
Oracle Tuxedo Application Runtime for Batch
Users Guide
11g Release 1 (11.1.1.2)

July 2011

Oracle Tuxedo Application Runtime for Batch Users Guide, 11g Release 1 (11.1.1.2)

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Purpose . 1-1

Organization . 1-1

See Also . 1-2

Oracle Tuxedo Application Runtime for Batch Presentation and Structure 2-1

Technical Functions . 2-1

High-Level Functions . 2-1

Interface-Level Functions . 2-2

Script Execution Phases . 2-2

Configuration files . 3-1

BatchRT.conf . 3-1

Messages.conf . 3-1

FunctionReturnCode.conf . 3-1

ReturnCode.conf . 3-1

Setting Environment Variables . 3-2

Creating a Script . 3-4

General Structure of a Script . 3-4

Script Example. 3-6

Defining and Using Symbols . 3-8

Creating a Step That Executes a Program . 3-8

Creating a Procedure . 3-9

Using a Procedure . 3-11

Modifying a Procedure at Execution Time . 3-12
Oracle Tuxedo Application Runtime for Batch User Guide 1

Controlling a Script's Behavior. 3-14

Conditioning the Execution of a Step . 3-14

Controlling the Execution Flow . 3-17

Changing Default Error Messages. 3-17

Using Files . 3-18

Creating a File Definition . 3-18

Assigning and Using Files. 3-18

Using a Generation File (GDG). 3-20

Using an In-Stream File. 3-21

Using a Set of Concatenated Files. 3-22

Using an External “sysin” . 3-22

Deleting a File . 3-22

RDB Files . 3-22

Using an RDBMS Connection . 3-23

Submitting a Job using INTRDR facility . 3-25

Submitting a Job With EJR. 3-25

LOG File Structure . 3-25

Using Batch Runtime With a Job Scheduler . 3-26

Executing an SQL request . 3-27

Adapting z/OS Capabilities on a UNIX/Linux Environment . 4-1

Defining Paths for Procedures, Includes and Programs . 4-1

Prohibiting the Use of UNIX Commands . 4-2

Avoiding the Use of File Overriding . 4-2

Overview. 5-1

Requirements . 5-1

TuxJES Components . 5-2

Configuring a TuxJES System . 5-2

Setting up TuxJES as an Oracle Tuxedo Application . 5-2
Oracle Tuxedo Application Runtime for Batch User Guide 2

Using TuxJES . 5-6

Submitting a Job . 5-6

Displaying Job Information . 5-6

Holding a Job. 5-7

Releasing a Job . 5-8

Canceling a Job . 5-8

Purging a Job . 5-8

Displaying/Changing ARTJESINITIATOR Configuration. 5-9

Event Subscribing/Unsubscribing . 5-9

See Also . 5-9
Oracle Tuxedo Application Runtime for Batch User Guide 3

4 Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 1
Introduction
Purpose
The aim of the following guide is to help users understand and write Korn-Shell scripts to be used
with the Batch Runtime, and how to user Tuxedo Job Enqueueing Service (TuxJES).

The guide covers the usual tasks that are performed within Korn-Shell scripts, whether they are
the result of a conversion from z/OS JCL or newly written for the target platform. The guide also
covers the usage of TuxJES.

Organization
This guide is divided into four main chapters:

Overview of the Batch Runtime: This chapter introduces the general principles of the
Batch Runtime.

Using the Batch Runtime: This chapter describes, through various examples, how to
perform the usual tasks required to implement the Batch Runtime. This section describes
how the different Oracle Tuxedo Application Runtime for Batch high-level functions can
be assembled in order to create a single "step", and then how the different steps are
assembled in order to create a complete Korn shell script.

Best Practices: This chapter provides guidance for preserving z/OS capabilities on the
target platform.

Using TuxJES: This chapter provides guidance for configuring and executing TuxJES.
Oracle Tuxedo Application Runtime for Batch User Guide 1-1

See Also
For more detailed information about the Batch Runtime, specifically on how to code the
different functions, see the Oracle Tuxedo Application Runtime Reference Guide
1-2 Oracle Tuxedo Application Runtime for Batch User Guide

../cicsref/index.html
../cicsref/index.html

C H A P T E R 2
Overview of the Batch Runtime
Environment
Oracle Tuxedo Application Runtime for Batch
Presentation and Structure

The purpose of the Batch Runtime is to provide functions enabling a robust production
environment on a UNIX/Linux platform.

Oracle Tuxedo Application Runtime for Batch is composed of:

Technical functions

High-level functions

Interface-level functions

Technical Functions
The technical level contains simple one-action functions: easy to write, easy to maintain and easy
to debug. For example, GDG (Generation Data Group) management belongs to this level. This
technical level is the robust base of the Batch Runtime.

High-Level Functions
The high-level functions provide entry points to the Batch Runtime. This level homogenizes the
behavior of functions, in order for them to be called in a production script. A high-level function
follows a skeleton which provide robust logical workflow (execution on/off, options check,
predefined return codes …).
Oracle Tuxedo Application Runtime for Batch User Guide 2-1

In this level, we find functions to:

Manage files (creation, copy, assignation…)

Launch programs (COBOL, executable …)

Access Databases (connection/disconnection/commit/rollback for program, SQL execution)

Produce reports

Run utilities

Interface-Level Functions
The interface level allow users to interact with the Batch Runtime job management: submission,
holding and releasing, class management, reporting, monitoring …

Oracle Tuxedo Application Runtime for Batch offers robust and useful production functions.
With these functions, you can easily reproduce JCL and JES2 features, and have extra features
like "no exec mode", return code predefinition (customizable), internationalization.

Oracle Tuxedo Application Runtime for Batch uses a native shell interpreter for high level
functions. This approach enables you to add new runtime functions for specific production needs

Script Execution Phases
When submitted for execution within the Batch Runtime, a Korn shell script is processed through
three separate phases:

Input Phase
In this phase, the JOB card parameters are analyzed.

Conversion Phase
During this phase, the Batch Runtime performs the following actions:

• Expand all the external Korn shell scripts (procedures and/or includes) that are used
within the script so as to produce a single complete script.

• Resolve all the symbols that are used in the script replacing them by their current
values.

Execution Phase
The script is executed by the Batch Runtime.
2-2 Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 3
Using Batch Runtime
Configuration files
The Configuration files are implemented in the directory CONF of the RunTime Batch.

BatchRT.conf
This file contains variables definition.

These variables must be set before using the RunTime Batch.

Messages.conf
This file contains messages used by RTBatch.

The messages may be translated in a local language.

FunctionReturnCode.conf
This file contains internal codes associated with a message.

ReturnCode.conf
This file contains return codes associated with a messageand returned to the KSH script.
Oracle Tuxedo Application Runtime for Batch User Guide 3-1

Setting Environment Variables
Some variables (such as ORACLE_SID, COBDIR, LIBPATH, COBPATH …) are shared variables
between different components and are not described in this current document. See The Rehosting
Workbench Installation Guide.

Table 3-1 lists the environment variables are used in the KSH scripts and must be defined before
using the software.

Table 3-2 lists the environment variables are used by Batch Runtime and must be defined before
using the software.

Table 3-1 KSH script environment variables

Variable Usage

DATA Directory for permanent files.

TMP Directory for temporary application files.

SYSIN Directory where the sysin are stored.

MT_JOB_NAME Name of the job, managed by the Batch Runtime.

MT_JOB_PID PID (process id) of the job, managed by the Batch Runtime.

Table 3-2 Oracle Tuxedo Application Runtime for Batch environment variables

Variable Usage

PROCLIB Directory for PROC and INCLUDE files, used during the conversion
phase.

MT_ACC_FILEPATH File concurrency access, directory that contains the files AccLock and
AccWait. These files must be created empty before running the Batch
Runtime (see the BatchRT.conf configuration file).

MT_COBOL Depending on the used COBOL, must contain:

- “COBOL_MF” for MicroFocus

- “COBOL_IT” for CobolIT

(see the BatchRT.conf configuration file)
3-2 Oracle Tuxedo Application Runtime for Batch User Guide

MT_CTL_FILES Directory where the control file (CTL) used by the function
m_DBTableLoad (sqlldr with ORACLE, load and export with UDB).

MT_DB Depending on the target data base, must contain :

- “DB_ORACLE” for ORACLE 11g

- “DB_DB2LUW” for UDB 9.1

(see the BatchRT.conf configuration file)

MT_DB_LOGIN Database connection user.

MT_FROM_ADDRESS_MAIL From-Address used by the function m_SendMail when the option “-f” is
omitted.

MT_FTP_TEST Variable used by the function m_Ftp to do the tranfer or not (test mode).

MT_KSH Path of the used “ksh” (pdksh or ksh88 only)

MT_LOG Logs directory (without TuxJes).

MT_ROOT Directory where the Batch Runtime application has been installed.

(see the BatchRT.conf configuration file)

MT_SMTP_PORT Port used by the functions m_Smtp and m_SendMail (localhost by
default).

MT_SMTP_SERVER Server used by the functions m_Smtp and m_SendMail (25 by default).

MT_SORT Depending on the used SORT, must contain:

- “SORT_MicroFocus” for MicroFocus Sort Utility

- “SORT_SyncSort” for SyncSort Sort Utility

- “SORT_CIT” for citsort utility

(see the BatchRT.conf configuration file)

MT_SYSOUT Sysout directory (without TuxJes).

MT_TMP Directory for temporary internal files

(see the BatchRT.conf configuration file).

Table 3-2 Oracle Tuxedo Application Runtime for Batch environment variables

Variable Usage
Oracle Tuxedo Application Runtime for Batch User Guide 3-3

Creating a Script

General Structure of a Script
Oracle Tuxedo Application Runtime for Batch normalizes Korn shell script formats by proposing
a script model where the different execution phases of a job are clearly identified.

Oracle Tuxedo Application Runtime for Batch scripts respect a specific format that allows the
definition and the chaining of the different phases of the KSH (JOB).

Within Batch Runtime, a phase corresponds to an activity or a step on the source system.

A phase is identified by a label and delimited by the next phase.

At the end of each phase, the JUMP_LABEL variable is updated to give the label of the next phase
to be executed.

In the following example, the last functional phase sets JUMP_LABEL to JOBEND: this label allows
a normal termination of the job (exits from the phase loop).

The mandatory parts of the script (the beginning and end parts) are shown in bold and the
functional part of the script (the middle part) in normal style as shown in Table 3-3. The optional
part of the script must contain the labels, branching and end of steps as described below. The
items of the script to be modified are shown in italics.

Table 3-3 Script Structure

Script Description

#!/bin/ksh#

m_JobBegin -j
JOBNAME -s START -v
2.00

m_JobBegin is mandatory and must contain at least the following options:
• -j: internal job name
• -s: name of the first label to begin execution (usually should be START)
• -v: Minimum version number of Batch Runtime required for this script

(upward compatible).

while true ;do The "while true; do" loop provides a mechanism to simulate the movement from
one step to the next.

m_PhaseBegin m_PhaseBegin enables parameters to be initialized at the beginning of a step.
3-4 Oracle Tuxedo Application Runtime for Batch User Guide

case
${CURRENT_LABEL} in

The case statement enables a branching to the current step.

(START) The start label (used in the -s option of m_JobBegin)

JUMP_LABEL=STEP1 JUMP_LABEL is mandatory in all steps and gives the name of the next step.

;; ;; ends a step and are mandatory.

(STEP1) A functional step begins with (LABEL); where LABEL is the name of the step.

m_*

m_*

A typical step continues with a series of calls to Batch Runtime functions.

JUMP_LABEL=STEP2 There is always a branching to the next step (JUMP_LABEL=)

;; And always the ;; at the end of each step.

(PENULTIMATESTEP)

m_*

m_*

The last functional step has the same format as the others, except…

JUMP_LABEL=END_JOB

;;

(END_JOB)

For the label, which must point to END_JOB. The _ is necessary, because the
character is forbidden on z/OS.

break

;;

(*)

This step enables the processing loop to be broken.

m_RcSet
${MT_RC_ABORT:-S999}
"Unknown label :
${CURRENT_LABEL}"

break

;;

esac

This is a catch-all step that picks-up branching to unknown steps.

Table 3-3 Script Structure

Script Description
Oracle Tuxedo Application Runtime for Batch User Guide 3-5

Script Example
Listing 3-1 shows a Korn shell script example.

Listing 3-1 Korn shell Script Example

#!/bin/ksh

#@(#)--

#@(#)-

m_JobBegin -j METAW01D -s START -v 1.00 -c A

while true ;

do

 m_PhaseBegin

 case ${CURRENT_LABEL} in

(START)

1) 1st Step: DELVCUST

Delete the existing file.

2) 2nd Step: DEFVCUST

Allocates the Simple Sample Application VSAM customers file

#

m_PhaseEnddone m_PhaseEnd manages the end of a step including file management depending
on disposition and return codes.

 m_JobEnd m_JobEnd manages the end of a job including clearing-up temporary files and
returning completion code to job caller.

Table 3-3 Script Structure

Script Description
3-6 Oracle Tuxedo Application Runtime for Batch User Guide

-Step 1: Delete...

 JUMP_LABEL=DELVCUST

 ;;

(DELVCUST)

 m_FileAssign -d OLD FDEL ${DATA}/METAW00.VSAM.CUSTOMER

m_FileDelete ${DD_FDEL}

 m_RcSet 0

#

-Step 2: Define...

 JUMP_LABEL=DEFVCUST

 ;;

(DEFVCUST)

IDCAMS DEFINE CLUSTER IDX

 m_FileBuild -t IDX -r 266 -k 1+6 ${DATA}/METAW00.VSAM.CUSTOMER

 JUMP_LABEL=ENDJOB

 ;;

(ABORT)

 break

 ;;

(ENDJOB)

 break

 ;;

(*)

 m_RcSet ${MT_RC_ABORT} "Unknown label : ${JUMP_LABEL}"

 break

 ;;

esac
Oracle Tuxedo Application Runtime for Batch User Guide 3-7

m_PhaseEnd

done

m_JobEnd

#@(#)--

Defining and Using Symbols
Symbols are internal script variables that allow script statements to be easily modifiable. A value
is assigned to a symbol through the m_SymbolSet function as shown in Listing 3-2. To use a
symbol, use the following syntax: $[symbol]

Note: The use of brackets ([]) instead of braces ({}) is to clearly distinguish symbols from
standard Korn shell variables.

Listing 3-2 Symbol Use Examples

(STEP00)

 m_SymbolSet VAR=40

 JUMP_LABEL=STEP01

 ;;

(STEP01)

 m_FileAssign -d SHR FILE01 ${DATA}/PJ01DDD.BT.QSAM.KBSTO0$[VAR]

 m_ProgramExec BAI001

Creating a Step That Executes a Program
A step (also called a phase) is generally a coherent set of calls to Batch Runtime functions that
enables the execution of a functional (or technical) activity.

The most frequent steps are those that execute an application or utility program. These kind of
steps are generally composed of one or several file assignment operations followed by the
3-8 Oracle Tuxedo Application Runtime for Batch User Guide

execution of the desired program. All the file assignments operations must precede the program
execution operation shown in Listing 3-3

Listing 3-3 Application Program Execution Step Example

(STEPPR15)

m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO099

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO001

 m_OutputAssign -c “*” SYSOUT

m_FileAssign -i LOGIN

IN-STREAM DATA

_end

 m_FileAssign -d MOD LOGOUT ${DATA}/PJ01DDD.BT.QSAM.KBPRO091

m_ProgramExec BPRAB001 "20071120"

JUMP_LABEL=END_JOB

 ;;

Creating a Procedure
Oracle Tuxedo Application Runtime for Batch offers a set of functions to define and use
"procedures". These procedures follow generally the same principles as z/OS JCL procedures.

The advantages of procedures are:

Write a set of tasks once and use it several times.

Make this set of tasks dynamically modifiable.

Procedures can be of two types:

In-stream Procedures: Included in the calling script, this kind of procedure can be used
only in the current script.

External Procedures: Coded in a separate source file, this kind of procedure can be used in
multiple scripts.
Oracle Tuxedo Application Runtime for Batch User Guide 3-9

Creating an In-Stream Procedure
Unlike the z/OS JCL convention, an in-stream procedure must be written after the end of the main
JOB, that is: all the in-stream procedures belonging to a job must appear after the call to the
function m_JobEnd.

An in-stream procedure in a Korn shell script always starts with a call to the m_ProcBegin
function, followed by all the tasks composing the procedure and terminating with a call to the
m_ProcEnd function. Listing 3-4 is an example.

Listing 3-4 In-stream Procedure Example

m_ProcBegin PROCA

 JUMP_LABEL=STEPA

 ;;

(STEPA)

 m_FileAssign -c “*” SYSPRINT

m_FileAssign -d SHR SYSUT1

${DATA}/PJ01DDD.BT.DATA.PDSA/BIEAM00$[SEQ]

 m_FileAssign -d MOD SYSUT2 ${DATA}/PJ01DDD.BT.QSAM.KBIEO005

 m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

m_ProcEnd

Creating an External Procedure
External procedures do not require the use of the m_ProcBegin and m_ProcEnd functions;
simply code the tasks that are part of the procedure shown in Listing 3-5

In order to simplify the integration of a procedure’s code with the calling job, always begin a
procedure with:
3-10 Oracle Tuxedo Application Runtime for Batch User Guide

 JUMP_LABEL=FIRSTSTEP

 ;;

(FIRSTSTEP)

and end it with:

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

Listing 3-5 External Procedure Example

JUMP_LABEL=PR2STEP1

 ;;

(PR2STEP1)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRI001

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO001

 m_OutputAssign -c “*” SYSOUT

 m_FileAssign -d SHR LOGIN ${DATA}/PJ01DDD.BT.SYSIN.SRC/BPRAS002

 m_FileAssign -d MOD LOGOUT ${DATA}/PJ01DDD.BT.QSAM.KBPRO091

 m_ProgramExec BPRAB002

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

Using a Procedure
The use of a procedure inside a Korn shell script is made through a call to the m_ProcInclude
function.

As described in Script Execution Phases, during the Conversion Phase, a Korn shell script is
expanded by including the procedure's code each time a call to the m_ProcInclude function is
Oracle Tuxedo Application Runtime for Batch User Guide 3-11

encountered. It is necessary that after this operation, the resulting expanded Korn shell script still
respects the rules of the general structure of a script as defined in the General Structure of a Script.

A procedure, either in-stream or external, can be used in any place inside a calling job provided
that the above principals are respected shown in Listing 3-6

Listing 3-6 Call to the m_ProcInclude Function Example

…

(STEPPR14)

 m_ProcInclude BPRAP009

 JUMP_LABEL=STEPPR15

…

Modifying a Procedure at Execution Time
The execution of the tasks defined in a procedure can be modified in two different ways:

Modifying symbols and/or parameters

Symbols can be used inside a procedure and the values of these symbols can be specified
when calling the procedure.

Listing 3-7 and Listing 3-8 are examples.

Listing 3-7 Defining Procedure Example

m_ProcBegin PROCE

 JUMP_LABEL=STEPE

 ;;

(STEPE)

m_FileAssign -d SHR SYSUT1 ${DATA}/DATA.IN.PDS/DTS$[SEQ]

 m_FileAssign -d MOD SYSUT2 ${DATA}/DATA.OUT.PDS/DTS$[SEQ]

 m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}
3-12 Oracle Tuxedo Application Runtime for Batch User Guide

JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

m_ProcEnd

Listing 3-8 Calling Procedure Example

(COPIERE)

 m_ProcInclude PROCE SEQ="1"

 JUMP_LABEL=COPIERF

 ;;

Using Overrides for File Assignments
As specified in Best Practices, this way of coding procedures is provided mainly for supporting
Korn shell scripts resulting from z/OS JCL translation and it is not recommended for Korn shell
scripts newly written for the target platform.

The overriding of a file assignment is made using the m_FileOverride function that specifies a
replacement for the assignment present in the procedure. The call to the m_FileOverride
function must follow the call to the procedure in the calling script.

Listing 3-9 shows how to replace the assignment of the logical file SYSUT1 using the
m_FileOverride function.

Listing 3-9 m_FileOverride Function Example

m_ProcBegin PROCE

 JUMP_LABEL=STEPE

 ;;

(STEPE)

m_FileAssign -d SHR SYSUT1 ${DATA}/DATA.IN.PDS/DTS$[SEQ]
Oracle Tuxedo Application Runtime for Batch User Guide 3-13

 m_FileAssign -d MOD SYSUT2 ${DATA}/DATA.OUT.PDS/DTS$[SEQ]

m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

m_ProcEnd

Listing 3-10 m_FileOverride Procedure Call:

(COPIERE)

 m_ProcInclude PROCE SEQ="1"

m_FileOverride -i -s STEPE SYSUT1

Overriding test data

_end

JUMP_LABEL=COPIERF

 ;;

Controlling a Script's Behavior

Conditioning the Execution of a Step

Using m_CondIf, m_CondElse, and m_CondEndif
The m_CondIf, m_CondElse and m_CondEndif functions can be used to condition the execution
of one or several steps in a script. The behavior is similar to the z/OS JCL statement constructs
IF, THEN, ELSE and ENDIF.

The m_CondIf function must always have a relational expression as a parameter as shown in
Listing 3-11. These functions can be nested up to 15 times.
3-14 Oracle Tuxedo Application Runtime for Batch User Guide

Listing 3-11 m_CondIf, m_CondElse, and m_CondEndif Example

…

(STEPIF01)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_ProgramExec BAX001

 m_CondIf "STEPIF01.RC,LT,5"

 JUMP_LABEL=STEPIF02

 ;;

(STEPIF02)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF002

 m_ProgramExec BAX002

 m_CondElse

 JUMP_LABEL=STEPIF03

 ;;

(STEPIF03)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF003

 m_ProgramExec BAX003

 m_CondEndif

Using m_CondExec
The m_CondExec function is used to condition the execution of a step. The m_CondExec must
have at least one condition as a parameter and can have several conditions at the same time. In
case of multiple conditions, the step is executed only if all the conditions are satisfied.

A condition can be of three forms:
Oracle Tuxedo Application Runtime for Batch User Guide 3-15

Relational expression testing previous return codes:

m_CondExec 4,LT,STEPEC01

EVEN: Indicates that the step is to be executed even if a previous step terminated
abnormally:

m_CondExec EVEN

ONLY: Indicates that the step is to be executed only if a previous step terminated
ab-normally:

m_CondExec ONLY

The m_CondExec function must be the first function to be called inside the concerned step as
shown in Listing 3-12.

Listing 3-12 m_CondExec Example with Multiple Conditions

…

(STEPEC01)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_ProgramExec BACC01

 JUMP_LABEL=STEPEC02

 ;;

(STEPEC02)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF002

 m_ProgramExec BACC02

 JUMP_LABEL=STEPEC03

 ;;

(STEPEC03)

 m_CondExec 4,LT,STEPEC01 8,GT,STEPEC02 EVEN

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000
3-16 Oracle Tuxedo Application Runtime for Batch User Guide

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF003

Controlling the Execution Flow
The script's execution flow is determined, and can be controlled, in the following ways:

The start label specified by the m_JobBegin function: this label is usually the first label in
the script, but can be changed to any label present in the script if the user wants to start the
script execution from a specific step.

The value assigned to the JUMP_LABEL variable in each step: this assignment is mandatory
in each step, but its value is not necessarily the label of the following step.

The usage of the m_CondExec, m_CondIf, m_CondElse and m_CondEnd functions: see
Conditioning the Execution of a Step.

The return codes and abnormal ends of steps.

Changing Default Error Messages
If Batch Runtime administrator wishes to change the default messages (to change the language
for example), this can be done through a configuration file whose path is specified by the
environment variable: MT_DISPLAY_MESSAGE_FILE.

This file is a CSV (comma separated values) file with a semicolon as a separator. Each record in
this file describes a certain message and is composed of 6 fields:

1. Message identifier.

2. Functions that can display the message (can be a generic name using '*').

3. Level of display.

4. Destination of display.

5. Reserved for future use.

6. Message to be displayed.
Oracle Tuxedo Application Runtime for Batch User Guide 3-17

Using Files

Creating a File Definition
Files are created using the m_FileBuild or the m_FileAssign function.

Four file organizations are supported:

Sequential file

Line sequential file

Relative file

Indexed file

You must specify the file organization for the file being created. For indexed files, the length and
the primary key specifications must also be mentioned.

m_FileBuild Examples
Definition of a line sequential file

m_FileBuild -t LSEQ ${DATA}/PJ01DDD.BT.VSAM.ESDS.KBIDO004

Definition of an indexed file with a record length of 266 bytes and a key starting at the first
bytes and having a size of 6 bytes.

m_FileBuild -t IDX -r 266 -k 1+6 ${DATA}/METAW00.VSAM.CUSTOMER

m_FileAssign examples
Definition of a new sequential file with a record length of 80 bytes.

m_FileAssign -d NEW -t SEQ -r 80 ${DATA}/PJ01DDD.BT.VSAM.ESDS.KBIDO005

Assigning and Using Files
When using Batch Runtime, a file can be used either by a Batch Runtime function (for example:
m_FileSort, m_FileRename etc.) or a by a program, such as a COBOL program.

In both cases, before being used, a file must first be assigned. Files are assigned using the
m_FileAssign function that:

Specifies the DISP mode (Read or Write)
3-18 Oracle Tuxedo Application Runtime for Batch User Guide

Specifies if the file is a generation file

Defines an environment variable linking the logical name of the file (IFN) with the real
path to the file (EFN).

The environment variable defined via the m_FileAssign function is named: DD_IFN. This
naming convention is due to the fact that it is the one used by Micro Focus Cobol to map internal
file names to external file names.

Once a file is assigned, it can be passed as an argument to any of Batch Runtime functions
handling files by using the ${DD_IFN} variable.

For COBOL programs, the link is made implicitly by Micro Focus Cobol.

Listing 3-13 Example of File Assignment

(STEPCP01)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIDI001

 m_FileAssign -d SHR OUTFIL ${DATA}/PJ01DDD.BT.VSAM.KBIDU001

 m_FileLoad ${DD_INFIL} ${DD_OUTFIL}

…

Listing 3-14 Example of Using a File by a COBOL Program

(STEPCBL1)

 m_FileAssign -d OLD INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIFI091

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIFO091

 m_ProgramExec BIFAB090

…

Oracle Tuxedo Application Runtime for Batch User Guide 3-19

Using a Generation File (GDG)
In order to reproduce the notion of generation files, present on the z/OS mainframe, but which is
not a UNIX standard, Batch Runtime provides a set of functions to handle this type of file.

Defining a Generation File
A GDG (generation data group) file is defined through the m_GenDefine function. The only
parameter to be specified is the maximum number of versions to keep on the disk:

m_GenDefine -s 31 ${DATA}/PJ01DDD.BT.GDG

Note: the function m_GenDefine is not mandatory to define a GDG file. As shown in
Listing 3-15, the GDG file will be created with a limit of 9999.

Listing 3-15 Example of using a generation file:

(STEP03)

 m_FileAssign -d SHR SYSUT1 ${DATA}/PJ01DDD.BT.FILE1

 m_FileAssign -d NEW,CATLG -g +1 SYSUT2 ${DATA}/PJ01DDD.BT.GDG

 m_FileRepro -i SYSUT1 -o SYSUT2

Using a Generation File
The m_FileAssign function has a special parameter (-g) that serves to specify that the file being
assigned is a generation file and to set the desired version of the file as shown in Listing 3-16.

Listing 3-16 Example of Using a Generation File:

(STEPDD05)

 m_FileAssign -d SHR -g +1 INFIL ${DATA}/PJ01DDD.BT.GDG

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBDDO002

 m_ProgramExec BDDAB001
3-20 Oracle Tuxedo Application Runtime for Batch User Guide

Adressing a Generation Group
The m_FileAssign function may be used to address all the generations of a GDG.

As shown in Listing 3-17, the SORT function envolves all generations of the GDG file named
AP.GDG.

Listing 3-17 GDG File Example

(PT0010)

 m_FileAssign -d SHR SORTIN ${DATA}/APP.GDG

 m_FileAssign -d NEW,CATLG,DELETE SORTOUT ${DATA}/AP.GDG.SORT

m_FileAssign -i SYSIN

SORT FIELDS=COPY

_end

 m_FileSort -s SYSIN -i SORTIN -o SORTOUT

Using an In-Stream File
To define and use a file whose data is written directly inside the Korn shell script, use the
m_FileAssign function with the -i parameter. By default the string _end is the “end” delimiter
of the in-stream flow as shown in Listing 3-18.

Listing 3-18 In-stream Data Example

(STEP1)

m_FileAssign -i INFIL

data record 1

data record 2

…

_end
Oracle Tuxedo Application Runtime for Batch User Guide 3-21

Using a Set of Concatenated Files
To use a set of files as a concatenated input (which in z/Os JCL was coded as a DD card, where
only the first one contains a label), use the m_FileAssign function with the -C parameter as
shown in Listing 3-19.

Listing 3-19 Using a Concatenated Set of Files Example

(STEPDD02)

m_FileAssign -d SHR INF ${DATA}/PJ01DDD.BT.QSAM.KBDDI002

m_FileAssign -d SHR -C ${DATA}/PJ01DDD.BT.QSAM.KBDDI001

m_ProgramExec BDDAB001

Using an External “sysin”
To use an “external sysin” file which contains commands to be executed, use the
m_UtilityExec function.

m_FileAssign -d NEW SYSIN ${SYSIN}/SYSIN/MUEX07

m_UtilityExec

Deleting a File
Files (including generation files) can be deleted using the m_FileDelete function:

m_FileDelete ${DATA}/PJ01DDD.BT.QSAM.KBSTO045

RDB Files
In a migration project from z/Os to UNIX/Linux, some permanent data files may be converted to
relational tables. See the File-to-Oracle chapter of the Oracle Tuxedo Application Runtime
Workbench.
3-22 Oracle Tuxedo Application Runtime for Batch User Guide

When a file is converted to a relational table, this change has an impact on the components that
use it. Specifically, when such a file is used in a z/Os JCL, the converted Korn shell script
corresponding to that JCL should be able to handle operations that involve this file.

In order to keep the translated Korn shell script as standard as possible, this change is not handled
in the translation process. Instead, all the management of this type of file is performed at
execution time within Batch Runtime.

In other words, if in the z/OS JCL there was a file copy operation involving the converted file,
this is translated to a standard copy operation for files in Batch Runtime, in other words an
m_FileLoad operation).

The management of a file converted to a table is made possible through an RDB file. An RDB
file is a file that has the same name as the file that is converted to a table but with an additional
suffix:.rdb.

Each time a file-related function is executed by Batch Runtime, it checks whether the files were
converted to table (through testing the presence of a corresponding .rdb file). If one of the files
concerned have been converted to a table, then the function operates the required intermediate
operations (such as: unloading and reloading the table to a file) before performing the final action.

All of this management is transparent to the end-user.

Using an RDBMS Connection
When executing an application program that needs to connect to the RDBMS, the -b option must
be used when calling the m_ProgramExec function.

Connection and disconnection (as well as the commit and rollback operations) are handled
implicitly by Batch Runtime and can be defined using the following two methods:

Set the environment variable MT_DB_LOGIN before booting the TuxJES system.

Note: In this case, all executing jobs this variable.

Set its value in the TuxJES Security Configuration file for different users.

The MT_DB_LOGIN value must use the following form: dbuser/dbpasswd[@ssid]or “/”.

Note: "/" should be used when the RDBMS is configured to allow the use of UNIX
authentication and not RDBMS authentication, for the database connexion user.

Please check with the database administrator whether "/" should be used or not.

The -b option must also be used if the main program executed does not directly use the RDBMS
but one of its subsequent sub-programs does as shown in Listing 3-20.
Oracle Tuxedo Application Runtime for Batch User Guide 3-23

Listing 3-20 RDBMS Connection Example

(STEPDD02)

 m_FileAssign -d MOD OUTF ${DATA}/PJ01DDD.BT.QSAM.REPO001

 m_ProgramExec -b DBREP001

The m_ProgramExec function may submit three types of executable files (Cobol executable,
command language script, or C executable). It launchs the runb program. We have provided the
runb for $ARTDIR/Batch_RT/ejr_mf_ora (on Linux) and ejr_ora (other platforms). If you
use neither Microfocus COBOL compiler nor Oracle Database, go to $ARTDIR/Batch_RT/ejr
and run "make.sh" to generate your required runb.

The runb program, runtime compiled with database librairies, runs the runbatch program.

The runbatch program, is in charge to:

- do the connection to the database (if necessary)

- run the user program

- do the commit or rollback (if necessary)

- do the disconnection from the database (if necessary)
3-24 Oracle Tuxedo Application Runtime for Batch User Guide

Submitting a Job using INTRDR facility
The INTRDR facility allows you to submit the contents of a sysout to TuxJES (see the TuxJES
documentation). If TuxJES is not present, a command “nohup EJR” is used.

Example:

m_FileAssign -d SHR SYSUT1 ${DATA}/MTWART.JCL.INFO

m_OutputAssign -w INTRDR SYSUT2

m_FileRepro -i SYSUT1 -o SYSUT2

The contents of the file ${DATA}/MTWART.JCL.INFO (ddname SYSUT1) is copied into the
file which ddname is SYSUT2 and using the option “-w INTRDR” is submitted.

Note that the ouput file must contain valid ksh syntax.

Submitting a Job With EJR
When using Batch Runtime, TuxJES can be used to launch jobs (see the TuxJES documentation),
but a job can also be executed directly using the EJR spawner.

Before performing this type of execution, ensure that the entire context is correctly set. This
includes environment variables and directories required by Batch Runtime.

Example of launching a job with EJR:

EJR DEFVCUST.ksh

For a complete description of the EJR spawner, please refer to the Oracle Tuxedo Application
Runtime for Batch Reference Guide.

LOG File Structure
For each launched job, Batch Runtime produces a log file containing information for each step
(phase) that was executed. This log file has the following structure: as shown in Listing 3-21.

Listing 3-21 Log File Example

JOB Jobname BEGIN AT 20091212/22/09 120445

BEGIN PHASE Phase1

Log produced for Phase1
Oracle Tuxedo Application Runtime for Batch User Guide 3-25

.......

.......

.......

END PHASE Phase1 (RC=Xnnnn, JOBRC=Xnnnn)

BEGIN PHASE Phase2

Log produced for Phase2

.......

.......

.......

END PHASE Phase2 (RC=Xnnnn, JOBRC=Xnnnn)

..........

..........

BEGIN PHASE END_JOB

..........

END PHASE END_JOB (RC=Xnnnn, JOBRC=Xnnnn)

JOB ENDED WITH CODE (C0000})

Or

JOB ENDED ABNORMALLY WITH CODE (S990})

When not using TuxJes, the log file is created under the ${MT_LOG} directory with the following
name: <Job name>_<TimeStamp>_<Job id>.log

For more information, see Using Tuxedo Job Enqueueing Service (TuxJES).

Using Batch Runtime With a Job Scheduler
Entry points are provided in some functions (m_JobBegin, m_JobEnd, m_PhaseBegin,
m_PhaseEnd) in order to insert specific actions to be made in relation with the selected Job
Scheduler.
3-26 Oracle Tuxedo Application Runtime for Batch User Guide

Executing an SQL request
A SQL request may be executed using the function m_ExecSQL.

Depending on the target database, the function executes a “sqlplus” command with ORACLE
database, or a “db2 -tsx” command with UDB.

Note that the environment variable MT_DB_LOGIN must be set (database connection user login).

The SYSIN file must contain the SQL requests and the user has to verify the contents regarding
the database target.
Oracle Tuxedo Application Runtime for Batch User Guide 3-27

3-28 Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 4
Best Practices
Adapting z/OS Capabilities on a UNIX/Linux Environment
Due to the fact that the Batch Runtime is generally used to execute Korn shell scripts issued from
the migration of a z/OS JCL asset, several specific features are provided in order to reproduce
some capabilities of z/OS.

The usage of some of these functions may not have a lot of sense in the target platform when
modifying migrated jobs or writing new ones.

In this chapter, we present some of these features along with other best practices that we
recommend.

Defining Paths for Procedures, Includes and Programs
In z/OS JCLs, the following cards are used to define the libraries where procedures, includes and
programs are stored:

JOBLIB, STEPLIB for programs.

JCLLIB for procedures and steps.

Oracle Tuxedo Application Runtime for Batch offers the functions m_JobLibSet,
m_StepLibSet and m_JclLibSet as a replacement to these statements.

Even if these functions provide the same functionality, for modified and new jobswe encourage
you to adopt the UNIX common rule which is to directly set the environment variables where the
programs, procedures and includes are searched for.
Oracle Tuxedo Application Runtime for Batch User Guide 4-1

The main variables to set are:

PATH : environment variable that specifies where to find executable programs.

COBPATH : environment variable that specifies where to find object Cobol programs.

PROCLIB : environment variable that specifies where to find procedures and includes.

Prohibiting the Use of UNIX Commands
In order to trap every possible error or abnormal end, it is better to avoid using basic UNIX
commands (for example: cp / ls / …).

We recommend that you use only the functions provided by the Batch Runtime.

Avoiding the Use of File Overriding
In order to keep jobs simple and understandable, we recommend you avoid using the of file
overriding mechanism in new or modified jobs.
4-2 Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 5
Using Tuxedo Job Enqueueing Service
(TuxJES)
This chapter contains the following topics:

Overview

Configuring a TuxJES System

Using TuxJES

Overview
The batch job system is an important mainframe business application model. The Tuxedo Job
Enqueueing Service (TuxJES) emulation application provides smooth mainframe application
migration to open systems. TuxJES implements a subset of the mainframe JES2 functions (for
example, submit a job, display a job, hold a job, release a job, and cancel a job).

TuxJES addresses the following batch job phases:

Input

Conversion

Processing

Purge

Requirements
TuxJES is an Oracle Tuxedo application; Oracle Tuxedo is required in order to run TuxJES.
Oracle Tuxedo Application Runtime for Batch User Guide 5-1

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
A shared file system (for example, NFS) is required in order to deploy TuxJES in distributed
environment.

TuxJES Components
TuxJES includes the following key components:

genappprofile

Generates the security profile for Oracle Tuxedo applications

artjesadmin

TuxJES command interface. It is an Oracle Tuxedo client

ARTJESADM

TuxJES administration server. It is an Oracle Tuxedo server.

ARTJESCONV

TuxJES conversion server. It is an Oracle Tuxedo server.

ARTJESINITIATOR

TuxJES Job Initiator. It is an Oracle Tuxedo server.

ARTJESPURGE

TuxJES purge server. It is an Oracle Tuxedo server.

For more information, see the Oracle Tuxedo Application Runtime for Batch Reference
Guide.

Configuring a TuxJES System

Setting up TuxJES as an Oracle Tuxedo Application
TuxJES is an Oracle Tuxedo application. Most of the TuxJES components are Oracle Tuxedo
client or Oracle Tuxedo servers. You must first configure TuxJES as an Oracle Tuxedo
application. The environment variable JESDIR must be configured correctly which points to the
directory where TuxJES installed.

Oracle Tuxedo Configuration File
Listing 1 shows is an Oracle Tuxedo configuration file (UBBCONFIG) example segment for a
TuxJES system.
5-2 Oracle Tuxedo Application Runtime for Batch User Guide

Se t t ing up Tux JES as an Orac le Tuxedo Appl i cat ion
Listing 1 Oracle Tuxedo UBBCONFIG File Example for the TuxJES System

*GROUPS

QG

 LMID=L1 GRPNO=2 TMSNAME=TMS_QM TMSCOUNT=2

 OPENINFO="TUXEDO/QM:/jes2queue/QUE:JES2QSPACE"

ARTG

 LMID=L1 GRPNO=4

EVTG

 LMID=L1 GRPNO=8

*SERVERS

DEFAULT:

 CLOPT="-A"

TMUSREVT SRVGRP=EVTG SRVID=1 CLOPT="-A"

TMQUEUE

 SRVGRP = QG SRVID = 1

 RESTART = Y CONV = N MAXGEN=10

 CLOPT = "-s JES2QSPACE:TMQUEUE -- -t 5 "

ARTJESADM SRVGRP =ARTG SRVID = 1 MIN=1 MAX=1

 CLOPT = "-A -- -i jesconfig"

ARTJESCONV SRVGRP =ARTG SRVID = 20 MIN=1 MAX=1

 CLOPT = "-A --"

ARTJESINITIATOR SRVGRP =ARTG SRVID = 30

 CLOPT = "-A -- -c ABCDEFG

ARTJESPURGE SRVGRP =ARTG SRVID = 100

 CLOPT = "-A --"
Oracle Tuxedo Application Runtime for Batch User Guide 5-3

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
The following TuxJES servers should be included in the Oracle Tuxedo configuration file
(UBBCONFIG):

ARTJESADM

ARTJESCONV

ARTJESINITIATOR

ARTJESPURGE

Note: Multiple instances of ARTJESADM, ARTJESCNOV, ARTJESINITIATOR and ARTJESPURGE
can be configured.

For the TuxJES administration server ARTJESADM, a TuxJES configuration file should be
specified using the -i option. In the Oracle Tuxedo configuration file (UBBCONFIG),
ARTJESADM should be configured in front of ARTJESCONV, ARTJESINITIATOR, or ARTJESPURGE
servers.

For more, see the Oracle Tuxedo Application Runtime for Batch Reference Guide.

TuxJES uses the Oracle Tuxedo /Q component, therefore an Oracle Tuxedo group with an Oracle
Tuxedo messaging server TMQUEUE with TMS_QM configured is required in the
UBBCONFIG file. The name of the /Q queue space should be configured as JES2QSPACE.

TuxJES uses the Oracle Tuxedo Event component, therefore an Oracle Tuxedo user event server,
TMUSREVT is required in the UBBCONFIG file.

A TuxJES system can be either an Oracle Tuxedo SHM application which runs on a single
machine, or an Oracle Tuxedo MP application which runs on multiple machines.

For more information on how to set up Oracle Tuxedo application, see Oracle Tuxedo related
documentation.

Oracle Tuxedo /Q Queue Space and Queue Creation
A /Q queue space with name JES2QSPACE must be created for a TuxJES system. And some /Q
queues should be created within this queue space. TuxJES provides a sample shell script
(jesqinit) to create the queue space (JES2QSPACE) and the queues. For more information, see
the Oracle Tuxedo Application Runtime Batch Reference Guide.

File System Configuration
TuxJES uses a file system to communicate with Batch Execution Engine. A directory is created
on the file system for the communication between TuxJES and Batch Execution Engine. The
name of the directory should be specified in the TuxJES configuration file. This directory should
5-4 Oracle Tuxedo Application Runtime for Batch User Guide

Se t t ing up Tux JES as an Orac le Tuxedo Appl i cat ion
reside at a shared file system (for example, NFS) if you want to deploy the TuxJES system on
multiple machines.

TuxJES Configuration File
A configuration file can be specified for the TuxJES administration server ARTJESADM. The
following parameters can be configured in the configuration file:

JESROOT

The root directory to store job information. It is a mandatory attribute. If this
directory does not exist, ARTJESADM creates it automatically.

DEFAULTJOBCLASS

The default job class if the job class is not set in JCL. It is an optional attribute. The
default job class is A if this attribute is not set.

DEFAULTJOBPRIORITY

The default job priority if the job priority is not set in JCL. It is an optional
attribute. The default job priority is 0 if this attribute is not set.

DUPL_JOB=NODELAY

If it is not set, only one job can be in execution status for a job name. NODELAY will
remove the dependency check. The default value is delay execution.

EVENTPOST=S,C,E,P,A

Specifies whether events are posted for a job at particular stages.
S: Job submission event.
C: Job conversion complete event.
E:Job execution complete event.
P: Job purge event.
A: all supported events
If EVENTPOST is not specified, no events are posted. The data buffer with event
post is FML32 type and the fields are defined in tuxjes/include/jesflds.h.

JOBREPOSITORY

The path of the job repository where jobs are stored. The script file path inputted
in job submitting may be a relative path in JOBREPOSITORY if it is set.

TuxJES Security Configuration
TuxJES leverages the Oracle Tuxedo security mechanism to implement authentication. If
authentication is enabled, a security profile should be generated using the genapprofile utility
and it should be used as a artjesadmin parameter to access the TuxJES system. The user used
Oracle Tuxedo Application Runtime for Batch User Guide 5-5

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
in the profile will be the job owner. A job only can be administrated by its owner, such as cancel,
purge, hold and release. A job can be viewed by everybody. If a job is without owner, it can be
manipulated by everyone.

Even if an Oracle Tuxedo application does not have security configured, the genappprofile
utility still can be used to enforce job owner permission checking and store the database
connection MT_DB_LOGIN.

Using TuxJES
After the TuxJES system starts, you can use the artjesadmin utility to submit a job, hold a job,
release a job, cancel a job, purge a job, display the job information, or subscribe event for job
status change.

Submitting a Job
You can submit a job using the artjesadmin subcommand submitjob:

submitjob(smj) -i scriptfile

The scriptfile parameter is the job script to be submitted. The job script is generated by Oracle
Tuxedo ART Workbench from a JCL.It can be an absolute path format, a relative path in the
current working directory, or a relative path in JOBREPOSITORY if it is set. Its length is limited to
1023.

artjesadmin also supports direct job submission using the following format:
artjesadmin -i scriptfile

Displaying Job Information
You can display the information of a job or a series of jobs using the artjesadmin subcommand
printjob:

printjob(ptj) -n jobname | -j jobid | -c job_class |-a [-v]

-n jobname: Display jobs with given job name
-j jobid: Display a particular job information
-c job_class: Display a particular class jobs information
-a: Display all jobs
-v: Verbose mode

The output of the printjob subcommand includes:
5-6 Oracle Tuxedo Application Runtime for Batch User Guide

Holding a Job
JOBNAME: The job Name

JobID: The Job ID generated by TuxJES system

Owner: The submission user of the job

Prty: Priority of the job

C: Job Class

Status: Job Status
EXECUTING: a job is running
CONVING: a job waiting for conversion
WAITING: a job waiting for execution
DONE: a job finished successfully
FAIL: a job finished but failed
HOLD_WAITING: a job is in hold state after conversion
HOLD_CONVING: a job is in hold state without conversion
INDOUBT: a job is in doubt state due to its initiator restarted

Submit time: The submit time of the job

Step: The current running job step. It is only applicable to running jobs.

Type Run: The TYPRUN definition of the job.

Machine: Only for running/done/failed jobs. It is the machine name that the job is/was
running on.

CPU usage: The user CPU usage and system CPU usage for the job execution.

Execution status: Job execution status.

Result: Job operation result, “OK” or error message.

Holding a Job
You can hold a job or a series of jobs which are in CONVING or WAITING status using the
artjesadmin subcommand holdjob:

holdjob(hj) -n job name | -j jobid | -c job_class | -a

-n jobname: hold jobs with given job name
Oracle Tuxedo Application Runtime for Batch User Guide 5-7

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
-j jobid: hold a particular job
-c job_class: hold a particular class jobs
-a: hold all jobs

Releasing a Job
You can release a job or a series of jobs which are in HOLD_WAITING or HOLD_CONVING status
using the artjesadmin subcommand releasejob:

releasejob(rlj) -n job name | -j jobid | -c job_class | -a

-n jobname: release jobs with given job name
-j jobid: release a particular job
-c job_class: release a particular class jobs
-a: release all jobs

Canceling a Job
You can cancel a job or a series of jobs using the artjesadmin subcommand canceljob:

canceljob(cj) -n job name | -j jobid | -c job_class | -a

-n jobname: cancel jobs with given job name
-j jobid: cancel a particular job
-c job_class: cancel a particular class jobs
-a: cancel all jobs

Purging a Job
You can purge a job or a series of jobs using the artjesadmin subcommand purgejob:

purgejob(pgj) -n job name | -j jobid | -a

-n jobname: purge jobs with given job name
-j jobid: purge a particular job
-a: purge all jobs

Completed jobs in the DONE or FAIL status are moved to the purge queue. For other jobs,
purgejob has same effect as canceljob. The purgejob command does not purge the job
directly. The ARTJESPURGE server deletes the job from the TuxJES system.
5-8 Oracle Tuxedo Application Runtime for Batch User Guide

Disp lay ing/Changing ARTJES IN IT IATOR Conf igurat ion
Displaying/Changing ARTJESINITIATOR Configuration
You can display the number of maximum concurrent executing jobs of an ARTJESINITIATOR
server using the artjesadmin subcommand printconcurrent:

printconcurrent(pco) -g groupname -i serverid

-g groupname: the Tuxedo group name of the ARTJESINITIATOR server
-i serverid: the Tuxedo server id of the ARTJESINITIATOR server

You can change the number of maximum concurrent executing jobs of an ARTJESINITIATOR
server using the artjesadmin subcommand changeconcurrent:

changeconcurrent(chco) -g groupname -i serverid -n concurrent_num

-g groupname: the Tuxedo group name of the ARTJESINITIATOR server
-i serverid: the Tuxedo server id of the ARTJESINITIATOR server
-n concurrent_num: the number of maximum concurrent executing jobs

Event Subscribing/Unsubscribing
You can subscribe or unsubscribe job status change event using the artjesadmin subcommand
event:

event (et) [-t S,C,E,P,A] on|off

S: job submission event
C: job conversion complete event
E: job execution finish event
P: job purge event
A: all supported events. If the event is set to "on", A is the default.
on |off: The submission is on or off. the "on" setting can be used with the -t
option.

After subscribing to an event, you are notified on the artjesadmin console when the
corresponding event is generated.

See Also
Oracle Tuxedo Application Runtime for Batch Reference Guide
Oracle Tuxedo Application Runtime for Batch User Guide 5-9

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
5-10 Oracle Tuxedo Application Runtime for Batch User Guide

	Oracle Tuxedo Application Runtime for Batch
	11g Release 1 (11.1.1.2)

	Oracle Tuxedo Application Runtime for Batch Users Guide, 11g Release 1 (11.1.1.2)
	Introduction
	Purpose
	Organization
	See Also

	Overview of the Batch Runtime Environment
	Oracle Tuxedo Application Runtime for Batch Presentation and Structure
	Technical Functions
	High-Level Functions
	Interface-Level Functions

	Script Execution Phases

	Using Batch Runtime
	Configuration files
	BatchRT.conf
	Messages.conf
	FunctionReturnCode.conf
	ReturnCode.conf

	Setting Environment Variables
	Creating a Script
	General Structure of a Script
	Script Example
	Defining and Using Symbols
	Creating a Step That Executes a Program
	Creating a Procedure
	Creating an In-Stream Procedure
	Creating an External Procedure

	Using a Procedure
	Modifying a Procedure at Execution Time
	Using Overrides for File Assignments

	Controlling a Script's Behavior
	Conditioning the Execution of a Step
	Using m_CondIf, m_CondElse, and m_CondEndif
	Using m_CondExec

	Controlling the Execution Flow
	Changing Default Error Messages

	Using Files
	Creating a File Definition
	m_FileBuild Examples
	m_FileAssign examples

	Assigning and Using Files
	Using a Generation File (GDG)
	Defining a Generation File
	Using a Generation File
	Adressing a Generation Group

	Using an In-Stream File
	Using a Set of Concatenated Files
	Using an External “sysin”
	Deleting a File
	RDB Files
	Using an RDBMS Connection

	Submitting a Job using INTRDR facility
	Submitting a Job With EJR
	LOG File Structure
	Using Batch Runtime With a Job Scheduler
	Executing an SQL request

	Best Practices
	Adapting z/OS Capabilities on a UNIX/Linux Environment
	Defining Paths for Procedures, Includes and Programs
	Prohibiting the Use of UNIX Commands
	Avoiding the Use of File Overriding

	Using Tuxedo Job Enqueueing Service (TuxJES)
	Overview
	Requirements
	TuxJES Components

	Configuring a TuxJES System
	Setting up TuxJES as an Oracle Tuxedo Application
	Oracle Tuxedo Configuration File
	Oracle Tuxedo /Q Queue Space and Queue Creation
	File System Configuration
	TuxJES Configuration File
	TuxJES Security Configuration

	Using TuxJES
	Submitting a Job
	Displaying Job Information
	Holding a Job
	Releasing a Job
	Canceling a Job
	Purging a Job
	Displaying/Changing ARTJESINITIATOR Configuration
	Event Subscribing/Unsubscribing

	See Also

