
Oracle® Service Architecture Leveraging Tuxedo (SALT)
Configuration Guide
11g Release 1 (11.1.1.2)

April 2011

Oracle Service Architecture Leveraging Tuxedo (SALT) Configuration Guide, 11g Release 1 (11.1.1.2)

Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Oracle SALT Configuration Guide
Configuring Oracle Tuxedo Web Services. -1

Using Oracle Tuxedo Service Metadata Repository for Oracle SALT -2

Defining Service-Level Keywords for Oracle SALT. -2

Defining Service Parameters for Oracle SALT . -6

Configuring Native Oracle Tuxedo Services. -8

Creating a Native WSDF . -9

Defining the SOAP Header . -9

Defining WSBinding Object . -10

Defining Service Object . -11

Configuring Message Conversion Handler . -12

Using WS-Policy Files . -13

Generating a WSDL File from a Native WSDF. -15

Configuring External Web Services . -15

Converting a WSDL file into Oracle Tuxedo Definitions -15

WSDL-to-Tuxedo Service Metadata Keyword Mapping -17

WSDL-to-WSDF Mapping . -18

Post Conversion Tasks . -19

Resolving Naming Conflict For the Generated Oracle SALT Proxy Service
Definitions . -19

Loading the Generated SALT Proxy Service Metadata Definitions. -20

Setting Environment Variables for GWWS Runtime -20

Creating the Oracle SALT Deployment File . -21

Importing the WSDF Files . -21

Configuring the GWWS Servers . -22

Configuring GWWS Server Level Properties. -23

Configuring Multiple Encoding Support . -24
Oracle SALT Configuration Guide i

Configuring System Level Resources . -26

Configuring Certificates . -27

Configuring Plug-in Libraries . -28

Configuring Advanced Web Service Messaging Features -28

Web Service Addressing. -29

Configuring the Addressing Endpoint for Outbound Services -29

Disabling WS-Addressing. -30

Web Service Reliable Messaging . -31

Creating the Reliable Messaging Policy File . -31

Specifying the Reliable Messaging Policy File in the WSDF File -32

Configuring Security Features. -33

Configuring Transport Level Security . -33

Setting Up SSL Link-Level Security . -33

Configuring Inbound HTTP Basic Authentication -33

Configuring Outbound HTTP Basic Authentication. -34

Configuring Message Level Web Service Security . -35

Main Use Cases of Web Service Security. -35

Using WS-Security Policy Files . -36

Compiling SALT Configuration . -37

Configuring the UBBCONFIG File for Oracle SALT . -38

Configuring the TMMETADATA Server in the *SERVERS Section -39

Configuring the GWWS Servers in the *SERVERS Section. -39

Updating System Limitations in the UBBCONFIG File -40

Configuring Certificate Password Phrase For the GWWS Servers -41

Configuring Oracle Tuxedo Authentication for Web Service Clients -42

Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication . -43

Configuring Oracle SALT In Oracle Tuxedo MP Mode . -43
Oracle SALT Configuration Guide ii

Migrating from Oracle SALT 1.1 . -44

Running GWWS servers with SALT 1.1 Configuration File. -44

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration
File. -45

Configuring Oracle Tuxedo SCA Components . -47

Configuring an SCA ATMI Client. -47

Configuring an SCA JATMI Client . -49

Configuring an SCA Workstation Client. -50

Configuring an SCA Web Service Client . -51

Configuring an SCA ATMI Server . -53

Configuring an SCA Web Service Server . -55

Configuring SCA Client Security . -58

Oracle Tuxedo Application Domain Security . -58

Oracle Tuxedo Link-Level Security. -60

Configuring Link-Level Encryption . -61

Configuring Transport Layer Security . -61

Configuring Service Contract Discovery . -62

tpforward Support . -63

Service Contract Text File Output . -64

Examples . -66

Configuring Oracle SALT WS-TX Support. -67

Configuring Transaction Log Device . -67

Registration Protocol . -68

Configuring WS-TX Transactions. -68

Configuring Incoming Transactions. -69

Error Conditions . -70

Configuring Outbound Transactions . -70

Error Conditions . -71
Oracle SALT Configuration Guide iii

Configuring Maximum Number of Transactions . -71

Configuring Policy Assertions . -72

Policy. xml File . -72

Inbound Transactions . -72

Outbound Transactions. -73

WSDL Generation. -73

WSDL Conversion . -73

See Also . -73
iv Oracle SALT Configuration Guide

Oracle SALT Configuration Guide v

vi Oracle SALT Configuration Guide

Oracle SALT Administration Guide 2-1

C H A P T E R 1

Oracle SALT Configuration Guide

This section contains the following topics:

Configuring Oracle Tuxedo Web Services

Configuring Oracle Tuxedo SCA Components

Configuring Service Contract Discovery

Configuring Oracle SALT WS-TX Support

Configuring Oracle Tuxedo Web Services
Using Oracle Tuxedo Service Metadata Repository for Oracle SALT

Configuring Native Oracle Tuxedo Services

Configuring External Web Services

Configuring Service Contract Discovery

Creating the Oracle SALT Deployment File

Configuring Advanced Web Service Messaging Features

Configuring Security Features

Compiling SALT Configuration

Configuring the UBBCONFIG File for Oracle SALT

Orac le SALT Conf igurat ion Gu ide

2-2 Oracle SALT Administration Guide

Configuring Oracle SALT In Oracle Tuxedo MP Mode

Migrating from Oracle SALT 1.1

Using Oracle Tuxedo Service Metadata Repository for
Oracle SALT
Oracle SALT leverages the Oracle Tuxedo Service Metadata Repository to define service
contract information for both Oracle Tuxedo legacy services and Oracle SALT proxy services.
Service contract information for all listed Oracle Tuxedo services is obtained by accessing the
Oracle Tuxedo Service Metadata Repository system service provided by the local Oracle Tuxedo
domain. Typically, SALT calls the TMMETADATA system as follows:

During GWWS server run-time.

It calls the Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definition at the appropriate time.

When tmwsdlgen generates a WSDL file.

It calls the Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definitions and converts them to the WSDL description.

The following topics provide SALT-specific usage of Oracle Tuxedo Service Metadata
Repository keywords and parameters:

Defining Service-Level Keywords for Oracle SALT

Defining Service Parameters for Oracle SALT

Defining Service-Level Keywords for Oracle SALT
Table 1 lists the Oracle Tuxedo Service Metadata Repository service-level keywords used and
interpreted by SALT.

Note: Metadata Repository service-level keywords that are not listed have no relevance to
Oracle SALT and are ignored when SALT components load the Oracle Tuxedo Service
Metadata Repository.

../metarepo.html
../metarepo.html
../metarepo.html
http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#3133627
../ref/comref.html#wp1106727

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-3

Table 1 Oracle SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

service The unique key value of the service. This value is referenced in the SALT
WSDF file.

For native Oracle Tuxedo services, this value can be the same as the
Oracle Tuxedo advertised service name or an alias name different from
the actual Oracle Tuxedo advertised service name.

For Oracle SALT proxy services, this value typically is the Web service
operation local name.

servicemode Determines the service mode (i.e., native Oracle Tuxedo service or Oracle
SALT proxy service.

The valid values are:
• tuxedo represents a native Oracle Tuxedo service
• webservice represents an Oracle SALT proxy service, i.e. a

service definition converted from a wsdl:operation

Do not use “webservice” to define a native Oracle Tuxedo service.
This value is always used to define services converted from external Web
services.

tuxservice The actual Oracle Tuxedo advertised service name. If no value is
specified, then the value is the same as the value in the service
keyword.

For native Oracle Tuxedo service, Oracle SALT invokes the Oracle
Tuxedo service defined using this keyword.

For Oracle SALT proxy service, GWWS server advertises the service
name using this keyword value.

servicetype Determines the service message exchange pattern for the specified Oracle
Tuxedo service.

The following values specify mapping rules between the Oracle Tuxedo
service types and Web Service message exchange pattern (MEP):
• service corresponds to request-response MEP
• oneway corresponds to oneway request MEP
• queue corresponds to request-response MEP

Orac le SALT Conf igurat ion Gu ide

2-4 Oracle SALT Administration Guide

inbuf Specifies the input buffer (request buffer) type for the service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer type. The following values are Oracle Tuxedo reserved
buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if inbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For Oracle SALT proxy services, the value is always FML32.

outbuf Specifies the output buffer (response buffer with TPSUCCESS) type for
the service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer type. The following values are Oracle Tuxedo reserved
buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if outbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For Oracle SALT proxy services, the value is always FML32.

Table 1 Oracle SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-5

errbuf Specifies the error buffer (response buffer with TPFAIL) type for the
service.

For native Oracle Tuxedo services, the value can be any Oracle Tuxedo
typed buffer type. The following values are Oracle Tuxedo reserved
buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if errbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For Oracle SALT proxy services, the value is always FML32.

inview Specifies the view name used by the service for the following input buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

Oracle SALT requires that you specify the view name rather than accept
the default inview setting.

This keyword is for native Tuxedo services only.

outview Specifies the view name used by the service for the following output
buffer types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

Oracle SALT requires that you specify the view name rather than accept
the default outview setting.

This keyword is for native Oracle Tuxedo services only.

errview Specifies the view name used by the service for the following error buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

Oracle SALT requires that you specify the view name rather than accept
the default errview setting.

This keyword is for native Oracle Tuxedo services only.

Table 1 Oracle SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

Orac le SALT Conf igurat ion Gu ide

2-6 Oracle SALT Administration Guide

Defining Service Parameters for Oracle SALT
The Oracle Tuxedo Service Metadata Repository interprets parameters as sub-elements
encapsulated in an Oracle Tuxedo service typed buffer. Each parameter can have its own data
type, occurrences in the buffer, size restrictions, and other Oracle Tuxedo-specific restrictions.
Please note:

VIEW, VIEW32, X_C_TYPE, or X_COMMON typed buffers

Each parameter of the buffer should represent a VIEW/VIEW32 structure member.

FML or FML32 typed buffers

Each parameter of the buffer should represent an FML/FML32 field element that may be
present in the buffer.

STRING, CARRAY, XML, MBSTRING, and X_OCTET typed buffers

Oracle Tuxedo treats these buffers holistically. At most, one parameter is permitted for the
buffer to define restriction facets (such as buffer size threshold).

Custom typed buffers

inbufschema Specifies external XML Schema element associated with the service
input buffer. If this value is specified, Oracle SALT incorporates the
external schema in the generated WSDL to replace the default data type
mapping rule for the service input buffer.

This keyword is for native Oracle Tuxedo services only.

outbufschema Specifies external XML Schema element associated with the service
output buffer. If this value is specified, Oracle SALT incorporates the
external schema in the generated WSDL to replace the default data type
mapping rule for the service output buffer.

This keyword is for native Oracle Tuxedo services only.

errbufschema Specifies external XML Schema element associated with the service error
buffer. If this value is specified, Oracle SALT incorporates the external
schema in the generated WSDL to replace the default data type mapping
rule for the service error buffer.

This keyword is for native Oracle Tuxedo services only.

Table 1 Oracle SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-7

Parameters facilitate describing details about the buffer type.

FML32 typed buffers that support embedded VIEW32 and FML32 buffers

Embedded parameters provide support.

Table 2 lists the Oracle Tuxedo Service Metadata Repository parameter-level keywords used and
interpreted by SALT.

Note: Metadata Repository parameter-level keywords that are not listed have no relevance to
Oracle SALT and are ignored when SALT components load the Oracle Tuxedo Service
Metadata Repository.

Table 2 Oracle SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata Repository

Parameter-level Keyword Oracle SALT Usage

param Specifies the parameter name.
• VIEW, VIEW32, X_C_TYPE, or X_COMMON

Specifies the view structure member name in the param keyword.
• FML, FML32

Specifies the FML/FML32 field name in the param keyword.
• STRING, CARRAY, XML, MBSTRING, or X_OCTET

Oracle SALT ignores the parameter definitions.

type Specifies the data type of the parameter.

Note: Oracle SALT does not support dec_t and ptr data types.

subtype Specifies the view structure name if the parameter type is view32. For
any other typed parameter, Oracle SALT ignores this value.

Note: Oracle SALT requires this value if the parameter type is
view32.

This keyword is for native Oracle Tuxedo service only.

access The general definition applies for this parameter. To support Oracle
Tuxedo TPFAIL scenario, the access attribute value has been
enhanced.

Original values: in, out, inout, noaccess.

New added values: err, inerr, outerr, inouterr.

Orac le SALT Conf igurat ion Gu ide

2-8 Oracle SALT Administration Guide

Configuring Native Oracle Tuxedo Services
This section describes the required and optional configuration tasks for exposing native Oracle
Tuxedo services as Web services:

Creating a Native WSDF

Using WS-Policy Files

Generating a WSDL File from a Native WSDF

count The general definition applies for this parameter. For Oracle SALT, the
value for the count parameter must be greater than or equal to
requiredcount.

requiredcount The general definition applies for this parameter. The default is 1. For
Oracle SALT, the value for the count parameter must be greater than
or equal to requiredcount.

size This optional keyword restricts the maximum byte length of the
parameter. It is only valid for the following parameter types:
STRING, CARRAY, XML, and MBSTRING

If this keyword is not set, there is no maximum byte length restriction
for this parameter.

The value range is [0, 2147483647]

paramschema Specifies the corresponding XML Schema element name of the
parameter. It is generated by the Oracle SALT WSDL converter.

This keyword is for Oracle SALT proxy service only. Do not specify this
keyword for native Oracle Tuxedo services.

primetype Specifies the corresponding XML primitive data type of the parameter.
It is generated by Oracle SALT WSDL converter according to Oracle
SALT pre-defined XML-to-Tuxedo data type mapping rules.

This keyword is for Oracle SALT proxy service only. Do not specify this
keyword for native Oracle Tuxedo services.

Table 2 Oracle SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata Repository

Parameter-level Keyword Oracle SALT Usage

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-9

Creating a Native WSDF
To expose a set of Oracle Tuxedo services as Web services through one or more HTTP/S
endpoints, a native WSDF must be defined.

Each native WSDF must be defined with a unique WSDF name. A WSDF can define one or more
<WSBinding> elements for more Web service application details (such as SOAP protocol details,
the Oracle Tuxedo service list to be exposed as web service operations, and so on).

This section contains the following topics:

Defining the SOAP Header

Defining WSBinding Object

Defining Service Object

Configuring Message Conversion Handler

Defining the SOAP Header
The mapsoapheader attribute is used to configure SOAP headers. It defines an FML32 field that
represents the SOAP header. It is TA_WS_SOAP_HEADER STRING type.

Note: The mapsoapheader attribute It is defined in wssoapflds.h file shipped with Oracle
SALT.

Listing 1 shows a SOAP header definition example.

Listing 1 SOAP Header Definition

<Definition ...>

 <WSBinding id="simpapp_binding">

 <Servicegroup id="simpapp">

 <Service name="toupper">

 <Property name="mapsoapheader" value="true" />

 </Service>

 </Servicegroup>

 </WSBinding>

Orac le SALT Conf igurat ion Gu ide

2-10 Oracle SALT Administration Guide

</Definition>

The mapsoapheader attribute default value is "false" which indicates the GWWS does not
execute mapping between the SOAP header and FML fields.

If mapsoapheader is set to true the mapping behavior is as follows for inbound and outbound
services:

Inbound

For inbound services, the GWWS translates the SOAP header as shown in GWWS Soap
Header TranslationGWWS Soap Header TranslationGWWS Soap Header
TranslationListing 2.

Listing 2 GWWS Soap Header Translation

<cup:SoapHeader xmlns:cup='http://www.xxx.com/soa/esb/message/1_0'>

<cup:Head>

<cup:Name>xxx</cup:Name>

<cup:Value>xxx</cup:Value>

</cup:Head>

</cup:SoapHeader>

The string buffer is assigned to the TA_WS_SOAP_HEADER field and injects the target
FML32 buffer. If the target buffer type is not FML32, the translation will not take effect.

Out Bound

For outbound services, the GWWS receives the TA_WS_SOAP_HEADER from the request
buffer and places it in the SOAP header when the SOAP package is composed.

Defining WSBinding Object
Each WSBinding object is defined using the <WSBinding> element. Each WSBinding object
must be defined with a unique WSBinding id within the WSDF. The WSBinding id is a required
indicator for the SALTDEPLOY file reference used by the GWWS.

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-11

Each WSBinding object can be associated with SOAP protocol details by using the <SOAP> sub-
element. By default, SOAP 1.1, document/literal styled SOAP messages are applied to the
WSBinding object.

Listing 3 shows how SOAP protocol details are redefined using the <SOAP> sub-element.

Listing 3 Defining SOAP Protocol Details for a WSBinding

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

<SOAP version=”1.2” style=”rpc” use=”encoded”>

<AccessingPoints>

...

</AccessingPoints>

</SOAP>

</WSBinding>

</Definition>

Within the <SOAP> element, a set of access endpoints can be specified. The URL value of these
access endpoints are used by corresponding GWWS servers to create the listen HTTP/S protocol
port. It is recommended to specify one HTTP and HTTPS endpoint (at most) for each GWWS server
for an inbound WSBinding object.

Each WSBinding object must be defined with a group of Oracle Tuxedo services using the
<Servicegroup> sub-element. Each <Service> element under <Servicegroup> represents
an Oracle Tuxedo service that can be accessed from a Web service client.

Defining Service Object
Each service object is defined using the <Service> element. Each service must be specified with
the “name” attribute to indicate which Oracle Tuxedo service is exposed. Usually, the “name”
value is used as the key value for obtaining Oracle Tuxedo service contract information from the
Oracle Tuxedo Service Metadata Repository.

Orac le SALT Conf igurat ion Gu ide

2-12 Oracle SALT Administration Guide

Listing 4 shows how a group of services are defined for WSBinding.

Listing 4 Defining a Group of Services for a WSBinding

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

...

</WSBinding>

</Definition>

Configuring Message Conversion Handler
You can create your own plug-in functions to customize SOAP XML payload and Oracle Tuxedo
typed buffer conversion routine. For more information, see Using Oracle SALT Plug-ins in
Oracle SALT Programming Web Services and ?$paratext>? on page 1-28.

Once a plug-in is created and configured, it can be referenced using the <service> element to
specify user-defined data mapping rules for that service. The <Msghandler> element can be
defined at the message level (<Input>, <Output> or <Fault>) to specify which implementation
of “P_CUSTOM_TYPE” category plug-in should be used to do the message conversion. The
<Msghandler> element content is the Plug-in name.

Listing 5 shows a service that uses the “MBCONV” custom plug-in to convert input and “XMLCONV”
custom plug-in to convert output.

Listing 5 Configuring Message Conversion Handler for a Service

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" >

<Input>

<Msghandler>MBCONV</Msghandler>

../prog/plugin.html

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-13

</Input>

<Output>

<Msghandler>XMLCONV</Msghandler>

</Output>

</Service>

</Servicegroup>

...

</WSBinding>

</Definition>

Using WS-Policy Files
Advanced Web service features can be enabled by configuring WS-Policy files (for example,
Reliable Messaging and Web Service Message-Level Security). You may need to create
WS-Policy files to use these features. The Web Service Policy Framework specifications
provides a general purpose model and syntax to describe and communicate the policies of a Web
Service.

To use WS-Policy files, the <Policy> element should be defined in the WSDF to incorporate
these separate WS-Policy files. Attribute location is used to specify the policy file path, both
abstract and relative file path are allowed. Attribute use is optionally used by message level
assertion policy files to specify the applied messages, request (input) message, response (output)
message, fault message, or the combination of the three.

There are two different sub-elements in the WSDF that reference WS-Policy files:

<Servicegroup>

– If a WS-Policy file consists of Web Service Endpoint level Assertions, e.g. Reliable
Messaging Assertion, the WS-Policy file applies to all endpoints that serving this
<Servicegroup>.

– If a WS-Policy file consists of Web Service Operation level Assertions, e.g., Security
Identity Assertion, the WS-Policy file applies to all services listed in this
<Servicegroup>.

– If a WS-Policy file consists of Web Service Message level Assertions, e.g., Security
SignedParts Assertion, the WS-Policy file applies to input, output and/or fault messages
of all services listed in this <Servicegroup>.

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

Orac le SALT Conf igurat ion Gu ide

2-14 Oracle SALT Administration Guide

Note: Oracle SALT only supports request message level assertions for the current
release. You must only specify use=”input” for message level assertion policy
files.

<Service>

– If a WS-Policy file consists of Web Service Operation level Assertions, e.g. Security
Identity Assertion, the WS-Policy file applies to this particular service.

– If a WS-Policy file consists of Web Service Message level Assertions, e.g. Security
SignedParts Assertion, the WS-Policy file applies to input, output and/or fault messages
of this particular service.

Note: Oracle SALT only supports request message level assertions for the current
release. You must only specify use=”input” for message level assertion policy
files.

Oracle SALT provides some pre-packaged WS-Policy files for most frequently used cases. These
WS-Policy files are located under directory $TUXDIR/udataobj/salt/policy. These files can
be referenced using location=”salt:<policy_file_name>”.

Listing 6 shows a sample of using WS-Policy Files in the native WSDF file.

Listing 6 A Sample of Defining WS-Policy Files in the WSDF File

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Policy location=”./endpoint_policy.xml” />

<Policy location=”/usr/resc/all_input_msg_policy.xml” use=”input” />

<Service name="toupper">

<Policy location=”service_policy.xml” />

<Policy location=”/usr/resc/input_message_policy.xml”

use=”input” />

</Service>

<Service name="tolower" />

</Servicegroup>

....

</WSBinding>

</Definition>

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-15

For more information, see Specifying the Reliable Messaging Policy File in the WSDF File and
Using WS-Security Policy Files.

Generating a WSDL File from a Native WSDF
Once an Oracle Tuxedo native WSDF is created, the corresponding WSDL file can be generated
using the Oracle SALT WSDL generation utility, tmwsdlgen. The following example command
generates a WSDL file named “app1.wsdl” from a given WSDF named “app1.wsdf”:
tmwsdlgen -c app1.wsdf -o app1.wsdl

Note: Before executing tmwsdlgen, the TUXCONFIG environment variable must be set correctly
and the relevant Oracle Tuxedo application using TMMETADATA must be booted.

You can optionally specify the output WSDL file name using the ‘-o’ option. Otherwise,
tmwsdlgen creates a default WSDL file named “tuxedo.wsdl”.

If the native WSDF file contains Oracle Tuxedo services that use CARRAY buffers, you can specify
tmwsdlgen options to generate different styled WSDL files for CARRAY buffer mapping. By
default, CARRAY buffers are mapped as xsd:base64Binary XML data types in the SOAP
message. For more information, see Data Type Mapping and Conversions in Oracle SALT
Programming Web Services and tmwsdlgen in the Oracle SALT Reference Guide.

Configuring External Web Services
To invoke an external Web Service from Oracle Tuxedo, the following configuration tasks need
to be performed:

Converting a WSDL file into Oracle Tuxedo Definitions

Post Conversion Tasks

Converting a WSDL file into Oracle Tuxedo Definitions
Oracle SALT provides a WSDL conversion command utility to convert external WSDL files into
Oracle Tuxedo definitions. The WSDL file is converted using Extensible Stylesheet Language
Transformations (XSLT) technology. Apache Xalan Java 2.7.0 is bundled in the Oracle SALT
installation package and is used as the default XSLT toolkit.

Oracle SALT WSDL converter is composed of two parts:

The xsl files, which process the WSDL file.

../prog/datamap.html
../ref/comref.html#wp1106727

Orac le SALT Conf igurat ion Gu ide

2-16 Oracle SALT Administration Guide

The command utility, wsdlcvt, invokes the Xalan toolkit. This wrapper script provides a
user friendly WSDL Converter interface.

The following sample command converts an external WSDL file and generates Oracle Tuxedo
definition files.
wsdlcvt -i http://api.google.com/GoogleSearch.wsdl -o GSearch

Table 3 lists the Oracle Tuxedo definition files generated by Oracle SALT WSDL Converter.

Table 3 Tuxedo Definition Files generated by Oracle SALT WSDL Converter

Generated File Description

Oracle Tuxedo Service
Metadata Repository
input file

Oracle SALT WSDL Converter converts each wsdl:operation to a
Oracle Tuxedo service metadata syntax compliant service called Oracle
SALT proxy service. Oracle SALT proxy services are advertised by GWWS
servers to accept ATMI call from Oracle Tuxedo applications.

FML32 field table
definition file

Oracle SALT maps each wsdl:message to an Oracle Tuxedo FML32
typed buffer. Oracle SALT WSDL Converter decomposes XML Schema
of each message and maps each basic XML snippet as an FML32 field. The
generated FML32 fields are defined in a definition table file, and the field
name equals to the XML element local name by default.

To access an Oracle SALT proxy service, Oracle Tuxedo applications must
refer to the generated FML32 fields to handle the request and response
message. FML32 environment variables must be set accordingly so that
both Oracle Tuxedo applications and GWWS servers can map between
field names and field identifier values.

Note: You may want to re-define the generated field names due to field
name conflict or some other reason. In that case, both Oracle
Tuxedo Service Metadata Definition input file and FML32 field
table definition file must be changed accordantly. For more
information, see Resolving Naming Conflict For the Generated
Oracle SALT Proxy Service Definitions.

../ref/comref.html

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-17

WSDL-to-Tuxedo Service Metadata Keyword Mapping
Table 4 lists WSDL Element-to-Tuxedo Service Metadata Definition Keyword mapping rules.

Non-native WSDF file Oracle SALT WSDL Converter converts the WSDL file into a WSDF file,
which can be deployed to GWWS servers in the Oracle SALT deployment
file for outbound direction. The generated WSDF file is so-called
non-native WSDF file.

Note: Please do not deploy non-native WSDF files for inbound direction.

XML Schema files WSDL embedded XML Schema and imported XML Schema (XML
Schema content referenced with <xsd:import>) are saved locally as
.xsd files. These files are used by GWWS servers and need to be saved
under the same directory.

Note: New XML Schema environment variables XSDDIR and
XSDFILES must be set accordingly so that GWWS servers can
load these .xsd files.

Table 3 Tuxedo Definition Files generated by Oracle SALT WSDL Converter

Generated File Description

Table 4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element Corresponding Oracle
Tuxedo Service Metadata
Definition Keyword

Note

/wsdl:definitions
/wsdl:portType
/wsdl:operation
@name

service Oracle SALT proxy service name.

The keyword value equals to the operation local
name.

tuxservice Oracle SALT proxy service advertised name in
Oracle Tuxedo system.

If the wsdl operation local name is less than 15
characters, keyword value equals to the
operation local name, otherwise the keyword
value is the first 15 characters of the operation
local name.

Orac le SALT Conf igurat ion Gu ide

2-18 Oracle SALT Administration Guide

WSDL-to-WSDF Mapping
Table 5 lists WSDL Element-to-WSDF Element mapping rules.

/wsdl:definitions
/wsdl:portType
/wsdl:operation
/wsdl:input

inbuf=FML32 WSDL operation messages are always mapped
as Oracle Tuxedo FML32 buffer types.

Please do not change the buffer type any way.

Note: For more information about wsdl
message and FML32 buffer mapping,
see XML-to-Tuxedo Data Type
Mapping for External Web Services in
the Oracle SALT Programming Web
Services.

/wsdl:definitions
/wsdl:portType
/wsdl:operation
/wsdl:output

outbuf=FML32

/wsdl:definitions
/wsdl:portType
/wsdl:operation
/wsdl:fault

errbuf=FML32

Table 4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element Corresponding Oracle
Tuxedo Service Metadata
Definition Keyword

Note

Table 5 WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note

/wsdl:definitions
@targetNamespace

/Definition
@wsdlNamespace

Each wsdl:definition maps to a WSDF
Definition.

/wsdl:definitions
/wsdl:binding

/Definition
/WSBinding

Each wsdl:binding object maps to a WSDF
WSBinding element.

/wsdl:definitions
/wsdl:binding
@type

/Definition
/WSBinding
/Servicegroup

Each wsdl:binding referenced wsdl:portType
object maps to the Servicegroup element of the
corresponding WSBinding element.

../prog/datamap.html#wp1050031
../prog/datamap.html#wp1050031

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-19

Post Conversion Tasks
The following post conversion tasks need to be performed for configuring outbound Web service
applications:

Resolving Naming Conflict For the Generated Oracle SALT Proxy Service Definitions

Loading the Generated SALT Proxy Service Metadata Definitions

Setting Environment Variables for GWWS Runtime

Resolving Naming Conflict For the Generated Oracle SALT Proxy Service Definitions
When converting a WSDL file, unexpected naming conflicts may be found due to truncation or
lost context information. Before using the generated Service Metadata Definitions and FML32
field table files, the following potential naming conflicts must be eliminated first.

/wsdl:definitions
/wsdl:binding
/soap:binding

/Definition
/WSBinding
/SOAP
@version

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap/”, the SOAP version attribute value is
“1.1”;

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap12/”, the SOAP version attribute value
is “1.2”.

/wsdl:definitions
/wsdl:binding
/soap:binding
@style

/Definition
/WSBinding
/SOAP
@style

The WSDF WSBinding SOAP message style
setting equals to the corresponding WSDL soap
binding message style setting (“rpc” or
“document”).

/wsdl:definitions
/wsdl:binding
/wsdl:operation

/Definition
/WSBinding
/Servicegroup
/Service

Each wsdl:operation object maps to a Service
element of the corresponding WSBinding
element.

/wsdl:definitions
/wsdl:port
/soap:address

/Definition
/WSBinding
/SOAP
/AccessingPoints
/Endpoint

Each soap:address endpoint defined for a
wsdl:binding object maps to a Endpoint
element of the corresponding WSBinding
element.

Table 5 WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note

Orac le SALT Conf igurat ion Gu ide

2-20 Oracle SALT Administration Guide

Eliminating the duplicated service metadata keyword “tuxservice” definitions

The keyword tuxservice in the Oracle SALT proxy service metadata definition is the
truncated value of the original Web Service operation local name if the operation name is
more than 15 characters. The truncated tuxservice value may be duplicated for multiple
Oracle SALT proxy service entries. Since GWWS server uses tuxservice values as the
advertised service names, so you must manually resolve the naming conflict among
multiple Oracle SALT proxy services to avoid uncertain service request delivery. To
resolve the naming conflict, you should assign a unique and meaningful name to
tuxservice.

Eliminating the duplicated FML32 field definitions

When converting a external WSDL file into Oracle Tuxedo definitions, each wsdl:message
is parsed and mapped as an FML32 buffer format which containing a set of FML32 fields
to represent the basic XML snippets of the wsdl:message. By default, The generated
FML32 fields are named using the corresponding XML element local names.

The FML32 field definitions in the generated field table file are sorted by field name so
that duplicated names can be found easily. In order to achieve a certain SOAP/FML32
mapping, the field name conflicts must be resolved. You should modify the generated
duplicated field name with other unique and meaningful FML32 field name values. The
corresponding Service Metadata Keyword param values in the generated Oracle SALT
proxy service definition must be modified accordingly. The generated comments of the
FML32 fields and Service Metadata Keyword “param” definitions are helpful in locating
the corresponding name and param.

Loading the Generated SALT Proxy Service Metadata Definitions
After potential naming conflicts are resolved, you should load the Oracle SALT proxy service
metadata definitions into the Oracle Tuxedo Service Metadata Repository through tmloadrepos
utility. For more information, see tmloadrepos, in the Oracle Tuxedo Service Metadata
Repository Documentation.

Setting Environment Variables for GWWS Runtime
Before booting GWWS servers for outbound Web services, the following environment variable
settings must be performed.

Update environment variable FLDTBLDIR32 and FIELDTBLS32 to add the generated
FML32 field table files.

Place all excerpted XML Schema files into one directory, and set environment variable
XSDDIR and XSDFILES accordingly.

../metarepo.html
../metarepo.html

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-21

– Environment variable XSDDIR and XSDFILES are introduced in the SALT 2.0 release.
They are used by the GWWS server to load all external XML Schema files at run time.
Multiple XML Schema file names should be delimited with comma ‘,’. For instance, if
you placed XML Schema files: a.xsd, b.xsd and c.xsd in directory
/home/user/myxsd, you must set environment variable XSDDIR and XSDFILES as
follows before booting the GWWS server:
XSDDIR=/home/user/myxsd

XSDFILES=a.xsd,b.xsd,c.xsd

Creating the Oracle SALT Deployment File
The Oracle SALT Deployment file (SALTDEPLOY) defines a SALT Web service application. The
SALTDEPLOY file is the major input for Web service application in the binary SALTCONFIG file.

To create a SALTDEPLOY file, do the following steps:

1. Importing the WSDF Files

2. Configuring the GWWS Servers

3. Configuring System Level Resources

For more information, see Oracle SALT Deployment File Reference in the Oracle SALT
Reference Guide.

Importing the WSDF Files
You should import all your required WSDF files to the Oracle SALT deployment file. Each
imported WSDF file must have a unique WSDF name which is used by the GWWS servers to make
deployment associations. Each imported WSDF file must be accessible through the location
specified in the SALTDEPLOY file.

Listing 7 shows how to import WSDF files in the SALTDEPLOY file.

Listing 7 Importing WSDF Files in the SALTDEPLOY File

<Deployment ..>

<WSDF>

<Import location="/home/user/simpapp_wsdf.xml" />

<Import location="/home/user/rmapp_wsdf.xml" />

<Import location="/home/user/google_search.wsdf" />

../ref/deploy.html

Orac le SALT Conf igurat ion Gu ide

2-22 Oracle SALT Administration Guide

</WSDF>

...

</Deployment>

Configuring the GWWS Servers
Each GWWS server can be deployed with a group of inbound WSBinding objects and a group of
outbound WSBinding objects defined in the imported WSDF files. Each WSBinding object is
referenced using attribute “ref=<wsdf_name>:<WSBinding id>”. For inbound WSBinding
objects, each GWWS server must specify at least one access endpoint as an inbound endpoint from
the endpoint list in the WSBinding object. For outbound WSBinding objects, each GWWS server
can specify zero or more access endpoints as outbound endpoints from the endpoint list in the
WSBinding object.

Listing 8 shows how to configure GWWS servers with both inbound and outbound endpoints.

Listing 8 GWWS Server Defined In the SALTDEPLOY File

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

<Inbound>

<Binding ref="app1:app1_binding">

<Endpoint use="simpapp_GWWS1_HTTPPort" />

<Endpoint use="simpapp_GWWS1_HTTPSPort" />

</Binding>

</Inbound>

<Outbound>

<Binding ref="app2:app2_binding">

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

<Binding ref="app3:app3_binding" />

</Outbound>

</GWInstance>

</WSGateway>

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-23

...

</ Deployment>

Configuring GWWS Server Level Properties
The GWWS server can be configured with properties that switch feature on/off or set argument
to tune the server’s performance.

Properties are configured in the <GWInstance> child element <Properties>. Each individual
property is defined by using the <Property> element which contains a “name” attribute and a
“value” attribute). Different “name” attributes represent different property elements that contain
a value. Table 6 lists GWWS server level properties.

Table 6 GWWS Server Level Properties

Property Name Description Value Range Default

enableMultiEncoding Switch on/off the SOAP message
multiple encoding support

“true”|“false” “false”

max_backlog Specify socket backlog control value [1, 255] 20

max_content_length Specify the maximum allowed incoming
HTTP message content length.

[0, 1G](byte)

(Can set
suffix
‘M’,’G’, e.g.
1.5M, 0.2G)

0

(means no
limit)

thread_pool_size Specify the GWWS server thread pool
size.

[1, 1024] 16

timeout Specify the network timeout in seconds. [1, 65535]

(unit:sec)

300

wsrm_acktime Specify the Reliable Messaging
Acknowledgement message reply
policy. GWWS servers support replying
acknowledgement messages either after
receiving the SOAP request from
network immediately or after the Oracle
Tuxedo service returns the response
message.

“NETRECV” |
“RPLYRECV”

“NETRECV”

Orac le SALT Conf igurat ion Gu ide

2-24 Oracle SALT Administration Guide

Note: For more information about GWWS multiple encoding support, see Configuring
Multiple Encoding Support.

For more information about Performance tuning properties, see “Tuning the GWWS
Server” in Administering Oracle SALT at Runtime.

Listing 9 shows an example of how GWWS properties are configured.

Listing 9 Configuring GWWS Server Properties

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

.......

<Properties>

<Property name="thread_pool_size" value="20"/>

<Property name="enableMultiEncoding" value="true"/>

<Property name="timeout" value="600"/>

</Properties>

</GWInstance>

</WSGateway>

...

</ Deployment>

Configuring Multiple Encoding Support
Oracle SALT supports multiple encoding SOAP messages and the encoding mappings between
SOAP message and Oracle Tuxedo buffer. Oracle SALT supports the following character
encoding:

ASCII, BIG5, CP1250, CP1251, CP1252, CP1253, CP1254, CP1255, CP1256,
CP1257, CP1258, CP850, CP862, CP866, CP874, EUC-CN, EUC-JP, EUC-KR,
GB18030, GB2312, GBK, ISO-2022-JP, ISO-8859-1, ISO-8859-13,
ISO-8859-15, ISO-8859-2, ISO-8859-3, ISO-8859-4, ISO-8859-5,
ISO-8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9, JOHAB, KOI8-R,
SHIFT_JIS, TIS-620, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE,
UTF-32LE, UTF-7, UTF-8

../admin/admin.html#1038031

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-25

To enable the GWWS multiple encoding support, GWWS server level property
“enableMultiEncoding” should be set to “true” as shown in Listing 10.

Note: GWWS internally converts non UTF-8 external messages into UTF-8. However,
encoding conversion hurts server performance. By default, encoding conversion is turned
off and messages that are not UTF-8 encoded are rejected.

Listing 10 Configuring GWWS Server Multiple Encoding Property

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

.......

<Properties>

<Property name="enableMultiEncoding" value="true"/>

</Properties>

</GWInstance>

</WSGateway>

...

</ Deployment>

Table 7 explains the detailed SOAP message and Oracle Tuxedo buffer encoding mapping rules
if the GWWS server level multiple encoding switch is turned on.

Orac le SALT Conf igurat ion Gu ide

2-26 Oracle SALT Administration Guide

Configuring System Level Resources
Oracle SALT defines a set of global resources shared by all GWWS servers in the SALTDEPLOY file.
The following system level resources can be configured in the SALTDEPLOY file:

Table 7 Oracle SALT Message Encoding Mapping Rules

Mapping from ... Mapping to ... Encoding Mapping Rule

SOAP/XML Oracle Tuxedo Typed
Buffer

string/mbstring/xml buffer or field
characters’ encoding equals to SOAP xml
encoding.

STRING Typed Buffer SOAP/XML GWWS sets the target SOAP message in UTF-8
encoding, and assumes the original STRING
buffer containing only UTF-8 encoding
characters.

Note: Oracle Tuxedo Developers must ensure
the STRING characters are in UTF-8
encoding.

MBSTRING/XML Typed
Buffer

SOAP/XML SOAP xml encoding equals to
MBSTRING/XML encoding.

FML/32, VIEW/32 Typed
Buffer that containing the
same encoding setting for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to FLD_MBSTRING
encoding, the original Typed buffer field
characters are not changed in the SOAP
message.

Note: Oracle Tuxedo Developers must
ensure the FLD_STRING characters in
the same buffer are in consistent
encoding.

FML/32, VIEW/32 Typed
Buffer that containing the
different encoding for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to UTF-8, the
original Typed buffer FLD_MBSTRING field
characters in other encoding are converted into
UTF-8 in the SOAP message.

Note: Oracle Tuxedo Developers must ensure
the FLD_STRING characters in the
same buffer are in UTF-8 encoding.

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-27

Certificates

Plug-in load libraries

Configuring Certificates
Certificate information must be configured in order for the GWWS server to create an SSL listen
endpoint, or to use X.509 certificates for authentication and/or message signature. All GWWS
servers defined in the same deployment file shares the same certificate settings, including the
private key file, trusted certificate directory, and so on.

The private key file is configured using the <Certificate>/<PrivateKey> sub-element. The
private key file must be in PEM file format and stored locally.

SSL clients can optionally be verified if the <Certificate>/<VerifyClient> sub-element is
set to true. By default, the GWWS server does not verify SSL clients.

If SSL clients are to be verified, and/or the X.509 certificate authentication feature is enabled, a
set of trusted certificates must be stored locally and located by the GWWS server. There are two
ways to define GWWS server trusted certificates:

1. Include all certificates in one PEM format file and define the file path using the
<<Certificate>/<TrustedCert> sub-element.

2. Saving separate certificate PEM format files in one directory and define the directory path
using the <<Certificate>/<CertPath> sub-element.

Listing 11 shows a SALTDEPLOY file segment configuring GWWS server certificates.

Listing 11 Configuring Certificates In the SALTDEPLOY File

<Deployment ..>

...

<System>

<Certificates>

<PrivateKey>/home/user/gwws_cert.pem</PrivateKey>

<VerifyClient>true</VerifyClient>

<CertPath>/home/user/trusted_cert</CertPath>

</Certificates>

</System>

</Deployment

Orac le SALT Conf igurat ion Gu ide

2-28 Oracle SALT Administration Guide

Configuring Plug-in Libraries
A plug-in is a set of functions that are called when the GWWS server is running. Oracle SALT
provides a plug-in framework as a common interface for defining and implementing plug-ins.
Plug-in implementation is carried out through a dynamic library that contains the actual function
code. The implementation library can be loaded dynamically during GWWS server start up. The
functions are registered as the implementation of the plug-in interface.

In order for the GWWS server to load the library, the library must be specified using the
<Plugin>/<Interface> element in the SALTDEPLOY file.

Listing 12 shows a SALTDEPLOY file segment configuring multiple customized plug-in libraries
to be loaded by the GWWS servers.

Listing 12 Configuring Plug-in Libraries In the SALTDEPLOY File

<Deployment ..>

...

<System>

<Plugin>

<Interface lib=”plugin_1.so” />

<Interface lib=”plugin_2.so” />

</Plugin>

</System>

</Deployment

Note: If the plug-in library is developed using the SALT 2.0 plug-in interface, the “id” and
“name”attributes for the interface do not need to be specified. These values can be
obtained through plug-in interfaces.

For more information, see Using Plug-ins with Oracle SALT in Oracle SALT
Programming with Web Services.

Configuring Advanced Web Service Messaging Features
Oracle SALT currently supports the following advanced Web Service Messaging features:

Web Service Addressing

Supports both inbound and outbound asynchronous Web service messaging.

../prog/plugin.html

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-29

Web Service Reliable Messaging

Supports inbound Web Service reliable message delivery.

Web Service Addressing
Oracle SALT supports Web service addressing for both inbound and outbound services. The Web
service addressing (WS-Addressing) messages used by the GWWS server must comply with the
Web Service Addressing standard (W3C Member Submission 10 August 2004).

Inbound services do not require specific Web service addressing configuration. The GWWS server
accepts and responds accordingly to both WS-Addressing request messages and non
WS-Addressing request messages.

Outbound services require Web service addressing configuration as described in the following
sections:

Configuring the Addressing Endpoint for Outbound Services

Disabling WS-Addressing

Configuring the Addressing Endpoint for Outbound Services
For outbound services, Web service addressing is configured at the Web service binding level. In
the SALTDEPLOY file, each GWWS server can specify a WS-Addressing endpoint by using the
<WSAddressing> element for any referenced outbound WSBinding object to enable
WS-Addressing.

Once the WS-Addressing endpoint is configured, the GWWS server creates a listen endpoint at start
up. All services defined in the outbound WSBinding are invoked with WS-Addressing messages.

Listing 13 shows a SALTDEPLOY file segment enabling WS-Addressing for a referenced outbound
Web service binding.

Listing 13 WS-Addressing Endpoint Defined for Outbound Web Service Binding

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

...

<Outbound>

<Binding ref="app1:app1_binding">

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

Orac le SALT Conf igurat ion Gu ide

2-30 Oracle SALT Administration Guide

<WSAddressing>

<Endpoint address=”https://myhost:8801/app1_async_point”>

</WSAddressing>

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

<Binding ref="app2:app2_binding">

<WSAddressing>

<Endpoint address=”https://myhost:8802/app2_async_point”>

</WSAddressing>

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

</Outbound>

...

</GWInstance>

</WSGateway>

...

</ Deployment>

Notes: In a GWWS server, each outbound Web Service binding can be associated with a particular
WS-Addressing endpoint address. These endpoints can be defined with the same
hostname and port number, but the context path portion of the endpoint addresses must
be different.

If the external Web service binding does not support WS-Addressing messages,
configuring Addressing endpoints may result in run time failure.

Disabling WS-Addressing
No matter you create a WS-Addressing endpoint or not in the SALTDEPLOY file, you can explicitly
disable the Addressing capability for particular outbound services in the WSDF. To disable the
Addressing capability for a particular outbound service, you should use the property name
“disableWSAddressing” with a value set to “true” in the corresponding <Service> definition
in the WSDF file. This property has no impact to any inbound services.

Listing 14 shows WSDF file segment disabling Addressing capability.

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-31

Listing 14 Disabling Service Level WS-Addressing

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper">

<Property name="disableWSAddressing" value=”true” />

</Service>

<Service name="tolower" />

</Servicegroup>

....

</WSBinding>

</Definition>

Web Service Reliable Messaging
Oracle SALT currently supports Reliable Messaging for inbound services only. To enable
Reliable Messaging functionality, you must create a Web Service Reliable Messaging policy file
and include the policy file in the WSDF. The policy file must comply with the
WS-ReliableMessaging Policy Assertion Specification (February 2005).

Note: A WSDF containing a Reliable Messaging policy definition should be used by the GWWS
server for inbound direction only.

Creating the Reliable Messaging Policy File
A Reliable Messaging Policy file is a general WS-Policy file containing WS-ReliableMessaging
Assertions. The WS-ReliableMessaging Assertion is an XML segment that describes features
such as the version of the supported WS-ReliableMessage specification, the source endpoint’s
retransmission interval, the destination endpoint’s acknowledge interval, and so on.

For more information about the WS-ReliableMessaging policy file format, see the Oracle SALT
WS-ReliableMessaging Policy Assertion Reference in the Oracle SALT Reference Guide.

Listing 15 shows a Reliable Messaging policy file example.

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
../ref/rm_assert.html
../ref/rm_assert.html

Orac le SALT Conf igurat ion Gu ide

2-32 Oracle SALT Administration Guide

Listing 15 Reliable Messaging Policy File Example

<?xml version="1.0"?>

<wsp:Policy wsp:Name="ReliableSomeServicePolicy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”

xmlns:beapolicy="http://www.bea.com/wsrm/policy">

<wsrm:RMAssertion>

<wsrm:InactivityTimeout Milliseconds="600000" />

<wsrm:AcknowledgementInterval Milliseconds="2000" />

<wsrm:BaseRetransmissionInterval Milliseconds="500"/>

<wsrm:ExponentialBackoff />

<beapolicy:Expires Expires="P1D" />

<beapolicy:QOS QOS=”ExactlyOnce InOrder" />

</wsrm:RMAssertion>

</wsp:Policy>

Specifying the Reliable Messaging Policy File in the WSDF File
You must reference the WS-ReliableMessaging policy file at the <Servicegroup> level in the
native WSDF file. The following segment of the WSDF file shows how to reference the
WS-ReliableMessaging policy file.

Listing 16 Reference the WS-ReliableMessaging Policy At the Endpoint Level

<Definition ...>

<WSBinding ...>

<Servicegroup ...>

<Policy location=”RMPolicy.xml” />

<Service ... />

<Service ... />

...

</Servicegroup ...>

</WSBinding>

</Definition>

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-33

Note: Reliable Messaging in Oracle SALT does not support process/system failure scenarios,
which means SALT does not store the message in a persistent storage area. Oracle SALT
works in a direct mode with the SOAP client. Usually, system failure recovery requires
business logic synchronization between the client and server.

Configuring Security Features
Oracle SALT provides security support at both transport level and SOAP message level. The
following topics explains how to configure security features for each level:

Configuring Transport Level Security

Configuring Message Level Web Service Security

Configuring Transport Level Security
Oracle SALT provides point-to-point security using SSL link-level security and supports HTTP
basic authentication mechanism for both inbound and outbound service authentication.

Setting Up SSL Link-Level Security
To set up link-level security using SSL at inbound endpoints, you can simply specify the endpoint
address with prefix “https://”. The GWWS server who uses this inbound endpoint creates SSL
listen port and make SSL secured connections with Web Service Clients. SSL features need to
specify certificates settings. For more information about certificate settings, see Configuring
Certificates.

GWWS server automatically creates SSL secured connection to outbound endpoints that are
published with URLs that having prefix “https://”.

Configuring Inbound HTTP Basic Authentication
Oracle SALT depends on the Oracle Tuxedo security framework for Web Service client
authentication. There is no special configuration at Oracle SALT side to enable inbound HTTP
Basic Authentication. If the Oracle Tuxedo system requires user credential, HTTP Basic
Authentication is simply an alternative for Web Service client program to carry the user
credential.

The GWWS gateway supports Oracle Tuxedo domain security configuration for the following two
authentication patterns:

Application password (APP_PW)

Orac le SALT Conf igurat ion Gu ide

2-34 Oracle SALT Administration Guide

User-level authentication (USER_AUTH)

The GWWS server passes the following string from the HTTP header of the client SOAP request
for Oracle Tuxedo authentication.

Authorization: Basic <base64Binary of username:password>

The following is an example of a string from the HTTP header:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

In this example, the client sends the Oracle Tuxedo username “Aladdin” and the password
“open sesame”, and uses this paired value for Oracle Tuxedo authentication.

Using Application Password (APP_PW)

If Oracle Tuxedo uses APP_PW, then the HTTP username value is ignored and the GWWS
server only uses the password string as the Oracle Tuxedo application password to check
the authentication.

Using User-level Authentication (USER_AUTH)

If Oracle Tuxedo uses USER_AUTH, then both the HTTP username and password value are
used. In this case, the GWWS server does not check the Oracle Tuxedo application password.

Note: ACL and MANDATORY_ACL are not supported for Web service clients, which means the
Oracle Tuxedo system ignores any ACL-related configuration specifications. Oracle
SALT does not make group information available for Web service clients.

Configuring Outbound HTTP Basic Authentication
Oracle SALT supports customers to develop authentication plug-in to prepare the user credential
for the outbound HTTP Basic Authentication. Outbound HTTP Basic Authentication is
configured at Endpoint level. If an outbound Endpoint requires user profile in the HTTP message,
you must specify the HTTP Realm for the HTTP endpoint in the WSDF file. The GWWS server
invokes authentication plug-in library to prepare the username and password, and send them
using HTTP Basic Authentication mechanism in the request message.

Listing 17 shows how to enable HTTP Basic Authentication for the outbound endpoints.

Listing 17 Enabling HTTP Basic Authentication For the Outbound Endpoint

<Definition ...>

<WSBinding id="simpapp_binding">

<SOAP>

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-35

<AccessingPoints>

<Endpoint id=”...” address=”...”>

<Realm>SIMP_REALM</Realm>

</Endpoint>

</AccessingPoints>

</SOAP>

<Servicegroup id="simpapp">

....

</Servicegroup>

....

</WSBinding>

......

</Definition>

Once a service request is sending to an outbound endpoint specified with <Realm> setting, the
GWWS server passes the Oracle Tuxedo client uid and gid to the authentication plug-in function,
so that the plug-in can determine HTTP Basic Authentication username/password according to
the Oracle Tuxedo client information. To obtain Oracle Tuxedo client uid / gid for HTTP basic
authentication username/password mapping, Oracle Tuxedo security level may also need to be
configured in the UBBCONFIG file. For more information, see Configuring Oracle Tuxedo
Security Level for Outbound HTTP Basic Authentication.

For more information about how to develop an outbound authentication plug-in, see
Programming Outbound Authentication Plug-ins in the Oracle SALT Programming Web
Services.

Configuring Message Level Web Service Security
Oracle SALT supports Web Service Security 1.0 and 1.1 specification for message level security.
You can use message-level security in Oracle SALT to assure:

Authentication, by requiring username or X.509 tokens

Inbound request message integrity, by requiring the soap body signature

Main Use Cases of Web Service Security
Oracle SALT implementation of the Web Service Security: SOAP Message Security specification
supports the following use cases:

../prog/plugin.html#wp1040794

Orac le SALT Conf igurat ion Gu ide

2-36 Oracle SALT Administration Guide

Include a token (username, or X.509) in the SOAP message for authentication.

Include a token (X.509) and the soap body signature in the SOAP message for integrity.

Using WS-Security Policy Files
Oracle SALT includes a number of WS-Security Policy 1.0 and 1.2 files you can use for message
level security use cases.

The WS-Policy files can be found at $TUXDIR/udataobj/salt/policy once you have
successfully installed Oracle SALT.

Table 8 lists the default WS-Security Policy files bundled by Oracle SALT.

The above policy files except WS-Security Policy 1.2 UserToken file can be referenced at
<Servicegroup> or <Service> level in the native WSDF file. The WSSP 1.2 UserToken file can
only be referenced at <Servicegroup> level. The sample “wsseapp” shows how to clip the
WSSP 1.2 UserToken file used in <Service> level.

Table 8 WS-Security Policy Files Provided By Oracle SALT

File Name Purpose

wssp1.0-username-au
th.xml

WS-Security Policy 1.0. Plain Text Username Token for Service
Authentication

wssp1.0-x509v3-auth
.xml

WS-Security Policy 1.0. X.509 V3 Certificate Token for Service
Authentication

wssp1.0-signbody.xm
l

WS-Security Policy 1.0. Signature on SOAP:Body for verification of
X.509 Certificate Token

wssp1.2-Wss1.0-User
nameToken-plain-aut
h.xml

WS-Security Policy 1.2. Plain Text Username Token for Service
Authentication

wssp1.2-Wss1.1-X509
V3-auth.xml

WS-Security Policy 1.2. X.509 V3 Certificate Token for Service
Authentication

wssp1.2-signbody.xm
l

WS-Security Policy 1.2. Signature on SOAP:Body for verification of
X.509 Certificate Token

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-37

Listing 18 shows a combination of policy assignment making that the service “TOUPPER”
requires client send a UsernameToken (in plain text format) and an X509v3Token in request, and
also require the SOAP:Body part of message is signed with the X.509 token.

Listing 18 WS-Security Policy Usage

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Policy location="salt:wssp1.2-Wss1.1-X509V3-auth.xml"/>

<Service name="TOUPPER" >

<Policy location="D:/wsseapp/wssp1.2-UsernameToken-Plain.xml"/>

<Policy location="salt:wssp1.2-signbody.xml" use="input"/>

</Service>

</Servicegroup>

....

</WSBinding>

......

</Definition>

Policy is referred with “location” attribute of the <Policy> element. A prefix “salt:” means an
Oracle SALT default bundled policy file is used. User-defined policy file can be used by directly
specifying the file path.

Notes: If a policy is referred at <Servicegroup> level, it will apply to all services in this service
group.

The “signbody” policy must be used with the attribute “use” set as “input”, which
specifies the policy applied only for input message. This is necessary because we do
not sign the SOAP:Body of output message.

Compiling SALT Configuration
Compiling a SALT configuration file means generating a binary version of the file (SALTCONFIG)
from the XML version SALTDEPLOY file. To compile a configuration file, run the wsloadcf
command. wsloadcf parses a deployment file and loads the binary file.

Orac le SALT Conf igurat ion Gu ide

2-38 Oracle SALT Administration Guide

wsloadcf reads a deployment file and all imported WSDF files and WS-Policy files referenced
in the deployment file, checks the syntax according to the XML schema of each file format, and
optionally loads a binary configuration file called SALTCONFIG. The SALTCONFIG and
(optionally) SALTOFFSET environment variables point to the SALTCONFIG file and (optional)
offset where the information should be stored.

wsloadcf validates the given SALT configuration files according to the predefined XML
Schema files. XML Schema files needed by Oracle SALT can be found at directory:
$TUXDIR/udataobj/salt.

wsloadcf can execute for validating purpose only without generating the binary version
SALTCONFIG once option “-n” is specified.

For more information about wsloadcf, see wsloadcf reference in the Oracle SALT Reference
Guide.

Configuring the UBBCONFIG File for Oracle SALT
After configuring and compiling the Oracle SALT configuration, the Oracle Tuxedo UBBCONFIG
file needs to be updated to apply Oracle SALT components in the Oracle Tuxedo application.
Table 9 lists the UBBCONFIG file configuration tasks for Oracle SALT.

Table 9 UBBCONFIG File Configuration Tasks for Oracle SALT

Configuration Tasks Required Optional

Configuring the TMMETADATA Server in the *SERVERS Section X

Configuring the GWWS Servers in the *SERVERS Section X

Updating System Limitations in the UBBCONFIG File X

Configuring Certificate Password Phrase For the GWWS Servers X

Configuring Oracle Tuxedo Authentication for Web Service Clients X

Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication

X

../ref/comref.html#wp1110855

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-39

Configuring the TMMETADATA Server in the *SERVERS Section
Oracle SALT requires at least one TMMETADATA server defined in the UBBCONFIG file. Multiple
TMMETADATA servers are also allowed to increase the throughput of accessing the Oracle Tuxedo
service definitions.

Listing 19 lists a segment of the UBBCONFIG file that shows how to define TMMETADATA servers
in a Oracle Tuxedo application.

Listing 19 TMMETADATA Servers Defined In the UBBCONFIG File *SERVERS Section

......

*SERVERS

TMMETADATA SRVGRP=GROUP1 SRVID=1

CLOPT="-A -- –f domain_repository_file -r"

TMMETADATA SRVGRP=GROUP1 SRVID=2

CLOPT="-A -- –f domain_repository_file"

......

Note: Maintaining only one Service Metadata Repository file for the whole Oracle Tuxedo
domain is highly recommended. To ensure this, multiple TMMETADATA servers running
in the Oracle Tuxedo domain must point to the same repository file.

For more information, see “Managing The Tuxedo Service Metadata Repository” in the
Tuxedo 9.1 documentation.

Configuring the GWWS Servers in the *SERVERS Section
To boot GWWS instances defined in the SALTDEPLOY file, the GWWS servers must be defined in
the *SERVERS section of the UBBCONFIG file. You can define one or more GWWS server instances
concurrently in the UBBCONFIG file. Each GWWS server must be assigned with a unique instance id
with the option “-i” within the Oracle Tuxedo domain. The instance id must be present in the
XML version SALTDEPLOY file and the generated binary version SALTCONFIG file.

Listing 20 lists a segment of the UBBCONFIG file that shows how to define GWWS servers in a
Oracle Tuxedo application.

http://edocs.bea.com/tuxedo/tux91/ads/admrp.htm#1022468

Orac le SALT Conf igurat ion Gu ide

2-40 Oracle SALT Administration Guide

Listing 20 GWWS Servers Defined In the UBBCONFIG File *SERVERS Section

......

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

CLOPT="-A -- –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

CLOPT="-A -- –i GW2"

GWWS SRVGRP=GROUP2 SRVID=20

CLOPT="-A -- -c saltconf_2.xml –i GW3"

......

For more information, see “GWWS” in the Oracle SALT Reference Guide.

Notes: Be sure that the TMMETADATA system server is set up in the UBBCONFIG file to start before
the GWWS server boots. Because the GWWS server calls services provided by TMMETADATA,
it must boot after TMMETADATA.

To ensure TMMETADATA is started prior to being called by the GWWS server, put
TMMETADATA before GWWS in the UBBCONFIG file or use SEQUENCE parameters in
*SERVERS definition in the UBBCONFIG file.

Oracle SALT configuration information is pre-compiled with wsloadcf to generated a
binary version SALTCONFIG file. GWWS server reads SALTCONFIG file at start up.
Environment variable SALTCONFIG must be set correctly with the binary version
SALTCONFIG file entity before booting GWWS servers.

Option “-c” is deprecated in the current version Oracle SALT. In SALT 1.1 release,
option “-c” is used to specify SALT 1.1 configuration file for the GWWS server. In SALT
2.0, GWWS server reads SALTCONFIG file at start up. GWWS server specified with this option
can be booted with a warning message to indicate this deprecation. The specified file can
be arbitrary and is not read by the GWWS server.

Updating System Limitations in the UBBCONFIG File
When configuring the Oracle Tuxedo domain with SALT GWWS servers, you need to plan and
update Oracle Tuxedo system limitations defined in the UBBCONFIG file according to your Oracle
SALT application requirements.

../ref/comref.html#wp1111835

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-41

Tip: Defining enough MAXSERVERS number in the *RESOURCES section

Oracle SALT requires the following system servers to be started in an Oracle Tuxedo domain:
TMMETADATA and GWWS. The number of TMMETADATA and GWWS server must be accounted for in
the MAXSERVERS value.

Tip: Defining enough MAXSERVICES number in the *RESOURCES section

When the GWWS server working in the outbound direction, external wsdl:operations are mapped
with Oracle Tuxedo services and advertised via the GWWS servers. The number of the advertised
services by all GWWS servers must be accounted for in the MAXSERVICES value.

Tip: Defining enough MAXACCESSERS number in the *RESOURCES section

MAXACCESSERS value is used to specify the default maximum number of clients and servers that
can be simultaneously connected to the Oracle Tuxedo bulletin board on any particular machine
in this application. The number of TMMETADATA and GWWS server, maximum concurrent Web
Service client requests must be accounted for in the MAXACCESSERS value.

Tip: Defining enough MAXWSCLIENTS number in the *MACHINES section

When the GWWS server working in the inbound direction, each Web Service client is deemed a
workstation client in Oracle Tuxedo system; therefore, MAXWSCLIENTS must be configured with
a valid number in UBBCONFIG for the machine where the GWWS server is deployed. The number
shares.

Configuring Certificate Password Phrase For the GWWS Servers
Configuring security password phrase is required when setting up certificates for Oracle SALT.
Certificates setting is desired when the GWWS servers enabling SSL link-level encryption and/or
Web Service Security X.509 Token and signature features. The certificate private key file needs
to be created and encrypted with a password phrase.

When the GWWS servers are specified with certificate related features, they are required to read the
private key file and decrypt them using the password phrase. To configure password phrase for
each GWWS server, keyword SEC_PRINCIPAL_NAME and SEC_PRINCIPAL_PASSVAR must be
specified under each desired GWWS server entry in the *SERVERS section. During compiling the

Orac le SALT Conf igurat ion Gu ide

2-42 Oracle SALT Administration Guide

UBBCONFIG file with tmloadcf, the administrator must type the password phrase, which can be
used to decrypt the private key file correctly.

Note: Only one private key file can be specified in the Oracle SALT deployment file. All the
GWWS servers defined in the Oracle SALT deployment file must be provided the same
password phrase for the private key file decryption.

Listing 21 lists a segment of the UBBCONFIG file that shows how to define security password
phrase for the GWWS servers.

Listing 21 Security Password Phrase Defined in the UBBCONFIG File For the GWWS Servers

......

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

SEC_PRINCIPAL_NAME="gwws_certkey"

SEC_PRINCIPAL_VAR="gwws_certkey"

CLOPT="-A -- –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

SEC_PRINCIPAL_NAME="gwws_certkey"

SEC_PRINCIPAL_PASSVAR="gwws_certkey"

CLOPT="-A -- –i GW2"

......

For more information, see “UBBCONFIG(5)“ in the Oracle Tuxedo 11gR1 documentation.

Configuring Oracle Tuxedo Authentication for Web Service Clients
Oracle SALT GWWS servers rely on Oracle Tuxedo authentication framework to check the validity
of the Web Service clients. If your legacy Oracle Tuxedo application is already applied with, Web
Service clients must send user credential using one of the following approaches:

HTTP Basic Authentication in the HTTP message header

Web Service Security Username Token in the SOAP message header

Contrarily, if you want to authenticate Web Service clients for Oracle SALT, you must configure
Oracle Tuxedo authentications in the Oracle Tuxedo domain.

http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#3370051

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-43

For more information about Oracle Tuxedo authentication, see “Administering Authentication”
in the Oracle Tuxedo 11gR1 Documentation.

Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication
To obtain Oracle Tuxedo client uid / gid for outbound HTTP Basic Authentication username
/password mapping, you need to configure Oracle Tuxedo Security level as USER_AUTH, ACL or
MANDATORY_ACL in the UBBCONFIG file.

Listing 22 lists a segment of the UBBCONFIG file that shows how to define security level ACL in
the UBBCONFIG file.

Listing 22 Security Level ACL Defined in the UBBCONFIG File For Outbound HTTP Basic Authentication

*RESOURCES

IPCKEY ...

......

SECURITY ACL

......

Configuring Oracle SALT In Oracle Tuxedo MP Mode
To set up GWWS servers running on multiple machines within a MP mode Oracle Tuxedo domain,
each Oracle Tuxedo machine must be defined with a separate SALTDEPLOY file and a set of
separate other components.

You must propagate the following global resources across different machines:

Certificates.

Private key file and the trusted certificate files must be accessible from each machine
according to the settings defined in the SALTDEPLOY file.

Plug-in load libraries.

Plug-in shared libraries must be compiled on each machine and must be accessible
according to the settings defined in the SALTDEPLOY file.

http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/sec/secadm.html

Orac le SALT Conf igurat ion Gu ide

2-44 Oracle SALT Administration Guide

You may define two GWWS servers running on different machine with the same functionality by
associating the same WSDF files. But it requires manual propagation of the following artifacts:

The WSDF files

The WS-Policy files

FML32 field table definition files if Oracle Tuxedo Services consume FML32 typed
buffers

XML Schema files excerpted by wsdlcvt.

Migrating from Oracle SALT 1.1
This section describes the following two possible migrating approaches for SALT 1.1 customers
who plan to upgrade to SALT 2.0 release:

Running GWWS servers with SALT 1.1 Configuration File

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

Running GWWS servers with SALT 1.1 Configuration File
After upgrading from SALT 1.1 to SALT 2.0 release, you may still want to run your existing
SALT applications with the original SALT 1.1 configuration file. SALT 2.0 definitely supports
that.

SALT configuration compiler utility, wsloadcf, supports to load the binary version SALTCONFIG
from one SALT 1.1 format configuration file.

To run SALT 2.0 GWWS servers with SALT 1.1 Configuration file, you need to perform the
following steps:

1. Load the binary version SALTCONFIG from the SALT 1.1 format configuration file via
wsloadcf.

2. Set environment variable SALTCONFIG before booting the GWWS servers.

3. Boot the GWWS servers associated with this SALT 1.1 configuration file.

Note: If customers have more than one SALT 1.1 configuration files defined in an Oracle
Tuxedo domain, customers need to follow step 1 to 3 to generate more binary version
SALTCONFIG files and boot corresponding GWWS servers.

Conf igur ing Orac le Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-45

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration
File
When wsloadcf loads a binary version SALTCONFIG from a SALT 1.1 configuration file, it also
convert this SALT 1.1 configuration file into one WSDF file and one SALTDEPLOY file.

It’s highly recommended to start using the SALT 2.0 styled configuration once you get the
converted files from SALT 1.1 configuration.

Note: If customers want to incorporate more than one SALT 1.1 configuration files into one
SALT 2.0 deployment, customers need to manually edit the SATLDEPLOY file for
importing the other WSDF files.

Listing 23 lists the converted SALTDEPLOY file and WSDF file from a given SALT 1.1
configuration file.

Listing 23 A Sample of SALT 1.1 Configuration File (simpapp.xml)

<Configuration xmlns=" http://www.bea.com/Tuxedo/Salt/200606">

<Servicelist id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicelist>

<Policy />

<System />

<WSGateway>

<GWInstance id="GWWS1">

<HTTP address="//127.0.0.1:7805" />

<HTTPS address="127.0.0.1:7806" />

<Property name="timeout" value="300" />

</GWInstance>

</WSGateway>

</Configuration>

The converted SALT 2.0 WSDF file and deployment file are shown in Listing 24 and Listing 25.

Orac le SALT Conf igurat ion Gu ide

2-46 Oracle SALT Administration Guide

Listing 24 Converted WSDF File for SALT 1.1 Configuration File (simpapp.xml.wsdf)

<Definition name="simpapp" wsdlNamespace="urn:simpapp.wsdl"

xmlns=" http://www.bea.com/Tuxedo/WSDF/2007">

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

<SOAP>

<AccessingPoints>

<Endpoint id="simpapp_GWWS1_HTTPPort"

address=http://127.0.0.1:7805/simpapp />

<Endpoint id=" simpapp_GWWS1_HTTPSPort"

address=https://127.0.0.1:7806/simpapp />

</AccessingPoints>

</SOAP>

</WSBinding>

</Definition>

Listing 25 Converted SALTDEPLOY File for SALT 1.1 Configuration File (simpapp.xml.dep)

<Deployment xmlns=" http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF>

<Import location="/home/myapp/simpapp.wsdf" />

</ WSDF>

<WSGateway>

<GWInstance id="GWWS1">

<Inbound>

<Binding ref="simpapp:simpapp_binding">

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

</Inbound>

<Properties>

<Property name="timeout" value="300" />

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-47

</Properties>

</GWInstance>

</WSGateway>

</ Deployment>

Configuring Oracle Tuxedo SCA Components
Configuring Oracle Tuxedo SCA components comprises the following:

Configuring an SCA ATMI Client

Configuring an SCA JATMI Client

Configuring an SCA Workstation Client

Configuring an SCA Web Service Client

Configuring an SCA ATMI Server

Configuring an SCA Web Service Server

Configuring SCA Client Security

Configuring an SCA ATMI Client
The SCA ATMI client is a native Oracle Tuxedo client that is written using the SCA paradigm
and built using the buildscaclient utility. The client executable must be in a subdirectory of a
directory that contains the root.composite file.

Note: The APPDIR environment variable must point to the root.composite file directory.

Listing 26 shows the client application root composite file $APPDIR/root.composite.

Listing 26 Client Application Root Composite File

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">

<component name="testStringClientComp">

<implementation.composite name="ECHO"/>

Orac le SALT Conf igurat ion Gu ide

2-48 Oracle SALT Administration Guide

</component>

</composite>

The $APPDIR/ECHO directory contains the ECHO application. The directory name, "ECHO",
must match the name specified in <implementation.composite name="ECHO"/>. Listing 27
shows the client application composite file.

Listing 27 Client Application Composite File

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO">

<reference name="ECHO">

<interface.cpp header="ECHO.h"/>

<binding.atmi requires="legacy">

<tuxconfig>/tux/application/ECHOServer/tuxconfig</tuxconfig>

<inputBufferType target="TestString">STRING</inputBufferType>

<outputBufferType target="TestString">STRING</outputBufferType>

<errorBufferType target="TestString">STRING</errorBufferType>

 <binding.atmi>

</reference>

</composite>

The client dynamic link library for this client application is also contained in this directory. For
example, using the example in Listing 27, the $APPDIR/ECHO/ECHO.so shared object exists in
the ECHO directory. The target "TestStr" is used to group buffer types together.

The client executable also exists in this directory. There is no naming convention associated with
a client application. This client ECHO application could very well contain "doEchoClient" in
the ECHO application directory. For example: $APPDIR/ECHO/doEchoClient.

Note: You must set SCA_COMPONENT. See Listing 27,
SCA_COMPONENT=testStringClientComp.

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-49

Configuring an SCA JATMI Client
The JATMI client application configuration composite file is part of the Java .jar file. The
JATMI client composite file is not part of any package and is located in the base of the .jar file.
When client application is invoked, SCA Java runtime loads the composite file. No special setup
is required.

Note: The client application .jar file must be included in the CLASSPATH. The following .jar
files should also be part of CLASSPATH:

binding-jatmi-extension.jar

com.oracle.jatmi.dataxfm_1.0.0.0.jar

com.bea.core.jatmi_1.2.0.3.jar

com.bea.core.i18n_1.4.0.0.jar

tuscany-sca-manifest.jar

Listing 28 shows an SCA JATMI client composite file example.

Listing 28 SCA JATMI Client Composite File Example

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:f="binding-atmi.xsd"

name="EchoComposite">

<reference name="ECHO" promote="EchoComponent/ECHO">

<interface.java class="com.abc.sca.java.Echo" />

<f:binding.atmi requires="legacy">

<f:serviceType>RequestResponse</f:serviceType>

<f:inputBufferType>FML</f:inputBufferType>

<f:outputBufferType>FML</f:outputBufferType>

<f:fieldTables>com.abc.sca.java.fml.FMLTABLE

</f:fieldTables>

<f:workStationParameters>

<f:networkAddress>//STRIATUM:15011

</f:networkAddress>

</f:workStationParameters>

</f:binding.atmi>

</reference>

Orac le SALT Conf igurat ion Gu ide

2-50 Oracle SALT Administration Guide

<component name="EchoComponent">

<implementation.java

class="com.abc.sca.java.EchoComponentImpl />

</component>

</composite>

Configuring an SCA Workstation Client
Configuring an SCA workstation clients is similar to configuring SCA native clients. One
difference is that an SCA workstation client requires using the <workStationParameters>
element and its sub-elements in the composite. The SCA runtime automatically detects whether
the client is built as an SCA native client or SCA workstation client and loads the correct
reference binding library accordingly.

An SCA Oracle Tuxedo Workstation client has a similar directory hierarchy to an SCA native
client. Both rely on the environment variable $APPDIR, which points to where the client
application is located.

Listing 29 and Listing 30 show SCA Oracle Tuxedo workstation client configuration examples.

Listing 29 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">

<component name="testStringClientComp">

<implementation.composite name="ECHO"/>

</component>

</composite>

Listing 30 $APPDIR/ECHO/ECHO.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO">

<reference name="ECHO">

<interface.cpp header="ECHO.h"/>

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-51

<binding.atmi requires="legacy">

<inputBufferType target="TestString">STRING</inputBufferType>

<outputBufferType target="TestString">STRING</outputBufferType>

<errorBufferType target="TestString">STRING</errorBufferType>

<workStationParameters>

<networkAddress>//STRIATUM:4890</networkAddress>

<encryptBits>128/128</encryptBits>

</workStationParameters>

<remoteAccess>WorkStation</remoteAccess>

</binding.atmi>

<reference>

</composite>

Configuring an SCA Web Service Client
The SCA Web service client is basically the same as SCA native client except that is uses the
<binding.ws> element instead of <binding.atmi>. The SCA runtime automatically detects
which binding the client is using, and loads the correct reference binding accordingly.

The SCA Web service client has a similar directory hierarchy as native client. They both rely on
the $APPDIR environment variable to point to where the client application is located.

Listing 31 and Listing 32 show SCA Web service client configuration examples.

Listing 31 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">

<component name="calcClient">

<implementation.composite name="calcClient"/>

</component>

</composite>

Orac le SALT Conf igurat ion Gu ide

2-52 Oracle SALT Administration Guide

Listing 32 $APPDIR/calcClient/calcClient.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"name="calcClient">

<reference name="Calculator">

<interface.cpp header="CalcService.h"/>

<binding.ws

endpoint="http://calc.sample#wsdl.endpoint

(Calculator/CalculatorSOAP11port)"/>

</reference>

</composite>

The <interface.cpp> element is required to build the appropriate proxy stub. Also, the client
directory should contain the WSDL file where the endpoint specified in <binding.ws> is
located. In addition, the configuration of the Oracle Tuxedo Web services gateway (GWWS) is
necessary and requires the following steps:

1. Make sure the TMMETADATA and GWWS servers are shut down.

2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle
Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.

3. Optionally, modify the generated WSDF file to override the actual endpoint address used at
runtime. For more information, see WSDF documentation.

4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA
server repository (e.g.: $ tmloadrepos -I calc.mif metadata.repos -y). For more
information, see tmloadrepos documentation.

5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for
example). Listing 33 shows the added elements highlighted in blue.

6. Reload the GWWS binary configuration file to take into account the changes performed in
the previous five (e.g.: $ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-53

Listing 33 GWWS Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<saltdep:Deployment

xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<saltdep:WSDF>

<saltdep:Import location="calc.wsdf"/>

</saltdep:WSDF>

<saltdep:WSGateway>

<saltdep:GWInstance id="GWWS1">

<saltdep:Outbound>

<saltdep:Binding ref="calc:CalculatorSOAP11Binding">

<saltdep:Endpoint use="CalculatorSOAP11port"/>

</saltdep:Binding>

</saltdep:Outbound>

</saltdep:GWInstance>

</saltdep:WSGateway>

 <saltdep:System/>

</saltdep:Deployment>

Configuring an SCA ATMI Server
For an SCA ATMI server, the SCA ROOT is the same as $APPDIR. There should be at least one
composite file that describes the SCA application. The SCA runtime searches for this composite
file and from there it loads all the composite and componentType files for SCA server
applications that are hosted in an Oracle Tuxedo environment.

Listing 34 shows a root composite file, named root.composite contains two SCA applications
hosted in an Oracle Tuxedo application domain. The two applications are called Purchase and
Finance. There are at least two subdirectories for these two SCA applications. One is called
Purchase.component and the other is called Finance.component.

Orac le SALT Conf igurat ion Gu ide

2-54 Oracle SALT Administration Guide

Listing 34 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="root">

<component name="Purchase.component">

<implementation.composite name="Purchase" />

</component>

<component name="Finance.component">

<implementation.composite name="Finance" />

</component>

</composite>

Listing 35 shows the Purchase.component directory contains a composite file for the Purchase
application named Purchase.composite. Similarly, the Finance.component directory
contains a composite file for the Finance application named Finance.composite.

Listing 35 $APPDIR/Purchase.component/Purchase.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="Purchase">

<service name="purchase">

<interface.cpp header="Purchase.h" />

<binding.atmi requires="legacy">

<map target="Order">ORDER</map>

<map target="TrackOrder">TRACKORDER</map>

</binding.atmi>

<reference>PurchaseServiceComponent</reference>

</service>

<component name="PurchaseServiceComponent">

<implementation.cpp library="Purchase"

header="PurchaseImpl.h" />

</component>

</composite>

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-55

Listing 36 shows Purchase.composite contains the PurchaseImpl.componentType file
in the $APPDIR/Purchase.component directory and uses CPP as its application
implementation. When an SCA server using this configuration is built using the
buildscaserver utility, it advertises two SCA services automatically at runtime (ORDER and
TRACKORDER). The actual CPP implementation of the services is called Order and TrackOrder.

Listing 36 $APPDIR/Purchase.component/PurchaseImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<service name="purchase">

<interface.cpp header="Purchase.h"/>

</service>

</componentType>

Assume these two SCA applications hosted in Oracle Tuxedo and built using buildscaserver
are called PurchaseSvr and FinanceSvr. You must add the following lines to the *SERVERS
section in the UBBCONFIG file:
PurchaseSvr SRVGRP=PURCHASEGRP SRVID=500

FinanceSvr SRVGRP=FINANCEGRP SRVID=600

There is no need to add a service in the *SERVICES section. SCA services hosted by Oracle
Tuxedo are dynamically advertised.

Configuring an SCA Web Service Server
Configuring Web services binding for components (server side) is similar to configuring ATMI
binding for hosting SCA components.

Listing 37 shows a root composite file named root.composite. It contains one SCA component
hosted in an Oracle Tuxedo application domain. The two applications are called Purchase and
Finance. There are at least two subdirectories for these two SCA applications, one is called
Purchase.component, and the other is called Finance.component.

Listing 38 shows the actual component subdirectory. Listing 39 shows the componentType side
file

Orac le SALT Conf igurat ion Gu ide

2-56 Oracle SALT Administration Guide

Listing 37 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="root">

<component name="account">

<implementation.composite name="account" />

</component>

</composite>

Listing 38 $APPDIR/account/account.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="account">

<service name="AccountService">

<interface.wsdl

interface="http://www.bigbank.com/AccountService#wsdl.interface(AccountSer

vice)"/>

<binding.ws/>

<reference>AccountServiceComponent</reference>

</service>

<component name="AccountServiceComponent">

<implementation.cpp library="Account"

header="AccountServiceImpl.h"/>

</component>

</composite>

Listing 39 $APPDIR/account/AccountServiceImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-57

<service name="AccountService">

<interface.cpp header="AccountService.h"/>

</service>

</componentType>

The above SCA component will be hosted in an Oracle Tuxedo server built using
buildscaserver with the -w option (for Web services) and named WSServer

Then in the Oracle Tuxedo UBBCONFIG file you need to add the following line in the
*SERVERS section: WSServer SRVGRP=ACCTGRP SRVID=500.

There is no need add a service in the *SERVICES section. SCA services hosted by Oracle
Tuxedo are dynamically advertised.

In addition, configuration of the Oracle Tuxedo Web services gateway (GWWS) is necessary. Do
the following steps:

1. Make sure the TMMETADATA and GWWS servers are shut down

2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, an Oracle
Tuxedo Metadata Repository interface definitions file, fml32 field tables and XML schemas.

3. Modify the generated WSDF file to specify the actual endpoint address used at runtime to
accept requests. For more information, see WSDF documentation.

4. Load the Oracle Tuxedo Metadata Repository interface definitions into the TMMETADATA
server repository (e.g.:$ tmloadrepos -I AccountService.mif metadata.repos -y).
For more information, see tmloadrepos documentation.

5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for
example). Listing 40 shows the elements added highlighted in blue.

6. Reload the GWWS binary configuration file to take into account the changes performed in
the step five (e.g.: $ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Listing 40 gwws.dep File

<?xml version="1.0" encoding="UTF-8"?>

<saltdep:Deployment

Orac le SALT Conf igurat ion Gu ide

2-58 Oracle SALT Administration Guide

xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<saltdep:WSDF>

<saltdep:Import location="AccountService.wsdf"/>

</saltdep:WSDF>

<saltdep:WSGateway>

<saltdep:GWInstance id="GWWS1">

<saltdep:Inbound>

<saltdep:Binding

ref="AccountService:AccountServiceSOAP">

<saltdep:Endpoint use="AccountServiceSOAP"/>

</saltdep:Binding>

</saltdep:Inbound>

</saltdep:GWInstance>

</saltdep:WSGateway>

<saltdep:System/>

</saltdep:Deployment>

Configuring SCA Client Security
Oracle Tuxedo SCA components support two types of security:

Oracle Tuxedo Application Domain Security

Oracle Tuxedo Link-Level Security

Oracle Tuxedo Application Domain Security
Oracle Tuxedo Application Domain Security is set when the TUXCONFIG file for the Oracle
Tuxedo Application Domain contains the SECURITY keyword in the *RESOURCES section. There
are five levels of application security: NONE, APP_PW, USER_PW, ACL, and MANDATORY_ACL. All
security levels except NONE require at least an application password from user to gain access to
the Oracle Tuxedo application. At the USER_PW level and above there is an additional user
password to authenticate the user and establish user credentials. In total there are potentially two
passwords that need to be configured.

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-59

All SCA clients require this password information in order to gain access to Oracle Tuxedo
application servers. There are two ways for an SCA client to retrieve password information:

The client application may provide password information to ATMI/JATMI reference
binding extensions through a callback mechanism.

The client application may configure the identification of the password to be retrieved by
the ATMI/JATMI reference binding extensions in the appropriate composite file.

Note: For more information, see Password callback methods in the Oracle SALT
Programmer's Guide.

In order for the Oracle SALT administrator to configure password retrieval, the administrator
must:

Maintain the password.store file and set this file up correctly for the client application.
The administrator must duplicate the password.store file across different machines if
necessary.

Add or delete password and identification pairs when necessary.

Configure the client application composite file with correct information.

Listing 41 and Listing 42 contain SCA ATMI client application examples.

Listing 41 $APPDIR/password.store $APPDIR/simple.app.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simple.app">

<component name="simpapp.TuxClient">

<implementation.composite name="simpapp.client"/>

<reference name="TOUPPER">tuxToupper</reference>

</component>

</composite>

../prog/index.html
../prog/index.html

Orac le SALT Conf igurat ion Gu ide

2-60 Oracle SALT Administration Guide

Listing 42 $APPDIR/simpapp.client/simpapp.client.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simpapp.client">

<reference name="TOUPPER">

<interface.cpp header="ToupperTuxService.h"/>

<binding.atmi requires="legacy">

<tuxconfig>d:\tests\tuxedo\sca\tests\TUXCONFIG</tuxconfig>

<inputBufferType target="charToup">STRING</inputBufferType>

<outputBufferType target="charToup">STRING</outputBufferType>

<authentication

<passwordIdentifier>aaa</passwordIdentifier>

</authentication>

</binding.atmi>

</reference>

</composite>

The above composite defines an Oracle Tuxedo application domain password identification
"aaa" which will cause the ATMI reference binding to retrieve the password with identification
"aaa" from the password.store file at the runtime. If you increased Oracle Tuxedo application
domain security by requiring user authentication. (SECURITY=USER_PW or above) you would use
the following command: scapasswordtool -i crusoe -a.

Then use a text editor or any other tool that can edit the simpapp.client.composite file and
add the following entry in the <binding.atmi/authentication> element:
<userPasswordIdentifier>crusoe</userPasswordIdentifier>

Anyone using the password "crusoe" can access Oracle Tuxedo applications.

Oracle Tuxedo Link-Level Security
Oracle Tuxedo Link-Level Security has two variations. One is the easily configured Link-Level
Encryption (LLE) and the other one is the more commonly used Transport Layer Security (TLS)
also known as Secured Socket Layer (SSL). An SCA ATMI client using the native ATMI
reference binding does not need link-level security configured at the SCA level since its transport
method is native message queues and the Oracle Tuxedo BRIDGE.

Conf igur ing Orac le Tuxedo SCA Components

Oracle SALT Administration Guide 2-61

The SCA JATMI client reference binding does not support link-level security. The only type of
SCA client that allows configuration of link-level security is SCA Workstation ATMI client.

The SCA Workstation ATMI client contains a <workStationParameters> element configured
in the composite file. The SCA runtime automatically loads the correct reference binding for this
type of client.

Configuring Link-Level Encryption
Link-level encryption can be configured by adding an <encryptBits> element in the composite
file. The following elements should not be configured for LLE, since they are specific to SSL
encryption and imply that SSL encryption is used:

secPrincipalName

secPrincipalLocation

secPrincipalPassId

The <encryptBits> element specifies the encryption strength that this client will attempt to
negotiate. The syntax for the <encryptBits> element is <minimum encryption
strength>/<maximum encryption strength>. To configure minimum 56-bit encryption you
must add the following to the composite file:
<networkAddress>//STRIATUM:8741</networkAddress>

<encryptBits>56/128</encryptBits>

Note: encryptBits specifies the encryption strength that the client connection attempts to
negotiate. The format is <minencryptbits>/<maxencprytbits> (for example,
128/128). Values can be 0 (no encryption is used), 40, 56, 128, or 256. Invalid values
result in a configuration exception.

This tells SCA Workstation Reference binding to require 56 to 128 bits encryption strength when
negotiating with WSH. You must also add the following line to the *SERVERS section in the
UBBCONFIG file:
WSL SRVGRP=GROUP1 SRVID=1001 CLOPT="-A -- -n //STRIATUM:8741 -a -z 56 -Z
256

Configuring Transport Layer Security
In addition to <encryptBits>, to enable Link-Level Security over TLS/SSL you must configure
secPrincipalName, secPrincipalLocation, and secPrincipalPassId.

secPrincipalName - the name of the security principal. It is used for searching the client
X.509 certification from the LDAP server.

Orac le SALT Conf igurat ion Gu ide

2-62 Oracle SALT Administration Guide

secPrincipalLocation - the client private key file.

secPrincipalPassId - the password identifier that is used to retrieve client password
used to encrypt the private key file.

These three parameters specify the parameters needed when a TLS/SSL connection needs to be
established by a SCA Workstation ATMI client.

Listing 43 contains the lines you must add to the client composite file in
/binding.atmi/workStationParameters to configure TLS/SSL.

Listing 43 Client Composite File

<networkAddress>//STRITUM:8742</networkAddress>

<secPrincipalName>crusoe</secPrincipalName>

<secPrincipalLocation>/tux/udataobj/security/keys/crusoe.pem</secPrincipal

Location>

<secPrincipalPassId>crusoe</secPrincipalPassId>

In Oracle Tuxedo, you must add -S 8742 to WSL to indicate that TLS/SSL is used if the client
connects through port 8742.

WSL SRVGRP=GROUP1 SRVID=1001

CLOPT="-A -- -n //STRIATUM:8741 -S 8742 -z 56 -Z 128"

Configuring Service Contract Discovery
When discovery is activated for a service, the server that provides the service collects service
contract information and sends the information to an internal service implemented by
TMMETADATA(5). The same service contract is only sent once to reduce communication
overhead.

The TMMETADATA server summarizes the collected data and generates a service contract. The
contract information can either can be stored in the metadata repository, or output to a text file
(which is then loaded to the metadata repository using tmloadrepos). Oracle SALT uses the
tmscd command to control the service contract runtime collection. For more information, see
tmscd in the Oracle SALT Command Reference Guide.

http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#3133627
../ref/comref.html#wp1157037

Conf igur ing Serv i ce Cont ract D iscove ry

Oracle SALT Administration Guide 2-63

Generated service contract information contains service name, request buffer information,
response buffer information, and error buffer information if there is a failure. The collected
service contract information is discarded if it fails to send information to the TMMETADATA
server. The buffer information includes buffer type and subtype, and field information for
FML/FML32 (name,type,subtype).

Discovery is supported for any embedded buffer in FML32 buffer. For FML/FML32 field
occurrences, the discovery automatically updates the pattern for the count/requiredcount in
metadata repository. Field occurrence does not impact pattern, but the minimum occurrence is the
"requiredcount".The maximum occurrence is the "count" of the entire contract discovery
period.

For VIEW/VIEW32/X_C_TYPE/X_COMMON, only the view name is discovered. ORACLE
SALT can generate view detail description by view name when using metadata repository.

Note: Patterns flagged with autodiscovery (see Table 10) are compared.

If the same autodiscovery pattern already exists in the metatdata repository, then the
newer pattern is ignored.

Only application ATMI services (local, or imported via /TDOMAIN gateway) are supported.
Service contract discovery does not support the following services:

system services (name starts with '.' or '..')

conversational services

CORBA services

/Q and Oracle SALT proxy services

Note: Services without a reply are mapped as "oneway" services in the metadata repository.

tpforward Support
If a service issues tpforward() instead of tpreturn(), its reply buffer information will be
same with the reply buffer of the service which it forwards to. For example,

client calls SVCA with a STRING typed buffer

SVCA processes the request, and then creates a new FML32 typed buffer as request
forwarded to SVCB

SVCB handles the request and returns a STRING buffer to the client. The SVCA contract
is STRING+STRING. The SVCB contract is FML32+STRING

Orac le SALT Conf igurat ion Gu ide

2-64 Oracle SALT Administration Guide

Service Contract Text File Output
If you want collected service contract discovery information logged to a file instead of directly to
the metadata repository, you must use the TMMETADATA(5) -o<filename> option and then use
tmloadrepos to manually load the file to the metadata repository. For more information, see
tmloadrepos in the Oracle Tuxedo Command Reference Guide.

The output complies with the format imposed by tmloadrepos if a file is used as storage instead
of metadata repository. The file contains a service header section and a parameter section for each
parameter. Service header contains items listed in Table 10. The "service" field format is
<TuxedoServiceName>+'_'+<SequenceNo>. The suffix <SequenceNo> is used to avoid name
conflict when multiple patterns are recognized for an Oracle Tuxedo service.

Note: <SequenceNo> starts from the last <SequenceNo> number already stored in the
metadata repository.

Service parameter contains information is listed in Table 11.

Table 10 Service Level Attributes

Keywoard (abbreviation) Sample Value Description

service(sv) TOUPPER_1 <RealServiceName>_<Seq
uenceNo>.

tuxservice(tsv) TOUPPER The service name.

servicetype(st) service|oneway oneway if TPNOREPLY is set.

inbuf(bt) STRING FML, FML32, VIEW, VIEW32,
STRING, CARRAY, XML,
X_OCTET, X_COMMON,
X_C_TYPE, MBSTRING or
other arbitrary string
representing an application
defined custom buffer type.

outbuf(BT) FML32 set to "NULL" if it's an error
reply.

errbuf(ebt) STRING present only when it's an error
reply.

http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#3133627
http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf3c/rf3c.html

Conf igur ing Serv i ce Cont ract D iscove ry

Oracle SALT Administration Guide 2-65

inview View name. Present only when
inbuf is of type VEW or
VIEW32.

outview View name. Present only when
outbuf is of type VIEW or
VIEW32.

errview View name. Present only when
errbuf is of type VIEW or
VIEW32.

autodiscovery true Set to "true".

Table 11 Parameter Level Attributes

Keyword(abbreviation) Sample Description

param(pn) USER_INFO

paramdescription(pd) service parameter

access(pa) in A combination of
{in}{out}{err}.

type(pt) fml32 byte, short, integer, float,
double, string, carray, dec_t,
xml, ptr, fml32, view32,
mbstring.

subtype(pst) A view name for a view or
view32 typed parameter.

count 100 The maximum occurrence of
FML/FML32 field watched
during the collection period

requiredcount 1 The minimum occurrence of
FML/FML32 field watched
during the collection period.

Table 10 Service Level Attributes

Keywoard (abbreviation) Sample Value Description

Orac le SALT Conf igurat ion Gu ide

2-66 Oracle SALT Administration Guide

Examples
Example 1:

Input: service=SVC, request=STRING, reply = TPSUCCESS + STRING

Output Pattern: service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRING

Example 2:

Input: service=SVC, request=STRING, reply = TPFAIL+ STRING

Output Pattern (partial): Service=SVC_1,
tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING

Example 3:

Input:
service=SVC, request=STRING, reply = TPSUCCESS + STRING

service=SVC, request=STRING, reply = TPFAIL+ STRING

Output Pattern:
service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRING

Service=SVC_2, tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING

Example 4:

Input: service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)

Output Pattern:

service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32
param: input(name, pwd), output(id)

Example 5:

Input:
service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)

service=FMLS,request=FML32(name,pwd,token),reply=TPSUCCESS+FML32(id)

Output Pattern:
service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32

param: input(name, pwd), output(id)

service=FMLS_2,tuxservice=FMLS,inbuf=FML32,outbuf=FML32

param: input(name, pwd,token), output(id)

Conf igur ing Orac le SALT WS-TX Suppor t

Oracle SALT Administration Guide 2-67

Configuring Oracle SALT WS-TX Support
This section contains the following topics:

Configuring Transaction Log Device

Registration Protocol

Configuring WS-TX Transactions

Configuring Maximum Number of Transactions

Configuring Policy Assertions

WSDL Generation

WSDL Conversion

Notes: These confgiuration changes are summarized in the SALTDEPLOY additions
pseudo-schema and WSDF additions pseudo-schema Appendix.

For additional information, see the Oracle SALT Interoperability Guide.

Configuring Transaction Log Device
The GWWS system server must be configured using the transaction log (TLogDevice) element
(similar to the Oracle Tuxedo or /Domains TLog files). The TLOGDevice element is added to the
SALTCONFIG source file (SALTDEPLOY) as shown in Listing 44.

A TLOGName element is also be added to allow sharing the same TLog device across GWWS
instances.

Only one TLog device per Web services Gateway instance is permitted (that is, the transaction
log element is a child element of /Deployment/WSGateway/GWInstance).

Listing 44 TLOG Element Added to SALTDEPLOY File

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <WSDF>

 ...

 </WSDF>

Orac le SALT Conf igurat ion Gu ide

2-68 Oracle SALT Administration Guide

 <WSGateway>

 <GWInstance id="GW1">

 <TLogDevice location="/app/GWTLOG"/>

 <TLogName id="GW1TLOG"/>

...

 </GWInstance>

 </WSGateway>

 ...

</Deployment>

Registration Protocol
Oracle Tuxedo-based services are registered with a Durable 2PC protocol with coordinators.

When Oracle Tuxedo is the coordinator (outbound direction), the GWWS system server allows
either Volatile 2PC or Durable 2PC registration requests and handles them accordingly.

Configuring WS-TX Transactions
Figure 2 illustrates the application and protocol flows of a typical WS-AT context service
invocation.

Conf igur ing Orac le SALT WS-TX Suppor t

Oracle SALT Administration Guide 2-69

Figure 2 WS-AT Service Invocation

The configuration steps and runtime behavior of the Oracle SALT GWWS gateway are outlined
in the following sections (depending on the role of the Oracle Tuxedo domain as shown in
Figure 2):

Configuring Incoming Transactions

Configuring Outbound Transactions

Configuring Incoming Transactions
Oracle Tuxedo services exposed as Web services do not require any specific configuration other
than creating a transaction log file and adding it to the GWWS deploy configuration file in order
to initiate a local transaction associated with an incoming WS-AT transaction request.

To ensure a transaction can be propagated into an Oracle Tuxedo domain, do the following steps:

Orac le SALT Conf igurat ion Gu ide

2-70 Oracle SALT Administration Guide

1. Ensure that the Oracle Tuxedo service called supports transactions.

2. Configure a transaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device.

3. Configure a policy file containing a WS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For more information, see Configuring Policy
Assertions.

4. Incoming calls containing a CoordinationContext element creates an Oracle Tuxedo
global transaction.

Error Conditions
Error conditions are handled as follows:

No log file is configured for the gateway. A wscoor:InvalidState fault is sent back to
the caller. The Detail field containins a corresponding message.

The target Oracle Tuxedo service does not support transactions. An application fault with a
TPETRAN error code is returned to the caller.

For all other applications, configuration (such as TPENOENT) or system errors are handled
the same way that normal (non-transactional) requests are handled.

Configuring Outbound Transactions
In order for Oracle Tuxedo clients to propagate an Oracle Tuxedo global transaction to external
Web services, do the following steps:

1. Configure a transaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device.

2. Configure a policy file containing a WS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For more information, see Configuring Policy
Assertions.

3. Depending on the assertion setting and presence of an Oracle Tuxedo transaction context, a
CoordinationContext element is created and sent in the SOAP header along with the
application request.

4. An endpoint reference is automatically generated and sent along with the
CoordinationContext element for the remote RegistrationService element to enlist in
the transaction. This step, along with the protocol exchanges (Prepare/Commit or Rollback
etc.) is transparent on both sides.

Conf igur ing Orac le SALT WS-TX Suppor t

Oracle SALT Administration Guide 2-71

Error Conditions
Error conditions are handled as follows:

If the remote system does not support transactions and the WS-AT Assertion/transaction
context call has MUST create transaction semantics, a TPESYSTEM error is returned to
the client.

Errors generated remotely are returned to the Oracle Tuxedo client in the same manner as
regular, non-transactional calls. The fault Reason and Detail fields returned describe the
nature of the failure (which is environment dependent).

Configuring Maximum Number of Transactions
The MaxTran element allows you to configure the size of the internal transaction table as shown
in Listing 1. The default is MAXGTT.

Note: The MaxTran value is optional. If the configured value is greater than MAXGTT, it is
ignored and MAXGTT is used instead

Listing 1 MAxTran Element

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <WSDF>

 ...

 </WSDF>

 <WSGateway>

 <GWInstance id="GW1">

...

<MaxTran value="500"/>

...

 </GWInstance>

 </WSGateway>

 ...

</Deployment>

Orac le SALT Conf igurat ion Gu ide

2-72 Oracle SALT Administration Guide

Configuring Policy Assertions
WS-AT defines a policy assertion that allows requests to indicate whether an operation call
MUST or MAY be made as part of an Atomic Transaction.

Policy. xml File
The policy.xml file file includes WS-AT policy elements. WS-AT defines the ATAssertion
element, with an Optional attribute, as follows:
/wsat:ATAssertion/@wsp:Optional="true" as shown in Listing 2.

Listing 2 Policy .XML ATAssertion Element

<?xml version="1.0"?>

<wsp:Policy wsp:Name="TransactionalServicePolicy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsat="http://docs.oasis-open.org/ws-tx/wsat/2006/06">

 <wsat:ATAssertion wsp:Optional="true"/>

</wsp:Policy>

Note: In order to correctly import external WSDLs, the wsdlcvt command is modified to
generate a policy.xml file containing the ATAssertion element when one is present
in the WSDL. For outbound requests, a policy.xml file containing an ATAssertion
element must be created and properly pointed to in the SALTDEPLOYsource.

Inbound Transactions
No particular behavior change will take place at runtime in the case of inbound transactions. The
client consuming the WSDL will take the decision based on the configured value and the runtime
behavior will follow like for the normal case.

See A l so

Oracle SALT Administration Guide 2-73

Outbound Transactions

When an ATAssertion with no "Optional=true" is configured, the call must be made in
a transaction. If no corresponding XA transaction exists, the WS-TX transaction is initiated
but not associated with any Oracle Tuxedo XA transaction. If an XA transaction exists,
there is no change in behavior.

When an ATAssertion with "Optional=true" is configured, an outbound transaction
context is requested only if a corresponding Oracle Tuxedo XA transaction exists in the
context of the call.

When no ATAssertion is configured for this service, the corresponding service call is
made outside of any transaction. If a call is made to an external Web service in the context
of an Oracle Tuxedo XA transaction, the Web service call will not propagate the
transaction.

This allows excluding certain Web service calls from a global transaction, and represents
the default for most existing Web services calls (that do not support WS-TX).

WSDL Generation
WSDL generation is enhanced to generate an ATAssertion element corresponding to the
assertion configured in the policy file for the corresponding service.

WSDL Conversion
For outbound requests, the WSDL conversion tool, wsdlcvt, generates a policy.xml file
containing the ATAssertion element when one is present in the processed WSDL.You must
properly configure the location of the policy.xml file in the SALTDEPLOY source.

See Also
tmadmin

tmloadrepos

ubbconfig

scaadmin

buildscaclient

buildscaserver

WSDF documentation

http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rfcm/rfcmd.html#1971834
http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rfcm/rfcmd.html#1789066
../ref/comref.html
http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#3370051
../ref/comref.html
../ref/comref.html
../ref/comref.html

Orac le SALT Conf igurat ion Gu ide

2-74 Oracle SALT Administration Guide

Oracle SALT Programming Guide

Oracle SALT Reference Guide

Oracle SALT Interoperability Guide

../prog/index.html
../ref/index.html
../interop/index.html

	Oracle® Service Architecture Leveraging Tuxedo (SALT)
	11g Release 1 (11.1.1.2)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Configuration Guide, 11g Release 1 (11.1.1.2)
	Oracle SALT Configuration Guide
	Configuring Oracle Tuxedo Web Services
	Using Oracle Tuxedo Service Metadata Repository for Oracle SALT
	Defining Service-Level Keywords for Oracle SALT
	Defining Service Parameters for Oracle SALT

	Configuring Native Oracle Tuxedo Services
	Creating a Native WSDF
	Using WS-Policy Files
	Generating a WSDL File from a Native WSDF

	Configuring External Web Services
	Converting a WSDL file into Oracle Tuxedo Definitions
	WSDL-to-WSDF Mapping
	Post Conversion Tasks

	Creating the Oracle SALT Deployment File
	Importing the WSDF Files
	Configuring the GWWS Servers
	Configuring System Level Resources

	Configuring Advanced Web Service Messaging Features
	Web Service Addressing
	Web Service Reliable Messaging

	Configuring Security Features
	Configuring Transport Level Security
	Configuring Message Level Web Service Security

	Compiling SALT Configuration
	Configuring the UBBCONFIG File for Oracle SALT
	Configuring the TMMETADATA Server in the *SERVERS Section
	Configuring the GWWS Servers in the *SERVERS Section
	Updating System Limitations in the UBBCONFIG File
	Configuring Certificate Password Phrase For the GWWS Servers
	Configuring Oracle Tuxedo Authentication for Web Service Clients
	Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic Authentication

	Configuring Oracle SALT In Oracle Tuxedo MP Mode
	Migrating from Oracle SALT 1.1
	Running GWWS servers with SALT 1.1 Configuration File
	Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

	Configuring Oracle Tuxedo SCA Components
	Configuring an SCA ATMI Client
	Configuring an SCA JATMI Client
	Configuring an SCA Workstation Client
	Configuring an SCA Web Service Client
	Configuring an SCA ATMI Server
	Configuring an SCA Web Service Server
	Configuring SCA Client Security
	Oracle Tuxedo Application Domain Security
	Oracle Tuxedo Link-Level Security

	Configuring Service Contract Discovery
	tpforward Support
	Service Contract Text File Output
	Examples

	Configuring Oracle SALT WS-TX Support
	Configuring Transaction Log Device
	Registration Protocol
	Configuring WS-TX Transactions
	Configuring Incoming Transactions
	Configuring Outbound Transactions

	Configuring Maximum Number of Transactions
	Configuring Policy Assertions
	Policy. xml File

	WSDL Generation
	WSDL Conversion

	See Also

