Oracle® Tuxedo System and Application Monitor (TSAM)
Plug-in Programming Guide
11g Release 1 (11.1.1.2)

July 2011

ORACLE

Oracle Tuxedo Systems and Application Monitor (TSAM) Plug-in Programming Guide, 11g Release 1 (11.1.1.2)
Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Oracle TSAM Agent Plug-in Programming Introduction

Overview

Oracle TSAM Agent Data Collection Framework

OVEIVIEW . . oot e e e e e

Creating an Oracle TSAM Agent Custom Plug-in

OVEIVIEW . o oottt et e e e e e e e e e e e e e e e e
Oracle Tuxedo Plug-in Framework Concepts.,
Interface.
Implementation

Plug-in Register/Un-register/Modifications
Developing a Oracle TSAM Agent Plug-in. o ..
Create Plug-in Source Codettt
Buildthe Plug-in.
Registerthe Plug-in e
Enable Oracle TSAM MONItOTINGo \v it ittt e e et e e
Run a Call and Check the Standard Output.............
Oracle TSAM Agent Plug-in Interface 11
Version and Interface Identifier 11
Function Table 13
Other Help Header Files. o e 14
Oracle TSAM Agent Plug-in Implementation. oo .. 14

Oracle TSAM Agent Plug-in Programming Guide

Define “perf mon 1" in the “e perf mon.h” Function Table................... 15

Define the Plug-in Information Variable 15
Write the Plug-in Entry Routine. i 16
Writing Concrete Plug-in Implementations it 17
Call Path Monitoring Plug-in Routine 17

A Basic Implementationt 18

Check Commonly Used Metrics oovni e ie i eie e 20
Generate Call Path Correlation ID. 23

Service Monitoring Plug-in Routine. 24

A Basic Implementation 24

Check Commonly Used Metrics oovni e ie i eie e 24

System Server Monitoring Plug-in Routine 26

A Basic Implementation i 26

Check Commonly Used Metrics ovvvvni e ie i ieeeeenn 26
Transaction Monitoring Plug-in Routine 27

A Basic Implementationt 28

Check Commonly Used Metrics oovvnii e ie e ie e 28
Configure the Plug-in to Oracle Tuxedo. oo, 28
Registerto Oracle Tuxedo.o 29
Un-register from Oracle Tuxedo................ 30

Oracle TSAM Agent Plug-in Development/Deployment Notes. 30

i Oracle TSAM Agent Plug-in Programming Guide

Oracle TSAM Agent Plug-in
Programming Introduction

This chapter contains the following sections:

o Overview

Overview

The Oracle TSAM Agent includes three major layered modules:

e Oracle TSAM framework

The Oracle TSAM framework is responsible for Tuxedo system data collection. The
collection behavior is controlled by the monitoring types and policies. The gathered
metrics are passed to the plug-in using an open interface.

e Plug-in data receiver

The Oracle TSAM Agent ships with a default plug-in. The default plug-in sends metrics to
shared memory pool created by the Local Monitor Server (LMS).

e LMS (local monitor server)
The LMS synchronizes data with the Oracle TSAM Manager.

The Oracle TSAM Agent and Oracle TSAM Manager provide a complete solution for data

collection, aggregation, storage and presentation. To support various requirements for monitoring
data usage, the Oracle TSAM Agent plug-interface is based on an open architecture so that you
can write customized plug-ins to interpret the performance metrics data. The custom plug-ins can

Oracle TSAM Agent Plug-in Programming Guide 1-1

1-2

work with the Oracle TSAM Agent default plug-in or independently. The custom plug-ins are
typically used for:

e Integration with third party management software
e Developing in-house application monitoring suites

o Audit-based application data

Oracle TSAM Agent Plug-in Programming Guide

CHAPTERa

Oracle TSAM Agent Data Collection
Framework

This chapter contains the following sections:

o Overview

Overview

The Oracle TSAM Agent framework collects the performance metrics when Oracle TSAM is
enabled. The framework covers the major performance sensitive areas in Tuxedo applications,
that is call path stages, services, transactions and system servers. Oracle TSAM Agent uses
Oracle Tuxedo FML32 typed buffers to contain the metrics collected so that each metric is
defined as a built-in FML32 field. The monitoring points depend on the monitoring types and
only apply to Oracle Tuxedo ATMI applications. Table 2-1 lists the call path monitoring points.

Table 2-1 Call Path Monitoring Points

Stage Supported Tuxedo Process Types

Before request Native Client, Application Server, GWTDOMAN, BRIDGE,
message sentto JSH/WSH, and GWWS
IPC queue

After request Application Server, GWTDOMAIN and GWWS
message got
from IPC queue

Oracle TSAM Agent Plug-in Programming Guide 2-1

Table 2-1 Call Path Monitoring Points

Before reply Application Server, GWTDOMAIN, BRIDGE and GWWS
message sent to
IPC queue

After reply Native Client,Application Server, GWTDOMAIN
message got
from IPC queue

Before request GWTDOMAIN, JSH/WSH, and GWWS
message sent to
network

After request GWTDOMAIN and BRIDGE
message got
from network

Before reply GWTDOMAIN and BRIDGE
message sent to
network

After reply GWTDOMAIN and BRIDGE
message got
from network

Table 2-2 lists the service monitoring points.

Table 2-2 Service Monitoring Points

Stage Supported Tuxedo Process Types

After request Application Server, GWTDOMAIN and GWWS
from IPC queue

Before reply Application Server, GWTDOMAIN and GWWS
message sent to
IPC queue

Table 2-3 lists the system server monitoring points.

2-2 Oracle TSAM Agent Plug-in Programming Guide

Tahle 2-3 System Server Monitoring Points

Stage Supported Tuxedo Process Types

Main Loop! GWTDOMAIN, BRIDGE and GWWS

1. The metrics are collected internally and this point is to pass the data to plug-in
Table 2-4 lists the transaction monitoring points.

Table 2-4 Transaction Monitoring Points

Stage Supported Tuxedo Process Types

After the Native Client, Application Server, TMS, GWTDOMAIN,WSH, JSH,
transaction TMQFORWARD

routine

executed

Oracle TSAM Agent Plug-in Programming Guide 2-3

2-4 Oracle TSAM Agent Plug-in Programming Guide

CHAPTERa

Creating an Oracle TSAM Agent Custom
Plug-in

This chapter contains the following sections:
e Overview
e Developing a Oracle TSAM Agent Plug-in
e Oracle TSAM Agent Plug-in Interface
e Oracle TSAM Agent Plug-in Implementation

e Oracle TSAM Agent Plug-in Development/Deployment Notes

Overview

Oracle Tuxedo has a built-in plug-in framework that facilitates additional functionality. For
example, the Oracle Tuxedo security mechanism is constructed on the plug-in framework. Oracle
Tuxedo defines an interface set as a contract between a service provider and end user. The term
“service” here is used as a general term; not an Oracle Tuxedo ATMI service. Oracle TSAM
Agent also use the Oracle Tuxedo plug-in framework to attach different data receivers.

Oracle Tuxedo Plug-in Framework Concepts

The following section highlights Oracle Tuxedo plug-in framework key concepts.

Oracle TSAM Agent Plug-in Programming Guide 3-1

3-2

Interface
An Interface is the contract format between the plug-in implementation and the plug-in caller. An
interface requires the following attributes:

o Interface ID

The interface ID is the name of the interface that is uniquely identified in the Oracle
Tuxedo plug-in framework and uses the following format:

<interface id> ::= <component name>[/<sub-component/name>]/<interface
name>

The Oracle TSAM Agent plug-in uses the following format:
engine/performance/monitoring
e Version

An interface has two versions, the major version number and minor version number.

e Data Structure and Function Declaration

The data structure defines the concrete information conveyed between plug-in caller and
implementation.The function declaration defines the routines must be implemented by
plug-in.

Implementation

A plug-in is a dynamic library written in C code. The library implements the methods specified
by the interface. The Oracle Tuxedo plug-in framework supports multiple implementations
(interceptors) for one interface.

Oracle Tuxedo supports two types of interceptors: Fan-out interceptors and Stack interceptors.
The Oracle TSAM Agent uses the Fan-out interceptors. Figure 3-1 displays the Oracle TSAM
Agent plug-in architecture.

Oracle TSAM Agent Plug-in Programming Guide

Figure 3-1 Oracle TSAM Agent Plug-in Architecture

BEA TUXEDO

INFRASTRUCTURE

BEA TSAM AGENT

PLUG-IN A
(FAN OUT)

4

PLUG-IN 1

PLUG-IN 2

When the Oracle Tuxedo infrastructure invokes plug-in A method X, plug-in A invokes method

PLUG-IM

X of the intercepting plug-ins in the order specified by the InterceptionSeq attribute as

follows:

o Plug-in method X is invoked

Plug-in 1 method X is returned

Plug-in 2 method X is invoked

Plug-in 2 method X is returned

e Plug-in n method X is invoked

e Plug-in n method X of is returned

All plug-ins involved in the interceptor implement the same interface. Multiple occurrences of
the same plug-in are not allowed in an interception sequence.

Oracle TSAM Agent provides the Fan-out plug-in which allows you to write/create an interceptor

plug-in.

Oracle TSAM Agent Plug-in Programming Guide

Plug-in Register/Un-register/Modifications

Once the plug-in written it must be registered in the Oracle Tuxedo registry so that the functional
components will locate the plug-in and invoke the appropriate methods. Oracle Tuxedo provides
three commands specifically for plug-in use:

® cpifreg: registers a plug-in
® cpifunreg: un-registers a plug-in

° epifregedt:edhsa;ﬂugdn

Developing a Oracle TSAM Agent Plug-in

3-4

Oracle TSAM Agent plug-in invocation begins at the monitoring points. The Oracle TSAM
Agent collects and computes the metrics, and composes the arguments passed to the plug-in. The
Oracle TSAM Agent Fan-out plug-in invokes the interceptor plug-in according to the registration
sequence.

A simple Oracle TSAM custom plug-in development example is provided as a guideline. The
system environment is Solaris on Sparc. The functionality is basic and just prints out the metrics
buffers. This plug-in works together with the Oracle TSAM Agent default plug-in.

1. Create Plug-in Source Code

2. Build the Plug-in

3. Register the Plug-in

4. Enable Oracle TSAM Monitoring

5. Run a Call and Check the Standard Output.

Create Plug-in Source Code

Listing 3-1 displays an example of the Oracle TSAM plug-in customplugin.c.

Listing 3-1 Oracle TSAM Agent customplugin.c Plug-in Source Code Example

#include <e_pif.h>
#include <tpadm.h>
#include <fml32.h>

Oracle TSAM Agent Plug-in Programming Guide

#include <e_perf_mon.h>

static

static

static

static

static

static

static

TM32I _TMDLLENTRY
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
TM32U) ;

TM32I _TMDLLENTRY
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
TM32U) ;

TM32I _TMDLLENTRY
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
TM32U) ;

TM32I _TMDLLENTRY
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
TM32U) ;

TM32I _TMDLLENTRY
_TCADEF,

print_app (

print_svc (

print_sys(

print_tran(

plugin_destroy (

const struct _e_pif_ instance_handles *,

TM32U) ;

TM32I _TMDLLENTRY

void *,

plugin_copy (_TCADEF,

const struct _e pif_ interception_data *,

struct _e_pif_instance_handles *,

TM32U) ;

const perf_mon_1 Vtblperfapp 1 = {

Oracle TSAM Agent Plug-in Programming Guide

3-5

3-6

}i

static

i

print_app,

print_svc,

print_sys,

print_tran,

const
{1,
{1,

_e_pif_plugin_info perf_mon_1_info = {
0 3}, /* interface major version */
0 1, /* implementation */

"abc/tuxedo/tsam", /* implementation id */

ED_PERF_MON_INTF_ID,/* interface id */

4,
"ABC,

/* virtual table size */

Inc.",/* vendor */

"Custom Plug-in for Oracle TSAM", /* product name */

"1.0",

/* vendor version */

EF_PIF_SINGLETON, /* m_flags */

plugin_destroy,

plugin_copy

int _TMDLLENTRY

plugin_entry (_TCADEF, const char *pIId,

return

}

const
const
const

const

char *pImplId,

struct _e_pif_iversion *version,

struct _e_pif_data *pData,

struct _e_pif interception_data *pInterceptionData,

struct _e_pif_ instance_handles *pI,
T™™M32U flags)

const

char * const * regData = pData->regdata;

char *logfile = NULL;

pI->pVtbl = (void *) &Vtblperfapp_ 1;

pI->pPluginInfo = (_e_pif_plugin_info *) &perf _mon_1_info;
pI->pPrivData = NULL;

(EE_SUCCESS) ;

Oracle TSAM Agent Plug-in Programming Guide

static TM32I _TMDLLENTRY
plugin_destroy (_TCADEF, const struct _e_pif_ instance_handles *pIhandles,
T™™M32U flags)

return (EE_SUCCESS) ;

static TM32I _TMDLLENTRY

plugin_copy (_TCADEF, void *iP,
const struct _e_pif_ interception_data *pInterceptionData,
struct _e_pif_instance_handles *pIhandles,
TM32U flags)

return (EE_SUCCESS) ;
}
static TM32I _TMDLLENTRY print_app (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)
{
Fprint32 (*buf) ;

return(0) ;

static TM32I _TMDLLENTRY print_svc (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)
{

Fprint32 (*buf) ;

return(0) ;

static TM32I _TMDLLENTRY print_sys (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)
{
Fprint32 (*buf) ;
return(0) ;
}
static TM32I _TMDLLENTRY print_tran(perf_mon_1 * ip,FBFR32 **buf,

Oracle TSAM Agent Plug-in Programming Guide 3-7

MONITORCTL * monctl, TM32U flags)
{
Fprint32 (*buf) ;

return(0) ;

Build the Plug-in

cc -c customplugin.c -ISTUXDIR/include

cc -G -KPIC -o customplugin.so -L$TUXDIR/1lib -1fml customplugin.o

Register the Plug-in

To register the plug-in, do the following steps:

1. Shutdown your Oracle Tuxedo application by “tmshutdown”
2. Compose a shell script named “reg. sh”

3. Run the script

sh ./reg.sh

4. Boot your Oracle Tuxedo applications by "tmboot"

Listing 3-2 displays an example of the reg. sh shell script

Listing 3-2 reg.h Shell Script

#!/bin/sh

epifreg -r -p abc/tuxedo/tsam -i engine/performance/monitoring \
-0 SYSTEM -v 1.0 \

-f SAPPDIR/customplugin.so -e plugin_entry

epifregedt -s -k "SYSTEM/impl/bea/performance/monfan" \

-a InterceptionSeg=bea/performance/monshm \

-a InterceptionSeg=abc/tuxedo/tsam \

3-8 Oracle TSAM Agent Plug-in Programming Guide

Enable Oracle TSAM Monitoring

Enable Oracle TSAM Monitoring by defining the proper monitoring policy through Oracle
TSAM console

For more information, see the Oracle TSAM Administration Guide and Oracle TSAM Users
Guide.

Run a Call and Check the Standard Output.

You will find the metrics collected printed out.

Listing 3-3 displays the metrics print out.

Listing 3-3 Metrics Print Out Example

TA_MONDEPTH 1
TA_MONSTATUS 1
TA_MONPROCTYPE 2
TA_PID 2459

TA_SRVID 10
TA_MONLOGTIMESEC 1259292914
TA_MONLOGTIMEUSEC 26411
TA_MONFIELDSMAP1 -1
TA_MONFIELDSMAP2 -1

TA_MONMSGSIZE 24
TA_MONMSGQUEUED 0

TA_MONLASTTIMESEC 1259292914
TA_MONLASTTIMEUSEC 26411
TA_MONSTARTTIMESEC 1259292914
TA_MONSTARTTIMEUSEC 10500
TA_MONELAPSETIME 15
TA_DOMAINID dom2:bjso0ll6:66536
TA_GROUPNAME ATMIGRP1

TA_LMID L1

TA_MONTYPE APP

TA_MONCORRID dom2:bjso0ll6:66536 L1 tuxclient 2478 1 1 1259292909
TA_MONMSGTYPE ARQ
TA_MONSTAGE Q2ME

Oracle TSAM Agent Plug-in Programming Guide 3-9

../admin/index.html
../admin/index.html

TA_MONSVCNAME I_TOUPPER
TA_MONHOSTSVC I_TOUPPER

TA_MONSVCSEQ INITIATOR-I_TOUPPER-11659-0
TA_MONPSVCSEQ INITIATOR
TA_MONQID 1879048194-00010.00010

TA_MONPROCNAME tux_atmi_svr

TA_MONDEPTH
TA_MONSTATUS
TA_MONPROCTYPE
TA_PID 2459

TA_SRVID 10
TA_MONLOGTIMESEC 1259292914
TA_MONLOGTIMEUSEC 29368
TA_MONFIELDSMAP1 -1
TA_MONFIELDSMAP2 -1
TA_MONMSGSIZE 100
TA_MONLASTTIMESEC 1259292914
TA_MONLASTTIMEUSEC 29368
TA_MONSTARTTIMESEC 1259292914
TA_MONSTARTTIMEUSEC 10500
TA_MONERRNO 0

TA_MONURCODE 1

TA_MONELAPSETIME 18
TA_DOMAINID dom2:bjso0ll6:66536
TA_GROUPNAME ATMIGRP1

TA_LMID L1

TA_MONTYPE APP

TA_MONCORRID dom2:bjso0ll6:66536 L1 tuxclient 2478 1 1 1259292909
TA_MONMSGTYPE ARP

TA_MONSTAGE ME2Q

TA_MONSVCNAME I_TOUPPER

TA_MONHOSTSVC I_TOUPPER

TA_MONSVCSEQ INITIATOR-I_TOUPPER-11659-0

TA_MONPSVCSEQ INITIATOR

TA_MONPROCNAME tux_atmi_svr

3-10 Oracle TSAM Agent Plug-in Programming Guide

Oracle TSAM Agent Plug-in Interface

All Oracle TSAM Plug-in interface contents are defined in the
$TUXDIR/include/e_perf_mon.h file. When you build a Oracle TSAM Plug-in, this file must
be included in your plug-in source code

. The $TUXDIR/include/e_perf_mon.h file definitions are as follows:

e Version and Interface Identifier

e Function Table

Version and Interface ldentifier

Listing 3-4 provides a version and identifier example.

Listing 3-4 Version and Interface Identifier

#define ED_PERF_MON_MAJOR_VERSION 1

#define ED_PERF_MON_MINOR_VERSION 0

/* Interfaces defined in this module */

#define ED_PERF_MON_INTF_ID "engine/performance/monitoring"

Value Definitions and Data Structure

Listing 3-5 displays the Oracle TSAM framework and plug-in core data structure.

Listing 3-5 Core Data Structure

typedef struct {

unsigned char fieldsmap [MAXMAPSIZE] ;

char monitoring_policy[MAXPOLICYLEN]; /* monitor policy */

char corr_id[MAXCORRIDLEN]; /* plug-in supplied correlation ID */
int ulen;

void * udata;

long mon_flag;

} MONITORCTL;

Oracle TSAM Agent Plug-in Programming Guide 3-11

Table 3-1 lists the MONITORCTL members.

Table 3-1 MONITORCTL Members

Members Description

monitoring_policy Internal use only

corr_id It is used to bring the corralling ID from plug-in to TSAM framework

ulen The data length of the application buffer.

udata The application buffer. It is a typed buffer and only available for call path
monitoring and service monitoring. tptypes(5) can be used to check the type
and subtype.

mon_flag The flag set both by TSAM framework and plug-in to indicate the requirement

and changes.

Table 3-2 lists the MONITORCTL array size definitions. Table 3-3 lists the mon_flag Values.

Table 3-2 MONITORCTL Array Size Definitions

Array Size Description

/* Size of #define MAXMAPSIZE 128
fieldsmap*/

/* Size of #define MAXPOLICYLEN 128
monitoring pol

icy */

/* Size of #define MAXCORRIDLEN 256

corr_id*/

3-12 Oracle TSAM Agent Plug-in Programming Guide

Table 3-3 mon_flag Values

Members Description

#define PI_CORRID_REQUIRED is set by TSAM framework when a call path
PI_CORRID_REQU monitoring is started. It means the plug-in must supply a correlation ID to the
IRED 0x00000001 framework by the corr_id member of MONITORCTL.

Function Table

Listing 3-6 defines the plug-in implementation method function table.

Listing 3-6 Plug-in Implementation Method Function Table

typedef struct perf_mon_1_Vtbl {

TM32I (_TMDLLENTRY *_ec_perf mon_app) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

)) i

TM32I (_TMDLLENTRY *_ec_perf mon_svc) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
T™32U flags

)) i

TM32I (_TMDLLENTRY *_ec_perf mon_sys) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

)) i

TM32I (_TMDLLENTRY *_ec_perf mon_tran) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,

Oracle TSAM Agent Plug-in Programming Guide

TM32U flags

))
} perf mon_1, *perf_mon_1_ptr;

Each method corresponds to a monitoring type. “_ec_perf mon_app” is for call path
monitoring, “_ec_perf_mon_sve” is for service monitoring, “_ec_perf_mon_sys” is for system
server monitoring and “_ec_perf_mon_tran” is for transaction monitoring. Each method will be
invoked at the corresponding monitoring type’s monitoring points. The method arguments are:

® struct perf_mon_1_Vtbl *ip: the virtual table pointer e.

Note: Not required for custom plug-ins.
® FBFR32 **buf: the address of the metrics buffer in FML32 type.
® MONITORCTL *mon_ctl: the control structure.

® TM32U flags: the bit flag in a 32-byte, unsigned integer.

Other Help Header Files

® STUXDIR/include/e_pif.h

The Oracle Tuxedo general plug-in definition file. It must be included in the plug-in source
code.

® STUXDIR/include/tpadm.h

It is the Oracle Tuxedo built-in FML32 fields definition files. All performance metrics are
defined as FML32 fields and some performance metrics are defined in this file

® STUXDIR/include/monflds.h

The TSAM built-in FML32 fields definition files. All performance
metrics are defined in this file beside the tpadm.h

® STUXDIR/include/fml32.h

The metrics collected are stored in an Oracle Tuxedo FML32 buffer. To access these items,
FML32 routines must be used; fm132.h must be included.

Oracle TSAM Agent Plug-in Implementation

Oracle TSAM Agent plug-in implementation requires the following steps:

3-14 Oracle TSAM Agent Plug-in Programming Guide

1. Define “perf mon_1” in the “e_perf mon.h” Function Table
2. Define the Plug-in Information Variable

3. Write the Plug-in Entry Routine

Define “perf_mon_1" in the “e_perf_mon.h” Function
Table

Listing 3-7 shows a perf_mon_1 defined in the e_perf_mon.h function table example.

Listing 3-7 Define a "perf_mon_1" defined in "e_perf_mon.h" Function Table

static const perf_mon_1 Vtblperfapp_ 1 = {
print_app,
print_svc,
print_sys,

print_tran,

Define the Plug-in Information Variable

Listing 3-8 shows how to define the plug-in information variable.

Listing 3-8 Define the Plug-in Information Variable

static const _e_pif_plugin_info perf_mon_1_info = {
{1, 0}, /* interface version */
{1, 0}, /* implementation version */
"abc/tuxedo/tsam", /* implementation id */
ED_PERF_MON_INTF_ID, /* interface id */
4, /* virtual table size */
"ABC, Inc.", /* vendor */
"Custom Plug-in for Oracle TSAM", /* product name */
"1.0", /* vendor version */
EF_PIF_SINGLETON, /* m_flags */

Oracle TSAM Agent Plug-in Programming Guide

3-16

plugin_destroy,
plugin_copy

EERNT3

The changeable members are “implementation version”, “implementation id”, “vendor”,

CERT3

“product name”, “vendor version”. Other items must be kept with same with the sample.

plugin_destroy and plugin_copy are the general Oracle Tuxedo plug-in routines for destroy
and copy. For a Oracle TSAM Plug-in, you can write two empty functions as shown in
Listing 3-9.

Listing 3-9 plugin_destroy and plugin_copy

static TM32I _TMDLLENTRY
plugin_destroy (_TCADEF, const struct _e_pif_instance_handles *pIhandles,
TM32U flags)
{
return (EE_SUCCESS) ;
}
static TM32I _TMDLLENTRY
plugin_copy (_TCADEF, void *iP,
const struct _e_pif_ interception_data *pInterceptionData,

struct _e_pif_instance_handles *pIhandles, TM32U flags)

return (EE_SUCCESS) ;

Write the Plug-in Entry Routine

Each plug-in must have an “entry” routine and specified in plug-in registration process. In this
routine, the virtual function table and plug-in information structure must be supplied to the
plug-in instance handler.

Listing 3-10 shows a plug-in routine example.

Oracle TSAM Agent Plug-in Programming Guide

Listing 3-10 Plug-in Entry Routine

int _TMDLLENTRY
plugin_entry (_TCADEF, const char *pIId,
const char *pImplId,
const struct _e_pif_ iversion *version,
const struct _e_pif data *pData,
const struct _e_pif_ interception_data *pInterceptionData,
struct _e_pif_ instance_handles *pI,
T™M32U flags)

{
const char * const * regData = pData->regdata;
char *logfile = NULL;
pI->pVtbl = (void *) &Vtblperfapp_ 1;
pI->pPluginInfo = (_e_pif_plugin_info *) &perf _mon_1_info;
pI->pPrivData = NULL;
return (EE_SUCCESS) ;

Note: It is recommends that you t to use the fixed process shown in the sample. The “entry”
routine is called only once to instantiate the plug-in.

Writing Concrete Plug-in Implementations

The implementation function table is registered to Oracle Tuxedo in the “entry” routine. Then
following chapters will focus on how to write TSAM plug-in based on the corresponding
monitoring types.

WARNING: Do not make Oracle Tuxedo ATMI calls (except for FML32 operations,
tpalloc/tprealloc/tpfree and tptypes) in the plug-in. It may result
un-expected behavior as Oracle Tuxedo context may be compromised.

Call Path Monitoring Plug-in Routine

The call path monitoring plug-in routine are invoked at the monitoring points. For more
information, see “Oracle TSAM Agent Data Collection Framework™ on page 2-1.

Oracle TSAM Agent Plug-in Programming Guide 3-17

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:
static TM32I _TMDLLENTRY print_app (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL

* monctl, TM32U flags)

{
Fprint32 (*buf) ;
return(0) ;

}

Understanding Current Monitoring Points

Call path monitoring is the most comprehensive Oracle Tuxedo application interceptor. It
provides a variety of metrics for recording and analysis.

e Determine the monitoring stage

The monitoring stage itself is a metric with the FML32 field name TA MONSTAGE.
Table 3-4 lists TA. MONSTAGE values.

Tahle 3-4 TA_MONSTAGE Values

Value Description

STMO A new call path monitoring is initiated. This is the first record for the
current monitored call path.

ME2Q Before a message is sent to the IPC. It could be a request message or
reply message.

For the monitoring “initiator”, “STMO” replaces “ME2Q” stage since
they are at the same point.

Q2ME Before a message is received from the IPC. It could be a request or
reply message

ME2NET Before a message sent to the network. It only applies to
GWTDOMALIN. It could be a request message or reply message.

NET2ME After a message is received from the network. It only applies to
GWTDOMAIN. It could be a request message or reply message.

Listing 3-11 displays a judge monitoring stage example.

3-18 Oracle TSAM Agent Plug-in Programming Guide

Listing 3-11 Judge Monitoring Stage

char *stage;
FLDLEN32 len;
stage = Ffind32 (*obuf, TA_MONSTAGE,O0,&len);

if (stage != NULL) {
if (strcmp(stage,”STMO”) == 0) {
/* oL *)
}else if (strcmp(stage, "Q2ME” ==) {
/* oo)

/* other processment */

For “STRING” field type, we recommend to use “Ffind32” routine to get a more fast process.

e Determine the message type

For an application message transmitted in the Oracle Tuxedo system, it has two choice,
request message or reply message. The field TA. MONMSGTYPE indicates the message

type.
Table 3-5 lists the TA. MONMSGTYPE values.

Table 3-5 TA_MONMSGTYPE Values

Value Description
ARQ Request Message
ARP Reply Message

e Determine current process location

The monitoring points always are located in processes of Oracle Tuxedo applications. So
understand current process is important. Oracle TSAM framework uses the fields

TA DOMAINID, TA PID, TA LMID,TA MONPROCNAME,TA GROUPNAME and
TA_SRVID (as defined in Table 3-6) to tell the process location.

Oracle TSAM Agent Plug-in Programming Guide 3-19

Table 3-6 Current Process Location Fields

Format Description

TA_DOMAINID The domain identifier. Its format is: domainid:

mastername:ipckey.

* domainid is the DOMAINID configured in UBBCONFIG. If it is
not set, TUXDOM is used.

e Mastername is the master machine name.
» Ipckey is the key in UBBCONFIG

TA_PID Process ID

TA_LMID Logic machine ID

TA_MONPROCNAME Process name.

TA_GROUPNAME Oracle Tuxedo server group name

TA_SRVID Oracle Tuxedo server ID.

Note: Not all metrics available for certain processes. For example, for client processes,
TA_SRVID is not available.

Check Commonly Used Metrics

After get the necessary information on the monitoring stage, message type and process location,
the next step is to check the common used metrics also carried in the FML32 buffer. The metrics
will be available depending on the conditions mentioned previously.

Table 3-7 lists the commonly used metrics.

Table 3-7 Commonly Used Metrics

Field Name Type Description Stage
TA_MONCORRID string The correlation ID of this monitored call path All
TA _MONMSGSIZE long The message size of current message Alll

3-20 Oracle TSAM Agent Plug-in Programming Guide

Tahle 3-7 Commonly Used Metrics

TA_MONMSGQUEUED long How many message queued on the server request Request
IPC queue Message
Q2ME
TA_MONSTARTTIMESEC long The second part of timestamp when this call path ~ All

monitoring is initiated. It is the number of seconds
since epoch.

TA_MONSTARTTIMEUSEC long The microsecond part of the startup timestamp. It~ All
is always with TA. MONSTARTUTIMESEC to
provide a more fine-grained time measurement.

TA_MONLASTTIMESEC long The second part of timestamp when the monitored ~ All
message entering/leaving a transport. It is the
number of seconds since epoch. A transport is the
way carrying message, such as IPC queue and
network. A typical usage is,

* When a request is fetched from IPC queue,
the TA_LASTTIMESEC indicates the
timestamp when the request message was put
into queue.

* When a request is fetched from network, the
TA LASTTIMESEC indicates the timestamp
when the peer process sent the message to
network.

TA_MONLASTTIMEUSEC long The microsecond part of the last time timestamp. ~ All
It is always with TA_ MONLASTTIMESEC to
provide a more fin-grained time measurement.

TA MONLGTRID string The GTRID of current monitoring points if the Monitorin
call path involved in transaction. g points
involved
transactio
n
TA_MONCLTADDR string The remote client address. If the monitoring is All

started from an Oracle Tuxedo workstation client,
WSH, JSH or GWWS, TSAM framework will
attach the client ip address and port number to call
path information propagation. The format is //ip
address:port.

Oracle TSAM Agent Plug-in Programming Guide 3-21

Table 3-7 Commonly Used Metrics

TA_MONDEPTH short The call path depth. A hop from one service to All
another is deemed the depth increased one. The
start value at the initiator is 0.The detail can be
referred at TSAM User Guide.

TA_MONERRNO long The error number set by Oracle Tuxedo Reply
infrastructure. Message
TA_MONURCODE long The urcode of tpreturn. Reply
Message
TA MONSVCNAME string The service name of current monitoring points All

involved. For request message, it is the target
service name and for reply message, it is the
service which returns the reply.

TA_MONHOSTSVC string The service name of current service routine Monitorin
g points in
a
applicatio
n server.

TA_MONCALLFLAG long The call flags set in tpcall/tpacall Request
Message

ME2Q
STMO

TA MONCALLMODE short The call type, 1 - tpacall, 2 - tpcall, 3 - tpforward Request
Message

ME2Q
STMO

TA_MONQID string The request queue id of server which provides Request
current service. Its format is “physical queue key ~Message
- Oracle Tuxedo logic queue name”. For example, Q2ME

14444547-00004.00018

TA MONLDOM string The local domain configuration. Its format is ME2NET
ldom:dor.nginid, For. example DOM1:FINANCE. NET2ME
The detail information of the “LDOM” and
“DOMAINID” can be referred Oracle Tuxedo
Manual of DMCONFIG.

3-22 Oracle TSAM Agent Plug-in Programming Guide

Tahle 3-7 Commonly Used Metrics

TA_MONRDOM string The remote domain configuration. Its format is ME2NET
same with TA_MONLDOM but the values are for - \g1oME
remote domain.

TA_MONWSENDPOINT string The web service end point URL of GWWS. Reply
Message

ME2Q

TA _MONCPUTIME long CPU time used for service execution. Reply
Message

ME2Q

1. For some self-describe buffer types, such as STRING, the size might be zero.

Generate Call Path Correlation ID

The correlation ID must be given by the plug-in at the monitoring initiating stage, which is the
TA_MONSTAGE value is “sTM0”. The Oracle TSAM framework sets PI_CORRID_REQUIRED in the
MONITORCTL mon_flag. If no correlation ID is given, an error is reported. The Oracle TSAM
default plug-in provides the correlation ID also. Two scenarios need to consider,

o Working with the Oracle TSAM default plug-in.

The custom plug-in can skip the correlation ID generation. If the custom plug-in wants to
overwrite the correlation ID generated by the Oracle TSAM default plug-in, the interceptor
sequence of custom plug-in must come after the Oracle TSAM default plug-in.

e Working without The Oracle TSAM default plug-in

If the Oracle TSAM default plug-in is removed from the Oracle Tuxedo plug-in
framework, the custom plug-in must supply the correlation ID i. For example:

if (monctl->mon_flag & PI CORRID REQUIRED) {

strepy (monctl->corr_id, mygetid());
}

“mygetid()” is an assumed ID generation routine. The length of the new ID must not exceed the
size of corr_id of MONITORCTL.

To help ID generation, the custom plug-in can use a Oracle TSAM framework service to get a
correlation ID. Listing 3-12 displays an ID generation example.

Oracle TSAM Agent Plug-in Programming Guide 3-23

3-24

Listing 3-12 1D Generation Example

extern int _TMDLLENTRY tmmon_getcorrid(char *obuf, int len);

if (monctl->mon_flag & PI_CORRID_REQUIRED) {
char new_corrid[MAXCORRIDLEN] ;
if (tmmon_getcorrid(new_corrid, sizeof (new_corrid)) == 0) {

strpcy (monctl->corr_id,new_corrid) ;

Note: When using the Oracle TSAM framework correlation ID generation routine, 1ibtsam
must be linked with the plug-in.

Service Monitoring Plug-in Routine

Service monitoring is a straightforward procedure. The data collection points are before and after
the service routine invocation. The plug-in is invoked when a request is to be executed and a reply
to be sent back to client.

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM32I _TMDLLENTRY print_svc (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32 (*buf) ;

return(0) ;

Check Commonly Used Metrics

Table 3-8 lists the service monitoring plug-in routine metrics.

Oracle TSAM Agent Plug-in Programming Guide

Table 3-8 Service Monitoring Plug-in Routine Metrics

Field Name Type Description

TA_MONMSGWAITTIME long The request message waiting time in server’s request IPC queue
before execution.

The unit is millisecond. The waiting time is computed in two
scenarios,

* Oracle Tuxedo 11gR1 and later is the request sender

The waiting time is computed by considering the last time
stamp of transport to this service. The waiting time is
exact.

* Pre-Oracle Tuxedo 11gR1 release sender.

The waiting time is computed based on average queue
length and last service execution time and the dispatching
thread number. This is an approximate value. It only
applies to a server which provides similar services and the
execution time is steady.

TA_MONMSGSIZE long The message size of reply message.

TA MONMSGQUEUED long The number of messages queued on the server request IPC queue
currently.

TA_MONLASTTIMESEC long The number of seconds since epoch when the service begin to execute

TA MONLASTTIMEUSEC long The microsecond seconds since time seconds since epoch. It is used
with TA_ MONLASTTIMESEC

TA_MONERRNO long Oracle Tuxedo return error code, that is tperrno
TA_MONURCODE long The urcode of tpreturn.
TA_MONEXECTIME long The response time in millisecond of current service execution. It is

computed by the Oracle TSAM framework. Plug-in can also get the
current time and the last time timestamp.

TA _MONCPUTIME long How much CPU time is used of current service execution. It is in
milliseconds.

Oracle TSAM Agent Plug-in Programming Guide 3-25

Tahle 3-8 Service Monitoring Plug-in Routine Metrics

TA_MONSVCNAME string The service name.

TA _MONLOCATION string The process location of current process. It has same meaning in call
path monitoring.

System Server Monitoring Plug-in Routine

Oracle TSAM supports several types of Oracle Tuxedo system servers monitoring:
GWTDOMAIN, BRIDGE, and GWWS. The monitoring focus on the throughput, outstanding
request number and message number queued on network. The plug-in is invoked periodically by
the Oracle TSAM framework. The interval is specified by the monitoring policy. Data collection
occurs on the on-going server operations.

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM32I _TMDLLENTRY print_sys(perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32 (*buf) ;

return(0) ;

Check Commonly Used Metrics

Table 3-9 lists the system server monitoring plug-in routine metrics.

Table 3-9 System Server Monitoring Plug-in Routine Metrics

Field Name Type Description

TA_MONLINKNUM short The number of network link connected to current server. If the value
is more than 1, then the following statistics data on network link are in
FML occurrences style. For example, TA_ MONLINKADDR[O0] is
belong to the first network link, TA_ MONLINKADDR([1] is belong
to the second network link etc.

TA MONLINKSTATUS short The status of the network link, three possible values, 1 - initialize
stage. 0 - connected and is ok. -1 connection lost.

3-26 Oracle TSAM Agent Plug-in Programming Guide

Tahle 3-9 System Server Monitoring Plug-in Routine Metrics

TA_MONNUMPEND long The number of messages queued on network buffer for this network
link. The buffer is for Oracle Tuxedo network layer instead of system
network stack.

This is a snapshot value reflecting the number situation when plug-in
is invoked.

TA_MONBYTESPEND long The number of messages bytes queued on network buffer. It is related
with TA_ MONNUMPEND but computing the data volume

TA MONNUMWAITRPLY long The outstanding request number on this network link. That means how
many request message are waiting for reply. It only applies to
GWTDOMAIN. BRIDGE does not support this metric.

This is a snapshot value.

TA_MONACCNUM long The accumulated message number for this network link between
current plug-in invocation and last plug-in invocation which
controlled by the “sysinterval” policy.

This is a throughput value reflecting the accumulated information
between an interval.

TA_MONACCBYTES long The accumulated message bytes. It is related TA_ MONACCNUM but
computing the data volume.

This is a throughput value.

TA MONLINKADDR string The link address, for GWTDOMALIN, it is the RDOM defined in
UBBCONFIG. For BRIDGE, it is the remote host name.

TA_MONINRPCFAIL long The number of RPC failed requests for inbound of GWWS.

TA_MONOUTRPCFAIL long The number of RPC failed request for outbound of GWWS.

TA_MONINBOUNDPEND long The number of pending request waiting for reply for inbound of
GWWS.

TA_MONOUTBOUNDPEN long The number of pending request waiting for reply for outbound of
D GWWS

Transaction Monitoring Plug-in Routine

Oracle TSAM also traces critical routines invocation in XA transaction. The scope includes
tpbegin,tpcommit, tpabort,xa xxx calls and GWTDOMAINS transaction routines.

Oracle TSAM Agent Plug-in Programming Guide 3-27

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM32I _TMDLLENTRY print_tran(perf_mon_1 * ip,FBFR32 **buf,
MONITORCTL * monctl, TM32U flags)

{
Fprint32 (*buf) ;

return(0) ;

Check Commonly Used Metrics

Listing 3-10 lists the commonly used transaction monitoring plug-in routine metrics.

Table 3-10 Transaction Monitoring Plug-in Routine Metrics

Field Name Type Description

TA_MONXANAME string The routine name of a XA transaction, such as “tpbegin”, “xa_commit” etc.

TA_MONXACODE long The routine return code

TA MONEXECTIME long The routine execution time in millisecond.

TA_MONRMID long The resource manager instance ID. It only applies to xa_xxx calls

TA MONLGTRID string The global transaction ID of current transaction

TA_MONRGTRID string The parent transaction’s GTRID. It only applies to GWTDOMAIN when it
is a network subordinator.

TA_MONLOCATION string The process location of current process. It has same meaning in call path
monitoring.

Configure the Plug-in to Oracle Tuxedo

Note: The plug-in will run in Oracle Tuxedo infrastructure. It must be well tested before
configure to Oracle Tuxedo production environment.

3-28 Oracle TSAM Agent Plug-in Programming Guide

Register to Oracle Tuxedo

Oracle Tuxedo uses the epi freg command to register the plug-ins to the Oracle Tuxedo registry
so that the infrastructure can invoke the plug-in at run time. Oracle TSAM uses the Oracle TSAM
framework to invoke the plug-in.

Listing 3-13 shows how the epifreg command is used to invoke a plug-in.

Listing 3-13 Using epifreg to Invoke a Plug-in

epifreg -r -p abc/tuxedo/tsam -i engine/performance/monitoring \

-0 SYSTEM -v 1.0 -f /test/abc/customplugin.so -e plugin_entry
epifregedt -s -k "SYSTEM/impl/bea/performance/monfan" \

-a InterceptionSeg=bea/performance/monshm \

-a InterceptionSeg=abc/tuxedo/tsam

In this, there are two steps required to register the custom plug-in Oracle Tuxedo.
1. Using “epifreg” to register the custom implementation to Oracle Tuxedo.

a. “-p” option specifies the implementation id and it must be consistent the value specified
in source code.

b. “-v” indicates the version number.
c. “-£” specifies the dynamic library path.
d. “-e” specifies the “entry” routine described in the “General Steps” section.

2. Using “epifregedt” to change the fan-out plug-in “InterceptionSeq” attribute.

Oracle TSAM supports a Fan-out plug-in mechanism which means multiple plug-ins can
work together. Oracle TSAM Agent provides the Fan-out plug-in and a default interceptor
plug-in. The custom plug-in is an additional interceptor plug-in.

The “-a InterceptionSeqg=xxx" option tells the Fan-out plug-in invokes the interceptor
plug-in using the specified order. “xxx” is the implementation id. In this example, the
Oracle Tuxedo default interceptor plug-in implementation 1D,
“bea/performance/monshm”, is invoked before the custom plug-in implementation ID
“abc/tuxedo/tsam”.

Oracle TSAM Agent Plug-in Programming Guide 3-29

3. Ifyou have multiple custom plug-in developed, you need to register them first with “epifreg”,
then modify the invocation sequence with “epifregedt” with the proper
“InterceptionSeq’ sequence.

Un-register from Oracle Tuxedo

“epifunreg” can be used to un-register a specified plug-in, for example,

epifunreg -p abc/tuxedo/tsam

After unregistering the custom plug-in, you must use “epifregedt” to modify the Fan-out
plug-in invocation again based on current available plug-ins. For example:

epifregedt -s -k "SYSTEM/impl/bea/performance/monfan" \

-a InterceptionSeg=bea/performance/monshm

Note: It is strongly recommended to register/unregister/modify the plug-in after shutting down
an Oracle Tuxedo application.

Oracle TSAM Agent Plug-in Development/Deployment
Notes

e Do not use Oracle Tuxedo ATMI calls in the plug-in except for the FML32 operations
tpalloc/tprealloc/tpfree and tptypes. The monitoring points are embedded in the
Oracle Tuxedo communication framework. Embedded ATMI calls may compromise
current Oracle Tuxedo context.

e You cannot free FML32 buffers passed by the plug-in.

o If there is any information returned to the Oracle TSAM framework, such as new
correlation ID, the latest plug-in changes take effect.

e Do not change the MONITORCTL udata. It is a read only interception of application
messages. Any modification will result un-expected behavior.

3-30 Oracle TSAM Agent Plug-in Programming Guide

Oracle TSAM Agent Plug-in Programming Guide 3-31

3-32 Oracle TSAM Agent Plug-in Programming Guide

Oracle TSAM Agent Plug-in Programming Guide 3-33

	Oracle® Tuxedo System and Application Monitor (TSAM)
	11g Release 1 (11.1.1.2)

	Oracle Tuxedo Systems and Application Monitor (TSAM) Plug-in Programming Guide, 11g Release 1 (11.1.1.2)
	Overview
	Overview
	Overview
	Oracle Tuxedo Plug-in Framework Concepts
	Interface
	Implementation
	Plug-in Register/Un-register/Modifications

	Developing a Oracle TSAM Agent Plug-in
	Create Plug-in Source Code
	Build the Plug-in
	Register the Plug-in
	Enable Oracle TSAM Monitoring
	Run a Call and Check the Standard Output.

	Oracle TSAM Agent Plug-in Interface
	Version and Interface Identifier
	Function Table
	Other Help Header Files

	Oracle TSAM Agent Plug-in Implementation
	Define “perf_mon_1” in the “e_perf_mon.h” Function Table
	Define the Plug-in Information Variable
	Write the Plug-in Entry Routine
	Writing Concrete Plug-in Implementations
	Call Path Monitoring Plug-in Routine
	Service Monitoring Plug-in Routine
	System Server Monitoring Plug-in Routine
	Transaction Monitoring Plug-in Routine
	Configure the Plug-in to Oracle Tuxedo

	Oracle TSAM Agent Plug-in Development/Deployment Notes

