ORACLE

JD Edwards EnterpriseOne Tools
Interoperability Guide

Release 8.98 Update 4

E14711-02

March 2011



JD Edwards EnterpriseOne Tools Interoperability Guide, Release 8.98 Update 4
E14711-02
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.



Contents

Preface ............. e xvii
ATIEIICE ... XVii
Interoperability Companion Documentation.............ccceueiiieiiiiiiieiniceeecee e XVii
Documentation ACCESSIDILILY .......cccciiiiiiiiiiiiiicccce e Xviii
Related DOCUMENLS .......c.coviiiiiiiiiiiiiiic s xviii
CONVEINEIONS ...ttt ettt sttt et sa et eae e Xix

1 Introduction to JD Edwards EnterpriseOne Tools Interoperability

1.1 JD Edwards EnterpriseOne Tools Interoperability Overview ...........ccccocooeeeeiiiiiienireinincnes 1-1
1.2 JD Edwards EnterpriseOne Tools Interoperability Implementation ...........cccceceeuvererenencne. 1-1

2 Understanding Interoperability

2.1 INtErOPETabILItY ....c.cvviiiiiiiicccccc e 2-1
2.2 Interoperability FEatures...........cooooiiiiiiiiiii e 2-1
2.2.1 BEOINELIES ...ttt ettt ettt be et e ba et e te e b e ert e teereereennas 2-2
2.3 Interoperability Models and Capabilities. ..o, 2-2
2.3.1 Auditing for Interoperability Transactions............ccccoeovoiiiiniiiiciiccec 2-2
2.3.2 JD Edwards EnterpriseOne Interoperability ..o 2-3
2.3.3 Interoperability Capabilities ..........ccccoviviiiiiiiiiiii, 2-4
2.3.3.1 TWED SEIVICES....cuiiiieiietieteetieetete ettt et ab e s te e e teesaesbeesaesaeesaesbeensasseensesseenns 2-4
2.3.3.2 J2EE CONNECHIVILY «.ooovviiiiiiiciciciccccc e 2-5
2.3.3.3 Business FUNCHON CallS ....c..coueiiiiiiiiiiiiiicieieeeieetetecee st 2-5
2.3.34 XIMILL ettt ettt a e h et a bbbt et e et et ettt e ne e st ene b ebeebeeee 2-5
2.3.35 Z TTANSACHIONS ...eeveeeiieiiecieeeite et eetteeteeeteestreesteebaesbeesseessse e seessseesseessseanseesssesnsennseenns 2-5
2.3.3.6 FLAt FHLES ..ttt sttt st sttt ettt 2-5
2.3.3.7 EVENES .ttt ettt ettt et te e et e e baesae e baesabaenaeeans 2-5
2.34 Interoperability MOdeLS ..........cccoiiiiiiiiiiiiii s 2-6
2.3.41 BUSINESS SEIVICES SEIVET .....cuiuiiiieiieiiiiiiiiritetet ettt ettt st s 2-6
2.3.4.2 JMS Queue and JMS TOPIC ..o 2-6
2.34.3 (@079 1 T<Tal (o) 4= PSSP 2-7
2.3.4.4 Messaging AdApPters.........coceueiiiiricieiicieec s 2-7
2.3.45 BatCh INtErfaces ...c.evviieieieiete ettt sttt 2-7
2.3.4.6 INEIfACe TADLES ...c.vecvvirieieeteceeteee ettt ettt e e e s v e beebeebeesbesreenne e 2-8
2347 B ettt bbbttt et ettt sh e b b e 2-8
2.3.4.8 Table CONVETISION ...c.vitiiiieieieiteiteiteetet ettt ettt ettt ettt et et e et saeebesbesbestesbeseeneenseneans 2-9



2.3.4.9 OSA e
2.3.4.10 APAG/INteZIation ........c.ouiviiiiici
2.3.4.11 ODA .o
2.4 Interoperability Model Selection ..o
25 Other Industry Standard SUPPOIt ..o

3 Understanding Integrations in a SOA Environment

3.1 JD Edwards Enterprise Integrations in a SOA Environment ...........ccccoovoveiniiiiiceinininnnn.
3.1.1 Web Service Provider ...
3.1.2 Web Service CONSUIMET ...t aaas
3.1.3 Event NOtification .........ccccovviiiiiiiiniiiiiiic s
3.2 Business Services ATChiteCture...........cococeviviiiiiiiiiiiiiic s
3.3 ENVIFONINENES ...ooviiiiitic et
3.4 Integration Patterns ...........ccccoeieiiiiii
3.4.1 JD Edwards EnterpriseOne as a Web Service Provider - Synchronous

ReqUESt/REPLY ..ocvviiiiiiciciicccccc s
3.4.2 JD Edwards EnterpriseOne as a Web Service Provider -

Asynchronous NOHICAtION ......c.cccueuiuiuiiiiiiiiiececeeeeeeee e
3.4.3 JD Edwards EnterpriseOne as a Web Service Provider -

Asynchronous Request/Reply ........cccouoiiiiiiiiii
3.4.4 JD Edwards EnterpriseOne as a Web Service Consumer - Notification......................
3.4.5 JD Edwards EnterpriseOne as a Web Service Consumer — Synchronous

Web Service Request/Reply ..o
3.4.6 JD Edwards EnterpriseOne as a Service Consumer —

Asynchronous HTTP Request/ReSponse ...........cccccvereieieieieiiininiiecinieceeeenes
3.4.7 JD Edwards EnterpriseOne as a Service Consumer —

Synchronous HTTP Request/ReSPONSE .......c.ceuvveururirivereiiiirireriiceerreeeeeeeeeeeeeeeeeeees
3.4.8 JD Edwards EnterpriseOne as a Web Service Consumer —

Asynchronous Web Service..........ooiiiiiiieiiiccic e

4 Using Business Function Calls

4.1 Understanding Business FUNCHONS ..........c.ccccciiiiiiiiiiiiiiiccccces
4.2 Reviewing API and Business Function Documentation ...........c.ccccceviviiinniiiininnnnn,
4.3 Creating Business Function Documentation...............oooeeioiiiiic
4.4 Finding Business FUNCHONS .........cccccccviiiiiiiiiiiiiiiiiiccc e
4.41 Using the Object Management Workbench ...........cccccococieiiiiiiiiiiccicccecene
4.4.2 Using the Cross Reference Facility .......c.ccoooreioiiiiiiii e,
4.4.3 Using the Debug Application ..........ccoiiiiiiiiiiiiiiiicccccceeeeas

5 Understanding XML

5.1 XML and JD Edwards EnterpriseOne..........cccccccucuiieiriviiiniiininiiiiiiinniiirnsccneesessssnne
5.2 XML JAR FILES ..cuvitiiiieieteteetetettettett ettt et e st s ettt sesse et e bassessessessessessessessaseasensensessens
53 XML Document FOTMAt .......oooiiiiiiiieieeeceecce ettt ettt saeeseesbeesae s e e sssesnseens
5.3.1 Formatting XML DOCUMENLS .........coovviiiiiiiiiiiiiiciccc s
5.3.2 TYPE ELEMENT......oiiiiiiiiiiic e
5.3.3 EStabliSh SESSION .....vecvviiiieiieiicteecee ettt st st e s besee e sesreesaeennas



5.34
5.3.5
5.3.6
5.3.7
5.3.8
5.4
5.4.1
54.2
5.4.3
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.2
5.5.3
5.6

EXPITe SESSION.......cviviviiiiiiciciciciciccc s 5-4
Explicit Transaction ..........ooccuoiiiiiiiiic e 5-4
Implicit TranSacCtioN.......ccccoiiiiiiiiiiiiii e 5-4
Prepare/Commit/RoIIback........ccccoviiiiiiiiiiiiiiiiiicc e 5-5
Terminate SESSION ........cciviiviiiiiicc e 5-5
XML Standards........cocceiieiiii s 5-5
Decimal and Comma Separators............ccceieiieieiiieiiiieiiieeceee e 5-6
Date USAZe ....cucveveieieieieiieieie s 5-6
Industry Standards for Special Characters ............cocovvvrrrnnnnrnnneree e 5-6
System Environment Configuration ...........cccooiiiiiiiiie 5-7
UNIX bbb 5-7
HPUX oot 5-7

AX s 5-7

SUN .ot 5-7

LINUX oottt 5-8

IBM vt 5-8
WIINB2..co bbb 5-8
XML Kernel TroublesShOOtINg .........c.ccccueiiuiiiiiieiiiiiiiciciccciceeeeeeeeeeeeeeeeeeeeneeeeeeeneneeeeeenas 5-8

6 Understanding XML Dispatch

6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.6
6.7
6.7.1

XML DESPAtCR ..ottt 6-1
XML Dispatch ProCeSSING.........ccoveueiiiiirieieiiicicie et 6-2
XML Dispatch RECOZNIZETS .........cuoviruiieiiiicieiiecici e s 6-2
XML Dispatch TranspoOrts........cccccocucucueururerieiieeriieeereeeeeeseeerieeeeeeseses s 6-2
XML Dispatch jde.ini File Configuration ...........ccoceeieiiieiniiiiiiiiiiiceneeeens 6-2

[JDENET_KERNEL_DEF22]......ccccciiiiiiiiniiiiiiiiiiieniiescessis s 6-3

[XMLLOOKUPINLO]....eviiiiiiiciciciiciciieeeieceeee e 6-3
XML Dispatch Error Handling ..o 6-4
Submit a UBE from XML .......ccccccoviiiiiiiiiiiiii s 6-5

PIrerequiSites ... 6-5

7 Understanding XML Transformation Service

71
7.2
7.21
7.2.2
7.3
7.3.1
7.3.2
7.4
7.41
7.4.2
7.4.3
7.4.4

XML Transformation SEIVICE .........ccciiiiiiirimiieiiiiii s s 7-1
XTS PLOCESS ...ttt 7-1
Example: JD Edwards EnterpriseOne Native XML Format..........cccccccccocuiiiiiiinnnnns 7-2
Example: JD Edwards EnterpriseOne Version 1 XML Format.........ccccccccecuvicicennnnnne 7-2
CUSTOM SEIECLOTS ......vvveiittitt ettt 7-4
XTS APIS ettt 7-4
Example: Creating a SElector ...t 7-5
XTS jde.ini File Configuration........c.coueeueiiiiiieiiicic i 7-11
[JDENET_KERNEL_DEEF23]......cccceiiiiiiiniiieieiiceeiiceeesesie e 7-11
[JDENETT ..ottt 7-12
[XTSREPOSILOIY] ...ocvvvviiiieiiiciciiicieieesec e 7-12
[XTST o 7-12



8 Understanding XML CallObject

8.1 XML CallODJECE .....ouimiiiiiiiiicii s 8-1
8.2 XML CallObject TEMPIALES......c.cocueuimimiiieiiieieicieieiciceteteieeie e 8-1
8.3 XML CallODbject PTOCESS .......cuiuiuiuiiiiiiiiiiitiiiticiciitte ettt 8-2
8.4 XML CallObject Document Format...........cccccovuviiiiiiiiiininiiiiiin, 8-5
8.4.1 XML CallObject Formatting Documents...........ccccovvvvevvnrernnnnnnrnrrere e 8-5
8.4.2 Call ODBJECE.....iviiiieiiieiciicteec s 8-5
8.4.3 OnError HAandNg .......cccooviiiiiiiiiiiiiiiiiiiicn s 8-6
8.4.4 Call Object Error Handling ..........cccocciiiiiiiiiiiieeeeecececeeeeeeneeneneeeeenenenenennes 8-6
8.4.5 EITOT T@XE ottt 8-6
8.4.6 Multiple Requests per Document.............c.ooooeieiiiiiieiiiicec e 8-7
8.4.7 ID/IDREF SUPPOIt ..ottt 8-7
8.4.8 Return NULL ValUes.........coociiiiiiiiniiiiiiiicse s 8-8
8.5 XML CallObject jde.ini File Configuration............ccceceviivniniiiiiniiniiiiiiiiniis 8-8
8.5.1 [JDENET_KERNEL_DEFB].......cccooiiiiiiiiiiiiiiiiieiieiicieescne e 8-8
8.5.2 Example: CallObject ReQUESt .........ccoeuiviiiiiiiiiiiiiiiicccccc e 8-8
8.5.3 Example: CallObject RESPONSE ........ccueviviiiiiiiiiiiiiiiicicciic s 8-9
8.6 XML CallObject Return Codes........ccocuiuiuiimiiiiiiiiiiiiciieceiceicicecieeeeee e 8-10

9 Understanding XML Transaction

10

11

vi

9.1 XML Transaction........cceeieieieieiieieieeeee e 9-1
9.2 XML Transaction Update Process ...t 9-1
9.3 XML Transaction Data ReqUESt ...........cceiiiiiiiiiiiiicccc s 9-3
9.4 XML Transaction jde.ini File Configuration ... 9-4
9.41 [JDENET_KERNEL_DEFI5].....ccociiiiiiiiiiiiiiiiiisiisiscnsssssssssssne s 9-4
9.4.2 Example: Outbound Order Status XML Request and Response Format .................... 9-4

Understanding XML List

10,1 XML LISE . s 10-1
10.2  List-Retrieval Engine Table Conversion Wrapper ..........cccccccccceccceenicceeeeeeeeeeenns 10-2
10.3 XML LiSt PrOCESS....ccvitetiuiiieietiicieietctce ettt 10-2
10.4 XML List REQUESES ....ocveuiiiiiiiiiiicccc e 10-4
10.4.1 Creating a List ......cccovuiiiiiiiiiii s 10-5
10.4.2 Retrieving Data from a LiSt ..o 10-8
10.4.3 Deleting @ LiSt.....c.cciiiiiiiiiiiciiciic s 10-9
10.4.4 Getting Column Information for a List.......ccccccccceiiiiiiiiniicccnrccrene 10-9
10.5  List-Retrieval Engine jde.ini File Configuration...........cccccooviiiiiiniininiiiccne, 10-10
10.6 XML List jde.ini File Configuration..........c.ccooiiiuiiiiiiiiiiiiiiiiiiiccceeecceeeees 10-10
10.6.1 [JDENET_KERNEL_DEFI6]......cccceiiiiiiiiiiiiniiiiiniceercnis e, 10-10

Processing Z Transactions

11.1  Understanding Z Transactions ...........ccccceeeiiiiiiiiiieeceeereneeeeeneneseenenenenesesenenenens 11-1
11.2  Naming the Transaction............cooeuoiiiiiiiiiiie e 11-1
11.3  Adding Records to the Inbound Interface Table.............ccccooonioiriiiiiiiie, 11-2
11.4  Running an Update PrOCESS ..........ccccooiiiiiiiiiiiiiicceeiceceieeee e 11-2
11.4.1 Running an Input Batch Process..........ccoceuiiiiiieiiiiic 11-2



12

13

14

11.4.2 Running a Subsystem JOD ... 11-3

11.5  Checking for BITOTS......cooiiiiiiii e 11-4
11.6  Confirming the Update ............ccoiiiiiiiiiiiiieeceeeeceeeeeee e 11-4
11.7  Purging Data from the Interface Table ..........c.cccoooiiiiiii 11-5
Using Flat Files
121 Understanding Flat Files.........cccoooiiiiiiiiiiii e 12-1
12.2  Formatting Flat Files.........cccooiiiiiiii e 12-2
12.3  Setting Up Flat FIleS......ocooiiiiiiiiiiccce e 12-2
12.4  Converting Flat Files Using the Flat File Conversion Program ............ccocccoeeiviiiciiininne. 12-3
12.4.1 Forms Used to Convert Flat File Information............cccccceevvinnnninnnniin 12-5
12.4.2 Defining the Flat File Cross Reference Table..........ccccccccoeiiuiiiiiiiiccciccicicnennee 12-5
12.4.2.1 Flat File Cross Reference..........ccccocevviiiiiiiiiiiiiiiiiiiiccccccccceeeees 12-6
12.5  Importing Flat Files Using a Business FUNCON .........c.coccooiiiiiiiii 12-7
12.5.1 Map the F98713 table in the System Data Source............cccccocceuciiicccccccnccnennnes 12-7
12.5.2 Ensure the F98713 table Exists in the Business Data Source ............cccccoevvvininiiinnnnn. 12-7
12.5.3 Flat File Conversion Error MeSSages ..........ccocveuevirueieiniiicieieiiecie e 12-7
12.6  Converting Flat Files USING APIS ........cccooiiririirrccccccce e 12-8
12.6.1 Forms Used to Convert Flat File Information.............cccooeeeiiiiiiiinini 12-9
12.6.2 Setting Up Flat File ENCOAING ......c.cvoviiiiiiiiiiic e 12-9
12.6.2.1 Flat File Encoding Configuration...........c.cccceeuvuviriirrnennennrnnrreeeceecsc e 12-12
Understanding Messaging Queue Adapters
13.1  ]JD Edwards EnterpriseOne and Messaging Queue Systems ...........ccccceueueuevevurereeeeenunenes 13-1
13.2  Data Exchange Between JD Edwards EnterpriseOne and a Messaging

QUEUE AdAPET ... 13-1
13.2.1 Sending Information to JD Edwards EnterpriseOne.........cccccccoovuvvvivnrnnnnrncncncnes 13-1
13.2.1.1 Z Transaction Process FIOW ... 13-2
13.2.2 Retrieving Information from JD Edwards EnterpriseOne.........cccccoorriniiirinnninnnne. 13-2
13.2.3 Using JD Edwards Classic Event System ...........ccccccooceiiiiiiiicciccceecccceeees 13-3
13.2.3.1 Classic Z Event Processing.........ccccoourueieiniiicieiicciccec i 13-3
13.2.3.2 Enabling Z Events Interface Table Processes ............ccccccoceeviuinicieiiicncicinicncncnnens 13-3
13.2.3.3 Outbound Table Adapter FUNCHON .......ccccooveirivirriiiiiiccceccceeeceees 13-3
13.2.3.4 Outbound NoOtification .........cccceveeiiiiiiiiiiiiii 13-4
13.2.4 XML Interface Table InqUiry APL.......cccccccooiiiiiiiiiiiiiccceeeees 13-5
13.3  Management of the Messaging Queue Adapter Queues..........ccccccccueueuricrcucicienicrcnnnene. 13-5
13.3.1 INDOUNA QUEUE ....oeveeieieeeeeeee ettt ettt ettt e et e e s e sessaessesssassesssessensnans 13-6
13.3.2 OUhOUNA QUEUE ...ttt sttt se et et e eneeseeseeseesessessesens 13-6
13.3.3 SUCCESS QUEUE .....oeeeveeerieiieeiee et etr et et eeste e tbeebeestaeeebeessseeaseessasesseesseessseassaessseesaenssennses 13-6
13.3.4 EITOT QUEUE ...ttt ettt ettt e et e st e e s e se s st e ssaesaesseessesseessassanssensenns 13-6
13.3.5 Default ReSponse QUEUE ..........cccouciiiiiiieiiiiiiiiiiiicic s 13-6
13.4  Configuration of the jde.ini File to Support Messaging Queue Adapters....................... 13-7
Using Guaranteed Events
14.1  Understanding Guaranteed EVENts..........cccccooiiiiiiiiiiiiiiiceece e 14-1
14.2  Processing Guaranteed EVents............cooooiiiiiiii 14-2

vii



viii

14.2.1 Understanding Guaranteed Events Processing...........ccoceuveoireieinicicienincciccicce 14-2

14.2.2 Aggregating EVeNtS ... 14-4
14.2.3 Logging EVents........cccociiiiiiiiiiiiiic s 14-4
14.2.4 Configuring the Transaction Server............ccooiiieiiiiceinc 14-4
14.2.5 Configuring the Transaction Server to Use WebLogic........cccooovveieiiiiiiiniiie 14-5
14.2.5.1 Setting the WebLogic Client Jar in an Oracle Application Server-...................... 14-5
14.25.2 Setting the WebLogic Client Jar in a WebSphere Application Server ............... 14-5
14.3  Setting Up OCM for Guaranteed Events.............ccoooiiiiiii 14-6
14.3.1 Understanding OCM Setup for Guaranteed Event Delivery..........ccccccocoeecieennee. 14-6
14.3.2 Forms Used to Set Up OCM for Guaranteed Event Delivery ..., 14-6
14.3.3 Setting Up the OCM for Guaranteed Event Delivery ...........ccoocooriiiiiiiiinna, 14-6
14.4  Selecting the Guaranteed Events Delivery System..........c.cccccoeveiicenvicncnccienene 14-7
14.4.1 Understanding Guaranteed Events Selection..............ccoooiiiiiiii 14-8
14.4.2 Forms Used to Select Guaranteed Events Delivery System ...........ccccocooeiiiinna 14-8
14.4.3 Selecting Guaranteed Events Delivery ... 14-8
14.5  Defining EVENtS ......ccouoviiiiiiiiic 14-8
14.5.1 Understanding Events Definition ... 14-9
14.5.2 Forms Used to Enter EVents..........cccccooiiiiiiiiiiiiccnes 14-9
14.5.3 Adding a Single or Container EVent ... 14-9
14.5.3.1 Event Definition Detail .........cccccoiiiiiiiiiiiiiiiiiccciccccceses 14-11
14.5.3.2 Activating an Event ... 14-11
14.5.3.3 Refreshing the Transaction server cache of active events ..........c.c.ccoooeeieinine, 14-12
14.6  Establishing Subscriber and Subscription Information...........cccoeooiiiiiiniiii 14-12
14.6.1 Understanding Subscribers and Subscriptions ... 14-12
14.6.2 Forms Used to Add a Subscriber and Subscription Information .............ccccoeueuenee. 14-12
14.6.3 Setting Up Processing Options for Adding JMS Queue as a Subscriber................ 14-13
14.6.4 Adding a SUDSCIIDET ........c.ciiiiiii e 14-14
14.6.5 Adding a SUDSCIIPLION ......ccueviiiiiiiiiiciiic 14-16
14.6.6 Associating a Subscription with Subscribed Events.............ccoooii 14-17
14.6.7 Associating a Subscription with Subscribed Environments...........c.cccccccociiiccnnes 14-17
14.7  Creating MSMQ QUEUES..........cooooviiiiiiiiii s 14-17
14.7.1 PrerequiSites ... 14-17
14.7.2 Understanding MSMOQ........ccocciiiiiiiiiiiiirccceeeee e 14-17
14.7.3 Creating an MSMQ Real-Time Event Queue...........cccccoeeviiiiiciiinininn 14-17
14.7.4 Verifying Event DeliVery ..o 14-18
14.8  Creating WebSphere MQ QUEUES .........ccovvvuiririririiiiiie e 14-18
14.8.1 PrerequiSites ..o 14-18
14.8.2 Understanding WebSphere MQ .........ccccoviiiiiininniniiiiiiccccccccnnes 14-19
14.8.3 Creating a WebSphere MQ Real-Time Event Queue ...........ccccoevuvvvnvnnnrncncnne. 14-19
14.8.4 Configuring WebSphere ..o 14-19
14.8.5 Verifying Event DeliVEry ..o 14-20
14.9  Creating WebLogic Message QUEUES ...........ccouvvvivreriririnininiiicice e 14-20
14.91 PIrerequiSites ...t 14-20
14.9.2 Understanding WebLogic Message QUEUE ...........ccccovuviviviniiinininninininnccceeaes 14-21
14.9.3 Creating a JMS Server in the WebLogiC Server ...........cccccovvvivvvvnnnnrnnreneccenes 14-21
14.9.4 Creating a JMS Module in the WebLogic Server ... 14-21
14.9.5 Creating a Connection Factory ... 14-21



15

16

14.9.6 Creating a Destination .............coieiiiiiiiiiic 14-21

14.9.7 Verifying Event Delivery ... 14-22
14.10 Creating Custom Real-Time EVeNts ........ccccocouirviiiininccccccccccceee 14-22
14.10.1 Creating a Custom Real-Time Event...........cccoooiiii 14-22
14.11  Generating Schemas for Event XML Documents............cccccooiiiiniiiiniiiniccneec, 14-23
14.11.1 Understanding the Schema Generation Utility.........c.cccocoeiviieiniiciiniiccene 14-23
14.11.11 PrerequiSite..... .o 14-24
14.11.2 Configuring the Schema Generation Utility ........cccoooriiiiiiiii 14-24
14.11.3 Using the Schema Generation Uity .........cccoovrrniiininninciiicccccccccccccenee 14-26
14.11.3.1 PrerequiSites ... 14-26
14.11.3.2 Logging In to the Schema Generation Utility.........cccooooiiiiiii 14-26
14.11.3.3 Event Schema Generator SCTeeN...........ccovvruriiiiieieiiiiiie e 14-26
14.11.3.4 Displaying Event Schema..........coocuoiiiiiiii e 14-27
14.11.3.5 Generating Event Schema for Single and Multiple Events ...............ccc.cc....... 14-28
14.11.3.6 Generating Event Schema for All the Events of a Selected Event Category... 14-30
14.11.3.7 Generating Header Schema ............c.oooiviiiiiiic e, 14-30
14.11.4 Troubleshooting the Schema Generation Utility.......ccccocoooiiiiiiiiii, 14-31
Using Real-Time Events - Guaranteed
15.1  Understanding Real-Time Events - Guaranteed .............ccccooooriiiiiiniicc 15-1
15.2  Generating Real-Time EVENts..........cccoiiiiiiiiiiiiiccccccccecce s 15-2
15.2.1 Understanding Real-Time Event Generation ............c.ccooeceiiicieiiiniciciiccee 15-2
15.2.2 Using Real-Time Event APIS.........cccccooiiiiiiiiiiiiicicsns 15-2
15.2.3 Interoperability Event Interface Calls Sample Code .........cccoeuvurivervnirnnvenicnes 15-2
Using XAPI Events - Guaranteed
16.1  Understanding XAPI Events - Guaranteed............ccccccocveiiiiieiiciceeeeeeeeenenenenns 16-1
16.1.1 JD Edwards EnterpriseOne to Third-Party .........cccoooiiiiiiiiie, 16-2
16.1.2 Third-Party to JD Edwards EnterpriseOne..........cccccoooveiiiiiniiiicicce 16-2
16.1.3 JD Edwards EnterpriseOne-to-EnterpriseOne ..........ccccovvvvnrnnncnnnncncnesreenee 16-3
16.2  Using JD Edwards EnterpriseOne as a XAPI Originator ..o 16-4
16.3  Using JD Edwards EnterpriseOne as a XAPI EXecutor ...........cccccceeiiiiiiiiiciinicncncnnee, 16-5
16.4  Working with JD Edwards EnterpriseOne and Third-Party Systems ..........ccccccceueuuenee. 16-6
16.4.1 Understanding XAPI Processing between JD Edwards EnterpriseOne and

Third-Party SYstems..........cccccciiiiiiiiiii s 16-6
16.4.2 XAPI Outbound Request APIS.........ccociiiiiiieeieeeeeeeeeee e 16-6
16.4.3 XAPI Outbound Request API Usage Code Sample.........ccccovveveuriieiiiiiiiniiiniinennnn, 16-7
16.4.4 XAPI Inbound Response APIS .........cccccciiiiiiiiiiiiiiiceeees 16-8
16.4.5 XAPI Inbound Response API Usage Code Sample ..........ccccccueuiicuiniciiinnnniecnenes 16-8
16.5  Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity .........cccccevvvverevennne. 16-9
16.5.1 Understanding JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity.......... 16-9
16.5.1.1 Modify Element Name for XML DOCUments ...........cccccoeeierciiiccccciccncnes 16-10
16.5.1.2 Security for Originator and EXecUtor ..........c.ccoeoeiiiiiiciniciniccc 16-10
16.5.1.3 Error Processing for Originator and EXecutor ..........ccccoevvvivnnnnnnnncne. 16-11
16.5.2 XAPI Outbound Request Handling APIS.........cccccoceieiiiiininirrrrcerrecerereeeenes 16-11
16.5.3 XAPI Outbound Request Parsing API Usage Sample Code .........ccccooeveuiruriernnnee. 16-11



17

18

19

16.5.4 XAPI Inbound Response Generation APIs ..........ccccccovviiiiiiiiiiiii 16-13

16.5.5 XAPI Inbound Response Parsing API Usage Sample Code..........ccccooorieiiiirnnnnne. 16-14
16.5.6 XAPI Error Handling APIS.........c.ccviiiiiiri e 16-21
16.6 Mapping a Business FUNCHON ........c.coviiiiiiiiiiic e 16-21
16.6.1 Understanding how to Map a Business Function...........cccccoooicicne, 16-21
16.6.2 Forms Used to Add Mapping Information..........cccccccceeueueureieicvnncnnrrreereeeenes 16-22
16.6.3 Adding Mapping Information .............cceueiiiiiii 16-22

Using Z Events - Guaranteed

17.1  Understanding Z Events - Guaranteed..........cccccoovrieiiiiiiiiiincce 17-1
17.2  Z Event Process FIOW ... 17-1
17.3  Vendor-Specific Outbound FUNCHONS .........ccocoiiiimiiiiiiiiiiceccccceccece e 17-3
17.4  Working With Z EVeNts .........ccoooiiiiii e 17-3
17.4.1 Configuring Z EVENtS ..ottt e 17-3
17.4.2 Enabling Z Event Processing..........cccccoceciieiciciiiieeieieieiecieeieeeeeeeeeeeeeeeeeeeeeeneeeens 17-3
17.4.3 Updating Flat File Cross-Reference ............cocooooeiiiiiiiiiii 17-4
17.4.4 Updating the Processing Log Table ............cccooouiiiiiiiiiiiiicc 17-4
17.4.5 Verifying that the Subsystem Job is RUNNING.........cccccciiiiiiiiiiecceccccieeenes 17-4
17.4.6 Purging Data from the Interface Table ..........cccccooiiiiiiiie 17-5
17.4.7 Synchronizing F47002 Records with FO0701 Records ...........cccooeioiiiiieiniinicie 17-5
17.5  Setting Up Data EXport CONEIOLS .......ccccovviiiiiiiiiiiccccccccceeeeee s 17-5
17.5.1 Understanding Data Export Controls Records ...........ccooeieiiiiiiiiiiiic 17-5
17.5.2 Forms Used to Add a Data Export Controls Record ..o 17-5
17.5.3 Adding a Data Export Control Record .........cccccovurivvviniiiiniiiirccceeeceeeeeeeaes 17-5

Using Batch Interfaces

18.1  ]JD Edwards EnterpriseOne Interface Tables ..........cccccccociiiiiiciiiceeccccceeeeenenens 18-1
18.1.1 Structuring Interface Tables ... 18-1
18.1.2 Updating JD Edwards EnterpriseOne Records............cccceiuiiiiiiiininiiiiiiiiinnn, 18-3
18.1.3 Retrieving JD Edwards EnterpriseOne Records ...........ccccecvuveevivrvnnnnnnnnrcncecnes 18-3
18.1.3.1 Running an Extraction Batch Process............cccccovviviniiiiiiiiinicccicccc, 18-3
18.1.3.2 Subsystem Business FUNCHON...........ccccciiiiiiiiiiiiiiccccce, 18-4
18.1.4 Using the Revision Application.........ccccccieiiiiiiiiiieiiiicecececeeeeeeeee e 18-4
18.1.5 Purging Interface Table Information ..o 18-4
18.2  Electronic Data INterface . .......ccucoiiriiiiieriiiiiciecieeeee ettt et ve e e eaeereeaesreennens 18-5
18.3  Table CONVEISION ..e.vivieieeierieeieeieiieteeeeete e st et e ste e ssesteseeseesaeseesessessassessessessessessessessessasensensenns 18-5
18.4  Output Stream Access UBES .........ccoiiiiiiiiiiiii s 18-5
18.5  Advanced Planning Agent Integration..........c.cccooiiiiiiiiiiiiiiicccccceeece 18-5

Using Open Data Access

191 Understanding Open Data ACCESS .........ccccuiuiiiiimiiiiiiiiiiiiiiiciciieeee s 19-1
19.2  Installing ODA ..o 19-1
19.2.1 Hardware ReqUIrements ............ccceveieveiiiiinininiiiniiecceecee s 19-1
19.2.2 Software ReqQUITEMENTS..........ccccueuiiiiiiiiiiciiiiiiciecc s 19-2
19.2.3 ODBC Component Files..........cccoviiiiininiiiiiiiiiies 19-2
19.2.4 ODA Driver ATChItECEUTE .....cc.vecvieeieiicieieetese ettt ee e eesae s e e sbessaesseennens 19-2



20

21

19.3 Working with Data SOUICES. ... s 19-3

19.3.1 Adding a Data SOUICE .........cccceiviiiiiiiiiiiiiiii s 19-3
19.3.2 Modifying a Data SOUICE ........ccccueuiuiuiiiueiiiiiicieeeieeeeeeee s 19-4
19.3.3 Deleting a Data SOUICE..........covviiiiiiiiiiiiicccc s 19-4
19.3.4 Configuring a Data SOUICe ..........cccccuiiiiiiiiiiiiiiii s 19-4
19.3.5 Connecting a Data SOUTCE..........cccciiviiiiiiiiinii s 19-4
19.4  Working With ODA ... 19-5
19.4.1 Manipulating Data........cccceiiiiiiiiiiiiiiiiiii 19-5
19.4.2 Using Keywords in the Connection String ... 19-7
19.4.3 Running a Query Using Microsoft EXcel.........cccccccoviiiniiiiiiiiiiiic, 19-9
19.5  Managing ODA Error MeSSages...........ccceeivieiiueininieiiiiietecieseescee s 19-10
Using the Java Database Connectivity Driver

20.1  Using the JDBC DIIVET .....ccciiiiiiiiiiiiiiiiciicie s s 20-1
20.1.1 When to Use @ JDBC DIIVET .....cvcveiriieiiriiriesieieieieeeeeeeeeeessessessessessessessessssssssssassessens 20-2
20.1.11 PrerequiSites ... 20-2
20.1.1.2 Using the Type 3 JDBC DIiVer......cccooiiiiiiiiiiiiniirncicee s 20-2
20.1.1.3 Using the Type 4 JDBC DIIVET ......c.ccciiiiiiiiieicceceeeeeeeieeeeeeeeeeeeeeeeeeseees 20-2
20.1.2 ConNection MOde.........cccciiiiiiiiiiii s 20-3
20.2  JDBC Driver Configuration .........cccccciiiiiiiiiiiiiiiiiiiiisss s 20-3
20.3  JDBC Driver Connection Details .........ccccevieiriririnierierieieiereteieresessessessesessessesessesessenss 20-3
20.3.1 Driver Class Name..........cccoiuiuiiiiiiiiiiiicic s 20-3
20.3.2 Connection URL........cccoiiiiiiiiiiiiiiiiiiee e 20-4
20.3.3 Connection Properties. ... 20-4
20.3.3.1 Example Showing How to Use Connection Properties ..........cccooeeeveirirniennnn 20-5
20.4  JDBC Driver Security Considerations............cccoevviiiiiiiiiniiiniiics 20-5
20.5  SOL GIammIMaATr......cccvieiieeieeiteeiieeereeieeereesteeeeseesseesseessaessseeseessseassessssssseessssssessssessesssssssessnnes 20-5
20.5.1 SQL Grammar for JD Edwards EnterpriseOne Connection Modes................c........ 20-6
20.6  JDBC Driver FEatures ..o s 20-8
20.6.1 JDBC Features for the Connection MOde .........c.cceviviireriiniirienieiereieies e seeeenns 20-8
20.7  JDBC Driver TroubleShOOting .........ccccceviiiiiiiiiiiiiiiiiiicicc 20-9
20.7.1 INO SUItADIE DIFIVET ...t 20-9
20.7.2 Data Source for FO010, TBLE NOt FOUN ...c.oooviiiiicieeeeeeeceeeeeeeeceee e 20-9
20.7.3 Table Specifications Do Not Exist (Type 3 JDBC only) .......cccocovvuvvvviniiniiininniinnen. 20-10
20.8  JDBC Driver TerminolOgy ...t 20-10
Using Oracle Orchestration Systems

21.1  Understanding Oracle Orchestration Systems .............cccooeeieiriiiniiiceeiceceee 21-1
21.1.1 BPEL-PM ...oiiiiiiiiiiice s 21-1
21.1.2 ESB ..o s 21-2
21.1.3 OrChestration .....c.cceirieieiiiiieici ettt 21-2
21.2  Configuring Orchestration Cross References ...........c.ccccoeeueucurvvirnnnnnnnnnnerrerecnes 21-2
21.21 Understanding the Orchestration Cross-Reference Configuration............cc..c......... 21-2
21.2.11 How the Orchestration System Uses Cross-References...........ccccocovvvnirinicnnes 21-3
21.21.2 Common Notations and Variables in This Document............ccccccccceeccccennee. 21-4
21.2.2 Registering Cross-Reference Read XPATH Functions in JDeveloper ...................... 21-4

xi



22

21.2.3 Configuring Access to Orchestration Cross-Reference APIs .........ccccccovvviiniiinininn 21-5

21.24 Creating a Data Source in OC4].......cccouiiiiiiiiiiiiiiiii e 21-7
21.2.41 Defining an Oracle Data Source in OC4] ........cccccceeiiiieniiiieecccecceeenees 21-7
21.2.4.2 Defining a UDB/DB2 for IBM i Data Source in OC4]........ccccoceveeiiieinrenenennn 21-7
21.24.3 Defining a DB2 for IBM i Data Source in OC4] ......cccccooeiiiiiiiiicee, 21-7
21.24.4 Defining a SQL Server Data Source in OC4] .......cccccceimiiiieiiiieeiccecceeeenne 21-8
21.3  Using Password Indirection (Optional)..........ccccoeiiiiiiiiiiiiiiiiiiiccccc 21-8
21.31 Understanding Password INdirection...........ccooreiiiiiiiiiccccceccee 21-8
21.32 Editing the Default Application.xml to Use System-jazn Data...........cccccccovururueunnncne 21-8
21.3.3 Adding a JAZIN USET ......viuiiiiieieie it 21-9
21.34 Adding Password Indirection in the Data Source ........ccccooviiiiiiii 21-9
21.4  Setting Up the Cross-Reference Java Binding Service.........ccccccevevvvvnvnnnnnnnncncnes 21-9
21.41 Registering the Java Binding Service ..., 21-10
21.4.2 Placing Java Binding Classes in the Classpath ..........ccccoooiii 21-10
2143 Using Cross-Reference Read Services from XSL Mapper........ccccccoeiecccciccnenne 21-10
21.4.4 Using JD Edwards EnterpriseOne Cross-Reference Services...........ccccovevriveiriuninnnes 21-11
21.4.4.1 BPEL-PM....oiiiiiiiiiiieic s 21-11
21.4.4.2 ESB .o 21-11

Setting Up Orchestration Cross-References

22.1  Understanding Orchestration Cross-References..............ccccccccveueiiicciniccccnccceennn 22-1
2211 Code and Key Cross-Reference Categorization ... 22-1
222  Adding Cross-Reference Object TYPes ........ccooiirieieiiiicieiiiicieec s 22-2
22.3  Adding Orchestration Cross-References.............cccoeeuvuvrririinnnncnnrrcsereeeeeeeens 22-3
22.4  Reviewing or Modifying Orchestration Cross-References.............ccocoeueiireiiiiinicinnne. 22-4
22.5  Deleting Orchestration Cross-References.............cccocooiiiiieiniiiniciiiiciceceeece e 22-5

A Classic Events

Xii

AA Understanding Classic EVENtS .........cccoouoiiiiiiiiicc A-1
A2 Defining EVENtS .....c.cciiiiiiiiiccccccee s A-2
A2A1 Reducing Network Traffic.........ccooioiiiii A-3
A3 Subscribing to EVENES .......c.cciuiiiiiiiiiiiiiicicc s A-3
A4 Configuring the jde.ini file for EVENts..........ccccccciiiiiiiiiiiiiccccceeeceeeeeeeeeeeeaes A-4
A4 [JDENET_KERNEL_DEFI9].....cccociiiiiiiiiiiiiiiiiciisssss s A-4
A42 [JDENET_KERNEL_DEF20].......cccciiiieiiniiiiieiriiceirinieieneesecsesseese e A-4
A.43 [JDENET_KERNEL_DEF22].......cocooiiiiiiiniiiiiiiicieisc e A-4
A4d.4 [JDENET_KERNEL_DEF24].......cccccecviiiiiiiiiiiiiiiicsessss s A-5
A45 [JDEITDRVT] c..ouiiiiiiiieirriicrticie ettt A-5
A.4.6 [IDENETT ..ottt A-5
A5 Using Reliable Event Delivery ... A-6
A5.1 Understanding Reliable Event Delivery...........cccccociiiiiiiiiiiiiiiicccccccceees A-6
A5.2 Configuring Your System for Reliable Event Delivery ........ccccccooovvvnnnnnnnnnnene. A-7
AS53 Reliable Event Error MESSAZE ........ccvuiueueviiirieieiiicieie s A-7
Ab54 Minimizing Duplicate and Lost Events............ccccccccoeiiiiiiiiiiiiiciccccce, A-8
A55 Increasing Performance ..........c.cccccciiiiciiiicecceeee s A-8
A5.5.1 Voluntary Black List.........coooiioiiiiii A-9
Ab552 Forced Black LiSt.......ccivvirieiiiniiciiiieicecceecet ettt A-9



A5.6 Configuring the jde.ini File.........coooiii e A-9

A5.6.1 [INTEROPERABILITY ..ottt A-10
A5.6.2 [NETWORK QUEUE SETTINGS].....ooviiiiimiiiiinininiininicneeseecnsscneneneae A-10
A.6 Entering EVENtS ..o A-10
A.6.1 Understanding Entering Events ..o A-10
A.6.2 Forms Used to Add EVENts ........ccccooviiiiiiiiiiic s A-10
A.6.3 Entering a Single or Container EVent ..........ccccooiiiiiiiiiiccc A-11
A.6.3.1 Event Definition Detail ... A-12
Ab6.4 Changing the Status of an Event Record..........c.ccccceiiiiiiniiiiicccccccceee A-13
A7 Adding Logical Subscriber Records...........oouueieiiiiiiiiieiiiiiie A-14
A7 Understanding Logical SUbSCIibers ............oceiiiiiiiiiiic e A-14
A72 Forms Used to Add a Logical Subscriber ... A-14
A7.3 Adding a Logical SUbSCIIDeT ........c.cocoieiiiiii e A-14
A.8 Entering Subscription INformation.............c.oooiiii A-15
A8.1 Understanding Subscription Records...........cccccoiiiiiiiiiiiiiiiicccccececeeees A-15
A8.2 Forms Used to Enter Subscription Information .............cccccoeveiniiniinninnnnn A-15
A.8.3 Entering a Subscription Record ... A-15
A8.4 Changing the Status of @ SUDSCIIPHON. .......ccceueuiiiiiiiiiiiiccccecceccee A-16

B Using Classic Real-Time Events

B.1 Understanding Real-Time Events - ClassicC.......c.cccociiieiiiiiiceieceeceeccerceeenenenenees B-1
B.1.1 PIrerequiSites ........ooeiiiiieiiiicc s B-2
B.2 Processing Real-Time EVENts .........cccoooiiiiiiiiiiiiiccice B-2
B.3 Defining Real-Time EVENts........cccccccccoiiiiiiiiiiiicccccceeeee s B-4
B.4 Using Event SeqUENCING .........cocuiiiiiiiiiiici e B-4
B.5 USING JOUINALNG ..ottt B-4
B.5.1 [INTEROPERABILITY]...ovuiiiiiiiiiiiiiiiiieinieci s B-4
B.5.2 [INTEROPERABILITY...ooiiiiiiiiiiiiiiiiiis s B-5
B.6 Configuring the jde.ini for Real-Time Events.........ccccocoooiiiiiice, B-5
B.6.1 [INTEROPERABILITY]...ovuiiiiiiiiiiiiiiiieiii s B-6
B.7 Generating Real-Time EVeNts.........cccooiiiiiiiiiiiiic B-6
B.7.1 Understanding Real-Time Event Generation ............cccccccccevieivniiiincninininiiineene B-6
B.7.2 Real-Time Event APIS ..o B-6
B.7.3 Example: Interoperability Event Interface Calls .........cccccovvviviviiiviiiniiiininn, B-7
B.8 Setting Up the OCM for Real-Time Events...........cccoccciiiiiiiiiiiiiiicccccccenns B-9
B.8.1 Understanding the OCM for Real-Time Events............cccccoeoeeiiicnnnininiiccene, B-9
B.8.2 Forms Used to Set Up OCM.......cccoviiiiiiiiiiiiiiiiciciiiee s B-9
B.8.3 Setting Up the OCM for Real-Time Events...........ccccccceciiiiniiinciiicnccne B-10

C Using Classic XAPI Events

C.1 Understanding XAPI Events - CIassic .......c.cccccoeiiiiiiiiiiiiiiiicccccecceeceeees C-1
C.11 JD Edwards EnterpriseOne to Third-Party ..o C-2
Ci1.2 Third-Party to JD Edwards EnterpriseOne............ccccooiiiiiiiiiiciiiniiccccce C-2
C.138 JD Edwards EnterpriseOne-to-JD Edwards EnterpriseOne............cccccevvviviniiinininennce. C-3
C14 PrereqUISIEES ....ccuiuimiiiiiiicicicccccc ettt C-4
C.2 Defining XAPI EVENLS .......covoiimiiiiiicicie e C-4

xiii



C.3 Subscribing to XAPLI EVENtS........ccccoiiiiiiiiiiiiiiciccci s C-4

C4 Setting Up the OCM for XAPI EVENLtS........ccceoeuviiiiiiiiiiiieiiniceniceicce s C-4
C.5 Working with JD Edwards EnterpriseOne and Third-Party XAPI Events ....................... C-5
C.51 Understanding XAPI Event Generation and Third-Party Response........................... C-5
C5.2 XAPI Outbound Request Process FIOW ...........cccccriiiniiinicinicicccc s C-5
C.5.3 XAPI Outbound Request APIS.......c.cocciiiiiiieiieeeieeeceeee e C-6
Cb5.4 XAPI Outbound Request API Usage Sample Code.........cccovviiiiiiiiiniciiicnnnne, C-7
C.55 XAPI Outbound Request XML Sample Code .......ccccoourvriniriiiniiicicccs C-8
C.55.1 Routing INfOrmation ..........ccccceiiiiiiiiiiiiicccceeeeeee s C-10
C.5.6 XAPI Outbound Request jde.ini File Configuration..........cccccccevvieiviinciinncnnnn, C-10
C57 XAPI Inbound Response Process FIOW .........cccccoiiiiiiiiiiiiiicc C-10
C.58 XAPI Inbound Response Parsing APIS.........cccccocceuiiiiiiieiiiccceceeeeeeeneeens C-11
C.5.9 XAPI Inbound Response Parsing API Usage Sample Code ........cccooorereiirinreinnnen. C-12
C.5.10 XAPI Inbound Response Sample Code ........ccoeuiiiriiiiiiiiniiiiiceec C-12
C.5.11 XAPI Inbound Response jde.ini File Configuration ...........cccccccccceeccccccccccnenne. C-14
C.5.11.1 [XAPI] .ot C-14
C.5.11.2 [XMLLOOKUPINFO] ...ttt C-14
C.5.12 XAPI Client jde.ini File Configuration..........ccccccccceeeiiiinniicircecrerceeeeseeeenes C-14
C.5.121 [JDENET_KERNEL_DEF27] .....cceoviiiiiiiiiiniiiiiiiiniiicssssnssssensnenes C-15
C.5.12.2 [JDENETT] ..ottt C-15
C.6 Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events.................... C-15
C.6.1 Understanding JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events.......... C-16
C.6.1.1 Modifying Element Name for XML Documents............cccceuiiimeieiniccieieiinnen, C-16
C.6.1.2 Security for Originator and EXecutor ... C-16
C.6.1.3 Error Processing for Originator and EXecutor ..o, C-17
C.6.2 XAPI EnterpriseOne-to-EnterpriseOne Process FIow ...........cccoiiiiiiiine. C-17
C.6.3 XAPI Outbound Request Generation APIS..........ccccocvciiiiiieiieeieeeeeeeeeeeeenes C-19
C.6.4 XAPI Outbound Request Handling APISs..........cccccoooiiiiiiiiiiiiiiic C-20
C.6.5 XAPI Outbound Request Parsing API Usage Sample Code .........ccooceeueiirrniinnne. C-20
C.6.6 XAPI EnterpriseOne Originator XML Sample Code........cccccoeuvuimienniiccnnccennne Cc-22
C.6.7 XAPI Inbound Response Generation APIs ... C-23
C.6.8 XAPI Inbound Response Parsing API Usage Sample Code........cccccceuvuiriniiiiiicnnnnnne C-23
C.6.9 XAPI Inbound Response from Originator System Sample Code.........cccccoeurvreencnccee C-30
C.6.10 XAPI Inbound Response Handling APIs ...........ccoooiiiiiiiiiiiiic e C-31
C.6.11 XAPI Error Handling APIs.........cccccciiiiiiiiiiiiiccccess C-31
C.6.12 XAPI EnterpriseOne-to-EnterpriseOne jde.ini File Configuration.............cccccc........ C-32
C.6.12.1 [XAPI] oo C-32
C.6.12.2 [XMLLOOKUPINLO] ..ottt C-32
C.6.12.3 [INTEROPERABILITY....ouriiiiiiiiiiiiiiiiiiiiceierciscn s C-32
C.7 Mapping the Business FUNCHON...........cccoiiiiiiiiiiiiiiiii s C-33
C.71 Understanding Business Function Mapping ... C-33
C.7.2 Forms Used to Map a Business Function or AP ... C-33
C.73 Mapping a business function or API ...........cccocovriiiiiiiniiiii C-34

D Using Classic Z Events

D1 Understanding Z Events - ClassiC ........ccccuouiiirieioiiciciecccci D-1
D.1.1 PrerequiSites ... D-1

Xiv



D.2 Z EVENT PIOCESS FLOW ..ottt e s s e s srtae s snaneeennees D-2

D.3 Z BVent SEQUENCING ........ccoceveiiiiiiiiieieiieeetee s D-3
D.4 Vendor-Specific Outbound FUNCHONS ..........cccoiiiiiiiiiiiiicecccceccceceeeeeee s D-3
D.5 Working With Z EVENtS .......cccuoiiiii D-4
D.5.1 Understanding Z Event Processing ............cccocoeeuiiiieiniiicceiccceeecie s D-4
D.5.2 Enabling Z Event ProCessiNg .........ccocoeiceiciiiiiiciiiiiciceiciceeeeeeeceeeeeeeeeeeeeeeeeeseeeas D-4
D.5.3 Updating Flat File Cross-Reference Table..........c.c.ccooeuiiiiiiiiiiiiie D-4
D.5.4 Updating the Processing Log Table.............ccoooeiiiiiiiiiiiic e D-4
D.5.5 Verifying that the Subsystem Job is RUNNMING..........cccccoeiiiiiiiiiieciecceeeeeeeenes D-5
D.5.6 Purging Data from the Interface Table ..........cccccooiiii D-5
D.5.7 Configuring the jde.ini File for Z Events.........cccccooooiiioiiiiiice D-5
D.5.7.1 [INTEROPERABILITY ..ottt D-6
D.6 Setting Up Data Export CONtIols ..o D-6
D.6.1 Understanding Data Export Controls Records ...........cooioioiiiiiniiiiicee D-6
D.6.2 Forms Used to Add a Data Export Controls Record ............cccccoeeeccciccccccccenenne. D-6
D.6.3 Adding a Data Export Control Record ... D-6

E Events Self-Diagnostic Utility Tool

E.1 Understanding the Events Self-Diagnostic Utility ToOL........ccccoovoiriiiiiiiiiiie, E-1
E.2 Events Self-Diagnostic Utility TOOl Process ..........c.cccoooeueieiiiinieiiicicieicc e E-1
E.3 Events Self-Diagnostic Utility Tool COmponents............cccoeeeevuvrererrerernenncrrrsssceseeenes E-2
E.3.1 EVent GeNerator ... s E-2
E.3.2 Event ReCEIVET ... E-3
E.3.3 XML COMPATALOT....cviiiiiiiiiiiiiiii s E-3
E.4 Customizing the TOOL.........ocuoiiii e E-3
E.5 Executing the Events Self-Diagnostic TOOL..........cccouoiiriiiiiiieiici E-3
E.5.1 Executing the Event Self-Diagnostic TOOL........c.ccccceiuiiiiiiiieiiccecceceeeeeeeeenes E-3
E.5.2 Start the TOOL ..o E-4
E.5.3 Generate/Test Real-Time EVENT.....cc.ooo it E-5
E.5.4 Generate/Test Z EVeNt.......ccvviiiiiiiiii s E-5
E.5.5 Test All Types of EVENtS ......c.c.ooiiiiiiiii e E-5
E.5.6 Get BVent List ..o E-6
E.5.7 Get Event Template .......ccccociiiiiiiicccecceeeeee e E-6
E.5.8 SUDSCIIPHON SEIVICES.....cvviviiiiciiicicc s E-6
E.5.9 Comprehensive System ANalysis ..o E-6

F Interoperability Interface Table Information

F.1 Interoperability Interface Table Information ...........ccccccceeuvviviiiiiininiiinincrccs F-1

G XML Format Examples (All Parameters)

G Inbound Sales Order XML Format (All Parameters).........cccveeeruererieninieenieerenenieninienenieens G-1
G.2 Outbound XML Request and Response Format (All Parameters)..........cccccoevvevercrerencnnee G-7
G.2.1 REQUEST ...t G-7
G.22 RESPONSE ...t G-7

XV



H Minimum Required Values Sample Code
H.1 Sales Order Minimum Required Values.............cocoooiiiiiiiiiiiice

I XML Format Examples (Events)

1.1 Example: Z Events XML FOrmat........ccoouoiiriiiiiiiiccc
1.2 Real-Time Events Template.........cccccccoeuiuiiiiiiiiiiiicccceceee e
Glossary
Index

XVi



Audience

Preface

Welcome to the JD Edwards EnterpriseOne Tools Interoperability Guide.

This guide is intended for system administrators and technical consultants who are
responsible for interoperability.

This guide assumes you have a working knowledge of the following:
® The principles and customary practices of your business area.

* Computer desktop application usage and terminology.

Interoperability Companion Documentation

Additional, essential information describing the setup and design of Oracle's JD
Edwards EnterpriseOne Tools Interoperability resides in companion documentation.
The companion documentation consists of topics that apply to Interoperability models
as well as other JD Edwards EnterpriseOne Tools. Depending on which
interoperability model you use, you should be familiar with the information in the
companion guide.

= JD Edwards EnterpriseOne Business Services Development Guide

» JD Edwards EnterpriseOne Business Services Development Methodology Guide
= JD Edwards EnterpriseOne Business Services Server Reference Guide

= Web Services Gateway documentation

= JD Edwards EnterpriseOne Tools Connectors Guide

= JD Edwards EnterpriseOne Tools Table Conversion

= JD Edwards EnterpriseOne Tools Output Stream Access

This guide contains references to server configuration settings that JD Edwards
EnterpriseOne stores in configuration files (such as jde.ini, jas.ini, jdbj,ini,
jdelog.properties, and so on). Beginning with JD Edwards EnterpriseOne Tools Release
8.97, it is highly recommended that you access and manage these settings for the
supported server types using the Server Manager program.

Customers must conform to the supported platforms for the release as detailed in the
JD Edwards EnterpriseOne minimum technical requirements. In addition, JD Edwards
EnterpriseOne may integrate, interface, or work in conjunction with other Oracle
products. Refer to the cross-reference material in the Program Documentation at

xvii



http:/ /oracle.com/contracts/indiex.html for Program prerequisites and version
cross-reference documents to assure compatibility of various Oracle products.

See Also:

» /D Edwards EnterpriseOne Tools Server Manager Guide on My Oracle
Support.

» /D Edwards EnterpriseOne Tools Reference Guide on My Oracle
Support.

» /D Edwards EnterpriseOne Tools Transaction Server Reference Guide
on My Oracle Support.

= "]D Edwards EnterpriseOne Tools Business Services Development
Overview" in the]D Edwards EnterpriseOne Tools Business Services
Development Guide .

= "]D Edwards EnterpriseOne Tools Business Services Development
Methodology Overview" in the |D Edwards EnterpriseOne Tools
Business Services Development Methodology Guide.

» /D Edwards EnterpriseOne Tools Business Services Server Reference
Guide on My Oracle Support.

= JD Edwards EnterpriseOne and Messaging Queue Systems.

= "JD Edwards EnterpriseOne Tools Connectors Overview" in the JD
Edwards EnterpriseOne Tools Connectors Guide.

» 'Table Conversions" in the D Edwards EnterpriseOne Tools
Development Tools: Data Access Tools Guide.

s "Understanding OSA" in the JD Edwards EnterpriseOne Tools
Development Tools: Report Printing Administration Technologies Guide.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

xviii

You can access related documents from the JD Edwards EnterpriseOne Release
Documentation Overview pages on My Oracle Support. Access the main
documentation overview page by searching for the document ID, which is 876932.1, or
by using this link:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id
=876932.1


https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1 
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1 

To navigate to this page from the My Oracle Support home page, click the Knowledge
tab, and then click the Tools and Training menu, JD Edwards EnterpriseOne, Welcome
Center, Release Information Overview.

This guide contains references to server configuration settings that JD Edwards
EnterpriseOne stores in configuration files (such as jde.ini, jas.ini, jdbj.ini,
jdelog.properties, and so on). Beginning with the JD Edwards EnterpriseOne Tools
Release 8.97, it is highly recommended that you only access and manage these settings
for the supported server types using the Server Manager program. See the Server
Manager Guide on My Oracle Support.

Conventions

The following text conventions are used in this document:

Convention Meaning
Bold Indicates field values.
Italics Indicates emphasis and JD Edwards EnterpriseOne or other

book-length publication titles.

Monospace Indicates a JD Edwards EnterpriseOne program, other code
example, or URL.

Xix



XX



1

Introduction to JD Edwards EnterpriseOne
Tools Interoperability

This chapter contains the following topics:
= Section 1.1, "JD Edwards EnterpriseOne Tools Interoperability Overview"

= Section 1.2, "JD Edwards EnterpriseOne Tools Interoperability Implementation”

1.1 JD Edwards EnterpriseOne Tools Interoperability Overview

Oracle's JD Edwards EnterpriseOne Tools Interoperability is used to send information
into or retrieve information from JD Edwards EnterpriseOne. This document identifies
the interoperability models and capabilities that JD Edwards EnterpriseOne supports.
Depending on which model and capability you use, you must configure the system so
that you can send information into or retrieve information from JD Edwards
EnterpriseOne. The chapters in this document discuss format and set up requirements.

1.2 JD Edwards EnterpriseOne Tools Interoperability Implementation

This section provides an overview of the steps that are required to implement JD
Edwards EnterpriseOne Tools Interoperability.

In the planning phase of your implementation, take advantage of all JD Edwards
sources of information, including the installation guides and troubleshooting
information.

The following implementation steps need to be performed before working with JD
Edwards EnterpriseOne interoperability:

1. Install EnterpriseOne Tools 8.98.
See the]D Edwards EnterpriseOne Tools Server Manager Guide on My Oracle Support.
2. Install JD Edwards EnterpriseOne applications.

See the |D Edwards EnterpriseOne Applications Installation Guide on My Oracle
Support.

In addition to the JD Edwards EnterpriseOne Tools and Applications installation
guides, install any other EnterpriseOne tools, such as business services and
Transaction Server, that are required for the interoperability model that you select.

Introduction to JD Edwards EnterpriseOne Tools Interoperability 1-1



JD Edwards EnterpriseOne Tools Interoperability Implementation

1-2 JD Edwards EnterpriseOne Tools Interoperability Guide



2

Understanding Interoperability

This chapter contains the following topics:

= Section 2.1, "Interoperability"

»  Section 2.2, "Interoperability Features"

= Section 2.3, "Interoperability Models and Capabilities"
= Section 2.4, "Interoperability Model Selection"

= Section 2.5, "Other Industry Standard Support"

2.1 Interoperability

Interoperability is most often associated with software as a way to enable disparate
software applications to work together. For example, interoperability makes it possible
for a company to use applications from different vendors as if they were from a single
vendor. Seamless sharing of function and information becomes possible.

Interoperability reduces or eliminates the problems of islands of automation. It enables
business processes to flow from one application to another. Interoperability enables
one system to work with another, in near real-time fashion, to share critical business
information. Interoperability options become the glue between systems and
applications.

2.2 Interoperability Features

Full interoperability among systems makes the flow of data among the systems
seamless to the user. Oracle's JD Edwards EnterpriseOne provides a framework to
mask the complexity of interoperability with external systems, and to simplify
interfacing with third-party packages.

The interoperability solution for JD Edwards EnterpriseOne meets these three
important business objectives:

= Flexibility, Options, and Choice

JD Edwards provides EnterpriseOne-legacy, best-of-breed, customer management,
reporting tools, and many other types of applications and information. The
developer can make the right choice for the particular environment and needs.

s Investment Preservation

JD Edwards EnterpriseOne can interface with the existing applications or
applications you plan to use in the future. You can use industry standard methods
if the existing or new technologies support them, or you can use JD Edwards

Understanding Interoperability 2-1



Interoperability Models and Capabilities

EnterpriseOne business logic to create this interoperability. Also, you will benefit
from our ongoing upgrades and improvements to that architecture.

= Manageability

JD Edwards EnterpriseOne is designed to make the interoperability process easily
manageable.

2.2.1 Benefits
Interoperability offers these benefits:

= Businesses can bring together applications and systems across an enterprise,
irrespective of vendors.

= Collaborations can occur between trading partners to lower the cost of doing
business or to increase competitiveness.

= Multiple systems can be linked together to share information in a real-time
mannet, delivering time-sensitive information to those who need it.

s Disparate solutions as the result of mergers or acquisitions can be quickly
incorporated into the enterprise's information technology solution.

The JD Edwards EnterpriseOne interoperability strategy includes a wide range of
models and capabilities.

2.3 Interoperability Models and Capabilities

The JD Edwards EnterpriseOne Interoperability matrix provides an overview of
interoperability models that are supported by JD Edwards EnterpriseOne. A model is
a way for third parties to connect to or access JD Edwards EnterpriseOne. The matrix
shows the models, which are further divided into types and into the capabilities that
can be used with each model type. The model and model types are listed in the
left-hand column. Capabilities, which are ways to send information into or retrieve
information from JD Edwards EnterpriseOne, are columns in the matrix. For each
model type, you can read across the table to see what capabilities can be used with that
model type. ]D Edwards provides both interactive and batch capabilities. The
capabilities are grouped by inbound, outbound, and batch. An inbound capability is a
request for data or a transaction initiated outside of JD Edwards EnterpriseOne. An
outbound capability originates inside of JD Edwards EnterpriseOne.

2.3.1 Auditing for Interoperability Transactions

An interoperability transaction can affect a column in a JD Edwards EnterpriseOne
table that has been enabled for auditing. When this occurs, JD Edwards EnterpriseOne
creates an audit record for the transaction, but the system records only a portion of the
audit information, such as the audited column, before and after values, and recorded
columns. The audit information will not include a GUID, application ID, workstation
name, or IP address, unless you configure the interoperability model to pass this data
to the audit record.

See "Configuring Auditing for Interoperability Transactions" in the D Edwards
EnterpriseOne Tools Auditing Administration Including 21 CFR Part 11 Administration
Guide.

2-2 JD Edwards EnterpriseOne Tools Interoperability Guide



nteroperability Models and Capabilities

2.3.2 JD Edwards EnterpriseOne Interoperability

This matrix identifies the JD Edwards EnterpriseOne models and the capabilities that
each model supports:

Table 2-1 JD Edwards EnterpriseOne Interoperability Models and Capabilities

XML
CallObj, Real-
XML Time
List, Flat and Generate
BSFN XML Zz Files XAPI Web XML Flat
Model Calls Trans. Trans. Events Services Output Files Batch
Model Type (In) (In) (In) (In)  (Out) Callout  (Out) (Out) (Out)
Business Web Y N N N RTE Y Y N N
Services Services
Server
JMS Queue J2EE N N N N RTE Z N Y N N
& JMS Connectivi Events
Topic ty
Web EOne WSG Y List* N Y RTE N Y Y N
Services XAPI Z
Gateway Event
(WSG)
Connectors Dynamic Y CO, N N RTE N Y N N
Java Trans, XAPI Z
Connector List* Event
(Java
Connector)
Connectors JCA Y CO, N N N N N N N
Resource Trans,
Adapter List*
Connectors COM Y CO, N N RTE N Y N N
Connector Trans, XAPI Z
List* Event
EOne Adapter Y CO, Y N RTE N Y N Y
Messaging for MQ Trans* XAPI Z
Adapters ~ WebSphere Event
EOne Adapter Y CO, Y N RTE N Y N Y
Messaging for MSMQ Trans* XAPI Z
Adapters Event
Batch Interface Y N Y Y N N N N Y
Interfaces  Tables
Batch EOneEDI Y N Y Y N N N Y Y
Interfaces
Batch Table Y N Y Y N N N Y Y

Interfaces  Conversion
s

* CO, List, and Trans indicate XML CallObj., XML List, XML Trans. from the column heading. These capabilities are XML Call
Object, XML List, and XML Transaction. Each of these are discussed in detail in this document.

Understanding Interoperability 2-3



Interoperability Models and Capabilities

Table 2-1 (Cont.) JD Edwards EnterpriseOne Interoperability Models and Capabilities

XML
CallObj, Real-
XML Time
List, Flat and Generate
BSFN XML z Files XAPI Web XML Flat
Model Calls Trans. Trans. Events Services Output Files Batch
Model Type (In) (In) (In) (In)  (Out) Callout (Out) (Out) (Out)
Batch OSA (UBE) N N N N N N Y N Y
Interfaces
APAg/ APAg/ N N Y N RTE N Y N Y
Integration Integration
Open Data OpenData N/A N N N/A N/A N/A N/A N/A N/A
Access Access
(Supports
business
view and
table
inquiries)

* CO, List, and Trans indicate XML CallObj., XML List, XML Trans. from the column heading. These capabilities are XML Call
Object, XML List, and XML Transaction. Each of these are discussed in detail in this document.

See XML CallObject.
See XML Transaction.
See XML List.

2.3.3 Interoperability Capabilities

A capability is a way to transfer information into JD Edwards EnterpriseOne or to
retrieve information from JD Edwards EnterpriseOne. The interoperability matrix
shows inbound and outbound capabilities and identifies capabilities that are
appropriate for batch processing. Inbound capabilities enable you to inquire about
data and update (add, change, or delete) data. With inquiry capabilities, you retrieve
data for information purposes only. For example, you might want to see prices or
availability of an item. You can perform update capabilities on an individual
transaction basis or in a batch process, which consists of groups of transactions. An
individual transaction update involves updating a single record (for example, adding
a purchase order or creating an invoice). Batch processes, which are groups of
transactions that typically involve updating multiple records, are usually scheduled to
occur at a specific time and are non-interactive. For example, you can upload 10,000
orders to the database at the end of the day or obtain all of the pricing information that
has changed and send that information to a web site at the end of the day.

The capabilities available for transferring information into and retrieving information
from JD Edwards EnterpriseOne are described briefly in this chapter. Each capability is
discussed in further detail in other chapters within this guide.

2.3.3.1 Web Services

Web services provide standardized ways to interoperate between disparate systems.
JD Edwards EnterpriseOne provides and consumes web services. As a web service
provider, JD Edwards EnterpriseOne exposes web services for consumption by an
external system. As a consumer, JD Edwards EnterpriseOne calls an external web
service from within the JD Edwards EnterpriseOne business logic layer.

2-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Interoperability Models and Capabilities

See "JD Edwards EnterpriseOne as a Web Service Provider" in the JD Edwards
EnterpriseOne Tools Business Services Development Guide.

See "JD Edwards EnterpriseOne as a Web Service Consumer" in the D Edwards
EnterpriseOne Tools Business Services Development Guide.

2.3.3.2 J2EE Connectivity

Java 2 Platform, Enterprise Edition (J2EE) provides a distributed, standards-based
architecture for implementing highly scalable, reliable, and available e-business
applications. JD Edwards EnterpriseOne business services use J2EE connectivity for
standards-based messaging, such as JMS Queue and JMS Topic.

2.3.3.3 Business Function Calls

Business function calls are core to JD Edwards EnterpriseOne interoperability.
Business functions encapsulate transaction logic to perform specific tasks, such as
journal entry transactions, depreciation calculations, and sales order transactions.

JD Edwards EnterpriseOne uses regular business functions and master business
functions. A regular business function performs simple tasks, such as tax calculation
or account number validation. A master business function (MBF) performs complex
tasks and can call several regular business functions to perform those tasks.

See "Understanding Business Functions" in the D Edwards EnterpriseOne Tools
Development Tools: APIs and Business Functions Guide.

2.3.3.4 XML

XML provides a flexible, standards-based way of sharing information and moving
data among systems. XML enables you to extend enterprise applications and
collaborate with business partners and customers. You can use XML CallObject and
XML Transaction to update or retrieve JD Edwards EnterpriseOne data. You can use
XML List to create an XML data file in the JD Edwards EnterpriseOne system
repository and then retrieve the data in small chunks to avoid network traffic. JD
Edwards EnterpriseOne output is an XML document.

2.3.3.5 Z Transactions

Z transactions provide inbound capability to JD Edwards EnterpriseOne that enables
you to update JD Edwards EnterpriseOne data. JD Edwards EnterpriseOne provides
interface tables (Z tables) that support Z transaction capability. You also can create
interface tables.

2.3.3.6 Flat Files

Flat files (also known as user-defined formats) are text files that are usually stored on
the workstation or server. Flat files do not have relationships defined for them and
typically use the Unicode character set. Data in a flat file usually is stored as one
continuous string of information. You can use flat files to import or export data from
applications that have no other means of interaction. For example, you might want to
share information between JD Edwards EnterpriseOne and another system.

2.3.3.7 Events

Events are notifications to third-party applications or end-users that a JD Edwards
EnterpriseOne business transaction has occurred. JD Edwards EnterpriseOne supports
three kinds of events: Z events, real-time events, and XAPI events. Event data is
represented as an XML document.

Understanding Interoperability 2-5



Interoperability Models and Capabilities

Z events use interface tables and a batch process to retrieve transaction information
and use a Z event generator and the data export subsystem to manage the flow of the
outbound data.

Real-time events can be generated from a server or a client. System calls (from a
server) and client business function calls (from a client) retrieve transaction
information. The transaction information is distributed to subscribers.

XAPI events are real-time events that require a response. A XAPI event is created in
the same manner as a real-time event, with additional data structure information for
invoking a business function when the response XML document is received.

Event notifications can be sent as web services, using JMS Queue or JMS Topic.

2.3.4 Interoperability Models

JD Edwards EnterpriseOne supports these basic interoperability models:
= Business Services Server

= JMS Queue and JMS Topic

s Connectors

= Messaging Adapters

= Batch Interfaces

These models can be further categorized by type. Each model type supports one or
more of the capabilities for sending information into or retrieving information from
the JD Edwards EnterpriseOne database. The Interoperability Models and Capabilities
matrix identifies the model types and the capabilities that each model type supports.

2.3.4.1 Business Services Server

Business services enable JD Edwards EnterpriseOne to use web services to exchange
information with external systems. JD Edwards EnterpriseOne is a web service
provider and a web service consumer. The business services server provides a business
services development client for developing and testing business services as both a web
service provider and a web service consumer.

Some benefits of using business services include:

= Flexibility to interoperate with any web service enabled external system.
= Reduce dependency on embedded third-party products.

= Standards-based integration offerings.

= Simplified integration architecture.

» Increased overall superior ownership experience.

See "Understanding the Business Services Server" in the |D Edwards EnterpriseOne Tools
Business Services Development Guide.

2.3.4.2 JMS Queue and JMS Topic

JD Edwards EnterpriseOne provides a transaction server that uses Java Message
Service (JMS) queues and topics to guarantee event delivery. When an event occurs in
JD Edwards EnterpriseOne, the transaction server retrieves the event information and
routes it to subscriber JMS queues and topics for each subscriber that has established
an active subscription for the event.

2-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Interoperability Models and Capabilities

Some benefits of using J]MS Queue and JMS Topic include:
s Standards-based way of sending messages.

s Guaranteed delivery of events.

»  Publish subscribe model supported.

= Point-to-point model supported.

2.3.4.3 Connectors

Connectors are point-to-point, component-based models that enable third-party
applications and JD Edwards EnterpriseOne to share logic and data. JD Edwards
EnterpriseOne connector architecture includes Java and COM connectors. The
connectors accept inbound XML requests and expose business functions for reuse.
Output from the connectors is in the form of an XML document. The connectors
include:

= Java

The JD Edwards EnterpriseOne dynamic Java and Java connectors support
real-time event processing. Java is a portable language, so you can easily tie JD
Edwards EnterpriseOne functionality to Java applications.

= COM

The JD Edwards EnterpriseOne COM connector solution is fully compliant with
the Microsoft component object model. You can easily tie JD Edwards
EnterpriseOne functionality to Visual Basic and VC++ applications. The COM
connector also supports real-time event processing.

Some benefits of using connectors include:
= Scalability

= Multi-threaded capability

= Concurrent users

See "Getting Started with JD Edwards EnterpriseOne Tools Connectors" in the /D
Edwards EnterpriseOne Tools Connectors Guide.

2.3.4.4 Messaging Adapters

JD Edwards EnterpriseOne provides messaging support for IBM WebSphere MQ and
Microsoft Message Queuing (MSMQ). WebSphere MQ and MSMQ handle message
queuing, message delivery, and transaction monitoring. JD Edwards EnterpriseOne
uses these messaging systems to handle and pass requests for logic and data between
JD Edwards EnterpriseOne and third-party systems.

Some of the benefits of using messaging adapters include:
= Reliable connections

= Guaranteed delivery

= Operations acknowledgement

See JD Edwards EnterpriseOne and Messaging Queue Systems.

2.3.4.5 Batch Interfaces

Batch implies processing multiple transactions at the same time and usually involves
movement of bulk information. Batch processing is often scheduled and is
non-interactive. JD Edwards EnterpriseOne provides several model types for batch

Understanding Interoperability 2-7



Interoperability Models and Capabilities

processing, and each model type has one or more capabilities that enable you to access
JD Edwards EnterpriseOne data. The model types include:

» Interface tables

s Electronic Data Exchange
= Table conversions

s Output Stream Access

= APAg/Integration

s Open Data Access

2.3.4.6 Interface Tables

Interface tables provide point-to-point interoperability solutions for importing and
exporting data. Interface tables are also called Z tables. Interface tables are working
files into which you place transaction information to be processed into or out of JD
Edwards EnterpriseOne. In addition to the interface tables provided by JD Edwards
EnterpriseOne, you can build interface tables. If you use interfaces tables to update JD
Edwards EnterpriseOne data, the format of the data must be presented in the format
defined by JD Edwards EnterpriseOne. If you use interface tables to retrieve JD
Edwards EnterpriseOne data, you use a batch process that extracts the data from the
applications tables.

Some of the benefits of using interface tables include:
s Defined data structure
= Identifiable fields

s Customizable interface tables

2.3.4.7 EDI

Electronic Data Interchange (EDI) provides a point-to-point interoperability solution
for importing and exporting data. EDI is the paperless computer-to-computer
exchange of business transactions, such as purchase orders and invoices, in a standard
format with standard content. As such, it is an important part of an electronic
commerce strategy.

When computers exchange data using EDI, the data is transmitted in EDI standard
format so it is recognizable by other systems using the same EDI standard format.
Companies that use EDI must have translator software to convert the data from the
EDI standard format to the format of their computer system.

The JD Edwards EnterpriseOne Data Interface for Electronic Data Interchange system
acts as an interface between the JD Edwards EnterpriseOne system data and the
translator software. In addition to exchanging EDI data, this data interface also can be
used for general interoperability and electronic commerce needs where a file-based
interface meets the business requirements.

Some benefits of using the Data Interface for Electronic Data Interchange system
include:

= Shorter fulfillment cycle.
s Increased information integrity through reduced manual data entry.
= Reduced manual clerical work.

EDI is particularly effective at sending information to multiple applications
simultaneously.

2-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Interoperability Models and Capabilities

See |D Edwards EnterpriseOne Data Interface for Electronic Data Interchange 9.0
Implementation Guide.

2.3.4.8 Table Conversion

Table conversion provides a point-to-point interoperability solution for importing and
exporting data. Table conversion is a special form of Universal Batch Engine (UBE)
that enables you to do high-speed manipulation of data in tables. JD Edwards
EnterpriseOne has a table conversion utility that you can use to gather, format, import,
and export data. The table conversion tool enables you to transfer and copy data. You
can also delete records from tables. Table conversion enables you to use a non-JD
Edwards EnterpriseOne table to process, call direct business functions, and give an
output. For example, you might want to run a UBE that reads from a JD Edwards
EnterpriseOne master file to populate a non-JD Edwards EnterpriseOne table.

The table conversion utility can make use of any JD Edwards EnterpriseOne table,
business view, and text file, or any table that is not a JD Edwards EnterpriseOne table
but resides in a database that is supported by JD Edwards EnterpriseOne, such as
Oracle, Access, IBM i, or SQL Server. These non-JD Edwards EnterpriseOne tables are
commonly referred to as foreign tables.

See "Understanding Table Conversion" in the JD Edwards EnterpriseOne Tools
Development Tools: Data Access Tools Guide.

2.3.49 OSA

OSA (Output Stream Access) provides a point-to-point interoperability solution for
exporting data from UBEs. OSA enables you to set up an interface for JD Edwards
EnterpriseOne to pass data to another software package, such as Microsoft Excel, for
processing.

The benefits for using OSA include:
s The elimination of manually formatting output.
s The processing power of the target software program.

See "Working with Output Stream Access" in the JD Edwards EnterpriseOne Tools
Development Tools: Report Printing Administration Technologies Guide.

2.3.4.10 APAg/Integration

The JD Edwards EnterpriseOne Advanced Planning Agent (APAg) is a tool for batch
extraction, transforming, and loading enterprise data. APAg supports access to data
sources in the form of relational databases, flat file format, and other data or message
encoding such as XML. APAg also moves data from one place to another and initiates
tasks related to the movement of the data.

Benefits of using the APAg tool include:

= Ability to copy massive amounts of table data.

= Ability to efficiently and effectively handle initial data loads.

See "JD Edwards Supply Chain Planning" in the Advanced Planning Agent Guide.

2.3.4.11 ODA

ODA (Open Data Access) provides the capability for you to extract JD Edwards
EnterpriseOne data (using SQL statements) so that you can summarize information
and generate reports. You can use ODA with any of these desktop applications:

= Microsoft Query

Understanding Interoperability 2-9



Interoperability Model Selection

s Microsoft Access

s Microsoft Excel

= ODBCTEST

s Crystal Reports

= Microsoft Analysis Service

ODA sits between the front-end query and reporting applications and the JD Edwards
EnterpriseOne-configured ODBC drivers.

The JD Edwards EnterpriseOne database contains object and column names, specific
data types, and security rules that must be converted or applied so that the data is

presented correctly. The specific data types and rules include decimal shifting, Julian
date, currency, media object, security, and user defined codes. In some instances, ODA
modifies the SQL SELECT statement, as well as the data, so that it appears correctly
within the selected application.

Some of the benefits of using ODA include:

= Read-only access to all ]D Edwards EnterpriseOne data, including the entire data
dictionary.

= Use of the same security rules that you established for JD Edwards EnterpriseOne.

= Ability to extract JD Edwards EnterpriseOne data easily.

See Understanding Open Data Access.

2.4 Interoperability Model Selection

Select an interoperability model based on the business needs. This matrix can help you
determine which interoperability model best supports the interoperability

requirements.
Critical Critical
Technical Technical
Skills for Skills for
Platforms Best Fit Creating Creating
(Windows, Integration = Programming Inbound Outbound
Model Model Type UNIX, IBMi) Model Languages Transaction Transactions
Business Web Services  Oracle Web Services Java Java, Web Java, Web
Services Application Services, Services, XML
Server Server or Database Ops,
WebSphere Business
Application Functions,
Server XML
JMS Queue / J2EE Oracle Web Services Java Java, Web Java, Web
JMS Topic Connectivity ~ Application Services, Services,
Server or Database Ops, Database Ops,
WebSphere Business Business
Application Functions, Functions,
Server XML XML
Web Services  EnterpriseOne SUN, AIX, Broker Java WSG Toolset ~ WSG Toolset,
Gateway WSG Windows Real-Time
(WSG) Events, XAPI
Events

2-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Other Industry Standard Support

Critical Critical
Technical Technical
Skills for Skills for
Platforms Best Fit Creating Creating
(Windows, Integration  Programming Inbound Outbound
Model Model Type UNIX, IBMi) Model Languages Transaction Transactions
Connectors Java All Point-to-Poin Java Java APIs, Real-Time
Connector t GenJava Events, XAPI
Events
Connectors COM Windows Point-to-Poin C/C++/VB COM, Real-Time
Connector t GenCOM Events, XAPI
Events
Messaging Adapter for All Integration HTML, MQ Real-time
Adapters MQ Server C/C++, Java WebSphere, Events,
WebSphere XML Z-Tables,
Subsystem
Processing
(includes
R00460, Data
Export
Controls, and
SO on)
Messaging Adapter for Windows Integration C/C++ MSMQ, XML  Real-Time
Adapters MSMQ Server Events,
Z-Tables,
Subsystem
Processing
(includes
R00460, Data
Export
Controls, and
SO on)
Batch Interface All Point-to-Poin  Any Z-Tables, UBEs Custom Code
Interfaces Tables t
Batch EnterpriseOne All Point-to-Poin  Any, Flat Files ~Z-Tables, UBEs Custom Code
Interfaces EDI t
Batch Table All Point-to-Poin TC Table Table
Interfaces Conversions t Conversions Conversion
Director/RDA
Batch OSA (UBE) All Point-to-Poin  HTML, C/C++ NA RDA, Custom
Interfaces t Code
APAg/ APAg/ UNIX, Point-to-Poin  Own Language APAg Tool,Z  APAg Tool,
Integration Integration Windows t Tables Z-Tables
Open Data Open Data All Point-to-Poin VB Custom code  Custom code
Access Access t or third-party  or third-party

application
(queries only)

application
(queries only)

2.5 Other Industry Standard Support

JD Edwards EnterpriseOne has a media object function that supports other industry
standard functions, such as:

= Object Linking and Embedding (OLE) for the exchange of different data types.

= Dynamic Data Exchange (DDE) for static and dynamic links across applications.

= Binary Large Object (BLOB) for media object attachments within applications.

Understanding Interoperability 2-11



Other Industry Standard Support

= Extended Messaging API (MAPI) for message exchange across differing mail and
groupware applications.

See Also:

= "Understanding Media Object Attachments" in the JD Edwards
EnterpriseOne Tools Foundation Guide.

s "Understanding Messages and Queues" in the D Edwards
EnterpriseOne Tools Foundation Guide.

2-12 JD Edwards EnterpriseOne Tools Interoperability Guide



3

Understanding Integrations in a SOA
Environment

This chapter contains the following topics:

= Section 3.1, "JD Edwards Enterprise Integrations in a SOA Environment"
m Section 3.2, "Business Services Architecture"

» Section 3.3, "Environments"

m  Section 3.4, "Integration Patterns"

3.1 JD Edwards Enterprise Integrations in a SOA Environment

As systems evolve, Service Oriented Architecture (SOA) environments are
instrumental for providing a standards-based approach for interoperability between
disparate systems. In a SOA environment, web services provide a common interface
between systems. JD Edwards EnterpriseOne provides and consumes web services in
a SOA environment by leveraging business services. JD Edwards EnterpriseOne also
supports event notification in a SOA environment using JMS Queue and JMS Topic.

3.1.1 Web Service Provider

As a web service provider, JD Edwards EnterpriseOne exposes web services for
consumption by external systems. JD Edwards EnterpriseOne web services call
business services. Business services perform a specific business process. Multiple Java
classes are used to perform the requested business process. The web service is
generated from a Java class called a published business service class. The methods of
the published business service class receive and return data through payload classes
called value objects. Within each method, internal business service and value object
classes are used to access existing logic and data in JD Edwards EnterpriseOne. The
business processes exposed through the published business service class can be
accessed from an external system using a web service call or from other published
business service classes.

3.1.2 Web Service Consumer

As a web service consumer, ]D Edwards EnterpriseOne calls an external web service
from within the JD Edwards EnterpriseOne business logic layer. An action that uses a
business function occurs in JD Edwards EnterpriseOne. The business function calls a
business service. The business service calls the external web service. A web service
proxy provides end points and security information for the external web service. The
results of the call are returned to the published business service that is provided in the
web service proxy. The published business service calls the business service method,

Understanding Integrations in a SOA Environment  3-1



Business Services Architecture

which passes the result to the business function. JD Edwards EnterpriseOne can also
consume web services using HT'TP instead of the business services server.

See "Understanding Business Services Development in the D Edwards EnterpriseOne
Tools Business Services Development Guide.

3.1.3 Event Notification

JD Edwards EnterpriseOne sends event notifications as JMS messages through JMS
Queue and JMS Topic. The transaction server is the primary business event system for
publishing guaranteed event notifications. When a transaction occurs in JD Edwards
EnterpriseOne, the transaction server retrieves the data based on event configuration,
converts the data to a properly formatted XML document, and routes the event to the
JMS Queue or JMS Topic subscriber.

See Also:
s Understanding Guaranteed Events.

= "Understanding Business Services Development" in the JD
Edwards EnterpriseOne Tools Business Services Development Guide.

3.2 Business Services Architecture

The following diagram illustrates the architecture for JD Edwards EnterpriseOne web
services and business services:

3-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Business Services Architecture

Figure 3—1 Architecture for JD Edwards EnterpriseOne web services and business services

i Application i 3 Application i
 Server ! Enterprise  Server l
i i Server l i
! HTML Web ! 3 Transaction ;
; Server ; ; Server ;
1 1 z 1
: I I :
: : : ~z
: : | .
”””””””””” Applicaion |

Server ;

Security Business Services i

Server Server !

| A

ESB/BPEL <«—»

Third Party
Product

A 4

A\
=)
()

This table discusses the servers and systems depicted in the diagram:

System

Description

Application Server

Runs the business services server, the transaction server, and the
HTML Web server. The application server can be an Oracle
Application Server or a WebSphere Application Server.

HTML Web Server

Runs JD Edwards EnterpriseOne interactive applications.
Communicates with the enterprise server to run business functions.

Enterprise Server

Runs business functions that generate request/reply messaging
events.

Transaction Server

Transports the XML message generated from the request/reply
messaging API to the receiving systems using JMS Queue and JMS
Topic.

Security Server

Provides authentication for JD Edwards EnterpriseOne components.

Understanding Integrations in a SOA Environment 3-3



Environments

System Description

Business Services Server Hosts the business service Java programs that communicate with JD
Edwards EnterpriseOne. Provides a business services development
client for developing and testing services as both a web service
provider and a web service consumer.

Orchestration System Used for SOA orchestration, for example, Oracle BPEL-PM and
Oracle ESB.

Database Server Hosts tables.

3.3 Environments

JD Edwards EnterpriseOne provides a business services development client for
developing and testing business services as both a web service provider and a web
service consumer.

3.4 Integration Patterns

JD Edwards EnterpriseOne supports the following integration patterns for
interoperating with other Oracle applications and third-party applications or systems:

s JD Edwards EnterpriseOne as a web service provider — synchronous
request/reply.

= JD Edwards EnterpriseOne as a web service provider — asynchronous notification.

= JD Edwards EnterpriseOne as a web service provider — asynchronous
request/reply.

= JD Edwards EnterpriseOne as a web service consumer — notification.

= JD Edwards EnterpriseOne as a web service consumer — synchronous web service
request/reply.

s JD Edwards EnterpriseOne as a service consumer — asynchronous HTTP
request/response.

s JD Edwards EnterpriseOne as a service consumer — synchronous HTTP
request/response.

" D Edwards EnterpriseOne as a web service consumer — asynchronous web
J p y
service.

These patterns are typically used for point-to-point integrations with individual
third-party systems.

3.4.1 JD Edwards EnterpriseOne as a Web Service Provider - Synchronous
Request/Reply

JD Edwards EnterpriseOne supports two methods for processing the web service
provider synchronous request/reply pattern. The most frequently used model is to
expose a web service that accesses the JD Edwards EnterpriseOne data through a set of
business function calls.

This pattern uses these systems:
s Orchestration system
= Business services server

= Enterprise server

3-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Integration Patterns

s Database server

The orchestration system calls a JD Edwards EnterpriseOne web service. The web
service calls a business service. The business service calls a business function. The
business function performs the task that updates the JD Edwards EnterpriseOne
database.

This diagram shows this model:

Figure 3-2 JD Edwards EnterpriseOne as a web service provider - synchronous request/reply using
business function calls

Orchestration

C

L

Business Business
Service as a Function
Web Service
> BeginDoc [ EnterpriseOne
addSalesOrder < -
EditLine
End Doc

The other method uses JDBj to perform direct data access to the JD Edwards
EnterpriseOne database.

This pattern uses these systems:
s Orchestration system

= Business services server

= Database server

The orchestration system calls a JD Edwards EnterpriseOne web service. The web
service calls a business service. The business service makes a database operation call
that updates the JD Edwards EnterpriseOne database.

This diagram illustrates this model:

Understanding Integrations in a SOA Environment 3-5



Integration Patterns

Figure 3-3 JD Edwards EnterpriseOne as a web service provider - synchronous request/reply using JDBj

Orchestration Business
System Service as a
Web Service
| EnterpriseOne
getCreditLimit
Select ABACL From F03012
- >

Where...

3.4.2 JD Edwards EnterpriseOne as a Web Service Provider - Asynchronous
Notification

JD Edwards EnterpriseOne supports two methods for processing the web service
provider asynchronous notification pattern. The most frequently used method is to
expose a web service that accesses the JD Edwards EnterpriseOne data through a set of
business function calls.

This pattern uses these systems:
»  Orchestration system

= Business services server

= Enterprise server

= Database server

The orchestration system calls a JD Edwards EnterpriseOne web service. The web
service calls a business service. The business service calls a business function. The
business function performs the task that updates the JD Edwards EnterpriseOne
database.

This diagram illustrates this model:

3-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Integration Patterns

Figure 3—-4 JD Edwards EnterpriseOne as a web service provider - asynchronous notification using
business function calls

Orchestration Business Business
System Service as a Function
Web Service
¢ | |
> BeginDoc | EnterpriseOne
IL addSalesOrder < —
EditLine
> 7 [~ 0 _—‘
End Doc

The other method uses JDB;j to perform direct data access to the JD Edwards
EnterpriseOne database.

This pattern uses these systems:
s Orchestration system

= Business services server

= Database server

The orchestration system calls a JD Edwards EnterpriseOne web service. The web
service calls a business service. The business service makes a database operation call
that updates the JD Edwards EnterpriseOne database.

This diagram illustrates this model:

Figure 3-5 JD Edwards EnterpriseOne as a web service provider - asynchronous notification using JDBj

Orchestration Business
System Service as a
Web Service
i EnterpriseOne
addSalesOrder

Insert into F47121...

3.4.3 JD Edwards EnterpriseOne as a Web Service Provider - Asynchronous
Request/Reply

JD Edwards EnterpriseOne supports two methods for processing the web service
provider asynchronous request/reply pattern. The most frequently used method is to

Understanding Integrations in a SOA Environment 3-7



Integration Patterns

expose a web service that accesses the JD Edwards EnterpriseOne data through a set of
business function calls.

This pattern uses these systems:
s Orchestration system

= Business services server

= Enterprise server

= Database server

s Transaction server

The orchestration system calls a JD Edwards EnterpriseOne web service. The web
service calls a business service. The business service calls a business function. The
business function performs the task that updates the JD Edwards EnterpriseOne
database. The EnterpriseOne application notifies the transaction server that an update
has occurred. The transaction server retrieves the information and creates an event
(outbound notification) and places the event in JMS Queue or JMS Topic for the
orchestration system to send to the subscriber. The reply is received through the
orchestration system and returned to JD Edwards EnterpriseOne as an XML document
through the transaction server.

This diagram illustrates this model:

Figure 3-6 JD Edwards EnterpriseOne as a web service provider - asynchronous request/reply using
business function calls

Orchestration Business Business
System Service as a Function
Web Sprvice |
(. ; | Transaction
l addSaIesOrdeL BeginDoc L EnterpriseOne Server
e e
EditLine _ [
End Doc ] F»
< RTSOOUT

3.4.4 JD Edwards EnterpriseOne as a Web Service Consumer - Notification

JD Edwards EnterpriseOne supports two methods for processing the web service
consumer asynchronous notification pattern. The most frequently used method is to
publish a real-time event using the transaction server.

This pattern uses these systems:
= Enterprise server
= Transaction server

»  Orchestration system

3-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Integration Patterns

Figure 3-7

A business function performs a task that updates the JD Edwards EnterpriseOne
database. The Call Object kernel notifies the transaction server. The transaction server
retrieves the data and creates an event in the form of an XML document and places the
event in JMS Queue or JMS Topic for the orchestration system to process. The
orchestration system retrieves the XML document and sends it to the third-party
system. The data mapping between the request and reply is provided by the
cross-reference correlation utility in the orchestration system.

This diagram illustrates this model:

JD Edwards EnterpriseOne as a web service consumer — asynchronous notification using

real-time events

Business Transaction  Orchestration Third
Function Server System Party
RTPOOUT __ PurchaseOrder
> RTPOOUT Notify Doc
>
The other method uses Z-tables to send information to third-party systems.
This pattern uses these systems:
= Enterprise server
= Transaction server
»  Orchestration system
An update is made to a JD Edwards EnterpriseOne application. The application has
processing options that load data into a specified Z-table. The system is then
configured to publish the Z-table record using the transaction server.
This diagram illustrates this model:
Figure 3-8 JD Edwards EnterpriseOne as a web service consumer — outbound notification using Z-tables
EnterpriseOne Transaction Orchestration Third
o Z-Table
Application Server System Party
l l l l
| |
JDEAOOU ' PurchaseOrder

JDEAOOUT

Understanding Integrations in a SOA Environment

Notify Doc

3-9



Integration Patterns

3.4.5 JD Edwards EnterpriseOne as a Web Service Consumer — Synchronous Web
Service Request/Reply

JD Edwards EnterpriseOne supports using a web service for processing the
synchronous request/reply pattern. This method uses a JD Edwards business service
to call an external web service.

This pattern uses these systems:
= HTML web server

= Enterprise server

= Business services server

A request for information from a third-party system is made through the JD Edwards
EnterpriseOne HTML web client. This request invokes a business function. The
business function calls a business service. The business service calls an external web
service. A web service proxy provides end points and security information for calling
the external web service. The results of the call are returned to a JD Edwards
EnterpriseOne published business service, which calls a business service to pass the
results to the business function, which then processes the information for the HTML
web client.

This diagram illustrates this model:

Figure 3-9 JD Edwards EnterpriseOne as a web service consumer — synchronous web service
request/reply

HTML Business Business Service Third
Web Function as a Web Service Party
Server Consumer
Web Service
Call BSFN Call Business Service Request / Reply

3.4.6 JD Edwards EnterpriseOne as a Service Consumer — Asynchronous HTTP
Request/Response

JD Edwards EnterpriseOne supports using HTTP POST for processing an
asynchronous HTTP request/response pattern. This method uses HTTP POST as the
request and expects an HTTP callback. In this pattern, the web server client continues
to process other information while waiting for the response.

This pattern uses these systems:
=  HTML web server

= Enterprise server

3-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Integration Patterns

m Business services server

A request for information from a third-party system is made through the JD Edwards
EnterpriseOne HTML web client. This request invokes a JD Edwards EnterpriseOne
business function. The business function calls a JD Edwards EnterpriseOne business
service. The business service contains the request and callback information for the
third-party system. The third-party system uses the callback information to send a
response that is in XML format to a JD Edwards EnterpriseOne published business
service. The published business service can send the response to the business function,
and the business function sends the response to the HIML web client. The published
business service can also send the response to the HTML web client directly.

This diagram illustrates this model:

Figure 3-10 JD Edwards EnterpriseOne as a service consumer — asynchronous HTTP request/response

HTML _ Business Service Third
Web IB:“S'”t?SS as a Service Party
Server unction Consumer
Call BSFN | Call Business Service HTTP POST_|
BUsi Business
usiness Service as a
Function Web Service
Web Client Response XML Response HTTP Callback
> <—
A Web Client Response -

3.4.7 JD Edwards EnterpriseOne as a Service Consumer - Synchronous HTTP
Request/Response

JD Edwards EnterpriseOne supports using HTTP POST for processing a synchronous
HTTP request/response pattern. This method uses HTTP POST as the request and
waits for the response from the third-party system.

This pattern uses these systems:

»  EnterpriseOne HTML web server
= EnterpriseOne server

»  Business services server

A request for information from a third-party system is made through the JD Edwards
EnterpriseOne HTML web client. This request invokes a JD Edwards EnterpriseOne
business function. The business function calls a JD Edwards EnterpriseOne business
service. The business service calls the third-party and receives a reply in XML format.
The business service sends the response to the business function, and the business
function sends the response to the HTML web client.

This diagram illustrates this model:

Understanding Integrations in a SOA Environment  3-11



Integration Patterns

Figure 3—11 JD Edwards EnterpriseOne as a web service consumer — synchronous HTTP
request/response

HTML Business Business Service Third
Web Function as a Service Party
Server Consumer
HTTP POST
Call BSFN Call Business Service Request / Reply
- > - >

3.4.8 JD Edwards EnterpriseOne as a Web Service Consumer — Asynchronous Web
Service

You can initiate an asynchronous request by leveraging either JD Edwards
EnterpriseOne as a Web Service Consumer — Notification or JD Edwards
EnterpriseOne as a Web Service Consumer — Synchronous Web Service Request/Reply,
and then use JD Edwards EnterpriseOne as a Web Service Provider to handle the
response back into EnterpriseOne. JD Edwards EnterpriseOne does not provide any
specific feature such as correlation or web services addressing to support calling a web
service for processing the asynchronous request/reply pattern. If you use this pattern,
you must manage correlation data using application data or payload such as an order
number.

3-12 JD Edwards EnterpriseOne Tools Interoperability Guide



4

Using Business Function Calls

This chapter contains the following topics:

= Section 4.1, "Understanding Business Functions"

»  Section 4.2, "Reviewing API and Business Function Documentation"
= Section 4.3, "Creating Business Function Documentation”

= Section 4.4, "Finding Business Functions"

4.1 Understanding Business Functions

A business function is an encapsulated set of business rules and logic that can be
reused by multiple applications. Business functions provide a common way to access
the JD Edwards EnterpriseOne database. A business function accomplishes a specific
task. Master business functions provide the logic and database calls necessary to
extend, edit, and commit the full transaction to the database. Third-party applications
can use master business functions for full JD Edwards EnterpriseOne functionality,
data validation, security, and data integrity.

You can use master business functions to update master files (such as Address Book
Master and Item Master) or to update transaction files (such as sales orders and
purchase orders). Generally, master file master business functions, which access tables,
are simpler than transaction file master business functions, which are specific to a
program. Transaction master business functions provide a common set of functions
that contain all of the necessary default values and editing for a transaction file.
Transaction master business functions contain logic that ensures the integrity of the
transaction being inserted, updated, or deleted from the database.

For interoperability, you can use master file master business functions instead of table
input and output. Using master business functions enables you to perform updates to
related tables using the master business function instead of table event rules. In this
case, the system does not use multiple records; instead, all edits and actions are
performed with one call.

Business functions are core for interoperability with JD Edwards EnterpriseOne. If you
build custom integrations to interoperate with JD Edwards EnterpriseOne, you must
know which business functions to call and how to call those business functions. You
can use existing business functions, modify existing business functions, or create
custom business functions. If you are creating a custom business function, JD Edwards
suggests that you find an existing business function that is similar to what you want to
accomplish and use the existing business function as a model.

Using Business Function Calls 4-1



Reviewing APl and Business Function Documentation

Note: When an update or an Electronic Software Update (ESU)
affects business functions, you might be required to modify the
custom integration.

See "Understanding Business Functions" in the /D Edwards EnterpriseOne Tools
Development Tools: APIs and Business Functions Guide.

4.2 Reviewing APl and Business Function Documentation

You can use JD Edwards EnterpriseOne business functions and APIs in custom
integrations. Business functions groupings are:

Master Business Functions

A collection of business functions that provide the logic and database calls that are
necessary to extend, edit, and commit the full transaction to the database. The
design of master business functions enables them to be called asynchronously and
to send coded error messages back to calling applications.

Major Business Functions

Components that encapsulate reusable logic common to many applications, such
as date editing routines and common multicurrency functions.

Minor Business Functions

Components that perform complex logic for a specific instance or single
application. Minor business functions are used in JD Edwards EnterpriseOne for
processing that cannot be accomplished efficiently in event rules or for logic that
might be required in multiple places within a single application.

4.3 Creating Business Function Documentation

Business function documentation explains what individual business functions do and
how to use each business function. You can generate information for all business
functions, groups of business functions, or individual business functions. The
documentation for a business function includes information such as:

Purpose.
Parameters (the data structure).

Explanation of individual parameter that indicate the input/output required and
an explanation of return values.

Related tables (which tables are accessed).

Related business functions (business functions that are called from within the
functions itself).

Special handling instructions.

See "Understanding Business Function Documentation" in the /D Edwards
EnterpriseOne Tools Development Tools: APIs and Business Functions Guide .

4.4 Finding Business Functions

If you can find a JD Edwards EnterpriseOne application that is similar to what you
need to do, you can use that application as a model. The JD Edwards EnterpriseOne

4-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Finding Business Functions

Cross Application Development Tools menu (GH902) provides several tools that you
can use to determine what business functions a JD Edwards EnterpriseOne application
uses and how the business function is used in the application. From the Cross
Application Development Tools menu, you can access:

= Object Management Workbench
s Cross Reference Facility

s Debug Application

4.4.1 Using the Object Management Workbench

You can use the Object Management Workbench (OMW) to search for the business
function object and then review the C code.

See "Understanding Objects" in the D Edwards EnterpriseOne Tools Object Management
Workbench Guide.

See "JD Edwards EnterpriseOne OMW Projects" in the JD Edwards EnterpriseOne Tools
Object Management Workbench Guide.

4.4.2 Using the Cross Reference Facility

You can use the Cross Reference Facility to identify each instance for which a business
function is used. The Cross Reference program (P980011) is on the Cross Application
Development Tools menu (GH902).

See "Understanding the Cross Reference Facility" in the JD Edwards EnterpriseOne Tools
Development Tools: Data Access Tools Guide.

4.4.3 Using the Debug Application

Another option that you might consider for understanding a JD Edwards
EnterpriseOne application is to run a JD Edwards EnterpriseOne debugger. You can
run the Event Rules Debugger to obtain named event rule and table event rule
information for a JD Edwards EnterpriseOne application. You can use Microsoft Visual
C++ to debug business functions that are written in C. You can use these two tools
together.

See "Understanding the Event Rules Debugger" in the /D Edwards EnterpriseOne Tools
Development Tools: Event Rules Guide.

See "Understanding the Visual C++ Debugger" in the D Edwards EnterpriseOne Tools
Development Tools: APIs and Business Functions Guide.

Using Business Function Calls 4-3



Finding Business Functions

4-4 JD Edwards EnterpriseOne Tools Interoperability Guide



O

Understanding XML

This chapter contains the following topics:

= Section 5.1, "XML and JD Edwards EnterpriseOne"

= Section 5.2, "XML JAR Files"

s Section 5.3, "XML Document Format"

s Section 5.4, "XML Standards"

»  Section 5.5, "System Environment Configuration”

= Section 5.6, "XML Kernel Troubleshooting"

5.1 XML and JD Edwards EnterpriseOne

Oracle's JD Edwards EnterpriseOne XML solution supports well-formed XML
documents. The XML solution supports both UTF-8 and UTF-16 Unicode standards
for receiving information into JD Edwards EnterpriseOne. The XML solution supports
UTF-8 Unicode standard for sending information from JD Edwards EnterpriseOne.
The JD Edwards EnterpriseOne XML solution includes:

XML Solution

Description

XML Transformation System (XTS)

Transforms an XML document that is not in the JD
Edwards EnterpriseOne format into an XML document
that can be processed by JD Edwards EnterpriseOne, and
then transforms the response back to the original XML
format.

XMLDispatch Provides a single point of entry for all XML documents
coming into JD Edwards EnterpriseOne and for
responses.

XML CallObject Enables you to call business functions.

XML Transaction Enables you to use a predefined transaction type (such
as JDEOPIN) to send information to or request
information from JD Edwards EnterpriseOne. XML
transaction uses interface table functionality.

XML List Kernel Enables you to request and receive JD Edwards
EnterpriseOne database information in chunks.

XML Service Kernel Enables you to request events from one JD Edwards

EnterpriseOne system and receive a response from
another JD Edwards EnterpriseOne system.

Some of the benefits of using XML include:

Understanding XML  5-1



XML JAR Files

Scalable XML models that enable you to open multiple connections.

Ability to use JD Edwards EnterpriseOne messaging adapters, providing a reliable
connection and acknowledging operations.

Exposure of business functions and interface tables.

Ability to aggregate business function calls into one document, which reduces
network traffic.

Ability to manage session creation, validation, and tracking.

If you can create XML documents on the interoperability server, you can use XML for
the interoperability solution.

5.2 XML JAR Files

For XML interoperability to function properly, you must add the following jar files to
the classpath on the machine that is running XML requests:

Base_JARjar
commons-httpclient-3.0.jar
commons-logging jar
JdeNet.JAR jar
jmxremote_optional jar
jmxri.jar

log4j.jar
ManagementAgent_JAR jar
System_JAR jar

xerces.jar

xmlparserv2.jar

You can find these jar files in the <JD Edwards EnterpriseOne Windows client
installation directory>system\classes folder.

5.3 XML Document Format

This section provides an overview of formatting XML documents for JD Edwards
EnterpriseOne and discusses these elements:

Type Element

Establish Session

Expire Session

Terminate Session

Explicit Transaction
Implicit Transaction
Prepare/Commit/Rollback

Terminate Session

5-2 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Document Format

5.3.1 Formatting XML Documents

When you send an XML document to JD Edwards EnterpriseOne for processing, the
document must be in the XML format that is defined by JD Edwards EnterpriseOne.
After the document reaches the JD Edwards EnterpriseOne server, the system
processes the document based on the document type. All XML documents must
contain these elements:

= One of these types:
- jdeRequestType
- jdeResponselype
= Establish Session
= Expire Session
s Terminate Session
In addition, you can use these optional elements:
= Explicit Transaction
s Implicit Transaction

s Prepare/Commit/Rollback

5.3.2 Type Element

The type element, which can be jdeRequest or jdeResponse, is the root element for all
request documents coming into the XML infrastructure. This element contains basic
information about the execution environment. These attributes form the jdeRequest
and jdeResponse type element:

Attribute Description

Type Specifies the type of XML document request. Depending on the operation to be performed, the
jdeRequest type can be one of the these:
s Callmethod
= List
s Trans
= xapicallmethod
The jdeResponse type indicates an XML document coming from another JD Edwards
EnterpriseOne system. The operation for jdeResponse is real TimeEvent.
Note: The xapicallmethod and realTimeEvent types are discussed in the Events section of this
document.

User Specifies the user name for user identification and validation.

Pwd Specifies the user password for user identification and validation.

Role Specifies the user role. If left blank the default value is *ALL

Environment  Specifies the system environment.

Session Specifies the session ID. This attribute is optional.

Sessionidle Specifies the session time-out time. This attribute is optional.

Understanding XML  5-3



XML Document Format

5.3.3 Establish Session

You establish a session by setting the session attribute of the standard jdeRequest
element. When the session attribute is an empty string, a new session is started. On the
server, the SessionManager singleton class creates a new instance of a session object
given the user name, password, and environment name. The session can be reused
before it expires to avoid the overhead of session initialization. You can specify the
session ID in the session attribute for an already established session in an earlier
request.

<?xml version='1.0' ?>

<jdeRequest type='callmethod' user='steve' pwd='xyz'
environment='prod' role='*ALL' session='' sessionidle='1800"'>
</jdeRequest>

Note: If you do not want to start a new session, then remove the
session=""tag. This example is for starting a new session.

5.3.4 Expire Session

Session expiration is addressed by the sessionidle attribute of the standard jdeRequest
element. This attribute, when given on a session creation request, specifies the amount
of time in seconds that this session is allowed to be idle. If the SessionManager
determines that a session has not had any requests processed in this amount of time, it
terminates the session and frees all associated resources. The session idle default value
is 30 minutes. The session idle time is defined in the XML document.

<?xml version='1.0'?>

<jdeRequest type='callmethod' user='steve' pwd='xyz'
environment='prod' role='*ALL' session='' sessionidle='1800"'>
</jdeRequest>

5.3.5 Explicit Transaction

Explicit database transactions are supported by another element, the startTransaction
tag. The startTransaction tag specifies whether transactions are to be manually or
automatically committed. The startTransaction tag element is an empty element, which
means that all of the information is in the attributes.

<?xml version='1.0'?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' environment='prod'
role="*ALL' session=''>

</jdeRequest>

5.3.6 Implicit Transaction

An XML request is included in a transaction set when the name of a transaction set is
referenced in its trans attribute. Implicit start transactions can be included in the
request by specifying the name of a transaction set that has not previously been
created. For an implicit start, the transaction set will be a manual commit set.

<?xml version='1.0'?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' environment='prod'
role='*ALL' session=''>

<callMethod name='myfunc' app='P42101' trans='tl'>

<params>

<param name='CostCtr'> 1001</param>

</params>

</callMethod>

5-4 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Standards

</jdeRequest>

5.3.7 Prepare/Commit/Rollback

Manual transaction sets can be committed or rolled back. As part of a two-phase
commit, they can be prepared to commit. Prepare, commit, and rollback requests to the
database are made by using the endTransaction element. The transaction set is
identified by the trans attribute. The action attribute indicates the action to take on the
transaction set. The value can be prepare, commit, or rollback. This element is always an
empty element, as indicated by the forward slash.

It is recommended that you manage the session ID when doing manual commits and
terminate the session after the transaction is complete.

<?xml version='1.0'?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' environment='prod'
role='*ALL' session=""

<endTransaction trans='tl' action='commit'/>

</jdeRequest>

Note: If startTransaction and endTransaction are in separate
documents, one of these scenarios occurs:

The session attribute is not sent in the second document. In this case,
the system uses the user ID, password, and environment to match the
previous session.

The session number from the response of the first document is sent in
the session attribute of the documents associated with the same
transaction.

5.3.8 Terminate Session

Session termination is done by submitting an XML document to explicitly terminate
the session. You must specify the session to be terminated in the jdeRequest element
tag.

<?xml version='1.0' ?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' environment='prod'
role='*ALL' session=5665.931961929.454"'>

<endSession/>

</jdeRequest>

5.4 XML Standards

In addition to ensuring that your XML documents have the required format elements
(jdeRequest or jdeResponse Type, Establish Session, Expire Session, and Terminate
Session), JD Edwards EnterpriseOne has standards for XML documents that are
different from industry standards. Also, some special characters are reserved for XML
and can't be used directly.

This section discusses:
= Decimal and comma separators.
= Data usage.

= Industry standards for special characters.

Understanding XML  5-5



XML Standards

5.4.1 Decimal and Comma Separators

JD Edwards EnterpriseOne uses the decimal and thousands separators differently than
XML industry standards. The decimal and thousands separators do not depend on use
profile settings, jde.ini settings, or regional settings for the computer. When you write
XML documents to interface with JD Edwards EnterpriseOne, you must always use
the decimal character (.) (period) as a decimal separator, and a comma (,) as a
thousands separator. The purpose of the separator standards is to achieve consistent
interoperability policy and to prevent data corruption.

5.4.2 Date Usage

Different components of the XML foundation use different format codes and APIs to
format these dates:

s to XML date
s from XML date
= toJDEDATE
s from JDEDATE

This table explains the formats that are used by each XML component supported by JD
Edwards EnterpriseOne:

Inbound Outbound Outbound
Component Inbound Format Outcome Format Outcome
XMLCallObject  F YYYYMD ESOSA YYYY/MM/DD
XMLTransaction F* User Preference  ESOSA YYYY/MM/DD
XMLList B* User Preference  NULL User Preference

* Component ignores the format code

5.4.3 Industry Standards for Special Characters

In XML, some special characters are reserved for internal use, and to use these
characters in data, you must replace them with entity or numeric references. This table
shows the special characters that are reserved for XML along with the entity and
numeric references that enable you to use a special character in your XML documents:

Character Name Character Entity Reference Numeric Reference
Ampersand & &amp; &#38;
Left angle bracket (less than) < &lt; &#60;
Right angle bracket (greater than) > &gt; &#62;
Straight quotation mark ! &quot; &#34;
Apostrophe ' &apos; &#39;
Percent % Not Applicable &#37;

Another way to use special characters in your XML documents is to use the CDATA
section. Any text inside a CDATA section is ignored by the parser.

5-6 JD Edwards EnterpriseOne Tools Interoperability Guide



System Environment Configuration

5.5 System Environment Configuration

5.5.1 UNIX

Before you can use XML with JD Edwards EnterpriseOne, you must ensure that the
ICU_DATA system environment variable is correctly defined on your JD Edwards
EnterpriseOne system. If the ICU_DATA variable is not correctly defined, JD Edwards
EnterpriseOne produces this error message:

The default Unicode converter could not be found within the jdenet_n.log on the
OneWorld Enterprise Server.

For JD Edwards EnterpriseOne, the ICU conversion table, icu_data.dat, is generally
located in system/locale/xml. Use the appropriate setting for your platform.

This section discusses:

=  UNIX
» IBMi
. WIN32

For UNIX systems, the ICU_DATA path is based on the ICU_DATA environment
variable. The UNIX JD Edwards EnterpriseOne user login script sets the ICU_DATA
environment variable to the directory location of the ICU resource file, incudata.dat. If
the user login script does not set the ICU_DATA environment variable, you must
define the ICU_DATA variable with a trailing slash, for example:

Export ICU_DATA=$SYSTEM/locale/xml/
Where $SYSTEM represents your JD Edwards EnterpriseOne install directory.

To support the loading of the JVM, verify the environment variable configuration for
your platform.

5.5.1.1 HPUX

Verify these environment variable configurations for a HPUX platform:

export LD_LIBRARY_ PATH=$SYSTEM/jre/l.4/1ib/PA_RISC/server:
SSYSTEM/jre/1.4/1ib/PA_

RISC:${LD_LIBRARY PATH}

export SHLIB_PATH=$SYSTEM/jre/l.4/1ib/PA_RISC/server:
$SYSTEM/jre/1.4/1ib/PA_RISC:${SHLIB_PATH)}

5.5.1.2 AIX

Verify these environment variable configurations for an AIX platform:

export LD_LIBRARY PATH=$SYSTEM/jre/l1.4/lib/bin:
SSYSTEM/jre/1.4/1ib/bin/classic:${LD_LIBRARY PATH}

export LIBPATH=$SYSTEM/jre/l.4/1ib/bin:$SYSTEM/jre/1.4/1ib/bin/classic:
$S{LIBPATH}

export SHLIB_PATH=$SYSTEM/jre/l1.4/lib/bin:
$SYSTEM/jre/1.4/1ib/bin/classic:${SHLIB_PATH}

5.5.1.3 SUN

Verify these environment variable configurations for a SUN platform:

export LD_LIBRARY_PATH=$SYSTEM/jre/l.4/lib/sparc/server:
SSYSTEM/jre/1.4/1ib/sparc:${LD_LIBRARY_PATH}
export SHLIB_PATH=$SYSTEM/jre/l.4/1ib/sparc/SERVER:

Understanding XML  5-7



XML Kernel Troubleshooting

$SYSTEM/jre/1.4/1ib/sparc:${SHLIB_PATH}

Note: Make sure that the server directory is first. The sparc directory
has a libjvm.so just like the server directory, and the libjvm.so in the
server directory is the directory you want to use.

5.5.1.4 LINUX

Verify these environment variable configurations for a LINUX platform:

export LD_LIBRARY_PATH=$SSYSTEM/jre/l1.4/1ib/i386/server:
$SYSTEM/jre/1.4/1ib/1386L: {LD_LIBRARY_PATH}

export SHLIB_PATH=$SYSTEM/jre/1.4/1ib/i386/server:
SSYSTEM/jre/1.4/1ib/1386:S{SHLIB_PATH}

5.5.2 IBMi

For IBM i systems, the ICU_DATA path is set when the ICU 1.6 conversion function is
first called by the system. The system looks up Data Area BUILD_VER in the system
library for the System Directory setting. For example:

System Directory: B9_S

The system appends locale/xml to the path specified in the BUILD_VER, and then
uses this path as the ICU_DATA path. You must ensure the BUILD_VER data area is
properly set to reflect the system directory setting.

5.5.3 WIN32

For WIN32 systems, the ICU_DATA path is set when the ICU 1.6 conversion function
is first called. This logic is used on WIN32:

1. The system looks up the environment variable JDE_B9_ICU_DATA. If this
environment is found, it becomes the path for the conversion files.

2. The system looks for this section in the jde.ini file:

[XML]
ICUPath=<<install>>/system/locale/xml
If the ICUPath setting is found, it becomes the path for the conversion files.

3. If the system cannot find the ICUPath setting in the jde.ini file, the ICU_Path is:

EXECUTABLE_DIRECTORY/./system/locale/xml
The EXECUTABLE_DIRECTORY must be <<install>>/system/bin32.

Based on this logic, you usually do not need to set the JDE_B9_ICU_DATA
ENVIRONMENT variable or the jde.ini file. You need to set the jde.ini ICUPath only
when the location of the icudata.dat is different from system/locale/xml.

Note: The JD Edwards EnterpriseOne client install sets the
environment variable JDE_B9_ICU_DATA.

5.6 XML Kernel Troubleshooting

If one or more XML kernels are not working properly, use these troubleshooting
guidelines to ensure that your system is set up correctly:

s Check the kernel definition in the server jde.ini file.

5-8 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Kernel Troubleshooting

Also check that the library name is correct for the platform on which you are
running. Check the entry function name.

Check that the kernel is allowed to start.

Check the maxNumberOfProcesses and numberOfAutoStartProcesses values for
the kernel in the server jde.ini file. It is not necessary to auto start kernels. To work
with a particular kernel, the allowed number of processes should be one or more.

If you have a large number of simultaneous requests that are made to a particular
kernel type, increase the number of allowed processes for that kernel.

This will not only reduce the turnaround time for requests but will also eliminate
any Queue Full errors.

If you are using XMLList kernel, check that the LREngine section is correctly set
up in the server jde.ini file and that the specified path exists.

Also, check that the JD Edwards EnterpriseOne user has write permission to this
location.

Check that the XML document is a well-formed XML document.

To do this, use any XML editor or open the document in Microsoft Internet
Explorer and check for errors.

Check that the root of the input XML document is jdeRequest.
All input XML documents should have jdeRequest as their root element.

Check that valid user ID, password, and environment are provided in the XML
document.

Check that the request type in the XML document is correct. The allowed request
types are callmethod, list, and trans for XMLCallObject, XMLList, and
XMLTransaction kernels, respectively.

Understanding XML  5-9



XML Kernel Troubleshooting

5-10 JD Edwards EnterpriseOne Tools Interoperability Guide



6

Understanding XML Dispatch

This chapter contains the following topics:

= Section 6.1, "XML Dispatch"

= Section 6.2, "XML Dispatch Processing"

= Section 6.3, "XML Dispatch Recognizers"

= Section 6.4, "XML Dispatch Transports"

= Section 6.5, "XML Dispatch jde.ini File Configuration"
= Section 6.6, "XML Dispatch Error Handling"

s Section 6.7, "Submit a UBE from XML"

6.1 XML Dispatch

XML Dispatch is XML-based interoperability that runs as a JD Edwards EnterpriseOne
kernel process. The XML Dispatch kernel is the central entry point for all XML
documents. For incoming XML documents, XML Dispatch identifies the kind of
document that comes into JD Edwards EnterpriseOne and sends the document to the
appropriate kernel for processing. If XML Dispatch does not recognize the document,
XML Dispatch sends the document to XTS to recognize and transform it into native JD
Edwards EnterpriseOne format. After XTS transforms the document, the document is
sent back to XML Dispatch to be sent to the appropriate kernel for processing. For
outgoing documents, XML Dispatch remembers whether the request document was
transformed into JD Edwards EnterpriseOne native format. If the incoming request
was transformed, then the outgoing response document is sent to XTS for
transformation from native JD Edwards EnterpriseOne format back into the format of
the original request. After XTS transforms the document, the document is sent to XML
Dispatch to distribute to the originator.

The XML Dispatch kernel is able to route and load balance the XML documents. For
example, if you have many XML CallObject message types coming in at once, XML
Dispatch tries to instantiate a new CallObject kernel. You set up the number of
instances that a kernel can have in the jde.ini file. For example, if you set the number
of instances for the CallObject kernel to five, if more than one CallObject document
comes into JD Edwards EnterpriseOne, XML Dispatch sees that a particular kernel is
busy and instantiates another one (up to five instances). XML Dispatch is able to
recognize new kernel definitions (such as XAPI) if the kernel is defined in the jde.ini
file. You are not required to change JDENET code when new kernels are added.

XML Dispatch is available on all platforms that are supported by JD Edwards
EnterpriseOne.

Understanding XML Dispatch 6-1



XML Dispatch Processing

6.2 XML Dispatch Processing

XML Dispatch receives standard JDENET messages (in the form of XML documents)
from a transport driver or other jdenet_n. The communication between a transport and
XML Dispatch is local inter-process communication (IPC) using JDENET APIs. The
communication between XML Dispatch and XTS and between XML Dispatch and
XML kernels can be either IPC or remote network using JDENET APIs.

XML Dispatch parses the XML document and sends the document to the appropriate
JD Edwards EnterpriseOne kernel for processing.

6.3 XML Dispatch Recognizers

XML Dispatch uses recognizers to determine how to handle incoming and outgoing
XML documents. If XML Dispatch recognizes an incoming XML document as being in
JD Edwards EnterpriseOne native XML format, the XML document is parsed and sent
to the appropriate kernel. For outgoing documents, the recognizer determines whether
an XML document can be left as JD Edwards EnterpriseOne native XML format or
whether it must be transformed.

You can add more than one recognizer to XML Dispatch to recognize different XML
grammar. XML Dispatch recognizes the these types:

»  jdeRequest
= jdeResponse
= jdeWorkflow

The XML Dispatch recognizer raises DoclsRecognized exception on document
identification to stop further parsing.

You can write a recognizer that is able to recognize other types of XML documents.
The specification for the type is configured in the jde.ini file.

6.4 XML Dispatch Transports

As part of XML Dispatch, you can write a transport. Transports communicate with
external systems using mechanisms such as MQ WebSphere, MSMQ, HTTP, TCP/IP,
and so on. Transport processes must run on the same machine as XML Dispatch. To
develop a custom transport to communicate with JD Edwards EnterpriseOne, use
these APIs:

s jdeTransportlnit

s jdeTransportMessagePut
s jdeTransportMessageGet
s jdeTransportDolExit

The transport APIs assume a polling model, which means calls to put or receive
messages are given without a time-out.

6.5 XML Dispatch jde.ini File Configuration

The XML Dispatch kernel must be defined in the jde.ini file.

6-2 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Dispatch jde.ini File Configuration

6.5.1 [JDENET_KERNEL_DEF22]
These settings are for a Microsoft Windows platform:

krnlName=XML DISPATCH KERNEL

dispatchDLLName=xmldispatch.dll
dispatchDLLFunction=_XMLDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms.

Platform dispatchDLLName dispatchDLLFunction
IBM i XMLDSPATCH ?XMLDispatch?
HP9000 libxmldispatch.sl ?XMLDispatch?
SUN or RS6000  libxmldispatch.so ?XMLDispatch?

XML Dispatch uses the settings in the [XMLLookupInfo] section of the jde.ini file to
route XML documents to the corresponding XML kernels. The system uses three
keywords (XMLRequestN, XMLKernelMessageRangeN, and XMLKernelHostN) to
map a pair that consists of an XML request and an XML kernel. A description of the
settings in the [XMLLookupInfo] section are explained in this table:

Setting Purpose

XMLRequestTypeN= Identifies the type of message to be processed.

XMLKernelMessageRangeN= A hard-coded number that identifies the kernel message
range.

XMLKernelHostNameN= The name of the host.

XMLKernelPortN= Value is 0 or 1. To indicate a local host, enter 0. To indicate a

remote host, enter 1.

XMLKernelRplyN= Value is 0 or 1, with 1 as the default value. A value of 0
indicates no reply is required. A value of 1 indicates a reply
should be returned to the originator.

Note: XMLKernelRplyN setting is not required for list,
callmethod, and trans. The reply setting is an implied 1.

XMLService does not send a response, and the setting for
XMLKernelReplyN should be zero (0).

Where N starts with 1, and multiple groups of these keys can
be in this section.

6.5.2 [XMLLookupinfo]

The [XMLLookupInfo] section should have six groupings, as illustrated in this
example:

[XMLLookupInfo]
XMLRequestTypel=1list
XMLKernelMessageRange=5257
XMLKernelHostNamel=1ocal
XMLKernelPort1=0

XMLRequestType2=callmethod
XMLKernelMessageRange2=920
XMLKernelHostName2=1ocal

Understanding XML Dispatch 6-3



XML Dispatch Error Handling

XMLKernelPort2=0

XMLRequestType3=trans
XMLKernelMessageRange3=5001
XMLKernelHostName3=1ocal
XMLKernelPort3=0

XMLRequestTyped=JDEMSGWFINTEROP
XMLKernelMessageRange4=4003
XMLKernelHostNamed=1ocal
XMLKernelPort4d=0
XMLKernelReply4=0

XMLRequestTypeb=xapicallmethod
XMLKernelMessageRangeb=14251
XMLKernelHostName5=local
XMLKernelPort5=0
XMLKernelReply5=0

XMLRequestTypeb=realTimeEvent
XMLKernelMessageRange6=14251
XMLKernelHostName6=1ocal
XMLKernelPort6=0
XMLKernelReply6=0

XMLRequestTypeT7=ube
XMLKernelMessageRange7=380
XMLKernelHostName7=1ocal
XMLKernelPort7=0
XMLKernelReply7=1

The XML Dispatch kernel uses these two additional settings:

[XML DISPATCH]
PollIntervalMillis=3000

[XTS]
ResponseTimeout=600

The PollIntervalMillis setting is the number of milliseconds that the XML Dispatch
kernel sleeps during inactivity when it is waiting on responses from other XML
kernels such as XML CallObject. The lower this value, the more CPU cycles the XML
Dispatch kernel uses when waiting for responses.

The ResponseTimeout setting is the number of seconds that the XML Dispatch kernel
waits for a response from other XML kernels, such as CallObject) before giving up on
the response.

6.6 XML Dispatch Error Handling

XML Dispatch handles three types of errors. This table identifies the errors and how
XML Dispatch handles the error:

6-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Submit a UBE from XML

XML Dispatch Error How XML Dispatch Handles the Error

An error occurs while XML dispatch, XTS, and XML Dispatch generates an error report,
the XL kernel processes are exchanging data. ~ which is an XML document that describes the

For example, communication is broken. error.

An error occurs while the parser or XTS is XML Dispatch generates an error report that is
processing an XML document. For example, a based on the error message that is generated
syntax error, an invalid request, and so on. by either the parser or XTS.

An error occurs while an XML kernel is XML Dispatch uses XTS to transform the XML

processing an XML document. For example, kernel generated error report when necessary.
the user name is invalid, the transaction is
rolled back, and so on.

XML Dispatch sends generated error reports to the corresponding transport process.

6.7 Submit a UBE from XML

You can use the XML interoperability solution (XML Callobject and XML List) to
submit a UBE that requests inbound XML. The COM connector, Dynamic Java
connector, and Java connector support inbound synchronous XML requests. You can
use the run RUNUBEMXL command; however, this command works only on the JD
Edwards EnterpriseOne Enterprise server.

6.7.1 Prerequisites
Before you request an inbound XML, do the following:

Configure the JD Edwards EnterpriseOne server jde.ini file, [XMLLookupInfo]
section for XML Request type 7, as illustrated here:

[XMLLookupInfo]
XMLRequestTypeT7=ube
XMLKernelMessageRange7=380
XMLKernelHostName7=1ocal
XMLKernelPort7=0
XMLKernelReply7=1

Create a processing option that contains data selection and data sequencing that
you want and submit from batch version to make sure that you obtain the desired
result.

For example, RO010P creates a new version, ABCD (where company=00001.)

See Also

"Requesting Inbound XML Using COM Server" in the |D Edwards EnterpriseOne
Tools Connectors Guide.

"Inbound XML Request Using the Dynamic Java Connector” in the |D Edwards
EnterpriseOne Tools Connectors Guide.

"Inbound XML Request Using the Java Connector" in the JD Edwards EnterpriseOne
Tools Connectors Guide.

Understanding XML Dispatch 6-5



Submit a UBE from XML

6-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Submit a UBE from XML

Understanding XML Dispatch 6-7



Submit a UBE from XML

6-8 JD Edwards EnterpriseOne Tools Interoperability Guide



7

Understanding XML Transformation Service

This chapter contains the following topics:

s Section 7.1, "XML Transformation Service"
s Section 7.2, "XTS Process"

m  Section 7.3, "Custom Selectors"

»  Section 7.4, "XTS jde.ini File Configuration"

7.1 XML Transformation Service

The JD Edwards EnterpriseOne XML transformation system (XTS) uses extensible
stylesheet language (XSL) to transform XML documents to the format that is required
by JD Edwards EnterpriseOne. XTS also transforms JD Edwards EnterpriseOne
response XML documents back to the XML format of the original request.

XTS is a multi-threaded Java process that runs as a JD Edwards EnterpriseOne kernel
process. Upon system startup, the XTS kernel library loads a Java virtual machine
(JVM). Once the JVM is loaded, the server proxy is started. Java Runtime Environment
(JRE) v. 1.4 is included with the JD Edwards EnterpriseOne software.

XTS is available on all platforms that JD Edwards EnterpriseOne supports.

7.2 XTS Process

When the JD Edwards EnterpriseOne XML Dispatch kernel receives an XML
document that it does not recognize, it sends the document to XTS for transformation.
XTS reads the XSL, transforms the document to a format that is compatible with JD
Edwards EnterpriseOne, and sends the document back to the XML Dispatch kernel for
processing. When the JD Edwards EnterpriseOne response comes into XML Dispatch,
XML Dispatch remembers that the document needs to be transformed from the JD
Edwards EnterpriseOne XML format and sends the document to XTS for
transformation. XTS transforms the JD Edwards EnterpriseOne XML document back
to your original XML format and sends the document to XML Dispatch for
distribution to you.

Native XML format is the XML format that is defined by JD Edwards EnterpriseOne
and is documented in this guide. All XML documents coming into JD Edwards
EnterpriseOne must be in native XML format. The JD Edwards EnterpriseOne kernel
processes (such as, XML CallObject, XML trans, XML list, and so on) can only process
XML documents that are in native format. As part of the XTS solution, JD Edwards
EnterpriseOne provides a selector that determines whether a non-JD Edwards
EnterpriseOne XML document can be transformed. A selector is code that looks at an

Understanding XML Transformation Service 7-1



XTS Process

XML document to see if it recognizes the document. If the selector recognizes the XML
document, the selector is able to associate the XML document with a stylesheet that is
provided for transformation. The selector is able to transform Version 1 XML format
into JD Edwards EnterpriseOne native XML format. Version 1 XML format is XML
format that is defined by JD Edwards EnterpriseOne but has been modified to be tool
friendly. Native XML format uses a field name that is preceded by parameter name.
Version 1 XML format uses just the field name.

7.2.1 Example: JD Edwards EnterpriseOne Native XML Format

This sample code shows JD Edwards EnterpriseOne native XML format:

<xml version='1.0'?>

<jdeRequest pwd='mike' type='callmethod' user='mike' environment='DV810'>
<callMethod app='test' name='GetPhone'>
<params>

<param name='mnAddressnumber '>4242a</param>
<param name= 'mnLinenumberid'></param>
<param name= 'cIncludeexcludecode2'></param>
<param name= 'szPhonenumber'>/param>

<param name= 'szPhoneareacodel'></param>
<param name= 'mnOKtoDelete'></param>

<param name= 'szPhonenumberType'></param>
</params>

</callMethod>

</jdeRequest>

7.2.2 Example: JD Edwards EnterpriseOne Version 1 XML Format

This sample code shows Version 1 XML format:

<?xml version=1.0 ?>
<intBPAPI>
<dsControl>
<dsLogin>
<User>JDESVR</User>
<Password>JDESVR</Password>
<Environment>ADEVNIS2</Environment>
<Session />
</dsLogin>
<dsAPI>
<Noun>jdeSalesOrder</Noun>
<Verb>Create</Verb>
<Version>1.1</Version>
</dsAPI>
<dsTranslation>
<InMap />
<OutMap />
</dsTranslation>
</dsControl>
<dsData>
<callMethod GetLocalComputerId app="NetComm" runOnError="no">
<szMachineKey id="" />
<onError_GetLocalComputerId abort="yes" />
</callMethod_GetLocalComputerId>
<callMethod_F4211FSBeginDoc app="NetComm" runOnError="no">
<mnCMJobNumber id="" />
<cCMDocAction>A</cCMDocAction>
<cCMProcessEdits>1</cCMProcessEdits>
<szCMComputerID idref="2" />

7-2 JD Edwards EnterpriseOne Tools Interoperability Guide



XTS Process

<cCMUpdateWriteToWF>2</cCMUpdateWriteToWr>
<szCMProgramID>NetComm</szCMProgramID>
<szCMVersion>NetComm</szCMVersion>
<szOrderType>SQ</szOrderType>
<szBusinessUnit>M30</szBusinessUnit>
<mnAddressNumber>4242</mnAddressNumber>
<szReference>2</szReference>
<cApplyFreightYN>Y</cApplyFreightYN>
<szCurrencyCode>CAD</szCurrencyCode>
<cWKSourceOfData />
<CcWKProcMode>1</cWKProcMode>
<mnWKSuppressProcess>0</mnWKSuppressProcess>
<onError_F4211FSBeginDoc abort="yes">

<callMethod_F4211ClearWorkFile app="NetComm" runOnError="yes">

<mnJobNo idref="1" />
<szComputerID idref="2" />
<mnFromLineNo>0</mnFromLineNo>
<mnThruLineNo>0</mnThruLineNo>
<cClearHeaderWF>2</cClearHeaderWF>
<cClearDetallWF>2</cClearDetailWF>
<szProgramID>NetComm</szProgramID>
<szCMVersion>ZJDE0001</szCMVersion>
</callMethod_F4211ClearWorkFile>
</onError_F4211FSBeginDoc>
</callMethod_F4211FSBeginDoc>

<callMethod_F4211FSEditLine app="NetComm" runOnError="yes">

<mnCMJobNo idref="1" />
<cCMLineAction>A</cCMLineAction>
<cCMProcessEdits>1</cCMProcessEdits>
<cCMWriteToWFFlag>2</cCMWriteToWFFlag>
<szCMComputerID idref="2" />
<mnLineNo>1</mnLineNo>
<szItemNo>1001</szItemNo>
<mnQtyOrdered>5</mnQtyOrdered>
<cSalesTaxableYN>N</cSalesTaxableYN>
<szTransactionUOM>EA</szTransactionUOM>
<szCMProgramID>1</szCMProgramID>
<szCMVersion>ZJDE0001</szCMVersion>
<cWKSourceOfData />
<onError_F4211FSEditLine abort="no" />
</callMethod_F4211FSEditLine>
<callMethod_F4211FSEndDoc app="NetComm" runOnError="no">
<mnCMJobNo idref="1" />
<szCMComputerID idref="2" />
<szCMProgramID>NetComm</szCMProgramID>
<szCMVersion>ZJDE0001</szCMVersion>
<cCMUseWorkFiles>2</cCMUseWorkFiles>

<mnSalesOrderNo id="" />
<szKeyCompany id="" />
<mnOrderTotal id="" />

<onError_F4211FSEndDoc abort="no">

<callMethod_F4211ClearWorkFile app="NetComm" runOnError="yes">

<mnJobNo idref="1" />

<szComputerID idref="2" />
<mnFromLineNo>0</mnFromLineNo>
<mnThruLineNo>0</mnThrul.ineNo>
<cClearHeaderWF>2</cClearHeaderWF>
<cClearDetallWF>2</cClearDetailWF>
<szProgramID>NetComm</szProgramID>
<szCMVersion>ZJDE0001</szCMVersion>

Understanding XML Transformation Service 7-3



Custom Selectors

</callMethod_F4211ClearWorkFile>
</onError_F4211FSEndDoc>
</callMethod_F4211FSEndDoc>
<returnParams failureDestination="error" successDestination="success"
runOnError="yes">
<mnOrderNo idref="3" />
<szOrderCo idref="4" />
<mnWKOrderTotal idref="5" />
</returnParams>
<onError abort="yes">
<callMethod_F4211ClearWorkFile app="NetComm" runOnError="vyes">
<mnJobNo idref="1" />
<szComputerID idref="2" />
<mnFromLineNo>0</mnFromLineNo>
<mnThrulineNo>0</mnThrul.ineNo>
<cClearHeaderWF>2</cClearHeaderWF>
<cClearDetailWF>2</cClearDetailWr>
<szProgramID>NetComm</szProgramID>
<szCMVersion>ZJDE0001</szCMVersion>
</callMethod_F4211ClearWorkFile>
</onError>
</dsData>
</intBPAPI>

7.3 Custom Selectors

You can build a selector to transform your XML format into JD Edwards

EnterpriseOne native XML format. If you write a custom selector, include both request
and response extensible stylesheet language transformation (XSLT) documents.

Inside the Java file, the system uses two APIs to select templates. Use the boolean
fetchTemplates API to fetch the appropriate XSLT document for the request document.

Public boolean fetchTemplates throws

IXTSMTemplateSelector. TemplateFetchException, XTSXMLParseException. This

sample shows how to use this API:

fetchTemplates (XTSDocument inXML, IXTSMSelectionInfo info)

Use the Public void fetchTemplates to fetch the appropriate XSLT document for the

response document. Public void fetchTemplates throws
IXTSMTemplateSelector. TemplateFetchException.

fetchTemplates (IXTSMSelectionInfo info)

Note: Ensure that your custom selector is accessible in the ClassPath.

7.3.1 XTS APIs

When you write a custom selector, you can use these APIs to interface with JD

Edwards EnterpriseOne:
»  IXTSMTemplateSelector
»  IXTSMTemplateSelector.TemplateFetchException

7-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Custom Selectors

7.3.2 Example: Creating a Selector

This code was written by JD Edwards EnterpriseOne to build the Version 1 XML
selector. This sample code uses the XTSjar file. You can use this code as a sample for
creating your selector:

File: XTSMJDETemplateSelector.java

//

[1I0011107 1000000007007 000700077700y riiinrrirrlgy
package com.jdedwards.xts.xtsm;

import com.jdedwards.xts.xtsr.IXTSRepository;

import com.jdedwards.xts.xtsr.IXTSRKey;

import com.jdedwards.xts.xtsr.XTSRException;

import com.jdedwards.xts.xtsr.XTSRInvalidKeyStringException;
import com.jdedwards.xts.xtsr.XTSRInvalidKeyFieldException;
import com.jdedwards.xts.xtsr.XTSRKeyNotFoundException;
import com.jdedwards.xts.XTSDocument;

import com.jdedwards.xts.XTSFactory;

import com.jdedwards.xts.XTSLog;

import com.jdedwards.xts.XTSConfigurationException;

import com.jdedwards.xts.XTSXMLParseException;

import com.jdedwards.xts.xtsm.IXTSMTemplateSelector;

import com.jdedwards.xts.xtse.IXTSEngine;

import com.jdedwards.xts.xtse.IXTSECompiledProcessor;

import java.util.List;

import org.w3c.dom.*;

/**
* This class is the Template Selector. It recognizes
* JD Edwards EnterpriseOne standard XML documents and returns the
* appropriate XSL stylesheets necessary for transformation.
*/
public class XTSMJDETemplateSelector implements IXTSMTemplateSelector
{

/** Class constructor. */

public XTSMJDETemplateSelector ()

{

XTSLog.trace (XTSMIDETemplateSelector()'', 3);

// get repository reference

XTSFactory factory = XTSFactory.getInstance();

m_repository = factory.createXTSRepository();

}

/**

* Fetch the appropriate XSLT documents and IXTSECompiledProcessors as

* indicated by the TPT stored in the <code>info</code> parameter.

* @param info - Selection Info that contains TPI and should be modified

* by the selector to specify transformation information.

* @exception IXTSMTemplateSelector.TemplateFetchException - thrown

* if an error occurs when extracting information from the

* inclement.

*/

public void fetchTemplates (IXTSMSelectionInfo info)

throws IXTSMTemplateSelector.TemplateFetchException

{

XTSLog.trace ("XTSMIDETemplateSelector.fetchTemplates (XTSMSelectionResult)",
3);

NodeList nodes = info.getTPIElement () .getElementsByTagName (JDE_TS_XTSR_KEY) ;

int numNodes = nodes.getLength();

for(int 1 = 0; 1 < numNodes; i++)

{

Understanding XML Transformation Service 7-5



Custom Selectors

// extract key info & create a key
IXTSRKey key = createKeyFromNode ( (Element)nodes.item(i));

// fetch the doc and add it to the list

try

{
info.getXSLList () .add(m_repository.fetch(key));
}

catch (XTSRKeyNotFoundException e)

{

throw new IXTSMTemplateSelector.TemplateFetchException (
"Selected XTSRKey not found in repository: "
+ JDE_TS_XTSR_KEY) ;
}
catch (XTSRException e)
{
throw new IXTSMTemplateSelector.TemplateFetchException (
"Unable to fetch the XSL document specified within '"
+ JDE_TS_XTSR_KEY +
"' from the XTSRepository");

/**
* Fetch the appropriate XSLT documents and compiled processors for
* the given document.
* @param inXML - the XTSDocument to try to recognize.
* @param info - Selection Info object to be modified by selector to
* indicate transformation information.
* @return - <code>true</code> if the selector has recognized the
* document and specified the appropriate selection info using
* <code>info</code>, <code>false</code> otherwise.
* @exception TemplateFetchException - thrown when an error occurs
* when trying to recognize the DOM.
* @Qexception XTSXMLParseException - thrown if <inXML> could not be
* parsed.
*/
public boolean fetchTemplates (XTSDocument inXML,
IXTSMSelectionInfo info)
throws IXTSMTemplateSelector.TemplateFetchException,
XTSXMLParseException

XTSLog.trace ("XTSMIDETemplateSelector. fetchTemplates (Document, Element)",
boolean recognized = false;
Document inDOM = inXML.getDOM() ;
// see if an XTSR key is specified within the document:
NodeList nodeList = inDOM.getElementsByTagName (JDE_XTSR_KEY) ;
if (nodeList.getLength() > 0)
{
try
{

// extract key info & create a key
IXTSRKey key = createKeyFromNode ( (Element)nodeList.item(0));

// add transformation path information to outElement
createNodeChildFromKey (info.getTPIElement (), key);

// fetch the doc and add it to the list

7-6 JD Edwards EnterpriseOne Tools Interoperability Guide

3);



Custom Selectors

info.getXSLList () .add(m_repository.fetch(key));

info.setResultXML (true) ;
info.setPathInfoStored(false);
recognized = true;
}
catch (XTSRException e)
{
throw new IXTSMTemplateSelector.TemplateFetchException (
"Unable to fetch the XSL document specified within '"
+ JDE_XTSR_KEY +
"' from the XTSRepository");
}
catch (XTSRKeyNotFoundException e)
{
throw new IXTSMTemplateSelector.TemplateFetchException (
"Key specified in TPI not found in repository"
+ JDE_XTSR_KEY) ;

}
else // no XTSR key, so look for JDE information:
{
nodeList = inDOM.getElementsByTagName (JDE_INT_ BPAPI) ;
if (nodeList.getLength() != 0)
{
// add transformation path information to outElement
createNodeChildFromKey (info.getTPIElement (), getVersionltoNativeKey());

// fetch the doc and add it to the list
info.getXSLList () .add(getVersionltoNativeXSL());

info.setResultXML (true) ;
info.setPathInfoStored(true);
recognized = true;

}

return recognized;

}

/**

* Extracts XTSRKey information from the given node, and creates an
* instance of IXTSRKey based on that information.

* @return - the new IXTSRKey.
* @param element - Element that contains the key information.
* @exception XTSMUnrecognizedElementException - thrown if the
* Element format is unrecognized.
*/
protected IXTSRKey createKeyFromNode (Element element)

throws XTSMUnrecognizedElementException

XTSLog.trace ("XTSMIDETemplateSelector.createKeyFromNode (Element) ", 4);
IXTSRKey key = null;
boolean request = false;
boolean response = false;
if (element.getNodeName () .equals (JDE_XTSR_KEY))
{
request = true;
}
else if (element.getNodeName () .equals (JDE_TS_XTSR_KEY))
{

response = true;

Understanding XML Transformation Service 7-7



Custom Selectors

}

if (request || response)

{
key = m_repository.createKey();
try

{
String keyString = element.getAttribute (JDE_XTSR_KEY_ATTRIBUTE) ;
key.setFieldsFromString (keyString) ;
if (key.getFieldvalue(SUBTYPE_FIELD).length() == 0)
{

if (request)

key.setFieldvalue (SUBTYPE_FIELD, SUBTYPE_REQUEST) ;
}

else

{
key.setFieldvValue (SUBTYPE_FIELD, SUBTYPE_RESPONSE) ;

}
}
}
catch (XTSRInvalidKeyStringException e)
{

throw new XTSMUnrecognizedElementException (
"Specified '" + JDE_XTSR_KEY +
"' element format is invalid for this XTSRepository");
}
catch (XTSRInvalidKeyFieldException e)
{
throw new XTSConfigurationException (
"Specified '" + SUBTYPE FIELD +
"' field name not supported by repository key");

}
return key;
}
/**
* Creates a node that contains the key fields values and appends it
* to the given parentNode.
* @param parentNode - Node to which the key information should be
* appended.
* @param key - Key information to store in the node.*/

protected void createNodeChildFromKey (Node parentNode, IXTSRKey key)
{
XTSLog.trace ("XTSMIDETemplateSelector.createKeyFromNode (Node, IXTSRKey) ", 4);
try
{
IXTSRKey keyClone = key.getRepository().createKey();
keyClone.setFieldsFromString (key.getFieldsString());

// Do not store the sub type, clear it here:
keyClone.setFieldvalue (SUBTYPE_FIELD, "");

// create new node and append it to the provided element:
Element element = (Element)parentNode.getOwnerDocument () .createElement
(JDE_TS_XTSR_KEY) ;
element.setAttribute (JDE_XTSR_KEY_ATTRIBUTE, keyClone.getFieldsString());
parentNode.appendChild (element) ;
}
catch (XTSRInvalidKeyStringException e)

7-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Custom Selectors

XTSLog.log ("Unexpected ") ;
XTSLog.log(e) ;
throw new RuntimeException("Unexpected Exception: " + e.toString());

/'k*
* Returns the key of the stylesheet to use in converting
* JD Edwards EnterpriseOne version 1 documents into EnterpriseOne native
* documents.
* @return - The key for the XSL stylesheet.
*/
protected IXTSRKey getVersionltoNativeKey ()
{
XTSLog. trace ("XTSMIDETemplateSelector.getVersionltoNativeKey ()", 5);
if (null == m_versionlToNativeKey)
{
try
{
// create standard xsl XTSRKey:
m_versionlToNativeKey = m_repository.createKey();
m_versionlToNativeKey.setFieldsFromString (V1_TO_NATIVE_KEY) ;
}
catch (XTSRInvalidKeyStringException e)
{
String error = "XTSRKey necessary for JDE template selection is invalid: "
+ V1_TO_NATIVE_KEY;
XTSLog.log (error) ;
XTSLog.log(e) ;
throw new XTSConfigurationException(error);
}
}
return m_versionlToNativeKey;

}

/**
* Returns the XTSDocument which contains the XSL stylesheet for
* converting JD Edwards EnterpriseOne version 1 documents into JD Edwards
* EnterpriseOne native documents.
* @return - XTSDocument containing the XSL stylesheet.
*/
protected IXTSECompiledProcessor getVersionltoNativeXSL()
{
XTSLog.trace ("XTSMIDETemplateSelector.getVersionltoNativeXSL()", 5);
if (null == m_versionlToNativeXSL)
{
XTSDocument xsl = null;
Try
{
xsl = m_repository.fetch(getVersionltoNativeKey());
IXTSEngine engine = XTSFactory.getInstance().createXTSEngine();
m_versionlToNativeXSL = engine.createCompiledProcessor (xsl);

}
catch (XTSRException e)
{
String error = "Unable to fetch selected template from the repository:";

XTSLog.log (error) ;
XTSLog.log(e) ;
throw new XTSConfigurationException(error + e.toString());

Understanding XML Transformation Service 7-9



Custom Selectors

}
catch (XTSRKeyNotFoundException knfe)
{
String error = "Selected template XTSRKey not found in repository:";

XTSLog.log (error) ;
XTSLog.log (knfe) ;
throw new XTSConfigurationException(error + knfe.toString());

}
catch (XTSXMLParseException pe)
{
String error = "Invalid XSL document in repository";

XTSLog.log (error) ;
XTSLog.log(pe) ;
throw new XTSConfigurationException(error + pe.toString());
}
}
return m_versionlToNativeXSL;

}

/** Reference to the XTSRepository */
private IXTSRepository m_repository = null;

/** Key for converting version 1 documents to native documents. */
private IXTSRKey m_versionlToNativeKey = null;

/** Compiled XSL Stylesheet for converting version 1 docs to
* native docs. */
private IXTSECompiledProcessor m_versionlToNativeXSL = null;

/** Field Value for the XTSRKey that indicates the document is an XSL doc */
private static final String DOC_TYPE_XSL = "XSL";

/** Element name that indicates the DOM is a Version 1 document */
private static final String JDE_INT BPAPI = "intBPAPI";

/** Element name that indicates the DOM is a request and not a
* response or error. */
private static final String JDE_REQUEST = "jdeRequest";

/** Element name that indicates the DOM is a response */
private static final String RESPONSE = "jdeResponse";

/** Element name that specifies an XTSRKey to use in transforming
* the document. */
private static final String JDE_XTSR_KEY = "jdeXTSRKey";

/** The attribute of the <code>JDE_XTSR_KEY</code> element that
* stores the XTSRKey string value */
private static final String JDE_XTSR_KEY_ATTRIBUTE = "key";

/** XTSRKey field name that specifies the sub-type of the XML

* document. Normal values for the sub-type are defined by

* <code>SUBTYPE_REQUEST</code> and <code>SUBTYPE_RESPONSE</code> */
private static final String SUBTYPE_FIELD = "SUB_TYPE";

/** XTSRKey field name which specifies the type of the XML document.
* The normal value is defined by <code>DOC_TYPE_XSL</code> */
private static final String FIELD_TYPE = "TYPE";

/** XTSRKey field name which specifies the format (or owner) of the

7-10 JD Edwards EnterpriseOne Tools Interoperability Guide



XTS jde.ini File Configuration

* XML document. The normal value recognized by this selector is
* ‘JDE‘ */
private static final String FIELD_FORMAT = "FORMAT";

/** XTSRKey field name that specifies the particular transformation
* that the XSL document will perform. This selector uses
* 'V1_NATIVE' for transformations between JD Edwards EnterpriseOne Version 1
* XML documents and JD Edwards EnterpriseOne native version documents. */
private static final String FIELD_ID = "ID";

/** The string representation of the XTSRKey for the XSL document to
* format JD Edwards EnterpriseOne version 1 request documents into
* JD Edwards EnterpriseOne native request documents. */
private static final String V1_TO_NATIVE_KEY = "XSL-JDE-V1_NATIVE-REQUEST";

/** XTSRKey field <code>SUBTYPE_FIELD</code> value that indicates
* the XSL document will transform jdeRequest documents. */
private static final String SUBTYPE_REQUEST = "REQUEST";

/** XTSRKey field <code>SUBTYPE_FIELD</code> value that indicates
* the XSL document will transform jdeResponse documents. */
private static final String SUBTYPE_RESPONSE = "RESPONSE";

/** Element name stored within the Transformation Path Information
* (TPI)that specifies the XTSRKey used to transform the document. */
private static final String JDE_TS_XTSR_KEY = "XTSJDETemplateKey";

private static class XTSMUnrecognizedElementException
extends IXTSMTemplateSelector.TemplateFetchException
{
public XTSMUnrecognizedElementException(String text)
{

super (text) ;

7.4 XTS jde.ini File Configuration

The XTS Kernel must be defined in the server jde.ini file. The name of the
configuration file is retrieved from the config_file system variable in the JVM. These
property settings are part of a configuration file other than jde.ini. The jde.ini file does
not require any special configurations other than to define the XTS Kernel.

7.41 [JDENET_KERNEL_DEF23]

These setting are for a Microsoft Windows platform:

krnlName=JDEXTS KERNEL
dispatchDLLName=xtskrnl.dll
dispatchDLLFunction=_JDEK_DispatchXTSMessage@28
maxNumberOfProcesses=1
numberOfAutoStartProcesses=0

This table provides the different .dll extensions for other platforms:

Table Column Heading  Dispatch DLL Name Dispatch DLL Function
IBM i XTSKRNL JDEK_DispatchXTS

Understanding XML Transformation Service 7-11



XTS jde.ini File Configuration

Table Column Heading  Dispatch DLL Name Dispatch DLL Function
HP9000B libxtskrnl.sl JDEK_DispatchXTS
SUN or RS6000 libxtskrnl.so JDEK_DispatchXTS

Other jde.ini File settings include:

= [JDENET]
= [XTSRepository]
»  [XTS]

7.4.2 [JDENET]
Configure this setting:

maxKernelRanges=24

Note: For the XTS kernel to run, set the maxKernelRanges setting to
23 or higher.

7.4.3 [XTSRepository]
Configure these settings:

XSL-JDE-V1_NATIVE-REQUEST=ml.xsl
XSL-JDE-V1_NATIVE-RESPONSE=1m.xsl

Note: The first setting is the JD Edwards EnterpriseOne default
value that enables XSL to transform the request document from
Version 1 to native. The second setting is the JD Edwards
EnterpriseOne default value that enables XSL to transform the
response document from native to version 1.

You can provide your XSL files either at this location or any other
location as long as your selector can find and access your XSL. To add
your XSL files to this location, use these naming conventions, where
Filename is the name of your XSL documents:

XSL-JDE-Filename-REQUEST=
XSL-JDE-Filename-RESPONSE=

7.4.4 [XTS]
This is an example setting:

XTSTemplateSelectorl=com.jdedwards.xts.xtsm.XTSMIDETemplateSelector
XTSTraceLevel=2

7-12 JD Edwards EnterpriseOne Tools Interoperability Guide



XTS jde.ini File Configuration

Note: The XTSTemplateSelectorl setting is the JD Edwards
EnterpriseOne default template selector for providing XSL to
transform between Version 1 and native format.

You can add your custom template selector to this section. For
example, your template selector setting could be defined as follows:

XTSTemplateSelector2=com.customer.CustomTemplateSelector

The XTSTraceLevel=2 setting defines the level of XTS logging.

Understanding XML Transformation Service 7-13



XTS jde.ini File Configuration

7-14 JD Edwards EnterpriseOne Tools Interoperability Guide



8

Understanding XML CallObject

This chapter contains the following topics:

= Section 8.1, "XML CallObject"

= Section 8.2, "XML CallObject Templates"

= Section 8.3, "XML CallObject Process"

= Section 8.4, "XML CallObject Document Format"

= Section 8.5, "XML CallObject jde.ini File Configuration"
= Section 8.6, "XML CallObject Return Codes"

8.1 XML CallObject

XML CallObject is XML-based interoperability that runs as a JD Edwards
EnterpriseOne kernel process. You can also use XML CallObject with a messaging
adapter. Some features of XML CallObject include:

= The ability to make business function calls to JD Edwards EnterpriseOne using
XML documents.

= Business function templates and the ability to create your own templates.
s The ability to call multiple business functions using a single XML document.

= A simpler way of interfacing with JD Edwards EnterpriseOne as compared to
using COM or Java APIs.

8.2 XML CallObject Templates

XML CallObject provides a blank template that you can complete to make CallObject
requests for a given business function. You also have the option of creating your own
custom XML documents.

To request an XML template for a given business function, you create an XML
document that is a callMethod request type. When you make a CallObject template
request, the response is the template that has information about all of the function
parameters but is not populated with data values. The user, password, and session
attribute values are blank so that you can cache the response for later use.

A CallObject template request is an exception to the convention that a jdeRequest
returns a jdeResponse. Instead of data, you receive the template, which you use to
make another callMethod request. When you request a CallObject template, the
request for the template is the only request that can be made in the XML document.
The XML document must include the business function.

Understanding XML CallObject 8-1



XML CallObject Process

This example illustrates a request for a CallObject template:

<?xml version='1.0' ?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' environment='prod'
role="*ALL" session=''>

<callMethodTemplate name='myfunc' app='P42101'/>

</jdeRequest>

This example illustrates a response to a CallObject template request. This response can
then be filled in with the appropriate information and sent back as a request.

<?xml version='1.0' ?>

<jdeRequest type='callmethod' user='"' pwd='' environment='prod' role='*ALL'
session="'"'>

<callMethod name='myfunc' app='P42101'>
<params>

<param name='CostCtr'></param>

<param name='ExpDate'></param>

<param name='Quantity'></param>
</params>

</callMethod>

</jdeRequest>

See XML Format Examples (All Parameters).

8.3 XML CallObject Process

This diagram illustrates XML CallObject processing:

8-2 JD Edwards EnterpriseOne Tools Interoperability Guide



XML CallObject Process

Figure 8—1 XML CallObject process flow

EnterpriseOne
System

XML
CallObject
Kernel

)

Understanding XML CallObject 8-3



XML CallObject Process

XML
CallObject
Kernel

In summary:

»  The JD Edwards EnterpriseOne server receives an XML document.

» XML CallObject processes the message by parsing the XML document.
»  The session manager validates the user and password.

= Each requested business function is called separately or within requested
transaction boundaries until all calls are processed.

8-4 JD Edwards EnterpriseOne Tools Interoperability Guide



XML CallObject Document Format

= Output data and error messages are merged with the data from the input XML
document and a new response document is created and sent to the originator.

8.4 XML CallObject Document Format

This section provides an overview for formatting XML CallObject documents and

discusses these elements:

= Call Object

s OnError Handling

= Call Object Error Handling

s Error Text

= Multiple Requests per Document
» ID/IDREF Support

s Return NULL Values

8.4.1 XML CallObject Formatting Documents

Your XML document must have these elements at the beginning of the document:

= jdeRequest Type
= Establish Session
= Expire Session

Your XML document must end with Terminate Session.

Your XML CallObject document can also have these optional elements:

= Call Object

s On Error Handling

= Call Object Error Handling

»  Error Text

= Multiple Requests per Document
» ID/IDREF Support

= Return NULL Values

8.4.2 Call Object

Tags are used to call business functions on the server.
This sample code shows how to use callObject:

<?xml version='1.0"' ?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' role='*ALL'

environment='prod'>

<callMethod name='myfunc' app='P42101'>
<params>

<param name='CostCtr'> 1001</param>
<param name='ExpDate'>1999/10/31</param>
<param name='Quantity'>12</param>
</params>

</callMethod>

Understanding XML CallObject 8-5



XML CallObject Document Format

</jdeRequest>

The callMethod element details which function to call and in what context it is being
called. The name attribute specifies which business function to call, and the
application attribute enables the business function to know who is calling it.

The parameters and parameter elements define the data structure of the business
function. Each parameter element describes one data structure member. The caller is
only required to give the name attribute.

If no parameter element value is given for an input data structure member, then the
value will be treated as if it were NULL or zero.

8.4.3 OnError Handling

You can add an onError element to the callMethod request to take a specific action if
an error occurs. The onError tag can specify an abort attribute that specifies whether
all subsequent requests should be skipped. The allowed values are yes or no. A global
onError tag can be specified as a child of the jdeRequest tag, which will be executed if
errors were encountered and no other onError tag with abort="yes’ was executed. The
global onError tag should be the last request in the document.

<?xml version='1.0"' ?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' role='*ALL'
environment='prod' session=''>

<callMethod name='myfunc' app='P42101' trans='tl' runOnError='yes'>
<params>

<param name='CostCtr'> 1001</param>

</params>

<onError abort='no'>

<endTransaction trans='tl' action='rollback'/>

</onError>

</callMethod>

</jdeRequest>

8.4.4 Call Object Error Handling

System errors on a call object are reported in the returnCode element. The numeric
code is returned in the code attribute, and the corresponding text is returned as a child
text node of the returnCode element. The standard jdeCallObject return codes are used
for the code attribute.

<?xml version='1.0"' ?>

<jdeResponse type='callmethod' user='steve' pwd='xyz' role='*ALL'
environment='prod' session=''>

<callMethod name='myfunc' app='P42101' trans='tl'>

<params>

<param name='CostCtr'> 1001</param>

</params>

<returnCode code='0'>Success</returnCode>

</callMethod>

</jdeResponse>

8.4.5 Error Text

Business function error messages are returned in the errors element. Within the errors
element, there can be zero or more error elements that contain a code attribute for the
error code and a child text node that contains the error text. The name attribute
describes the parameter element that is referred to by the error.

8-6 JD Edwards EnterpriseOne Tools Interoperability Guide



XML CallObject Document Format

<?xml version='1.0' ?>

<jdeResponse type='callmethod' user='steve' pwd='xyz' role='*ALL'
environment="'prod' session=''>

<callMethod name='myfunc' app='P42101' trans='tl'>

<params>

<param name='CostCtr'> 1001</param>

</params>

<returnCode code='2'>Errors</returnCode>

<errors>

<error code='192' name='CostCtr'>Cost Center not valid</error>
</errors>

</callMethod>

</jdeResponse>

8.4.6 Multiple Requests per Document

You can include multiple requests in the XML document. Requests are not run if there
have been any errors on previous requests. If a request should be run, even if errors
have occurred, then you can override the default behavior by using the runOnError
attribute on the request with a value of yes.

<?xml version='1.0"' ?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' role='*ALL'
environment='prod' session=''>

<callMethod name='myfunc' app='P42101' trans='tl' runOnError='yes'>
<params>

<param name='CostCtr'> 1001</param>

</params>

</callMethod>

</jdeRequest>

8.4.7 ID/IDREF Support

ID type attributes uniquely identify, by a string value, elements in a XML document.
IDREEF attributes enable other elements to reference the specified element. An IDREF
attribute must not be used in a document before the ID it references is defined.

A parameter element can specify an ID attribute so that its output value from the
callMethod request will be saved and referred to later in another parameter element by
an IDREF attribute. If a parameter element contains an IDREF attribute, the value of
the given parameter is used as the input value for the parameter element. For example,
the output value from referenced parameter is used instead of the value in the XML.

<?xml version='1.0" ?>

<jdeRequest type='callmethod' user='steve' pwd='xyz' role='*ALL'
environment='prod' session='"'>

<callMethod name='myfunc' app='P42101' trans='tl' runOnError='yes'>
<params>

<param name='CostCtr'> 1001</param>

<param name='Companyl' id='cl'></param>

<param name='Company2' id='c2'></param>

</params>

</callMethod>

<callMethod name='myfunc2' app='P42101' trans='tl' runOnError='yes'>
<params>

<param name='Companyl' idref='cl'></param>

</params>

<returnParams><param idref='c2'/></returnParams>

</callMethod>

</jdeRequest>

Understanding XML CallObject 8-7



XML CallObject jde.ini File Configuration

You can specify a special request tag called returnParams that can contain one or more
parameter elements. If the parameter elements contain IDREF attributes, then the
referenced values are copied into the response.

8.4.8 Return NULL Values

If a parameter was not specified in the request document, it will not be returned in the
response document unless its value is non-blank or non-zero. This behavior can be
modified by specifying the returnNullData attribute on the callMethod element with a
value of yes.

<?xml version='1.0"' ?>

<jdeRequest type='callmethod' user='' pwd='"' role='*ALL' environment='prod'
session="'"'>

<callMethod name='myfunc' app='P42101' returnNullData='yes'>
<params>

<param name='CostCtr'></param>

<param name='ExpDate'></param>

<param name='Quantity'></param>

</params>

</callMethod>

</jdeRequest>

8.5 XML CallObject jde.ini File Configuration

The XML CallObject kernel must be defined in the jde.ini file.

8.5.1 [JDENET_KERNEL_DEF6]

This examples illustrates settings for a Microsoft Windows platform:

krnlName=CALL OBJECT KERNEL
dispatchDLLName=XMLCallObj.dll
dispatchDLLFunction=_XMLCallObjectDispatch@28
maxNumberOfProcesses=1
numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms:

Platform dispatchDLLName  dispatchDLLFunction

IBM i XMLCALLOB]J XMLCallObjectDispatch
HP9000 libxmlcallobj.sl XMLCallObjectDispatch
SUN or RS6000 libxmlcallobj.so XMLCallObjectDispatch

8.5.2 Example: CallObject Request

8-8

This code sample shows a CallObject request:

<?xml version="1.0" encoding="utf-8" ?>
<jdeRequest pwd="JDE" type="callmethod" user="JDE" role="*ALL"

session="" environment="M7333NIS2" sessionidle="1800">
<callMethod app="XMLTest" name="AddressBookMasterMBF">
<params>

<param name="cActionCode">A</param>
<param name="cUpdateMasterFile">1</param>
<param name="mnAddressBookNumber" idref="ABNumber" />

JD Edwards EnterpriseOne Tools Interoperability Guide



XML CallObject jde.ini File Configuration

<param name="szSearchType">C</param>
<param name="szAlphaName">bobs</param>
<param name="szMailingName">Bob's Shrimp boats</param>
<param name="szAddressLinel">One Technology Way</param>
<param name="szPostalCode">80237</param>
<param name="szCity">Denver</param>
<param name="szCounty">Denver</param>
<param name="szState">CO</param>
<param name="szCountry">US</param>
<param name="cPayablesYNM">N</param>
<param name="cReceivablesYN">Y</param>
<param name="cEmployeeYN">N</param>
<param name="cUserCode">N</param>
<param name="cARAPNettingY">N</param>
<param name="jdDateEffective">01/23/2001</param>
<param name="szProgramId">EP01012</param>
<param name="mnAddNumParentOriginal">0</param>
<param name="szVersionconsolidated" idref=Version />
<param name="szCountryForPayroll">US</param>
</params>
</callMethod>
</jdeRequest>

8.5.3 Example: CallObject Response
This code sample shows a CallObject response:

<?xml version="1.0" encoding="UTF-8" ?>
<jdeResponse pwd="JDE" role="*ALL" type="callmethod" user="JDE"
session="2360.1049473980.6" environment="PDEVNIS2" sessionidle="1800">
<callMethod app="XMLTest" name="AddressBookMasterMBF">
<returnCode code="0" />
<params>
<param name="cActionCode">A</param>
<param name="cUpdateMasterFile">1</param>
<param name="mnAddressBookNumber">57322</param>
<param name="szSearchType">C</param>
<param name="szAlphaName">bobs</param>
<param name="szMailingName">Bob's Shrimp boats</param>
<param name="szBusinessUnit">1</param>
<param name="szAddressLinel">One Technology Way</param>
<param name="szPostalCode">80237</param>
<param name="szCity">Denver</param>
<param name="szState">CO</param>
<param name="szCountry">US</param>
<param name="cPayablesYNM">N</param>
<param name="cReceivablesYN">Y</param>
<param name="cEmployeeYN">N</param>
<param name="cUserCode">N</param>
<param name="cARAPNettingY">N</param>
<param name="cAddressType3YN">N</param>
<param name="cAddressTypedYN">N</param>
<param name="cAddressType5YN">N</param>
<param name="jdDateEffective"/>
<param name="szProgramId">EP01012</param>
<param name="szVersionconsolidated">ZJDE0001</param>
<param name="cEdiSuccessfullyProcess">0</param>
<param name="szCountryForPayroll">US</param>
</params>
</callMethod>

Understanding XML CallObject 8-9



XML CallObject Return Codes

</jdeResponse>

8.6 XML CallObject Return Codes

This table provides XML CallObject return codes that can be returned from ThinNet

APIs:

Code Description

0 XML request OK.

1 Root XML element is not a jdeRequest or jdeResponse.

2 The jdeRequest user identification is unknown. Check the user, password, and
environment attributes.
or
A callmethod request is missing the session attribute.

3 An XML parse error exists at line.

4 A fatal XML parse exists error at line.

5 An error occurred during parser initialization; the server is not configured correctly.

6 There is an unknown parse error.

7 The request session attribute is invalid.

8 The request type attribute is invalid.

9 The request type attribute is not given.

10 The request session attribute is invalid; the referenced process "processid’ no longer
exists.

11 The jdeRequest child element is invalid or unknown.

12 The environment 'Env name' could not be initialized for user. Check user, password,
and environment attribute values.

13 The jdeXMLRequest parameter is invalid.

14 The connection to JD Edwards EnterpriseOne failed.

15 The jdeXMLRequest send failed.

16 The jdeXMLResponse receive failed.

17 The jdeXMLResponse memory allocation failed.

99 An invalid BSFN name exists.

8-10 JD Edwards EnterpriseOne Tools Interoperability Guide



9

Understanding XML Transaction

This chapter contains the following topics:

s Section 9.1, "XML Transaction"

»  Section 9.2, "XML Transaction Update Process"
= Section 9.3, "XML Transaction Data Request"

= Section 9.4, "XML Transaction jde.ini File Configuration"

9.1 XML Transaction

XML Transaction is XML-based interoperability that runs as a JD Edwards
EnterpriseOne kernel process. You also can use XML Transaction with a messaging
adapter. XML Transaction interacts with interface tables (Z tables) to update the
database or to retrieve data. You can create one XML document that includes both
updates to and retrieval of data from JD Edwards EnterpriseOne.

9.2 XML Transaction Update Process

To insert data into JD Edwards EnterpriseOne, you use a formatted XML document.
The XML document includes a predefined transaction type, such as JDEOPIN. The
XML document identifies one or more JD Edwards EnterpriseOne interface tables and
lists all of the data (data type and actual data values) to be updated.

This illustration shows the XML Transaction update process.

Understanding XML Transaction 9-1



XML Transaction Update Process

Figure 9—1 XML Transaction data update process flow

Response XML

Input XML Document Document

EnterpriseOne

Parse XML Document System

XML
Transaction
Kernel

Perform Session
Management

Insert Input Data to an
interface table

Add Record to
Subsystem Data Queue

Handle Errors

Create XML Response

In summary:

= Arequest in the form of an XML document contains a list of the data for a
predefined transaction type.

s XML Transaction parses the XML inbound document and inserts the data into a JD
Edwards EnterpriseOne inbound interface table.

s XML Transaction adds a subsystem data queue record to inform the JD Edwards
EnterpriseOne subsystem to process the added record.

9-2 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Transaction Data Request

= The system sends a response to the requestor indicating whether the insertion into
the interface table and the subsystem data queue addition were successful.

9.3 XML Transaction Data Request

To request data from JD Edwards EnterpriseOne, you use a formatted XML document.
The XML document contains a transaction type, such as JDESOUT, and an index that
identifies the data to be retrieved from the interface tables. You supply a template to
retrieve the specific data.

This illustration shows the XML Transaction data request and response process:

Figure 9-2 XML Transaction data request process flow

Input XML Document

Response XML
Document

Parse XML Document

A

Perform Session
Management

Retrieve Data

Handle Errors

Create XML Response

In summary:

XML
Transaction
Kernel

EnterpriseOne
System

Understanding XML Transaction 9-3



XML Transaction jde.ini File Configuration

= Arequest in the form of an XML document contains the transaction type and an
index of the requested data.

s XML Transaction parses the XML inbound document to get the transaction type
and the index.

s XML Transaction retrieves the data from JD Edwards EnterpriseOne and inserts
the data into interface tables.

s XML Transaction creates a response in the form of an XML document.

The response is comprised of the interface table data records that match the
transaction type and index. The response also contains any error messages that
might have occurred.

9.4 XML Transaction jde.ini File Configuration
The XML Transaction kernel must be defined in the jde.ini file.

9.4.1 [JDENET_KERNEL_DEF15]

These settings are for a Microsoft Windows platform:

krnlName=XML TRANSACTION KERNEL
dispatchDLLName=XMLTransactions.dll
dispatchDLLFunction=_XMLTransactionDispatch@28
maxNumberOfProcesses=1
numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms:

Platform dispatchDLLName dispatchDLLFunction
IBM i XMLTRANS XMLTransactionDispatch
HP9000 libxmltransactions.sl XMLTransactionDispatch

SUN or RS6000 libxmltransactions.so XMLTransactionDispatch

9.4.2 Example: Outbound Order Status XML Request and Response Format

The XML transaction data request is created by the outbound function and sent to the
XML transaction APIL. These code samples illustrate a sales order request and
response.

The format in this XML Transaction request code sample returns all columns for the
sales order header and detail lines:

<?xml version='1.0' ?>
<jdeRequest type='trans' user='user' pwd='password' environment='environment'

role='*ALL' session='"' sessionidle='300"'
<transaction action='transactionInfo' type='JDESOOUT'>
<key>

<column name='EdiUserId'>value</column>

<column name='EdiBatchNumber'>value</column>
<column name='EdiTransactNumber'>value</column>
</key>

</transaction>

</jdeRequest>

This code sample shows the XML Transaction response:

9-4 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Transaction jde.ini File Configuration

<?xml version='1.0"' encoding='utf-8' ?>
<jdeResponse type='trans' user='user' role='*ALL' session='sessionl'
environment='env'>
<transaction type='JDESOOUT' action='transactionInfo'>
<returnCode code='0'>XML Request OK</returnCode>
<key>
<column name='EdiUserId'></column>
<column name='EdiBatchNumber'></column>
<column name='EdiTransactNumber'></column>
</key>
<table name='F4201Z1"' type='header'>
<column name='EdiUserId'></column>
<column name='EdiBatchNumber'></column>

</table>

<table name='F421171"' type='detail'>
<column name='EdiUserId'></column>
<column name='EdiBatchNumber'></column>

</table>
<table name='F4921171"' type='additionalHeader'>
<WARNING>No record found</WARNING>
</table>
</transaction>
</jdeResponse>

Understanding XML Transaction 9-5



XML Transaction jde.ini File Configuration

9-6 JD Edwards EnterpriseOne Tools Interoperability Guide



10

Understanding XML List

This chapter contains the following topics:

»  Section 10.1, "XML List"

= Section 10.2, "List-Retrieval Engine Table Conversion Wrapper"
s Section 10.3, "XML List Process"

= Section 10.4, "XML List Requests"

= Section 10.5, "List-Retrieval Engine jde.ini File Configuration"

»  Section 10.6, "XML List jde.ini File Configuration"

10.1 XML List

XML List is XML-based interoperability that runs as a JD Edwards EnterpriseOne
kernel process. XML List provides List/GetNext functionality that enables you to
collect a list of records from JD Edwards EnterpriseOne. XML List is built on the JD
Edwards EnterpriseOne table conversion (TC) engine. XML List takes an XML
document as a request and returns an XML document with the requested data. A list
can represent data in a table, a business view, or data from a table conversion. Using
data from a table conversion enables you to use multiple tables. By sending an XML
document, you can retrieve metadata for a list, create a list, retrieve a chunk of data
from a list, or delete a list. You can send the request through JDENet or third-party
software to perform any of these operations:

n  CreateList
s GetTemplate
s GetGroup
n  DeleteList

XML List provides both trivial and non-trivial List/GetNext APIs. A trivial
List/GetNext API performs simple gets such as selecting data from a single table. A
non-trivial API uses additional functionality such as event rules. Each non-trivial
List/GetNextBPAPI must have a table conversion designed for it. The data selection
and data sequencing can be defined in an XML request at runtime.

XML List provides a list-retrieval engine that enables you to create an XML data file in
the system repository and then retrieve the data in small chunks.

Understanding XML List 10-1



List-Retrieval Engine Table Conversion Wrapper

10.2 List-Retrieval Engine Table Conversion Wrapper

A list-retrieval engine is an optimized database engine that provides and manages
access to XML repository files. Each XML list repository file is a pair of index and data
files with *.idb and *.ddb extensions. The .idb file keeps an index that is generated on a
data file, and the .ddb file keeps data that is generated by the table conversion engine.
TCWrapper is a system module that aggregates list-retrieval and list-processing APIs
from TCEngine and list-retrieval engine and provides a uniform access to the data for
XML List.

10.3 XML List Process

This illustration shows the XML List process for both a trivial and non-trivial XML List
request:

10-2 JD Edwards EnterpriseOne Tools Interoperability Guide



XML List Process

Figure 10-1 XML List process flow

e —

EnterpriseOne
System

XML List
Kernel

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

ke ———

In summary:
s JDENet receives the XML document.
= JDENet passes the XML document to the XML List kernel.

»  If the request is for CreateList or GetTemplate, XML List creates a session.

Understanding XML List 10-3



XML List Requests

»  If the request is a trivial request, XML List retrieves the data and creates a response
message to send to the requestor.

s If the request is a non-trivial request, XML List kernel passes the request to the
appropriate APL

- GetTemplate
— CreateList
- GetGroup
- DeleteList

= A table conversion wrapper processes data retrieved as a result of a non-trivial
request. The table conversion wrapper aggregates list-retrieval and list-processing
APIs from the table conversion engine and the list-retrieval engine to provide a
uniform access to the data.

10.4 XML List Requests

You can make any of these requests using XML List:

XML List Request Description

GetTemplate Send a request to retrieve metadata information for a list so that you can
add data selection and data sequencing to the CreateList request.

CreateList Send a request with TC/Table name along with data selection and
sequencing. The response is an XML document that has a handle and size
that is associated with the created list in the repository.

GetGroup Send a request to retrieve data from the generated list by the previous
CreateList request. GetGroup passes the handle value and range of
records to be retrieved.

DeleteList Send a request to delete a list from the repository.

This illustration shows the various components in list operations:

10-4 JD Edwards EnterpriseOne Tools Interoperability Guide



XML List Requests

Figure 10-2 XML List operations components

XML List Kernel

A A

List Retrieval Engine Table Conversion Engine

v v

10.4.1 Creating a List

This code example illustrates using CreateList for an XML request with the TC
Name/Table Name and data selection and sequencing. The system returns an XML
response with a handle that is associated with the created list:

<?xml version="1.0"?>
<jdeRequest type="list" user="JDE" pwd="JDE" environment="PRODHP(01"
role='*ALL' session="" sessionidle="">
<ACTION TYPE="CreateList">
<TC_NAME VALUE=""/>
<TC_VERSION VALUE=""/>
<FORMAT VALUE="UT"/>
<RUNTIME_OPTIONS>
<DATA_SELECTION>
<CLAUSE TYPE="WHERE">
<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>
<OPERATOR TYPE="EQ"/>
<OPERAND>
<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>
<LITERAL VALUE=""/>
<LIST>
<LITERAL VALUE=""/>
</LIST>
<RANGE>
<LITERAL_FROM VALUE=""/>
<LITERAL_TO VALUE=""/>
</RANGE>
</OPERAND>
</CLAUSE>
<CLAUSE TYPE="OR">
<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>
<OPERATOR TYPE="EQ"/>

Understanding XML List 10-5



XML List Requests

<OPERAND>
<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>
<LITERAL VALUE=""/>
<LIST>
<LITERAL VALUE=""/>
</LIST>
<RANGE>
<LITERAL_FROM VALUE=""/>
<LITERAL_TO VALUE=""/>
</RANGE>
</OPERAND>
</CLAUSE>
</DATA_SELECTION>
<DATA_SEQUENCING>
<DATA SORT="ASCENDING">
<COLUMN NAME="Product Code" TABLE="F0004" INSTANCE="" ALIAS=""/>
</DATA>
</DATA_SEQUENCING>
</RUNTIME_OPTIONS>
</ACTION>
</jdeRequest>
Either TC_NAME and TC_VERSION or TABLE_NAME and TABLE_TYPE must be
defined in the request. TABLE_TYPE can be one of these:

= OWTABLE
= OWVIEW
s FOREIGN_TABLE

FORMAT VALUE is an optional attribute of the FORMAT element that enables full
mode or concise mode formatting in the response message. UT is the only FORMAT
value that is supported. If you do not set the VALUE="UT" attribute on the FORMAT
element, the response message uses concise formatting, which is illustrated in this
sample response:

<F0005>
<SY>00</SY>
<RT>03</RT>
<KY> DIR</KY>
<DL01>Direct Manufacturing</DL01>
<DL02> </DL02>
<SPHD> </SPHD>
<UDCO></UDCO>
<HRDC></HRDC>
<USER>DEMO< /USER>
<PID>P00051</PID>
<UPMJ>2055/05/12</UPMJ>
<JOBN>V3477JG51</JOBN>
<UPMT>175301</UPMT>

</F0005>

If you do not use the <FORMAT VALUE> element or you do not set the attribute to
UT in the request, the response message uses full formatting, which is illustrated in
this sample response:

<FORMAT NAME='F0005'>
<COLUMN ALIAS='SY'>00</COLUMN>
<COLUMN ALIAS='RT'>03</COLUMN>

<COLUMN ALIAS='KY'> DIR</COLUMN>
<COLUMN ALIAS='DL01'>Direct Manufacturing</COLUMN>
<COLUMN ALIAS='DL02'> </COLUMN>

10-6 JD Edwards EnterpriseOne Tools Interoperability Guide



XML List Requests

<COLUMN ALIAS='SPHD'> </COLUMN>

<COLUMN ALIAS='UDCO'> </COLUMN>

<COLUMN ALIAS='HRDC'> </COLUMN>

<COLUMN ALIAS='USER'>DEMO</COLUMN>

<COLUMN ALIAS='PID'>P00051</COLUMN>

<COLUMN ALIAS='UPMJ'>2055/05/12</COLUMN>

<COLUMN ALIAS='JOBN'>V3477JG51</COLUMN>

<COLUMN ALIAS='UPMT'>175301</COLUMN>
</FORMAT>

The CLAUSE can be WHERE, OR, or AND to simulate an SQL statement.

You can specify the COLUMN NAME with any meaningful name to help recognize
the real column name in the table, which should be defined in ALIAS. The values of
TABLE, INSTANCE, and ALIAS should be the same as those in the XML response that
is returned by a GetTemplate request. For example, if Column X is in the data
selection, it should be <COLUMN NAME=My column TABLE=F9999 INSTANCE=0
ALIAS=X/> because information is returned by a GetTemplate request and is similar
to this example:

<COLUMN NAME="X" ALIAS="X" TYPE="String" LENGTH="32" TABLE="F9999" INSTANCE="0">

The OPERATOR uses values of EQ, NE, LT, GT, LE, GE, IN, NI, BW (between) or NB.
The OPERAND node can contain one of the these supported element types:

s Column

s Literal
n List
= Range

This XML node, which is a template fragment that should be used with only one of the
supported elements, shows the supported elements in the OPERAND node (in bold

type):

<CLAUSE TYPE="WHERE">
<COLUMN NAME="UserDefinedCodes" TABLE="F0005" INSTANCE="" ALIAS="RT"/>
<OPERATOR TYPE="EQ"/>
<OPERAND>
<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS="null"/>
<LITERAL VALUE="P4"/>
<RANGE>
</RANGE>
</OPERAND>
</CLAUSE>

These sample XML nodes show the operator type and the operand using the different
supported elements.

If the operand is a COLUMN, populate the COLUMN element. For example:

<CLAUSE TYPE="WHERE">
<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>
<OPERATOR TYPE="EQ"/>
<OPERAND>

<COLUMN NAME="DRRT" TABLE="F0005" INSTANCE="0" ALIAS="RT"/>
</OPERAND>
</CLAUSE>

If the operand is a LITERAL, populate the LITERAL element. For example:

Understanding XML List 10-7



XML List Requests

<CLAUSE TYPE="WHERE">
<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>
<OPERATOR TYPE="EQ"/>
<OPERAND>
<LITERAL VALUE="08"/>
</OPERAND>
</CLAUSE>

If the operand is a LIST, populate the element LIST. LIST should be used with IN or
NI. For example:

<CLAUSE TYPE="WHERE">
<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>
<OPERATOR TYPE="IN"/>
<OPERAND>
<LIST>
<LITERAL VALUE="08"/>
<LITERAL VALUE="09"/>
</LIST>
</OPERAND>
</CLAUSE>

If the operand is a RANGE, populate the element RANGE. RANGE should be used
with BW or NB. For example:

<CLAUSE TYPE="WHERE">
<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>
<OPERATOR TYPE="BW"/>
<OPERAND>
<RANGE>
<LITERAL_FROM VALUE="08"/>
<LITERAL_TO VALUE="10"/>
</RANGE>
</OPERAND>
</CLAUSE>

The XML response for a CreateList request is similar to this:

<?xml version="1.0"?>
<jdeResponse type="list" session="5665.931961929.454">
<returnCode code="0">XMLRequest OK</returnCode>
<ACTION TYPE="CreateList">
<TABLE_NAME VALUE="F0005">

<HANDLE>"1r4670001"</HANDLE>

<SIZE>773</SIZE>
</ACTION>
</jdeResponse>

The value of HANDLE can be published and referenced in a GetGroup or DeleteList
request.

10.4.2 Retrieving Data from a List

You can retrieve data from a list generated by a previous CreateList request by using a
GetGroup request. The HANDLE, FROM VALUE, and TO VALUE can be defined in
the request:

<?xml version="1.0"?>
<jdeRequest type="list" user="JDE" pwd="JDE" role="*ALL" environment="PRODHP01">
<ACTION TYPE="GetGroup">

<HANDLE VALUE="1r4670001"/>

10-8 JD Edwards EnterpriseOne Tools Interoperability Guide



XML List Requests

<FROM VALUE="10"/>

<TO VALUE="50"/>
</ACTION>
</jdeRequest>

The XML response lists records falling into the range specified. The default FROM
value is the first record and the default TO value is the last record in the list. For a
GetGroup request for the whole list, no FROM and TO values need to be specified. In
this sample code, the response returns the records in the list from #10 to #50:

<?xml version="1.0"?>
<jdeResponse type="list">
<returnCode code="0">XMLRequest OK</returnCode>
<ACTION TYPE="GetGroup">
<HANDLE VALUE="1r4670001"/>
<FROM VALUE="10"/>
<TO VALUE="50"/>
<Format name="Standard"><Column name="X">abc</Column><Column name="Y">
edf</Column></Format>
00
</ACTION>
</jdeResponse>

10.4.3 Deleting a List
A list can be deleted if all GetGroup requests are done:

<?xml version="1.0"?>
<jdeRequest type="list" user="JDE" pwd="JDE" role="*ALL" environment="PRODHP01l">
<ACTION TYPE="DeleteList">
<HANDLE VALUE="1r4670001"/>
</ACTION>
</jdeRequest>

The list result defined in the HANDLE is deleted from the storage and a response with
the status is returned to the caller:

<?xml version="1.0"?>

<jdeResponse type="list">

<returnCode code="0">XMLRequest OK</returnCode>

<ACTION TYPE="DeleteList">
<HANDLE VALUE="1r4670001"/>

<STATUS>0K</STATUS>

</ACTION>

</jdeResponse>

10.4.4 Getting Column Information for a List

You can send a GetTemplate request to get the column information for a list so that
data selection and sequencing can be added to the CreateList request. If OUTPUT is
defined in the TEMPLATE_TYPE, the response is only for those columns in the XML
output generated by a CreateList request based on the table conversion. For a trivial
table conversion, both templates should be the same. The default template type is
INPUT if no tag is specified.

<?xml version="1.0"?>
<jdeRequest type="list" user="JDE" pwd="JDE" role="*ALL"
environment="PRODHP01l" session="" sessionidle="">
<ACTION TYPE="GetTemplate">

<TABLE_NAME VALUE="F0004"/>

Understanding XML List 10-9



List-Retrieval Engine jde.ini File Configuration

<TABLE_TYPE VALUE="OWTABLE"/>
<TEMPLATE_TYPE VALUE="OUTPUT"/>
</ACTION>
</jdeRequest>

The response for the input template lists all of the columns with alias name, type and
the length of the data type, even though the length is only meaningful for the string

type.

<?xml version="1.0"?>
<jdeResponse type="list" session="5665.931961929.454">
<returnCode code="0">XMLRequest OK</returnCode>
<ACTION TYPE="GetTemplate">
<TABLE_NAME VALUE="F0004"/>
<TABLE_TYPE VALUE="OWTABLE"/>
<TEMPLATE_TYPE VALUE="INPUT"/>
<COLUMN Name="Address" Alias="X" TYPE="String" LENGTH="32" TABLE="F9999"
INSTANCE="0">
</ACTION>
</jdeResponse>

10.5 List-Retrieval Engine jde.ini File Configuration

The list-retrieval engine uses a predefined folder as its system directory to keep and
manage repository files. This system directory should be configured in jde.ini file as
follows:

[LREngine]

System=C: \output

Repository_Size=20 (allocates percentage of disk free space for XML list
repository)

Disk_Monitor=Yes (monitors free space on the disk)

Note: The engine uses the IFS file system on IBM i, so a
corresponding system subsection must be set up.

Caution: For data privacy, be sure to remove the global read access
rights for the specified directory.

The [SECURITY] section of the jde.ini file should also be configured. The default
environment, password, and user settings should be filled in for the engine to validate
the default user and to initialize the default environment.

10.6 XML List jde.ini File Configuration

The XML List kernel must be defined in the jde.ini file.

10.6.1 [JDENET_KERNEL_DEF16]

Use these settings for a Microsoft Windows platform:

krnlName=XML LIST
dispatchDLLName=xmllist.dll
dispatchDLLFunction=_XMLListDispatch@28
maxNumberOfProcesses=3

10-10 JD Edwards EnterpriseOne Tools Interoperability Guide



XML List jde.ini File Configuration

beginningMsgTypeRange=5257
endingMsgTypeRange=5512
newProcessThresholdRequest=0
numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms:

Platform dispatchDLLName dispatchDLLFunction
IBM i XMLLIST XMLListDispatch
HP9000 libxmllist.s] XMLListDispatch
SUN or RS6000  libxmllist.so XMLListDispatch

Understanding XML List 10-11



XML List jde.ini File Configuration

10-12 JD Edwards EnterpriseOne Tools Interoperability Guide



11

Processing Z Transactions

This chapter contains the following topics:

= Section 11.1, "Understanding Z Transactions"

= Section 11.2, "Naming the Transaction"

»  Section 11.3, "Adding Records to the Inbound Interface Table"
= Section 11.4, "Running an Update Process"

»  Section 11.5, "Checking for Errors"

= Section 11.6, "Confirming the Update"

»  Section 11.7, "Purging Data from the Interface Table"

11.1 Understanding Z Transactions

Z transactions are non-JD Edwards EnterpriseOne information that is properly
formatted in the interface tables (Z tables) for updating to the JD Edwards
EnterpriseOne database. Interface tables are working tables that mirror JD Edwards
EnterpriseOne applications tables. JD Edwards EnterpriseOne provides predefined
interface tables for some application transactions. You also can create your own
interface tables as long as they are formatted according to JD Edwards EnterpriseOne
standards.

You can process Z transactions into JD Edwards EnterpriseOne one transaction at a
time (referred to as a batch of one), or you can place a large number of transactions
into the interface table and then process all of the transactions at one time (referred to
as a true batch).

See Also:

» Interoperability Interface Table Information.

11.2 Naming the Transaction

Z transaction types are defined in user-defined code 00/TT. If you create a new
transaction, you must define the transaction in user-defined code 00/ TT. When you
name a new transaction type, the name must start with JDE and can be up to eight
characters in length. These examples illustrate a proper transaction name:

= JDERR for Receipt Routing Transaction.
s JDEWO for Work Order Header Transaction.

Processing Z Transactions 11-1



Adding Records to the Inbound Interface Table

11.3 Adding Records to the Inbound Interface Table

When you write your transaction to the appropriate interface table, you make the
information available to JD Edwards EnterpriseOne for processing. Z transactions may
be written directly to interface tables that are already in the EnterpriseOne database
format. This list shows some of the ways that you can add records to the inbound
interface tables:

m  Create a flat file and then convert the flat file data into records in the interface
table.

See Understanding Flat Files.

= Write an Application Programming Interface (API) using JD Edwards
EnterpriseOne-published APIs to update the interface table.

See "API Fundamentals" in the |D Edwards EnterpriseOne Tools Development Tools:
APIs and Business Functions Guide.

= Use Electronic Data Interchange (EDI) to update the interface table.

See JD Edwards EnterpriseOne Data Interface for Electronic Data Interchange 9.0
Implementation Guide.

= Place a message in a WebSphere MQ or MSMQ messaging adapter.
See JD Edwards EnterpriseOne and Messaging Queue Systems.

= Use Structured Query Language (SQL) or stored procedures. You must be able to
convert your records to the JD Edwards EnterpriseOne interface table format.

Important: If you are using a flat file to add records to the JD
Edwards EnterpriseOne interface tables, verify that a version of the
Inbound Flat File Conversion (R47002C) program exists for the
transaction you are trying to create.

11.4 Running an Update Process
You can process Z transactions in one of these ways:

= Run an input batch process, which enables you to place a large number of
transactions into the interface table and then process all of the transactions as one
in batch mode.

= Run a subsystem job, which enables you to send transactions to JD Edwards
EnterpriseOne one at a time without having to wait for completion to continue
processing using the subsystem.

JD Edwards EnterpriseOne provides input batch and input subsystem processes for
some applications.

11.4.1 Running an Input Batch Process

The input batch process enables you to place one or more records in an interface table
and then run a UBE to process all of the records at one time. You initiate the input
batch process for an application that supports inbound interoperability processing.
When you select the input batch program, the program displays a version list of report
features. You can use an existing report version, change an existing report version, or
add a report version. You can change the processing options and data selection when
you use a report version. The input batch process program generates an audit report

11-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Running an Update Process

that lists the transactions that were processed, totals for the number of processed
transactions, and errors that occurred during processing.

11.4.2 Running a Subsystem Job

Subsystem jobs are continuous jobs that process records from a data queue and run
until you terminate the job. Subsystem jobs read records one at a time for a subsystem
table, retrieve information from that particular record, and run a UBE or table
conversion for each record. This triggers the inbound processor batch process that
processes that specific key. If required, a preprocessor runs from the inbound processor
batch process to establish key information that matches the interface table record to the
original application record (for example, the key to a cash receipt or purchase receipt).
After processing the last record, instead of ending the job, subsystem jobs wait for a
specific period and then attempt to retrieve a new record. For each subsystem job,
multiple records can exist in the subsystem table.

You can schedule subsystem jobs.

You initiate a subsystem job in one of these ways:

Ways to Initiate Subsystem Jobs Explanation

Use a business function

You can use the generic subsystem business function,
Add Inbound Transaction to Subsystem Queue
(B0000175), for inbound transactions. This function writes
a record to the F986113 table to specify a batch process
that needs to be awakened in the subsystem. The
business function also passes keys to the subsystem data
queue. The business function then starts processing the
transaction.

Use the Solution Explorer

You can use the Solution Explorer to initiate the input
subsystem batch process for an application that supports
inbound interoperability processing. You start the
subsystem job as you would a regular batch job. Unlike
other batch jobs, subsystem jobs can only run on a server.
Before processing, JD Edwards EnterpriseOne makes sure
that limits for the subsystem job on the particular server
have not been exceeded. If limits have been exceeded, the
subsystem job will not be processed. To process your Z
transaction in near real-time mode, start the subsystem
when you start your system. You will need to place your
request in the data queue before you write your
transaction to the interface table.

Important: Instead of ending the job after the records have been
processed, subsystem jobs look for new data in the data queue.
Subsystem jobs run until you terminate them.

See Also:

= "Understanding the Scheduler Application" in the /D Edwards
EnterpriseOne Tools System Administration Guide.

s "Understanding JD Edwards EnterpriseOne Subsystems" in the JD
Edwards EnterpriseOne Tools System Administration Guide.

Processing Z Transactions 11-3



Checking for Errors

11.5 Checking for Errors

The input batch process uses the data in the interface tables to update the appropriate
JD Edwards EnterpriseOne application tables as dictated by the business logic. If the
process encounters an error for the transaction, the record is flagged in the processor
audit trail report and error messages are sent to the employee work center in the form
of action messages. These action messages, when invoked, call a revision application
that enables you to make corrections to the interface table.

When you review the errors in the work center, you can link directly to the associated
transaction in the interface table to make corrections. You use a revision application to
resubmit individual corrected transactions for immediate processing, or you can
correct all transaction errors and then resubmit them all at once in a batch process.

The system flags all transactions that have been successfully updated to the live files as
successfully processed in the interface tables.

See Also:

= Using the Revision Application.

11.6 Confirming the Update

This step is optional. If you use a business function, you can provide a confirmation
function to alert you that a transaction you sent into the JD Edwards EnterpriseOne
system been processed. When processing is complete, ]D Edwards EnterpriseOne calls
the function that is specified in the request to notify you of the status of your process.
The confirmation functions are written to your specifications, but you must use the JD
Edwards EnterpriseOne defined data structure. Interoperability inbound confirmation
functions are called from the inbound processor batch program through the Call
Vendor-Specific Function - Inbound business function.

The confirmation function is specific to a process and must accept these parameters:

User ID 11 characters
Batch Number 16 characters
Transaction Number 23 characters
Line Number Double
Successfully Processed 1 characters

The first four parameters are the keys (EDUS, EDBT, EDTN, EDLN) to the processed
transaction. The last full path of the library containing the function must be passed to
the subsystem batch process that processes the transaction. This information is passed
through the inbound transaction subsystem data structure.

After the subsystem batch process finishes processing the transaction, it calls the
inbound confirmation function, passing the keys to the processed transaction and the
notification about whether the transaction was successfully processed. You include
logic in your function to take appropriate action based on the success or failure of the
transaction.

If you create a transaction confirmation function, you can also use the function to
perform any of these tasks:

11-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Purging Data from the Interface Table

Task

Explanation

Update your original transaction

By creating a cross-reference between the original
transaction and the transaction written to the
interoperability table, you can access the original
transaction and update it as completed or at an
error status.

Using the key returned to this function, you can
access the transaction that is written to the
interoperability interface table and retrieve any
calculated or default information to update your
original transaction.

Run other non-JD Edwards EnterpriseOne

business processes

If your transaction is complete, you might want to
run a business process that completes the
transaction in the non-JD Edwards EnterpriseOne
software.

Send messages to users

You might want to inform your users of the status
of their original transactions.

11.7 Purging Data from the Interface Table

You should periodically purge records that have been successfully updated to the JD
Edwards EnterpriseOne database from the interface tables.

See Also:

= Interoperability Interface Table Information.

s Purging Interface Table Information.

Processing Z Transactions 11-5



Purging Data from the Interface Table

11-6 JD Edwards EnterpriseOne Tools Interoperability Guide



12

Using Flat Files

This chapter contains the following topics:

= Section 12.1, "Understanding Flat Files"

= Section 12.2, "Formatting Flat Files"

»  Section 12.3, "Setting Up Flat Files"

»  Section 12.4, "Converting Flat Files Using the Flat File Conversion Program"
= Section 12.5, "Importing Flat Files Using a Business Function"

= Section 12.6, "Converting Flat Files Using APIs"

12.1 Understanding Flat Files

Flat files (also known as user-defined formats) are usually text files that are stored on
your workstation or server and typically use the ASCII character set. Because data in a
flat file is stored as one continuous string of information, flat files do not have
relationships defined for them as relational database tables do. Flat files can be used to
import or export data from applications that have no other means of interaction. For
example, you might want to share information between JD Edwards EnterpriseOne
and another system. If the non-JD Edwards EnterpriseOne system does not support
the same databases that JD Edwards EnterpriseOne supports, then flat files might be
the only way to transfer data between the two systems.

When you use flat files to transfer data to JD Edwards EnterpriseOne, the data must be
converted to JD Edwards EnterpriseOne format before it can be updated to the live
database. You can use JD Edwards EnterpriseOne interface tables along with a
conversion program, electronic data interface (EDI), or table conversion to format the
flat file data. You can use EDI or table conversion to retrieve JD Edwards
EnterpriseOne data for input to a flat file.

WSG and some JD Edwards EnterpriseOne batch interfaces, such as the batch
extraction programs, can accept flat files and parse the information to data format.
Typically, WSGI uses the File I/O Adapter for flat file processing.

Note: ]D Edwards EnterpriseOne supports flat file conversion on the
Windows platform only.

Using Flat Files 12-1



Formatting Flat Files

See Also:
= JD Edwards EnterpriseOne Interface Tables.
= Interoperability Interface Table Information.

= "Setting Up Table Conversions" in the D Edwards EnterpriseOne
Tools Development Tools: Data Access Tools Guide.

s JD Edwards EnterpriseOne Data Interface for Electronic Data
Interchange 9.0 Implementation Guide.

12.2 Formatting Flat Files

When you import data using JD Edwards EnterpriseOne interface tables, the format
for flat files can be user-defined or character-delimited. This example illustrates a
single database character record that has a user-defined format with five columns
(Last, First, Addr (address), City, and Phone):

Last First Addr City Phone Table Column Heading

Doe John 123 Main Any town 5551234 «database record

The user-defined format example is a fixed-width column format in which all of the
data for each column starts in the same relative position in each row of data.

This is an example of the same data in a character-delimited format:

"Doe", "John", "123 Main", "Anytown", "5551234"

12.3 Setting Up Flat Files

The format of the record in the flat file must follow the format of the interface table.
This means that every column in the table must be in the flat file record and the
columns must appear in the same order as the interface table. Every field in the
interface tables must be written to, even if the field is blank. Each field must be
enclosed by a symbol that marks the start and end of the field. Typically, this symbol is
a double quotation mark (“ ). In addition, each field must be separated from the next
field with a field delimiter. Typically, this separator value is a coma (,). However, any
field delimiter and text qualifier may be used as long as they do not interfere with the
interpretation of the fields. You set the processing options on the conversion program
to define the text qualifiers and field delimiters. If you are receiving documents with
decimal numbers, you must use a placeholder (such as a period) to indicate the
position of the decimal. You define the placeholder in the User Preference table.

The first field value in a flat file record indicates the record type. In other words, the
first field value indicates into which interface table the conversion program should
insert the record. Record type values are defined and stored by the record type user
defined code table (00/RD). The hard-coded values are:

s 1: Header

s 2:Detail

= 3: Additional Header
=  4: Additional Detail
s 5:5DQ

= 6: Address

12-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Converting Flat Files Using the Flat File Conversion Program

s 7:Header Text
s 8:Detail Text

For example, suppose a record in the header table has this information (this example
ignores table layout standards):

Record Type Name Address City Zip Code

1 Joe <Blank> Denver 80237

This is how the record in the flat file appears:

1, Joe, ,Denver, 80237

Note that "1" corresponds to a header record type, and the blank space corresponds to
the <Blank> in the Address column.

Dates must be in the format MM /DD/YY. Numeric fields must have a decimal as the
place keeper. A comma cannot be used.

12.4 Converting Flat Files Using the Flat File Conversion Program

If you have a Windows platform, you can use the Inbound Flat File Conversion
program (R74002C) or the Import Flat File To JDE File (B4700240) business function.

If you are on a Windows platform, you can use the Inbound Flat File Conversion
program (R47002C) to import flat files into JD Edwards EnterpriseOne interface tables.
You create a separate version of the Inbound Flat File Conversion program for each
interface table.

Note: To use the Inbound Flat File Conversion program, you must
map a drive on your PC to the location of the flat file.

This diagram shows the process for updating JD Edwards EnterpriseOne interface
tables using flat files:

Using Flat Files 12-3



Converting Flat Files Using the Flat File Conversion Program

Figure 12—-1 Flat file conversion program process flow

Flat File Flat File Cross-reference
program (P47002)
\ 4 \ 4
Flat File Conversion Program VN Flat File Cross-reference
Universal Batch Engine (R47002C) g table (F47002)
4
EnterpriseOne
Interface tables

You use the Flat File Cross-Reference program (P47002) to update the F47002 table.
The conversion program uses the F47002 table to determine which flat file from which
to read based on the transaction type that is being received. This list identifies some of
the information that resides in the F47002 table:

s Transaction Type
The specific transaction type. The transaction type must be defined in UDC 00/TT.
s Direction Indicator

A code that indicates the direction of the transaction. The direction indicator code
must be defined in UDC 00/DN.

= Flat File Name
The path to the flat file on your Windows PC.
= Record Type

An identifier that marks transaction records as header, detail, and so on. The
record type indicator must be defined in UDC 00/RD.

= File Name
A valid JD Edwards EnterpriseOne interface table.

The conversion program uses the Flat File Cross-Reference table to convert the flat file
to the JD Edwards EnterpriseOne interface tables. The conversion program recognizes
both the flat file it is reading from and the record type within that flat file. Each flat file
contains records of differing lengths based on the corresponding interface table record.

The conversion program reads each record in the flat file and maps the record data
into each field of the interface table based on the text qualifiers and field delimiters
specified in the flat file. All fields must be correctly formatted for the conversion
program to correctly interpret each field and move it to the corresponding field in the
appropriate inbound interface table.

The conversion program inserts the field data as one complete record in the interface
table. If the conversion program encounters an error while converting data, the
interface table is not updated. Because the flat file is an external object that is created

12-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Converting Flat Files Using the Flat File Conversion Program

by third-party software, the conversion program is not able to determine which flat file
data field is formatted incorrectly. You must determine what is wrong with the flat file.
When the conversion program successfully converts all data from the flat file to the
interface tables, the conversion program automatically deletes the flat file after the
conversion. After the data is successfully converted and if you set the processing
option to start the next process in the conversion program, the conversion program
automatically runs the inbound processor batch process for that interface table. If you
did not set up the processing option to start the inbound processor batch program, you
must manually run the Flat File Conversion (R47002C) batch process.

If the flat file was not successfully processed, you can review the errors in the
Employee Work Center, which you can access from the Workflow Management menu
(G02). After you correct the error condition, run R47002C again.

12.4.1 Forms Used to Convert Flat File Information

Form Name FormiD Navigation Usage
Work With Flat File W47002A From an application Identify the
Cross-Reference that supports flat file  transaction type.
conversion, open the
Flat File
Cross-Reference
Program.
Flat File W47002B Enter the name of the
Cross-Reference On Work With Flat ﬁleactofgflie; deélsne;i ;}clle
File Cross Reference, in dicateyt%e jD
select the appropriate ;= ds
transaction in the EnterpriseOne
detail area and then p

select Define from the destination file.

Row menu.

12.4.2 Defining the Flat File Cross Reference Table

Access the Flat File Cross Reference form.

Using Flat Files 12-5



Converting Flat Files Using the Flat File Conversion Program

Figure 12-2 Flat File Cross Reference form

3 P47002 - [Flat File Cross-Reference]

I::::l File Edit Preferences ‘Window Help

v I x & P l@J i -
Links Dizpl... QLE . Int t
OK Del. Can. MNew. Dis. Aho el B B i
Transaction Iam 21 0fnvaice
Eirection Indicator |1 Inhound
Flat File Mame I
i Record Record Type File
Type Dezcription Name
1 Header Fa7041
2 Cetail Fa7042
] Additional Header Fa7044
5] Address Fa7os
7 Header Text Fa714
a Detail Text F4715

Rowe: T

12.4.2.1 Flat File Cross Reference

Flat File Name
The name of the flat file. This includes the directory path where the flat file exists.

Record Type
The identifier that marks EDI transaction records as header and detail information.
This is an EDI function only.

12-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Importing Flat Files Using a Business Function

Record Type Description
A user-defined name or remark.

File Name
The number of a specific table. For example, the Account Master table name is F0901.
See the Standards Manual on the programmers' menu for naming conventions.

12.5 Importing Flat Files Using a Business Function

If you are on a Windows platform, you can use the business function named Import
Flat File To JDE File (B4700240). Because of changes to server operating systems and
the various ways that operating systems store files, JD Edwards EnterpriseOne only
supports the business function when run from a Windows platform. If you use the
Import Flat File To JDE File (B4700240) business function, note these constraints:

s Transaction Type and Flat File Name fields must contain data.
= Only one character is allowed in the Record Type field.

s The maximum length per line is 4095 characters.

s The maximum record types are 40.

= Every line must have a record.

s The text qualifier cannot be the same as the column delimiter.

To ensure that flat file data is properly formatted before it is inserted into interface
tables, the business function uses the F98713 table to obtain primary index key
information. Normally, the F98713 table is located under the Default Business Data
table mapping in the Object Configuration Manager. So that the business function can
find the F98713 table, you must take one of these actions:

= Map the F98713 table in the system data source.

s Ensure the F98713 table exists in the business data source.

12.5.1 Map the F98713 table in the System Data Source

To map the table in the system data source, add an OCM mapping that points the
F98713 table to the central objects data source.

12.5.2 Ensure the F98713 table Exists in the Business Data Source

If you generate the F98713 table in the business data source, you must ensure that file
extensions on your PC are hidden. To hide file extensions, complete these steps:

1. From Start/Settings/Control Panel/Folder Options, click the View tab.
2. Select the Hide file extension for known file types option, and then click OK.

You must also ensure that the Flat File Name field in the F47002 table has a file
extension. For example: C:\flatfiles\850.txt.

12.5.3 Flat File Conversion Error Messages

These two errors might occur when you use the business function to convert flat files:
= 4363 Null Pointer
s 4377 Invalid Input Parameter

Both of the errors are internal problems within the business function.

Using Flat Files 12-7



Converting Flat Files Using APIs

These errors might occur as a result of problems with user setup or with the
configurable network computing (CNC) implementation:

s 0073 Invalid File Name

= 128] (filename) Insert Failed

= 3003 Open of File Unsuccessful
» 4569 Invalid Format

12.6 Converting Flat Files Using APIs

In addition to the existing flat file APIs, JD Edwards EnterpriseOne provides APIs for
non-Unicode flat files. The Unicode APIs are required when flat file data is written to
or read by a process outside of JD Edwards EnterpriseOne. The JD Edwards
EnterpriseOne APIs, such as jdeFWrite() and jdeFRead(), do not convert flat file data,
which means that the default flat file I/ O for character data is in Unicode. If you use
JD Edwards EnterpriseOne-generated flat files and the recipient system is not
expecting Unicode data, you will not be able to read the flat file correctly. For example,
if the recipient system is not Unicode enabled and the system is expecting data in the
Japanese Shift_JIS code page (or encoding), you will not be able to read the flat file
correctly. To enable the creation of the flat file in the Japanese Shift_JIS page, the
application that creates the flat file must be configured using the Unicode Flat File
Encoding Configuration program (P93081). If the flat file is a work file or debugging
file and will be written and read by JD Edwards EnterpriseOne only, the existing flat
file APIs should be used. For example, if the business function is doing some sort of
caching in a flat file, that flat file data does not need to be converted.

The JD Edwards EnterpriseOne conversion to Unicode uses UCS-2 encoding in
memory, or two bytes per character (JCHAR), for representation of all character data.
The character data that is passed to the output flat file APIs needs to be in JCHAR
(UCS-2). The input flat file APIs converts the character data from a configured code
page to UCS-2 and returns the character in JCHAR (or JCHAR string). The flat file
conversion APIs enable you to configure a code page for the flat file at runtime. You
use P93081 to set up the flat file code page. Flat file encoding is based on attributes
such as application name, application version name, user name, and environment
name.

If no code page is specified in the configuration application, the APIs perform flat file
I/0 passing through the data as it was input to the specific function. For example,
jdeFWriteConvert() writes Unicode data and no conversion is performed.

See Also:

s "Understanding Foreign Tables" in the JD Edwards EnterpriseOne
Tools Development Tools: Data Access Tools Guide.

12-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Converting Flat Files Using APIs

12.6.1 Forms Used to Convert Flat File Information

Form Name FormiID Navigation Usage
Work With Flat File W93081A From the Windows Locate and review
Encoding client, select System  existing Unicode flat
Administration Tools  file encoding
(GH9011), System configurations.
Administration Tools,
User Management,
User Management
Advanced and
Technical Operations,
Unicode Flat File
Encoding
Configuration
Flat File Encoding W93081B On Work With Flat Add or change
Revision File Encoding, click Unicode flat file
Add encoding
configuration
information.
Work With Flat File W93081A On Work With Flat Activate or deactivate
Encoding File Encoding, click a Unicode
Find, select your configuration record.
newly added Unicode

configuration record
in the detail area, and
then select Change
Status from the Row
menu.

12.6.2 Setting Up Flat File Encoding

Access the Unicode Flat File Encoding Configuration form from the Windows client.

Using Flat Files 12-9



Converting Flat Files Using APIs

Figure 12-3 Unicode Flat File Encoding Configuration form

12-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Converting Flat Files Using APIs

. Unicode Flat File Encoding Configuration - [Flat File Encoding Revisions]

“PUBLIC '

*OEFAULT

"OEFAULT

bres

Using Flat Files 12-11



Converting Flat Files Using APIs

12.6.2.1 Flat File Encoding Configuration

User / Role
A profile that classifies users into groups for system security purposes. You use group
profiles to give the members of a group access to specific programs.

Some rules for creating a profile for a user class or group include:

s The name of the user class or group must begin with an asterisk (*) so that it does
not conflict with any system profiles.

s The User Class/Group field must be blank when you enter a new group profile.

Environment
For install applications, the environment name is also called the Plan Name and
uniquely identifies an upgrade environment for install/reinstall.

For environment or version applications, this is the path code that identifies the
location of the application or version specification data.

Program ID

The number that identifies the batch or interactive program (batch or interactive
object). For example, the number of the Sales Order Entry interactive program is
P4210, and the number of the Print Invoices batch process report is R42565.

The program ID is a variable length value. It is assigned according to a structured
syntax in the form TSSXXX, where:

s Tis an alphabetic character and identifies the type, such as P for Program, R for
Report, and so on.

For example, the value P in the number P4210 indicates that the object is a
program.

= 5SS are numeric characters and identify the system code.

For example, the value 42 in the number P4210 indicates that this program belongs
to system 42, which is the Sales Order Processing system.

s XXX (the remaining characters) are numeric and identify a unique program or
report.

For example, the value 10 in the number P4210 indicates that this is the Sales
Order Entry program.

Version

A user-defined set of specifications that control how applications and reports run. You
use versions to group and save a set of user-defined processing option values and data
selection and sequencing options. Interactive versions are associated with applications
(usually as a menu selection). Batch versions are associated with batch jobs or reports.

To run a batch process, you must select a version.

Encoding Name
A code that indicates the name of the encoding that the system uses to produce or
consume flat files.

12-12 JD Edwards EnterpriseOne Tools Interoperability Guide



13

Understanding Messaging Queue Adapters

This chapter contains the following topics:
»  Section 13.1, "JD Edwards EnterpriseOne and Messaging Queue Systems"

»  Section 13.2, "Data Exchange Between ]JD Edwards EnterpriseOne and a
Messaging Queue Adapter"

= Section 13.3, "Management of the Messaging Queue Adapter Queues"

»  Section 13.4, "Configuration of the jde.ini File to Support Messaging Queue
Adapters"

13.1 JD Edwards EnterpriseOne and Messaging Queue Systems

JD Edwards EnterpriseOne supports both Microsoft and IBM message queueing
systems. If your system can implement the messaging protocols and produce and
consume XML documents using the formats discussed in this document, you can use a
messaging queue adapter to send information to and receive information from JD
Edwards EnterpriseOne. The messaging adapters for ]D Edwards EnterpriseOne are
Oracle products that can be licensed and installed independently from JD Edwards
EnterpriseOne.

13.2 Data Exchange Between JD Edwards EnterpriseOne and a
Messaging Queue Adapter

The JD Edwards EnterpriseOne messaging adapters, adapter for MSMQ and adapter
for WebSphere MQ), enable you to connect any third-party application to JD Edwards
EnterpriseOne for sending and receiving messages. The messaging adapter monitors
an inbound queue for request and reply messages, performs the requested services,
and places the results on outbound queues. The messaging adapter also monitors JD
Edwards EnterpriseOne for specified activities and then publishes the results in an
outbound message queue. All messages transported through the messaging system are
in the form of XML documents. The required elements for formatting XML documents
are discussed in the Using XML chapter.

See Formatting XML Documents.

13.2.1 Sending Information to JD Edwards EnterpriseOne

Third-party applications can send information to JD Edwards EnterpriseOne. These
inbound transactions are called Z transactions. XML CallObject is used for processing
Z transactions. The XML CallObject process flow, jde.ini file configuration, and

Understanding Messaging Queue Adapters  13-1



Data Exchange Between JD Edwards EnterpriseOne and a Messaging Queue Adapter

elements specific to XML CallObject formatting are discussed in the XML CallObject
chapter.

See XML CallObject.

13.2.1.1 Z Transaction Process Flow
A typical flow for processing Z transactions is:

s The adapter picks up a message in XML format from the message queue.

s The XML document is passed into the jdeXMLCallObject Application
Programming Interface (API).

s The session manager validates user and password.

s The JD Edwards EnterpriseOne server processes the message by parsing the XML
document.

s Each requested business function is called separately or within requested
transaction boundaries until all calls are processed.

s Transactions are added to the JD Edwards EnterpriseOne database.

s Output data and error messages are merged back into the XML document and a
new response document is created.

= The adapter places the response XML document in the queue.
The response can be an error or success XML document.

See Understanding Z Transactions.

13.2.2 Retrieving Information from JD Edwards EnterpriseOne

Third-party applications can retrieve information from JD Edwards EnterpriseOne.
These outbound transactions are called events. You can use a message queuing system
(MSMQ or WebSphere MQ) to receive events. The messaging queue adapter provides
a layer over existing functionality. JD Edwards EnterpriseOne supports these three
kinds of events:

s Real-time events
s XAPI events
s Zevents

To receive guaranteed real-time and XAPI events, you must set up a real-time event
queue. In addition, you must set up your events and configure your system to receive
guaranteed events. The Using Guaranteed Events chapter discusses how the system
processes events and provides information for configuring your system to receive
guaranteed events. The Realtime Events Reference guide provides information for
creating real-time and XAPI events. You can create custom XML documents. To create
custom XML documents, you can find or create a business function to accomplish the
required task, or you can retrieve an XML template.

See XML Transaction.

See XML Format Examples (Events).
See Understanding Guaranteed Events.
See Creating MSMQ Queues.

See Creating WebSphere MQ Queues.

13-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Data Exchange Between JD Edwards EnterpriseOne and a Messaging Queue Adapter

See |D Edwards EnterpriseOne Application Real Time Events 9.0 Guide.

13.2.3 Using JD Edwards Classic Event System

You can use the JD Edwards EnterpriseOne Classic Event Delivery system to receive
reliable real-time, XAPI, and Z events. The JD Edwards EnterpriseOne system includes
an Event Notification (EVN) Kernel that manages subscribers and notifies them when
an event (Z, real-time, or XAPI) occurs. The EVN Kernel can distribute events through
WebSphere MQ or MSMQ transport drivers to the messaging queue system. You must
set up the system so that the appropriate event type is generated. Real-time and XAPI
events must be defined in the F90701 table.

Use the setup features described in the Classic Events chapters of this guide and the
Real-Time Events Reference guide to receive reliable real-time, XAPI, and Z events.
The sample code for requests and responses, and jde.ini file configuration are
discussed in detail in the XML Transaction chapter.

See Understanding XML.

See XML Transaction.

See Understanding Classic Events.

See Understanding Real-Time Events - Classic.
See Understanding XAPI Events - Classic.

See Understanding Z Events - Classic.

See |D Edwards EnterpriseOne Application Real Time Events 9.0 Guide.

13.2.3.1 Classic Z Event Processing
A typical flow for processing classic Z events is:

= An outbound message is triggered by an event, for example entry of a sales order.

= Subsystem processing starts processing the transaction and calls the outbound
notification function.

s The outbound notification function sends a net message, and the kernel picks up
the message and calls the outbound function for the event type.

s The messaging adapter reads the message and calls the appropriate API.
s The adapter uses the record key from the JDENET message.
= An XML response document is created.

s The XML document is placed in the outbound queue.

13.2.3.2 Enabling Z Events Interface Table Processes

To send JD Edwards EnterpriseOne transactions to a messaging queue system such as
IBM's WebSphere MQ or Microsoft's Message Queuing systems, you can use JD
Edwards EnterpriseOne Z event functionality. An interface table (also called Z table) is
a working table where data is collected for sending to a third-party application or
system.

13.2.3.3 Outbound Table Adapter Function

You use the OutboundZTableAdapter function to send a message from an outbound
interface table to a messaging adapter queue. The function is invoked from the kernel
dispatch function, which then sends the net message data that contains the parameters

Understanding Messaging Queue Adapters 13-3



Data Exchange Between JD Edwards EnterpriseOne and a Messaging Queue Adapter

from the interface table subsystem Universal Batch Engine (UBE). This example shows
the outbound table adapter function:

Void OutboundZTableMessageAdapter (MsgData *pMsgData)

The parameters define the records and the transaction type to be used to
cross-reference the tables that contain the data to populate the message that is sent to
the message adapter queue. The messaging-specific OutboundZTableAdapter parses

the net message data and calls the XML Interface Table Inquiry API to fetch the records
from the interface table and format the results into an XML string.

You must set up JD Edwards EnterpriseOne to initiate the outbound interface table
process. The format of the outbound interface table message has an XML based
format.

13.2.3.4 Outbound Notification

The outbound notification function is called by the standard generic Outbound
Subsystem batch process UBE and provides notification that records have been placed
in the interface tables.

This function passes the key fields for a record in the JD Edwards EnterpriseOne
Outbound Transaction interface tables to the outbound adapter. With these key fields,
you can process the information from the database record into a message queue. This
example shows an outbound notification message:

void MessageNotificationName (char *szUserID, char *szBatchNumber,
char *szTransactionNumber, double mnLineNumber,char *szTransactionType,
char *szDocumentType, double mnSequenceNumber )

This list provides the required input parameters:
s User ID - 11 characters.

= Batch Number - 16 characters.

s Transaction Number - 23 characters.

s Line Number - double.

s Transaction Type - 9 characters.

= Document Type - 3 characters.

= Sequence Number - double.

This information is sent in a JDENET message:

»  Environment Name - use JD Edwards EnterpriseOne APIs to retrieve environment
from the subsystem batch process.

= User ID - key to interface table record.

= Batch Number - key to interface table record.

s Transaction Number - key to interface table record.
= Line Number - key to interface table record.

= Transaction Type - tie to an interface table.

= Document Type - (optional).

= Sequence Number - (optional).

The key information in the JDENET message packets is used by the outbound adapter
to retrieve the record from the interface table. The transaction type enables the adapter

13-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Management of the Messaging Queue Adapter Queues

to be generic and enables the adapter to process other transactions in the future. The
transaction type maps to the F47002 table to determine the interface tables.

13.2.4 XML Interface Table Inquiry API

The XML interface table inquiry API (jdeRetrieveTransactionInfo) receives an XML
string that includes the table record key and returns an XML string for outbound
processing.

The messaging adapter calls the API. The API parses the XML string. Based on the
transaction type, the API goes to the F47002 table to determine from which interface to
fetch records. The F47002 table has a record for each table associated with the
transaction type. Using JDB database APIs, XML Interface Table Inquiry then uses the
index found in the XML string to fetch records from the interface table and returns the
results in an XML string.

13.3 Management of the Messaging Queue Adapter Queues

The messaging adapters accept input and produce output by reading and writing to
messaging queues. You create specific queues for the messaging adapter to use. You
must specify the names of these queues in the jde.ini file on the JD Edwards
EnterpriseOne server so that the messaging adapter can find them. The adapter
configuration specifications are defined within the jde.ini initialization file that is read
upon startup of the JD Edwards EnterpriseOne server. Typically, the system
administrator configures the jde.ini file settings, but you might need to change the
settings or verify that the settings are correct.

When you install a message adapter, you are asked to create several message queues.
This table lists the queues and platforms that reside on the JD Edwards EnterpriseOne
server and provides recommended names based on the platform:

MSMQ Platform and IBM i Platform and NT Platform and UNIX Platform and

Queue Recommended Name Recommended Name Recommended Name Recommended Name

Inbound  <computer INBOUND.Q INBOUND.Q INBOUND.Q
name>\inbound

Outbound <computer OUTBOUND.Q.XMIT OUTBOUND.Q.XMIT OUTBOUND.Q.XMIT
name>\outbound

Success Not applicable SUCCESS.Q SUCCESS.Q SUCCESS.Q

Error <computer name>\error ERROR.Q ERROR.Q ERROR.Q

Default Not applicable DEFRES.Q DEFRES.Q DEFRES.Q

Response

Important: Queue names for IBM Websphere Message Queue must
be all upper case.

Note: The queue names in the jde.ini file must correspond to the
queue names on the server.

Understanding Messaging Queue Adapters 13-5



Management of the Messaging Queue Adapter Queues

13.3.1 Inbound Queue

The inbound queue stores all inbound messages to JD Edwards EnterpriseOne. After
the message is processed, it is removed from the queue. The install suggests calling the
queue INBOUND.Q. You must specify the queue name in the QInboundName setting
in the jde.ini file.

13.3.2 Outbound Queue

The outbound queue stores the outbound messages from JD Edwards EnterpriseOne.
The install suggests calling the queue OUTBOUND.Q. You must specify the queue
name in the QOutboundName setting in the jde.ini file.

13.3.3 Success Queue

The success queue stores successfully processed messages in JD Edwards
EnterpriseOne. These messages contain return code information for the business
function calls and default or calculated parameter information. The messages remain
in the queue until you remove them. The install suggests calling the queue
SUCCESS.Q. You must specify the queue name in the XML document within the
returnParms tag. If you do not specify a success destination queue within the XML
document and you leave the QErrorName blank in the jde.ini, the message is not
written to any queue.

13.3.4 Error Queue

The error queue stores processed messages that are in error in JD Edwards
EnterpriseOne. These messages contain return code information for the business
function calls, default and calculated parameter information, and error information.
These messages remain in the queue until you remove them. The install suggests
calling the queue ERROR.Q. You must specify the queue name in the XML document
within the returnParms tag. If you do not specify a failure destination queue within
the XML document and you leave the QErrorName blank in the jde.ini, the message is
not written to any queue.

13.3.5 Default Response Queue

The default response queue stores the processed messages into JD Edwards
EnterpriseOne. These messages may be in error or successfully processed. The
messages contain return code information for the business function calls, default or
calculated parameter information, and possibly error information. These messages
remain in the queue until you remove them. The install suggests calling the queue
DEFRES.Q. You must specify the queue name in the QErrorName setting in the jde.ini
file. If you do not specify a success or failure destination queue in the XML document,
the queue you set in the jde.ini file is used as the default queue for the message. If the
QErrorName setting is also blank, the message is not written to any queue.

Note: The commands for creating these queues along with a
discussion of other queues are provided in the applicable
configuration document.

13-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Configuration of the jde.ini File to Support Messaging Queue Adapters

13.4 Configuration of the jde.ini File to Support Messaging Queue
Adapters

The JD Edwards EnterpriseOne messaging adapters use settings in the MQSI section
(for IBM) or the MSMQ section (for Microsoft) of the jde.ini file to start, to monitor
queues, and to send error messages. The names of queues are case-sensitive. The
jde.ini file can be modified for messaging queues and for JD Edwards EnterpriseOne
UBE queues. Refer to the appropriate Messaging Adapter Installation documentation
for more information about setting up queues and the jde.ini file settings. The queue
names you use must correspond with the queue names you have set up on the server.

Understanding Messaging Queue Adapters 13-7



Configuration of the jde.ini File to Support Messaging Queue Adapters

13-8 JD Edwards EnterpriseOne Tools Interoperability Guide



14

Using Guaranteed Events

This chapter contains the following topics:

Section 14.1, "Understanding Guaranteed Events"

Section 14.2, "Processing Guaranteed Events,"

Section 14.3, "Setting Up OCM for Guaranteed Events"

Section 14.4, "Selecting the Guaranteed Events Delivery System"
Section 14.5, "Defining Events"

Section 14.6, "Establishing Subscriber and Subscription Information"
Section 14.7, "Creating MSMQ Queues"

Section 14.8, "Creating WebSphere MQ Queues"

Section 14.9, "Creating WebLogic Message Queues"

Section 14.10, "Creating Custom Real-Time Events"

Section 14.11, "Generating Schemas for Event XML Documents"

Note: This chapter is applicable only if you use guaranteed events
delivery. Guaranteed event delivery is available when you use JD
Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
Tools releases with JD Edwards EnterpriseOne Applications 8.10, 8.11,
and later Applications releases.

Refer to the Classic Events chapters if you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

14.1 Understanding Guaranteed Events

Oracle JD Edwards EnterpriseOne event functionality provides an infrastructure that
can capture JD Edwards EnterpriseOne transactions in various ways and provide
real-time notification to third-party software, end users, and other Oracle systems,
such as Web Services Gateway (WSG) and Customer Relationship Management
(CRM).

JD Edwards EnterpriseOne notifications are called events. The JD Edwards
EnterpriseOne event system implements a publish and subscribe model. Events are
delivered to subscribers in XML documents that contain detailed information about

Using Guaranteed Events 14-1



Processing Guaranteed Events

the event. For example, when a sales order is entered into the system, the sales order
information can be automatically sent to a CRM or supply chain management (SCM)
application for further processing. If your system is IBM, you can use the WebSphere
MQ messaging system to receive events. If your system is Microsoft, you can use the
MSMQ messaging system to receive events. WebSphere MQ and MSMQ provide a
point-to-point interface with JD Edwards EnterpriseOne.

JD Edwards EnterpriseOne supports these three kinds of events:

Generation
Event Category Purpose Mechanism Response Capability

Real-Time Event Provides requested System calls No
notification to
third-party software,
end-users, and other
Oracle systems when
certain transactions
occur.

XAPI Event Provides requested System calls Yes
notification to
third-party software,
end-users, and other
Oracle systems when
certain transactions
occur and to provide a
response.

Z Event Provides requested Interface tables and No
notification to system calls
third-party software,
end-users, and other
Oracle systems when
certain transactions
occur.

14.2 Processing Guaranteed Events

This section provides an overview of the architecture for processing events and
discusses:

= Aggregating events
= Logging events

s Configuring the transaction server

14.2.1 Understanding Guaranteed Events Processing

This diagram provides an overview of the JD Edwards EnterpriseOne events
architecture:

14-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Processing Guaranteed Events

Figure 14-1 Guaranteed Events architecture overview

EnterpriseOne BSFN | EnterpriseOne
Web Server

®

Request HTML Client

B

J2EE Application Server

BSFN ,| Subscriber | | Event || Subscriber
_ Request JMS Topic (XML) JMS Topic
EnterpriseOne
l Server (6) @ .
P S . ,| Subscriber | | Event |} Subscriber
. CallObject Kernel ! JMS Queue | | (XML) JMS Queue
' ' Event
Lo PR |
| | (s (XML)
: BSEN | Event | Subscriber
l ' APl | _ Subscriber | | Event | (Java Connector,
: [ |- Event Trigger - Queues (XML) MQ Series,
e S ! L2 and so on)
( EnterpriseOne
Transaction Server
A
Event
(Data)
_ Event
5 (Data)
071 0 - 1
ent
nsfer
ble
In summary, this is the general sequence that happens for an event to be published:
1. An HTML client user executes a business function request that is sent to the JD
Edwards EnterpriseOne Web server.
2. The request is forwarded to a CallObject kernel on the JD Edwards EnterpriseOne
server.
3. The CallObject kernel executes the business function, which calls the Event API to
send the event data to the F90710 table.
If the event is a Z event, the data sent to the F90710 table is in its final XML format.
4. A trigger message is sent to the JD Edwards EnterpriseOne Transaction server that
indicates that a new event is in the F90710 table.
5. The transaction server retrieves the event data from the F90710 table and, for

real-time and XAPI events, converts the event data to an XML document in the
appropriate format.

Using Guaranteed Events 14-3



Processing Guaranteed Events

6. The transaction server routes the event to the subscriber queues and subscriber
topics for each subscriber that has established an active subscription for that event.

7. When a subscriber connects to the transaction server, the subscriber receives all the
events that exist in its subscription queue and subscription topic at that time.

Note: XAPI and Z events require additional information for event
processing, which is discussed in the respective XAPI and Z event
chapters.

14.2.2 Aggregating Events

Events are classified as either a single event or a container event. A single event can
contain a single data structure. A container event can contain one or more single
events or one or more data structures. You cannot define a container event using both
single events and data structures for that specific container event. For example,
RTSOHDR and RTSODTL are usually defined as single real-time events that represent
the data structures in the header and detail areas of a sales order. RTSOOUT is usually
defined as a container real-time event that contains both RTSOHDR and RTSODTL.

14.2.3 Logging Events

Real-time and XAPI events do not exist in their XML form until they are processed by
the transaction server. Therefore, it is not possible to log the XML event on the JD
Edwards EnterpriseOne server. However, if debugging is selected, the debug log file
for the CallObject kernel that generates the event displays jdeIEO_EventFinalize
called for XX, where XXis an integer that represents the number of times that
jdeIEO_EventFinalize has been called in that kernel.

If you select debug logging for the transaction server, the transaction server debug log
file displays this message Sending event: followed by the event data, including the
full XML content of the event when the transaction server processes an event. There is
one of these messages for every active subscriber that has an active subscription to the
event.

Caution: When logging is selected for the Transaction server, be sure
to remove global read access rights for the logging directory to ensure
data privacy.

If you use the dynamic Java connector graphical subscription application, you have
the capability of sending the XML content of all received events to a specified
directory.

See "Understanding Java Connector Events" in the D Edwards EnterpriseOne Tools
Connectors Guide.

14.2.4 Configuring the Transaction Server

The transaction server uses Java Message Service (JMS) queues and topics to guarantee
event delivery. When an event occurs in JD Edwards EnterpriseOne, the transaction
server retrieves the event information and routes the information to subscriber JMS
queues and topics for each subscriber that has established an active subscription for
that event.

14-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Processing Guaranteed Events

When you use JD Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11, you must configure these settings in the jde.ini file on your
enterprise server so that the transaction server can find the event system:

= RunningHost

= RunningPort

Note: When you install the transaction server components, host and
port information is written to a readme.txt file that is typically located
at c:\Program Files\JD
Edwards\ElTranSvr\EventProcessor on the transaction server.

See JD Edwards EnterpriseOne Tools Server Manager Guide on My Oracle Support.

See JD Edwards EnterpriseOne Tools Transaction Server Reference Guide on My Oracle
Support.

When you use JD Edwards EnterpriseOne Tools 8.95 or a later Tools release with JD
Edwards EnterpriseOne Applications 8.10, 8.11, or a later JD Edwards EnterpriseOne
Applications release, you must configure the Object Configuration Manager (OCM) so
that the transaction server can find the event system. You must access OCM from the
Interoperability Event Definition program (P90701A).

Note: The ptflog file contains Transaction server version
information. The ptf.log file is located in EventProcessor_WAR.war
and JDENETServer WAR.war.

14.2.5 Configuring the Transaction Server to Use WebLogic

You can process real-time events using a JMS queue that is located in a WebLogic
server.

Important: Setting the WebLogic client jar (wlfullclient.jar) is
required when the transaction server is hosted in an Oracle
Application Server or a WebSphere Application Server and the J]MS
queue is located in the WebLogic server instance.

14.2.5.1 Setting the WebLogic Client Jar in an Oracle Application Server

If your transaction server is hosted in an Oracle application Server, copy the
wlfullclient jar to the following location:

OAS_INSTALL\profilesj2ee\TS_CONTAINER\applications\OSBTransferAgent_ EAR.ear\lib

14.2.5.2 Setting the WebLogic Client Jar in a WebSphere Application Server

If your transaction server is hosted in a WebSphere Application Server, copy the
wlfullclient jar to the following location:

WAS_INSTALL\profiles\TS_PROFILES\InstalledApps\DENITWSW60Node2Cell\
OSBTransferAgent_EAR.ear\lib

Using Guaranteed Events 14-5



Setting Up OCM for Guaranteed Events

14.3 Setting Up OCM for Guaranteed Events

This section provides an overview of setting up OCM for guaranteed events and

discusses how to set up OCM.

14.3.1 Understanding OCM Setup for Guaranteed Event Delivery

When you use JD Edwards EnterpriseOne Tools 8.95 and later releases with JD
Edwards EnterpriseOne Applications 8.10 and later releases, you must define the
transaction server and transaction server port settings in OCM so that the transaction
server can find the event system. You access OCM from the Interoperability Event
Definition program (P90701A). Once you access OCM from the Interoperability Event
Definition program, you select the appropriate machine name and data source
combination. This information should already be set up. If it is not, check with your
System Administrator or refer to the Configurable Network Computing

Implementation Guide for information about setting up OCM.

14.3.2 Forms Used to Set Up OCM for Guaranteed Event Delivery

Form Name FormID Navigation Usage

Event Definition WO90701AA Enter P90701A in the Fast Configure the OCM so

Workbench Path Command Line. the transaction server can

find the event system.

Machine Search and W986110D From the Form menu on  Select the appropriate

Select Event Definition machine name and data
Workbench, select source combination.
Configure Servers.

Work with Service W986110] On Machine Search and  Find and select an

Configurations

Service Configuration W986110K
Revisions

Select, select the machine
name and data source
combination and then
click Select.

On Work with Service
Configurations, click
Add.

existing configuration for
the transaction server
and server port or to
access the Work with
Service Configurations
form to add a new
configuration record for
your transaction server.

Configure the OCM with
the J2EE Transaction
server and port.

14.3.3 Setting Up the OCM for Guaranteed Event Delivery

Access the Service Configuration Revisions form.

14-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Selecting the Guaranteed Events Delivery System

Figure 14-2 Service Configuration Revisions

a POO701A - [Service Configuration Revisions]

C:I File Edit Preferences ‘Window Help

v % & ;
Links - Display... OLE Q... Internet
OK Cancel Displ.. Abo. [ @ @

Enwironment Matme Ii il

Service Name I

LIzer § Role I

Server I

Part I

Environment Name
A name that uniquely identifies the environment.

Service Name

A name that identifies the type of server. For example, RTE identifies the Transaction
server.

User / Role
A profile that classifies users into groups for system security purposes. Use group
profiles to give the members of a group access to specific programs.

Server
The name of the Transaction server.

Port
The port number of the Transaction server. This is the JDENET listening port.

14.4 Selecting the Guaranteed Events Delivery System

This section provides an overview of selecting the Guaranteed Events Delivery system
and discusses how to select guaranteed events delivery.

Using Guaranteed Events 14-7



Defining Events

14.4.1 Understanding Guaranteed Events Selection

JD Edwards EnterpriseOne Tools software is delivered with this functionality
deselected. You perform this task only if you use JD Edwards EnterpriseOne Tools 8.95
with JD Edwards EnterpriseOne Tools 8.10, and you want guaranteed event delivery.
Typically this task is performed by a system administrator. Use the
Activate/Deactivate Guaranteed Event Delivery program (P90701A) to select or
deselect the Guaranteed Events Delivery system.

Caution: Perform this task only if you use JD Edwards
EnterpriseOne Tools 8.95 with ]D Edwards EnterpriseOne
Applications 8.10, and you want to use the Guaranteed Event Delivery
system.

When you use JD Edwards EnterpriseOne Tools 8.95 and later tools
releases with JD Edwards EnterpriseOne Applications 8.11 and later
applications releases, the Guaranteed Event Delivery system is
automatically available, and you do not perform this task. You are
ready to define your events.

If you use JD Edwards EnterpriseOne Tools 8.95 with JD Edwards
EnterpriseOne Tools 8.10 and do not perform this task, your events
will be generated using the Classic Event Delivery System.

See Understanding Classic Events.

14.4.2 Forms Used to Select Guaranteed Events Delivery System

Form Name FormID Navigation Usage

Event Definition W90701AA  Type P90701A on the Locate and review existing
Workbench Fast Path. single and container events.
Activate Guaranteed W90701AK  On Event Definition To select or deselect
Delivery Workbench, select Guaranteed Events Delivery.

Guaranteed Events from
the Form menu.

14.4.3 Selecting Guaranteed Events Delivery

Access the Activate Guaranteed Delivery form.

Activate Guaranteed Delivery

An option that enables you to select the Guaranteed Event Delivery system when you
use JD Edwards EnterpriseOne Tools 8.95 with JD Edwards EnterpriseOne
Applications 8.10.

14.5 Defining Events

This section provides an overview of defining events in the F90701 table and discusses
how to add single and container events.

14-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Defining Events

14.5.1 Understanding Events Definition

You use the Interoperability Event Definition program (P90701A) to define each
real-time and XAPI event in JD Edwards EnterpriseOne. You use a separate process to
define Z events, which is documented in the Guaranteed Z Events chapter.

Every real-time or XAPI event that you use in your system must have an associated
record in the F90705 table. The F90705 table enables each event to be activated or
deactivated for each environment in your system. When you create a new event, select
the Create Activation Record option. When you add a new environment to your
system, you must run the Populate Event Activation Status Table UBE (R90705) to
create event activation records for existing events. The Populate Event Activation
Status Table UBE is described in the JD Edwards EnterpriseOne Server Installation

Guide.

After you define a new event, you must refresh the cache of active events on the
transaction server. You can refresh the active events cache while the transaction server
is running. If the transaction server is not running when this operation is performed, it
automatically refreshes its cache when it is brought back to operational status.

See Also:

s Understanding Z Events - Guaranteed.

14.5.2 Forms Used to Enter Events

Form Name FormID Navigation Usage
Event Definition WO90701AA Type P90701A on the Locate and review
Workbench Fast Path. existing single and
container events.
Event Entry W90701AD On Event Definition =~ Add or change a
Workbench, click single or container
Add. event.
Event Definition W90701AC Automatically Link single events or
Detail appears when you data structures to a
click OK on the Event container event.
Entry form if you
entered Container in
the Event Category
field for a real-time
event or if you
entered XAPI in the
Event Type field.
Event Activation by WI0701AG On Event Definition Locate and review
Environment Workbench, select existing environments

Add Event Activation W90701AH
by Environment

Event Activation from
the Form menu.

On Event Activation
by Environment, click
Add.

and event types.

To activate an event
on a specific
environment.

14.5.3 Adding a Single or Container Event

Access the Event Entry form.

Using Guaranteed Events 14-9



Defining Events

Figure 14-3 Event Entry form

@ Pa07014 - [Event Entry] i =] B3
:_‘:I File Edit Preferences Form Window  Help =17 x|
v X & e
Links - Event . OLE ... Internet
QK can.. Dis.. Abo - @ @
Sl IXAP”BOUT v Create Activation Records;
Event Description ISimuIatelanund HML
Event Categary AP

Froduct Code

Event Aggregate ICONTAINER

[5

e

Event Type
The name of the event (for example RTSOOUT, which is the usual event type for a
real-time sales order event).

Create Activation Records

An option that causes newly defined events to have an associated record in the F90705
table, which enables each event to be activated or deactivated for each environment in
your system. You must select this option for every event that you intend to use in your
system.

Event Description
The description of an event.

Event Category
A value that represents the name of the event type. Use RTE for real-time events or
XAPI for XAPI events.

Event Aggregate
Indicates whether an event is a single event or a container event.

Product Code
An optional field that indicates to which JD Edwards EnterpriseOne system the event
is associated.

Data Structure
The name of the data structure that passes event information.

14-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Defining Events

This field disappears if Container is the value of the Event Aggregate field; however,
when you click OK, the Event Definition Detail form automatically appears for you to
enter data structure information.

14.5.3.1 Event Definition Detail

Access the Event Definition Detail form.

Figure 14-4 Event Definition Detail form

@ PA0701A - [Event Definition Detail]

I::I Fil= Edit Preferences Window Help

_.,j Data Structure

J 5‘; QE... Q;‘; Hﬁ Dfig.. Aﬁ JLinkS w Displ.. [$]OLE .. [3]Intemet
Event Type I}{-'-‘-.F'IIEIDUT COMNTAINER
" Event Data % Data Structure Data
| Data Structure

Dezcription

DA4E01360E APl Inbound Label Data Struct
DHAPIROUTE HAPI Call Routing Infarmatian
R 3
Event Data

An option that enables you to define single individual events for a container event.

Data Structure Data
An option that enables you to define aggregate events for the container event. For
XAPI events, you must select the Data Structure Data option.

14.5.3.2 Activating an Event

Access the Add Event Activation by Environment form

Using Guaranteed Events 14-11



Establishing Subscriber and Subscription Information

Environment
Your operating environment, such as Windows 2000, Windows NT, UNIX, IBM i, and
So on.

14.5.3.3 Refreshing the Transaction server cache of active events
Access the Event Definition Workbench form.

To refresh the cache of active events with the Transaction server running, select
Refresh Event Cache from the Form menu.

14.6 Establishing Subscriber and Subscription Information

This section provides an overview of subscriber and subscription information and
discusses how to:

= Set up processing options for adding JMS Queue as a subscriber.
= Add a subscriber.

= Add a subscription.

= Associate a subscription with subscribed events.

= Associate a subscription with subscribed environments.

14.6.1 Understanding Subscribers and Subscriptions

You use the Interoperability Event Subscription program (P90702A) to establish
subscribers and to add subscriptions. After you add a subscriber, you must activate it.
If your subscriber is inactive, you will not receive any events even if you have active
subscriptions. You activate subscribers on the Event Subscribers form by selecting the
subscriber, and then selecting Change Status from the Row menu.

Each subscriber can have one or more subscriptions. Each subscription can be
associated with one or more subscribed events and subscribed environments. Each
subscription that you want to use must be activated. You activate subscriptions on the
Event Subscriptions form by selecting the subscription, and then selecting Change
Status from the Row menu.

Any time you make a change to a subscriber, including the associated subscriptions,
you must refresh the subscriber cache on the JD Edwards EnterpriseOne and the
Transaction servers for the changes to become effective. You can refresh your running
system from the Event Subscribers form by selecting Refresh Sub Cache from the Form
menu.

Oracle's Enterprise Service Bus (ESB) is a subscriber that uses the J]MS Queue and JMS
Topics transports. Oracle Service bus (OSB) is a subscriber that uses the JMS Queue
transport. You can set up processing options for EDB (WebSphere) and OSB
(WebLogic) so that when you add JMS Queue as a new subscriber, the value for the
Initial Context Factory and provider URL fields are entered by the system.

14.6.2 Forms Used to Add a Subscriber and Subscription Information

Form Name FormiD Navigation Usage
Event Subscribers WO90702AA Type P90702A inthe  Locate and review
Fast Path. existing subscribers.

14-12 JD Edwards EnterpriseOne Tools Interoperability Guide



Establishing Subscriber and Subscription Information

Form Name FormID Navigation Usage

Add Event Subscriber W90702AB On Event Subscribers, Add or change a
click Add. subscriber.

Event Subscriptions W90702AD Select a subscriber in  Locate and review
the detail area of the  existing subscriptions
Event Subscribers for a subscriber.
form, and then select
Event Subscriptions
from the Row menu.

Add Event W90702AE On Event Add new subscription

Subscription Subscriptions, click information.

Add.

Subscribed Events W90702AG On the Event Associate a
Subscriptions form, subscription with an
select the subscription event.
information in the
detail area, and then
select Subscribed
Events from the Row
menu.

Subscribed W90702AF On the Event Associate a

Environments Subscriptions form, subscription with an

select the subscription
information in the
detail area, and then
select Subscribed Env
from the Row menu.

environment.

14.6.3 Setting Up Processing Options for Adding JMS Queue as a Subscriber

Access the Interactive Versions form on JD Edwards EnterpriseOne by typing IV in the
Fast path. Use these processing options to define values for adding JMS Queue as a

subscriber.

Oracle Application Server Initial Context Factory
Use this processing option to specify the value for the Initial Context Factory field that
appears on the Add Event Subscriber form. The value you enter in this processing
option appears in the Add Event Subscriber form when the Application Server is

defined as Oracle. The default value is

com.evermind.server.rmi.RMIInitialContextFactory.

Oracle Application Server Local Provider URL
Use this processing option to specify the value for the Provider URL field that appears
on the Add Event Subscriber form. The value you enter in this processing option
appears in the Add Event Subscriber form when the Application Server is defined as
Oracle and the Queue Location is defined as Local. The default value is

ormi://localhost:23791.

Oracle Application Server Remote Provider URL
Use this processing option to specify the value for the Provider URL field that appears
on the Add Event Subscriber form. The value you enter in this processing option
appears in the Add Event Subscriber form when the Application Server is defined as
Oracle and the Queue Location is defined as Remote. The default value is

ormi://remote-machine-name:23791.

Using Guaranteed Events 14-13



Establishing Subscriber and Subscription Information

WebSphere Initial Context Factory

Use this processing option to specify the value for the Initial Context Factory field that
appears on the Add Event Subscriber form. The value you enter in this processing
option appears in the Add Event Subscriber form when the Application Server is
defined as WebSphere. The default value is

com.ibm.websphere.naming. WsnInitialContextFactory.

WebSphere Local Provider URL

Use this processing option to specify the value for the Provider URL field that appears
on the Add Event Subscriber form. The value you enter in this processing option
appears in the Add Event Subscriber form when the Application Server is defined as
WebSphere and the Queue Location is defined as Local. The default value is
corbaloc:iiop:localhost:2809.

WebSphere Remote Provider URL

Use this processing option to specify the value for the Provider URL field that appears
on the Add Event Subscriber form. The value you enter in this processing option
appears in the Add Event Subscriber form when the Application Server is defined as
WebSphere and the Queue Location is defined as Remote. The default value is
corbaloc:remote-machine-name:2809.

WebLogic Initial Context Factory

Use this processing option to specify the value for the Initial Context Factory field that
appears on the Add Event Subscriber form. The value you enter in this processing
option appears in the Add Event Subscriber form when the Application Server is
defined as WebLogic. The default value is weblogic.jndi.WLInitialContextFactory.

WebLogic Local Provider URL

Use this processing option to specify the value for the Provider URL field that appears
on the Add Event Subscriber form. The value you enter in this processing option
appears in the Add Event Subscriber form when the Application Server is defined as

WebLogic and the Queue Location is defined as Local. the default value is
t3://localhost:7001.

WebLogic Remote Provider URL

Use this processing option to specify the value for the Provider URL field that appears
on the Add Event Subscriber form. The value you enter in this processing option
appears in the Add Event Subscriber form when the Application Server is defined as
WebLogic and the Queue Location is defined as Remote. The default value is
t3://remote-machine-name:7001.

14.6.4 Adding a Subscriber

Access the Add Event Subscriber form.

14-14 JD Edwards EnterpriseOne Tools Interoperability Guide



Establishing Subscriber and Subscription Information

Figure 14-5 Add Event Subscriber form

@ ran702a - [Add Event Subscriber]
:_‘:I File Edit Preferences ‘window Help

o ® Un‘? @ Li )
inks w Displ... OLE ... Internet
OK Can.. Dis.. Abo Bzl (O b
Subscriber ICK5?13835
Subscriber Description IReaI-Time Events
Transpor Type JDEMET
Host Marne |INTNT2
Port Nurmber |auns
Connection Timeout |EDDDD|
Subscriber
The JD Edwards EnterpriseOne user ID for the user who is to receive the subscribed
events.

Subscriber Description
A description of the subscriber.

Transport Type
Describes through which mechanism the subscriber receives events. Valid transport
types are:

=  COMCONN: COM Connector
= JAVACONN: Java Connector (including WSG)
= JDENET: For XAPI requests

Additional fields appear on the Add Event Subscriber form. In the Host Name
field, enter the name of the server that processes events for the subscriber. In the
Port Number field, enter the port where the subscriber service is running. In the
Connection Timeout field, enter the time in milliseconds after which the event
connection is considered timed out.

= JMSTOPIC: JMS Topic

Additional fields appear on the Add Event Subscriber form. In the Connection
Factory JNDI field, enter the JMS Topic Connection Factory JNDI name. In the
Topic Name field, enter the JMS Topic name for your subscriber.

Using Guaranteed Events 14-15



Establishing Subscriber and Subscription Information

Important: The values that you enter in the Connection Factory JNDI
Name field and the Topic Name field must be the same values that
you configured on the WebSphere Application Server

See JD Edwards EnterpriseOne Tools Transaction Server Reference Guide on My Oracle
Support.

s JMSQUEUE: JMS Queue

These additional fields appear on the Add Subscriber Event form. In the
Connection Factory JNDI field, select the JMS Queue Connection Factory JNDI
name from the drop-down list. In the Queue Name field, select JMSQUEUE from
the drop-down list. Verify the value in the Message Format field is correct. Verify
the value in the Application Server field is correct. You can search and select one
among the three application servers (Oracle Application Server, WebLogic, and
WebSphere Application Server). This server entry affects the value that the system
enters in the Initial Context Factory field and the Provider URL field. In the Queue
Location field, select the appropriate value from the drop-down list. User Local if
the queue and the transaction server are on the same application server. Use
Remote if the queue and the transaction server are on different applications
servers. After you enter the value in the Queue Location field, the system updates
the Initial Context Factory field and Provider URL field. You can change these
values.

Important: The value that you enter in the Connection Factory JNDI
Name field must be the same value that you configured on the Oracle
Application Server, WebSphere Application Server, or WebLogic
Application Server.

See JD Edwards EnterpriseOne Tools Transaction Server Reference Guide on My Oracle
Support.

= MQSQ: IBM WebSphere MQ

Additional fields appear on the Add Subscriber Event form. In the Connection
Factory JNDI field, enter the WebSphere MQ Connection Factory JNDI name. In
the Queue Name field, enter the WebSphere MQ queue name for your subscriber

See Creating WebSphere MQ Queues.
= MSMQ: Microsoft Message Queue

Additional fields appear on the Add Subscriber Event form. In the Queue Label
field, enter the MSMQ Queue Label. In the Queue Name field, enter the MSMQ
Queue Name

14.6.5 Adding a Subscription

Access the Add Event Subscription form.

Subscriber
The JD Edwards EnterpriseOne user ID for the user who is to receive the subscribed
events.

Subscription Name
A unique name for the subscription.

14-16 JD Edwards EnterpriseOne Tools Interoperability Guide



Creating MSMQ Queues

Subscription Description
A description of the subscription.

14.6.6 Associating a Subscription with Subscribed Events

Access the Subscribed Events form.

Event Type
The name of the event.

14.6.7 Associating a Subscription with Subscribed Environments

Access the Subscribed Environments form.

Environment

The JD Edwards EnterpriseOne environment with which the subscription is
associated. Each subscription can be associated with any number of valid
environments.

14.7 Creating MSMQ Queues

This section provides an overview about MSMQ and discusses how to:
»  Create an MSMQ real-time event queue.

= Verify event delivery.

14.7.1 Prerequisites
Before you complete this task:
=  MSMQ is installed on your system.

= WebSphere is installed on your system.

14.7.2 Understanding MSMQ

You can use Microsoft message queueing to subscribe to and receive events. After you
create the events queue for MSMQ, you must add the queue name as a subscriber,
using the Interoperability Event Subscription program (P90702A). The queue name
must be in MSMQ direct format, which includes your machine name or IP address,
depending on which protocol you use. Naming conventions for MSMQ direct format
queue names are discussed on Microsoft's web page.

After you create the queue and set up the subscriber information, you should verify
event delivery. MSMQ RTEI], a server-only feature, is an extension of COMConnector.

14.7.3 Creating an MSMQ Real-Time Event Queue
Use these steps to configure MSMQ:

1. From the Control Panel, select Administrative Tools, and then select Computer
Manage.

2. On the Computer Management Console, navigate to Services and Applications,
and then open Message Queuing.

3. Open Private Queue, right-click the Private Queue folder, select New, and then
Private Queue.

Using Guaranteed Events 14-17



Creating WebSphere MQ Queues

Note: You can create the events queue under Public Queue if you
prefer.

4. In Queue Name, select a meaningful queue name, for example, RTE-TEST.

5. If the events queue is used in a transactional environment, select the Transactional
option, and then click OK.

Note: If you are creating an event queue in a transactional
environment, you must use a private (remote) queue.

6. Right-click your newly created events queue and select properties.

7. Inthe Label field, enter a meaningful queue label name; for example,
E10utbound, and then click OK.

14.7.4 Verifying Event Delivery

Use these steps to verify event delivery:

1. Start your COMConnector on your enterprise server.

Note: Do not start your COMConnector on your client.

2. Onyour enterprise server, in MSMQ Computer Management, select the queue that
you configured to receive JD Edwards EnterpriseOne events.

3. To seeif any events are in the queue, click the queue messages under queue name
and select Action then Refresh in the Computer Management menu.

4. Double-click any messages that are in the queue.

A menu displays the message content up to the first 256 bytes.

14.8 Creating WebSphere MQ Queues

This section provides an overview about WebSphere MQ and discusses:
s Creating a WebSphere MQ real-time event queue.
s Configuring WebSphere.

s Verifying event delivery.

14.8.1 Prerequisites

Before you complete this task:
s WebSphere MQ is installed on your system with PTF CSDO06.

= WebSphere is installed on your system.

14-18 JD Edwards EnterpriseOne Tools Interoperability Guide



Creating WebSphere MQ Queues

14.8.2 Understanding WebSphere MQ

You can use IBM's message queueing to subscribe to and receive events. After you
create the events queue for WebSphere MQ, you must add the queue name as a
subscriber, using the Interoperability Event Subscription program (P90702A).

After you create the queue and set up the subscriber information, you should verify
event delivery.

14.8.3 Creating a WebSphere MQ Real-Time Event Queue
Use these steps to configure WebSphere MQ:

1. Open the WebSphere MQ Explorer and navigate to the Queue Manager.

The default queue manager is typically named QM_<hostname>, where
<hostname> is the machine name where WebSphere MQ is installed.

Note: If the QM_<hostname> queue is not created, then manually
create the queue. Right-click Queue Managers, select New, and then
select Queue Manager. Complete the data fields on each successive

screen.

2. Under Queue Manager, select the Queues folder.
This shows any existing queues hosted by this queue manager.

3. To create the queue for delivery of JD Edwards EnterpriseOne events, select New
then Local Queue from the Action menu on the WebSphere MQ Explorer.

Note: On Create Local Queue, enter a meaningful queue name, for
example, RTE_TEST_QUEUE.

4. To make the queue persistent, select the Persistent option for the Default
Persistence field.

The default settings should be sufficient for the remaining configuration values.

Important: When entering queue names for IBM WebSphere MQ, the
queue name must be all upper case.

14.8.4 Configuring WebSphere

Use these steps to configure WebSphere:
1. Log on to the WebSphere Administration Console.

2. Create a Queue Connection Factory by selecting WebSphere MQ JMS Provider
under Resources.

Enter a meaningful connection factory name along with a JNDI name; for example,
jms/mq/rte/QueueConnectionFactory.

Note: When you add a WebSphere MQ subscriber in JD Edwards
EnterpriseOne, enter this name in the Connection Factory JNDI field.

Using Guaranteed Events 14-19



Creating WebLogic Message Queues

3. Create a queue destination by selecting WebSphere MQ JMS Provider under
Resources.

a. Inthe Name and Base Queue Name field, enter the same queue name that you
used when you created the queue in the WebSphere MQ Explorer; for example
RTE_TEST_QUEUE.

b. Enter a meaningful JNDI name; for example, jms/mq/rte/TestQueue01.

Note: When you add a WebSphere MQ subscriber in JD Edwards
EnterpriseOne, enter this name in the Queue Name field.

c. Enter the Queue Manager name; for example, QM_DENNF13.
4. Save these changes in the WebSphere console.

14.8.5 Verifying Event Delivery

Use these steps to verify event delivery:

1. In the WebSphere MQ Explorer, select the queue you configured to receive JD
Edwards EnterpriseOne events.

Note: To see if any events are in the queue, click the refresh button
on the Explorer window. The Current Depth column shows the
number of messages in the queue. You might have to scroll right in the
explorer window to see this column.

2, If there are messages in the queue, right-click the queue.

3. To see the messages in the queue, select Browse Messages in the pop-up menu.

Note: ]D Edwards EnterpriseOne sends the event XML to an
WebSphere MQ queue, not the serialized object sent to subscriber
queues serviced by the Java connector.

14.9 Creating WebLogic Message Queues
This section provides an overview about WelbLogic messaging queues and discusses:
s Creating a JMS server in the WebLogic server.
s Creating a JMS module in the WebLogic server.
»  Creating a connection factory.
»  Creating a destination (queue).

= Verifying event delivery.

14.9.1 Prerequisites

Before you complete this task:
= WebLogic is installed on your system.

»  The transaction server is configured for your application server.

14-20 JD Edwards EnterpriseOne Tools Interoperability Guide



Creating WebLogic Message Queues

See Configuring the Transaction Server to Use WebLogic.

14.9.2 Understanding WebLogic Message Queue

You can use Oracle Business Service (OSB) message queue to subscribe to and receive
events. After you create the events queue for WebLogic, you must add the queue name
as a subscriber, using the Interoperability Event Subscription program (P90702A).

After you create the queue and set up the subscriber information, you should verify
event delivery.

14.9.3 Creating a JMS Server in the WebLogic Server

Use these steps to create a JMS server in the WebLogic server:

1.

@ o » w N

In the WebLogic admin console, go to Home > Summary of Services: JMS >
Summary of JMS Servers.

Click Lock & Edit.

Click New.

On Create a New JMS Server, enter a name for your JMS server in the Name field.
Click the Create New Store button.

Click Next.

14.9.4 Creating a JMS Module in the WebLogic Server

Use these steps to create a JMS module in the WebLogic server:

1.

In the WebLogic admin console, go to Home >Summary of Services: JMS > JMS
Modules.

To create a new module, type the module name in the Name field.

Accept the default values for the Descriptor File Name and Location In Domain
fields.

Click Next.

14.9.5 Creating a Connection Factory

Use these steps to create a Connection Factory in WebLogic:

1.
2

From the WebLogic Admin Console, go to Home >JMS Modules > jmsModule.

To create a new connection factory, enter a meaningful connection factory name in
the Connection Factory field.

Set the JNDI name to OSBSubscriberQCF.
Click Next.

14.9.6 Creating a Destination

Use these steps to create a destination (queue):

1.
2
3.

From the WebLogic Admin Console, go to Home > JMS Modules > jmsModule.
To create a new queue, enter the queue name in the Create a New Queue field.

Set the JNDI name to OSBSubscriber Queue.

Using Guaranteed Events 14-21



Creating Custom Real-Time Events

4. Click Next.
5. Enter a meaningful name in the Subdeployments field.

6. Click Next.

14.9.7 Verifying Event Delivery

Use these steps to verify event delivery:

= In the WebLogic message queue, select the queue you configured to receive JD
Edwards EnterpriseOne events.

Note: To see if any events are in the queue, click the Refresh button
on the Explorer window. The Current Depth column shows the
number of messages in the queue. You might have to scroll right in the
explorer window to see this column.

»  If there are messages in the queue, right-click the queue.

= To see the messages in the queue, select Browse Messages in the pop-up menu.

Note: JD Edwards EnterpriseOne sends the event XML to a
WebLogic message queue, not the serialized object sent to subscriber
queues serviced by the Java connector.

14.10 Creating Custom Real-Time Events

This section discusses how to create a real-time event.

14.10.1 Creating a Custom Real-Time Event

JD Edwards EnterpriseOne provides predefined real-time events that capture certain
JD Edwards EnterpriseOne transactions and notify subscribers about the transaction. If
you have requirements that are not satisfied by the predefined real-time events, you
can create a custom real-time event. Chapter 14, Using Real-time Events — Guaranteed,
of the Interoperability Guide provides conceptual information about real-time events,
identifies APIs for creating real-time events, and provides sample code.

Before you create a custom real-time event, you should review the existing real-time
events to determine if there is one that you can use as a model for creating your
custom real-time event. Detail information about each real-time event can be found in
the Application Real-Time Events Implementation Guide.

See JD Edwards EnterpriseOne Application Real-Time Events Implementation Guide.

Use the following steps to create a custom real-time event. Each step includes a
reference to documentation that provides more information about that step.

1. Determine the type of real-time event (single, aggregate, or composite).
See Understanding Real-Time Event Generation.
2. Create a new data structure or modify an existing data structure to pass data.

See "Creating Data Structures" in the |D Edwards EnterpriseOne Tools Development
Tools: Data Structure Design Guide.

3. Create a new event definition.

14-22 JD Edwards EnterpriseOne Tools Interoperability Guide



Generating Schemas for Event XML Documents

See Defining Events.

4. Create a new business function or modify an existing business function to call the
API that generates the event.

See Using Business Function Calls.

See "Understanding Business Functions" in the JD Edwards EnterpriseOne Tools
Development Tools: APIs and Business Functions Guide.

See "Development Standards for Business Function Programming Overview" in
the JD Edwards EnterpriseOne Tools Development Standards for Business Function
Programming Guide.

See |D Edwards EnterpriseOne Tools API Reference Guide on My Oracle Support.
5. Build and promote the business function.

See "Understanding Package Management" in the /D Edwards EnterpriseOne Tools
Package Management Guide.

6. Add the subscriber, associate the event to the subscriber, and enable the
subscription.

See Establishing Subscriber and Subscription Information.
7. Configure Object Configuration Manager (OCM) for Guaranteed Event Delivery.
See Setting Up OCM for Guaranteed Events.

8. Configure and start your servers (transaction, integration, and enterprise) and test
the real-time event.

See Understanding Guaranteed Events Processing.
See |D Edwards EnterpriseOne Tools Server Manager Guide on My Oracle Support.
See |D Edwards EnterpriseOne Tools Reference Guide on My Oracle Support.

See |D Edwards EnterpriseOne Tools Transaction Server Components Reference Guide on
My Oracle Support.

14.11 Generating Schemas for Event XML Documents

This section provides an overview of the Schema Generation Utility and discusses how
to:

= Configure the Schema Generation Utility.
= Use the Schema Generation Utility.
= Troubleshoot the Schema Generation Utility.

14.11.1 Understanding the Schema Generation Utility

The Schema Generation Utility creates XML schemas from event definitions. The
purpose of this utility is to facilitate orchestration developers who use orchestration
systems such as Oracle’s Enterprise Service BUS (ESB) or Business Process Execution
Language Process Manager (BPEL-PM) to process real-time events, XAPI events, and
Z events.

The Schema Generation Utility enables you to generate and save the schemas. The
Schema Generation Utility generates schemas for these events:

Using Guaranteed Events 14-23



Generating Schemas for Event XML Documents

= Single event: You can select a single event of a particular event category to
generate schema.

= Multiple events: You can select multiple events of a particular event category to
generate schemas.

= Allevents: You can generate schemas for all JD Edwards EnterpriseOne events of a
particular event category.

In addition, the Schema Generation Utility can generate XML schema for a generic
header representing all events. This schema can be used in orchestration systems for
content-based routing.

This diagram provides an overview of the Schema Generation utility.

Figure 14-6 Schema Generation Utility

_ _
— e
4‘—>
Schema | - =
Generation Utility ‘ . Events
|
Client Workstation i Transaction Server EnterpriseOne Server

14.11.1.1 Prerequisite

Before you configure the Schema Generation Utility, you must install a Java Runtime
Environment (JRE) version 1.4.0 or later on your local machine. You can download a
JRE from the Sun Developer Network (SDN) web page (http://java.sun.com/).

14.11.2 Configuring the Schema Generation Utility

The Schema Generation Utility is delivered in a zip file in the system\classes folder.
You must download the zip file to your local machine and set up certain files. You use
these settings in Step 4.

Section Setting Value

[EVENTS] initialContextFactory = For Oracle Application Server, the default value is:
com.evermind.server.rmi.RMIInitial ContextFactory

For WebSphere Application Server, the default value is:
com.ibm.websphere.naming.WsnlInitial ContextFactory

14-24 JD Edwards EnterpriseOne Tools Interoperability Guide



Generating Schemas for Event XML Documents

Section Setting Value

[EVENTS] jndiProviderURL For the Transaction Server running on an Oracle

Application Server, the value is:
jndiProviderURL=opmn:ormi:/ /machine_
name:6003:eltransvr/EventProcessor

For the Transaction Server running on a WebSphere
Application Server, the value is:
jndiProviderURL=corbaloc::Machine_
name:Port/NameServiceServerRoo

Note: Machine_name in this setting is the name of the
machine where the Transaction Server is installed

Port in this setting is the Bootstrap Address port of the
Transaction Server. Generally the port is 9810.

[EVENTS] eventServiceURL The value is: http:/ /machine_

name:port/elevents/EventClientService

Note: Machine_name in this setting is the name of the
machine where the Transaction Server is installed, up,
and running.

Verify the hostport property in the jas.ini file of the
Transaction Server for port information and to find the

exact port for the URL.

[SECURITY] SecurityServer Provide the name of the user’s EnterpriseOne Security
Server.

[JDENET] serviceNameConnect  Provide the port that you are connecting on to the
user’s EnterpriseOne Security Server.

[INTEROP] enterpriseServer Provide the name of the user’s EnterpriseOne Server.

[INTEROP]  port EnterpriseOne Server port.

To configure the Schema Generation Utility:

1.

Navigate to the system \classes folder and unzip the SchemaGenUtil.zip file to the
C:\SchemaGenUltil directory in your machine.

Ensure to unzip the file with the full path information for each file in the zip file.
Configure the files in your C:\SchemaGenUtil\config directory.

Ensure that the configured files have the .templ file extension removed from them.
The proper filenames for that directory are jdbj.ini, jdeinterop.ini, and
jdelog.properties.

Configure jdbj.ini and jdelog.properties files according to the environment.

The simplest solution for the jdbj.ini file is to use the same file that has been
configured on the Transaction Server.

Note: See your JD Edwards EnterpriseOne systems administrator if
you do not know the appropriate values for these files.

Configure the jdeinterop.ini file sections and settings that are identified in the
preceding table.

Edit the C:\SchemaGenUtil\runSchemaGenUltilityDriver.bat file, pointing it to the
location of the installed JRE.

Using Guaranteed Events 14-25



Generating Schemas for Event XML Documents

14.11.3 Using the Schema Generation Utility

You use your JD Edwards EnterpriseOne user credentials to log into the Schema
Generation Utility. Upon successfully logging in, the Event Schema Generator screen
appears. This screen has two panels, Event Operations and Exception. You use the
Event Operations panel to generate and display schemas for events. The Exception
panel informs you of errors.

14.11.3.1 Prerequisites

Before you use the Event Schema Generator, ensure that:

= The event for which you want to generate a schema is active in the environment
that you are using.

»  The database driver file is in the classpath—if not, copy the database driver files to
the following directory:

C:\SchemaGenUtil\lib

14.11.3.2 Logging In to the Schema Generation Utility
To log in to the Schema Generation Utility:

1. On your local machine, navigate to the C:\SchemaGenUftil directory and
double-click the runSchemaGenUtilityDriver.bat file.

The Event Schema Generator sign-on window appears.
2. Enter your JD Edwards EnterpriseOne user credentials for these fields:
— User Name
- Password
— Environment
Events must be active in this environment.
- Role

3. Select the Remember Sign On Info option if you want the system to remember
your sign-on information, and then click OK.

Note: You can ignore the following warning message:

Unable to initialize the management agent. Server Manager capability
will be unavailable

14.11.3.3 Event Schema Generator Screen

After you successfully log in, the Event Schema Generator screen appears. This
example shows the two panels on the Event Schema Generator screen:

14-26 JD Edwards EnterpriseOne Tools Interoperability Guide



Generating Schemas for Event XML Documents

Figure 14-7 Event Schema Generator

| s Event Schema Generaler = E‘H
¢ Furant Ogeier adons
Exmsnit List: Evant Schama:
[reve
Erannit ©atanpsrs T
|z
|
Ermdr onenaa: ACHE
| Display Sehema | Gonorste Schoma(s) | Gonerste Al Schomas
ioador Schema | Cloar Saleciion
e ——————
[ET T B D Cloar Frior Mifaagos

You use the Event Operations panel to provide information about the event or events
for which you want schema generated. The utility provides the three event categories
(real-time, XAPI, and Z events) from which you select and you must identify the
environment. All events for which you want to generate a schema must be active in
the environment that you indicate. When you select an event category and
environment, the utility provides a list of events that are available.

You can perform the following tasks from the Event Operations panel:

= Display an event schema.

= Generate event schema for single and multiple events.

= Generate event schema for all the events of a selected event category.
= Generate header schema.

Click the Clear Selection button to clear the selection in the Event List panel. After the
utility generates the schema, the schema is displayed in the Event Schema field.

If an error occurs during schema generation, the utility displays an error message in
the Error Messages field of the Exception panel. You remove a message by clicking the
Clear Error Message button.

If no events are available in the given environment, the Schema Generation Utility
displays an error message, such as No event available for RTE in DEMOENYV in the Error
Message panel.

You terminate the Schema Generation Utility by clicking Close at the right top of the
main frame.

14.11.3.4 Displaying Event Schema

You can display event schema. This example shows how the utility displays a schema:

Using Guaranteed Events 14-27




Generating Schemas for Event XML Documents

Figure 14-8 Event Schema Generator displaying event schema

o Evant Schema Generator

names"type” type="esd: siring” minOccurs="0r=<xs d elerment narr

ugar ype="xsdsring” minOcours="0"==csd alement name="rol

rEvent Operations
Evient List: Evienit Schemaz !
RTAMOUT = urml vigrion=s"1.0° 7= sxsd schama aming x5 d="hip e w3 org.fi_‘! |
RTBLOUT 01MMLScherma® zmins="hitpwww schermas. el oraclacon® targasy |
"_:_" RTABEAGUT Namesnat::"hlln It SERBMAS, 81 mant:le eam” elermentFormDe
Evernt BN AEHFHCHL uit="gualiied”==xsd alemant names"jdeResponse™ > <gsd.comple
C 1 L L exapcd saguancesed alement name="event minOc¢curs="0"
ZFILE TABOUT = o comploeType = «xsd sequence= sksd alement name="header®
mincours="r==xzd:.complexType==csd sequence==xsd elemant
Ermair ommiant: W ame="eveniVarsion” pe="xsd sting” minOceurs="0">=xsd ele rme

I
Display Schema | Generate Schemals) Ganmrote AN Bchentes |- o o -ii siring” minOccurs="0r=<xsd-element name="applicatiq
type="xad:string” minOoours="0"=xsd-elaman name="varsion® |
| Header Schema Clear Selection | e="esd N0ar mindoeurs="0"><xsd element name="sessioniD™ ty | |
P S S T DHDEI ™ WS W * Y S S S W — S—— p——— | 0 W
~Extception
Efror Messages: Claar Error Messages |

To display event schema:

1. In the Event Operations panel of the Event Schema Generator screen, select the
type of event from the Event Category field.

In the Environment field, enter the name of the environment that has the active
event.

In the Event List field, select an event.

Select only one event. If you select multiple events, the utility displays an error
message in the Error Messages field of the Exception panel. The error message for
selecting multiple events indicates invalid input. Click the Clear Selection button
to clear a selection from the Event List.

4. Click Display Schema.

The utility displays the generated schema in the Event Schema field.

14.11.3.5 Generating Event Schema for Single and Multiple Events

You can generate schema for a single event and save the schema to a file. The utility
saves generated schemas with a file extension of .xsd. After you complete the selection
criteria and click Generate Schema(s) on the Event Schema Generator screen, a file
chooser dialog screen appears. You indicate the file path and enter the file name.

You can save the generated schema for a single event. This example is the file chooser
dialog screen for saving a single event:

14-28 JD Edwards EnterpriseOne Tools Interoperability Guide




Generating Schemas for Event XML Documents

Figure 14-9 Save screen for a single event

"y

Tow X
Saveln: | (] Schemas ~| (@ [#] [ (Bl e
[y RT 11,550 [ TestZEvent xsx [ 1180
[} rtabout.vsd [} xaP111.xsd [} Z_JDESOOUT kst
(Y rtaboutBxsdxsd ) XAPIADINxsd [ zFileSchema.xsi

[y RTBUOUTA_TEST.xsd [ ) XAPIGETCRTxsd [} ZFileSchema12.xsd
sl [) TestRTSOOutxsx [ ) XAPIBOUT.xsd
esdd [} TestAPIOUTxsx [} XAPIOPOUT.%sd

1]

File Mame:  |RTABOLT| |
Files of Type: | AllFiles -

[ sow 1 conce

Save selected file

You can generate schemas for multiple events and save the schemas to a directory. To
select multiple events from the Event List field, press the Ctrl key and select the event.
After you complete the selection criteria and click Generate Schema(s) on the Event
Schema Generator screen, a Select Directory dialog screen appears. You enter the full
path name where the directory is located. The utility saves each schema file as E1_
EventType.xsd, for example, E1_RTSOOUT.xsd.

Figure 14-10 Select Directory screen for multiple events

-

rﬁkhﬂtﬂlhﬂinn'
Saver: |3 schemas -] (@ &lc e

I MULTIPLE RTE [ xapi2
CI MULTIPLE XAPIC] Z
CARTE Hzz
(I rte2

[ rte3

9 Schemas

T xapi

File Name:  |C\ConnectorEventsClienfiSchemas |
Files of Type: | All Files ~|

To generate event schema for single and multiple events:

1. In the Event Operations panel of the Event Schema Generator screen, select the
type of event from the Event Category field.

2. In the Environment field, enter the name of the environment.

Using Guaranteed Events 14-29



Generating Schemas for Event XML Documents

If you select multiple events, all events must be active in that environment.
3. Perform one of the following actions:
—  Select a single event from the Event List field and click Generate Schema(s).

A file chooser dialog screen appears. To save the generated schema, navigate
to the appropriate directory, enter a name for the generated schema in the File
Name field, and click Save. If you do not want to save the generated schema,
click Cancel.

—  Select two or more events from the Event List field, and click Generate
Schema(s).

A Select Directory screen appears. To save the schemas for all of the events,
indicate the directory path (use the full path name, for example,
C:\ConnectorEventsClient\Schemas), and click Save. The utility saves the
schema file for each selected event as E1_EventType.xsd, for example, E1_
RTSOOUT.xsd. If you do not want to save the generated schemas, click
Cancel.

14.11.3.6 Generating Event Schema for All the Events of a Selected Event Category

You can generate schemas for all of the events within an event category. The events
must be active in the environment. On the Event Schema Generator screen, you select
the event category and then click Generate All Schemas. A dialog screen named Select
Directory appears. You indicate the full path name of the directory where you want to
store the schema. The utility saves each schema file as E1_EventType.xsd, for example,
E1_RTSOOUT.xsd.

This screen is the Select Directory dialog screen for saving all of the events in a
category:

Figure 14-11 Select Directory screen for all events within a category.

i |

o Select Directory |
Savoln: | (] Schemas ~| @@/ B8
I ®API_ALL

FileName:  |C\ConnectorEventsClientiSchemasiSchemastXAP|_ALL

Files of Type:  All Files \d

| save | Cancel

14.11.3.7 Generating Header Schema

To generate header schema:

14-30 JD Edwards EnterpriseOne Tools Interoperability Guide



Generating Schemas for Event XML Documents

1. Click the Header Schema button and provide the file path with file name to save

the header schema.

2, After generating the header schema, the Schema Generation Utility displays the

header schema.

14.11.4 Troubleshooting the Schema Generation Utility

This table provides resolutions for problems that might occur:

Problem

Resolution

An error message appears after sign-on.

Ensure that all the given credentials (user name,
password, environment, and role) are correct.

C:\SchemaGenUtil\logs directory is getting
full of files. Can some of the .log and/or .xml
files in that directory be deleted?

Delete any files in that directory at any time. If
the Schema Generation Utility application is
running, some of the files may be locked.

An error message that you do not understand
appears in the Error Messages field.

Look at C:\SchemaGenUtil\logs directory for
the jasdebug_date.log file that corresponds to
the appropriate date. Often a more explanatory
error message can be found in this log file.

Specification not found error is displayed in
the Error Messages field.

Verify that the selected event is active and
available in the environment that you indicated.

This type of error message will read similar to
this: Spec not found for requested template:
EventCategory: EventType

Using Guaranteed Events 14-31



Generating Schemas for Event XML Documents

14-32 JD Edwards EnterpriseOne Tools Interoperability Guide



15

Using Real-Time Events - Guaranteed

This chapter contains the following topics:
»  Section 15.1, "Understanding Real-Time Events - Guaranteed"

»  Section 15.2, "Generating Real-Time Events"

Note: This chapter is applicable only if you use guaranteed event
delivery. Guaranteed event delivery is available when you use JD
Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
tools releases with JD Edwards EnterpriseOne Applications 8.10, 8.11,
and later EnterpriseOne Applications releases.

Refer to the Classic Events chapters if you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

15.1 Understanding Real-Time Events - Guaranteed

A real-time event is a notification that a business transaction has occurred in JD
Edwards EnterpriseOne. You can use a JD Edwards EnterpriseOne HTML client to
generate a real-time event on the JD Edwards EnterpriseOne server. Real-time events
can be used for both synchronous and asynchronous processing.

An example of synchronous processing is to use real-time events to update an auction
site that uses ]D Edwards EnterpriseOne as a back-end solution. A user enters a new
item for auction, which triggers a transaction into the JD Edwards EnterpriseOne
system. The system captures the transaction and sends a notification to an
interoperability server that communicates the information to a web engine to update
the HTML pages so that all of the auction users can see the new item.

You can also use real-time event generation for asynchronous processing. For example,
an online store sends orders to different vendors (business to business), captures the
transactions, and enters the orders into the vendors' systems. A user buys a book. The
vendor enters a purchase order to the book publisher and sends a notification to the
shipping company to pick up the book and deliver it. The book order can be
completed as a purchase order transaction with JD Edwards EnterpriseOne, but the
shipping request requires that the data is packaged into a commonly agreed-upon
format for the shipping company to process.

Using Real-Time Events - Guaranteed 15-1



Generating Real-Time Events

15.2 Generating Real-Time Events
This section provide an overview about generating real-time events and discusses:
= Real-time event APIs.

= Example code for creating events.

15.2.1 Understanding Real-Time Event Generation

Events can be one of these:
= Single Event

Contains one partial event. A single event is useful if the receiver requires that
events be generated per system call. You can also use single events with different
event types.

= Aggregate Event

Contains multiple partial events. An aggregate event is useful if the receiver
requires a document that contains multiple events. For example, a supply chain
solution might want the complete sales order provided as one event that contains
multiple partial events.

= Composite Event

Contains only single events. Composite events are useful if the customer has
multiple receivers, some requiring single events and some requiring a complete
event similar to an aggregate event.

15.2.2 Using Real-Time Event APIs

These APIs are available for you to generate real-time events:
s jdeIEO_Eventlnit

s jdelEO_EventAdd

s jdelEO_EventGetCount

s jdeIEO_EventGetData

s jdeIEO_EventFreeData

= jdelEO_EventFinalize

= jdelEO_CreateSingleEvent

»  jdelEO_IsEventTypeEnabled

15.2.3 Interoperability Event Interface Calls Sample Code

These steps and the accompanying example code illustrate how to create a single
event:

1. Design the data structure for the real-time event.

typedef struct tagDSD55RTTEST
{
char szOrderCo[6];
char szBusinessUnit[13];
char szOrderType[3];
MATH_NUMERIC mnOrderNo;
MATH_NUMERIC mnLineNo;

15-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Generating Real-Time Events

JDEDATE jdRequestDate;
char szIltemNo[27];
char szDescriptionl[31];

MATH_NUMERIC mnQtyOrdered;
MATH_NUMERIC mnUnitPrice;
MATH_NUMERIC mnUnitCost;
char szUserID[11];

} DSD55RTTEST, *LPDSD55RTTEST;

2. Define the data structure object in the business function header file.
3. Modify the business function source to call jdeIEO_CreateSingleEvent.

JDEBFRTN (ID) JDEBFWINAPI RealTimeEventsTest (LPBHVRCOM lpBhvrCom,
LPVOID 1pVoid, LPDSD55REALTIME 1pDS)
{
/* Define Data Structure Object */
DSD55RTTEST zRTTest = {0};
IEO_EVENT_RETURN eEventReturn = eEventCallSuccess;
IEO_EVENT_ID szEventID ={0};
() Populate required members

/* Now call the API */

szEventID = jdeIEO_CreateSingleEvent { lpBhvrCom,
"RealTimeEventsTest",
"JDERTOUT",
"SalesOrder",
"D55RTTEST",

&zRTTest,

sizeof (zRTTest),

0,

&eEventReturn };

/* Error in jdeFeedCallObjectEvent is not a critical error
and should only be treated as a warning */
if ( eEventReturn != eEventCallSuccess )

/* LOG the Warning and return */
return ER_WARNING;

This sample code illustrates how to create an aggregate event:

DSD55RTTEST zD55TESTOL {0};

DSD55RTTEST zD55TEST02 = {0};

DSD55RTTEST zD55TEST03 = {0};

IEO_EVENT RETURN eEventReturn = eEventCallSuccess;
IEO_EVENT_ID szEventID;

szEventID = jdeIEO_EventInit (lpBhvrCom, eEventAggregate, "MyFunctionl",
"JDESOOUT", "EventScopel", 0, &eEventReturn);

eEventReturn = jdeIEO_EventAdd (lpBhvrCom, szEventID, "MyFunction2", NULL,
"D55TEST01", &zD55TESTO01, sizeof (zD55TEST01),0);

eEventReturn = jdeIEO_EventAdd (lpBhvrCom, szEventID, "MyFunction3", NULL,
"D55TEST02", &zD55TEST02, sizeof (zD55TEST02),0);

eEventReturn = jdeIEO_EventAdd (lpBhvrCom, szEventID, "MyFunction3", NULL,
"D55TEST03", &zD55TEST03, sizeof (zD55TEST03),0);

eEventReturn = jdeIEO_EventFinalize (lpBhvrCom, szEventID, "MyFunction4",0);

This sample code illustrates how to create a composite event:

IEO_EVENT_RETURN eEventReturn =0;
IEO_EVENT_ID szEventID;

Using Real-Time Events - Guaranteed 15-3



Generating Real-Time Events

eEventReturn = eEventCallSuccess;

szEventID = jdeIEO_EventInit (lpBhvrCom, eEventComposite, "MyFunctionl",
"JDESOOUT", "EventScopel", 0, &eEventReturn, 0) ;

eEventReturn = jdeIEO_EventAdd ( lpBhvrCom, szEventID, "MyFunction2",
"SODOCBEGIN", "D55TESTO01", &zD55TEST01, sizeof (zD55TEST01),0);

eEventReturn = jdeIEO_EventAdd ( lpBhvrCom, szEventID, "MyFunction3",
"SOITEMADD", "EventScope3", "D55TEST02", &zD55TEST02, sizeof (zD55TEST02),0);

eEventReturn = jdeIEO_EventFinalize (lpBhvrCom, szEventID, "MyFunction4",0);

Errors that are returned by the system calls might not be critical enough to stop the
business process. The system flags non-critical errors as warnings and logs them in the
log file.

15-4 JD Edwards EnterpriseOne Tools Interoperability Guide



16

Using XAPI Events - Guaranteed

This chapter contains the following topics:

= Section 16.1, "Understanding XAPI Events - Guaranteed"

= Section 16.2, "Using JD Edwards EnterpriseOne as a XAPI Originator"

= Section 16.3, "Using JD Edwards EnterpriseOne as a XAPI Executor"

= Section 16.4, "Working with JD Edwards EnterpriseOne and Third-Party Systems"
= Section 16.5, "Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity"

= Section 16.6, "Mapping a Business Function"

Note: This chapter is applicable only if you use guaranteed events
delivery. Guaranteed event delivery is available when you use JD
Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
tools releases with JD Edwards EnterpriseOne Applications 8.10, 8.11,
and later EnterpriseOne Applications releases.

Refer to the Classic Events chapters if you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

16.1 Understanding XAPI Events - Guaranteed

XAPI is a JD Edwards EnterpriseOne service that captures transactions as the
transaction occurs and then calls third-party software, end users, and other JD
Edwards systems to obtain a return response. A XAPI event is very similar to a
real-time event and uses the same infrastructure to send an event. The difference
between a real-time event and a XAPI event is that the subscriber to a XAPI event
returns a reply to the originator. The XAPI event contains a set of structured data that
includes a unique XAPI event name and a business function to be invoked upon
return. Like real-time events, XAPI events can be generated on a JD Edwards
EnterpriseOne server using a ]D Edwards EnterpriseOne HTML client. XAPI events
also can be generated by a third-party system and sent to a JD Edwards EnterpriseOne
system for a response.

The XAPI structure sends outbound events and receives replies. An event is first
generated by the XAPI originator and then sent to a separate system, the XAPI
executor, for processing. The XAPI executor then sends a response back to the XAPI
originator. The XAPI structure provides for these three possibilities of originator and
executor combinations:

Using XAPI Events - Guaranteed 16-1



Understanding XAPI Events - Guaranteed

= JD Edwards EnterpriseOne to third-party.
s Third-party to JD Edwards EnterpriseOne.
= JD Edwards EnterpriseOne to JD Edwards EnterpriseOne.

When you use JD Edwards EnterpriseOne-to-EnterpriseOne events processing, you
must map business functions and APIs.

16.1.1 JD Edwards EnterpriseOne to Third-Party

This diagram shows a logical representation of the XAPI process from JD Edwards
EnterpriseOne to a third-party system:

Figure 16-1 JD Edwards EnterpriseOne to a third-party system XAPI even

EnterpriseOne System

———Request—>|

XAPI
Originator

XAPI
Executor

<«—Response——

In summary:
1. JD Edwards EnterpriseOne (XAPI originator) sends a request.
2. The request is sent to a third-party system.

3. The third-party system (XAPI executor) processes the request and sends a
response back to the XAPI originator.

16.1.2 Third-Party to JD Edwards EnterpriseOne

This diagram shows a logical representation of the XAPI process from a third-party
system to JD Edwards EnterpriseOne:

16-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Understanding XAPI Events - Guaranteed

Figure 16-2 Third-party system to JD Edwards EnterpriseOne XAPI event

Third-Party System EnterpriseOne Systemi

———Request—

XAPI

Originator | Executor

XAPI
l <— Response——

In summary:

1. The third-party system (XAPI originator) sends a request using the JD Edwards
EnterpriseOne XAPI request form.

2. The request is sent to JD Edwards EnterpriseOne.

3. JD Edwards EnterpriseOne (XAPI executor) processes the request and sends a
response back to the XAPI originator.

16.1.3 JD Edwards EnterpriseOne-to-EnterpriseOne

This diagram shows a logical representation of the XAPI process from one JD Edwards
EnterpriseOne system to another JD Edwards EnterpriseOne system:

Figure 16-3 JD Edwards EnterpriseOne-to-EnterpriseOne XAPI event

EnterpriseOne System

Request——p|

Originator Executor

<«—-Response—

| XAPI 3

XAPI 3

In summary:
1. The first JD Edwards EnterpriseOne system (XAPI originator) sends a request.

2. The request is sent to a second JD Edwards EnterpriseOne system, which might
share the same or different environment as the first JD Edwards EnterpriseOne
system.

3. The second JD Edwards EnterpriseOne system (XAPI executor) processes the
request and sends a response back to the first JD Edwards EnterpriseOne system
(XAPI originator).

Using XAPI Events - Guaranteed 16-3



Using JD Edwards EnterpriseOne as a XAPI Originator

4. The first JD Edwards EnterpriseOne system (XAPI originator) processes the
response.

16.2 Using JD Edwards EnterpriseOne as a XAPI Originator

This diagram illustrates the flow of a XAPI event when JD Edwards EnterpriseOne
functions as the XAPI originator:

Figure 16—-4 JD Edwards EnterpriseOne as XAPI originator

EnterpriseOne
Client
1 9
EnterpriseOne
Server A
j nterpriseOne
celopiectiteme ° Transaction Server
XAPI
Request
XML XML 3
BSFN 3 Service 5 - Dispatch XAPI XAPI
Kernel el Response | Executor
7 4
6
File
System

In summary:

1. Within the Sending the XAPI Request area in the illustration, a JD Edwards
EnterpriseOne client calls a business function on the JD Edwards EnterpriseOne
server.

2. The business function uses XAPI APIs to create the XAPI request.

The CallObject kernel in which the XAPI APIs are executing creates the XAPI
request data, adding the callback function. If the XAPI executor is another JD
Edwards EnterpriseOne system, the host and port of the JD Edwards
EnterpriseOne server that is functioning as the XAPI originator is added to the
data. The data is then sent to the Transaction server.

3. The Transaction server sends the document to the subscriber, which is the XAPI
executor.

16-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Using JD Edwards EnterpriseOne as a XAPI Executor

If the XAPI executor is another JD Edwards EnterpriseOne system, the document
is sent through JDENET.

Within the Receiving the XAPI Response area in the illustration, the XAPI XML
response document is sent by the XAPI executor through JDENET to the XML
Dispatch kernel of the XAPI executor.

The XML Dispatch kernel receives the response XML document and sends the
response to the XML Service kernel.

The XML Service kernel stores the response document and creates a file handle.

The XML Service kernel invokes the callback business function with the file
handle.

The business function parses the response document using XAPI APIs, which use
the XML Service kernel to load the document into memory.

The business function uses XAPI APIs to process the response and send it to the JD
Edwards EnterpriseOne client.

16.3 Using JD Edwards EnterpriseOne as a XAPI Executor

This diagram illustrates the flow of a XAPI event when JD Edwards EnterpriseOne
functions as the XAPI executor.

Figure 16-5 JD Edwards EnterpriseOne as XAPI executor

XAPI
Originator

File
System
1
XAPI 3 ) EnterpriseOne
Request Server
4
XML XML .
Dispatch { 2 Service CElSIE NGl
Kernel Kernel 5

7 ) XAPI Response

EnterpriseOne

BSFN

Transaction Server

In summary:

1.

Within the Receiving the XAPI Request area of the illustration, the XAPI originator
sends the XAPI XML request document to the XML Dispatch kernel through
JDENET.

The XML Dispatch kernel receives the document and sends the event request and
routing information to the XML Service kernel.

Using XAPI Events - Guaranteed 16-5



Working with JD Edwards EnterpriseOne and Third-Party Systems

3. The XML Service kernel stores the document and creates a file handle for the XAPI
request.

The XML kernel also creates XML-based routing information. The XML Service
kernel uses the F907012 table to find the business function that will process the
request.

4. The XML Service kernel invokes the business function with the XML request
handle and the routing information handle.

5. The business function uses XAPI APIs to parse and process the document. XAPI
APIs load the XAPI XML request document into memory.

6. The business function processes the XAPI event request.

The business function also creates a XAPI response. The message type for the
response must be xapicallmethod. The business function also passes the
routing information handle.

7.  Within the Sending the XAPI Response area of the illustration, the business
function uses XAPI APIs to send the XAPI response data including the routing
information, to the Transaction server.

8. The Transaction server creates the XAPI XML response document and uses the
routing information to send the response document to the XAPI originator.

If the XAPI originator is another JD Edwards EnterpriseOne system, the document
is sent through JDENET.

16.4 Working with JD Edwards EnterpriseOne and Third-Party Systems
This section provides an overview of XAPI processing and discusses:
= XAPI outbound request APIs.
= XAPI outbound request API usage code samples.
s XAPI Inbound response APIs.

s  XAPIinbound response API usage code samples.

See Also:
» /D Edwards EnterpriseOne Tools API Reference Guide on My Oracle
Support.

16.4.1 Understanding XAPI Processing between JD Edwards EnterpriseOne and
Third-Party Systems

You can use XAPI processing to capture ]JD Edwards EnterpriseOne transactions as the
transaction occurs, and then call third-party software to obtain a return response. In
this scenario, JD Edwards EnterpriseOne is the originator, and the third-party system
is the executor.

16.4.2 XAPI Outbound Request APIs

These APIs are available for you to generate a XAPI outbound request:
s jdeXAPI Init

= jdeXAPI_Add

= jdeXAPI_Finalize

16-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne and Third-Party Systems

s jdeXAPI_Free

s jdeXAPI_SimpleSend

s jdeXAPI_ISCallTypeEnabled
s jdeXAPI_CALLS_ENABLED

16.4.3 XAPI Outbound Request API Usage Code Sample
This code sample illustrates how to create a XAPI outbound request:

/* Header files required */

#include <B4205010.h>

/*************************/

BOOL bXAPIInUse, bExit;
#ifdef jdeXAPI_CALLS_ENABLED

XAPI_CALL_ID ulXAPICallID = 0;

XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;
#endif

DSD4205010A dsD4205010A

DSD4205010B dsD4205010B
#ifdef jdeXAPI_CALLS_ENABLED

if (jdeXAPI_IsCallTypeEnabled ("XAPIOPOUT") && jdeXAPI_IsCallTypeEnabled
("XAPIOPIN") )

{

{0}; /*Query Header*/
{0}; /*Query Detail*/

bXAPIInUse = TRUE;

}
#endif

/* Call XAPIInit */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
ulXAPICallID = jdeXAPI_Init( lpBhvrCom, "SendOrderPromiseRequest",
"XAPIOPOUT", NULL, &eXAPICallReturn);
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;

}
#endif

/* Adding Header Information */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Add( lpBhvrCom, ulXAPICallID,
"SendOrderPromiseRequest", "D4205010A", &dsD4205010A,
sizeof (DSD42050104)) ;
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;

}
#endif

/* Loading Detail Information */
#ifdef jdeXAPI_CALLS_ENABLED

Using XAPI Events - Guaranteed 16-7



Working with JD Edwards EnterpriseOne and Third-Party Systems

if (bXAPIInUse == TRUE)

eXAPICallReturn = jdeXAPI_Add( lpBhvrCom, ulXAPICallID,
"SendOrderPromiseRequest", "D4205010B", &dsD4205010B,
sizeof (DSD4205010B)) ;

if (eXAPICallReturn != eEventCallSuccess)

{
bExit = TRUE;

}

#endif

#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)

/* Finalize */
{
eXAPICallReturn = jdeXAPI_Finalize( lpBhvrCom, ulXAPICallID,
"SendOrderPromiseRequest", "OrderPromiseCallback");
if (eXAPICallReturn != eEventCallSuccess)

{
bExit = TRUE;

}
#endif
#ifdef jdeXAPI_CALLS_ENABLED
if (eXAPICallReturn != eEventCallSuccess)

/* CleanUp */
if (bXAPIInUse == TRUE)

{
jdeXAPI_Free( lpBhvrCom, ulXAPICallID,

"SendOrderPromiseRequest") ;
}
}
#endif

16.4.4 XAPI Inbound Response APIs

These APIs are available for you to read an inbound XAPI response:
n  jdeXML_GetDSCount

s jdeXML_GetDSName

s jdeXML_ParseDS

n  jdeXML_DeleteXML

16.4.5 XAPI Inbound Response API Usage Code Sample

This code sample illustrates how the business function uses the XML Service APIs to
read and parse the XML data:

#include <B4205030.h>

int iCurrentRecord;

int iHeaderCount;

int iRecordCount;

NID nidDSName;

DSD4205030A dsD4205030A = {0};

16-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

DSD4205030B dsD4205030B = {0};
#ifdef jdeXAPI_CALLS_ENABLED
if (jdeXAPI_IsCallTypeEnabled ("XAPIOPOUT") && jdeXAPI_IsCallTypeEnabled
("XAPIOPIN") )
{
iRecordCount = jdeXML_GetDSCount (1pDS->szXMLHandle) ;
if (iRecordCount > 0)
{
for (iCurrentRecord = 0; iCurrentRecord < iRecordCount;
iCurrentRecord++)
{
jdeXML_
GetDSName (1pDS->szXMLHandle, iCurrentRecord, nidDSName) ;
if (jdestrcmp (nidDSName, (const char*) "D4205030A") ==
0)//mod
{
jdeXML_ParseDS (
1pDS->szXMLHandle, iCurrentRecord, &dsD4205030A,
sizeof (DSD42050302)) ;
}

else

{
jdeXML_ParseDS (
1pDS->szXMLHandle, iCurrentRecord, &dsD4205030B,
sizeof (DSD4205030B)) ;

}
if (iCurrentRecord == iRecordCount)
jdeXML_DeleteXML (1pDS->szXMLHandle) ;

}
#endif

16.5 Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

This section provides an overview of the JD Edwards EnterpriseOne-to-EnterpriseOne
connectivity for XAPI events and discusses:

= XAPI outbound request handling APIs.

= XAPI outbound request parsing API usage sample code.
= XAPIinbound response generation APIs.

= XAPIinbound response parsing API usage sample code.

= XAPI error handling APIs.

See Also:
» /D Edwards EnterpriseOne Tools API Reference Guide on My Oracle
Support.

16.5.1 Understanding JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

The XAPI structure provides the capability for two different JD Edwards
EnterpriseOne systems to communicate with each other. The first JD Edwards
EnterpriseOne system (XAPI originator) generates a XAPI request (event). Instead of

Using XAPI Events - Guaranteed 16-9



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

the request being distributed to a third-party system, JDENET sends the request to a
second JD Edwards EnterpriseOne system. A JD Edwards EnterpriseOne to JD
Edwards EnterpriseOne XAPI event must be sent through a subscriber with the
JDENET transport type. The second JD Edwards EnterpriseOne system (XAPI
executor) processes the event and returns a response to the first JD Edwards
EnterpriseOne system (XAPI originator).

16.5.1.1 Modify Element Name for XML Documents

Before XAPI event processing, any document that was sent from JD Edwards
EnterpriseOne was considered to be a response document, and any document coming
in to JD Edwards EnterpriseOne was considered to be a request document. However,
with XAPI, request documents are generated by the JD Edwards EnterpriseOne
originating system and can be sent to a JD Edwards EnterpriseOne executor system.
Response documents are generated and sent out by the JD Edwards EnterpriseOne
executor system and received by the JD Edwards EnterpriseOne originating system. To
support XAPI and to enable the XML dispatch kernel to be able to distinguish between
a response and reply, JD Edwards created these type attributes to be used with the
jdeResponse element:

Element and Type Attribute Description

jdeResponse=RealTimeEvent Use this element and attribute to identify a XAPI request that is
sent from the JD Edwards EnterpriseOne originating system
and sent to the JD Edwards EnterpriseOne executor system.

jdeResponse=xapicallmethod Use this element and attribute to identify a XAPI response that
is sent from the JD Edwards EnterpriseOne executor system
and sent to the JD Edwards EnterpriseOne originating system.

When the XML Dispatch kernel receives a document with the jdeResponse element
and a RealTimeEvent or xapicallmethod type attribute, XML Dispatch sends the
document to the XML Service kernel. XML Service can distinguish a response or a
reply based on the type attribute that is associated with the jdeResponse element and
then processes the document appropriately.

16.5.1.2 Security for Originator and Executor

Access to the JD Edwards EnterpriseOne originator and JD Edwards EnterpriseOne
executor systems is based on:

= Security token

»  Environment

] Role

The JD Edwards EnterpriseOne originating system verifies that the security
information is valid and creates an hUser object with an encrypted token to send to the
JD Edwards EnterpriseOne executor. Encryption APIs (jdeEncypher and jdeDecypher)
are used to encrypt and decode the password. The security information is sent in the
XAPI request XML document.

Note: The user ID, password, environment, and role must be the
same on both JD Edwards EnterpriseOne systems (originator and
executor).

16-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

16.5.1.3 Error Processing for Originator and Executor

You might encounter these two errors during XAPI error processing between two JD
Edwards EnterpriseOne systems:

Type of Error Explanation

Business-related errors The business function or the business function specs cannot be found.

System errors These errors occur in other parts of the system (for example, message
delivery failure).

The system handles XAPI error processing for business-related errors in these ways:

= XAPIlogs business-related errors in the JD Edwards EnterpriseOne server log, and
the errors are delivered as part of the XAPI reply

= XAPI APIs parse business errors from the response document.

= XAPIlogs all information that is available about the error in the JD Edwards
EnterpriseOne server log.

16.5.2 XAPI Outbound Request Handling APIs

These outbound request handling APIs are available for you to generate a JD Edwards
EnterpriseOne-to-EnterpriseOne XAPI outbound request:

s jdeXMLRequest_GetDSCount

s jdeXMLRequest_GetDSName

s jdeXMLRequest_ParseDS

s jdeXMLRequest_DeleteXML

s jdeXMLRequest_ParseNextDSByName

s jdeXMLRequest_PrepareDSListForlterationByName

16.5.3 XAPI Outbound Request Parsing APl Usage Sample Code

This code sample shows the API usage for parsing an outbound request by the JD
Edwards EnterpriseOne XAPI executor:

#include <jde.h>

#define b0000310_c

/*****************************************************************************

* Source File: 10000310

*

* Description: Company Real Time Notification Outbound Wrapper Source File
*

*****************************************************************************/

#include <b0000310.h>
#include <B4206030.h>
#include <B4206000.h>

/**************************************************************************

* Business Function: CompanyRealTimeWrapper
*

* Description: Company Real Time Notification Outbound Wrapper

Using XAPI Events - Guaranteed 16-11



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

* Parameters:

* LPBHVRCOM 1pBhvrCom Business Function Communications
* LPVOID lpvoid Void Parameter - DO NOT USE!

* LPDSD0000310A 1pDS Parameter Data Structure Pointer

*‘k**‘k******‘k*********‘k**‘k******‘k**‘k**‘k******‘k*********‘k**‘k**‘k***‘k**‘k**‘k**/

int iXMLRecordCount = 0;

int iCurrentRecord = 0;

NID nidDSName;

ID idReturnValue = ER_SUCCESS;

ID idSORecordCount = ER_ERROR; /*Return Code*/
LPDSD4206000A 1pDS;

int lpmnJobNumber;

MATH_NUMERIC mnBatchNumber = {0};
unsigned long 1BatchNumber = {0};
DSD4206030A dsD4206030A = {0};

/* CacheProcessInboundDemandRequest B4206030.c */
DSD4206000I dsD4206000I = {0};

/* Demand scheduling inbound DSTR */
iXMLRecordCount = jdeXMLRequest_GetDSCount (1pDS->szXMLHandle) ;
if ( iXMLRecordCount > 0)
{
for ( iCurrentRecord = 0; iCurrentRecord < iXMLRecordCount;
iCurrentRecord++)
{
memset ( (void *) (&dsD4206000I), (int) (_J('\0")),
sizeof (DSD42060001I)) ;
memset ( (void *) (nidDSName), (int) (_J('\0')), sizeof (NID));
if (jdeXMLRequest_
GetDSName (1pDS->szXMLHandle, iCurrentRecord, nidDSName) )
{
/* Retrieving data*/
if (jdeStricmp (nidDSName, (const JCHAR *)_J("D40R0180B"))

if (jdeXMLRequest_
ParseDS (1pDS->szXMLHandle, iCurrentRecord,
&dsD4206000T, sizeof (DSD42060001)))
{
/* Get next number for the batch number of the
inbound INVRPT

record*/
if ( dsD4206000I.cInventoryAdvisement == _
J('1))
{
1BatchNumber = JDB_
GetInternalNextNumber () ;
LongToMathNumeric (1BatchNumber,
&mnBatchNumber) ;

FormatMathNumeric (dsD42060001.szBatch, &mnBatchNumber) ;

}

/* Setup cancel flag for pending delete record
*/

if ( dsD4206000I.cPendingDelete == _J('1'))

16-12 JD Edwards EnterpriseOne Tools Interoperability Guide



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

/* Flag set as 1 for any cancel demand

record */
dsD4206000I.cCancelFlag = _J('1');
}
else
{ /* Flag set as 9 for any non cancel demand
record */
dsD4206000I.cCancelFlag = _J('9"');
}
/* Load parms for cache */
//memset ( (void *) (&dsD4206030A4), (int) (_
J('\0")),

sizeof (DSD4206030A)) ;

14206000_LoadParmsToCache (&dsD42060001,

&dsD42060304) ;
MathCopy (&dsD4206030A . mnJobnumberA,
lpmnJdobNumber) ;
/* Add the DSTR to cache */
idReturnValue = jdeCallObject( _
J ("CacheProcessInboundDemand

Request") , (LPFNBHVR)NULL , 1lpBhvrCom ,lpVoid , (LPVOID)&dsD4206030A,
(CALLMAP *)NULL, (int)O0, (JCHAR*)NULL , (JCHAR*)NULL , (int)0 );

J

J

/* Write XML DSTR to cache fail */
if (idReturnValue == ER_ERROR)
{
jdeErrorSet (1pBhvrCom, 1lpVoid, (ID)0, _
("032E"), (LPVOID)NULL);

}
else
{ /* warning XML parse fail */
jdeErrorSet (1pBhvrCom, lpVoid, (ID)0, _
("40R46"), (LPVOID) NULL);
}
} /* end if */
}/* end if DS name */
}/* end for - looping all matching XML DSTR */
/* Ensure there is at least one record */
1dSORecordCount = ER_SUCCESS;
}/*if ( iXMLRecordCount > 0) */
return idSORecordCount;

16.5.4 XAPI Inbound Response Generation APIs

These outbound request handling APIs are available for you to generate a JD Edwards
EnterpriseOne-to-EnterpriseOne XAPI outbound request:

jdeXAPIResponse_SimpleSend
jdeXAPIResponse_Init
jdeXAPIResponse_Add
jdeXAPIResponse_Finalize
jdeXAPIResponse_Free

Using XAPI Events - Guaranteed 16-13



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

16.5.5 XAPI Inbound Response Parsing APl Usage Sample Code

This code sample shows the APl usage for generating an inbound response from the
JD Edwards EnterpriseOne XAPI executor to the JD Edwards EnterpriseOne

originator:

JDEBFRTN (ID) JDEBFWINAPI SendOrderPromiseRequest (LPBHVRCOM lpBhvrCom,

LPVOID lpVoid, LPDSD4205010 1pDS)
{

/****************************************************************

* Variable declarations
****************************************************************/

char cPromisableLine ="',

int nHeaderBackOrderAllowed = ' ';

HUSER hUser;

ID JDEDBResult = JDEDB_PASSED;
BOOL bExit = FALSE;

BOOL bB4001040Called = FALSE;

BOOL bXAPIInUse = FALSE;

BOOL bAtLeastOneDetail = FALSE;

#ifdef jdeXAPI_CALLS_ENABLED

XAPI_CALL_ID ulXAPICallID = 0;
XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;
#endif

/****************************************************************

* Declare structures
****************************************************************/
DSD4001040  dsD4001040 {0};
DSD4205020  dsD4205020 {0};
DSD4205040  dsD4205040 = {0}; /* Header Info */
DSD4205050  dsD4205050 {0}; /* Detail Info */
DSD4205010A  dsD4205010A {0}; /* Query Header */
DSD4205010B dsD4205010B {0} /* Query Detail */

DSD0100042 dsD0100042 = {0};
LPDSD4205040H 1pDSD4205040H = (LPDSD4205040H) NULL;
LPDSD4205050D 1pDSD4205050D = (LPDSD4205050D) NULL;

/****************************************************************
* Declare pointers
****************************************************************/
/****************************************************************
* Check for NULL pointers
****************************************************************/
if ((lpBhvrCom == (LPBHVRCOM) NULL) ||
(lpVvoid == (LPVOID) NULL) ||
(1pDS == (LPDSD4205010) NULL))
{
jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4363", (LPVOID) NULL);
return ER_ERROR;
}

/* Retrieving hUser */
JDEDBResult = JDB_InitBhvr (lpBhvrCom, &hUser, (char *)NULL,
JDEDB_COMMIT_AUTO ) ;

if ( JDEDBResult == JDEDB_FAILED )

{

jdeSetGBRError ( lpBhvrCom, lpVoid, (ID) 0, "4363" ) ;
return ER_ERROR ;

}

16-14 JD Edwards EnterpriseOne Tools Interoperability Guide



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

/****************************************************************
* Set pointers

****************************************************************/
/****************************************************************

* Main Processing

****************************************************************/

/* _____________________________________________________ */
/* Setting Up ErrorCode

*/
1pDS->cErrorCode = '0';
/* _____________________________________________________ */
/* Determining if XAPI is ready to be used */

bXAPIInUse = FALSE;

#ifdef jdeXAPI_CALLS_ENABLED
if (jdeXAPI_IsCallTypeEnabled ("XAPIOPOUT") &&
jdeXAPI_IsCallTypeEnabled ("XAPIOPIN") )

{
bXAPIInUse = TRUE;
}
#endif
/* ______________________________________________________ */
/* Data validation and default values. */

/* When Display Before Accept Mode is on, validate Key */
/* Information. Otherwise retrieve it from Header Record*/

if ((1pDS->cDisplayBeforeAcceptMode == '1"') &&
((MathZeroTest (&1pDS->mnOrderNumber) == 0) ||
(IsStringBlank (1pDS->szOrderType) ) ||
(IsStringBlank (1pDS->szOrderCompany))))

bExit = TRUE;
}
else
{
MathCopy (&dsD4205040 .mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205040.sz0rderType,
1pDS->sz0rderType,
sizeof (dsD4205040.sz0rderType) ) ;
strncpy (dsD4205040. szComputerID,
1pDS->szOrderCompany,
sizeof (dsD4205040.sz0rderCompany) ) ;
dsD4205040.cUseCacheOrWF = 1lpDS->cUseCacheOrWF;
strncpy (dsD4205040. szComputerID,
1pDS->szComputerID,
sizeof (dsD4205040.szComputerID)) ;
MathCopy (&dsD4205040 .mnJobNumber , &1pDS->mnJobNumber) ;
jdeCallObject ( "GetSalesOrderHeaderRecord",

NULL,
1pBhvrCom, lpVoid,
LPVOID) &dsD4205040,

(

(CALLMAP *) NULL,
(int) O,

(char *) NULL,
(char *) NULL,
(int) 0 ) ;

1pDSD4205040H = (LPDSD4205040H) jdeRemoveDataPtr (hUser,

Using XAPI Events - Guaranteed 16-15



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

(ulong)dsD4205040.1dHeaderRecord) ;

if (1pDSD4205040H == NULL)

{
bExit = TRUE;

}
}
/* _____________________________________________________ */
/* Set error if exiting at this point */
if (bExit == TRUE)
{

1pDS->cErrorCode = '1';

/* Sales Order Header Not Found */

strncpy (1pDS->szErrorMessagelD,

"072T" ,
sizeof (1pDS->szErrorMessagelID)) ;
if (1lpDS->cSuppressError != 'l')
{
jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "072T", (LPVOID) NULL);

}
}
/* _____________________________________________________ ~k/
/* Default Promising Flag is always 1 */

1pDS->cDefaultPromisingFlags = 1;
if (bExit == FALSE)
{

/* Call XAPIInit */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)

{
ulXAPICallID = jdeXAPI_Init( lpBhvrCom,
SendOrderPromiseRequest,
"XAPIOPOUT",
NULL,
&eXAPICallReturn) ;
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;
}
}
#endif
if (bExit == FALSE)
{
/* ________________________________________________ */
/* Loading Header Information */

I4205010_PopulateQueryHeader (1pDS, &dsD4205010A
1pDSD4205040H, &dsD0100042, hUser, 1pvoid, 1pBhvrCom) ;
nHeaderBackOrderAllowed = dsD4205010A.nAllowBackorders;

/* Adding Header Information */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Add( lpBhvrCom,
ulXAPICallID,

16-16 JD Edwards EnterpriseOne Tools Interoperability Guide



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

"SendOrderPromiseRequest",
"D4205010A",
&dsD42050104,
sizeof (DSD4205010A));
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;

}
#endif
}
}
if (bExit == FALSE)
{

/* Loading Detail Information */
MathCopy (&dsD4205050 .mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205050. szOrderType, 1pDS->sz0rderType,
sizeof (dsD4205050.sz0rderType) ) ;
strncpy (dsD4205050. szOrderCompany, 1pDS->sz0rderCompany,
sizeof (dsD4205050.szOrderCompany) ) ;
dsD4205050.cUseCacheOrWF = 1pDS->cUseCacheOrWF;
strncpy (dsD4205050. szComputerID, 1pDS->szComputerID,
sizeof (dsD4205050.szComputerID) ) ;
MathCopy (&dsD4205050 . mnJobNumber , &1pDS->mnJobNumber) ;
if (1pDSD4205040H->cActionCode != 'A')
{
dsD4205050.cCheckTableAfterCache = '1"';
}
else
{
dsD4205050.cCheckTableAfterCache

|OV;
}
jdeCallObject ( "GetSalesOrderDetailRecordOP",
NULL,
1pBhvrCom, lpVoid,
(LPVOID) &dsD4205050,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

if (dsD4205050.cRecordFound != '1"')

bExit = TRUE;
1pDS->cErrorCode = '1';

/* Sales Order Detail Not Found */
strncpy (1pDS->szErrorMessagelID, "4162",
sizeof (1pDS->szErrorMessagelD)) ;
if (1pDS->cSuppressError != 'l')
{
jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);

}
while ((dsD4205050.cRecordFound == '1') && (bExit == FALSE))
{
1pDSD4205050D = (LPDSD4205050D) jdeRemoveDataPtr ( hUser,
(ulong)dsD4205050. idDetailRecord) ;
/* Reset flags */

Using XAPI Events - Guaranteed

16-17



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

cPromisableLine 0
bB4001040Called = FALSE;

/* _________________________________________________ */
/* Evaluate the Record from F4211 (cDataSource = 2)*/
/* to find out if we should promise the line */
/* else find out from Order Promising Detail. */
if (dsD4205050.cDataSource == '1")
{

if (1pDSD4205050D->cOPPromiseLineYN == 'Y')

{

cPromisableLine = '1';

}
}
else if(dsD4205050.cDataSource == '2"')
{

MathCopy ( &dsD4001040.mnShortItemNumber,
&1pDSD4205050D->mnShortItemNumber) ;
strncpy ( dsD4001040.szBranchPlant,
1pDSD4205050D->szBusinessUnit,
sizeof (dsD4001040.szBranchPlant)) ;

jdeCallObject ( "GetItemMasterDescUOM",
NULL,
1pBhvrCom, lpVoid,
(LPVOID) &dsD4001040,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

bB4001040Called = TRUE;

cPromisableLine = I4205010_IsLinePromisable (1pBhvrCom, lpVoid,
hUser, 1pDS, 1pDSD4205050D, dsD4001040.cStockingType) ;
}
if (cPromisableLine == '1")

{

/* Set this flag if at least one promisable */
/* detail record exists. */
bAtLeastOneDetail = TRUE;

if (bB4001040Called == FALSE)

MathCopy (&dsD4001040.mnShortItemNumber,
&1pDSD4205050D->mnShortItemNumber) ;

strncpy ( dsD4001040.szBranchPlant,
1pDSD4205050D->szBusinessUnit,
sizeof (dsD4001040.szBranchPlant)) ;

jdeCallObject ( "GetItemMasterDescUOM",
NULL,
1pBhvrCom, lpVoid,
(LPVOID) &dsD4001040,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

16-18 JD Edwards EnterpriseOne Tools Interoperability Guide



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

I4205010_PopulateQueryDetail ( 1pDS, &dsD4205010B,

1pDSD4205050D,

&dsD4001040,

&dsD42050104,
&dsD0100042,

cPromisableline,
hUser,
1pvoid,

1pBhvrCom) ;

#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Add( lpBhvrCom,
ulXAPICalllID,
"SendOrderPromiseRequest",
"D4205010B",
&dsD42050108B,
sizeof (DSD4205010B)) ;
if (eXAPICallReturn != eEventCallSuccess)

bExit = TRUE;

/* Fetching the next Detail Record */
MathCopy (&dsD4205050 . mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205050. szOrderType, 1pDS->sz0rderType,
sizeof (dsD4205050.sz0rderType) ) ;
strncpy (dsD4205050. szOrderCompany, 1pDS->szOrderCompany,
sizeof (dsD4205050.szOrderCompany) ) ;
dsD4205050.cUseCacheOrWF = 1pDS->cUseCacheOrWF;
strncpy (dsD4205050. szComputerID, 1pDS->szComputerID,
sizeof (dsD4205050.szComputerID)) ;
MathCopy (&dsD4205050 .mnJobNumber , &1pDS->mnJobNumber) ;
if (1pDSD4205040H->cActionCode != 'A')
{
dsD4205050.cCheckTableAfterCache = '1';
}
else
{
dsD4205050.cCheckTableAfterCache = '0';
}
jdeCallObject ( "GetSalesOrderDetailRecordOP",
NULL,
1pBhvrCom, lpVoid,
(LPVOID) &dsD4205050,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

if (!bAtLeastOneDetail)
bExit = TRUE;
1pDS->cErrorCode = '1';

/* Sales Order Detail Not Found */
strncpy (1lpDS->szErrorMessagelID, "4162",

Using XAPI Events - Guaranteed 16-19



Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity

sizeof (1pDS->szErrorMessagelID) ) ;

if (1pDS->cSuppressError != 'l1')
{
jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);
}
}
if (bExit == FALSE)
{
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Finalize( lpBhvrCom,
ulXAPICallID,
"SendOrderPromiseRequest",
"OrderPromiseCallback) ";
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;
}
}
#endif
}
/* _________________________________________________ */
/* Call B4205020 in Add Mode */
if ((bExit == FALSE) &&
(1pDS->cDisplayBeforeAcceptMode != '1') &&
(1pDS->cUseCacheOrWF == '2'))
{

MathCopy (&dsD4205020 .mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205020 . szOrderType, 1pDS->sz0rderType,
sizeof (dsD4205020.sz0rderType) ) ;
strncpy (dsD4205020 . szOrderCompany, 1pDS->szOrderCompany,
sizeof (dsD4205020.sz0rderCompany) ) ;
strncpy (dsD4205020. szComputerID, 1pDS->szComputerID,
sizeof (dsD4205020.szComputerID)) ;
MathCopy (&dsD4205020 .mnJobNumber , &1pDS->mnJobNumber) ;

jdeCallObject ( MaintainOPWorkFile,

NULL,
1lpBhvrCom, lpVoid,
(LPVOID) &dsD4205020,

(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0

1

/***************************************************************
* Function Clean Up
****************************************************************/
#ifdef jdeXAPI_CALLS_ENABLED
if (eXAPICallReturn != eEventCallSuccess)
{

/* CleanUp */

if (bXAPIInUse == TRUE)

{

jdeXAPI_Free( lpBhvrCom,
ulXAPICalllID,

16-20 JD Edwards EnterpriseOne Tools Interoperability Guide



Mapping a Business Function

"SendOrderPromiseRequest") ;

}

1pDS->cErrorCode = '1';
/* System Error - no reasonable error messages exist. */
strncpy (1pDS->szErrorMessageID, "018Y",
sizeof (1pDS->szErrorMessagelID) ) ;
if (1pDS->cSuppressError != '1'")

jdeErrorSet (lpBhvrCom, 1lpVoid, (ID) 0, "018Y", (LPVOID) NULL);

}

}
#endif
if (1pDSD4205040H != (LPDSD4205040H)NULL)

{

jdeFree( (void *)1pDSD4205040H) ;

}
if (1pDSD4205050D != (LPDSD4205050D)NULL)

jdeFree( (void *)1pDSD4205050D) ;
}
return (ER_SUCCESS) ;
}

16.5.6 XAPI Error Handling APIs

These APIs are used for error handling in the XAPI executor system.
s jdeXML_CheckSystemError

The check system error APl is for system errors. It tells the JD Edwards
EnterpriseOne originator system that a system error occurred in the JD Edwards
EnterpriseOne executor system:

n  jdeXML_GetErrorCount
s jdeXML_SetErrors

The get error count and set errors APIs are for business errors. These two APIs,
when used together, find the number of business errors and then send the errors to
the BHVRCOM structure for you to resolve.

16.6 Mapping a Business Function

This section provides an overview of mapping business functions and discusses how
to add mapping information.

16.6.1 Understanding how to Map a Business Function

When the JD Edwards EnterpriseOne executor system receives an event from the JD
Edwards EnterpriseOne originator, the JD Edwards EnterpriseOne executor needs to
know what business function or system API to invoke to process the request. You must
map the business function or system API to the XAPI event name. You map business
functions and system APIs in the F907012 table. You use the Event Request Definition
program (P907012) to map business functions and APIs.

If you are mapping business functions, you enter the name of the business function. If
you are mapping APIs, you must enter the name of the API and the library where it is
defined. In addition, the signature of the API must be made common, similar to the
business function.

Using XAPI Events - Guaranteed 16-21



Mapping a Business Function

Mapping business functions enables you to point a XAPI event to a business function
or system API that you wrote. You do not need to modify source code of a business

function that JD Edwards delivered to you.

16.6.2 Forms Used to Add Mapping Information

Form Name FormiD Navigation Usage
Work With Definition W907012A Enter P907012 in the  Locate and review
Fast Path Command  existing mappings.
Line.
Request Definition W907012B On Work With Add or change
Definition, click Add. business function or
API mapping for the
XAPI event.

16.6.3 Adding Mapping Information

Access the Request Definition form.

Event Name

The name of the event (for example JDERTSOOUT). Some events are part of other

events.

BSFN Definition

An option that specifies the type of processing for an event.

API Definition

An option that specifies the type of processing for an event.

When you select the API definition option, the DLL Name field appears on the form.

Function Name

The actual name of the function. It must follow standard ANSI C naming conventions

(for example, no space between words).

DLL Name

Specifies the name of the database driver file. This file is specified in the [DB SYSTEM
SETTINGS] section of the enterprise server jde.ini file. The file you specify depends
upon the platform and the database. Values for specific machines and databases are:

DBDR: IBM i to DB2 for IBM i
JDBNET: IBM i to any other server DBMS
libjdbnet.sl: HP9000 to DB2 for IBM i

libjdbnet.sl: HP9000 to Microsoft SQL Server
libora80.sl: HP9000 to Oracle (Version 8.0) UNIX

libjdbnet.so: RS6000 to DB2 for IBM i

libjdbnet.so: RS6000 to Microsoft SQL Server
libora73.s0: RS6000 to Oracle (Version 7.3) UNIX
libora80.s0: RS6000 to Oracle (Version 8.0) UNIX

jdbodbc.dll: Intel to DB2 for IBM i =

jdboci32.dll: Intel to Oracle (Version 7.2) NT

16-22 JD Edwards EnterpriseOne Tools Interoperability Guide



Mapping a Business Function

jdboci73.dl1l: Intel to Oracle (Version 7.3) NT
dboci80.dl1l: Intel to Oracle (Version 8.0) NT
dbodbc.dll: Intel to SQL Server NT

jdbnet.dll: Digital Alpha to DB2 for IBM i
jdboci32.dll: Digital Alpha to Oracle (Version 7.2)
dboci73.dll: Digital Alpha to Oracle (Version 7.3)
jdboci80.dll: Digital Alpha to Oracle (Version 8.0)
jdbodbc.dll: Digital Alpha to SQL Server NT

Using XAPI Events - Guaranteed

16-23



Mapping a Business Function

16-24 JD Edwards EnterpriseOne Tools Interoperability Guide



17

Using Z Events - Guaranteed

This chapter contains the following topics:

= Section 17.1, "Understanding Z Events - Guaranteed"
s Section 17.2, "Z Event Process Flow"

»  Section 17.3, "Vendor-Specific Outbound Functions"
= Section 17.4, "Working With Z Events"

»  Section 17.5, "Setting Up Data Export Controls"

This chapter provides overviews of Z events, the Z event process, and vendor-specific
outbound functions, and discusses how to work with Z events.

Note: This chapter is applicable only if you use guaranteed events
delivery. Guaranteed event delivery is available when you use JD
Edwards EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
tools releases with JD Edwards EnterpriseOne Applications 8.10, 8.11,
and later EnterpriseOne Applications releases.

Refer to the Classic Events chapters if you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

17.1 Understanding Z Events - Guaranteed

A Z event is near real-time notification that an interoperability transaction has
occurred. To generate Z events, ]D Edwards EnterpriseOne uses the Z event generator
and the existing interface table infrastructure. You can use the existing JD Edwards
EnterpriseOne interface tables, or you can build customized interface tables as long as
the tables are created using JD Edwards EnterpriseOne standards.

17.2 Z Event Process Flow

This diagram shows Z event processing. The diagram expands on the system diagram
provided in the Using Events - Guaranteed Overview chapter. This diagram details the
processing that the CallObject kernel does during Z event processing. In the System
Overview diagram, the BSEN uses the Event API, all within the CallObject kernel and
in turn places the event data into the F90710 table. For Z events, additional processing
occurs within the CallObject kernel before the event is placed into the F90701 table. Z

Using Z Events - Guaranteed 17-1



Z Event Process Flow

events that are placed in the F90710 table are already in XML format (unlike real-time
and XAPI events, which only have raw event data in the table).

Figure 17-1 Z event processing

EnterpriseOne
Web Server
(2) 2
EnterpriseOne Y
Server
L Outbound
] — Subsystem
Batch Process
BSFN
2
Request (3
CallObject Kernel
Z Event <«
> BSFN Generator @+ Event API |
iz Event
\ A | (XML)
7

A
o 1

In summary:

1.

When a JD Edwards EnterpriseOne transaction occurs, the master business
function writes the transaction information in the appropriate interface table and
sends an update record to the F986113 table.

A batch process monitors the F986113 table. When the batch process finds a W
status in the F986113 table, it notifies the Z Event Generator (ZEVG), which is part
of the CallObject kernel. The batch process looks in the F0047 table to determine
which Z-event generator to call.

The F47002 table provides a cross-reference between the transaction and the
interface table where the record is stored. This information is used by the Z-event
generator.

The Z-event generator retrieves the transaction information from the interface
table and converts the transaction information into an XML document using a JD
Edwards EnterpriseOne DTD.

The Z-event generator sends the event (in the form of an XML document) to the
event API for distribution.

17-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Working With Z Events

6. After an event is successfully generated, the successfully generated column in the
F0046 table is updated. A UBE purges information in the interface table based on
information in the F0046 table.

7. The Event API sends the XML document to the F90710 table, where it is retrieved
by the Transaction server and routed to a subscriber.

17.3 Vendor-Specific Outbound Functions

The purpose of the vendor-specific outbound function is to pass the key fields for a
record in the outbound interface tables to a third-party system. With these keys, you
can process information from the database record into your third-party system. The
generic outbound subsystem batch process calls the function.

Each vendor-specific function is specific to the transaction being processed. You must
decide how the function actually uses the database record information. Although the
functions are written to your specifications, and most likely are written outside of JD
Edwards EnterpriseOne, these functions must use the required JD Edwards
EnterpriseOne defined data structure:

Data Item Required /O Description

szUserld Y I User ID - 11 characters
szBatchNumber Y I Batch Number - 16 characters
szTransactionNumber Y I Transaction Number - 23 characters
mnLineNumber Y I Line Number - double
szTransactionType Y I Transaction Type - 9 characters
szDocumentType Y I Document Type - 3 characters
mnSequenceNumber Y I Sequence Number - double

17.4 Working With Z Events

This section provides an overview about Z event configuration and discusses how to
add a data export control record.

17.4.1 Configuring Z Events

To generate Z events, complete these tasks:

= Enable the Z event.

= Update the Flat File Cross-Reference table.

= Update the Processing Log table.

= Verify the subsystem job is running.

= Purge data fro the interface table.

= Synchronize F47002 records with F90701 records.

= Set up data export controls.

17.4.2 Enabling Z Event Processing

You can enable or disable master business functions to write transaction information
into interface tables and the F986113 table when a transaction occurs. All outbound

Using Z Events - Guaranteed 17-3



Working With Z Events

master business functions that have the ability to create interoperability transactions
have processing options that control how the transaction is written. On the Processing
Options Interop tab, the first processing option is the transaction type for the
interoperability transaction. If you leave this processing option blank, the system does
not perform outbound interoperability processing. The second processing option
controls whether the before image is written for a change transaction. If this processing
option is set to 1, before and after images of the transaction are written to the interface
table. If this processing option is not set, then only an after image is written to the
interface table.

17.4.3 Updating Flat File Cross-Reference

When you enable Z events, you also update the F47002 table.The transaction type that
you entered in the processing option maps to the F47002 table to determine in which
interface tables to store the information from the transaction. You use the Flat File
Cross-Reference program (P47002) to update the F47002 table.

17.4.4 Updating the Processing Log Table

The Z event generator uses the F0046 table. The F0046 table contains the keys to the
interoperability transaction along with a successfully processed column. The sequence
number, transaction type, order type, function name, and function library are obtained
from the F0047 table. A vendor-specific record is sequentially created in the FO046 table
for every transaction processed by the Interoperability Generic Outbound Subsystem
(R00460) UBE or the Interoperability Generic Outbound Scheduler UBE (R00461). For
example, if three vendors have subscribed to a transaction using the F0047 table, three
records are created in the F0046 table, one record for each transaction. If the
vendor-specific object successfully processed the transaction, the Processing Log
record is updated with a Y in the successfully processed column. You can use the
Processing Log (P0046) program to determine whether a vendor-specific object
processed the interoperability transaction correctly.

A purging UBE that purges the interfaces tables runs based on information in the
processing log table.

Data in the Processing Log table cannot be changed.

17.4.5 Verifying that the Subsystem Job is Running

17-4

When the application master business function adds a record to the F986113 table, a
subsystem job is started. Subsystem jobs are continuous jobs that process records from
the Subsystem Job Master table. You should verify that the subsystem job is running.

Note: After the records are processed, instead of ending the job,
subsystem jobs look for new data in the data queue. Subsystem jobs
run until you terminate them.

You can schedule subsystem jobs.

See "Understanding JD Edwards EnterpriseOne Subsystems" in the /D Edwards
EnterpriseOne Tools System Administration Guide.

See "Understanding the Scheduler Application" in the |D Edwards EnterpriseOne Tools
System Administration Guide.

JD Edwards EnterpriseOne Tools Interoperability Guide



Setting Up Data Export Controls

17.4.6 Purging Data from the Interface Table

After you receive the Z event, you should purge the data from the interface table. You
can enter a purge UBE in the Processing Log table to purge the interface table.

See Interoperability Interface Table Information.

See Purging Interface Table Information.

17.4.7 Synchronizing F47002 Records with F90701 Records

Z events that are automatically created write records to the F90701 table. If you have
existing Z events defined and are upgrading to an 8.11 or later release, you can run the
Populate Event Activation Status Table UBE (R90705)to create the associated F90701
table records for the pre-existing Z event definitions.

17.5 Setting Up Data Export Controls

This section provides an overview of setting up data export controls and discusses
setting up the record.

17.5.1 Understanding Data Export Controls Records

The generation of outbound data is controlled through the F0047 table. You use the
Data Export Controls program (P0047) to update the F0047 table. For each transaction
type and order type, you must designate the Z event generator that will process the
outbound data. To send a given transaction type to more than one third-party
application, you associate the transaction type with each of the individual destinations
by making separate entries in the F0047 table for each destination. JD Edwards
suggests that you specify the name of a third-party function that is called for each
transaction as it occurs. Enough information is provided to notify you of the
transaction and give you the key values so that you can retrieve the transaction.

17.5.2 Forms Used to Add a Data Export Controls Record

Form Name FormID Navigation Usage
Work with Data WO0047A From an application ~ View existing data
Export Controls that supports event export control records.
generation, open the
Data Export Controls
program

An alternate way to
access the Data Export
Controls Program is to

enter P0047 in the Fast
Path command line
Data Export Control ~ W0047C On Work with Data Add a new data
Revisions Export Controls, click export control record.
Add.

17.5.3 Adding a Data Export Control Record

Access the Data Export Control Revisions form.
To set up Data Export Controls:
1. Complete these fields:

Using Z Events - Guaranteed 17-5



Setting Up Data Export Controls

— Transaction
- Order Type
2. For each detail row, enter one of these, depending on your platform:
- Function Name
Windows NT: _CallOnUpdate@36
UNIX: CallOnUpdate
IBM i: CallOnUpdate

Function Library

Windows NT: EnterpriseOne Bin32 Path\zevg.dll
UNIX(HP): EnterpriseOne Bin32 Path\libzevg.sl
UNIX(AIX, SUN): EnterpriseOne Bin32 Path\libzevg.so
IBM i: EnterpriseOne Bin32 Path\ZEVG

Enter 1 in the Execute For Add column to generate an event for an add or
insert.

Complete the same process as appropriate for update, delete, and inquiry.

Enter 1 in the Launch Immediately column to launch the object from the
Outbound Subsystem batch process.

This column does not affect the Outbound Scheduler batch process.

The system automatically increments the Sequence field for each line.

17-6 JD Edwards EnterpriseOne Tools Interoperability Guide



18

Using Batch Interfaces

This chapter contains the following topics:

= Section 18.1, "JD Edwards EnterpriseOne Interface Tables"
s Section 18.2, "Electronic Data Interface"

m  Section 18.3, "Table Conversion"

= Section 18.4, "Output Stream Access UBEs"

= Section 18.5, "Advanced Planning Agent Integration"

18.1 JD Edwards EnterpriseOne Interface Tables

An interface table (also called a Z table) is a working table where non-JD Edwards
EnterpriseOne information can be stored and then processed into JD Edwards
EnterpriseOne. You can also use interface tables to retrieve JD Edwards EnterpriseOne
data. JD Edwards EnterpriseOne interface tables mirror JD Edwards EnterpriseOne
application tables.

JD Edwards EnterpriseOne provides predefined interface tables for some applications.
You can also create your own interface tables as long as your interface table is
formatted in accordance with JD Edwards EnterpriseOne standards.

If you receive an error message when the interface table is processed, you can use a
revision application to make corrections to the data and then reprocess the data in
batch or transaction mode. After you have successfully processed the data in the
interface table, you should run a purge application to remove all records from the
interface table and to any remove secondary interface tables from the system.

Note: You usually use a batch interface to collect transactions over a
period of time and then process all of the transactions at once.

18.1.1 Structuring Interface Tables

Each JD Edwards EnterpriseOne transaction uses a set of interface tables. Some files
share a common set of interface tables. The interface table name is based on the JD
Edwards EnterpriseOne application table name and has Z1 as a suffix. For example, if
the application table is the F4211 table, the interface table is the F4211Z71 table.

Use the these guidelines to determine the based-on table:

= Inbound is based on the application table that is updated with data from the
interface table.

Using Batch Interfaces 18-1



JD Edwards EnterpriseOne Interface Tables

s Outbound is based on the application table that has data extracted from it and
placed in the interface table.

Both the inbound and outbound directions of an internal transaction within a system
use a single set of interface tables. For example, for a sales order in the Sales Order
system, the inbound customer order (850) and the outbound order acknowledgment
(855) share a set of interface tables.

If the interface table is used for both inbound and outbound transactions, the based-on
table should be the same application table. In the Sales Order example with an
inbound customer order and an outbound order acknowledgment, the detail interface
table is based on the F4211 table.

If the interface table exceeds 250 columns or has a record length greater than 1968, an
additional interface table is needed for the remaining columns. Columns in the
additional interface table should contain infrequently used data. The additional
interface table is named after the primary interface table with a letter, starting with A,
after the Z1 suffix. For example, if the primary interface table is F421171, the
additional table is F4211Z1A.

The beginning of the table has these columns, which act as control fields:
= User ID (EDUS) (key field)

= Batch Number (EDBT) (key field)

s Transaction Number (EDTN) (key field)

s Line Number (EDLN) (key field)

s Document Type (EDCT)

s Transaction Type (TYTN)

»  Translation Format (EDFT)

s Transmission Date (EDDT)

»  Direction Indicator (DRIN)

s Number of Detail Lines (EDDL)

s Processed (EDSP)

s Trading Partner ID (PNID)

s Action Code (TNAC)

You must use the key structure previously discussed.

The end of the table has the these columns, which are reserved for user and audit
fields:

s User Reserved Code (URCD)

s User Reserved Date (URDT)

s User Reserved Amount (URAT)
»  User Reserved Number (URAB)
s User Reserved Reference (URRF)
s Transaction Originator (TORG)

s  User ID (USER)

s Program ID (PID)

18-2 JD Edwards EnterpriseOne Tools Interoperability Guide



JD Edwards EnterpriseOne Interface Tables

s Work Station ID (JOBN)
s Date Updated (UPM])
= Time of Day (TDAY)

The middle of the table has all of the columns from the based-on application table,
excluding user reserved and audit field columns. An exception to this is when the
interface table is near the 250-column limit or the 1968-record length limit. In this case,
columns from the application table that most likely will not be needed should be
excluded.

Prefixes for the table columns are SY for the header and SZ for the detail.

Change or match interface tables, such as a cash receipt or purchase receipt, might
require additional columns that correspond to user input capable controls on an
interactive form.

A header table is not required for every transaction.

Note: If you create custom interface tables, use the structure and
format described in this chapter.

18.1.2 Updating JD Edwards EnterpriseOne Records

You use interface tables to import non-JD Edwards EnterpriseOne transactions into the
live JD Edwards EnterpriseOne database. These non-JD Edwards EnterpriseOne
transactions are referred to as Z transactions. Inbound interface tables are based on the
JD Edwards EnterpriseOne application table where the transaction is stored. Once
records are correctly updated to the appropriate interface table, you can update the
record to the JD Edwards EnterpriseOne database.

See Also:

s Understanding Z Transactions.

18.1.3 Retrieving JD Edwards EnterpriseOne Records

You can use interface tables to retrieve information from JD Edwards EnterpriseOne.
Outbound interface tables are based on the JD Edwards EnterpriseOne application
table from where the data is extracted. You can retrieve records from JD Edwards
EnterpriseOne by running an extraction batch process, by using a subsystem business
function, or by generating a Z event.

18.1.3.1 Running an Extraction Batch Process

You copy the records from the JD Edwards EnterpriseOne application tables to the JD
Edwards EnterpriseOne outbound interface tables using the extraction batch process
that is specifically set up for the type of document you are sending.

You initiate the extraction batch process for applications that support extraction batch
processing. The extraction batch process displays a version list of report features. You
can run an existing version, change an existing version, or add a version. You can also
change the processing options and data selection options for that version to fit your
needs.

When you run the extraction batch process, the program retrieves data from the JD
Edwards EnterpriseOne application tables for the transaction and copies the data into
the outbound interface tables. The system also generates an audit report that lists the
records that completed successfully. Errors are placed on the audit report and also sent

Using Batch Interfaces 18-3



JD Edwards EnterpriseOne Interface Tables

to the employee work center. You can use a revisions application to correct errors in
the interface table records.

18.1.3.2 Subsystem Business Function

You can use the generic outbound subsystem business function, Add Transaction To
Subsystem Queue (B0000176), to write a record to the subsystem data queue to specify
a batch process that needs to be awakened in the subsystem. This business function
starts processing of a batch of one (single transaction). The business function also
passes keys to the subsystem data queue.

The data structure for the outbound transaction is:
s Line Number (EDLN)

s Transaction Type (TYTN)

s Document Type (DCTO)

s Action Code (TNAC)

See Also:
s Understanding Z Events - Guaranteed.

s Understanding Z Events - Classic.

18.1.4 Using the Revision Application

You use the revision application to add, delete, edit, and review transactions in the
interface tables. You can use a revision application to correct the record in error. After
you make a change to the interface table, you run the process again. You can continue
to make corrections and rerun the transaction process until the program completes
without errors. The name is based on the detail interface table. For example, if the
tables for Sales Order Entry are F4201Z1 and F4211Z71, the revision application is
P421171. The revisions application can call the appropriate purge named event rule to
delete records from the interface table.

18.1.5 Purging Interface Table Information

You should run a purge batch process periodically after you have successfully
processed the data in the interface tables. The purge batch process should have one or
two sections; the number of sections depends on the interface tables. The purge batch
process calls the purge named event rule (NER). The name of the purge batch process
is based on the revisions application with a P suffix. For example, if the revisions
application is P4211Z1, the purge batch process is R4211Z1P.

Purge NERs have two modes:

s Header mode, which deletes the header record and all associated records in
independent tables.

s Detail mode, which deletes the detail record and all associated records in
dependent tables.

The purge NER is named after the purge batch process. Only eight characters are
allowed for the NER name. If the name has nine characters using these standards,
remove the P suffix. For example, if the purge batch process is R4211Z1P, the purge
NER is N4211Z1P.

18-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Advanced Planning Agent Integration

When a before image for net change is deleted, the corresponding after image is also
deleted. When an after image is deleted, the corresponding before image is also
deleted.

18.2 Electronic Data Interface

The JD Edwards EnterpriseOne Data Interface for Electronic Data Interchange (EDI)
system acts as an interface between the JD Edwards EnterpriseOne system data and
the translator software. In addition to exchanging EDI data, this data interface can also
be used for general interoperability and electronic commerce needs where a file-based
interface meets the business requirements.

See Also:

»  JD Edwards EnterpriseOne Data Interface for Electronic Data
Interchange 9.0 Implementation Guide.

18.3 Table Conversion

Table conversion is a special form of Universal Batch Engine (UBE) that enables you to
do high-speed manipulation of data in tables. JD Edwards EnterpriseOne has a table
conversion utility that you can use to gather, format, export, and import enterprise
data. The table conversion tool enables you to transfer and copy data and to delete
records from tables.

See Also:

s "Understanding Table Conversion" in the JD Edwards
EnterpriseOne Tools Development Tools: Data Access Tools Guide.

18.4 Output Stream Access UBEs

If you have set up an Output Stream Access (OSA) interface, you can pass JD Edwards
EnterpriseOne data to another software program for processing and formatting. OSA
can use its own set of commands or it can use an XML library.

See Also:

= "Understanding OSA" in the JD Edwards EnterpriseOne Tools
Development Tools: Report Printing Administration Technologies Guide.

18.5 Advanced Planning Agent Integration

The JD Edwards EnterpriseOne Advanced Planning Agent (APAg) is a tool for batch
extracting, transforming, and loading of data. APAg supports access to data sources in
the form of relational databases, flat file format, and other data or message encoding,
such as XML. APAg also moves data from one place to another and initiates tasks
related to the movement of the data.

See JD Edwards Supply Chain Planning, Advanced Planning Agent Guide.

Using Batch Interfaces 18-5



Advanced Planning Agent Integration

18-6 JD Edwards EnterpriseOne Tools Interoperability Guide



19

Using Open Data Access

This chapter contains the following topics:

= Section 19.1, "Understanding Open Data Access"
»  Section 19.2, "Installing ODA"

= Section 19.3, "Working with Data Sources"

= Section 19.4, "Working with ODA"

= Section 19.5, "Managing ODA Error Messages"

19.1 Understanding Open Data Access

The JD Edwards EnterpriseOne Open Data Access ODBC driver is a read-only driver
that is compliant with version 2.5 or higher. Front-end Windows query and reporting
tools can use ODA to access the JD Edwards EnterpriseOne database. ODA supports
these front-end tools:

= Microsoft Query

= Microsoft Access

= Microsoft Excel

= ODBCTEST

s Crystal Reports

= Microsoft Analysis Service (not certified)

ODA sits between the front-end Query and Reporting tool and the JD Edwards
EnterpriseOne-configured ODBC drivers.

19.2 Installing ODA

To access JD Edwards EnterpriseOne data with the ODA ODBC driver, your system
must meet the minimum technical requirements (MTR) for JD Edwards
EnterpriseOne. MTRs are updated for each release and are available on the My Oracle
Support website. Before you install ODA, ensure that your system meets the specified
hardware and software requirements.

19.2.1 Hardware Requirements

Hardware requirements include:

= IBM-compatible personal computer.

Using Open Data Access 19-1



Installing ODA

» Hard disk with 6 MB of free disk space.
»s  Atleast 16 MB of random access memory (RAM).

19.2.2 Software Requirements

Software requirements include:

= JD Edwards EnterpriseOne.

= JD Edwards EnterpriseOne Open Data Access driver JDEOWODA.dIL).

s The 32-bit ODBC Driver Manager, version 3.0 or later (ODBC32.dll).
This file is included with the ODBC Database Drivers.

s Microsoft Windows 95 or later, or Windows NT 4.0 or later.

Note: The use of the ODA ODBC driver by 16-bit applications on
Windows 95 is not supported.

19.2.3 ODBC Component Files

The JD Edwards EnterpriseOne installation installs the components required by ODBC
database drivers. You might also find these additional files:

File File Name

ODA Diriver JDEOWODA.DLL
ODA Driver Help JDEOWODA.HLP
Release Notes README.TXT

Note: OLEDB is a driver for SQL Server. However, OLEDB data
source is not supported for ODA. If you are using ODA with SQL
Server, use ODBC to set up your data source.

19.2.4 ODA Driver Architecture
The JD Edwards EnterpriseOne ODA ODBC driver architecture has five components:

Component Description

Application A front-end Query and Reporting tool that calls the ODA driver to access
data from the JD Edwards EnterpriseOne database.

Manager Loads and unloads drivers on behalf of an application. Processes ODBC calls
or passes them to the ODA driver.

JD Edwards Passes some of the ODBC requests directly to the vendor's ODBC driver. If

EnterpriseOne  specific data types for JD Edwards EnterpriseOne are used, then the SQL

ODA Driver SELECT statement is modified before sending it to the vendor's ODBC
driver. After the data is returned from the vendor's ODBC driver, the JD
Edwards EnterpriseOne ODA ODBC driver might need to manipulate the
data so that it displays correctly in the application.

Vendor Driver  Processes ODBC function calls and submits SQL requests to the specific data
source. If necessary, the driver modifies an application's request so that the
request conforms to the syntax supported by the associated DBMS.

19-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with Data Sources

Component Description

Data Source The data that you want to access, as well as the operating system, DBMS, and
network platform for the data.

19.3 Working with Data Sources
This section provides an overview of data sources and discusses how to
= Add a data source.
= Modify a data source.
s Delete a data source.
= Configure a data source.
s Connect a data source.

Although the ODA driver is automatically registered as part of the installation process,
you might need to add a driver data source. You can also add a file data source or a
system data source. A system data source can be used by more than one user on the
same machine. A system data source is a data source that you have set up with a
system data source name (DSN). The system DSN can also be used by a system-wide
service, which can then gain access to the data source even if no user is logged on to
the machine. You can delete any of the data sources.

After you add a data source, you must configure and connect it. You can modify the
configuration and connection setting for an existing data source. For example, you can
configure the ODA driver so that you can view currency data in the correct format.

If you use Oracle, you must create another ODBC DSN, named OneWorld ODA Ora,
so that you can access the Oracle data source through ODA. Specific information for
doing this is included in the online release notes.

You can customize the list of functions that are enabled in ODA. Advanced
configuration is optional. If you choose not to customize the list of functions enabled
in ODA, the system uses a default list of settings.

You access the ODBC button from the Control Panel on your Windows workstation.
When you click the ODBC button, a User Data Sources dialog box appears.

19.3.1 Adding a Data Source

After you add the data source, you must configure it and connect it. This table explains
how to navigate on the User Data Sources dialog box to add a data source:

Function Navigation on User Data Sources dialog box

Add an ODA Driver Data Structure ~ On the User Data Sources dialog box, click Add. On
Add Data Source, select the JD Edwards EnterpriseOne
Open Data Access driver from the Installed ODBC
Drivers list, and then click Finish.

Add a File Data Source On the User Data Sources dialog box, click the DSN tab.
On File Data Sources, click Add. On Add Data Source,
select the JD Edwards EnterpriseOne Open Data Access
driver from the Installed ODBC Drivers list, and then
click Finish.

Using Open Data Access 19-3



Working with Data Sources

Function Navigation on User Data Sources dialog box

Add a System Data Source On the User Data Sources dialog box, click the System
DSN tab, and then click Add. On system Data Sources,
click Add. On Add Data Source, select the JD Edwards
EnterpriseOne Open Data Access driver from the
Installed ODBC Drivers list, and then click Finish.

19.3.2 Modifying a Data Source

You can modify an existing data source. After you access the appropriate data source,
select Configure and then modify the existing configuration settings.

19.3.3 Deleting a Data Source

To delete a data source, access the appropriate data source, select remove, and click Yes
to confirm the delete.

19.3.4 Configuring a Data Source

To modify an existing data source, access the appropriate data source type and then
select a data source from the available list. Click Configure. When you add a data
structure, the Configure Data Source tab appears. Enter the information as shown in
this table, and then click OK:

Field Name Description

Data Source Name Specify the name for the JD Edwards EnterpriseOne Open Data Access
driver.

Description Specify the description of the driver that you are adding. The

Description entry cannot exceed 79 characters.

19.3.5 Connecting a Data Source

After the data source is configured, the Connect form appears. You can also select one
or more table and business view display Options. On the Connect form, select one or
more of these options:

Option Name Description

Convert User Defined Codes Select this option to return the associated
description of the user-defined field instead of the
user-defined code. The associated description is
more descriptive because it is a text description
instead of a code that is used for the user-defined
code. The default option is to display the associated
description instead of the user-defined code.

Convert Currency Values Select this option to convert currency fields to the
correct values.

Use Long Table or Business View Names  Select this option to view long table or view names.

Use Long Column Names Select this option to view long column names

Tables Only Select this option to view only JD Edwards
EnterpriseOne tables.

Business Views Only Select this option to view only JD Edwards
EnterpriseOne business views.

19-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with ODA

Option Name Description

Tables and Business Views Select this option to view both JD Edwards
EnterpriseOne tables and JD Edwards
EnterpriseOne business views.

19.4 Working with ODA

This section discusses how to:
= Manipulate data.
= Use keywords in the connection string.

= Run a query using Microsoft Excel.

19.4.1 Manipulating Data

The JD Edwards EnterpriseOne database contains object and column names, specific
data types and security rules that must be converted or applied so that the data is
presented correctly. The specific data types and rules include decimal shifting, Julian
date, currency, media object, security, and user-defined codes. In some instances, ODA
modifies the SQL SELECT statement, as well as the data, so that it appears correctly
within the chosen tool. Once the ODA driver is properly installed and an ODBC data
source is established, you can use the functionality of the ODA driver. When a SQL
connection is established, the environment of the current connection is stored in the
system as the database name. SQLGetInfo can access this value later or it can be used
for future connections.

You can use these specific ]D Edwards EnterpriseOne features with JD Edwards
EnterpriseOne ODA:

Feature Description

Long Table and Business Long table and business view names enable you to see a descriptive

View Names name when you view an object list. You can use either the
descriptive names or the original JD Edwards EnterpriseOne object
name in the SELECT statement.

Note: This option might not be available for all third-party products
(for example, ShowCase STRATEGY products prior to the 2.0 release
or Crystal Reports because the long names contain special characters
that are not handled correctly by these tools.

Long Column Names Long column names enable you to see a descriptive name when
viewing any columns list. You can still use either the descriptive
names or the original JD Edwards EnterpriseOne column name. For
example, you can use either of these statements to retrieve
information from the F0101 table:

s SELECT ABANS from the F0101 table.
s SELECT AddressNumber from the F0101 table.

Using Open Data Access 19-5



Working with ODA

Feature

Description

Julian Date

Julian date modifies all references to Julian date columns to convert
the date to an SQL-92 standard date. The JD Edwards EnterpriseOne
Julian date is converted to a standard date value that can be used in
date calculations. This feature enables you to use duration or other
date calculations in both the SELECT (result data), WHERE, and
HAVING clauses and the ORDER BY clause.

The SQL SELECT statement is modified to before a data calculation
to convert the JD Edwards EnterpriseOne Julian date column to a
standard date. The modification to the SQL SELECT statement is
based on the data source that is being accessed because of driver
differences in handling date calculations. If the original column
value is zero, the date conversion results in a date value of
1899-12-31. To remove these values, this condition should be added
to the WHERE clause in the SELECT statement, where DATECOL is
the JD Edwards EnterpriseOne Julian date column:

DATECOL <> {d "1899-12-31'}

Decimal Shifting

All references to decimal-shifted columns are modified to shift the
decimal point to cause the result data to be correct. This feature
enables SQL statements that contain complex expressions,
aggregates, and filtering to run and return accurate results.

The SQL SELECT statement is modified to divide the column by the
appropriate number of decimal places so that the data is returned
correctly and to make compare operators work for filtering.

Currency

Currency columns are limited to single-column references in the
selected columns list. Returned data is converted using the standard
JD Edwards EnterpriseOne currency conversion routines. All other
references to the currency column in the SQL statement are passed
through to the native driver. You must understand how the currency
column is used to make effective use of filtering.

Before selected columns are returned, the JD Edwards EnterpriseOne
Open Data Access driver converts any currency columns to the
correct value. Currency columns used in the WHERE or HAVING
clause are processed based on the non-converted currency value.
Currency columns in the GROUP BY or ORDER BY clause are
grouped and sorted by the non-converted currency value.

Media Object

The Media object column, TXVC, in the FO0165 table storage is
limited to single-column references in the selected columns list.
ODA returns media data in plain text or rich text format (RTF) and
truncates other binary data, such as an image. The size limitation of
the text or RTF is 30,000 characters, and text will be truncated when
it reaches this limitation.

Column Security

When column security is active, any reference to restricted columns
causes an error to be returned when the SELECT statement is
examined, including the use of * (asterisk-selecting all columns) in
the select clause, as defined by the SQL-92 standards. You will
receive an error if you are not authorized for all of the columns in the
table.

Row Security

When row security is active, the statement is modified to include the
appropriate WHERE clause for filtering secured rows. You will only
see rows that you are authorized to access along with getting
accurate results using aggregate functions-for example, SUM or
AVG.

19-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with ODA

Feature

User Defined Codes

Description

When user-defined codes (UDCs) are enabled, you see the associated
description instead of the internal code when the column data is
returned. This processing affects only the returned data and has no
effect on the other parts of the Select statement (for example, Where,

Order By and so on). This is an optional setting that can be
configured when you set up the driver.

Before the UDC is returned to you, the JD Edwards EnterpriseOne
Open Data Access driver converts the code to the associated
description. The UDC columns used in the WHERE or HAVING
clause are selected based on the non-converted code and the UDC
columns referenced in the GROUP BY and ORDER BY clause are
grouped and sorted by the non-converted code.

19.4.2 Using Keywords in the Connection String

This section discusses keywords that you can use in a connection string when you
write your own database applications.

You can use C programming language to write database applications that directly
invoke SQL APIs that are supported by ODA, such as SQLDriverConnect and
SQLBrowseConnect. This table lists keywords that you use in the connection string
when you write your own database applications:

Input Output
Connection Connection
Key Value Description String String
CONVERTUDC Y or N (default Convert UDC or Optional. If not ~ From the input
value is N) not in the connection  string or
string, load from INI/registry
INI/registry settings.
settings (JD
Edwards
EnterpriseOne
ODA DSN
settings).
CONVERT Y or N (default Convert currency Optional. If not ~ From the input
CURRENCY value is N) or not in the connection string or
string, load from INI/registry
INI/registry settings.
settings (JD
Edwards
EnterpriseOne
ODA DSN
settings).
SHIFTDECIMAL Y or N (default ~ Use decimal shift Optional. If not  From the input
S value is Y) or not in the connection  string or
string, load from INI/registry
INI/registry settings.
settings (JD
Edwards
EnterpriseOne
ODA DSN
settings).

Using Open Data Access 19-7



Working with ODA

Input Output
Connection Connection
Key Value Description String String
CONVERTJULIA Y or N (default Convert Julian Optional. If not ~ From the input
N DATES value is Y) dates or not in the connection string or
string, load from INI/registry
INI/registry settings.
settings (JD
Edwards
EnterpriseOne
ODA DSN
settings).
DISPLAYOPTIO 0/1/2(nodefault Display TBLE, Optional. If not From the input
NS value) BSEN or both in the connection string or
string, load from INI/registry
INI/registry settings.
settings (JD
Edwards
EnterpriseOne
ODA DSN
settings).
LONGTABLE Y or N (default ~ Use long names  Optional. If not ~ From the input
NAMES value is Y) for tables or not  in the connection string or
string, load from INI/registry
INI/registry settings.
settings (JD
Edwards
EnterpriseOne
ODA DSN
settings).
LONGCOLUMN Y or N (default ~ Uselong names Optional. If not  From the input
NAMES value is Y) for columns or in the connection string or
not string, load from INI/registry
INI/registry settings.
settings (JD
Edwards
EnterpriseOne
ODA DSN
settings).
UID <string> User ID Required by The same as the
JDEDriverConne input if not
ct (SQL_ overwritten by
DRIVER _ OW login.
NOPROMPT).
PWD <string> Password Required by The same as the
JDEDriverConne input if not
ct (SQL_ overwritten by
DRIVER _ OW login.
NOPROMPT).
ENVIRONMENT  <string> Environment Required by The same as the
JDEDriverConne input if not
ct (SQL_ overwritten by
DRIVER _ OW login.
NOPROMPT).
DBQ <string> The same as the ~ Work as Removed if
ENVIRONMENT ENVIRONMENT ENVIRONMENT
,if exists.
ENVIRONMENT

not specified.

19-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with ODA

Input Output
Connection Connection
Key Value Description String String
DSN <string> Data source Optional. Uses Overwritten by
DEFAULT if login.
invalid.

If you use the Microsoft Analysis Service tool, you can use connection string keywords
to create a new data source. Use this example to write a connection string:

DSN=OneWorld ODA; DBQ=ADEVHPO02;

19.4.3 Running a Query Using Microsoft Excel

This section discusses how to use Microsoft Excel to create and run a query.

To run a query using Microsoft Excel:

1.
2.
3.

From the Data menu, select Get External Data.
Select Create New Query.

On the Databases tab, select the appropriate data source (for example, JD Edwards
EnterpriseOne Local or JD Edwards EnterpriseOne ODA).

Because Excel uses file data sources, the ODA data source you set up in the 32-bit
ODBC Administrator does not appear on the list of databases. You should create a
File-type Data Source by selecting New Data Source and then follow the procedures
for setting up a data source.

When you select the ODA data source, you might need to log on to JD Edwards
EnterpriseOne to use the ODA driver. Once you log on, you will not see the
Solution Explorer because it is only activated so that the ODA driver can check
security and environment mappings.

The Excel Query Wizard displays a list of available tables in the JD Edwards
EnterpriseOne data source. Expanding any table name shows the available
columns or fields in each table. If you are using the ODA driver, you see long
descriptions of each field (for example, DateUpdated). If not, you see the alpha
codes for the fields (for example ABUPMJ).

To translate field and column names from the JD Edwards EnterpriseOne alpha
codes, use the F9202 table. Select all rows and sort (on FRDTAI) to create a
cross-reference.

The first two letters of all JD Edwards EnterpriseOne column names are the
application code, and the remaining letters are in this table as a suffix.

Finish building your query with Query Wizard and save the query.
Run your query and review it in Excel or MicroSoft Query.

After you run a query from Excel, if you view the results using Microsoft Query,
results are returned quickly. MicroSoft Query selects a page at a time. If you are
working with a large result set, you should close JD Edwards EnterpriseOne and
any applications that require a lot of memory so that you can more quickly
navigate through the records. If you convert the query results directly into a
spreadsheet instead of into Microsoft Query, the process might take significantly
longer, and you cannot view the results until the entire file builds.

Using Open Data Access 19-9



Managing ODA Error Messages

To verify the outcome of each query, you should run each one first using the non-ODA
JD Edwards EnterpriseOne data source and then use the ODA data source and

compare the results.

19.5 Managing ODA Error Messages

This section discusses error messages that you might receive.

JD Edwards EnterpriseOne Open Data Access driver sends error messages. The
messages are placed in the ODBC error message queue where the application can
retrieve them using the standard ODBC error mechanism. The JD Edwards

EnterpriseOne messages look like this:

[J.D. Edwards] [OneWorldODA Driver ] MESSAGE TEXT

This is a list of the errors that you can receive from the driver:

Error Message

Description

Configuration Request Error

This error might occur when you add a new
data source if you do not provide enough
information for the driver and it cannot show
a configuration dialog.

You must either pass enough information to
the driver or allow the driver to prompt for
more information.

Option Value Changed

This is an informational message that occurs
when you attempt to set a connection or
statement option to a value that the driver
does not accept. The driver then changes the
value to an acceptable default value and uses
this message to let you know that the value
has changed.

The JD Edwards EnterpriseOne Open Data
Access driver changes values in these areas:

Setting the row set size to a value other than
one. The driver currently only supports
single-row row sets.

Setting the login time out to a value other than
zero. The driver currently only supports zero
in this option, which means, timeout disabled.

Data Source Name Is Not Valid

The data source you entered is not a valid
ODBC data source name. This error occurs
when you are adding a new data source or
configuring an existing data source. You must
enter a name that follows the ODBC data
source naming convention.

Data Source Does Not Exist

This error occurs when you attempt to use a
data source that does not exist. You must enter
the name of an existing data source. If you get
this error when you attempt to connect to a
data source, you might need to create a default
data source.

Unable to Allocate Memory

The JD Edwards EnterpriseOne Open Data
Access driver was not able to allocate enough
memory to continue. You must close some
applications and try the operation again. Make
sure that you meet the minimum system
requirements.

19-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Managing ODA Error Messages

Error Message

Description

Invalid Type of Request

You attempted to use a configuration option
that is unknown to the driver. The driver
supports these options when configuring data
sources:

= Adding a data source
= Configuring a data source

= Removing a data source

Data Truncated

The conversion of column data resulted in a
truncation of the value. You should allocate

more room for the column data to avoid this
informational message.

Syntax Error or Access Violation

The statement contained a syntax error and no
further information is available.

Unable to Display Connection Dialog

The driver encountered an error when
attempting to display the connection dialog.

Cross System Joins Not Supported

This error occurs in one of two situations:

= You referenced tables that are contained
on multiple systems in the JD Edwards
EnterpriseOne environment. The JD
Edwards EnterpriseOne Open Data
Access driver currently supports tables
that are referenced on a single system.

= You referenced a business view that
contains multiple tables that reside on
multiple systems.

You must make sure that you are referencing
tables on a single system or a business view
that contains tables on a single system.

Unable to Connect to the JD Edwards
EnterpriseOne Environment

The driver could not establish a connection to
the JD Edwards EnterpriseOne environment.
This connection is required before a successful
connection can be made to this driver.

Internal Data Conversion Error

The driver encountered an unknown error
during data conversion.

Internal Execution Error

The driver experienced an unexpected error
during a statement execution.

User Defined Code Columns Can Only Be in
Simple Column References

A user attempted to use a User Defined Code
column in a complex expression. The JD
Edwards Enterprise Open Data Access driver
only allows such columns to be simple
references.

Currency Columns Can Only Be in Simple
Column References

A user attempted to use a Currency column in
a complex expression. The JD Edwards
EnterpriseOne Open Data Access driver only
allows such columns to be simple references.

Media Object Columns Can Only Be in Simple
Column References

A user attempted to use a Media Object
column in a complex expression. The JD
Edwards EnterpriseOne Open Data Access
driver only allows such columns to be simple
references.

Column Security Violation

You attempted to use a column you are not
authorized to use. You must remove
references to those columns that are secured.

Using Open Data Access 19-11



Managing ODA Error Messages

Error Message

Description

Invalid Cursor State

You attempted an operation that was not valid
for the state that the driver is in, for example:

= You attempted to bind a column prior to
preparing or executing a statement.

n You attempted to execute a statement
while there are pending results.

= You attempted to get data from the driver
prior to preparing or executing a
statement.

n You attempted to prepare a statement
while there are pending results.

Invalid Column Number

You attempted to access a column that was not
part of the statements results.

Driver Does Not Support the Requested
Conversion

An attempt was made to convert a column to
a data type not supported by the JD Edwards
EnterpriseOne Open Data Access driver.

Invalid Date or Time String

An attempt to convert a character column to a
date, time, or timestamp value failed because
the character column did not contain a valid
format.

Invalid Numeric String

An attempt to convert a character column to a
numeric value failed because the character
column did not contain a valid numeric value.

Numeric Value Out of Range

An attempt to convert a column to a numeric
value failed because the output data type
could not accommodate the value in the
column. You should use the default data type
or select a data type that can accommodate the
column value.

Data Returned for One or More Columns was
Truncated

An attempt to convert a column to a numeric
value caused a truncation of decimal digits.
The output data type could not accommodate
the value in the column. You should use the
default data type or select a data type that can
accommodate the column value.

The Data Cannot be Converted

An attempt to convert a column value failed
because the input type could not be converted
to output type. You should use the default
data type.

Statement Must Be a SELECT

The JD Edwards EnterpriseOne Open Data
Access driver is read-only and allows only
SELECT statements.

Attempt to Fetch Before the First Row

An attempt was made to fetch before the
beginning of results. The attempt resulted in
the first row set being fetched.

Option Value Changed

An attempt was made to set a connection,
statement, or scroll options to a value that was
not allowed. The JD Edwards EnterpriseOne
Open Data Access driver substituted a similar
value.

19-12 JD Edwards EnterpriseOne Tools Interoperability Guide



Managing ODA Error Messages

Error Message

Description

Fractional Truncation

An attempt to convert a column to a numeric
value succeeded with a loss of fractional digits
because the output data type could not
accommodate the value in the column. You
should use the default data type or select a
data type that can accommodate the column
value.

Driver Not Capable

An attempt was made to set a connection,
statement, or scroll option that the driver does
not allow.

Multiple Business Views Referenced

An attempt was made to reference more than
one business view in a single SELECT
statement. The JD Edwards EnterpriseOne
Open Data Access driver restricts the SELECT
statement to contain only one business view.

Unable to Open Table or Business View

The JD Edwards EnterpriseOne Open Data
Access driver was unable to locate the table or
business view in the JD Edwards
EnterpriseOne database or could not get
information pertaining to the table or business
view.

Server Connection Failed

The JD Edwards EnterpriseOne Open Data
Access driver was unable to establish a
connection to the server referenced by the
tables or business view in the SELECT
statement.

Business View Contains Invalid Join

The Business View definition contains a join
condition that could not be processed by the
JD Edwards EnterpriseOne Open Data Access
driver.

Business View Contains Unsupported UNION
Operator

The Business View definition contains the
UNION operator, which could not be
processed by the JD Edwards EnterpriseOne
Open Data Access driver.

Using Open Data Access 19-13



Managing ODA Error Messages

19-14 JD Edwards EnterpriseOne Tools Interoperability Guide



20

Using the Java Database Connectivity Driver

This chapter contains the following topics:
»  Section 20.1, "Using the JDBC Driver"
= Section 20.2, "JDBC Driver Configuration"

= Section 20.3, "JDBC Driver Connection Details"

= Section 20.4, "JDBC Driver Security Considerations"
s Section 20.5, "SQL Grammar"

s Section 20.6, "JDBC Driver Features"

»  Section 20.7, "JDBC Driver Troubleshooting"

»  Section 20.8, "JDBC Driver Terminology"

20.1 Using the JDBC Driver

A JDBC driver is a software component that enables a Java application to interact with
a database. Four types of JDBC drivers are available. Oracle JD Edwards
EnterpriseOne supports Type 3 and Type 4 JDBC drivers.

This table provides an overview of each of the four types of JDBC drivers:

JDBC Driver Type

Description

Type 1 JDBC driver

Type 1 JDBC drivers translate JDBC calls into ODBC calls. Type 1 JDBC
drivers are usually called JDBC-ODBC bridge drivers.

Type 2 JDBC driver

Type 2 JDBC drivers translate JDBC calls into native DBMS APlIs. The
Type 2 drivers consist of a Java component and a native code
component, which requires that binary code be loaded on each client
machine.

Type 3 JDBC driver

Type 3 JDBC drivers are pure Java drivers that use database
middleware. The Type 3 drivers communicate with the database
through middleware servers that must be running in the network. The
net protocol allows the client JDBC drivers to be very small and to load
quickly. Fetching data rows may take longer because the data comes
through a middleware server.

The JD Edwards EnterpriseOne Data Access Server (DAS) is a read-only
Type 3 JDBC driver. The client is a small jar file that requires no
configuration. The driver accesses the database through a DAS server.
The DAS server is administered through Server Manager.

Using the Java Database Connectivity Driver 20-1



Using the JDBC Driver

JDBC Driver Type Description

Type 4 JDBC driver  Type 4 JDBC drivers are pure Java drivers that access a database
directly. The Type 4 drivers are sometimes called thin drivers. Type 4
JDBC drivers have relatively fast performance.

The JD Edwards EnterpriseOne Data Access Driver (DADriver) is a
read-only type 4 JDBC driver. The DADriver client consists of many jar
files and configuration files. The installation and administration is
facilitated by Server Manager

The JD Edwards EnterpriseOne JDBC drivers provide read-only access to JD Edwards
EnterpriseOne application and product data. In addition to masking the details for the
many supported databases and platforms that JD Edwards EnterpriseOne products
support, the JDBC drivers encapsulate additional filtering and processing that must
occur in order to preserve data and semantic integrity.

The JD Edwards EnterpriseOne JDBC drivers provide Java applications with a logical
connection to JD Edwards EnterpriseOne data. Applications view this logical
connection as a normal database connection, despite the fact that specific data source
details are hidden. In some cases, the JDBC driver maps a single logical connection to
multiple physical data sources. In a sense, the JDBC driver presents the set of data that
JD Edwards EnterpriseOne products manage as a database.

20.1.1 When to Use a JDBC Driver

Use a JD Edwards EnterpriseOne JDBC driver if you are developing or using software
that requires or expects you to plug in a JDBC driver for data access, and you need to
interact with JD Edwards EnterpriseOne application and product data.

20.1.1.1 Prerequisites

If you are using a Type 3 JDBC driver, you must install JD Edwards EnterpriseOne
Tools Release 8.98 or later Tools software version.

If you are using a Type 4 JDBC driver, you must install JD Edwards EnterpriseOne
Tools Release 8.98.1 or later Tools software version.

20.1.1.2 Using the Type 3 JDBC Driver

If you are trying to read small amounts of data using an interoperability client over a
network, use the Type 3 JDBC driver. This list provides some examples for using the
Type 3 JDBC driver:

s  When using a commercial database middleware library (such as TopLink).
= When using a commercial database visualization tool (such as DBVisualizer).

s When retrieving JD Edwards EnterpriseOne data into a spreadsheet that has JDBC
features (such as Excel).

The Type 3 driver can support approximately 1,000 desktops.

20.1.1.3 Using the Type 4 JDBC Driver

If you are trying to read large amounts of data, use the Type 4 JDBC driver. This list
provides some examples for using the Type 4 JDBC driver:

= When using the Oracle Bl Publisher Enterprise Edition reporting tool.

= When using any other commercial reporting tool.

20-2 JD Edwards EnterpriseOne Tools Interoperability Guide



JDBC Driver Connection Details

20.1.2 Connection Mode

The JD Edwards EnterpriseOne product suite employs a diverse set of data sources.
Specific filtering must occur for certain data sources while others can be used as is. The
JD Edwards EnterpriseOne JDBC drivers define various connection modes that
indicate the type of additional filtering and processing that the data requires.
Application code designates the connection mode when it establishes new
connections.

Currently the only connection mode supported is enterpriseone, which establishes a
connection for reading JD Edwards EnterpriseOne enterprise resource planning (ERP)
9.0 data. This connection mode is implemented using JDBj, the Java class library that
encapsulates most aspects of ERP data access middleware functionality such as object
configuration management (OCM), ERP triggers, ERP business views, ERP row and
column security, and decimal scrubbing.

The enterpriseone connection mode provides read-only access to ERP data. The concept
of connection modes enables the extension of the JD Edwards EnterpriseOne JDBC
drivers for other JD Edwards EnterpriseOne products as well.

20.2 JDBC Driver Configuration

Server Manager installs the components for both of the JD Edwards EnterpriseOne
JDBC drivers.

See "Create a JD Edwards EnterpriseOne Data Access Server as a New Managed
Instance” in the |D Edwards EnterpriseOne Tools Server Manager Guide on My Oracle
Support.

See "Install a JD Edwards EnterpriseOne Data Access Driver" in the JD Edwards
EnterpriseOne Tools Server Manager Guide on My Oracle Support.

Important: If you are using a Type 3 JDBC driver, you must
configure the JDBC driver by copying the eljdbc.jar driver jar file to
the class path of the application that will use the JDBC driver. The
eljdbc.jar jar file is located in the classes folder of the JD Edwards
EnterpriseOne Data Access Server (DAS).

The Type 4 JDBC driver does not require manual configuration.

20.3 JDBC Driver Connection Details

Java code that uses a JDBC driver must register the driver class name and designate a
connection URL and optional connection properties that collectively identify the data
source that the JDBC driver is accessing.

20.3.1 Driver Class Name

You must register the JD Edwards EnterpriseOne JDBC driver class name with the
JDBC Driver Manager before attempting to use the driver. You register the JD Edwards
EnterpriseOne JDBC driver using Class.forName. The following table shows the Type
3 and Type 4 JDBC driver class names.

JDBC Driver Class Name

Type 3]JDBC Driver ~ com.jdedwards.jdbc.driver.Driver

Using the Java Database Connectivity Driver 20-3



JDBC Driver Connection Details

JDBC Driver Class Name
Type 4 JDBC Driver ~ com.jdedwards.jdbc.driverJDBCDriver

The following table provides example registrations for the Type 3 and Type 4 JDBC
drivers:

JDBC Driver Type Example Registration
Type 3 JDBC Driver  Class.forName(“com.jdedwards.jdbc.driver.Driver”)
Type 4 JDBC Driver  Class.forName(“com.jdedwards.jdbc.driverJDBCDriver”)

Some environments provide alternate mechanisms for registering JDBC drivers.

20.3.2 Connection URL

You must pass the following values to DriverManager.getConnection when
establishing a JD Edwards EnterpriseOne JDBC connection:

= Connection mode: enterpriseone.
= Connection target: The ERP environment.
= User name and password: The ERP user name and password.

The connection mode designates the type of JD Edwards EnterpriseOne product data
that you plan to access.

The connection target, user name, and password depend on the connection mode.
The format for the connection URL is:

jdbc:oracle:connectionMode: //<environment>

Note: If you are using the Type 3 JDBC driver, include the host name
and port number of the DAS server, for

example:j dbc:oracle:connectionMode: //hostname:port/<e
nvironment>

20.3.3 Connection Properties

The JD Edwards EnterpriseOne JDBC drivers recognize several connection properties
that you can set when you establish a new connection. You specify these in the
connection URL or in the java.util.Properties object that you pass to
DriverManager.getConnection. If you specify the same property in both places, the
value in the URL takes precedence.

If the property value contains one or more semicolons, you may need use parentheses
to delimit the property value. Otherwise, parentheses are optional.

The following table shows the connection properties that the JD Edwards
EnterpriseOne JDBC drivers recognize. The set of valid connection properties varies
based on the connection mode. The JD Edwards EnterpriseOne JDBC drivers ignore
any connection properties that are not listed in this table:

20-4 JD Edwards EnterpriseOne Tools Interoperability Guide



SQL Grammar

Connection Mode Property Name Property Value

enterpriseone enterpriseone.role The ERP role, if any. The default is *ALL. This
property value applies only if you are accessing
ERP 9 or later data.

enterpriseone impersonate The user name, which will be substituted for

authorization purposes at runtime in a proxy
authentication mode.

This is discussed in the JDBC Security
Considerations section.

20.3.3.1 Example Showing How to Use Connection Properties
This example code shows how to connect to ERP environment ADEVHPO2I:

Connection connection
= DriverManager.getConnection (
"jdbc:oracle:enterpriseone://ADEVHPO2I; ",
"myuser",
"mypassword") ;

Note: If you are using a Type 3 driver, include the host name and
port of the DAS server, for example:
“jdbc:oracle:enterpriseone:/ /hostname:port/ ADEVHPO2I;”,

20.4 JDBC Driver Security Considerations

JD Edwards EnterpriseOne JDBC drivers require a user name and password for
authentication. At the same time, the same user name is authorized for the
environment and role, which are passed in the connection URL. If you do not specify a
role in the connection URL, the system uses *ALL. This model poses a serious security
risk and a high maintenance requirement for third-party systems where a single JDBC
connection is shared across multiple users.

To alleviate this problem, the JD Edwards EnterpriseOne JDBC drivers allow for a
proxy authentication model by way of the impersonate connection property. In this
model, the authentication and authorization are separated into two steps:

1. All users are authenticated through the security server with a sign-on
EnterpriseOne proxy user name and password.

Important: If you are using a Type 3 JDBC driver, this user name
must be the same as the JDBj Bootstrap session user ID of the Data
Access Server instance to which you are connecting.

2. The impersonate user name that is passed in the connection property, is authorized
for the environment and role. If you do not specify a role in the connection URL,
the system uses *ALL.

20.5 SQL Grammar

The JD Edwards EnterpriseOne JDBC drivers support different flavors of SQL
depending on the connection mode.

Using the Java Database Connectivity Driver 20-5



SQL Grammar

20.5.1 SQL Grammar for JD Edwards EnterpriseOne Connection Modes

The JDBC drivers implement JD Edwards EnterpriseOne connection modes using
JDBj, which is a Java data access APIL. The JDBC drivers parse SQL statements and
transforms them into JDBj operations.

In general, the JDBC driver using the EnterpriseOne connection accepts only SELECT
statements. All other operations, such as INSERT, UPDATE, DELETE, ALTER, DROP,
and CREATE statements are not supported. If the driver cannot parse the SQL
statement, then the JDBC driver throws an SQLException with a message that explains
the parsing error.

The following table describes the SQL grammar that the parser recognizes. In this
table, SQL keywords are in bold font (SELECT.) SQL keywords are not case sensitive.
Rule names are listed in italics (where-clause.) Terminal symbols are noted. Optional
clauses are listed in square brackets (,[ order-by-clause ].) Clauses that may repeat 0 or
more times are listed in parenthesis followed by an asterisk ((,
database-object-with-alias )*.) A vertical bar indicates that one of a set of options is
valid (* | fields).

Rule Definition

select-statement SELECT fields-clause FROM database-objects [ where-clause ]

[group-by-clause ] [ order-by-clause ]

subquery-clause

SELECT fields-clause FROM database-object-with-alias [ where-clause ]
[ group-by-clause |

database-objects

database-object-with-alias ( , database-object-with-alias )*

database-object-with-alias

database-object [ ID ]

Note: ID is a terminal symbol.

database-object

ID
Note: ID is a terminal symbol.

Database object names are table and business view names. Do not
qualify these with an owner or schema. The JDBC driver uses its
own data source resolution mechanisms (such as an ERP system’s
OCM) to resolve database object name qualifiers. However, if you
require a schema to satisfy some third-party software requirements,
you qualify the table or business view names with JDE as the
schema. JD Edwards EnterpriseOne does not have a schema or
catalog concept and this qualification is ignored at runtime.

fields-clause

*|fields | field-function-expressions

fields

field (, field )* |field AS alias (, field AS alias)*

field

database-object [ . ID [ . field-instance ]]
Note: ID is a terminal symbol.

Field names are in the format database-object.field.instance, where
database-object and instance are optional. Field names match data
dictionary names rather than physical column names. For example,
use ANS (the data dictionary name for address book number)
rather than ABANS (the physical F0101 column name). Instance is
an integer that refers to the instance of a particular field when used
in a self-join.

field-instance

INTEGER_LITERAL
Note: INTEGER_LITERAL is a terminal symbol.

field-function-expressions

field-function-expression (, field-function-expression )* |
field-function-expression AS alias(, field-function-expression AS alias )*

20-6 JD Edwards EnterpriseOne Tools Interoperability Guide



SQL Grammar

Rule Definition

field-function-expression typel-field-function-expression

| type2-field-function-expression

| type3-field-function-expression
typel-field-function-express AVG | COUNT | SUMIDISTINCT] ( field )
ion

Note: See the examples provided in the following table.

type2-field-function-express MIN | MAX ( field )
ion

Note: See the examples provided in the following table.

type3-field-function-express COUNT (*)

ion
field-reference field

literals literal (, literals )*
literal STRING_LITERAL

| INTEGER_LITERAL

| FLOATING_POINT_LITERAL
| NULL

[?

Note: STRING_LITERAL, INTEGER_LITERAL, and FLOATING_
POINT_LITERAL are terminal symbols.

where-clause WHERE or-expression
GROUP BY group-by-fields

ORDER BY order-by-fields

group-by-clause

order-by-clause

order-by-fields

order-by-field-and-direction( , order-by-field-and-direction )*

order-by-field-and-direction field-reference | order-by-direction ]
ASC | DESC

order-by-direction

or-expression and-expression ( OR and-expression )*

and-expression not-expression ( AND not-expression )*

not-expression [ NOT ] sub-expression

sub-expression exists-clause
| relational-expression
| (or-expression)

EXISTS ( subquery-clause )

exists-clause

relational-expression field field-expression | in-expression | between-expression |

like-expression | is-null-expression

Note: Inconsistent results might occur if you use a field that
requires decimal scrubbing within a relational expression.

field-expression comparison-op ( ([ ALL | ANY ] (subquery-clause) ) | element )

in-expression [ NOT ] IN(subquery-clause | elements)
[ NOT | BETWEENEelement AND element

LIKE element

between-expression

like-expression

is-null-expression

IS[NOT ] NULL

elements

element (, element )*

Using the Java Database Connectivity Driver



JDBC Driver Features

Rule Definition
element field-reference | literal
comparison-op =ll=l<>I>I>=l<l<=1*=]=%]*=*

The following are some examples of SQL statements that are allowed:

Object Type Statement
Table select AN8 from F0101
or

select AN8 AS AddressBookNumber from F0101

Select All Table select * from F0101

Table Join select avg(tl.an8), min(tl.an8),max(tl.an8), count
(tl.Name), sum(tl.an8), avg(distinct tl.an8), count
(distinct tl.name),sum(distinct tl.an8),tl.an8 from F0101
to, F0010 tl where t0.an8=tl.an8 group by tl.an8

Table Union select F4211.KCOO, F4211.DOCO, F4211.DCTO , MAX
(F4211.LNID), COUNT(F4211.DOCO), MIN(F4211.LNID), min
(F4211.AN8) from F4211 group by F4211.LNID,F4211.DOCO,
F4211.DCTO,F4211.KCOO UNION select F42119.KC0O0,
F42119.D0OCO, F42119.DCTO , MAX(F42119.LNID), COUNT
(F42119.DOCO), MIN(F42119.LNID), min(F42119.AN8) from
F42119 group by F42119.LNID, F42119.D0OCO,
F42119.DCTO,F42119.KCO0 order by F4211.DOCO DESC,
F4211.KCO0 asc

Single Table Business select AN8 from V0101C
View

Multiple Table Business select F0101.AN8, F0116.AN8 from V0101JE
View

Union Business View select max(F4211.KCO0), max(F4211.KCO0) from V4211A

20.6 JDBC Driver Features

The JD Edwards EnterpriseOne JDBC drivers support different JDBC features
depending on the connection mode. In general, the JDBC drivers implement the JDBC
3.0 specification as it is defined in Java 2 Platform Standard Edition version 5.0 (also
called version 1.5.)

20.6.1 JDBC Features for the Connection Mode

The JDBC driver enterpriseone connection mode explicitly does not support the
following JDBC features:

s Catalog methods (in DatabaseMetaData) with the exception of getCatalogs,
getSchemas, getTables and getColumns.

= Cursor names (Statement.setCursorName and ResultSet.getCursorName).

= ResultSetMetaData as returned by PreparedStatement.getMetaData (the same
information is available from ResultSet.getMetaData).

= Result set holdability (Connection.createStatement, Connection.prepareStatement,
Connection.prepareCall, and Statement.getResultSetHoldability).

= Savepoints (Connection.setSavepoint and Connection.rollback).

20-8 JD Edwards EnterpriseOne Tools Interoperability Guide



JDBC Driver Troubleshooting

= Scrollable result sets (Connection.createStatement, Connection.prepareStatement,
Connection.prepareCall, Statement.getResultSetType, and ResultSet.getType).

= Stored procedures (Connection.prepareCall).

s Type map (Connection.setTypeMap, Connection.getIypeMap, and
ResultSet.getObject).

= Update operations that involve JD Edwards EnterpriseOne software data
(Statement.executeUpdate, PreparedStatement.executeUpdate, and ResultSet
update methods).

In most cases, invoking these features results in an SQLException with a message
describing the specific feature that is not supported.

20.7 JDBC Driver Troubleshooting

When errors occur, the JDBC driver throws SQLExceptions. In your code, it is helpful
to print or log these exceptions so that you can inspect or report them as part of the
troubleshooting process. It is especially helpful to inspect entire exception stack traces,
because traces include exception messages, class names, lines numbers, and cause
exceptions that lead to SQLExceptions.

When you evaluate a series of exceptions in a trace, you should concentrate on the first
exception because it is often the cause of subsequent exceptions.

Some example exceptions and their recovery are discussed here.

20.7.1 No Suitable Driver

Exception: java.sql.SQLException: No suitable driver

Cause: The JD Edwards EnterpriseOne JDBC drivers use the native database JDBC
drivers to access physical data. If the class path does not include the necessary drivers,
then the JDBC drivers throw this exception on any attempt to read physical data.

Recovery: For the Type 3 JDBC driver, contact your system administrator and ensure
that all of the applicable JDBC drivers are included in the Data Access Server's class
path.

For the Type 4 JDBC driver, contact your system administrator and ensure that all of
the applicable JDBC drivers are included in the same class path as the Data Access
Driver.

20.7.2 Data Source for F0010, TBLE Not Found

Exception: com.jdedwards.services.objectlookup.DataSourceNotFoundException:
Data source for F0010, TBLE not found. (with a cause message in parenthesis)

Cause: This exception indicates that the JDBC driver cannot access its system tables in
ERP mode. Table F0010 is the first system table that the JDBC driver attempts to access.
Be sure to check the cause message that is attached to the exception message. The
exception trace usually includes a direct cause as well.

Recovery: Check the cause exception and follow the recovery instructions listed for
those exceptions. If none apply, contact your system administrator and verify that the
[JDBj-BOOTSTRAP DATA SOURCE] section of jdbj.ini file references a valid data
source. The JDBj-BOOTSTRAP DATA SOURCE section describes the location for the
ERP system tables, like FO010.

Using the Java Database Connectivity Driver 20-9



JDBC Driver Terminology

20.7.3 Table Specifications Do Not Exist (Type 3 JDBC only)

Exception: If you are using the Type 3 JDBC driver, you might receive an error
message that indicates that table specifications do not exist.

Cause: This exception indicates that table specifications have not been generated for a
particular table.

Recovery: To generate specifications for a table, sign-on to an HTML web client and
run data browser for the table. When you use a Type 3 JDBC driver, you must run
dataBrowser for any table that has not been previously opened from an HTM web
client.

20.8 JDBC Driver Terminology

The following table provider terminology used in this chapter. These terms are not
available in the glossary.

connection mode

Connection mode is a term that applies only to the JDBC drivers and provides an
indication of the type of additional filtering and processing that the JD Edwards
EnterpriseOne data that you are accessing requires. Application code designates a
connection mode when it establishes each new connection.

connection properties

Properties that applications pass to the JDBC drivers when establishing a new
connection in order to configure a particular connection type. The concept of
connection properties is a standard JDBC mechanism, but each driver defines its own
set of recognized connection properties.

connection URL

A string that identifies a particular data source to which to connect. The concept of a
connection URL is a standard JDBC mechanism, but each driver defines its own URL
syntax.

driver class name

A string that identifies the primary class for a JDBC driver. You must register this class
name with the JDBC driver manager before using it. this is a standard JDBC concept,
but each driver defines its own driver class name.

driver manager

The JDBC class that manages multiple registered JDBC drivers and dispatches
connection initialization requests to them. the Java driver manager class is
java.sql.DriverManager.

ERP data
Data that is managed within an ERP environment.

JDBj

The Java class library that encapsulates most aspects of JD Edwards EnterpriseOne
software data access middleware functionality such as OCM, ERP triggers, ERP
business views, ERP row security, and decimal scrubbing.

JDBC Type 3 driver

The JDBC Type 3 driver is a network-protocol, all-Java driver. This style of driver
translates JDBC calls into the middleware vendor's protocol, which is then translated
to a DBMS protocol by a middleware server. The middleware provides connectivity to
many different databases.

20-10 JD Edwards EnterpriseOne Tools Interoperability Guide



JDBC Driver Terminology

JDBC Type 4 driver

The JDBC Type 4 driver is a pure Java driver that accesses a database directly. Type 4
drivers are sometimes called thin drivers. Type 4 JDBC drivers have relatively fast
performance.

Using the Java Database Connectivity Driver 20-11



JDBC Driver Terminology

20-12 JD Edwards EnterpriseOne Tools Interoperability Guide



21

Using Oracle Orchestration Systems

This chapter contains the following topics:

»  Section 21.1, "Understanding Oracle Orchestration Systems"
= Section 21.2, "Configuring Orchestration Cross References"
»  Section 21.3, "Using Password Indirection (Optional)"

= Section 21.4, "Setting Up the Cross-Reference Java Binding Service"

21.1 Understanding Oracle Orchestration Systems

JD Edwards EnterpriseOne can provide and consume web services using Oracle’s
BPEL-PM and ESB orchestration systems. JD Edwards EnterpriseOne can also send
event notifications to third-party systems using the BPEL-PM and ESB orchestration
systems.

See Oracle BPEL Process Manager Developer’s Guide.
See Oracle ESB Developer’s Guide.

See JD Edwards EnterpriseOne Tools Transaction Server Reference Guide on My Oracle
Support.

See "]D Edwards EnterpriseOne Tools Business Services Development Overview" in
the JD Edwards EnterpriseOne Tools Business Services Development Guide.

21.1.1 BPEL-PM

You can use Oracle’s BPEL-PM to create a web service. BPEL-PM provides
high-performance, reliable execution of service-oriented business processes that are
defined with the BPEL standards. BPEL-PM is primarily used to create integrated
business processes. It contains native support of BPEL, SML, XSLT, XPATH, JMS, JCA,
and web services.

BPEL is an XML-based language for enabling task-sharing across multiple enterprises
using a combination of web services. BPEL is based on XML schema, simple object
access protocol (SOAP), and web services description language (WSDL). BPEL
provides enterprises with an industry standard for business process orchestration and
execution. Using BPEL, you design a business process that integrates a series of
discrete services into an end-to-end process flow.

You can consume JD Edwards EnterpriseOne web services in a BPEL business process
using BPEL-PM. You can also use the JD Edwards EnterpriseOne transaction server to
publish and deliver event notifications to BPEL-PM. In addition, you can consume a
BPEL-PM web service in JD Edwards EnterpriseOne using the business services

Using Oracle Orchestration Systems 21-1



Configuring Orchestration Cross References

21.1.2 ESB

server. You use the JDeveloper BPEL Designer, a tool that is part of the Oracle
BPEL-PM product, to build, deploy, and test a BPEL PM process that consumes JD
Edwards EnterpriseOne web services.

Oracle Enterprise Service Bus (ESB) is a component of the Oracle Service-Oriented
Architecture (SOA) suite delivering loosely coupled data and enterprise application
integration. Oracle ESB features a multiprotocol message bus with centralized
monitoring and management of distributed services where all services are exposed as
standard web services. Oracle ESB contains message flows that use adapters,
transformations, and routing rules to distribute data throughout and beyond the
enterprise.

You can consume JD Edwards EnterpriseOne web services in an ESB flow. You can
also use the JD Edwards EnterpriseOne transaction server to publish and deliver event
notifications to ESB. In addition, you can consume an ESB web service in J]D Edwards
EnterpriseOne using the business services server. You use the JDeveloper ESB
Designer to build, deploy, and test a BPEL PM process that consumes JD Edwards
EnterpriseOne web services.

21.1.3 Orchestration

Orchestration enables you to map and transform data between two disparate systems.
This allows data in a JD Edwards EnterpriseOne format to be transformed to the data
format of another application or system and the data format of another application or
system to be transformed to the data format of JD Edwards EnterpriseOne.
Orchestration is a key component that enables you to plug and play different software
modules to complete your integration solution. Much of the orchestration system is
based on SOA.

Oracle provides applications that help you create cross-reference utilities. The
cross-reference utilities are used within the orchestration system.

Note: If the orchestration system that you use provides features to
do dynamic cross-referencing, static cross-referencing, or both, you
should use them.

21.2 Configuring Orchestration Cross References

This section provides an overview of the orchestration cross-reference configuration
and discusses how to:

= Register cross-reference XPATH functions in JDeveloper.
= Configure access to orchestration cross-reference APIs.

»  Create a data source in OC4J.

21.2.1 Understanding the Orchestration Cross-Reference Configuration

Orchestration cross-references are key/value data pairs that are used for referencing
corresponding values between disparate systems. The orchestration system uses two
types of cross-references: code and key. Code cross-references pertain to static
references; for example, in JD Edwards EnterpriseOne, the country code US might be
equivalent to USA in another software system. Key cross-references are dynamic
cross-references that are added during orchestration runtime, such as sales orders

21-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Configuring Orchestration Cross References

across systems. For example, the sales order number 9876 in JD Edwards
EnterpriseOne is equivalent to sales order number 1234 in a third-party application.

Cross-reference utilities provide a way to read, add, modify, and delete cross-reference
entries at runtime. Before you can use the Orchestration Cross Reference Admin tool to
add cross-references, you must perform preliminary tasks to configure the
orchestration system. This chapter identifies the tasks that a system administrator and
developer must perform to configure the system for cross-reference orchestration. The
system administrator performs certain tasks (for example, cross-reference API access,
OC4J data source creation, cross-reference Java binding service setup) to enable
developers to add, modify, and delete cross-references. The developer registers
cross-reference XPATH functions in JDeveloper. These configuration tasks enable
interaction between JD Edwards EnterpriseOne and third-party applications in the
orchestration system.

21.2.1.1 How the Orchestration System Uses Cross-References

This diagram shows the dynamic cross-referencing in the orchestration process. In this
scenario, a third-party application calls an orchestration system as part of order
processing and passes the order number in the payload. The orchestration system calls
a JD Edwards EnterpriseOne web service to create an order and to get an
EnterpriseOne order number. Upon successful response from JD Edwards
EnterpriseOne, the orchestration system creates and stores mapping information for
the order numbers from the third-party system and JD Edwards EnterpriseOne.

Figure 21-1 Creating a cross-reference key

Third Party
Product

Flow
EnterpriseOne Business
Order Order ,  gSepvice as a Web
#1234 y #9876 Service
Create Cross-
Reference
Service

Insert (App1, Sales,
#1234, #9876)

v

ef Table

This diagram shows the orchestration system dynamically updating an existing
cross-reference. In this scenario, a third-party application calls the orchestration system
as part of updating or deleting an existing order and sends the order number in the
payload. The orchestration system gets the JD Edwards EnterpriseOne order number

Using Oracle Orchestration Systems 21-3



Configuring Orchestration Cross References

from the cross-reference table and calls a JD Edwards EnterpriseOne web service to
update or delete the order.

Figure 21-2 Getting a cross-reference key

Orchestration System

Third Party Order > Receive
Product #1234
_ | XSLT Mapper
g Query DB |
EnterpriseOne
Invoke Order ,  Bysiness Service
#9876 as a Web Service

Select (App1,
Sales, #1234)

.

ef Table

21.2.1.2 Common Notations and Variables in This Document

You should be familiar with these notations and variables before performing the tasks
in this chapter:

Notation / Variable Definition
ORACLE_HOME Orchestration tool install directory.
OC4]_HOME Orchestration tool OC4] directory. Typical values include:

= BPEL-ORACLE_
HOME /bpel/system/appserver/ocrj/j2ee/home

= ESB-ORACLE_HOME/j2ee/home

JDEVELOPER_HOME  ]JDeveloper home directory. This must be JDeveloper with the
BPEL/ESB extensions MTR.

21.2.2 Registering Cross-Reference Read XPATH Functions in JDeveloper

Cross-reference Read XPATH functions provide common syntax and semantics for
addressing parts of an XML document. To access Cross-Reference Read XPATH
functions, you must register the XPATH functions in JDeveloper. The XPATH functions
reside in the CrossReferenceRead.xml file. You must register the XPATH functions for
both JDeveloper and runtime.

Note: This is a one-time setup that a developer performs.

To register the XPATH functions:

21-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Configuring Orchestration Cross References

1. Copy the CrossRefenceRead.xml file and paste it in the JDEVELOPER_HOME
directory:

2. Open JDeveloper.
//delivery/production/Orchestration/ WSDL_Schema
In Microsoft Windows, this file is located in:
/ /system/classes/Orchestration/WSDL_Schema
3. On the Preferences form, navigate to Tools, Preferences, XSL Maps.

4. In the User Defined Extension Functions Config File field, enter the path to the
CrossReferenceRead.xml file, and then click OK.

5. Restart JDeveloper.

21.2.3 Configuring Access to Orchestration Cross-Reference APIs

For the orchestration system to access the cross-reference APIs, you must register the
XPATH function in JDeveloper for runtime.

Note: The orchestration cross-reference APIs are for use with
orchestration cross-references only; they are not used for business
service properties.

This is a one-time setup that an administrator performs.

This example XML document is referred to in Step 2 of the task:

Using Oracle Orchestration Systems 21-5



Configuring Orchestration Cross References

Figure 21-3 XML document for registering XPATH functions in JDeveloper

To register the XPATH functions in JDeveloper for runtime.

1. Copy FS_SCCR_JAR from the following location and paste it in the OC4]J_
HOME/applib directory:

/ /delivery/production/orchestration
In Microsoft Windows, this file is located in:
/ /system/classes/orchestration
2. Open OC4]_HOME/ config/application.xml in a text editor.

3. If the following line is not already in the XML document, add it between the start
and end tags of the orion-application:

21-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Configuring Orchestration Cross References

<library path="../../home/applib” />
4. Restart OC4].

21.2.4 Creating a Data Source in 0C4J

Cross-reference access APIs connect to the JD Edwards EnterpriseOne database using
the JNDI data source defined in OC4J. A system administrator must define the data
source based on the database platform being used. Before you can define the data
source, you must create the data source in OC4]J.

To create a data source in OC4J:
1. Open OC4J_HOME/ config/application.xml in a text editor.

2. Add the following line between the start and end tags of the orion-application if it
is not already there:

<library path="../../home/applib” />
3. Place the required database driver in OC4]_HOME/applib directory.
4. Open OC4]_HOME/ config/data-sources.xml in text editor.

5. Add native data source definition for the database platforms as described in this
section.

6. Restart OC4].

After you create the data source in OC4J, you can define it for any one of these
database platforms:

s Oracle

=« UDB/DB2 for IBM i
= DB2forIBMi

s SQL Server

21.2.4.1 Defining an Oracle Data Source in 0C4J

Use the Oracle JDBC driver provided with OC4J. If you prefer a different driver, place
the driver in the applib directory.

<native-data-source user="user" password="password"
url="jdbc:oracle:thin:@//dbserver:dbport/SID"
data-source-class="oracle.jdbc.pool.OracleDataSource"
jndi-name="jdbc/abcoraDS" name="abcoraDS"/>

21.2.4.2 Defining a UDB/DB2 for IBM i Data Source in 0C4J

Use UDB universal driver db2java.zip. This is a type 2 jdbc driver. The UDB client
must be present and the database must be cataloged for the connection to work.

<native-data-source user="user" password="password"
url="jdbc:db2:dbname"
data-source-class="COM.1ibm.db2.jdbc.DB2DataSource"
jndi-name="jdbc/udbDS" name="udbDS">
<property name="databaseName" value="dbname" />
<property name="serverName" value="dbservername"/>
</native-data-source>

21.2.4.3 Defining a DB2 for IBM i Data Source in 0C4J

Use IBM i access driver version 7.0 or greater

Using Oracle Orchestration Systems 21-7



Using Password Indirection (Optional)

The jt400.jar must be in the applib directory.

<native-data-source user="user" password="password"
url="jdbc:as400://as400machine"
data-source-class="com.ibm.as400.access.AS400JDBCDataSource"
jndi-name="jdbc/asDS" name="asDS">
<property name="databaseName" value="dbname"/>
<property name="serverName" value="servername"/>
<property name="libraries" value="database library to access"/>
</native-data-source>

21.2.4.4 Defining a SQL Server Data Source in OC4J

This data source definition is for use with the Microsoft JDBC driver. These files must
be in the applib directory:

= msbasejar
= msutiljar
= mssqlserverjar

<native-data-source user="username" password="password"
url="jdbc:microsoft:sglserver://databaseserver:TCP/IP port;databaseName=DBName"
data-source-class="com.microsoft.jdbcx.sglserver.SQLServerDataSource"
jndi-name="jdbc/abcDS" name="abcDS">
<property name="databaseName" value="DBName"/>
<property name="serverName" value="servername\databaseinstancename"/>
</native-data-source>

21.3 Using Password Indirection (Optional)

This section provides an overview of password indirection and provides the tasks for
setting up password indirection in OC4J, which include how to:

»  Edit the default application.xml to use system-jazn data.
s AddaJAZN user.

= Add password indirection in the data source.

Note: Oracle recommends setting up password indirection for
preventing security vulnerabilities. However, it is not required.

21.3.1 Understanding Password Indirection

The data-sources.xml file requires passwords for authentication. Embedding these
passwords without some kind of obfuscation poses a security risk. To avoid this
problem, OC4J supports password indirection.

An indirect password is made up of a special indirection symbol (->) and a user name
(or user name and realm). When OC4J encounters an indirect password, it retrieves the
password associated with the specified user from the security store provided by a user
manager.

21.3.2 Editing the Default Application.xml to Use System-jazn Data

You must edit the default application.xml file to use system-jazn data.

To edit the default application.xml to use system-jazn data:

21-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Setting Up the Cross-Reference Java Binding Service

1. Open OC4J_HOME/ config/application.xml in a text editor.
2. Find this line, <jazn provider="XML"/>, and replace it with this line:

<jazn provider= ="XML" location="system-jazn-data.xml"
default-realm="jazn.com"/>

21.3.3 Adding a JAZN User

To add a JAZN user:

1. Enter the following URL in a web browser to open OC4] EM:
http:/ /oc4jserver:port/em

2. Navigate to Administration, Security, Security providers.

3. On the Security Providers page, click the Instance Level Security button and then
select the Realms tab.

4. On the Instance Level Security page, click the link in the Users column for the
default realm jazn.com.

5. On the Users page, click the Create button and then complete these fields on the
Add User page:

s Username
s Password

s Confirm Password

21.3.4 Adding Password Indirection in the Data Source

To add password indirection in the data source:
1. Open the data-sources.xml file in a text editor.
2. Find the data source definition to edit.

3. In the password field for the data-source, enter the indirection symbol (->)
followed by the JAZN user that you added, for example:

->jazn.com/xrefuser
The data source definition should look like this when complete:

<native-data-source user="xrefuser" password="->jazn.com/xrefuser"
url="jdbc:microsoft:sqglserver://localhost:1050;databaseName=JDELocal"
data-source-class="com.microsoft.jdbcx.sglserver.SQLServerDataSource"
jndi-name="jdbc/eoneDS" name="eoneDS">
<property name="databaseName" value="JDELocal"/>
<property name="serverName" value="localhost\JDELocal"/>
</native-data-source>

4. Save the file and restart OC4]J.

21.4 Setting Up the Cross-Reference Java Binding Service

The cross-reference Java binding service provides access to cross-reference utilities
from the orchestration system. You can register the Java binding service using either of
these methods:

= Registering in the shared library (BPEL-PM or ESB)

Using Oracle Orchestration Systems 21-9



Setting Up the Cross-Reference Java Binding Service

= DPutting Java binding classes in BPEL-PM classpath (BPEL-PM only)

This service is delivered as two files: CrossReferenceJavaBinding.wsdl and
CrossReferenceAccess.xsd. You can locate the files in this directory:

//delivery/production/Orchestration/ WSDL_Schema
In Microsoft Windows client, the files are located in this directory:

/system/classes/Orchestration/WSDL_Schema

21.4.1 Registering the Java Binding Service
To register the Java binding service in the BPEL-PM or ESB shared library:
1. Copy the FIS_SCCR_JAR jar to the following directory:
s For BPEL-PM:
ORACLE_HOME /bpel/system/classes
= For ESB:
ORACLE_HOME/integration/esb/lib

2. Copy the CrossReferenceJavaBinding.wsdl and CrossReferenceAccess.xsd files to
the ORACLE_HOME directory.

3. Open the server.xml file in a text editor. You can locate this file in OC4]_
HOME/ config folder of BPEL/ESB.

4. In the server.xml file, locate shared-library name="oracle.bpel.common".
5. Add FIS_SCCR_JARjar in this shared library to the following location:
= For BPEL-PM:

<code-source path="D:\OraBPEL_1\bpel/system/classes/FIS_SCCR_
JARjar"/>

s For ESB:
<code-source path="../../../integration/esb/lib/FIS_SCCR_JAR jar"/>

21.4.2 Placing Java Binding Classes in the Classpath
To place the Java binding classes in the classpath for either BPEL-PM or ESB.

1. Unzip the contents of the FIS_SCCR_JAR jar file to this directory:
ORACLE_HOME/bpel/system/classes

2. Copy the provided CrossReferenceJavaBinding.wsdl and
CrossReferenceAccess.xsd to the ORACLE_HOME directory.

21.4.3 Using Cross-Reference Read Services from XSL Mapper

The JD Edwards EnterpriseOne read services for cross-references are available from
XSL Mapper in both BPEL and ESB. The steps in this section describe how to use these
read services.

To use the cross reference read service from XSL Mapper:
1. Invoke XSL Mapper.

In BPEL-PM, add the Transform activity to the BPEL-PM flow and provide the
input and output document.

21-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Setting Up the Cross-Reference Java Binding Service

In ESB, use the transform function in routing rules for any ESB service.

2. In the XSL Mapper, from the Component Palette drop-down menu, select the User
Defined Extension Functions component.

The system should display two functions: getCrossReferenceE1Val and
getCrossReferenceThirdPartyVal.

3. Select the required function and drag it to the mapping area.
4. Define inputs for the function using any one or a combination of these methods:

s Double-click the function and provide string inputs using double or single
quotes.

= Double-click the function and provide the XPATH expression as input.
s Link elements from input schema to function inputs.
5. Map the output to the required element in output schema.

6. Save the XSL Map.

21.4.4 Using JD Edwards EnterpriseOne Cross-Reference Services

You can use the JD Edwards EnterpriseOne Cross Reference Service to add, modify,
and delete cross-reference information.

21.4.4.1 BPEL-PM

You can use the JD Edwards EnterpriseOne Cross Reference Service to add, modify,
and delete cross-reference information in Oracle's BPEL-PM orchestration system. The
BPEL project must be created in JDeveloper BPEL-PM designer.

To create a partner link in JDeveloper BPEL-PM designer using the service WSDL file.

1. In the JDeveloper BPEL-PM designer, select the PartnerLink activity and drag it to
the BPEL-PM process page.

2. On the Create Partner Link dialog box, enter the name of the WSDL file for the
Java binding service:

ORACLE_HOME/CrossReferenceJavaBinding.wsdl

3. (Click Yes when asked to make a local copy of the file.

4. Click Yes when asked to create a new Partner Link type.

5. From the Partner Role drop-down menu, select the default generated role.
6. Click OK.

The system creates the Partner Link. The Partner Link can now be used to invoke
cross-reference services.

21.4.4.2 ESB

You can use the JD Edwards EnterpriseOne Cross Reference Service to add, modify,
and delete cross-reference information in ESB. You use ESB JDeveloper.

To invoke cross-reference services from ESB:

1. Import web service schema EoneXrefAccessWSSchema.xsd in the project using the
File, Import utility.

The xsd file should have been copied to your ORACLE_HOME directory during
the web service deployment step.

Using Oracle Orchestration Systems 21-11



Setting Up the Cross-Reference Java Binding Service

2. Right-click the ESB system design page and select Create ESB Service, SOAP
Service.

3. Name the service EOneXrefAccessWS.

4. Select ESB System/group if you are not using the default.

5. For the Java binding service, enter the WSDL file as provided in the example:
ORACLE_HOME/CrossReferenceJavaBinding.wsdl

6. Click OK.
The system creates the SOAP service and displays all available operations.

7. To create the routing service for the required operation, right-click the system page
and select Create ESB Service, Routing Service.

8. Enter an appropriate name for the service, such as EOneXrefAddRec_RS.
9. Select ESB System/group if you are not using the default.

10. Click the Generate WSDL from the Schemas option.

11. On the Request tab, for Schema Location, click Browse.

12. Select the operation input element from EoneXrefAccessWSSchema.xsd under
Project Schema Files and click OK.

13. On the Reply tab, repeat the preceding steps and select the response element for
the chosen operation, and then click OK.

14. Double-click Routing service, expand the Routing Rules tab, and then click the
Add button.

15. Select the web service operation as the target service.
16. Add filter rules and transformations as needed.
17. Save the project.

This routing service can be called from other ESB services for executing cross-reference
operations.

21-12 JD Edwards EnterpriseOne Tools Interoperability Guide



22

Setting Up Orchestration Cross-References

This chapter contains the following topics:

= Section 22.1, "Understanding Orchestration Cross-References"

»  Section 22.2, "Adding Cross-Reference Object Types"

= Section 22.3, "Adding Orchestration Cross-References"

= Section 22.4, "Reviewing or Modifying Orchestration Cross-References"

= Section 22.5, "Deleting Orchestration Cross-References"

22.1 Understanding Orchestration Cross-References

Orchestration cross-references (hereafter referred to as cross-references) are key/value data
pairs used in the orchestration system. You add a cross-reference to associate a JD
Edwards EnterpriseOne value, such as an Address Book number, with the equivalent
value in a third-party application. For example, a third-party application that is
integrated with JD Edwards EnterpriseOne might contain a field called Client Number
that equates to the Customer Number field in JD Edwards EnterpriseOne. To share this
data between the two systems, you create a cross-reference record that associates
Client Number with Customer Number.

The Business Service Cross Reference program (P952000) is the JD Edwards
EnterpriseOne program that enables you to manage cross-references.

In JD Edwards EnterpriseOne, you can define a cross-references in one of these
categories:

s Code

A code reference pertains to static items in JD Edwards EnterpriseOne, such as a
field or user-defined code. For example, Address Book Number is a code
reference. You can use 952000 to add, customize, or delete code references.

] Key

A key reference contains transactional information that is added during
orchestration runtime. For example, a key code might map the sales order number
9876 in JD Edwards EnterpriseOne to the equivalent sales order number in a
third-party application. You can use P952000 to add, modify, or delete key
references.

22.1.1 Code and Key Cross-Reference Categorization

JD Edwards EnterpriseOne uses cross-reference object types to categorize
cross-references. You use cross-reference object types to group together code and key

Setting Up Orchestration Cross-References 22-1



Adding Cross-Reference Object Types

cross-references of similar type. For example, you can add cross-reference object types
called countrycode,unitofmeasure, and purchaseordernumber. You associate each
cross-reference that you add to the appropriate cross-reference object type, which
serves as a category for a particular group of cross-references.

Before you add cross-references to the system, you should analyze the fields and data
that you are cross-referencing and define a categorization system that you can use to
group cross-references into categories. This categorization helps you manage
cross-references so that you can readily review, modify, and remove cross-references as
needed. You can set up all the cross-reference object types in JD Edwards
EnterpriseOne before you add cross-references to the system, or add additional
cross-reference object types as needed.

22.2 Adding Cross-Reference Object Types

JD Edwards EnterpriseOne requires that you assign each cross-reference to a
cross-reference object type. Cross reference object types enable you to group
cross-references by category. Therefore, you must add cross-reference object types
before you add cross-references.

Figure 22-1 Work with Business Service Cross Reference Object Type form

Work with Business Service Cross Reference Object Type
Fircd Add  Delete Cloze  Tools

@ 4+ @b X B

Mo records found. Customize Grid

CountyCode A code that represents a cauntry, state, ar territory.

Cross Reference
Object Type Description

To add a cross-reference object type:

1. To access the Work with Orchestration Cross Reference form, enter P952000 in the
Fast Path field.

2. From the Form menu, select Object Type.

3. On the Work with Orchestration Cross Reference Object Type form, click the Add
button.

4. On the Add Orchestration Cross Reference Object Type form, in the Cross
Reference Object Type field, enter a name that you want to use to categorize
cross-references.

5. In the Description field, enter a description that defines the purpose of the
cross-reference object type, and then click the OK button.

22-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Adding Orchestration Cross-References

22.3 Adding Orchestration Cross-References

You add orchestration cross-references to assign JD Edwards EnterpriseOne values to
values in a third-party application.

Figure 22-2 Add Business Service Cross Reference form

Add Business Service Cross Reference
Ok Delete Cancel Form  Tools

B 1 X B B

Records 1-2 Customize Grid
Cross Reference Cross Reference Third Party Third Party
Type Object Type App 1D Value
CODE CountryCode AD04z Territory

2 | Q| | |

1. To access the Work with Orchestration Cross Reference form, enter P952000 in the
Fast Path field.

2. Click the Add button.

a. On the Add Orchestration Cross Reference form, add a cross-reference record
by entering a value for each of these columns in the grid:

— Orchestration Cross Reference Type

Click the search button to select either CODE or KEY as the orchestration
cross-reference type.

— Object Type

Click the search button to select a cross-reference object type that you
want to use to categorize the cross-reference. If no suitable object type is
available, you can add one in P952000.

—  Third Party App ID

Enter an external system identifier, also known as a third-party applica-
tion ID, to identify the system outside JD Edwards EnterpriseOne to
which the cross-reference external value belongs, for example PeopleSoft
CRM, E-Business Suite.

— Third Party Value

Enter a value from the external system that requires cross-referencing to
an equivalent value in JD Edwards EnterpriseOne.

— EOne Value

Enter a JD Edwards EnterpriseOne value that is cross-referenced to the
value in the external system.

b. Press the Tab key to add additional cross-references as needed, and then click
the OK button when complete.

When you click the OK button, the system saves the cross-reference records to
the appropriate tables. You can review the records in the Work with
Orchestration Cross Reference form.

Setting Up Orchestration Cross-References 22-3



Reviewing or Modifying Orchestration Cross-References

22.4 Reviewing or Modifying Orchestration Cross-References

In P952000, you can search for and review all of the current cross-reference records in
the system. You can also view a particular subset of cross-reference records by
searching on either key or code cross-references. You can further refine the search so

that

the system displays only records that belong to a particular cross-reference object

type.

In addition to reviewing current cross-reference records, P952000 enables you to
modify cross-references. You can modify any of the values that make up the
cross-reference, including changing the reference type from code to key or vice versa.

Figure 22-3 Modify Business Service Cross Reference form

Modify Business Service Cross Reference

oK Cancel Tools

B X &

Cross Reference

Zross Reference

Third Party App 1D

Third Party Walug

EnterpriseCne va

Type CODE

Ohject Type CountryCode

ADD4Z

Territory

lue State

To view or modify cross-references:

1.

To access the Work with Orchestration Cross Reference form, enter P952000 in the
Fast Path field.

Click the appropriate Orchestration Cross Reference Types option to view all
cross-reference records, key cross-references, or code cross-references, and then
click the Find button.

To further refine the search, enter a cross-reference object type in the Cross
Reference Object Type field, and then click the Find button.

To modify a cross-reference, highlight the row that contains the cross-reference
and then click the Select button.

On the Modify Orchestration Cross Reference form, modify any of these fields as
appropriate, and then click the OK button:

22-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Deleting Orchestration Cross-References

—  Reference Type

- Object Type

—  Third Party App ID
— Third Party Value

- EnterpriseOne Value

22.5 Deleting Orchestration Cross-References

If a cross-reference becomes obsolete and is no longer necessary, you can delete it.

Figure 22-4 Work with Business Service Cross Reference form

Work with Business Service Cross Reference
Select  Find Add  Delete Closze  Form Tools

v @ + O X B =B

Cross Reference Types  KEY " CODE & all

Cross Reference Object Type |

Records 1-1 Customize Grid

Cross Reference Cross Reference Third Party Third Party

Type Object Type App 1D Value

|7 cobE CountryCode ADD4Z Territory
di

To delete a cross-reference:

1. To access the Work with Orchestration Cross Reference form, enter P952000 in the
Fast Path field.

2. Search for the cross-reference record that you want to delete.

3. Highlight the row for the record, and click the Delete button

Setting Up Orchestration Cross-References 22-5



Deleting Orchestration Cross-References

22-6 JD Edwards EnterpriseOne Tools Interoperability Guide



A

Classic Events

This appendix contains the following topics:

»  Section A.1, "Understanding Classic Events"

= Section A.2, "Defining Events"

»  Section A.3, "Subscribing to Events"

= Section A .4, "Configuring the jde.ini file for Events"
»  Section A.5, "Using Reliable Event Delivery"

= Section A.6, "Entering Events"

= Section A.7,"Adding Logical Subscriber Records"

= Section A.8, "Entering Subscription Information"

Note: This chapter is applicable only if you use classic events
delivery. Classic event delivery is available when you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

Refer to the Guaranteed Events chapters if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
tools releases with JD Edwards EnterpriseOne Applications 8.10 and
later Applications releases.

A.1 Understanding Classic Events

JD Edwards event functionality provides an infrastructure that can capture JD
Edwards EnterpriseOne transactions in various ways and provide real-time
notification to third-party software, end users, and other JD Edwards systems, such as
WSG and CRM.

JD Edwards EnterpriseOne notifications are called events. The JD Edwards
EnterpriseOne event system implements a publish/subscribe model. Events are
delivered to subscribers in XML documents that contain detailed information about
the event. For example, when you enter a sales order into the system, the system can
automatically send the sales order information to a CRM or supply chain management
application for further processing. If your system is IBM, you can use IBM WebSphere
MQ messaging to receive events. If your system is Microsoft, you can use MSMQ
messaging to receive events. IBM WebSphere MQ and MSMQ provide a point-to-point

Classic Events A-1



Defining Events

interface with JD Edwards EnterpriseOne. JD Edwards EnterpriseOne supports three
kinds of events, as described in the table:

Type of Event Description

Z Events A service that uses interface table functionality to capture JD Edwards
EnterpriseOne transactions and provide notification to third-party
software, end-users, and other JD Edwards systems that have requested
to be notified when certain transactions occur.

Real-Time Events A service that uses system calls to capture JD Edwards EnterpriseOne
transactions as they occur and provide notification to third-party
software, end users, and other JD Edwards systems that have requested
notification when certain transactions occur.

XAPI Events A service that uses system calls to capture JD Edwards EnterpriseOne
transactions as they occur and then calls third-party software, end users,
and other JD Edwards systems that have requested notification when the
specified transactions occur to return a response. XAPI events can be from
JD Edwards EnterpriseOne to a third-party system, from a third-party
system to JD Edwards EnterpriseOne, or between two JD Edwards
EnterpriseOne systems.

The JD Edwards EnterpriseOne event system consists of these modules:
= Event distributor
= Event generators
s Transport drivers

The event distributor is a JD Edwards EnterpriseOne kernel process called the event
notification (EVN) kernel. The EVN kernel manages the subscribers and notifies them
when an event occurs. The EVN kernel is shared by Z events, real-time events, and
XAPI events.

Event generators are processes or libraries capable of generating events. JD Edwards
EnterpriseOne provides three default event generators:

= Zevent generator, which generates Z events.

= Real-time event generator, which generates real-time events.

= XAPI event generator, which generates XAPI events.

Z events, real-time events, and XAPI events have slightly different XML documents.

The event distributor uses a transport driver to send events. JD Edwards
EnterpriseOne provides a default transport driver that uses JDENET. The event
distributor can also send event documents to designated IBM WebSphere MQ or
MSMQ outbound queues using IBM WebSphere MQ or MSMQ transport drivers. If
you use IBM WebSphere MQ or MSMQ transport drivers to receive events, you receive
all events that are defined in the F90701 table.

A.2 Defining Events

When an event is generated, the IEO kernel reads the F90701 table for that event. If the
specified event category is different from the event category configured in the
database, the system writes an error to the IEO log file. If the database definition of the
event is not found, the system writes this message to the IEO log.

Warning: table F90701 doesn't exist. Some features will be turned off.

A-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Subscribing to Events

Note: When you update or modify the F90701 table, you must restart
the server for the changes to become effective.

A.2.1 Reducing Network Traffic

To reduce network traffic, real-time event processing sends only active events. If a
single event is identified as inactive in table F90701 and is part of an active container
event, the CallObject kernel sends the active container event and the active single
events to the IEO and EVN kernels to create the XML and to distribute to subscribers.
Inactive single events that have been disabled by the CallObject kernel are embedded
in the container event but are not sent as separate single events.

The CallObject kernel debug log contains information about the inactive single events
that are not created. This is an example CallObject Kernel debug log message:

Inactive container event <event name> is not added to prevent bursting

This scenario illustrates the process:
»  RTABHDR and RTABPHOUT are inactive single events.
= RTABEAOUT is an active single event.

s RTABOUT is an active container event that contains RTABHDR, RTABPHOUT,
and RTABEAOUT.

»  The business function creates these events:
— 1 RTABHDR event
— 2 RTABPHOUT events
— 5 RTABEAOUT events

s The RTABOUT container event and the five RTABEAOUT events are sent from the
CallObject kernel to the IEO and EVN kernels for processing and distribution to
the subscriber. Inactive single events, RTABHDR and RTABPHOUT, are not sent.

m  The subscriber receives:

— 1 RTABOUT container event with all of the subdata structures that are defined
in the single events RTABHDR, RTABPHOUT, and RTABEAOUT.

- 5 RTABEAOUT single events.

A.3 Subscribing to Events

For XAPI events, you must update the F90702 table so that you can receive a response
to your XAPI event. Each XAPI event must have a logical subscriber, which you might
have to set up. For Z and real-time events, the system dynamically updates this table
when the event is created. You can use the F90702 table to view the persistent
subscriptions for your Z and real-time events.

If the database table is missing, the system writes these messages to the IEO log:

CheckTableExists failed: invalid hEnv or hUser.
Warning: table F90702 doesn't exist. Some features will be turned off.

Classic Events A-3



Configuring the jde.ini file for Events

A.4 Configuring the jde.ini file for Events

The JD Edwards EnterpriseOne server jde.ini file must be properly configured to
support Z, real-time, and XAPI event generation. You use a text editor to manually
edit and verify specific settings in the JD Edwards EnterpriseOne server jde.ini file.

Note: If your enterprise contains more than one JD Edwards
EnterpriseOne server, you must ensure that each server has the same
settings for all logic, batch, and interoperability sections.

Use these kernel and [JDEITDRV] settings to configure the jde.ini file on your JD
Edwards EnterpriseOne server. Configure the kernels that are appropriate for the type
of event (Z, real-time, or XAPI) that you want to generate.

Note: To determine which kernels you need to set and for other
jde.ini settings for each specific type of event, refer to the Configure
the jde.ini File topics in the Events section of the Interoperability
Guide.

A.4.1 [JDENET_KERNEL_DEF19]

Use these settings for a Windows Microsoft platform:

krnlName=EVN KERNEL

dispatchDLLName=jdeie.dll
dispatchDLLFunction=_JDEK_DispatchITMessage@28
maxNumberOfProcesses=2
numberOfAutoStartProcesses=2

A.4.2 [JDENET_KERNEL_DEF20]

Use these settings for a Microsoft Windows platform:

krnlName=IEO KERNEL

dispatchDLLName=jdeieo.dll
dispatchDLLFunction=_JDEK_DispatchIEOMessage@28
maxNumberOfProcesses=2
numberOfAutoStartProcesses=2

Important: If you use JD Edwards EnterpriseOne 8.10 or a release
prior to JD Edwards EnterpriseOne 8.10, the maxNumberOfProcesses
and the numberOfAutoStartProcesses settings for both the EVN
kernel (JDENET_KERNEL_DEF19) and the IEO kernel (JDENET_
KERNEL_DE20) should have the same value. For example,
maxNumberOfProcesses=3 and numberOfAutoStartProcesses=3. This
causes the processes to be automatically started and avoids the cyclic
dependency of the three-way request message from the IEO to the
EVN kernel with the Get Event List message from the EVN to the IEO
kernel.

A.4.3 [JDENET_KERNEL_DEF22]

Use these settings for a Microsoft Windows platform:

krnlName=XML Dispatch KERNEL

A-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Configuring the jde.ini file for Events

dispatchDLLName=xmldispatch.dll
dispatchDLLFunction=_XMLDispatch@28
maxNumberOfProcesses=1
numberOfAutoStartProcesses=0

A.4.4 [JDENET_KERNEL_DEF24]

Use these settings for a Microsoft Windows platform:

krnlName=XML Service KERNEL
dispatchDLLName=xmlservice.dll
dispatchDLLFunction=_XMLServiceDispatch@28
maxNumberOfProcesses=1
numberOfAutoStartProcesses=0

A.4.5 [JDEITDRV]

Use these settings for a Microsoft Windows platform:

DrvCount=>5
Drvl=Z:zdrv.dll
Drv2=RT:rtdrv.dll
Drv3=JDENET: jdetrdrv.dll
Drv4=MSMQ:msmgrtdrv.dll
Drv5=MQS:mgsrtdrv.dll

Note: You set event generation and transport drivers in the
[JDEITDRV] section of the jde.ini file. You are not required to set all of
these drives. For example, if you do not use messaging transports, you
would not use the MSMQ and MQS settings. Be sure that you define
DrvCount with the number of settings that you are using.

A.4.6 [JDENET]

This setting specifies the maximum number of JDENET kernels:

MaxKernelRanges=27

Note: You must set this value to encompass the total number of
kernels that you defined.

This table shows the DLL and DRV settings for other platforms:

Table Column

Heading IBM i HP9000 Sun or RS6000
EVN (19) JDEIE libjdeie.sl libjdeie.so
dispatchDLLName

EVN (19) JDEK_ JDEK_ JDEK_
dispatchDLLFunction DispatchITMessage  DispatchITMessage  DispatchITMessage
IEO (20) JDEIEO libjdeieo.sl libjdeieo.so
dispatchDLLName

IEO (20) JDEK_ JDEK_ JDEK_

dispatchDLLFunction DispatchlEOMessage DispatchlEOMessage DispatchI[EOMessage

Classic Events A-5



Using Reliable Event Delivery

Table Column

Heading IBM i HP9000 Sun or RS6000
XML Dispatch (22) XMLDSPATCH libxmldispatch.sl libxmldispatch.so
dispatchDLLName

XML Dispatch (22) ?XMLDispatch? ?XMLDispatch? ?XMLDispatch?
dispatchDLLFunction

XML Service (24) XMLSERVICE libxmlservice.sl libxmlservice.so
dispatchDLLName

XML Service (24) JDEK_ JDEK_ JDEK_
dispatchDLLFunction XMLServiceDispatch ~XMLServiceDispatch ~ XMLServiceDispatch
Drvl RTDRV librtdrv.sl librtdrv.so

Drv2 ZDRV libzdrv.sl libzdrv.so

Drv3 JDETRDRV libjdetrdrv.sl libjdstrdrv.so
Drv4 MSMQRTDRV libmsmgrtdrv.sl libmsmgrtdrv.so
Drv5 MQSRTDRV libmgsrtdrv.sl libmgsrtdrv.so

A.5 Using Reliable Event Delivery
This section provides an overview of reliable event delivery and discusses:
s Configuration of the reliable event delivery system.
= Use reliable event error messages.
= Minimize duplicate and lost events.
= Increase performance.

= Configuration of the jde.ini file.

A.5.1 Understanding Reliable Event Delivery

Reliable event delivery supports Z events, real-time events, and XAPI events. To use
the Reliable Event Delivery feature, you must define your events in database tables.
You cannot define your events in the jde.ini file.

The JDENET transport delivers Z events, real-time events, and XAPI events. Reliable
event delivery ensures recovery and delivery of an event when transport problems
arise, including some network problems. These scenarios identify circumstances for
which events might be lost, but can be recovered and delivered:

= The JDENET process is down.

= JDENET fails to deliver because the network link between sender and receiver is
permanently down.

» JDENET fails to deliver because the IPC buffer of the receiving kernel is full
(sender and receiver are on different boxes).

Note: Reliable delivery covers failures that are related only to the
transport of the events. Reliable delivery does not provide a
once-and-only-once type of guarantee. Events might be lost and not
recovered (or duplicates might be redelivered) in the presence of
process failures (client and server).

A-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Using Reliable Event Delivery

Real-time event delivery is reliable for transportation failures between the real-time
API and the Java connector, which includes IEO and EVN kernels. XAPI outbound
event delivery is reliable for transportation failures between the XAPI API and the
Java connector, including the IEO and EVN kernels. Z event delivery is reliable for
transportation failures between the Z event generator and the Java connector.

The level of reliability is configurable based on whether the event is reliable or volatile.
Volatile events are events that might be lost if the network or process fails and delivery
is not reliable. Reliable events could be lost in the case of process failures only. You can
configure the level of reliability for every event type. The level of reliability depends
on whether the event is a business critical event. For example, you might configure an
inquiry as volatile, because an inquiry is not a critical business event and you do not
want the system to continually look for the event should the event fail. You might
configure a purchase order as reliable, because this is a critical business event and you
do want the system to continually look for the event and make the transaction update.
Volatile events offer better performance than reliable events, but delivery is not reliable
if the event is lost during transportation.

Real-time and XAPI events can be single, aggregate, or composite events. A composite
event consists of single events. The composite event and the single events that make
up the composite event can have different levels of reliability. For example, you
register composite events as RTSOOUT with a level of reliability as reliable, and you
register single events as RTSOLINE with a level of reliability as volatile. The level of
reliability configured for RTSOOUT will not override the level of reliability that is
configured for RTSOLINE. The rationale for this is that the reliability of events is based
on the event type. If you decide that single event types are not important enough to
configure as reliable delivery, then the single events that are created during composite
event creation should have the same level of reliability as other single events.

The APIs you use to create real-time and XAPI events are not affected by the level of
reliability.

A.5.2 Configuring Your System for Reliable Event Delivery

To use the reliable event delivery feature, you must define your events in the F90701
table. Use the Interoperability Event Definition (P90701) program to accomplish this
task. On the Event Entry form, you must set up the Threshold Timeout field and set
the Reliable Delivery field to reliable (either Y or I). The Timeout Threshold field is in
seconds and applies only to the reliable events for which an initial delivery attempt
fails. This field determines the maximum amount of time that has to pass from the
event creation to the time when the event is going to be discarded if not delivered
successfully. Events with a threshold of zero never expire.

Two database tables, the F90704 table and the F90703 table, enable communication
between the sender and receiver. Event Protocol stores information that is associated
with the protocol that delivers an event. Event Link stores information that is
associated with the reliable event for which initial delivery failed. These tables are
updated by the system when an event is created.

Note: Both the sender and receiver must access the same instances
(the data sources are the same) of the interoperability database tables.

A.5.3 Reliable Event Error Message

If the reliable event is not found, this message might be generated in the client,
Callobject, IEO, and EVN logs:

Classic Events A-7



Using Reliable Event Delivery

RDELO000045 - Could not open tables for reliable event delivery
(F90703 and F90704). Reliable event delivery will be disabled.

If you receive this error message, verify your events are defined in the F90701 table,
that the Reliable Delivery and Threshold Time fields are set up correctly, and that the
Event Protocol and Event Link tables exist.

A.5.4 Minimizing Duplicate and Lost Events

The architecture for real-time events processing is changed from a fast request reply
(FRR) protocol to a three-way protocol. The three-way protocol enables the storage of
event information in the F90703 and F90704 tables. Also, both the Java connector and
the COM connector can receive and recover real-time events.

This diagram shows the architecture for real-time event recovery using the three-way
protocol:

Figure A-1 Three-way architecture for processing events

Callobject Enterprise Server XPI Apater
Event 3-way IEO 3-way EVN 3-way
BSFN AP Send”l Kemel | Send”  Kemel send T TR
3-way
3-way Recover
Recover Failed Failed EVN
IEO Event Event
3-way 3-way Insert
Insert Failed Failed Connector
EVN Event Event
3-way F90703 3-way
Insert Failed & Recover Failed
IEO Event F90704 Connector Event

If the CallObject kernel is unable to communicate with the IEO kernel, the event API
inserts the event information into the F90703 and F90704 tables. The IEO kernel
recovers the event information from the tables.

If communication between the IEO and EVN kernels fails, the IEO kernel inserts the
information into the F90703 and F90704 tables. The EVN kernel recovers the event
information from the F90703 and F90704 tables.

If a communication failure between the EVN kernel and the connector occurs, event
information is stored in the F90703 and F90704 tables. Both the Java connector and the
COM connector have the ability to recover event information from the F90703 and
F90704 tables.

A.5.5 Increasing Performance

To increase performance, the concept of a black list is introduced. The black list is a list
of subscribers that are not responding to the event message. The black list concept
helps to increase performance by not retransmitting to non-responsive subscribers.

A-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Using Reliable Event Delivery

If the EVN kernel cannot send an event to a subscriber, the subscriber is placed on the
black list. When a subscriber is placed on the black list, the EVN kernel inserts the
event information to the F90703 and F90704 tables until the subscriber is removed
from the black list. When the subscriber is removed from the black list, the subscriber
receives new event information from the EVN kernel and the connector recovers
existing event information from the F90703 and F90704 tables and sends this event
information to the subscriber.

Subscribers can be placed on the black list in one of two ways:
= Voluntary

s Forced

A.5.5.1 Voluntary Black List

When a subscriber goes down and sends an unsubscribe message, the EVN kernel
adds the subscriber to the black list. No event information is sent to the subscriber
until the user re-subscribes. The EVN kernel inserts the event information into the
F90703 and F90704 tables, and the information is recovered by the connector once the
subscriber re-subscribes. Information about adding and removing the subscriber from
the black list can be found in the EVN kernel debug log. These are example EVN
kernel debug log messages:

= Added receiver <host name>:<port> to black list.

= Removed receiver <host name>:<port> from black list.

A.5.5.2 Forced Black List

When the EVN kernel sends an event that is defined as reliable to a subscriber, and the
subscriber fails to reply to the EVN kernel, the EVN kernel adds that subscriber to the
forced black list, and inserts the event information to the F90703 and F90704 tables.
Settings that you configure in the jde.ini file determine how many times the EVN
kernel sends an event with no response from the subscriber before the subscriber is
placed on the black list, and the event information is stored in the database tables. You
also configure jde.ini settings that determine how often the system tries to revisit the
subscriber to remove that subscriber from the black list.

Information about adding, revisiting, and removing a subscriber can be found in the
EVN kernel error log. These are example EVN kernel error log messages:

= Added receiver <host name>:<port> to force black list.
= Revisit receiver <host name>:<port> in force black list.
= Removed receiver <host name>:<port> from force black list.

More detail information about adding the subscriber to the black list can be found
in the EVN kernel debug log. This is an example EVN kernel debug log message:

Added receiver <host name>:<port> to forced black list, after
2 retries with 15 seconds of wait time.

A.5.6 Configuring the jde.ini File

For reliable event delivery, you must configure these sections and settings in the jde.ini
file. These settings are in addition to the settings discussed in the real-time and XAPI
events chapters.

Classic Events A-9



Entering Events

A.5.6.1 [INTEROPERABILITY]

Setting Typical Value Purpose

EnableBlacklist= 1 A value of 1 enables black list capabilities.
The default value is 0 (zero). If you use a
value of 0 and your system breaks, your
system performance can be affected.

MaxFailed Allowed= 1 Defines the number of failed attempts that
the EVN kernel makes to the subscriber
before placing the subscriber on the black list.
The default value is 3.

ForceBlackListRevisitTime= 60 Defines how often the EVN kernel will
attempt to communicate with the failed
subscriber once the subscriber is placed on
the black list. The default value is 300

seconds.
A.5.6.2 [NETWORK QUEUE SETTINGS]
Setting Typical Value Purpose
JDENETTimeout= 60 Defines the time that the EVN kernel waits for
a response.

Note: You should have the same number of
JDENET processes as EVN kernels.

A.6 Entering Events

This section provides an overview of entering events in the Interoperability Event
Definition table and discusses how to enter single and container events.

A.6.1 Understanding Entering Events

You use the Event Request Definition program (P90701) to add new single and
container events and to review your existing events. You add single events by event
name. When you add a single event, you must include a data structure. A container
event contains either single events, aggregate events, or both. When you add a
container event, you define events, single events to be used individually, or data
structures, single events to be aggregated. You can change the information for single
and container events. You can delete single and container events. You can change the
status of an event to active or non-active. If your system has multiple environments,
the event status is the same in all environments. You can use menu options to access
the subscriber information.

Note: A XAPI event is always a container event, and you must
define data structures for XAPI events.

A.6.2 Forms Used to Add Events

Form Name FormID Navigation Usage
Event Definition W90701A Enter P90701 in the Locate and review
Workbench Fast Path. existing single and

container events.

A-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Entering Events

Form Name FormID Navigation Usage

Event Entry W90701D On Event Definition =~ Add or change a
Workbench, click single or container
Add. event.

Event Definition W90701C Automatically Link single events to a

Detail appears when you container event.
click OK on the Event

Entry form if you
entered Container in
the Event Category
field for a real-time
event or if you

entered XAPI in the
Event Type field.
A.6.3 Entering a Single or Container Event
Access the Event Entry form.
Figure A-2 Event Entry form
Event Entry
oK Cancel Form  Tools
B X B B
Event Marme wAP|IBOUT
Event Description Simulate Inbound XML
Event Type AP
Event Category COMNTAINER
Froduct Code 4F
Feliable Delivery 1 Reliable
Timeout Threshold 0

Classic Events A-11



Entering Events

Event Name
The name of the event (for example, JDERTSOOUT). Single events can be part of other
events.

Event Description
The description of an event.

Event Type
A value that represents the name of the event type (for example, the value RTE
denotes Real Time Event; the value ZFILE denotes Batch Upload Event).

If you are adding XAPI events, the system automatically completes the Event Category
field with Container and after you click OK, the Event Definition Detail form appears.
Complete the Data Structure and Data Description fields, and then click OK.

Event Category
The category of the event, for example, single event or event container.

Product Code
A user defined code (98/SY) that identifies a system. Values include:

01: Address Book

03B: Accounts Receivable
04: Accounts Payable

09:: General Accounting

11: Multicurrency

Reliable Delivery

An option that specifies whether the system retransmits and stores failed events. If you
clear this option, the system does not retransmit or store failed events. When you
select this option, the additional processing might negatively impact system
performance. Values are:

1 or Y: Retransmit and store failed events.
0 or N: Do not retransmit or store failed events.

If you are using the Reliable Event Delivery feature, you must set the Reliable Delivery
field to reliable (1 or Y) and the Timeout Threshold field must be set.

Timeout Threshold

The Timeout Threshold field is in seconds and applies only to the reliable events for
which an initial delivery attempt fails. This field determines the maximum amount of
time that has to pass from the event creation to the time when the event will be
discarded if not delivered successfully. Events with a threshold of zero never expire.

Data Structure
The name of the data structure that passes event information.

This field disappears if Container is the value of the Event Category field; however,
when you click OK, the Event Definition Detail form automatically appears for you to
enter data structure information.

A.6.3.1 Event Definition Detail

Access the Event Definition Detail form.

A-12 JD Edwards EnterpriseOne Tools Interoperability Guide



Entering Events

Figure A-3 Event Definition Detail form

Event Definition Detail

oK Delete Cancel Tools

B T X &

Event Mame |}{.ﬂ.'F'||E|[:|L_JT CONTAINER
€ Event Data & Data Structure Data
Records 1-3 Customize Grid
Data Structure
Data Structure De=scription
0 |D45El1 360E #APlInhound Label Data Structure
i DHAPIROUTE AR Call Routing Information
{-
Event Data

An option that enables you to define single, individual (composite) events for a
container event.

Data Structure Data
An option that enables you to define aggregate events for the container event. For
XAPI events you must select the Data Structure Data option.

A.6.4 Changing the Status of an Event Record

Access the Event Definition Workbench form.

To change the status of an event:

1.

o » © Db

Complete these fields:

- Event Name

- Description

- Event Type

— Product Code

Click the All Statuses option, and then click Find to display existing events.
In the detail area, select the event for which you want to change the status.
From the Row menu, select Change Status.

To view the status change, click Find.

Note: The status of the event is the same for all environments. If the
event is active, that event is active for all environments. If the event is
non-active, that event is non-active for all environments.

Classic Events A-13



Adding Logical Subscriber Records

A.7 Adding Logical Subscriber Records

This section provides an overview of the logical subscriber and discusses how to add a
logical subscriber record.

A.7.1 Understanding Logical Subscribers

Use the Interoperability Event Subscription program (P90702) to add a logical
subscriber. You can also view and modify existing logical subscribers. The
Interoperability Event Subscription table contains subscriber information, such as the
machine name and port number, and is read by EVIN. If subscriber information is
missing for the XAPI event, the system generates the event but cannot deliver it.

A.7.2 Forms Used to Add a Logical Subscriber

Form Name FormID Navigation Usage

Subscriber Workbench  W90702A Enter 90702 in the Locate and review
Fast Path. existing subscription

information.

Work With Logical W90702D On Subscriber Review existing

Subscriber Workbench, select logical subscribers.
Logical Subscriber
from the Form menu.

Logical Subscriber W90702B On Work With Logical Add alogical

Entry Subscriber, click Add. subscriber.

A.7.3 Adding a Logical Subscriber

Access the Logical Subscriber Entry form.

Figure A-4 Logical Subscriber Entry form

Logical Subsriber Entry
ok Cancel  Tool:

b -
Logical Subscrher Mame [NTHTZ
Event Transpont Drivet _DEMET JOENET
Host Mame INTHTZ
Fort Mumber G005
Subscriber Group CommonGrolp

Logical Subscriber Name
A value that uniquely identifies a subscriber.

A-14 JD Edwards EnterpriseOne Tools Interoperability Guide



Entering Subscription Information

Do not use spaces in the logical subscriber name.

Event Transport Driver
The name of the transport driver that delivers events to the subscriber (for example,
JDENET).

Host Name
The name of the server that processes events for the subscriber.

Port Number
A number that identifies the port where the subscriber service is running.

Subscriber Group
A user-defined name that specifies how to deliver events for the subscriber. For
example, if you are using a WSG adapter, enter the name of the adapter.

A.8 Entering Subscription Information

This section provides an overview about subscription information and discusses how
to:

= Add subscription records.

s Change the status of a subscription record.

A.8.1 Understanding Subscription Records

You use the Interoperability Event Subscription program (P90702) to add new
subscription information for XAPI events and to review and change existing
subscription information. You can also add a subscription by copying and then
modifying an existing subscription, and you can delete subscriptions. You can access
and view your real-time and XAPI event definitions by selecting Event Definition from
the Form menu. You can also access and view Z events when you click the Z File
Events button on the Subscriber Workbench form or by selecting the Z File Events
option on the Form menu.

Note: When you add to or modify the F90702 table, you must restart
the server for the changes to become effective.

A.8.2 Forms Used to Enter Subscription Information

Form Name FormiD Navigation Usage
Subscriber Workbench  W90702A Enter P90702 in the Locate and review
Fast Path. existing subscription
information.
Subscriber Entry W90702F On Subscriber Add a subscription.
Workbench, click
Add.

A.8.3 Entering a Subscription Record

Access the Subscriber Entry form.

Classic Events A-15



Entering Subscription Information

Figure A-5 Subscriber Entry form

Subscriber Entry
oK Cancel Form Took

A B B
Event SLhscribar CARBRIE52
Evenl Ervirunim enl ADEVH 572 APPL-WT, INTEL, S0 C=(
Parpoce Adjust Dermand Outhound
Logical Subscrher Mzme [NTHT2
Event Tyae AP
Event Mame FAPIADOL
Event Description HAPI Adiust Demand Outhound
Event Filter Mame FILTERO

Event Subscriber
The user ID for a subscriber.

Event Environment
A value that identifies the environment that the event is executed in.

Purpose
A user defined name or remark.

Logical Subscriber Name
A value that uniquely identifies a subscriber.

Event Type
A value that represents the name of the event type (for example, the value RTE
denotes Real Time Event and the value ZFILE denotes Batch Upload Event).

Event Name
The name of the event (for example, JDERTSOOUT). Single events are part of other
events.

Event Filter Name
The system automatically enters Filter0.

A.8.4 Changing the Status of a Subscription

Access the Subscriber Workbench form.
To change the status of a subscription:
1. Complete these fields:

- Subscriber Name

— Purpose

A-16 JD Edwards EnterpriseOne Tools Interoperability Guide



Entering Subscription Information

o ©Dbd

Select the All Statuses option, and then click Find to display existing subscriptions.
In the detail area, select the event for which you want to change the status.
From the Row menu, select Change Status.

To view the status change, click Find.

Classic Events A-17



Entering Subscription Information

A-18 JD Edwards EnterpriseOne Tools Interoperability Guide



B

Using Classic Real-Time Events

This appendix contains the following topics:

= Section B.1, "Understanding Real-Time Events - Classic"

= Section B.2, "Processing Real-Time Events"

»  Section B.3, "Defining Real-Time Events"

= Section B.4, "Using Event Sequencing"

= Section B.5, "Using Journaling"

= Section B.6, "Configuring the jde.ini for Real-Time Events"
= Section B.7, "Generating Real-Time Events"

= Section B.§, "Setting Up the OCM for Real-Time Events"

Note: This chapter is applicable only if you use classic events
delivery. Classic event delivery is available when you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

Refer to the Guaranteed Events chapters if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
tools releases with JD Edwards EnterpriseOne Applications 8.10 and
later Applications releases.

B.1 Understanding Real-Time Events - Classic

A real-time event is notification that a business transaction has occurred in JD
Edwards EnterpriseOne. You can generate real-time events on the JD Edwards
EnterpriseOne server using an interface, such as HTML, WIN32, and terminal servers.
You can use real-time events for either synchronous and asynchronous processing.

An example of synchronous processing is an auction site that uses JD Edwards
EnterpriseOne as a back-end solution that can use real-time events to immediately
update the database. For example, a user enters a new item for auction, which triggers
a transaction into JD Edwards EnterpriseOne. The system captures the transaction and
sends a notification to an interoperability server, such as a Java connector, that
communicates the information to a web engine to update HTML pages so that all of
the auction users can see the new item.

Using Classic Real-Time Events B-1



Processing Real-Time Events

You can also use real-time event generation for asynchronous processing. For example,
an online store sends orders to different vendors (business to business), captures the
transactions, and enters the orders into the vendors' systems. A user buys a book.
Vendors enter a purchase order to the book publisher and send a notification to the
shipping company to pick up the book and deliver it. The book order itself can be
completed as a purchase order transaction with JD Edwards EnterpriseOne, but the
shipping request requires that the data is packaged into a commonly agreed-upon
format for the shipping company to process.

B.1.1 Prerequisites

Before you complete the tasks in this section:
= Enable security for the JD Edwards EnterpriseOne server.

»  Ensure that the default user under the [SECURITY] section of the JD Edwards
EnterpriseOne server jde.ini file has a valid security record (that is, that the user is
a valid JD Edwards EnterpriseOne user).

B.2 Processing Real-Time Events

Real-time events use system calls that receive data from business functions that use JD
Edwards EnterpriseOne data structures. Each real-time event has a unique ID that
includes the JD Edwards EnterpriseOne session ID.

Real-time event generation from a client consists of client business functions that call
APIs and interfaces with the server interoperability event observer (a kernel).
Real-time event generation on the server side includes an event observer interface (a
set of system APIs) that triggers real-time events and an interoperability event
observer (a kernel). Then, the event observer kernel generates XML documents of the
triggered real-time events and sends them to an event distribution component. The
event distribution component is the same one that the system uses to send XML
document notification to subscribers.

This diagram is a logical representation of the processes and data for real-time event
generation:

B-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Processing Real-Time Events

Figure B-1 Real-time event process flow

Client Server Side i i
e i 1

| ! 5 Java Interop 3

‘ ! T Server !

1 XML 3 ;

1 ( | v !

! i |

| Call Object i JDENET 5 |

10 Kernel —1>| Interop ! COM Interop ||
Enteg?riseOne | (BSFN) OtI?vent ! Event Server !
ient l server | | !

! Kerel 1 Notification | WebSphere MQ 1

} i Kernel Transport !

3 2 i A Driver N i

! | | Third-Party !

; T | MSMQ IBM System |

Third-Party ; | T : Driver ;
Client | | ransport Drive :
(BSFN) ; | |
| ! !

\ ! L Third-Party l

3 Event Generation ! 5 3 MSWindows |
””””””””””””””””” | System 3

| Event Distribution |

In summary:
1. Event generation is triggered by business functions.

You use the Object Configuration Manager (OCM) to map business functions to
run on the JD Edwards EnterpriseOne server or to run locally. When a business
function is mapped to run on the JD Edwards EnterpriseOne server, the business
function calls the Interoperability Event Interface within the CallObject kernel. The
CallObject kernel sends the information to the Interoperability Event Observation
(IEO). When a real-time event is generated from a client, the client business
function calls the appropriate API. The API performs OCM lookup to determine
where the IEO kernel is located, validates, filters, and formats the data, and then
sends the information to the IEO kernel.

2. The IEO kernel creates the real-time event and produces an XML document when
the real-time event is finalized.

3. The IEO kernel packages the XML document and passes the document to the
Event Notification (EVN) kernel.

4. The EVN kernel determines which transport driver should handle the event.

5. The transport driver distributes the event.

Note: If you use IBM WebSphere MQ or MSMQ transports, the
transport drive writes system and function errors to the JDE error log.
The driver writes error messages and adds the error codes if available.

Using Classic Real-Time Events B-3



Defining Real-Time Events

B.3 Defining Real-Time Events

You use the Interoperability Event Definition program (P90701) to define real-time
events. After you define your real-time event, be sure to activate the event by changing
the status to active. If the event is not defined in the F90701 table, the system call
returns an error message.

B.4 Using Event Sequencing

When you define your real-time events, you indicate whether the event is reliable or
volatile. If you define the event as volatile, the system automatically provides event
sequencing to guarantee that events are delivered in the correct order. Volatile events
are stamped using JD Edwards EnterpriseOne Next Numbers features.

For sequencing of real-time events, the system call, jdeIEO_EventFinalize, retrieves the
event number from the real-time events sequencing bucket, and sends the number to
the IEO kernel. The IEO kernel includes the event number as part of the generated
event. The IEO kernel sends the event to the EVN kernel. The EVN kernel remembers
the last shipped event and bases sequencing on the event number that is contained in
the received event.

Event sequencing does impact performance. You can clear events sequencing. You can
also define a timeout value to tell the system to stop looking for a missed event when
events are out of sequence. The flag and timeout settings are in the
[INTEROPERABILITY] section of the jde.ini file.

B.5 Using Journaling

Real-time events are journaled using the trace feature for the JDEDEBUG log files. You
can select journaling in the jde.ini file. Journaling occurs in two instances:

= A system call logs the parameter received and the APIs called.

= During the interoperability event observer process, the kernel logs additional
debugging information.

The logging is controlled with the LEVEL key in the [INTEROPERABILITY]
section.

B.5.1 [INTEROPERABILITY]
These are some possible values for the LEVEL key:

Key Section Description

LEVEL= N/A The system writes specified interoperability event data to the debug
log file. You can specify one or more of the allowable logging settings.
Separate multiple values with a comma. For example:

[INTEROPERABILITY]
LEVEL=EVENTS,DATA

Note: As with any logging operation, enabling any of these settings
can impact performance and cause extensive amounts of data to be
written.

N/A EVENTS  Use this value to log the flow of events in the IEO kernel. Receiving
event data and sending events are logged, but the values of the event
data are not logged. This is the default level. If the LEVEL key is not
present, it is identical to LEVEL= EVENTS.

B-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Configuring the jde.ini for Real-Time Events

Key

Section

Description

N/A

DATA

Log values of the event data and flow of the events in the IEO kernel.
This level also includes all data logged with the EVENTS switch.

N/A

PERF

Log statistics about the number of events received and the time period
in which they are processed.

N/A

DOC

Outbound XML documents are written in the temporary file on disk. If
the debug log is enabled, the document location is written in the debug
log. The location of the document depends on the key value:

= If the value of the key TempFileDir in the Interoperability section
is set, the file is written to that location. For example:

= [INTEROPERABILITY] TempFileDir=C:\XML_DOCUMENTS

= If the key TempFileDir is not set, files are written in the same
directory where JDE logs and debug logs are written.

Note: Setting the LEVEL=DOC key causes all real-time events to
be written to the disk, which can cause a significant performance
impact on the JD Edwards EnterpriseOne server. JD Edwards
suggests that you not use the LEVEL=DOC setting in a production
environment or for stress testing of the quality assurance
environment.

N/A

TRACE

This switch traces execution of the IEO kernel and writes data in the
debug log. Because of the large amount of data that is logged, use this
level only for debugging purposes.

Note: The LEVEL=DOC setting is not affected by whether debug
logs are enabled or disabled. All other values under the LEVEL key
(for example, TRACE) are affected by the debug log enable or disable

setting.

You can also journal EVN documents by setting the SaveEVNDoc key in the
[INTEROPERABILITY] section of the jde.ini file. SaveEVNDoc is similar to
LEVEL=DOC but applies to the EVN kernel instead of the IEO kernel. The default
value for SaveEVNDoc is zero (0), which means that EVN documents are not saved. To
save EVN documents, change the value to one (1). EVN documents are saved to the
directory where JDE logs and debug logs are written unless you specify a different
directory. You can use TempFileDir to specify a directory.

B.5.2 [INTEROPERABILITY]

You can configure these settings to log documents:

SaveEVNDoc=1
TempFileDir=C:\XML_Documents

B.6 Configuring the jde.ini for Real-Time Events

To generate real-time events, these sections of the JD Edwards EnterpriseOne server
jde.ini file must be configured:

= [JDENET_KERNEL_DEF19]
JDENET_KERNEL_DEF20]

[
= |
[

JDEITDRV]
JDENET]

Using Classic Real-Time Events B-5



Generating Real-Time Events

» [INTEROPERABILITY]

Note: The settings for the kernels, [[DEITDRV], and [JDENET] are
defined in the Using Events - Classic section of the Interoperability
Guide.

See Configuring the jde.ini file for Events.

B.6.1 [INTEROPERABILITY]

Configure these settings:

SequenceTimeOut=XX
XMLElementSkipNullOrZero=x

The SequenceTimeOut setting is for sequencing of volatile events. The default value is
10 seconds.

Null strings and zeros are trimmed from real-time events. You can clear this feature by
entering a value of 0 (zero) for the XMLElementSkipNullOrZero settings.

B.7 Generating Real-Time Events

This section provides overview of real-time event generation, real-time event APIs,
and example code for events, and discusses how to set up the OCM for real-time
events.

B.7.1 Understanding Real-Time Event Generation

Events can be one of these:
= Single event

Contains one partial event. Single events are useful if the receiver requires that
events be generated per system call. Can also be used with different event types.

= Aggregate event

Contains multiple partial events. Aggregate events are useful if the receiver
requires a document that contains multiple events. For example, a supply chain
solution might want to provide the complete sales order as one event that contains
multiple partial events.

s Composite event

Contains only single events. Aggregate events are useful if the customer has
multiple receivers, some that require single events and some that require a
complete event that is similar to an aggregate event.

B.7.2 Real-Time Event APIs

The system APIs are able to determine whether a system call is from a server or client.
These APIs are available for you to generate real-time events:

= jdeIEO_EventInit()
»  jdeIEO_EventAdd()
s jdeIEO_EventFinalize()

B-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Generating Real-Time Events

jdeIEO_CreateSingleEvent()
jdeIEO_IsEventTypeEnabled()

B.7.3 Example: Interoperability Event Interface Calls

This sample code illustrates how to create a single event:

1.

Design the data structure to decide what values to provide to the real-time event.

typedef struct tagDSD55RTTEST
{
char szOrderCo[6];
char szBusinessUnit[13];
char szOrderType[3];
MATH_NUMERIC  mnOrderNo;
MATH_NUMERIC mnLineNo;
JDEDATE jdRequestDate;
char szItemNo[27];
char szDescriptionl[31];
MATH_NUMERIC mnQtyOrdered;
MATH_NUMERIC mnUnitPrice;
MATH_NUMERIC mnUnitCost;
char szUserID[11];
} DSD55RTTEST, *LPDSD55RTTEST;

Define the data structure object in the business function header file.
Modify the business function source to call jdeIEO_CreateSingleEvent.

JDEBFRTN (ID) JDEBFWINAPI RealTimeEventsTest
LPVOID lpVoid,
LPDSD55REALTIME 1pDS)

{

/* Define Data Structure Object */

(LPBHVRCOM 1pBhvrCom,

DSD55RTTEST zRTTest = {0};
IEO_EVENT RETURN eEventReturn = eEventCallSuccess;
IEO_EVENT_ID szEventID ={0};

() Populate required members
/* Now call the API */

szEventID = jdeIEO_CreateSingleEvent { lpBhvrCom,
"RealTimeEventsTest",
"JDERTOUT",
"SalesOrder",
"D55RTTEST",
&zRTTest,
sizeof (zRTTest) ,
0,
&eEventReturn };

/* Error in jdeFeedCallObjectEvent is not a critical error
and should only be treated as a warning */
if( eEventReturn != eEventCallSuccess )

/* LOG the Warning and return */
return ER_WARNING;

This sample code illustrates how to create an aggregate event:

Using Classic Real-Time Events



Generating Real-Time Events

DSD55RTTEST zD55TEST01 = {0};
DSD55RTTEST zD55TEST02 = {0};
DSD55RTTEST zD55TEST03 = {0};
IEO_EVENT RETURN eEventReturn = eEventCallSuccess;
IEO_EVENT_ID szEventID;

szEventID = jdeIEO_EventInit (lpBhvrCom, eEventAggregate, "MyFunctionl",
"JDESOOUT", "EventScopel", 0, &eEventReturn);

eEventReturn = jdeIEO_EventAdd (lpBhvrCom, szEventID, "MyFunction2", NULL,
"D55TEST01", &zD55TESTO01, sizeof (zD55TEST01),0);

eEventReturn = jdeIEO_EventAdd (lpBhvrCom, szEventID, "MyFunction3", NULL,
"D55TEST02", &zD55TEST02, sizeof (zD55TEST02),0);

eEventReturn = jdeIEO_EventAdd (lpBhvrCom, szEventID, "MyFunction3", NULL,
"D55TEST03", &zD55TEST03, sizeof (zD55TEST03),0);

eEventReturn = jdeIEO_EventFinalize (lpBhvrCom, szEventID, "MyFunction4",0);

This sample code illustrates how to create a composite event:

IEO_EVENT_RETURN eEventReturn =0;
IEO_EVENT_ID szEventID;

eEventReturn = eEventCallSuccess;

szEventID = jdeIEO_EventInit (lpBhvrCom, eEventComposite, "MyFunctionl",
"JDESOOUT", "EventScopel", 0, &eEventReturn, 0) ;

eEventReturn = jdeIEO_EventAdd ( lpBhvrCom, szEventID, "MyFunction2",
"SODOCBEGIN", "D55TESTO01", &zD55TEST01, sizeof (zD55TESTO01),0);

eEventReturn = jdeIEO_EventAdd ( lpBhvrCom, szEventID, "MyFunction3",
"SOITEMADD", "EventScope3", "D55TEST02", &zD55TEST02, sizeof (zD55TEST02),0);

eEventReturn = jdeIEO_EventFinalize (lpBhvrCom, szEventID, "MyFunction4",0);

Errors that are returned by the system calls might not be critical enough to stop the
business process. The system flags non-critical errors as warnings and logs them in the
log file. If the business function is on the server, the warning is logged in the
CallObject kernel log. If the business function is on a client, the warning is logged in
the client log file.

This sample code illustrates an XML file that shows a composite real-time event that
consists of a call to the business function F4211FSEditLine on 12/31/2000, arriving
about noon, with the real-time event generated at 12:00:01.000:

<?xml version='1.0' encoding='utf-8' ?>
<jdeResponse type='realTimeEvent' user='JDE1214225' session='1234.786321234"
role='*ALL' environment='XDEVNIS2'>
<header>
<eventVersion>1.0</eventVersion>
<type>JDESOOUT</type>
<scope>SalesOrder</scope>
<user>JDE1214225</user>
<application>P0101</application>
<version>XJDE101</version>
<sessionID>1234.786321234</sessionID>
<environment>XDEVNIS2</environment>
<host>HP9000B</host>
<eventID>HP9000B-1234-1231200012000100-JDE1214225-FFA123ECBBAL123EC</eventID>
<date>12312000</date>
<time>120001000</time>
</header>

<body elementCount='1">

<PartialEvent name='F4211FSEditLine' type='SOEDITLINE' executionOrder='1"
parameterCount="'12"'>

B-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Setting Up the OCM for Real-Time Events

szOrderCo type='String'>JD Edwards</szOrderCo>
<szBusinessUnit type='String'>Mountain Region</szBusinessUnit>
<szOrderType type='String'>S0</szOrderType>
<mnOrderNo type='MATH_NUMERIC'>13209847</mnOrderNo>
<mnLineNo type='MATH _NUMERIC'>122</mnLineNo>
<jdRequestedDate type='Date'>12312000</jdRequestedDate>
<szltemNo type='String'12243234</szItemNo>
<szDescription type='String'>Bicycle</szDescription>
<mnQtyOrdered type='MATH_NUMERIC'>1</mnQtyOrdered>
<mnUnitPrice type='MATH_NUMERIC'>249.99</mnUnitPrice>
<mnUnitCost type='MATH_NUMERIC'>213.23</mnUnitCost>
<szUserID type='String'>JDE1214225</szUserID>
</PartialEvent>
</body>
</jdeResponse>

B.8 Setting Up the OCM for Real-Time Events

This section provides an overview about OCM for real-time events and discusses how
to set up the OCM.

B.8.1 Understanding the OCM for Real-Time Events

You configure the Object Configuration Manager (OCM) so that the system call can
find the IEO kernel. If the business function is mapped to a client, an error is returned
to the client by the system call if the IEO kernel is not found. If the business function is
mapped to the server, the error is logged in the Callobject kernel jde.log.

When you configure the OCM, include a specific environment and ensure that no two
duplicate mappings are in active status at the same time.

If the OCM mapping is not correctly configured on the client, this message is written
in the jde.log, and the event is not be generated:

RT0000011 jdeIEO_EventInit: Unable to find the server
If the OCM mapping is not correctly configured on the server, no error message is
generated. The system call uses the local server as the location of the IEO kernel.

If the IEO kernel is not found on the machine that is configured in the OCM, this error
might occur:

RT0000004 jdeIEO_EventInit: ReceiveMsg failed. Error = <error test>

B.8.2 Forms Used to Set Up OCM

Form Name FormID Navigation Usage
Machine Searchand ~ W986110D Enter OCM in the Select the appropriate
Select Fast Path Command  machine name.
Line.
Work With Object W986110B On Machine Search Find and select the
Mappings and Select, select the  appropriate
appropriate active environment.
environment.

Using Classic Real-Time Events B-9



Setting Up the OCM for Real-Time Events

Form Name FormID Navigation Usage
Object Mapping W986110C On Work With Object Enter RTE in the
Revisions Mappings, select the  Object Type field.

appropriate active
environment in the
detail area.

B.8.3 Setting Up the OCM for Real-Time Events

Access the Object Mapping Revisions form.

Environment Name
A name that uniquely identifies the environment.

Object Name

The JD Edwards EnterpriseOne object that you want to map. To create a default map
for all of an object type, enter the literal value DEFAULT into this field and then enter
an object type into the Object Type field.

Primary Data Source
The name that identifies the data source.

Data sources are the building blocks that you use to set up a JD Edwards
EnterpriseOne configuration. Data sources define all of the required databases (where
your tables reside) and all of the logic machines (where JD Edwards EnterpriseOne
executes logic objects for your enterprise).

If JD Edwards EnterpriseOne cannot find your primary data source or cannot find the
data item I your primary data source, it attempts to connect to your secondary data
source.

System Role
A profile that classifies users into groups for system security purposes. You use group
profiles to give the members of a group access to specific programs.

On this form you can enter an individual user, a group name or the literal value
*PUBLIC.

Object Type
The type of object with which you are working. For real-time events, the object type is
RTE. For XAPI events the object type is XAPI.

Data Source Mode
Indicates whether to use the primary or secondary data source.

Allow QBE
Use this flag to select row-level record locking for the data source.

You should have this flag turned on to help prevent database integrity issues.

JDEBASE middleware uses this flag to determine whether to use row-level record
locking.

B-10 JD Edwards EnterpriseOne Tools Interoperability Guide



C

Using Classic XAPI Events

This appendix contains the following topics:

= Section C.1, "Understanding XAPI Events - Classic"
= Section C.2, "Defining XAPI Events"

= Section C.3, "Subscribing to XAPI Events"

= Section C.4, "Setting Up the OCM for XAPI Events"

= Section C.5, "Working with JD Edwards EnterpriseOne and Third-Party XAPI
Events"

= Section C.6, "Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI
Events"

= Section C.7, "Mapping the Business Function"

Note: This chapter is applicable only if you use classic events
delivery. Classic event delivery is available when you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

Refer to the Guaranteed Events chapters if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
tools releases with JD Edwards EnterpriseOne Applications 810 and
later Applications releases.

C.1 Understanding XAPI Events - Classic

XAPI is a JD Edwards EnterpriseOne service that captures transactions as the
transaction occurs, and then calls third-party software, end-users, and other JD
Edwards systems to obtain a return response. A XAPI event is very similar to a
real-time event and uses the same infrastructure to send an event. The difference
between a real-time event and a XAPI event is that the subscriber to a XAPI event
returns a reply to the originator. The XAPI event contains a set of structured data that
includes a unique XAPI event name and a business function to be invoked upon
return. Like real-time events, XAPI events can be generated on the JD Edwards
EnterpriseOne server using any interface, such as HTML, WIN32, and terminal
servers.

The XAPI structure sends outbound events and receives a reply from third-party
systems. An event is generated in JD Edwards EnterpriseOne and sent to a third-party

Using Classic XAPI Events C-1



Understanding XAPI Events - Classic

system for processing. The JD Edwards EnterpriseOne system is called the originator.
The third-party system sends a response back to JD Edwards EnterpriseOne. The
third-party system is called the executor.

The XAPI structure also provides complete request-reply connectivity between two JD
Edwards EnterpriseOne systems. The JD Edwards EnterpriseOne system that
generates the event is called the Originator. The JD Edwards EnterpriseOne system
that responds to the event is called the Executor.

C.1.1 JD Edwards EnterpriseOne to Third-Party

This diagram shows a logical representation of the XAPI process from JD Edwards
EnterpriseOne to a third-party system:

Figure C-1 JD Edwards EnterpriseOne to a third-party system XAPI event

EnterpriseOne System

———Request—>|

XAPI

Originator Executor

<«—Response——

XAPI

In summary:
1. JD Edwards EnterpriseOne, (XAPI originator) sends a request.
2. The request is sent to a third-party system.

3. The third-party system (XAPI executor) processes the request and sends a
response back to the XAPI originator.

C.1.2 Third-Party to JD Edwards EnterpriseOne

This diagram shows a logical representation of the XAPI process from a third-party
system to JD Edwards EnterpriseOne:

C-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Understanding XAPI Events - Classic

Figure C-2 Third-party system to JD Edwards EnterpriseOne XAPI event

Third-Party System EnterpriseOne Systemi

———Request—

XAPI

Originator | Executor

<«—Response——

XAPI

In summary:

1. The third-party system (XAPI originator) sends a request using the JD Edwards
EnterpriseOne XAPI request form.

2. The request is sent to JD Edwards EnterpriseOne.

3. JD Edwards EnterpriseOne (XAPI executor) processes the request and sends a
response back to the XAPI originator.

C.1.3 JD Edwards EnterpriseOne-to-JD Edwards EnterpriseOne

This diagram shows a logical representation of the XAPI processing for two different
JD Edwards EnterpriseOne systems communicating with each other:

Figure C-3 JD Edwards EnterpriseOne-to-EnterpriseOne XAPI event

EnterpriseOne System

Request——p|

Originator Executor

<«—-Response—

| XAPI XAPI 3

|

|

|

|

|

|
In summary:

1. The first JD Edwards EnterpriseOne system (XAPI originator) sends a request.

2. The request is sent to a second JD Edwards EnterpriseOne system, which may
share the same or different environment as the first JD Edwards EnterpriseOne
system.

3. The second JD Edwards EnterpriseOne system (XAPI executor) processes the
request and sends a response back to the first JD Edwards EnterpriseOne system
(XAPI originator).

Using Classic XAPI Events C-3



Defining XAPI Events

4. The first JD Edwards EnterpriseOne system (XAPI originator) processes the
response.

C.1.4 Prerequisites

Before you complete the tasks in this section:
=  Enable security for the JD Edwards EnterpriseOne server.

= Ensure that the default user has a valid security record under the [SECURITY]
section of the JD Edwards EnterpriseOne server jde.ini file (that is, that the user is
a valid JD Edwards EnterpriseOne user).

C.2 Defining XAPI Events

You use the Interoperability Event Definition (P90701) program to define XAPI events.
When you define XAPI events, the system automatically updates the Event Category
field to Container. All XAPI events use the data structure option. The system
automatically adds the DXAPIROUTE data structure, which is required for XAPI
events. The DXAPIROUTE data structure contains the routing information that is to be
returned to the originating system. The jdeXAPI_Finalize API appends DXAPIROUTE
data execution. After you define your XAPI event, be sure to activate the event by
changing the status.

See Defining Events.

C.3 Subscribing to XAPI Events

If you generate XAPI events, you must define a logical subscriber and set up XAPI
event subscriber information. The logical subscriber must exist before you can add
XAPI event subscriber information. If subscriber information is missing, the system
generates the XAPI event but does not deliver it. You use the Interoperability Event
Subscription program (P90702) to define the logical subscriber and to set up XAPI
subscriber information. After you set up the XAPI subscriber, be sure to activate the
subscriber by changing the status.

See Subscribing to Events.

C.4 Setting Up the OCM for XAPI Events

If your interface to JD Edwards EnterpriseOne is not a JD Edwards EnterpriseOne
client, you must configure the OCM so that the system call can find the IEO kernel.
When you configure the OCM, include a specific environment and ensure that no two
duplicate mappings are in active status at the same time.

To configure the OCM, access the Object Mapping Revisions form and enter XAPI in
the Object Type field. Configuring the OCM with the XAPI entry enables the system
call to find the IEO kernel. If the OCM is not properly configured, the system generates
an error message. OCM error messages for XAPI events are the same as the OCM error
messages for real-time events.

See Understanding the OCM for Real-Time Events.

C-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

C.5 Working with JD Edwards EnterpriseOne and Third-Party XAPI

Events

This section provides an overview of the XAPI event generation and response and
discusses:

XAPI outbound request process flow.

XAPI outbound request APIs.

XAPI outbound request API usage sample code.

XAPI outbound request XML sample code.

XAPI outbound request jde.ini file configuration.

XAPI inbound response process flow.

XAPI inbound response parsing APIs.

XAPI inbound response parsing API usage sample code.
XAPI inbound response sample code.

XAPI inbound response jde.ini file configuration.

XAPI client jde.ini file configuration.

C.5.1 Understanding XAPI Event Generation and Third-Party Response

The XAPI structure supports XAPI outbound event generation. XAPI outbound events
are generated by the XAPI originator exactly the same as real-time events.

The XAPI structure also provides for an inbound response. The XAPI inbound
response happens after a XAPI event is generated. The XAPI inbound response is
handled by the third-party system. The third-party system, the XAPI executor,
processes the request (event) and returns a reply to the XAPI originator.

When the return XML document is received, it is routed to the XML Service kernel.
The XML Service kernel saves the XML document to disk, creates a unique handle,
and then calls the callback business function that is provided in the DXAPIROUTE
XAPI method ID element in the XML document.

C.5.2 XAPI Outbound Request Process Flow

This diagram illustrates the flow for a XAPI outbound request that is sent to a
third-party system:

Using Classic XAPI Events C-5



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

Figure C-4 XAPI request to a third-party system

i Server Side

Client
XML—*
i i —L ( i ., Javalnterop
o | Server
| Call Object Kernel Interop Event ! Event Notification JDENET
. w (BSFN) ‘ Kernel
EnterpriseOne ; Observer Kernel 3 — |
Client ! o —>4 COM Interop
! >
| 1 ! Server
i \ i Event Distribution
Client BSFN | | —>2 |
1// i

Event Generation

In summary:

1.

When a XAPI event is generated from a JD Edwards EnterpriseOne client, the
client business function calls the appropriate APIL

This API does an OCM lookup to determine where the IEO kernel is located. The
API validates, filters, and formats the data. When a XAPI event is generated from
a JD Edwards EnterpriseOne server, the business function calls the interoperability
event interface within the CallObject kernel. The data is sent as a partial event to
the IEO kernel.

The IEO kernel creates the XAPI event and produces an XML document when the
XAPI event is finalized.

The IEO kernel packages the XML document and passes the document to the EVN
kernel.

The EVN kernel determines the transport driver that should handle the event, and
JDENET distributes the information to the subscribers.

Note: XAPI currently does not use IBM WebSphere MQ or MSMQ.
All events that are defined in the F90701 table are sent to you if you
configure your system to receive events using IBM WebSphere MQ
and MSMQ transport drivers.

C.5.3 XAPI Outbound Request APIs
These APIs are available for you to generate a XAPI call:

jdeXAPI_Init
jdeXAPI_Add
jdeXAPI_Finalize
jdeXAPI_Free

C-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

s jdeXAPI_SimpleSend
s jdeXAPI_ISCallTypeEnabled
s jdeXAPI_CALLS_ENABLED

C.5.4 XAPI Outbound Request APl Usage Sample Code

This code sample illustrates how to create a XAPI outbound request:

/* Header files required */

#include <B4205010.h>

/*************************/

BOOL bXAPIInUse, bExit;
#ifdef jdeXAPI_CALLS_ENABLED

XAPI_CALL_ID ulXAPICallID = 0;

XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;
#endif

DSD4205010A dsD4205010A {0}; /*Query Header*/
DSD4205010B dsD4205010B = {0}; /*Query Detail*/
#ifdef jdeXAPI_CALLS_ENABLED

if (jdeXAPI_IsCallTypeEnabled ("XAPIOPOUT") && jdeXAPI_IsCallTypeEnabled=
("XAPIOPIN") )

{

bXAPIInUse = TRUE;

}
#endif

/* Call XAPIInit */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
ulXAPICallID = jdeXAPI_Init( lpBhvrCom, "SendOrderPromiseRequest",
"XAPIOPOUT", NULL, &eXAPICallReturn);
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;
}
}
#endif

/* Adding Header Information */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Add( lpBhvrCom, ulXAPICallID,
"SendOrderPromiseRequest", "D4205010A", &dsD4205010A, sizeof (DSD4205010A));
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;
}
}
#endif

/* Loading Detail Information */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Add( lpBhvrCom, ulXAPICallID,

Using Classic XAPI Events C-7



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

"SendOrderPromiseRequest", "D4205010B", &dsD4205010B, sizeof (DSD4205010B));
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;
}
}
#endif
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)

/* Finalize */
{
eXAPICallReturn = jdeXAPI_Finalize( lpBhvrCom, ulXAPICallID,
"SendOrderPromiseRequest", "OrderPromiseCallback");
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;
}
}
#endif
#ifdef jdeXAPI_CALLS_ENABLED
if (eXAPICallReturn != eEventCallSuccess)

/* CleanUp */
if (bXAPIInUse == TRUE)
{
jdeXAPI_Free( lpBhvrCom, ulXAPICallID, "SendOrderPromiseRequest");
}
}
#endif

C.5.5 XAPI Outbound Request XML Sample Code
This code example shows the XML template for a XAPI outbound request:

xml version=1.0 encoding="utf-8" ?>

<jdeResponse type="realTimeEvent" user="KL5449350" role='*ALL'
session="22558100.1004460662" subtype="XAPICall" environment="DV7333">
<event>

<header>

<eventVersion>1.0</eventVersion>

<type>XAPIOPOUT</type>

<user>KL5449350</user>

<application>APIDRV</application>

<version />

<sessionID>22558100.1004460662</sessionID>
<environment>DV7333</environment>

<host>DEN-PP6954083</host>
<sequenceID>DEN-PP6954083_1540_10302001095648_KL5449350_1</sequencelID>
<date>10302001</date>

<time>095649</time>

<scope />

<codepage>utf-8</codepage>

</header>

<body elementCount="3">

<detail date="10302001" name="APIDRVFunction" time="9:56:48" type= ""
DSTMPL="D4205010A" executionOrder="1" parameterCount="23">
<szRequestId type="String">1234567</szRequestId>

<szUserId type="String">TestUser</szUserId>

C-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

<szQueryMode type="String">Test</szQueryMode>
<szCustomerName type="String">John Doe</szCustomerName>
<mnCustomerId type="Double">12345</mnCustomerId>
<szCustomerGroup type="String">Group 1l</szCustomerGroup>
<szAddressl type="String">Line 1</szAddressl>

<szAddress2 type="String">Suite 1</szAddress2>

<szAddress3 type="String">123 E. Main</szAddress3>
<szPostalCode type="String">50001</szPostalCode>

<szCity type="String">Centennial</szCity>

<szCounty type="String">Arap</szCounty>

<szStateProvince type="String">CO</szStateProvince>
<szCountry type="String">US</szCountry>

<szBusinessObjective type="String" />

<mnTraceDepth type="Double">0</mnTraceDepth>
<mnPenaltyCostAdjustment type="Double">0</mnPenaltyCostAdjustment>
<szOrderNumber type="String">1000</szOrderNumber>
<nAllowBackorders type="Int">49</nAllowBackorders>
<nAllowSubstitution type="Int">48</nAllowSubstitution>
<nAllowPartialLineShip type="Int">49</nAllowPartiallineShip>
<nAllowPartialOrderShip type="Int">49</nAllowPartialOrderShip>
<nAllowMultisource type="Int">49</nAllowMultisource>
</detail>

<detail date="10302001" name="APIDRVFunction" time="9:56:49" type= ""
DSTMPL="D4205010B" executionOrder="2" parameterCount="17">
<mnLineNumber type="Double">1</mnLineNumber>
<mnCacheLineNumber type="Double">1</mnCachelLineNumber>
<mnItemNumber type="Double">2222</mnItemNumber>
<sz2ndItemNumber type="String">1234567</sz2ndItemNumber>
<sz3rdItemNumber type="String">2234567</sz3rdItemNumber>
<szOrderUnit type="String">123</szOrderUnit>
<mnOrderQuantity type="Double">12</mnOrderQuantity>
<szPlanningUnit type="String">ECL</szPlanningUnit>
<mnPlanningQuantity type="Double">12</mnPlanningQuantity>
<mnPlanningMultiple type="Double">l</mnPlanningMultiple>
<mnPlanningUnitPrice type="Double">1234</mnPlanningUnitPrice>
<jdRequestDate type="Date">10302001</jdRequestDate>
<szShippingGroup type="String">Ship Group</szShippingGroup>
<szMultiSource type="String">MS</szMultiSource>
<nAllowPartialLineShip type="Int">49</nAllowPartialLineShip>
<nAllowBackorders type="Int">49</nAllowBackorders>
<nAllowSubstitution type="Int">48</nAllowSubstitution>
</detail>

/* DXAPIROUTE Routing Information */

<detail date="10302001" name="XAPICall time="09:56:49" type=""
DSTMPL="DXAPIROUTE"

executionOrder="3" parameterCount="4">

<ClientPort type="Int">6009</ClientPort>

<ClientIP type="Int">167810863</ClientIP>

<ClientMagicNumber type="Int">32781408</ClientMagicNumber>
<XAPIMethodID type="String">GetComputerID</XAPIMethodID>
</detail>

/* End of DXAPIROUT Routing Information */

</body>

</event>
</jdeResponse>

Using Classic XAPI Events C-9



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

C.5.5.1 Routing Information

All XAPI events must include DXAPIROUTE in the XML file, as noted near the end of
the XML code sample. DXAPIROUTE contains the routing information that is to be
returned to the originating client. The jdeXAPI_Finalize API appends DXAPIROUTE
data execution.

C.5.6 XAPI Outbound Request jde.ini File Configuration

To generate XAPI events, these sections of the JD Edwards EnterpriseOne server jde.ini
file must be configured:

» [JDENET_KERNEL_DEF19]
» [JDENET_KERNEL_DEF20]
« [JDEITDRV]

If the jde.ini file is not properly configured for XAPI events, this error message is
written to the jde.log file:

XAPI Event [Event Name] cannot be subscribed. Must have XAPI Definition in the
INI file.

Make sure the XAPI event is defined in the F90701 table and that XAPI Executor
information is defined in the jde.ini file.

You can ignore this error message because XAPI subscription is persisted and cannot
be unsubscribed:

Cannot unsubscribe XAPI event.

See Configuring the jde.ini file for Events.

C.5.7 XAPI Inbound Response Process Flow

This diagram illustrates the flow for a XAPI inbound response from a third-party
system to the JD Edwards EnterpriseOne originating system:

C-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

Figure C-5 XAPI response from a third-party system

Client Server Side
&Reply% Call —P;{\jﬁd XML -« XML— Java Interop
EnterpriseOne ! Object Kernel Service i Server
Client ! (BSFN) Kernel !
6 | ;
5 1 |
Client BSFN |
I «—Reply—— < Call _ | | Com Interop
| s BSFN <-XML—|  Server
3 A
3 !
| 2 |

In summary:

1. Aninbound XML document is passed from a third-party system to the XML
Service kernel.

2. The XML Service kernel creates a unique XML handle and stores the document on
disk.

3. The XML Service kernel reads the XAPICallMethod attribute from the XML
document and passes the XML handle as the parameter to the specified business
function.

4. The business function (XAPICallMethod) uses XML service APIs to read and parse
the XML data into JD Edwards EnterpriseOne data.

5. The business function (XAPICallMethod) uses XML CallObject to send the reply to
the originator.

6. A]JD Edwards EnterpriseOne client can poll for the XAPI response from the JD
Edwards EnterpriseOne server.

C.5.8 XAPIInbound Response Parsing APIs

These APIs are available for you to generate an inbound XAPI response:
s jdeXML_GetDSCount

s jdeXML_GetDSName

s jdeXML_ParseDS

s jdeXML_DeleteXML

Using Classic XAP| Events C-11



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

C.5.9 XAPI Inbound Response Parsing APl Usage Sample Code

This code example illustrates how the business function uses the XML service APIs to
read and parse the XML data:

#include <B4205030.h>

int iCurrentRecord;
int iHeaderCount;
int iRecordCount;
NID nidDSName;
DSD4205030A dsD4205030A = {0};
DSD4205030B dsD4205030B = {0};
#ifdef jdeXAPI_CALLS_ENABLED
if (jdeXAPI_IsCallTypeEnabled ("XAPIOPOUT") && jdeXAPI_IsCallTypeEnabled
("XAPIOPIN") )
{
iRecordCount = jdeXML_GetDSCount (1pDS->szXMLHandle) ;
if (iRecordCount > 0)
{
for (iCurrentRecord = 0; iCurrentRecord < iRecordCount; iCurrentRecord++)
{
jdeXML_GetDSName (1pDS->szXMLHandle, iCurrentRecord, nidDSName) ;
if (jdestrcmp (nidDSName, (const char*) "D4205030A") == 0)//mod
{
jdeXML_ParseDS( lpDS->szXMLHandle, iCurrentRecord, &dsD42050304,
sizeof (DSD42050304)) ;

}
else
{
jdeXML_ParseDS( lpDS->szXMLHandle, iCurrentRecord, &dsD4205030B,
sizeof (DSD4205030B) ) ;
}
}
}
if (iCurrentRecord == iRecordCount)
{
jdeXML_DeleteXML (1pDS->szXMLHandle) ;
}
}
#endif

C.5.10 XAPI Inbound Response Sample Code
This sample code shows an inbound XAPI response:

<?xml version="1.0" encoding="utf-8" ?>
<jdeRequest pwd="JDE" type="xapicallmethod" user="JDE" role='*ALL'
session= "" =

environment="DV7333" sessionidle="">
<header>
<eventVersion>1.0</eventVersion>
<type>XAPIOPIN</type>

<user>JDE</user>
<application>XPI</application>

<version />

<sessionID />
<environment>DEVXPINT</environment>
<host>denxpi7</host>

<sequencelD />

C-12 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

<date>09122001</date>
<time>094951</time>

<scope />

<codepage>utf-8</codepage>

</header>

<body elementCount="3">

<params type="D4205030A" executionOrder="1" parameterCount="24">
<param name="type" />

<param name="dateStamp" />

<param name="timeStamp" />

<param name:"szRequestId">l|ZJDE0001</param>
<param name="szBusinessObjective">Maximize_ Service</param>
<param name="mnResultNumber">0.0</param>

<param name="mnTotalCost">0.0</param>

<param name="mnTotalDeliveryCost">0.0</param>
<param name="mnTotalPrice">0.0</param>

<param name="mnTotalProfit">0.0</param>

<param name="mnTotalMargin">0.0</param>

<param name="mnTotalValue">0.0</param>

<param name="mnLatestLineDate">0.0</param>

<param name="mnNumberOfBackorders">0.0</param>
<param name="mnNumberOfSubstitutions">0.0</param>
<param name="mnOrderFillRate">0.0</param>

<param name="szErrorCode" />

<param name="szErrorDescription" />

<param name="szOrderNumber">3115|S50|00200</param>
<param name="nAllowPartialOrderShip">0</param>
<param name="nAllowMultisource">0</param>

<param name="nAllowBackorders">0</param>

<param name="nAllowSubstitution">0</param>

<param name="nAllowPartialLineShip">0</param>

</params>

<params type="D4205030B" executionOrder="2" parameterCount="28">
<param name="type" />

<param name="dateStamp" />

<param name="timeStamp" />

<param name="mnLineNumber">1.0</param>

<param name="mnOriginalLineNumber">1.0</param>

<param name="mnCacheLineNumber">1.0</param>

<param name="mnRequestedItem">60011.0</param>

<param name="mnAvailableItem">60011.0</param>

<param name="mnAvailableAmount">25.0</param>

<param name="jdAvailableDate">09/12/2001 00:00:00</param>
<param name="jdRequestedDate">09/10/2001 00:00:00</param>
<param name="jdPickDate">09/11/2001 00:00:00</param>
<param name="jdShipDate">09/11/2001 00:00:00</param>
<param name="szShipLocation" />

<param name="mnCost">0.0</param>

<param name="mnDeliveryCost">0.0</param>

<param name="mnPrice">0.0</param>

<param name="mnProfit">0.0</param>

<param name="mnMargin">0.0</param>

<param name="mnValue">0.0</param>

<param name="mnSubstitutionRatio">0.0</param>

<param name="szShippingGroup" />

<param name="szMultiSource" />

<param name="szErrorCode" />

<param name="szSuspectedCause" />

<param name="nAllowPartialOrderShip">0</param>

<param name="nAllowBackorders">0</param>

Using Classic XAPI Events C-13



Working with JD Edwards EnterpriseOne and Third-Party XAPI Events

<param name="nAllowSubstitution">0</param>

</params>

<params type="DXAPIROUTE" executionOrder="3" parameterCount="7">
<param name="type" />

<param name="dateStamp">09/05/2001 00:00:00</param>
<param name="timeStamp">13:54:04</param>

<param name="ClientPort">6009</param>

<param name="ClientIP">168045665</param>

<param name="ClientMagicNumber">3</param>

<param name="XAPIMethodID">OrderPromiseCallback</param>
</params>

</body>

</jdeRequest>

C.5.11 XAPI Inbound Response jde.ini File Configuration

These sections of the JD Edwards EnterpriseOne server jde.ini file must be configured
for the XAPI response portion of the XAPI structure:

» [JDENET_KERNEL_DEF22]
[JDENET_KERNEL_DEF24]
»  [XAPI]
[XMLLookupInfo]

C.5.11.1 [XAPI]
Configure this setting:

XMLDirectory=c:\builds\bdev\log\

Note: The XML document directory (XMLDirectory) must be
registered in the jde.ini file on the server under the [XAPI] section in
the XMLDirectory key. The key contains the directory on the server
where XML documents are to be stored.

Caution: For data privacy, be sure to remove the global read access
rights for the specified directory.

C.5.11.2 [XMLLookupinfo]

Configure these settings:
XMLRequestTypeb=realTimeEvent
XMLKernelMessageRangeb=14251
XMLKernelHostNameb=1ocal

XMLKernelPort5=0
XMLKernelReply5=0

See Understanding the OCM for Real-Time Events.

C.5.12 XAPI Client jde.ini File Configuration

If you are using a JD Edwards EnterpriseOne client to generate XAPI events, you must
define the Client Dispatch kernel and [JDENET] sections of the client jde.ini file. If
your interface to the JD Edwards EnterpriseOne server is other than a JD Edwards

C-14 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

EnterpriseOne client, these two settings are not required. The settings enable the JD

Edwards EnterpriseOne client to poll for the XAPI response message from the JD

Edwards EnterpriseOne server.

Use these settings to configure your JD Edwards EnterpriseOne client jde.ini file.

C.5.12.1 [JDENET_KERNEL_DEF27]

Configure these settings:

krnlName=CLIENT DISPATCH KERNEL
dispatchDLLName=jdeuser.dll
dispatchDLLFunction=_JDENET ClientDispatch
maxNumberOfProcesses=0
numberOfAutoStartProcesses=0

C.5.12.2 [JDENET]

Configure these settings

serviceNameListen=6004
serviceNameConnect=6004
maxKernelRanges=27
netTrace=0

Note: The serviceNameListen and serviceNameConnect settings
must be the same as the server's settings. For example, if your server
jde.ini file has serviceNameListen=6005 and
serviceNameConnect=6005, then your JD Edwards EnterpriseOne
client jde.ini file must be serviceNameListen=6005 and
serviceNameConnect=6005.

The value for maxKernelRanges setting should be the same value as
the server.

C.6 Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI

Events

This section provides an overview of the JD Edwards EnterpriseOne-to-EnterpriseOne
XAPI events and discusses:

XAPI JD Edwards EnterpriseOne-to-EnterpriseOne process flow.
XAPI outbound request generation APIs.

XAPI outbound request handling APIs.

XAPI outbound request parsing API usage sample code.

XAPI JD Edwards EnterpriseOne originator XML sample code.
XAPI inbound response generation APIs.

XAPI inbound response parsing API usage sample code.

XAPI response from originator system sample code.

XAPI inbound response handling APIs.

XAPI error handling APIs.

XAPI JD Edwards EnterpriseOne-to-EnterpriseOne jde.ini file configuration.

Using Classic XAPI Events



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

C.6.1 Understanding JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

The XAPI structure provides the capability for two different JD Edwards
EnterpriseOne systems to communicate with each other. The first JD Edwards
EnterpriseOne system (XAPI originator system) generates a XAPI request (event).
Instead of the request being distributed to a third-party system, JDENET sends the
request to a second JD Edwards EnterpriseOne system.

You can use the reliable event delivery feature to process XAPI events.

C.6.1.1 Modifying Element Name for XML Documents

Before XAPI event processing, any document that was sent from JD Edwards
EnterpriseOne was considered to be a response document, and any document coming
in to JD Edwards EnterpriseOne was considered to be a request document. However,
with XAPI, request documents are generated by the JD Edwards EnterpriseOne
originating system and can be sent to a JD Edwards EnterpriseOne executor system.
Response documents are generated and sent by the JD Edwards EnterpriseOne
executor system and received by the JD Edwards EnterpriseOne originating system. To
support XAPI and to enable the XML dispatch kernel to distinguish between a
response and reply, JD Edwards created these type attributes to be used with the
jdeResponse element:

Attribute Type Explanation

jdeResponse=RealTimeEvent Use this element and attribute to identify a XAPI request from
the JD Edwards EnterpriseOne originating system and sent to
the JD Edwards EnterpriseOne executor system.

jdeResponse=xapicallmethod Use this element and attribute to identify a XAPI response from
the JD Edwards EnterpriseOne executor system and sent to the
JD Edwards EnterpriseOne originating system.

When the XMLDispatch kernel receives a document with the jdeResponse element and
a RealTimeEvent or xapicallmethod type attribute, XMLDispatch sends the document
to the XML Service kernel. XML Service can distinguish a response or a reply based on
the type attribute that is associated with the jdeResponse element and then processes
the document appropriately.

C.6.1.2 Security for Originator and Executor

Access to the JD Edwards EnterpriseOne originator and JD Edwards EnterpriseOne
executor systems is based on:

s  UserID

= Password

=  Environment
= Role

The JD Edwards EnterpriseOne originating system verifies that the security
information is valid and creates an hUser object with an encrypted password to send
to the JD Edwards EnterpriseOne executor. Encryption APIs (jdeEnchyper and
jdeDecypher) are used to encrypt and decode the password. The security information
is sent in the XAPI request XML document.

C-16 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

Note: The user ID, password, environment, and role must be the
same on both JD Edwards EnterpriseOne systems (originator and
executor).

C.6.1.3 Error Processing for Originator and Executor

You might encounter these two types of errors during XAPI error processing between
two JD Edwards EnterpriseOne systems:

Type of Error Explanation

Business-related errors  The business function or the business function specifications cannot
be found.

System errors These errors occur in other parts of the system (for example, message

delivery failure).

The system handles XAPI error processing for business-related errors in this manner:

= XAPI logs the business-related errors in the JD Edwards EnterpriseOne server log
and these errors are delivered as part of the XAPI reply.

= XAPI APIs parse business errors from the response document.

= XAPIlogs all information available about the error in the JD Edwards
EnterpriseOne server log.

C.6.2 XAPI EnterpriseOne-to-EnterpriseOne Process Flow

This illustration shows a logical representation of the JD Edwards
EnterpriseOne-to-EnterpriseOne XAPI process flow:

Using Classic XAP| Events C-17



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

Figure C-6 JD Edwards EnterpriseOne-to-EnterpriseOne process flow

Client EnterpriseOne Server EnterpriseOne Server
| XAPI | xAPI
i Originator ! . Executor |
. System ! | System |
| | 5 |
| 1 | |
| > » Events |3—p XML o, ) XML |
‘ ( ! I"| Dispatch Service ‘
-1-»{  call | XAPI 1. I
EnterpriseOne ! Object ! | 7 6 !
Client } Kernel ! | }
<15 <14 1. l |
I 13 T XAPI | CallObject| !
3 12 L ! i Kernel |
1 XML g XML 105 Events <9 «8—] 1
! Service Dispatch !

In summary:

1. For the XAPI Originator System in the illustration, a business function calls the
Interoperability Event Interface within the CallObject kernel to send a request.

2. The business function uses XAPI APIs to create the XAPI request.
XAPI adds the callback function and sends the request to the events structure.

3. The IEO kernel creates the XAPI event in XML format and sends the XML
document to the EVN kernel.

The EVN kernel ships the XML document to the XML Dispatch kernel of the
second JD Edwards EnterpriseOne system. The XML document is shipped
through JDENET using persistent subscription information. A routing token that
contains the sender's server and port information is added. The message type for
the event must be RealTimeEvent.

4. For the XAPI Executor System in the illustration, the XML Dispatch kernel
receives the XML package and sends the event request and routing information to
the XML Service kernel.

5. The XML Service kernel stores the XAPI request and creates a file handle for the
XAPI request.

The XML kernel also creates XML based routing information, stores the routing
information, and creates a file handle for the routing information. The XML
Service kernel uses the F907012 table to find the business function that processes
the request.

C-18 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

6. The XML Service kernel invokes the business function (in CallObject) with the
XML request handle and the routing information handle.

7. The business function uses XAPI APIs to parse and process the request. XAPI APIs
load the XML request into memory.

8. The business function processes the XAPI event request.

The business function also creates a XAPI response. The message type for the
response must be xapicallmethod. The XAPI response is in XML format. The
business function also passes the routing information handle.

9. The XAPI response originator sends the response and the routing information to
the events structure.

10. The IEO kernel formats the XAPI response in XML format and sends the XML
document to the EVN kernel.

The EVN kernel uses direct routing to send the response and routing information
to the XML Dispatch kernel of the first JD Edwards EnterpriseOne system (XAPI
originator system). Direct routing means sending the XAPI reply to the same
request-originating server.

11. For the XAPI Originator System in the illustration, the XML Dispatch kernel
receives the response XML document and sends the response to the XML Service
kernel.

12. The XML Service kernel stores the response document, creates a file handle, and
invokes the callback business function with the file handle.

13. The business function parses the response document using XAPI APIs (XAPI
response handler).

XAPI APIs use the XML Service kernel to load the document into memory.
14. The business function uses XAPI APIs (CallObject kernel) to process the response.

15. The business function can poll for the XAPI response from the JD Edwards
EnterpriseOne server.

Note: You can send a request from one JD Edwards EnterpriseOne
system to another JD Edwards EnterpriseOne system for processing
with no return reply. If you do not want a response, use the steps
through step 8 without processing the request. No response is
generated.

C.6.3 XAPI Outbound Request Generation APIs

You use APIs to generate a XAPI request from the originator system. These APIs are
the same as the APIs that are identified in the XAPI Outbound Events section.

s jdeXAPI_SimpleSend
s jdeXAPI Init

= jdeXAPI_Add

= jdeXAPI_Finalize

»  jdeXAPI Free

Using Classic XAP| Events C-19



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

C.6.4 XAPI Outbound Request Handling APls

The mapped business function uses these APIs in the JD Edwards EnterpriseOne
executor system to retrieve XML data from the outbound XAPI request document:

s jdeXMLRequest_GetDSCount

s jdeXMLRequest_GetDSName

s jdeXMLRequest_ParseDS

s jdeXMLRequest_DeleteXML

s jdeXMLRequest_ParseNextDSByName

s jdeXMLRequest_PrepareDSListForlterationByName

C.6.5 XAPI Outbound Request Parsing APl Usage Sample Code

This code example shows the API usage for generating a outbound request from the
JD Edwards EnterpriseOne originator to the JD Edwards EnterpriseOne executor:

#include <jde.h>

#define b0000310_c

/*****************************************************************************

* Source File: 10000310

*
* Description: Company Real Time Notification Outbound Wrapper Source File
*

*****************************************************************************/

#include <b0000310.h>
#include <B4206030.h>
#include <B4206000.h>

/**************************************************************************

* Business Function: CompanyRealTimeWrapper

* Description: Company Real Time Notification Outbound Wrapper

*

* Parameters:

* LPBHVRCOM 1pBhvrCom Business Function Communications
* LPVOID 1pVoid Void Parameter - DO NOT USE!

* LPDSD0000310A 1pDS Parameter Data Structure Pointer

*************************************************************************/

int iXMLRecordCount = 0;

int iCurrentRecord = 0;

NID nidDSName;

ID idReturnValue = ER_SUCCESS;

ID idSORecordCount = ER_ERROR; /*Return Code*/
LPDSD4206000A 1pDS;

int lpmnJobNumber ;

MATH_NUMERIC mnBatchNumber = {0};

unsigned long 1BatchNumber = {0};

DSD4206030A dsD4206030A = {0};

/* CacheProcessInboundDemandRequest B4206030.c */
DSD4206000I dsD4206000I = {0};

/* Demand scheduling inbound DSTR */

C-20 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

iXMLRecordCount = jdeXMLRequest_GetDSCount (1pDS->szXMLHandle) ;
if ( iXMLRecordCount > 0)
{
for ( iCurrentRecord = 0; iCurrentRecord < iXMLRecordCount; iCurrentRecord++)
{
memset ( (void *) (&dsD4206000I), (int) (_J('\0')), sizeof (DSD4206000I));
memset ( (void *) (nidDSName), (int) (_J('\0')), sizeof(NID));
if (jdeXMLRequest_GetDSName (1pDS->szXMLHandle, iCurrentRecord, nidDSName) )
{
/* Retrieving data*/
if (jdeStricmp (nidDSName, (const JCHAR *)_J("D40R0180B")) == 0)
{
if (jdeXMLRequest_ParseDS (1pDS->szXMLHandle, iCurrentRecord,
&dsD4206000T, sizeof (DSD4206000I)))
{
/* Get next number for the batch number of the inbound INVRPT
record*/
if ( dsD4206000I.cInventoryAdvisement == _J('1"'))
{
1BatchNumber = JDB_GetInternalNextNumber () ;
LongToMathNumeric (1BatchNumber, &mnBatchNumber) ;
FormatMathNumeric (dsD4206000I.szBatch, &mnBatchNumber) ;
}
/* Setup cancel flag for pending delete record */
if ( dsD4206000I.cPendingDelete == _J('1"'))
{
/* Flag set as 1 for any cancel demand record */
dsD4206000I.cCancelFlag = _J('1');
}
else
{ /* Flag set as 9 for any non cancel demand record */
dsD4206000I.cCancelFlag = _J('9"');
}
/* Load parms for cache */
//memset ( (void *) (&dsD42060302), (int) (_J('\0")),
sizeof (DSD42060304)) ;
I4206000_LoadParmsToCache (&dsD4206000I, &dsD4206030A);
MathCopy (&dsD4206030A . mnJobnumberad, lpmnJobNumber) ;
/* Add the DSTR to cache */
idReturnValue = jdeCallObject( _J("CacheProcessInboundDemand
Request") , (LPFNBHVR)NULL , 1pBhvrCom ,lpVoid , (LPVOID)&dsD4206030A, (CALLMAP *)
NULL, (int)0, (JCHAR*)NULL , (JCHAR*)NULL , (int)0 );
/* Write XML DSTR to cache fail */
if (idReturnValue == ER_ERROR)
{

jdeErrorSet (1pBhvrCom, 1lpVoid, (ID)O, _J("032E"), (LPVOID)NULL);
}

}

else

{ /* warning XML parse fail */

jdeErrorSet (1pBhvrCom, 1pVoid, (ID)0, _J("40R46"), (LPVOID) NULL);

}
} /* end if */
}/* end if DS name */
}/* end for - looping all matching XML DSTR */
/* Ensure there is at least one record */
idSORecordCount = ER_SUCCESS;
}/*1f ( iXMLRecordCount > 0) */
return 1dSORecordCount;

Using Classic XAP| Events C-21



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

C.6.6 XAPI EnterpriseOne Originator XML Sample Code

This sample code illustrates the XAPI request document from the JD Edwards
EnterpriseOne originator system to the JD Edwards EnterpriseOne executor system:

<?xml version="1.0" encoding="UTF-16F" ?>
<jdeRequest pwd="4f3e65076f446c5d20666£4172536518435¢c" role="*ALL"
type="xapicallmethod" user="PP6954083" session="" environment="DVINIS2"
responseCreator="XAPI">
<header>
<eventVersion>1.0</eventVersion>
<type>XAPIDEMO</type>
<user>PP6954083</user>
<role>*ALL</role>
<application />
<version />
<sessionID>35087181.1050101193</sessionID>
<environment>DVINIS2</environment>
<host>DEN-PP6954083B</host>
<sequenceID>DEN-PP6954083B_3112_041120031647161</sequencelID>
<date>04112003</date>
<time>164716</time>
<scope />
<codepage>utf-8</codepage>
<instanceInfo>
<host>DEN-PP6954083B</host>
<port>6025</port>
<type>JDENET</type>
</instanceInfo>
</header>
<body elementCount="3">
<errors errorCount="4">
<error code="041H" type="BSFN ERROR" />
<error code="041I" type="BSFN ERROR" />
<error code="2597" type="BSFN ERROR" />
<error code="4136" type="BSFN ERROR" />
</errors>
<params type="D907001A" executionOrder="0" parameterCount="14">
<param name="szXMLHandle">DEN-PP6954083B_| |_C:\builds\B9_SP0\log\
J3E9745EE032D-00000C28-00000001-00000000000000000000FFFF0A0396A3 . xml</param>
<param name="mnAddressNumber">55617</param>
<param name="szNameAlpha">Pradip Pandey</param>
<param name="szNameMailing">Pradip K Pandey</param>
<param name="szAddressLinel" />
<param name="szAddressLine2" />
<param name="szZipCodePostal">80237</param>
<param name="szCity>Denver"</param>
<param name="szState">CO</param>
<param name="szCountry" />
<param name="mnAmountGross">100.00</param>
<param name="mnUnits">100.00</param>
<param name="jdDtForGLAndVouchl">2001/01/01</param>
<param name="cDefaultAddressLinel">9</param>
</params>
<params type="DXAPIROUTE" executionOrder="1" parameterCount="4">
<param name="ClientPort">6024</param>
<param name="ClientIP">168007331</param>
<param name="ClientMagicNumber">1</param>
<param name="XAPIMethodID">XAPITestResponse</param>
</params>
</body>

C-22 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

</jdeRequest>

C.6.7 XAPI Inbound Response Generation APls

The JD Edwards EnterpriseOne executor system uses these APIs to generate a
response:

s jdeXAPIResponse_SimpleSend
= jdeXAPIResponse_Init

= jdeXAPIResponse_Add

s jdeXAPIResponse_Finalize

s jdeXAPIResponse_Free

C.6.8 XAPI Inbound Response Parsing APl Usage Sample Code

This code example shows the API usage for generating an inbound reply from the JD
Edwards EnterpriseOne executor to the JD Edwards EnterpriseOne originator:

JDEBFRTN (ID) JDEBFWINAPI SendOrderPromiseRequest (LPBHVRCOM lpBhvrCom,
LPVOID 1pVoid, LPDSD4205010 1pDS)
{

/****************************************************************

Variable declarations
****************************************************************/
char cPromisableLine ="' ',
int nHeaderBackOrderAllowed ="'
HUSER  hUser ;

D JDEDBResult = JDEDB_PASSED;

BOOL bExit = FALSE;

BOOL bB4001040Called = FALSE;

BOOL bXAPIInUse = FALSE;

BOOL bAtLeastOneDetail = FALSE;

#ifdef jdeXAPI_CALLS_ENABLED

XAPI_CALL_ID ulXAPICallID = 0;

XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;

#endif

/****************************************************************

* Declare structures
****************************************************************/
DSD4001040  dsD4001040 = {0};
DSD4205020  dsD4205020 {0};
DSD4205040  dsD4205040 {0}; /* Header Info */
DSD4205050  dsD4205050 {0}; /* Detail Info */

DSD4205010A dsD4205010A = {0}; /* Query Header */
DSD4205010B  dsD4205010B = {0} /* Query Detail */
DSD0100042 dsD0100042 = {0};

LPDSD4205040H 1pDSD4205040H = (LPDSD4205040H) NULL;
LPDSD4205050D 1pDSD4205050D = (LPDSD4205050D) NULL;

/****************************************************************
** Declare pointers
****************************************************************/
/****************************************************************
* Check for NULL pointers
****************************************************************/
if ((lpBhvrCom == (LPBHVRCOM) NULL) ||

(lpvoid == (LPVOID) NULL) ||

Using Classic XAP| Events C-23



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

(1pDS == (LPDSD4205010) NULL))
{
jdeErrorSet (lpBhvrCom, 1lpVoid, (ID) 0, "4363", (LPVOID) NULL);
return ER_ERROR;
}

/* Retrieving hUser */
JDEDBResult = JDB_InitBhvr (lpBhvrCom, &hUser, (char *)NULL,
JDEDB_COMMIT_AUTO ) ;

if ( JDEDBResult == JDEDB_FAILED )

{

jdeSetGBRError ( lpBhvrCom, lpVoid, (ID) 0, "4363" )
return ER_ERROR ;

}

/****************************************************************

* Set pointers
****************************************************************/

/****************************************************************

* Main Processing
****************************************************************/

/* Setting Up ErrorCode
*/
1pDS->cErrorCode = '0';

/* Determining if XAPI is ready to be used */
bXAPIInUse = FALSE;
#ifdef jdeXAPI_CALLS_ENABLED

if (jdeXAPI_IsCallTypeEnabled ("XAPIOPOUT") &&
jdeXAPI_IsCallTypeEnabled ("XAPIOPIN") )

{
bXAPIInUse = TRUE;
}
#endif
/* _____________________________________________________ */
/* Data validation and default values. */

/* When Display Before Accept Mode is on, validate Key */
/* Information. Otherwise retrieve it from Header Record*/

if ((1pDS->cDisplayBeforeAcceptMode == '1"') &&
( (MathZeroTest (&1pDS->mnOrderNumber) == 0) ||
(IsStringBlank (1pDS->szOrderType) ) ||
(IsStringBlank (1pDS->szOrderCompany))))

bExit = TRUE;
}
else
{
MathCopy (&dsD4205040 .mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205040. szOrderType,
1pDS->szOrderType,
sizeof (dsD4205040.sz0rderType) ) ;
strncpy (dsD4205040. szComputerID,
1pDS->sz0rderCompany,
sizeof (dsD4205040.sz0rderCompany) ) ;

C-24 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

dsD4205040.cUseCacheOrWF 1pDS->cUseCacheOrWF;
strncpy (dsD4205040. szComputerID,
1pDS->szComputerID,
sizeof (dsD4205040.szComputerID)) ;

MathCopy (&dsD4205040 .mnJobNumber , &1pDS->mnJobNumber) ;

jdeCallObject ( "GetSalesOrderHeaderRecord",

NULL,

1pBhvrCom, lpVoid,
(LPVOID) &dsD4205040,
(CALLMAP *) NULL,
(int) 0,

(char *) NULL,

(char *) NULL,

(int) 0 ) ;

1pDSD4205040H = (LPDSD4205040H) jdeRemoveDataPtr (hUs
(ulong)dsD4205040.idHeaderRecord) ;

if (1pDSD4205040H == NULL)

er,

{
bExit = TRUE;
}
}
/* _____________________________________________________ */
/* Set error if we're exiting at this point */
if (bExit == TRUE)
{
1pDS->cErrorCode = '1';
/* Sales Order Header Not Found */
strncpy (1pDS->szErrorMessagelD,
"Q72T",
sizeof (1pDS->szErrorMessagelD)) ;
if (lpDS->cSuppressError != 'l')
{
jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "072T", (LPVOID) NULL);
}
}
/* _____________________________________________________ */
/* Default Promising Flag is always 1 */
1pDS->cDefaultPromisingFlags = 1;
if (bExit == FALSE)
{
/* _____________________________________________________ */
/* Call XAPIInit */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
ulXAPICallID = jdeXAPI_Init( lpBhvrCom,
SendOrderPromiseRequest,
"XAPIOPOUT",
NULL,
&eXAPICallReturn) ;
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;
}
}
Using Classic XAP| Events C-25



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

#endif
if (bExit == FALSE)
{

/* Loading Header Information */

I4205010_PopulateQueryHeader (1pDS, &dsD4205010A
1pDSD4205040H, &dsD0100042, hUser, 1pVoid, 1pBhvrCom) ;

nHeaderBackOrderAllowed = dsD4205010A.nAllowBackorders;

/* Adding Header Information */
#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Add( lpBhvrCom,
ulXAPICallID,
"SendOrderPromiseRequest",
"D4205010A",
&dsD42050104,
sizeof (DSD42050104)) ;
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;

}
#endif
}
}
if (bExit == FALSE)
{

/* Loading Detail Information  */
MathCopy (&dsD4205050 .mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205050. szOrderType, 1pDS->sz0rderType,
sizeof (dsD4205050.sz0rderType) ) ;
strncpy (dsD4205050. szOrderCompany, 1pDS->szOrderCompany,
sizeof (dsD4205050.szOrderCompany) ) ;
dsD4205050.cUseCacheOrWF = 1pDS->cUseCacheOrWF;
strncpy (dsD4205050. szComputerID, 1pDS->szComputerID,
sizeof (dsD4205050.szComputerID)) ;
MathCopy (&dsD4205050 .mnJobNumber , &1pDS->mnJobNumber) ;
if (1pDSD4205040H->cActionCode != 'A')
{
dsD4205050.cCheckTableAfterCache = '1';
}
else
{
dsD4205050.cCheckTableAfterCache = '0';
}
jdeCallObject ( "GetSalesOrderDetailRecordOP",
NULL,
1pBhvrCom, lpVoid,
(LPVOID) &dsD4205050,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

if (dsD4205050.cRecordFound != '1")

C-26 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

bExit = TRUE;
1pDS->cErrorCode = '1';
/* Sales Order Detail Not Found */
strncpy (1lpDS->szErrorMessagelID, "4162",
sizeof (1pDS->szErrorMessagelID)) ;

if (1lpDS->cSuppressError != 'l')
{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);

}
while ((dsD4205050.cRecordFound == '1') && (bExit == FALSE))
{

1pDSD4205050D = (LPDSD4205050D) jdeRemoveDataPtr ( hUser,

(ulong)dsD4205050.idDetailRecord) ;

/* Reset flags */

cPromisableLine = '0';

bB4001040Called = FALSE;

/* Evaluate the Record from F4211 (cDataSource = 2)*/
/* to find out if we should promise the line */
/* else find out from Order Promising Detail.*/

if (dsD4205050.cDataSource == '1")
{
if (1pDSD4205050D->cOPPromiselineYN == 'Y')
{
cPromisableLine = '1';
}
}
else if(dsD4205050.cDataSource == '2')

{
MathCopy ( &dsD4001040.mnShortItemNumber,
&1pDSD4205050D->mnShortItemNumber) ;
strncpy ( dsD4001040.szBranchPlant,
1pDSD4205050D->szBusinessUnit,
sizeof (dsD4001040.szBranchPlant)) ;

jdeCallObject ( "GetItemMasterDescUOM",
NULL,
lpBhvrCom, lpVoid,
(LPVOID) &dsD4001040,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

bB4001040Called

TRUE;

cPromisableLine = I4205010_IsLinePromisable (1pBhvrCom, lpVoid,
hUser, 1pDS, 1pDSD4205050D, dsD4001040.cStockingType) ;
}
if (cPromisableLine == '1"')

{
/* Set this flag if at least one promisable */
/* detail record exists. */

bAtLeastOneDetail = TRUE;

if (bB4001040Called == FALSE)

Using Classic XAP| Events C-27



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

MathCopy (&dsD4001040.mnShortItemNumber,
&1pDSD4205050D->mnShortItemNumber) ;

strncpy ( dsD4001040.szBranchPlant,
1pDSD4205050D->szBusinessUnit,
sizeof (dsD4001040.szBranchPlant)) ;

jdeCallObject ( "GetItemMasterDescUOM",
NULL,
lpBhvrCom, lpVoid,
(LPVOID) &dsD4001040,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

I4205010_PopulateQueryDetail ( 1pDS, &dsD4205010B,

1pDSD4205050D,

&dsD4001040,

&dsD42050104,
&dsD0100042,

cPromisableLline,
hUser,
1lpvoid,

1pBhvrCom) ;

#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Add( lpBhvrCom,
ulXAPICallID,
"SendOrderPromiseRequest",
"D4205010B",
&dsD4205010B,
sizeof (DSD4205010B)) ;
if (eXAPICallReturn != eEventCallSuccess)

bExit = TRUE;

}
#endif

/* Fetching the next Detail Record */
MathCopy (&dsD4205050 . mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205050. szOrderType, 1pDS->sz0rderType,
sizeof (dsD4205050.sz0rderType) ) ;
strncpy (dsD4205050. szOrderCompany, 1pDS->sz0rderCompany,
sizeof (dsD4205050.szOrderCompany) ) ;
dsD4205050.cUseCacheOrWF = 1pDS->cUseCacheOrWF;
strncpy (dsD4205050. szComputerID, 1pDS->szComputerID,
sizeof (dsD4205050.szComputerID)) ;
MathCopy (&dsD4205050 .mnJobNumber , &1pDS->mnJobNumber) ;
if (1pDSD4205040H->cActionCode != 'A')
{
dsD4205050.cCheckTableAfterCache = '1';
}
else

{

C-28 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

dsD4205050.cCheckTableAfterCache = '0';

}

jdeCallObject( "GetSalesOrderDetailRecordOP",
NULL,
lpBhvrCom, lpVoid,
(LPVOID) &dsD4205050,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,
(char *) NULL, (int) 0 ) ;

if (!bAtLeastOneDetail)

bExit = TRUE;
1pDS->cErrorCode = '1';
/* Sales Order Detail Not Found */
strncpy (1pDS->szErrorMessagelD, "4162",
sizeof (1pDS->szErrorMessagelD) ) ;

if (1lpDS->cSuppressError != 'l')
{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);

if (bExit == FALSE)

#ifdef jdeXAPI_CALLS_ENABLED
if (bXAPIInUse == TRUE)
{
eXAPICallReturn = jdeXAPI_Finalize( lpBhvrCom,
ulXAPICallID,
"SendOrderPromiseRequest",
"OrderPromiseCallback)";
if (eXAPICallReturn != eEventCallSuccess)
{
bExit = TRUE;

}
#endif

/* Call B4205020 in Add Mode */

if ((bExit == FALSE) &&
(1pDS->cDisplayBeforeAcceptMode != '1') &&
(1pDS->cUseCacheOrWF == '2'))

MathCopy (&dsD4205020 .mnOrderNumber, &1pDS->mnOrderNumber) ;
strncpy (dsD4205020. szO0rderType, 1pDS->sz0rderType,
sizeof (dsD4205020.sz0rderType) ) ;
strncpy (dsD4205020. szOrderCompany, 1pDS->sz0rderCompany,
sizeof (dsD4205020.szOrderCompany) ) ;
strncpy (dsD4205020. szComputerID, 1pDS->szComputerID,
sizeof (dsD4205020.szComputerID)) ;
MathCopy (&dsD4205020 . mnJobNumber, &1pDS->mnJobNumber) ;

jdeCallObject ( MaintainOPWorkFile,
NULL,
1pBhvrCom, lpVoid,
(LPVOID) &dsD4205020,
(CALLMAP *) NULL,
(int) 0, (char *) NULL,

Using Classic XAPI Events C-29



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

(char *) NULL, (int) 0 ) ;

/***************************************************************

Function Clean Up
****************************************************************/
#ifdef jdeXAPI_CALLS_ENABLED
if (eXAPICallReturn != eEventCallSuccess)
{

/* CleanUp */

if (bXAPIInUse == TRUE)

{

jdeXAPI_Free( lpBhvrCom,
ulXAPICalllID,
"SendOrderPromiseRequest") ;

1pDS->cErrorCode = '1';

/* System Error - no reasonable error messages exist. */

strncpy (1pDS->szErrorMessageID, "018Y",

sizeof (1pDS->szErrorMessagelD) ) ;
if (1lpDS->cSuppressError != '1')
{
jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "018Y", (LPVOID) NULL);

}
}

#endif

if (1pDSD4205040H != (LPDSD4205040H)NULL)

{ jdeFree( (void *)1pDSD4205040H) ;

if(lpDSD4205050D != (LPDSD4205050D)NULL)

{ jdeFree ( (void *)1pDSD4205050D) ;
riturn (ER_SUCCESS) ;

}

C.6.9 XAPI Inbound Response from Originator System Sample Code

The sample code illustrates the XAPI response document from the JD Edwards
EnterpriseOne executor system to the JD Edwards EnterpriseOne originator system:

<?xml version="1.0" encoding="UTF-16" ?>
<jdeResponse pwd="4f3e65076£446c5d20666£4172536518435¢c" role="*ALL"
type="realTimeEvent" user="PP6954083" session="35087181.1050101193"
environment="DVINIS2" responseCreator="XAPI">
<event>
<header>
<eventVersion>1.0</eventVersion>
<type>XAPIDEMO</type>
<user>PP6954083</user>
<role>*ALL</role>
<application>P90701XT</application>
<version />
<sessionID>35087181.1050101193</sessionID>
<environment>DVINIS2</environment>
<host>DEN-PP6954083B</host>

C-30 JD Edwards EnterpriseOne Tools Interoperability Guide



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

<sequenceID>DEN-PP6954083B_2864_041120031636402</sequenceID>
<date>04112003</date>
<time>164646</time>
<scope />
<codepage>utf-8</codepage>
<instanceInfo>
<host>DEN-PP6954083B</host>
<port>6025</port>
<type>JDENET</type>
</instanceInfo>
</header>
<body elementCount="2">
<detail date="04112003" name="XAPITestFunctionInitiateRequest"
time="16:39:54" type="" DSTMPL="D907001A" executionOrder="0"
parameterCount="14">
<szXMLHandle type="String" />
<szNameAlpha type="String">Pradip Pandey</szNameAlpha>
<szNameMailing type="String">Pradip K Pandey</szNameMailing>
<szAddressLinel type="String" />
<szAddressLine2 type="String" />
<szZipCodePostal type="String">80237</szZipCodePostal>
<szCity type="String">Denver</szCity>
<szState type="String">CO</szState>
<szCountry type="String" />
<mnAmountGross type="Double">100.00</mnAmountGross>
<mnUnits type="Double">100.00</mnUnits>
<jdDtForGLAndVouchl type="Date">2001/01/01</jdDtForGLAndVouchl>
<cDefaultAddressLinel type="Character" />
</detail>
<detail date="04112003" name="XAPITestFunctionInitiateRequest"
time="16:39:54" type="" DSTMPL="DXAPIROUTE" executionOrder="1"
parameterCount="4">
<ClientPort type="Int">6024</ClientPort>
<ClientIP type="Int">168007331</ClientIP>
<ClientMagicNumber type="Int">1</ClientMagicNumber>
<XAPIMethodID type="String">XAPITestResponse</XAPIMethodID>
</detail>
</body>
</event>
</jdeResponse>

C.6.10 XAPI Inbound Response Handling APls

The JD Edwards EnterpriseOne originator system uses these APIs to retrieve XML
data from the inbound XAPI document and generate an inbound XAPI response:

»  jdeXML_GetDSCount

s jdeXML_GetDSName

s jdeXML_ParseDS

s jdeXML_DeleteXML

s jdeXML_ParseNextDSByName

s jdeXML_PrepareDSListForlterationByName

C.6.11 XAPI Error Handling APIs

The JD Edwards EnterpriseOne executor system uses these error handling APIs:

Using Classic XAPI Events C-31



Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events

s jdeXML_CheckSystemError

The check system error APl is for system errors. It tells the JD Edwards
EnterpriseOne originator system that a system error happened in the JD Edwards
EnterpriseOne executor system.

n  jdeXML_GetErrorCount
s jdeXML_SetErrors

The get error count and set errors APIs are for business errors. These two APIs,
when used together, find the number of business errors and then send the errors to
the BHVRCOM structure for you to resolve.

C.6.12 XAPI EnterpriseOne-to-EnterpriseOne jde.ini File Configuration

To generate XAPI events, these sections of the JD Edwards EnterpriseOne server jde.ini
file must be configured:

= [JDENET_KERNEL_DEF19]
[JDENET_KERNEL_DEF20]
[JDENET_KERNEL_DEF22]
[JDENET_KERNEL_DEF24]
= [JDEITDRV]
[
[
[

XAPI] - XMLDirectory setting
XMLLookuplInfo]
INTEROPERABILITY] - LEVEL setting

C.6.12.1 [XAPI]
Configure this setting:

XMLDirectory=c:\builds\bdev\log\

C.6.12.2 [XMLLookupinfo]

Configure these settings:

XMLRequestType5=XAPICallMethod
XMLKernelMessageRangeb5=14251
XMLKernelHostName5=1ocal
XMLKernelPort5=0
XMLKernelReply5=0
XMLRequestTypeb=realTimeEvent
XMLKernelMessageRange6=14251
XMLKernelHostName6=1ocal
XMLKernelPort6=0
XMLKernelReply6=0

C.6.12.3 [INTEROPERABILITY]
Configure this setting:

LEVEL=DOC

C-32 JD Edwards EnterpriseOne Tools Interoperability Guide



Mapping the Business Function

Note: The LEVEL setting is for logging the Event XML document in
the JD Edwards EnterpriseOne server for debugging purposes.

Setting the LEVEL=DOC key causes all real-time events to be written
to the disk, which can cause a significant performance impact on the
host server. JD Edwards suggests that you not use the LEVEL=DOC
setting in a production environment or for stress testing of the QA
environment.

If you are using a ]D Edwards EnterpriseOne client to generate XAPI events, you must
define the Client Dispatch kernel and [JDENET] sections of the client jde.ini file.

See Also:
= Configuring the jde.ini for Real-Time Events.

= XAPI Client jde.ini File Configuration.

C.7 Mapping the Business Function

This section provides an overview about mapping business functions and APlIs for JD
Edwards EnterpriseOne-to-EnterpriseOne XAPI events, and discusses how to enter the
mapping information.

C.7.1 Understanding Business Function Mapping

When the JD Edwards EnterpriseOne executor system receives an event from the JD
Edwards EnterpriseOne originator, it needs to know what business function or system
API to invoke to process the request. You must map the business function or system
API to the XAPI event name. You map business functions and system APlIs in the
F907012 table. You use the Event Request Definition program (P907012) to map
business functions and APIs.

If you are mapping business functions, you enter the name of the business function. If
you map APIs, you must enter the name of the API and the library where it is defined.
In addition, the signature of the API must be made common, similar to the business
function.

Mapping business functions enables you to point a XAPI event to a business function
or system API that you wrote. You do not need to modify source code of a business
function that JD Edwards delivered to you.

C.7.2 Forms Used to Map a Business Function or API

Form Name FormiD Navigation Usage
Work With Definition W907012A Enter P907012 in the  Locate and review
Fast Path Command  existing mappings.
Line.
Request Definition W907012B On Work With Add or change
Definition, click Add. business function or
API mapping for a
XAPI event.

Using Classic XAP| Events C-33



Mapping the Business Function

C.7.3 Mapping a business function or API

Access the Request Definition form.

Figure C-7 Request Definition form

Request Definition
ok Cancel  Toolz

B % B

—vent Mame S00LT

" AP| Definilion * BSFM Definition

Function Mame DmdScixaPISalesOrderProcess

Event Name
The name of the event (for example, JDERTSOOUT). Single events are part of other
events.

BSFN Definition
An option that specifies the type of processing for an event.

API Definition
An option that specifies the type of processing for an event.

When you select the API definition option, the DLL Name field appears on the form.

Function Name
The actual name of the function. It must follow standard ANSI C naming conventions
(for example, no space between words).

DLL Name

Specifies the name of the database driver file. This file is specified in the [DB SYSTEM
SETTINGS] section of the enterprise server jde.ini file. The file that you specify
depends upon the platform and the database. Values for specific machines and
databases are:

DBDR: IBM i to DB2 for IBM i

JDBNET: IBM i to any other server DBMS
ibjdbnet.sl: HP9000 to DB2 for IBM i
libjdbnet.sl: HP9000 to Microsoft SQL Server
libora80.sl: HP9000 to Oracle (Version 8.0) UNIX

C-34 JD Edwards EnterpriseOne Tools Interoperability Guide



Mapping the Business Function

libjdbnet.so: RS6000 to DB2 for IBM i

libjdbnet.so: R56000 to Microsoft SQL Server
libora73.s0: RS6000 to Oracle (Version 7.3) UNIX
libora80.s0: RS6000 to Oracle (Version 8.0) UNIX
jdbodbc.dll: Intel to IBM i

jdboci32.dll: Intel to Oracle (Version 7.2) NT
jdboci73.dl1l: Intel to Oracle (Version 7.3) NT
jdboci80.dl1l: Intel to Oracle (Version 8.0) NT
dbodbc.dll: Intel to SQL Server NT

jdbnet.dll: Digital Alpha to IBM i

jdboci32.dll: Digital Alpha to Oracle (Version 7.2) NT
jdboci73.dll: Digital Alpha to Oracle (Version 7.3) NT
jdboci80.dll: Digital Alpha to Oracle (Version 8.0) NT
dbodbc.dll: Digital Alpha to SQL Server NT

Using Classic XAP| Events C-35



Mapping the Business Function

C-36 JD Edwards EnterpriseOne Tools Interoperability Guide



D

Using Classic Z Events

This appendix contains the following topics:

Section D.1, "Understanding Z Events - Classic"
Section D.2, "Z Event Process Flow"

Section D.3, "Z Event Sequencing"

Section D.4, "Vendor-Specific Outbound Functions"
Section D.5, "Working With Z Events"

Section D.6, "Setting Up Data Export Controls"

Note: This chapter is applicable only if you use classic events
delivery. Classic event delivery is available when you use JD Edwards
EnterpriseOne Tools 8.93 or earlier releases, or if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.10.

Refer to the Guaranteed Events chapters if you use JD Edwards
EnterpriseOne Tools 8.94 with JD Edwards EnterpriseOne
Applications 8.11 or JD Edwards EnterpriseOne Tools 8.95 and later
tools releases with JD Edwards EnterpriseOne Applications 8.10 and
later Applications releases.

D.1 Understanding Z Events - Classic

A Z event is near real-time notification that an interoperability transaction has
occurred. To generate Z events, ]D Edwards EnterpriseOne uses the Z event generator
and the existing interface table infrastructure. You can use the existing JD Edwards
EnterpriseOne interface tables, or you can build customized interface tables as long as
the tables are created using JD Edwards EnterpriseOne standards.

Z event XML documents use the JD Edwards EnterpriseOne XML Response format.
An example of the Z event XML document can be found in Appendix E, XML Format
Examples (Events). Different events can have different table names and column names.

D.1.1 Prerequisites

Before you complete the tasks in this section:

You must enable security for the JD Edwards EnterpriseOne server.

Using Classic Z Events D-1



Z Event Process Flow

You must have a valid security record for the default user under the [SECURITY]
section of the JD Edwards EnterpriseOne server jde.ini file (that is, the user must
be a valid JD Edwards EnterpriseOne user).

D.2 Z Event Process Flow

This diagram depicts a logical representation of the processes and data for Z event

generation:

Figure D-1 Z event process flow

Event Generation

In summary:

Java Interop

Event
Notification
Kernel

} Master BSNF | —1-» Interface Table i |
| | | !
1 1 4 L
| v v o
‘ 51—
| Z Event 0!
! S'\L;It;?t/::grn;l;llzb ~>  Generator <« |
! (ZEVNG) N
| | | !
! 2 2 6 o
| v v N
| Otz i Processing Lo i |
i | Subsystem Batch |— 909 3.
‘ Table L
! Process P
1 A L
| 2 b
| | B
| Data Export Flat File Cross- | | | |
} Control Table Reference Table b

7—>
T Server
JDENET 7>
COM Interop
Server
MQSeries
Transport
Driver N
Third-Party
MSMQ IBM System
Transport
Driver
L Third-Party
7—>»  MS Windows
System

Event Distribution

1. When a JD Edwards EnterpriseOne transaction occurs, the master business

function writes the transaction information in the appropriate interface table and
sends an update record to the F986113 table.

2. A batch process monitors the F986113 table.

When the batch process finds a W status in the F986113 table, it notifies the Z event
generator. The batch process accesses the F0047 table to determine which Z-event

generator to call.

3. The F47002 table provides a cross-reference between the transaction and the

interface table where the record is stored.

This information is used by the Z-event generator.

D-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Vendor-Specific Outbound Functions

4. The Z-event generator retrieves the transaction information from the interface
table and converts the transaction information into an XML document using a JD
Edwards EnterpriseOne DTD.

5. The Z-event generator sends the event (in the form of an XML document) to the
event notification kernel for distribution.

6. After an event is successfully generated, the system updates the F0046 table.

A UBE purges information in the interface table based on information in the
Processing Log table.

7. The event notification kernel sends the XML document to all subscribers.

Note: If you use IBM WebSphere MQ or MSMQ) transports, the
transport driver writes system and function errors to the JDE error
log. The driver writes error messages and adds the error codes, if
available.

D.3 Z Event Sequencing

When you define your Z events, you indicate whether the event is reliable or volatile.
If you define the event as volatile, the system automatically provides event sequencing
to guarantee that events are delivered in the correct order. Volatile events are stamped
using features of JD Edwards EnterpriseOne Next Numbers.

For sequencing of Z events, ZEVG, the Z event generator, retrieves the next number
from the Z event sequencing bucket and sends the number to the EVN kernel for
sequencing purposes. It is important to note that JD Edwards only guarantees the
sequence for the particular type of event generator. This is due to the inherent delays
that are involved in the Z event processing; an event that occurred earlier can get a
later sequence number.

Event sequencing does affect performance. You can clear events sequencing. You can
also define a timeout value to tell the system to stop looking for a missed event when
events are out of sequence. The flag and timeout settings are in the
[INTEROPERABILITY] section of the jde.ini file.

D.4 Vendor-Specific Outbound Functions

The purpose of the vendor-specific outbound function is to pass the key fields for a
record in the outbound interface tables to a third-party system. With these keys, you
can process information from the database record into your third-party system. The
generic Outbound Subsystem batch process calls the function.

Each vendor-specific function is specific to the transaction being processed. You must
decide how the function actually uses the database record information. Although the
functions are written to your specifications, and most likely are written outside of JD
Edwards EnterpriseOne, these functions must use the required JD Edwards
EnterpriseOne defined data structure as illustrated in this table:

Data Item Required /0 Description

szUserld Y I User ID - 11 characters
szBatchNumber Y I Batch Number - 16 characters
szTransactionNumber Y I Transaction Number - 23 characters

Using Classic Z Events D-3



Working With Z Events

Data Item Required /0 Description

mnLineNumber Y I Line Number - double
szTransactionType Y I Transaction Type - 9 characters
szDocumentType Y I Document Type - 3 characters
mnSequenceNumber Y I Sequence Number - double

D.5 Working With Z Events

This section provides an overview of Z event processing and discusses how to set up a
data export control record.

D.5.1 Understanding Z Event Processing
To use Z events to retrieve information from JD Edwards EnterpriseOne, perform
these tasks:
= Enable Z event processing.
= Update Flat File Cross-Reference table.
= Update the Processing Log table.
= Verify that the subsystem job is running.
»  Purge data from the interface table.
= Configure the jde.ini file for Z events.

= Set up data export controls.

D.5.2 Enabling Z Event Processing

You can enable or disable master business functions to write transaction information
into interface tables and the F986113 table. when a transaction occurs. All outbound
master business functions that have the ability to create interoperability transactions
have processing options that control how the transaction is written. On the Processing
Options Interop tab, the first processing option is the transaction type for the
interoperability transaction. If you leave this processing option blank, the system does
not perform outbound interoperability processing. The second processing option
controls whether the before image is written for a change transaction. If this processing
option is set to 1, the system writes before and after images of the transaction to the
interface table. If this processing option is not set, then the system writes only an after
image to the interface table.

See Interoperability Interface Table Information.

D.5.3 Updating Flat File Cross-Reference Table

When you enable Z events, you also update the F47002 table. The transaction type that
you entered in the processing option maps to the F47002 table to determine which
interface tables to use to retrieve the information. You use the Flat File Cross-Reference
program (P47002) to update the F47002 table.

D.5.4 Updating the Processing Log Table

The Z event generator uses the F0046 table. The F0046 table contains the keys to the
interoperability transaction along with a successfully processed column. The sequence

D-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Working With Z Events

number, transaction type, order type, function name, and function library are obtained
from the F0047 table. A vendor-specific record is sequentially created in the FO046 table
for every transaction that is processed by the Interoperability Generic Outbound
Subsystem (R00460) UBE or the Interoperability Generic Outbound Scheduler UBE
(RO0O461).

For example, if three vendors have subscribed to a transaction using the F0047 table,
the system creates three records in the F0046 table, (one record for each transaction). If
the vendor-specific object successfully processed the transaction, the Processing Log
record is updated with a Y in the successfully processed column. You can use the
Processing Log (P0046) program to determine whether a vendor-specific object
correctly processed the interoperability transaction.

A purging UBE that purges the interfaces tables runs based on information in the
processing log table.

Data in the Processing Log table cannot be changed.

D.5.5 Verifying that the Subsystem Job is Running

When the application master business function adds a record to the F986113 table, the
system starts a subsystem job. Subsystem jobs are continuous jobs that process records
from the F986113 table. You should verify that the subsystem job is running.

Note: After the records are processed, instead of ending the job,
subsystem jobs look for new data in the data queue. Subsystem jobs
run until you terminate them.

You can schedule subsystem jobs.

See "Understanding JD Edwards EnterpriseOne Subsystems" in the /D Edwards
EnterpriseOne Tools System Administration Guide.

See "Understanding the Job Scheduler" in the /D Edwards EnterpriseOne Tools System
Administration Guide.

D.5.6 Purging Data from the Interface Table

After you receive the Z event, you should purge the data from the interface table. You
can enter a purge UBE in the F0046 table to purge the interface table.

See Purging Interface Table Information.

See Interoperability Interface Table Information.

D.5.7 Configuring the jde.ini File for Z Events

To generate Z events, you must configure these sections of the JD Edwards
EnterpriseOne server jde.ini file:

= [JDENET_KERNEL_DEF19]
[JDEITDRV]

= [JDENET]
[INTEROPERABILITY]

Using Classic Z Events D-5



Setting Up Data Export Controls

The settings for the EVN kernel, [[DEITDRV], and [JDENET] are defined in the jde.ini
File Configurations for Events section of this guide. You must configure settings for

[INTEROPERABILITY].

D.5.7.1 [INTEROPERABILITY]

Configure these settings:

SequenceTimeOut=XX
XMLElementSkipNullOrZero=X

The SequenceTimeOut setting is for sequencing of volatile events. The value is in

seconds.

Null strings and zeros are trimmed off Z events. You can clear this feature by entering
a value of 0 (zero) for the XMLElementSkipNullOrZero setting.

D.6 Setting Up Data Export Controls

This section provides an overview of setting up data export controls and discusses

how to set up the record.

D.6.1 Understanding Data Export Controls Records

The generation of outbound data is controlled through the F0047 table. You use the
Data Export Controls program (PP0047)to update the F0047 table. For each transaction
type and order type, you must designate the Z event generator that processes the
outbound data. To send a given transaction type to more than one third-party
application, you associate the transaction type with each of the individual destinations
by making separate entries for each destination in the FO047 table. JD Edwards
suggests that you specify the name of a third-party function that is called for each
transaction as it occurs. Enough information is provided to notify you of the
transaction and give you the key values so that you can retrieve the transaction.

D.6.2 Forms Used to Add a Data Export Controls Record

Form Name FormID

Navigation

Usage

Work with Data
Export Controls

WO0047A

Data Export Control =~ W0047C

Revisions

From a application
that supports event
generation, open the
Data Export Controls
Program

An alternative way to
access the Data Export
Controls Program is to
enter P0047 in the Fast
Path command line

On Work with Data
Export Controls, click
Add.

View existing data
export control records.

Add a new data
export control record.

D.6.3 Adding a Data Export Control Record

Access the Data Export Control Revisions form.

To set up Data Export Controls:

D-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Setting Up Data Export Controls

1.

2.

Complete these fields:

Transaction

Order Type

For each detail row, enter one of these, depending on your platform:

Function Name

Windows NT: _CallOnUpdate@36

UNIX: CallOnUpdate

IBM i: CallOnUpdate

Function Library

Windows NT: EnterpriseOne Bin32 Path\zevg.dll

UNIX(HP): EnterpriseOne Bin32 Path\libzevg.sl

UNIX(AIX, SUN): EnterpriseOne Bin32 Path\libzevg.so

IBM i: EnterpriseOne Bin32 Path\ZEVG

Enter 1 in the Execute For Add column to generate an event for an add/insert.
Complete the same process as appropriate for update, delete, and inquiry.

Enter 1in the Launch Immediately column to launch the object from the
Outbound Subsystem batch process.

This column does not affect the Outbound Scheduler batch process.

The system automatically increments the Sequence field for each line.

Using Classic Z Events D-7



Setting Up Data Export Controls

D-8 JD Edwards EnterpriseOne Tools Interoperability Guide



E

Events Self-Diagnostic Utility Tool

This appendix contains the following topics:

= Section E.1, "Understanding the Events Self-Diagnostic Utility Tool"
= Section E.2, "Events Self-Diagnostic Utility Tool Process"

= Section E.3, "Events Self-Diagnostic Utility Tool Components"

= Section E.4, "Customizing the Tool"

= Section E.5, "Executing the Events Self-Diagnostic Tool"

E.1 Understanding the Events Self-Diagnostic Utility Tool

The Events Self-Diagnostic Utility Tool supports Z events and real-time events.
Normally, your system administrator runs the Self-Diagnostic Utility Tool to verify
that your events infrastructure features are functional. The Self-Diagnostic Utility Tool
can be used on these platforms:

= Windows 2000 and NT

= IBMi
= HP

= Sun

s AIX

The Events Self-Diagnostic Utility Tool analyzes the infrastructure of an event and
reports configuration, kernel, and network problems that are detected as the event is
processed through your system. You can use the tool to perform a comprehensive
analysis, or you can configure the tool to perform an analysis that is specific for your
needs. The Events Self-Diagnostic Tool uses the XML comparator to compare XML
documents to detect the presence of any data corruption in event information. The tool
also suggests actions that you can take to resolve problems. You can run this tool on
either a server or a client or both.

E.2 Events Self-Diagnostic Utility Tool Process

After an event is generated at the call object API on the server or the application API
on the client, problems that cause the event to fail can occur. This list identifies
problems that might occur:

»  Thejde.ini file has a configuration error.

s The ZEVG library is unavailable or the IEO or EVN kernel process is down.

Events Self-Diagnostic Utility Tool E-1



Events Self-Diagnostic Utility Tool Components

= Subscribers and supported events have not loaded successfully.

= One or more of the kernels involved in the event delivery is corrupting the event
information.

s The network link between any or all of the components involved in this
infrastructure is permanently down.

When the Events Self-Diagnostic Tool detects a problem, the tool sends messages to
you explaining the problem and suggesting resolutions and also logs the error in the
appropriate log files. The message that is sent to you indicates which log files you
should review. This list provides some examples of how the Events Self-Diagnostic
Tool detects problems:

s Performs an in-depth interoperability-oriented analysis of the jde.ini file.
= Reads the F90701 table to determine whether the event is defined.

= Reads the F90702 to determine whether the persistent
subscription/unsubscription request, which is sent to the EVN kernel by the tool,
is successful.

= Reads the Object Configuration Manager to find the location of the IEO kernel.
In this process, the tool ensures there is only one active entry for the RTE object.

s Checks inter-connectivity within events infrastructure by sending self-diagnostic
connectivity message calls.

= Generates self-diagnostic events to test different services that are offered by the
infrastructure and to verify event information against possible data corruption.

Note: This list is general and not all-inclusive.

E.3 Events Self-Diagnostic Utility Tool Components
The Events Self-Diagnostic Utility Tool consists of three components:
= Event generator
= Event receiver

= XML comparator

E.3.1 Event Generator

The Events Self-Diagnostic Utility Tool starts with an event generator process. During
startup, the event generator performs basic background analysis of the events
infrastructure, which include:

= Verification of interoperability specific sections of the jde.ini file.
s Verification of real-time events definition.
= Inter-component connectivity check within the events infrastructure.

If startup is successful, the event generator tests different features offered by the events
infrastructure. These features include generating and testing different types of events,
listing the valid events, checking the event template, and testing subscription
information. You can run one or more of these tests by using one of these methods:

= Running the test against an existing configuration file that you previously set up.

= Running the test against a new configuration file, which you will set up.

E-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Executing the Events Self-Diagnostic Tool

= Selecting options and executing the test from the command line menu of the tool.

After successful generation of a self-diagnostic event, the event is passed through the
event infrastructure system. To test the accuracy of the event information that is being
conveyed through the system, the event generator attaches an additional packet, in the
form of XML stream, to the event. The diagnostic XML packet contains information
about the event. At each stage of communication, each kernel (or component) verifies
the event information by comparing standard message packets with the self-diagnostic
XML packet. The kernel (or component) logs the result of this comparison at each
point of comparison in respective log files. The accuracy of the information in template
requests is tested the same way.

E.3.2 Event Receiver

The event receiver acts as a NULL transport driver that subscribes itself for
self-diagnostic events during EVN kernel startup. The event receiver compares and
verifies the XML documents contained in the received self-diagnostic events. The
event receiver logs the result of this comparison in the EVN kernel log file.

E.3.3 XML Comparator

The event generator uses the XML comparator tool to test the accuracy of event
information or of an event template request that is being passed through the system.
The XML comparator compares any two given XML documents for equivalency,
similarity, or both. To perform the comparison, the XML comparator requires three
XML documents. Two of the documents are the actual XML documents to be
compared. The third document is an exclusion XML document that contains nodes
that are to be ignored during the comparison of the two given XML documents.

E.4 Customizing the Tool

When you select the Customize Tool option from the Interface menu, the tool prompts
you to provide a new file name or to use an existing configuration file (one that you
previously created using this tool). The tests (actions) and options for each test are the
same tests that are discussed previously.

To use an existing configuration file (an XML file that you previously created), type the
filename at the prompt and press Enter or Return. This action starts the diagnosis
against your previously built configuration file.

To create a new configuration file, type a filename using XML as the extension, and
then press Enter or Return. The tool offers the same tests that are on the Command
Line Execution menu. You can select one or more tests by using a comma to separate
the test numbers.

E.5 Executing the Events Self-Diagnostic Tool

This section provides overviews of each of the self-diagnostic tests that you can run
when you execute the Events Self-Diagnostic Tool

E.5.1 Executing the Event Self-Diagnostic Tool

To use the Event Self-Diagnostic Tool, you must have a valid JD Edwards
EnterpriseOne user ID, password, environment, and role. If you are using the tool
from a JD Edwards EnterpriseOne server and you do not supply this information as
parameters, the user name, password, environment, and role information is read from

Events Self-Diagnostic Utility Tool E-3



Executing the Events Self-Diagnostic Tool

the security section of the server jde.ini file. If you are using a client, you must enter a
valid JD Edwards EnterpriseOne user name, password, environment, and role. If you
do not enter this information, the tool stops. If you are generating events from a client,
you must also have a valid OCM mapping for RTE or Z events to a valid server. Before
you run the Events Self-Diagnostic Tool:

s Ensure PORTTEST runs successfully on your system.
= Ensure that one instance of the IEO and EVN kernel is running.

= Ensure self-diagnostic events are defined in the F90701) table.

E.5.2 Start the Tool

To start the Events Self-Diagnostic Tool on the JD Edwards EnterpriseOne Server,
double-click the executable file at this location: $system\bin32\sdtool . exe

Or you can pass parameters, for example: $system\bin32\sdtool.exe
username password environment role

To start the tool from the client side, you must include these parameters:
Ssystem\bin32\sdtool.exe username password environment role

Note: $system refers to the path where the application is installed on
your system.

The Events Self-Diagnostic Tool accesses the Security section of the jde.ini file for a
valid user name, password, environment, and role. Upon startup, the tool analyzes the
jde.ini file, verifies that events are defined, and checks the inter-component
connectivity within the events infrastructure. As the tool analyzes each of these areas,
it provides you with feedback about what is being analyzed and whether the analysis
was successful.

If the tool detects a problem in any one of the startup areas, the tool terminates the
diagnosis and sends you a message that explains the problem encountered and
suggesting actions for resolving the problem.

After successful startup, you have a choice of creating and using a customized
configuration file or using the command line of the tool to run the diagnosis. The
Customized Tool option enables you to build and save a diagnostic test to a file so that
you can run that test as often as needed without having to reenter information into the
tool. When you use the Command Line Execution option, you must enter the test
information when the tool prompts you. When you run tests from the command line,
the Interface menu always follows the results statements so that you can run another
test or exit the tool.

Whether you select Option 1, Customize(d) Tool, or Option 2, Command Line
Execution, the tests that the tool performs are the same.

You can select one or more tests by typing the number that is associated with the test
at the prompt and then pressing Enter or Return. For multiple tests, separate the
number of the test with a comma (). Some of the tests provide further options. At the
prompt, you enter one or more options, using a comma to separate multiple options.
The tool performs the test and provides feedback to you indicating success or failure.
If the test failed, the tool provides feedback that tells you that the test failed and
identifies the logs you should review for more information.

E-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Executing the Events Self-Diagnostic Tool

E.5.3 Generate/Test Real-Time Event

When you select Action 1, Generate/Test Real Time Event(s), the tool displays the
real-time event types from which you select one or more real-time event types to test.

The tool generates the real-time event you requested and attaches a self-diagnostic
XML document to the event. The event contents are verified for any data corruption
against the attached XML document at each kernel in the events infrastructure and
event receiver transport driver. You receive a message indicating whether the event
was successfully generated. You also receive this feedback message: Please see

log files corresponding to IEO and EVN for any present event
data corruption. This message tells you to look at the log files to determine
whether an XML document mismatch occurred. The tool also provides a final message
that indicates that the tool has completed the analysis for that action, and then it
returns you to the tool interface menu.

E.5.4 Generate/Test Z Event

When you select Action 2, Generate/Test Z Event, the tool displays another set of
options. You can test a simulated Z event and you can test a Z event that uses the
actual interface tables (Z tables). If you test a simulated Z event, the tool generates a
simulated Z event and attaches a self-diagnostic XML document to the event. The
event contents are verified for any data corruption against the attached XML
document at the EVN kernel and event receiver transport driver. You receive a
message indicating whether the event was successfully generated. You also receive this
feedback message: Please see log files corresponding to EVN for any
present data corruption. This message tells you to look at the EVN log file to
determine whether an XML document mismatch occurred. The tool also provides a
final message that indicates that the self-diagnostic tool has completed the analysis for
the action, and then it returns you to the tool interface menu.

If you generate an actual Z event, you must have a valid UBE and you must set up the
appropriate interface tables. The tool asks you for your user name, batch number,
transaction number, line number, transaction type, document type, and sequence
number. The tool uses the live interface tables (Z tables) for this test. When you request
an actual Z event, the tool generates the Z event but does not include a self-diagnostic
XML document. The EVN kernel returns a message that indicates whether the event
was successful. Because no self-diagnostic XML document exists, the tool cannot
diagnose data corruption.

E.5.5 Test All Types of Events

When you select Action 3 (Test all types of events) from the Execution menu, the tool
tests all of the real-time events (single, aggregate, and composite) and both Z events
(simulated and actual). Action 3 is the same as Action 1 (all three options) and Action 2
(both options) combined. For the real-time events and the simulated Z event, the tool
generates the event and attaches a self-diagnostic XML document to the event so that
any data corruption can be detected. If you select this action, you must have a valid
UBE and you must set up appropriate interface tables. If you run this test but do not
have actual Z event data, you can abort that portion of the test by entering Exit when
the tool asks for the Z event information.

The tool sends the event information to the IEO and EVN kernels, and the kernels
return messages indicating whether each event was successful.

Events Self-Diagnostic Utility Tool E-5



Executing the Events Self-Diagnostic Tool

E.5.6 Get Event List

When you select Action 4, Get Event List (List of events supported) from the Execution
menu, the tool immediately runs the test.

The tool sends a getEventList request to the EVN kernel. The EVN kernel responds
with the list of event names that you have defined. To validate that the list is complete,
the tool checks the list for the presence of self-diagnostic event names. The tool
provides a list of the events to you along with a message indicating whether the test
was successful.

E.5.7 Get Event Template

When you select Action 5, Get Event Template, the tool displays the real-time event
types that have a template associated with them.

The tool generates the template request and attaches a self-diagnostic XML document
to the request. The template request is verified for any data corruption against the
attached XML document at each kernel in the events infrastructure and event
generator. The tool provides feedback that the template request was successful and
that the template data was validated against the XML packet. If the test fails, the tool
provides a message that indicates the reason for the failure.

E.5.8 Subscription Services

When you select Action 6, Subscription Services, the tool displays a set of options for
the type of subscription service to be tested.

When you select the Persistent Subscribe option, the tool sends a persistent
subscription request for a registered self-diagnostic event to the EVN kernel. The tool
verifies the list of subscribers that are maintained in a file or from the database table
(depending on how your system is configured), and then sends you a message
indicating whether the test was successful.

When you chose the Persistent Unsubscribe option, the tool sends a persistent
unsubscription request for a registered self-diagnostic event to the EVN kernel. The
tool verifies that the subscription is no longer in the file or database table (depending
on how your system is configured), and then sends you a message indicating whether
the test was successful.

When you select the Non-Persistent Subscribe option, the tool sends a non-persistent
subscription request for a registered self-diagnostic event to the EVN kernel. The tool
verifies the list of subscribers that is kept by the EVN kernel, and then sends you a
message indicating whether the test was successful.

When you select the Non-Persistent Unsubscribe option, the tool sends a
non-persistent unsubscription request for a registered self-diagnostic event to the EVN
kernel. The tool verifies the subscription is no longer in EVN, and then sends you a
message indicating whether the test was successful.

E.5.9 Comprehensive System Analysis

When you select Action 7, Comprehensive System Analysis, the tool performs all of
the tests and provides messages to you indicating whether each test was successful.

E-6 JD Edwards EnterpriseOne Tools Interoperability Guide



F

Interoperability Interface Table Information

This appendix contains the following topics:

= Section F.1, "Interoperability Interface Table Information"

F.1 Interoperability Interface Table Information

This section provides a table that lists applications that have interoperability features.

Input Input
Interface  Subsystem Processor Extraction
Table (Z Batch Batch Batch Revisions  Purge Batch Program
Program table) Process Process Process Program Process with POs
Financials N/A N/A N/A N/A N/A N/A N/A
Address Book F0101Z2 R01010Z - R01010Z - N/A P010171 R0101Z1P P0100041
ZJDE0002 ZJDE0001
Customer F03012Z1  R03010Z - R03010Z - N/A P030171 R0101Z1P P0100042
Master ZJDE0002 ZJDE0001
Supplier F0401Z71 R04010Z - R04010Z - N/A P040171 R0101Z1P P0100043
Master ZJDE0002 ZJDE0001
A/RInvoice F03B11Z1, RO03B11Z1I RO03B11Z1I- N/A P03B11Z1 RO3B11Z1P N/A
F091171, ZJDE0001
F0911Z1T
A/PInvoice F0411Z1, R04110Z - R04110Z - N/A P041171 R0411Z1P N/A
F091171 ZJDE0002 ZJDE0001
Payment F041371, N/A N/A N/A P041371 R0413Z71 P0413M
Order with F041471
Remittance
Journal Entry F0911Z1,  R09110Z - R09110Z - N/A P091171 R0911Z1P N/A
F0911Z21T  ZJDE0005 ZJDE0002
Fixed Asset F120171, R1201Z1I- R1201Z11- R1201Z1X P120171 R1201Z1P P1201
Master F121771 XJDE0002 XJDE0001
Account F090271 N/A N/A N/A P090271 R0902ZP N/A
Balance
Batch Cash F03B13Z1 N/A RO3B13Z1I- N/A N/A N/A N/A
Receipts ZJDE0001
HRM N/A N/A N/A N/A N/A N/A N/A
Payroll Time F06116Z1  R05116Z11  R05116Z11- N/A P05116Z1 R0O5116Z1P  N/A
Entry ZJDEO0001

Interoperability Interface Table Information F-1



Interoperability Interface Table Information

Input Input
Interface  Subsystem Processor Extraction
Table (Z Batch Batch Batch Revisions  Purge Batch Program
Program table) Process Process Process Program Process with POs
Distribution N/A N/A N/A N/A N/A N/A N/A
Purchase F430171, R4311Z11- R4311Z1I- N/A P431171 R4301Z1P P4310
Order F431171 XJDE0002 XJDEO0001
Outbound F43121Z1 N/A N/A N/A P4312171 R43121Z1P  P4312
Purchase
Receipts
Receipt F43092Z1 R43092Z11- R43092Z11- N/A P4309271 R43092Z1P  P43250
Routing XJDE0002 ZJDE0001
Outbound F420171, N/A N/A N/A P421171 R4211Z1P P4210
Sales Order F421171,
F4921171
Outbound F420171, N/A N/A N/A P421171 R4211Z1P P4205
Shipment F421171,
Confirmation F49211Z1
Logistics N/A N/A N/A N/A N/A N/A N/A
Cycle Counts F414171 R4141711 R4141711- N/A P414171 R414171P N/A
ZJDE0001
Item Master ~ F4101Z1, R4101Z11 R4101Z11- N/A P410171 N/A P4101
F4101Z1A ZJDEO0001
Item Cost F410571 N/A R4105Z11- N/A P410571 R4105Z21P P4105
XJDE0001
Warehouse F461171 R4611Z11 R4611Z11- N/A P461171 R4611Z1P N/A
Confirmations ZJDEO0001
(Suggestions)
Manufacturin N/A N/A N/A N/A N/A N/A N/A
g
Work Order  F4801Z71 Use Work Use Work R4101Z210  P480171 R480171P P48013
Header Order Order
Completions Completions
Work Order  F3111Z1 Use Use N/A P480171 R3111Z1P P3111
Parts List Planning Planning
Messages Messages
Work Order  F311271 Use Use R4801Z2X  P4801Z71 R3112Z1P P3112
Routing Planning Planning
Messages Messages
Work Order  F311227Z1  R31122711- R31122Z1I- N/A P3112271 R3112271 P311221
Employee XJDE0002 XJDE0001
Time Entry
Work Order  F311171 R31113Z11- R31113Z1I- N/A P311171 R3111Z1P N/A
Inventory ZJDE0002 ZJDE0001
Issues
Work Order  F4801Z71 R31114711- R31114Z11- N/A P480171 R480171P N/A
Completions XJDE0002 XJDE0001
Super F311271 R31123711  R31123Z1I- N/A P311271 R3112Z1P N/A
Backflush ZJDE(0001
Bill of F300271 R3002Z11- R3002Z11- N/A P300271 R3002Z1P P3002
Material ZJDE0002 ZJDE0001

F-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Interoperability Interface Table Information

Input Input
Interface Subsystem Processor Extraction
Table (Z Batch Batch Batch Revisions  Purge Batch Program

Program table) Process Process Process Program Process with POs

Routing F3003Z1 R3003Z11- R3003Z1I- N/A P3003Z1 R3003Z1P P3003

Master ZJDE0002 ZJDE0001

Work Center  F30006Z1  R30006Z1I- R30006Z11- N/A P30006Z1 R30006Z1P  P3006

Master ZJDE0002 ZJDE0001

Work Day F0007Z1 R0007Z1I- R0O007Z1I- N/A P000721 R0007Z1P P00071

Calendar XJDE0002 XJDEO0001

Planning F341171 R3411Z11- R3411Z11- N/A P341171 R3411Z1P N/A

Messages ZJDE0002 ZJDEO0001

Detail F3460Z1 R3460Z11- R3460Z1I- N/A P346071 R3460Z1P P3460,

Forecast XJDE0002 XJDEO0001 R3465,
R34650
(Each done
individually
)

Kanban F30161Z1 R30161Z1I- R30161Z11- N/A P3016171 R30161Z1P N/A

Transactions XJDE0002 XJDE0001

Interoperability Interface Table Information F-3



Interoperability Interface Table Information

F-4 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Format Examples (All Parameters)

This appendix contains the following topics:
= Section G.1, "Inbound Sales Order XML Format (All Parameters)"
= Section G.2, "Outbound XML Request and Response Format (All Parameters)"

G.1 Inbound Sales Order XML Format (All Parameters)

This section provides example code for an inbound sales order. This sample code
shows the XML format with all of the parameters.

"<?xml version='1.0'?>

<jdeRequest type='callmethod' user='userid' pwd='password'
environment='environment' role='*ALL'>

<callMethod name='GetLocalComputerId' app='NetCommerce' runOnError='no'>

<params>
<param name='szMachineKey'id='2"'></param>
<params>
<callMethod>
<callMethod name='F4211FSBeginDoc' app='NetCommerce' runOnError='no'>
<params>

<param name='mnCMJobNumber' id='jl'></param>
<param name='cCMDocAction'>A</param>
<param name='cCMProcessEdits'>1</param> (1 = Full)
<param name='szCMComputerID' idref='c2'></param>
<param name='cCMErrorConditions'>value</param> (l=Warnings, 2=Errors)
<param name='cCMUpdateWriteToWF'>value</param> (l=wf,2=cache)
<param name='szCMProgramID'>value</param>
<param name='szCMVersion'>value</param>
<param name='szOrderCo'<value</param>
<param name='mnOrderNo'>value</param>
<param name='szOrderType'>value</param> (If blank def Proc Opt)
<param name='szBusinessUnit'>value</param> (If blank def Proc Opt)
<param name='szOriginalOrderCo'>value</param> (used copy/blanket function)
<param name='szOriginalOrderNo'>value</param> (used copy/blanket function)
<param name='szOriginalOrderType'>value</param> (used copy/blanket function)
<param name='mnAddressNumber'>value</param> (Required if ship to = 0)
<param name='mnShipToNo'>value</param> ( 0)
<param name='jdRequestedDate'>value</param>
<param name='jdOrderDate'>value</param>
<param name='jdPromisedDate'>value</param>
<param name='jdCancelDate'>value</param>
<param name='szReference'>value</param>
<param name='szDeliveryInstructionsl'>value</param>
<param name='szDeliveryInstructions2'>value</param>
<param name='szPrintMesg'>value</param>

Required if sold to

XML Format Examples (All Parameters) G-1



Inbound Sales Order XML Format (All Parameters)

<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param

name="'szPaymentTerm'>value</param>
name="'cPayment Instrument'>value</param>
name="'szAdjustmentSchedule'>value</param>
name="'mnTradeDiscount'>value</param>
name="'szTaxExplanationCode'>value</param>
name="'szTaxArea'>value</param>
name="'szCertificate'>value</param>
name="'cAssociatedText '>value</param>
name="'szHoldOrdersCode'>value</param>
name="'cPricePickListYN'>value</param>
name='mnInvoiceCopies'>value</param>
name='mnBuyerNumber ' >value</param>
name='mnCarrier'>value</param>
name="'szRouteCode' >value</param>
name="'szStopCode' >value</param>
name="'szzZoneNumber'>value</param>
name="'szFreightHandlingCode'>value</param>
name="'cApplyFreightYN'>value</param>
name="'mnCommissionCodel'>value</param>
name="'mnCommissionRatel'>value</param>
name="'mnCommissionCode2'>value</param>
name="'mnCommissionRate2'>value</param>
name="'szWeightDisplayUOM'>value</param>
name="'szVolumeDisplayUOM'>value</param>
name="'szAuthorizationNo'>value</param>
name="'szCreditBankAcctNo'>value</param>
name="'jdCreditBankExpiredDate'>value</param>
name="'cMode'>value</param>
name="'szCurrencyCode'>value</param>
name='mnExchangeRate'>value</param>
name="'szOrderedBy ' >value</param>
name="'szOrderTakenBy'>value</param>
name="'szUserReservedCode' >value</param>
name="'JjdUserReservedDate' >value</param>
name='mnUserReservedAmnt ' >value</param>
name='mnUserReservedNo '>value</param>
name="'szUserReservedRef '>value</param>
name="jdDateUpdated'>value</param>
name="'szUserID'>value</param>
name="'szWKBaseCurrency'>value</param>
name="'cWKAdvancedPricingYN'>value</param>
name="'szWKCreditMesg'>value</param>
name="'szWKTempCreditMesg'>value</param>
name="'cWKInvalidSalesOrderNo'>value</param>
name="'cWKSourceOfData'>blank</param> (Required, blank = parms
name="'cWKProcMode ' >blank</param> (blank = reg order)
name='mnWKSuppressProcess'>0</param> (0 = def, 2=P/0)
name="'mnSODDocNo ' >value</param>
name="'szS0DDocType' >value</param>
name="'szS0DOrderCo' >value</param>
name='mnTriangulationRateFrom'>value</param>
name='mnTriangulationRateTo'>value</param>
name="'cCurrencyConversionMethod'>value</param>
name="'cRetrieveOrderNo'>value</param>
name='szPricingGroup'>value</param>
name="'cCommitInvInED'>value</param>
name="'cSpotRateAllowed'>value</param>
name="'cGenericChar2_EV02'>value</param>
name="'szGenericStringl_DL01'>value</param>
name="'szGenericString2_DL02'>value</param>

G-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Inbound Sales Order XML Format (All Parameters)

<param
<param
<param
<param
<param
<param

name='mnGenericMathNumericl MATHO01'>value</param>
name="'mnGenericMathNumeric2_MATH02'>value</param>
name="'szLongAddressNumberShipto'>value</param>
name="'szLongAddressNumber ' >value</param>
name="'mnProcessID'>value</param>
name='mnTransactionID'>value</param>

</params>

<onError abort='yes'>\

<callMethod name='F4211ClearWorkFile' app='NetCommerce' runOnError='yes'>
<params>
<param name='mnJobNo' idref='jl'></param>
<param name='szComputerID' idref='c2'></param>
<param name='mnFromLineNo'>value</param>
<param name='mnThruLineNo'>value</param>
<param name='cClearHeaderWF'>value</param>
<param name='cClearDetailWF'>value</param>
<param name='szProgramID'>value</param>
<param name='mnWKRelatedOrderProcess'>value</param>
<param name='szCMVersion'>value</param>
<param name='cGenericCharl_EV01l'>value</param>
<param name='szGenericStringl_ DL01'>value</param>
<param name='mnSODRelatedJobNumber '>value</param>
<param name='mnProcessID' >value</param>
<param name='mnTransactionID'>value</param>
</params>

</callMethod>

</onError>

</callMethod>

<callMethod name='F4211FSEditLine'app="'NetCommerce' runOnError='yes'> (each line)
<params>
<param name='mnCMJobNo' idref='jl'></param>
<param name='cCMLineAction'>value</param>
<param name='cCMProcessEdits'>value</param>
<param name='cCMWriteToWFFlag'>value</param>
<param name='cCMRecdWrittenToWF'>value</param>
<param name='szCMComputerID' idref='c2'></param>
<param name='cCMErrorConditions'>value</param>
<param name='szOrderCo'>value</param>
<param name='mnOrderNo'>value</param>
<param name='szOrderType'>value</param>
<param name='mnLineNo'>value</param>
<param name='szBusinessUnit'>value</param>
<param name='mnShipToNo'>value</param>
<param name='jdRequestedDate'>value</param>
<param name='jdPromisedDate'>value</param>
<param name='jdCancelDate'>value</param>
<param name='jdPromisedDlvryDate'>value</param>
<param name='szItemNo'>value</param>
<param name='szLocation'>value</param>
<param name='szLotNo'>value</param>
<param name='szDescriptionl'>value</param>
<param name='szDescription2'>value</param>
<param name='szLineType'>value</param>
<param name='szLastStatus'>value</param>
<param name='szNextStatus'>value</param>
<param name='mnQtyOrdered'>value</param>
<param name='mnQtyShipped'>value</param>
<param name='mnQtyBackordered'>value</param>
<param name='mnQtyCanceled'>value</param>
<param name='mnExtendedPrice'>value</param>

XML Format Examples (All Parameters) G-3



Inbound Sales Order XML Format (All Parameters)

<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param
<param

name='mnExtendedCost'>value</param>
name='szPrintMesg' >value</param>
name="'cPaymentInstrument '>value</param>
name="'szAdjustmentSchedule'>value</param>
name='cSalesTaxableYN'>value</param>
name="'cAssociatedText'>value</param>
name="'szTransactionUOM' >value</param>
name='szPricingUOM' >value</param>
name='mnItemWeight'>value</param>
name="'szWeightUOM' >value</param>
name='mnForeignUnitPrice'>value</param>
name='mnForeignExtPrice'>value</param>
name='mnForeignUnitCost'>value</param>
name='mnForeignExtCost'>value</param>
name='szPricingCategoryLevel '>value</param>
name='mnDiscountFactor'>value</param>
name='mnCMLineNo'>value</param>
name="'szCMProgramID'>value</param>
name='szCMVersion'>value</param>
name="'mnSupplierNo'>value</param>
name='szRelatedKitItemNo'>value</param>
name='mnKitMasterLineNo'>value</param>
name='"mnComponentLineNo'>value</param>
name='mnRelatedKitComponent '>value</param>
name='"mnNoOfCpntPerParent ' >value</param>
name="'cOverridePrice'>value</param>
name="'cOverrideCost'>value</param>
name='szUserID'>value</param>
name="'jdDateUpdated'>value</param>
name='mnWKOrderTotal ' >value</param>
name='mnWKForeignOrderTotal ' >value</param>
name='"mnWKTotalCost'>value</param>
name='mnWKForeignTotalCost'>value</param>
name="'cWKProcessingType'>value</param>
name="'cWKSourceOfData'>value</param>
name="'cWKCheckAvailability'>value</param>
name='mnlLastLineNoAssigned'>value</param>
name="'cStockingType' >value</param>
name='szOriginalOrderKeyCo'>value</param>
name="'szOriginalOrderNo'>value</param>
name='szOriginalOrderType'>value</param>
name='mnOriginalOrderLineNo'>value</param>
name='cParentItmMethdOfPriceCalcn'>value</param>
name="'szLandedCost ' >value</param>
name='mnWKSuppressProcess'>value</param>
name='mnShortItemNo'>value</param>
name='mnWKRelatedOrderProcess'>value</param>
name="'mnSODLineNo' >value</param>
name='mnPriceAdjRevLevel ' >value</param>
name="'szSalesOrderFlags'>value</param>
name="'mnSODDocNo ' >value</param>
name="'szSODDocType ' >value</param>
name="'szS0DOrderCo ' >value</param>
name="'szTransferOrderToBranch'>value</param>
name="'mnDomesticDetachedAdj'>value</param>
name='mnForeignDetachedAdj'>value</param>
name='mnSODWFLineNo ' >value</param>
name="'szGeneric2CharString'>value</param>
name="'mnTOEPOExchangeRate'>value</param>
name="'szTOEPOCurrencyCode'>value</param>

G-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Inbound Sales Order XML Format (All Parameters)

<param name='mnDRPKeyId'>value</param>
<param name='mnSoldToCust'>value</param>
<param name='szF4201BranchPlant'>value</param>
<param name='szSoldToCurrencyCode'>value</param>
<param name='cConsolidationFlag'>value</param>
<param name='jdPriceEffectiveDate'>value</param>
<param name='mnWOWFLineNo'>value</param>
<param name='mnLineNoIncrement'>value</param>
<param name='mnParentWFLineNo'>value</param>
<param name='cStatusInWarehouse'>value</param>
<param name='cBypassCommitments'>value</param>
<param name='szProductSource'>value</param>
<param name='szProductSourceType'>value</param>
<param name='mnSequenceNumber'>value</param>
<param name='szAgreementNumber'>value</param>
<param name='mnAgreementSupplement '>value</param>
<param name='mnAgreementsFound'>value</param>
<param name='gszModeOfTransport'>value</param>
<param name='szDutyStatus'>value</param>
<param name='szLineofBusiness'>value</param>
<param name='jdPromisedShip'>value</param>
<param name='szEndUse'>value</param>
<param name='mnTOEPOExchangeRate'>value</param>
<param name='szPriceCodel'>value</param>
<param name='szPriceCode2'>value</param>
<param name='szPriceCode3'>value</param>
<param name='szItemFlashMessage'>value</param>
<param name='szCompanyKeyRelated'>value</param>
<param name='szRelatedPoSoNumber'>value</param>
<param name='szRelatedOrderType'>value</param>
<param name='mnRelatedPoSoLineNo'>value</param>
<param name='cGenericChar3'>value</param>
<param name='mnProfitMargin'>value</param>
<param name='mnQuantityAvailable'>value</param>
<param name='cRequestScheduleFlag'>value</param>
<param name='cOrderProcessType'>value</param>
<param name='cGenericChar2'>value</param>
<param name='mnSODRelatedJobNumber '>value</param>
<param name='szGenericString'>value</param>
<param name='mnCarrier'>value</param>
<param name='szGenericString2_DL02'>value</param>
<param name='mnGenericMathNumericl_ MATHO1'>value</param>
<param name='mnGenericMathNumeric2_ MATH02'>value</param>
<param name='mnItemVolume_ ITVL'>value</param>
<param name='szVolumeUOM_VLUM'>value</param>
<param name='szRevenueBusinessUnit'>value</param>
<param name='szCustomerPO_VR01'>value</param>
<param name='szReference2Vendor_VR02'>value</param>
<param name='mnProcessID'>value</param>
<param name='mnTransactionID'>value</param>
</params>
<onError abort='no'>\
</onError>
</callMethod>
<callMethod name='F4211FSEndDoc' app='NetCommerce' runOnError='no'>
<params>
<param name='mnCMJobNo' idref='jl'></param>
<param name='mnSalesOrderNo'>value</param>
<param name='szCMComputerID' idref='2'></param>
<param name='cCMErrorCondition'>value</param>

XML Format Examples (All Parameters) G-5



Inbound Sales Order XML Format (All Parameters)

<param name='szOrderType'>value</param>
<param name='szKeyCompany '>value</param>
<param name='mnOrderTotal'>value</param>
<param name='mnForeignOrderTotal'>value</param>
<param name='szBaseCurrencyCode'>value</param>
<param name='szProgramID'>value</param>
<param name='szWorkstationID'>value</param>
<param name='szCMProgramID'>value</param>
<param name='szCMVersion'>value</param>
<param name='mnTimeOfDay'>value</param>
<param name='mnTotalCost'>value</param>
<param name='mnForeignTotalCost'>value</param>
<param name='cSuppressR1vBlnktFlag'>value</param>
<param name='cWKSkipProcOptions'>value</param> (Skip Proc Opt, 1l="Yes")
<param name='mnWKRelatedOrderProcess'>value</param>
<param name='cCMUseWorkFiles'>value</param>(Req,Work File="1", Cache ="2")
<param name='mnEDIDocNo'>value</param>
<param name='szEDIKeyCo'>value</param>
<param name='szEDIDocType'>value</param>
<param name='cCMProcessEdits'>value</param>
<param name='cGenericChar2'>value</param>
<param name='mnSODRelatedJobNumber '>value</param>
<param name='cGenericCharl_EV01'>value</param>
<param name='mnGenericMathNumeric2_MATHO02'>value</param>
<param name='szGenericStringl_ DL01'>value</param>
<param name='szGenericString2_DL02'>value</param>
<param name='mnProcessID'>value</param>
<param name='mnTransactionID'>value</param>
<params/>
<onError abort='no'>\
<callMethod name='F4211ClearWorkFile' app='NetCommerce' runOnError='yes'>
<params>
<param name='mnJobNo' idref='jl'></param>
<param name='szComputerID' idref='2'></param>
<param name='mnFromLineNo'>value</param>
<param name='mnThruLineNo'>value</param>
<param name='cClearHeaderWF'>value</param>
<param name='cClearDetailWF'>value</param>
<param name='szProgramID'>value</param>
<param name='mnWKRelatedOrderProcess'>value</param>
<param name='szCMVersion'>value</param>
<param name='cGenericCharl_EV01'>value</param>
<param name='szGenericStringl_ DL01'>value</param>
<param name='mnSODRelatedJobNumber'>value</param>
<param name='mnProcessID'>value</param>
<param name='mnTransactionID'>value</param>
</params>
</callMethod>
</onError>
</callMethod>
<returnParams version='value' messagetype='messsage name'
failureDestination="'queuename' successDestination='queuename>
<param name='long description' idref='value'/param>
</returnParams>
<onError>
<callMethod name='F4211ClearWorkFile' app='NetCommerce' runOnError='yes'>
<params>
<param name='mnJobNo' idref='jl'></param>
<param name='szComputerID' idref='2'></param>
<param name='mnFromLineNo'>value</param>

G-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Outbound XML Request and Response Format (All Parameters)

<param name='mnThruLineNo'>value</param>
<param name='cClearHeaderWF'>value</param>
<param name='cClearDetailWF'>value</param>
<param name='szProgramID'>value</param>
<param name='mnWKRelatedOrderProcess'>value</param>
<param name='szCMVersion'>value</param>
<param name='cGenericCharl_EV01l'>value</param>
<param name='szGenericStringl_ DL01'>value</param>
<param name='mnProcessID'>value</param>
<param name='mnTransactionID'>value</param>
</params>
</callMethod>
</onError>
</jdeRequest>

G.2 Outbound XML Request and Response Format (All Parameters)

G.2.1 Request

This section provides example request and response code that illustrate the outbound
XML Format with all of the parameters.

This format returns all columns for the F0101Z2 table:

<?xml version='1.0" ?>
<jdeRequest type='trans' user='user' pwd='password' environment='environment'

role='*ALL' session='' sessionidle='300'>
<transaction action='transactionInfo' type='JDEAB'>
<key>

<column name='EdiUserId'>value</column>
<column name='EdiBatchNumber'>value</column>
<column name='EdiTransactNumber'>value</column>
</key>
</transaction>
</jdeRequest>

G.2.2 Response

This sample code shows the response for the request:

<?xml version='1.0"' encoding='utf-8' ?>
<jdeResponse type='trans' user='user' session='session' environment='env's>
<transaction type='JDEAB' action='transactionInfo'>
<returnCode code='0'>XML Request OK</returnCode>
<key>
<column name='EdiUserId'></column>
<column name='EdiBatchNumber'></column>
</key>
<table name='F0101Z2' type='detail'>
<column name='EdiUserId'></column>
<column name='EdiBatchNumber'></column>
<column name='EdiTransactNumber'></column>
<column name='EdiLineNumber '></column>
<column name='EdiDocumentType'></column>
<column name='TypeTransaction'></column>
<column name='EdiTranslationFormat'></column>
<column name='EdiTransmissionDate'></column>
<column name='DirectionIndicator'></column>
<column name='EdiDetailLinesProcess'></column>
<column name='EdiSuccessfullyProcess'></column>

XML Format Examples (All Parameters) G-7



Outbound XML Request and Response Format (All Parameters)

<column name='TradingPartnerId'></column>
<column name='TransactionAction'></column>
<column name='AddressNumber '></column>

<column name='AlternateAddressKey'></column>
<column name='TaxId'></column>

<column name='NameAlpha'></column>

<column name='DescripCompressed'></column>
<column name='CostCenter'></column>

<column name='StandardIndustryCode'></column>
<column name='LanguagePreference'>< /column>
<column name='AddressTypel'></column>

<column name='CreditMessage'></column>

<column name='PersonCorporationCode'></column>
<column name='AddressType2'></column>

<column name='AddressType3'></column>

<column name='AddressTyped'></column>

<column name='AddressTypeReceivables'></column>
<column name='AddressType5'></column>

<column name='AddressTypePayables'></column>
<column name='AddTypeCodedPurch'></column>
<column name='MiscCode3'></column>

<column name='AddressTypeEmployee'></column>
<column name='SubledgerInactiveCode'></column>
<column name='DateBeginningEffective'></column>
<column name='AddressNumberlst'></column>
<column name='AddressNumber2nd'></column>
<column name='AddressNumber3rd'></column>
<column name='AddressNumberdth'></column>
<column name='AddressNumber6th'></column>
<column name='AddressNumber5th'></column>
<column name='ReportCodeAddBook001'></column>
<column name='ReportCodeAddBook002'></column>
<column name='ReportCodeAddBook003'></column>
<column name='ReportCodeAddBook004'></column>
<column name='ReportCodeAddBook005'></column>
<column name='ReportCodeAddBook006'></column>
<column name='ReportCodeAddBook007'></column>
<column name='ReportCodeAddBook008'></column>
<column name='ReportCodeAddBook009'></column>
<column name='ReportCodeAddBook010'></column>
<column name='ReportCodeAddBook011l'></column>
<column name='ReportCodeAddBook012'></column>
<column name='ReportCodeAddBook013'></column>
<column name='ReportCodeAddBook014'></column>
<column name='ReportCodeAddBook015'></column>
<column name='ReportCodeAddBook016'></column>
<column name='ReportCodeAddBook017'></column>
<column name='ReportCodeAddBook018'></column>
<column name='ReportCodeAddBook019'></column>
<column name='ReportCodeAddBook020'></column>
<column name='CategoryCodeAddressBook2'></column>
<column name='CategoryCodeAddressBk22'></column>
<column name='CategoryCodeAddressBk23'></column>
<column name='CategoryCodeAddressBk24'></column>
<column name='CategoryCodeAddressBk25'></column>
<column name='CategoryCodeAddressBk26'></column>
<column name='CategoryCodeAddressBk27'></column>
<column name='CategoryCodeAddressBk28'></column>
<column name='CategoryCodeAddressBk29'></column>
<column name='CategoryCodeAddressBk30'></column>

G-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Outbound XML Request and Response Format (All Parameters)

<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
<column
</table>
</transaction>
</jdeResponse>

name="'GlBankAccount ' ></column>
name="'TimeScheduledIn'></column>
name='DateScheduledIn'></column>
name="'ActionMessageControl'></column>
name='NameRemark'></column>
name='CertificateTaxExempt'></column>
name="'TaxId2'></column>
name='Kanjialpha'></column>
name='UserReservedCode'></column>
name='UserReservedDate'></column>
name='UserReservedAmount ' ></column>
name='UserReservedNumber ' ></column>
name='UserReservedReference'></column>
name='NameMailing'></column>
name="'SecondaryMailingName'></column>
name="'AddressLinel'></column>
name="'AddressLine2'></column>
name="'AddressLine3'></column>
name="'AddressLined '></column>
name='ZipCodePostal'></column>
name='City'></column>
name='Country'></column>
name='State'></column>
name="'CountyAddress'></column>
name="'PhoneAreaCodel ' ></column>
name="'PhoneNumber ' ></column>
name="'PhoneNumberTypl ' ></column>
name='PhoneAreaCode?2 ' ></column>
name="'PhoneNumberl'></column>
name="'PhoneNumberTyp?2 '></column>
name='TransactionOriginator'></column>
name='UserId'></column>
name="'ProgramId'></column>
name='WorkStationId'></column>
name='DateUpdated'></column>
name="'TimeOfDay'></column>
name="'TimeLastUpdated'></column>

XML Format Examples (All Parameters) G-9



Outbound XML Request and Response Format (All Parameters)

G-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Minimum Required Values Sample Code

This appendix contains the following topics:

»  Section H.1, "Sales Order Minimum Required Values"

H.1 Sales Order Minimum Required Values

This sales order entry example shows the minimum required parameters. JD Edwards
EnterpriseOne recommends that you start with the minimum required values and test
them to ensure your system is working. After you are confident the minimum required
values are working properly, you can add other values.

<?xml version="1.0" encoding="utf-8" ?>
<jdeRequest type="callmethod" user="JDE" pwd="JDE" role="*ALL"
environment="PRD733">

<callMethod name="GetLocalComputerId" app="NetComm" runOnError="no">

<params>
<param name="szMachineKey" id="" />

</params>

<onError abort="yes"/>

</callMethod>

<callMethod name="F4211FSBeginDoc" app="NetComm" runOnError="no">

<params>
<param name="gszCMComputerID" idref="2"/>
<param name="szOrderType">S4</param>
<param name="szBusinessUnit">M30</param>
<param name="mnAddressNumber">4242</param>

</params>

<onError abort="yes">

<callMethod name="F4211ClearWorkFile" app="NetComm" runOnError="yes">

<params>
<param name="mnJobNo" idref="1"/>
<param name="szComputerID" idref="2"/>
<param name="cClearHeaderWF">2</param>
<param name="cClearDetailWF">2</param>

</params>

</callMethod>

</onError>

</callMethod>

<callMethod name="F4211FSEditLine" app="NetComm" runOnError="yes">

<params>
<param name="mnCMJobNo" idref="1"/>
<param name="szCMComputerID" idref="2"/>
<param name="szBusinessUnit">M30</param>
<param name="szItemNo">1001</param>

</params>

Minimum Required Values Sample Code H-1



Sales Order Minimum Required Values

<onError abort="no"/>
</callMethod>
<callMethod name="F4211FSEndDoc" app="NetComm" runOnError="no">
<params>
<param name="mnCMJobNo" idref="1"/>
<param name="szCMComputerID" idref="2"/>
</params>
<onError abort="no">
<callMethod name="F4211ClearWorkFile" app="NetComm" runOnError="yes">
<params>
<param name="mnJobNo" idref="1"/>
<param name="szComputerID" idref="2"/>
<param name="mnFromLineNo">0</param>
<param name="mnThruLineNo">0</param>
<param name="cClearHeaderWF">2</param>
<param name="cClearDetailWF">2</param>
<param name="szProgramID">NetComm</param>
<param name="szCMVersion">ZJDE0001l</param>
</params>
</callMethod>
</onError>
</callMethod>
<returnParams failureDestination="ERROR.Q" successDestination="SUCCESS.Q"
runOnError="yes" />
<onError abort="yes">
<callMethod name="F4211ClearWorkFile" app="NetComm" runOnError="yes">
<params>
<param name="mnJobNo" idref="1"/>
<param name="szComputerID" idref="2"/>
<param name="mnFromLineNo">0</param>
<param name="mnThruLineNo">0</param>
<param name="cClearHeaderWF">2</param>
<param name="cClearDetailWF">2</param>
<param name="szProgramID">NetComm</param>
<param name="szCMVersion">ZJDE0001l</param>
</params>
</callMethod>
</onError>
</jdeRequest>

H-2 JD Edwards EnterpriseOne Tools Interoperability Guide



XML Format Examples (Events)

This appendix contains the following topics:
»  Section 1.1, "Example: Z Events XML Format"

= Section 1.2, "Real-Time Events Template"

I.1 Example: Z Events XML Format
This section illustrates a Z file event XML document.

<?xml version='1.0"' encoding='utf-8'>
<jdeResponse type='trans' user='JDE' role='*ALL' environment='XDEVNIS2'>
<transaction type='JDESC' action='transactionInfo'>
<returnCode code='0'>XML Request OK</returnCode>
<key>
<EdiUserId>Kw6803955</EdiUserId>
<EdiBatchNumber>16319</EdiBatchNumber>
<EdiTransactNumber>106053</EdiTransactNumber>
</key>
<F42017Z1 type='header'>
<EdiUserId>KW6803955</EdiUserId>
<EdiBatchNumber>16319</EdiBatchNumber>
<EdiTransactNumber>106053</EdiTransactNumber>
<EdiLineNumber>1.000</EdiLineNumber>
<EdiDocumentType>S0</EdiDocumentType>
<TypeTransaction>JDESC</TypeTransaction>
<EdiTranslationFormat> </EdiTranslationFormat>
<EdiTransmissionDate> </EdiTransmissionDate>
<DirectionIndicator>2</DirectionIndicator>
<EdiDetaillinesProcess>0</EdiDetaillLinesProcess>
<EdiSuccessfullyProcess>Y</EdiSuccessfullyProcess>
<TradingPartnerId> </TradingPartnerId>
<TransactionAction>UA</TransctionAction>
<CompanyKeyOrderNo>00200</CompanyKeyOrderNo>
<DocumentOrderInvoiceF>6559</DocumentOrderInvoiceF>
<OrderType>S0</0OrderType>
<0OrderSuffix>000</0OrderSuffix>
<CostCenter> M30</CostCenter>
<Company>00200</Company>
<CompanyKeyOriginal> </CompanyKeyOriginal>
<OriginalPoSoNumber> </OriginalPoSoNumber>
<OriginalOrderType> </OriginalOrderType>
<CompanyKeyRelated> </CompanyKeyRelated>
<RelatedPoSoNumber> </RelatedPoSoNumber>
<RelatedOrderType> </RelatedOrderType>
<AddressNumber>4242</AddressNumber>

XML Format Examples (Events) 1-1



Example: Z Events XML Format

<AddressNumberShipTo>4242</AddressNumberShipTo>
<AddressNumberParent>4242</AddressNumberParent>
<DateRequestedJulian>2005/05/05</DateRequestedJulian>
<DateTransactionJulian>2005/05/05</DateTransactiondJulian>
<PromisedDeliveryDate>2005/05/05</PromisedDeliveryDate>
<DateOriginalPromise>2005/05/05</DateOriginalPromise>
<ActualDeliveryDate></ActualDeliveryDate>
<CancelDate></CancelDate>
<DatePriceEffectiveDate>2005/05/05</DatePriceEffectiveDate>
<DatePromisedPickJu>2005/05/05</DatePromisedPickJu>
<DatePromisedShipJu></DatePromisedShipJu>
<Referencel> </Referencel>

<Reference2Vendor> </Reference2Vendor>
<DeliveryInstructLinel> </DeliveryInstructLinel>
<DeliveryInstructLine2> </DeliveryInstructLine2>
<PrintMessagel> </PrintMessagel>
<PaymentTermsCode(0l> </PaymentTermsCode(0l>
<PaymentInstrumentA> </PaymentInstrumentA>
<PriceAdjustmentScheduleN>
</PriceAdjustmentScheduleN>
<PricingGroup>PREFER</PricingGroup>
<DiscountTrade>.000</DiscountTrade>
<PercentRetainagel>.000</PercentRetainagel>
<TaxAreal>DEN</TaxAreal>
<TaxExplanationCodel>S</TaxExplanationCodel>
<CertificateTaxExempt> </CertificateTaxExempt>
<AssociatedText> </AssociatedText>
<PriorityProcessing>0</PriorityProcessing>
<BackordersAllowedYN>Y</BackordersAllowedYN>
<SubstitutesAllowedYN>Y</SubstitutesAllowedYN>
<HoldOrdersCode> </HoldOrdersCode>
<PricePickListYN>Y</PricePickListYN>
<InvoiceCopies>0</InvoiceCopies>
<NatureOfTransaction> </NatureOfTransction>
<BuyerNumber>0</BuyerNumber>

<Carrier>0</Carrier>

<ModeOfTransport> </ModeOfTransport>
<ConditionsOfTransport> </ConditionsOfTransport>
<RouteCode> </RouteCode>

<StopCode> </StopCode>

<ZoneNumber> </ZoneNumber>

<ContainerID> </ContainerID>

<FreightHandlingCode> </FreightHandlingcode>
<ApplyFreightYN>Y</ApplyFreightYN>

<ApplyFreight> </ApplyFreight>
<FreightCalculatedYN> </FreightCalculatedYN>
<MergeOrdersYN> </MergeOrdersYN>
<CommissionCodel>6001</CommissionCodel>
<RateCommissionl>5.000</RateCommissionl>
<CommissionCode2>0</CommissionCode2>
<RateCommission2>.000</RateCommission2>
<ReasonCode> </ReasonCode>

<PostQuantities> </PostQuantities>
<AmountOrderGross>134.97</AmountOrderGross>
<AmountTotalCost>.00</AmountTotalCost>
<UnitOfMeasureWhtDisp> </UnitOfMeasureWhtDisp>
<UnitOfMeasureVolDisp> </UnitOfMeasureVolDisp>
<AuthorizationNoCredit> </AuthorizationNoCredit>
<AcctNoCrBank> </AcctNoCrBank>
<DateExpired></DateExpired>

I-2 JD Edwards EnterpriseOne Tools Interoperability Guide



Example: Z Events XML Format

<SubledgerInactiveCode> </SubledgerInactiveCode>
<CorrespondenceMethod> </CorrespondenceMethod>
<CurrencyMode>F</CurrencyMode>
<CurrencyCodeFrom>BEF</CurrencyCodeFrom>
<CurrencyConverRateOv>33.8180588</CurrencyConverRateOv>
<LanguagePreference>E</LanguagePreference>
<AmountForeignOpen>4564.42</AmountForeignOpen
<AmountForeignTotalC>.00</AmountForeignTotalC>
<OrderedBy> </OrderedBy>
<OrderTakenBy> </OrderTakenBy>
<UserReservedCode> </UserReservedCode>
<UserReservedDate> </UserReservedDate>
<UserReservedAmount>.(00</UserReservedAmount>
<UserReservedNumber>0</UserReservedNumber>
<UserReservedReference> </UserReservedReference>
<UserId>KW6803955</UserId>
<ProgramId> </ProgramId>
<WorkStationId>ST15</WorkStationId>
<DateUpdated>2000/08/22</DatedUpdated>
<TimeOfDay>134435</TimeOfDay>

</F420171>

<F421171 type='detail'>
<EdiUserId>KW6803955</EdiUserId>
<EdiBatchNumber>16319</EdiBatchNumber>
<EdiTransactNumber>106053</EdiTransactNumber>
<EdiLineNumber>1.000</EdiLineNumber>
<EdiDocumentType>S0</EdiDocumentType>
<TypeTransaction>JDESC</TypeTransaction>
<EdiTranslationFormat> </EdiTranslationFormat>
<EdiTransmissionDate></EdiTransmissionDate>
<DirectionIndicator>2</DirectionIndicator>
<EdiDetaillLinesProcess>0</EdiDetaillLinesProcess>
<EdiSuccessfullyProcess>N</EdiSuccessfullyProcess>
<TradingPartnerId> </TradingPartnerId>
<TransactionAction>UA</TransactionAction>
<CompanyKeyOrderNo>00200</CompanyKeyOrderNo>
<DocumentOrderInvoiceE>6559</DocumentOrderInvoiceE>
<OrderType>S0</0OrderType>
<LineNumber>1.000</LineNumber>
<OrderSuffix>000</0OrderSuffix>
<CostCenter> M30</CostCenter>
<Company>00200</Company>
<CompanyKeyOriginal> </CompanyKeyOriginal>
<OriginalPoSoNumber> </OriginalPoSoNumber>
<OriginalOrderType> </OriginalOrderType>
<OriginalLineNumber>.000</0OriginalLineNumber>
<CompanyKeyRelated> </CompanyKeyRelated>
<RelatedPoSoNumber> </RelatedPoSoNumber>
<RelatedOrderType> </RelatedOrderType>
<RelatedPoSoLineNo>.000</RelatedPoSoLineNo>
<ContractNumberDistributi> </ContractNumberDistributi>
<ContractSupplementDistri>0</ContractSupplementDistri>
<ContractBalancesUpdatedY> </ContractBalancesUpdatedY>
<AddressNumber>4242</AddressNumber>
<AddressNumberShipTo>4242</AddressNumberShipTo>
<AddressNumberParent>4242</AddressNumberParent>
<DateRequestedJulian>2005/05/05</DateRequestedJulian>
<DateTransactionJulian>2005/05/05</DateTransactiondJulian>
<PromisedDeliveryDate>2005/05/05</PromisedDeliveryDate>
<DateOriginalPromised>2005/05/05</DateOriginalPromised>

XML Format Examples (Events) 1-3



Example: Z Events XML Format

<ActualDeliveryDate></ActualDeliveryDate>
<DateInvoiceJulian></DateInvoiceJulian>
<CancelDate></CancelDate>
<DtForGLAndVouchl></DtForGLAndVouchl>
<DateReleaseJulian>2005/05/05</DateReleasedulian>

<DatePriceEffectiveDate>2005/05/05</DatePriceEffectiveDate>
<DatePromisedPickJu>2005/05/05</DatePromisedPickJu>

<DatePromisedShipJu></DatePromisedShipJu>
<Referencel> </Referencel>

<Reference2Vendor> </Reference2Vendor>
<IdentifierShortItem>60003</IdentifierShortItem>
<Identifier2ndItem>1001</Identifier2ndItem>
<Identifier3rdItem>1001</Identifier3rdItem>

<Location> </Location>
<Lot> </Lot>

<FromGrade> </FromGrade>
<ThruGrade> </ThruGrade>

<FromPotency>.000</FromPotency>
<ThruPotency>.000</ThruPotency>
<DaysPastExpiration>0</DaysPastExpiration>

<DescriptionLinel>Bike Rack - Trunk Mount</DescriptionLinel>

<DescriptionLine2> </DescriptionLine2>

<LineType>S</LineType>

<StatusCodeNext>540</StatusCodeNext>
<StatusCodelast>520</StatusCodeLast>

<CostCenterHeader>

M30</CostCenterHeader>

<ItemNumberRelatedKit> </ItemNumberRelatedKit>
<LineNumberKitMaster>.000</LineNumberKitMaster>
<ComponentNumber>. 0</ComponentNumber>
<RelatedKitComponent>0</RelatedKitComponent>
<NumbOfCpntPerParent>0</NumbOfCpntPerParent>

<SalesReportingCodel>
<SalesReportingCode2>
<SalesReportingCode3>
<SalesReportingCoded>
<SalesReportingCode5>
<PurchasingReportCodel>
<PurchasingReportCode2>
<PurchasingReportCode3>
<PurchasingReportCoded>
<PurchasingReportCode5>

</SalesReportingCodel>
</SalesReportingCode2>
</SalesReportingCode3>
</SalesReportingCoded>
</SalesReportingCodeb>

</PurchasingReportCodel>
</PurchasingReportCode2>
</PurchasingReportCode3>
</PurchasingReportCoded>
</PurchasingReportCode5>

<UnitOfMeasureAsInput>EA</UnitOfMeasureAsInput>
<UnitsTransactionQty>3</UnitsTransactionQty>
<UnitsQuantityShipped>3</UnitsQuantityShipped>
<UnitsQuanBackorHeld>0</UnitsQuanBackorHeld>
<UnitsQuantityCanceled>0</UnitsQuantityCanceled>
<UnitsQuantityFuture>0</UnitsQuantityFuture>
<UnitsOpenQuantity>0</UnitsOpenQuantity>
<QuantityShippedToDate>0</QuantityShippedToDate>
<QuantityRelieved>0</QuantityRelieved>
<CommittedHS>S</CommittedHS>

<OtherQuantityl2> </OtherQuantityl2>
<AmtPricePerUnit2>44.9900</AmtPricePerUnit2>
<AmountExtendedPrice>134.97</AmountExtendedPrice>
<AmountOpenl>.00</AmountOpenl>
<PriceOverrideCode> </PriceOverrideCode>
<TemporaryPriceYN> </TemporaryPriceYN>
<UnitOfMeasureEntUP>EA</UnitOfMeasureEntUP>

<AmtListPricePerUnit>44.

9900</AmtListPricePerUnit>

<AmountUnitCost>32.1000</AmountUnitCost>

I-4 JD Edwards EnterpriseOne Tools Interoperability Guide



Example: Z Events XML Format

<AmountExtendedCost>96.30</AmountExtendedCost>
<CostOverrideCode> </CostOverrideCode>
<ExtendedCostTransfer>.0000</ExtendedCostTransfer>
<PrintMessagel> </PrintMessagel>
<PaymentTermsCode(0l> </PaymentTermsCode(0l>
<PaymentInstrumentA> </PaymentInstrumentA>
<BasedonDate> </BasedonDate>
<DiscountTrade>.000</DiscountTrade>
<TradeDiscount0ld>.0000</TradeDiscount0ld>
<PriceAdjustmentScheduleN> </PriceAdjustmentScheduleN>
<PricingCategory> </PricingCategory>
<PricingCategoryLevell> </PricingCategoryLevell>
<DiscountFactor>1.0000</DiscountFactor>
<DiscountFactorTypeOr> </DiscountFactorTypeOr>
<DiscntApplicationType> </DiscntApplicationType>
<DiscountCash>.000</DiscountCash>

<CompanyKey> </CompanyKey>
<DocVoucherInvoiceE>0</DocVoucherInvoiceE>
<DocumentType> </DocumentType>
<OriginalDocumentNo>0</0OriginalDocumentNo>
<OriginalDocumentType> </OriginalDocumentType>
<DocumentCompanyOriginal> </DocumentCompanyOriginal>
<PickSlipNumber>0</PickSlipNumber>
<DeliveryNumber>0</DeliveryNumber>
<PromotionNumber> </PromotionNumber>
<DraftNumber>0</DraftNumber>
<TaxableYN>N</TaxableYN>

<TaxAreal>DEN</TaxAreal>
<TaxExplanationCodel>S</TaxExplanationCodel>
<AssociatedText> </AssociatedText>
<PriorityProcessing>0</PriroityProcessing>
<ResolutionCodeBC> </ResolutionCodeBC>
<BackordersAllowedYN>Y</BackordersAllowedYN>
<SubstitutesAllowedYN>Y</SubstitutesAllowedYN>
<PartialShipmentsAllowY>Y</PartialShipmentsAllowY>
<LineofBusiness> </LineofBusiness>

<EndUse> </EndUse>

<DutyStatus> </DutyStatus>

<CommodityCode> </CommodityCode>
<NatureOfTransction> </NatureOfTransaction>
<PrimaryLastVendorNo>4343</PrimaryLastVendorNo>
<BuyerNumber>8444</BuyerNumber>
<Carrier>0</Carrier>

<ModeOfTransport> </ModeOfTransport>
<ConditionsOfTransport> </ConditionsOfTransport>
<RouteCode> </RouteCode>

<StopCode> </StopCode>

<ZoneNumber> </ZoneNumber>

<ContainerID> </ContainerID>

<FreightHandlingCode> </FreightHandlingCode>
<ApplyFreightYN>Y</ApplyFreightYN>

<ApplyFreight> </ApplyFreight>
<FreightCalculatedYN> </FreightCalculatedYN>
<RateCodeFreightMisc> </RateCodeFreightMisc>
<RateTypeFreightMisc> </RateTypeFreightMisc>
<ShippingCommodityClass> </ShippingCommodityClass>
<ShippingConditionsCode> </ShippingConditionsCode>
<SerialNumberLot> </SerialNumberLot>
<UnitOfMeasurePrimary>EA</UnitOfMeasurePrimary>
<UnitsPrimaryQtyOrder>3</UnitsPrimaryQtyOrder>

XML Format Examples (Events)



Example: Z Events XML Format

<UnitOfMeasureSecondary>EA</UnitOfMeasureSecondary>
<UnitsSecondaryQtyOr>3</UnitsSecondaryQtyOr>
<UnitOfMeasurePricing>EA</UnitOfMeasurePricing>
<AmountUnitWeight>240.0000</AmountUnitWeight>
<WeightUnitOfMeasure>0Z</WeightUnitOfMeasure>
<AmountUnitVolume>6.7500</AmountUnitVolume>
<VolumeUnitOfMeasure>FC</VolumeUnitOfMeasure>
<RepriceBasketPriceCat> </RepriceBasketPriceCat>
<OrderRepriceCategory> </OrderRepriceCategory>
<OrderRepricedIndicator> </OrderRepricedIndicator>
<InventoryCostingMeth>07</InventoryCostingMeth>

<AllocatedByLot> </AllocatedByLot>
<GlClass>IN30</GlClass>

<Century>20</Century>

<FiscalYearl>5</FiscalYearl>
<LineStatus> </LineStatus>

<SalesOrderStatus01>
<SalesOrderStatus02>
<SalesOrderStatus03>
<SalesOrderStatus04>
<SalesOrderStatus05>
<SalesOrderStatus06>
<SalesOrderStatus07>
<SalesOrderStatus08>
<SalesOrderStatus09>
<SalesOrderStatusl0>
<SalesOrderStatusll>
<SalesOrderStatusl2>
<SalesOrderStatusl3>
<SalesOrderStatusl4d>
<SalesOrderStatusl5>

</SalesOrderStatus01>
</SalesOrderStatus02>
</SalesOrderStatus03>
</SalesOrderStatus04>
</SalesOrderStatus05>
</SalesOrderStatus06>
</SalesOrderStatus07>
</SalesOrderStatus08>
</SalesOrderStatus09>
</SalesOrderStatusl0>
</SalesOrderStatusll>
</SalesOrderStatusl2>
</SalesOrderStatusl3>
</SalesOrderStatusl4d>
</SalesOrderStatusl5>

<Salespersonl>6001</Salespersonl>
<SalespersonCommissionl>5.000</SalespersonCommissionl>
<Salesperson2>0</Salesperson2>
<SalespersonCommission2>.000</SalespersonCommission2>
<ApplyCommissionYN>Y</ApplyCommissionYN>
<CommissionCategory> </CommissionCategory>
<ReasonCode> </ReasonCode>
<GrossWeight>.0000</GrossWeight>
<UnitOfMeasureGrossWt> </UnitOfMeasureGrosswt>
<AcctNoInputMode> </AcctNoInputMode>

<AccountId> </AccountId>

<PurchasingCostCenter> </PurchasingCostCenter>
<ObjectAccount> </ObjectAccount>

<Subsidiary> </Subsidiary>

<LedgerType> </LedgerType>

<Subledger> </Subledger>

<SubledgerType> </SubledgerType>

<CodeLocationTaxStat> </CodeLocationTaxStat>
<PriceCodel> </PriceCodel>

<PriceCode2> </PriceCode2>

<PriceCode3> </PriceCode3>

<StatusInWarehouse> </StatusInWarehouse>
<WoOrderFreezeCode> </WoOrderFreezeCode>
<CorrespondenceMethod> </CorrespondenceMethod>
<CurrencyCodeFrom>BEF</CurrencyCodeFrom>
<CurrencyConverRateOv>33.8180588</CurrencyConverRateOv>
<AmountListPriceForeign>1521.4745</AmountListPriceForeign>
<AmtForPricePerUnit>1521.4745</AntForPricePerUnit>
<AmountForeignExtPrice>4564.42</AmountForeignExtPrice>

1-6 JD Edwards EnterpriseOne Tools Interoperability Guide



Example: Z Events XML Format

<AmountForeignUnitCost>1085.5597</AmountForeignUnitCost>
<AmountForeignExtCost>3256.68</AmountForeignExtCost>
<UserReservedCode> </UserReservedCode>
<UserReservedDate></UserReservedDate>
<UserReservedAmount>.00</UserReservedAmount>
<UserReservedNumber>0</UserReservedNumber>
<UserReservedReference> </UserReservedReference>
<TransactionOriginator>KW6803955</TransactionOriginator>
<UserId>KW6803955</UserId>
<ProgramId>XMLtest</ProgramId>
<WorkStationId>STI5</WorkStationId>
<DateUpdated>2000/08/22</DateUpdated>
<TimeOfDay>134435</TimeOfDay>

</F421171>

<F4921171 type='additionalHeader'>
<EdiUserId>KW6803955</EdiUserId>
<EdiBatchNumber>16319</EdiBatchNumber>
<EdiTransactNumber>106053<EdiTransactNumber>
<EdiLineNumber>1.000</EdiLineNumber>
<EdiDocumentType>S0</EdiDocumentType>
<TypeTransaction>JDESC</TypeTransaction>
<EdiTranslationFormat> </EdiTranslationFormat>
<EdiTransmissionDate></EdiTransmissionDate>
<DirectionIndicator>2</DirectionIndicator>
<EdiDetailLinesProcess>0</EditDetaillLinesProcess>
<EdiSuccessfullyProcess>N</EdiSuccessfullyProcess>
<TradingPartnerId> </TradingPartnerId>
<TransactionAction>UA</TransactionAction>
<DocumentOrderInvoiceE>6559</DocumentOrderInvoiceE>
<OrderType>S0</0rderType>
<CompanyKeyOrderNo>00200</CompanyKeyOrderNo>
<LineNumber>1.000</LineNumber>
<CostCenterTrip> </CostCenterTrip>
<TripNumber>0</TripNumber>
<DateLoaded> </DateLoaded>
<DispatchGrp> </DispatchGrp>
<BulkPackedFlag>P</BulkPackedFlag>
<Distance>0</Distance>
<UnitOfMeasure> </UnitOfMeasure>
<DeferredEntriesFlag> </DeferredEntriesFlag>
<AmountDeferredCost>.0000</AmountDeferredCost>
<AmountForeignDeferredCos>.0000</AmountForeignDeferredCos>
<AmountDeferredRevenue>.0000</AmountDeferredRevenue>
<AmountForeignDeferredRe>.0000</AmountForeignDeferredRe>
<AaiTableNumber>0</AaiTableNumber>
<ScheduledInvoiceDate></ScheduledInvoiceDate>
<InvoiceCycleCode> </InvoiceCycleCode>
<LoadConfirmDate></LoadConfirmDate>
<TimeLoad>0</TimeLoad>
<DeliveryConfirmDate></DelieveryConfirmDate>
<UnitsPrimaryCommittedQua>0</UnitsPrimaryCommittedQua>
<UnitofMeasureCommittedQu> <UnitofMeasureCommittedQu>
<Temperature>.00</Temperature>
<StrappingTemperaturelUnit> </StrappingTemperatureUnit>
<Density>.00</Density>
<DensityTypeAtStandardTem> </DensityTypeAtStandardTem>
<DensityTemperature>.00</DensityTemperature>
<DensityTemperatureUnit> </DensityTemperatureUnit>
<VolumeCorrectionFactors>.0000</VolumeCorrectionFactors>
<PriceatAmbiantorStandard>A</PriceatAmbiantorStandard>

XML Format Examples (Events) I-7



Example: Z Events XML Format

<PricingBasedOnDate> </PricingBasedOnDate>
<UnitsInvoiceQuantity>0</UnitsInvoiceQuantity>
<StockTotalinPrimaryUOM>0</StockTotalinPrimaryUOM>
<UnitofMeasure6> </UnitofMeasure6>
<AmbientResult>0</AmbientResult>

<UnitofMeasure3> </UnitofMeasure3>
<WeightResult>0</WeightResult>

<UnitofMeasure5> </UnitofMeasure5>
<VendorFreightCalculatedY> </VendorFreightCalculatedy>
<CustomerFreightCalculate> </CustomerFreightCalculate>
<AmountCustomerFreightCha>.0000</AmountCustomerFreightCha>
<AmountVendorFreightCharg>.0000</AmountVendorFreightCharg>
<PrimaryVehicleId> </PrimaryVehicleId>
<RegistrationLicenseNumber> </RegistrationLicenseNumber>
<CostCenterArDefault> </CostCenterArDefault>
<FlightNumber> </FlightNumber>

<Destination> </Destination>

<AircraftType> </AircraftType>

<Origin> /Orign>

<TimeElapsed>0</TimeElapsed>
<ShipmentNumberB73>0</ShipmentNumberB73>
<AddressNumberIssued>6074</AddressNumberIssued>
<PaymentTermsCode(0l> </PaymentTermsCode(0l>
<DocVoucherInvoiceF>0</DocVoucherInvoiceF>
<DocumentType> </DocumentType>

<CompanyKey> </CompanyKey>
<CurrencyConverRateOv>-1.0000000</CurrencyConverRateOv>
<CurrencyCodeFrom> </CurrencyCodeFrom>
<TaxAreal>DEN</TaxAreal>

<TaxExplanationCodel> </TaxExplanationCodel>
<ForeignDomesticFlag> </ForeignDomesticFlag>
<FuelingPort> </FuelingPort>
<RegistrationIdentificati> </RegistrationIdentificati>
<DeliveryLocationN> </DeliveryLocationN>
<AuthorizationName> </AuthorizationName>

<NameAlpha> </NameAlpha>

<MeterTicketl> <MeterTicketl>
<UnitsBeginningThroughput>0</UnitsBeginningThroughput>
<ClosingReadingl>0</ClosingReadingl>

<MeterTicket2> </MeterTicket2>
<UnitsBeginningThroughpu2>0</UnitsBeginningThroughpu2>
<ClosingReading2>0</ClosingReading2>

<MeterTicket3> </MeterTicket3>
<UnitsBeginningThroughpu3>0</UnitsBeginningThroughpu3>
<ClosingReading3>0</ClosingReading3>
<DataArrival></DateArrival>
<TimeArrival>0</TimeArrival>
<DateDeparture></DateDeparture>
<TimeDeparture>0</TimeDeparture>
<DateStartJobJulian></DateStartJobJulian>
<TimeBeginningHHMM>0</TimeBeginningHHMM>
<DateEnding></DateEnding>
<TimeStopHHMM>0</TimeStopHHMM>

<FutureUse(0l> </FutureUse(0l>

<FutureUse02> </FutureUse02>

<FutureUse03> </FutureUse(3>

<FutureUse04> </FutureUse04>

<FutureUse05> </FutureUse05>

<FutureUseCode> </FutureUseCode>
<FutureUseQuantity>0</FutureUseQuantity>

I-8 JD Edwards EnterpriseOne Tools Interoperability Guide



Real-Time Events Template

<FutureUseDate></FutureUseDate>
<FutureUseUnitofMeasure> </FutureUseUnitofMeasure>
<UserReservedCode> </UserReservedCode>
<UserReservedDate> </UserReservedDate>
<UserReservedAmount>00</UserReservedAmount>
<UserReservedNumber>0<UserReservedNumber>
<UserReservedReference> </UserReservedReference>
<TransactionOriginator> </TransactionOriginator>
<UserId>KW6803955</UserId>
<ProgramId>XMLtest</ProgramId>
<WorkStationId>ST15</WorkStationId>
<DateUpdated>2000/08/22</DateUpdated.
<TimeOfDay>134435</TimeOfDay>
</F4921171>
</transaction>
</jdeResponse>

.2 Real-Time Events Template

This section provides an example of the real-time events template. The example
template might not correspond to the exact event that your application uses. Your
event might include values that are not in the example template.

The event must be described in the jdeResponse type element. The attribute type is
always realTimeEvent. The attributes for user and environment always correspond to
the user name and environment that generated the event.

<?xml version="1.0" encoding="utf-8" ?>

<jdeResponse type="realTimeEvent" user="" role="*ALL"
session="28980548.1019684006" environment="">
<event>

<header>

Code for the header information follows. <eventVersion> is always 1.0, <type>
corresponds to the event type, <application> corresponds to the application that
created the event, and <version> to the version of the application. The <session ID> is
unique for every event. The <scope> is the value of the argument scope that was sent
to the real-time event API during creation of the event. The <codepage>element is for
encoding of the elements. In the sample, utf-8 is used. The remaining header elements
are self-explanatory.

<eventVersion>1.0</eventVersion>
<type>RTSOOUT</type>

<user />

<application />

<version />

<sessionID />

<environment />

<host />

<sequencelD />

<date />

<time />

<scope />
<codepage>utf-8</codepage>
</header>

The body contains details that describe one data structure for each element. The body
contains the date of creation, the name of the file that is creating the data structure,
time of creation, and the DSTMPL name of the JD Edwards EnterpriseOne data

XML Format Examples (Events) 1-9



Real-Time Events Template

structure. Type is type of partial event (added as an argument to jdeIEO-EventAdd),
executionOrder increases in the real generated event from 1 to elementCount, and
parameterCount is the number of fields in the data structure. In this example code,
there are three data structures: D34A1050C, D4202150C, and D4202150B. Each data
structure is followed by detail elements. When you create an event, the element value
is the value of the field, for example: <szNameAlpha
type=String>ABC</szNameAlpha >

<body elementCount="3">
<detail date="" name="" time="" type="" DSTMPL="D34A1050C"
executionOrder="" parameterCount="25">
<szNameAlpha type="String"/>
<mnParentAddressNumber type="Double"/>
<szSecondItemNumber type="String"/>
<szThirdItemNumber type="String"/>
<cPriorityProcessing type="Character"/>
<cBackOrdersAllowed type="Character"/>
<cOrderShippedFlag type="Character"/>
<cTransferDirectShipFlag type="Character"/>
<cCommitted type="Character"/>
<mnDaysBeforeExpiration type="Double"/>
<szPurchaseCategoryCodel type="String"/>
<szPurchaseCategoryCode2 type="String"/>
<szPurchaseCategoryCode3 type="String"/>
<szPurchaseCategoryCode4 type="String"/>
<szRelatedOrderNumber type="String"/>
<szRelatedOrderType type="String"/>
<szRelatedOrderKeyCompany type="String"/>
<szPlanningUnitOfMeasure type="String"/>
<mnPlanningQuantity type="Double"/>
<cAPSFlag type="Character"/>
<cAPSSupplyDemandFlag type="Character"/>
<jdDateUpdated type="Date"/>
<mnTimeUpdated type="Double"/>
<szShipComplete type="String"/>
<mnRelatedOrderLineNumber type="Double"/>

</detail>
<detail date="" name="" time="" type="" DSTMPL="D4202150C"
executionOrder="" parameterCount="94">

<cOrderAction type="Character"/>
<szOrderType type="String"/>
<szOrderCompany type="String"/>
<mnLineNumber type="Double"/>
<szDetailBranchPlant type="String"/>
<mnShipToAddressNumber type="Double"/>
<jdTransactionDate type="Date"/>
<jdRequestedDate type="Date"/>
<jdScheduledPickDate type="Date"/>
<jdPromisedShipDate type="Date"/>
<jdPromisedDeliveryDate type="Date"/>
<jdCancelDate type="Date"/>
<jdPriceEffectiveDate type="Date"/>
<mnQuantityOrdered type="Double"/>
<mnQuantityShipped type="Double"/>
<mnQuantityBackOrdered type="Double"/>
<mnQuantityCanceled type="Double"/>
<szTransactionUnitOfMeasure type="String"/>
<mnUnitPrice type="Double"/>
<mnExtendedPrice type="Double"/>
<mnForeignUnitPrice type="Double"/>

I-10 JD Edwards EnterpriseOne Tools Interoperability Guide



Real-Time Events Template

<mnForeignExtPrice type="Double"/>
<cPriceOverrideCode type="Character"/>
<cTaxableYN type="Character"/>
<szPriceAdjustmentSchedule type="String"/>
<mnDiscountPercentage type="Double"/>
<szPaymentTerms type="String"/>
<cPaymentInstrument type="Character"/>
<szCurrencyCode type="String"/>
<szItemNumber type="String"/>
<mnShortItemNumber type="Double"/>
<szDescriptionLinel type="String"/>
<szDescriptionLine2 type="String"/>
<szLineType type="String"/>
<szLastStatus type="String"/>
<szNextStatus type="String"/>
<szLocation type="String"/>

<szLot type="String"/>
<szLineofBusiness type="String"/>
<szEndUse type="String"/>
<szDutyStatus type="String"/>
<szPrintMessagel type="String"/>
<szFreightHandlingCode type="String"/>
<mnItemWeight type="Double"/>
<szWeightUnitOfMeasure type="String"/>
<szModeOfTransport type="String"/>
<mnCarrier type="Double"/>
<szSubledger type="String"/>
<cSubledgerType type="Character"/>
<szPriceCodel type="String"/>
<szPriceCode2 type="String"/>
<szPriceCode3 type="String"/>
<szSalesReportingCodel type="String"/>
<szSalesReportingCode2 type="String"/>
<szSalesReportingCode3 type="String"/>
<szSalesReportingCoded type="String"/>
<szSalesReportingCode5 type="String"/>
<szOriginalPoSoNumber type="String"/>
<szOriginalOrderType type="String"/>
<szOriginalOrderCompany type="String"/>
<mnOriginalOrderLineNumber type="Double"/>
<jdDateUpdated type="Date"/>
<mnTimeOfDay type="Double"/>
<mnPickSlipNumber type="Double"/>
<mnInvoiceDocNumber type="Double"/>
<szInvoiceDocType type="String"/>
<szInvoceDocCompany type="String"/>
<szUserReservedCode type="String"/>
<jdUserReservedDate type="Date"/>
<mnUserReservedNumber type="Double"/>
<mnUserReservedAmount type="Double"/>
<szUserReservedReference type="String"/>
<mnUnitCost type="Double"/>
<mnExtendedCost type="Double"/>
<mnForeignUnitCost type="Double"/>
<mnForeignExtCost type="Double"/>
<mnOrderNumber type="Double"/>
<szSupplierReference type="String"/>
<jdOriginalPromisdDate type="Date"/>
<mnAdjustmentRevisionLevel type="Double"/>
<mnLastIndex type="Double"/>

XML Format Examples (Events) I-11



Real-Time Events Template

<szRelatedPoSoNumber type="String"/>
<szRelatedOrderType type="String"/>
<szRelatedOrderCompany type="String"/>
<mnRelatedPoSoLineNo type="Double"/>
<szPricingUnitOfMeasure type="String"/>
<szTaxArea type="String"/>
<szTaxExplanationCode type="String"/>
<szPartnerItemNo type="String"/>
<szCatalogItem type="String"/>
<szUPCNumber type="String"/>
<szShipToDescriptive type="String"/>
<szSoldToDescriptive type="String"/>
<szProductItem type="String"/>

</detail>
<detail date="" name="" time="" type="" DSTMPL="D4202150B"
executionOrder="" parameterCount="66">

<cOrderAction type="Character"/>
<mnOrderNumber type="Double"/>
<szOrderType type="String"/>
<szOrderCompany type="String"/>
<szHeaderBranchPlant type="String"/>
<szCompany type="String"/>
<szOriginalPoSoNumber type="String"/>
<szOrderedBy type="String"/>
<szOrderTakenBy type="String"/>
<mnSoldToAddressNumber type="Double"/>
<szSoldToNameMailing type="String"/>
<szSoldToAddressLinel type="String"/>
<szS0ldToAddressLine2 type="String"/>
<szS0ldToAddressLine3 type="String"/>
<szSoldToAddressLined type="String"/>
<szSoldToZipCode type="String"/>
<szSoldToCity type="String"/>
<szSoldToCounty type="String"/>
<szSoldToState type="String"/>
<szSoldToCountry type="String"/>
<mnShipToAddressNumber type="Double"/>
<szShipToNameMailing type="String"/>
<szShipToAddressLinel type="String"/>
<szShipToAddressLine2 type="String"/>
<szShipToAddressLine3 type="String"/>
<szShipToAddressLined type="String"/>
<szShipToZipCode type="String"/>
<szShipToCity type="String"/>
<szShipToCounty type="String"/>
<szShipToState type="String"/>
<szShipToCountry type="String"/>
<jdTransactionDate type="Date"/>
<jdRequestedDate type="Date"/>
<jdCancelDate type="Date"/>
<szReference type="String"/>
<szDeliveryInstructLinel type="String"/>
<szDeliveryInstructLine2 type="String"/>
<szPrintMessage type="String"/>
<szFreightHandlingCode type="String"/>
<mnCommissionCodel type="Double"/>
<mnCommissionCode2 type="Double"/>
<mnRateCommissionl type="Double"/>
<mnRateCommission2 type="Double"/>
<mnDiscountTrade type="Double"/>

I-12 JD Edwards EnterpriseOne Tools Interoperability Guide



Real-Time Events Template

<szPaymentTerms type="String"/>
<cPaymentInstrument type="Character"/>
<szCurrencyCode type="String"/>
<mnCurrencyConverRate type="Double"/>
<szTaxArea type="String"/>
<szTaxExplanationCode type="String"/>
<mnOrderTotal type="Double"/>
<mnForeignOrderTotal type="Double"/>
<szUserReservedCode type="String"/>
<jdUserReservedDate type="Date"/>
<mnUserReservedAmount type="Double"/>
<mnUserReservedNumber type="Double"/>
<szUserReservedReference type="String"/>
<szHoldCode type="String"/>
<cQuoteFlag type="Character"/>
<jdScheduledPickDate type="Date"/>
<jdPromisedShipDate type="Date"/>
<jdOriginalPromisdDate type="Date"/>
<cCurrencyMode type="Character"/>
<szShipToDescriptive type="String"/>
<szSoldToDescriptive type="String"/>
<cPublishToXPIxFlag type="Character"/>
</detail>

</body>

</event>

</jdeResponse>

This table shows the mapping between JD Edwards EnterpriseOne types and events:

JD Edwards EnterpriseOne  Event

CHAR Character
STRING String
MATH_numeric Double
JDEDATE Dat
SHORT Int
INT Int
USHORT Int
LONG Long
ULONG Long
ID Long
D2 Long
BOOL BOOL

XML Format Examples (Events)

1-13



Real-Time Events Template

I-14 JD Edwards EnterpriseOne Tools Interoperability Guide



Glossary

Accessor Methods/Assessors

Java methods to “get” and “set” the elements of a value object or other source file.

activity rule

The criteria by which an object progresses from one given point to the next in a flow.

add mode

A condition of a form that enables users to input data.

Advanced Planning Agent (APAg)

A JD Edwards EnterpriseOne tool that can be used to extract, transform, and load
enterprise data. APAg supports access to data sources in the form of rational
databases, flat file format, and other data or message encoding, such as XML.

application server

Software that provides the business logic for an application program in a distributed
environment. The servers can be Oracle Application Server (OAS) or WebSphere
Application Server (WAS).

Auto Commit Transaction

A database connection through which all database operations are immediately written
to the database.

batch processing

A process of transferring records from a third-party system to JD Edwards
EnterpriseOne.

In JD Edwards EnterpriseOne Financial Management, batch processing enables you to
transfer invoices and vouchers that are entered in a system other than JD Edwards
EnterpriseOne to JD Edwards EnterpriseOne Accounts Receivable and JD Edwards
EnterpriseOne Accounts Payable, respectively. In addition, you can transfer address
book information, including customer and supplier records, to JD Edwards
EnterpriseOne.

batch server

A server that is designated for running batch processing requests. A batch server
typically does not contain a database nor does it run interactive applications.

Glossary-1



batch-of-one

Glossary-2

batch-of-one

A transaction method that enables a client application to perform work on a client
workstation, then submit the work all at once to a server application for further
processing. As a batch process is running on the server, the client application can
continue performing other tasks.

best practices

Non-mandatory guidelines that help the developer make better design decisions.

BPEL

Abbreviation for Business Process Execution Language, a standard web services
orchestration language, which enables you to assemble discrete services into an
end-to-end process flow.

BPEL PM

Abbreviation for Business Process Execution Language Process Manager, a
comprehensive infrastructure for creating, deploying, and managing BPEL business
processes.

Build Configuration File

Configurable settings in a text file that are used by a build program to generate ANT
scripts. ANT is a software tool used for automating build processes. These scripts
build published business services.

build engineer

An actor that is responsible for building, mastering, and packaging artifacts. Some
build engineers are responsible for building application artifacts, and some are
responsible for building foundation artifacts.

Build Program

A WINB32 executable that reads build configuration files and generates an ANT script
for building published business services.

business analyst

An actor that determines if and why an EnterpriseOne business service needs to be
developed.

business function

A named set of user-created, reusable business rules and logs that can be called
through event rules. Business functions can run a transaction or a subset of a
transaction (check inventory, issue work orders, and so on). Business functions also
contain the application programming interfaces (APIs) that enable them to be called
from a form, a database trigger, or a non-JD Edwards EnterpriseOne application.
Business functions can be combined with other business functions, forms, event rules,
and other components to make up an application. Business functions can be created
through event rules or third-generation languages, such as C. Examples of business
functions include Credit Check and Item Availability.

business function event rule

See named event rule (NER).



Business Service Property Admin Tool

business service

EnterpriseOne business logic written in Java. A business service is a collection of one
or more artifacts. Unless specified otherwise, a business service implies both a
published business service and business service.

business service artifacts

Source files, descriptors, and so on that are managed for business service development
and are needed for the business service build process.

business service class method

A method that accesses resources provided by the business service framework.

business service configuration files

Configuration files include, but are not limited to, interop.ini, JDBj.ini, and
jdelog.properties.

business service cross reference

A key and value data pair used during orchestration. Collectively refers to both the
code and the key cross reference in the WSG/XPI based system.

business service cross-reference utilities

Utility services installed in a BPEL/ESB environment that are used to access JD
Edwards EnterpriseOne orchestration cross-reference data.

business service development environment

A framework needed by an integration developer to develop and manage business
services.

business services development tool

Otherwise known as JDeveloper.

business service EnterpriseOne object

A collection of artifacts managed by EnterpriseOne LCM tools. Named and
represented within EnterpriseOne LCM similarly to other EnterpriseOne objects like
tables, views, forms, and so on.

business service framework

Parts of the business service foundation that are specifically for supporting business
service development.

business service payload

An object that is passed between an enterprise server and a business services server.
The business service payload contains the input to the business service when passed to
the business services server. The business service payload contains the results from the
business service when passed to the Enterprise Server. In the case of notifications, the
return business service payload contains the acknowledgement.

business service property

Key value data pairs used to control the behavior or functionality of business services.

Business Service Property Admin Tool

An EnterpriseOne application for developers and administrators to manage business
service property records.

Glossary-3



business service property business service group

Glossary-4

business service property business service group

A classification for business service property at the business service level. This is
generally a business service name. A business service level contains one or more
business service property groups. Each business service property group may contain
zero or more business service property records.

business service property key

A unique name that identifies the business service property globally in the system.

business service property utilities

A utility API used in business service development to access EnterpriseOne business
service property data.

business service property value

A value for a business service property.

business service repository

A source management system, for example ClearCase, where business service artifacts
and build files are stored. Or, a physical directory in network.

business services server

The physical machine where the business services are located. Business services are
run on an application server instance.

business services source file or business service class

One type of business service artifact. A text file with the java file type written to be
compiled by a Java compiler.

business service value object template

The structural representation of a business service value object used in a C-business
function.

Business Service Value Object Template Utility

A utility used to create a business service value object template from a business service
value object.

business services server artifact

The object to be deployed to the business services server.

business view

A means for selecting specific columns from one or more JD Edwards EnterpriseOne
application tables whose data is used in an application or report. A business view does
not select specific rows, nor does it contain any actual data. It is strictly a view through
which you can manipulate data.

central objects merge

A process that blends a customer's modifications to the objects in a current release
with objects in a new release.

central server

A server that has been designated to contain the originally installed version of the
software (central objects) for deployment to client computers. In a typical JD Edwards
EnterpriseOne installation, the software is loaded on to one machine—the central



database credentials

server. Then, copies of the software are pushed out or downloaded to various
workstations attached to it. That way, if the software is altered or corrupted through its
use on workstations, an original set of objects (central objects) is always available on
the central server.

charts

Tables of information in JD Edwards EnterpriseOne that appear on forms in the
software.

check-in repository

A repository for developers to check in and check out business service artifacts. There
are multiple check-in repositories. Each can be used for a different purpose (for
example, development, production, testing, and so on).

checksum

A fixed-size datum computed from an arbitrary block of digital data for the purpose of
detecting accidental errors that may have been introduced during its transmission or
storage. JD Edwards EnterpriseOne uses the checksum to verify the integrity of
packages that have been downloaded by recomputing the checksum of the
downloaded package and comparing it with the checksum of the original package.
The procedure that yields the checksum from the data is called a checksum function or
checksum algorithm. JD Edwards EnterpriseOne uses the MD5 and STA-1 checksum
algorithms.

connector

Component-based interoperability model that enables third-party applications and JD
Edwards EnterpriseOne to share logic and data. The JD Edwards EnterpriseOne
connector architecture includes Java and COM connectors.

Control Table Workbench

An application that, during the Installation Workbench processing, runs the batch
applications for the planned merges that update the data dictionary, user-defined
codes, menus, and user override tables.

control tables merge

A process that blends a customer's modifications to the control tables with the data
that accompanies a new release.

correlation data

The data used to tie HTTP responses with requests that consist of business service
name and method.

credentials

A valid set of ]D Edwards EnterpriseOne username/password/environment/role,
EnterpriseOne session, or EnterpriseOne token.

cross-reference utility services

Utility services installed in a BPEL/ESB environment that access EnterpriseOne
cross-reference data.

database credentials

A valid database username/password.

Glossary-5



database server

Glossary-6

database server

A server in a local area network that maintains a database and performs searches for
client computers.

Data Source Workbench

An application that, during the Installation Workbench process, copies all data sources
that are defined in the installation plan from the Data Source Master and Table and
Data Source Sizing tables in the Planner data source to the system-release number data
source. It also updates the Data Source Plan detail record to reflect completion.

deployment artifacts

Artifacts that are needed for the deployment process, such as servers, ports, and such.

deployment server

A server that is used to install, maintain, and distribute software to one or more
enterprise servers and client workstations.

direct connect

A transaction method in which a client application communicates interactively and
directly with a server application.

See also batch-of-one and store-and-forward.

Do Not Translate (DNT)

A type of data source that must exist on the iSeries because of BLOB restrictions.

embedded application server instance
An OC4] instance started by and running wholly within JDeveloper.

edit code

A code that indicates how a specific value for a report or a form should appear or be
formatted. The default edit codes that pertain to reporting require particular attention
because they account for a substantial amount of information.

edit mode

A condition of a form that enables users to change data.

edit rule

A method used for formatting and validating user entries against a predefined rule or
set of rules.

Electronic Data Interchange (EDI)

An interoperability model that enables paperless computer-to-computer exchange of
business transactions between JD Edwards EnterpriseOne and third-party systems.
Companies that use EDI must have translator software to convert data from the EDI
standard format to the formats of their computer systems.

embedded event rule

An event rule that is specific to a particular table or application. Examples include
form-to-form calls, hiding a field based on a processing option value, and calling a
business function. Contrast with the business function event rule.



Environment Workbench

Employee Work Center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user. Each
user has a mailbox that contains workflow and other messages, including Active
Messages.

enterprise server

A server that contains the database and the logic for JD Edwards EnterpriseOne.

Enterprise Service Bus (ESB)

Middleware infrastructure products or technologies based on web services standards
that enable a service-oriented architecture using an event-driven and XML-based
messaging framework (the bus).

EnterpriseOne administrator

An actor responsible for the EnterpriseOne administration system.

EnterpriseOne credentials

A user ID, password, environment, and role used to validate a user of EnterpriseOne.

EnterpriseOne development client

Historically called “fat client,” a collection of installed EnterpriseOne components
required to develop EnterpriseOne artifacts, including the Microsoft Windows client
and design tools.

EnterpriseOne extension

A JDeveloper component (plug-in) specific to EnterpriseOne. A JDeveloper wizard

is a specific example of an extension.

EnterpriseOne object

A reusable piece of code that is used to build applications. Object types include tables,
forms, business functions, data dictionary items, batch processes, business views,
event rules, versions, data structures, and media objects.

EnterpriseOne process

A software process that enables JD Edwards EnterpriseOne clients and servers to
handle processing requests and run transactions. A client runs one process, and
servers can have multiple instances of a process. JD Edwards EnterpriseOne processes
can also be dedicated to specific tasks (for example, workflow messages and data
replication) to ensure that critical processes don't have to wait if the server is
particularly busy.

EnterpriseOne resource

Any EnterpriseOne table, metadata, business function, dictionary information, or
other information restricted to authorized users.

Environment Workbench

An application that, during the Installation Workbench process, copies the
environment information and Object Configuration Manager tables for each
environment from the Planner data source to the system-release number data source. It
also updates the Environment Plan detail record to reflect completion.

Glossary-7



escalation monitor

Glossary-8

escalation monitor

A batch process that monitors pending requests or activities and restarts or forwards
them to the next step or user after they have been inactive for a specified amount of
time.

event rule

A logic statement that instructs the system to perform one or more operations based
on an activity that can occur in a specific application, such as entering a form or exiting
a field.

explicit transaction

Transaction used by a business service developer to explicitly control the type (auto or
manual) and the scope of transaction boundaries within a business service.

exposed method or value object

Published business service source files or parts of published business service source
files that are part of the published interface. These are part of the contract with the
customer.

fast path

A command prompt that enables the user to move quickly among menus and
applications by using specific commands.

file server

A server that stores files to be accessed by other computers on the network. Unlike a
disk server, which appears to the user as a remote disk drive, a file server is a
sophisticated device that not only stores files, but also manages them and maintains
order as network users request files and make changes to these files.

final mode

The report processing mode of a processing mode of a program that updates or creates
data records.

foundation

A framework that must be accessible for execution of business services at runtime.
This includes, but is not limited to, the Java Connector and JDB;.

FTP server

A server that responds to requests for files via file transfer protocol.

HTTP Adapter

A generic set of services that are used to do the basic HTTP operations, such as GET,
POST, PUT, DELETE, TRACE, HEAD, and OPTIONS with the provided URL.
instantiate

A Java term meaning “to create.” When a class is instantiated, a new instance

is created.

integration developer

The user of the system who develops, runs, and debugs the EnterpriseOne business
services. The integration developer uses the EnterpriseOne business services to
develop these components.



jde.ini

integration point (IP)

The business logic in previous implementations of EnterpriseOne that exposes a
document level interface. This type of logic used to be called XBPs. In EnterpriseOne
8.11, IPs are implemented in Web Services Gateway powered by webMethods.
integration server

A server that facilitates interaction between diverse operating systems and
applications across internal and external networked computer systems.

integrity test
A process used to supplement a company’s internal balancing procedures by locating
and reporting balancing problems and data inconsistencies.

interface table
See Z table.

internal method or value object

Business service source files or parts of business service source files that are not part of
the published interface. These could be private or protected methods. These could be
value objects not used in published methods.

interoperability model

A method for third-party systems to connect to or access JD Edwards EnterpriseOne.

in-your-face error

In JD Edwards EnterpriseOne, a form-level property which, when enabled, causes the
text of application errors to appear on the form.

jargon
An alternative data dictionary item description that JD Edwards EnterpriseOne
appears based on the product code of the current object.

Java application server

A component-based server that resides in the middle-tier of a server-centric
architecture. This server provides middleware services for security and state
maintenance, along with data access and persistence.

JDBNET

A database driver that enables heterogeneous servers to access each other's data.

JDEBASE Database Middleware

A JD Edwards EnterpriseOne proprietary database middleware package that provides
platform-independent APIs, along with client-to-server access.

JDECallObject

An API used by business functions to invoke other business functions.

jde.ini

A JD Edwards EnterpriseOne file (or member for iSeries) that provides the runtime
settings required for JD Edwards EnterpriseOne initialization. Specific versions of the

file or member must reside on every machine running JD Edwards EnterpriseOne.
This includes workstations and servers.

Glossary-9



JDEIPC

Glossary-10

JDEIPC

Communications programming tools used by server code to regulate access to the
same data in multiprocess environments, communicate and coordinate between
processes, and create new processes.

jde.log

The main diagnostic log file of JD Edwards EnterpriseOne. This file is always located
in the root directory on the primary drive and contains status and error messages from
the startup and operation of JD Edwards EnterpriseOne.

JDENET

A JD Edwards EnterpriseOne proprietary communications middleware package. This
package is a peer-to-peer, message-based, socket-based, multiprocess communications
middleware solution. It handles client-to-server and server-to-server communications
for all JD Edwards EnterpriseOne supported platforms.

JDeveloper Project

An artifact that JDeveloper uses to categorize and compile source files.

JDeveloper Workspace

An artifact that JDeveloper uses to organize project files. It contains one or more
project files.

JMS Queue

A Java Messaging service queue used for point-to-point messaging.

listener service
A listener that listens for XML messages over HTTP.

local repository

A developer’s local development environment that is used to store business service
artifacts.

Location Workbench

An application that, during the Installation Workbench process, copies all locations
that are defined in the installation plan from the Location Master table in the Planner
data source to the system data source.

logic server

A server in a distributed network that provides the business logic for an application
program. In a typical configuration, pristine objects are replicated on to the logic
server from the central server. The logic server, in conjunction with workstations,
actually performs the processing required when JD Edwards EnterpriseOne software
runs.

MailMerge Workbench

An application that merges Microsoft Word 6.0 (or higher) word-processing
documents with JD Edwards EnterpriseOne records to automatically print business
documents. You can use MailMerge Workbench to print documents, such as form
letters about verification of employment.



Object Librarian

Manual Commit transaction

A database connection where all database operations delay writing to the database
until a call to commit is made.

master business function (MBF)

An interactive master file that serves as a central location for adding, changing, and
updating information in a database. Master business functions pass information
between data entry forms and the appropriate tables. These master functions provide a
common set of functions that contain all of the necessary default and editing rules for
related programs. MBFs contain logic that ensures the integrity of adding, updating,
and deleting information from databases.

master table
See published table.

media storage object

Files that use one of the following naming conventions that are not organized into
table format: Gxxx, xxxGT, or GTxxx.

message center

A central location for sending and receiving all JD Edwards EnterpriseOne messages
(system and user generated), regardless of the originating application or user.

messaging adapter

An interoperability model that enables third-party systems to connect to JD Edwards
EnterpriseOne to exchange information through the use of messaging queues.

messaging server

A server that handles messages that are sent for use by other programs using a
messaging API. Messaging servers typically employ a middleware program to
perform their functions.

Monitoring Application

An EnterpriseOne tool provided for an administrator to get statistical information for
various EnterpriseOne servers, reset statistics, and set notifications.

named event rule (NER)

Encapsulated, reusable business logic created using event rules, rather that C
programming. NERs are also called business function event rules. NERs can be reused
in multiple places by multiple programs. This modularity lends itself to streamlining,
reusability of code, and less work.

Object Configuration Manager (OCM)

In JD Edwards EnterpriseOne, the object request broker and control center for the
runtime environment. OCM keeps track of the runtime locations for business

functions, data, and batch applications. When one of these objects is called, OCM
directs access to it using defaults and overrides for a given environment and user.

Object Librarian

A repository of all versions, applications, and business functions reusable in building
applications. Object Librarian provides check-out and check-incapabilities for
developers, and it controls the creation, modification, and use of JD Edwards
EnterpriseOne objects. Object Librarian supports multiple environments (such as

Glossary-11



Object Librarian merge

Glossary-12

production and development) and enables objects to be easily moved from one
environment to another.

Object Librarian merge

A process that blends any modifications to the Object Librarian in a previous release
into the Object Librarian in a new release.

Open Data Access (ODA)

An interoperability model that enables you to use SQL statements to extract JD
Edwards EnterpriseOne data for summarization and report generation.

Output Stream Access (OSA)

An interoperability model that enables you to set up an interface for JD Edwards
EnterpriseOne to pass data to another software package, such as Microsoft Excel, for
processing.

package

JD Edwards EnterpriseOne objects are installed to workstations in packages from the
deployment server. A package can be compared to a bill of material or kit that
indicates the necessary objects for that workstation and where on the deployment
server the installation program can find them. It is point-in-time snapshot of the
central objects on the deployment server.

package build

A software application that facilitates the deployment of software changes and new
applications to existing users. Additionally, in JD Edwards EnterpriseOne, a package
build can be a compiled version of the software. When you upgrade your version of
the ERP software, for example, you are said to take a package build.

Consider the following context: “Also, do not transfer business functions into the
production path code until you are ready to deploy, because a global build of business
functions done during a package build will automatically include the new functions.”
The process of creating a package build is often referred to, as it is in this example,
simply as “a package build.”

package location

The directory structure location for the package and its set of replicated objects. This is
usually \\deployment server\release\path_code\package\package name. The
subdirectories under this path are where the replicated objects for the package are
placed. This is also referred to as where the package is built or stored.

Package Workbench

An application that, during the Installation Workbench process, transfers the package
information tables from the Planner data source to the system-release number data
source. It also updates the Package Plan detail record to reflect completion.

Pathcode Directory
The specific portion of the file system on the EnterpriseOne development client where
EnterpriseOne development artifacts are stored.

patterns

General repeatable solutions to a commonly occurring problem in software design. For
business service development, the focus is on the object relationships and interactions.



published business service

For orchestrations, the focus is on the integration patterns (for example, synchronous
and asynchronous request/response, publish, notify, and receive/reply).

print server

The interface between a printer and a network that enables network clients to connect
to the printer and send their print jobs to it. A print server can be a computer, separate
hardware device, or even hardware that resides inside of the printer itself.

pristine environment

A JD Edwards EnterpriseOne environment used to test unaltered objects with JD
Edwards EnterpriseOne demonstration data or for training classes. You must have this
environment so that you can compare pristine objects that you modify.

processing option

A data structure that enables users to supply parameters that regulate the running of a
batch program or report. For example, you can use processing options to specify
default values for certain fields, to determine how information appears or is printed,
to specify date ranges, to supply runtime values that regulate program execution, and
SO on.

production environment

A JD Edwards EnterpriseOne environment in which users operate EnterpriseOne
software.

Production Published Business Services Web Service

Published business services web service deployed to a production application server.

program temporary fix (PTF)

A representation of changes to JD Edwards EnterpriseOne software that your
organization receives on magnetic tapes or disks.

project

In JD Edwards EnterpriseOne, a virtual container for objects being developed in Object
Management Workbench.

promotion path

The designated path for advancing objects or projects in a workflow. The following is
the normal promotion cycle (path):

11>21>26>28>38>01

In this path, 11 equals new project pending review, 21 equals programming, 26 equals
QA test/review, 28 equals QA test/review complete, 38 equals in production, 01
equals complete. During the normal project promotion cycle, developers check objects
out of and into the development path code and then promote them to the prototype
path code. The objects are then moved to the productions path code before declaring
them complete.

proxy server

A server that acts as a barrier between a workstation and the internet so that the
enterprise can ensure security, administrative control, and caching service.
published business service

EnterpriseOne service level logic and interface. A classification of a published business
service indicating the intention to be exposed to external (non-EnterpriseOne) systems.

Glossary-13



published business service identification information

Glossary-14

published business service identification information

Information about a published business service used to determine relevant
authorization records. Published business services + method name, published business
services, or *ALL.

published business service web service

Published business services components packaged as J2EE Web Service (namely, a
J2EE EAR file that contains business service classes, business service foundation,
configuration files, and web service artifacts).

published table

Also called a master table, this is the central copy to be replicated to other machines.
Residing on the publisher machine, the FO98DRPUB table identifies all of the published
tables and their associated publishers in the enterprise.

publisher

The server that is responsible for the published table. The FO8DRPUB table identifies
all of the published tables and their associated publishers in the enterprise.

QBE

An abbreviation for query by example. In JD Edwards EnterpriseOne, the QBE line is
the top line on a detail area that is used for filtering data.

real-time event

A message triggered from EnterpriseOne application logic that is intended for external
systems to consume.

refresh

A function used to modify JD Edwards EnterpriseOne software, or subset of it, such as
a table or business data, so that it functions at a new release or cumulative update
level.

replication server

A server that is responsible for replicating central objects to client machines.

rules

Mandatory guidelines that are not enforced by tooling, but must be followed in order
to accomplish the desired results and to meet specified standards.

secure by default

A security model that assumes that a user does not have permission to execute an
object unless there is a specific record indicating such permissions.

Secure Socket Layer (SSL)

A security protocol that provides communication privacy. SSL enables client and
server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

selection

Found on JD Edwards EnterpriseOne menus, a selection represents functions that you
can access from a menu. To make a selection, type the associated number in the
Selection field and press Enter.



super class

serialize

The process of converting an object or data into a format for storage or transmission
across a network connection link with the ability to reconstruct the original data or
objects when needed.

Server Workbench

An application that, during the Installation Workbench process, copies the server
configuration files from the Planner data source to the system-release number data
source. The application also updates the Server Plan detail record to reflect
completion.

SOA

Abbreviation for Service Oriented Architecture.

softcoding

A coding technique that enables an administrator to manipulate site-specific variables
that affect the execution of a given process.

source repository

A repository for HTTP adapter and listener service development environment
artifacts.

Specification merge

A merge that comprises three merges: Object Librarian merge, Versions List merge,
and Central Objects merge. The merges blend customer modifications with data that
accompanies a new release.

specification

A complete description of a JD Edwards EnterpriseOne object. Each object has its own
specification, or name, which is used to build applications.

Specification Table Merge Workbench

An application that, during the Installation Workbench process, runs the batch
applications that update the specification tables.

SSL Certificate

A special message signed by a certificate authority that contains the name of a user
and that user's public key in such a way that anyone can "verify" that the message was
signed by no one other than the certification authority and thereby develop trust in the
user's public key.

store-and-forward

The mode of processing that enables users who are disconnected from a server to enter
transactions and then later connect to the server to upload those transactions.
subscriber table

Table F98DRSUB, which is stored on the publisher server with the FO8DRPUB table
and identifies all of the subscriber machines for each published table.

super class

An inheritance concept of the Java language where a class is an instance of something,
but is also more specific. “Tree” might be the super class of “Oak” and “Elm,” for
example.

Glossary-15



table access management (TAM)

Glossary-16

table access management (TAM)

The JD Edwards EnterpriseOne component that handles the storage and retrieval of
use-defined data. TAM stores information, such as data dictionary definitions;
application and report specifications; event rules; table definitions; business function
input parameters and library information; and data structure definitions for running
applications, reports, and business functions.

Table Conversion Workbench

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table conversion

An interoperability model that enables the exchange of information between JD
Edwards EnterpriseOne and third-party systems using non-JD Edwards
EnterpriseOne tables.

table event rules

Logic that is attached to database triggers that runs whenever the action specified by
the trigger occurs against the table. Although JD Edwards EnterpriseOne enables
event rules to be attached to application events, this functionality is application
specific. Table event rules provide embedded logic at the table level.

terminal server

A server that enables terminals, microcomputers, and other devices to connect to a
network or host computer or to devices attached to that particular computer.

transaction processing (TP) monitor

A monitor that controls data transfer between local and remote terminals and the
applications that originated them. TP monitors also protect data integrity in the
distributed environment and may include programs that validate data and format
terminal screens.

transaction processing method

A method related to the management of a manual commit transaction boundary (for
example, start, commit, rollback, and cancel).

transaction set

An electronic business transaction (electronic data interchange standard document)
made up of segments.

trigger

One of several events specific to data dictionary items. You can attach logic to a data
dictionary item that the system processes automatically when the event occurs.
triggering event

A specific workflow event that requires special action or has defined consequences or
resulting actions.

user identification information

User ID, role, or *public.



web service softcoding template

User Overrides merge

Adds new user override records into a customer’s user override table.

value object

A specific type of source file that holds input or output data, much like a data
structure passes data. Value objects can be exposed (used in a published business
service) or internal, and input or output. They are comprised of simple and complex
elements and accessories to those elements.

versioning a published business service

Adding additional functionality /interfaces to the published business services without
modifying the existing functionality /interfaces.

Versions List merge

The Versions List merge preserves any non-XJDE and non-Z]DE version specifications
for objects that are valid in the new release, as well as their processing options data.
visual assist

Forms that can be invoked from a control via a trigger to assist the user in determining
what data belongs in the control.

vocabulary override

An alternate description for a data dictionary item that appears on a specific JD
Edwards EnterpriseOne form or report.

web application server

A web server that enables web applications to exchange data with the back-end
systems and databases used in eBusiness transactions.

web server

A server that sends information as requested by a browser, using the TCP/IP set of
protocols. A web server can do more than just coordination of requests from browsers;
it can do anything a normal server can do, such as house applications or data. Any
computer can be turned into a web server by installing server software and connecting
the machine to the internet.

Web Service Description Language (WSDL)

An XML format for describing network services.

Web Service Inspection Language (WSIL)

An XML format for assisting in the inspection of a site for available services and a set
of rules for how inspection-related information should be made.

web service softcoding record

An XML document that contains values that are used to configure a web service proxy.
This document identifies the endpoint and conditionally includes security
information.

web service softcoding template

An XML document that provides the structure for a soft coded record.

Glossary-17



Where clause

Glossary-18

Where clause

The portion of a database operation that specifies which records the database
operation will affect.

Windows terminal server

A multiuser server that enables terminals and minimally configured computers to
display Windows applications even if they are not capable of running Windows
software themselves. All client processing is performed centrally at the Windows
terminal server and only display, keystroke, and mouse commands are transmitted
over the network to the client terminal device.

wizard

A type of JDeveloper extension used to walk the user through a series of steps.

workbench

A program that enables users to access a group of related programs from a single entry
point. Typically, the programs that you access from a workbench are used to complete
a large business process. For example, you use the JD Edwards EnterpriseOne Payroll
Cycle Workbench (P07210) to access all of the programs that the system uses to process
payroll, print payments, create payroll reports, create journal entries, and update
payroll history. Examples of JD Edwards EnterpriseOne workbenches include Service
Management Workbench (P90CD020), Line Scheduling Workbench (P3153), Planning
Workbench (P13700), Auditor's Workbench (P09E115), and Payroll Cycle Workbench.

workflow

The automation of a business process, in whole or in part, during which documents,
information, or tasks are passed from one participant to another for action, according
to a set of procedural rules.

workgroup server
A server that usually contains subsets of data replicated from a master network server.
A workgroup server does not perform application or batch processing.

XAPI events

A service that uses system calls to capture JD Edwards EnterpriseOne transactions as
they occur and then calls third-party software, end users, and other JD Edwards
EnterpriseOne systems that have requested notification when the specified
transactions occur to return a response.

XML CallObject

An interoperability capability that enables you to call business functions.

XML Dispatch

An interoperability capability that provides a single point of entry for all XML
documents coming into JD Edwards EnterpriseOne for responses.

XML List

An interoperability capability that enables you to request and receive JD Edwards
EnterpriseOne database information in chunks.



Z transaction

XML Service

An interoperability capability that enables you to request events from one JD Edwards
EnterpriseOne system and receive a response from another JD Edwards EnterpriseOne
system.

XML Transaction

An interoperability capability that enables you to use a predefined transaction type to
send information to or request information from JD Edwards EnterpriseOne. XML
transaction uses interface table functionality.

XML Transaction Service (XTS)

Transforms an XML document that is not in the JD Edwards EnterpriseOne format
into an XML document that can be processed by JD Edwards EnterpriseOne. XTS then
transforms the response back to the request originator XML format.

Z event

A service that uses interface table functionality to capture JD Edwards EnterpriseOne
transactions and provide notification to third-party software, end users, and other JD
Edwards EnterpriseOne systems that have requested to be notified when certain
transactions occur.

Z table

A working table where non-JD Edwards EnterpriseOne information can be stored and
then processed into JD Edwards EnterpriseOne. Z tables also can be used to retrieve JD
Edwards EnterpriseOne data. Z tables are also known as interface tables.

Z transaction

Third-party data that is properly formatted in interface tables for updating to the JD
Edwards EnterpriseOne database.

Glossary-19



Z transaction

Glossary-20



A

add a container event
classic events, A-11
guaranteed events, 14-9
add a data source for open data access, 19-3
add a single event
classic events, A-11
guaranteed events, 14-9
adding jar files to classpath for XML, 5-2
adding records to interface tables, 11-2
advanced planning agent (APAg)
overview, 2-9,18-5
APIs
classic real-time events, B-6
classic XAPI events
EnterpriseOne and third-party request, C-6
EnterpriseOne and third-party response, C-11
EnterpriseOne-to-EnterpriseOne executor error
handling, C-31
EnterpriseOne-to-EnterpriseOne inbound
response, C-31
EnterpriseOne-to-EnterpriseOne inbound
response generation, 16-13, C-23
EnterpriseOne-to-EnterpriseOne outbound
request handling, C-20
EnterpriseOne-to-EnterpriseOne request
generation, C-19
flat files, 12-8
guaranteed real-time events, 15-2
guaranteed XAPI events
EnterpriseOne and third-party request, 16-6
EnterpriseOne and third-party response, 16-8
EnterpriseOne-to-EnterpriseOne executor error
handling, 16-21
EnterpriseOne-to-EnterpriseOne outbound
request handling, 16-11
XML XTS, 7-4

batch interface model types
advanced planning agent, 18-5
electronic data interface (EDI), 18-5
interface tables, 18-1
output stream access (OSA) UBEs, 18-5

Index

table conversion, 18-5
batch interfaces, overview, 2-8,18-1
benefits, 2-2
black list, classic events, A-9
BPEL-PM, 21-1,21-2
business function calls
defined, 4-1
finding the right business function, 4-2,4-3
overview, 2-5
Business Service Cross Reference (P952000), 22-1
business services, 2-4
architecture, 3-2
architecture description, 3-3
environment, 3-4
event notification, 3-2
integration patterns, 3-4
overview, 2-6,3-1

Cc

call object, 8-5
call object error handling, 8-6
call object error text, 8-6
callobject, 8-1
callobject process, 8-2
capabilities, 2-2,2-4
business function calls, 2-5, 4-1
business services, 2-6
events, 2-5
flat files, 2-5
J2EE connectivity, 2-5
web services, 2-4
XML, 2-5
Z transactions, 2-5,11-1
classic events
aggregate event, B-6, B-7
change event status, A-10
composite event, B-6, B-8
creating logical subscriber, A-14
defining, A-2, A-10
real-time, B-4
XAPI, C+4
environment, A-10
event sequencing, B-4
generating real-time events, B-6
jde.ini configurations, A-4

Index-1



journaling, B-4
network traffic, A-3
OCM configuration for events, B-9, C-4
overview, A-1
real-time event APIs, B-6
real-time events, B-1
jde.ini configurations, B-5
process, B-2
reliable delivery, A-6
error message, A-7
forced black list, A-9
minimize duplicate events, A-8
minimize lost events, A-8
performance, A-8
system configurations, A-7
voluntary black list, A-9
single event, B-6, B-7
subscription, A-3, A-14, A-15,C-4
XAPI element name for XML documents, C-16
XAPI EnterpriseOne and third-party
clientjde.ini, C-15
inbound response APIs, C-11

inbound response jde.ini configuration, C-14

inbound response process, C-10
outbound request APIs, C-6

outbound request jde.ini configuration, C-10

outbound request process, C-5
overview, C-5
XAPI EnterpriseOne to third-party, C-2
XAPI EnterpriseOne-to-EnterpriseOne, C-3
executor error handling APIs, C-31
inbound response generation APIs, C-23
inbound response handling APIs, C-31
jde.ini configuration, C-32
mapping a business function, C-33
mapping APIs, C-33
originator and executor, C-16
originator and executor security, C-16, C-17
outbound request generation APIs, C-19
outbound request handling APIs, C-20
overview, C-16
process, C-17
XAPI events, C-1
XAPI routing information, C-10
XAPI third-party to EnterpriseOne, C-2
Z event
sequencing, D-3
Zevents, D-1
enabling outbound processing, D-4
flat file cross reference, D-4
jde.ini configurations, D-5
process, D-2
purging data from interface tables, D-5
setting up data export controls, D-6
updating processing log table, D-4
vendor-specific functions, D-3
classic Z event processing for messaging queue
adapters, 13-3
configure a data source for open data access, 19-4
configuring the Type 3 JDBC driver, 20-3

Index-2

configuring the Type 4 JDBC driver, 20-3
connect a data source for open data access, 19-4
connection mode for JDBC driver, 20-3
connectors
overview, 2-7
copying data into outbound interface tables, 18-3
creating a composite event for guaranteed
events, 15-3
creating a logical subscriber
guaranteed events, 14-14
creating an aggregate event for guaranteed
events, 15-3
creating business function documentation, 4-2
creating custom real-time events, 14-22
cross reference facility
find a business function, 4-3

D

Data Export Control table (F0047), 17-4,17-5, D-5,
D-6
Data Export Controls program (P0047), 17-5, D-6
debug tools, find a business function, 4-3
default response queue, 13-6
defining events
classic events, A-2, A-10
real-time, B-4
XAPI, C+4
guaranteed event delivery, 14-9
delete a data source for open data access, 19-4
delete interface table data, 11-5

E

EDI
overview, 18-5
EDI, overview, 2-8
enabling Z event processing, 17-4, D-4
EnterpriseOne-to-EnterpriseOne originator XML
sample code, C-22
error codes for XML callobject, 8-10
error handling
XML dispatch, 6-4
error queue, 13-6
ESB, 21-2
ESB subscriber, 14-12
establish session
XML element, 5-4
Event Activation Status table (F90705), 14-9
event notification
JMS Queue, 3-2
JMS Topic, 3-2
Event Request Definition (P90701), A-10
Event Request Definition program (P907012), C-33
Event Request Definition table (F907012), C-33
events
overview, 2-5
events self-diagnostic test
real-time event, E-5
events self-diagnostic tool



all events, E-5
comprehensive system analysis, E-6
customize, E-3
event list, E-6
event template, E-6
starting, E-4
subscription services, E-6
Z event, E-5
events self-diagnostic utility tool, E-1
components, E-2
event generator component, E-2
event receiver component, E-3
executing the tool, E-4
process overview, E-1
XML comparator component, E-3
eventsguaranteed events, 14-1
example code
classic real-time events
interoperability event interface calls, B-7, B-8
classic XAPI events
EnterpriseOne and third-party inbound
response parsing API usage, C-12
EnterpriseOne and third-party inbound
response XML, C-12
EnterpriseOne and third-party outbound
request APl usage, C-7
EnterpriseOne and third-party outbound
request XML, C-8
EnterpriseOne-to-EnterpriseOne inbound
response, C-30
EnterpriseOne-to-EnterpriseOne inbound
response parsing APl usage, C-23
EnterpriseOne-to-EnterpriseOne originator
XML, C-22
EnterpriseOne-toEnterpriseOne outbound
request parsing API usage from
originator, C-20
create an XML list, 10-5
delete data from an XML list, 10-9
get column information for an XML list, 10-9
guaranteed events
creating a composite event, 15-3
creating an aggregate event, 15-3
guaranteed real-time events
interoperability event interface calls, 15-2
guaranteed XAPI events
EnterpriseOne and third-party inbound
response APl usage, 16-8
EnterpriseOne and third-party outbound
request APl usage, 16-7
EnterpriseOne-to-EnterpriseOne inbound
response parsing APl usage, 16-14
EnterpriseOne-to-EnterpriseOne outbound
request parsing APl usage, 16-11
minimum required values, H-1
retrieving data using XML list, 10-8
XML callobject request, 8-8
XML callobject response, 8-9
XML format
events, I-1

inbound sales order, G-1
real-time events template, I-9
request and response, G-7
Z events, I-1
XML transaction request and response, 9-4
example for using JDBC connection properties, 20-5
expire session
XML element, 5-4
explicit transaction
XML element, 5-4
extraction batch process, 18-3

F

F0046 table, 17-4, D-4, D-5
F0047 table, 17-4,17-5, D-5, D-6
F47002 table, 17-4, D-4
F90701 table, 17-5
F907012 table, C-33
F90702 table, A-15
F90705 table, 14-9
F986113 table, 17-3,17-4, D-4, D-5
features, 2-1
features of JDBC driver, 20-8
finding the right business function
create business function documentation, 4-2
review API documentation, 4-2
review business function documentation, 4-2
use cross reference facility, 4-3
use debug tools, 4-3
use existing application as model, 4-3
use object management workbench, 4-3
using an existing application as a model, 4-3
flat file cross reference for Z events, 17-4, D-4
Flat File Cross-Reference program (P47002), 17-4,
D-4
Flat File Cross-Reference table (F47002), 17-4, D-4
flat file encoding, 12-9
flat files
business function, 12-7
errors, 12-7
inbound flat file conversion program, 12-3
overview, 2-5,12-1
setting up, 12-2
forced black list for classic event delivery, A-9
formats
flat files, 12-2

G

guaranteed events

aggregate event, 15-2

aggregating events, 14-4

associate subscription with subscribed
environment, 14-17

associate subscription with subscribed
events, 14-17

composite events, 15-2

configuring the transaction server, 14-4

configuring the transaction server to use

Index-3



WebLogic, 14-5

creating logical subscriber, 14-14

creating MSMQ queue, 14-17
verifying delivery, 14-18

creating WebLogic MQ queue, 14-21
verifying delivery, 14-22

creating WebSphere MQ queue, 14-18, 14-19
configure WebSphere, 14-19
verifying delivery, 14-20
WebLogic connection factory, 14-21
WebLogic destination, 14-21

defining, 14-9

EnterpriseOne as XAPI executor
process flow, 16-5

EnterpriseOne as XAPI originator
process flow, 16-4

generating real-time events, 15-2

journaling, 14-4

logging events, 14-4

overview, 14-1

process flow, 14-2

real-time event APIs, 15-2

real-time events, 15-1

single event, 15-2

subscription, 14-12,14-16

XAPI element name for XML documents, 16-10
XAPI EnterpriseOne and third-party, 16-2,16-6

inbound response APIs, 16-8
outbound request APIs, 16-6
XAPI EnterpriseOne-to-EnterpriseOne, 16-3
executor error handling APIs, 16-21
inbound response generation APIs, 16-13
mapping a business function, 16-21
mapping APIs, 16-21
originator and executor error
processing, 16-11
originator and executor security, 16-10
outbound request handling APIs, 16-11
overview, 16-10
XAPI events, 16-1
XAPI third-party to EnterpriseOne, 16-2
Zevents, 17-1
enabling outbound processing, 17-4
flat file cross reference, 17-4
process, 17-2
purging data from interface tables, 17-5
setting up data export controls, 17-5
subsystem job, 17-4
synchronizing F47002 records with F90701
records, 17-5
updating processing log table, 17-4
vendor-specific functions, 17-3
guaranteed events selection, 14-8

IBM WebSphere MQ queue for guaranteed events
WebLogic configurations, 14-21
WebSphere configurations, 14-19

ID/IDREF support, 8-7

Index-4

implicit transaction
XML element, 5-4
import flat files
APIs, 12-8
business function, 12-7
inbound processing using interface tables, 18-3
inbound queue, 13-6
inbound response API usage EnterpriseOne and
third-party sample code, 16-8, C-12
inbound response API usage
EnterpriseOne-to-EnterpriseOne sample
code, 16-14,C-23
inbound response XML EnterpriseOne and
third-party sample code, C-12
inbound response XML
EnterpriseOne-to-EnterpriseOne sample
code, C-30
inbound sales order XML format sample code,
increasing performance for classic event
delivery, A-8
industry standard support, 2-11
integration patterns
consumer, asynchronous HTTP
request/response, 3-10
consumer, asynchronous web service, 3-12
consumer, notification, 3-8
consumer, synchronous HTTP
request/response, 3-11
consumer, synchronous web service
request/reply, 3-10
provider, asynchronous notification, 3-6
provider, asynchronous request/reply, 3-8
provider, synchronous request/reply, 3-4
interface table
list of processes, F-1
interface tables
adding records, 11-2
extraction batch process, 18-3
inbound processing, 18-3
outbound processing, 18-3
overview, 2-8,18-1
purge data, 11-5
purge records, 18-4
revision application, 18-4
structure, 18-1
interoperability
benefits, 2-2
capabilities, 2-2,2-4
features, 2-1
industry standard support, 2-11
model
selecting, 2-10
models, 2-2,2-6
overview, 2-1
Interoperability Event Definition program
(P90701A), 14-5,14-6,14-8, 14-9
Interoperability Event Definition table (F90701),

G-1

17-5

interoperability event interface calls sample code for

classic events, B-7,B-8

interoperability event interface calls sample code for



guaranteed events, 15-2

Interoperability Event Subscription (P90702), A-14,
A-15

Interoperability Event Subscription program
(P90702), 14-12

Interoperability Generic Outbound Scheduler UBE
(RO0461), 17-4,D-5

Interoperability Generic Outbound Subsystem UBE
(RO0460, 17-4

Interoperability Generic Outbound Subsystem UBE
(RO0460), D-5

Interoperability Subscriber Enrollment
(F90702), A-15

J

J2EE connectivity, 2-5
jar files for XML, 5-2
JDBC driver
class name for driver connection, 20-3
connection mode, 20-3
connection properties, 20-4, 20-5
features, 20-8
purpose, 20-1
security considerations, 20-5
SQL, 20-5
terminology, 20-10
troubleshooting, 20-9
URL for connecting, 20-4
when to use, 20-2
Type3, 20-2
Type4, 20-2
jde.ini, 13-7
jde.ini configurations for classic events, A-4
jde.ini configurations for classic real-time events, B-5
jde.ini configurations for classic XAPI EnterpriseOne
and third-party inbound response, C-14
jde.ini configurations for classic XAPI EnterpriseOne
and third-party outbound request, C-10
jde.ini configurations for classic Z events, D-5
jde.ini configurations for EnterpriseOne and
third-party XAPI client, C-15
jde.ini configurations for reliable events, A-9
jde.ini file settings
classic events, A-4
classic real-time events, B-5
classic XAPI EnterpriseOne and third-party
inbound response, C-14
outbound request, C-10
classic XAPI EnterpriseOne-to-EnterpriseOne
event generation, C-32
classic XAPI events
EnterpriseOne and third-party client
settings, C-15
list-retrieval engine, 10-10
reliable events, A-9
XML callobject, 8-8
XML dispatch, 6-2
XML list, 10-10
XML transaction, 9-4

XML XTS, 7-11

Z events, D-5
jdeRequest type

XML element, 5-3
jdeResponse type

XML element, 5-3
JMS Queue, 3-2
JMS queue, 2-6
JMS server

creating a JMS server, 14-21
JMS Topic, 3-2
JMS topic, 2-6

K

keywords in the connection string for open data
access, 19-7

L

logical subscribersubscribingto events, A-14

messaging adapter queues, 13-5
messaging adapters

overview, 2-7
messaging queue systems, 13-1,13-2
minimizing duplicate and lost events for classic event

delivery, A-8

minimum required values sample code, H-1
models, 2-2,2-6

advanced planning agent (APAg), 2-9

batch interfaces, 2-8,18-1

connectors, 2-7

EDI, 2-8

interface tables, 2-8

messaging adapters, 2-7

open data access (ODA), 2-9

output stream access (OSA), 2-9

table conversion, 2-9
modify a data source for open data access, 19-4
modify interface table records, 18-4
MSMQ queue for guaranteed events, 14-17,14-18
multiple requests per document, 8-7

N

name Z transactions, 11-1

(0]

object management workbench
find a business function, 4-3
OCM
for classic real-time events, B-9
for classic XAPI events, C-4
for guaranteed real-time events, 14-6
for guaranteed XAPI events, 14-6
OCM setup for guaranteed events, 14-6
ODAopendata access, 19-1

Index-5



on error handling, 8-6

open data access
add a data source, 19-3
business view names, 19-5
column security, 19-5
configure a data source, 19-4
connect a data source, 19-4
connection string keywords, 19-7
currency, 19-5
decimal shifting, 19-5
delete a data source, 19-4
driver architecture, 19-2
error messages, 19-10
hardware requirements, 19-1
Julian date, 19-5
long column names, 19-5
long table names, 19-5
media object, 19-5
modify a data source, 19-4
ODBC component files, 19-2
overview, 19-1
row security, 19-5
run Excel query, 19-9
software requirements, 19-2
user defined codes, 19-5

open data access (ODA)

server connection failed, 19-10

statement must be a select, 19-10

syntax error, 19-10

unable to allocate memory, 19-10

unable to connect to the EnterpriseOne
environment, 19-10

unable to display connection dialog, 19-10

unable to open business view, 19-10

unable to open table, 19-10

user defined code columns can only be simple
column references, 19-10

Oracle orchestration systems

BPEL-PM, 21-1
ESB, 21-2

orchestration, 21-1,21-2

adding password indirection in the data
source, 21-9
adding system-jazn user, 21-9
BPEL-PM, 21-2
creating data source in OC4J, 21-7
cross reference read services, 21-10
cross-reference APIs, 21-5
cross-reference configuration, 21-3
cross-reference dynamic update, 21-4
cross-reference register XPATH, 21-4
Java binding service, installing, 21-9

overview, 2-9 Java binding service, placing in classpath, 21-10
open data access error messages Java binding service, registering, 21-10
access violation, 19-10 JD Edwards EnterpriseOne cross reference
attempt to fetch before the first row, 19-10 services, 21-11
business view contains invalid join, 19-10 password indirection, 21-8
business view contains unsupported union using cross-references, 21-3
operator, 19-10 using system-jazn data, 21-8
column security violation, 19-10 XSL mapper, 21-10
configuration request error, 19-10 orchestration cross-references
cross system joins not supported, 19-10 adding cross-references, 22-3
currency columns can only be simple column adding object types, 22-2
references, 19-10 categorizing by code and key, 22-2
data cannot be converted, 19-10 code references, 22-1
data returned for one or more columns was deleting cross-references, 22-5
truncated, 19-10 key references, 22-1
data source does not exist, 19-10 modifying cross-references, 22-4
data source name not valid, 19-10 reviewing cross-references, 22-4

data truncated, 19-10 understanding, 22-1
driver does not support requested OSB subscriber, 14-12
conversion, 19-10 outbound batch

driver not capable, 19-10

fractional truncation, 19-10

internal data conversion error, 19-10
internal execution error, 19-10
invalid column number, 19-10
invalid cursor state, 19-10

subsystem business function, 18-4
outbound notification, 13-4
outbound processing using interface tables, 18-3
outbound queue, 13-6
outbound request API usage EnterpriseOne and
third-party sample code, 16-7, C-7
invalid date/time string, 19-10 outbound request parsing API usage XAPI
invalid numeric string, 19-10 EnterpriseOne-to-EnterpriseOne sample
invalid request type, 19-10 code, 16-11, C-20
media object columns can only be simple column outbound request XML EnterpriseOne and
references, 19-10 third-party sample code, C-8
multiple business views referenced, 19-10 outbound table adapter function, 13-4
numeric value out of range, 19-10 outbound XML request and response format sample
option value changed, 19-10 code, G-7

Index-6



output stream access (OSA)
overview, 2-9
output stream access (OSA) UBEs
overview, 18-5
overview, 2-1
batch interfaces, 2-8
business function calls, 2-5
business services, 2-6
classic events, A-1
real-time events, B-1
XAPI EnterpriseOne and third-party, C-5
XAPI EnterpriseOne-to-EnterpriseOne, C-16
XAPI events, C-1
Zevents, D-1
connectors, 2-7
events, 2-5
flat files, 2-5,12-1
guaranteed events, 14-1
real-time events, 15-1
XAPI EnterpriseOne-to-EnterpriseOne, 16-10
XAPI events, 16-1
Zevents, 17-1
messaging adapters, 2-7
open data access, 19-1
XML, 2-5
Z transactions, 2-5

P

P0046 program, 17-4, D-5
P0047 program, 17-5,D-6
P47002 program, 17-4, D-4
P90701 program, A-10
P907012 program, C-33
P90701A program, 14-5,14-6,14-8,14-9
P90702 program, A-14, A-15
P952000 Program, 22-1
parsing XML strings, 13-5
Populate Event Activation Status Table UBE
(R90705), 14-9,17-5
prepare/commit/rollback
XML element, 5-5
Processing Log program (P0046), 17-4, D-5
Processing Log table (F0046), 17-4, D-4, D-5
processing log table updates, 17-4, D-4
processing options for adding JMS Queue as a
subscriber
Oracle Application Server, 14-13
WebLogic Application Server, 14-13
WebSphere Application Server, 14-13
processing real-time events
classic events, B-2
processing Z events
classic events, D-2
guaranteed events, 17-2
published business service, 2-4
purpose of JDBC driver, 20-1

R

R00460 UBE, 17-4,D-5

R00461 UBE, 17-4,D-5

R90705 UBE, 14-9,17-5

real-time events template sample code, 1-9

real-time eventsguaranteed events, 15-1

reliable event delivery classic events error
messages, A-7

reliable event delivery classic events forced black
list, A-9

reliable event delivery classic events increase
performance, A-8

reliable event delivery classic events minimizing
duplicate and lost events, A-8

reliable event delivery classic events system
configurations, A-7

reliable event delivery classic events voluntary black
list, A-9

reliable event delivery for classic events, A-6

reliable event delivery jde.ini configurations, A-9

return NULL values, 8-8

reviewing API and business function
documentation, 4-2

run a subsystem job, 11-3

run an input batch process, 11-3

S

schema generation utility, 14-23
configuring, 14-24
displaying event schema, 14-27
generating header schema, 14-30
generating schema for more than one
event, 14-30
generating schema for single and multiple
events, 14-28
logging into, 14-26
troubleshooting, 14-31
using, 14-26, 14-29
security considerations for JDBC driver, 20-5
selector, 7-4
self-diagnostic utility tooleventsself-diagnostic utility
tool, E-1
service oriented architecture, 3-1
setting up interface tables, 18-1
setting WebLogic jar file
Oracle Application Server, 14-5
WebSphere Application Server, 14-5
special characters in XML, 5-6
SQL for JDBC driver, 20-5
structure for interface tables, 18-1
submitting UBE to request inbound XML, 6-5
subscribing to events
classic event delivery, A-15
classic events, A-3, A-14
XAPI, C+4
guaranteed events, 14-12,14-16
associating subscription with subscribed
environments, 14-17
associating subscription with subscribed

Index-7



events, 14-17
Subsystem Job Master table (F986113), 17-3,17-4,
D-4, D-5
success queue, 13-6
system configuration
reliable event delivery, A-7

T

table conversion

overview, 2-9,18-5
terminate session

XML element, 5-5
transaction server configuration for guaranteed

events, 14-4,14-5

Transformation ServiceXMLXTS, 7-1
troubleshooting

XML kernels, 5-8
troubleshooting JDBC driver, 20-9
Type 3 JDBC driver

configuring, 20-3
Type 4 JDBC driver

configuring, 20-3

U

unicode, 12-9

updating the database, 11-3

updating the EnterpriseOne database, 11-2
URL to connect JDBC driver, 20-4

using Microsoft Except with open data access, 19-9

\'}

vendor-specific outbound functions for Z
events, 17-3, D-3
voluntary black list for classic events, A-9

w

web service consumer, 3-2

web service consumer integration pattern
asynchronous HTTP request/response, 3-10
asynchronous web service, 3-12
notification, 3-8
synchronous HTTP request/response, 3-11
synchronous web service request/reply, 3-10

web service provider, 3-1

web service provider integration pattern
asynchronous notification, 3-6
asynchronous request/reply, 3-8
synchronous request/reply, 3-4

web servicebusinessservices, 3-1

web services, 2-4

WebLogic
configuring the transaction server, 14-5
setting the Jar file in a WebSPhere Application

Server, 14-5
setting the Jar file in an Oracle Application
Server, 14-5
WebLogic configurations

Index-8

guaranteed events, 14-21
WebLogic Message queue for guaranteed
events, 14-22
WebLogic MQ queue for guaranteed events, 14-21
WebLogic server
creating a JMS module in WebLogic server, 14-21
creating a JMS server, 14-21
WebSphere configurations
guaranteed events, 14-19
WebSphere MQ queue for guaranteed events, 14-18,
14-19, 14-20

X

XAPI eventsclassic events, C-1
XAPI eventsguaranteedevents, 16-1
XML
APIs for XTS, 7-4
callobject
errors, 8-10
dispatch kernel, 6-1
kernel troubleshooting, 5-8
overview, 2-5
recognizers for XML Dispatch, 6-2
transports for XML dispatch, 6-2
XML dispatch processing, 6-2
XTS, 7-1
XTS processing, 7-1
XTSbuild selector, 7-4
XML and EnterpriseOne, 5-1
XML callobject, 8-1
jde.ini file settings, 8-8
process, 8-2
templates, 8-1
XML dispatch
jde.ini file settings, 6-2
XML documents
EnterpriseOne date standards, 5-6
EnterpriseOne separator standards, 5-6
EnterpriseOne standards, 5-5
formatting, 5-3
callobject, 8-5
XML element
call object
error text, 8-6
XML elements
call object, 8-5
callobject, 8-5
error handling, 8-6
ID/IDREF support, 8-7
multiple requests per document, 8-7
on error handling, 8-6
return null values, 8-8
establish session, 5-4
expire session, 5-4
explicit transaction, 5-4
implicit transaction, 5-4
jdeRequest, 5-3
jdeResponse, 5-3
prepare/commit/rollback, 5-5



terminate session, 5-5
XML example
EnterpriseOne version 1 format, 7-2
native EnterpriseOne format, 7-2
selector creating, 7-5
XML interface table inquiry, 13-5
XML list, 10-1
creating a list, 10-5
deleting a list, 10-9
get column information for a list, 10-9
jde.ini file settings, 10-10
list retrieval engine table conversion
wrapper, 10-2
process, 10-2
requests, 10-4
retrieve data from a list, 10-8
XML list-retrieval engine
jde.ini file settings, 10-10
XML special characters, 5-6
XML standards
creating documents for EnterpriseOne, 5-5
date, 5-6
separators, 5-6
XML system environment settings, 5-7
XML system settings
IBMi, 5-8
UNIX, 5-7
windows and NT, 5-8
XML transaction, 9-1
data request process, 9-3
jde.ini file settings, 9-4
update process, 9-1
XTS
jde.ini file settings, 7-11

z

Z event XML format sample code, I-1
Z events
subsystem job, D-5
Z eventsclassicevents, D-1
Z eventsguaranteed events, 17-1
Z tableinterface table, 11-2
Z tables, 2-8
Z transaction
adding records to interface tables, 11-2
input batch process, 11-2,11-3
subsystem job, 11-2
update confirmation, 11-4
updating EnterpriseOne, 11-2
updating the database, 11-3
Z transaction, check for errors, 11-4
Z transactions, 18-3
naming, 11-1
overview, 2-5,11-1
processing, 11-1
subsystem jobs, 11-3

Index-9



Index-10



	Contents
	Preface
	Audience
	Interoperability Companion Documentation
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to JD Edwards EnterpriseOne Tools Interoperability
	1.1 JD Edwards EnterpriseOne Tools Interoperability Overview
	1.2 JD Edwards EnterpriseOne Tools Interoperability Implementation

	2 Understanding Interoperability
	2.1 Interoperability
	2.2 Interoperability Features
	2.2.1 Benefits

	2.3 Interoperability Models and Capabilities
	2.3.1 Auditing for Interoperability Transactions
	2.3.2 JD Edwards EnterpriseOne Interoperability
	2.3.3 Interoperability Capabilities
	2.3.3.1 Web Services
	2.3.3.2 J2EE Connectivity
	2.3.3.3 Business Function Calls
	2.3.3.4 XML
	2.3.3.5 Z Transactions
	2.3.3.6 Flat Files
	2.3.3.7 Events

	2.3.4 Interoperability Models
	2.3.4.1 Business Services Server
	2.3.4.2 JMS Queue and JMS Topic
	2.3.4.3 Connectors
	2.3.4.4 Messaging Adapters
	2.3.4.5 Batch Interfaces
	2.3.4.6 Interface Tables
	2.3.4.7 EDI
	2.3.4.8 Table Conversion
	2.3.4.9 OSA
	2.3.4.10 APAg/Integration
	2.3.4.11 ODA


	2.4 Interoperability Model Selection
	2.5 Other Industry Standard Support

	3 Understanding Integrations in a SOA Environment
	3.1 JD Edwards Enterprise Integrations in a SOA Environment
	3.1.1 Web Service Provider
	3.1.2 Web Service Consumer
	3.1.3 Event Notification

	3.2 Business Services Architecture
	3.3 Environments
	3.4 Integration Patterns
	3.4.1 JD Edwards EnterpriseOne as a Web Service Provider - Synchronous Request/Reply
	3.4.2 JD Edwards EnterpriseOne as a Web Service Provider - Asynchronous Notification
	3.4.3 JD Edwards EnterpriseOne as a Web Service Provider - Asynchronous Request/Reply
	3.4.4 JD Edwards EnterpriseOne as a Web Service Consumer - Notification
	3.4.5 JD Edwards EnterpriseOne as a Web Service Consumer - Synchronous Web Service Request/Reply
	3.4.6 JD Edwards EnterpriseOne as a Service Consumer - Asynchronous HTTP Request/Response
	3.4.7 JD Edwards EnterpriseOne as a Service Consumer - Synchronous HTTP Request/Response
	3.4.8 JD Edwards EnterpriseOne as a Web Service Consumer - Asynchronous Web Service


	4 Using Business Function Calls
	4.1 Understanding Business Functions
	4.2 Reviewing API and Business Function Documentation
	4.3 Creating Business Function Documentation
	4.4 Finding Business Functions
	4.4.1 Using the Object Management Workbench
	4.4.2 Using the Cross Reference Facility
	4.4.3 Using the Debug Application


	5 Understanding XML
	5.1 XML and JD Edwards EnterpriseOne
	5.2 XML JAR Files
	5.3 XML Document Format
	5.3.1 Formatting XML Documents
	5.3.2 Type Element
	5.3.3 Establish Session
	5.3.4 Expire Session
	5.3.5 Explicit Transaction
	5.3.6 Implicit Transaction
	5.3.7 Prepare/Commit/Rollback
	5.3.8 Terminate Session

	5.4 XML Standards
	5.4.1 Decimal and Comma Separators
	5.4.2 Date Usage
	5.4.3 Industry Standards for Special Characters

	5.5 System Environment Configuration
	5.5.1 UNIX
	5.5.1.1 HPUX
	5.5.1.2 AIX
	5.5.1.3 SUN
	5.5.1.4 LINUX

	5.5.2 IBM i
	5.5.3 WIN32

	5.6 XML Kernel Troubleshooting

	6 Understanding XML Dispatch
	6.1 XML Dispatch
	6.2 XML Dispatch Processing
	6.3 XML Dispatch Recognizers
	6.4 XML Dispatch Transports
	6.5 XML Dispatch jde.ini File Configuration
	6.5.1 [JDENET_KERNEL_DEF22]
	6.5.2 [XMLLookupInfo]

	6.6 XML Dispatch Error Handling
	6.7 Submit a UBE from XML
	6.7.1 Prerequisites


	7 Understanding XML Transformation Service
	7.1 XML Transformation Service
	7.2 XTS Process
	7.2.1 Example: JD Edwards EnterpriseOne Native XML Format
	7.2.2 Example: JD Edwards EnterpriseOne Version 1 XML Format

	7.3 Custom Selectors
	7.3.1 XTS APIs
	7.3.2 Example: Creating a Selector

	7.4 XTS jde.ini File Configuration
	7.4.1 [JDENET_KERNEL_DEF23]
	7.4.2 [JDENET]
	7.4.3 [XTSRepository]
	7.4.4 [XTS]


	8 Understanding XML CallObject
	8.1 XML CallObject
	8.2 XML CallObject Templates
	8.3 XML CallObject Process
	8.4 XML CallObject Document Format
	8.4.1 XML CallObject Formatting Documents
	8.4.2 Call Object
	8.4.3 OnError Handling
	8.4.4 Call Object Error Handling
	8.4.5 Error Text
	8.4.6 Multiple Requests per Document
	8.4.7 ID/IDREF Support
	8.4.8 Return NULL Values

	8.5 XML CallObject jde.ini File Configuration
	8.5.1 [JDENET_KERNEL_DEF6]
	8.5.2 Example: CallObject Request
	8.5.3 Example: CallObject Response

	8.6 XML CallObject Return Codes

	9 Understanding XML Transaction
	9.1 XML Transaction
	9.2 XML Transaction Update Process
	9.3 XML Transaction Data Request
	9.4 XML Transaction jde.ini File Configuration
	9.4.1 [JDENET_KERNEL_DEF15]
	9.4.2 Example: Outbound Order Status XML Request and Response Format


	10 Understanding XML List
	10.1 XML List
	10.2 List-Retrieval Engine Table Conversion Wrapper
	10.3 XML List Process
	10.4 XML List Requests
	10.4.1 Creating a List
	10.4.2 Retrieving Data from a List
	10.4.3 Deleting a List
	10.4.4 Getting Column Information for a List

	10.5 List-Retrieval Engine jde.ini File Configuration
	10.6 XML List jde.ini File Configuration
	10.6.1 [JDENET_KERNEL_DEF16]


	11 Processing Z Transactions
	11.1 Understanding Z Transactions
	11.2 Naming the Transaction
	11.3 Adding Records to the Inbound Interface Table
	11.4 Running an Update Process
	11.4.1 Running an Input Batch Process
	11.4.2 Running a Subsystem Job

	11.5 Checking for Errors
	11.6 Confirming the Update
	11.7 Purging Data from the Interface Table

	12 Using Flat Files
	12.1 Understanding Flat Files
	12.2 Formatting Flat Files
	12.3 Setting Up Flat Files
	12.4 Converting Flat Files Using the Flat File Conversion Program
	12.4.1 Forms Used to Convert Flat File Information
	12.4.2 Defining the Flat File Cross Reference Table
	12.4.2.1 Flat File Cross Reference


	12.5 Importing Flat Files Using a Business Function
	12.5.1 Map the F98713 table in the System Data Source
	12.5.2 Ensure the F98713 table Exists in the Business Data Source
	12.5.3 Flat File Conversion Error Messages

	12.6 Converting Flat Files Using APIs
	12.6.1 Forms Used to Convert Flat File Information
	12.6.2 Setting Up Flat File Encoding
	12.6.2.1 Flat File Encoding Configuration



	13 Understanding Messaging Queue Adapters
	13.1 JD Edwards EnterpriseOne and Messaging Queue Systems
	13.2 Data Exchange Between JD Edwards EnterpriseOne and a Messaging Queue Adapter
	13.2.1 Sending Information to JD Edwards EnterpriseOne
	13.2.1.1 Z Transaction Process Flow

	13.2.2 Retrieving Information from JD Edwards EnterpriseOne
	13.2.3 Using JD Edwards Classic Event System
	13.2.3.1 Classic Z Event Processing
	13.2.3.2 Enabling Z Events Interface Table Processes
	13.2.3.3 Outbound Table Adapter Function
	13.2.3.4 Outbound Notification

	13.2.4 XML Interface Table Inquiry API

	13.3 Management of the Messaging Queue Adapter Queues
	13.3.1 Inbound Queue
	13.3.2 Outbound Queue
	13.3.3 Success Queue
	13.3.4 Error Queue
	13.3.5 Default Response Queue

	13.4 Configuration of the jde.ini File to Support Messaging Queue Adapters

	14 Using Guaranteed Events
	14.1 Understanding Guaranteed Events
	14.2 Processing Guaranteed Events
	14.2.1 Understanding Guaranteed Events Processing
	14.2.2 Aggregating Events
	14.2.3 Logging Events
	14.2.4 Configuring the Transaction Server
	14.2.5 Configuring the Transaction Server to Use WebLogic
	14.2.5.1 Setting the WebLogic Client Jar in an Oracle Application Server
	14.2.5.2 Setting the WebLogic Client Jar in a WebSphere Application Server


	14.3 Setting Up OCM for Guaranteed Events
	14.3.1 Understanding OCM Setup for Guaranteed Event Delivery
	14.3.2 Forms Used to Set Up OCM for Guaranteed Event Delivery
	14.3.3 Setting Up the OCM for Guaranteed Event Delivery

	14.4 Selecting the Guaranteed Events Delivery System
	14.4.1 Understanding Guaranteed Events Selection
	14.4.2 Forms Used to Select Guaranteed Events Delivery System
	14.4.3 Selecting Guaranteed Events Delivery

	14.5 Defining Events
	14.5.1 Understanding Events Definition
	14.5.2 Forms Used to Enter Events
	14.5.3 Adding a Single or Container Event
	14.5.3.1 Event Definition Detail
	14.5.3.2 Activating an Event
	14.5.3.3 Refreshing the Transaction server cache of active events


	14.6 Establishing Subscriber and Subscription Information
	14.6.1 Understanding Subscribers and Subscriptions
	14.6.2 Forms Used to Add a Subscriber and Subscription Information
	14.6.3 Setting Up Processing Options for Adding JMS Queue as a Subscriber
	14.6.4 Adding a Subscriber
	14.6.5 Adding a Subscription
	14.6.6 Associating a Subscription with Subscribed Events
	14.6.7 Associating a Subscription with Subscribed Environments

	14.7 Creating MSMQ Queues
	14.7.1 Prerequisites
	14.7.2 Understanding MSMQ
	14.7.3 Creating an MSMQ Real-Time Event Queue
	14.7.4 Verifying Event Delivery

	14.8 Creating WebSphere MQ Queues
	14.8.1 Prerequisites
	14.8.2 Understanding WebSphere MQ
	14.8.3 Creating a WebSphere MQ Real-Time Event Queue
	14.8.4 Configuring WebSphere
	14.8.5 Verifying Event Delivery

	14.9 Creating WebLogic Message Queues
	14.9.1 Prerequisites
	14.9.2 Understanding WebLogic Message Queue
	14.9.3 Creating a JMS Server in the WebLogic Server
	14.9.4 Creating a JMS Module in the WebLogic Server
	14.9.5 Creating a Connection Factory
	14.9.6 Creating a Destination
	14.9.7 Verifying Event Delivery

	14.10 Creating Custom Real-Time Events
	14.10.1 Creating a Custom Real-Time Event

	14.11 Generating Schemas for Event XML Documents
	14.11.1 Understanding the Schema Generation Utility
	14.11.1.1 Prerequisite

	14.11.2 Configuring the Schema Generation Utility
	14.11.3 Using the Schema Generation Utility
	14.11.3.1 Prerequisites
	14.11.3.2 Logging In to the Schema Generation Utility
	14.11.3.3 Event Schema Generator Screen
	14.11.3.4 Displaying Event Schema
	14.11.3.5 Generating Event Schema for Single and Multiple Events
	14.11.3.6 Generating Event Schema for All the Events of a Selected Event Category
	14.11.3.7 Generating Header Schema

	14.11.4 Troubleshooting the Schema Generation Utility


	15 Using Real-Time Events - Guaranteed
	15.1 Understanding Real-Time Events - Guaranteed
	15.2 Generating Real-Time Events
	15.2.1 Understanding Real-Time Event Generation
	15.2.2 Using Real-Time Event APIs
	15.2.3 Interoperability Event Interface Calls Sample Code


	16 Using XAPI Events - Guaranteed
	16.1 Understanding XAPI Events - Guaranteed
	16.1.1 JD Edwards EnterpriseOne to Third-Party
	16.1.2 Third-Party to JD Edwards EnterpriseOne
	16.1.3 JD Edwards EnterpriseOne-to-EnterpriseOne

	16.2 Using JD Edwards EnterpriseOne as a XAPI Originator
	16.3 Using JD Edwards EnterpriseOne as a XAPI Executor
	16.4 Working with JD Edwards EnterpriseOne and Third-Party Systems
	16.4.1 Understanding XAPI Processing between JD Edwards EnterpriseOne and Third-Party Systems
	16.4.2 XAPI Outbound Request APIs
	16.4.3 XAPI Outbound Request API Usage Code Sample
	16.4.4 XAPI Inbound Response APIs
	16.4.5 XAPI Inbound Response API Usage Code Sample

	16.5 Using JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity
	16.5.1 Understanding JD Edwards EnterpriseOne-to-EnterpriseOne Connectivity
	16.5.1.1 Modify Element Name for XML Documents
	16.5.1.2 Security for Originator and Executor
	16.5.1.3 Error Processing for Originator and Executor

	16.5.2 XAPI Outbound Request Handling APIs
	16.5.3 XAPI Outbound Request Parsing API Usage Sample Code
	16.5.4 XAPI Inbound Response Generation APIs
	16.5.5 XAPI Inbound Response Parsing API Usage Sample Code
	16.5.6 XAPI Error Handling APIs

	16.6 Mapping a Business Function
	16.6.1 Understanding how to Map a Business Function
	16.6.2 Forms Used to Add Mapping Information
	16.6.3 Adding Mapping Information


	17 Using Z Events - Guaranteed
	17.1 Understanding Z Events - Guaranteed
	17.2 Z Event Process Flow
	17.3 Vendor-Specific Outbound Functions
	17.4 Working With Z Events
	17.4.1 Configuring Z Events
	17.4.2 Enabling Z Event Processing
	17.4.3 Updating Flat File Cross-Reference
	17.4.4 Updating the Processing Log Table
	17.4.5 Verifying that the Subsystem Job is Running
	17.4.6 Purging Data from the Interface Table
	17.4.7 Synchronizing F47002 Records with F90701 Records

	17.5 Setting Up Data Export Controls
	17.5.1 Understanding Data Export Controls Records
	17.5.2 Forms Used to Add a Data Export Controls Record
	17.5.3 Adding a Data Export Control Record


	18 Using Batch Interfaces
	18.1 JD Edwards EnterpriseOne Interface Tables
	18.1.1 Structuring Interface Tables
	18.1.2 Updating JD Edwards EnterpriseOne Records
	18.1.3 Retrieving JD Edwards EnterpriseOne Records
	18.1.3.1 Running an Extraction Batch Process
	18.1.3.2 Subsystem Business Function

	18.1.4 Using the Revision Application
	18.1.5 Purging Interface Table Information

	18.2 Electronic Data Interface
	18.3 Table Conversion
	18.4 Output Stream Access UBEs
	18.5 Advanced Planning Agent Integration

	19 Using Open Data Access
	19.1 Understanding Open Data Access
	19.2 Installing ODA
	19.2.1 Hardware Requirements
	19.2.2 Software Requirements
	19.2.3 ODBC Component Files
	19.2.4 ODA Driver Architecture

	19.3 Working with Data Sources
	19.3.1 Adding a Data Source
	19.3.2 Modifying a Data Source
	19.3.3 Deleting a Data Source
	19.3.4 Configuring a Data Source
	19.3.5 Connecting a Data Source

	19.4 Working with ODA
	19.4.1 Manipulating Data
	19.4.2 Using Keywords in the Connection String
	19.4.3 Running a Query Using Microsoft Excel

	19.5 Managing ODA Error Messages

	20 Using the Java Database Connectivity Driver
	20.1 Using the JDBC Driver
	20.1.1 When to Use a JDBC Driver
	20.1.1.1 Prerequisites
	20.1.1.2 Using the Type 3 JDBC Driver
	20.1.1.3 Using the Type 4 JDBC Driver

	20.1.2 Connection Mode

	20.2 JDBC Driver Configuration
	20.3 JDBC Driver Connection Details
	20.3.1 Driver Class Name
	20.3.2 Connection URL
	20.3.3 Connection Properties
	20.3.3.1 Example Showing How to Use Connection Properties


	20.4 JDBC Driver Security Considerations
	20.5 SQL Grammar
	20.5.1 SQL Grammar for JD Edwards EnterpriseOne Connection Modes

	20.6 JDBC Driver Features
	20.6.1 JDBC Features for the Connection Mode

	20.7 JDBC Driver Troubleshooting
	20.7.1 No Suitable Driver
	20.7.2 Data Source for F0010, TBLE Not Found
	20.7.3 Table Specifications Do Not Exist (Type 3 JDBC only)

	20.8 JDBC Driver Terminology

	21 Using Oracle Orchestration Systems
	21.1 Understanding Oracle Orchestration Systems
	21.1.1 BPEL-PM
	21.1.2 ESB
	21.1.3 Orchestration

	21.2 Configuring Orchestration Cross References
	21.2.1 Understanding the Orchestration Cross-Reference Configuration
	21.2.1.1 How the Orchestration System Uses Cross-References
	21.2.1.2 Common Notations and Variables in This Document

	21.2.2 Registering Cross-Reference Read XPATH Functions in JDeveloper
	21.2.3 Configuring Access to Orchestration Cross-Reference APIs
	21.2.4 Creating a Data Source in OC4J
	21.2.4.1 Defining an Oracle Data Source in OC4J
	21.2.4.2 Defining a UDB/DB2 for IBM i Data Source in OC4J
	21.2.4.3 Defining a DB2 for IBM i Data Source in OC4J
	21.2.4.4 Defining a SQL Server Data Source in OC4J


	21.3 Using Password Indirection (Optional)
	21.3.1 Understanding Password Indirection
	21.3.2 Editing the Default Application.xml to Use System-jazn Data
	21.3.3 Adding a JAZN User
	21.3.4 Adding Password Indirection in the Data Source

	21.4 Setting Up the Cross-Reference Java Binding Service
	21.4.1 Registering the Java Binding Service
	21.4.2 Placing Java Binding Classes in the Classpath
	21.4.3 Using Cross-Reference Read Services from XSL Mapper
	21.4.4 Using JD Edwards EnterpriseOne Cross-Reference Services
	21.4.4.1 BPEL-PM
	21.4.4.2 ESB



	22 Setting Up Orchestration Cross-References
	22.1 Understanding Orchestration Cross-References
	22.1.1 Code and Key Cross-Reference Categorization

	22.2 Adding Cross-Reference Object Types
	22.3 Adding Orchestration Cross-References
	22.4 Reviewing or Modifying Orchestration Cross-References
	22.5 Deleting Orchestration Cross-References

	A Classic Events
	A.1 Understanding Classic Events
	A.2 Defining Events
	A.2.1 Reducing Network Traffic

	A.3 Subscribing to Events
	A.4 Configuring the jde.ini file for Events
	A.4.1 [JDENET_KERNEL_DEF19]
	A.4.2 [JDENET_KERNEL_DEF20]
	A.4.3 [JDENET_KERNEL_DEF22]
	A.4.4 [JDENET_KERNEL_DEF24]
	A.4.5 [JDEITDRV]
	A.4.6 [JDENET]

	A.5 Using Reliable Event Delivery
	A.5.1 Understanding Reliable Event Delivery
	A.5.2 Configuring Your System for Reliable Event Delivery
	A.5.3 Reliable Event Error Message
	A.5.4 Minimizing Duplicate and Lost Events
	A.5.5 Increasing Performance
	A.5.5.1 Voluntary Black List
	A.5.5.2 Forced Black List

	A.5.6 Configuring the jde.ini File
	A.5.6.1 [INTEROPERABILITY]
	A.5.6.2 [NETWORK QUEUE SETTINGS]


	A.6 Entering Events
	A.6.1 Understanding Entering Events
	A.6.2 Forms Used to Add Events
	A.6.3 Entering a Single or Container Event
	A.6.3.1 Event Definition Detail

	A.6.4 Changing the Status of an Event Record

	A.7 Adding Logical Subscriber Records
	A.7.1 Understanding Logical Subscribers
	A.7.2 Forms Used to Add a Logical Subscriber
	A.7.3 Adding a Logical Subscriber

	A.8 Entering Subscription Information
	A.8.1 Understanding Subscription Records
	A.8.2 Forms Used to Enter Subscription Information
	A.8.3 Entering a Subscription Record
	A.8.4 Changing the Status of a Subscription


	B Using Classic Real-Time Events
	B.1 Understanding Real-Time Events - Classic
	B.1.1 Prerequisites

	B.2 Processing Real-Time Events
	B.3 Defining Real-Time Events
	B.4 Using Event Sequencing
	B.5 Using Journaling
	B.5.1 [INTEROPERABILITY]
	B.5.2 [INTEROPERABILITY]

	B.6 Configuring the jde.ini for Real-Time Events
	B.6.1 [INTEROPERABILITY]

	B.7 Generating Real-Time Events
	B.7.1 Understanding Real-Time Event Generation
	B.7.2 Real-Time Event APIs
	B.7.3 Example: Interoperability Event Interface Calls

	B.8 Setting Up the OCM for Real-Time Events
	B.8.1 Understanding the OCM for Real-Time Events
	B.8.2 Forms Used to Set Up OCM
	B.8.3 Setting Up the OCM for Real-Time Events


	C Using Classic XAPI Events
	C.1 Understanding XAPI Events - Classic
	C.1.1 JD Edwards EnterpriseOne to Third-Party
	C.1.2 Third-Party to JD Edwards EnterpriseOne
	C.1.3 JD Edwards EnterpriseOne-to-JD Edwards EnterpriseOne
	C.1.4 Prerequisites

	C.2 Defining XAPI Events
	C.3 Subscribing to XAPI Events
	C.4 Setting Up the OCM for XAPI Events
	C.5 Working with JD Edwards EnterpriseOne and Third-Party XAPI Events
	C.5.1 Understanding XAPI Event Generation and Third-Party Response
	C.5.2 XAPI Outbound Request Process Flow
	C.5.3 XAPI Outbound Request APIs
	C.5.4 XAPI Outbound Request API Usage Sample Code
	C.5.5 XAPI Outbound Request XML Sample Code
	C.5.5.1 Routing Information

	C.5.6 XAPI Outbound Request jde.ini File Configuration
	C.5.7 XAPI Inbound Response Process Flow
	C.5.8 XAPI Inbound Response Parsing APIs
	C.5.9 XAPI Inbound Response Parsing API Usage Sample Code
	C.5.10 XAPI Inbound Response Sample Code
	C.5.11 XAPI Inbound Response jde.ini File Configuration
	C.5.11.1 [XAPI]
	C.5.11.2 [XMLLookupInfo]

	C.5.12 XAPI Client jde.ini File Configuration
	C.5.12.1 [JDENET_KERNEL_DEF27]
	C.5.12.2 [JDENET]


	C.6 Working with JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events
	C.6.1 Understanding JD Edwards EnterpriseOne-to-EnterpriseOne XAPI Events
	C.6.1.1 Modifying Element Name for XML Documents
	C.6.1.2 Security for Originator and Executor
	C.6.1.3 Error Processing for Originator and Executor

	C.6.2 XAPI EnterpriseOne-to-EnterpriseOne Process Flow
	C.6.3 XAPI Outbound Request Generation APIs
	C.6.4 XAPI Outbound Request Handling APIs
	C.6.5 XAPI Outbound Request Parsing API Usage Sample Code
	C.6.6 XAPI EnterpriseOne Originator XML Sample Code
	C.6.7 XAPI Inbound Response Generation APIs
	C.6.8 XAPI Inbound Response Parsing API Usage Sample Code
	C.6.9 XAPI Inbound Response from Originator System Sample Code
	C.6.10 XAPI Inbound Response Handling APIs
	C.6.11 XAPI Error Handling APIs
	C.6.12 XAPI EnterpriseOne-to-EnterpriseOne jde.ini File Configuration
	C.6.12.1 [XAPI]
	C.6.12.2 [XMLLookupInfo]
	C.6.12.3 [INTEROPERABILITY]


	C.7 Mapping the Business Function
	C.7.1 Understanding Business Function Mapping
	C.7.2 Forms Used to Map a Business Function or API
	C.7.3 Mapping a business function or API


	D Using Classic Z Events
	D.1 Understanding Z Events - Classic
	D.1.1 Prerequisites

	D.2 Z Event Process Flow
	D.3 Z Event Sequencing
	D.4 Vendor-Specific Outbound Functions
	D.5 Working With Z Events
	D.5.1 Understanding Z Event Processing
	D.5.2 Enabling Z Event Processing
	D.5.3 Updating Flat File Cross-Reference Table
	D.5.4 Updating the Processing Log Table
	D.5.5 Verifying that the Subsystem Job is Running
	D.5.6 Purging Data from the Interface Table
	D.5.7 Configuring the jde.ini File for Z Events
	D.5.7.1 [INTEROPERABILITY]


	D.6 Setting Up Data Export Controls
	D.6.1 Understanding Data Export Controls Records
	D.6.2 Forms Used to Add a Data Export Controls Record
	D.6.3 Adding a Data Export Control Record


	E Events Self-Diagnostic Utility Tool
	E.1 Understanding the Events Self-Diagnostic Utility Tool
	E.2 Events Self-Diagnostic Utility Tool Process
	E.3 Events Self-Diagnostic Utility Tool Components
	E.3.1 Event Generator
	E.3.2 Event Receiver
	E.3.3 XML Comparator

	E.4 Customizing the Tool
	E.5 Executing the Events Self-Diagnostic Tool
	E.5.1 Executing the Event Self-Diagnostic Tool
	E.5.2 Start the Tool
	E.5.3 Generate/Test Real-Time Event
	E.5.4 Generate/Test Z Event
	E.5.5 Test All Types of Events
	E.5.6 Get Event List
	E.5.7 Get Event Template
	E.5.8 Subscription Services
	E.5.9 Comprehensive System Analysis


	F Interoperability Interface Table Information
	F.1 Interoperability Interface Table Information

	G XML Format Examples (All Parameters)
	G.1 Inbound Sales Order XML Format (All Parameters)
	G.2 Outbound XML Request and Response Format (All Parameters)
	G.2.1 Request
	G.2.2 Response


	H Minimum Required Values Sample Code
	H.1 Sales Order Minimum Required Values

	I XML Format Examples (Events)
	I.1 Example: Z Events XML Format
	I.2 Real-Time Events Template

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z


