter contains the following topics:

Section 3.1, "Understanding Readability"

Section 3.2, "Maintaining the Source and Header Code Change Log"
Section 3.3, "Inserting Comments"

Section 3.4, "Indenting Code"

Section 3.5, "Formatting Compound Statements"

3.1 Understanding Readability

Readable code is easier to debug and maintain. You can make code more readable by
maintaining the change log, inserting comments, indenting code, and formatting
compound statements.

3.2 Maintaining the Source and Header Code Change Log

You must note any code changes that you make to the standard source and header for
a business function. Include this information:

SAR - the SAR number
Date - the date of the change
Initials - the programmer's initials

Comment - the reason for the change

3.3 Inserting Comments

Insert comments that describe the purpose of the business function and your intended
approach. Using comments will make future maintenance and enhancement of the
function easier.

Use this checklist for inserting comments:

Always use the /*comment */ style. The use of // comments is not portable.
Precede and align comments with the statements they describe.

Comments should never be more that 80 characters wide.

Ensuring Readability 3-1

Indenting Code

3.3.1 Example: Inserting Comments

This example shows the correct way to insert block and inline comments into code:

* Comment blocks need to have separating lines between
* the text description. The separator can be a
* dash '-' or an asterisk '*'

if (statement)

statements
} /* inline comments indicate the meaning of one statement */

* Comments should be used in all segments of the source

* code. The original programmer may not be the programmer
* maintaining the code in the future which makes this a

* crucial step in the development process.

/**

* Function Clean Up
**/

3.4 Indenting Code

Any statements executed inside a block of code should be indented within that block
of code. Standard indentation is three spaces.

Note: Set up the environment for the editor you are using to set tab
stops at 3 and turn the tab character display off. Then, each time you
press the Tab key, three spaces are inserted rather than the tab
character. Select auto-indentation.

3.41 Example: Indenting Code
This the standard method to indent code:

function block

{
if (nJDEDBReturn == JDEDB_PASSED)

{
CallSomeFunction(nParameterl, szParameter?2);
CallAnotherFunction(lSomeNumber);
while(FunctionWithBooleanReturn())

{
CallYetAnotherFunction(cStatusCode);

3.5 Formatting Compound Statements

Compound statements are statements followed by one or more statements enclosed
with braces. A function block is an obvious example of a compound statement.
Control statements (while, for) and selection statements (if, switch) are also examples
of compound statements.

3-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Formatting Compound Statements

Omitting braces is a common C coding practice when only one statement follows a
control or selection statement. However, you must use braces for all compound

statements for these reasons:

The absence of braces can cause errors.
Braces ensure that all compound statements are treated the same way.

In the case of nested compound statements, the use of braces clarifies the
statements that belong to a particular code block.

Braces make subsequent modifications easier.

Refer to these guidelines when formatting compound statements:

Always have one statement per line within a compound statement.

Always use braces to contain the statements that follow a control statement or a
selection statement.

Braces should be aligned with the initial control or selection statement.

Logical expressions evaluated within a control or selection statement should be
broken up across multiple lines if they do not fit on one line. When breaking up
multiple logical expressions, do not begin a new line with the logical operator; the
logical operator must remain on the preceding line.

When evaluating multiple logical expressions, use parentheses to explicitly
indicate precedence.

Never declare variables within a compound statement, except function blocks.
Use braces for all compound statements.

Place each opening or closing brace, { or }, on a separate line.

3.5.1 Example: Formatting Compound Statements

This example shows how to format compound statements for ease of use and to
prevent mistakes:

/*
*
*

*

*

*/

if

Do the Issues Edit Line if the process edits is either
blank or set to SKIP_COMPLETIONS. The process edits is
set to SKIP_COMPLETIONS if Hours and Quantities is in
interactive mode and Completions is Blind in P31123.

((dsWorkCache.PO_cIssuesBlindExecution == _J('1')) &&
((dsCache.cPayPointCode == _J('M')) ||
(dsCache.cPayPointCode == _J('B'))) &&
(1lpDS->cProcessEdits != ONLY_COMPLETIONS))

/* Process the Pay Point line for Material Issues */

idReturnCode = I3101060_BlindIssuesEditLine (&dsInternal,
&dsCache,
&dsWorkCache) ;

3.5.2 Example: Using Braces to Clarify Flow

This example shows the use of braces to clarify the flow and prevent mistakes:

if (1dJDBReturn != JDEDB_PASSED)

Ensuring Readability 3-3

Formatting Compound Statements

/* If not add mode, record must exist */
if ((lpdsInternal->cActionCode != ADD_MODE) &&
(1lpdsInternal->cActionCode != ATTACH_MODE))

/* Issue Error 0002 - Work Order number invalid */
jdeStrncpy ((JCHAR*) (lpdsInternal->szErrorMessagelID),
(const JCHAR*)_J(0002),
DIM(lpdsInternal->szErrorMessageID)-1);
lpdsInternal->idFieldID = IDERRmnOrderNumber_15;
idReturnCode = ER_ERROR;

else

/* If in add mode and the record exists, issue error and exit */
if (lpdsInternal->cActionCode == ADD_MODE)

/* Issue Error 0002 - Work Order number invalid */
jdeStrncpy ((JCHAR*) (1lpdsInternal->szErrorMessagelID),
(const JCHAR*)_J(0002),
DIM(lpdsInternal->szErrorMessagelID)-1);
lpdsInternal->idFieldID = IDERRmnOrderNumber_ 15;
idReturnCode = ER_ERROR;
}

else
{
/*
* Set flag used in determining if the F4801 record should be sent
* in to the modules
*/
lpdsInternal->cF4801Retrieved = _J('1');

3.5.3 Example: Using Braces for Ease in Subsequent Modifications

The use of braces prevents mistakes when the code is later modified. Consider this
example. The original code contains a test to see if the number of lines is less than a
predefined limit. As intended, the return value is assigned a certain value if the
number of lines is greater than the maximum. Later, someone decides that an error
message should be issued in addition to assigning a certain return value. The intent is
for both statements to be executed only if the number of lines is greater than the
maximum. Instead, idReturn will be set to ER_ERROR regardless of the value of
nLines. If braces were used originally, this mistake would have been avoided.

ORIGINAL

if (nLines > MAX_LINES)
idReturn = ER_ERROR;

MODIFIED
if (nLines > MAX_LINES)
jdeErrorSet (lpBhvrCom, lpVoid,
(ID) 0, _J(4353), (LPVOID) NULL);
idReturn = ER_ERROR;

STANDARD ORIGINAL

3-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Formatting Compound Statements

if (nLines > MAX_LINES)
{

idReturn = ER_ERROR;
}

STANDARD MODIFIED

if (nLines > MAX_LINES)
{
jdeErrorSet (lpBhvrCom, lpVoid,
(ID) 0, _J(4363), (LPVOID) NULL);
idReturn = ER_ERROR;

3.5.4 Example: Handling Multiple Logical Expressions
This example shows how to handle multiple logical expressions:

while ((1lWorkArray[elWorkX] < lWorkArray[elWorkMAX]) &&
(1WorkArray[elWorkX] < 1WorkArray[elWorkCDAYS]) &&
(idReturnCode == ER_SUCCESS))

statements

Ensuring Readability 3-5

Formatting Compound Statements

3-6 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

4

Declaring and Initializing Variables and Data
Structures

This chapter contains the following topics:

= Section 4.1, "Understanding Variables and Data Structures"
= Section 4.2, "Using Define Statements"

= Section 4.3, "Using Typedef Statements"

ms Section 4.4, "Creating Function Prototypes"

» Section 4.5, "Initializing Variables"

= Section 4.6, "Initializing Data Structures"

= Section 4.7, "Using Standard Variables"

4.1 Understanding Variables and Data Structures

Variables and data structures must be defined and initialized before they can be used
to store data. This chapter describes how to declare and initialize them. It includes
topics on using define statements, using typedef, creating function prototypes,
initializing variables, initializing data structures, and using standard variables.

4.2 Using Define Statements

A define statement is a directive that sets up constants at the beginning of the
program. A define statement always begins with a pound sign (#). All business
functions include the system header file: jde.h. System-wide define statements are
included in the system header file.

If you need define statements for a specific function, include the define statement in
uppercase letters within the source file for the function whenever possible. The
statement should directly follow the header file inclusion statement.

Usually, you should place define statements in the source file, not the header file.
When placed in the header file, you can redefine the same constant with different
values, causing unexpected results. However, rare cases exist when it is necessary to
place a define statement in the function header file. In these cases, precede the
definition name with the business function name to ensure uniqueness.

4.2.1 Example: #define in Source File

This example includes define statements within a business function source file:

Declaring and Initializing Variables and Data Structures 4-1

Using Typedef Statements

/***

* Notes
***/

#include <bxxxxxxx.h>

/***

* Global Definitions
***/

#define CACHE_GET "1
#define CACHE_ADD ‘2"
#define CACHE_UPDATE '3
#define CACHE_DELETE "4

4.2.2 Example: #define in Header File

This example includes define statements within a business function header:
/**

* External Business Function Header Inclusions
**/

#include <bxxxxxxx.h>

/**

* Global definitions
**/

#define BXXXXXXX_CACHE_GET "1
#define BXXXXXXX_CACHE_ADD ‘2"
#define BXXXXXXX_CACHE_UPDATE '3
#define BXXXXXXX_CACHE_DELETE 4

4.3 Using Typedef Statements

When using typedef statements, always name the object of the typedef statement
using a descriptive, uppercase format. If you are using a typedef statement for data
structures, remember to include the name of the business function in the name of the
typedef to make it unique. See the example for using a typedef statement for a data
structure.

4.3.1 Example: Using Typedef for a User-Defined Data Structure

4-2

This is an example of a user-defined data structure:

/**

* Structure Definitions
**/

typedef struct

{
HUSER hUser; /** User handle **/
HREQUEST hRequestF0901; /** File Pointer to the
* Account Master **/
DSD0051 dsData; /** X0051 - F0902 Retrieval **/
int iFromYear; /** Internal Variables **/
BOOL bProcessed;

MATH_NUMERIC mnCalculatedAmount;

JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Creating Function Prototypes

JCHAR szSummaryJob[13];
JDEDATE jdStartPeriodDate;

} DSX51013_INFO, *LPDSX51013_INFO;

4.4 Creating Function Prototypes

Refer to these guidelines when defining function prototypes:

Always place function prototypes in the header file of the business function in the
appropriate prototype section.

Include function definitions in the source file of the business function, preceded by
a function header.

Ensure that function names follow the naming convention defined in this guide.

Ensure that variable names in the parameter list follow the naming convention
defined in this guide.

List the variable names of the parameters along with the data types in the function
prototype.

List one parameter per line so that the parameters are aligned in a single column.

Do not allow the parameter list to extend beyond 80 characters in the function
definition. If the parameter list must be broken up, the data type and variable
name must stay together. Align multiple-line parameter lists with the first
parameter.

Include a return type for every function. If a function does not return a value, use
the keyword void as the return type.

Use the keyword void in place of the parameter list if nothing is passed to the
function.

4.4.1 Example: Creating a Business Function Prototype

This is an example of a standard business function prototype:

/***

*

*

*

* * * * *

*

Business Function: BusinessFunctionName
Description: Business Function Name

Parameters:

LPBHVRCOM 1pBhvrCom Business Function Communications

LPVOID 1pVoid Void Parameter - DO NOT USE!
LPDSD51013 1pDS Parameter Data Structure Pointer

***/

JDEBFRTN (ID) JDEBFWINAPI BusinessFunctionName (LPBHVRCOM lpBhvrCom,

LPVOID 1pVoid,
LPDSXXXXXX 1pDS)

4.4.2 Example: Creating an Internal Function Prototype

This is an example of a standard internal function prototype:

Type XXXXXXXX_AAAAAAAA(parameter list ...);

Declaring and Initializing Variables and Data Structures 4-3

Initializing Variables

type : Function return value
XXXXXXXX : Unique source file name
AAAAAAAA : Function Name

4.4.3 Example: Creating an External Business Function Definition

This is an example of a standard external business function definition:

/*
* gee sample source for standard business function heading
*/
JDEBFRTN (ID) JDEBFWINAPI GetAddressBookDescription (LPBHVRCOM 1pBhvrCom,

LPVOID 1pvoid,
LPDSNNNNNN 1pDS)

ID idReturn = ER_SUCCESS;

* business function code
*/

return idReturn;

4.4.4 Example: Creating an Internal Function Definition

This is an example of a standard internal function definition:

* gee sample source for standard function header
*/
void I4100040_GetSupervisorManagerDefault (LPBHVRCOM lpBhvrCom,
LPSTR lpszCostCenterlIn,
LPSTR lpszManagerOut,
LPSTR lpszSupervisorOut)

/* ___
* Note: b4100040 is the source file name
*/
{
/*
* internal function code
*/

4.5 Initializing Variables

Variables store information in memory that is used by the program. Variables can store
strings of text and numbers.

When you declare a variable, you should also initialize it. Two types of variable
initialization exist: explicit and implicit. Variables are explicitly initialized if they are
assigned a value in the declaration statement. Implicit initialization occurs when
variables are assigned a value during processing.

This information covers standards for declaring and initializing variables in business
functions and includes an example of standard formats.

Use these guidelines when declaring and initializing variables:

4-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Initializing Variables

s Declare variables using this format:

datatype variable name = initial value; /* descriptive comment*/

s Declare all variables used within business functions and internal functions at the
beginning of the function. Although C allows you to declare variables within
compound statement blocks, this standard requires all variables used within a
function to be declared at the beginning of the function block.

= Declare only one variable per line, even if multiple variables of the same type
exist. Indent each line three spaces and left align the data type of each declaration
with all other variable declarations. Align the first character of each variable name
(variable name in the preceding format example) with variable names in all other
declarations.

= Use the naming conventions set forth in this guide. When initializing variables, the
initial value is optional depending on the data type of the variable. Generally, all
variables should be explicitly initialized in their declaration.

» The descriptive comment is optional. In most cases, variable names are descriptive
enough to indicate the use of the variable. However, provide a comment if further
description is appropriate or if an initial value is unusual.

s Leftalign all comments.

= Data structures should be initialized to zero using the memset function
immediately after the declaration section.

= Some Application Program Interfaces (APIs), such as the JDB ODBC AP], provide
initialization routines. In this case, the variables intended for use with the API
should be initialized with the API routines.

= Always initialize pointers to NULL and include an appropriate type call at the
declaration line.

» Initialize all variables, except data structures, in the declaration.

» Initialize all declared data structures, MATH_NUMERIC, and JDEDATE to
NULL.

= Ensure that the byte size of the variable matches the size of the data structure you
want to store.

4.5.1 Example: Initializing Variables
This example shows how to initialize variables:

JDEBFRTN (ID) JDEBFWINAPI F0902GLDateSensitiveRetrieval
(LPBHVRCOM 1pBhvrCom,
LPVOID 1pvoid,
LPDSD0051 1pDS)

/**

* Variable declarations
***/

1D idReturn = ER_SUCCESS;
JDEDB_RESULT eJDEDBResult = JDEDB_PASSED;
long lDateDiff = 0L;

BOOL bAddF0911Flag = TRUE;
MATH_NUMERIC mnPeriod = {0};

/**

* Declare structures
***/

Declaring and Initializing Variables and Data Structures 4-5

Initializing Data Structures

HUSER hUser = (HUSER) NULL;
HREQUEST hRequestF0901 = (HREQUEST) NULL;
DSD5100016 dsDate = {0};

JDEDATE jdMidDate = {0};

/**

* Pointers
***/

LPX0051_DSTABLES lpdsTables = (LPX0051_DSTABLES) OL;

/**

* Check for NULL pointers

**/

if ((lpBhvrCom == (LPBHVRCOM) NULL) ||
(1pvoid == (LPVOID) NULL) ||
(1pDS == (LPDSD0051) NULL))

jdeErrorSet (lpBhvrCom, lpVoid, (ID) O,
_J(4363), (LPVOID) NULL);
return ER_ERROR;

/**

* Main Processing
**/

eJDEDBResult = JDB_InitBhvr ((void*)lpBhvrCom,
&hUser,
(JCHAR *) NULL,
JDEDB_COMMIT_AUTO) ;

memcopy ((void*)) &dsDate.jdPeriodEndDate,
(const void*) &lpDS->jdGLDate, sizeof (JDEDATE));

4.6 Initializing Data Structures
When writing to the table, the table recognizes these default values:
= Space-NULL if string is blank
= O value if math numeric is 0
» 0JDEDATE if date is blank
» Space if character is blank

Always memset to NULL on the data structure that is passed to another business
function to update a table or fetch a table.

4.6.1 Example: Using Memset to Reset the Data Structure to Null
This example resets the data structure to NULL when initializing the data structure:

bOpenTable = B5100001_F5108SetUp(lpBhvrCom, lpVoid,
1phUser, &hRequestF5108);

if (bOpenTable)
{
memset ((void *) (&dsF5108Key), 0x00, sizeof (KEY1_F5108));
jdeStrcpy((JCHAR*) dsF5108Key.mdmcu,
(const JCHAR*) 1pDS->szBusinessUnit);

4-6 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Using Standard Variables

memset ((void *) (&dsF5108), 0x00, sizeof (F5108));

jdeStrcpy((JCHAR*) dsF5108.mdmcu,
(const JCHAR*) 1pDS->szBusinessUnit);

MathCopy (&dsF5108 .mdbsct, &mnCentury) ;

MathCopy (&dsF5108 .mdbsfy, &mnYear) ;

MathCopy (&dsF5108.mdbtct, &mnCentury) ;

MathCopy (&dsF5108 . .mdbtfy, &mnYear) ;

eJDEDBResult = JDB_InsertTable(hRequestF5108,
ID_F5108,
(ID) (0),
(void *) (&dsF5108));

4.7 Using Standard Variables
This section discusses how to:
s Use flag variables.
s Use input and output parameters.

m Use fetch variables.

4.7.1 Using Flag Variables

When creating flag variables, use these guidelines:
= Any true-or-false flag used must be a Boolean type (BOOL).
= Name the flag variable to answer a question of TRUE or FALSE.

These are examples of flag variables, with a brief description of how each is used:

Flag Variable Description
bIsMemoryAllocated Apply to memory allocation
bIsLinkListEmpty Link List

4.7.2 Using Input and Output Parameters

Business functions frequently return error codes and pointers. The input and output
parameters in the business function data structure should be named as follows:

Input and Output Parameter Description

cReturnPointer When allocating memory and returning
GENLNG.

cErrorCode Based on cCallType, cErrorCode returns a 1
when it fails or a 0 when it succeeds.

cSuppressErrorMessage If the value is 1, do not display error message
using jdeErrorSet(...). If the value is 0, display
the error.

szErrorMessageld If an error occurs, return an error message 1D

(value). Otherwise, return four spaces.

Declaring and Initializing Variables and Data Structures 4-7

Using Standard Variables

4.7.3 Using Fetch Variables

Use fetch variables to retrieve and return specific information, such as a result; to
define the table ID; and to specify the number of keys to use in a fetch.

Fetch Variable Description

idJ]DEDBResult APIs or JD Edwards EnterpriseOne functions,
such as JDEDB_RESULT

idReturnValue Business function return value, such as ER_
WARNING or ER_ERROR

idTableXXXXID Where XXXX is the table name, such as F4101
and F41021, the variable used to define the
Table ID.

idIndexXXXXID Where XXXX is the table name, such as F4101
or F41021, the variable used to define the
Index ID of a table.

usXXXXNumColToFetch Where XXXX is the table name, such as F4101

and F41021, the number of the column to
fetch. Do not put the literal value in the API
functions as the parameter.

usXXXXNumOfKeys Where XXXX is the table name, such as F4101
and F41021, the number of keys to use in the
fetch.

4.7.3.1 Example: Using Standard Variables
This example illustrates the use of standard variables:

/**

* Variable declarations
**/

1D 1dJDEDBResult = JDEDB_PASSED;

ID idTableF0901 = ID_F0901;

ID 1dIndexF0901 = ID_F0901_ACCOUNT_ID;

1D idFetchCol[] = { ID_CO, ID_AID, ID_MCU, ID_OBJ,
ID_SUB, ID _LDA, ID CCT };

ushort usNumColToFetch = 7;

ushort usNumOfKeys =1;

/***

* Structure declarations
**/
KEY3_F0901 dsF0901Key = {0}
DSX51013_F0901 dsF0901 = {0}

/***

* Main Processing
***/
/** Open the table, if it is not open **/
if ((*1pdsInfo->1phRequestF0901) == (HREQUEST) NULL)
{
if ((*1lpdsInfo->lphUser) == (HUSER) 0L)

idJDEDBResult = JDB_InitBhvr ((void*)lpBhvrCom,
&lpdsInfo->1phUser,
(JCHAR *) NULL,
JDEDB_COMMIT_AUTO) ;

4-8 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Using Standard Variables

if (1dJDEDBResult == JDEDB_PASSED)
{
1dJDEDBResult = JDB_OpenTable((*1lpdsInfo->lphUser),

idTableF0901,
1dIndexF0901,
(LPID) (idFetchCol),
(ushort) (usNumColFetch),
(JCHAR *) NULL,
&lpdsInfo->hRequestF0901);

}
/** Retrieve Account Master - AID only sent **/
if (idJDEDBResult == JDEDB_PASSED)
{
/** Set Key and Fetch Record **/
memset ((void *) (&dsF0901Key),
(int) _J('\0'), sizeof (KEY3_F0901));
jdeStrcpy ((char *) dsF0901Key.gmaid,
(const JCHAR*) 1pDS->szAccountID);
1dJDEDBResult = JDB_FetchKeyed (lpdsInfo->hRequestF0901,
1dIndexF0901,
(void *) (&dsF0901Key),
(short) (1),
(void *) (&dsF0901),
(int) (FALSE));
/** Check for F0901 Record **/
if (eJDEDBResult == JDEDB_PASSED)
{

statement

Declaring and Initializing Variables and Data Structures 4-9

Using Standard Variables

4-10 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

O

Applying General Coding Guidelines

This chapter contains the following topics:

Section 5.1, "Using Function Calls"

Section 5.2, "Passing Pointers between Business Functions"
Section 5.3, "Allocating and Releasing Memory"

Section 5.4, "Using hRequest and hUser"

Section 5.5, "Typecasting"

Section 5.6, "Comparison Testing"

Section 5.7, "Copying Strings with jdeStrcpy or jdeStrnepy”
Section 5.8, "Using the Function Clean Up Area"

Section 5.9, "Inserting Function Exit Points"

Section 5.10, "Terminating a Function”

5.1 Using Function Calls

Reuse of existing functions through a function call prevents duplicate code. Refer to
these guidelines when using function calls:

Always put a comma between each parameter. Optionally, you can add a space for
readability.

If the function has a return value, always check the return of the function for errors
or a valid value.

Use jdeCallObject to call another business function.

When calling functions with long parameter lists, the function call should not be
wider than 80 characters.

Break the parameter list into one or more lines, aligning the first parameter of
proceeding lines with the first parameter in the parameter list.

Make sure the data types of the parameters match the function prototype.

When intentionally passing variables with data types that do not match the
prototype, explicitly cast the parameters to the correct data type.

5.1.1 Calling an External Business Function

Use jdeCallObject to call an external business function defined in the Object
Management Workbench. Include the header file for the external business function

Applying General Coding Guidelines 5-1

Using Function Calls

that contains the prototype and data structure definition. It is good practice to check
the value of the return code.

5.1.1.1 Example: Calling an External Business Function
This example calls an external business function:

idReturnCode = jdeCallObject (_J("ValidateAccountNumber),
NULL,
1pBhvrCom,
1pvoid,
(void*) &dsValidateAccount,
(CALLMAP*) NULL,
(int) O,
(JCHAR*) NULL,
(JCHAR*) NULL,
(int) 0);
if (idReturnCode == ER_SUCCESS)
{

statement;

}

5.1.2 Calling an Internal Business Function

You can access internal business functions (internal C functions) within the same
source file.

You may create modular subroutines that can be accessed from multiple source files.
Use CALLIBF (fcn (parml,parm2)) andCALLIBFRET (ret, fcn (parml, parm2))
to access internal business functions within a different source file but within the same
DLL. Use CALLIBF to call an internal business function with no return value. Use
CALLIBFRET to call an internal business function with a return value. Both CALLIBF
and CALLIFBRET can call internal business functions with any type or number of
parameters.

CALLIBF and CALLIBFRET can only call internal functions within the same business
function DLL. They cannot call functions in other business function DLLs. For
example, if the internal function intFen123() is in B550001.C, which is in the
CALLBSEN.DLL, you cannot called it with CALLIBF or CALLIBFRET from a
business function in CDIST.DLL.

To use CALLIBF or CALLIBFRET for an internal business function, the business
function must have its prototype in the business function header. If you do not want
other modules calling the internal business function, place the prototype in the C file,
not the header file.

Calling internal business functions has several advantages over external business
functions. First, they do not have the jdeCallObject performance overhead of checking
OCM mapping and possibly executing the function remotely. A called function always
executes in the same process from where it was called. Second, the parameters are not
restricted to JD Edwards EnterpriseOne data dictionary data types. Any valid C data
type, including pointers, may be passed in and out of internal functions.

5-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Using Function Calls

5.1.2.1 Example: Calling an Internal Business Function with No Return Value
This example calls an internal business function that has no return value.

This portion is an example of b550001.h:

/* normal business function header pieces */

/* The internal business function prototype must be in the header for other
modules to call it */
void 1550001 (int *a, int b);

This portion is an example of b550001.c:

/* normal business function code pieces */

#include <b550001.h>

JDEBFRTN (ID) JDEBFWINAPI TestBSFN(LPBHVRCOM 1pVhvrCom,
LPVOID 1pVoid,
LPDSB550001 1pDS)

}
void 1550001 (int *a, int b)
{

*a = *a + b;

return;

}

This portion is an example of b550002.c:

/* normal business function code pieces */
#include <b550002.h>
#include <b550001.h>

JDEBFRTN (ID) JDEBFWINAPI TestBSFN(LPBHVRCOM lpBhvrCom,
LPVOID 1pvoid,
LPDSB550001 1pDS)

int total
int adder = 7;

1]
w

CALLIBF (1550001 (&total,adder));

5.1.2.2 Example: Calling an Internal Business Function with a Return Value
This example calls an internal business function that has a return value.

This portion is an example of b550001.h:

/* normal business function header pieces */

/* The internal business function prototype must be in the header for
other modules to call it */

int 1550001 (int a, int b);

This portion is an example of b550001.c:

/* normal business function code pieces */
#include <b550001.h>

JDEBFRTN (ID) JDEBFWINAPI TestBSFN (LPBHVRCOM 1pBhvrCom,

Applying General Coding Guidelines 5-3

Passing Pointers between Business Functions

LPVOID 1pVoid,
LPDSB550001 1pDS)
{

}
int 1550001 (int a, int b)
{

a=a+ b;

return;

}

This portion is an example of b550002.c:

/* normal business function code pieces */
#include <b550002.h>
#include <b550001.h>

JDEBFRTN (ID) JDEBFWINAPI TestBSFN(LPBHVRCOM lpBhvrCom,
LPVOID 1pvoid,
LPDSB550001 1pDS)

int total = 0;
int adderl = 6;
int adder2 = 7;
CALLIBFRET (total, 1550001 (adderl, adder2)) ;

5.2 Passing Pointers between Business Functions

Never pass pointers directly in or out of business functions. A pointer memory
address should not be greater than 32 bits. If you pass a pointer address that exceeds
32 bits across the platform to a client that supports just 32 bits, the significant digit
might be truncated and invalidate the address.

The correct way to share pointers between business functions is to store the address in
an array. This array is located on the server platform specified in the Object
Configuration Manager (OCM). The array allows up to 100 memory locations to be
allocated and stored, and it is maintained by JD Edwards EnterpriseOne tools. The
index to a position in the array is a long integer type or ID. Use the GENLNG data
dictionary object in the business function data structure to pass this index in or out of
the business function.

5.2.1 Storing an Address in an Array

Use jdeStoreDataPtr to store an allocated memory pointer in an array for later
retrieval. The index to the position in the array is returned. This index should be
passed out through the business function data structure (IpDS).

5.2.1.1 Example: Storing an Address in an Array
This example illustrates how to store an address in an array:

If (lpDS->cReturnF4301PtrFlag == _J('1"))

1pDS->idF4301RowPtr = jdeStoreDataPtr (hUser, (void *)1lpdsF4301);

5-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Allocating and Releasing Memory

5.2.2 Retrieving an Address from an Array

Use jdeRetrieveDataPtr to retrieve an address outside the current business function.
The index to the position in the array should be passed in through the business
function data structure (IpDS). When you use jdeRetrieveDataPtr, the address
remains in the array and can be retrieved again later.

5.2.2.1 Example: Retrieving an Address from an Array
This example retrieves an address from an array:

1pdsF43199 = (LPF43199) jdeRetrieveDataPtr
(hUser, 1pDS->1dF43199Pointer);

5.2.3 Removing an Address from an Array

Use jdeRemoveDataPtr to remove the address from the array cell and release the
array cell. The index to the position in the array should be passed in through the
business function data structure (IpDS). A corresponding call to jdeRemoveDataPtr
must exist for every jdeStoreDataPtr. If you use jdeAlloc to allocate memory, use
jdeFree to free the memory.

5.2.3.1 Example: Removing an Address from an Array
This example removes an address from an array:

if (1pDS->idGenericLong != (ID) 0)

lpGenericPtr = (void *)jdeRemoveDataPtr (hUser, 1pDS->idGenericLong) ;
if (lpGenericPtr != (void *) NULL)
{

jdeFree ((void *)lpGenericPtr);

1pDS->idGenericLong = (ID) 0;

lpGenericPtr = (void *) NULL;

5.3 Allocating and Releasing Memory

Use jdeAlloc to allocate memory. Because jdeAlloc affects performance, use it
sparingly.

Use jdeFree to release memory within a business function. For every jdeAlloc, a
jdeFree should exist to release the memory.

Note: Use the business function FreePtrToDataStructure, B4000640,
to release memory through event rule logic.

5.3.1 Example: Allocating and Releasing Memory within a Business Function

This example uses jdeAlloc to allocate memory, and then, in the function cleanup
section, jdeFree to release memory:

statement
1pdsF4301 = (LPF4301)jdeAlloc(COMMON_POOL,sizeof (F4301),MEM_ZEROINIT) ;
statement

Applying General Coding Guidelines 5-5

Using hRequest and hUser

/‘k**‘k******‘k**‘k******‘k**‘k**‘k***‘k**‘k**‘k*k************************

* Function Clean Up Section
**/

if (1pdsF4301 != (LPF4301) NULL)
{

jdeFree(1lpdsF4301);
}

5.4 Using hRequest and hUser

Some API calls require either anhUser or anhRequest variable, or both. To get the
hUser, use JDBInitBhvr. To get the hRequest, use JDBOpenTable. Initialize hUser
and hRequest to NULL in the variable declaration line. All hRequest and hUser
declarations should have JDB_CloseTable() and JDB_FreeBhvr() in the function
cleanup section.

5.5 Typecasting

Typecasting is also known as type conversion. Use typecasting when the function
requires a certain type of value, when defining function parameters, and when
allocating memory with jdeAlloc().

Note: This standard is for all function calls as well as function
prototypes.

5.6 Comparison Testing

Always use explicit tests for comparisons. Do not embed assignments in comparison
tests. Assign a value or result to a variable and use the variable in the comparison test.

Always test floating point variables using <= or >=. Do not use == or != since some
floating point numbers cannot be represented exactly.

5.6.1 Example: Comparison Test
This example shows how to create C code for comparison tests.

eJDEDBResult = JDB_InitBhvr ((void*)lpBhvrCom,
&hUser,
(JCHAR *) NULL,
JDEDB_COMMIT_AUTO) ;

/** Check for Valid hUser **/
if (eJDEDBResult == JDEDB_PASSED)
{

statement;

}

5.6.2 Example: Creating TRUE or FALSE Test Comparison that Uses Boolean Logic
This example is a TRUE or FALSE test comparison that uses Boolean logic:

/* IsStringBlank has a BOOL return type. It will always return either
* TRUE or FALSE */
if (IsStringBlank(szString))

5-6 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Using the Function Clean Up Area

statement;

5.7 Copying Strings with jdeStrcpy or jdeStrncpy

When copying strings of the same length, such as business unit, you may use the
jdeStrcpy ANSI APL If the strings differ in length-as with a description-use the
jdeStrncpy ANSI API with the number of characters you need returned, not counting
the trailing NULL character.

/**

* Variable Definitions
**/

JCHAR szToBusinessUnit (13);
JCHAR szFromBusinessUnit (13);
JCHAR szToDescription(31);
JCHAR szFromDescription (41);

/**

* Main Processing
**/

jdeStrcpy ((JCHAR *) szToBusinessUnit,
(const JCHAR *) szFromBusinessUnit);

jdeStrncpy ((JCHAR *) szToDescription,
(const JCHAR *) szFromDescription,
DIM(szToDescription)-1);

5.8 Using the Function Clean Up Area

Use the function clean up area to release any allocated memory, including hRequest
and hUser.

5.8.1 Example: Using the Function Clean Up Area to Release Memory
This example shows how to release memory in the function clean up area:

1pdsF4301 = (LPF4301)jdeAlloc(COMMON_POOL,
sizeof (F4301) ,MEM_ZEROINIT) ;

/**

* Function Clean Up Section
**/
if (1pdsF4301 != (LPF4301) NULL)

{
jdeFree(1lpdsF4301);

}

if (hRequestF4301 != (HREQUEST) NULL)
JDB_CloseTable(hRequestF4301);

}

JDB_FreeBhvr (hUser);

return (idReturnValue) ;

Applying General Coding Guidelines 5-7

Inserting Function Exit Points

5.9 Inserting Function Exit Points

Where possible, use a single exit point (return) from the function. The code is more
structured when a business function has a single exit point. The use of a single exit
point also enables the programmer to perform cleanup, such as freeing memory and
terminating ODBC requests, immediately before the return. In more complex
functions, this action might be difficult or unreasonable. Include the necessary cleanup
logic, such as freeing memory and terminating ODBC requests, when programming an
exit point in the middle of a function.

Use the return value of the function to control statement execution. Business functions
can have one of two return values: ER_SUCCESS or ER_ERROR. By initializing the
return value for the function to ER_SUCCESS, the return value can be used to
determine the processing flow.

5.9.1 Example: Inserting an Exit Point in a Function

This example illustrates the use of a return value for the function to control statement
execution:

ID idReturn = ER_SUCCESS;

/**

* Main Processing
**/
memset ((void *) (&dsInfo), 0x00, sizeof (DSX51013_INFO));
idReturn = X51013_VerifyAndRetrieveInformation(lpBhvrCom,
1lpvoid,
1pDS,
&dsInfo);
/** Check for Errors and Company or Job Level Projections **/
if ((idReturn == ER_SUCCESS) &&

(1pDS->cJdobCostProjections == _J('Y')))
{
/** Process All Periods between the From and Thru Dates **/
while ((!dsInfo.bProcessed) &&

(idReturn == ER_SUCCESS))

/** Retrieve Calculation Information **/
if ((dsInfo.bRetrieveBalance) && (idReturn == ER_SUCCESS))
{
idReturn = X51013_RetrieveAccountBalances(lpBhvrCom,
1pVoid,
1pDS,
&dsInfo);
}
if (idReturn == ER_SUCCESS)
{
statement;
}

} /* End Processing */

/***

* Function Clean Up
***/

if ((dsInfo.hUser) != (HUSER) NULL)
{

statement;

5-8 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Terminating a Function

return idReturn;

5.10 Terminating a Function

Always return a value with the termination of a function.

Applying General Coding Guidelines 5-9

Terminating a Function

5-10 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

6

Coding for Portability

This chapter contains the following topics:
= Section 6.1, "Portability Concepts"
= Section 6.2, "Portability Guidelines"

= Section 6.3, "Preventing Common Server Build Errors and Warnings"

6.1 Portability Concepts

Portability is the ability to run a program on more than one system platform without
modifying it. JD Edwards EnterpriseOne is a portable environment. This chapter
presents considerations and guidelines for porting objects between systems.

Standards that affect the development of relational database systems are determined
by:

s ANSI (American National Standards Institute) standard

s X/OPEN (European body) standard

s ISO SQL standard

Ideally, industry standards enable users to work identically with different relational
database systems. Each major vendor supports industry standards but also offers
extensions to enhance the functionality of the SQL language. In addition, vendors
constantly release upgrades and new versions of their products.

These extensions and upgrades affect portability. Due to the effect of software
development on the industry, applications need a standard interface to databases-an
interface that will not be affected by differences among database vendors. When
vendors provide a new release, the effect on existing applications needs to be minimal.
To solve portability issues, many organizations have moved to standard database
interfaces, called open database connectivity (ODBC).

6.2 Portability Guidelines

Refer to these guidelines to develop business functions that comply with portability
standards:

= Business functions must be ANSI-compatible for portability.

Since different computer platforms might present limitations, exceptions to this
rule do exist. However, do not use a non-ANSI exception without approval from
the Business Function Standards Committee.

Coding for Portability 6-1

Preventing Common Server Build Errors and Warnings

= Do not create a program that depends on data alignment, because each system
aligns data differently by allocating bytes or words.

For example: for a one-character field that is one byte. Some systems allocate only
one byte for that field, while other systems allocate the entire word for the field.

= Keep in mind that vendor libraries and function calls are system-dependent and
exclusive to that vendor.

This means that if the program is compiled using a different compiler, that
particular function will fail.

= Use caution when using pointer arithmetic because it is system-dependent and is
based on the data alignment.

= Do not assume that all systems will initialize a variable the same way.
Always explicitly initialize variables.

= Use caution when using an offset to explicitly retrieve a value within the data
structure.

This guideline also relates to data alignment. Use offset to define cache index.

= Always typecast if your parameter does not match the function parameter.

Note: JCHAR szArray[13] is not the same as (JCHAR *) in the
function declaration. Therefore, typecast of (JCHAR *) is required for
szArray for that particular function.

= Never typecast on the left-hand side of the assignment statement, as it can result in
a loss of data.

For example, in the statement (short)nvalue = (long), lValue will lose the
value of the long integer if it is too large to fit into a short integer data type.

= Do not use C++ comments (C++ comments begin with two forward slashes).

6.3 Preventing Common Server Build Errors and Warnings

JD Edwards EnterpriseOne business functions must be ANSI-compatible for
portability. Since different computer platforms and servers have their own limitations,
our business functions must comply with all server standards. This topic presents
guidelines for coding business functions that correctly build on different servers.

6.3.1 Comments within Comments

Never use comments that are included in other comments. Each "/*" should be
followed by subsequent "*/". Refer to these examples.

6.3.1.1 Example: C Comments that Comply with the ANSI Standard
Use this C standard comment block:

/**

* Correct Method of C Comments *
***/
/* SAR 1234567 Begin*/
/* Populate the lpDS->OrderedPlacedBy value from the userID only in
the ADD mode */
if (1pDS->cHeaderActionCode == _J('1'))

6-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Preventing Common Server Build Errors and Warnings

if (IsStringBlank (1pDS->szOrderedPlacedBy))
A
jdeStrcpy ((JCHAR *) (1pDS->szOrderedPlacedBy),
(const JCHAR *) (1pDS->szUserID)) ;
}/* End of defaulting in the user id into Order placed by
if the later was left blank */
}/* SAR 1234567 End */

6.3.1.2 Example: C Comments that Comply with the ANSI Standard

Use this C standard comment block:

/**
* Correct Method of C Comments *
***/
/* SAR 1234567 Begin*/
/* Populate the 1pDS->OrderedPlacedBy value from the userID only in
the ADD mode */
if (1pDS->cHeaderActionCode == _J('1'))
{
if (IsStringBlank (1pDS->szOrderedPlacedBy))
A
jdeStrcpy ((JCHAR *) (1pDS->szOrderedPlacedBy),
(const JCHAR *) (1pDS->szUserID));
}/* End of defaulting in the user id into Order placed by
if the later was left blank */
}/* SAR 1234567 End */

6.3.1.3 Example: Comments within Comments Cause Problems on Different
Servers

This example shows that comments within comments can cause problem on different
servers:

/**

C Comments within Comments Causing Server Build Errors and Warnings
***/

/* SAR 1234567 Begin

/* Populate the lpDS->OrderedPlacedBy value from the userID only in
the ADD mode */

*/
if (1lpDS->cHeaderActionCode == _J('1'))

if (IsStringBlank (1pDS->szOrderedPlacedBy))
{
jdeStrcpy ((JCHAR *) (1pDS->szOrderedPlacedBy),
(const JCHAR *) (1pDS->szUserID)) ;
}/* End of defaulting in the user id into the Order placed by
/* if the later was left blank */
}/* SAR 1234567 End */

6.3.2 New Line Character at the End of a Business Function

Some servers need a new line character at the end of the source and header file in
order to build correctly. It is a best practice to ensure that a new line character is added
at the end of each business function. Press the Enter key at the end of the code to add a
new line character.

Coding for Portability 6-3

Preventing Common Server Build Errors and Warnings

6.3.3 Use of Null Character

Be careful when using NULL character '\0'. This character starts with a back slash.
Using '/0' is an error that is not reported by the compiler.

6.3.3.1 Example: Use of NULL Character
This example shows an incorrect and a correct use of the NULL character:

/*************Initialize Data Structures***************************/
/*Error Code*/
/* '/0' is used assuming it to be a NULL character*/
/* memset ((void *) (&dsVerifyActivityRulesStatusCodeParms),
(int) ('/0'), sizeof (DSD4000260A));*/

/*Correct Use of NULL Character*/
memset ((void *) (&dsVerifyActivityRulesStatusCodeParms),
(int) ('\0'), sizeof (DSD4000260A));

6.3.4 Lowercase Letters in Include Statements

When an external business function or table is included in the header file, use
lowercase letters in the include statement. Uppercase letters cause build errors.

6.3.4.1 Example: Use of Lowercase Letters in Include Statements

This example shows the incorrect and correct use of lowercase letters in the include
statement:

/**

* External Business Function Header Inclusions
**/

/*Incorrect method of including external business function header*/

/*Include Statement Causing Build Warnings on Various Servers*/
#include <B0000130.h>

/*Correct method of including external business function header*/
#include <b0000130.h>

6.3.5 Initialized Variables that are Not Referenced

Each variable that is declared and initialized under the Variables Declaration section in
the business function must be used in the program. For example: if the variable
idReturnValue is initialized, then it must be used somewhere in the program.

6-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

7

Understanding JD Edwards EnterpriseOne
Defined Structures

This chapter contains the following topics:
s Section 7.1, "MATH_NUMERIC Data Type"
m Section 7.2, "JDEDATE Data Type"

Oracle's JD Edwards EnterpriseOne provides two data types that should concern you
when you create business functions: MATH_NUMERIC and JDEDATE. Since these
data types might change, use the Common Library APIs provided by JD Edwards
EnterpriseOne to manipulate them. Do not access the members of these data types
directly.

7.1 MATH_NUMERIC Data Type

The MATH_NUMERIC data type is commonly used to represent numeric values in JD
Edwards EnterpriseOne software. This data type is defined as follows:

struct tag MATH_NUMERIC

{
ZCHAR String [MAXLEN_MATH_NUMERIC + 1];
BYTE Sign;
ZCHAR EditCode;
short nDecimalPosition;
short nLength;
WORD wFlags;
ZCHAR szCurrency [4];
Short nCurrencyDecimals;
short nPrecision;

}i
typedef struct tag MATH_NUMERIC MATH_NUMERIC, FAR *LPMATH_NUMERIC;

This table shows math-numeric elements and their descriptions:

MATH_NUMERIC Element Description

String The digits without separators

Sign A minus sign indicates the number is
negative. Otherwise, the value is 0x00.

EditCode The data dictionary edit code used to format
the number for display

Understanding JD Edwards EnterpriseOne Defined Structures 7-1

JDEDATE Data Type

MATH_NUMERIC Element Description

nDecimalPosition The number of digits from the right to place
the decimal

nLength The number of digits in the String

wFlags Processing flags

szCurrency Currency code

nCurrencyDecimals The number of currency decimals

nPrecision The data dictionary size

When assigning MATH_NUMERIC variables, use the MathCopy APIL. MathCopy
copies the information, including Currency, into the location of the pointer. This API
prevents any lost data in the assignment.

Initialize local MATH_NUMERIC variables with the ZeroMathNumeric APL If a
MATH_NUMERIC is not initialized, invalid information, especially currency
information, might be in the data structure, which can result in unexpected results at
runtime.

/***

* Variable Definitions
***/

MATH_NUMERIC mnVariable = {0};

/**

* Main Processing
**/

ZeroMathNumeric(&mnVariable);
MathCopy (&mnVariable,
&1pDS->mnVariable) ;

7.2 JDEDATE Data Type

The JDEDATE data type is commonly used to represent dates in JD Edwards
EnterpriseOne. The data type is defined as follows:

struct tag JDEDATE

{
short nYear;
short nMonth;
short nDay;

}i

typedef struct tag JDEDATE JDEDATE, FAR *LPJDEDATE;

JDEDATE Element Description
nYear The year
nMonth The month
nDay The day

7-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

JDEDATE Data Type

7.2.1 Using Memcpy to Assign JDEDATE Variables

When assigning JDEDATE variables, use the memcpy function. The memcpy function
copies the information into the location of the pointer. If you use a flat assignment, you

might lose the scope of the local variable in the assignment, which could result in a lost
data assignment.

/**

* Variable Definitions
**/

JDEDATE jdToDate;

/**

* Main Processing
**/

memcpy ((void*) &jdToDate,
(const void *) &lpDS->jdFromDate,
sizeof (JDEDATE));

7.2.2 JDEDATECopy

You can use JDEDATECopy, as well as memcpy, to assign JDEDATE variables. The
syntax is as follows:

#define JDEDATECopy (pDest, pSource)
memcpy (pDest, pSource, sizeof (JDEDATE))

Understanding JD Edwards EnterpriseOne Defined Structures 7-3

JDEDATE Data Type

7-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

8

Implementing Error Messages

This chapter contains the following topics:

Section 8.1, "Understanding Error Messages"

Section 8.2, "Inserting Parameters for Error Messages in [pDS"

Section 8.3, "Initializing Behavior Errors"

Section 8.4, "Using Text Substitution to Display Specific Error Messages"
Section 8.5, "Mapping Data Structure Errors with jdeCallObject"

8.1 Understanding Error Messages

Messages provide an effective and usable method of communicating information to
end-users. You can use simple messages or text substitution messages.

Text substitution messages provide specific information to the user. At runtime, the
system replaces variables in the message with substitution values. Two types of text
substitution messages exist:

Error messages (glossary group E)

Workflow messages (glossary group Y)

The return code from all JDB and JDE Cache APIs must be checked and an appropriate
error message set, returned, or both to the calling function. The standard error
messages for JDB and JDE Cache errors are shown in these tables.

The JDB errors are:

Error ID Description

078D Open Table Failed

078E Close Table Failed

078F Insert to Table Failed

078G Delete from Table Failed
078H Update to Table Failed

0781 Fetch from Table Failed
078] Select from Table Failed
078K Set Sequence of Table Failed
078S * Initialization of Behavior Failed

Implementing Error Messages 8-1

Inserting Parameters for Error Messages in IpDS

* 078S does not use text substitution

The JDE Cache errors are:

Error ID Description

078L Initialization of Cache Failed
078M Open Cursor Failed

078N Fetch from Cache Failed
0780 Add to Cache Failed

078P Update to Cache Failed
078Q Delete from Cache Failed
078R Terminate of Cache Failed

8.2 Inserting Parameters for Error Messages in IpDS

Include the parameters cSuppressErrorMessage and szErrorMessagelD in 1pDS for
error message processing. The functionality for each is as follows:

= cSuppressErrorMessage (SUPPS)

Valid data is either 1 or 0. This parameter is required if jdeErrorSet(...) is used in
the business function. When cSuppressErrorMessage is set to 1, do not set an error
because jdeErrorSet will automatically display an error message.

» szErrorMessagelD (DTAI)

This 4—character string contains the error message ID value that is passed back by
the business function. If an error occurs in the business function,
szErrorMessagelD contains that error number ID.

Note: You must initialize szErrorMessagelD to 4 spaces at the
beginning of the function. Failure to initialize can cause memory
errors.

8.2.1 Example: Parameters in IpDS for an Error Message

This example includes the 1pDS parameters, cSuppressErrorMessage, and
szErrorMessagelD:

if ((!IsStringBlank (1lpDS->szErrorMessageID)) &&
(1pDS->cSuppressErrorMessage != _J('1')))
{
jdeStrcpy ((JCHAR*) (lpDS->szErrorMessagelID),
(const JCHAR*) (_J("0653")));
jdeErrorSet (lpBhvrCom, lpVoid, (ID) IDERRcMethodofComputation_1,
1pDS->szErrorMessageID, (LPVOID) NULL);
idReturnValue = ER_ERROR;
}

/***

* Function Clean Up
***/

return idReturnValue;

8-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Using Text Substitution to Display Specific Error Messages

8.3 Initializing Behavior Errors

Business functions that use the JD Edwards EnterpriseOne database API are required
to call the Initialize Behavior function before calling any of the database functions. Set
error 078S if the Initialize Behavior function does not complete successfully.

8.3.1 Example: Initialize Behavior Error
This example illustrates an initialize behavior error:

/***

* Initialize Behavior
***/

1dJDBReturn = JDB_InitBhvr (1pBhvrCom,
&hUser,
(JCHAR *) NULL,
JDEDB_COMMIT_AUTO) ;
if (idJDBReturn != JDEDB_PASSED)

jdeStrcpy (1lpDS->szErrorMessageID, _J("078S"));
if (1pDS->cSuppressErrorMessage != _J('1'))
{
jdeErrorSet (1lpBhvrCom, lpVoid, (ID)0, _J(078S), (LPVOID) NULL);
}
return ER_ERROR;

8.4 Using Text Substitution to Display Specific Error Messages

You can use the JD Edwards EnterpriseOne text substitution APIs for returning error
messages within a business function. Text substitution is a flexible method for
displaying a specific error message.

Text substitution is accomplished through the data dictionary. To use text substitution,
you first must set up a data dictionary item that defines text substitution for the
specific error message. A selection of error messages for JDB and JDE Cache have
already been created and are listed in this chapter.

Error messages for cache and tables are critical in a configurable network computing
(CNC) architecture. C programmers must set the appropriate error message when
working with tables or cache APIs.

JDB API errors should substitute the name of the file against which the API failed. JDE
cache API errors should substitute the name of the cache for which the API failed.

When calling errors that use text substitution, you must:

= Load a data structure with the information you want to substitute in the error
message.

= Call jdeErrorSet to set the error.

8.4.1 Example: Text Substitution in an Error Message
This example uses text substitution in JDB_OpenTable:

/**

* Open the General Ledger Table F0911

***/

eJDBReturn = JDB_OpenTable(hUser,

Implementing Error Messages 8-3

Mapping Data Structure Errors with jdeCallObject

ID_F0911,
ID_F0911_DOC_TYPE__NUMBER___ B,
idColF0911,

nNumColsF0911,

(JCHAR *)NULL,
&hRequestF0911) ;

if (eJDBReturn != JDEDB_PASSED)

memset ((void *) (&dsDE0022), 0x00, sizeof (dsDE0022));
jdeStrncpy ((JCHAR *)dsDE0022.szDescription,
(const JCHAR *) (_J("F0911")),
DIM(dsDE0022.szDescription)-1);
jdeErrorSet (lpBhvrCom, lpVoid, (ID)0, _J("078D"), &dsDE0022);

8.5 Mapping Data Structure Errors with jdeCallObject

Any Business Function calling an external Business Function must use jdeCallObject.
When using jdeCallObject, be sure to match the Error IDs correctly.

You need to match the Ids from the original Business Function with the Error Ids of the
Business Function in jdeCallObject. A data structure is used in the jdeCallObject to
accomplish this task.

/***

* Variable declarations
***/

CALLMAP cm_D0000026[2] = {{IDERRmnDisplayExchgRate_ 62,
IDERRmnExchangeRate_2}};
ID idReturnCode = ER_SUCCESS; /* Return Code */

/**

* Business Function structures
***/

DSD0000026 dsD0000026 = {0}; /* Edit Tolerance */

idReturnCode = jdeCallObject (_J("EditExchanbeRateTolerance"),
NULL,
1pBhvrCom,
1pvoid,
(void *)&dsD0000026,
(CALLMAP *)&cm_D0000026,
ND0000026,
(JCHAR *)NULL,
(JCHAR *)NULL,
(int)0);

8-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

9

Understanding Data Dictionary Triggers

This chapter contains the following topic:

= Section 9.1, "Data Dictionary Triggers"

9.1 Data Dictionary Triggers

Data dictionary triggers are used to attach edit-and-display logic to data dictionary
items. The application runtime engine executes the trigger associated with a data
dictionary item at the time that the item is accessed in a form.

Custom data dictionary triggers are written in C or Named Event Rule (NER), and
require a specific data structure in order to execute correctly. The custom trigger data
structure is composed of three predefined members and one variable member. The
predefined members are the same for every custom trigger. The variable member is
different for each trigger, and it is created using the specific data element associated
with the data dictionary item.

This table shows the order of the members in the data structure along with the alias
and a description of each member.

Structure Member Name Alias Description

idBhvrErrorld BHVRERRID Used by the trigger function
to return the error status (ER_
ERROR or ER_SUCCESS) to
the application.

szBehaviorEditString BHVREDTST Used by the application
runtime engine to pass the
value for the data dictionary
field to the trigger function.

szDescription001 DLO1 Used by the trigger function
to return the description for
the value to the application.

szHomeCompany, HMCO, AN8 Used by the trigger function
mnAddressNumber to set errors (CALLMAP
field).

Understanding Data Dictionary Triggers 9-1

Data Dictionary Triggers

9-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

10

Understanding Unicode Compliance
Standards

This chapter contains the following topics:

= Section 10.1, "Unicode Compliance Standards"
= Section 10.2, "Unicode String Functions"

= Section 10.3, "Unicode Memory Functions"

s Section 10.4, "Pointer Arithmetic"

s Section 10.5, "Offsets"

= Section 10.6, "MATH_NUMERIC APIs"

= Section 10.7, "Third-Party APIs"

s Section 10.8, "Flat-File APIs"

10.1 Unicode Compliance Standards

The Unicode Standard is the universal character-encoding scheme for written
characters and text. It defines a consistent way of way of encoding multilingual text
that enables the exchange of text data internationally and creates the foundation for
global software.

Facts about Unicode:

= Unicode is a very large character set containing the characters of virtually every
written language.

= Unicode uses two bytes per character.

Up to 64,000 characters can be supported using two bytes. Unicode also has a
mechanism called "surrogates,” which uses pairs of two bytes to describe an
additional one million characters.

= 0x00is a valid byte in a character.

For example, the character "A" is described as 0x00 0x41, which means that normal
string functions, such as strlen() and strcpy, do not work with Unicode data.

Do not use the data type char. Instead, use JCHAR for Unicode characters and
ZCHAR for non-Unicode characters. Use ZCHAR instead of char in a code that needs
to interface with non-Unicode APIs.

Understanding Unicode Compliance Standards 10-1

Unicode String Functions

10.2 Unicode String Functions

Old Syntax No Longer
Available

New Syntax Non-Unicode

New Syntax Unicode

Char ZCHAR JCHAR

char *, PSTR ZCHAR*, PZSTR JCHAR?*, PJSTR
A Z(A) JCAY

"string" _Z("string") _J("string")

Two versions of all string functions exist: one for Unicode and one for non-Unicode.
Naming standards for Unicode and non-Unicode string functions are:

= jdeSxxxxxx() indicates a Unicode string function

s jdeZSxxxx() indicates a non-Unicode string function

Some of the replacement functions include:

New String Functions

New String Functions

Old String Functions Non-Unicode Unicode
strepy() jdeZStrepy() jdeStrepy()
strlen() jdeZStrlen() jdeStrlen()
strstr() jdeZStrstr() jdeStrstr()
sprintf() jdeZSprintf() jdeSprintf()
strnepy () jdeZStrncpy() jdeStrnepy()

Note: The function jdestrcpy() was in use before the migration to
Unicode. The Unicode slimer changed existing jdestrcpy() to
jdeStrncpyTerminate(). Going forward, developers need to use
jdeStrncpyTerminate() where they previously used jdestrcpy().

Do not use traditional string functions, such as strcpy, strlen, and printf. All the
jdeStrxxxxxx functions explicitly handle strings, so use character length instead of the
sizeof() operator, which returns a byte count.

When using jdeStrncpy(), the third parameter is the number of characters, not the

number of bytes.

The DIM() macro gives the number of characters of an array. Given "JCHAR a[10];",
DIM(a) returns 10, while sizeof (a) returns 20. "strncpy (a, b, sizeof

(a)) ;" needs to become "jdeStrncpy (a, b, DIM (a));".

10.2.1 Example: Using Unicode String Functions

This example shows how to use Unicode string functions:

10-2

"

/**

In this example jdeStrncpy replaces strncpy. Also sizeof is

replaced by DIM.

***/

/* Set key to F38112 */

JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Pointer Arithmetic

/*Unicode Compliant*/

jdeStrncpy (dsKey1F38112.dxdcto,
(const JCHAR *) (dsF4311ZDetail->pwdcto),
DIM(dsKeylF38112.dxdcto) - 1);

10.3 Unicode Memory Functions

The memset() function changes memory byte by byte. For example, memset (buf,

' ', sizeof (buf)); setsthe 10 bytes pointed to by the first argument, buf, to the
value 0x20, the space character. Since a Unicode character is 2 bytes, each character is
set to 0x2020, which is the dagger character (1) in Unicode.

A new function, jdeMemset() sets memory character by character rather than byte by
byte. This function takes a void pointer, a JCHAR, and the number of bytes to set. Use
jdeMemset (buf, _J (' '), sizeof (buf)); to setthe Unicode string buf so
that each character is 0x0020. When using jdeMemset(), the third parameter,
sizeof(buf), is the number of bytes, not characters.

Note: You can use memset when filling a memory block with NULL.
For all other characters, use jdeMemset. You also can use jdeMemset
for a NULL character.

10.3.1 Example: Using jdeMemset when Setting Characters to Values other than NULL

This example shows how to use jdeMemset when setting characters to values other
than NULL:

/**
In this example memset is replaced by jdeMemset. We need to change
memset to jdeMemset because we are setting each character of the
string to a value other than NULL. Also, because jdeMemset works in
bytes, we cannot just subtract 1 from sizeof (szSubsidiaryBlank) to
prevent the last character from being set to ' '. We must multiply
1 by sizeof (JCHAR).

***/

/*Unicode Compliant*/
jdeMemset ((void *) (szSubsidiaryBlank), _J(' '),
(sizeof (szSubsidiaryBlank) - (1l*sizeof (JCHAR))));

10.4 Pointer Arithmetic

When advancing a JCHAR pointer, it is important to advance the pointer by the
correct number. In the example, the intent is to initialize each member of an array
consisting of JCHAR strings to blank. Inside the "For" loop, the pointer is advanced to
point to the next member of the array of JCHAR strings after assigning a value to one
of the members of the array. This is achieved by adding the maximum length of the
string to the pointer. Since pStringPtr has been defined as a pointer to a JCHAR,
adding MAXSTRLENGTH to pStringPtr results in pStringPtr pointing to the next
member of the array of strings.

#define MAXSTRLENGTH 10

JCHAR *pStringPtr;

LPMATH_NUMERIC pmnPointerToF3007;

for (i=(iDayOfTheWeek+iNumberOfDaysInMonth) ; i<CALENDARDAYS; i++)

Understanding Unicode Compliance Standards 10-3

Offsets

{
FormatMathNumeric (pStringPtr, &pmnPointerToF3007[1i]);
pStringPtr = pStringPtr + MAXSTRLENGTH;

}

These tables illustrate the effect of adding MAXSTRLENGTH to pStringPtr. The top
row in both tables contains memory locations; the bottom rows contain the contents of
those memory locations.

The arrow indicates the memory location that pStringPtr points to before
MAXSTRLENGTH is added to pStringPtr.

Figure 10-1 Example 1 of Unicode Pointer Arithmetic

1 2 3 4 5 6 7 8 9 1W0 11 12 13 14 15 16 17 18 19 20
00 49 00 52 00 20 00 20 OO 20 OO 20 00 20 00O 20 0O 20 0O 20

Figure 10-2 Example 2 of Unicode Pointer Arithmetic

21 22 23 24 25 26 27 28 290 30 31 32 33 34 35 36 37 38 39 40
00 49 00 52 00 20 00 20 OO 20 00 20 0O 20 OO 20 OO 20 0O 20

The arrow indicates the memory location that pStringPtr points to after
MAXSTRLENGTH is added to pStringPtr. Adding 10 to pStringPtr makes it move 20
bytes, as it has been declared of type JCHAR.

Figure 10-3 Example 3 of Pointer Arithmetic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V na na

[
—
)
-
]
[*5)
-2
=
]
i |

26 27 28 20 30 31 32 33 34 35 36 37 38 39 40

00 49 00 52

S

20 00 20 OO 20 00 20 00 20 00O 20 OO 20 0O 20

If pStringPtr is advanced by the value MAXSTRLENGTH * sizeof (JCHAR), then
pStringPtr advances twice as much as intended and results in memory corruption.

10.5 Offsets

When adding an offset to a pointer to derive the location of another variable or entity,
it is important to determine the method in which the offset was initially created.

10-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

MATH_NUMERIC APIs

In this example, 1pKeyStruct->CacheKey [n] .nOffset is added to IpData to
arrive at the location of a Cache Key segment. This offset was for the segment created
using the ANSI C function offsetof, which returns the number of bytes. Therefore, to
arrive at the location of Cache Key segment, cast the data structure pointer to type
BYTE.

lpTempl = (BYTE *)lpData + lpKeyStruct->CacheKey[n].nOffset;
1pTemp2 (BYTE *)lpKey + lpKeyStruct->CacheKey[n].nOffset;

In a non-Unicode environment, IpData could have been cast to be of type CHAR * as
character size is one Byte in a non-Unicode environment. In a Unicode environment,
however, IpData has to be explicitly cast to be of type (JCHAR *) since size of a
JCHAR is 2 bytes.

10.6 MATH_NUMERIC APIs

The string members of the MATH_NUMERIC data structure are in ZCHAR
(non-Unicode) format. The JD Edwards EnterpriseOne Common Library API includes
several functions that retrieve and manipulate these strings in both JCHAR (Unicode)
and ZCHAR (non-Unicode) formats.

To retrieve the string value of a MATH_NUMERIC data type in JCHAR format, use
the FormatMathNumeric API function. This example illustrates the use of this
function:

/* Declare variables */

JCHAR szJobNumber [MAXLEN_MATH_NUMERIC+1] = _J("\0");
/* Retrieve the string value of the job number */
FormatMathNumeric (szJobNumber, &lpDS->mnJobnumber) ;

To retrieve the string value of a MATH_NUMERIC data type in ZCHAR format, use
the jdeMathGetRawString API function. This example illustrates the use of this
function:

/* Declare variables */

ZCHAR zzJobNumber [MAXLEN_MATH_NUMERIC+1] = _Z("\0");
/* Retrieve the string value of the job number */
zzJobNumber = jdeMathGetRawString (&1pDS->mnJobnumber) ;

Another commonly used MATH_NUMERIC API function is
jdeMathSetCurrencyCode. This function is used to update the currency code member
of a MATH_NUMERIC data structure. Two versions of this function exist:
jdeMathCurrencyCode and jdeMathCurrencyCodeUNI. The jdeMathCurrencyCode
function is used to update the currency code with a ZCHAR value, and
jdeMathCurrencyCodeUNI is used to update the currency code with a JCHAR value.
This example illustrates the use of these two functions:

/* Declare variables */

ZCHAR zzCurrencyCode[4] = _Z("USD");

JCHAR szCurrencyCode[4] = _J("USD");

/* Set the currency code using a ZCHAR value */
jdeMathSetCurrencyCode (&1pDs->mnAmount, (ZCHAR *) zzCurrencyCode) ;

/* Set the currency code using a JCHAR value /*
jdeMathSetCurrencyCodeUNI (&1pDS->mnAmount, (JCHAR *) szCurrencyCode);

Understanding Unicode Compliance Standards 10-5

Third-Party APIs

10.7 Third-Party APIs

Some third-party program interfaces (APIs) do not support Unicode character strings.
In these cases, you must convert character strings to non-Unicode format before
calling the API, and convert them back to Unicode format for storage in JD Edwards
EnterpriseOne. Use these guidelines when programming for a non-Unicode API:

= Declare a Unicode and a non-Unicode variable for each API string parameter.
= Convert the Unicode strings to non-Unicode strings before calling the API.
= Call the API passing the non-Unicode strings in the parameter list.

= Convert the returned non-Unicode strings to Unicode strings for storage in JD
Edwards EnterpriseOne.

10.7.1 Example: Third-Party API

This example calls a third-party API named GetStateName that accepts a
two-character state code and returns a 30-character state name:

/* Declare variables */

JCHAR szStateCode[3] = _J("CO"); /* Unicode state code */
JCHAR szStateName[31] = _J("\0"); /* Unicode state name */
ZCHAR zzStateCode[3] = _Z("\0"); /* Non-Unicode state code */
ZCHAR zzStateName[31] = _Z("\0"); /* Non-Unicode state name */
BOOL bReturnStatus = FALSE; /* API return flag */

/* Convert unicode strings to non-unicode strings */
jdeFromUnicode (zzStateCode, szStateCode, DIM(zzStateCode), NULL);
/* Call API */

bReturnStatus = GetStateName (zzStateCode, zzStateName) ;

/* Convert non-unicode strings to unicode strings for storage in
* JD Edwards EnterpriseOne */

jdeToUnicode (szStateName, zzStateName, DIM(szStateName), NULL);

10.8 Flat-File APIs

JD Edwards EnterpriseOne APIs such as jdeFprintf() convert data. This means that the
default flat file I/O for character data is in Unicode. If the users of JD Edwards
EnterpriseOne-generated flat files are not Unicode enabled, they will not be able to
read the flat file correctly. Therefore, use an additional set of APIs.

An interactive application allows users to configure flat file encoding based on
attributes such as application name, application version name, user name, and
environment name. The API set includes these file I/O functions: fwrite/fread,
fprintf/fscanf, fputs/fgets, and fputc/fgetc. The API converts the data using the
code page specified in the configuration application. One additional parameter,
IpBhvrCom, must be passed to the functions so that the conversion function can find
the configuration for that application or version.

These new APIs only need to be called if a process outside of JD Edwards
EnterpriseOne is writing or reading the flat file data. If the file is simply a work file or
a debugging file and will be written and read by JD Edwards EnterpriseOne, use the
non-converting APIs (for example, jdeFprintf()).

10.8.1 Example: Flat-File APIs

This example writes text to a flat file that would only be read by JD Edwards
EnterpriseOne. Encoding in the file will be Unicode.

10-6 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Flat-File APls

FILE *fp;
fp = jdeFopen(_J(c:/testBSFNZ.txt), _J(w+));
jdeFprintf (fp, _J("%$s%d\n"), _J("Line "), 1);

jdeFclose(fp);

This example writes text to a flat file that would be read by third-party systems.
Encoding in the file will be based on the encoding configured.

FILE *fp;

fp = jdeFopen(_J(c:/testBSFNZ.txt), _J(
jdeFprintfConvert (1pBhvrCom, fp, _J("%s%
jdeFclose(fp);

wt)) ;
d\n"), _J("Line "), 1);

See Also:

» "Using Flat Files" in the D Edwards EnterpriseOne Tools
Interoperability Guide.

Understanding Unicode Compliance Standards 10-7

Flat-File APls

10-8 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

11

Understanding Standard Header and Source
Files

This chapter contains the following topics:
s Section 11.1, "Standard Header"

m Section 11.2, "Standard Source"

11.1 Standard Header

Header files help the compiler properly create a business function. The C language
contains 33 keywords. Everything else, such as printf and getchar, is a function.
Functions are defined in header files that you include at the beginning of a business
function. Without header files, the compiler does not recognize the functions and
might return error messages.

This example shows the standard header for a business function source file:

/**

* Header File: BXXXXXXX.h
* Description: Generic Business Function Header File

* History:

* Date Programmer SAR# - Description

X e e
* Author 03/15/2006 - Created

* Copyright (c) Oracle, 2006

* This unpublished material is proprietary to Oracle.

* All rights reserved. The methods and

* techniques described herein are considered trade secrets

* and/or confidential. Reproduction or distribution, in whole

* or in part, is forbidden except by express written permission

* of Oracle.

**/
#ifndef _ BXXXXXXX_H
#define _ BXXXXXXX_H

/***
* Table Header Inclusions
***/

/**

* External Business Function Header Inclusions

***/

/**

Understanding Standard Header and Source Files 11-1

Standard Header

* Global Definitions
**/

/**

* Structure Definitions
**/

/***

* DS Template Type Definitions

**/

/***

* Source Preprocessor Definitions
**/
#if defined (JDEBFRTN)
#undef JDEBFRTN
#endif

#1f defined (WIN32)
#if defined (WIN32)
#define JDEBFRTN(r) _ declspec(dllexport) r

#telse
#define JDEBFRTN(r) _ declspec(dllimport) r
#endif
#telse
#define JDEBFRTN(r) r
#endif

/**

* Business Function Prototypes
***/

JDEBFRTN (ID) JDEBFWINAPI GenericBusinessFunction
(LPBHVRCOM 1pBhvrCom,
LPVOID 1pvoid,
LPDSDXXXXXXXX 1pDS) ;

/**

* Internal Function Prototypes
**/

#endif /* __ BXXXXXXX_H */

11.1.1 Business Function Name and Description

Use the Business Function Name and Description section to define the name of the
business function, describe the business function, and maintain the modification log.

11.1.2 Copyright Notice

The Copyright section contains the Oracle copyright notice and must be included in
each source file. Do not change this section.

11.1.3 Header Definition for a Business Function

The Header Definition section for a Business Function contains the "#define" of the
business function. It is generated by the tool. Do not change this section.

11-2 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Standard Header

11.1.4 Table Header Inclusions

The Table Header Inclusions section contains the include statements for the table
headers associated with tables directly accessed by the business function.

See Lowercase Letters in Include Statements.

11.1.5 External Business Function Header Inclusions

The External Business Function Header Inclusions section contains the include
statements for the business function headers associated with externally defined
business functions that are directly accessed by the business function.

See Lowercase Letters in Include Statements.

11.1.6 Global Definitions

Use the Global Definitions section to define global constants used by the business
function. Enter names in uppercase, separated by an underscore.

See Using Define Statements.

11.1.7 Structure Definitions

Define structures used by the business function in the Structure Definitions section.
Structure names should be prefixed by the Source File Name to prevent conflicts with
structures of the same name in other business functions.

See Understanding Naming ConventionsUsing Typedef Statements.

11.1.8 DS Template Type Definitions

The DS Template Type Definitions section defines the business functions contained in
the source that correspond to the header. You generate the structure from the business
function or data structure design window in Object Management Workbench. After
you generate the structure, copy and paste it into this section.

11.1.9 Source Preprocessing Definitions

The Source Preprocessing Definitions section defines the entry point of the business
function and includes the opening bracket required by C functions. Do not change this
section.

11.1.10 Business Function Prototypes

Use the Business Function Prototypes section to prototype the functions defined in the
source file.

See Creating Function Prototypes.

11.1.11 Internal Function Prototypes

The Internal Function Prototypes section contains a description and parameters of the
function.

See Understanding Naming ConventionsCreating Function Prototypes.

Understanding Standard Header and Source Files 11-3

Standard Source

11.2 Standard Source

The source file contains instructions for the business function. These sections describe
the sections of a standard source file.

A template generated for a standard source file when you create a JD Edwards
EnterpriseOne business function appears in the following pages:

#include <jde.h>

#define bxxxxxxx_c
/***

* Source File: bxXXXXXXxX
*

* Description: Generic Business Function Source File

* History:

* Date Programmer SAR# - Description

K e e
* Author 06/06/2005 - Created

* Copyright (c) Oracle, 2005

* This unpublished material is proprietary to Oracle.

* All rights reserved. The methods and techniques described
* herein are considered trade secrets and/or confidential.
* Reproduction or distribution, in whole or in part, is

* forbidden except by express written permission of

* QOracle.
**/

/**
* Notes:
*

**/

#include <bxxxxxxx.h>
/***

* Global Definitions

**/

/***

* Business Function: GenericBusinessFunction
*

* Description: Generic Business Function

* Parameters:
* LPBHVRCOM 1pBhvrCom Business Function Communications
* LPVOID 1lpvoid Void Parameter - DO NOT USE!

* LPDSDXXXXXXX 1pDS Parameter Data Structure Pointer
*

***/

JDEBFRTN (ID) JDEBFWINAPI GenericBusinessFunction
(LPBHVRCOM 1pBhvrCom,
LPVOID 1pVoid,
LPDSDXXXXXXXX 1pDS)

{

/***
* Variable declarations

***/

/***

11-4 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Standard Source

* Declare structures
***/

/***

* Declare pointers
***/

/***

* Check for NULL pointers
***/
if ((1lpBhvrCom == (LPBHVRCOM) NULL) ||

(1Pvoid == (LPVOID) NULL) ||

(IpDS == (LPDSDXXXXXXXX) NULL))

jdeErrorSet (lpBhvrCom, lpVoid, (ID) O,
4363, (LPVOID) NULL);
return ER_ERROR;
}

/***

* Set pointers
***/

/***

* Main Processing
***/

/***

* Function Clean Up
***/

return (ER_SUCCESS);
}

/* Internal function comment block */
/**

* Function: IxxxxxxX_a // Replace xxxxxxxX with source file

* // number

* // and a with the function name
* Notes:

*

* Returns:

* Parameters:
**/

11.2.1 Business Function Name and Description

Use this section to maintain the name and description of the business function. Also
use this section to maintain the modification log.

11.2.2 Copyright Notice

The Copyright section contains the Oracle copyright notice and must be included in
each source file. Do not make any changes to this section.

Understanding Standard Header and Source Files 11-5

Standard Source

11.2.3 Notes

Use the Notes section to include information for anyone who might review the code in
the future. For example, describe any peculiarities associated with the business
function or any special logic.

11.2.4 Global Definitions

Use the Global Definitions section to define global constants used by the business
function.

See Initializing Variables.

11.2.5 Header File for Associated Business Function

In the Header File for Associated Business Function section, include the header file
associated with the business function using #include. If you need to include additional
header files in the source, place them here.

11.2.6 Business Function Header

The Business Function Header section contains a description of each of the parameters
used by the business function. Do not make any changes to this section.

11.2.7 Variable Declarations

The Variable Declarations section defines all required function variables. For ease of
use, define the variables sequentially by type.

See Understanding Naming ConventionslInitializing Variables.

11.2.8 Declare Structures

Define any structures that are required by the function in the Declare Structures
section.

See Creating Function Prototypes.

11.2.9 Pointers

If any pointers are required by the function, define them in the Pointers section. Name
the pointer so that it reflects the structure to which it is pointing. For example,
IpDS1100 is pointing to the structure DS1100.

11.2.10 Check for NULL Pointers

The Check for NULL Pointers section checks for parameter pointers that are NULL.
Do not change this section.

11.2.11 Set Pointers

Use the Set Pointers section if you did not initialize the variables when declaring them.
You must assign values to all pointers that you define.

See Creating Function Prototypes.

11-6 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Standard Source

11.2.12 Main Processing

Use the Main Processing section to write the code.

11.2.13 Function Clean Up

Use the Function Clean Up section to release any allocated memory.

See Using the Function Clean Up Area.

11.2.14 Internal Function Comment Block

The Internal Function Comment Block section contains a description and parameters
of the function.

See Understanding Naming Conventions.

Understanding Standard Header and Source Files 11-7

Standard Source

11-8 JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming Guide

Glossary

Accessor Methods/Assessors

Java methods to “get” and “set” the elements of a value object or other source file.

activity rule

The criteria by which an object progresses from one given point to the next in a flow.

add mode

A condition of a form that enables users to input data.

Advanced Planning Agent (APAg)

A JD Edwards EnterpriseOne tool that can be used to extract, transform, and load
enterprise data. APAg supports access to data sources in the form of rational
databases, flat file format, and other data or message encoding, such as XML.

application server

Software that provides the business logic for an application program in a distributed
environment. The servers can be Oracle Application Server (OAS) or WebSphere
Application Server (WAS).

Auto Commit Transaction

A database connection through which all database operations are immediately written
to the database.

batch processing

A process of transferring records from a third-party system to JD Edwards
EnterpriseOne.

In JD Edwards EnterpriseOne Financial Management, batch processing enables you to
transfer invoices and vouchers that are entered in a system other than JD Edwards
EnterpriseOne to JD Edwards EnterpriseOne Accounts Receivable and JD Edwards
EnterpriseOne Accounts Payable, respectively. In addition, you can transfer address
book information, including customer and supplier records, to JD Edwards
EnterpriseOne.

batch server

A server that is designated for running batch processing requests. A batch server
typically does not contain a database nor does it run interactive applications.

Glossary-1

batch-of-one

Glossary-2

batch-of-one

A transaction method that enables a client application to perform work on a client
workstation, then submit the work all at once to a server application for further
processing. As a batch process is running on the server, the client application can
continue performing other tasks.

best practices

Non-mandatory guidelines that help the developer make better design decisions.

BPEL

Abbreviation for Business Process Execution Language, a standard web services
orchestration language, which enables you to assemble discrete services into an
end-to-end process flow.

BPEL PM

Abbreviation for Business Process Execution Language Process Manager, a
comprehensive infrastructure for creating, deploying, and managing BPEL business
processes.

Build Configuration File

Configurable settings in a text file that are used by a build program to generate ANT
scripts. ANT is a software tool used for automating build processes. These scripts
build published business services.

build engineer

An actor that is responsible for building, mastering, and packaging artifacts. Some
build engineers are responsible for building application artifacts, and some are
responsible for building foundation artifacts.

Build Program

A WINB32 executable that reads build configuration files and generates an ANT script
for building published business services.

business analyst

An actor that determines if and why an EnterpriseOne business service needs to be
developed.

business function

A named set of user-created, reusable business rules and logs that can be called
through event rules. Business functions can run a transaction or a subset of a
transaction (check inventory, issue work orders, and so on). Business functions also
contain the application programming interfaces (APIs) that enable them to be called
from a form, a database trigger, or a non-JD Edwards EnterpriseOne application.
Business functions can be combined with other business functions, forms, event rules,
and other components to make up an application. Business functions can be created
through event rules or third-generation languages, such as C. Examples of business
functions include Credit Check and Item Availability.

business function event rule

See named event rule (NER).

Business Service Property Admin Tool

business service

EnterpriseOne business logic written in Java. A business service is a collection of one
or more artifacts. Unless specified otherwise, a business service implies both a
published business service and business service.

business service artifacts

Source files, descriptors, and so on that are managed for business service development
and are needed for the business service build process.

business service class method

A method that accesses resources provided by the business service framework.

business service configuration files

Configuration files include, but are not limited to, interop.ini, JDBj.ini, and
jdelog.properties.

business service cross reference

A key and value data pair used during orchestration. Collectively refers to both the
code and the key cross reference in the WSG/XPI based system.

business service cross-reference utilities

Utility services installed in a BPEL/ESB environment that are used to access JD
Edwards EnterpriseOne orchestration cross-reference data.

business service development environment

A framework needed by an integration developer to develop and manage business
services.

business services development tool

Otherwise known as JDeveloper.

business service EnterpriseOne object

A collection of artifacts managed by EnterpriseOne LCM tools. Named and
represented within EnterpriseOne LCM similarly to other EnterpriseOne objects like
tables, views, forms, and so on.

business service framework

Parts of the business service foundation that are specifically for supporting business
service development.

business service payload

An object that is passed between an enterprise server and a business services server.
The business service payload contains the input to the business service when passed to
the business services server. The business service payload contains the results from the
business service when passed to the Enterprise Server. In the case of notifications, the
return business service payload contains the acknowledgement.

business service property

Key value data pairs used to control the behavior or functionality of business services.

Business Service Property Admin Tool

An EnterpriseOne application for developers and administrators to manage business
service property records.

Glossary-3

business service property business service group

Glossary-4

business service property business service group

A classification for business service property at the business service level. This is
generally a business service name. A business service level contains one or more
business service property groups. Each business service property group may contain
zero or more business service property records.

business service property key

A unique name that identifies the business service property globally in the system.

business service property utilities

A utility API used in business service development to access EnterpriseOne business
service property data.

business service property value

A value for a business service property.

business service repository

A source management system, for example ClearCase, where business service artifacts
and build files are stored. Or, a physical directory in network.

business services server

The physical machine where the business services are located. Business services are
run on an application server instance.

business services source file or business service class

One type of business service artifact. A text file with the java file type written to be
compiled by a Java compiler.

business service value object template

The structural representation of a business service value object used in a C-business
function.

Business Service Value Object Template Utility

A utility used to create a business service value object template from a business service
value object.

business services server artifact

The object to be deployed to the business services server.

business view

A means for selecting specific columns from one or more JD Edwards EnterpriseOne
application tables whose data is used in an application or report. A business view does
not select specific rows, nor does it contain any actual data. It is strictly a view through
which you can manipulate data.

central objects merge

A process that blends a customer's modifications to the objects in a current release
with objects in a new release.

central server

A server that has been designated to contain the originally installed version of the
software (central objects) for deployment to client computers. In a typical JD Edwards
EnterpriseOne installation, the software is loaded on to one machine—the central

database credentials

server. Then, copies of the software are pushed out or downloaded to various
workstations attached to it. That way, if the software is altered or corrupted through its
use on workstations, an original set of objects (central objects) is always available on
the central server.

charts

Tables of information in JD Edwards EnterpriseOne that appear on forms in the
software.

check-in repository

A repository for developers to check in and check out business service artifacts. There
are multiple check-in repositories. Each can be used for a different purpose (for
example, development, production, testing, and so on).

checksum

A fixed-size datum computed from an arbitrary block of digital data for the purpose of
detecting accidental errors that may have been introduced during its transmission or
storage. JD Edwards EnterpriseOne uses the checksum to verify the integrity of
packages that have been downloaded by recomputing the checksum of the
downloaded package and comparing it with the checksum of the original package.
The procedure that yields the checksum from the data is called a checksum function or
checksum algorithm. JD Edwards EnterpriseOne uses the MD5 and STA-1 checksum
algorithms.

connector

Component-based interoperability model that enables third-party applications and JD
Edwards EnterpriseOne to share logic and data. The JD Edwards EnterpriseOne
connector architecture includes Java and COM connectors.

Control Table Workbench

An application that, during the Installation Workbench processing, runs the batch
applications for the planned merges that update the data dictionary, user-defined
codes, menus, and user override tables.

control tables merge

A process that blends a customer's modifications to the control tables with the data
that accompanies a new release.

correlation data

The data used to tie HTTP responses with requests that consist of business service
name and method.

credentials

A valid set of]D Edwards EnterpriseOne username/password/environment/role,
EnterpriseOne session, or EnterpriseOne token.

cross-reference utility services

Utility services installed in a BPEL/ESB environment that access EnterpriseOne
cross-reference data.

database credentials

A valid database username/password.

Glossary-5

database server

Glossary-6

database server

A server in a local area network that maintains a database and performs searches for
client computers.

Data Source Workbench

An application that, during the Installation Workbench process, copies all data sources
that are defined in the installation plan from the Data Source Master and Table and
Data Source Sizing tables in the Planner data source to the system-release number data
source. It also updates the Data Source Plan detail record to reflect completion.

deployment artifacts

Artifacts that are needed for the deployment process, such as servers, ports, and such.

deployment server

A server that is used to install, maintain, and distribute software to one or more
enterprise servers and client workstations.

direct connect

A transaction method in which a client application communicates interactively and
directly with a server application.

See also batch-of-one and store-and-forward.

Do Not Translate (DNT)

A type of data source that must exist on the iSeries because of BLOB restrictions.

embedded application server instance
An OC4] instance started by and running wholly within JDeveloper.

edit code

A code that indicates how a specific value for a report or a form should appear or be
formatted. The default edit codes that pertain to reporting require particular attention
because they account for a substantial amount of information.

edit mode

A condition of a form that enables users to change data.

edit rule

A method used for formatting and validating user entries against a predefined rule or
set of rules.

Electronic Data Interchange (EDI)

An interoperability model that enables paperless computer-to-computer exchange of
business transactions between JD Edwards EnterpriseOne and third-party systems.
Companies that use EDI must have translator software to convert data from the EDI
standard format to the formats of their computer systems.

embedded event rule

An event rule that is specific to a particular table or application. Examples include
form-to-form calls, hiding a field based on a processing option value, and calling a
business function. Contrast with the business function event rule.

Environment Workbench

Employee Work Center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user. Each
user has a mailbox that contains workflow and other messages, including Active
Messages.

enterprise server

A server that contains the database and the logic for JD Edwards EnterpriseOne.

Enterprise Service Bus (ESB)

Middleware infrastructure products or technologies based on web services standards
that enable a service-oriented architecture using an event-driven and XML-based
messaging framework (the bus).

EnterpriseOne administrator

An actor responsible for the EnterpriseOne administration system.

EnterpriseOne credentials

A user ID, password, environment, and role used to validate a user of EnterpriseOne.

EnterpriseOne development client

Historically called “fat client,” a collection of installed EnterpriseOne components
required to develop EnterpriseOne artifacts, including the Microsoft Windows client
and design tools.

EnterpriseOne extension

A JDeveloper component (plug-in) specific to EnterpriseOne. A JDeveloper wizard

is a specific example of an extension.

EnterpriseOne object

A reusable piece of code that is used to build applications. Object types include tables,
forms, business functions, data dictionary items, batch processes, business views,
event rules, versions, data structures, and media objects.

EnterpriseOne process

A software process that enables JD Edwards EnterpriseOne clients and servers to
handle processing requests and run transactions. A client runs one process, and
servers can have multiple instances of a process. JD Edwards EnterpriseOne processes
can also be dedicated to specific tasks (for example, workflow messages and data
replication) to ensure that critical processes don't have to wait if the server is
particularly busy.

EnterpriseOne resource

Any EnterpriseOne table, metadata, business function, dictionary information, or
other information restricted to authorized users.

Environment Workbench

An application that, during the Installation Workbench process, copies the
environment information and Object Configuration Manager tables for each
environment from the Planner data source to the system-release number data source. It
also updates the Environment Plan detail record to reflect completion.

Glossary-7

escalation monitor

Glossary-8

escalation monitor

A batch process that monitors pending requests or activities and restarts or forwards
them to the next step or user after they have been inactive for a specified amount of
time.

event rule

A logic statement that instructs the system to perform one or more operations based
on an activity that can occur in a specific application, such as entering a form or exiting
a field.

explicit transaction

Transaction used by a business service developer to explicitly control the type (auto or
manual) and the scope of transaction boundaries within a business service.

exposed method or value object

Published business service source files or parts of published business service source
files that are part of the published interface. These are part of the contract with the
customer.

fast path

A command prompt that enables the user to move quickly among menus and
applications by using specific commands.

file server

A server that stores files to be accessed by other computers on the network. Unlike a
disk server, which appears to the user as a remote disk drive, a file server is a
sophisticated device that not only stores files, but also manages them and maintains
order as network users request files and make changes to these files.

final mode

The report processing mode of a processing mode of a program that updates or creates
data records.

foundation

A framework that must be accessible for execution of business services at runtime.
This includes, but is not limited to, the Java Connector and JDB;.

FTP server

A server that responds to requests for files via file transfer protocol.

HTTP Adapter

A generic set of services that are used to do the basic HTTP operations, such as GET,
POST, PUT, DELETE, TRACE, HEAD, and OPTIONS with the provided URL.
instantiate

A Java term meaning “to create.” When a class is instantiated, a new instance

is created.

integration developer

The user of the system who develops, runs, and debugs the EnterpriseOne business
services. The integration developer uses the EnterpriseOne business services to
develop these components.

jde.ini

integration point (IP)

The business logic in previous implementations of EnterpriseOne that exposes a
document level interface. This type of logic used to be called XBPs. In EnterpriseOne
8.11, IPs are implemented in Web Services Gateway powered by webMethods.
integration server

A server that facilitates interaction between diverse operating systems and
applications across internal and external networked computer systems.

integrity test
A process used to supplement a company’s internal balancing procedures by locating
and reporting balancing problems and data inconsistencies.

interface table
See Z table.

internal method or value object

Business service source files or parts of business service source files that are not part of
the published interface. These could be private or protected methods. These could be
value objects not used in published methods.

interoperability model

A method for third-party systems to connect to or access JD Edwards EnterpriseOne.

in-your-face error

In JD Edwards EnterpriseOne, a form-level property which, when enabled, causes the
text of application errors to appear on the form.

jargon
An alternative data dictionary item description that JD Edwards EnterpriseOne
appears based on the product code of the current object.

Java application server

A component-based server that resides in the middle-tier of a server-centric
architecture. This server provides middleware services for security and state
maintenance, along with data access and persistence.

JDBNET

A database driver that enables heterogeneous servers to access each other's data.

JDEBASE Database Middleware

A JD Edwards EnterpriseOne proprietary database middleware package that provides
platform-independent APIs, along with client-to-server access.

JDECallObject

An API used by business functions to invoke other business functions.

jde.ini

A JD Edwards EnterpriseOne file (or member for iSeries) that provides the runtime
settings required for JD Edwards EnterpriseOne initialization. Specific versions of the

file or member must reside on every machine running JD Edwards EnterpriseOne.
This includes workstations and servers.

Glossary-9

JDEIPC

Glossary-10

JDEIPC

Communications programming tools used by server code to regulate access to the
same data in multiprocess environments, communicate and coordinate between
processes, and create new processes.

jde.log

The main diagnostic log file of JD Edwards EnterpriseOne. This file is always located
in the root directory on the primary drive and contains status and error messages from
the startup and operation of JD Edwards EnterpriseOne.

JDENET

A JD Edwards EnterpriseOne proprietary communications middleware package. This
package is a peer-to-peer, message-based, socket-based, multiprocess communications
middleware solution. It handles client-to-server and server-to-server communications
for all JD Edwards EnterpriseOne supported platforms.

JDeveloper Project

An artifact that JDeveloper uses to categorize and compile source files.

JDeveloper Workspace

An artifact that JDeveloper uses to organize project files. It contains one or more
project files.

JMS Queue

A Java Messaging service queue used for point-to-point messaging.

listener service
A listener that listens for XML messages over HTTP.

local repository

A developer’s local development environment that is used to store business service
artifacts.

Location Workbench

An application that, during the Installation Workbench process, copies all locations
that are defined in the installation plan from the Location Master table in the Planner
data source to the system data source.

logic server

A server in a distributed network that provides the business logic for an application
program. In a typical configuration, pristine objects are replicated on to the logic
server from the central server. The logic server, in conjunction with workstations,
actually performs the processing required when JD Edwards EnterpriseOne software
runs.

MailMerge Workbench

An application that merges Microsoft Word 6.0 (or higher) word-processing
documents with JD Edwards EnterpriseOne records to automatically print business
documents. You can use MailMerge Workbench to print documents, such as form
letters about verification of employment.

Object Librarian

Manual Commit transaction

A database connection where all database operations delay writing to the database
until a call to commit is made.

master business function (MBF)

An interactive master file that serves as a central location for adding, changing, and
updating information in a database. Master business functions pass information
between data entry forms and the appropriate tables. These master functions provide a
common set of functions that contain all of the necessary default and editing rules for
related programs. MBFs contain logic that ensures the integrity of adding, updating,
and deleting information from databases.

master table
See published table.

media storage object

Files that use one of the following naming conventions that are not organized into
table format: Gxxx, xxxGT, or GTxxx.

message center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user.

messaging adapter

An interoperability model that enables third-party systems to connect to JD Edwards
EnterpriseOne to exchange information through the use of messaging queues.

messaging server

A server that handles messages that are sent for use by other programs using a
messaging API. Messaging servers typically employ a middleware program to
perform their functions.

Monitoring Application

An EnterpriseOne tool provided for an administrator to get statistical information for
various EnterpriseOne servers, reset statistics, and set notifications.

named event rule (NER)

Encapsulated, reusable business logic created using event rules, rather that C
programming. NERs are also called business function event rules. NERs can be reused
in multiple places by multiple programs. This modularity lends itself to streamlining,
reusability of code, and less work.

Object Configuration Manager (OCM)

In JD Edwards EnterpriseOne, the object request broker and control center for the
runtime environment. OCM keeps track of the runtime locations for business

functions, data, and batch applications. When one of these objects is called, OCM
directs access to it using defaults and overrides for a given environment and user.

Object Librarian

A repository of all versions, applications, and business functions reusable in building
applications. Object Librarian provides check-out and check-incapabilities for
developers, and it controls the creation, modification, and use of JD Edwards
EnterpriseOne objects. Object Librarian supports multiple environments (such as

Glossary-11

Object Librarian merge

Glossary-12

production and development) and enables objects to be easily moved from one
environment to another.

Object Librarian merge

A process that blends any modifications to the Object Librarian in a previous release
into the Object Librarian in a new release.

Open Data Access (ODA)

An interoperability model that enables you to use SQL statements to extract JD
Edwards EnterpriseOne data for summarization and report generation.

Output Stream Access (OSA)

An interoperability model that enables you to set up an interface for JD Edwards
EnterpriseOne to pass data to another software package, such as Microsoft Excel, for
processing.

package

JD Edwards EnterpriseOne objects are installed to workstations in packages from the
deployment server. A package can be compared to a bill of material or kit that
indicates the necessary objects for that workstation and where on the deployment
server the installation program can find them. It is point-in-time snapshot of the
central objects on the deployment server.

package build

A software application that facilitates the deployment of software changes and new
applications to existing users. Additionally, in JD Edwards EnterpriseOne, a package
build can be a compiled version of the software. When you upgrade your version of
the ERP software, for example, you are said to take a package build.

Consider the following context: “Also, do not transfer business functions into the
production path code until you are ready to deploy, because a global build of business
functions done during a package build will automatically include the new functions.”
The process of creating a package build is often referred to, as it is in this example,
simply as “a package build.”

package location

The directory structure location for the package and its set of replicated objects. This is
usually \\deployment server\release\path_code\package\package name. The
subdirectories under this path are where the replicated objects for the package are
placed. This is also referred to as where the package is built or stored.

Package Workbench

An application that, during the Installation Workbench process, transfers the package
information tables from the Planner data source to the system-release number data
source. It also updates the Package Plan detail record to reflect completion.

Pathcode Directory
The specific portion of the file system on the EnterpriseOne development client where
EnterpriseOne development artifacts are stored.

patterns

General repeatable solutions to a commonly occurring problem in software design. For
business service development, the focus is on the object relationships and interactions.

published business service

For orchestrations, the focus is on the integration patterns (for example, synchronous
and asynchronous request/response, publish, notify, and receive/reply).

print server

The interface between a printer and a network that enables network clients to connect
to the printer and send their print jobs to it. A print server can be a computer, separate
hardware device, or even hardware that resides inside of the printer itself.

pristine environment

A JD Edwards EnterpriseOne environment used to test unaltered objects with JD
Edwards EnterpriseOne demonstration data or for training classes. You must have this
environment so that you can compare pristine objects that you modify.

processing option

A data structure that enables users to supply parameters that regulate the running of a
batch program or report. For example, you can use processing options to specify
default values for certain fields, to determine how information appears or is printed,
to specify date ranges, to supply runtime values that regulate program execution, and
SO on.

production environment

A JD Edwards EnterpriseOne environment in which users operate EnterpriseOne
software.

Production Published Business Services Web Service

Published business services web service deployed to a production application server.

program temporary fix (PTF)

A representation of changes to JD Edwards EnterpriseOne software that your
organization receives on magnetic tapes or disks.

project

In JD Edwards EnterpriseOne, a virtual container for objects being developed in Object
Management Workbench.

promotion path

The designated path for advancing objects or projects in a workflow. The following is
the normal promotion cycle (path):

11>21>26>28>38>01

In this path, 11 equals new project pending review, 21 equals programming, 26 equals
QA test/review, 28 equals QA test/review complete, 38 equals in production, 01
equals complete. During the normal project promotion cycle, developers check objects
out of and into the development path code and then promote them to the prototype
path code. The objects are then moved to the productions path code before declaring
them complete.

proxy server

A server that acts as a barrier between a workstation and the internet so that the
enterprise can ensure security, administrative control, and caching service.
published business service

EnterpriseOne service level logic and interface. A classification of a published business
service indicating the intention to be exposed to external (non-EnterpriseOne) systems.

Glossary-13

published business service identification information

Glossary-14

published business service identification information

Information about a published business service used to determine relevant
authorization records. Published business services + method name, published business
services, or *ALL.

published business service web service

Published business services components packaged as J2EE Web Service (namely, a
J2EE EAR file that contains business service classes, business service foundation,
configuration files, and web service artifacts).

published table

Also called a master table, this is the central copy to be replicated to other machines.
Residing on the publisher machine, the FO98DRPUB table identifies all of the published
tables and their associated publishers in the enterprise.

publisher

The server that is responsible for the published table. The FO8DRPUB table identifies
all of the published tables and their associated publishers in the enterprise.

QBE

An abbreviation for query by example. In JD Edwards EnterpriseOne, the QBE line is
the top line on a detail area that is used for filtering data.

real-time event

A message triggered from EnterpriseOne application logic that is intended for external
systems to consume.

refresh

A function used to modify JD Edwards EnterpriseOne software, or subset of it, such as
a table or business data, so that it functions at a new release or cumulative update
level.

replication server

A server that is responsible for replicating central objects to client machines.

rules

Mandatory guidelines that are not enforced by tooling, but must be followed in order
to accomplish the desired results and to meet specified standards.

secure by default

A security model that assumes that a user does not have permission to execute an
object unless there is a specific record indicating such permissions.

Secure Socket Layer (SSL)

A security protocol that provides communication privacy. SSL enables client and
server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

selection

Found on JD Edwards EnterpriseOne menus, a selection represents functions that you
can access from a menu. To make a selection, type the associated number in the
Selection field and press Enter.

super class

serialize

The process of converting an object or data into a format for storage or transmission
across a network connection link with the ability to reconstruct the original data or
objects when needed.

Server Workbench

An application that, during the Installation Workbench process, copies the server
configuration files from the Planner data source to the system-release number data
source. The application also updates the Server Plan detail record to reflect
completion.

SOA

Abbreviation for Service Oriented Architecture.

softcoding

A coding technique that enables an administrator to manipulate site-specific variables
that affect the execution of a given process.

source repository

A repository for HTTP adapter and listener service development environment
artifacts.

Specification merge

A merge that comprises three merges: Object Librarian merge, Versions List merge,
and Central Objects merge. The merges blend customer modifications with data that
accompanies a new release.

specification

A complete description of a JD Edwards EnterpriseOne object. Each object has its own
specification, or name, which is used to build applications.

Specification Table Merge Workbench

An application that, during the Installation Workbench process, runs the batch
applications that update the specification tables.

SSL Certificate

A special message signed by a certificate authority that contains the name of a user
and that user's public key in such a way that anyone can "verify" that the message was
signed by no one other than the certification authority and thereby develop trust in the
user's public key.

store-and-forward

The mode of processing that enables users who are disconnected from a server to enter
transactions and then later connect to the server to upload those transactions.
subscriber table

Table F98DRSUB, which is stored on the publisher server with the FO8DRPUB table
and identifies all of the subscriber machines for each published table.

super class

An inheritance concept of the Java language where a class is an instance of something,
but is also more specific. “Tree” might be the super class of “Oak” and “Elm,” for
example.

Glossary-15

table access management (TAM)

Glossary-16

table access management (TAM)

The JD Edwards EnterpriseOne component that handles the storage and retrieval of
use-defined data. TAM stores information, such as data dictionary definitions;
application and report specifications; event rules; table definitions; business function
input parameters and library information; and data structure definitions for running
applications, reports, and business functions.

Table Conversion Workbench

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table conversion

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table event rules

Logic that is attached to database triggers that runs whenever the action specified by
the trigger occurs against the table. Although JD Edwards EnterpriseOne enables
event rules to be attached to application events, this functionality is application
specific. Table event rules provide embedded logic at the table level.

terminal server

A server that enables terminals, microcomputers, and other devices to connect to a
network or host computer or to devices attached to that particular computer.

transaction processing (TP) monitor

A monitor that controls data transfer between local and remote terminals and the
applications that originated them. TP monitors also protect data integrity in the
distributed environment and may include programs that validate data and format
terminal screens.

transaction processing method

A method related to the management of a manual commit transaction boundary (for
example, start, commit, rollback, and cancel).

transaction set

An electronic business transaction (electronic data interchange standard document)
made up of segments.

trigger

One of several events specific to data dictionary items. You can attach logic to a data
dictionary item that the system processes automatically when the event occurs.
triggering event

A specific workflow event that requires special action or has defined consequences or
resulting actions.

user identification information

User ID, role, or *public.

web service softcoding template

User Overrides merge

Adds new user override records into a customer’s user override table.

value object

A specific type of source file that holds input or output data, much like a data
structure passes data. Value objects can be exposed (used in a published business
service) or internal, and input or output. They are comprised of simple and complex
elements and accessories to those elements.

versioning a published business service

Adding additional functionality /interfaces to the published business services without
modifying the existing functionality /interfaces.

Versions List merge

The Versions List merge preserves any non-XJDE and non-Z]DE version specifications
for objects that are valid in the new release, as well as their processing options data.
visual assist

Forms that can be invoked from a control via a trigger to assist the user in determining
what data belongs in the control.

vocabulary override

An alternate description for a data dictionary item that appears on a specific JD
Edwards EnterpriseOne form or report.

web application server

A web server that enables web applications to exchange data with the back-end
systems and databases used in eBusiness transactions.

web server

A server that sends information as requested by a browser, using the TCP/IP set of
protocols. A web server can do more than just coordination of requests from browsers;
it can do anything a normal server can do, such as house applications or data. Any
computer can be turned into a web server by installing server software and connecting
the machine to the internet.

Web Service Description Language (WSDL)

An XML format for describing network services.

Web Service Inspection Language (WSIL)

An XML format for assisting in the inspection of a site for available services and a set
of rules for how inspection-related information should be made.

web service softcoding record

An XML document that contains values that are used to configure a web service proxy.
This document identifies the endpoint and conditionally includes security
information.

web service softcoding template

An XML document that provides the structure for a soft coded record.

Glossary-17

Where clause

Glossary-18

Where clause

The portion of a database operation that specifies which records the database
operation will affect.

Windows terminal server

A multiuser server that enables terminals and minimally configured computers to
display Windows applications even if they are not capable of running Windows
software themselves. All client processing is performed centrally at the Windows
terminal server and only display, keystroke, and mouse commands are transmitted
over the network to the client terminal device.

wizard

A type of JDeveloper extension used to walk the user through a series of steps.

workbench

A program that enables users to access a group of related programs from a single entry
point. Typically, the programs that you access from a workbench are used to complete
a large business process. For example, you use the JD Edwards EnterpriseOne Payroll
Cycle Workbench (P07210) to access all of the programs that the system uses to process
payroll, print payments, create payroll reports, create journal entries, and update
payroll history. Examples of JD Edwards EnterpriseOne workbenches include Service
Management Workbench (P90CD020), Line Scheduling Workbench (P3153), Planning
Workbench (P13700), Auditor's Workbench (P09E115), and Payroll Cycle Workbench.

workflow

The automation of a business process, in whole or in part, during which documents,
information, or tasks are passed from one participant to another for action, according
to a set of procedural rules.

workgroup server
A server that usually contains subsets of data replicated from a master network server.
A workgroup server does not perform application or batch processing.

XAPI events

A service that uses system calls to capture JD Edwards EnterpriseOne transactions as
they occur and then calls third-party software, end users, and other JD Edwards
EnterpriseOne systems that have requested notification when the specified
transactions occur to return a response.

XML CallObject

An interoperability capability that enables you to call business functions.

XML Dispatch

An interoperability capability that provides a single point of entry for all XML
documents coming into JD Edwards EnterpriseOne for responses.

XML List

An interoperability capability that enables you to request and receive JD Edwards
EnterpriseOne database information in chunks.

Z transaction

XML Service

An interoperability capability that enables you to request events from one JD Edwards
EnterpriseOne system and receive a response from another JD Edwards EnterpriseOne
system.

XML Transaction

An interoperability capability that enables you to use a predefined transaction type to
send information to or request information from JD Edwards EnterpriseOne. XML
transaction uses interface table functionality.

XML Transaction Service (XTS)

Transforms an XML document that is not in the JD Edwards EnterpriseOne format
into an XML document that can be processed by JD Edwards EnterpriseOne. XTS then
transforms the response back to the request originator XML format.

Z event

A service that uses interface table functionality to capture JD Edwards EnterpriseOne
transactions and provide notification to third-party software, end users, and other JD
Edwards EnterpriseOne systems that have requested to be notified when certain
transactions occur.

Z table

A working table where non-JD Edwards EnterpriseOne information can be stored and
then processed into JD Edwards EnterpriseOne. Z tables also can be used to retrieve JD
Edwards EnterpriseOne data. Z tables are also known as interface tables.

Z transaction

Third-party data that is properly formatted in interface tables for updating to the JD
Edwards EnterpriseOne database.

Glossary-19

Z transaction

Glossary-20

API
examples of, 10-6
flat file, 10-6
MATHNUMERIC, 10-5
third party, 10-6
Unicode, 10-5,10-6

business function data structure, 2-3
business functions

external, 5-2

internal, 5-2

Cc

change logs, 3-1

character set, 10-1

comments
/*comment */ style, 3-1
aligning, 3-1
examples, 3-2
readability, 3-1

comparison tests, 5-6

compound statements
aligning, 3-3
braces, 3-3
declaring variables, 3-3
defined, 3-3
example, 3-3,3-4,3-5
formatting, 3-3
logical expressions, 3-3
number allowed per line, 3-3
parenthesis, 3-3
readability, 3-2

creating
business function definition, 4-4
business function prototypes, 4-3
C++ comments, 6-4
internal function definition, 4-4
internal function prototypes, 4-3

D

data dictionary trigger, 9-1

Index

data structures
business function, 2-3
declaring and initializing, 4-6
examples of, 4-6

data type
JDEDATE, 7-2
MATH_NUMERIC, 7-1

declaring and initializing
data structures, 4-6
define statements, 4-1
examples, 4-1,4-2,4-3,4-4,4-5,4-6,4-8
flag variables, 4-7,4-8
function prototypes, 4-3
input and output parameters, 4-7
overview, 4-1
standard variables, 4-7
typedef statements, 4-2
variables, 4-4

define statements
declaring and initializing, 4-1
examples, 4-1,4-2

E

entry point

defining in main body, 11-3

source preprocessing definitions, 11-3
errors

data structure, 8-4

IpDS, 8-2

standard, 8-3

text substitution, 8-3
external business function

calling, 5-2

example, 5-2

F

fetch variables, 4-8
flag variables, 4-7
function, 2-1
function blocks, 3-3
function calls
data types, 5-1
external, 5-2
internal, 5-2

Index-1

jdeCallObject, 5-1
long parameter lists, 5-1
return value, 5-1
function clean up area
example, 5-7
releasing memory, 5-7
function exit points
examples, 5-8
number, 5-8
using, 5-8
function prototypes
declaring and initializing, 4-3
examples, 4-3,4-4
placement, 4-3
variable names, 4-3

G

MATH_Numeric
data type, 7-1
MathCopy, 7-2
memcpy, 7-3
memory
allocating, 5-5
jdeAlloc, 5-5
releasing, 5-5,5-7
memory function
example, 10-3
unicode, 10-3
memset
setting data structure to NULL, 4-6
using, 10-3
multiple logical expressions, 3-5

N

GENLNG
retrieving an address, 5-5
storing an address, 5-4
use, 5-4

H

header file
change log, 3-1
naming standard, 2-1
template, 11-1
Hungarian notation for variables, 2-3

indentation
example, 3-2
readability, 3-2
initializing overview, 4-1
input and output parameters, 4-7
input parameters, 4-7
internal business functions, calling, 5-2

J

JDB Errors, 8-1

JDE Cache Errors, 8-1

jdeapp.h, 4-2

jdeCallObject
calling business functions, 5-2
mapping data structure errors, 8-4

JDEDATE, 7-2

jdeMemset, 10-3

L

logical expressions, 3-3

MATH_NUMERIC
assigning variables, 7-2
using in variable declarations, 4-5

Index-2

naming standard

business function data structures, 2-3

definedtypedef statements, 4-2
examples, 2-3

flag variables, 4-7

functions, 2-1

source and header files, 2-1
standard variables, 4-7
variables, 2-2

(o)

offsets, 10-4

P

parenthesis, 3-3

pointer
example, 10-3
Unicode, 10-3

R

readability

comments, 3-1
compound statements, 3-2
examples, 3-2,3-3, 3-4,3-5
indenting code, 3-2
overview, 3-1
source and header change logs, 3-1
removing an address, 5-5
retrieving an address, 5-5

S

source file
change log, 3-1
naming standard, 2-1
source preprocessor section, 11-3
source template, 11-4
standard variables
boolean flag, 4-7
declaring and initializing, 4-7

examples, 4-8

flag variables, 4-7
StartFormDynamic, 4-1
storing an address, 5-4
strcpy vs. strnepy, 5-7
string functions, 10-2
strings, copying, 5-7
syntax, 10-1

T

template
standard header, 11-1
standard source, 11-4
typecasting
in prototypes, 5-6
use of, 5-6
typedef statements
declaring and initializing, 4-2
examples, 4-2

U

Unicode
API, 10-5,10-6
character set, 10-1
standards, 10-1
syntax, 10-1
user-defined data structure, 4-2
using braces
example, 3-3,3-4
for ease in subsequent modifications, 3-4
to clarify flow, 3-4
using standard variables, 4-8
using StartFormDynamic, 4-1

\'

variable, 2-2
variable declarations
description, 4-5
initial values, 4-5
initialization of, 4-5
memset data structure to NULL, 4-5
number per line, 4-5
placement in functions, 4-5
use of NULL pointers, 4-5
using of MATH_NUMERIC variables, 4-5
variable initialization
examples, 4-5
types, 4-5
variable names, 2-3
variables
declaring, 4-4
initializing, 4-5

Index-3

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming
	1.1 Development Standards for Business Function Programming Overview
	1.2 Development Standards for Business Function Programming Implementation
	1.2.1 Business Function Programming Implementation Steps

	2 Understanding Naming Conventions
	2.1 Source and Header File Names
	2.2 Function Names
	2.3 Variable Names
	2.3.1 Example: Hungarian Notation for Variable Names

	2.4 Business Function Data Structure Names

	3 Ensuring Readability
	3.1 Understanding Readability
	3.2 Maintaining the Source and Header Code Change Log
	3.3 Inserting Comments
	3.3.1 Example: Inserting Comments

	3.4 Indenting Code
	3.4.1 Example: Indenting Code

	3.5 Formatting Compound Statements
	3.5.1 Example: Formatting Compound Statements
	3.5.2 Example: Using Braces to Clarify Flow
	3.5.3 Example: Using Braces for Ease in Subsequent Modifications
	3.5.4 Example: Handling Multiple Logical Expressions

	4 Declaring and Initializing Variables and Data Structures
	4.1 Understanding Variables and Data Structures
	4.2 Using Define Statements
	4.2.1 Example: #define in Source File
	4.2.2 Example: #define in Header File

	4.3 Using Typedef Statements
	4.3.1 Example: Using Typedef for a User-Defined Data Structure

	4.4 Creating Function Prototypes
	4.4.1 Example: Creating a Business Function Prototype
	4.4.2 Example: Creating an Internal Function Prototype
	4.4.3 Example: Creating an External Business Function Definition
	4.4.4 Example: Creating an Internal Function Definition

	4.5 Initializing Variables
	4.5.1 Example: Initializing Variables

	4.6 Initializing Data Structures
	4.6.1 Example: Using Memset to Reset the Data Structure to Null

	4.7 Using Standard Variables
	4.7.1 Using Flag Variables
	4.7.2 Using Input and Output Parameters
	4.7.3 Using Fetch Variables
	4.7.3.1 Example: Using Standard Variables

	5 Applying General Coding Guidelines
	5.1 Using Function Calls
	5.1.1 Calling an External Business Function
	5.1.1.1 Example: Calling an External Business Function

	5.1.2 Calling an Internal Business Function
	5.1.2.1 Example: Calling an Internal Business Function with No Return Value
	5.1.2.2 Example: Calling an Internal Business Function with a Return Value

	5.2 Passing Pointers between Business Functions
	5.2.1 Storing an Address in an Array
	5.2.1.1 Example: Storing an Address in an Array

	5.2.2 Retrieving an Address from an Array
	5.2.2.1 Example: Retrieving an Address from an Array

	5.2.3 Removing an Address from an Array
	5.2.3.1 Example: Removing an Address from an Array

	5.3 Allocating and Releasing Memory
	5.3.1 Example: Allocating and Releasing Memory within a Business Function

	5.4 Using hRequest and hUser
	5.5 Typecasting
	5.6 Comparison Testing
	5.6.1 Example: Comparison Test
	5.6.2 Example: Creating TRUE or FALSE Test Comparison that Uses Boolean Logic

	5.7 Copying Strings with jdeStrcpy or jdeStrncpy
	5.8 Using the Function Clean Up Area
	5.8.1 Example: Using the Function Clean Up Area to Release Memory

	5.9 Inserting Function Exit Points
	5.9.1 Example: Inserting an Exit Point in a Function

	5.10 Terminating a Function

	6 Coding for Portability
	6.1 Portability Concepts
	6.2 Portability Guidelines
	6.3 Preventing Common Server Build Errors and Warnings
	6.3.1 Comments within Comments
	6.3.1.1 Example: C Comments that Comply with the ANSI Standard
	6.3.1.2 Example: C Comments that Comply with the ANSI Standard
	6.3.1.3 Example: Comments within Comments Cause Problems on Different Servers

	6.3.2 New Line Character at the End of a Business Function
	6.3.3 Use of Null Character
	6.3.3.1 Example: Use of NULL Character

	6.3.4 Lowercase Letters in Include Statements
	6.3.4.1 Example: Use of Lowercase Letters in Include Statements

	6.3.5 Initialized Variables that are Not Referenced

	7 Understanding JD Edwards EnterpriseOne Defined Structures
	7.1 MATH_NUMERIC Data Type
	7.2 JDEDATE Data Type
	7.2.1 Using Memcpy to Assign JDEDATE Variables
	7.2.2 JDEDATECopy

	8 Implementing Error Messages
	8.1 Understanding Error Messages
	8.2 Inserting Parameters for Error Messages in lpDS
	8.2.1 Example: Parameters in lpDS for an Error Message

	8.3 Initializing Behavior Errors
	8.3.1 Example: Initialize Behavior Error

	8.4 Using Text Substitution to Display Specific Error Messages
	8.4.1 Example: Text Substitution in an Error Message

	8.5 Mapping Data Structure Errors with jdeCallObject

	9 Understanding Data Dictionary Triggers
	9.1 Data Dictionary Triggers

	10 Understanding Unicode Compliance Standards
	10.1 Unicode Compliance Standards
	10.2 Unicode String Functions
	10.2.1 Example: Using Unicode String Functions

	10.3 Unicode Memory Functions
	10.3.1 Example: Using jdeMemset when Setting Characters to Values other than NULL

	10.4 Pointer Arithmetic
	10.5 Offsets
	10.6 MATH_NUMERIC APIs
	10.7 Third-Party APIs
	10.7.1 Example: Third-Party API

	10.8 Flat-File APIs
	10.8.1 Example: Flat-File APIs

	11 Understanding Standard Header and Source Files
	11.1 Standard Header
	11.1.1 Business Function Name and Description
	11.1.2 Copyright Notice
	11.1.3 Header Definition for a Business Function
	11.1.4 Table Header Inclusions
	11.1.5 External Business Function Header Inclusions
	11.1.6 Global Definitions
	11.1.7 Structure Definitions
	11.1.8 DS Template Type Definitions
	11.1.9 Source Preprocessing Definitions
	11.1.10 Business Function Prototypes
	11.1.11 Internal Function Prototypes

	11.2 Standard Source
	11.2.1 Business Function Name and Description
	11.2.2 Copyright Notice
	11.2.3 Notes
	11.2.4 Global Definitions
	11.2.5 Header File for Associated Business Function
	11.2.6 Business Function Header
	11.2.7 Variable Declarations
	11.2.8 Declare Structures
	11.2.9 Pointers
	11.2.10 Check for NULL Pointers
	11.2.11 Set Pointers
	11.2.12 Main Processing
	11.2.13 Function Clean Up
	11.2.14 Internal Function Comment Block

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

