Oracle® Automatic Storage Management
Administrator's Guide
11g Release 2 (11.2)
E16102-05

August 2010
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxiii</td>
</tr>
<tr>
<td>Audience</td>
<td>xxiii</td>
</tr>
<tr>
<td>Documentation Accessibility</td>
<td>xxiii</td>
</tr>
<tr>
<td>Related Documents</td>
<td>xxiv</td>
</tr>
<tr>
<td>Conventions</td>
<td>xxiv</td>
</tr>
<tr>
<td>What's New in Oracle Automatic Storage Management?</td>
<td>xxv</td>
</tr>
<tr>
<td>Oracle Automatic Storage Management 11g Release 2 (11.2.0.2) New Features</td>
<td>xxv</td>
</tr>
<tr>
<td>Oracle Automatic Storage Management 11g Release 2 (11.2.0.1) New Features</td>
<td>xxvii</td>
</tr>
<tr>
<td>Oracle Automatic Storage Management 11g Release 1 (11.1) New Features</td>
<td>xxx</td>
</tr>
<tr>
<td>1 Introduction to Oracle Automatic Storage Management</td>
<td>1-1</td>
</tr>
<tr>
<td>Overview of Oracle Automatic Storage Management</td>
<td>1-1</td>
</tr>
<tr>
<td>Understanding Oracle ASM Concepts</td>
<td>1-2</td>
</tr>
<tr>
<td>About Oracle ASM Instances</td>
<td>1-2</td>
</tr>
<tr>
<td>About Oracle ASM Disk Groups</td>
<td>1-5</td>
</tr>
<tr>
<td>About Mirroring and Failure Groups</td>
<td>1-5</td>
</tr>
<tr>
<td>About Oracle ASM Disks</td>
<td>1-6</td>
</tr>
<tr>
<td>Allocation Units</td>
<td>1-7</td>
</tr>
<tr>
<td>About Oracle ASM Files</td>
<td>1-7</td>
</tr>
<tr>
<td>Extents</td>
<td>1-7</td>
</tr>
<tr>
<td>Oracle ASM Striping</td>
<td>1-8</td>
</tr>
<tr>
<td>File Templates</td>
<td>1-10</td>
</tr>
<tr>
<td>Understanding Oracle ASM Disk Group Administration</td>
<td>1-10</td>
</tr>
<tr>
<td>About Discovering Disks</td>
<td>1-10</td>
</tr>
<tr>
<td>About Mounting and Dismounting Disk Groups</td>
<td>1-11</td>
</tr>
<tr>
<td>About Adding and Dropping Disks</td>
<td>1-11</td>
</tr>
<tr>
<td>About Online Storage Reconfigurations and Dynamic Rebalancing</td>
<td>1-11</td>
</tr>
<tr>
<td>2 Considerations for Oracle ASM Storage</td>
<td>2-1</td>
</tr>
<tr>
<td>Storage Resources for Disk Groups</td>
<td>2-1</td>
</tr>
<tr>
<td>Oracle ASM and Multipathing</td>
<td>2-3</td>
</tr>
<tr>
<td>Recommendations for Storage Preparation</td>
<td>2-4</td>
</tr>
</tbody>
</table>
Administering Oracle ASM Instances

- Operating with Different Releases of Oracle ASM and Database Instances Simultaneously
 - Configuring Initialization Parameters for Oracle ASM Instances
 - Initialization Parameter Files for an Oracle ASM Instance
 - Backing Up, Copying, and Moving an Oracle ASM Initialization Parameter File
 - Setting Oracle ASM Initialization Parameters
 - Automatic Memory Management for Oracle ASM
 - Oracle ASM Parameter Setting Recommendations
 - ASM_DISKGROUPS
 - ASM_DISKSTRING
 - ASM_POWER_LIMIT
 - ASM_PREFERRED_READ_FAILURE_GROUPS
 - DB_CACHE_SIZE
 - DIAGNOSTIC_DEST
 - INSTANCE_TYPE
 - LARGE_POOL_SIZE
 - PROCESSES
 - REMOTE_LOGIN_PASSWORDFILE
 - SHARED_POOL_SIZE
 - Setting Database Initialization Parameters for Use with Oracle ASM

- Managing Oracle ASM Instances
 - Administering Oracle ASM Instances with Server Control Utility
 - Using Oracle Restart
 - Starting Up an Oracle ASM Instance
 - About Mounting Disk Groups at Startup
 - About Restricted Mode
 - Shutting Down an Oracle ASM Instance
 - Upgrading an Oracle ASM Instance with Oracle Universal Installer
 - Downgrading an Oracle ASM Instance
 - Out of Place Upgrades
 - Configuring Oracle Grid Infrastructure with the Configuration Wizard
 - Active Session History Sampling for Oracle ASM

- Using Oracle ASM Rolling Upgrade

- Patching Oracle ASM Instances in Oracle RAC Environments

- Authentication for Accessing Oracle ASM Instances
 - About Privileges for Oracle ASM
 - Using One Operating System Group for Oracle ASM Users
 - Using Separate Operating System Groups for Oracle ASM Users
 - The SYSASM Privilege for Administering Oracle ASM
 - The SYSDBA Privilege for Managing Oracle ASM Components
 - Creating Users with the SYSASM Privilege
 - Operating System Authentication for Oracle ASM
 - Password File Authentication for Oracle ASM

- Migrating a Database to Use Oracle ASM
 - Using Oracle Enterprise Manager to Migrate Databases to Oracle ASM
 - Using Oracle Recovery Manager to Migrate Databases to Oracle ASM
 - Best Practices White Papers on Migrating to Oracle ASM
Using CREATE DISKGROUP with Compatibility Attributes ... 4-36
Using ALTER DISKGROUP with Compatibility Attributes .. 4-36
Viewing Compatibility Attribute Settings .. 4-36
Features Enabled By Disk Group Compatibility Attribute Settings 4-37
Reverting Disk Group Compatibility ... 4-37
Considerations When Setting Disk Group Compatibility in Replicated Environments ... 4-38
Managing Oracle ASM File Access Control for Disk Groups ... 4-39
About Oracle ASM File Access Control ... 4-40
Using SQL Statements to Set Disk Group Attributes for Oracle ASM File Access Control. 4-41
Using SQL Statements to Manage Oracle ASM File Access Control 4-42
Mounting and Dismounting Disk Groups ... 4-43
Mounting Disk Groups Using the FORCE Option.. 4-44
Checking the Internal Consistency of Disk Group Metadata .. 4-45
Dropping Disk Groups ... 4-45
Renaming Disks Groups ... 4-46

5 Introduction to Oracle ACFS

Overview of Oracle ACFS ... 5-1
Understanding Oracle ACFS Concepts .. 5-4
About Oracle ACFS .. 5-4
About Oracle ACFS and Oracle Database Homes ... 5-5
About Oracle ASM Dynamic Volume Manager .. 5-6
About the Oracle ACFS Driver Model ... 5-6
About the Oracle ACFS Mount Model and Namespace .. 5-7
About the Oracle ACFS Mount Registry ... 5-7
About Oracle ACFS Snapshots .. 5-8
About Oracle ACFS and Backup and Restore ... 5-8
About Oracle ACFS Integration with Oracle ASM ... 5-9
Understanding Oracle ACFS Administration ... 5-9
Oracle ACFS and File Access and Administration Security ... 5-9
Oracle ACFS and Grid Infrastructure Installation .. 5-10
Oracle ACFS and Grid Infrastructure Configuration ... 5-10
Clusterware Resources and Oracle ACFS Administration .. 5-10
Oracle ACFS and Dismount or Shutdown Operations ... 5-11
Oracle ACFS Security .. 5-12
Oracle ACFS Encryption ... 5-14
Oracle ACFS Replication .. 5-16
Oracle ACFS Tagging .. 5-18
Overview of Oracle ASM Dynamic Volume Manager .. 5-18

6 Using Views to Display Information

Views Containing Oracle ASM Disk Group Information .. 6-1
Viewing Oracle ASM File Access Control Information .. 6-4
Viewing Disk Region Information ... 6-5
Views Containing Oracle ACFS Information .. 6-6
Administering Oracle ASM Files, Directories, and Templates

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Types of Files Does Oracle ASM Support?</td>
<td>7-1</td>
</tr>
<tr>
<td>About Oracle ASM Filenames</td>
<td>7-2</td>
</tr>
<tr>
<td>Single File Creation Form</td>
<td>7-3</td>
</tr>
<tr>
<td>Multiple File Creation Form</td>
<td>7-4</td>
</tr>
<tr>
<td>Fully Qualified File Name Form</td>
<td>7-4</td>
</tr>
<tr>
<td>Alias Oracle ASM Filename Forms</td>
<td>7-5</td>
</tr>
<tr>
<td>Creating a Tablespace in Oracle ASM: Using a Data File with an Alias Name</td>
<td>7-6</td>
</tr>
<tr>
<td>Alias Oracle ASM Filename with Template Form</td>
<td>7-6</td>
</tr>
<tr>
<td>Incomplete Oracle ASM Filename Form</td>
<td>7-6</td>
</tr>
<tr>
<td>Incomplete Oracle ASM Filename with Template Form</td>
<td>7-7</td>
</tr>
<tr>
<td>Migrating the Database to Oracle ASM Using RMAN</td>
<td>7-7</td>
</tr>
<tr>
<td>Creating and Referencing Oracle ASM Files in the Database</td>
<td>7-7</td>
</tr>
<tr>
<td>Creating Oracle ASM Files Using a Default File Location for Disk Group Specification</td>
<td>7-8</td>
</tr>
<tr>
<td>Using Oracle ASM Filenames in SQL Statements</td>
<td>7-9</td>
</tr>
<tr>
<td>Managing Alias Names for Oracle ASM Filenames</td>
<td>7-9</td>
</tr>
<tr>
<td>Adding an Alias Name for an Oracle ASM Filename</td>
<td>7-10</td>
</tr>
<tr>
<td>Renaming an Alias Name for an Oracle ASM Filename</td>
<td>7-10</td>
</tr>
<tr>
<td>Dropping an Alias Name for an Oracle ASM Filename</td>
<td>7-10</td>
</tr>
<tr>
<td>Dropping Files and Associated Aliases from a Disk Group</td>
<td>7-10</td>
</tr>
<tr>
<td>Managing Disk Group Directories</td>
<td>7-11</td>
</tr>
<tr>
<td>Creating a New Directory</td>
<td>7-11</td>
</tr>
<tr>
<td>Renaming a Directory</td>
<td>7-12</td>
</tr>
<tr>
<td>Dropping a Directory</td>
<td>7-12</td>
</tr>
<tr>
<td>Accessing Oracle ASM Files with the XML DB Virtual Folder</td>
<td>7-12</td>
</tr>
<tr>
<td>Inside /sys/asm</td>
<td>7-13</td>
</tr>
<tr>
<td>Using DBMS_FILE Transfer Utility for Oracle ASM</td>
<td>7-14</td>
</tr>
<tr>
<td>Managing Disk Group Templates</td>
<td>7-15</td>
</tr>
<tr>
<td>Template Attributes</td>
<td>7-15</td>
</tr>
<tr>
<td>Adding Templates to a Disk Group</td>
<td>7-17</td>
</tr>
<tr>
<td>Modifying a Disk Group Template</td>
<td>7-17</td>
</tr>
<tr>
<td>Dropping Templates from a Disk Group</td>
<td>7-18</td>
</tr>
<tr>
<td>Creating Tablespaces in Oracle ASM: Specifying Attributes with Templates</td>
<td>7-18</td>
</tr>
</tbody>
</table>

Performing Oracle ASM Data Migration with RMAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Oracle ASM Data Migration</td>
<td>8-1</td>
</tr>
<tr>
<td>Purpose of Oracle ASM Data Migration</td>
<td>8-1</td>
</tr>
<tr>
<td>Basic Concepts of Oracle ASM Data Migration</td>
<td>8-2</td>
</tr>
<tr>
<td>Basics Steps of Data Migration to Oracle ASM Using RMAN</td>
<td>8-2</td>
</tr>
<tr>
<td>Preparing to Migrate the Database to Oracle ASM Using RMAN</td>
<td>8-2</td>
</tr>
<tr>
<td>Migrating the Database to Oracle ASM Using RMAN</td>
<td>8-3</td>
</tr>
<tr>
<td>Migrating a Database from Oracle ASM to Alternative Storage</td>
<td>8-5</td>
</tr>
<tr>
<td>Moving Data Files Between Oracle ASM Disk Groups Using RMAN</td>
<td>8-9</td>
</tr>
</tbody>
</table>

Administering Oracle ASM with Oracle Enterprise Manager

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Automatic Storage Management Home Page</td>
<td>9-1</td>
</tr>
<tr>
<td>Accessing the Oracle ASM Home Page in Single-Instance Oracle Databases</td>
<td>9-2</td>
</tr>
</tbody>
</table>
Accessing the Oracle ASM Home Page in Oracle RAC Databases................................. 9-3
Configuring Oracle ASM Initialization Parameters with Oracle Enterprise Manager 9-3
Managing Oracle ASM Users with Oracle Enterprise Manager.. 9-4
Managing Disk Groups with Oracle Enterprise Manager.. 9-5
 Creating Disk Groups... 9-5
 Adding Disks to Disk Groups... 9-7
 Bringing Disks Online and Offline.. 9-9
 Dropping Disks from Disk Groups.. 9-11
 Dropping Disk Groups... 9-12
 Monitoring Disk Group Usage... 9-13
 Mounting and Dismounting Disk Groups... 9-14
Administering Advanced Disk Group Properties... 9-14
 Configuring Disk Group Compatibility Attributes... 9-15
 Configuring Disk Repair Time... 9-16
 Configuring Smart Scan Compatibility... 9-16
 Configuring File Access Control... 9-16
Managing Oracle ASM File Access Control with Oracle Enterprise Manager..................... 9-16
Managing Directories, Files, and Aliases with Oracle Enterprise Manager............................. 9-19
Managing Disk Group Templates with Oracle Enterprise Manager...................................... 9-20
Monitoring Oracle ASM Performance with Oracle Enterprise Manager............................. 9-21
 Monitoring General Oracle ASM Performance... 9-21
 Checking Disk Group Integrity... 9-22
Backing Up Oracle ASM Files with Oracle Enterprise Manager... 9-23
Performing Bad Block Recovery with Oracle Enterprise Manager 9-23
Migrating to Oracle ASM with Oracle Enterprise Manager.. 9-24
Oracle ASM Support Workbench... 9-25
Oracle by Example Series.. 9-28

10 Administering Oracle ACFS with Oracle Enterprise Manager

Managing Oracle ACFS with Oracle Enterprise Manager... 10-1
 Creating Oracle ACFS Volumes and File Systems... 10-1
 Viewing and Modifying Oracle ACFS Volumes and File Systems................................. 10-3
Managing Oracle ACFS Snapshots with Oracle Enterprise Manager.................................... 10-5

11 Oracle ASM Configuration Assistant

Oracle ASM Configuration Assistant GUI Tool.. 11-1
 Starting Oracle ASM Configuration Assistant... 11-1
Managing Oracle ASM Instances with Oracle ASM Configuration Assistant..................... 11-2
Upgrading an Oracle ASM Instance with Oracle ASM Configuration Assistant.................. 11-4
Managing Disk Groups with Oracle ASM Configuration Assistant..................................... 11-7
Managing Oracle ADVM Volumes with Oracle ASM Configuration Assistant.................... 11-10
Managing Oracle ACFS File Systems with Oracle ASM Configuration Assistant............... 11-12
Managing Security and Encryption for Oracle ACFS File Systems with Oracle ASM Configuration Assistant 11-14
 Creating an Oracle ACFS File System for a Database Home.. 11-16
Oracle ASM Configuration Assistant Command-Line Interface... 11-17
 Running ASMCA Command-Line... 11-17
12 Oracle ASM Command-Line Utility

About ASMCMD .. 12-1
Types of ASMCMD Commands ... 12-1
About Oracle ASM Files, Filenames, Directories, and Aliases .. 12-2
 System-Generated Filename or Fully Qualified Filename .. 12-2
 Directory .. 12-2
 Alias .. 12-3
 Absolute Path and Relative Path ... 12-4
 Wildcard Characters .. 12-5
Preparing to Run ASMCMD .. 12-6
Running ASMCMD in Interactive Mode .. 12-7
 Running ASMCMD without Any Options .. 12-7
 Specifying the Type of Connection .. 12-8
 Specifying the Verbose Mode .. 12-8
 Including the Current Directory in the ASMCMD Prompt .. 12-8
 Displaying the ASMCMD Version Number .. 12-8
Running ASMCMD in Noninteractive Mode ... 12-8
Getting Help .. 12-10

ASMCMD Instance Management Commands .. 12-10
 dsget .. 12-11
 dsset ... 12-11
 lsc .. 12-12
 lsop ... 12-13
 lspwusr ... 12-13
 orapwusr ... 12-14
 shutdown .. 12-15
 spbackup .. 12-15
 spcopy .. 12-16
 spget ... 12-18
 spmove ... 12-18
 spset ... 12-19
 startup ... 12-19

ASMCMD File Management Commands ... 12-20
 cd .. 12-21
 cp .. 12-21
 du .. 12-23
 find .. 12-23
ls.. 12-24
lsf.. 12-26
mkalias.. 12-27
mkdir.. 12-28
pwd... 12-28
rm... 12-29
rmalias... 12-30

ASMCMD Disk Group Management Commands ... 12-30
chdg.. 12-31
chkgd... 12-33
dropdg... 12-33
iostat... 12-34
lsattr... 12-36
lsdg... 12-37
lsdsk... 12-38
lsod... 12-40
md_backup... 12-41
md_restore... 12-43
mkdg... 12-43
mount.. 12-45
offline.. 12-46
online.. 12-47
rebal... 12-47
remap.. 12-48
setattr... 12-49
umount... 12-49

ASMCMD Template Management Commands ... 12-50
chtmpl... 12-50
lstmpl... 12-51
mktmpl... 12-52
rntmpl... 12-53

ASMCMD File Access Control Commands ... 12-53
chgrp.. 12-54
chchmod... 12-54
chown.. 12-56
groups.. 12-56
grpmod... 12-57
lsgrp.. 12-57
lsusr... 12-58
mkgrp.. 12-59
mkusr.. 12-59
passwd.. 12-60
rmgrp.. 12-60
rmusr.. 12-61

ASMCMD Volume Management Commands .. 12-62
volcreate... 12-62
voldelete.. 12-64
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>voldisable</td>
<td>12-64</td>
</tr>
<tr>
<td>volenable</td>
<td>12-65</td>
</tr>
<tr>
<td>volinfo</td>
<td>12-66</td>
</tr>
<tr>
<td>volresize</td>
<td>12-67</td>
</tr>
<tr>
<td>volset</td>
<td>12-68</td>
</tr>
<tr>
<td>volstat</td>
<td>12-68</td>
</tr>
</tbody>
</table>

13 Oracle ACFS Command-Line Tools

Basic Steps to Manage an Oracle ACFS ... 13-1

- Creating an Oracle ACFS File System ... 13-2
- Accessing an Oracle ACFS File System on a Different Node in the Cluster 13-4
- Managing Oracle ACFS Snapshots ... 13-5
- Securing Oracle ACFS File Systems ... 13-6
- Encrypting Oracle ACFS File Systems .. 13-10
- Tagging Oracle ACFS File Systems .. 13-11
- Replicating Oracle ACFS File Systems ... 13-13
- Deregistering, Dismounting, and Disabling Volumes and Oracle ACFS File Systems 13-18
 - Deregistering an Oracle ACFS File System .. 13-18
 - Dismounting an Oracle ACFS File System ... 13-18
 - Disabling a Volume ... 13-19
- Removing an Oracle ACFS File System and a Volume ... 13-19

Oracle ACFS Command-line Tools for Linux and UNIX Environments 13-20

- fsck ... 13-20
- mkfs ... 13-22
- mount .. 13-23
- umount .. 13-25

Oracle ACFS Command-line Tools for the Solaris Environment 13-25

- fsck ... 13-26
- mkfs ... 13-28
- mount .. 13-29
- umount/umountall ... 13-31

Oracle ACFS Command-line Tools for the AIX Environment 13-32

- fsck ... 13-33
- mkfs ... 13-35
- mount .. 13-36
- umount/umountall ... 13-38

- acfschkdsk ... 13-39
- acfsdismount ... 13-41
- acfsformat .. 13-42
- acfsmountvol .. 13-43
- acfsutil detach ... 13-44
- advmutil dismount ... 13-45
- advmutil list .. 13-46
- advmutil mount ... 13-47

Oracle ACFS Command-Line Tools for Tagging .. 13-48

- acfsutil tag info ... 13-48
acfsutil tag set ... 13-49
acfsutil tag unset .. 13-50

 Oracle ACFS Command-Line Tools for Replication ... 13-51
 acfsutil repl bg ... 13-51
 acfsutil repl info ... 13-52
 acfsutil repl init ... 13-54
 acfsutil repl pause .. 13-56
 acfsutil repl resume .. 13-57
 acfsutil repl sync ... 13-57
 acfsutil repl terminate ... 13-58
 acfsutil repl trace ... 13-59
 acfsutil repl update .. 13-60

 acfsutil sec admin add .. 13-61
 acfsutil sec admin password .. 13-62
 acfsutil sec admin remove .. 13-63
 acfsutil sec batch ... 13-63
 acfsutil sec disable .. 13-64
 acfsutil sec enable ... 13-65
 acfsutil sec info ... 13-66
 acfsutil sec info file .. 13-66
 acfsutil sec init ... 13-67
 acfsutil sec load ... 13-68
 acfsutil sec prepare .. 13-69
 acfsutil sec realm add ... 13-70
 acfsutil sec realm clone .. 13-72
 acfsutil sec realm create .. 13-73
 acfsutil sec realm delete .. 13-74
 acfsutil sec realm destroy ... 13-75
 acfsutil sec rule clone ... 13-76
 acfsutil sec rule create ... 13-77
 acfsutil sec rule destroy ... 13-78
 acfsutil sec rule edit ... 13-78
 acfsutil sec ruleset clone .. 13-79
 acfsutil sec ruleset create .. 13-80
 acfsutil sec ruleset destroy .. 13-81
 acfsutil sec ruleset edit .. 13-81
 acfsutil sec save .. 13-82

 Oracle ACFS Command-Line Tools for Encryption ... 13-83
 acfsutil encr info .. 13-83
 acfsutil encr init ... 13-84
 acfsutil encr off ... 13-85
 acfsutil encr on .. 13-85
 acfsutil encr rekey ... 13-86
 acfsutil encr set ... 13-87

 Oracle ACFS Command-Line Utilities for Multiple Environments 13-88
 acfsdbg ... 13-89
A Creating Database Files in Oracle ASM Using SQL*Plus

Creating a Database that Uses Oracle ASM ... A-1
 Creating a Database that Uses Oracle ASM: Example ... A-1
Creating Tablespaces in Oracle ASM ... A-2
Creating Redo Logs in Oracle ASM .. A-2
Creating Control Files in Oracle ASM ... A-3
 Creating Control Files in Oracle ASM: Example 1 .. A-3
 Creating Control Files in Oracle ASM: Example 2 .. A-3
Creating Archive Log Files in Oracle ASM ... A-4

B Oracle ACFS Advanced Topics

Limits of Oracle ACFS ... B-1
 Oracle ACFS Disk Space Usage ... B-1
 Oracle ACFS Error Handling ... B-2
 Oracle ACFS and NFS .. B-2
Limits of Oracle ADVM ... B-3
Oracle ACFS Drivers Resource Management .. B-3
Oracle ACFS Registry Resource Management ... B-4
Oracle ACFS Individual File System Resource Management B-5
Oracle ACFS and Oracle Restart .. B-6
Understanding Oracle ACFS I/O Failure Console Messages B-6

Glossary

Index
List of Examples

3–1 Sample diagnostic directory for an Oracle ASM instance .. 3-10
4–1 Creating the DATA disk group .. 4-5
4–2 Creating the FRA disk group .. 4-6
4–3 Altering the DB_FILE_MULTIBLOCK_READ_COUNT setting .. 4-8
4–4 Creating a disk group of 4K sector size .. 4-9
4–5 Using the QUORUM keyword .. 4-11
4–6 Managing volumes with ALTER DISKGROUP VOLUME statements 4-12
4–7 Dropping disks from disk groups .. 4-15
4–8 Resizing disks in disk groups ... 4-17
4–9 Undropping disks in disk groups ... 4-17
4–10 Manually rebalancing a disk group .. 4-18
4–11 Querying V$ASM_DISK for header status ... 4-20
4–12 Setting up Oracle ASM File Access Control ... 4-41
4–13 Using renamedg .. 4-48
6–1 Viewing disk group attributes with V$ASM_ATTRIBUTE ... 6-2
6–2 Viewing the compatibility of a disk group with V$ASM_DISKGROUP 6-3
6–3 Viewing disks in disk groups with V$ASM_DISK ... 6-3
6–4 Viewing disk group clients with V$ASM_CLIENT .. 6-3
6–5 Viewing Oracle ASM File Access Control information with V$ASM_USER 6-4
6–6 Viewing Oracle ASM File Access Control information with V$ASM_USERGROUP 6-4
6–7 Viewing Oracle ASM File Access Control information with V$ASM_USERGROUP MEMBER 6-4
6–8 Viewing Oracle ASM File Access Control information with V$ASM_FILE 6-5
6–9 Viewing Intelligent Data Placement information with V$ASM_FILE 6-5
6–10 Viewing Intelligent Data Placement information with V$ASM_TEMPLATE 6-5
6–11 Viewing encryption information in V$ASM_ACFS_ENCRYPTION_INFO 6-6
6–12 Viewing security information in V$ASM_ACFS_SECURITY_INFO ... 6-7
6–13 Viewing snapshot information in V$ASM_ACFSSNAPSHOTS .. 6-7
6–14 Viewing volume information with V$ASM_ACFSVOLUMES .. 6-7
6–15 Viewing volume information with V$ASM_FILESYSTEM .. 6-8
6–16 Viewing volume information with V$ASM_VOLUME .. 6-8
6–17 Viewing volume information with V$ASM_VOLUME_STAT .. 6-8
7–1 Creating a tablespace using an alias name ... 7-6
7–2 Using an Oracle ASM File name in a SQL statement ... 7-9
7–3 Adding an alias name for an Oracle ASM filename ... 7-10
7–4 Renaming an alias name for an Oracle ASM filename .. 7-10
7–5 Dropping an alias name for an Oracle ASM filename .. 7-10
7–6 Dropping an alias name for an Oracle ASM filename .. 7-10
7–7 Dropping a file and alias from a disk group using the alias name ... 7-11
7–8 Dropping a file and alias from a disk group using the system-generated name 7-11
7–9 Creating a new directory ... 7-12
7–10 Creating a new subdirectory .. 7-12
7–11 Renaming a directory ... 7-12
7–12 Dropping a directory .. 7-12
7–13 Adding a template with high redundancy to a disk group .. 7-17
7–14 Adding a template with external redundancy to a disk group .. 7-17
7–15 Modifying a disk group template .. 7-18
7–16 Dropping a template from a disk group ... 7-18
7–17 Using a user-defined template to specify attributes ... 7-18
8–1 Migrating the online redo logs ... 8-8
11–1 Using asmca -silent -configureASM ... 11-19
11–2 Using asmca -silent -upgradeASM ... 11-20
11–3 Using asmca -silent -configureParameter ... 11-20
11–4 Using asmca -silent -deleteASM ... 11-21
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-5</td>
<td>Using <code>asmca -silent -createDiskGroup</code> command</td>
</tr>
<tr>
<td>11-6</td>
<td>Using <code>asmca -silent -addDisk</code> command</td>
</tr>
<tr>
<td>11-7</td>
<td>Using <code>asmca -silent -createVolume</code> command</td>
</tr>
<tr>
<td>11-8</td>
<td>Using <code>asmca -silent -createACFS</code> command</td>
</tr>
<tr>
<td>12-1</td>
<td>Using wildcards with ASMCMD commands</td>
</tr>
<tr>
<td>12-2</td>
<td>Running ASMCMD commands in noninteractive mode</td>
</tr>
<tr>
<td>12-3</td>
<td>Displaying a return code when running ASMCMD in noninteractive mode</td>
</tr>
<tr>
<td>12-4</td>
<td>Running ASMCMD commands in a script</td>
</tr>
<tr>
<td>12-5</td>
<td>Displaying ASMCMD help text</td>
</tr>
<tr>
<td>12-6</td>
<td>Using the <code>asmcmd dsget</code> command</td>
</tr>
<tr>
<td>12-7</td>
<td>Using the <code>asmcmd dsset</code> command</td>
</tr>
<tr>
<td>12-8</td>
<td>Using the <code>asmcmd lsct</code> command</td>
</tr>
<tr>
<td>12-9</td>
<td>Using the <code>asmcmd lsop</code> command</td>
</tr>
<tr>
<td>12-10</td>
<td>Using the <code>asmcmd lsuw</code> command</td>
</tr>
<tr>
<td>12-11</td>
<td>Using the <code>asmcmd opruw</code> command</td>
</tr>
<tr>
<td>12-12</td>
<td>Using the <code>asmcmd shutdown</code> command</td>
</tr>
<tr>
<td>12-13</td>
<td>Using the <code>asmcmd spbackup</code> command</td>
</tr>
<tr>
<td>12-14</td>
<td>Using the <code>asmcmd spcopy</code> command</td>
</tr>
<tr>
<td>12-15</td>
<td>Using the <code>asmcmd spget</code> command</td>
</tr>
<tr>
<td>12-16</td>
<td>Using the <code>asmcmd spmove</code> command</td>
</tr>
<tr>
<td>12-17</td>
<td>Using the <code>asmcmd spset</code> command</td>
</tr>
<tr>
<td>12-18</td>
<td>Using the <code>asmcmd startup</code> command</td>
</tr>
<tr>
<td>12-19</td>
<td>Using the <code>asmcmd cd</code> command</td>
</tr>
<tr>
<td>12-20</td>
<td>Using the <code>asmcmd cp</code> command</td>
</tr>
<tr>
<td>12-21</td>
<td>Using the <code>asmcmd du</code> command</td>
</tr>
<tr>
<td>12-22</td>
<td>Using the <code>asmcmd find</code> command</td>
</tr>
<tr>
<td>12-23</td>
<td>Using the <code>asmcmd ls</code> command</td>
</tr>
<tr>
<td>12-24</td>
<td>Using the <code>asmcmd lsof</code> command</td>
</tr>
<tr>
<td>12-25</td>
<td>Using the <code>asmcmd mkalias</code> command</td>
</tr>
<tr>
<td>12-26</td>
<td>Using the <code>asmcmd mkdir</code> command</td>
</tr>
<tr>
<td>12-27</td>
<td>Using the <code>asmcmd pwd</code> command</td>
</tr>
<tr>
<td>12-28</td>
<td>Using the <code>asmcmd rm</code> command</td>
</tr>
<tr>
<td>12-29</td>
<td>Using the <code>asmcmd rmalias</code> command</td>
</tr>
<tr>
<td>12-30</td>
<td>Tags for the <code>chdg</code> XML configuration template</td>
</tr>
<tr>
<td>12-31</td>
<td><code><chdg></code> sample XML configuration file</td>
</tr>
<tr>
<td>12-32</td>
<td>Using the <code>asmcmd chdg</code> command</td>
</tr>
<tr>
<td>12-33</td>
<td>Using the <code>asmcmd chkdg</code> command</td>
</tr>
<tr>
<td>12-34</td>
<td>Using the <code>asmcmd dropdg</code> command</td>
</tr>
<tr>
<td>12-35</td>
<td>Using the <code>asmcmd iostat</code> command</td>
</tr>
<tr>
<td>12-36</td>
<td>Using the <code>asmcmd lsattr</code> command</td>
</tr>
<tr>
<td>12-37</td>
<td>Using the <code>asmcmd lsdg</code> command</td>
</tr>
<tr>
<td>12-38</td>
<td>Using the <code>asmcmd lsds</code> command</td>
</tr>
<tr>
<td>12-39</td>
<td>Using the <code>asmcmd lsid</code> command</td>
</tr>
<tr>
<td>12-40</td>
<td>Using the <code>asmcmd md_backup</code> command</td>
</tr>
<tr>
<td>12-41</td>
<td>Using the <code>asmcmd md_restore</code> command</td>
</tr>
<tr>
<td>12-42</td>
<td>Using the <code>asmcmd md_restore</code> command</td>
</tr>
<tr>
<td>12-43</td>
<td>Tags for <code>md_backup</code> XML configuration file</td>
</tr>
<tr>
<td>12-44</td>
<td><code><md_backup></code> sample XML configuration file</td>
</tr>
<tr>
<td>12-45</td>
<td>Using the <code>asmcmd mdkdg</code> command</td>
</tr>
<tr>
<td>12-46</td>
<td>Using the <code>asmcmd mount</code> command</td>
</tr>
<tr>
<td>12-47</td>
<td>Using the <code>asmcmd offline</code> command</td>
</tr>
<tr>
<td>12-48</td>
<td>Using the <code>asmcmd online</code> command</td>
</tr>
<tr>
<td>12-49</td>
<td>Using the <code>asmcmd rebal</code> command</td>
</tr>
<tr>
<td>12-50</td>
<td>Using the <code>asmcmd remap</code> command</td>
</tr>
<tr>
<td>12-51</td>
<td>Using the <code>asmcmd umount</code> command</td>
</tr>
</tbody>
</table>
12–52 Using the ASMCMD chtmpl command ... 12-51
12–53 Using the ASMCMD lstmpl command... 12-52
12–54 Using the ASMCMD mktmpl command ... 12-53
12–55 Using the ASMCMD rmtmpl command ... 12-53
12–56 Using the ASMCMD chgrp command .. 12-54
12–57 Using the ASMCMD chmod command .. 12-55
12–58 Using the ASMCMD chown command ... 12-56
12–59 Using the ASMCMD groups command ... 12-57
12–60 Using the ASMCMD grpmod command ... 12-57
12–61 Using the ASMCMD lsgrp command .. 12-58
12–62 Using the ASMCMD lsusr command ... 12-59
12–63 Using the ASMCMD mkgrp command .. 12-59
12–64 Using the ASMCMD mkusr command ... 12-60
12–65 Using the ASMCMD passwd command ... 12-60
12–66 Using the ASMCMD rmgrp command ... 12-61
12–67 Using the ASMCMD rmusr command ... 12-62
12–68 Using the ASMCMD volcreate command .. 12-63
12–69 Using the ASMCMD voldelete command ... 12-64
12–70 Using the ASMCMD voldisable command ... 12-65
12–71 Using the ASMCMD volenable command .. 12-66
12–72 Using the ASMCMD volinfo command .. 12-66
12–73 Using the ASMCMD volresize command .. 12-67
12–74 Using the ASMCMD volset command .. 12-68
12–75 Using the ASMCMD volstat command .. 12-69
13–1 Using the fsck command... 13-22
13–2 Using the mkfs command .. 13-23
13–3 Using the mount command .. 13-25
13–4 Using the umount command ... 13-25
13–5 Using the fsck command... 13-27
13–6 Using the mkfs command ... 13-29
13–7 Using the mount command .. 13-31
13–8 Using the umount command ... 13-32
13–9 Using the fsck command... 13-34
13–10 Using the mkfs command .. 13-36
13–11 Using the mount command ... 13-38
13–12 Using the umount command ... 13-39
13–13 Using the acfschkdsk command ... 13-41
13–14 Using the acfsdismount command ... 13-42
13–15 Using the acfsformat command ... 13-43
13–16 Using the acfsmovetovol command ... 13-44
13–17 Using the acfsutil detach command ... 13-45
13–18 Using the advmutil dismount command .. 13-46
13–19 Using the advmutil list command ... 13-47
13–20 Using the advmutil mount command .. 13-48
13–21 Using the acfsutil tag info command ... 13-49
13–22 Using the acfsutil tag set command ... 13-50
13–23 Using the acfsutil tag unset command ... 13-50
13–24 Using the acfsutil repl bg command .. 13-52
13–25 Using the acfsutil repl info command ... 13-53
13–26 Using the acfsutil repl init command ... 13-55
13–27 Using the acfsutil repl pause command ... 13-56
13–28 Using the acfsutil repl resume command ... 13-57
13–29 Using the acfsutil repl sync command .. 13-58
13–30 Using the acfsutil repl terminate command .. 13-59
13–31 Using the acfsutil repl trace command .. 13-60
List of Tables

3–1 One operating system group and one set of privileges for all Oracle ASM users .. 3-25
3–2 Separated operating system groups and privileges for Oracle ASM users .. 3-26
4–1 Mirroring options for Oracle ASM disk group types ... 4-24
4–2 Examples of disk group compatibility attribute settings ... 4-35
4–3 Features enabled by disk group compatibility attribute settings .. 4-37
4–4 Maximum Oracle ASM file sizes for disk groups with AU_SIZE equal to 1 MB 4-39
6–1 Oracle ASM dynamic views for disk group information .. 6-1
6–2 Oracle ASM dynamic views for Oracle ACFS information .. 6-6
7–1 File types supported by Oracle ASM .. 7-1
7–2 Valid usage for Oracle ASM filename forms .. 7-3
7–3 Oracle file types and Oracle ASM file type tags .. 7-4
7–4 Permitted values for Oracle ASM template striping attribute ... 7-16
7–5 Permitted values for Oracle ASM template redundancy attribute ... 7-16
7–6 Oracle ASM system default templates attribute settings .. 7-16
7–7 Permitted values for Oracle ASM template primary and mirror region attribute 7-17
11–1 Options for the ASMCA command-line tool ... 11-18
11–2 Options for the -configureASM command .. 11-19
11–3 Options for the -configureParameter command .. 11-20
11–4 Options for the -deleteASM command ... 11-21
11–5 Options for the -createDiskGroup command ... 11-22
11–6 Options for the -addDisk command .. 11-23
11–7 Options for the -createVolume command .. 11-24
11–8 Options for the -createACFS command ... 11-25
12–1 Types of ASMCMD commands ... 12-1
12–2 ASMCMD interactive options .. 12-7
12–3 ASMCMD return codes .. 12-8
12–4 Summary of ASMCMD instance management commands .. 12-10
12–5 Options for the dsget command .. 12-11
12–6 Options for the dsset command .. 12-12
12–7 Options for the lsct command ... 12-12
12–8 Options for the lspwusr command ... 12-14
12–9 Options for the orapwusr command .. 12-14
12–10 Options for the shutdown command .. 12-15
12–11 Options for the spbackup command .. 12-16
12–12 Options for the spcopy command ... 12-17
12–13 Options for the spmove command .. 12-18
12–14 Options for the spset command .. 12-19
12–15 Options for the startup command ... 12-20
12–16 Summary of ASMCMD file management commands .. 12-20
12–17 Options for the cd command ... 12-21
12–18 Options for the cp command ... 12-21
12–19 Options for the du command ... 12-23
12–20 Options for the find command ... 12-23
12–21 Options for the ls command .. 12-25
12–22 Options for the lsdir command .. 12-26
12–23 Options for the mkalias command ... 12-27
12–24 Options for the mkdir command ... 12-28
12–25 Options for the rm command ... 12-29
12–26 Options for the rmalias command ... 12-30
12–27 Summary of ASMCMD Disk group management commands .. 12-30
12–28 Options for the chdg command .. 12-31
12–29 Options for the chkdg command ... 12-33
12–30 Options for the dropdg command .. 12-34
12–31 Options for the iostat command ... 12-34
12–32 Attribute descriptions for iostat command output 12-35
12–33 Options for the lsattr command ... 12-36
12–34 Options for the lsdg command ... 12-37
12–35 Attribute descriptions for lsdg command output 12-38
12–36 Options for the lsdsk command ... 12-39
12–37 Options for the lsod command ... 12-41
12–38 Options for the md_backup command .. 12-42
12–39 Options for the md_restore command ... 12-43
12–40 Options for the mkdg command .. 12-44
12–41 Options for the mount command .. 12-45
12–42 Options for the offline command .. 12-46
12–43 Options for the online command .. 12-47
12–44 Options for the rebal command ... 12-47
12–45 Options for the remap command .. 12-48
12–46 Options for the setattr command ... 12-49
12–47 Options for the umount command .. 12-50
12–48 Summary of ASMCMD template management commands 12-50
12–49 Options for the chtmpl command .. 12-50
12–50 Options for the lstmpl command .. 12-51
12–51 Options for the mktmpl command ... 12-52
12–52 Options for the rmtmpl command ... 12-53
12–53 Summary of ASMCMD file access control commands 12-53
12–54 Options for the chgrp command ... 12-54
12–55 Options for the chmod command .. 12-55
12–56 Options for the chown command .. 12-56
12–57 Options for the groups command ... 12-56
12–58 Options for the grpmod command ... 12-57
12–59 Options for the lsgrp command .. 12-58
12–60 Options for the lsusr command .. 12-58
12–61 Options for the mkgrp command .. 12-59
12–62 Options for the mkusr command .. 12-59
12–63 Options for the passwd command ... 12-60
12–64 Options for the rmggrp command .. 12-61
12–65 Options for the rmusr command .. 12-61
12–66 Summary of ASMCMD volume management commands 12-62
12–67 Options for the volcreate command .. 12-62
12–68 Options for the voldelete command .. 12-64
12–69 Options for the voldisable command .. 12-65
12–70 Options for the vollenable command .. 12-65
12–71 Options for the volinfo command ... 12-66
12–72 Options for the volresize command ... 12-67
12–73 Options for the volset command ... 12-68
12–74 Options for the volstat command .. 12-69
13–1 Summary of Oracle ACFS commands for Linux and UNIX 13-20
13–2 Options for the Linux fsck command ... 13-20
13–3 Options for the Linux mkfs command ... 13-22
13–4 Options for the Linux mount command .. 13-23
13–5 Options for the Linux umount command .. 13-25
13–6 Summary of Oracle ACFS commands for Solaris 13-26
13–7 Options for the Solaris fsck command .. 13-26
13–8 Options for the Solaris mkfs command .. 13-28
13–9 Options for the Solaris mount command .. 13-29
13–10 Options for the Solaris umount command ... 13-31
13–11 Summary of Oracle ACFS commands for AIX 13-33
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–67</td>
<td>Options for the acfsutil encr off command</td>
</tr>
<tr>
<td>13–68</td>
<td>Options for the acfsutil encr on command</td>
</tr>
<tr>
<td>13–69</td>
<td>Options for the acfsutil encr rekey command</td>
</tr>
<tr>
<td>13–70</td>
<td>Options for the acfsutil encr set command</td>
</tr>
<tr>
<td>13–71</td>
<td>Options for the acfsutil info file command</td>
</tr>
<tr>
<td>13–72</td>
<td>Options for the acfsutil info fs command</td>
</tr>
<tr>
<td>13–73</td>
<td>Options for the acfsutil info id command</td>
</tr>
<tr>
<td>13–74</td>
<td>Options for the acfsutil registry command</td>
</tr>
<tr>
<td>13–75</td>
<td>Options for the acfsutil rmfs command</td>
</tr>
<tr>
<td>13–76</td>
<td>Options for the acfsutil size command</td>
</tr>
<tr>
<td>13–77</td>
<td>Options for the acfsutil snap create command</td>
</tr>
<tr>
<td>13–78</td>
<td>Options for the acfsutil snap delete command</td>
</tr>
<tr>
<td>13–79</td>
<td>Options for the acfsutil tune command</td>
</tr>
<tr>
<td>13–80</td>
<td>Options for the advmutil canonical command</td>
</tr>
<tr>
<td>13–81</td>
<td>Options for the advmutil tune command</td>
</tr>
<tr>
<td>13–82</td>
<td>Options for the advmutil volinfo command</td>
</tr>
</tbody>
</table>

13-85
13-86
13-86
13-87
13-89
13-89
13-90
13-92
13-93
13-95
13-96
13-98
13-98
13-100
13-101
13-101
13-102
13-103
13-104
Preface

The Oracle Automatic Storage Management Administrator’s Guide describes how to administer Oracle Automatic Storage Management (Oracle ASM) for Oracle databases. This Preface contains the following topics:

- Audience
- Documentation Accessibility
- Related Documents
- Conventions

Audience

The audience for this book includes system administrators, database administrators, and storage administrators. The Oracle Automatic Storage Management Administrator’s Guide is intended for database and storage administrators who perform the following tasks:

- Administer and manage Oracle ASM
- Configure and administer Oracle ASM

To use this document, you should be familiar with basic Oracle Database concepts and administrative procedures. Also, you might want to review the documentation for Oracle Clusterware and Oracle Real Application Clusters (Oracle RAC). See "Related Documents" on page xxiv.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documents

For more information, refer to the following Oracle resources:

- *Oracle Database 2 Day DBA*
- *Oracle Database 2 Day + Real Application Clusters Guide*
- *Oracle Database Administrator’s Guide*
- *Oracle Database Concepts*
- *Oracle Database Net Services Administrator’s Guide*
- *Oracle Clusterware Administration and Deployment Guide*
- *Oracle Real Application Clusters Administration and Deployment Guide*
- Platform-specific Oracle Database, Oracle Clusterware, and Oracle RAC installation guides

To download release notes, installation documentation, white papers, or other collateral, refer to the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at http://www.oracle.com/technology/membership/.

If you have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at http://www.oracle.com/technology/documentation/.

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What's New in Oracle Automatic Storage Management?

This chapter describes the new features for Oracle Automatic Storage Management (Oracle ASM).

This chapter contains the following topics:

- Oracle Automatic Storage Management 11g Release 2 (11.2.0.2) New Features
- Oracle Automatic Storage Management 11g Release 2 (11.2.0.1) New Features
- Oracle Automatic Storage Management 11g Release 1 (11.1) New Features

See Also: Oracle Database New Features Guide for a complete description of the new features in Oracle Database 11g release 2 (11.2)

Oracle Automatic Storage Management 11g Release 2 (11.2.0.2) New Features

Note: This functionality is available starting with Oracle Automatic Storage Management 11g Release 2 (11.2.0.2). For release 2 (11.2.0.2), Oracle ACFS encryption, replication, security, and tagging are available on Linux.

This section describes the Oracle Automatic Storage Management (Oracle ASM) 11g release 2 (11.2.0.2) new features:

- Oracle ACFS security

 The Oracle ACFS security feature provides realm-based security for Oracle ACFS file systems.

 Oracle ACFS security enables you to create realms to specify security policies for users and groups to determine access on file system objects. The Oracle ACFS security feature provides a finer-grained access control on top of the access control provided by the operating system.

 Oracle ACFS security can utilize the encryption feature to protect the contents of realm-secured files stored in Oracle ACFS file systems.
Oracle ACFS encryption

The Oracle ACFS encryption feature enables you to encrypt data stored on disk (data-at-rest).

Oracle ACFS encryption protects data in an Oracle ACFS file system in encrypted format to prevent unauthorized use of data in the case of data loss or theft.

Note: Encryption is not supported if the file system has been replicated with Oracle ACFS replication.

Oracle ACFS replication

This feature enables replication of Oracle ACFS file systems across the network to a remote site, providing disaster recovery capability for the file system.

This release of the feature supports only one standby file system for each primary file system.

Note:

- Oracle ACFS replication is not supported if the file system has been encrypted with Oracle ACFS encryption.
- Oracle ACFS replication is not supported if the file system has been prepared for Oracle ACFS security.

Oracle ACFS tagging

This feature provides a method for relating a group of files based on a common naming attribute assigned to these files called a tag name. Oracle ACFS Replication can use this tagging feature to select specific files with a unique tag name for replication to a different remote cluster site. This tagging option reduces the need to replicate an entire Oracle ACFS file system.

New configuration wizard for cluster configuration outside of software installation

Note: Oracle ACFS security is not supported if the file system has been replicated with Oracle ACFS replication.

This feature provides a wizard to configure an Oracle Grid Infrastructure environment after the installation has completed and has been tested. For more information, refer to "Configuring Oracle Grid Infrastructure with the Configuration Wizard" on page 3-22.

- Oracle ACFS functionality on the Solaris operating system
 This feature provides Oracle ACFS functionality on the Solaris operating system. For more information, refer to "Oracle ACFS Command-line Tools for the Solaris Environment" on page 13-25.

- Oracle ACFS functionality on the AIX operating system
 This feature provides Oracle ACFS functionality on the AIX operating system. For more information, refer to "Oracle ACFS Command-line Tools for the AIX Environment" on page 13-32.

- Oracle ASM Configuration Assistant enhancements
 These enhancements to ASMCA provide support for Oracle ACFS file system security and encryption. For more information, refer to "Managing Security and Encryption for Oracle ACFS File Systems with Oracle ASM Configuration Assistant" on page 11-14.

Oracle Automatic Storage Management 11g Release 2 (11.2.0.1) New Features

This section describes the Oracle Automatic Storage Management (Oracle ASM) 11g release 2 (11.2.0.1) new features:

- Oracle Automatic Storage Management Cluster File System (Oracle ACFS)
 Oracle Automatic Storage Management Cluster File System (Oracle ACFS) is a new multi-platform, scalable file system, and storage management design that extends Oracle ASM technology to support all of your application data in both single host and cluster configurations. Additionally, Oracle ACFS provides snapshot functionality for a point-in-time copy of an Oracle ACFS system. For more information, see "Overview of Oracle ACFS" on page 5-1.

- Oracle ASM Dynamic Volume Manager
 Oracle ASM Dynamic Volume Manager (Oracle ADVM) provides volume management services and a standard disk device driver interface to clients. File systems and other disk-based applications send I/O requests to Oracle ADVM volume devices as they would to other storage devices on a vendor operating system.
 Oracle Automatic Storage Management Cluster File System (Oracle ACFS) is layered on Oracle ASM through the Oracle ADVM interface. With the addition of Oracle ADVM, Oracle ASM becomes a complete storage solution for both database and non-database file needs. For more information, see "Overview of Oracle ASM Dynamic Volume Manager" on page 5-18.

- Oracle Automatic Storage Management Cluster File System Snapshots
 An Oracle ACFS Snapshot is a point-in-time copy of a file system that can provide up to 63 snapshot images. Oracle ACFS Snapshot performs fast creation of
persistent Oracle ACFS images at a specific point in time with very low overhead leveraging the Copy-on-Write (COW) technology.

Even as the file system changes, the snapshot does not, giving you the ability to view the file system as it was at the time the snapshot was created. Initially, snapshots are read-only, which preserves the point in time they captured.

For more information, see "About Oracle ACFS Snapshots" on page 5-8.

■ Oracle ASM Configuration Assistant (ASMCA)

Oracle ASM Configuration Assistant provides a GUI interface for installing and configuring Oracle ASM instances, disk groups, volumes, and file systems.

In addition, the ASMCA command-line interface provides functionality for installing and configuring Oracle ASM instances, disk groups, volumes, and file systems in a non-GUI utility.

For more information about using Oracle ASM Configuration Assistant, see Chapter 11, "Oracle ASM Configuration Assistant".

■ ASMCMD Enhancements

This feature extends Oracle ASM Command Line Utility (ASMCMD) to provide full functionality, so that any operation that can be performed with SQL commands can be performed with ASMCMD. The added functionality includes the following areas:

– Disk, failure group, and disk group operations
– Disk group attribute operations
– Oracle ASM File Access Control user and group operations
– Template operations
– Oracle ASM instance operations
– File operations
– Oracle ASM volume operations

Changes were also made to standardize ASMCMD command-line and command options.

For more information about ASMCMD commands, see "Types of ASMCMD Commands" on page 12-1.

■ Intelligent Data Placement

The Intelligent Data Placement feature enables you to specify disk regions on Oracle ASM disks to ensure that frequently accessed data is placed on the outermost (hot) tracks which provide higher performance.

For more information, see "Intelligent Data Placement" on page 4-15.

■ Specifying the Sector Size for Disk Drives

Oracle ASM provides the capability to specify a sector size of 512 bytes or 4096 kilobytes with the SECTOR_SIZE disk group attribute when creating disk groups. Oracle ASM provides support for 4 KB sector disk drives without a performance penalty.

For information about setting the sector size for disk drives, see "Specifying the Sector Size for Drives" on page 4-8.
Disk Group Rename

The `renamedg` tool enables you to change the name of a cloned disk group.

For information about renaming disk groups with `renamedg`, see "Renaming Disks Groups" on page 4-46.

Oracle ASM File Access Control

Oracle ASM on Linux and UNIX platforms implements access control on its files to isolate different database instances from each other and prevent accidental access that could lead to the corruption of data files. Oracle ASM implements new SQL statements and ASMCMD commands to grant, modify, and deny file permissions. The new security model and syntax is consistent with those that have been implemented for the objects represented in an Oracle database.

This feature enables multiple database instances to store their Oracle ASM files in the same disk group and be able to consolidate multiple databases while preventing an unauthorized database instance from accessing and overwriting files of a different instance.

Oracle Cluster Registry (OCR) and Voting Files stored in Oracle ASM

This feature enables storage of Oracle Cluster Registry (OCR) and the voting file in Oracle ASM disk groups. This functionality enables Oracle ASM to provide a unified storage solution, storing all the data for the clusterware and the database, without the need for third-party volume managers or cluster file systems.

For more information, see “Oracle Cluster Registry and Voting Files in Oracle ASM Disk Groups” on page 4-10.

See Also: *Oracle Clusterware Administration and Deployment Guide* for information about administering voting files and Oracle Cluster Registry (OCR)

Oracle Restart

Oracle Restart enables the startup and automatic restart of single-instance Oracle Database through the Cluster Ready Services (CRS) component of Oracle Clusterware on a single server. This provides higher availability and automated management of single-instance Oracle Database and Oracle ASM instances.

For more information, see “Using Oracle Restart” on page 3-13.

See Also:

- *Oracle Database Administrator’s Guide* for information about configuring and administering Oracle Restart
- *Oracle Real Application Clusters Administration and Deployment Guide* for information about automatically restarting single-instance databases residing on an Oracle RAC node
Oracle Enterprise Manager Support of Oracle ACFS

Oracle Enterprise Manager has enhanced Oracle ASM support to enable you to manage Oracle Automatic Storage Management Cluster File System (Oracle ACFS) technology and Oracle ASM Dynamic Volume Manager. These features operate as a comprehensive management solution to extend Oracle ASM technology to support all your application data files in database and non-database and in both single host and cluster configurations.

Oracle Enterprise Manager supports the following:

- Create, modify, and delete Oracle ACFS
- Monitor space usage and performance features of Oracle ACFS
- Support Oracle ASM Dynamic Volume Manager features as required by Oracle ACFS

For more information about using Oracle Enterprise Manager to administer Oracle ASM, see Chapter 10, "Administering Oracle ACFS with Oracle Enterprise Manager".

Oracle Enterprise Manager Database Control Enhancements for Improved Oracle ASM Manageability

Oracle Enterprise Manager has been enhanced to manage Oracle ASM features, such as Oracle ASM File Access Control, OCR and voting files in Oracle ASM, disk resync, Oracle ASM rolling migrations, disk regions, and Oracle ASM manageability and infrastructure.

For more information about using Oracle Enterprise Manager to administer Oracle ASM, see Chapter 9, "Administering Oracle ASM with Oracle Enterprise Manager".

Oracle Enterprise Manager Oracle ASM Support Workbench

Oracle Enterprise Manager Oracle ASM Support Workbench has been enhanced to help diagnose and package incidents to Oracle Support Services for Oracle ASM instances. This feature extends the benefit of Oracle Enterprise Manager Support Workbench to Oracle ASM by helping you package all necessary diagnostic data for incidents.

For more information about using Oracle Enterprise Manager to administer Oracle ASM, see "Oracle ASM Support Workbench" on page 9-25.

See Also:

- Oracle Database Administrator’s Guide for information about viewing problems with Oracle Enterprise Manager Support Workbench
- Oracle Database 2 Day DBA for information about accessing Oracle Enterprise Manager Support Workbench home page and viewing problems using Oracle Enterprise Manager Support Workbench

Oracle Automatic Storage Management 11g Release 1 (11.1) New Features

This section describes the Oracle Automatic Storage Management (Oracle ASM) 11g release 1 (11.1) new features:
This book is new for Oracle Database 11g release 1 (11.1) and it is the primary information source for Oracle Automatic Storage Management features.

Oracle ASM Fast Mirror Resync

Oracle ASM fast mirror resync quickly resynchronizes Oracle ASM disks within a disk group after transient disk path failures if the disk drive media is not corrupted. Any failures that render a failure group temporarily unavailable are considered transient failures. Disk path malfunctions, such as cable disconnections, host bus adapter or controller failures, or disk power supply interruptions, can cause transient failures.

The duration of a fast mirror resync depends on the duration of the outage. The duration of a resynchronization is typically much shorter than the amount of time required to completely rebuild an entire Oracle ASM disk group.

For more information about Oracle ASM fast mirror resync, see “Oracle ASM Fast Mirror Resync” on page 4-27.

Oracle ASM Rolling Upgrade

You can now place an Oracle ASM Cluster in rolling upgrade mode, which enables you to operate with mixed Oracle ASM versions starting with Oracle Database 11g release 1 (11.1) and later. Consequently, Oracle ASM nodes can be independently upgraded or patched without affecting database availability.

For more information about Oracle ASM rolling upgrade, see “Using Oracle ASM Rolling Upgrade” on page 3-22.

New SYSASM Privilege and OSASM operating system group for Oracle ASM Administration

This feature introduces a new SYSASM privilege that is specifically intended for performing Oracle ASM administration tasks. Using the SYSASM privilege instead of the SYSDBA privilege provides a clearer division of responsibility between Oracle ASM administration and database administration.

OSASM is a new operating system group that is used exclusively for Oracle ASM. Members of the OSASM group can connect as SYSASM using operating system authentication and have full access to Oracle ASM.

For more information about the SYSASM privilege, see "Authentication for Accessing Oracle ASM Instances" on page 3-23.

Oracle ASM Scalability and Performance Enhancements

Oracle ASM file extent management has been enhanced to improve performance and to use significantly less system global area (SGA) memory to store file extents. When Oracle ASM files increase in size, the size of each new extent also increases automatically so that fewer extent pointers are required to describe the file. This feature improves performance when accessing Oracle ASM files that are 20 GB and larger, up to 128 TB. Very large databases (VLDBs) often require these large file sizes.

In addition, when you create new disk groups you now have multiple allocation unit (AU) size options, such as 1, 2, 4, 8, 16, 32, and 64. You might obtain significant performance improvements by selecting larger allocation units depending on the type of workloads (typically large sequential I/O) and storage system types.

For more information about scalability and performance enhancements, see "Extents" on page 1-7.
Oracle ASM Command Line Utility (ASMCMD) Commands and Options

ASMCMD has the following new commands: lsdsk, md_backup, md_restore and remap. In addition, you can use new options for the ls and lsdg commands.

For more information about new and enhanced ASMCMD commands, "Types of ASMCMD Commands" on page 12-1.

Enhancements to SQL statements to manage Oracle ASM disk groups

The ALTER DISKGROUP, CREATE DISKGROUP, and DROP DISKGROUP SQL statements have been enhanced with additional syntax options, including:

- Syntax that sets various attributes of a disk group
- Syntax for checking the consistency of disk groups, disks, and files in an Oracle ASM environment
- Syntax options when mounting a disk group.
- Syntax that takes a disk offline for repair and then brings it back online.
- Syntax that drops a disk group that can no longer be mounted by an Oracle ASM instance.

For more information about administering disk groups with the ALTER DISKGROUP, CREATE DISKGROUP, and DROP DISKGROUP SQL statements, see Chapter 4, "Administering Oracle ASM Disk Groups".

New Attributes for Disk Group Compatibility

To enable the new Oracle ASM features, you can use two new disk group compatibility attributes, COMPATIBLE.RDBMS and COMPATIBLE.ASM. These attributes specify the minimum software version that is required to use disk groups for the database and for Oracle ASM respectively. This feature enables heterogeneous environments with disk groups from both Oracle Database 10g and Oracle Database 11g. By default, both attributes are set to 10.1. You must advance these attributes to take advantage of the new features.

For more information about disk group compatibility, see "Disk Group Compatibility" on page 4-32.

Oracle ASM Preferred Read Failure Groups

This feature is useful in extended clusters where remote nodes have asymmetric access with respect to performance. The feature enables more efficient use of network resources by eliminating the use of the network to perform read operations.

Oracle ASM in Oracle Database 10g always reads the primary copy of a mirrored extent set. In Oracle Database 11g, when you configure Oracle ASM failure groups it might be more efficient for a node to read from a failure group that is closest to the node, even if it is a secondary extent. You can configure your database to read from a particular failure group extent by configuring preferred read failure groups.

For more information about preferred read failure groups, see "Preferred Read Failure Groups" on page 4-29.

Oracle ASM Fast Rebalance
Rebalance operations that occur while a disk group is in RESTRICTED mode eliminate the lock and unlock extent map messaging between Oracle ASM instances in Oracle RAC environments, improving overall rebalance throughput.

For more information about Oracle ASM fast rebalance, see "About Restricted Mode" on page 3-15.
Introduction to Oracle Automatic Storage Management

This chapter describes Oracle Automatic Storage Management (Oracle ASM) concepts and provides an overview of Oracle ASM features. This chapter contains the following topics:

- Overview of Oracle Automatic Storage Management
- Understanding Oracle ASM Concepts
- Understanding Oracle ASM Disk Group Administration

For a list of the terms that are used in the Oracle Automatic Storage Management Administrator’s Guide and their definitions, refer to the Glossary in this guide.

See Also: http://www.oracle.com/technology/asm/ for more information about Oracle ASM

Overview of Oracle Automatic Storage Management

Oracle ASM is a volume manager and a file system for Oracle database files that supports single-instance Oracle Database and Oracle Real Application Clusters (Oracle RAC) configurations. Oracle ASM is Oracle’s recommended storage management solution that provides an alternative to conventional volume managers, file systems, and raw devices.

Oracle ASM uses disk groups to store data files; an Oracle ASM disk group is a collection of disks that Oracle ASM manages as a unit. Within a disk group, Oracle ASM exposes a file system interface for Oracle database files. The content of files that are stored in a disk group is evenly distributed to eliminate hot spots and to provide uniform performance across the disks. The performance is comparable to the performance of raw devices.

You can add or remove disks from a disk group while a database continues to access files from the disk group. When you add or remove disks from a disk group, Oracle ASM automatically redistributes the file contents and eliminates the need for downtime when redistributing the content. For information about administering disk groups, see Chapter 4, "Administering Oracle ASM Disk Groups".

The Oracle ASM volume manager functionality provides flexible server-based mirroring options. The Oracle ASM normal and high redundancy disk groups enable two-way and three-way mirroring respectively. You can use external redundancy to enable a Redundant Array of Independent Disks (RAID) storage subsystem to perform the mirroring protection function.
Oracle ASM also uses the Oracle Managed Files (OMF) feature to simplify database file management. OMF automatically creates files in designated locations. OMF also names files and removes them while relinquishing space when tablespaces or files are deleted.

Oracle ASM reduces the administrative overhead for managing database storage by consolidating data storage into a small number of disk groups. The smaller number of disk groups consolidates the storage for multiple databases and provides for improved I/O performance.

Oracle ASM files can coexist with other storage management options such as raw disks and third-party file systems. This capability simplifies the integration of Oracle ASM into pre-existing environments.

Oracle Automatic Storage Management Cluster File System (Oracle ACFS) is a multi-platform, scalable file system, and storage management technology that extends Oracle ASM functionality to support customer files maintained outside of Oracle Database. The Oracle ASM Dynamic Volume Manager (Oracle ADVM) provides volume management services and a standard disk device driver interface to clients. For information about Oracle ACFS and Oracle ADVM, see Chapter 5, "Introduction to Oracle ACFS".

Oracle Enterprise Manager includes a wizard that enables you to migrate non-Oracle ASM database files to Oracle ASM. Oracle ASM also has easy to use management interfaces such as SQL*Plus, the Oracle ASM Command Line Utility (ASMCMD) command-line interface, Oracle ASM Configuration Assistant, and Oracle Enterprise Manager. For information about using Oracle Enterprise Manager, see Chapter 9, "Administering Oracle ASM with Oracle Enterprise Manager". For information about Oracle ASM Configuration Assistant, see Chapter 11, "Oracle ASM Configuration Assistant". For information about the ASMCMD command-line interface, see Chapter 12, "Oracle ASM Command-Line Utility".

See Also: Oracle Database Administrator’s Guide for information about Oracle Database structure and storage

Understanding Oracle ASM Concepts

This section describes concepts for the key Oracle ASM components and it contains the following topics:

- About Oracle ASM Instances
- About Oracle ASM Disk Groups
- About Mirroring and Failure Groups
- About Oracle ASM Disks
- About Oracle ASM Files

For information about preparing your storage environment, see Chapter 2, "Considerations for Oracle ASM Storage".

About Oracle ASM Instances

An Oracle ASM instance is built on the same technology as an Oracle Database instance. An Oracle ASM instance has a System Global Area (SGA) and background processes that are similar to those of Oracle Database. However, because Oracle ASM performs fewer tasks than a database, an Oracle ASM SGA is much smaller than a database SGA. In addition, Oracle ASM has a minimal performance effect on a server.
Oracle ASM instances mount disk groups to make Oracle ASM files available to database instances; Oracle ASM instances do not mount databases. For information about managing an Oracle ASM instance, see Chapter 3, "Administering Oracle ASM Instances".

Oracle ASM is installed in the Oracle Grid Infrastructure home before Oracle Database is installed in a separate Oracle home. Oracle ASM and database instances require shared access to the disks in a disk group. Oracle ASM instances manage the metadata of the disk group and provide file layout information to the database instances.

Oracle ASM metadata is the information that Oracle ASM uses to control a disk group and the metadata resides within the disk group. Oracle ASM metadata includes the following information:

- The disks that belong to a disk group
- The amount of space that is available in a disk group
- The filenames of the files in a disk group
- The location of disk group data file extents
- A redo log that records information about atomically changing metadata blocks
- Oracle ADVM volume information

Oracle ASM instances can be clustered using Oracle Clusterware; there is one Oracle ASM instance for each cluster node. If there are several database instances for different databases on the same node, then the database instances share the same single Oracle ASM instance on that node.

If the Oracle ASM instance on a node fails, then all of the database instances on that node also fail. Unlike a file system driver failure, an Oracle ASM instance failure does not require restarting the operating system. In an Oracle RAC environment, the Oracle ASM and database instances on the surviving nodes automatically recover from an Oracle ASM instance failure on a node.

Figure 1–1 shows a single node configuration with one Oracle ASM instance and multiple database instances. The Oracle ASM instance manages the metadata and provides space allocation for the Oracle ASM files. When a database instance creates or opens an Oracle ASM file, it communicates those requests to the Oracle ASM instance. In response, the Oracle ASM instance provides file extent map information to the database instance.

In Figure 1–1, there are two disk groups: one disk group has four disks and the other has two disks. The database can access both disk groups. The configuration in Figure 1–1 shows multiple database instances, but only one Oracle ASM instance is needed to serve the multiple database instances.
Figure 1–1 Oracle ASM for Single-Instance Oracle Databases

Figure 1–2 shows an Oracle ASM cluster in an Oracle RAC environment where Oracle ASM provides a clustered pool of storage. There is one Oracle ASM instance for each node serving multiple Oracle RAC or single-instance databases in the cluster. All of the databases are consolidated and share the same two Oracle ASM disk groups.

Figure 1–2 Oracle ASM Cluster Configuration with Oracle RAC

A clustered storage pool can be shared by multiple single-instance Oracle Databases as shown in Figure 1–3. In this case, multiple databases share common disk groups. A
shared Oracle ASM storage pool is achieved by using Oracle Clusterware. However, in such environments an Oracle RAC license is not required.

To share a disk group among multiple nodes, you must install Oracle Clusterware on all of the nodes, regardless of whether you install Oracle RAC on the nodes. Oracle ASM instances that are on separate nodes do not need to be part of an Oracle ASM cluster. However, if the Oracle ASM instances are not part of an Oracle ASM cluster, they cannot communicate with each other. Multiple nodes that are not part of an Oracle ASM cluster cannot share a disk group.

Figure 1–3 Oracle ASM Cluster with Single-Instance Oracle Databases

About Oracle ASM Disk Groups

A disk group consists of multiple disks and is the fundamental object that Oracle ASM manages. Each disk group contains the metadata that is required for the management of space in the disk group. Disk group components include disks, files, and allocation units.

Files are allocated from disk groups. Any Oracle ASM file is completely contained within a single disk group. However, a disk group might contain files belonging to several databases and a single database can use files from multiple disk groups. For most installations you need only a small number of disk groups, usually two, and rarely more than three. For more information about managing disk groups, see Chapter 4, "Administering Oracle ASM Disk Groups".

About Mirroring and Failure Groups

Mirroring protects data integrity by storing copies of data on multiple disks. When you create a disk group, you specify an Oracle ASM disk group type based on one of the following three redundancy levels:

- **Normal** for 2-way mirroring
- **High** for 3-way mirroring
External to not use Oracle ASM mirroring, such as when you configure hardware RAID for redundancy.

The redundancy level controls how many disk failures are tolerated without dismounting the disk group or losing data. The disk group type determines the mirroring levels with which Oracle creates files in a disk group. For information about disk group types and templates, see "Managing Disk Group Templates" on page 7-15.

Oracle ASM mirroring is more flexible than traditional RAID mirroring. For a disk group specified as NORMAL redundancy, you can specify the redundancy level for each file. For example, two files can share the same disk group with one file being mirrored while the other is not.

When Oracle ASM allocates an extent for a mirrored file, Oracle ASM allocates a primary copy and a mirror copy. Oracle ASM chooses the disk on which to store the mirror copy in a different failure group than the primary copy. Failure groups are used to place mirrored copies of data so that each copy is on a disk in a different failure group. The simultaneous failure of all disks in a failure group does not result in data loss.

You define the failure groups for a disk group when you create an Oracle ASM disk group. After a disk group is created, you cannot alter the redundancy level of the disk group. If you omit the failure group specification, then Oracle ASM automatically places each disk into its own failure group, except for disk groups containing disks on Oracle Exadata cells. Normal redundancy disk groups require at least two failure groups. High redundancy disk groups require at least three failure groups. Disk groups with external redundancy do not use failure groups.

For more information about mirroring and failure groups, see "Mirroring, Redundancy, and Failure Group Options" on page 4-23.

About Oracle ASM Disks

Oracle ASM disks are the storage devices that are provisioned to Oracle ASM disk groups. Examples of Oracle ASM disks include:

- A disk or partition from a storage array
- An entire disk or the partitions of a disk
- Logical volumes
- Network-attached files (NFS)

When you add a disk to a disk group, you can assign an Oracle ASM disk name or Oracle ASM assigns the Oracle ASM disk name automatically. This name is different from the path name used by the operating system. In a cluster, a disk may be assigned different operating system device names on different nodes, but the disk has the same Oracle ASM disk name on all of the nodes. In a cluster, an Oracle ASM disk must be accessible from all of the instances that share the disk group.

Oracle ASM spreads the files proportionally across all of the disks in the disk group. This allocation pattern maintains every disk at the same capacity level and ensures that all of the disks in a disk group have the same I/O load. Because Oracle ASM load balances among all of the disks in a disk group, different Oracle ASM disks should not share the same physical drive.
Allocation Units
Every Oracle ASM disk is divided into allocation units (AU). An allocation unit is the fundamental unit of allocation within a disk group. A file extent consists of one or more allocation units. An Oracle ASM file consists of one or more file extents.

When you create a disk group, you can set the Oracle ASM allocation unit size with the AU_SIZE disk group attribute. The values can be 1, 2, 4, 8, 16, 32, or 64 MB, depending on the specific disk group compatibility level. Larger AU sizes typically provide performance advantages for data warehouse applications that use large sequential reads.

For information about specifying the allocation unit size for a disk group, see "Specifying the Allocation Unit Size" on page 4-7 on page 4-32. For information about disk group compatibility attributes, see "Disk Group Compatibility" on page 4-32.

About Oracle ASM Files
Files that are stored in Oracle ASM disk groups are called Oracle ASM files. Each Oracle ASM file is contained within a single Oracle ASM disk group. Oracle Database communicates with Oracle ASM in terms of files. This is similar to the way Oracle Database uses files on any file system. You can store the various file types in Oracle ASM disk groups, including:

- Control files
- Data files, temporary data files, and data file copies
- SPFILEs
- Online redo logs, archive logs, and Flashback logs
- RMAN backups
- Disaster recovery configurations
- Change tracking bitmaps
- Data Pump dumpsets

Oracle ASM automatically generates Oracle ASM file names as part of file creation and tablespace creation. Oracle ASM file names begin with a plus sign (+) followed by a disk group name. You can specify user-friendly aliases for Oracle ASM files and create a hierarchical directory structure for the aliases.

The following sections describe the Oracle ASM file components:

- Extents
- Oracle ASM Striping
- File Templates

Extents
The contents of Oracle ASM files are stored in a disk group as a set, or collection, of extents that are stored on individual disks within disk groups. Each extent resides on an individual disk. Extents consist of one or more allocation units (AU). To accommodate increasingly larger files, Oracle ASM uses variable size extents.

Variable size extents enable support for larger Oracle ASM data files, reduce SGA memory requirements for very large databases, and improve performance for file create and open operations. The initial extent size equals the disk group allocation unit size and it increases by a factor of 4 or 16 at predefined thresholds. This feature is
automatic for newly created and resized data files when specific disk group compatibility attributes are set to 11.1 or higher. For information about compatibility attributes, see "Disk Group Compatibility" on page 4-32.

The extent size of a file varies as follows:

- Extent size always equals the disk group AU size for the first 20000 extent sets (0 - 19999).
- Extent size equals 4*AU size for the next 20000 extent sets (20000 - 39999).
- Extent size equals 16*AU size for the next 20000 and higher extent sets (40000+).

Figure 1–4 shows the Oracle ASM file extent relationship with allocation units. The first eight extents (0 to 7) are distributed on four Oracle ASM disks and are equal to the AU size. After the first 20000 extent sets, the extent size becomes 4*AU for the next 20000 extent sets (20000 - 39999). This is shown as bold rectangles labeled with the extent set numbers 20000 to 20007, and so on. The next increment for an Oracle ASM extent is 16*AU (not shown in Figure 1–4).

Figure 1–4 Oracle ASM File Allocation in a Disk Group

Oracle ASM Striping

Oracle ASM striping has two primary purposes:

- To balance loads across all of the disks in a disk group
- To reduce I/O latency

Coarse-grained striping provides load balancing for disk groups while fine-grained striping reduces latency for certain file types by spreading the load more widely.

To stripe data, Oracle ASM separates files into stripes and spreads data evenly across all of the disks in a disk group. The fine-grained stripe size always equals 128 KB in any configuration; this provides lower I/O latency for small I/O operations such as redo log writes. The coarse-grained stripe size is always equal to the AU size (not the data extent size).

Figure 1–5 and Figure 1–6 are illustrations of Oracle ASM file striping. In both illustrations, the allocation unit size has been set to 1 M (AU_SIZE = 1M) for the disk
group which consists of 8 disks. The Oracle ASM instance is release 11.2 and the disk group compatibility attributes for ASM and RDBMS have been set to 11.2, so variable extents are shown in the graphic after the first 20,000 extents. For the first 20,000 extents, the extent size is 1 M and equals one allocation unit (AU). For the next 20,000 extents, the extent size is 4 M and equals 4 AUs.

To identify the stripe chunks of the file, they have been labeled A..X (24 letters) using different fonts for successive series of A..X until all the chunks have been identified.

In Figure 1–5, the file is striped in 128 K chunks (labeled A..X) with each 128 K chunk stored in an extent, starting at the first extent in disk 1, then the first extent in disk 2, and then continuing in a round-robin pattern through all the disks until the entire file has been striped. As shown in this example, the striping chunks first fill up the first extent of each disk, then the second extent of each disk, and so on until the entire file has been striped.

![Figure 1–5 Oracle ASM Fine-Grained Striping](image)

In Figure 1–6, the file is striped in 1 M chunks (labeled A..X) with each 1 M chunk stored uniquely in an extent, starting at the first extent in disk 1, then the first extent in disk 2, and then continuing in a round-robin pattern through all the disks until the entire file has been striped. For the first 20,000 extents where the AU equals the extent size (1 M), the stripe equals the extent size and allocation unit size.

For the variable extents, where an extent is composed of multiple allocation units, the file stripe is located in an AU of the extent. The striping chunks are placed in the allocation units of the first extents of all the disks before the striping continues to the next extent.
File Templates

Templates are collections of attribute values that are used to specify disk regions, file mirroring, and **striping** attributes for an Oracle ASM file when it is created. When creating a file, you can include a template name and assign desired attributes based on an individual file rather than the file type.

A default template is provided for every Oracle file type, but you can customize templates to meet unique requirements. Each disk group has a default template associated with each file type.

For more information about Oracle ASM templates, see "Managing Disk Group Templates" on page 7-15.

Understanding Oracle ASM Disk Group Administration

This section describes Oracle ASM disk group administration and it contains the following topics:

- About Discovering Disks
- About Mounting and Dismounting Disk Groups
- About Adding and Dropping Disks
- About Online Storage Reconfigurations and Dynamic Rebalancing

About Discovering Disks

The disk discovery process locates the operating system names for disks that Oracle ASM can access. Disk discovery finds all of the disks that comprise a disk group to be mounted. The set of discovered disks also includes disks that could be added to a disk group.

An Oracle ASM instance requires an **ASM_DISKSTRING** initialization parameter value to specify its discovery strings. Only path names that the Oracle ASM instance has permission to open are discovered. The exact syntax of a discovery string depends on the platform, ASMLIB libraries, and whether Oracle Exadata disks are used. The path names that an operating system accepts are always usable as discovery strings.
For information about the `ASM_DISKSTRING` initialization parameter, see "ASM_DISKSTRING" on page 3-7. For information about disk discovery, see "Oracle ASM Disk Discovery" on page 4-19.

About Mounting and Dismounting Disk Groups

A disk group must be mounted by a local Oracle ASM instance before database instances can access the files in the disk group. Mounting the disk group requires discovering all of the disks and locating the files in the disk group that is being mounted.

You can explicitly dismount a disk group. Oracle reports an error if you attempt to dismount a disk group without the force option when any of the disk group files are open. It is possible to have disks fail in excess of the Oracle ASM redundancy setting. If this happens, then the disk group is forcibly dismounted. If the disk group is forcibly dismounted, a database cannot access files in the disk group.

For more information about disk groups, see "Mounting and Dismounting Disk Groups" on page 4-43.

About Adding and Dropping Disks

You can add a disk to an existing disk group to add space and to improve throughput. The specified discovery string identifies the disk or disks that you could add. The disks that you add must be discovered by every Oracle ASM instance using its `ASM_DISKSTRING` initialization parameter. After you add a disk, Oracle ASM rebalancing operations move data onto the new disk. To minimize the rebalancing I/O, it is more efficient to add multiple disks at the same time.

You can drop a disk from a disk group if it fails or to re-purpose capacity. Use the Oracle ASM disk name to drop a disk, not the discovery string device name. If an error occurs while writing to a disk, then Oracle ASM drops the disk automatically.

For more information about altering disk group membership, see "Altering Disk Groups" on page 4-11.

About Online Storage Reconfigurations and Dynamic Rebalancing

Rebalancing a disk group moves data between disks to ensure that every file is evenly spread across all of the disks in a disk group. When all of the files are evenly dispersed, all of the disks are evenly filled to the same percentage; this ensures load balancing. Rebalancing does not relocate data based on I/O statistics nor is rebalancing started based on I/O statistics. Oracle ASM rebalancing operations are controlled by the size of the disks in a disk group.

Oracle ASM automatically initiates a rebalance after storage configuration changes, such as when you add, drop, or resize disks. The power setting parameter determines the speed with which rebalancing operations occur.

You can manually start a rebalance to change the power setting of a running rebalance. A rebalance is automatically restarted if the instance on which the rebalancing is running stops. Databases can remain operational during rebalancing operations.

You can minimize the impact on database performance with the setting of the `POWER_LIMIT` initialization parameter. For more information about the power limit setting, see "ASM_POWER_LIMIT" on page 3-8. For more information about disk rebalancing, see "Manually Rebalancing Disk Groups" on page 4-17.
Considerations for Oracle ASM Storage

This chapter discusses some points to consider about the storage subsystem before you configure Oracle Automatic Storage Management (Oracle ASM). When preparing your storage to use Oracle ASM, first determine the storage option for your system and then prepare the disk storage for your specific operating system environment.

When configuring your system's storage, you must consider the initial capacity of the system and your plans for future growth. Oracle ASM simplifies the task of accommodating growth. However, your growth plans can affect choices, such as the size of the Oracle ASM disks. You must also consider that I/O performance depends on the interconnect between the storage and host, not just the storage disks. As you scale up the number of nodes in a cluster, you must also scale up the storage subsystem.

This chapter contains the following topics:

- Storage Resources for Disk Groups
- Oracle ASM and Multipathing
- Recommendations for Storage Preparation

Storage Resources for Disk Groups

You can create an Oracle ASM disk group using one of the following storage resources:

- Disk Partition

 A disk partition can be the entire disk drive or a section of a disk drive. However, the Oracle ASM disk cannot be in a partition that includes the partition table because the partition table would be overwritten.

- Logical Unit Number (LUN)

 A LUN is a disk presented to a computer system by a storage array. Oracle recommends that you use hardware RAID functionality to create LUNs. Storage hardware RAID 0+1 or RAID5, and other RAID configurations, can be provided to Oracle ASM as Oracle ASM disks.

- Logical Volume

 A logical volume is supported in less complicated configurations where a logical volume is mapped to a LUN, or a logical volume uses disks or raw partitions. Logical volume configurations are not recommended by Oracle because they create a duplication of functionality. Oracle also does not recommended using logical volume managers for mirroring because Oracle ASM provides mirroring.

- Network File System (NFS)
An Oracle ASM disk group can be created from NFS files, including Oracle Direct NFS (dNFS), as well as whole disks, partitions, and LUNs. The NFS files that are provisioned to a disk group may be from multiple NFS servers to provide better load balancing and flexible capacity planning.

Direct NFS can be used to store data files, but is not supported for Oracle Clusterware files. To install Oracle Real Application Clusters (Oracle RAC) on Windows using Direct NFS, you must also have access to a shared storage method other than NFS for Oracle Clusterware files.

See Also: *Oracle Grid Infrastructure Installation Guide* for your operating system for information about Oracle Direct NFS

Notes:

- Oracle ASM Dynamic Volume Manager (Oracle ADVM) volumes and Oracle Automatic Storage Management Cluster File System (Oracle ACFS) file systems are currently not supported on disk groups that have been created from NFS or Common Internet File System (CIFS) files. However, Oracle ACFS file systems may be exported as NFS or CIFS file systems to network clients.

- Block or raw devices are not supported by Oracle Universal Installer (OUI) or Database Configuration Assistant (DBCA). However, manually configured raw or block devices are supported by Oracle, but not recommended.

The procedures for preparing storage resources for Oracle ASM are:

1. Identify or create the storage devices for Oracle ASM by identifying all of the storage resource device names that you can use to create an Oracle ASM disk group. For example, on Linux systems without ASMLIB, device names are typically presented from the `/dev` directory with the `/dev/device_name_identifier` name syntax.

2. Change the ownership and the permissions on storage device resources.

 For example, the following steps are required on Linux systems:

 - Change the user and group ownership of devices, such as `grid:asmadmin`

 For information about Oracle ASM privileges, see "About Privileges for Oracle ASM" on page 3-24.

 - Change the device permissions to read/write

After you have configured Oracle ASM, ensure that disk discovery has been configured correctly by setting the `ASM_DISKSTRING` initialization parameter. For information about the `ASM_DISKSTRING` parameter, see "ASM_DISKSTRING" on page 3-7.

Note: Setting the ownership to `oracle:dba` is one example that corresponds to the default settings. A nondefault installation may require different settings. In general, the owner of the disk devices should be the same as the owner of the Oracle binary software. The group ownership should be OSDBA of the Oracle ASM instance, which is defined at installation. For information about Oracle ASM privileges, see "About Privileges for Oracle ASM" on page 3-24.
For detailed information about preparing disks for an Oracle ASM installation, refer to your platform-specific installation guide for Oracle Database, Oracle Clusterware, and Oracle Real Application Clusters (Oracle RAC).

See Also: Oracle Exadata documentation for information about preparing Oracle Exadata storage

Oracle ASM and Multipathing

Multipathing solutions provide failover by using redundant physical path components. These components include adapters, cables, and switches that reside between the server and the storage subsystem. If one or more of these components fails, then applications can still access their data, eliminating a single point of failure with the **Storage Area Network (SAN)**, Host Bus Adapter, interface cable, or host port on a multiported storage array.

Multipathing is a software technology implemented at the operating system device driver level. Multipathing creates a pseudo device to facilitate the sharing and balancing of I/O operations across all of the available I/O paths. Multipathing also improves system performance by distributing the I/O load across all available paths, providing a higher level of data availability through automatic failover and failback.

Although Oracle ASM is not designed with multipathing functionality, Oracle ASM does operate with multipathing technologies. Multipathing technologies are available from many sources. Storage vendors offer multipathing products to support their specific storage products, while software vendors usually develop multipathing products to support several server platforms and storage products.

See Also: Your storage or software vendor multipathing documentation for more information about multipathing options for specific platforms and storage products

With Oracle ASM, you can ensure the discovery of a multipath disk by setting the value of the **ASM_DISKSTRING** initialization parameter to a pattern that matches the pseudo devices that represents the multipath disk. When I/O is sent to the pseudo device, the multipath driver intercepts it and provides load balancing to the underlying subpaths.

If Oracle ASM discovers multiple paths to the same disk device, Oracle ASM then raises an error. Because a single disk can appear multiple times in a multipath configuration, you must configure Oracle ASM to discover only the multipath disk.

When using **ASMLIB** with Oracle ASM on Linux, you can ensure the discovery of the multipath disk by configuring Oracle ASM to scan the multipath disk first or to exclude the single path disks when scanning.

For information about disk discovery, see "Oracle ASM Disk Discovery" on page 4-19.
Recommendations for Storage Preparation

The following are guidelines for preparing storage for use with Oracle ASM:

- Configure two disk groups, one for data and the other for the fast recovery area.

See Also:

- Oracle Database Backup and Recovery User’s Guide for information about configuring the fast recovery area
- Oracle Database Administrator’s Guide for information about specifying a fast recovery area

- A minimum of four LUNs (Oracle ASM disks) of equal size and performance is recommended for each disk group.
- Ensure that all Oracle ASM disks in a disk group have similar storage performance and availability characteristics. In storage configurations with mixed speed drives, such as 10K and 15K RPM, I/O performance is constrained by the slowest speed drive.
- Oracle ASM data distribution policy is capacity-based. Ensure that Oracle ASM disks in a disk group have the same capacity to maintain balance.
- Create external redundancy disk groups when using high-end storage arrays. High-end storage arrays generally provide hardware RAID protection. Use Oracle ASM mirroring redundancy when not using hardware RAID, or when you need host-based volume management functionality, such as mirroring across storage systems. You can use Oracle ASM mirroring in configurations when mirroring between geographically-separated sites (extended clusters).
- Minimize I/O contention between Oracle ASM disks and other applications by dedicating disks in Oracle ASM disk groups.
- Choose a hardware RAID stripe size that is a power of 2 and less than or equal to the size of the Oracle ASM allocation unit.
- For Linux, use the Oracle ASMLIB feature to provide consistent device naming and permission persistency.

See Also:

- Article 294869.1 at My Oracle Support (http://support.oracle.com) for information about Oracle ASM and Multipathing
- http://www.oracle.com/technology/tech/linux/asmlib/multipath.html for information about configuring Oracle ASMLIB with multipath disks
- Your platform-specific installation guide for information about configuring multipathing for your system
See Also:

- The Oracle ASMLIB page on the Oracle Technology Network Web site at http://www.oracle.com/technology/tech/linux/asmlib to download ASMLIB
This chapter describes how to administer Automatic Storage Management (Oracle ASM) instances. It explains how to configure Oracle ASM instance parameters and how to set Oracle Database parameters for use with Oracle ASM. The chapter also describes Oracle ASM upgrading, patching, and authentication for Oracle ASM instance access. You can also use procedures in this chapter to migrate a database to use Oracle ASM.

Administering an Oracle ASM instance is similar to administering an Oracle Database instance, but the process requires fewer procedures. You can use Oracle Enterprise Manager and SQL*Plus to perform Oracle ASM instance administration tasks.

Oracle ASM is installed in the Oracle Grid Infrastructure home separate from the Oracle Database home. Only one Oracle ASM instance is supported on a server. When managing an Oracle ASM instance, the administration activity must be performed in the Oracle Grid Infrastructure home.

This chapter contains the following topics:

- Operating with Different Releases of Oracle ASM and Database Instances Simultaneously
- Configuring Initialization Parameters for Oracle ASM Instances
- Managing Oracle ASM Instances
- Using Oracle ASM Rolling Upgrade
- Patching Oracle ASM Instances in Oracle RAC Environments
- Authentication for Accessing Oracle ASM Instances
- Migrating a Database to Use Oracle ASM

For a description of an Oracle ASM instance, see "About Oracle ASM Instances" on page 1-2. For information about using Oracle Enterprise Manager to administer Oracle ASM, see Chapter 9, "Administering Oracle ASM with Oracle Enterprise Manager".

Operating with Different Releases of Oracle ASM and Database Instances Simultaneously

Oracle Automatic Storage Management (Oracle ASM) in Oracle Database 11g Release 2 (11.2) supports 11g Release 2 (11.2) or older software versions of Oracle database instances, including Oracle Database 10g. For compatibility between Oracle Clusterware and Oracle ASM, the Oracle Clusterware release must be greater than or equal to the Oracle ASM release.
There are additional compatibility considerations when using disk groups with different releases of Oracle ASM and database instances. For information about disk group compatibility attributes settings, see "Disk Group Compatibility" on page 4-32.

When using different software versions, the database instance supports Oracle ASM functionality of the earliest release in use. For example, a 10.1 database instance operating with an 11.2 Oracle ASM instance supports only Oracle ASM 10.1 features.

The V$ASM_CLIENT view contains the SOFTWARE_VERSION and COMPATIBLE_VERSION columns with information about the software version number and instance compatibility level.

- The SOFTWARE_VERSION column of V$ASM_CLIENT contains the software version number of the database or Oracle ASM instance for the selected disk group connection.
- The COMPATIBLE_VERSION column contains the setting of the COMPATIBLE parameter of the database or Oracle ASM instance for the selected disk group connection.

You can query the V$ASM_CLIENT view on both Oracle ASM and database instances. For an example showing a query on the V$ASM_CLIENT view, see Example 6-4, "Viewing disk group clients with V$ASM_CLIENT" on page 6-3. For more information about the V$ASM_CLIENT and V$ASM_* views, see "Views Containing Oracle ASM Disk Group Information" on page 6-1.

Configuring Initialization Parameters for Oracle ASM Instances

This section discusses initialization parameter files and parameter settings for Oracle ASM instances. To install and initially configure an Oracle ASM instance, use Oracle Universal Installer (OUI) and Oracle ASM Configuration Assistant (ASMCA). Refer to your platform-specific Oracle Grid Infrastructure Installation Guide for details about installing and configuring Oracle ASM.

After an Oracle ASM instance has been installed on a single-instance Oracle Database or in an Oracle Real Application Clusters (Oracle RAC) environment, the final Oracle ASM configuration can be performed. Only a few Oracle ASM-specific instance initialization parameters must be configured. The default values are usually sufficient.

See Also: http://www.oracle.com/technology/asm/ for more information about Oracle ASM best practices

This section contains the following topics:

- Initialization Parameter Files for an Oracle ASM Instance
- Backing Up, Copying, and Moving an Oracle ASM Initialization Parameter File
- Setting Oracle ASM Initialization Parameters
Configuring Initialization Parameters for Oracle ASM Instances

- Oracle ASM Parameter Setting Recommendations
- Setting Database Initialization Parameters for Use with Oracle ASM

See Also:
- *Oracle Database Reference* for information about initialization parameters
- *Oracle Database Administrator’s Guide* for information about initialization parameter files

Initialization Parameter Files for an Oracle ASM Instance

When installing Oracle ASM in an Oracle Restart configuration, Oracle Universal Installer (OUI) creates a separate server parameter file (SPFILE) and password file for the Oracle ASM instance. The ASM SPFILE is stored in a disk group during installation.

When installing Oracle ASM in a clustered Oracle ASM environment where the Oracle Grid Infrastructure home is shared among all of the nodes, OUI creates a single SPFILE for Oracle ASM in a disk group. In a clustered environment without a shared Oracle Grid Infrastructure home, OUI creates an SPFILE in a disk group for the Oracle ASM instance on each node.

When upgrading an Oracle ASM instance, if the ASM SPFILE was originally in a shared file system, then the upgraded Oracle ASM instance retains the SPFILE in the same location. If the original Oracle ASM instance used a PFILE, after an upgrade the instance continues to use a PFILE.

You can use an SPFILE or a text-based initialization parameter file (PFILE) as the Oracle ASM instance parameter file. If you use an SPFILE in a clustered Oracle ASM environment, then you must place the SPFILE in a disk group, on a shared raw device, or on a cluster file system. Oracle recommends that the Oracle ASM SPFILE is placed in a disk group. You cannot use a new alias created on an existing Oracle ASM SPFILE to start the Oracle ASM instance.

If you do not use a shared Oracle Grid Infrastructure home, then the Oracle ASM instance can use a PFILE. The same rules for file name, default location, and search order that apply to database initialization parameter files also apply to Oracle ASM initialization parameter files.

When an Oracle ASM instance searches for an initialization parameter file, the search order is:

1. The location of the initialization parameter file specified in the Grid Plug and Play (GPnP) profile
2. If the location has not been set in the GPnP profile, then the search order changes to:
 a. SPFILE in the Oracle ASM instance home

 For example, the SPFILE for Oracle ASM has the following default path in the Oracle Grid Infrastructure home in a Linux environment:

 `$ORACLE_HOME/dbs/spfile+ASM.ora`

 b. PFILE in the Oracle ASM instance home

You can administer Oracle ASM initialization parameter files with SQL*Plus, Oracle Enterprise Manager, ASMCA, and ASMCMD commands. For information about Oracle Enterprise Manager, see "Configuring Oracle ASM Initialization Parameters"
with Oracle Enterprise Manager” on page 9-3. For information about ASMCA, see Chapter 11, “Oracle ASM Configuration Assistant”. For information about ASMCMD commands, see “ASMCMD Instance Management Commands” on page 12-10.

See Also:

- Oracle Database Administrator’s Guide for more information about creating and maintaining initialization parameter files
- Oracle Database 2 Day DBA for information about viewing and modifying initialization parameters
- Oracle Database SQL Language Reference for information about creating an SPFILE with the CREATE SPFILE SQL statement

Backing Up, Copying, and Moving an Oracle ASM Initialization Parameter File

You can back up, copy, or move an Oracle ASM SPFILE with the ASMCMD spbackup, spcopy or spmove commands. For information about these ASMCMD commands, see “spbackup” on page 12-15, “spcopy” on page 12-16, and ”spmove” on page 12-18.

You can also use the SQL CREATE SPFILE to create an Oracle ASM SPFILE when connected to the Oracle ASM instance.

You can copy and move an Oracle ASM PFILE with the commands available on the specific platform, such as cp for Linux.

After copying or moving an SPFILE or PFILE, you must restart the instance with the SPFILE or PFILE in the new location to use that SPFILE or PFILE.

If the COMPATIBLE.ASM disk group attribute is set to 11.2 or greater for a disk group, you can create, copy, or move an Oracle ASM SPFILE into the disk group.

For example, after upgrading an Oracle ASM instance from 11g release 1 (11.1) to 11g release 2 (11.2), you could place the Oracle ASM SPFILE in a disk group that has COMPATIBLE.ASM set to 11.2.

In the following steps, assume an Oracle ASM 11g release 2 (11.2) instance is using a PFILE stored in $ORACLE_HOME/dbs/asmspfile.ora. You can use the SQL CREATE SPFILE statement to create an SPFILE from a PFILE stored in a local or shared file system. If a PFILE does not exist, then it could be created with the SQL CREATE PFILE statement.

To create an SPFILE in a disk group, perform the following steps:

1. Connect to the Oracle ASM instance.
 For example:
   ```sql
   $ sqlplus / as sysasm
   ```

2. Create an SPFILE in a disk group that has COMPATIBLE.ASM set to 11.2 with the SQL CREATE SPFILE statement.
 For example, create an Oracle ASM SPFILE from the existing PFILE.
   ```sql
   SQL> CREATE SPFILE = '+DATA/asmspfile.ora'  
         FROM PFILE = '$ORACLE_HOME/dbs/asmspfile.ora';
   ```

 The CREATE SPFILE statement also updates the Grid Plug and Play (GPnP) profile. You can check the location of the Oracle ASM SPFILE in the GPnP profile with the ASMCMD spget command. See ”spget” on page 12-18.
3. Restart the Oracle ASM instance so that the instance reads the SPFILE in the new location.

For information on shutting down and starting up an Oracle ASM instance, see "Starting Up an Oracle ASM Instance" on page 3-13 and "Shutting Down an Oracle ASM Instance" on page 3-16.

For information about disk group compatibility attributes, see "Disk Group Compatibility" on page 4-32. For information about upgrading an Oracle ASM instance, see "Upgrading an Oracle ASM Instance with Oracle Universal Installer" on page 3-17.

See Also:
- Oracle Database Administrator's Guide for more information about creating and maintaining initialization parameter files
- Oracle Database SQL Language Reference for information about creating an SPFILE with the CREATE SPFILE SQL statement
- Oracle Real Application Clusters Installation Guide for information about Grid Plug and Play (GnP)

Setting Oracle ASM Initialization Parameters

There are several initialization parameters that you must set for an Oracle ASM instance. You can set these parameters with Oracle ASM Configuration Assistant (ASMCA). You can also set some parameters after database creation using Oracle Enterprise Manager or SQL ALTER SYSTEM or ALTER SESSION statements.

The INSTANCE_TYPE initialization parameter is the only required parameter in the Oracle ASM instance parameter file. The Oracle ASM* parameters use suitable defaults for most environments. You cannot use parameters with names that are prefixed with Oracle ASM* in database instance parameter files.

Some database initialization parameters are also valid for an Oracle ASM instance initialization file. In general, Oracle ASM selects the appropriate defaults for database parameters that are relevant to an Oracle ASM instance.

For information about setting Oracle ASM parameters with Oracle Enterprise Manager, see "Configuring Oracle ASM Initialization Parameters with Oracle Enterprise Manager" on page 9-3.

Automatic Memory Management for Oracle ASM

Automatic memory management automatically manages the memory-related parameters for both Oracle ASM and database instances with the MEMORY_TARGET parameter. Automatic memory management is enabled by default on an Oracle ASM instance, even when the MEMORY_TARGET parameter is not explicitly set. The default value used for MEMORY_TARGET is acceptable for most environments. This is the only parameter that you must set for complete Oracle ASM memory management. Oracle strongly recommends that you use automatic memory management for Oracle ASM.

If you do not set a value for MEMORY_TARGET, but you do set values for other memory related parameters, Oracle internally calculates the optimum value for MEMORY_TARGET based on those memory parameter values. You can also increase MEMORY_TARGET dynamically, up to the value of the MEMORY_MAX_TARGET parameter, just as you can do for the database instance.

Although it is not recommended, you can disable automatic memory management by either setting the value for MEMORY_TARGET to 0 in the Oracle ASM parameter file or...
by running an `ALTER SYSTEM SET MEMORY_TARGET=0` statement. When you disable automatic memory management, Oracle reverts to auto shared memory management and automatic PGA memory management. To revert to Oracle Database 10g release 2 (10.2) functionality to manually manage Oracle ASM SGA memory, also run the `ALTER SYSTEM SET SGA_TARGET=0` statement. You can then manually manage Oracle ASM memory using the information in "Oracle ASM Parameter Setting Recommendations" on page 3-6, that discusses Oracle ASM memory-based parameter settings. Unless specified, the behaviors of the automatic memory management parameters in Oracle ASM instances behave the same as in Oracle Database instances.

Notes:

- For a Linux environment, automatic memory management cannot work if `/dev/shm` is not available or is undersized. For more information, see Oracle Database Administrator’s Reference for Linux and UNIX-Based Operating Systems. For information about platforms that support automatic memory management, see Oracle Database Administrator’s Guide.

- The minimum `MEMORY_TARGET` for Oracle ASM is 256 MB. If you set `MEMORY_TARGET` to 100 MB, then Oracle increases the value for `MEMORY_TARGET` to 256 MB automatically.

See Also:

- Oracle Database Administrator’s Guide for more information about the functionality of automatic memory management for database instances, which varies from Oracle ASM

- Oracle Database Concepts for an overview of memory management methods

Oracle ASM Parameter Setting Recommendations

This section contains information about the following parameters for Oracle ASM:

- `ASM_DISKGROUPS`
- `ASM_DISKSTRING`
- `ASM_POWER_LIMIT`
- `ASM_PREFERRED_READ_FAILURE_GROUPS`
- `DB_CACHE_SIZE`
- `DIAGNOSTIC_DEST`
- `INSTANCE_TYPE`
- `LARGE_POOL_SIZE`
- `PROCESSES`
- `REMOTE_LOGIN_PASSWORDFILE`
- `SHARED_POOL_SIZE`
Configuring Initialization Parameters for Oracle ASM Instances

ASM_DISKGROUPS

The ASM_DISKGROUPS initialization parameter specifies a list of the names of disk groups that an Oracle ASM instance mounts at startup. Oracle ignores the value that you set for ASM_DISKGROUPS when you specify the NOMOUNT option at startup or when you run the ALTER DISKGROUP ALL MOUNT statement. The default value of the ASM_DISKGROUPS parameter is a NULL string. For information about disk groups that are mounted at startup time, see "About Mounting Disk Groups at Startup" on page 3-15.

The ASM_DISKGROUPS parameter is dynamic. If you are using a server parameter file (SPFILE), then you do not have to manually alter the value of ASM_DISKGROUPS. Oracle ASM automatically adds a disk group to this parameter when the disk group is successfully created or mounted. Oracle ASM also automatically removes a disk group from this parameter when the disk group is dropped or dismounted.

The following is an example of setting the ASM_DISKGROUPS parameter dynamically:

```
SQL> ALTER SYSTEM SET ASM_DISKGROUPS = DATA, FRA;
```

When using a text initialization parameter file (PFILE), you may edit the initialization parameter file to add the name of any disk group so that it is mounted automatically at instance startup. You must remove the name of any disk group that you no longer want automatically mounted.

The following is an example of the ASM_DISKGROUPS parameter in the initialization file:

```
ASM_DISKGROUPS = DATA, FRA
```

Note: Issuing the ALTER DISKGROUP...ALL MOUNT or ALTER DISKGROUP...ALL DISMOUNT commands does not affect the value of ASM_DISKGROUPS.

For additional information about mounting Oracle ASM disk groups, see "Mounting and Dismounting Disk Groups" on page 4-43.

See Also: Oracle Database Reference for more information about the ASM_DISKGROUPS initialization parameter

ASM_DISKSTRING

The ASM_DISKSTRING initialization parameter specifies a comma-delimited list of strings that limits the set of disks that an Oracle ASM instance discovers. The discovery strings can include wildcard characters. Only disks that match one of the strings are discovered. The same disk cannot be discovered twice.

The discovery string format depends on the Oracle ASM library and the operating system that are in use. Pattern matching is supported. Refer to your operating system-specific installation guide for information about the default pattern matching.
For example, on a Linux server that does not use ASMLIB, to limit the discovery process to only include disks that are in the /dev/rdsk/mydisks directory, set the ASM_DISKSTRING initialization parameter to:

`/dev/rdsk/mydisks/*`

The asterisk is required. To limit the discovery process to only include disks that have a name that ends in disk3 or disk4, set ASM_DISKSTRING to:

`/dev/rdsk/*disk3, /dev/rdsk/*disk4`

The ? character, when used as the first character of a path, expands to the Oracle home directory. Depending on the operating system, when you use the ? character elsewhere in the path, it is a wildcard for one character.

The default value of the ASM_DISKSTRING parameter is a NULL string. A NULL value causes Oracle ASM to search a default path for all disks in the system to which the Oracle ASM instance has read and write access. The default search path is platform-specific. Refer to your operating system specific installation guide for more information about the default search path.

Oracle ASM cannot use a disk unless all of the Oracle ASM instances in the cluster can discover the disk through one of their own discovery strings. The names do not have to be the same on every node, but all disks must be discoverable by all of the nodes in the cluster. This may require dynamically changing the initialization parameter to enable adding new storage.

For additional information about discovering disks, see "Oracle ASM Disk Discovery" on page 4-19.

See Also:
- Oracle Exadata documentation for information about the Oracle ASM discovery string format for Oracle Exadata
- Oracle Database Reference for more information about the ASM_DISKSTRING initialization parameter

ASM_POWER_LIMIT

The ASM_POWER_LIMIT initialization parameter specifies the default power for disk rebalancing in a disk group. The range of values is 0 to 1024. The default value is 1. A value of 0 disables rebalancing. Higher numeric values enable the rebalancing operation to complete more quickly, but might result in higher I/O overhead and more rebalancing processes.

- For disk groups that have the disk group ASM compatibility set to 11.2.0.2 or greater (for example, COMPATIBLE.ASM = 11.2.0.2), the operational range of values is 0 to 1024 for the rebalance power.
- For disk groups that have the disk group ASM compatibility set to less than 11.2.0.2, the operational range of values is 0 to 11 inclusive. If the value for ASM_POWER_LIMIT is larger than 11, a value of 11 is used for these disk groups.

You can also specify the power of the rebalancing operation in a disk group with the POWER clause of the SQL ALTER DISKGROUP ... REBALANCE statement. The range of allowable values for the POWER clause is the same for the ASM_POWER_LIMIT initialization parameter. If the value of the POWER clause is specified larger than 11 for a disk group with ASM compatibility set to less than 11.2.0.2, then a warning is displayed and a POWER value equal to 11 is used for rebalancing.
For information about the `ASM_POWER_LIMIT` unitization parameter, and the `POWER` clause, refer to "Manually Rebalancing Disk Groups" on page 4-17 and "Tuning Rebalance Operations" on page 4-18. For information about disk group compatibility, see "Disk Group Compatibility" on page 4-32.

See Also:
- *Oracle Database Reference* for more information about the `ASM_POWER_LIMIT` initialization parameter
- *Oracle Database SQL Language Reference* for more information about the `POWER` clause of the SQL `ALTER DISKGROUP REBALANCE` statement

ASM_PREFERED_READ_FAILURE_GROUPS

The `ASM_PREFERED_READ_FAILURE_GROUPS` initialization parameter value is a comma-delimited list of strings that specifies the failure groups that should be preferentially read by the given instance. The `ASM_PREFERED_READ_FAILURE_GROUPS` parameter setting is instance specific. The default value is `NULL`. This parameter is generally used for clustered Oracle ASM instances and its value can be different on different nodes.

For example:

`diskgroup_name1.failure_group_name1,...`

For more information about `ASM_PREFERED_READ_FAILURE_GROUPS`, refer to "Preferred Read Failure Groups" on page 4-29.

See Also:
- *Oracle Real Application Clusters Administration and Deployment Guide* for more information about configuring preferred disks in extended clusters
- *Oracle Database Reference* for more information about the `ASM_PREFERED_READ_FAILURE_DISKGROUPS` initialization parameter

DB_CACHE_SIZE

You do not have to set a value for the `DB_CACHE_SIZE` initialization parameter if you use automatic memory management. The setting for the `DB_CACHE_SIZE` parameter determines the size of the buffer cache. This buffer cache is used to store metadata blocks. The default value for this parameter is suitable for most environments.

See Also:
- *Oracle Database Administrator’s Guide* for more information about setting the `DB_CACHE_SIZE` initialization parameter
- *Oracle Database Performance Tuning Guide* for more information about memory configuration
- *Oracle Database Reference* for more information about the `DB_CACHE_SIZE` parameter
DIAGNOSTIC_DEST

The **DIAGNOSTIC_DEST** initialization parameter specifies the directory where diagnostics for an instance are located. The default value for an Oracle ASM instance is the `$ORACLE_BASE` directory for the Oracle Grid Infrastructure installation.

Example 3–1 shows an example of the diagnostic directory for an Oracle ASM instance.

Example 3–1 Sample diagnostic directory for an Oracle ASM instance

```
$ ls $ORACLE_BASE/diag/asm/+asm/+ASM
```

```
alert  cdump  hm  incident  incpkg  ir  lck  metadata  stage  sweep  trace
```

See Also:
- *Oracle Database Administrator’s Guide* for more information about the **DIAGNOSTIC_DEST** initialization parameter and the fault diagnosability infrastructure.
- *Oracle Database Reference* for more information about the **DIAGNOSTIC_DEST** parameter

INSTANCE_TYPE

The **INSTANCE_TYPE** initialization parameter must be set to Oracle ASM for an Oracle ASM instance. This parameter is optional for an Oracle ASM instance in an Oracle Grid Infrastructure home.

The following is an example of the **INSTANCE_TYPE** parameter in the initialization file:

```
INSTANCE_TYPE = ASM
```

See Also: *Oracle Database Reference* for more information about the **INSTANCE_TYPE** parameter

LARGE_POOL_SIZE

You do not have to set a value for the **LARGE_POOL_SIZE** initialization parameter if you use automatic memory management.

The setting for the **LARGE_POOL_SIZE** parameter is used for large allocations. The default value for this parameter is suitable for most environments.

See Also:
- *Oracle Database Administrator’s Guide* for more information about setting the **LARGE_POOL_SIZE** initialization parameter
- *Oracle Database Performance Tuning Guide* for more information about memory configuration
- *Oracle Database Reference* for more information about the **LARGE_POOL_SIZE** parameter

** PROCESSES**

The **PROCESSES** initialization parameter affects Oracle ASM, but the default value is usually suitable. However, if multiple database instances are connected to an Oracle ASM instance, you can use the following formula:

```
PROCESSES = 50 + 50*n
```
where \(n \) is the number database instances connecting to the Oracle ASM instance.

See Also:
- *Oracle Database Administrator’s Guide* for more information about setting the `PROCESSES` initialization parameter
- *Oracle Database Reference* for more information about the `PROCESSES` parameter

REMOTE_LOGIN_PASSWORDFILE

The `REMOTE_LOGIN_PASSWORDFILE` initialization parameter specifies whether the Oracle ASM instance checks for a password file. This parameter operates the same for Oracle ASM and database instances.

See Also:
- *Oracle Database Administrator’s Guide* for more information about setting the `REMOTE_LOGIN_PASSWORDFILE` initialization parameter
- *Oracle Database Reference* for more information about the `REMOTE_LOGIN_PASSWORDFILE` parameter

SHARED_POOL_SIZE

You do not have to set a value for the `SHARED_POOL_SIZE` initialization parameter if you use automatic memory management. The setting for the `SHARED_POOL_SIZE` parameter determines the amount of memory required to manage the instance. The setting for this parameter is also used to determine the amount of space that is allocated for extent storage. The default value for this parameter is suitable for most environments.

See Also:
- *Oracle Database Administrator’s Guide* for more information about setting the `SHARED_POOL_SIZE` initialization parameter
- *Oracle Database Performance Tuning Guide* for more information about memory configuration
- *Oracle Database Reference* for more information about the `SHARED_POOL_SIZE` parameter

Setting Database Initialization Parameters for Use with Oracle ASM

When you do not use automatic memory management in a database instance, the SGA parameter settings for a database instance may require minor modifications to support Oracle ASM. When you use automatic memory management, the sizing data discussed in this section can be treated as informational only or as supplemental information to help determine the appropriate values that you should use for the SGA. Oracle highly recommends using automatic memory management.

See Also:
- *Oracle Database Administrator’s Guide* for information about managing memory allocation in an Oracle Database instance
- *Oracle Database Performance Tuning Guide* for more information about memory configuration and use
The following are refutation guidelines for SGA sizing on the database instance:

- **PROCESSES** initialization parameter—Add 16 to the current value
- **LARGE_POOL_SIZE** initialization parameter—Add an additional 600K to the current value
- **SHARED_POOL_SIZE** initialization parameter—Aggregate the values from the following queries to obtain the current database storage size that is either on Oracle ASM or stored in Oracle ASM. Next, determine the redundancy type and calculate the **SHARED_POOL_SIZE** using the aggregated value as input.

```sql
SELECT SUM(bytes)/(1024*1024*1024) FROM V$DATAFILE;
SELECT SUM(bytes)/(1024*1024*1024) FROM V$LOGFILE a, V$LOG b
    WHERE a.group#=b.group#;
SELECT SUM(bytes)/(1024*1024*1024) FROM V$TEMPFILE
    WHERE status='ONLINE';
```

- For disk groups using external redundancy, every 100 GB of space needs 1 MB of extra shared pool plus 2 MB
- For disk groups using normal redundancy, every 50 GB of space needs 1 MB of extra shared pool plus 4 MB
- For disk groups using high redundancy, every 33 GB of space needs 1 MB of extra shared pool plus 6 MB

See Also:
- *Oracle Database Administrator’s Guide* for information about managing memory allocation in an Oracle Database instance
- *Oracle Database Performance Tuning Guide* for more information about memory configuration and use

Managing Oracle ASM Instances

The following section describes how to administer Oracle ASM instances under the following topics:

- Administering Oracle ASM Instances with Server Control Utility
- Using Oracle Restart
- Starting Up an Oracle ASM Instance
- Shutting Down an Oracle ASM Instance
- Upgrading an Oracle ASM Instance with Oracle Universal Installer
- Downgrading an Oracle ASM Instance
- Out of Place Upgrades
- Configuring Oracle Grid Infrastructure with the Configuration Wizard
- Active Session History Sampling for Oracle ASM

Administering Oracle ASM Instances with Server Control Utility

In addition to the Oracle ASM administration procedures that this section describes, you can use Server Control Utility (SRVCTL) in clustered Oracle ASM environments to perform the following Oracle ASM administration tasks:

- Add and remove Oracle ASM instance records in Oracle Cluster Registry (OCR)
Managing Oracle ASM Instances

- Enable, disable, start, and stop Oracle ASM instances
- Display the Oracle ASM instance configuration and status

See Also: The *Oracle Real Application Clusters Administration and Deployment Guide* for information about administering Oracle ASM instances with SRVCTL.

Using Oracle Restart

Oracle Restart improves the availability of your Oracle database. When you install the Oracle Grid Infrastructure for a standalone server, it includes both Oracle ASM and Oracle Restart. Oracle Restart runs out of the Oracle Grid Infrastructure home, which you install separately from Oracle Database homes.

Oracle Restart provides managed startup and restart of a single-instance (non-clustered) Oracle Database, Oracle ASM instance, service, listener, and any other process running on the server. If an interruption of a service occurs after a hardware or software failure, Oracle Restart automatically takes the necessary steps to restart the component.

With Server Control Utility (SRVCTL) you can add a component, such as an Oracle ASM instance, to Oracle Restart. You then enable Oracle Restart protection for the Oracle ASM instance. With SRVCTL, you also remove or disable Oracle Restart protection.

See Also:
- *Oracle Database Administrator’s Guide* for information about configuring and administering Oracle Restart
- *Oracle Real Application Clusters Administration and Deployment Guide* for information about automatically restarting single-instance databases residing on an Oracle RAC node
- *Oracle Grid Infrastructure Installation Guide* for information about installation of Oracle Grid Infrastructure

Starting Up an Oracle ASM Instance

You start an Oracle ASM instance similarly to the way in which you start an Oracle database instance with some minor differences. When starting an Oracle ASM instance, note the following:

- To connect to a local Oracle ASM instance with SQL*Plus, set the ORACLE_SID environment variable to the Oracle ASM system identifier (SID).

The default Oracle ASM SID for a single-instance database is +ASM, and the default SID for Oracle ASM for an Oracle RAC node is +ASMnode_number where node_number is the number of the node. The ORACLE_HOME environment variable must be set to the Grid Infrastructure home where Oracle ASM was installed.

Note: Oracle recommends that you do not change the default Oracle ASM SID name.

- The initialization parameter file must contain the following entry:

 INSTANCE_TYPE = ASM
This parameter indicates that an Oracle ASM instance, not a database instance, is starting.

- When you run the `STARTUP` command, rather than trying to mount and open a database, this command attempts to mount Oracle ASM disk groups.

For information about disk groups that are mounted at startup time, see "About Mounting Disk Groups at Startup" on page 3-15.

After the Oracle ASM instance has started, you can mount disk groups with the `ALTER DISKGROUP...MOUNT` command. See "Mounting and Dismounting Disk Groups" on page 4-43 for more information.

- The associated Oracle database instance does not have to be running when you start the associated Oracle ASM instance.

The following list describes how Oracle ASM interprets SQL*Plus `STARTUP` command parameters.

- **FORCE** Parameter

 Issues a `SHUTDOWN ABORT` to the Oracle ASM instance before restarting it.

 If an Oracle Automatic Storage Management Cluster File System (Oracle ACFS) file system is currently mounted on Oracle ADVM volumes, the file system should first be dismounted. Otherwise, applications encounter I/O errors and Oracle ACFS user data and metadata may not be written to storage before the Oracle ASM storage is fenced. For information about dismounting an Oracle ACFS file system, see "Deregistering, Dismounting, and Disabling Volumes and Oracle ACFS File Systems" on page 13-18.

- **MOUNT** or **OPEN** Parameter

 Mounts the disk groups specified in the `ASM_DISKGROUPS` initialization parameter. This is the default if no command parameter is specified.

- **NOMOUNT** Parameter

 Starts up the Oracle ASM instance without mounting any disk groups.

- **RESTRICT** Parameter

 Starts up an instance in restricted mode that enables access only to users with both the `CREATE SESSION` and `RESTRICTED SESSION` system privileges. You can use the `RESTRICT` clause in combination with the `MOUNT`, `NOMOUNT`, and `OPEN` clauses.

 See Also: "About Restricted Mode" on page 3-15 for more information

 In restricted mode, database instances cannot use the disk groups. In other words, databases cannot open files that are in that disk group. Also, the disk group cannot be mounted by any other instance in the cluster. Mounting the disk group in restricted mode enables only one Oracle ASM instance to mount the disk group. This mode is useful to mount the disk group for repairing configuration issues.

The following is a sample SQL*Plus session for starting an Oracle ASM instance.

```
SQLPLUS /NOLOG
SQL> CONNECT SYS AS SYSASM
Enter password: sys_password
Connected to an idle instance.
```
SQL> STARTUP
ASM instance started

Total System Global Area 71303168 bytes
Fixed Size 1069292 bytes
Variable Size 45068052 bytes
ASM Cache 25165824 bytes
ASM disk groups mounted

For more information about user authentication, see "Authentication for Accessing Oracle ASM Instances" on page 3-23.

See Also:
- Oracle Database Administrator’s Guide for more information about using environment variables to select instances
- Oracle Database Administrator’s Guide for more information about starting up and shutting down Oracle instances
- Oracle Real Application Clusters Administration and Deployment Guide for information about starting an Oracle ASM instance with SRVCTL in Oracle RAC
- Oracle Clusterware Administration and Deployment Guide for information about Oracle Clusterware Cluster subcomponent processes and background processes
- Oracle Database Concepts for information about Oracle database background processes
- Oracle Database Reference for a description of the Oracle background processes

About Mounting Disk Groups at Startup
At startup, the Oracle ASM instance attempts to mount the following disk groups:
- Disk groups specified in the ASM_DISKGROUPS initialization parameter
- Disk group used by Cluster Synchronization Services (CSS) for voting files
- Disk groups used by Oracle Clusterware for Oracle Cluster Registry (OCR)
- Disk group used by the Oracle ASM instance to store the ASM server parameter file (SPFILE)

If no disk groups are found in the previous list, then the Oracle ASM instance does not mount any disk groups at startup. After the Oracle ASM instance has started, you can mount disk groups with the ALTER DISKGROUP ... MOUNT command. For more information, see "Mounting and Dismounting Disk Groups" on page 4-43.

About Restricted Mode
You can use the STARTUP RESTRICT command to control access to an Oracle ASM instance while you perform maintenance. When an Oracle ASM instance is active in this mode, all of the disk groups that are defined in the ASM_DISKGROUPS parameter are mounted in RESTRICTED mode. This prevents databases from connecting to the Oracle ASM instance. In addition, the restricted clause of the ALTER SYSTEM statement is disabled for the Oracle ASM instance. The ALTER DISKGROUP diskgroup MOUNT statement is extended to enable Oracle ASM to mount a disk group in restricted mode.
When you mount a disk group in `RESTRICTED` mode, the disk group can only be mounted by one instance. Clients of Oracle ASM on that node cannot access that disk group while the disk group is mounted in `RESTRICTED` mode. The `RESTRICTED` mode enables you to perform maintenance tasks on a disk group in the Oracle ASM instance without interference from clients.

Rebalance operations that occur while a disk group is in `RESTRICTED` mode eliminate the lock and unlock extent map messaging that occurs between Oracle ASM instances in an Oracle RAC environment. This improves the overall rebalance throughput. At the end of a maintenance period, you must explicitly dismount the disk group and remount it in normal mode.

Shutting Down an Oracle ASM Instance

The Oracle ASM shutdown process is initiated when you run the `SHUTDOWN` command in SQL*Plus. Before you run this command, ensure that the `ORACLE_SID` environment variable is set to the Oracle ASM SID so that you can connect to the local Oracle ASM instance. The default Oracle ASM SID for a single-instance database is `+ASM`, and the default SID for Oracle ASM for an Oracle RAC node is `+ASMnode_number` where `node_number` is the number of the node. The `ORACLE_HOME` environment variable must be set to the Grid Infrastructure home where Oracle ASM was installed.

Oracle strongly recommends that you shut down all database instances that use the Oracle ASM instance and dismount all file systems mounted on Oracle ASM Dynamic Volume Manager (Oracle ADVM) volumes before attempting to shut down the Oracle ASM instance.

If Oracle Cluster Registry (OCR) or voting files are stored in a disk group, the disk group can only be dismounted by shutting down the Oracle ASM instance as part of shutting down the clusterware on a node. To shut down the clusterware, run `crsctl stop crs`.

See Also:

- *Oracle Database Administrator’s Guide* for more information about using environment variables to select instances
- *Oracle Database Administrator’s Guide* for more information about starting up and shutting down Oracle instances
- *Oracle Clusterware Administration and Deployment Guide* for information about managing voting files, Oracle Cluster Registry (OCR), and Oracle Local Registry (OLR)

To shut down an Oracle ASM instance, perform the following steps:

```
SQLPLUS /NOLOG
SQL> CONNECT SYS AS SYSASM
Enter password: sys_password
Connected.
SQL> SHUTDOWN NORMAL
```

For more information about user authentication, see "Authentication for Accessing Oracle ASM Instances" on page 3-23.

The following list describes the `SHUTDOWN` modes and the behavior of the Oracle ASM instance in each mode.

- `NORMAL` Clause
Oracle ASM waits for any in-progress SQL to complete before performing an orderly dismount of all of the disk groups and shutting down the Oracle ASM instance. Before the instance is shut down, Oracle ASM waits for all of the currently connected users to disconnect from the instance. If any database instances are connected to the Oracle ASM instance, then the `SHUTDOWN` command returns an error and leaves the Oracle ASM instance running. **NORMAL** is the default shutdown mode.

- **IMMEDIATE** or **TRANSACTIONAL** Clause

Oracle ASM waits for any in-progress SQL to complete before performing an orderly dismount of all of the disk groups and shutting down the Oracle ASM instance. Oracle ASM does not wait for users currently connected to the instance to disconnect. If any database instances are connected to the Oracle ASM instance, then the `SHUTDOWN` command returns an error and leaves the Oracle ASM instance running. Because the Oracle ASM instance does not contain any transactions, the **TRANSACTIONAL** mode behaves the same as **IMMEDIATE** mode.

- **ABORT** Clause

The Oracle ASM instance immediately shuts down without the orderly dismount of disk groups. This causes recovery to occur upon the next Oracle ASM startup. If any database instance is connected to the Oracle ASM instance, then the database instance aborts.

If any Oracle Automatic Storage Management Cluster File System (Oracle ACFS) file systems are currently mounted on Oracle ADVM volumes, those file systems should first be dismounted. Otherwise, applications encounter I/O errors and Oracle ACFS user data and metadata may not be written to storage before the Oracle ASM storage is fenced. For information about dismounting an Oracle ACFS file system, see "Deregistering, Dismounting, and Disabling Volumes and Oracle ACFS File Systems" on page 13-18. For more information about user authentication on Oracle ASM instance, see "Authentication for Accessing Oracle ASM Instances" on page 3-23.

Upgrading an Oracle ASM Instance with Oracle Universal Installer

Note:

- For information about performing an Oracle ASM Rolling Upgrade from 11.1.0.6 to 11.2.0.1, refer to Oracle Database Readme.
- For information about upgrading Oracle ASM from version 11.2.0.1 to 11.2.0.2, see "Out of Place Upgrades" on page 3-22.

This section discusses the process to upgrade an Oracle ASM instance to an Oracle Restart 11g release 2 (11.2) configuration. The recommended practice is to upgrade an Oracle ASM instance with Oracle Universal Installer (OUI). OUI automatically defaults to upgrade mode when it detects an Oracle ASM instance at a previous release level.

Note: If you are making any changes to Oracle software, Oracle recommends that you create a backup of the Oracle software.
The following procedure describes how to upgrade an Oracle ASM instance from 11g release 1 (11.1) to 11g release 2 (11.2) in an Oracle Restart configuration. In this scenario:

- The Oracle ASM and Oracle Database 11g release 1 (11.1) instances exist in separate homes.
- The Oracle Grid Infrastructure 11g release 2 (11.2) is to be installed in a separate home and the Oracle ASM instance 11g release 2 (11.2) is to be set up as an Oracle Restart (single-instance) configuration.

1. Shut down the Oracle Enterprise Manager agent, Oracle Database instances, Oracle ASM instance, and the listener in the older database and Oracle ASM homes.
 - Run `emctl stop dbconsole` to stop the Oracle Enterprise Manager agent.
 - Connect to the database instances with SQL*Plus as a privileged user and run the `SHUTDOWN` command.
 - Connect to the Oracle ASM instance with SQL*Plus as a privileged user and run the `SHUTDOWN` command.
 - Run `lsnrctl` and enter the `STOP` command to stop the listener.

 For information about shutting down an Oracle ASM instance, see "Shutting Down an Oracle ASM Instance" on page 3-16.

2. Start the Oracle Grid Infrastructure OUI and select the **Upgrade Oracle Grid Infrastructure** option.

3. Complete the screens in the OUI installer and run the scripts as prompted by the OUI installer.

 For example, on Linux you must run the `root.sh` script as the root user.

   ```bash
   # GRID_HOME/root.sh
   ```

 See Also: *Oracle Grid Infrastructure Installation Guide* for information about installing and upgrading Oracle Grid Infrastructure

4. Confirm that the listener and Oracle ASM instance are running in the Oracle Grid Infrastructure home and ensure that the Oracle Database instance and Oracle Enterprise Manager agent are running in the old database home.
 - Confirm that the listener is running.

 Otherwise, start the listener with Server Control Utility (SRVCTL).

 For example:
$ srvctl start listener

- Confirm that the Oracle ASM instance is running.
 For example:

 $ srvctl status listener
 $ srvctl status asm

 Otherwise, start the Oracle ASM instance with SRVCTL.
 For example:

 $ srvctl start asm

- Ensure that the database instances are running. Otherwise, connect to the
 database instances with SQL*Plus as a privileged user and run the STARTUP
 command.

- Ensure that the Oracle Enterprise Manager agent is running; otherwise start
 the Oracle Enterprise Manager agent with emctl start dbconsole.

For information about copying and moving an Oracle ASM instance initialization
parameter file after upgrading, see "Backing Up, Copying, and Moving an Oracle ASM
Initialization Parameter File" on page 3-4.

Note: The procedure described in this section upgrades the Oracle
ASM instance only. To upgrade Oracle Database and Oracle Enterprise
Manager, see Oracle Database Upgrade Guide.

Downgrading an Oracle ASM Instance

This section discusses the process to downgrade an Oracle ASM instance that has been
upgraded to an Oracle Restart configuration.

Note: If you are making any changes to Oracle software, Oracle
recommends that you create a backup of the Oracle software.

The following procedure describes how to downgrade an Oracle ASM instance from
Oracle 11g release 2 (11.2) to Oracle 11g release 1 (11.1). In this scenario, the Oracle
ASM instance was previously upgraded from an Oracle 11g release 1 (11.1) home to an
Oracle Restart (single-instance) 11g release 2 (11.2) configuration. The Oracle 11g
release 1 (11.1) home was not removed.

1. Determine disk group compatibility attribute settings.

 If compatibility attributes have been advanced, then the disk groups must be
 re-created using compatibility attributes that allow access by the downgraded
 Oracle ASM and Oracle Database instances. A new disk group must be created
 with the old compatibility attributes and then you must restore the database files
 that were in the disk group.

 When you revert to a new disk group with the old compatibility attribute settings,
 the latest Oracle ASM features might not be available. For example, if you revert
 the disk group compatibility to a pre-11.2 value, Oracle ACFS functionality is not
 available.
Copy or move an Oracle ASM SPFILE in a disk group to the file system before reverting disk group compatibility. Check the initialization parameters to ensure they are compatible with Oracle ASM 11g release 1 (11.1).

For information about reverting disk group compatibility, see "Reverting Disk Group Compatibility" on page 4-37. For information about moving data files between disk groups, see "Moving Data Files Between Oracle ASM Disk Groups Using RMAN" on page 8-9.

2. Downgrade any client databases from 11g release 2 (11.2) down to 11g release 1 (11.1).

 See Also: Oracle Database Upgrade Guide for information about downgrading an Oracle Database and Oracle Enterprise Manager

3. Shut down the Oracle Enterprise Manager agent, Oracle Database instance, Oracle ASM instance, and the listener in the database and Oracle ASM homes.
 - Run `emctl stop dbconsole` to stop the Oracle Enterprise Manager agent.
 - Connect to the database instances with SQL*Plus as a privileged user and run the `SHUTDOWN` command.
 - Shut down the Oracle ASM instance with Server Control Utility (SRVCTL).

     ```
     $ srvctl stop asm
     ```
 - Stop the listener with SRVCTL.

     ```
     $ srvctl stop listener
     ```

 For information about shutting down an Oracle ASM instance, see "Shutting Down an Oracle ASM Instance" on page 3-16.

 See Also:
 - Oracle Enterprise Manager manuals and online help for information about starting and stopping the Oracle Enterprise Manager agent
 - Oracle Database Administrator’s Guide for more information about starting up and shutting down Oracle instances
 - Oracle Database Net Services Administrator’s Guide for information about configuring a listener
 - Oracle Real Application Clusters Administration and Deployment Guide for information about Server Control Utility (SRVCTL)

4. Deconfigure the Oracle Restart 11g release 2 (11.2) configuration.
 Run the `roothas.pl` script as root.

 For example, on Linux:

   ```
   # GRID_HOME/crs/install/roothas.pl -delete
   ```

 The Oracle 11g release 2 (11.2) `init*.pl` scripts should be removed with the deconfiguration of Oracle Clusterware.

5. Unload the Oracle ACFS drivers.

 For example, on Linux run `acfsload stop` as root.
GRID_HOME/bin/acfsload stop

For information about Oracle ACFS driver resource management, see "Oracle ACFS Drivers Resource Management" on page B-3.

6. Re-create the Oracle ASM 11g release 1 (11.1) resources.

Run localconfig as root to add the resources to the Oracle ASM 11g release 1 (11.1) home.

For example, on Linux:

```
# ORACLE_ASM_11.1_HOME/bin/localconfig add
```

If localconfig add fails, then use the reset option followed by the ORACLE_HOME to reset the existing resources.

For example, on Linux:

```
# localconfig reset ORACLE_ASM_11.1_HOME
```

7. Confirm that the Oracle ASM PFILE and listener.ora files are present in the Oracle ASM 11g release 1 (11.1) home.

If the Oracle ASM 11g release 1 (11.1) home has not been removed, then the files should be available.

8. Configure additional configuration files in the Oracle ASM 11g release 1 (11.1) home.

For example, update files in the /etc directory on the Linux computer.

Update the Oracle ASM entry in /etc/oratab to point to the Oracle ASM 11g release 1 (11.1) home, as shown in the following example:

```
+ASM:/ORACLE_ASM_11.1_HOME/product/11.1.0/asm_1:N
```

The 11g release 2 (11.2) init*tab and init* scripts should be removed with the deconfiguration of Oracle Clusterware.

9. Ensure that the listener, Oracle ASM instance, Oracle Database instance, and Oracle Enterprise Manager agent are running in the 11g release 1 (11.1) Oracle ASM and database homes.

- Start the listener with lsnrctl and enter the START option.

 If necessary, start Network Configuration Assistant (NETCA) in the Oracle ASM 11g release 1 (11.1) home with netca. Follow the prompts in the wizard to reconfigure the listener.

- Connect to the Oracle ASM instance with SQL*Plus as a privileged user and run the STARTUP command.

- Connect to the database instances with SQL*Plus as a privileged user and run the STARTUP command.

- Start the Oracle Enterprise Manager agent with emctl start dbconsole. Oracle Enterprise Manager may require reconfiguration after the Oracle ASM instance has been downgraded.

See Also: Oracle Grid Infrastructure Installation Guide for information about installing and upgrading Oracle Grid Infrastructure
Out of Place Upgrades

With an out-of-place upgrade, the installer installs the newer version of Oracle Grid Infrastructure in a separate Oracle Grid Infrastructure home.

An in-place upgrade of Oracle Grid Infrastructure 11g release 2 is not supported. For example, an upgrade of Oracle Grid Infrastructure 11.2.0.1 to 11.2.0.2 must be an out of place upgrade.

See Also: Oracle Grid Infrastructure Installation Guide for information about installing Oracle Grid Infrastructure, out of place upgrades, and performing rolling upgrades of Oracle Grid Infrastructure and Oracle ASM.

Configuring Oracle Grid Infrastructure with the Configuration Wizard

The Oracle Grid Infrastructure configuration wizard can update the configuration of an Oracle Grid Infrastructure environment after the software has been installed. The configuration wizard accepts your input, validates the input, and populates the configuration data into the CRSCONFIG_PARAMS file. If additional scripts must be run, the configuration wizard directs you to run those scripts.

See Also: Oracle Clusterware Administration and Deployment Guide for information about the Oracle Grid Infrastructure configuration wizard.

Active Session History Sampling for Oracle ASM

Active Session History sampling is now available on Oracle ASM instances. This activity is exposed in the dynamic V$ACTIVE_SESSION_HISTORY view. Active Session History sampling requires a diagnostic pack license for the Oracle ASM instance.

See Also:
- Oracle Database Performance Tuning Guide for more information about gathering performance statistics
- Oracle Database Reference for a description of the V$ACTIVE_SESSION_HISTORY view

Using Oracle ASM Rolling Upgrade

Note: For information about performing an Oracle ASM Rolling Upgrade from 11.1.0.6 to 11.2.0.1, refer to Oracle Database Readme.

Oracle ASM rolling upgrade enables you to independently upgrade or patch clustered Oracle ASM nodes without affecting database availability, thus providing greater uptime. Rolling upgrade means that some features of a clustered Oracle ASM environment continue to function when one or more of the nodes in the cluster uses different software versions. Oracle recommends that you perform an Oracle ASM rolling upgrade when performing an Oracle Clusterware rolling upgrade.

To perform a rolling upgrade, your environment must be prepared. Oracle Clusterware must be fully upgraded to the next patch or release version before you start the Oracle ASM rolling upgrade. In addition, you should prepare your Oracle
Clusterware in a rolling upgrade manner to ensure high availability and maximum uptime. Note that the rolling upgrade to Oracle 11g Release 2 (11.2) moves the Oracle ASM instance to Oracle Grid Infrastructure 11g Release 2 (11.2) home.

You can upgrade a single Oracle ASM instance with Oracle Universal Installer (OUI). For information, see “Upgrading an Oracle ASM Instance with Oracle Universal Installer” on page 3-17.

Notes:

- Rolling upgrades only apply to clustered Oracle ASM instances, and you can only perform rolling upgrades on environments with Oracle Database 11g or later. In other words, you cannot use this feature to upgrade from Oracle Database 10g to Oracle Database 11g.
- See Oracle Exadata documentation for information about performing a rolling upgrading of an Oracle ASM instance when Oracle Exadata storage is present.

See Also:

- Oracle Grid Infrastructure Installation Guide for information about performing a rolling upgrade of Oracle ASM
- Oracle Database Upgrade Guide for information about upgrading an Oracle Database
- Oracle Database SQL Language Reference for information about the rolling migration clause of the ALTER SYSTEM commands

Patching Oracle ASM Instances in Oracle RAC Environments

For Oracle RAC environments, ensure that your Oracle Clusterware version is at least equal to the version of the patch that you are applying to the Oracle Database. First apply the patch to the Oracle Grid Infrastructure home and then apply the patch to the Oracle Database home.

Note: You must apply the patch to the Oracle Grid Infrastructure home before you apply it to the Oracle Database home.

Authentication for Accessing Oracle ASM Instances

An Oracle ASM instance does not have a data dictionary, so the only way to connect to an Oracle ASM instance is by using one of three system privileges, SYSASM, SYSDBA, or SYSOPER. There are three modes of connecting to Oracle ASM instances:

- Local connection using operating system authentication
- Local connection using password authentication
- Remote connection by way of Oracle Net Services using password authentication

See Also: Your operating system-specific Oracle Grid Infrastructure Installation Guide for information about how to ensure that the Oracle ASM and database instances have member disk access
This section describes the following topics:

- About Privileges for Oracle ASM
- Creating Users with the SYSASM Privilege
- Operating System Authentication for Oracle ASM
- Password File Authentication for Oracle ASM

The Oracle ASM and database instances must have read/write operating system access rights to disk groups. For example, the Oracle ASM instance and the database instance must have identical read and write permissions for the disks that comprise the related Oracle ASM disk group. For Linux and UNIX systems, this is typically provided through shared Linux and UNIX group membership (OSASM group). On Windows systems, the Oracle ASM service must be run as Administrator. For information about file permissions and Oracle ASM File Access Control, see "Managing Oracle ASM File Access Control for Disk Groups" on page 4-39.

About Privileges for Oracle ASM

During Oracle ASM installation, you can use one operating system group for all users or divide system privileges so that database administrators, storage administrators, and database operators each have distinct operating system privilege groups.

Whether you create separate operating system privilege groups or use one group to provide operating system authentication for all system privileges, you should use SYSASM to administer an Oracle ASM instance. The SYSDBA privilege cannot be used to administer an Oracle ASM instance. If you use the SYSDBA privilege to run administrative commands on an Oracle ASM instance, the operation results in an error. The SYSDBA privilege is intended to be used by the database to access disk groups.

Oracle also recommends the use of a less privileged user, such as ASMSNMP with SYSDBA privileges that is created during installation, for monitoring the Oracle ASM instance.

Operating system authentication using membership in the group or groups designated as OSDBA, OSOPER, and OSASM is valid on all Oracle platforms. Connecting to an Oracle ASM instance as SYSASM grants you full access to all of the available Oracle ASM disk groups and management functions.

This section contains these topics:

- Using One Operating System Group for Oracle ASM Users
- Using Separate Operating System Groups for Oracle ASM Users
- The SYSASM Privilege for Administering Oracle ASM
- The SYSDBA Privilege for Managing Oracle ASM Components

For information about privileges and Oracle ACFS, see "Oracle ACFS and File Access and Administration Security" on page 5-9.

Using One Operating System Group for Oracle ASM Users

If you do not want to divide the privileges for system access into separate operating system groups, then you can designate one operating system group as the group whose members are granted access as OSDBA, OSOPER, and OSASM for Oracle ASM privileges. The default operating system group name for all of these is usually dba and that group is typically chosen for the default configuration.
Table 3–1 shows an example of a Linux deployment without separated privileges for Oracle ASM users.

<table>
<thead>
<tr>
<th>Role/Software Owner</th>
<th>User</th>
<th>Group/Privilege</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle ASM administrator/Oracle Grid Infrastructure home</td>
<td>oracle</td>
<td>dba/SYSASM, SYSDBA, SYSOPER</td>
</tr>
<tr>
<td>Database administrator 1/Database home 1</td>
<td>oracle</td>
<td>dba/SYSASM, SYSDBA, SYSOPER</td>
</tr>
<tr>
<td>Database administrator 2/Database home 2</td>
<td>oracle</td>
<td>dba/SYSASM, SYSDBA, SYSOPER</td>
</tr>
<tr>
<td>Operating system disk device owner</td>
<td>oracle</td>
<td>dba</td>
</tr>
</tbody>
</table>

Using Separate Operating System Groups for Oracle ASM Users

You can designate separate operating system groups as the operating system authentication groups for privileges on Oracle ASM. The following list describes the separate operating system authentication groups for Oracle ASM and the privileges that their members are granted.

- **OSASM group**

 This group is granted the SYSASM privilege, which provides full administrative privileges for the Oracle ASM instance. For example, the group could be `asmadmin`.

- **OSDBA for Oracle ASM group**

 This group is granted the SYSDBA privilege on the Oracle ASM instance, which grants access to data stored on Oracle ASM. This group has a subset of the privileges of the OSASM group.

 When you implement separate administrator privileges, choose an OSDBA group for the Oracle ASM instance that is different than the group that you select for the database instance, such as `dba`. For example, the group could be `asmdba`.

- **OSOPER for Oracle ASM group**

 This group is granted the SYSOPER privilege on the Oracle ASM instance, which provides operations such as startup, shutdown, mount, dismount, and check disk group. This group has a subset of the privileges of the OSASM group. For example, the group could be `asmoper`.

When you implement separate Oracle ASM and database administrator duties, this configuration requires different group and different software owners. Implicitly this implementation requires that the OSASM and OSDBA are different groups. For this configuration, you must create an OSDBA for Oracle ASM group and a database instance must be a member of that group to access the Oracle ASM instance.

In an installation that has been configured as Oracle Grid Infrastructure, the Oracle ASM user, such as `grid`, does not have to be a member of the Oracle Database OSDBA group, such as `dba1` or `dba2`, because the Oracle Clusterware database agent runs as the database owner and can use SYSDBA to connect to the database.

However, in an Oracle Restart configuration, the Oracle ASM user (`grid`) must be a member of the OSDBA group (`dba1, dba2, ...`) of every database. This requirement is necessary because Oracle Restart software runs as the Oracle ASM user (`grid`) and this user must be able to start and stop the databases using the `CONNECT / AS SYSDBA` authentication.
Additionally, the owner of the operating system disk devices should be the same as the owner of the Oracle ASM software.

Table 3–2 shows an example of a Linux deployment using separate operating system privilege groups for Oracle ASM users.

Table 3–2 Separated operating system groups and privileges for Oracle ASM users

<table>
<thead>
<tr>
<th>Role/Software Owner</th>
<th>User</th>
<th>Group/Privilege</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle ASM administrator/Oracle Grid Infrastructure home</td>
<td>grid</td>
<td>asmadmin (OSASM)/SYSASM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>asmdba (OSDBA for ASM)/SYSDBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>asmoper (OSOPER for ASM)/SYSOPER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dba1, dba2, ... (OSDBA for the databases when in an Oracle Restart configuration)</td>
</tr>
<tr>
<td>Database administrator 1/Database home 1</td>
<td>oracle1</td>
<td>asmdba (OSDBA for ASM)/SYSDBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oper1 (OSOPER for database 1)/SYSOPER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dba1 (OSDBA for database 1)/SYSDBA</td>
</tr>
<tr>
<td>Database administrator 2/Database home 2</td>
<td>oracle2</td>
<td>asmdba (OSDBA for ASM)/SYSDBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oper2 (OSOPER for database 2)/SYSOPER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dba2 (OSDBA for database 2)/SYSDBA</td>
</tr>
<tr>
<td>Operating system disk device owner</td>
<td>grid</td>
<td>asmadmin (OSASM)</td>
</tr>
</tbody>
</table>

The SYSASM Privilege for Administering Oracle ASM

SYSASM is a system privilege that enables the separation of the SYSDBA database administration privilege from the Oracle ASM storage administration privilege. Access to the SYSASM privilege is granted by membership in an operating system group that is designated as the OSASM group. This is similar to SYSDBA and SYSOPER privileges, which are system privileges granted through membership in the groups designated as the OSDBA and OSOPER operating system groups. You can designate one group for all of these system privileges, or you can designate separate groups for each operating system privilege.

You can also grant the SYSASM privilege with password file authentication, as discussed in "Password File Authentication for Oracle ASM" on page 3-28.

To connect locally as SYSASM using password authentication with SQL*Plus, use the following statement:

```
sqlplus SYS AS SYSASM
... Enter password:
```

To connect remotely as SYSASM using password authentication with SQL*Plus, use the following statement:

```
sqlplus sys@"myhost.mydomain.com:1521/+ASM" AS SYSASM
... Enter password:
```

In the previous example, +ASM is the service name of the Oracle ASM instance.

To connect locally as SYSASM to an Oracle ASM instance using operating system authentication with SQL*Plus, use the following statement:

```
sqlplus / AS SYSASM
```
The SYSDBA Privilege for Managing Oracle ASM Components
You can connect as SYSDBA to use SQL*Plus or ASMCMD commands to manage Oracle ASM components associated with the database. When running SQL or ASMCMD operations with the SYSDBA privilege, connect to the database instance rather than the Oracle ASM instance.

Connecting as SYSDBA to the database instance has a limited set of Oracle ASM privileges. For example, you cannot create a disk group when connected with the SYSDBA privilege.

When connected as SYSDBA to the database instance, the Oracle ASM operations are limited to:

- Create and delete files, aliases, directories, and templates
- Examine various Oracle ASM instance views
- Operate on files that were created by this user or only access files to which another user had explicitly granted access
- Granting Oracle ASM File Access Control to other users

Creating Users with the SYSASM Privilege
When you are logged in to an Oracle ASM instance as SYSASM, you can use the combination of CREATE USER and GRANT SQL statements to create a user who has the SYSASM privilege. You also can revoke the SYSASM privilege from a user using the REVOKE command, and you can drop a user from the password file using the DROP USER command.

Note: These commands update the password file for the local Oracle ASM instance only.

The following example describes how to perform these SQL operations for the user identified as new_user:

REM create a new user, then grant the SYSASM privilege
SQL> CREATE USER new_user IDENTIFIED by new_user_passwd;
SQL> GRANT SYSASM TO new_user;

REM connect the user to the ASM instance
SQL> CONNECT new_user AS SYSASM;
Enter password:

REM revoke the SYSASM privilege, then drop the user
SQL> REVOKE SYSASM FROM new_user;
SQL> DROP USER new_user;

When you revoke the last privilege of a user in an Oracle ASM password file, the user is not automatically deleted as is done in the Oracle Database password file. You need to run DROP USER to delete a user with no privileges in an Oracle ASM password file.

For information about creating a user with Oracle ASM command-line utility (ASMCMD), see "orapwusr" on page 12-14. For information about creating a user with Oracle Enterprise Manager, see "Managing Oracle ASM Users with Oracle Enterprise Manager" on page 9-4.
Operating System Authentication for Oracle ASM

Membership in the operating system group designated as the OSASM group provides operating system authentication for the SYSASM system privilege. OSASM is provided exclusively for Oracle ASM. Initially, only the user that installs ASM is a member of the OSASM group, if you use a separate operating system group for that privilege. However, you can add other users. Members of the OSASM group are authorized to connect using the SYSASM privilege and have full access to Oracle ASM, including administrative access to all disk groups that are managed by that Oracle ASM instance.

On Linux and UNIX systems, dba is the default operating system group designated as OSASM, OSOPER, and OSDBA for Oracle ASM. On Windows systems, ora_dba is the default name designated as OSASM, OSOPER, and OSDBA.

SQL*Plus commands, ASMCMD commands, and ASMCA use operating system authentication.

See Also:
- Oracle Database Administrator’s Guide for more information about using operating system authentication
- Oracle Grid Infrastructure Installation Guide for information about installation of the Oracle Grid Infrastructure

Password File Authentication for Oracle ASM

Password file authentication for Oracle ASM can work both locally and remotely. To enable password file authentication, you must create a password file for Oracle ASM. A password file is also required to enable Oracle Enterprise Manager to connect to Oracle ASM remotely.

If you select the Oracle ASM storage option, then ASMCA creates a password file for Oracle ASM when it initially configures the Oracle ASM disk groups. Similar to a database password file, the only user added to the password file when ASMCA creates it is SYS. To add other users to the password file, you can use the CREATE USER and GRANT commands as described previously in the section titled "About Privileges for Oracle ASM" on page 3-24.

If you configure an Oracle ASM instance without using ASMCA, then you must manually create a password file and grant the SYSASM privilege to user SYS.

SQL*Plus commands and Oracle Enterprise Manager use password file authentication.

See Also:
- Oracle Database Administrator’s Guide for information about creating and maintaining a password file
- Oracle Database SQL Language Reference for information about the CREATE USER and GRANT commands
- Oracle Database Security Guide for information about database security
- Oracle Database Reference for information about the $PWFILE_USERS view which lists users who have been granted SYSASM, SYSDBA, and SYSOPER privileges as derived from the password file.
Migrating a Database to Use Oracle ASM

With a new installation of Oracle Database and Oracle ASM, you can initially create your database and select the Oracle ASM storage option. If you have an existing Oracle database that stores database files in the operating system file system or on raw devices, then you can migrate some or all of your data files to Oracle ASM storage.

Oracle provides several methods for migrating your database to Oracle ASM. Using Oracle ASM enables you to realize the benefits of automation and simplicity in managing your database storage. To migrate to Oracle ASM, you can use the methods described in the following sections:

- Using Oracle Enterprise Manager to Migrate Databases to Oracle ASM
- Using Oracle Recovery Manager to Migrate Databases to Oracle ASM
- Best Practices White Papers on Migrating to Oracle ASM

Note: You must upgrade to at least Oracle Database 10g before migrating your database to Oracle ASM.

Using Oracle Enterprise Manager to Migrate Databases to Oracle ASM

Oracle Enterprise Manager enables you to perform cold and hot database migration with a GUI. You can access the migration wizard from the Oracle Enterprise Manager Home page under the Change Database heading.

For more information about using Oracle Enterprise Manager to upgrade to Oracle ASM, see Chapter 9, "Administering Oracle ASM with Oracle Enterprise Manager".

Using Oracle Recovery Manager to Migrate Databases to Oracle ASM

You can use Oracle Recovery Manager (RMAN) to manually migrate to Oracle ASM. You can also use RMAN to migrate a single tablespace or data file to Oracle ASM.

For more information, see Chapter 8, "Performing Oracle ASM Data Migration with RMAN".

Best Practices White Papers on Migrating to Oracle ASM

The Oracle Maximum Availability Architecture (MAA) Web site provides excellent best practices technical white papers based on different scenarios, such as:

- Minimal Downtime Migration to Oracle ASM
- Platform Migration using Transportable Tablespaces
- Platform Migration using Transportable Database

See Also: For information about Oracle ASM best practices for migrating to Oracle ASM from environments that do not use Oracle ASM, refer to the documentation at the MAA link on Oracle Technology Network:

http://www.oracle.com/technology/deploy/availability/htdocs/maa.htm
This chapter describes how to administer Oracle Automatic Storage Management (Oracle ASM) disk groups. This information includes how to create, alter, drop, mount, and dismount Oracle ASM disk groups. The database instances that use Oracle ASM can continue operating while you administer disk groups.

The examples in this chapter use SQL statements. These examples assume that SQL*Plus is run from the Oracle grid home where Oracle ASM is installed and the Oracle environmental variables are set to this home. The examples also assume that the Oracle ASM instance is running. This chapter contains the following topics:

- Disk Group Attributes
- Creating Disk Groups
- Altering Disk Groups
- Oracle ASM Disk Discovery
- Managing Capacity in Disk Groups
- Oracle ASM Mirroring and Disk Group Redundancy
- Performance and Scalability Considerations for Disk Groups
- Disk Group Compatibility
- Managing Oracle ASM File Access Control for Disk Groups
- Mounting and Dismounting Disk Groups
- Checking the Internal Consistency of Disk Group Metadata
- Dropping Disk Groups
- Renaming Disks Groups

For information about starting up an Oracle ASM instance, refer to "Starting Up an Oracle ASM Instance" on page 3-13.

For information about administering Oracle ASM disk groups with Oracle Enterprise Manager, refer to Chapter 9, "Administering Oracle ASM with Oracle Enterprise Manager".

For information about administering Oracle ASM disk groups with Oracle ASM Configuration Assistant (ASMCA), refer to Chapter 11, "Oracle ASM Configuration Assistant".

For information about administering Oracle ASM disk groups with ASMCMD, refer to Chapter 12, "Oracle ASM Command-Line Utility".
Disk Group Attributes

Disk group attributes are parameters that are bound to a disk group, rather than an Oracle ASM instance.

Disk group attributes can be set when a disk group is created or altered, unless otherwise noted in the following list.

- ACCESS_CONTROL.ENABLED
 This attribute can only be set when altering a disk group.
 For information about the ACCESS_CONTROL.ENABLED attribute, see "Using SQL Statements to Set Disk Group Attributes for Oracle ASM File Access Control" on page 4-41.

- ACCESS_CONTROL.UMASK
 This attribute can only be set when altering a disk group.
 For information about the ACCESS_CONTROL.UMASK attribute, see "Using SQL Statements to Set Disk Group Attributes for Oracle ASM File Access Control" on page 4-41.

- AU_SIZE
 This attribute can only be set when creating a disk group.
 For information about allocation unit size and extents, see "Allocation Units" on page 1-7, "Extents" on page 1-7, and "Specifying the Allocation Unit Size" on page 4-7. For an example of the use of the AU_SIZE attribute, see Example 4–1, "Creating the DATA disk group" on page 4-5.

- CELL.SMART_SCAN_CAPABLE
 This attribute is only applicable to Oracle Exadata storage.
 See Also: Oracle Exadata documentation for information about the CELL.SMART_SCAN_CAPABLE attribute

- COMPATIBLE.ASM
 For information about the COMPATIBLE.ASM attribute, see "COMPATIBLE.ASM" on page 4-33.

- COMPATIBLE.RDBMS
 For information about the COMPATIBLE.RDBMS attribute, see "COMPATIBLE.RDBMS" on page 4-34.

- COMPATIBLE.ADVM
 For information about the COMPATIBLE.ADVM attribute, see "COMPATIBLE.ADVM" on page 4-34 and "Overview of Oracle ASM Dynamic Volume Manager" on page 5-18.

- DISK_REPAIR_TIME
 This attribute can only be set when altering a disk group.

See Also: The Oracle ASM home page for more information about Oracle ASM best practices at: http://www.oracle.com/technology/products/database/asm/index.html
For information about the DISK_REPAIR_TIME attribute, see "Oracle ASM Fast Mirror Resync" on page 4-27.

- **SECTOR_SIZE**

 This attribute can only be set when creating a disk group.

 For information about the SECTOR_SIZE attribute, see "Specifying the Sector Size for Drives" on page 4-8.

In addition to the disk group attributes listed in this section, template attributes are also assigned to a disk group. For information about template attributes, see "Managing Disk Group Templates" on page 7-15.

You can display disk group attributes with the V$ASM_ATTRIBUTE view and the ASMCMD lsattr command. For an example of the use of the V$ASM_ATTRIBUTE view, see Example 6–1 on page 6-2. For information about the lsattr command, see "lsattr" on page 12-36.

Creating Disk Groups

This section contains information about creating disk groups. You can use the CREATE DISKGROUP SQL statement to create a disk group.

This section contains the following topics:

- Using the CREATE DISKGROUP SQL Statement
- Example: Creating a Disk Group
- Creating Disk Groups for a New Oracle Installation
- Specifying the Allocation Unit Size
- Specifying the Sector Size for Drives
- Oracle Cluster Registry and Voting Files in Oracle ASM Disk Groups

Using the CREATE DISKGROUP SQL Statement

The CREATE DISKGROUP SQL statement is used to create disk groups. When creating a disk group, you:

- Assign a unique name to the disk group.

 The specified disk group name is not case sensitive and is always converted to uppercase when stored internally.

 Note: Oracle does not recommend using identifiers for database object names that must be quoted. While these quoted identifiers may be valid as names in the SQL CREATE statement, such as CREATE DISKGROUP "1DATA", the names may not be valid when using other tools that manage the database object.

- Specify the redundancy level of the disk group.

 For Oracle ASM to mirror files, specify the redundancy level as NORMAL REDUNDANCY (2-way mirroring by default for most file types) or HIGH REDUNDANCY (3-way mirroring for all files). Specify EXTERNAL REDUNDANCY if you do not want mirroring by Oracle ASM. For example, you might choose EXTERNAL REDUNDANCY to use storage array protection features.
Creating Disk Groups

After a disk group is created, you cannot alter the redundancy level of the disk group. To change the redundancy level, you must create another disk group with the appropriate redundancy and then move the files to the new disk group.

Oracle recommends that you create failure groups of equal size to maintain space balance and even distribution of mirror data.

For more information about redundancy levels, refer to "Mirroring, Redundancy, and Failure Group Options" on page 4-23.

- Specify the disks that are to be formatted as Oracle ASM disks belonging to the disk group.

 The disks can be specified using operating system dependent wildcard characters in search strings that Oracle ASM then uses to find the disks. You can specify names for the disks with the NAME clause or use the system-generated names.

- Optionally specify the disks as belonging to specific failure groups.

 For information about failure groups, refer to "Understanding Oracle ASM Concepts" on page 1-2 and "Mirroring, Redundancy, and Failure Group Options" on page 4-23.

- Optionally specify the type of failure group.

 For information about QUORUM and REGULAR failure groups, refer to "Oracle Cluster Registry and Voting Files in Oracle ASM Disk Groups" on page 4-10.

- Optionally specify disk group attributes, such as software compatibility or allocation unit size.

Oracle ASM programatically determines the size of each disk. If for some reason this is not possible, or to restrict the amount of space used on a disk, you can specify a SIZE clause for each disk. Oracle ASM creates operating system–independent names for the disks in a disk group that you can use to reference the disks in other SQL statements. Optionally, you can provide your own name for a disk using the NAME clause. Disk names are available in the V$ASM_DISK view.

Note: A disk cannot belong to multiple disk groups.

The Oracle ASM instance ensures that any disk in a newly created disk group is addressable and is not currently a member of another disk group. You must use FORCE only when adding a disk that was dropped with FORCE. If a disk is dropped with NOFORCE, then you can add it with NOFORCE. For example, a disk might have failed and was dropped from its disk group. After the disk is repaired, it is no longer part of any disk group, but Oracle ASM still recognizes that the disk had been a member of a disk group. You must use the FORCE flag to include the disk in a new disk group. In addition, the disk must be addressable, and the original disk group must not be mounted. Otherwise, the operation fails.

Note: Use caution when using the FORCE option to add a previously used disk to a disk group; you might cause another disk group to become unusable.

The CREATE DISKGROUP statement mounts the disk group for the first time, and adds the disk group name to the ASM_DISKGROUPS initialization parameter if a server parameter file is being used. If a text initialization parameter file is being used and you want the disk group to be automatically mounted at instance startup, then you must
remember to add the disk group name to the `ASM_DISKGROUPS` initialization parameter before you shut down and restart the Oracle ASM instance. You can also create disk groups with Oracle Enterprise Manager. Refer to "Creating Disk Groups" on page 9-5.

See Also: The `CREATE DISKGROUP` SQL statement in the Oracle Database SQL Language Reference

Example: Creating a Disk Group

The following examples assume that the `ASM_DISKSTRING` initialization parameter is set to the `'/devices/*'` string. Oracle ASM disk discovery identifies disks in the `/devices` directory, including the following disks:

Controller 1:

- `/devices/diska1`
- `/devices/diska2`
- `/devices/diska3`
- `/devices/diska4`

Controller 2:

- `/devices/diskb1`
- `/devices/diskb2`
- `/devices/diskb3`
- `/devices/diskb4`

The SQL statement in Example 4–1 creates a disk group named `data` with normal redundancy consisting of two failure groups `controller1` or `controller2` with four disks in each failure group. The `data` disk group is typically used to store database data files.

Example 4–1 Creating the DATA disk group

```
CREATE DISKGROUP data NORMAL REDUNDANCY
  FAILGROUP controller1 DISK
    '/devices/diska1' NAME diska1,
    '/devices/diska2' NAME diska2,
    '/devices/diska3' NAME diska3,
    '/devices/diska4' NAME diska4
  FAILGROUP controller2 DISK
    '/devices/diskb1' NAME diskb1,
    '/devices/diskb2' NAME diskb2,
    '/devices/diskb3' NAME diskb3,
    '/devices/diskb4' NAME diskb4
ATTRIBUTE 'au_size'='4M',
  'compatible.asm' = '11.2',
  'compatible.rdbms' = '11.2',
  'compatible.advm' = '11.2';
```

In Example 4–1, the `NAME` clauses enable you to explicitly assign names to the disks rather than the default system-generated names. The system-generated names are in the form `diskgroup_nnnn`, where `nnnn` is the disk number for the disk in the disk group. For ASMLIB disks, the disk name defaults to the ASMLIB name that is the user label of the disk; for example, `mydisk` is the default Oracle ASM disk name for `ORCL:mydisk`.

When creating the disk group in Example 4–1, the values of following disk group attributes were explicitly set:
Creating Disk Groups

- **AU_SIZE**

 Specifies the size of the allocation unit for the disk group. For information about allocation unit size and extents, see "Extents" on page 1-7.

 You can view the value of the AU_SIZE disk group attribute in the ALLOCATION_UNIT_SIZE column of the V$ASM_DISKGROUP view.

- **COMPATIBLE.ASM**

 Determines the minimum software version for any Oracle ASM instance that uses a disk group. For information about the COMPATIBLE.ASM attribute, see "COMPATIBLE.ASM" on page 4-33.

- **COMPATIBLE.RDBMS**

 Determines the minimum software version for any database instance that uses a disk group. For information about the COMPATIBLE.RDBMS attribute, see "COMPATIBLE.RDBMS" on page 4-34.

- **COMPATIBLE.ADVM**

 Determines whether the disk group can contain Oracle ASM volumes. For information about the COMPATIBLE.ADVM attribute, see "COMPATIBLE.ADVM" on page 4-34.

In Example 4–2, the fra disk group (typically created for the fast recovery area) is created with the default disk group attribute values. Names are not specified for the Oracle ASM disks and failure groups are not explicitly specified. This example assumes that diskc1 through diskc9 are present in the /devices directory.

Example 4–2 Creating the FRA disk group

```sql
CREATE DISKGROUP fra NORMAL REDUNDANCY
  DISK ' /devices/diskc*';
```

See Also: For information about using ASMLIB when creating disk groups, refer to the Oracle ASMLib page on the Oracle Technology Network Web site at http://www.oracle.com/technology/tech/linux/asmlib/index.html

Creating Disk Groups for a New Oracle Installation

This section describes the basic procedure to follow when creating disk groups during a new installation of Oracle Restart and Oracle Database. This information also applies to an Oracle Grid Infrastructure installation.

The procedure assumes that the data disk group is used for the storage of the database data files and the fra disk group is used for storage of the fast recovery area files. Detailed information about installation with Oracle Universal Installer (OUI) and database creation with Database Configuration Assistant (DBCA) is available in the installation guides for your specific operating system.

1. Install Oracle Restart with OUI, following the screen prompts.

 During the installation, create the data disk group for storing database files such as the data and control files.

 This OUI process is similar to creating a disk group with Oracle ASM Configuration Assistant (ASMCA). For information about using ASMCA to create
disk groups, see "Managing Disk Groups with Oracle ASM Configuration Assistant" on page 11-7.

Note that the data disk group is the disk group used for storing Oracle Cluster Registry (OCR) and voting files in an Oracle Grid Infrastructure installation. See "Oracle Cluster Registry and Voting Files in Oracle ASM Disk Groups" on page 4-10.

2. After Oracle Restart is installed, use ASMCA to create the fra disk group for storing the fast recovery area files.

 Create the fra disk group to hold the fast recovery area files.

 At this time, you can also update the data disk group if necessary. For information about using ASMCA to create or alter disk groups, see "Managing Disk Groups with Oracle ASM Configuration Assistant" on page 11-7.

 You can also create the fra disk group with SQL*Plus or ASMCMD commands run from the Oracle Restart home. For information, see "Using the CREATE DISKGROUP SQL Statement" on page 4-3 and "mkdg" on page 12-43.

 See Also:
 - Oracle Database Backup and Recovery User’s Guide for information about configuring the fast recovery area
 - Oracle Database Administrator’s Guide for information about specifying a fast recovery area

3. Install the Oracle Database software with OUI, following the screen prompts.

4. After the database software has been installed, run DBCA to create a database, following the screen prompts.

 During the creation of the database, make the appropriate selections to use Oracle ASM for storage of data files and fast recovery area files. When prompted:

 - Store database data files in the data disk group
 - Store fast recovery area files in the fra disk group

 See Also:
 - Oracle Grid Infrastructure Installation Guide for your operating system for detailed information about installation of Oracle Grid Infrastructure and Oracle Restart
 - Oracle Database Installation Guide for your operating system for detailed information about installation of an Oracle Database

Specifying the Allocation Unit Size

Oracle recommends that the allocation unit (AU) size for a disk group be set to 4 megabytes (MB). In addition to this AU size recommendation, the operating system (OS) I/O size should be set to the largest possible size.

Some benefits of a 4 MB allocation unit are:

- Increased I/O through the I/O subsystem if the I/O size is increased to the AU size.
- Reduced SGA size to manage the extent maps in the database instance.
- Faster datafile initialization if the I/O size is increased to the AU size.
Increased file size limits.

Reduced database open time.

The allocation unit size is specified with the disk group attribute `AU_SIZE`. The `AU_SIZE` cannot be altered after a disk group is created. Example 4–1 on page 4-5 shows how the `AU_SIZE` is specified with the `CREATE DISKGROUP` SQL statement.

For applications that can benefit from large I/O sizes, you can increase the `DB_FILE_MULTIBLOCK_READ_COUNT` initialization parameter to 4 MB from the default of 1 MB. Ensure that the application is thoroughly tested with this new setting as this change could adversely affect stable optimized plans and future optimizer plan generation.

To change the `DB_FILE_MULTIBLOCK_READ_COUNT` setting, use the `ALTER SYSTEM` SQL statement, as shown in Example 4–3. This example assumes an 8 K block size.

Example 4–3 Altering the `DB_FILE_MULTIBLOCK_READ_COUNT` setting

```sql
SQL> ALTER SYSTEM SET db_file_multiblock_read_count=512 scope=both sid=*;
```

See Also: Oracle Database Reference for more information about the `DB_FILE_MULTIBLOCK_READ_COUNT` initialization parameter

Specifying the Sector Size for Drives

You can use the optional `SECTOR_SIZE` disk group attribute with the `CREATE DISKGROUP` SQL statement to specify disks with the sector size set to the value of `SECTOR_SIZE` for the disk group. Oracle ASM provides support for 4 KB sector disk drives without negatively affecting performance. The `SECTOR_SIZE` disk group attribute can be set only during disk group creation.

The values for `SECTOR_SIZE` can be 512, 4096, or 4K. The default value is platform dependent. The `COMPATIBLE.ASM` and `COMPATIBLE.RDBMS` disk group attributes must be set to 11.2 or higher to set the sector size to a value other than the default value.

Note: Oracle Automatic Storage Management Cluster File System (Oracle ACFS) does not support 4 KB sector drives. There is a performance penalty for Oracle ACFS when using 4 KB sector disk drives in 512 sector emulation mode.

The following validations apply to the sector size disk group attribute.

- Oracle ASM prevents disks of different sector sizes from being added to the same disk group. This validation occurs during `CREATE DISKGROUP`, `ALTER DISKGROUP ADD DISK`, and `ALTER DISKGROUP MOUNT` operations.

- If the `SECTOR_SIZE` attribute is explicitly specified when creating a disk group, then Oracle ASM attempts to verify that all disks discovered through disk search strings have a sector size equal to the specified value. If one or more disks were found to have a sector size different from the specified value, or if Oracle ASM was not able to verify a sector size, then the create operation fails.

Oracle ASM also attempts to verify disk sector size during the mount operation and the operation fails if one or more disks have a sector size different than the value of the `SECTOR_SIZE` attribute.
If the \texttt{SECTOR_SIZE} attribute is not specified when creating a disk group and Oracle ASM can verify that all discovered disks have the same sector value, then that value is assumed for the disk group sector size that is created. If the disks have different sector sizes, the create operation fails.

When new disks are added to an existing disk group using the \texttt{ALTER DISKGROUP .. ADD DISK} SQL statement, you must ensure that the new disks to be added have the same value as the \texttt{SECTOR_SIZE} disk group attribute. If the new disks have different sector sizes, the alter operation fails.

You can determine the sector size value that has either been assumed or explicitly set for a successful disk group creation by querying the \texttt{V\$ASM_ATTRIBUTE} view or run the ASMCMD \texttt{lsattr} command. You can also query the \texttt{SECTOR_SIZE} column in the \texttt{V\$ASM_DISKGROUP} view.

\begin{verbatim}
SQL> SELECT name, value FROM V$ASM_ATTRIBUTE
 WHERE name = 'sector_size' AND group_number = 1;
 NAME | VALUE
---------- -----------------------
sector_size | 512
SQL> SELECT group_number, sector_size FROM V$ASM_DISKGROUP
 WHERE group_number = 1;
 GROUP_NUMBER | SECTOR_SIZE

1 | 512
\end{verbatim}

As shown in Example 4–4, you can use the \texttt{SECTOR_SIZE} attribute with the \texttt{CREATE DISKGROUP} SQL statement to specify the sector size of the disk drive on which the Oracle ASM disk group is located.

\begin{verbatim}
Example 4–4 Creating a disk group of 4K sector size
CREATE DISKGROUP data NORMAL REDUNDANCY
FAILGROUP controller1 DISK
 '/devices/diska1',
 '/devices/diska2',
 '/devices/diska3',
 '/devices/diska4'
FAILGROUP controller2 DISK
 '/devices/diskb1',
 '/devices/diskb2',
 '/devices/diskb3',
 '/devices/diskb4'
ATTRIBUTE 'compatible.asm' = '11.2', 'compatible.rdbms' = '11.2',
 'sector_size'='4096';
\end{verbatim}

\begin{verbatim}
See Also:
\begin{itemize}
\item Oracle Database SQL Language Reference for information about the disk group attributes and the \texttt{CREATE DISKGROUP} SQL statement
\item Oracle Database SQL Language Reference for information about the \texttt{BLOCKSIZE} keyword
\item Oracle Database Reference for details about the \texttt{V\$ASM_ATTRIBUTE} and \texttt{V\$ASM_DISKGROUP} views
\end{itemize}
\end{verbatim}
Oracle Cluster Registry and Voting Files in Oracle ASM Disk Groups

You can store Oracle Cluster Registry (OCR) and voting files in Oracle ASM disk groups. The voting files and OCR are two important components of Oracle Clusterware.

Voting files manage information about node membership. OCR is a system that manages cluster and Oracle Real Application Clusters (Oracle RAC) database configuration information. A quorum failure group is a special type of failure group and disks in these failure groups do not contain user data. A quorum failure group is not considered when determining redundancy requirements in respect to storing user data. However, a quorum failure group counts when mounting a disk group. For information about failure groups, see "Oracle ASM Failure Groups" on page 4-25.

You can manage and monitor OCR and voting files with the following:

- The CRSCtl and ocrconfig command-line tools
 The CRSCtl and ocrconfig commands enable the placement of OCR storage and Cluster Synchronization Services (CSS) voting files inside the disk groups managed by Oracle ASM.

- CREATE/ALTER DISKGROUP SQL Statements
 The SQL keywords QUORUM and REGULAR enable the specification of disk and failure groups when creating or altering disk groups.

 See Example 4–5 on page 4-11.

- V$ASM views
 The FAILGROUP_TYPE column in both the V$ASM_DISK and V$ASM_DISK_STAT views specifies failure group type. The value for this column is REGULAR for regular failure groups and QUORUM for quorum failure groups.

 The VOTING_FILE column in both the V$ASM_DISK and V$ASM_DISK_STAT views specifies whether a disk contains a voting file. The value for this column is either Y if the disk contains a voting file or N if not.

 Note that the value of USABLE_FILE_MB in V$ASM_DISKGROUP and V$ASM_DISKGROUP_STAT does not consider any free space that is present in QUORUM disks because that space is not available for client data files.

 See "Views Containing Oracle ASM Disk Group Information" on page 6-1.

The QUORUM and REGULAR keywords provide an additional qualifier for failure group or disk specifications when creating or altering a disk group. QUORUM disks (or disks in QUORUM failure groups) cannot have client data files, whereas REGULAR disks (or disks in non-quorum failure groups) have no such restriction.

You can use these keywords before the keyword FAILGROUP if a failure group is being explicitly specified. If the failure group is implicitly implied, you can use these keywords (QUORUM/REGULAR) before the keyword DISK. When failure groups are explicitly specified, it is an error to specify these keywords (QUORUM/REGULAR) immediately before the keyword DISK. REGULAR is the default failure group type.

When performing operations on existing disks or failure groups, the qualifier specified in the SQL must match the qualifier that was specified when the disks or failure groups were added to the disk group.

Example 4–5 shows the creation of a disk group with a QUORUM failure group. For Oracle Clusterware files a minimum of three disk devices or three failure groups is required with a normal redundancy disk group. A QUORUM failure group is not
considered when determining redundancy requirements in respect to storing user data.

The COMPATIBLE.ASM disk group compatibility attribute must be set to 11.2 or greater to store OCR or voting files in a disk group.

Example 4–5 Using the QUORUM keyword

```
CREATE DISKGROUP ocr_data NORMAL REDUNDANCY
   FAILGROUP fg1 DISK '/devices/diskg1'
   FAILGROUP fg2 DISK '/devices/diskg2'
   QUORUM FAILGROUP fg3 DISK '/devices/diskg3'
   ATTRIBUTE 'compatible.asm' = '11.2.0.0';
```

See Also:

- *Oracle Grid Infrastructure Installation Guide* for information about configuring voting files and Oracle Cluster Registry (OCR)
- *Oracle Clusterware Administration and Deployment Guide* for information about administering voting files and Oracle Cluster Registry (OCR) using CRSCSTL and ocrconfig commands
- *Oracle Database SQL Language Reference* for information about the CREATE DISKGROUP and ALTER DISKGROUP SQL statements
- *Oracle Database Reference* for details about the V$ASM* dynamic performance views

Altering Disk Groups

You can use the ALTER DISKGROUP SQL statement to alter a disk group configuration. You can add, resize, or drop disks while the database remains online. Whenever possible, multiple operations in a single ALTER DISKGROUP statement are recommended. Grouping operations in a single ALTER DISKGROUP statement can reduce rebalancing operations.

Oracle ASM automatically rebalances when the configuration of a disk group changes. By default, the ALTER DISKGROUP statement does not wait until the operation is complete before returning. Query the V$ASM_OPERATION view to monitor the status of this operation.

Use the REBALANCE WAIT clause to cause the ALTER DISKGROUP statement processing to wait until the rebalance operation is complete before returning. This is especially useful in scripts. The statement also accepts a REBALANCE NOWAIT clause that invokes the default behavior of conducting the rebalance operation asynchronously in the background.

You can interrupt a rebalance running in wait mode by typing CTRL-C on most platforms. This causes the statement to return immediately with the message ORA-01013: user requested cancel of current operation, and then to continue the operation asynchronously. Typing CTRL-C does not cancel the rebalance operation or any disk add, drop, or resize operations.

To control the speed and resource consumption of the rebalance operation, you can include the REBALANCE POWER clause in statements that add, drop, or resize disks. Refer to “Manually Rebalancing Disk Groups” on page 4-17 for more information about this clause.

This section contains the following topics:
Managing Volumes in a Disk Group

You can create an Oracle ASM Dynamic Volume Manager (Oracle ADVM) volume in a disk group. The volume device associated with the dynamic volume can then be used to host an Oracle ACFS file system.

The compatibility parameters COMPATIBLE.ASM and COMPATIBLE.ADVM must be set to 11.2 or higher for the disk group. See "Disk Group Compatibility Attributes" on page 4-33.

The ALTER DISKGROUP VOLUME SQL statements enable you to manage Oracle ADVM volumes, including the functionality to add, modify, resize, disable, enable, and drop volumes. The following are examples of the ALTER DISKGROUP VOLUME statement.

Example 4-6 Managing volumes with ALTER DISKGROUP VOLUME statements

```
SQL> ALTER DISKGROUP data ADD VOLUME volume1 SIZE 10G;
Diskgroup altered.

SQL> ALTER DISKGROUP data RESIZE VOLUME volume1 SIZE 15G;
Diskgroup altered.

SQL> ALTER DISKGROUP data DISABLE VOLUME volume1;
Diskgroup altered.

SQL> ALTER DISKGROUP data ENABLE VOLUME volume1;
Diskgroup altered.

SQL> ALTER DISKGROUP ALL DISABLE VOLUME ALL;
Diskgroup altered.

SQL> ALTER DISKGROUP data DROP VOLUME volume1;
Diskgroup altered.
```

If the volume is hosting an Oracle ACFS file system, then you cannot resize that volume with the SQL ALTER DISKGROUP statement. Instead you must use the acfsutil size command. For information, see "acfsutil size" on page 13-98.

For information about Oracle ADVM, see "Overview of Oracle ASM Dynamic Volume Manager" on page 5-18. For information about managing Oracle ADVM volumes with ASMCMD, see "ASMCMD Volume Management Commands" on page 12-62. For information about managing Oracle ADVM volumes with ASMCA, see “Managing Oracle ADVM Volumes with Oracle ASM Configuration Assistant” on page 11-10.
Adding Disks to a Disk Group

You can use the ADD clause of the ALTER DISKGROUP statement to add a disk or a failure group to a disk group. You can use the same syntax with the ALTER DISKGROUP statement that you use to add a disk or failure group with the CREATE DISKGROUP statement. For an example of the CREATE DISKGROUP SQL statement, refer to Example 4–1 on page 4-5. After you add new disks, the new disks gradually begin to accommodate their share of the workload as rebalancing progresses.

Oracle ASM behavior when adding disks to a disk group is best illustrated through “Adding Disks to a Disk Group with SQL Statements” on page 4-13. You can also add disks to a disk group with Oracle Enterprise Manager, described in ”Adding Disks to Disk Groups” on page 9-7.

Adding Disks to a Disk Group with SQL Statements

The statements presented in this example demonstrate the interactions of disk discovery with the ADD DISK operation.

Assume that disk discovery identifies the following disks in directory /devices:

```
/devices/diska1 -- member of data1
/devices/diska2 -- member of data1
/devices/diska3 -- member of data1
/devices/diska4 -- member of data1
/devices/diska5 -- candidate disk
/devices/diska6 -- candidate disk
/devices/diska7 -- candidate disk
/devices/diska8 -- candidate disk
/devices/diskb1 -- member of data1
/devices/diskb2 -- member of data1
/devices/diskb3 -- member of data1
/devices/diskb4 -- member of data2
/devices/diskc1 -- member of data2
/devices/diskc2 -- member of data2
/devices/diskc3 -- member of data3
/devices/diskc4 -- candidate disk
/devices/diskd1 -- candidate disk
/devices/diskd2 -- candidate disk
/devices/diskd3 -- candidate disk
/devices/diskd4 -- candidate disk
/devices/diskd5 -- candidate disk
/devices/diskd6 -- candidate disk
/devices/diskd7 -- candidate disk
/devices/diskd8 -- candidate disk
```

You can query the V$ASM_DISK view to display the status of Oracle ASM disks. See "Views Containing Oracle ASM Disk Group Information" on page 6-1.
The following statement would fail because /devices/diska1 - /devices/diska4 belong to the disk group data.

```
ALTER DISKGROUP data1 ADD DISK
  '/devices/diska*';
```

The following statement successfully adds disks /devices/diska5 through /devices/diska8 to data1. Because no FAILGROUP clauses are included in the ALTER DISKGROUP statement, each disk is assigned to its own failure group. The NAME clauses assign names to the disks, otherwise they would have been assigned system-generated names.

```
ALTER DISKGROUP data1 ADD DISK
  '/devices/diska5' NAME diska5,
  '/devices/diska6' NAME diska6,
  '/devices/diska7' NAME diska7,
  '/devices/diska8' NAME diska8;
```

The following statement would fail because the search string matches disks that are contained in other disk groups. Specifically, /devices/diska4 belongs to disk group data1 and /devices/diskb4 belongs to disk group data2.

```
ALTER DISKGROUP data1 ADD DISK
  '/devices/disk*4';
```

The following statement would successfully add /devices/diskd1 through /devices/diskd8 to disk group data1. This statement runs with a rebalance power of 5, and does not return until the rebalance operation is complete.

```
ALTER DISKGROUP data1 ADD DISK
  '/devices/diskd*' REBALANCE POWER 5 WAIT;
```

If /devices/diskc3 was previously a member of a disk group that no longer exists, then you could use the FORCE option to add the disk as a member of another disk group. For example, the following use of the FORCE clause enables /devices/diskc3 to be added to data2, even though it is a current member of data3. For this statement to succeed, data3 cannot be mounted.

```
ALTER DISKGROUP data2 ADD DISK
  '/devices/diskc3' FORCE;
```

Dropping Disks from Disk Groups

To drop disks from a disk group, use the DROP DISK clause of the ALTER DISKGROUP statement. You can also drop all of the disks in specified failure groups using the DROP DISKS IN FAILGROUP clause.

When a disk is dropped, the disk group is rebalanced by moving all of the file extents from the dropped disk to other disks in the disk group. A drop disk operation might fail if not enough space is available on the other disks. The best approach is to perform both the add and drop operation with the same ALTER DISKGROUP statement. This has the benefit of rebalancing data extents only one time and ensuring that there is enough space for the rebalance operation to succeed.
If you specify the `FORCE` clause for the drop operation, the disk is dropped even if Oracle ASM cannot read or write to the disk. You cannot use the `FORCE` flag when dropping a disk from an external redundancy disk group.

You can also drop disks from a disk group with Oracle Enterprise Manager. See "Dropping Disks from Disk Groups" on page 9-11.

The statements in Example 4–7 demonstrate how to drop disks from the disk group `data1` described in "Adding Disks to a Disk Group with SQL Statements" on page 4-13. The first example drops `diska5` from disk group `data1`. The second example drops `diska5` from disk group `data1`, and also illustrates how multiple actions are possible with one `ALTER DISKGROUP` statement.

Example 4–7 Dropping disks from disk groups

```
ALTER DISKGROUP data1 DROP DISK diska5;
```

```
ALTER DISKGROUP data1 DROP DISK diska5
ADD FAILGROUP failgrp1 DISK '/devices/diska9' NAME diska9;
```

Intelligent Data Placement

Intelligent Data Placement enables you to specify disk regions on Oracle ASM disks for best performance. Using the disk region settings, you can ensure that frequently accessed data is placed on the outermost (hot) tracks which have greater speed and higher bandwidth. In addition, files with similar access patterns are located physically close, reducing latency. Intelligent Data Placement also enables the placement of primary and mirror extents into different hot or cold regions.

Intelligent Data Placement settings can be specified for a file or in disk group templates. The disk region settings can be modified after the disk group has been created. The disk region setting can improve I/O performance by placing more frequently accessed data in regions furthest from the spindle, while reducing your cost by increasing the usable space on a disk.

Intelligent Data Placement works best for the following:

- Databases with data files that are accessed at different rates. A database that accesses all data files in the same way is unlikely to benefit from Intelligent Data Placement.
Altering Disk Groups

- Disk groups that are more than 25% full. If the disk group is only 25% full, the management overhead is unlikely to be worth any benefit.

- Disks that have better performance at the beginning of the media relative to the end. Because Intelligent Data Placement leverages the geometry of the disk, it is well suited to JBOD (just a bunch of disks). In contrast, a storage array with LUNs composed of concatenated volumes masks the geometry from Oracle ASM.

The COMPATIBLE.ASM and COMPATIBLE.RDBMS disk group attributes must be set to 11.2 or higher to use Intelligent Data Placement.

Intelligent Data Placement can be managed with the ALTER DISKGROUP ADD or MODIFY TEMPLATE SQL statements and the ALTER DISKGROUP MODIFY FILE SQL statement.

- The ALTER DISKGROUP TEMPLATE SQL statement includes a disk region clause for setting hot/mirrorhot or cold/mirrorcold regions in a template:

 ALTER DISKGROUP data ADD TEMPLATE datafile_hot
 ATTRIBUTE (HOT MIRRORHOT);

- The ALTER DISKGROUP ... MODIFY FILE SQL statement that sets disk region attributes for hot/mirrorhot or cold/mirrorcold regions:

 ALTER DISKGROUP data MODIFY FILE '+data/orcl/datafile/users.259.679156903'
 ATTRIBUTE (HOT MIRRORHOT);

When you modify the disk region settings for a file, this action applies to new extensions of the file, but existing file contents are not affected until a rebalance operation. To apply the new Intelligent Data Placement policy for existing file contents, you can manually initiate a rebalance. A rebalance operation uses the last specified policy for the file extents. For information on the rebalance operation, see "Manually Rebalancing Disk Groups" on page 4-17.

Oracle ASM Configuration Assistant (ASMCA) supports Intelligent Data Placement with template creation during disk group alterations. See "Managing Disk Groups with Oracle ASM Configuration Assistant" on page 11-7.

Oracle Enterprise Manager supports Intelligent Data Placement from the Templates page launched from the disk group page. See "Managing Disk Group Templates with Oracle Enterprise Manager" on page 9-20.

To display information about Intelligent Data Placement regions, see "Viewing Disk Region Information" on page 6-5 and "iostat" on page 12-34.

Resizing Disks in Disk Groups

The RESIZE clause of ALTER DISKGROUP enables you to perform the following operations:

- Resize all disks in the disk group
- Resize specific disks
- Resize all of the disks in a specified failure group

If you do not specify a new size in the SIZE clause, then Oracle ASM uses the size of the disk as returned by the operating system. The new size is written to the Oracle ASM disk header and if the size of the disk is increasing, then the new space is...
immediately available for allocation. If the size is decreasing, rebalancing must relocate file extents beyond the new size limit to available space below the limit. If the rebalance operation can successfully relocate all extents, then the new size is made permanent, otherwise the rebalance fails.

The following example resizes all of the disks in failure group failgrp1 of disk group data1. If the new size is greater than disk capacity, the statement fails.

Example 4–8 Resizing disks in disk groups

```
ALTER DISKGROUP data1
    RESIZE DISKS IN FAILGROUP failgrp1 SIZE 100G;
```

Undropping Disks in Disk Groups

The UNDROP DISKS clause of the ALTER DISKGROUP statement enables you to cancel all pending drops of disks within disk groups. If a drop disk operation has completed, then this statement cannot be used to restore it. This statement cannot be used to restore disks that are being dropped as the result of a DROP DISKGROUP statement, or for disks that are being dropped using the FORCE clause.

The following example cancels the dropping of disks from disk group data1:

Example 4–9 Undropping disks in disk groups

```
ALTER DISKGROUP data1 UNDROP DISKS;
```

Manually Rebalancing Disk Groups

You can manually rebalance the files in a disk group using the REBALANCE clause of the ALTER DISKGROUP statement. This would normally not be required, because Oracle ASM automatically rebalances disk groups when their configuration changes. You might want to do a manual rebalance operation to control the speed of what would otherwise be an automatic rebalance operation.

The POWER clause of the ALTER DISKGROUP ... REBALANCE statement specifies the degree of parallelism, and thus the speed of the rebalance operation. It can be set to a minimum value of 0 which halts a rebalancing operation until the statement is either implicitly or explicitly re-run. A higher value increases the speed of the rebalance operation.

The default rebalance power is set by the ASM_POWER_LIMIT initialization parameter. The range of values for the POWER clause is the same for the ASM_POWER_LIMIT initialization parameter. For information about the ASM_POWER_LIMIT initialization parameter, refer to "ASM_POWER_LIMIT" on page 3-8.

The power level of an ongoing rebalance operation can be changed by entering the rebalance statement with a new level.

The ALTER DISKGROUP ... REBALANCE command by default returns immediately so that you can run other commands while the rebalance operation takes place asynchronously in the background. You can query the V$ASM_OPERATION view for the status of the rebalance operation.

To cause the ALTER DISKGROUP ... REBALANCE command to wait until the rebalance operation is complete before returning, add the WAIT keyword to the REBALANCE clause. The wait functionality is especially useful in scripts. The command also accepts a NOWAIT keyword, which invokes the default behavior of conducting the rebalance operation asynchronously. You can interrupt a rebalance running in wait mode by typing CTRL-C on most platforms. This causes the command to return immediately...
with the message ORA-01013: user requested cancel of current operation, and then continue the rebalance operation asynchronously.

Additional rules for the rebalance operation include the following:

- An ongoing rebalance command is restarted if the storage configuration changes either when you alter the configuration, or if the configuration changes due to a failure or an outage. Furthermore, if the new rebalance fails because of a user error, then a manual rebalance may be required.

- The ALTER DISKGROUP...REBALANCE statement runs on a single node even if you are using Oracle Real Application Clusters (Oracle RAC).

- Oracle ASM can perform one disk group rebalance at a time on a given instance. If you have initiated multiple rebalances on different disk groups on a single node, then Oracle processes these operations in parallel on additional nodes if available; otherwise the rebalances are performed serially on the single node. You can explicitly initiate rebalances on different disk groups on different nodes in parallel.

- Rebalancing continues across a failure of the Oracle ASM instance performing the rebalance.

- The REBALANCE clause (with its associated POWER and WAIT/NOWAIT keywords) can also be used in ALTER DISKGROUP commands that add, drop, or resize disks.

Note: Oracle restarts the processing of an ongoing rebalance operation if the storage configuration changes. If the next rebalance operation fails because of a user error, then a manual rebalance may be required.

The following example manually rebalances the disk group data2. The command does not return until the rebalance operation is complete.

Example 4–10 Manually rebalancing a disk group

```
ALTER DISKGROUP data2 REBALANCE POWER 5 WAIT;
```

For more information about rebalancing operations, refer to "Tuning Rebalance Operations" on page 4-18.

Tuning Rebalance Operations

If the POWER clause is not specified in an ALTER DISKGROUP statement, or when rebalance is implicitly run by adding or dropping a disk, then the rebalance power defaults to the value of the ASM_POWER_LIMIT initialization parameter. You can adjust the value of this parameter dynamically.

The higher the power limit, the more quickly a rebalance operation can complete. Rebalancing takes longer with lower power values, but consumes fewer processing and I/O resources which are shared by other applications, such as the database.

The default value of 1 minimizes disruption to other applications. The appropriate value is dependent on your hardware configuration, performance requirements, and availability requirements.

If a rebalance is in progress because a disk is manually or automatically dropped, then increasing the power of the rebalance shortens the time frame during which redundant copies of that data on the dropped disk are reconstructed on other disks.
The \texttt{V$ASM_OPERATION} view provides information for adjusting \texttt{ASM_POWER_LIMIT} and the resulting power of rebalance operations. The \texttt{V$ASM_OPERATION} view also gives an estimate in the \texttt{EST_MINUTES} column of the amount of time remaining for the rebalance operation to complete. You can see the effect of changing the rebalance power by observing the change in the time estimate.

The range of values for the \texttt{POWER} clause is the same for the \texttt{ASM_POWER_LIMIT} initialization parameter. For information about the \texttt{ASM_POWER_LIMIT} initialization parameter, refer to "\texttt{ASM_POWER_LIMIT}" on page 3-8.

For more information about rebalancing disk groups, refer to "Manually Rebalancing Disk Groups" on page 4-17.

Oracle ASM Disk Discovery

Disk discovery is the mechanism used to find the operating system names for disks Oracle ASM can access. It is used to find all the disks that comprise a disk group to be mounted, the disks an administrator wants to add to a disk group, or the disks the administrator might consider adding to a disk group. This section contains the following topics:

- How A Disk is Discovered
- Disk Discovery Rules
- Improving Disk Discovery Time

For additional information about disk discovery and the \texttt{ASM_DISKSTRING} initialization parameter, refer to "\texttt{ASM_DISKSTRING}" on page 3-7.

How A Disk is Discovered

When an Oracle ASM instance is initialized, Oracle ASM discovers and examines the contents of all of the disks that are in the paths that you designated with values in the \texttt{ASM_DISKSTRING} initialization parameter.

Disk discovery also occurs when you:

- Run the following SQL statements
 - Mount a disk group with \texttt{ALTER DISKGROUP ... MOUNT}
 - Online a disk with \texttt{ALTER DISKGROUP ... ONLINE DISK}
 - Add a disk to a disk group with \texttt{CREATE or ALTER DISKGROUP...ADD DISK}
 - Resize a disk in a disk group with \texttt{ALTER DISKGROUP...RESIZE DISK}
 - Query with \texttt{SELECT ... FROM V$ASM_DISKGROUP} or \texttt{V$ASM_DISK} views
- Run Oracle Enterprise Manager or Oracle ASM Configuration Assistant (ASMCA) operations that invoke the SQL statements previously listed
- Run ASMCMD commands that perform the same operations as the SQL statements previously listed

After Oracle ASM successfully discovers a disk, the disk appears in the \texttt{V$ASM_DISK} view. Disks that belong to a disk group, that is, disks that have a disk group name in the disk header, show a header status of \texttt{MEMBER}. Disks that were discovered, but that have not yet been assigned to a disk group, have a status of either \texttt{CANDIDATE} or \texttt{PROVISIONED}. Disks that previously belonged to a disk group and were dropped cleanly from the disk group have a status of \texttt{FORMER}.
The \texttt{PROVISIONED} status implies that an additional platform-specific action has been taken by an administrator to make the disk available for Oracle ASM. For example, on Windows computers, the administrator might have used \texttt{asmtool} or \texttt{asmtoolg} to stamp the disk with a header. On Linux computers, the administrator might have used \texttt{ASMLIB} to prepare the disk for Oracle ASM.

\textbf{Example 4–11} shows a SQL query on \texttt{V$ASM_DISK} that displays the header status of a group of disks.

\textbf{Example 4–11 Querying \texttt{V$ASM_DISK} for header status}

```
SQL> SELECT name, header_status, path FROM V$ASM_DISK
    WHERE path LIKE '/devices/disk0%'
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>HEADER_STATUS</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMER</td>
<td>/devices/disk02</td>
<td></td>
</tr>
<tr>
<td>FORMER</td>
<td>/devices/disk01</td>
<td></td>
</tr>
<tr>
<td>CANDIDATE</td>
<td>/devices/disk07</td>
<td></td>
</tr>
<tr>
<td>DISK06</td>
<td>MEMBER</td>
<td>/devices/disk06</td>
</tr>
<tr>
<td>DISK05</td>
<td>MEMBER</td>
<td>/devices/disk05</td>
</tr>
<tr>
<td>DISK04</td>
<td>MEMBER</td>
<td>/devices/disk04</td>
</tr>
<tr>
<td>DISK03</td>
<td>MEMBER</td>
<td>/devices/disk03</td>
</tr>
</tbody>
</table>

7 rows selected.

\textbf{See Also:} \textit{Oracle Database Reference} for information about the header status of an Oracle ASM disk that is displayed in the \texttt{V$ASM_DISK} view

\section*{Disk Discovery Rules}

The rules for discovering Oracle ASM disks are as follows:

\begin{itemize}
 \item Oracle ASM can discover up to 10,000 disks. That is, if more than 10,000 disks match the \texttt{ASM_DISKSTRING} initialization parameter, then Oracle ASM discovers only the first 10,000.
 \item Oracle ASM only discovers disk partitions. Oracle ASM does not discover partitions that include the partition table.
 \item From the perspective of the installation, candidate disks are those that have the \texttt{CANDIDATE}, \texttt{PROVISIONED}, or \texttt{FORMER} header status. These disks with a \texttt{CANDIDATE}, \texttt{PROVISIONED}, or \texttt{FORMER} status can be added to Oracle ASM disk groups without using the \texttt{FORCE} flag.
 \item When adding a disk, the \texttt{FORCE} option must be used if Oracle ASM recognizes that the disk was managed by Oracle. Such a disk appears in the \texttt{V$ASM_DISK} view with a status of \texttt{FOREIGN}. In this case, you can only add the disk to a disk group by using the \texttt{FORCE} keyword.
 \item \texttt{MEMBER} disks can usually be added to a disk group by specifying the \texttt{FORCE} flag, if the disks are not part of a currently mounted disk group.
\end{itemize}

In addition, Oracle ASM identifies the following configuration errors during discovery:

\begin{itemize}
 \item Multiple paths to the same disk
 In this case, if the disk is part of a disk group, then disk group mount fails. If the disk is being added to a disk group with the \texttt{ADD_DISK} or \texttt{CREATE_DISKGROUP} command, then the command fails. To correct the error, adjust the
ASM_DISKSTRING value so that Oracle ASM does not discover multiple paths to the same disk. Or if you are using multipathing software, then ensure that you include only the pseudo-device name in the ASM_DISKSTRING value. See “Oracle ASM and Multipathing” on page 2-3.

- Multiple Oracle ASM disks with the same disk header
 This can be caused by having copied one disk onto another. In this case, the disk group mount operation fails.

Improving Disk Discovery Time

The value for the ASM_DISKSTRING initialization parameter is an operating system–dependent value that Oracle ASM uses to limit the set of paths that the discovery process uses to search for disks. When a new disk is added to a disk group, each Oracle ASM instance that has the disk group mounted must be able to discover the new disk using its ASM_DISKSTRING.

In many cases, the default value (NULL) is sufficient. Using a more restrictive value might reduce the time required for Oracle ASM to perform discovery, and thus improve disk group mount time or the time for adding a disk to a disk group. Oracle may dynamically change the ASM_DISKSTRING before adding a disk so that the new disk is discovered through this parameter.

The default value of ASM_DISKSTRING might not find all disks in all situations. If your site is using a third-party vendor ASMLIB, then the vendor might have discovery string conventions that you must use for ASM_DISKSTRING. In addition, if your installation uses multipathing software, then the software might place pseudo-devices in a path that is different from the operating system default. See "Oracle ASM and Multipathing" on page 2-3 and consult the multipathing vendor documentation for details.

Managing Capacity in Disk Groups

When Oracle ASM provides redundancy, such as when you create a disk group with NORMAL or HIGH redundancy, you must have sufficient capacity in each disk group to manage a re-creation of data that is lost after a failure of one or two failure groups. After one or more disks fail, the process of restoring redundancy for all data requires space from the surviving disks in the disk group. If not enough space remains, then some files might end up with reduced redundancy.

Reduced redundancy means that one or more extents in the file are not mirrored at the expected level. For example, a reduced redundancy file in a high redundancy disk group has at least one file extent with two or fewer total copies of the extent instead of three. For unprotected files, data extents could be missing altogether. Other causes of reduced redundancy files are disks running out of space or an insufficient number of failure groups. The REDUNDANCY_LOWERED column in the V$ASM_FILE view provides information about files with reduced redundancy.

The following guidelines help ensure that you have sufficient space to restore full redundancy for all disk group data after the failure of one or more disks.

- Normal redundancy disk group - It is best to have enough free space in your disk group to tolerate the loss of all disks in one failure group. The amount of free space should be equivalent to the size of the largest failure group.

- High redundancy disk group - It is best to have enough free space to cope with the loss of all disks in two failure groups. The amount of free space should be equivalent to the sum of the sizes of the two largest failure groups.
The V$ASM_DISKGROUP view contains the following columns that contain information to help you manage capacity:

- **REQUIRED_MIRROR_FREE_MB** indicates the amount of space that must be available in a disk group to restore full redundancy after the worst failure that can be tolerated by the disk group without adding additional storage. This requirement ensures that there are sufficient failure groups to restore redundancy. Also, this worst failure refers to a permanent failure where the disks must be dropped, not the case where the disks go offline and then back online.

 The amount of space displayed in this column takes the effects of mirroring into account. The value is computed as follows:

 - Normal redundancy disk group with more than two failure groups
 The value is the total raw space for all of the disks in the largest failure group. The largest failure group is the one with the largest total raw capacity. For example, if each disk is in its own failure group, then the value would be the size of the largest capacity disk.

 - High redundancy disk group with more than three failure groups
 The value is the total raw space for all of the disks in the two largest failure groups.

- **USABLE_FILE_MB** indicates the amount of free space, adjusted for mirroring, that is available for new files to restore redundancy after a disk failure. USABLE_FILE_MB is computed by subtracting REQUIRED_MIRROR_FREE_MB from the total free space in the disk group and then adjusting the value for mirroring. For example, in a normal redundancy disk group where by default the mirrored files use disk space equal to twice their size, if 4 GB of actual usable file space remains, then USABLE_FILE_MB equals roughly 2 GB. You can then add a file that is up to 2 GB.

- **TOTAL_MB** is the total usable capacity of a disk group in megabytes. The calculations for data in this column take the disk header overhead into consideration. The disk header overhead depends on the number of Oracle ASM disks and Oracle ASM files. This value is typically about 1% of the total raw storage capacity. For example, if the total LUN capacity provisioned for Oracle ASM is 100 GB, then the value in the TOTAL_MB column would be about 99 GB.

- **FREE_MB** is the unused capacity of the disk group in megabytes, without considering any data imbalance. There may be situations where the value in the FREE_MB column shows unused capacity but because one Oracle ASM disk is full, database writes fail because of the imbalance in the disk group. Ensure that you initiate a manual rebalance to force even data distribution which results in an accurate presentation of the values in the FREE_MB column.

With fine grain striping using 128 KB, the storage is preallocated to be eight times the AU size. The data file size may appear slightly larger on Oracle ASM than on a local file system because of the preallocation.

Note: When you lose multiple disks from multiple failure groups, then you could lose both the primary and the redundant copies of your data. In addition, if you do not have enough capacity to restore redundancy, then Oracle ASM can continue to operate. However, if another disk fails, then the system may not be able to tolerate additional failures.
When you use Oracle ASM normal or high redundancy, the disk space utilization becomes more complex to measure because it depends on several variables.

Note: The values in the `TOTAL_MB` and `FREE_MB` columns best describe space usage when you do not configure Oracle ASM mirroring, that is, when you use external redundancy.

The results from the following query show capacity metrics for a normal redundancy disk group that consists of six 1 GB (1024 MB) disks, each in its own failure group:

```
SQL> SELECT name, type, total_mb, free_mb, required_mirror_free_mb, usable_file_mb FROM V$ASM_DISKGROUP;
```

```
NAME    TYPE     TOTAL_MB    FREE_MB REQUIRED_MIRROR_FREE_MB USABLE_FILE_MB
-------- ------ ---------- ---------- ----------------------- --------------
DATA     NORMAL       6144       3768                    1024           1372
```

The `REQUIRED_MIRROR_FREE_MB` column shows that 1 GB of extra capacity must be available to restore full redundancy after one or more disks fail. The first three numeric columns in the query results are raw numbers. That is, they do not take redundancy into account. Only the last column is adjusted for normal redundancy. In the query output example for the `DATA` disk group, the calculation is as follows:

\[
\frac{(FREE_{MB} - REQUIRED_MIRROR_FREE_MB)}{2} = USABLE_FILE_MB
\]

\[
\frac{(3768 - 1024)}{2} = 2744 / 2 = 1372
\]

Negative Values of `USABLE_FILE_MB`

Due to the relationship between `FREE_MB`, `REQUIRED_MIRROR_FREE_MB`, and `USABLE_FILE_MB`, `USABLE_FILE_MB` can become negative. Although this is not necessarily a critical situation, it does mean that:

- Depending on the value of `FREE_MB`, you may not be able to create new files.
- The next failure might result in files with reduced redundancy.

If `USABLE_FILE_MB` becomes negative, it is strongly recommended that you add more space to the disk group as soon as possible.

Oracle ASM Mirroring and Disk Group Redundancy

This section contains the following topics:

- Mirroring, Redundancy, and Failure Group Options
- Oracle ASM Recovery from Read and Write I/O Errors
- Oracle ASM Fast Mirror Resync
- Preferred Read Failure Groups

Mirroring, Redundancy, and Failure Group Options

If you specify mirroring for a file, then Oracle ASM automatically stores redundant copies of the file extents in separate failure groups. Failure groups apply only to normal and high redundancy disk groups. You can define the failure groups for each disk group when you create or alter the disk group.
There are three types of disk groups based on the Oracle ASM redundancy level. Table 4–1 lists the types with their supported and default mirroring levels. The default mirroring levels indicate the mirroring level with which each file is created unless a different mirroring level is designated.

<table>
<thead>
<tr>
<th>Disk Group Type</th>
<th>Supported Mirroring Levels</th>
<th>Default Mirroring Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>External redundancy</td>
<td>Unprotected (none)</td>
<td>Unprotected</td>
</tr>
<tr>
<td>Normal redundancy</td>
<td>Two-way, three-way,</td>
<td>Two-way</td>
</tr>
<tr>
<td></td>
<td>unprotected (none)</td>
<td></td>
</tr>
<tr>
<td>High redundancy</td>
<td>Three-way</td>
<td>Three-way</td>
</tr>
</tbody>
</table>

The redundancy level controls how many disk failures are tolerated without dismounting the disk group or losing data. Each file is allocated based on its own redundancy, but the default comes from the disk group.

The redundancy levels are:

- **External redundancy**
 Oracle ASM does not provide mirroring redundancy and relies on the storage system to provide RAID functionality. Any write error causes a forced dismount of the disk group. All disks must be located to successfully mount the disk group.

- **Normal redundancy**
 Oracle ASM provides two-way mirroring by default, which means that all files are mirrored so that there are two copies of every extent. A loss of one Oracle ASM disk is tolerated. You can optionally choose three-way or unprotected mirroring.
 A file specified with HIGH redundancy (three-way mirroring) in a NORMAL redundancy disk group provides additional protection from a bad disk sector, not protection from a disk failure.

- **High redundancy**
 Oracle ASM provides triple mirroring by default. A loss of two Oracle ASM disks in different failure groups is tolerated.

If there are not enough online failure groups to satisfy the file mirroring (redundancy attribute value) specified in the disk group file type template, Oracle ASM allocates as many mirrors copies as possible and subsequently allocates the remaining mirrors when sufficient online failure groups are available. For information about specifying Oracle ASM disk group templates, see "Managing Disk Group Templates" on page 7-15.

Failure groups enable the mirroring of metadata and user data. System reliability can diminish if your environment has an insufficient number of failure groups.

This section contains these topics:

- **Oracle ASM Failure Groups**
- **How Oracle ASM Manages Disk Failures**
- **Guidelines for Using Failure Groups**
- **Failure Group Frequently Asked Questions**
Oracle ASM Failure Groups

Failure groups are used to store mirror copies of data. When Oracle ASM allocates an extent for a normal redundancy file, Oracle ASM allocates a primary copy and a secondary copy. Oracle ASM chooses the disk on which to store the secondary copy so that it is in a different failure group than the primary copy. Each copy is on a disk in a different failure group so that the simultaneous failure of all disks in a failure group does not result in data loss.

A failure group is a subset of the disks in a disk group, which could fail at the same time because they share hardware. The failure of common hardware must be tolerated. Four drives that are in a single removable tray of a large JBOD (Just a Bunch of Disks) array should be in the same failure group because the tray could be removed making all four drives fail at the same time. Drives in the same cabinet could be in multiple failure groups if the cabinet has redundant power and cooling so that it is not necessary to protect against failure of the entire cabinet. However, Oracle ASM mirroring is not intended to protect against a fire in the computer room that destroys the entire cabinet.

There are always failure groups even if they are not explicitly created. If you do not specify a failure group for a disk, then Oracle automatically creates a new failure group containing just that disk, except for disk groups containing disks on Oracle Exadata cells.

A normal redundancy disk group must contain at least two failure groups. A high redundancy disk group must contain at least three failure groups. However, Oracle recommends using several failure groups. A small number of failure groups, or failure groups of uneven capacity, can create allocation problems that prevent full use of all of the available storage.

Failure groups can be specified as regular or quorum failure groups. For information about quorum failure groups, see "Oracle Cluster Registry and Voting Files in Oracle ASM Disk Groups" on page 4-10.

See Also: Oracle Exadata documentation for information about Oracle Exadata failure groups

How Oracle ASM Manages Disk Failures

Depending on the redundancy level of a disk group and how you define failure groups, the failure of one or more disks could result in either of the following:

- The disks are first taken offline and then automatically dropped. In this case, the disk group remains mounted and serviceable. In addition, because of mirroring, all of the disk group data remains accessible. After the disk drop operation, Oracle ASM performs a rebalance to restore full redundancy for the data on the failed disks.

- The entire disk group is automatically dismounted, which means loss of data accessibility.

Guidelines for Using Failure Groups

The following are guidelines for using failure groups:

- Each disk in a disk group can belong to only one failure group.

- Failure groups should all be of the same size. Failure groups of different sizes may lead to reduced availability.
Oracle ASM requires at least two failure groups to create a normal redundancy disk group and at least three failure groups to create a high redundancy disk group.

Failure Group Frequently Asked Questions

This section discusses frequently asked questions about failure group under the following topics:

- How Many Failure Groups Should I Create?
- How are Multiple Failure GroupsRecovered after Simultaneous Failures?
- When Should External, Normal, or High Redundancy Be Used?

How Many Failure Groups Should I Create?

Choosing the number of failure groups to create depends on the types of failures that must be tolerated without data loss. For small numbers of disks, such as fewer than 20, it is usually best to use the default failure group creation that puts every disk in its own failure group.

Using the default failure group creation for small numbers of disks is also applicable for large numbers of disks where your main concern is disk failure. For example, a disk group might be configured from several small modular disk arrays. If the system must continue operating when an entire modular array fails, then a failure group should consist of all of the disks in one module. If one module fails, then all of the data on that module is relocated to other modules to restore redundancy. Disks should be placed in the same failure group if they depend on a common piece of hardware whose failure must be tolerated with no loss of availability.

How are Multiple Failure Groups Recovered after Simultaneous Failures?

A simultaneous failure can occur if there is a failure of a piece of hardware used by multiple failure groups. This type of failure usually forces a dismount of the disk group if all disks are unavailable.

When Should External, Normal, or High Redundancy Be Used?

Oracle ASM mirroring runs on the database server and Oracle recommends to off load this processing to the storage hardware RAID controller by using external redundancy. You can use normal redundancy in the following scenarios:

- Storage system does not have RAID controller
- Mirroring across storage arrays
- Extended cluster configurations

In general, Oracle ASM mirroring is the Oracle alternative to third party logical volume managers. Oracle ASM mirroring eliminates the deployment of additional layers of software complexity in your Oracle database environment.

Oracle ASM Recovery from Read and Write I/O Errors

Read errors can be the result of a loss of access to the entire disk or media corruptions on an otherwise a healthy disk. Oracle ASM tries to recover from read errors on corrupted sectors on a disk. When a read error by the database or Oracle ASM triggers the Oracle ASM instance to attempt bad block remapping, Oracle ASM reads a good copy of the extent and copies it to the disk that had the read error.
If the write to the same location succeeds, then the underlying allocation unit (sector) is deemed healthy. This might be because the underlying disk did its own bad block reallocation.

If the write fails, Oracle ASM attempts to write the extent to a new allocation unit on the same disk. If this write succeeds, the original allocation unit is marked as unusable. If the write fails, the disk is taken offline.

One unique benefit on Oracle ASM based mirroring is that the database instance is aware of the mirroring. For many types of logical corruptions such as a bad checksum or incorrect System Change Number (SCN), the database instance proceeds through the mirror side looking for valid content and proceeds without errors. If the process in the database that encountered the read can obtain the appropriate locks to ensure data consistency, it writes the correct data to all mirror sides.

When encountering a write error, a database instance sends the Oracle ASM instance a disk offline message.

If database can successfully complete a write to at least one extent copy and receive acknowledgment of the offline disk from Oracle ASM, the write is considered successful.

If the write to all mirror side fails, database takes the appropriate actions in response to a write error such as taking the tablespace offline.

When the Oracle ASM instance receives a write error message from a database instance or when an Oracle ASM instance encounters a write error itself, the Oracle ASM instance attempts to take the disk offline. Oracle ASM consults the Partner Status Table (PST) to see whether any of the disk’s partners are offline. If too many partners are offline, Oracle ASM forces the dismounting of the disk group. Otherwise, Oracle ASM takes the disk offline.

The ASMCMD remap command was introduced to address situations where a range of bad sectors exists on a disk and must be corrected before Oracle ASM or database I/O. For information about the remap command, see "remap" on page 12-48.

Oracle ASM Fast Mirror Resync

Restoring the redundancy of an Oracle ASM disk group after a transient disk path failure can be time consuming. This is especially true if the recovery process requires rebuilding an entire Oracle ASM failure group. Oracle ASM fast mirror resync significantly reduces the time to resynchronize a failed disk in such situations. When you replace the failed disk, Oracle ASM can quickly resynchronize the Oracle ASM disk extents.

Note: To use this feature, the disk group compatibility attributes must be set to 11.1 or higher. For more information, refer to "Disk Group Compatibility" on page 4-32.

Any problems that make a failure group temporarily unavailable are considered transient failures that can be recovered by the Oracle ASM fast mirror resync feature. For example, transient failures can be caused by disk path malfunctions, such as cable failures, host bus adapter failures, controller failures, or disk power supply interruptions.

Oracle ASM fast resync keeps track of pending changes to extents on an OFFLINE disk during an outage. The extents are resynced when the disk is brought back online.
By default, Oracle ASM drops a disk in 3.6 hours after it is taken offline. You can set the `DISK_REPAIR_TIME` disk group attribute to delay the drop operation by specifying a time interval to repair the disk and bring it back online. The time can be specified in units of minutes (m or M) or hours (h or H). If you omit the unit, then the default unit is hours. The `DISK_REPAIR_TIME` disk group attribute can only be set with the `ALTER DISKGROUP SQL` statement.

If the attribute is not set explicitly, then the default value (3.6h) applies to disks that have been set to `OFFLINE` mode without an explicit `DROP AFTER` clause. Disks taken offline due to I/O errors do not have a `DROP AFTER` clause.

The default `DISK_REPAIR_TIME` attribute value is an estimate that should be adequate for most environments. However, ensure that the attribute value is set to the amount of time that you think is necessary in your environment to fix any transient disk error, and that you are willing to tolerate reduced data redundancy.

The elapsed time (since the disk was set to `OFFLINE` mode) is incremented only when the disk group containing the offline disks is mounted. The `REPAIR_TIMER` column of `V$ASM_DISK` shows the amount of time left (in seconds) before an offline disk is dropped. After the specified time has elapsed, Oracle ASM drops the disk. You can override this attribute with the `ALTER DISKGROUP OFFLINE DISK` statement and the `DROP AFTER` clause.

If an offline disk is taken offline for a second time, then the elapsed time is reset and restarted. If another time is specified with the `DROP AFTER` clause for this disk, the first value is overridden and the new value applies. A disk that is in `OFFLINE` mode cannot be dropped with an `ALTER DISKGROUP DROP DISK` statement; an error is returned if attempted. If for some reason the disk must be dropped (such as the disk cannot be repaired) before the repair time has expired, a disk can be dropped immediately by issuing a second `OFFLINE` statement with a `DROP AFTER` clause specifying 0h or 0m.

You can use `ALTER DISKGROUP` to set the `DISK_REPAIR_TIME` attribute to a specified hour or minute value, such as 4.5 hours or 270 minutes. For example:

```
ALTER DISKGROUP data SET ATTRIBUTE 'disk_repair_time' = '4.5h'
ALTER DISKGROUP data SET ATTRIBUTE 'disk_repair_time' = '270m'
```

After you repair the disk, run the SQL statement `ALTER DISKGROUP ONLINE DISK`. This statement brings a repaired disk group back online to enable writes so that no new writes are missed. This statement also starts a procedure to copy of all of the extents that are marked as stale on their redundant copies.

If a disk goes offline when the Oracle ASM instance is in rolling upgrade mode, the disk remains offline until the rolling upgrade has ended and the timer for dropping the disk is stopped until the Oracle ASM cluster is out of rolling upgrade mode. See "Using Oracle ASM Rolling Upgrade" on page 3-22. Examples of taking disks offline and bringing them online follow.
The following example takes disk DATA_001 offline and drops it after five minutes.
ALTER DISKGROUP data OFFLINE DISK DATA_001 DROP AFTER 5m;

The next example takes the disk DATA_001 offline and drops it after the time period designated by DISK_REPAIR_TIME elapses:
ALTER DISKGROUP data OFFLINE DISK DATA_001;

This example takes all of the disk in failure group FG2 offline and drops them after the time period designated by DISK_REPAIR_TIME elapses. If you used a DROP AFTER clause, then the disks would be dropped after the specified time:
ALTER DISKGROUP data OFFLINE DISK IN FAILGROUP FG2;

The next example brings all of the disks in failure group FG2 online:
ALTER DISKGROUP data ONLINE DISK IN FAILGROUP FG2;

This example brings only disk DATA_001 online:
ALTER DISKGROUP data ONLINE DISK DATA_001;

This example brings all of the disks in disk group DATA online:
ALTER DISKGROUP data ONLINE ALL;

Querying the V$ASM_OPERATION view while you run any of these types of ALTER DISKGROUP ... ONLINE statements displays the name and state of the current operation that you are performing. For example, the query:
SELECT GROUP_NUMBER, OPERATION, STATE FROM V$ASM_OPERATION;

Displays output similar to the following:

<table>
<thead>
<tr>
<th>GROUP_NUMBER</th>
<th>OPERATION</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ONLIN</td>
<td>RUN</td>
</tr>
</tbody>
</table>

An OFFLINE operation is not displayed in a V$ASM_OPERATION view query.

See Also: Oracle Database SQL Language Reference for information about ALTER DISKGROUP and CREATE DISKGROUP

Preferred Read Failure Groups

When you configure Oracle ASM failure groups, it might be more efficient for a node to read from an extent that is closest to the node, even if that extent is a secondary extent. In other words, you can configure Oracle ASM to read from a secondary extent if that extent is closer to the node instead of Oracle ASM reading from the primary copy which might be farther from the node. Using the preferred read failure groups feature is most useful in extended clusters.

To use this feature, Oracle recommends that you configure at least one mirrored extent copy from a disk that is local to a node in an extended cluster. However, a failure group that is preferred for one instance might be remote to another instance in the same Oracle RAC database. The parameter setting for preferred read failure groups is instance specific.

Both the Oracle ASM clients and Oracle ASM require Oracle Database 11g release 1 (11.1) or higher to use preferred read failure groups.
Configuring and Administering Preferred Read Failure Groups

To configure this feature, set the `ASM_PREFERRED_READ_FAILURE_GROUPS` initialization parameter to specify a list of failure group names as preferred read disks. For more information about this initialization parameter, refer to "ASM_PREFERRED_READ_FAILURE_GROUPS" on page 3-9.

Set the parameter where `diskgroup` is the name of the disk group and `failuregroup` is the name of the failure group, separating these variables with a period. Oracle ASM ignores the name of a failure group that you use in this parameter setting if the failure group does not exist in the named disk group. You can append multiple values using commas as a separator as follows:

```
ASM_PREFERRED_READ_FAILURE_GROUPS = diskgroup1.failuregroup1, diskgroup2.failuregroup2 ...
```

In an extended cluster, the failure groups that you specify with settings for the `ASM_PREFERRED_READ_FAILURE_GROUPS` parameter should only contain disks that are local to the instance. For normal redundancy disk groups, there should be only one failure group on each site of the extended cluster.

If there are multiple mirrored copies and you have set a value for the `ASM_PREFERRED_READ_FAILURE_GROUPS` parameter, then Oracle ASM first reads the copy that resides on a preferred read disk. If that read fails, then Oracle ASM attempts to read from the next mirrored copy that might not be on a preferred read disk.

Having multiple failure groups on one site can cause the loss of access to the disk group by the other sites if the site containing multiple failure groups fails. In addition, by having multiple failure groups on a site, an extent might not be mirrored to another site. This can diminish the read performance of the failure group on the other site.

For example, for a normal redundancy disk group, if a site contains two failure groups of a disk group, then Oracle ASM might put both mirror copies of an extent on the same site. In this configuration, Oracle ASM cannot protect against data loss from a site failure.

You should configure at most two failure groups on a site for a high redundancy disk group. If there are three sites in an extended cluster, for the same reason previously mentioned, then you should only create one failure group.

For a two-site extended cluster, a normal redundancy disk group only has two failure groups. In this case, you can only specify one failure group as a preferred read failure group for each instance.

You can use views to identify preferred read failure groups, such as the `V$ASM_DISK` view that shows whether a disk is a preferred read disk by the value in the `PREFERRED_READ` column. You can also use `V$ASM_DISK` to verify whether local
disks in an extended cluster are preferred read disks. Use the Oracle ASM disk I/O statistics to verify that read operations are using the preferred read disks that you configured.

If a disk group is not optimally configured for an extended cluster, then Oracle ASM records warning messages in the alert logs. To identify specific performance issues with Oracle ASM preferred read failure groups, use the `V$ASM_DISK_IOSTAT` view. This view displays disk I/O statistics for each Oracle ASM client. You can also query the `V$ASM_DISK_IOSTAT` view on a database instance. However, this query only shows the I/O statistics for the database instance. In general, optimal preferred read extended cluster configurations balance performance with disk group availability.

See Also: *Oracle Database Reference* for details about the `V$ASM*` dynamic performance views

Performance and Scalability Considerations for Disk Groups

This section discusses the following considerations for evaluating disk group performance:

- **Determining the Number of Disk Groups**
- **Performance Characteristics When Grouping Disks**
- **Oracle ASM Storage Limits**

Determining the Number of Disk Groups

Use the following criteria to determine the number of disk groups to create:

- Disks in a given disk group should have similar size and performance characteristics. If you have several different types of disks in terms of size and performance, then create several disk groups that contain similar characteristics.
- Create separate disk groups for your database files and fast recovery area for backup files. This configuration allows fast recovery should a disk group failure occur.

Performance Characteristics When Grouping Disks

Oracle ASM load balances the file activity by uniformly distributing file extents across all of the disks in a disk group. For this technique to be effective it is important that disks in a disk group be of similar performance characteristics. For example, the newest and fastest disks might reside in a disk group reserved for the database work area, and slower drives could reside in a disk group reserved for the fast recovery area.

There might be situations where it is acceptable to temporarily have disks of different sizes and performance characteristics coexist in a disk group. This would be the case when migrating from an old set of disks to a new set of disks. The new disks would be added and the old disks dropped. As the old disks are dropped, their storage is migrated to the new disks while the disk group is online.

Oracle ASM Storage Limits

Oracle ASM provides near unlimited capacity for future growth, but does have some storage limits. For example, Oracle ASM has the following limits on the number of disk groups, disks, and files:

- 63 disk groups in a storage system
10,000 Oracle ASM disks in a storage system
1 million files for each disk group

Without any Oracle Exadata Storage, Oracle ASM has these storage limits:

- 2 terabytes (TB) maximum storage for each Oracle ASM disk
- 20 petabytes (PB) maximum for the storage system

With all Oracle Exadata Storage, Oracle ASM has these storage limits:

- 4 PB maximum storage for each Oracle ASM disk
- 40 exabytes (EB) maximum for the storage system

The maximum size limit of a disk group equals the maximum disk size multiplied by
the maximum number of disks in a disk group (10,000).

File size limits are dependent on the value of the disk group compatibility attributes.
Oracle ASM supports file sizes greater than 128 TB in any redundancy mode when the
COMPATIBLE.RDBMS disk group attribute is set greater than 10.1.

If COMPATIBLE.RDBMS is set to 10.1, the file size limits are less. For example, with
COMPATIBLE.RDBMS equal to 10.1 and the AU size equal to 1 MB, Oracle ASM file
size limits are:

- External redundancy: 35 TB
- Normal redundancy: 5.8 TB
- High redundancy: 3.9 TB

Note: Oracle Database supports data file sizes up to 128 TB depending on the file system. In addition, Oracle Database has a file
size limit that is dependent on the DB_BLOCK_SIZE initialization parameter.

For information about Oracle ASM disk group compatibility attributes, see "Disk
Group Compatibility" on page 4-32. For information about Oracle ASM file size limits,
see Table 4-4 on page 4-39.

Disk Group Compatibility

This section describes disk group compatibility under the following topics:

- Overview of Disk Group Compatibility
- Disk Group Compatibility Attributes
- Setting Disk Group Compatibility Attributes
- Considerations When Setting Disk Group Compatibility in Replicated Environments

Overview of Disk Group Compatibility

Advancing the disk group compatibility settings enables you to use the new Oracle
ASM features that are available in a later release. For example, a disk group with the
disk group compatibility attributes set to 11.2 can take advantage of new Oracle 11g
release 2 (11.2) features, such as Oracle ASM volumes in disk groups and Oracle ASM
File Access Control. See Table 4–3 on page 4-37 for the features enabled for combinations of compatibility attribute settings.

The disk group compatibility feature also enables environments to interoperate when they use disk groups from both Oracle Database 10g and Oracle Database 11g. For example, disk group compatibility settings that are set to Oracle Database 10g enable an Oracle 10g client to access a disk group created with Oracle ASM 11g.

The disk group attributes that determine compatibility are COMPATIBLE.ASM, COMPATIBLE.RDBMS, and COMPATIBLE.ADVM. The COMPATIBLE.ASM and COMPATIBLE.RDBMS attribute settings determine the minimum Oracle Database software version numbers that a system can use for Oracle ASM and the database instance types respectively. For example, if the Oracle ASM compatibility setting is 11.2, and RDBMS compatibility is set to 11.1, then the Oracle ASM software version must be at least 11.2, and the Oracle Database client software version must be at least 11.1. The COMPATIBLE.ADVM attribute determines whether the Oracle ASM Dynamic Volume Manager feature can create an volume in a disk group.

When you create a disk group, you can specify the disk group compatibility attribute settings in the CREATE DISKGROUP SQL statement. The ALTER DISKGROUP SQL statement can update the compatible attribute settings for existing disk groups. If not specified when using the CREATE DISKGROUP SQL statement, 10.1 is the default setting for both the COMPATIBLE.ASM and COMPATIBLE.RDBMS attributes for Oracle ASM in Oracle Database 11g. The COMPATIBLE.ADVM attribute is empty if it is not set. See Table 4–2 on page 4-35 for examples of valid combinations of compatible attribute settings.

Notes:

- The disk group compatibility settings determine whether your environment can use the latest Oracle ASM features.

- The disk group compatibility settings can only be advanced; you cannot revert to a lower compatibility setting. See “Reverting Disk Group Compatibility” on page 4-37.

- The COMPATIBLE.ASM attribute must be advanced before advancing other disk group compatibility attributes and its value must be greater than or equal to the value of other disk group compatibility attributes.

Disk Group Compatibility Attributes

The disk group compatibility attributes specify the disk group compatibility settings for Oracle ASM and database instances. These attributes are described under the following topics:

- COMPATIBLE.ASM
- COMPATIBLE.RDBMS
- COMPATIBLE.ADVM

COMPATIBLE.ASM

The value for the disk group COMPATIBLE.ASM attribute determines the minimum software version for an Oracle ASM instance that can use the disk group. This setting also affects the format of the data structures for the Oracle ASM metadata on the disk.
The format of other file contents is determined by Oracle ASM Dynamic Volume Manager (Oracle ADVM) and the database instance.

For Oracle ASM in Oracle Database 11g, 10.1 is the default setting for the COMPATIBLE.ASM attribute when using the SQL CREATE DISKGROUP statement, the ASMCMD mkdg command, and Oracle Enterprise Manager Create Disk Group page. When creating a disk group with ASMCA, the default setting is 11.2.

COMPATIBLE.RDBMS

The value for the disk group COMPATIBLE.RDBMS attribute determines the minimum COMPATIBLE database initialization parameter setting for any database instance that is allowed to use the disk group. Before advancing the COMPATIBLE.RDBMS attribute, ensure that the values for the COMPATIBLE initialization parameter for all of the databases that access the disk group are set to at least the value of the new setting for COMPATIBLE.RDBMS.

For example, if the COMPATIBLE initialization parameters of the databases are set to either 11.1 or 11.2, then COMPATIBLE.RDBMS can be set to any value between 10.1 and 11.1 inclusively.

For Oracle ASM in Oracle Database 11g, 10.1 is the default setting for the COMPATIBLE.RDBMS attribute when using the SQL CREATE DISKGROUP statement, the ASMCMD mkdg command, ASMCA Create Disk Group page, and Oracle Enterprise Manager Create Disk Group page.

Note: The database initialization parameter COMPATIBLE enables you to use a new release of Oracle Database, while at the same time guaranteeing backward compatibility with an earlier release. See Oracle Database Reference for more information about the COMPATIBLE initialization parameter.

COMPATIBLE.ADVM

The value for the disk group COMPATIBLE.ADVM attribute determines whether the disk group can contain Oracle ASM volumes. The value must be set to 11.2 or higher. Before setting this attribute, the COMPATIBLE.ASM value must be 11.2 or higher. Also, the Oracle ADVM volume drivers must be loaded in the supported environment.

By default, the value of the COMPATIBLE.ADVM attribute is empty until set.

For more information about Oracle ADVM, see "Overview of Oracle ASM Dynamic Volume Manager" on page 5-18.

Setting Disk Group Compatibility Attributes

This section discusses the settings of the disk group compatibility attributes and how to set the attribute values with the CREATE DISKGROUP or ALTER DISKGROUP SQL statement.

This section contains these topics:

- Valid Combinations of Compatibility Attribute Settings
- Using CREATE DISKGROUP with Compatibility Attributes
- Using ALTER DISKGROUP with Compatibility Attributes
- Viewing Compatibility Attribute Settings
- Features Enabled By Disk Group Compatibility Attribute Settings
Reverting Disk Group Compatibility

You can also set the disk group compatibility settings with Oracle Enterprise Manager, Oracle ASM command-line utility (ASMCMD), and Oracle ASM Configuration Assistant (ASMCA). See Chapter 9, "Administering Oracle ASM with Oracle Enterprise Manager", Chapter 11, "Oracle ASM Configuration Assistant", and Chapter 12, "Oracle ASM Command-Line Utility".

Note: Advancing the values for disk group compatibility attributes is an irreversible operation. See "Reverting Disk Group Compatibility" on page 4-37.

See Also: Oracle Database SQL Language Reference for more information about the disk group compatibility SQL statements.

Valid Combinations of Compatibility Attribute Settings

When setting the values for the disk group attributes, specify at least the major and minor versions of a valid Oracle Database release number. For example, you can specify compatibility as ‘11.1’ or ‘11.2’; Oracle assumes that any missing version number digits are zeros.

Table 4–2 shows some valid combinations of the disk group compatibility attributes and the valid Oracle ASM and database instance versions for each combination.

<table>
<thead>
<tr>
<th>COMPATIBLE.ASM</th>
<th>COMPATIBLE.RDBMS</th>
<th>COMPATIBLE.ADVM</th>
<th>ASM Instance Version</th>
<th>COMPATIBLE Setting for RDBMS Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>10.1</td>
<td>n/a</td>
<td>>= 10.1</td>
<td>>= 10.1</td>
</tr>
<tr>
<td>11.1</td>
<td>10.1</td>
<td>n/a</td>
<td>>= 11.1</td>
<td>>= 10.1</td>
</tr>
<tr>
<td>11.2</td>
<td>11.1</td>
<td>11.2</td>
<td>>= 11.2</td>
<td>>= 11.1</td>
</tr>
<tr>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>>= 11.2</td>
<td>>= 11.2</td>
</tr>
</tbody>
</table>

These are some possible combinations of Oracle ASM and database releases:

- The database release is 11g release 2 (11.2) (database initialization parameter COMPATIBLE is set to 11.2) and the Oracle ASM release is 11g release 2 (11.2). The COMPATIBLE.ASM and COMPATIBLE.RDBMS disk group attributes are set to the default value of 10.1 for a disk group.

 The Oracle ASM disk group functionality remains at 10g.

- The database release is 10g and the Oracle ASM release is 11.2. COMPATIBLE.ASM is set to 11.2 and COMPATIBLE.RDBMS is set to 10.1 for a disk group.

 The disk group features enabled for this combination of attribute settings are shown in Table 4–3 on page 4-37.

- The database release is 11.2 (database initialization parameter COMPATIBLE is set to 11.2) and the Oracle ASM release is 11.2. All the disk group compatibility attributes are set to 11.2 for a disk group.

 The disk group features enabled for this combination of attribute settings are shown in Table 4–3 on page 4-37.
Using CREATE DISKGROUP with Compatibility Attributes

You can specify the compatibility settings for a disk group with the CREATE DISKGROUP statement when creating the disk group.

The following example creates a normal redundancy disk group `data1` with the Oracle ASM compatibility set to 11.2 and the RDBMS compatibility set to the default (the COMPATIBLE.RDBMS default is less than or equal to 11.2):

```
CREATE DISKGROUP data1 DISK '/dev/sd*'ATTRIBUTE 'compatible.asm' = '11.2';
```

The following example creates a normal redundancy disk group `data2` with the ASM, RDBMS, and ADVM compatibility set to 11.2:

```
CREATE DISKGROUP data2 DISK '/dev/sd*' ATTRIBUTE 'compatible.asm' = '11.2', 'compatible.rdbms' = '11.2', 'compatible.advm' = '11.2';
```

Using ALTER DISKGROUP with Compatibility Attributes

After a disk group has been created, you can use the ALTER DISKGROUP SQL statement to change the compatibility attributes. The ALTER DISKGROUP SQL statement ensures that Oracle can advance the compatibility of the specified disk group before committing the change.

All of the affected databases and file systems should be online when running ALTER DISKGROUP to ensure that advancing compatibility does not reduce the database and file system access. When advancing disk group compatibility, you must advance the COMPATIBLE.ASM attribute before the COMPATIBLE.RDBMS or COMPATIBLE.ADVM attribute to ensure a valid combination of compatible attribute settings as shown in Table 4-2. You can advance only one compatibility attribute in a single ALTER DISKGROUP statement.

The following example advances the Oracle ASM compatibility for disk group `data3` to 11.2. An Oracle ASM instance must be at release 11.2 or higher to access the `data3` disk group.

```
ALTER DISKGROUP data3 SET ATTRIBUTE 'compatible.asm' = '11.2';
```

The following example advances the COMPATIBLE.RDBMS and COMPATIBLE.ADVM compatibility attributes of the disk group `data3` to 11.2. This example assumes that the value of COMPATIBLE.ASM is set to 11.2.

```
ALTER DISKGROUP data3 SET ATTRIBUTE 'compatible.rdbms' = '11.2',
ALTER DISKGROUP data3 SET ATTRIBUTE 'compatible.advm' = '11.2';
```

Viewing Compatibility Attribute Settings

You can view the disk group compatibility settings in the V$ASM_ATTRIBUTE view. However, the V$ASM_ATTRIBUTE view does not display any rows when the COMPATIBLE.ASM value is set to 10.1. Instead you can determine the values for the COMPATIBLE.ASM and COMPATIBLE.RDBMS disk group compatibility attributes with the COMPATIBILITY and DATABASE_COMPATIBILITY columns of the V$ASM_DISKGROUP view.

See Example 6-1, "Viewing disk group attributes with V$ASM_ATTRIBUTE" on page 6-2 for an example querying the V$ASM_ATTRIBUTE view.

You can also display the disk group compatibility attributes with the ASMCMD command `lsattr`. For information about `lsattr`, see "lsattr" on page 12-36.
Features Enabled By Disk Group Compatibility Attribute Settings

Table 4–3 describes the features enabled by valid combinations of the disk group compatibility attribute settings.

<table>
<thead>
<tr>
<th>Disk Group Features Enabled</th>
<th>COMPATIBLE.ASM</th>
<th>COMPATIBLE.RDBMS</th>
<th>COMPATIBLE.ADM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for larger AU sizes (32 or 64 MB)</td>
<td>>= 11.1</td>
<td>>= 11.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Attributes are displayed in the V$ASM_ATTRIBUTE view</td>
<td>>= 11.1</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Fast mirror resync</td>
<td>>= 11.1</td>
<td>>= 11.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Variable size extents</td>
<td>>= 11.1</td>
<td>>= 11.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Exadata storage</td>
<td>>= 11.1.0.7</td>
<td>>= 11.1.0.7</td>
<td>n/a</td>
</tr>
<tr>
<td>Intelligent Data Placement</td>
<td>>= 11.2</td>
<td>>= 11.2</td>
<td>n/a</td>
</tr>
<tr>
<td>OCR and voting files in a disk group</td>
<td>>= 11.2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Sector size set to nondefault value</td>
<td>>= 11.2</td>
<td>>= 11.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Oracle ASM SPFILE in a disk group</td>
<td>>= 11.2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Oracle ASM File Access Control</td>
<td>>= 11.2</td>
<td>>= 11.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Volumes in disk groups</td>
<td>>= 11.2</td>
<td>n/a</td>
<td>>= 11.2</td>
</tr>
<tr>
<td>ASM_POWER_LIMIT value up to 1024</td>
<td>>= 11.2.0.2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Encryption, replication, security, tagging</td>
<td>>= 11.2.0.2</td>
<td>n/a</td>
<td>>= 11.2.0.2</td>
</tr>
</tbody>
</table>

The following list applies to Table 4–3.

- Oracle ASM features not explicitly listed in Table 4–3 do not require advancing the disk group compatibility attribute settings.
- The value of COMPATIBLE.ASM must always be greater than or equal to the value of COMPATIBLE.RDBMS.
- A value of not applicable (n/a) means that the setting of the attribute has no effect on the feature.
- For information about the rebalancing process and the ASM_POWER_LIMIT initialization parameter, refer to "ASM_POWER_LIMIT" on page 3-8.

Reverting Disk Group Compatibility

Advancing the values for disk group compatibility attributes is an irreversible operation. If you advance the disk group compatibility settings, you cannot change the values back to the previous settings. To revert to the previous values, you must create a new disk group with the old compatibility attribute settings and then restore the database files that were in the disk group to the new disk group.
When you revert to a new disk group with the old compatibility attribute settings, the latest Oracle ASM features might not be available. For example, if you revert the disk group compatibility to a pre-11.2 value, Oracle ACFS functionality is not available.

For example, you could perform the following procedure to revert a disk group to previous compatibility settings:

1. If the Oracle ASM SPFILE is in the disk group, move this SPFILE out of the disk group:
 a. Connect with SQL*Plus to the Oracle ASM instance.
 b. Create a PFILE in the file system.
 For example:
      ```sql
      SQL> CREATE PFILE '$ORACLE_HOME/dbs/asmspfile.ora' FROM SPFILE
      ```

2. If the OCR and voting files are in the disk group, move them out of this disk group.
 See Also: The Oracle Clusterware Administration and Deployment Guide for information about administering OCR and voting files

3. Back up any files that must be saved.
 a. Back up the database files.
 b. If an Oracle ACFS file system is mounted on an Oracle ADVM volume on the disk group, the operating system files in the file system must be backed up or copied to a location outside the file system mount point.

4. Create a new disk group using SQL `CREATE DISKGROUP` specifying the previous values for the disk group attribute settings.
 For information about creating a disk group, see "Using the CREATE DISKGROUP SQL Statement" on page 4-3.

5. Restore the database files into the newly created disk group using Recovery Manager (RMAN).
 For information about moving data files between disk groups, see "Moving Data Files Between Oracle ASM Disk Groups Using RMAN" on page 8-9.

6. Drop the disk group with the advanced disk group compatibility settings using SQL `DROP DISKGROUP INCLUDING CONTENTS` to remove the disk group and its contents.
 This SQL statement also removes any Oracle ACFS file system and its contents.
 For information about dropping a disk group, see "Dropping Disk Groups" on page 4-45.

Considerations When Setting Disk Group Compatibility in Replicated Environments

If you advance disk group compatibility, then you could enable the creation of files that are too large to be managed by a previous Oracle database release. You must be aware of the file size limits because replicated sites cannot continue using the software from a previous release to manage these large files. The disk group compatibility settings should be the same for all replicated environments.
Table 4–4 shows the maximum Oracle ASM file sizes supported for COMPATIBLE.RDBMS settings when the AU_SIZE attribute is set to one megabyte for a disk group.

<table>
<thead>
<tr>
<th>Redundancy</th>
<th>COMPATIBLE.RDBMS = 10.1</th>
<th>COMPATIBLE.RDBMS >= 11.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>16 TB</td>
<td>140 PB</td>
</tr>
<tr>
<td>Normal</td>
<td>5.8 TB</td>
<td>23 PB</td>
</tr>
<tr>
<td>High</td>
<td>3.9 TB</td>
<td>15 PB</td>
</tr>
</tbody>
</table>

Table 4–4 shows that Oracle Database 10g can only support a file size of up to 16 TB for external redundancy. If you advance the COMPATIBLE.RDBMS attribute to 11.1 or greater, then a file can grow beyond 16 TB. However, the larger size causes the file to be unusable in a replicated and disaster recovery site if the disaster recovery site has a disk group COMPATIBLE.RDBMS setting that is incompatible with the larger size.

For information about Oracle ASM storage sizes, see "Oracle ASM Storage Limits" on page 4-31.

See Also:
- Oracle Database Upgrade Guide for information about database compatibility
- Oracle Database Administrator’s Guide for information about the COMPATIBLE initialization parameter and irreversible compatibility
- Oracle Database Reference for information about the COMPATIBLE initialization parameter

Managing Oracle ASM File Access Control for Disk Groups

Oracle ASM File Access Control provides optional protection for the content of Oracle ASM disk groups from accidental access by unauthorized Oracle ASM clients, such as an unauthorized database.

To set up Oracle ASM File Access Control, you must designate separate operating system groups as described in “Using Separate Operating System Groups for Oracle ASM Users” on page 3-25. Oracle ASM File Access Control is available for Linux and UNIX computers only.

You can manage Oracle ASM file access control with ASMCMD commands, Oracle Enterprise Manager, and SQL statements.

This section contains these topics:
- About Oracle ASM File Access Control
- Using SQL Statements to Set Disk Group Attributes for Oracle ASM File Access Control
- Using SQL Statements to Manage Oracle ASM File Access Control

For information about managing Oracle ASM File Access Control with ASMCMD commands, see "ASMCMD File Access Control Commands" on page 12-53.
For information about managing Oracle ASM File Access Control with Oracle Enterprise Manager, see "Managing Oracle ASM File Access Control with Oracle Enterprise Manager" on page 9-16.

For information about views that provide details about Oracle ASM file access control, see "Viewing Oracle ASM File Access Control Information" on page 6-4.

For information about controlling accessing to Oracle ASM instances, see "Authentication for Accessing Oracle ASM Instances" on page 3-23.

About Oracle ASM File Access Control

Oracle ASM File Access Control restricts the access of files to specific Oracle ASM clients that connect as SYSDBA. An Oracle ASM client is typically a database, which is identified as the user that owns the database instance home. Oracle ASM File Access Control uses this user name to identify a database. Oracle ASM File Access Control restricts access based on the operating system effective user identification number of a database owner. For example, in Table 3–2, "Separated operating system groups and privileges for Oracle ASM users" on page 3-26 the databases are identified as `oracle1` and `oracle2`.

Oracle ASM uses file access control to determine the additional privileges that are given to a database that has been authenticated AS SYSDBA on the Oracle ASM instance. These additional privileges include the ability to modify and delete certain files, aliases, and user groups.

You can set up user groups to specify the list of databases that share the same access permissions to Oracle ASM files. User groups are lists of databases and any database that authenticates AS SYSDBA can create a user group. However, only the creator of a group can delete it or modify its membership list.

Each Oracle ASM file has three categories of privileges: owner, group, and other. Each category can have no permission, read-only permission, or read-write permission.

The file owner is usually the creator of the file and can assign permissions for the file in any of the owner, group, or other categories. The owner can also change the group associated with the file.

When administering Oracle ASM File Access Control, Oracle recommends that you connect as SYSDBA to the database instance that is the owner, or planned owner, of the files in the disk group.

To set up Oracle ASM File Access Control for files in a disk group, perform the following steps:

1. **Alter a new or existing disk group to set the Oracle ASM File Access Control disk group attributes.**

 For a newly-created disk group, you should set the disk group attributes before creating any files in the disk group.

 See "Using SQL Statements to Set Disk Group Attributes for Oracle ASM File Access Control" on page 4-41.

2. **For files that exist in a disk group before setting the Oracle ASM File Access Control disk group attributes, you must explicitly set the permissions and ownership on those existing files.**

 Ensure that the user exists before setting ownership or permissions on a file. The file must be closed before setting the ownership or permissions.
Using SQL Statements to Set Disk Group Attributes for Oracle ASM File Access Control

To manage Oracle ASM File Access Control for a disk group, you must set the ACCESS_CONTROL.ENABLED and ACCESS_CONTROL.UMASK disk group attributes when altering the disk group with the ALTER DISKGROUP SQL statement.

When you set up file access control on an existing disk group, the files previously created remain accessible by everyone, unless you run the ALTER DISKGROUP SET PERMISSION SQL statement to restrict the permissions.

The COMPATIBLE.ASM and COMPATIBLE.RDBMS disk group attributes must be set to 11.2 or higher to enable Oracle ASM File Access Control.

The disk group attributes that control Oracle ASM File Access Control are the following:

- **ACCESS_CONTROL.ENABLED**

 This attribute determines whether Oracle ASM File Access Control is enabled for a disk group.

 The value can be true or false. The default is false.

 If the attribute is set to true, accessing Oracle ASM files is subject to access control. If false, any user can access every file in the disk group. All other operations behave independently of this attribute.

- **ACCESS_CONTROL.UMASK**

 This attribute determines which permissions are masked out on the creation of an Oracle ASM file for the user that owns the file, users in the same user group, and others not in the user group. This attribute applies to all files on a disk group.

 The values can be combinations of three digits {0|2|6} {0|2|6} {0|2|6}. The default is 066.

 Setting to 0 masks out nothing. Setting to 2 masks out write permission. Setting to 6 masks out both read and write permissions.

 Before setting the ACCESS_CONTROL.UMASK disk group attribute, you must set the ACCESS_CONTROL.ENABLED attribute to true to enable Oracle ASM File Access Control.

 Example 4–12 shows how to enable Oracle ASM File Access Control for a disk group with SQL*Plus. In this example, the permissions setting is 026 which enables read-write access for the owner, read access for users in the group, and no access to others not in the group.

Example 4–12 Setting up Oracle ASM File Access Control

```sql
ALTER DISKGROUP datal SET ATTIBUTE 'access_control.enabled' = 'true';
ALTER DISKGROUP datal SET ATTIBUTE 'access_control.umask' = '026';
```
Using SQL Statements to Manage Oracle ASM File Access Control

You can use the `ALTER DISKGROUP` SQL statement to manage file access control for Oracle ASM disk groups. These SQL statements are available for both database and Oracle ASM instances.

The SQL statements that support disk group access control are:

- **ALTER DISKGROUP ADD USERGROUP ... WITH MEMBER**
 Adds an Oracle ASM user group to a disk group. The user group name is limited to a maximum of 30 characters. The databases identified in the `MEMBER` clause must be in the disk group, as shown by `V$ASM_USER`, or the command returns an error. Any users authenticated as `SYSASM` or `SYSDBA` can create new user groups.

 SQL> SELECT group_number, os_name FROM V$ASM_USER;

<table>
<thead>
<tr>
<th>GROUP_NUMBER</th>
<th>OS_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oracle1</td>
</tr>
<tr>
<td>1</td>
<td>oracle2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

 SQL> ALTER DISKGROUP data ADD USERGROUP 'test_grp1'
 WITH MEMBER 'oracle1','oracle2';

- **ALTER DISKGROUP DROP USERGROUP**
 Drops an Oracle ASM user group from a disk group. Dropping a group might leave some files without a valid group. For those files to have a valid group, you must manually update the group associated with those files to a valid group.

 SQL> ALTER DISKGROUP data DROP USERGROUP 'test_grp1';

- **ALTER DISKGROUP MODIFY USERGROUP ADD MEMBER**
 Adds users to the specified user group. The users must be in the disk group, as shown by `V$ASM_USER`, or the command returns an error. Only the creator of the group or the Oracle ASM administrator can modify group membership.

 SQL> ALTER DISKGROUP data MODIFY USERGROUP 'test_grp2' ADD MEMBER 'oracle2';

- **ALTER DISKGROUP MODIFY USERGROUP DROP MEMBER**
 Removes users from the specified user group. If a member is not in the user group, then an error is returned. Only the creator of the group or the Oracle ASM administrator can modify group membership.

 SQL> ALTER DISKGROUP data MODIFY USERGROUP 'test_grp2' DROP MEMBER 'oracle2';

- **ALTER DISKGROUP ADD USER**
 Adds operating system (OS) users to an Oracle ASM disk group, so that these users can have access privileges on the disk group. The users must be existing operating system users, and their user names must have a corresponding operating system user ID or system ID. If a user exists in the disk group, as shown by `V$ASM_USER`, then the command records an error and continues to add other users, if any.

 The operating system user of a running database instance is automatically added to a disk group when the database instance accesses that disk group and creates files. However, for a database instance to read files in a disk group without
creating any files, then you must use the \texttt{ADD USER} clause to add that database user to the disk group. Also, you can use this clause to add a database user to an existing disk group immediately after setting the Oracle ASM File Access Control disk group attributes and before creating new files.

\texttt{SQL> ALTER DISKGROUP DATA ADD USER 'oracle1';}

- \texttt{ALTER DISKGROUP DROP USER}

Drops operating system users from an Oracle ASM disk group. If a user is not in the disk group, then this command records an error and continues to drop other users, if any.

If the user owns any files on the same Oracle ASM disk group, then this command fails with an error, unless the \texttt{CASCADE} keyword is specified. If the latter case, then the user is deleted, along with all the files that the user owns.

If any files owned by the user are currently open, then the \texttt{DROP USER} command fails, and no files are deleted.

\texttt{SQL> ALTER DISKGROUP DATA DROP USER 'oracle1';}

- \texttt{ALTER DISKGROUP SET PERMISSION}

Modifies permissions of an Oracle ASM file. Setting \texttt{read only} permission to a file that has \texttt{read write} permission revokes the \texttt{write} permission. Only the file owner or the Oracle ASM administrator can change the permissions of a file. You cannot change the permissions on an open file.

\texttt{SQL> ALTER DISKGROUP data SET PERMISSION OWNER=read write, GROUP=read only, OTHER=none FOR FILE '+data/controlfile.f';}

- \texttt{ALTER DISKGROUP SET OWNERSHIP}

Changes the owner or group of a file to the specified user or user group name, respectively. If the specified user or user group name does not exist, this command fails with an error. Only the owner of the file or the Oracle ASM administrator can run this command, and only the Oracle ASM administrator can change the owner. Also, the user group name must exist, and the owner of the file must be a member of that group. You cannot change the ownership of an open file.

\texttt{SQL> ALTER DISKGROUP data SET OWNERSHIP OWNER='oracle1', GROUP='test_grpl' FOR FILE '+data/controlfile.f';}

\textbf{See Also:} The \texttt{ALTER DISKGROUP} SQL statement in the Oracle Database SQL Language Reference

\section*{Mounting and Dismounting Disk Groups}

Disk groups that are specified in the \texttt{ASM_DISKGROUPS} initialization parameter are mounted automatically at Oracle ASM instance startup. This makes them available to all database instances running on the same node as Oracle ASM. The disk groups are dismounted at Oracle ASM instance shutdown. Oracle ASM also automatically mounts a disk group when you initially create it, and dismounts a disk group if you drop it.

When a disk group is mounted, a disk group number is chosen. This number may change across disk group mounts. A disk group number is not recorded in any persistent structure, but the current value can be viewed in the \texttt{GROUP_NUMBER} column of the V$ASM views.
When you want to mount or dismount disk groups manually, use the ALTER DISKGROUP...MOUNT or ALTER DISKGROUP...DISMOUNT statement. You can mount or dismount disk groups by name, or specify ALL.

If you try to dismount a disk group that contains open files, the statement fails, unless you also specify the FORCE clause.

In a clustered Oracle ASM environment in RESTRICTED mode, a disk group is mounted in single-instance exclusive mode. No other Oracle ASM instance in that cluster can mount that disk group. In this mode the disk group is not usable by any Oracle ASM client. Use this mode to perform a fast rebalance.

The following SQL statement dismounts all disk groups that are currently mounted to the Oracle ASM instance:

```
ALTER DISKGROUP ALL DISMOUNT;
```

The following SQL statement mounts disk group data1:

```
ALTER DISKGROUP data1 MOUNT;
```

Mounting Disk Groups Using the FORCE Option

Oracle ASM provides a MOUNT FORCE option with ALTER DISKGROUP to enable Oracle ASM disk groups to be mounted in normal or high redundancy modes even though some Oracle ASM disks may be unavailable to the disk group at mount time. The default behavior without the FORCE option is to fail to mount a disk group that has damaged or missing disks.

The MOUNT FORCE option is useful in situations where a disk is temporarily unavailable and you want to mount the disk group with reduced redundancy while you correct the situation that caused the outage.

To successfully mount with the MOUNT FORCE option, Oracle ASM must be able to find at least one copy of the extents for all of the files in the disk group. In this case, Oracle ASM can successfully mount the disk group, but with potentially reduced redundancy.

The disks that Oracle ASM cannot access are placed in an offline mode. Oracle ASM then begins timing the period that these disks are in an offline mode. If the disk offline time period exceeds the timer threshold set by DISK_REPAIR_TIME disk group attribute, then those disks are permanently dropped from the disk group. You can change the offline timer after a disk is put in an offline state by using the ALTER DISKGROUP OFFLINE statement. For more information about setting the DISK_REPAIR_TIME disk group attribute, see “Oracle ASM Fast Mirror Resync” on page 4-27.

Note: An Oracle ASM instance mounts an incomplete disk group differently depending on the specified compatibility. See “Features Enabled By Disk Group Compatibility Attribute Settings” on page 4-37.

In clustered Oracle ASM environments, if an Oracle ASM instance is not the first instance to mount the disk group, then using the MOUNT FORCE statement fails. This is because the disks have been accessed by another instance and the disks are not locally accessible.

If all disks are available, then using the FORCE option causes the MOUNT command to fail. This discourages unnecessary and improper use of the feature.
The following example shows how to use the **FORCE** option to force the mount of the `data1` disk group:

```
ALTER DISKGROUP data1 MOUNT FORCE
```

See Also: The *Oracle Database SQL Language Reference* for additional information about the `ALTER DISKGROUP` statement and the **FORCE** option

Checking the Internal Consistency of Disk Group Metadata

You can check the internal consistency of disk group metadata using the `ALTER DISKGROUP` statement with the **CHECK** keyword. You can use this statement to check specific files in a disk group, specific disks or all disks in a disk group, or specific failure groups within a disk group. The disk group must be mounted to perform these checks.

By default, the **CHECK DISK GROUP** clause verifies all of the metadata directories. Oracle ASM displays summary errors and writes the details about the errors in an alert log. The **CHECK** keyword performs the following operations:

- Verifies the consistency of the disk
- Cross checks all of the file extent maps and allocation tables for consistency
- Checks that the alias metadata directory and file directory are linked correctly
- Verifies that the alias directory tree is linked correctly
- Checks that Oracle ASM metadata directories do not have unreachable allocated blocks

The **REPAIR | NOREPAIR** clause specifies whether Oracle ASM should attempt to repair errors that are found during the check. The default is **NOREPAIR**. Use the **NOREPAIR** clause to receive alerts about inconsistencies and to suppress Oracle ASM from resolving the errors automatically. The following example statement checks for consistency in the metadata for all disks in the `data1` disk group:

```
ALTER DISKGROUP data1 CHECK ALL;
```

See Also: The *Oracle Database SQL Language Reference* for additional information about the **CHECK** clause syntax

Dropping Disk Groups

The `DROP DISKGROUP` statement enables you to delete an Oracle ASM disk group and optionally, all of its files. You can specify the **INCLUDING CONTENTS** clause if you also want to delete all files that are contained in the disk group. The default is **EXCLUDING CONTENTS**, which provides syntactic consistency and prevents you from dropping the disk group if it has any contents.

The Oracle ASM instance must be started and the disk group must be mounted with none of the disk group files open, in order for the `DROP DISKGROUP` statement to succeed. The statement does not return until the disk group has been dropped.

When you drop a disk group, Oracle ASM dismounts the disk group and removes the disk group name from the `ASM_DISKGROUPS` initialization parameter if a server parameter file is being used. If a text initialization parameter file is being used, and the disk group is mentioned in the `ASM_DISKGROUPS` initialization parameter, then you
must remove the disk group name from the \texttt{ASM_DISKGROUPS} initialization parameter before the next time that you shut down and restart the Oracle ASM instance.

The following statement deletes \texttt{data1}:

\begin{verbatim}
DROP DISKGROUP data1;
\end{verbatim}

After ensuring that none of the files contained in \texttt{data1} are open, Oracle ASM rewrites the header of each disk in the disk group to remove Oracle ASM formatting information. The statement does not specify \texttt{INCLUDING CONTENTS}, so the drop operation fails if the disk group contains any files.

If an Oracle Automatic Storage Management Cluster File System (Oracle ACFS) file system is mounted on a volume contained in the disk group, then the file system must be dismounted. If the file system has been registered, then it must be deregistered. The \texttt{INCLUDING CONTENTS} clause must be used to drop this disk group. All data in the file system is destroyed. To view the volumes and mount paths associated with a disk group, you can query the \texttt{V\$ASM_VOLUME} view. For an example of a query on the \texttt{V\$ASM_VOLUME} view, see Example 6–16 on page 6-8. For information about deregistering and dismounting Oracle ACFS file systems, see "Deregistering, Dismounting, and Disabling Volumes and Oracle ACFS File Systems" on page 13-18.

If you cannot mount a disk group but must drop it, you can use the \texttt{FORCE} option of the \texttt{DROP DISKGROUP} statement. This command enables you to remove the headers on disks that belong to a disk group that cannot be mounted by any Oracle ASM instances as shown in the following example:

\begin{verbatim}
DROP DISKGROUP data1 FORCE
\end{verbatim}

The disk group on which you perform this operation should not be mounted anywhere in the cluster. When you use the \texttt{FORCE} option, the Oracle ASM instance does not attempt to verify that a disk group is being used by another Oracle ASM instance in the same storage subsystem.

\begin{quote}
\textbf{Note:} Use the \texttt{FORCE} option with extreme caution.
\end{quote}

You can also drop a disk group with Oracle Enterprise Manager. See "Dropping Disk Groups" on page 9-12.

\section*{Renaming Disks Groups}

The \texttt{renamedg} tool enables you to change the name of a cloned disk group. The disk group must be dismounted on all nodes in the cluster before running \texttt{renamedg} on the disk group.

\texttt{renamedg} renames a disk group using a two-step process:

\begin{enumerate}
\item Phase one

 This phase generates a configuration file to be used in phase two.

\item Phase two

 This phase uses the configuration file to perform the renaming of the disk group.
\end{enumerate}

The syntax is:

\begin{verbatim}
renamedg [-help | help=true]
\end{verbatim}
Renamedg

[phase={one|two|both}] dgname=diskgroup
newdgname=newdiskgroup [config=configfile]
[asm_diskstring=discoverystring, discoverystring ...]
[clean={true|false}] [check={true|false}]
[confirm={true|false}] [verbose={true|false}]
[keep_voting_files={true|false}]

- **phase={one|two|both}**
 Specifies the phase to be run. Allowed values are one, two, or both. This argument is optional. The default is both.
 Typically you would run both phases. If a problem occurs during the second phase, then you can re-run phase two using the generated configuration file.

- **dgname=diskgroup**
 Specifies the name of the disk group that to be renamed.

- **newdgname=newdiskgroup**
 Specifies the new name for the disk group.

- **config=configfile**
 Specifies the path to the configuration file to be generated during phase one or specifies the path to the configuration file to be used during phase two.
 This argument is optional. The default configuration file is named renamedg_config and is located in the directory in which the command is run. The single quotations may be required on some platforms.

- **asm_diskstring=discoverystring, discoverystring ...**
 Specifies the Oracle ASM discovery strings. The asm_diskstring value must be specified if the Oracle ASM disks are not in the default location for the platform. The single quotations may be required on some platforms, usually when wildcard characters are specified.

- **clean={true|false}**
 Specifies whether to tolerate errors that are otherwise ignored. The default is true.

- **check={true|false}**
 Specifies a boolean value that is used in the second phase. If true, then the tool prints the list of changes that are to be made to the disks. No writes are issued. It is an optional parameter that defaults to false.

- **confirm={true|false}**
 Specifies a boolean value that is used in the second phase. If false, then the tool prints the changes that are to be made and seeks confirmation before actually making the changes. It is an optional value that defaults to false. If check is set to true, then the value of this parameter is redundant.

- **verbose={true|false}**
 Specifies verbose execution when verbose=true. The default is false.

- **keep_voting_files={true|false}**
 Specifies whether voting files are kept in the renamed disk group. The default is false which deletes the voting files from the renamed disk group.
Example 4–13 shows several examples of the use of renamedg. The first example renames the data disk group to new_data using a disk string to locate the disks and the verbose option is enabled. The second example only creates a configuration file during the completion of phase one of the renamedg operation. The third example runs phase two of the renamedg operation using a configuration file generated from a phase one execution of renamedg.

Example 4–13 Using renamedg

```
$ renamedg dgname=data newdgname=new_data asm_diskstring='/devices/disk*' verbose=true

$ renamedg phase=one dgname=data newdgname=new_data
    asm_diskstring='/devices/disk*' config=/tmp/data2.conf verbose=true

$ renamedg phase=two dgname=data newdgname=new_data config=/tmp/data2.conf verbose=true
```
Introduction to Oracle ACFS

This chapter describes Oracle Automatic Storage Management Cluster File System (Oracle ACFS) concepts and provides an overview of Oracle ACFS features.

This chapter contains the following topics:

- Overview of Oracle ACFS
- Understanding Oracle ACFS Concepts
- Understanding Oracle ACFS Administration
- Overview of Oracle ASM Dynamic Volume Manager

See Also:

- "Views Containing Oracle ACFS Information" on page 6-6 for information about using views to obtain Oracle ACFS information
- "Managing Volumes in a Disk Group" on page 4-12 for information about using SQL*Plus to administer volumes
- Chapter 10, "Administering Oracle ACFS with Oracle Enterprise Manager" for information about using Oracle Enterprise Manager to administer Oracle ACFS
- Chapter 11, "Oracle ASM Configuration Assistant" for information about using Oracle ASM Configuration Assistant to administer Oracle ACFS
- "ASMCMD Volume Management Commands" on page 12-62 for information about volume management commands
- Chapter 13, "Oracle ACFS Command-Line Tools" for information about Oracle ACFS operating system utilities

Overview of Oracle ACFS

Oracle Automatic Storage Management Cluster File System (Oracle ACFS) is a multi-platform, scalable file system, and storage management technology that extends Oracle Automatic Storage Management (Oracle ASM) functionality to support customer files maintained outside of Oracle Database. Oracle ACFS supports many database and application files, including executables, database trace files, database alert logs, application reports, BFILEs, and configuration files. Other supported files are video, audio, text, images, engineering drawings, and other general-purpose application file data.
Overview of Oracle ACFS

Notes:

- Oracle ASM is the preferred storage manager for all database files. It has been specifically designed and optimized to provide the best performance for database file types.

- Oracle ACFS is the preferred file manager for non-database files. It is optimized for general purpose files.

- Oracle ACFS does not support any file that can be directly stored in Oracle ASM.

 Not supported means Oracle Support Services does not take calls and development does not fix bugs associated with storing unsupported file types in Oracle ACFS.

 For a list of file types supported by Oracle ASM, see Table 7–1, "File types supported by Oracle ASM" on page 7-1.

- Oracle ACFS does not support files for the Oracle Grid Infrastructure home.

- Oracle ACFS does not support Oracle Cluster Registry (OCR) and voting files.

- Oracle ACFS functionality requires that the disk group compatibility attributes for ASM and ADVM be set to 11.2 or greater. To use Oracle ACFS encryption, replication, security, and tagging functionality, the disk group compatibility attributes for ASM and ADVM must be set to 11.2.0.2. For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.

An Oracle ACFS file system is a layer on Oracle ASM and is configured with Oracle ASM storage, as shown in Figure 5–1. Oracle ACFS leverages Oracle ASM functionality that enables:

- Oracle ACFS dynamic file system resizing

- Maximized performance through direct access to Oracle ASM disk group storage

- Balanced distribution of Oracle ACFS across Oracle ASM disk group storage for increased I/O parallelism

- Data reliability through Oracle ASM mirroring protection mechanisms
Oracle ACFS establishes and maintains communication with the Oracle ASM instance to participate in Oracle ASM state transitions including Oracle ASM instance and disk group status updates and disk group rebalancing. Oracle Automatic Storage Management with Oracle ACFS and Oracle ASM Dynamic Volume Manager (Oracle ADVM) delivers support for all customer data and presents a common set of Oracle storage management tools and services across multiple vendor platforms and operating system environments on both Oracle Restart (single-node) and cluster configurations. For an overview of Oracle ADVM, see "Overview of Oracle ASM Dynamic Volume Manager" on page 5-18.

Oracle ACFS is tightly coupled with Oracle Clusterware technology, participating directly in Clusterware cluster membership state transitions and in Oracle Clusterware resource-based high availability (HA) management. In addition, Oracle installation, configuration, verification, and management tools have been updated to support Oracle ACFS.

Oracle ACFS can be accessed and managed using native operating system file system tools and standard application programming interfaces (APIs). Oracle ACFS can be configured and managed using Oracle Enterprise Management tools. Oracle ACFS can be accessed using industry standard Network Attached Storage (NAS) File Access Protocols: Network File System (NFS) and Common Internet File System (CIFS).

In addition to sharing file data, Oracle ACFS provides additional storage management services including support for the Oracle Restart mount registry and the Oracle Grid Infrastructure clusterwide mount registry, dynamic on-line file system resizing, and multiple space-efficient snapshots for each file system. For information about the mount registry, see "About the Oracle ACFS Mount Registry" on page 5-7.

Oracle ACFS contributes to the overall Oracle storage management by providing:

- A general-purpose single-node (standalone) and cluster file system solution that is integrated with Oracle ASM, Oracle Clusterware, and Oracle Enterprise Management technologies
- A common set of file system features across multiple vendor platforms and operating systems, offering an alternative to native operating system or third-party file system solutions
- Single-node and clusterwide shared Oracle Database homes and application data
- Uniform, coherent shared file access and clusterwide naming of all customer application files maintained outside of the database

Oracle ACFS accommodates large storage capacities and large numbers of cluster nodes. It efficiently manages large numbers of file systems, files, and supports both
small and large sized files with exabyte-capable file and file system capacities. Oracle ACFS provides optimized fast directory lookup for large directories with hundreds of thousands of files.

Oracle ACFS file systems are generally mounted on all Oracle Cluster Synchronization Services (CSS) cluster members. In the event of a member failure, another cluster member quickly recovers any outstanding metadata transactions on behalf of the failed member. Following recovery, access by other active cluster members and any remote client systems can resume.

Create Oracle Database data files directly on Oracle ASM storage for best performance because Oracle ACFS does not support directIO for file read and write operations in 11g Release 2 (11.2).

See Chapter 6, "Using Views to Display Information" and Chapter 13, "Oracle ACFS Command-Line Tools".

Understanding Oracle ACFS Concepts

This section describes concepts for the key Oracle ACFS components and contains the following topics:

- About Oracle ACFS
- About Oracle ACFS and Oracle Database Homes
- About Oracle ASM Dynamic Volume Manager
- About the Oracle ACFS Driver Model
- About the Oracle ACFS Mount Model and Namespace
- About the Oracle ACFS Mount Registry
- About Oracle ACFS Snapshots
- About Oracle ACFS and Backup and Restore
- About Oracle ACFS Integration with Oracle ASM

About Oracle ACFS

Oracle ACFS is designed as a general-purpose, single-node and clusterwide file system that delivers support for customer file system application data maintained outside of Oracle Database. Users and applications can access and manage Oracle ACFS using native operating system file system application programming interfaces (APIs) and command-line interface (CLI) tools. Users can also manage Oracle ACFS with Oracle Enterprise Manager.

Oracle ACFS supports large files with 64-bit file and file system data structure sizes leading to exabyte capable file and file system capacities on 64 bit platforms. Variable extent-based storage allocation and high-performance directories contribute to fast performance and shared disk configurations that provide direct storage paths to Oracle ACFS file data from each cluster member. File system integrity and fast recovery is achieved with Oracle ACFS metadata checksums and journaling. Oracle ACFS is designed as a multi-node, shared file system model that delivers coherent, cached, direct storage paths to Oracle ACFS file data from each cluster member.

Oracle ACFS files systems are typically configured for clusterwide access. File systems, files, and directories are visible and accessible from all cluster members and can be referenced by users and applications using the same path names from any cluster member. This design enables simplified application deployments across cluster
members and facilitates both multiple instance cluster applications and high availability (HA) failover of unmodified single-node applications.

Oracle ACFS presents single system file access semantics across cluster configurations. Applications and users on all cluster members are always presented with the same view of shared Oracle ACFS file data, supported by the Oracle ACFS clusterwide user and metadata cache coherency mechanism.

About Oracle ACFS and Oracle Database Homes

You can use an Oracle ACFS file system for an Oracle Database home file system. The file system can be configured as any Oracle Database home, including a shared or non-shared Oracle Database home in Oracle RAC cluster configurations.

After the Oracle ACFS file system is created, the Oracle ACFS-based database home mount point location can be selected as the Oracle Database Home location by browsing to and then choosing the directory during the Oracle Universal Installer (OUI) Database Software installation.

Note: Oracle Database data files are not supported on Oracle ACFS. These data files should be placed in Oracle ASM disk groups.

Oracle Database homes created on Oracle ACFS should be located directly under the ORACLE_BASE/acfsmounts mount point location where ORACLE_BASE is the user-specified database directory of the database owner.

The Oracle Database base (ORACLE_BASE for database) directory should not be located on the Oracle ACFS file system. The Oracle Database base (ORACLE_BASE for database) directory should not be the Oracle Grid Infrastructure base (ORACLE_BASE for grid) directory or should not be located under the Oracle Grid Infrastructure base directory (ORACLE_BASE for grid).

One or more Oracle Database homes on Oracle ACFS can be created under the mount point. Each Oracle Database home should be created using a separate Oracle ACFS file system located under the acfsmounts mount point. For example, ORACLE_BASE/acfsmounts/dbhome1 and ORACLE_BASE/acfsmounts/dbhome2 can be configured as two individual file systems mounted on dbhome1 and dbhome2 mount points created under the ORACLE_BASE/acfsmounts mount point.

After the installation of Grid Infrastructure Software and before the installation of the Oracle Database software with Oracle Universal Installer (OUI), you can create an Oracle ACFS file system to be configured for use as an Oracle Database Home.

You can also use the Oracle ASM Configuration Assistant (ASMCA) to create the Oracle file system or you can perform the general procedure for creating the file system. For information about using ASMCA, see "Creating an Oracle ACFS File System for a Database Home" on page 11-16. For information about using Oracle ACFS commands to create a file system, see Chapter 13, "Oracle ACFS Command-Line Tools".
In an Oracle Grid Infrastructure clusterware configuration, run `srvctl add filesystem` to enable a file system to be automounted when an Oracle Database home is installed on the Oracle ACFS file system. That file system should not be added to the Oracle ACFS mount registry. The database owner can be specified with the `-u` option to allow that owner to mount and dismount the file system. Root privilege is required when using `srvctl add filesystem` to add a file system on Linux.

The `srvctl start filesystem` command is used to manually mount the Oracle ACFS file system.

Oracle ACFS file systems can be also configured for use as application homes and Oracle Database homes. However, Oracle ACFS file systems cannot be used for an Oracle base directory or an Oracle Grid Infrastructure home that contains the software for Oracle Clusterware, Oracle ASM, Oracle ACFS, and Oracle ADVM components.

See Also:
- The *Oracle Database Installation Guide* for your environment for information about the installation of Oracle Database software and storage options
- The *Oracle Grid Infrastructure Installation Guide* for your environment for information about the installation of Oracle Database software and storage options
- *Oracle Database Administrator’s Guide* for information about using Oracle Managed files

About Oracle ASM Dynamic Volume Manager

The Oracle ASM Dynamic Volume Manager (Oracle ADVM) provides volume management services and a standard disk device driver interface to clients. File systems and other disk-based applications send I/O requests to Oracle ADVM volume devices as they would to other storage devices on a vendor operating system.

For more information about Oracle ADVM, see “Overview of Oracle ASM Dynamic Volume Manager” on page 5-18.

About the Oracle ACFS Driver Model

An Oracle ACFS file system is installed as a dynamically loadable vendor operating system (OS) file system driver and tool set that is developed for each supported operating system platform. The driver is implemented as a Virtual File System (VFS) and processes all file and directory operations directed to a specific file system.
Understanding Oracle ACFS Concepts

Introduction to Oracle ACFS

About the Oracle ACFS Mount Model and Namespace

Oracle ACFS is designed as a hierarchical file system containing files and subdirectories organized into a tree-structured namespace with files at the leaf nodes. The namespace design is a single-file system naming model for both single-node and cluster configurations. This design enables each cluster member to present shared files to cluster applications using the same path names, simplifying multi-node application and user access, and overall file system administration. The Oracle ACFS mount model also accommodates node local mounts and cluster node subset mounts in cluster configurations to accommodate additional customer requirements.

With a primary focus upon the support of customer application files, Oracle ACFS is not for use as root file system of an operating system or boot storage. Otherwise, an Oracle ACFS file system may be mounted into the native operating system file system namespace using either the mount command line tool or an Oracle Enterprise Management tool.

About the Oracle ACFS Mount Registry

The Oracle ACFS mount registry is an operating system independent, multi-platform mount registration facility supporting both supporting both Oracle Restart and Oracle Grid Infrastructure cluster configurations. File systems that are to be mounted persistently (across reboots) can be registered with the Oracle ACFS mount registry. In cluster configurations, registered Oracle ACFS file systems are automatically mounted by the mount registry, similar to a clusterwide mount table. However, automatic mounting of registered Oracle ACFS file systems are not supported for Oracle Restart configurations. For more information, see "Oracle ACFS and Oracle Restart" on page B-6.

By default, an Oracle ACFS file system that is inserted into the cluster mount registry is automatically mounted on all cluster members, including cluster members that are added after the registry addition. However, the cluster mount registry also accommodates single-node and multi-node (subset of cluster nodes) file system registrations. The mount registry actions for each cluster member mount only registered file systems that have been designated for mounting on that member.

The Oracle ACFS registry resource actions are designed to automatically mount a file system only one time for each Oracle Grid Infrastructure initialization to avoid potential conflicts with administrative actions to dismount a given file system.

For information about registering an Oracle ACFS file system using the `acfsutil` command, see "acfsutil registry" on page 13-96.

Note: Do not register an Oracle ACFS file system that has had an individual file system Cluster Ready Services (CRS) resource added. For example, do not register a file system with `acfsutil registry` if the Oracle ACFS file system has been registered using `srvctl add filesystem`.

Note: Errors encountered by the drivers are written to the native operating system console and system event loggers. See "Understanding Oracle ACFS I/O Failure Console Messages" on page B-6.
About Oracle ACFS Snapshots

An Oracle ACFS snapshot is an online, read-only, point in time copy of an Oracle ACFS file system. The snapshot copy is space-efficient and uses Copy-On-Write functionality. Before an Oracle ACFS file extent is modified or deleted, its current value is copied to the snapshot to maintain the point-in-time view of the file system.

Oracle ACFS snapshots are immediately available for use after they are created. They are always online while the file system is mounted. Consequently, an Oracle ACFS snapshot can support the online recovery of files inadvertently modified or deleted from a file system. With up to 63 snapshot views supported for each file system, flexible online file recovery solutions spanning multiple views can be employed. An Oracle ACFS snapshot can also be used as the source of a file system backup, as it can be created on demand to deliver a current, consistent, online view of an active file system.

Oracle ACFS snapshot storage is maintained within the file system, eliminating the management of separate storage pools for file systems and snapshots. Oracle ACFS file systems can be dynamically resized to accommodate additional file and snapshot storage requirements.

After a snapshot of a file system is taken, Oracle ACFS security metadata in the snapshot cannot be modified. In addition, the security attributes of the files in the snapshot cannot be modified. If a file was not secured by a security realm in the snapshot, it cannot be realm secured by adding the corresponding file in the active file system to a security realm. For information about Oracle ACFS security, refer to "Oracle ACFS Security" on page 5-12.

After a snapshot of a file system is taken, Oracle ACFS encryption parameters of files in the snapshot cannot be changed. In addition, files in a snapshot cannot be encrypted, decrypted, or rekeyed. If a file was not encrypted in the snapshot, that file cannot be encrypted by encrypting the corresponding file in the active file system. For information about Oracle ACFS encryption, refer to "Oracle ACFS Encryption" on page 5-14.

Oracle ACFS snapshots are administered with the acfsutil snap commands. For information about the acfsutil snap commands, refer to "acfsutil snap create" on page 13-99 and "acfsutil snap delete" on page 13-100.

You can also manage Oracle ACFS snapshots with Oracle Enterprise Manager. For information about using Oracle Enterprise Manager, see "Managing Oracle ACFS Snapshots with Oracle Enterprise Manager" on page 10-5.

About Oracle ACFS and Backup and Restore

Oracle ACFS runs on operating system platforms as a native file system technology supporting native operating system file system application programming interfaces (APIs). Consequently, backup applications that access files using the native operating system file system interfaces are able to access and backup Oracle ACFS file systems and other native operating system file systems. Oracle ACFS snapshots can be dynamically created and used to present a consistent, on-line view of an active file system to a backup application.

Backup applications that use interfaces other than the standard operating system interfaces (read or write) are not supported with Oracle ACFS. For example, Windows backup applications that depend upon the presence of reparse points or the Windows Volume Shadow Copy Service (VSS) are not supported.
About Oracle ACFS Integration with Oracle ASM

Oracle ACFS is always configured with Oracle ASM storage and interfaces with Oracle ASM storage through a traditional device file. This device file is presented by the Oracle ASM Dynamic Volume Manager (Oracle ADVM) and is constructed using a dynamic volume file. The Oracle ADVM volume device file is created automatically following the creation of an Oracle ADVM volume. An Oracle ACFS file system is then bound to the Oracle ADVM device file during the file system creation. After an Oracle ACFS is configured and mounted, the file system inherits the Oracle ASM storage management features associated with an Oracle ADVM volume, including dynamic balanced distribution, mirroring and striping, and dynamic resizing.

The Oracle ACFS driver establishes communication with the Oracle ASM instance to receive Oracle ASM status information including Oracle ASM instance and disk group state transitions.

For information about Oracle ACFS and Oracle ASM operations, see "Oracle ACFS and Dismount or Shutdown Operations" on page 5-11.

Understanding Oracle ACFS Administration

This section describes Oracle ACFS administration and contains the following topics:

- Oracle ACFS and File Access and Administration Security
- Oracle ACFS and Grid Infrastructure Installation
- Oracle ACFS and Grid Infrastructure Configuration
- Clusterware Resources and Oracle ACFS Administration
- Oracle ACFS and Dismount or Shutdown Operations
- Oracle ACFS Security
- Oracle ACFS Encryption
- Oracle ACFS Replication
- Oracle ACFS Tagging

Oracle ACFS and File Access and Administration Security

Oracle ACFS supports both traditional UNIX-style file access control classes (user, group, other) for Linux and UNIX platforms and the Windows Security Model including file access control lists (ACLs) for Windows platforms. Most Oracle ACFS administrative actions are performed by users with either root or Oracle ASM administration privileges for Linux and UNIX platforms and by users with Windows Administrative privileges on Windows platforms. General Oracle ACFS information for file systems can be accessed by any system user.

In support of Oracle ACFS administration, Oracle recommends that the Oracle ASM administrator role is given to a root privileged user, as many common Oracle ACFS file system management tasks including mount, umount, fsck, driver load, and driver unload are root privileged operations. Other privileged Oracle ACFS file system operations that do not require root privileges can be performed by the Oracle ASM administrator. If the Oracle ASM administrator role is not given to a root privileged user, access to Oracle ACFS file systems can be restricted with the norootsuid and nodev mount options.

Additional fine grain access control is provided for Oracle ACFS file systems with the security infrastructure feature. For information about Oracle ACFS security
infrastructure, refer to “Oracle ACFS Security” on page 5-12. For information about Oracle ACFS encryption, refer to “Oracle ACFS Encryption” on page 5-14.

For information about Oracle ASM privileges, see “About Privileges for Oracle ASM” on page 3-24. For information about administering Oracle ACFS, see Chapter 10, "Administering Oracle ACFS with Oracle Enterprise Manager" and Chapter 13, "Oracle ACFS Command-Line Tools”.

Oracle ACFS and Grid Infrastructure Installation
Oracle Grid Infrastructure includes Oracle Clusterware, Oracle ASM, Oracle ACFS, Oracle ADVM, and driver resources software components, which are installed into the Grid Infrastructure Home using the Oracle Universal Installation (OUI) tool.

For information about Oracle ACFS and Oracle Clusterware resources, see "Clusterware Resources and Oracle ACFS Administration” on page 5-10.

Oracle ACFS and Grid Infrastructure Configuration
After a Grid Infrastructure installation and Oracle Clusterware is operational, you can use Oracle ASM Configuration Assistant (ASMCA) to start the Oracle ASM instance and create Oracle ASM disk groups, Oracle ADVM volumes, and Oracle ACFS file systems. Alternatively, Oracle ASM disk groups and Oracle ADVM volumes can be created using SQL*Plus, ASMCMD command line tools, or Oracle Enterprise Manager. File systems can be created using operating system command-line tools or Oracle Enterprise Manager.

Oracle ACFS file systems are configured with Oracle ADVM based operating system storage devices that are created automatically following the creation of an Oracle ADVM dynamic volume file. After a volume file and its associated volume device file are created, a file system can be created and bound to that operating system storage device. Following creation, an Oracle ACFS file system can be mounted, after which it is accessible to authorized users and applications executing file and file system operations.

For an example of the specific actions required to create a file system, see "Basic Steps to Manage an Oracle ACFS” on page 13-1. For information about managing Oracle ACFS file systems with ASMCA, see "Managing Oracle ACFS File Systems with Oracle ASM Configuration Assistant” on page 11-12. For information about managing Oracle ACFS file systems with Oracle Enterprise Manager, see "Creating Oracle ACFS Volumes and File Systems” on page 10-1.

Clusterware Resources and Oracle ACFS Administration
Oracle Clusterware resources support Oracle ACFS, Oracle Kernel Services Driver (OKS), Oracle ADVM startup, the Oracle ACFS cluster mount registry, and Oracle ACFS single file system startup, shutdown, and steady-state actions.

The following list summarizes Oracle ACFS resource-based management.

- The Oracle ACFS, Oracle Kernel Services (OKS), and Oracle ADVM drivers are dynamically loaded when the Oracle ASM instance is started.
 - Oracle ACFS
 This driver processes all Oracle ACFS file and directory operations.
 - Oracle ADVM
This driver provides block device services for Oracle ASM volume files that are used by file systems for creating file systems.

- **Oracle Kernel Services Driver (OKS)**
 This driver provides portable driver services for memory allocation, synchronization primitives, and distributed locking services to Oracle ACFS and Oracle ADVM.

The drivers are managed as a single resource set.

For information, see "Oracle ACFS Drivers Resource Management" on page B-3.

- Oracle ACFS file systems listed in the Oracle ACFS mount registry are automatically mounted during Grid Infrastructure initialization and as new mount registry entries are created.

The registry resource is used to manage activation of the Oracle ACFS mount registry and to support the mount and dismount actions for Oracle ACFS file systems listed in the Oracle ACFS mount registry.

For information, see "Oracle ACFS Registry Resource Management" on page B-4.

- Individual file systems are either manually mounted or dismounted using an Oracle ACFS or Oracle Clusterware command-line tool, or automatically mounted or dismounted based on a resource dependency action.

For example, a file system hosting an Oracle Database home can be named in the dependency list of the associated Oracle Database resource such that issuing a start on the database resource results in mounting the dependent Oracle ACFS hosted database home file system.

For information, see "Oracle ACFS Individual File System Resource Management" on page B-5.

Oracle ACFS and Dismount or Shutdown Operations

It is important to dismount any active file system configured with an Oracle ADVM volume device file before an Oracle ASM instance is shutdown or a disk group is dismounted. After the file systems are dismounted, all open references to Oracle ASM files are removed and associated disk groups can be dismounted or the instance shut down.

If the Oracle ASM instance or disk group is forcibly shut down or fails while an associated Oracle ACFS is active, the file system is placed into an offline error state. If any file systems are currently mounted on Oracle ADVM volume files, the `SHUTDOWN ABORT` command should not be used to terminate the Oracle ASM instance without first dismounting those file systems. Otherwise, applications encounter I/O errors and Oracle ACFS user data and metadata being written at the time of the termination may not be flushed to storage before the Oracle ASM storage is fenced. If it is not possible to dismount the file system, then you should run two `sync` commands to flush cached file system data and metadata to persistent storage before issuing the `SHUTDOWN ABORT` operation.

Any subsequent attempt to access an offline file system returns an error. Recovering a file system from that state requires dismounting and remounting the Oracle ACFS file system. Dismounting an active file system, even one that is offline, requires stopping all applications using the file system, including any shell references. For example, a previous change directory (`cd`) into a file system directory. The Linux `fuser` or `lsof` commands or Windows `handle` command list information about processes and open files.
For information about shutting down an Oracle ASM instance, see "Shutting Down an Oracle ASM Instance" on page 3-16. For information about dismounting a disk group, see "Mounting and Dismounting Disk Groups" on page 4-43.

Oracle ACFS Security

Oracle ACFS security provides realm-based security for Oracle ACFS file systems, enabling you to create realms to specify security policies for users and groups to determine access on file system objects. This security feature provides a finer-grained access control on top of the access control provided by the operating system. Oracle ACFS security can utilize the encryption feature to protect the contents of realm-secured files stored in Oracle ACFS file systems.

Oracle ACFS security uses realms, rules, rule sets, and command rules to enforce security policies.

- An Oracle ACFS security realm is a group of files or directories that are secured for access by a user or a group of users. Realms are defined with rule sets which contain groups of rules that apply fine grain access control. Oracle ACFS security realms can also be used as containers to enable encryption.
- Oracle ACFS security rules are Boolean expressions that evaluate to true or false based on a system parameter on which the rule is based.
- Oracle ACFS rule sets are collection of rules. Rule sets evaluate to `TRUE` or `FALSE` based on the evaluation of the rules a rule set contains.
- Oracle ACFS command rules are associations of the file system operation to a rule set. For example, the association of a file system create, delete, or rename operation to a rule set. Command rules are associated with an Oracle ACFS realm.

An existing operating system user must be designated as the first Oracle ACFS security administrator and an existing operating system group must be designated as the security administrator `admin` group. Security administrators must be members of the designated security group. Additional users can be designated as security administrators. An Oracle ACFS security administrator can manage encryption for an Oracle ACFS file system on a per-realm basis. An Oracle ACFS security administrator is authenticated for security operations with a security realm password, not the operating system password of the user.

The first security administrator is created during the initialization of Oracle ACFS security with the `acfsutil sec init` command which is run by the root user. When the first security administrator is created, the administrator is assigned a password that can be changed by the administrator. The security realm passwords for administrators are stored in a location created during the security initialization process. Each time a security administrator runs an `acfsutil sec` command, the administrator is prompted for the security password.

Auditing and diagnostic data are logged for Oracle ACFS security. The log files include information such as `acfsutil` commands that have been run, the use of security or system administrator privileges, and runtime failures such as realm check authorization failures. Logs are written to the following files:

- `mount_point/.Security/realm/logs/sec-host_name.log`

 The directory is created with `acfsutil sec prepare` command and protected by Oracle ACFS security. Refer to "`acfsutil sec prepare`" on page 13-69.

- `GRID_HOME/log/host_name/acssec/acfssec.log`
The messages that are logged to this file are for commands that are not associated with a specific file system, such as `acfsutil sec init`. The directory is created during installation and is owned by the root user.

When an active log file grows to a pre-defined maximum size (10 MB), the file is automatically moved to `log_file_name.bak`, the administrator is notified, and logging continues to the regular log file name. When the administrator is notified, the administrator must archive and remove the `log_file_name.bak` file. If an active log file grows to the maximum size and the `log_file_name.bak` file exists, logging stops until the backup file is removed. After the backup log file is removed, logging restarts automatically.

Oracle ACFS security protects the following objects from unauthorized accesses:

- Realm-secured directories and user files
 The directories and files reside on a file system secured by Oracle ACFS security.

- The Oracle ACFS security directory (`mount_point/.Security`) and its contents
 The security directory contains the log files in plain-text format and a security metadata backup file in XML format. The log files generated by Oracle ACFS security can only be accessed by valid Oracle ACFS security administrators.

- Oracle ACFS security objects
 These objects are the security realms, rules, and rule sets used to manage Oracle ACFS security.

Access to files in a security realm of an Oracle ACFS file system must be authorized by both the security realm and the underlying operating system permissions, such as (owner, group, other) permissions on Linux and Access Control Lists (ACLs) on Windows. Each access to a realm-secured file is first checked for security realm authorization. If the access is authorized by the security realm, then access to the files is checked by the underlying operating system access control checks. If both checks pass, access is allowed to the realm-secured file.

Note the following when working with Oracle ACFS security:

- Oracle ACFS security is not supported if the file system has been replicated.

- Oracle ACFS security does not provide any protection for data sent on the network.

- To use Oracle ACFS security functionality, the disk group compatibility attributes for ASM and ADVM must be set to 11.2.0.2.
 For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.

- A copy of a realm-protected file is not realm-protected unless the copy is made in a security realm-protected directory.

Some applications, such as the `vi` editor, recreate a file when the file is modified. The modified file is saved as a temporary file, the original file is removed, and temporary file is copied with the original file name as the destination name. This process creates a new file. If the new file is created in a realm-protected directory, the security policies of the realm also apply to the new file. If the new file is not created in a realm-protected directory, then the new file is not realm-protected. If you are planning to copy a realm-protected file, you should ensure that the parent directory is also security realm protected.

Security policies also apply to any temporary files created in a realm-protected directory.
The **WRITE** command rule only protects against the write system call so a file may still be modifiable with other file operations.

To protect the file from any modification, set the **WRITE**, **TRUNCATE**, and **DELETEFILE** command rules to **DENY**. For information about adding command rules to a security realm, refer to "acfsutil sec realm add" on page 13-70.

For information about Oracle ACFS security and snapshots, refer to "About Oracle ACFS Snapshots" on page 5-8.

Security information for Oracle ACFS file systems is displayed in the `V$ASM_ACFS_SECURITY_INFO` view. For information about `V$ASM` views, refer to "Views Containing Oracle ACFS Information" on page 6-6.

Oracle ACFS Encryption

Oracle ACFS encryption enables you to encrypt data stored on disk (data-at-rest). The encryption feature protects data in an Oracle ACFS file system in encrypted format to prevent unauthorized use of data in the case of data loss or theft. Both encrypted and non-encrypted files can exist in the same Oracle ACFS file system.

Some of the encryption functionality requires system administrator privileges. This functionality includes the commands for initiating, setting, and reconfiguring encryption.

System administrators and Oracle ACFS security administrators can initiate encryption operations. Also, unprivileged users can initiate encryption for files they own.

Oracle ACFS encryption provides two type of encryption keys:

- **File Encryption Key**

 This is a key for a file and is used to encrypt the data in the file.

- **Volume Encryption Key**

 This is a key for a file system and is used to encrypt the file encryption keys.

You must first create the encryption key store, then specify file system-level encryption parameters and identify the directories. No extra steps are required for a user to read encrypted files if the user has the appropriate privileges for accessing the file data.

Oracle ACFS encryption protects data stored on secondary storage against the threat of theft or direct access to the storage medium. Data is never written to secondary storage in plaintext. Even if physical storage is stolen, the data stored cannot be accessed without the encryption keys. The encryption keys are never stored in plaintext. The keys are either obfuscated, or encrypted using a user-supplied password.

An Oracle ACFS security administrator can manage encryption parameters on a per-realm basis. After a file is placed under realm security, file-level encryption operations are not allowed on that file. Even if the realm security allows the file owner or the root user to open the file, file-level encryption operations are blocked. Encryption of realm-protected files is managed entirely by the Oracle ACFS security administrator, who can enable and disable encryption for files at a security realm level.
After a directory has been added to a security realm, all files created in the directory inherit the realm-level encryption parameters, not the directory or file system-level parameters. When a file is removed from its last security realm, the file is encrypted or decrypted to match the file system-level encryption status. The file is not re-encrypted to match file system-level parameters if it has been encrypted with security realm parameters.

A system administrator cannot re-key realm-secured files at the file system or file level. To ensure all realm-secured files are encrypted with the most recent volume encryption key (VEK), you must first remove encryption from all realms, and then re-enable encryption. This action re-encrypts all files with the most recent VEK.

Auditing and diagnostic data are logged for Oracle ACFS encryption. The log files include information such as `acfsutil` commands that have been run, the use of security or system administrator privileges, and runtime failures. Logs are written to the following files:

- `mount_point/.Security/encryption/logs/encr-host_name.log`
 The directory is created with `acfsutil encr set` command and protected by Oracle ACFS security if security is enabled. Refer to "acfsutil encr set" on page 13-87.

- `GRID_HOME/log/host_name/acfssec/acfssec.log`
 The messages that are logged to this file are for commands that are not associated with a specific file system, such as `acfsutil encr init`. The directory is created during installation and is owned by the root user.

When an active log file grows to a pre-defined maximum size (10 MB), the file is automatically moved to `log_file_name.bak`, the administrator is notified, and logging continues to the regular log file name. When the administrator is notified, the administrator must archive and remove the `log_file_name.bak` file. If an active log file grows to the maximum size and the `log_file_name.bak` file exists, logging stops until the backup file is removed. After the backup log file is removed, logging restarts automatically.

Note the following when working with Oracle ACFS encryption:

- Oracle ACFS encryption is not supported if the file system has been replicated.
- To use Oracle ACFS encryption functionality, the disk group compatibility attributes for ASM and ADVM must be set to 11.2.0.2.
 For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.
- A copy of an encrypted file is not encrypted unless the copy of the file is made in an encrypted directory.
 Some applications, such as the vi editor, recreate a file when the file is modified. The modified file is saved as a temporary file, the original file is removed, and temporary file is copied with the original file name as the destination name. This process creates a new file. The new file is not encrypted unless it is created in an encrypted directory. If you are planning to copy an encrypted file, you should ensure that the parent directory is also encrypted.

For information about Oracle ACFS encryption and snapshots, refer to "About Oracle ACFS Snapshots" on page 5-8.

Encryption information for Oracle ACFS file systems is displayed in the `V$ASM_ACFS_ENCRYPTION_INFO` view. For information about `V$ASM` views, refer to "Views Containing Oracle ACFS Information" on page 6-6.
To configure encryption and manage encrypted Oracle ACFS file systems, you can use the `acfsutil encr` command-line functions described in "Encrypting Oracle ACFS File Systems" on page 13-10 and "Oracle ACFS Command-Line Tools for Encryption" on page 13-83. Also, you can use Oracle ASM Configuration Assistant with encryption features as described in "Managing Security and Encryption for Oracle ACFS File Systems with Oracle ASM Configuration Assistant" on page 11-14.

Oracle ACFS Replication

Notes:

- Oracle ACFS replication functionality supports only one standby file system for each primary file system.
- Oracle ACFS replication supports eight or fewer nodes mounting the primary file system.
- Oracle ACFS replication is not supported if the file system has been encrypted with Oracle ACFS encryption.
- Oracle ACFS replication is not supported if the file system has been prepared for Oracle ACFS security.
- The sites hosting the primary and standby file systems must be running the same operating system and must have the same machine architecture.

Oracle ACFS replication enables replication of Oracle ACFS file systems across the network to a remote site, providing disaster recovery capability for the file system.

Oracle ACFS replication can be configured for both standalone and cluster systems. The source Oracle ACFS file system of an Oracle ACFS replication is referred to as a primary file system. The target Oracle ACFS file system of an Oracle ACFS replication is referred to as a standby file system.

A site can host both primary and standby file systems. For example, if there are cluster sites A and B, a primary file system hosted at site A can be replicated to a standby file system at site B. Also, a primary file system hosted at site B can be replicated to a standby file system at site A. However, an Oracle ACFS file system cannot be used as a primary and a standby file system.

Oracle ACFS replication captures file system changes for a primary file system and records the changes in files called replication logs. These logs are transported to the site hosting the associated standby file system where background processes read the logs and apply the changes recorded in the logs to the standby file system. After the changes recorded in a replication log have been successfully applied to the standby file system, the replication log is deleted from the sites hosting the primary and standby file systems.

It is critical that there is enough disk space available on both sites hosting the primary and the standby file systems to contain the replication logs. If the primary file system runs out of space, applications running on the file system may fail because Oracle ACFS cannot create a new replication log to capture the file system changes made by the application. If the standby file system runs out of space, it cannot accept new replication logs from the primary file system and cannot apply those changes to the standby file system. In addition, replication logs accumulate on the primary file system and consume the available disk space.
You should prevent both the primary file system and the standby file system from running out of space. If either file system runs out of available storage, you should either expand the file system or remove files from the file system to free up space. If the primary file system runs out of space and you decide to free up space by removing files, you should only remove files that are not being replicated because the removal of a file that is replicated is captured in a replication log. Another option is to delete any Oracle ACFS snapshots. For information about resizing an Oracle ACFS file system, refer to "acfsutil size" on page 13-98.

Because replication logs can accumulate when replication is paused, you should resume replication soon after pausing replication. For information on pausing and resuming replication, refer to "acfsutil repl pause" on page 13-56 and "acfsutil repl resume" on page 13-57.

Before using replication on a file system, ensure that you have checked the following:

- There is sufficient network bandwidth to support replication between the primary and standby file systems.
- The configuration of the sites hosting the primary and standby file systems allow the standby file system to keep up with the rate of change on the primary file system.
- The standby file system has sufficient capacity to manage the replication logs that are sent.
- There is sufficient storage capacity to hold excess replication logs that might collect on the primary and the standby file systems when the standby file system cannot process replication logs in a timely manner. For example, this situation can occur during network problems or maintenance on the site hosting the standby file system.
- The primary and standby file systems should have a minimum size of 4 GB.

See Also: For information about tuning the network, refer to the documentation at this link on Oracle Technology Network:

http://www.oracle.com/technology/deploy/availability/htdocs/maa.htm

Relevant information on tuning the network can be found in the Data Guard Redo Transport & Network Configuration paper.

Directories and files in an Oracle ACFS file system can be tagged to select the objects that you want to replicate in a file system. For information on tagging, see "Oracle ACFS Tagging" on page 5-18.

Before replicating an Oracle ACFS file system, a replication configuration must be established that identifies information such as the site hosting the primary file system, the site hosting the standby file system, the file system to be replicated, mount point of the file system, and a list of tags if desired.

To use Oracle ACFS replication functionality, the compatibility attributes for ASM and ADVM must be set to 11.2.0.2 for the disk groups that contain the primary and standby file systems. For information about disk group compatibility, refer to “Disk Group Compatibility” on page 4-32.

Oracle ACFS Tagging

Oracle ACFS tagging assigns a common naming attribute to a group of files. Oracle ACFS Replication can use this tag to select files with a unique tag name for replication to a different remote cluster site. The tagging option avoids having to replicate an entire Oracle ACFS file system.

To use Oracle ACFS tagging functionality, the disk group compatibility attributes for ASM and ADVM must be set to 11.2.0.2. For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.

Oracle ACFS implements tagging with Extended Attributes. Some editing tools and backup utilities do not retain the Extended Attributes of the original file by default; you must set a specific switch. The following list describes the necessary requirements and switch settings for some common utilities to ensure Oracle ACFS tag names are preserved on the original file.

- Install the coreutils library (version coreutils-5.97-23.el5_4.1.src.rpm or coreutils-5.97-23.el5_4.2.x86_64.rpm or later) on Linux to install versions of the cp command that supports Extended Attribute preservation with the --preserve=xattr switch and the mv command that supports Extended Attribute preservation without any switches.

- vim or vi editors require the set bkc=yes option in the .vimrc (Linux) or _vimrc (Windows) file to make a backup copy of a file and overwrite the original. This preserves tag names on the original file.

- emacs requires that the backup-by-copying option is set to a non-nil value to preserve tag names on the original file name rather than a backup copy. This option must be added to the .emacs file.

- The rsync file transfer utility requires the -X flag option to preserve tag names. In addition, you must set the -l and -X flags to preserve the tag names assigned to symbolic link files themselves.

- The tar backup utility on Linux requires the --xattrs flag be set on the command line to preserve tag names on a file. However, tar does not retain the tag names assigned to symbolic link files even with the --xattrs flag. The tar backup utility on Windows currently provides no support to retain tag names as no switch exists to save Extended Attributes.

Overview of Oracle ASM Dynamic Volume Manager

Oracle ASM Dynamic Volume Manager (Oracle ADVM) provides volume management services and a standard disk device driver interface to clients. File systems and other disk-based applications send I/O requests to Oracle ADVM volume devices as they would to other storage devices on a vendor operating system.

An Oracle ADVM volume device is constructed from an Oracle ASM dynamic volume. One or more Oracle ADVM volume devices may be configured within each Oracle ASM disk group. The Oracle ADVM Driver maps I/O requests against an Oracle ADVM volume device to blocks in a corresponding Oracle ASM dynamic volume and disk set located within an Oracle ASM disk group. An Oracle ADVM volume device exports Oracle ASM volume manager features and ensures that volume
mirrors remain consistent in the face of abnormal system shutdowns, Oracle ASM instance failures, or system failures.

Oracle ADVM extends Oracle ASM by providing a disk driver interface to Oracle ASM storage allocated as Oracle ASM volume files. You can use Oracle ADVM to create virtual disks that contain file systems. These file systems contained on Oracle ASM volumes are able to support files beyond Oracle database files, such as executable files, report files, trace files, alert logs, and other application data files. Because Oracle ADVM volumes are actually Oracle ASM files, they require the same administrative privileges as the Oracle ASM files.

Oracle Automatic Storage Management Cluster File System (Oracle ACFS) is layered on Oracle ASM through the Oracle ADVM interface. With the addition of the Oracle ADVM, Oracle ASM becomes a complete storage solution of user data for both database and non-database file needs.

To add a volume to an Oracle ASM disk group, disk group attributes COMPATIBLE.ASM and COMPATIBLE.ADVM must be set to '11.2'. The volume name can be a maximum of 11 alphanumeric characters; dashes are not allowed. The first character must be alphabetic.

Note: Dynamic volumes supersede traditional device partitioning. Each volume is individually named and may be configured for a single file system. Oracle ADVM volumes may be created on demand from Oracle ASM disk group storage and dynamically resized as required. These attributes make Oracle ADVM volumes far more flexible than physical devices and associated partitioning schemes.

The Oracle ADVM functionality includes the following:

- The `ALTER DISKGROUP ... ADD | RESIZE | DROP | ENABLE | DISABLE | MODIFY VOLUME` SQL statements that manage Oracle ADVM volumes.

 See "Managing Volumes in a Disk Group" on page 4-12.

 See Also: The `ALTER DISKGROUP` SQL statement in the *Oracle Database SQL Language Reference*

- ASMCMD command-line tools for managing Oracle ASM volumes.

 See "ASMCMD Volume Management Commands" on page 12-62.

- There are new `V$ASM` views display information about Oracle ASM volumes.

 See "Views Containing Oracle ACFS Information" on page 6-6.

- Oracle Enterprise Manager support for managing Oracle ASM volumes.

 See Chapter 10, "Administering Oracle ACFS with Oracle Enterprise Manager".

- Oracle ACFS operating system utilities for managing file systems and volume device files.

 See Chapter 13, "Oracle ACFS Command-Line Tools".
This chapter contains information about using dynamic views to display Oracle Automatic Storage Management (Oracle ASM), Oracle Automatic Storage Management Cluster File System (Oracle ACFS), and Oracle ASM Dynamic Volume Manager (Oracle ADVM) information.

- Views Containing Oracle ASM Disk Group Information
- Views Containing Oracle ACFS Information

See Also: *Oracle Database Reference* for information about all of the *V$ASM* dynamic performance views

Views Containing Oracle ASM Disk Group Information

You can use the views in Table 6–1 to obtain information about Oracle ASM disk groups.

The *VASM_ALIAS, VASM_CLIENT, VASM_DISK, VASM_DISK_IOSTAT, VASM_DISK_STAT, VASM_DISKGROUP, V$ASM_DISKGROUP_STAT, V$ASM_FILE, V$ASM_TEMPLATE, V$ASM_USER, V$ASM_USERGROUP, and V$ASM_USERGROUP_MEMBER* are accessible from both the Oracle ASM and database instances.

<table>
<thead>
<tr>
<th>View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V$ASM_ALIAS</td>
<td>Contains one row for every alias present in every disk group mounted by the Oracle ASM instance.</td>
</tr>
<tr>
<td>V$ASM_ATTRIBUTE</td>
<td>Displays one row for each attribute defined. In addition to attributes specified by CREATE DISKGROUP and ALTER DISKGROUP statements, the view may show other attributes that are created automatically. Attributes are only displayed for disk groups where COMPATIBLE.ASM is set to 11.1 or higher.</td>
</tr>
<tr>
<td>V$ASM_CLIENT</td>
<td>In an Oracle ASM instance, identifies databases using disk groups managed by the Oracle ASM instance.</td>
</tr>
<tr>
<td></td>
<td>In an Oracle Database instance, contains information about the Oracle ASM instance if the database has any open Oracle ASM files.</td>
</tr>
<tr>
<td>V$ASM_DISK</td>
<td>Contains one row for every disk discovered by the Oracle ASM instance, including disks that are not part of any disk group. This view performs disk discovery every time it is queried.</td>
</tr>
</tbody>
</table>
When querying V$ASM views, note that the value of the disk group number is not a static value. When a disk group is mounted, a disk group number is chosen. This number may change across disk group mounts. A disk group number is not recorded in any persistent structure, but the current value can be viewed in the GROUP_NUMBER column of the V$ASM views.

An example of the use of the V$ASM_ATTRIBUTE and V$ASM_DISKGROUP views is shown in Example 6–1. The COMPATIBLE.ASM value must be set to 11.1 or higher for the disk group to display in the V$ASM_ATTRIBUTE view output. Attributes that are designated as read-only (Y) can only be set during disk group creation.

Example 6–1 Viewing disk group attributes with V$ASM_ATTRIBUTE

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>NAME</th>
<th>VALUE</th>
<th>READ_ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>disk_repair_time</td>
<td>3.6h</td>
<td>N</td>
</tr>
<tr>
<td>DATA</td>
<td>au_size</td>
<td>4194304</td>
<td>Y</td>
</tr>
<tr>
<td>DATA</td>
<td>sector_size</td>
<td>512</td>
<td>Y</td>
</tr>
</tbody>
</table>
You can view the compatibility for a disk group with the `V$ASM_DISKGROUP` view, as shown in Example 6–2.

Example 6–2 Viewing the compatibility of a disk group with `V$ASM_DISKGROUP`

```sql
SQL> SELECT name AS diskgroup, compatibility AS asm_compat,
         database_compatibility AS db_compat FROM V$ASM_DISKGROUP;
```

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>ASM_COMPAT</th>
<th>DB_COMPAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>11.2.0.0.0</td>
<td>11.2.0.0.0</td>
</tr>
<tr>
<td>FRA</td>
<td>10.1.0.0.0</td>
<td>10.1.0.0.0</td>
</tr>
</tbody>
</table>

An example of the use of the `V$ASM_DISK` and `V$ASM_DISKGROUP` views is shown in Example 6–3. This example displays the disks associated with a disk group, plus the mount status and state of the disks.

Example 6–3 Viewing disks in disk groups with `V$ASM_DISK`

```sql
SQL> SELECT SUBSTR(d.name,1,16) AS asmdisk, d.mount_status, d.state,
         dg.name AS diskgroup FROM V$ASM_DISKGROUP dg, V$ASM_DISK d
         WHERE dg.group_number = d.group_number;
```

<table>
<thead>
<tr>
<th>ASMDISK</th>
<th>MOUNT_S</th>
<th>STATE</th>
<th>DISKGROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA_0001</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0007</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0000</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0008</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0005</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0002</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0004</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0006</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>DATA_0003</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>DATA</td>
</tr>
<tr>
<td>FRA_0005</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>FRA</td>
</tr>
<tr>
<td>FRA_0004</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>FRA</td>
</tr>
<tr>
<td>FRA_0000</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>FRA</td>
</tr>
<tr>
<td>FRA_0009</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>FRA</td>
</tr>
<tr>
<td>FRA_0011</td>
<td>CACHED</td>
<td>NORMAL</td>
<td>FRA</td>
</tr>
</tbody>
</table>

An example of the use of the `V$ASM_CLIENT` and `V$ASM_DISKGROUP` views on an Oracle ASM instance is shown in Example 6–4. This example displays disk groups with information about the connected database client instances.

Example 6–4 Viewing disk group clients with `V$ASM_CLIENT`

```sql
SQL> SELECT dg.name AS diskgroup, SUBSTR(c.instance_name,1,12) AS instance,
         SUBSTR(c.db_name,1,12) AS dbname, SUBSTR(c.SOFTWARE_VERSION,1,12) AS software,
         SUBSTR(c.COMPATIBLE_VERSION,1,12) AS compatible
         FROM V$ASM_DISKGROUP dg, V$ASM_CLIENT c
         WHERE dg.group_number = c.group_number;
```

...
Views Containing Oracle ASM Disk Group Information

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>INSTANCE</th>
<th>DBNAME</th>
<th>SOFTWARE</th>
<th>COMPATIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>+ASM</td>
<td>+ASM</td>
<td>11.2.0.0.0</td>
<td>11.2.0.0.0</td>
</tr>
<tr>
<td>DATA</td>
<td>orcl</td>
<td>orcl</td>
<td>11.2.0.0.0</td>
<td>11.2.0.0.0</td>
</tr>
<tr>
<td>DATA</td>
<td>+ASM</td>
<td>asmvol</td>
<td>11.2.0.0.0</td>
<td>11.2.0.0.0</td>
</tr>
<tr>
<td>FRA</td>
<td>orcl</td>
<td>orcl</td>
<td>11.2.0.0.0</td>
<td>11.2.0.0.0</td>
</tr>
</tbody>
</table>

Viewing Oracle ASM File Access Control Information

You can view information about Oracle ASM File Access Control in the columns of the VASM_USER, VASM_USERGROUP, V$ASM_USERGROUP_MEMBER, and V$ASM_FILE views.

Example 6–5 shows information about Oracle ASM File Access Control users displayed in the V$ASM_USER view.

Example 6–5 Viewing Oracle ASM File Access Control information with V$ASM_USER

```
SQL> SELECT dg.name AS diskgroup, u.group_number, u.user_number, u.os_id, u.os_name
       FROM V$ASM_DISKGROUP dg, V$ASM_USER u
       WHERE dg.group_number = u.group_number AND dg.name = 'DATA';
```

| DISKGROUP | GROUP_NUMBER USER_NUMBER OS_ID OS_NAME |
|-----------------|---------------------------|--------|----------------|
| DATA | 1 1 1001 oracle1 |
| DATA | 1 2 1002 oracle2 |
| DATA | 1 3 1003 grid |

Example 6–6 shows information about Oracle ASM File Access Control user groups displayed in the V$ASM_USERGROUP view.

Example 6–6 Viewing Oracle ASM File Access Control information with V$ASM_USERGROUP

```
SQL> SELECT dg.name AS diskgroup, ug.group_number, ug.owner_number, u.os_name, ug.usergroup_number, ug.name FROM V$ASM_DISKGROUP dg, V$ASM_USER u, V$ASM_USERGROUP ug
       WHERE dg.group_number = ug.group_number AND dg.name = 'DATA'
       AND ug.owner_number = u.user_number;
```

DISKGROUP	GROUP_NUMBER OWNER_NUMBER OS_NAME USERGROUP_NUMBER NAME	
DATA	1 3 grid	1 asm_data

Example 6–7 shows information about Oracle ASM File Access Control user groups and members displayed in the V$ASM_USERGROUP_MEMBER view.

Example 6–7 Viewing Oracle ASM File Access Control information with V$ASM_USERGROUP_MEMBER

```
SQL> SELECT dg.name AS diskgroup, um.group_number, um.member_number, u.os_name, um.usergroup_number, ug.name FROM V$ASM_DISKGROUP dg, V$ASM_USER u, V$ASM_USERGROUP_MEMBER um, V$ASM_USERGROUP ug
       WHERE dg.group_number = um.group_number AND dg.name = 'DATA'
       AND um.member_number = u.user_number AND um.usergroup_number = ug.usergroup_number;
```

DISKGROUP	GROUP_NUMBER MEMBER_NUMBER OS_NAME USERGROUP_NUMBER NAME	
DATA	1 1 oracle1	1 asm_data
DATA	1 2 oracle2	1 asm_data
Example 6–8 shows information about Oracle ASM File Access Control file permissions displayed in the V$ASM_FILE view.

Example 6–8 Viewing Oracle ASM File Access Control information with V$ASM_FILE

```sql
SQL> SELECT dg.name AS diskgroup, a.name, f.permissions, f.user_number, u.os_name, f.usergroup_number, ug.NAME FROM V$ASM_DISKGROUP dg, V$ASM_USER u, V$ASM_USERGROUP ug, V$ASM_FILE f, V$ASM_ALIAS a WHERE dg.group_number = f.group_number AND dg.group_number = u.group_number AND dg.group_number = ug.group_number AND dg.name = 'FRA' AND f.usergroup_number = ug.usergroup_number AND f.user_number = u.user_number AND f.file_number = a.file_number;
```

<table>
<thead>
<tr>
<th>DISKGROUP NAME</th>
<th>PERMISSIONS</th>
<th>USER_NUMBER</th>
<th>OS_NAME</th>
<th>USERGROUP_NUMBER</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>rw-r-------</td>
<td>3</td>
<td>grid</td>
<td>1</td>
<td>asm_fra</td>
</tr>
<tr>
<td>DATA</td>
<td>rw-r-------</td>
<td>3</td>
<td>grid</td>
<td>1</td>
<td>asm_fra</td>
</tr>
</tbody>
</table>

For more information about Oracle ASM File Access Control, see “Managing Oracle ASM File Access Control for Disk Groups” on page 4-39.

Viewing Disk Region Information

Information about Intelligent Data Placement is displayed in the columns of the VASM_DISK, VASM_DISK_IOSSTAT, V$ASM_FILE, and V$ASM_TEMPLATE views.

Example 6–9 shows queries for Intelligent Data Placement information in the PRIMARY_REGION and MIRROR_REGION columns of the V$ASM_FILE view.

Example 6–9 Viewing Intelligent Data Placement information with V$ASM_FILE

```sql
SQL> SELECT dg.name AS diskgroup, f.file_number, f.primary_region, f.mirror_region, f.hot_reads, f.hot_writes, f.cold_reads, f.cold_writes FROM V$ASM_DISKGROUP dg, V$ASM_FILE f WHERE dg.group_number = f.group_number and dg.name = 'DATA';
```

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>FILE_NUMBER</th>
<th>PRIM MIRR</th>
<th>HOT_READS</th>
<th>HOT_WRITES</th>
<th>COLD_READS</th>
<th>COLD_WRITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>257</td>
<td>COLD COLD</td>
<td>0</td>
<td>0</td>
<td>119770</td>
<td>886575</td>
</tr>
<tr>
<td>DATA</td>
<td>258</td>
<td>COLD COLD</td>
<td>0</td>
<td>0</td>
<td>1396</td>
<td>222282</td>
</tr>
<tr>
<td>DATA</td>
<td>259</td>
<td>COLD COLD</td>
<td>0</td>
<td>0</td>
<td>2056</td>
<td>199</td>
</tr>
<tr>
<td>DATA</td>
<td>260</td>
<td>COLD COLD</td>
<td>0</td>
<td>0</td>
<td>42377</td>
<td>1331016</td>
</tr>
<tr>
<td>DATA</td>
<td>261</td>
<td>COLD COLD</td>
<td>0</td>
<td>0</td>
<td>4336300</td>
<td>1331027</td>
</tr>
</tbody>
</table>

Example 6–10 displays Intelligent Data Placement information in the PRIMARY_REGION and MIRROR_REGION columns of the V$ASM_TEMPLATE view.

Example 6–10 Viewing Intelligent Data Placement information with V$ASM_TEMPLATE

```sql
SQL> SELECT dg.name AS diskgroup, t.name, t.stripe, t.redundancy, t.primary_region, t.mirror_region FROM V$ASM_DISKGROUP dg, V$ASM_TEMPLATE t WHERE dg.group_number = t.group_number and dg.name = 'DATA' ORDER BY t.name;
```

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>NAME</th>
<th>STRIPE</th>
<th>REDUND</th>
<th>PRIM MIRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>ARCHIVELOG</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>COLD COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>ASMPARAMETERFILE</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>COLD COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>AUTOBACKUP</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>COLD COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>BACKUPSET</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>COLD COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>CHANGETRACKING</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>COLD COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>CONTROLFILE</td>
<td>FINE</td>
<td>HIGH</td>
<td>COLD COLD</td>
</tr>
</tbody>
</table>
Views Containing Oracle ACFS Information

You can use the views in Table 6–2 to obtain information about Oracle Automatic Storage Management Cluster File System (Oracle ACFS). These views are accessible from the Oracle ASM instance.

Example 6–11 shows information displayed from the V$ASM_ACFS_ENCRYPTION_INFO view. The FS_NAME column contains the mount point. The VOL_DEVICE contains the name of the Oracle ADVM device.

Example 6–11 Viewing encryption information in V$ASM_ACFS_ENCRYPTION_INFO

<table>
<thead>
<tr>
<th>FILESYSTEM</th>
<th>DEVICE</th>
<th>SET_STA</th>
<th>ENABLED_</th>
<th>ALGORIT</th>
<th>KEY_LEN</th>
<th>LAST_REKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>/dev/asm/volume1-228</td>
<td>YES</td>
<td>ENABLED</td>
<td>AES</td>
<td>192</td>
<td></td>
</tr>
</tbody>
</table>

See Also: Oracle Database Reference for information about the V$ASM_ACFS_ENCRYPTION_INFO view
Example 6–12 shows information displayed from the V$ASM_ACFS_SECURITY_INFO view. The FS_NAME column contains the mount point. The VOL_DEVICE contains the name of the Oracle ADVM device.

Example 6–12 Viewing security information in V$ASM_ACFS_SECURITY_INFO

```sql
SELECT SUBSTR(fs_name,1,32) FILESYSTEM, SUBSTR(vol_device,1,20) DEVICE, prepared_status, enabled_status FROM V$ASM_ACFS_SECURITY_INFO;
```

<table>
<thead>
<tr>
<th>FILESYSTEM</th>
<th>DEVICE</th>
<th>PREPARE</th>
<th>ENABLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>/dev/asm/volume1-228</td>
<td>YES</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>

See Also: *Oracle Database Reference* for information about the V$ASM_ACFS_SECURITY_INFO view

Example 6–13 shows information displayed from the V$ASM_ACFSSNAPSHOTS view. The FS_NAME column contains the mount point. The VOL_DEVICE contains the name of the Oracle ADVM device.

Example 6–13 Viewing snapshot information in V$ASM_ACFSSNAPSHOTS

```sql
SELECT SUBSTR(fs_name,1,32) FILESYSTEM, SUBSTR(vol_device,1,24) DEVICE, SUBSTR(snap_name,1,28) SNAPSHOT, create_time TIME FROM V$ASM_ACFSSNAPSHOTS;
```

<table>
<thead>
<tr>
<th>FILESYSTEM</th>
<th>DEVICE</th>
<th>SNAPSHOT</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>/dev/asm/volume1-228</td>
<td>mysnapshot_0900609a</td>
<td>09-JUL-09</td>
</tr>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>/dev/asm/volume1-228</td>
<td>mysnapshot_0900610a</td>
<td>10-JUL-09</td>
</tr>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>/dev/asm/volume1-228</td>
<td>mysnapshot_0900609c</td>
<td>09-JUL-09</td>
</tr>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>/dev/asm/volume1-228</td>
<td>mysnapshot_0900610b</td>
<td>10-JUL-09</td>
</tr>
</tbody>
</table>

See Also: *Oracle Database Reference* for information about the V$ASM_ACFSSNAPSHOTS view

Example 6–14 shows information displayed from the V$ASM_VACFSVOLUMES view. The PRIMARY_VOL column contains TRUE if the volume is the primary volume for the file system.

Example 6–14 Viewing volume information with V$ASM_VACFSVOLUMES

```sql
SELECT fs_name, vol_device, primary_vol, total_mb, free_mb FROM V$ASM_VACFSVOLUMES;
```

<table>
<thead>
<tr>
<th>FS_NAME</th>
<th>VOL_DEVICE</th>
<th>PRIMARY_VOL</th>
<th>TOTAL_MB</th>
<th>FREE_MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>/dev/asm/volume1-228</td>
<td>TRUE</td>
<td>1024000</td>
<td>578626.522</td>
</tr>
<tr>
<td>/u01/app/acfsmounts/acfs2</td>
<td>/dev/asm/volume2-375</td>
<td>TRUE</td>
<td>1024000</td>
<td>685761.463</td>
</tr>
</tbody>
</table>

...

See Also: *Oracle Database Reference* for information about the V$ASM_VACFSVOLUMES view

Example 6–15 shows information displayed from the V$ASM_FILESYSTEM view. The STATE column contains the status of the file system, either AVAILABLE or OFFLINE. An offline file system can only be dismounted; other attempts at access result in errors. Offline means that either the Oracle ASM instance is down, the disk
group has been forced dismounted, or less commonly, a metadata I/O failure occurred or serious metadata corruption was detected. With a metadata I/O failure, the file system is also marked as corrupt.

The **CORRUPT** column indicates whether the file system needs the **fsck** or **acfschkdsk** command run on it. See "**fsck**" on page 13-20 and "**acfschkdsk**" on page 13-39.

Example 6–15 Viewing volume information with V$ASM_FILESYSTEM

```sql
SQL> SELECT fs_name, available_time, block_size, state, corrupt FROM V$ASM_FILESYSTEM;
```

<table>
<thead>
<tr>
<th>FS_NAME</th>
<th>AVAILABLE</th>
<th>BLOCK_SIZE</th>
<th>STATE</th>
<th>CORRUPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>/u01/app/acfsmounts/acfs1</td>
<td>19-JUL-09</td>
<td>4</td>
<td>AVAILABLE</td>
<td>FALSE</td>
</tr>
<tr>
<td>/u01/app/acfsmounts/acfs2</td>
<td>19-JUL-09</td>
<td>4</td>
<td>AVAILABLE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

See Also: *Oracle Database Reference* for information about the V$ASM_FILESYSTEM view

Example 6–16 shows information displayed from the V$ASM_VOLUME view for volumes contained in the DATA disk group.

Example 6–16 Viewing volume information with V$ASM_VOLUME

```sql
SELECT dg.name AS diskgroup, v.volume_name, v.volume_device, v.mountpath
FROM V$ASM_DISKGROUP dg, V$ASM_VOLUME v
WHERE dg.group_number = v.group_number and dg.name = 'DATA';
```

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>VOLUME_NAME</th>
<th>VOLUME_DEVICE</th>
<th>MOUNTPATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>VOLUME1</td>
<td>/dev/asm/volume1-228</td>
<td>/u01/app/acfsmounts/acfs1</td>
</tr>
<tr>
<td>DATA</td>
<td>VOLUME2</td>
<td>/dev/asm/volume2-375</td>
<td>/u01/app/acfsmounts/acfs2</td>
</tr>
</tbody>
</table>

See Also: *Oracle Database Reference* for information about the V$ASM_VOLUME view

Example 6–16 shows information displayed from the V$ASM_VOLUME_STAT view for volumes contained in the DATA disk group. The **BYTES_READ** column contains the total number of bytes read for the volume. The **BYTES_WRITTEN** column contains the total number of bytes written for the volume.

Example 6–17 Viewing volume information with V$ASM_VOLUME_STAT

```sql
SELECT dg.name AS diskgroup, v.volume_name, v.bytes_read, v.bytes_written
FROM V$ASM_DISKGROUP dg, V$ASM_VOLUME_STAT v
WHERE dg.group_number = v.group_number and dg.name = 'DATA';
```

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>VOLUME_NAME</th>
<th>BYTES_READ</th>
<th>BYTES_WRITTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>VOLUME1</td>
<td>12370105856</td>
<td>43510272</td>
</tr>
<tr>
<td>DATA</td>
<td>VOLUME2</td>
<td>2685728</td>
<td>32201504</td>
</tr>
</tbody>
</table>

See Also: *Oracle Database Reference* for information about the V$ASM_VOLUME_STAT view
This chapter describes how to administer files when you use the Oracle Automatic Storage Management (Oracle ASM) storage option.

This chapter contains the following topics:

- What Types of Files Does Oracle ASM Support?
- About Oracle ASM Filenames
- Creating and Referencing Oracle ASM Files in the Database
- Managing Alias Names for Oracle ASM Filenames
- Managing Disk Group Directories
- Accessing Oracle ASM Files with the XML DB Virtual Folder
- Using DBMS_FILE Transfer Utility for Oracle ASM
- Managing Disk Group Templates

What Types of Files Does Oracle ASM Support?

Oracle ASM supports most file types required by the database. Table 7–1 lists file types that are supported directly by Oracle ASM and lists the system default template that provides the attributes for file creation. Some file types shown in the table are related to specific products or features, and are not discussed in this book.

<table>
<thead>
<tr>
<th>File Type</th>
<th>Default Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control files</td>
<td>CONTROLFILE</td>
</tr>
<tr>
<td>Data files</td>
<td>DATAFILE</td>
</tr>
<tr>
<td>Redo log files</td>
<td>ONLINELOG</td>
</tr>
<tr>
<td>Archive log files</td>
<td>ARCHIVELOG</td>
</tr>
<tr>
<td>Temporary files</td>
<td>TEMPFILE</td>
</tr>
<tr>
<td>Data file backup pieces</td>
<td>BACKUPSET</td>
</tr>
<tr>
<td>Data file incremental backup pieces</td>
<td>BACKUPSET</td>
</tr>
<tr>
<td>Archive log backup piece</td>
<td>BACKUPSET</td>
</tr>
<tr>
<td>Data file copy</td>
<td>DATAFILE</td>
</tr>
</tbody>
</table>
Oracle ASM cannot directly support some administrative file types on disk groups. These include trace files, audit files, alert logs, export files, tar files, and core files.

Note: Oracle Automatic Storage Management Cluster File System (Oracle ACFS) and Oracle ASM Dynamic Volume Manager (Oracle ADVM) extend Oracle ASM support to include database and application executables, database trace files, database alert logs, application reports, BFILEs, and configuration files. Other supported files are video, audio, text, images, engineering drawings, and other general-purpose application file data. See Chapter 5, "Introduction to Oracle ACFS".

See Also: "Managing Disk Group Templates" on page 7-15 for a description of the system default templates

About Oracle ASM Filenames

Every file created in Oracle ASM is provided a filename generated by Oracle Managed Files, known as a fully qualified filename (or system-generated filename). The fully qualified filename represents a complete path name in the Oracle ASM file system. An example of a fully qualified filename is:

```
+data/orcl/controlfile/Current.256.541956473
```

You can use the fully qualified filename to reference (read or retrieve) an Oracle ASM file. You can also use other abbreviated filename formats, such as an alias Oracle ASM filename described in "Alias Oracle ASM Filename Forms" on page 7-5, to reference an Oracle ASM file.

Oracle ASM generates a fully qualified filename upon any request to create a file. A creation request does not or cannot specify a fully qualified filename. Instead, it uses a simpler syntax to specify a file, such as an alias or just a disk group name. Oracle ASM then creates the file, placing it in the correct Oracle ASM path according to file type, and then assigns an appropriate fully qualified filename. If you specify an alias in the

Table 7–1 (Cont.) File types supported by Oracle ASM

<table>
<thead>
<tr>
<th>File Type</th>
<th>Default Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent initialization parameter file (SPFILE)</td>
<td>PARAMETERFILE</td>
</tr>
<tr>
<td>Flashback logs</td>
<td>FLASHBACK</td>
</tr>
<tr>
<td>Change tracking file</td>
<td>CHANGETRACKING</td>
</tr>
<tr>
<td>Data Pump dumpset</td>
<td>DUMPSET</td>
</tr>
<tr>
<td>Automatically generated control file backup</td>
<td>AUTOBACKUP</td>
</tr>
<tr>
<td>Cross-platform transportable data files</td>
<td>XTRANSPORT</td>
</tr>
<tr>
<td>Flash file</td>
<td>FLASHFILE</td>
</tr>
<tr>
<td>Oracle ASM Persistent initialization parameter file (SPFILE)</td>
<td>ASMPARAMETERFILE</td>
</tr>
<tr>
<td>Oracle ASM Persistent initialization parameter file (SPFILE) backup</td>
<td>ASMPARAMETERFILEBACKUP</td>
</tr>
<tr>
<td>Oracle Cluster Registry file</td>
<td>OCRFILE</td>
</tr>
<tr>
<td>Oracle ASM Dynamic Volume Manager volumes</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Oracle ASM cannot directly support some administrative file types on disk groups. These include trace files, audit files, alert logs, export files, tar files, and core files.
About Oracle ASM Filenames

creation request, Oracle ASM also creates the alias so that it references the fully qualified filename.

Oracle ASM file creation requests are either single file creation requests or multiple file creation request.

Notes:

- You can find the generated name in database views displaying Oracle file names, such as V$DATAFILE and V$LOGFILE. You can use this name, or an abbreviated form of it, if you later must reference an Oracle ASM file in a SQL statement. As with other Oracle Database filenames, Oracle ASM filenames are kept in the control file and the RMAN catalog.

- You can use fully qualified and numeric filenames in single-file creation if you specify the REUSE keyword, as described in "Using Oracle ASM Filenames in SQL Statements" on page 7-9.

- Forward slash (/) and backslash (\) are interchangeable in filenames. Filenames are case insensitive, but case retentive.

This section contains the following topics:

- Single File Creation Form
- Multiple File Creation Form
- Fully Qualified File Name Form
- Alias Oracle ASM Filename Forms
- Alias Oracle ASM Filename with Template Form
- Incomplete Oracle ASM Filename Form
- Incomplete Oracle ASM Filename with Template Form

Table 7–2 specifies the valid usage for each filename form. If the form is used for file creation, the table specifies whether the created file is an Oracle Managed Files (OMF).

Table 7–2 Valid usage for Oracle ASM filename forms

<table>
<thead>
<tr>
<th>Filename Form</th>
<th>Reference to File?</th>
<th>Single-file Creation?</th>
<th>Multiple File Creation?</th>
<th>Created as OMF?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully qualified file name</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Alias file name</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Alias with template file name</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Incomplete file name</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Incomplete file name with template</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Single File Creation Form

A single file creation form is used to create a single file, such as a data file or a control file. The form of the Oracle ASM filename in this type is either an alias, such as +data/orcl/ctl.f, or an incomplete file name, such as a disk group name preceded by a plus sign (+data). You use the alias or disk group name where a
filename is called for in a SQL statement, such as CREATE TABLESPACE, CREATE CONTROLFILE.

Multiple File Creation Form

A multiple file creation form is used multiple times to create Oracle ASM files, such as when assigning a value to the initialization parameter DB_CREATE_FILE_DEST. You can also run a CREATE TABLESPACE statement (without a filename specification) multiple times. Each time, Oracle ASM creates a different unique data file name.

When using the multiple file creation form, you can use an incomplete filename form, such as a disk group name preceded by a plus sign (+data). In this case, you set DB_CREATE_FILE_DEST to an incomplete filename (for example, +data), and whenever a command is run that must create a database file in DB_CREATE_FILE_DEST, the file is created in the designated disk group and assigned a unique fully qualified name. You can use an incomplete filename in other *_DEST initialization parameters.

Fully Qualified File Name Form

You can use a fully qualified form for referencing existing Oracle ASM files in Oracle ASM operations, except for disk group creation. This form is the Oracle ASM file name that Oracle ASM automatically generates when an Oracle ASM file is created.

A fully qualified file name has the following form:

```
+diskgroup/dbname/filetype/filetypetag.file.incarnation
```

Where:

- `+diskgroup` is the disk group name preceded by a plus sign.
 You can think of the plus sign (+) as the root directory of the Oracle ASM file system, similar to the slash (/) on UNIX or Linux computers.
- `dbname` is the DB_UNIQUE_NAME of the database to which the file belongs.
- `filetype` is the Oracle file type and can be one of the file types shown in Table 7–3.
- `filetypetag` is type-specific information about the file and can be one of the tags shown in Table 7–3.
- `file.incarnation` is the file/incarnation pair, used to ensure uniqueness.

An example of a fully qualified Oracle ASM filename is:

```
+data/orcl/controlfile/Current.256.541956473
```

<table>
<thead>
<tr>
<th>Oracle ASM File Type</th>
<th>Description</th>
<th>Oracle ASM File Type Tag</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLFILE</td>
<td>Control files and backup control files</td>
<td>Current, Backup</td>
<td>Archive</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>Data files and data file copies</td>
<td>tblspname</td>
<td>Name of the tablespace into which the file is added</td>
</tr>
<tr>
<td>ONLINELOG</td>
<td>Online logs</td>
<td>group_loggroup#</td>
<td></td>
</tr>
<tr>
<td>ARCHIVELOG</td>
<td>Archive logs</td>
<td>thread_thread#_seq_sequence#</td>
<td></td>
</tr>
</tbody>
</table>
About Oracle ASM Filenames

Alias Oracle ASM Filename Forms

You can use Alias Oracle ASM filenames both for referencing existing Oracle ASM files and for creating new Oracle ASM files. Alias names start with the disk group name preceded by a plus sign, after which you specify a name string. Alias filenames are implemented using a hierarchical directory structure, with the slash (/) or backslash (\) character separating name components. You can create an alias in any Oracle ASM directory generated by Oracle Managed Files (system-generated) or created by a user. An alias must include the disk group name; you cannot create an alias at the root level (+).

When you create an Oracle ASM file with an alias filename, the file is created with a fully qualified name, and the alias filename is additionally created. You can then access the file with either name.

Alias Oracle ASM filenames are distinguished from fully qualified filenames or numeric filenames because they do not end in a dotted pair of numbers. It is an error
to attempt to create an alias that ends in a dotted pair of numbers, such as in the format `users.259.685366091`. Examples of Oracle ASM alias filenames are:

```
+data/orcl/control_file1
+fra/recover/second.dbf
```

Oracle Database references database files by their alias filenames, but only if you create the database files with aliases. If you create database files without aliases and then add aliases later, the database references the files by their fully qualified filenames. The following are examples of how the database uses alias filenames:

- Alias filenames appear in V$ views. For example, if you create a tablespace and use an alias filename for the data file, the `V$DATAFILE` view shows the alias filename.
- When a control file points to data files and online redo log files, it can use alias filenames.
- The `CONTROL_FILES` initialization parameter can use the alias filenames of the control files. Database Configuration Assistant (DBCA) creates control files with alias filenames.

Note: Files created using an alias filename are not considered Oracle Managed Files and might require manual deletion in the future if they are no longer needed.

For more information about alias filenames, see "Managing Alias Names for Oracle ASM Filenames" on page 7-9.

Creating a Tablespace in Oracle ASM: Using a Data File with an Alias Name

Example 7–1 creates an undo tablespace with a data file that has an alias name, and with attributes that are set by the user-defined template `my_undo_template`. This example assumes that a directory has been created in disk group `data` to contain the alias name and that the user-defined template exists.

Example 7–1 Creating a tablespace using an alias name

```
CREATE UNDO TABLESPACE myundo
   DATAFILE '+data(my_undo_template)/orcl/my_undo Ts' SIZE 200M;
```

Because an alias is used to create the data file, the file is not an Oracle Managed Files (OMF) file and the file is not automatically deleted when the tablespace is dropped. To drop the file manually after the tablespace has been dropped, use the following SQL statement:

```
ALTER DISKGROUP data DROP FILE '+data/orcl/my_undo Ts';
```

Alias Oracle ASM Filename with Template Form

An alias Oracle ASM filename with template is used only for Oracle ASM file creation operations. It has the following format:

```
+diskgroup(templatename)/alias
```

Alias filenames with template behave identically to alias filenames except that a file created with an alias filename with template receives the attributes specified by the named template. The template must belong to the disk group that the file is being created in. See Example 7–1 on page 7-6.
The creation and maintenance of Oracle ASM templates is discussed in "Managing Disk Group Templates" on page 7-15.

An example of an alias Oracle ASM filename with template is:

```
+data(mytemplate)/config1
```

Explicitly specifying a template name, as in the previous example, overrides the system default template for the type of file being created.

Note: Files created using an alias filename with template are not considered Oracle Managed Files and might require manual deletion in the future if they are no longer needed.

Incomplete Oracle ASM Filename Form

Incomplete Oracle ASM filenames are used only for file creation operations and are used for both single and multiple file creation. They consist only of the disk group name. Oracle ASM uses a system default template to determine the Oracle ASM file mirroring and striping attributes. The system template that is used is determined by the file type that is being created. For example, if you are creating a data file for a tablespace, then the **DATAFILE** template is used.

An example of using an incomplete Oracle ASM filename is setting the **DB_CREATE_FILE_DEST** initialization parameter to:

```
+data
```

With this setting, every time you create a tablespace, a data file is created in the disk group **data**, and each data file is assigned a different fully qualified name. See "Creating Oracle ASM Files Using a Default File Location for Disk Group Specification" on page 7-8 for more information.

Incomplete Oracle ASM Filename with Template Form

Incomplete Oracle ASM filenames with templates are used only for file creation operations and are used for both single and multiple file creation. They consist of the disk group name followed by the template name in parentheses. When you explicitly specify a template in a file name, Oracle ASM uses the specified template instead of the default template for that file type to determine attributes for the file.

An example of using an incomplete Oracle ASM filename with template is setting the **DB_CREATE_FILE_DEST** initialization parameter to:

```
+data(mytemplate)
```

Creating and Referencing Oracle ASM Files in the Database

An Oracle ASM file is an Oracle Managed File unless you created the file using an alias. Any Oracle Managed File is automatically deleted when it is no longer needed.

This section contains the following topics:

- Creating Oracle ASM Files Using a Default File Location for Disk Group Specification
- Using Oracle ASM Filenames in SQL Statements
Creating Oracle ASM Files Using a Default File Location for Disk Group Specification

Using the Oracle Managed Files feature for operating system files, you can specify a directory as the default location for the creation of data files, temporary files, redo log files, and control files. Using the Oracle Managed Files feature for Oracle ASM, you can specify a disk group, in the form of an incomplete Oracle ASM filename, as the default location for creation of these files, and additional types of files, including archived log files. As for operating system files, the name of the default disk group is stored in an initialization parameter and is used whenever a file specification (for example, `DATAFILE` clause) is not explicitly specified during file creation.

The following initialization parameters accept the multiple file creation context form of Oracle ASM filenames as a destination:

- `DB_CREATE_FILE_DEST`
 Specifies the default disk group location in which to create data and temp files.

- `DB_CREATE_ONLINE_LOG_DEST_n`
 Specifies the default disk group location in which to create redo log and control files.

- `DB_RECOVERY_FILE_DEST`
 Specifies a default disk group for a fast recovery area that contains a copy of the control file and redo log files if this parameter is specified and `DB_CREATE_ONLINE_LOG_DEST_n` and `CONTROL_FILES` are not specified.

- `CONTROL_FILES`
 Specifies a disk group in which to create control files.

The following initialization parameters accept the multiple file creation context form of the Oracle ASM filenames and Oracle ASM directory names as a destination:

- `LOG_ARCHIVE_DEST_n`
 Specifies a default disk group or Oracle ASM directory as destination for archiving redo log files.

- `LOG_ARCHIVE_DEST` (Optional parameter)
 Optional parameter to use to specify a default disk group or Oracle ASM directory as destination for archiving redo log files. Use when specifying only one destination.

- `STANDBY_ARCHIVE_DEST`
 Relevant only for a standby database. It specifies a default disk group or Oracle ASM directory that is the location of archive logs arriving from a primary database. Not discussed in this book. This parameter has been deprecated. See *Oracle Data Guard Concepts and Administration*.

The following `CREATE TABLESPACE` SQL statement illustrates how an Oracle ASM file, in this case a data file, might be created in a default disk group. This example assumes that the `DB_CREATE_FILE_DEST` initialization parameter has been set to `+data`.

```
SQL> CREATE TABLESPACE mytblspace;
```

Oracle ASM automatically creates and manages the data file for `mytblspace` on Oracle ASM disks in the disk group `data`. File extents are stored using the attributes defined by the default template for a data file.
Using Oracle ASM Filenames in SQL Statements

You can specify Oracle ASM filenames in the file specification clause of your SQL statements. If you are creating a file for the first time, then use the creation form of an Oracle ASM filename. If the Oracle ASM file exists, then you must use the reference form of the filename, and if you are trying to re-create the file, you must add the `REUSE` keyword so that the space is reused for the new file. This usage might occur when, for example, trying to re-create a control file, as shown in "Creating Control Files in Oracle ASM" on page A-3.

If a reference form is used with the `REUSE` keyword and the file does not exist, an error results.

Example 7–2 is an example of specifying an Oracle ASM filename in a SQL statement. In this case, it is used in the file creation form.

Example 7–2 Using an Oracle ASM File name in a SQL statement

```sql
CREATE TABLESPACE mytblspace DATAFILE '+data' SIZE 200M AUTOEXTEND ON;
```

The tablespace `mytblspace` is created and comprises one data file of size 200 MB contained in the disk group `data`. The data file is set to auto-extensible with an unlimited maximum size. You can use an `AUTOEXTEND` clause to override this default.

For more examples of the use of Oracle ASM filename in SQL statements, see Appendix A, "Creating Database Files in Oracle ASM Using SQL*Plus".

Managing Alias Names for Oracle ASM Filenames

Alias names, or aliases, are intended to provide a more user-friendly means of referring to Oracle ASM files, rather than using the system-generated filenames.

You can create an alias for a file when you create it in the database, or you can add an alias to an existing file using the `ADD ALIAS` clause of the `ALTER DISKGROUP` statement. You can create an alias in any system-generated or user-created Oracle ASM directory. An alias must include the disk group name; you cannot create an alias at the root level (+).

For more information about creating aliases with ASMCMD, refer to "mkalias" on page 12-27.

This section contains the following sections:

- Adding an Alias Name for an Oracle ASM Filename
- Renaming an Alias Name for an Oracle ASM Filename
- Dropping an Alias Name for an Oracle ASM Filename
- Dropping Files and Associated Aliases from a Disk Group

See Also:

- *Oracle Database Reference* for information about initialization parameters
- *Oracle Database Administrator’s Guide* for information about initialization parameter files
Adding an Alias Name for an Oracle ASM Filename

Use the ADD ALIAS clause of the ALTER DISKGROUP statement to create an alias name for an Oracle ASM filename. The alias name must consist of the full directory path and the alias itself.

Example 7–3 adds a new alias name for a system-generated file name.

```sql
Example 7–3  Adding an alias name for an Oracle ASM filename
ALTER DISKGROUP data ADD ALIAS '+data/orcl/second.dbf'
    PUR '+data/orcl/datafile/mytable.342.123456789';
```

Renaming an Alias Name for an Oracle ASM Filename

Use the RENAME ALIAS clause of the ALTER DISKGROUP statement to rename an alias for an Oracle ASM filename. The old and the new alias names must consist of the full directory paths of the alias names.

Example 7–4 renames an alias.

```sql
Example 7–4  Renaming an alias name for an Oracle ASM filename
ALTER DISKGROUP data RENAME ALIAS '+data/orcl/datafile.dbf'
    TO '+data/payroll/compensation.dbf';
```

Renaming an alias does not update the database reference to the alias.

Dropping an Alias Name for an Oracle ASM Filename

Use the DROP ALIAS clause of the ALTER DISKGROUP statement to drop an alias for an Oracle ASM filename. The alias name must consist of the full directory path and the alias itself. The underlying file to which the alias refers is unchanged.

Example 7–5 drops an alias.

```sql
Example 7–5  Dropping an alias name for an Oracle ASM filename
ALTER DISKGROUP data DROP ALIAS '+data/payroll/compensation.dbf';
```

Example 7–6 fails because it attempts to drop a system-generated filename and this syntax is not allowed.

```sql
Example 7–6  Dropping an alias name for an Oracle ASM filename
ALTER DISKGROUP data
    DROP ALIAS '+data/orcl/datafile/mytable.342.123456789';
```

Dropping Files and Associated Aliases from a Disk Group

You can delete Oracle ASM files and their associated aliases from a disk group using the DROP FILE clause of the ALTER DISKGROUP statement. You must use a fully qualified filename, or an alias name when specifying the file to delete. The underlying file on the file system is not dropped when the alias is dropped.

Some reasons why you may want to delete files include:

- A file created using aliases is not an Oracle Managed File. Consequently, it is not automatically deleted.
A point-in-time-recovery of a database might restore the database to a time before a tablespace was created. The restore does not delete the tablespace, but there is no reference to the tablespace or its data file in the restored database. You could manually delete the data file.

In Example 7–7, the alias name for the file is used to delete both the file and the alias from a disk group.

Example 7–7 Dropping a file and alias from a disk group using the alias name

```
ALTER DISKGROUP data DROP FILE '+data/payroll/compensation.dbf';
```

In Example 7–8, the Oracle Managed Files (system-generated) file name is used to drop the file and any associated alias.

Example 7–8 Dropping a file and alias from a disk group using the system-generated name

```
ALTER DISKGROUP data
    DROP FILE '+data/orcl/datafile/mytable.342.123456789';
```

Managing Disk Group Directories

Oracle ASM disk groups contain a system-generated hierarchical directory structure for storing Oracle ASM files. The system-generated filename that Oracle ASM assigns to each file represents a path in this directory hierarchy. The following is an example of a system-generated filename:

```
+data/orcl/CONTROLFILE/Current.256.541956473
```

The plus sign represents the root of the Oracle ASM file system. The `data` directory is the parent directory for all files in the `data` disk group. The `orcl` directory is the parent directory for all files in the `orcl` database, and the `CONTROLFILE` directory contains all control files for the `orcl` database.

You can create your own directories within this hierarchy to store aliases that you create. Thus, in addition to having user-friendly alias names for Oracle ASM files, you can have user-friendly paths to those names.

This section describes how to use the `ALTER DISKGROUP` statement to create a directory structure for aliases. It also describes how you can rename a directory or drop a directory. This section contains the following topics:

- Creating a New Directory
- Renaming a Directory
- Dropping a Directory

Creating a New Directory

Use the `ADD DIRECTORY` clause of the `ALTER DISKGROUP` statement to create a hierarchical directory structure for alias names for Oracle ASM files. Use the slash (/) or backslash (\) character to separate components of the directory path. The directory path must start with the disk group name, preceded by a plus sign (+), followed by any subdirectory names of your choice.

The parent directory must exist before attempting to create a subdirectory or alias in that directory. A directory must be created below the disk group level.
Example 7–9 creates a hierarchical directory for disk group data, which can contain, for example, the alias name +data/orcl/control_file1.

Example 7–9 Creating a new directory

ALTER DISKGROUP data ADD DIRECTORY '+data/orcl';

Assuming no subdirectory exists under the directory +data/orcl, the SQL statement fails in Example 7–10.

Example 7–10 Creating a new subdirectory

ALTER DISKGROUP data
ADD DIRECTORY '+data/orcl/first_dir/second_dir';

Renaming a Directory

The RENAME DIRECTORY clause of the ALTER DISKGROUP statement enables you to rename a directory. System-created directories (those containing system-generated names) cannot be renamed. The root level (disk group name) cannot be renamed.

Example 7–11 renames a directory.

Example 7–11 Renaming a directory

ALTER DISKGROUP data RENAME DIRECTORY '+data/mydir'
TO '+data/yourdir';

Dropping a Directory

You can delete a directory using the DROP DIRECTORY clause of the ALTER DISKGROUP statement. You cannot drop a system-created directory. You cannot drop a directory containing alias names unless you also specify the FORCE clause.

Example 7–12 deletes a directory along with its contents.

Example 7–12 Dropping a directory

ALTER DISKGROUP data DROP DIRECTORY '+data/yourdir' FORCE;

Accessing Oracle ASM Files with the XML DB Virtual Folder

Oracle ASM files and directories can be accessed through a virtual folder in the XML DB repository. The repository path to the virtual folder is /sys/asm. The folder is virtual because its contents do not actually reside in the repository; they exist as normal Oracle ASM files and directories. For example, /sys/asm provides a means to access and manipulate the Oracle ASM files and directories with programmatic APIs such as the DBMS_XDB package and with XML DB protocols such as FTP and HTTP/WebDAV. You can also use the ASMCMD cp command to copy files. See "cp" on page 12-21.

A typical use for this capability might be to view /sys/asm as a Web Folder in a graphical user interface (with the WebDAV protocol), and then copy a Data Pump dumpset from an Oracle ASM disk group to an operating system file system by dragging and dropping.

You must log in as a user other than SYS and you must have been granted the DBA role to access /sys/asm with XML DB protocols.
The Oracle ASM virtual folder is created by default during XML DB installation. If the database is not configured to use Oracle ASM, the folder is empty and no operations are permitted on it.

The Oracle ASM virtual folder contains folders and subfolders that follow the hierarchy defined by the structure of an Oracle ASM fully qualified file name. Figure 7–1 illustrates an example of this hierarchy, which for simplicity, excludes directories created for aliases.

The folder /sys/asm contains one subfolder for every mounted disk group, and each disk group folder contains one subfolder for each database that uses the disk group. In addition, a disk group folder might contain files and folders corresponding to aliases created by the administrator. Continuing the hierarchy, the database folders contain file type folders, which contain the Oracle ASM files.

Note: For security reasons, FTP is disabled, by default. This is because the IETF FTP protocol specification requires that passwords be transmitted in clear text. Disabling is done by configuring the FTP server port as zero (0). To enable FTP, set the `ftp-port` parameter to the FTP port to use, such as 2100.

See Also:
- Oracle XML DB Developer’s Guide for information about Oracle XML DB, including additional ways to configure port numbers for the XML DB protocol servers
- Oracle Database PL/SQL Packages and Types Reference for information about the `DBMS_XDB` package
The following are usage restrictions on /sys/asm:

- You cannot create hard links to existing Oracle ASM files or directories with APIs such as DBMS_XDB.LINK.
- You cannot rename (move) an Oracle ASM file to another disk group or to a directory outside Oracle ASM.

You can use the directory /sys/asm for storing the names of disk groups. You cannot store other files in this directory. Within the disk group directories under /sys/asm, such as /sys/asm/DATA, you can only store database files in these sub-directories. Oracle ASM rejects attempts to store non-database files in these directories.

Using DBMS_FILE Transfer Utility for Oracle ASM

The DBMS_FILE_TRANSFER package provides procedures to copy Oracle ASM files within a database or to transfer binary files between databases that use Oracle ASM. The DBMS_FILE_TRANSFER package has the following procedures:

- COPY_FILE—Reads a file from a source directory and creates a copy of the file in a destination directory. The source and destination directories can both be in a local file system or in an Oracle ASM disk group. You can also use this procedure to copy between a local file system and an Oracle ASM disk group; the copy operation is valid in either direction.
- GET_FILE—Contacts a remote database to read a remote file and then creates a copy of the file in the local file system or Oracle ASM disk group.
- PUT_FILE—Reads a local file or Oracle ASM disk group and contacts a remote database to create a copy of the file in the remote file system.
Managing Disk Group Templates

This section describes how to manage disk group templates under the following topics:

- **Template Attributes**
- **Adding Templates to a Disk Group**
- **Modifying a Disk Group Template**
- **Dropping Templates from a Disk Group**
- **Creating Tablespaces in Oracle ASM: Specifying Attributes with Templates**

Templates are used to set attributes of files created in an Oracle ASM disk group. When a file is created, redundancy and striping attributes are set for that file based on an explicitly named template or the system template that is the default template for the file type.

When a disk group is created, Oracle ASM creates a set of default templates for that disk group. The set consists of one template for each file type (data file, control file, redo log file, and so on) that is supported by Oracle ASM. For example, a template named `ONLINELOG` provides the default file redundancy and striping attributes for all redo log files written to Oracle ASM disks. Default template settings depend on the disk group type. The default template for data files for a normal redundancy disk group sets two-way mirroring, while the corresponding default template in a high redundancy disk group sets three-way mirroring. You can modify these default templates.

For example, default redundancy for the online redo log files (`ONLINELOG` template) for a normal redundancy disk group is `MIRROR`. In Example 4-1 on page 4-5, this setting means that when one copy of a redo log file extent is written to a disk in failure group `controller1`, a mirrored copy of the file extent is written to a disk in failure group `controller2`. To support the default mirroring of a normal redundancy disk group, at least two failure groups must be defined.

Table 7-6 on page 7-16 lists the default templates and the attributes that are associated to matching files. As the table shows, the initial redundancy value of each default template depends on the type of disk group that the template belongs to.

Using clauses of the `ALTER DISKGROUP` statement, you can add new templates to a disk group, modify existing ones, or drop templates. The reason to add templates is to create the right combination of attributes to meet unique requirements. You can then reference a template name when creating a file, thereby assigning desired attributes based on an individual file rather than on the file type.

The `V$ASM_TEMPLATE` view lists all of the templates known to the Oracle ASM instance. For an example of the information displayed in the `V$ASM_TEMPLATE` view, see Example 6–10 on page 6-5.

Template Attributes

Table 7-4 shows the permitted striping attribute values and allocation unit size chunks. These values correspond to the `STRIPE` column of `V$ASM TEMPLATE`.

See Also: *Oracle Database PL/SQL Packages and Types Reference* for more information about the `DBMS_FILE_TRANSFER` package.
Managing Disk Group Templates

Table 7–4 Permitted values for Oracle ASM template striping attribute

<table>
<thead>
<tr>
<th>Striping Attribute Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE</td>
<td>Striping in 128 KB chunks.</td>
</tr>
<tr>
<td>COARSE</td>
<td>Striping in 1 MB chunks.</td>
</tr>
</tbody>
</table>

Table 7–5 shows the permitted redundancy values for Oracle ASM templates. These values correspond to the REDUND column of V$ASM_TEMPLATE.

Table 7–5 Permitted values for Oracle ASM template redundancy attribute

<table>
<thead>
<tr>
<th>Redundancy Attribute Value</th>
<th>Resulting Mirroring in Normal Redundancy Disk Group</th>
<th>Resulting Mirroring in High Redundancy Disk Group</th>
<th>Resulting Mirroring in External Redundancy Disk Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRROR</td>
<td>Two-way mirroring</td>
<td>Three-way mirroring</td>
<td>(Not allowed)</td>
</tr>
<tr>
<td>HIGH</td>
<td>Three-way mirroring</td>
<td>Three-way mirroring</td>
<td>(Not allowed)</td>
</tr>
<tr>
<td>UNPROTECTED</td>
<td>No mirroring</td>
<td>(Not allowed)</td>
<td>No mirroring</td>
</tr>
</tbody>
</table>

Table 7–6 shows the initial attribute settings for the default templates. The type of mirroring associated with the Mirroring column for normal, high, and external redundancy disk groups is specified in Table 7–5. For example, the Mirror column for high redundancy disk groups displays MIRROR in Table 7–6. In Table 7–5, the MIRROR value for high redundancy disk groups corresponds to Three-way mirroring.

Table 7–6 Oracle ASM system default templates attribute settings

<table>
<thead>
<tr>
<th>Template Name</th>
<th>File Striping</th>
<th>Mirroring, Normal Redundancy Disk Group</th>
<th>Mirroring, High Redundancy Disk Group</th>
<th>Mirroring, External Redundancy Disk Group</th>
<th>Primary Region</th>
<th>Mirror Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLFILE</td>
<td>FINE</td>
<td>HIGH</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>ONLINELOG</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>ARCHIVELOG</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>TEMPFILE</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>BACKUPSET</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>PARAMETERFILE</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>DATAGUARDCONFIG</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>FLASHBACK</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>CHANGETRACKING</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>DUMPSET</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>XTRANSAT</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>AUTOBACKUP</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>ASPARAMETERFILE</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
<tr>
<td>OCRFILE</td>
<td>COARSE</td>
<td>MIRROR</td>
<td>MIRROR</td>
<td>UNPROTECTED</td>
<td>COLD</td>
<td>MIRRORCOLD</td>
</tr>
</tbody>
</table>
Table 7–7 shows the permitted primary and mirror region values for Oracle ASM templates. These values correspond to the PRIMARY_REGION and MIRROR_REGION columns of V$ASM_TEMPLATE. For more information about disk regions, see "Intelligent Data Placement" on page 4-15.

Table 7–7 Permitted values for Oracle ASM template primary and mirror region attribute

<table>
<thead>
<tr>
<th>Primary and Mirror Region Attribute Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLD, MIRRORCOLD</td>
<td>Use the inner most tracks (closest to spindle) on the disk drive.</td>
</tr>
<tr>
<td>HOT, MIRRORHOT</td>
<td>Use the outermost tracks which have greater speed and higher bandwidth.</td>
</tr>
</tbody>
</table>

Adding Templates to a Disk Group

To add a template to a disk group, use the ADD TEMPLATE clause of the ALTER DISKGROUP statement.

If the name of your new template is not listed in Table 7–6, then it is not used as a default template for database file types. To use the template, you must reference its name when creating a file.

When adding a template to a disk group, the attributes are optional. If no redundancy attribute is specified, then the value defaults to MIRROR for a normal redundancy disk group, HIGH for a high redundancy disk group, and UNPROTECTED for an external redundancy disk group. If you do not specify a striping attribute, then the value defaults to COARSE. If you do not specify a value for the primary or mirror region attributes, then the value defaults to COLD and MIRRORCOLD respectively.

Example 7–13 creates a new template named reliable for the normal redundancy disk group data.

Example 7–13 Adding a template with high redundancy to a disk group

```sql
ALTER DISKGROUP data ADD TEMPLATE reliable ATTRIBUTES (HIGH FINE);
```

Example 7–14 creates a new template named unreliable that specifies UNPROTECTED (no mirroring) for files.

Example 7–14 Adding a template with external redundancy to a disk group

```sql
ALTER DISKGROUP data ADD TEMPLATE unreliable ATTRIBUTES (UNPROTECTED);
```

Note: Oracle discourages using unprotected files unless you have implemented hardware mirroring. The previous example is presented only to further illustrate how the attributes for templates are set.

See Also: Oracle Database SQL Language Reference for more information about the ALTER DISKGROUP...ADD TEMPLATE command

Modifying a Disk Group Template

The MODIFY TEMPLATE clause of the ALTER DISKGROUP statement enables you to modify the attribute specifications of an existing system default or user-defined disk group.
Managing Disk Group Templates

Group template. Only specified template attributes are changed. Unspecified properties retain their current value. When you modify an existing template, only new files created by the template reflect the attribute changes. Existing files maintain their attributes.

Example 7–15 changes the striping attribute specification of the reliable template for disk group data.

Example 7–15 Modifying a disk group template
ALTER DISKGROUP data MODIFY TEMPLATE reliable
ATTRIBUTES (COARSE);

Dropping Templates from a Disk Group

Use the DROP TEMPLATE clause of the ALTER DISKGROUP statement to drop one or more templates from a disk group. You can only drop templates that are user-defined; you cannot drop system default templates.

Example 7–16 drops the previously created template unreliable from data:

Example 7–16 Dropping a template from a disk group
ALTER DISKGROUP data DROP TEMPLATE unreliable;

Creating Tablespaces in Oracle ASM: Specifying Attributes with Templates

Use the SQL ALTER SYSTEM and CREATE TABLESPACE statements to create a tablespace that uses a user-defined template to specify the attributes of the data file.

Example 7–17 assumes that the template (mytemplate) has been defined.

Example 7–17 Using a user-defined template to specify attributes
ALTER SYSTEM SET DB_CREATE_FILE_DEST = '+data(mytemplate)';
CREATE TABLESPACE mytblspace;
Performing Oracle ASM Data Migration with RMAN

This chapter describes how to migrate data into and out of Oracle Automatic Storage Management (Oracle ASM) storage with Recovery Manager (RMAN).

This chapter includes the following topics:

- **Overview of Oracle ASM Data Migration**
- **Preparing to Migrate the Database to Oracle ASM Using RMAN**
- **Migrating the Database to Oracle ASM Using RMAN**
- **Migrating a Database from Oracle ASM to Alternative Storage**
- **Moving Data Files Between Oracle ASM Disk Groups Using RMAN**

See Also: *Oracle Database Backup and Recovery User’s Guide* for complete information about using RMAN

Overview of Oracle ASM Data Migration

This section explains the basic concepts and tasks involved in migrating data to and from Oracle ASM.

This section includes the following topics:

- **Purpose of Oracle ASM Data Migration**
- **Basic Concepts of Oracle ASM Data Migration**
- **Basics Steps of Data Migration to Oracle ASM Using RMAN**

Purpose of Oracle ASM Data Migration

Alternatives to Oracle ASM storage include file systems, raw disks, and SAN configurations. Oracle ASM includes numerous benefits over these storage alternatives, including performance optimization, redundancy protection, and load balancing. You do not need a third-party Logical Volume Manager because Oracle ASM manages disks for you. Oracle Real Application Clusters (Oracle RAC) databases benefit from Oracle ASM because it provides ready-made shared storage.

If a database currently uses a storage system other than Oracle ASM, then you can migrate all or part of the database into Oracle ASM, thereby simplifying database administration. You can also migrate a fast recovery area to Oracle ASM.

Native operating system commands such as Linux `cp` or Windows `COPY` cannot write or read files in Oracle ASM storage. Because RMAN can read and write Oracle ASM
files, you can use RMAN to copy data files into and out of Oracle ASM storage or between Oracle ASM disk groups. This technique is useful if you must store backups on user-managed disks.

Basic Concepts of Oracle ASM Data Migration

You can migrate data to Oracle ASM with RMAN even if you are not using RMAN as your primary backup tool. The migration requires one RMAN database backup.

If you have sufficient disk space to hold the entire database both in Oracle ASM and alternative storage systems, then you can move a database directly into Oracle ASM. If you do not have sufficient storage, then you can back the database up to tape, create an Oracle ASM disk group that uses old disk space, and restore the database from tape to Oracle ASM.

After you set the location of the new recovery area, existing backups remain in the old recovery area and count against the total disk quota of the recovery area. The backups are deleted from the old recovery area when space is needed. These backups are usable by RMAN. It is not necessary to move legacy backups to the new Oracle ASM recovery area unless you need disk space. To free space consumed by files in the old recovery area, you can back them up to tape or migrate them to the Oracle ASM recovery area.

Note: A foreign archived redo log is a log received by a logical standby database for a LogMiner session. Foreign archived redo logs cannot be migrated. Unlike normal archived logs, foreign archived logs have a different internal database identifier (DBID). For this reason, they cannot be backed up or restored on a logical standby database.

Migrating a database from Oracle ASM to an alternative storage system is similar to migration from an alternative storage system to Oracle ASM. The primary change is to modify each step to refer to file locations in the alternative storage system.

For information about migrating the database to Oracle ASM with Enterprise Manager, see Chapter 9, "Administering Oracle ASM with Oracle Enterprise Manager".

Basics Steps of Data Migration to Oracle ASM Using RMAN

This section discusses the process of migrating the entire database and fast recovery area from alternative storage to Oracle ASM using RMAN.

The fast recovery area is an optional disk location that you can use to store recovery-related files such as control file and online redo log copies, archived redo log files, flashback logs, and RMAN backups. Oracle Database and RMAN manage the files in the fast recovery area automatically. You can specify the disk quota, which is the user-specified maximum size of the fast recovery area. When the disk quota is reached, Oracle automatically deletes files that are no longer needed.

Flashback logs are Oracle-generated logs used to perform flashback database operations. The database can only write flashback logs to the fast recovery area. Flashback logs are written sequentially and are not archived. They cannot be backed up to disk.

To migrate the entire database and fast recovery area from alternative storage to Oracle ASM, perform the following steps:
1. Back up the database and server parameter file, and disable Oracle Flashback Database.

The Oracle Flashback Database option returns the entire database to a prior consistent System Change Number (SCN) with the `FLASHBACK DATABASE` command in RMAN or SQL. A database flashback is different from traditional media recovery because it does not involve the restore of physical files, instead restoring your current data files to past states using saved images of changed data blocks. This feature uses flashback logs and archived redo logs.

This step is described in "Preparing to Migrate the Database to Oracle ASM Using RMAN" on page 8-3.

2. Restore files to Oracle ASM, recover the database, and optionally migrate the fast recovery area to Oracle ASM.

This step is described in "Migrating the Database to Oracle ASM Using RMAN" on page 8-5.

To migrate files from Oracle ASM to alternative storage, see "Migrating a Database from Oracle ASM to Alternative Storage" on page 8-9.

Preparing to Migrate the Database to Oracle ASM Using RMAN

This section explains how to prepare the database for migration. This section makes the following assumptions:

- You want to migrate the database to two Oracle ASM disk groups: +DATA for the database and +FRA for the fast recovery area.
- The database to be migrated to Oracle ASM storage is named mydb.

To prepare the database for Oracle ASM migration:

1. If the `COMPATIBLE` initialization parameter setting for the database is less than 11.0.0, then make any read-only transportable tablespaces read/write.

 Read-only transportable tablespaces cannot be migrated because RMAN cannot back them up.

2. If the database is a physical standby database, and if managed recovery is started, then stop managed recovery.

 A physical standby database is a copy of a production database that you can use for disaster protection.

 For example, connect SQL*Plus to the database with `SYSDBA` privileges, and run the following statement to stop managed recovery:

   ```sql
   SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
   ```

 Keep this terminal window open.

3. Copy the server parameter file or initialization parameter file to a temporary location.

 The following example uses an operating system utility to copy the server parameter file:

   ```bash
   $ cp spfileMYDB.ora orig_spfileMYDB.ora
   ```

4. In a new terminal window, start RMAN session and connect as `TARGET` to the database to be migrated. Optionally, connect to a recovery catalog.
5. Back up the data files to the Oracle ASM disk group.

The following example uses a **RUN** command to make a level 0 incremental backup and allocates four channels to increase the backup speed. A level 0 incremental backup is an RMAN incremental backup that backs up all data blocks in the data files being backed up. An incremental backup at level 0 is identical in content to a full backup, but unlike a full backup the level 0 backup is considered a part of the incremental backup strategy.

An incremental backup is a RMAN backup in which only modified blocks are backed up. Incremental backups are classified by **level**. A level 0 incremental backup performs the same function as a full backup in that they both back up all blocks that have ever been used. The difference is that a full backup does not affect blocks backed up by subsequent incremental backups, whereas an incremental backup affects blocks backed up by subsequent incremental backups.

A full backup is a non-incremental RMAN backup. Full does not refer to how much of the database is backed up, but to the fact that the backup is not incremental. Consequently, you can make a full backup of one data file.

Increase or decrease this number accordingly. The **format** clause specifies **+DATA**, which is the name of the Oracle ASM disk group to be used for storing the database.

```
RUN
{
  ALLOCATE CHANNEL dev1 DEVICE TYPE DISK;
  ALLOCATE CHANNEL dev2 DEVICE TYPE DISK;
  ALLOCATE CHANNEL dev3 DEVICE TYPE DISK;
  ALLOCATE CHANNEL dev4 DEVICE TYPE DISK;
  BACKUP AS COPY
    INCREMENTAL LEVEL 0
    DATABASE
    FORMAT '+DATA'
    TAG 'ORA_ASM_MIGRATION';
}
```

6. If block change tracking is enabled for the database, then optionally make a level 1 incremental backup that you can use later to recover the database copy.

Block change tracking is a database option that causes Oracle to track data file blocks affected by each database update. The tracking information is stored in a block change tracking file. When block change tracking is enabled, RMAN uses the record of changed blocks from the change tracking file to improve incremental backup performance by only reading those blocks known to have changed, instead of reading data files in their entirety.

The following example makes an incremental level 1 copy of the level 0 backup created in the previous step:

```
RUN
{
  ALLOCATE CHANNEL dev1 DEVICE TYPE DISK;
  ALLOCATE CHANNEL dev2 DEVICE TYPE DISK;
  ALLOCATE CHANNEL dev3 DEVICE TYPE DISK;
  ALLOCATE CHANNEL dev4 DEVICE TYPE DISK;
  BACKUP INCREMENTAL LEVEL 1
    FOR RECOVER OF COPY WITH TAG 'ORA_ASM_MIGRATION'
    DATABASE;
}
```
7. If the database is in ARCHIVELOG mode, and if the database is open, then archive the online logs.

The following example uses the SQL command to archive the current redo logs:

```
RMAN> SQL "ALTER SYSTEM ARCHIVE LOG CURRENT";
```

8. If the database instance is currently using a server parameter file, then back it up.

The following example backs up the server parameter file:

```
RMAN> BACKUP AS BACKUPSET SPFILE;
```

9. If block change tracking is enabled, then disable it.

The following command disables block change tracking:

```
RMAN> SQL "ALTER DATABASE DISABLE BLOCK CHANGE TRACKING";
```

10. If Flashback Database is enabled, then disable it and drop any guaranteed restore points.

 Note: If you are not migrating the fast recovery area, then skip this step.

Disabling Oracle Flashback Database is necessary because you cannot migrate flashback logs to Oracle ASM. The following command disables Flashback Database:

```
RMAN> SQL "ALTER DATABASE FLASHBACK OFF";
```

The following command drops the guaranteed restore point named Q106:

```
RMAN> SQL "DROP RESTORE POINT Q106";
```

11. Shut down the database consistently.

 The following command shuts down the database:

```
RMAN> SHUTDOWN IMMEDIATE;
```

Migrating the Database to Oracle ASM Using RMAN

The following procedure is intended to minimize database downtime. The steps differ slightly depending on whether you are migrating a primary or standby database. The procedure makes the same assumptions described in "Preparing to Migrate the Database to Oracle ASM Using RMAN" on page 8-3. If you are not migrating the recovery area to Oracle ASM, then you must modify some steps, which are noted.

Note: The following procedure switches between SQL*Plus and RMAN, so keep a terminal window open for each utility.

To migrate the database to Oracle ASM:

1. Follow the steps in "Preparing to Migrate the Database to Oracle ASM Using RMAN" on page 8-3.

2. Restore or create a server parameter file in Oracle ASM storage.

 The steps depend on whether the database is using a server parameter file:
If the database is using a server parameter file, then restore it to the Oracle ASM disk group with the following commands, where `sid` is the SID of the instance:

```
RMAN> STARTUP MOUNT;
RMAN> RESTORE SPFILE TO '+DATA/spfilesid.ora';
RMAN> SHUTDOWN IMMEDIATE;
```

If the database is not using a server parameter file, then create one in Oracle ASM. Run the `CREATE SPFILE` command in SQL*Plus as follows, where `sid` is the SID of the database (the command spans two lines):

```
SQL> CREATE SPFILE='+DATA/spfilesid.ora' FROM PFILE=’/dbs/initsid.ora';
```

Afterward, delete `spfilesid.ora` and `initsid.ora` from the `/dbs` directory and create a new `initsid.ora` with the following line of content:

```
SPFILE='+DATA/spfilesid.ora'
```

3. Set Oracle Managed Files initialization parameters to Oracle ASM locations.

 Note: If you are not migrating the fast recovery area, then do not change the `DB_RECOVERY_FILE_DEST` and `DB_RECOVERY_FILE_DEST_SIZE` initialization parameter settings. However, you must set `DB_CREATE_ONLINE_LOG_DEST_n` parameter to an Oracle ASM location for migration of the online redo logs.

 Set the `DB_CREATE_FILE_DEST` and optional `DB_CREATE_ONLINE_LOG_DEST_n` initialization parameters to Oracle ASM disk groups. If the database uses a recovery area, then change the recovery area location to the Oracle ASM disk group. Also, change the recovery area size.

 Run commands in SQL*Plus as shown in the following example. The example assumes that the size of the fast recovery area is 100 GB and specifies the disk group `+FRA` for the fast recovery area.

   ```
   SQL> STARTUP FORCE NOMOUNT;
   SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST='+DATA' SID='*';
   SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=100G SID='*';
   SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='+FRA' SID='*';
   ```

4. Set the `CONTROL_FILES` initialization parameter to Oracle ASM locations.

 If you are migrating the fast recovery area, then enter the following commands in SQL*Plus to restart the database instance and set the control file locations to disk groups `+DATA` and `+FRA`:

   ```
   SQL> STARTUP FORCE NOMOUNT;
   SQL> ALTER SYSTEM SET CONTROL_FILES=’+DATA’,’+FRA’ SCOPE=SPFILE SID=’*’;
   ```

 If you are not migrating the fast recovery area, then enter the following commands in SQL*Plus to restart the database instance and set the control file locations to disk group `+DATA`:

   ```
   SQL> STARTUP FORCE NOMOUNT;
   SQL> ALTER SYSTEM SET CONTROL_FILES=’+DATA’,’+DATA’ SCOPE=SPFILE SID=’*’;
   ```

5. Migrate the control file to Oracle ASM and mount the control file.
Switch to the RMAN terminal to restore the control file. In the following example, `original_cf_name` is a control file name in the initialization parameter file before migration:

```
RMAN> STARTUP FORCE NOMOUNT;
RMAN> RESTORE CONTROLFILE FROM 'original_cf_name';
RMAN> ALTER DATABASE MOUNT;
```

6. Migrate the data files to Oracle ASM.

Use RMAN to switch to the database copy that you created in step 5 “Back up the data files to the Oracle ASM disk group” in "Preparing to Migrate the Database to Oracle ASM Using RMAN" on page 8-3. The switch renames all the data files to files on Oracle ASM disk groups. Afterward, recover the database. If incremental backups were taken, then RMAN applies them during recovery. For example, enter the following commands at the RMAN prompt:

```
SWITCH DATABASE TO COPY;
RUN
{
    ALLOCATE CHANNEL dev1 DEVICE TYPE DISK;
    ALLOCATE CHANNEL dev2 DEVICE TYPE DISK;
    ALLOCATE CHANNEL dev3 DEVICE TYPE DISK;
    ALLOCATE CHANNEL dev4 DEVICE TYPE DISK;
    RECOVER DATABASE;
}
```

7. If the database uses block change tracking or Flashback Database, then enable these features.

```
Note: If you are not migrating the recovery area, then you do not enable Flashback Database unless you had disabled it previously.
```

For example, enter the following statements in SQL*Plus:

```
SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING USING FILE '+DATA';
SQL> ALTER DATABASE FLASHBACK ON;
```

8. Place the database in its normal operation mode.

The normal operational mode depends on whether the database is a primary or standby database:

- If the database is a primary database, then open it as follows:

  ```
  SQL> ALTER DATABASE OPEN;
  ```

- If the database is a standby database, then resume managed recovery mode as follows:

  ```
  SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;
  ```

9. Drop the tempfiles and re-create them in Oracle ASM.

Use SQL*Plus to re-create the tempfiles. In the following example, the name of the tempfile in the original storage is `tempfile_name`. The name of the temporary tablespace is `temp_tbs_name`.

```
SQL> ALTER DATABASE TEMPFILE 'tempfile_name' DROP;
SQL> ALTER TABLESPACE temp_tbs_name ADD TEMPFILE;
```
10. Migrate the online redo log files.

If this is a primary database, then add new log group members in Oracle ASM and drop the old members. You can use the following PL/SQL script to migrate the online redo log groups into an Oracle ASM disk group. The PL/SQL script assumes that the Oracle Managed Files initialization parameters specified in step 3 “Set Oracle Managed Files initialization parameters to Oracle ASM locations” in “Migrating the Database to Oracle ASM Using RMAN” on page 8-5 are set.

Example 8–1 Migrating the online redo logs

```sql
SET SERVEROUTPUT ON;
DECLARE
CURSOR rlc IS
    SELECT GROUP# GRP, THREAD# THR, BYTES, 'NO' SRL
    FROM V$LOG
    UNION
    SELECT GROUP# GRP, THREAD# THR, BYTES, 'YES' SRL
    FROM V$STANDBY_LOG
ORDER BY 1;
stmt VARCHAR2(2048);
BEGIN
    FOR rlcRec IN rlc LOOP
        IF (rlcRec.srl = 'YES') THEN
            stmt := 'ALTER DATABASE ADD STANDBY LOGFILE THREAD ' || rlcRec.thr || ' SIZE ' || rlcRec.bytes;
            EXECUTE IMMEDIATE stmt;
            stmt := 'ALTER DATABASE DROP STANDBY LOGFILE GROUP ' || rlcRec grp;
            EXECUTE IMMEDIATE stmt;
        ELSE
            stmt := 'ALTER DATABASE ADD LOGFILE THREAD ' || rlcRec.thr || ' SIZE ' || rlcRec.bytes;
            EXECUTE IMMEDIATE stmt;
            BEGIN
                stmt := 'ALTER DATABASE DROP LOGFILE GROUP ' || rlcRec grp;
                DBMS_OUTPUT.PUT_LINE(stmt);
                EXECUTE IMMEDIATE stmt;
            EXCEPTION
                WHEN OTHERS THEN
                    EXECUTE IMMEDIATE 'ALTER SYSTEM SWITCH LOGFILE';
                    EXECUTE IMMEDIATE 'ALTER SYSTEM CHECKPOINT GLOBAL';
                    EXECUTE IMMEDIATE stmt;
            END;
        END IF;
    END LOOP;
END;
/
```

11. Optionally, migrate backups and copies in the old fast recovery area to Oracle ASM as follows:

 a. If foreign archived logs exists in the recovery area, then you cannot migrate them to Oracle ASM. Run the following command at the RMAN prompt:

   ```sql
   RMAN> DELETE REMOTE ARCHIVELOG ALL;
   ```

 b. Back up archived redo log files, backup sets, and data file copies to Oracle ASM. For example, run the following command at the RMAN prompt:

   ```sql
   RUN
   ```
Moving Data Files Between Oracle ASM Disk Groups Using RMAN

ALLOCATE CHANNEL dev1 DEVICE TYPE DISK;
ALLOCATE CHANNEL dev2 DEVICE TYPE DISK;
ALLOCATE CHANNEL dev3 DEVICE TYPE DISK;
ALLOCATE CHANNEL dev4 DEVICE TYPE DISK;

BACKUP AS COPY ARCHIVELOG ALL DELETE INPUT;
BACKUP BACKUPSET ALL DELETE INPUT;
BACKUP AS COPY DATAFILECOPY ALL DELETE INPUT;
}

Migrating a Database from Oracle ASM to Alternative Storage

Migrating a database from Oracle ASM to an alternative storage system is essentially the reverse of the migration to Oracle ASM. Modify the steps in "Preparing to Migrate the Database to Oracle ASM Using RMAN" on page 8-3 and "Migrating the Database to Oracle ASM Using RMAN" on page 8-5 as follows:

- If the procedure specifies Oracle Managed Files locations, then alter the procedure to use locations in alternative storage.
- If the FORMAT clause of the BACKUP command specifies an Oracle ASM location, then change the backup format to an alternative storage location.
- If a filename used in a SQL statement is an Oracle ASM location, then change it to a filename in the alternative storage location.

Moving Data Files Between Oracle ASM Disk Groups Using RMAN

You may want to move an active data file in an ARCHIVELOG mode database from one Oracle ASM disk group to another. In this case, you use BACKUP AS COPY to copy the data file to the new disk group and SET NEWNAME and SWITCH commands to rename the data file in the control file.

For this scenario, assume that you are using disk groups DATA and USERDATA. You want to move data file +DATA/orcl/datafile/users.261.689589837 to disk group USERDATA.

Ensure that ARCHIVELOG mode is enabled for the database before beginning the procedure to move data files.

To move a data file from one Oracle ASM disk group to another disk group, perform the following steps.

1. Start RMAN and connect to the target database.
 For example:
   ```
   $ rman
   RMAN> CONNECT TARGET SYS@orcl
   target database Password: XXXXXXXX
   connected to target database: ORCL (DBID=1217369048)
   ```

2. Generate a report that shows the names of the data files.
 Run the following REPORT command after connecting RMAN to the target database. Note the data file name of the file to be moved.
 For example:
   ```
   RMAN> REPORT SCHEMA;
   Report of database schema for database with db_unique_name ORCL
   ```
3. Back up the data file to the new Oracle ASM disk group.

Run the BACKUP AS COPY command to back up the data file on DATA to USERDATA.

For example:

RMAN> BACKUP AS COPY
 DATAFILE '+DATA/orcl/datafile/users.261.689589837'
 FORMAT '+USERDATA';

Starting backup at 16-JUN-09
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=51 device type=DISK
channel ORA_DISK_1: starting datafile copy
input datafile file number=00004 name=+DATA/orcl/datafile/users.261.689589837
output file name=+USERDATA/orcl/datafile/users.261.689589837
 tag=TAG20090616T103101 RECID=13 STAMP=689682663
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:00:01
Finished backup at 16-JUN-09

You could also specify the data file by the data file number and data file type.

For example:

BACKUP AS COPY
 DATAFILE 4
 FORMAT '+USERDATA';

4. Offline the data file that you intend to move to a new disk group.

Run the following SQL command in the RMAN client. Note that you use two single quotation marks around the name of the data file, not double quotation marks.

For example:

RMAN> SQL "ALTER DATABASE DATAFILE
 ' '+DATA/orcl/datafile/users.261.689589837'' OFFLINE";

sql statement: ALTER DATABASE DATAFILE
 ' '+DATA/orcl/datafile/users.261.689589837'' OFFLINE

5. Point the control file to the newly created copy of the data file.

Run the SWITCH...TO COPY command in the RMAN client. The TO COPY option of SWITCH switches the data file to the most recent copy of the data file.
For example:

RMAN> SWITCH DATAFILE "+DATA/orcl/datafile/users.261.689589837" TO COPY;

datafile 4 switched to datafile copy
"+USERDATA/orcl/datafile/users.256.689682663"

The output of this command displays the new name of the data file.

6. Recover the renamed data file.

Run the RECOVER command in the RMAN client.

For example:

RMAN> RECOVER DATAFILE "+USERDATA/orcl/datafile/users.256.689682663";

Starting recover at 16-JUN-09
using channel ORA_DISK_1
starting media recovery
media recovery complete, elapsed time: 00:00:01
Finished recover at 16-JUN-09

7. Bring the data file online.

Run the SQL command in the RMAN client. Note that you use two single quotation marks around the name of the data file, not double quotation marks.

For example:

RMAN> SQL "ALTER DATABASE DATAFILE
'"+USERDATA/orcl/datafile/users.256.689682663'" ONLINE";

sql statement: ALTER DATABASE DATAFILE
'"+USERDATA/orcl/datafile/users.256.689682663'" ONLINE

8. Delete the data file copy from the original Oracle ASM disk group.

In this scenario, +DATA/orcl/datafile/users.261.689589837 is the original data file in DATA. Because you issued SET NEWNAME and SWITCH commands for this data file, the original file is now recorded in the RMAN repository as a data file copy. Run a DELETE command in the RMAN client to remove this file.

For example:

RMAN> DELETE DATAFILECOPY "+DATA/orcl/datafile/users.261.689589837";

released channel: ORA_DISK_1
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=51 device type=DISK
List of Datafile Copies
=======================
<table>
<thead>
<tr>
<th>Key</th>
<th>File</th>
<th>S</th>
<th>Completion Time</th>
<th>Ckp SCN</th>
<th>Ckp Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>4</td>
<td>A</td>
<td>16-JUN-09</td>
<td>864471</td>
<td>16-JUN-09</td>
</tr>
</tbody>
</table>
Name: +DATA/orcl/datafile/users.261.689589837
Tag: TAG20090619T084217

Do you really want to delete the above objects (enter YES or NO)? y
deleted datafile copy
datafile copy file name=+DATA/orcl/datafile/users.261.689589837 RECID=14
STAMP=689683255
Deleted 1 objects
Administering Oracle ASM with Oracle Enterprise Manager

This chapter describes how to administer Oracle Automatic Storage Management (Oracle ASM) by using Oracle Enterprise Manager to provision and manage data file storage. This chapter contains the following topics:

- Oracle Automatic Storage Management Home Page
- Configuring Oracle ASM Initialization Parameters with Oracle Enterprise Manager
- Managing Oracle ASM Users with Oracle Enterprise Manager
- Managing Disk Groups with Oracle Enterprise Manager
- Managing Oracle ASM File Access Control with Oracle Enterprise Manager
- Managing Directories, Files, and Aliases with Oracle Enterprise Manager
- Managing Disk Group Templates with Oracle Enterprise Manager
- Monitoring Oracle ASM Performance with Oracle Enterprise Manager
- Backing Up Oracle ASM Files with Oracle Enterprise Manager
- Performing Bad Block Recovery with Oracle Enterprise Manager
- Migrating to Oracle ASM with Oracle Enterprise Manager
- Oracle ASM Support Workbench
- Oracle by Example Series

Oracle Automatic Storage Management Home Page

All Oracle ASM administration tasks begin with the Oracle Automatic Storage Management Home page in Oracle Enterprise Manager, shown in Figure 9–1. The Oracle Automatic Storage Management Home page displays:

- The status of the Oracle ASM instance.
- A chart that shows the used and free space of each disk group and disk group internal usage.
- A list of databases that are serviced by the Oracle ASM instance.
- A list of Oracle Automatic Storage Management Cluster File System (Oracle ACFS) file systems that are serviced by the Oracle ASM instance.
- A list of other non-Oracle ACFS volumes.
A list of alerts for the Oracle ASM instance and the host computer.

- Links to the Oracle ASM Performance, Disk Groups, Configuration, Users, and Oracle ACFS pages.

Figure 9–1 Oracle Automatic Storage Management Home Page

To access the Oracle Automatic Storage Management Home page on a single-instance system:

1. Access the Database Home page by logging in as any database user.

2. Under the heading labeled **General** on the left side of the Database Instance Home page, click the link next to the last entry in the General column labeled **Oracle ASM**.

3. If prompted for Oracle ASM login credentials, then enter the user **SYS**, provide the **SYS** password that was set for the Oracle ASM instance upon installation, and connect as **SYSASM**. Oracle Enterprise Manager displays the Oracle Automatic Storage Management Home page similar to the page in **Figure 9–1**.

Accessing the Oracle ASM Home Page in Single-Instance Oracle Databases

To access the Oracle Automatic Storage Management Home page on a single-instance system:

1. Access the Database Home page by logging in as any database user.

 See Also: *Oracle Database 2 Day DBA* for more information

2. Under the heading labeled **General** on the left side of the Database Instance Home page, click the link next to the last entry in the General column labeled **Oracle ASM**.

3. If prompted for Oracle ASM login credentials, then enter the user **SYS**, provide the **SYS** password that was set for the Oracle ASM instance upon installation, and connect as **SYSASM**. Oracle Enterprise Manager displays the Oracle Automatic Storage Management Home page similar to the page in **Figure 9–1**.

 See Also: "Authentication for Accessing Oracle ASM Instances" on page 3-23 for more information about authentication.
Accessing the Oracle ASM Home Page in Oracle RAC Databases

To access the Oracle Automatic Storage Management Home page in an Oracle Real Application Clusters (Oracle RAC) environment:

1. Log in to Oracle Enterprise Manager Database Control on any node that is running Oracle Management Service (OMS).

 OMS is automatically started on the node on which Database Configuration Assistant (DBCA) was originally run to create the cluster database. Depending on your configuration, OMS might also be running on other nodes.

 See Also: *Oracle Database 2 Day + Real Application Clusters Guide* for more information

2. On the Cluster Database page, under the Instances heading, click a link to access an Oracle ASM instance.

Configuring Oracle ASM Initialization Parameters with Oracle Enterprise Manager

You can configure Oracle ASM with the Oracle Enterprise Manager Configuration Parameters page similar to the screen shown in Figure 9–2.

Figure 9–2 Oracle Automatic Storage Management Configuration Parameters Page

<table>
<thead>
<tr>
<th>Home</th>
<th>Performance</th>
<th>Disk Groups</th>
<th>Configuration</th>
<th>Users</th>
<th>ASM Cluster File System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Disk Discovery Path**: /devices/disk

 This path lists the set of disks considered for discovery. It should match the path or the directory containing the disk, e.g., /dev/rdsk/ for Linux-based operating systems.

- **Auto Mount Disk Groups**: DATA, FRA

 The list of the Disk Group names to be mounted by the ASM at startup or when ALTER DISKGROUP ALL MOUNT command is used.

- **Rebalance Power**: 1

 Higher values allows the operation to complete more quickly but takes more I/O bandwidth away from the database. Lower values causes rebalance to take longer but leave more I/O bandwidth for the database.

- **Preferred Read Failure Groups**

 Specify a comma-separated list of failure groups whose member disks will be preferred read disks for this node. If there is more than one mirror copy to read from, ASM will read from the preferred disk.

To configure the Oracle ASM instance:

1. Access the Oracle Automatic Storage Management Home page.

 See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.

2. Click the **Configuration** link at the top of the page to view the Configuration Parameters page.

3. Update the configuration options on the page as follows:

 - **Disk Discovery Path** *(ASM_DISKSTRING initialization parameter)*

 Enter a string value. See "ASM_DISKSTRING" on page 3-7.

 - **Auto Mount Disk Groups** *(ASM_DISKGROUPS initialization parameter)*
Enter a string value. See "ASM_DISKGROUPS" on page 3-7.

- Rebalance Power (ASM_POWER_LIMIT initialization parameter)
 Enter an integer value. See "ASM_POWER_LIMIT" on page 3-8.

- Preferred Read Failure Groups (Only in Oracle RAC environments) (ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter)
 Enter a comma-delimited string of values in which each string represents a failure group. This parameter is generally used only for clustered Oracle ASM instances. See "ASM_PREFERRED_READ_FAILURE_GROUPS" on page 3-9.

4. Click **Apply** to save your changes or click **Revert** to discard any changes made on the page.

Managing Oracle ASM Users with Oracle Enterprise Manager

You can manage Oracle ASM users with the Oracle Enterprise Manager Users page, shown in Figure 9–3. Access this page by clicking the Users tab that is near the top center of the Oracle Automatic Storage Management Home page.

Figure 9–3 Oracle Automatic Storage Management Users Page

![Oracle Automatic Storage Management Users Page](image)

To manage Oracle ASM users:

1. Access the Oracle Automatic Storage Management Home page.
 See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.

2. Click the **Users** link at the top to view the Users property page.

 Note that *ASMSNMP* is a less privileged user that is primarily used by Oracle Enterprise Manager to monitor Oracle ASM instances. This account is granted the SYSDBA privilege. *ASMSNMP* is created by Oracle ASM Configuration Assistant (ASMCA) when an Oracle ASM instance is created. For information about creating an Oracle ASM instance with ASMCA, see "Managing Oracle ASM Instances with ASMCA" on page 11-2.

See Also:

- *Oracle Grid Infrastructure Installation Guide* for information about installing Oracle ASM

- *Oracle Database Installation Guide* for information about reviewing database accounts and passwords
3. Click **Create** to add a new Oracle ASM user. When you add users, Oracle Enterprise Manager displays a Create User page in which you must enter user login credentials that include the user name, password, and password confirmation. You can also grant privileges to the new user by selecting privileges in the Available Privileges column and clicking the right arrow buttons to move privileges to the Granted Privileges column, or move the privilege by double clicking it. The available privileges include SYSDBA, SYSOPER, and SYSASM. Click **OK** to create the user, **Cancel** to cancel the procedure, or **Show SQL** to view the SQL that Oracle Enterprise Manager uses to create the user.

4. To edit a user’s properties, select the box in the Select column of the user to edit, then click **Edit**. On the Edit User page, modify the password if needed. You can also alter the privileges that are assigned to the user by selecting the privilege and using the right and left arrow buttons to move the privilege from the Granted Privileges column to the Available Privileges column and vice versa. You can also move the privilege by double clicking it. Click **OK** to edit the user properties, **Revert** to cancel the procedure, or **Show SQL** to view the SQL that Oracle Enterprise Manager uses to edit the user’s properties.

5. To delete an Oracle ASM user, select the box in the Select column for the user to delete, then click **Delete**. On the confirmation dialog, click **Yes** to delete the user or **No** to stop the user deletion procedure.

See Also: "Authentication for Accessing Oracle ASM Instances" on page 3-23 for more information about user authentication

Managing Disk Groups with Oracle Enterprise Manager

This section describes how to manage disk groups under the following topics:

- Creating Disk Groups
- Adding Disks to Disk Groups
- Dropping Disks from Disk Groups
- Bringing Disks Online and Offline
- Dropping Disk Groups
- Monitoring Disk Group Usage
- Mounting and Dismounting Disk Groups
- Administering Advanced Disk Group Properties

Creating Disk Groups

You can create additional Oracle ASM disk groups to:

- Have disk groups with different redundancy levels (normal, high, or external), depending on availability requirements and storage system capabilities.
- Separate different classes of storage, such as SCSI drives and SATA drives, into different disk groups. Disks in a disk group should have similar size and performance characteristics.
- Store the fast recovery area in a separate disk group from the database.

To create a disk group:

1. Access the Oracle Automatic Storage Management Home page.
See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.

2. Click the Disk Groups link at the top of the page to display the Disk Groups property page.

3. If you are not logged in, then the Log In page appears and you should log in as the SYS user, connecting as SYSASM. Provide the SYS password for the Oracle ASM instance. This password was set up when the Oracle ASM instance was created.

4. Click Create and Oracle Enterprise Manager displays a Create Disk Group page similar to the page in Figure 9–4. The Create Disk Group page displays a list of Oracle ASM disks that are available to be added to a disk group. This includes disks with a header status of CANDIDATE, PROVISIONED, or FORMER, and so on.

5. To display not only disks that are available to be added to a disk group, but all Oracle ASM disks, including disks that belong to a disk group (header status = MEMBER), select All Disks from the Select Member Disks list.

The page is re-displayed with the complete list of Oracle ASM disks that were discovered by the Oracle ASM instance.

6. Enter the disk name, select a redundancy type (high, normal, or external), and optionally, you can enter a failure group name.

7. Select disks as follows:
 - Select the box to the left of each disk to be included in the new disk group.
 - Optionally, you can enter a disk name, the size of the disk for Oracle ASM to use, and the failure group name.
 - To force the inclusion of a disk in the disk group, select the Force Usage box for that disk.
8. Specify a Disk Compatibility value for the disk group to enable your system to use the latest Oracle ASM features. See “Configuring Disk Group Compatibility Attributes” on page 9-15.

Note: You cannot reverse setting a disk compatibility value.

For information about disk group compatibility attributes, see "Disk Group Compatibility" on page 4-32.

9. Click OK to create the disk group or click Cancel to stop the disk group creation operation. You can also click Show SQL to show the SQL statements that the disk group creation operation uses.

See Also: See "Creating Disk Groups" on page 4-3 for more information about creating disk groups and the $ASM_DISK view in Oracle Database Reference for information about the various header statuses of Oracle ASM disks.

Adding Disks to Disk Groups

You can add disks to a disk group to increase the storage space in a disk group. If you add multiple disks in a single operation, then Oracle ASM rebalances the disk group to evenly distribute the data on all disks, including the newly added disks.

You can control the power of a rebalance operation with the setting of the Rebalance Power. The higher the number, the faster the rebalance operation completes. Lower numbers cause rebalancing to take longer, but consume fewer processing and I/O resources. This leaves these resources available for the database. The default value of 1 minimizes disruption to the database.

A value of 0 blocks the rebalance operation. Manual or automatic rebalance can then occur later. You might want to postpone rebalancing until there are fewer demands on the database, or when you have completed all of your disk group changes.

For information about controlling rebalance operations, refer to "Manually Rebalancing Disk Groups" on page 4-17 and "Tuning Rebalance Operations" on page 4-18. For information about rebalance power settings and the ASM_POWER_LIMIT initialization parameter, refer to "ASM_POWER_LIMIT" on page 3-8.

To add one or more disks to a disk group:

1. Access the Oracle Automatic Storage Management Home page.

 For instructions, refer to "Oracle Automatic Storage Management Home Page” on page 9-1

2. Click the Disk Groups link to display the Disk Groups property page.
3. If the Oracle ASM Login page appears, then log in as the SYS user, connecting as SYSASM. Provide the SYS password for the Oracle ASM instance. This password was set up when the Oracle ASM instance was created.

4. Click a link in the Name column to select the disk group to which you want to add disks. The Disk Group page similar to the page in Figure 9–7 on page 9-10 appears, displaying a list of disks that are in the disk group.

5. Click Add and Oracle Enterprise Manager displays the Add Disks page. This page displays a list of Oracle ASM disks that are available to be added to the disk group. This includes disks with the header status of CANDIDATE, PROVISIONED, or FORMER, and so on.

Figure 9–5 Oracle Automatic Storage Management Add Disks Page

6. To display not only disks that are available to be added to a disk group, but all of the Oracle ASM disks, including disks that belong to a disk group (header status = MEMBER), select All Disks from the Select Member Disks drop-down list on the right hand side of the page. Oracle Enterprise Manager re-displays the page with the complete list of Oracle ASM disks that were discovered by the Oracle ASM instance.

7. Optionally change the rebalance power by selecting a value from the Rebalance Power list.

8. Select disks as follows:
 - Check the box to the left of each disk to be added to the disk group.
 - To force the inclusion of a disk in the disk group, select the Force Reuse box in the right-most column.

Caution: The Force Reuse box causes the disk to be added to the disk group even if the disk belongs to another disk group and has valid database data. The existing data is then lost. You must be certain that you are selecting a disk that can legitimately be added to the disk group. Refer to "Adding Disks to a Disk Group" on page 4-13 for an example of the FORCE option.
Optionally enter an Oracle ASM disk name for each disk. Oracle ASM provides a name if you do not.

9. Click OK to add the selected disks.

See Also: "Altering Disk Groups" on page 4-11 for more information about modifying disk group properties

Bringing Disks Online and Offline

Perform the following procedures to bring a disk online or offline:

1. Access the Oracle Automatic Storage Management Home page.

 See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.

2. Click the Disk Groups link at the top of the page to view the Disk Groups page.

 Oracle Enterprise Manager displays a page similar to the one shown in Figure 9–6.

3. Click the name of a disk in the Name column and Oracle Enterprise Manager displays the General page for the disk group to modify. The General page that you see should be similar to the one shown in Figure 9–7.
4. To bring a disk online, select the disk to bring online and click Online. If you bring a disk online, then Oracle ASM performs the following:

- Oracle ASM performs the online operation on the selected disks. You can select one or more or disks, or all of the disks to bring online. If you select all of the disks, then Oracle uses the ALL keyword for this operation. Otherwise, only the selected disks are affected by the online operation.

- During the online process, Oracle Enterprise Manager first places a disk into online mode to accommodate write operations. Then Oracle Enterprise Manager resynchronizes stale data on the disk with the current data until the disk is fully online for read operations; this is the Oracle ASM fast mirror resync feature.

- You can also choose the By Failure Group view to perform this operation on a selected disk group. In this case, Oracle uses the SQL for disks in failure group.

- You can also select a disk that is online, but Oracle Enterprise Manager ignores that selection and only brings disks online that were previously offline.

- Click Yes on the Oracle Enterprise Manager Confirmation dialog to begin bringing the disk online or click No to cancel the operation. You can also click Show SQL to review the SQL that Oracle Enterprise Manager uses for the online operation.

5. To take a disk offline, select the disk to take offline and click Offline. If you bring a disk offline, then Oracle ASM performs the following:
Depending on how much data is stale, the operation may require additional time to complete. You can monitor the operation’s progress using the Pending Operations link from the Disk Group Home page.

The value that you set for Rebalance Power using `ASM_POWER_LIMIT` must be a whole number. The text on the page describes how the value of Rebalance Power affects the fast mirror resync operation. If the `ASM_POWER_LIMIT` is set to 0, then Oracle ASM does not perform automatic rebalance. For information about rebalance power settings and the `ASM_POWER_LIMIT` initialization parameter, refer to "ASM_POWER_LIMIT" on page 3-8.

By default, the Rebalance Power value uses the value of the `ASM_POWER_LIMIT` initialization parameter.

Oracle Enterprise Manager displays an Offline Confirmation page and the text on this page explains that after Oracle Enterprise Manager takes the selected disks offline, the Oracle ASM instance waits for the time interval that is specified by the value that you have set for the `DISK_REPAIR_TIME` initialization parameter before Oracle ASM drops the disks. During the disk repair time period, you can repair the disks and then place them back online. For each disk that you successfully place online, the pending drop operation is canceled and a resynchronization operation begins.

If you have set `DISK_REPAIR_TIME` to a large value, for example, greater than one day, then this increases the possibility of data loss. This is because the files in the disk group are protected with a lower degree of redundancy during this period.

Click Yes on the Oracle Enterprise Manager Confirmation dialog to begin the offline processing or click No to stop the operation. You can also click Show SQL to see the SQL that Oracle Enterprise Manager uses for the offline operation.

Dropping Disks from Disk Groups

When you drop a disk from a disk group, Oracle ASM rebalances the disk group by moving all of the file extents from the dropped disk to other disks in the disk group. Oracle ASM then releases the disk and you can then add the disk to another disk group or use it for other purposes. You can drop one or more disks in a single operation. You can also optionally set rebalance power for the drop operation. The following is a list of possible reasons for dropping a disk:

- A disk is starting to fail and you must replace it
- To upgrade a disk
- To reallocate the disk to a different disk group or reallocate the disk to a different storage system

Note: Dropping disks from a disk group only logically deletes the disks from the disk group. It does not delete the disk contents. However, the contents are lost when you add the disk to a new disk group.

To drop one or more disks from a disk group:

1. Access the Oracle Automatic Storage Management Home page.
See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.

2. Click the Disk Groups link to display the Disk Groups property page.

3. If the Oracle Automatic Storage Management Login page appears, log in as the SYS user, connecting as SYSASM. Provide the SYS password for the Oracle ASM instance. This password was set up when the Oracle ASM instance was created.

4. Click a link in the Name column to select the disk group that contains the disks to be dropped.

The Disk Group page appears.

5. Under the Member Disks heading, in the Select column, select the boxes for the disks that you plan to drop, and then click Remove.

A confirmation page appears.

6. To change the rebalance power, or to set the FORCE option for dropping disks, do the following:
 a. Click Show Advanced Options.
 b. Optionally select the Force option or select a rebalance power in the Rebalance Power list.

Note: You might need the FORCE option if Oracle ASM cannot read from or write to the disk. See "Dropping Disks from Disk Groups" on page 4-14 for a discussion of the FORCE option.

7. Click Yes to drop the disks.

The Disk Group page returns, and displays a state of DROPPING for each disk being dropped.

8. Refresh the page until the dropped disks no longer appear in the disk group.

Caution: You cannot reuse or disconnect the dropped disks until the drop and rebalance operations are complete. Operations are complete when the dropped disks no longer appear in the disk group. See "Dropping Disks from Disk Groups" on page 4-14 for more information, and for other caveats for dropping disks.

Dropping Disk Groups

When you drop a disk group, you delete the disk group optionally with all of its files. You cannot drop a disk group if any of its database files are open. Oracle ASM deletes all of the disk group contents only if you specify the including contents option. After dropping a disk group, you can add its member disks to other disk groups or use them for other purposes.

One reason to drop a disk group is to change the redundancy level (normal, high, or external). Because you cannot change the redundancy of a disk group, you must drop the disk group and then re-create it with the proper redundancy. In this case, you must back up or move disk group data before you drop the disk group.

To drop a disk group:

1. Access the Oracle ASM Home page.
Managing Disk Groups with Oracle Enterprise Manager

2. Click the Disk Group tab to display the Disk Groups page.

3. If the Oracle ASM Login page appears, log in as the SYS user, connecting as SYSASM. Provide the SYS password for the Oracle ASM instance. This password was set up when the Oracle ASM instance was created.

4. Click the box in the Select column to select a disk group that you plan to drop.

5. Click Delete and the confirmation page appears.

6. To delete the disk group even if it still contains files, click Show Advanced Options and ensure that the Including Contents option is selected. If the disk group contains files and the Including Contents option is not selected, then you cannot drop the disk group.

7. To delete a disk group that belongs to a disk group that you cannot mount, use the FORCE option in the Advanced Options confirmation dialog. The FORCE option applies to the DISMOUNTED disk group only. This option enables you to delete a disk header and mark it as FORMER.

8. On the confirmation page, click Yes.

See Also: "Dropping Disk Groups" on page 4-45 for more information about dropping disks

Monitoring Disk Group Usage

Perform the following procedures to monitor disk group usage:

To view Oracle ASM disk group usage and free space:

1. Access the Oracle Automatic Storage Management Home page.

See Also: "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions about how to access the home page

2. Click the Disk Groups link to view the Disk Groups property page.

3. If the Oracle ASM Login page appears, then log in as the SYS user, connecting as SYSASM. Provide the SYS password that was set up for Oracle ASM when the Oracle ASM instance was created.

The Disk Group list page, similar to the page shown in Figure 9–6, displays all of the disk groups and their space usage information.

The Usable Free column displays the space in megabytes that is available in the disk group. The values in this column consider the redundancy level of the disk group, and exclude the space that the disk group reserves for restoring full redundancy for all files in the disk group after a disk failure.
Mounting and Dismounting Disk Groups

Use the **FORCE** option to mount a disk group when there are missing disks or missing failure groups. The **FORCE** option corrects configuration errors, such as incorrect values for **ASM_DISKSTRING**, without incurring unnecessary rebalance operations.

Disk groups mounted with the **FORCE** option have one or more disks offline if the disks were not available at the time of the mount. You must take corrective action to restore those devices before the time set with the **DISK_REPAIR_TIME** value expires. Failing to restore and put those disks back online within the disk repair time frame results in Oracle ASM automatically removing the disks from the disk group. This would then require a rebalance operation to restore redundancy for all of the files in the disk group. Perform the following procedures to mount a disk with the **FORCE** option:

1. From the Oracle ASM home page click the **Disk Groups** tab.
2. Select the disk group that has a disk that you must repair and click **Dismount**. Click **OK** on the Dismount confirmation dialog. The State column of the Disk Group home page should show the Status as **DISMOUNTED**.
3. Perform any needed repairs to the disk in the disk group.
4. Click the box in the Select column next to the disk that you plan to force mount, then click **Mount**.
5. On the Disk Mount Confirmation dialog, click the **Show Advanced Options** link.
6. On the Mount Force Confirmation dialog as shown in Figure 9–8, select the **Force** option and click **Yes**. You can also click **No** to cancel the mount force operation and **Show SQL** to review the SQL that Oracle Enterprise Manager uses to perform the mount force operation.

![Figure 9–8 Mount Force Confirmation Dialog](image)

Administering Advanced Disk Group Properties

This section explains how to administer advanced disk group properties.

Perform the following steps to change the values for disk group attributes that can be altered after the disk group has been created.
1. On the Automatic Storage Disk Group List page, click a disk group name and Oracle Enterprise Manager displays the Disk Group Home page.

2. Click Edit under the Advanced Attributes section.

The topics contained in this section are:

- Configuring Disk Group Compatibility Attributes
- Configuring Disk Repair Time
- Configuring Smart Scan Compatibility
- Configuring File Access Control

Figure 9–9 shows the advanced attributes that can be altered for an existing disk group. This screenshot only shows the top portion of the Edit Advanced Attributes for Disk Group Page.

Figure 9–9 Oracle Automatic Storage Management Edit Advanced Attributes for Disk Group Page

Configuring Disk Group Compatibility Attributes

Specify a Disk Compatibility value for the disk group to enable your system to use the latest Oracle ASM features.

<table>
<thead>
<tr>
<th>Database Compatibility</th>
<th>ASM Compatibility</th>
<th>ASM Volume Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0.0.0</td>
<td>11.0.0.0</td>
<td>11.0.0.0</td>
</tr>
</tbody>
</table>

The minimum software version required for a database instance to use files in this disk group (10.1 and above).

The minimum software version required for an ASM instance to mount this disk group (10.1 and above).

The minimum software version required for an ASM Volume to use the disk group (11.2 and above).

TIP The database compatibility has to be less than or equal to the ASM compatibility. The ASM Volume compatibility can only be set when ASM compatibility is 11.2 and above.

Disk Repair Time

Specify a time period that is long enough for you to repair the disk. Keep in mind that large values, for example more than 1 day, increase the probability of data loss because the files in the disk group are protected with a lower degree of redundancy during this time period.

<table>
<thead>
<tr>
<th>Disk Repair Time</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

Disks will be dropped after the specified time has passed.

Note: You cannot reverse setting a disk compatibility value.

- **ASM Compatibility**
 Specify the value that is the minimum software version required for an Oracle ASM instance to mount this disk group.

- **Database Compatibility**
Specify a value that must be less than or equal to the Oracle ASM compatibility. This is the minimum software version that is required for a database instance to use the files in the disk group. If the database compatibility value that you use is greater than the Oracle ASM compatibility, then Oracle Enterprise Manager displays an error.

Note: You cannot modify the database compatibility for an Oracle ASM cluster that is in a rolling migration state.

- **ASM Volume**
 Specify a value that is 11.2 or greater to use the Oracle ASM Dynamic Volume Manager (Oracle ADVM) functionality. The ASM disk group compatibility must be set to 11.2 or greater to enable Oracle ADVM. Also, the Oracle ADVM volume drivers must be loaded in the supported environment.

 For information about disk group compatibility attributes, see "Disk Group Compatibility" on page 4-32.

Configuring Disk Repair Time
Specify a time period that is long enough for you to repair a disk in the disk group.

For information about disk group repair time, see "Oracle ASM Fast Mirror Resync" on page 4-27.

Configuring Smart Scan Compatibility
Specify to disable or enable smart scan compatibility for the disk group.

This attribute is only applicable to Oracle Exadata storage.

See Also: Oracle Exadata documentation for information about the CELL.SMART_SCAN_CAPABLE attribute

Configuring File Access Control
Specify to disable or enable Oracle ASM File Access Control. If Oracle ASM File Access Control is enabled, then specify the default permissions for newly created files in the disk group.

For information about Oracle ASM File Access Control, see "Managing Oracle ASM File Access Control for Disk Groups" on page 4-39.

Managing Oracle ASM File Access Control with Oracle Enterprise Manager

You can manage Oracle ASM File Access Control with Oracle Enterprise Manager Integration for Oracle ASM File Access Control, shown in Figure 9–10.
To manage Oracle ASM File Access Control:

1. Access the Oracle Automatic Storage Management Home page.
 See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.
2. Click the Disk Groups link to display the Disk Groups property page.
3. Click a link in the Name column to select a disk group.
4. Click the Access Control tab to display the Access Control page.
 On this page, you can add or remove users from a user group and create or delete user groups.

Figure 9–11 shows the Create Group page for Oracle ASM File Access Control.
Figure 9–11 Oracle Automatic Storage Management Create Group Page

Figure 9–12 shows the Edit Group page for Oracle ASM File Access Control.

Figure 9–12 Oracle Automatic Storage Management Edit Group Page

For more information about Oracle ASM File Access Control, see "Managing Oracle ASM File Access Control for Disk Groups" on page 4-39.
Managing Directories, Files, and Aliases with Oracle Enterprise Manager

You can manage directories, files, and aliases with the Files tab of the Oracle Enterprise Manager Disk Group page, shown in Figure 9–13.

Figure 9–13 Oracle Automatic Storage Management Files Tab

To manage Oracle ASM files:

1. Access the Oracle Automatic Storage Management Home page.

 See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.

2. Click the Disk Groups link to display the Disk Groups property page.

3. Click a link in the Name column to select a disk group.

4. Click the Files tab to display the Files page.

5. Click the + to expand a database folder to view template folders.

6. Click the + to expand a templates folder to view individual files.

7. You can select a file with the Select box, then click Rename to rename the file, click Edit to change the properties of a file, or click Delete to remove a file.

You can click the name of a file to display the properties page.
Managing Disk Group Templates with Oracle Enterprise Manager

You can manage disk group templates with the Templates tab of the Disk Group page, shown in Figure 9–14.

Figure 9–14 Oracle Automatic Storage Management Templates Page

To manage Oracle ASM templates:
1. Access the Oracle Automatic Storage Management Home page.
 See "Oracle Automatic Storage Management Home Page" on page 9-1 for instructions.

2. Click the Disk Groups link to display the Disk Groups property page.

3. Click a link in the Name column to select a disk group.

4. Click the Templates tab to display the Templates page.

5. You can click Create to add a new template, click Edit to change a page, or click Delete to remove a template.

 If you click Create, then the Create Template page displays and you can enter a name in the Template Name field. You can also specify a redundancy level, striped granularity, and extent regions (hot or cold).

 ![Create Template](image)

 For more information about disk group templates, see "Managing Disk Group Templates" on page 7-15. For information about hot and cold disk regions, see "Intelligent Data Placement" on page 4-15.

Monitoring Oracle ASM Performance with Oracle Enterprise Manager

This section describes how to perform the following performance-related Oracle ASM administrative tasks:

- Monitoring General Oracle ASM Performance
- Checking Disk Group Integrity

Monitoring General Oracle ASM Performance

You can monitor Oracle ASM performance with the Oracle Enterprise Manager Performance page, shown in Figure 9–15.
To monitor Oracle ASM performance:

1. Access the Oracle Automatic Storage Management Home page.

 See Also: "Oracle Automatic Storage Management Home Page" on page 9-1 for more information about accessing the home page.

2. Click the **Performance** link to view the Performance property page.

3. Determine the view and refresh rate of the performance graphs with the **View** and **Refresh** options. Click **Refresh** to manually refresh the graphs. The refresh option has the following two intervals:
 - Manual refresh: manual, 15 second interval, 30 second interval
 - Historical data: Last 24 hours, last 7 days, last 31 days

 See Also: "Performance and Scalability Considerations for Disk Groups" on page 4-31

Checking Disk Group Integrity

When you check the integrity of Oracle ASM disk groups, Oracle Enterprise Manager performs consistency checks on all of the disk group metadata. If Oracle ASM detects errors, then Oracle ASM stores information about errors in the alert log. To check disk groups, perform the following steps:
1. From the Disk Groups Administration page click **Check** and Oracle ASM displays a confirmation dialog for the check disk group operation.

Figure 9–16 Oracle Automatic Storage Management Check Diskgroup Confirmation Dialog

<table>
<thead>
<tr>
<th>Check Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Without Repair</td>
</tr>
<tr>
<td>Any inconsistencies will be detected and written to the alert log. But ASM will not take any automatic action to resolve them.</td>
</tr>
<tr>
<td>Check And Repair</td>
</tr>
<tr>
<td>ASM will attempt to repair any errors found during the consistency check.</td>
</tr>
</tbody>
</table>

2. Select **Check Without Repair** to record information about disk group inconsistencies in the alert log. In this operation, Oracle ASM does not resolve the errors. Select **Check And Repair** to attempt to repair errors that Oracle Enterprise Manager identifies during the disk group consistency check.

3. Click **Yes** to start the disk group check operation or **No** to cancel it. You can also select **Show SQL** to review the SQL statements that the disk group check operation uses. Click **OK** to run the check operation as a command.

4. To schedule a job, click **Schedule Job**.

5. Optionally, you can modify or reenter the job name and description. Also provide host credentials and enter the scheduling options by selecting **Immediately** or **Later** and modifying the date and time as needed.

6. Click **OK** to schedule the job or **Cancel** to terminate the job creation process.

Backing Up Oracle ASM Files with Oracle Enterprise Manager

Oracle recommends that you use RMAN to back up files managed by Oracle ASM. The procedures for using RMAN are documented in *Oracle Database 2 Day DBA*.

You can also back up your Oracle ASM managed files by performing a files related operation using the following procedures:

1. Create an alias.
2. Create a director.
3. Delete the alias and directory.
4. Rename the alias and directory.

For information about migrating data with RMAN, see Chapter 8, "Performing Oracle ASM Data Migration with RMAN".

See Also: For additional information about RMAN, refer to the *Oracle Database Backup and Recovery User’s Guide*.

Performing Bad Block Recovery with Oracle Enterprise Manager

The procedures that you use in Oracle Enterprise Manager to perform bad block recovery correspond to the steps that you could manually perform with the `remap`
command using the Oracle ASM Command utility (ASMCMD). Use the following procedures to perform bad block recovery:

1. Go to the Oracle Automatic Storage Management home page.
2. Click the Disk Groups link at the top of the page.
3. If you are not logged in, then the Log In page appears and you should log in as the SYS user, connecting as SYSASM. Provide the SYS password for the Oracle ASM instance. This password was set up when the Oracle ASM instance was created.
4. Click a disk group name and Oracle Enterprise Manager displays the disk group home page for that disk group.
5. Click a box in the Select column to the left of a disk in which to recover bad blocks, then click Recover Bad Blocks.

Note: You can only recover bad blocks for disk groups that you have configured with normal or high redundancy; you cannot use this feature for disk groups that you have configured with external redundancy.

Migrating to Oracle ASM with Oracle Enterprise Manager

This section explains how to use Oracle Enterprise Manager to migrate your database storage to use Oracle ASM.

Perform the following steps to migrate to Oracle ASM:

1. At the top of the Oracle Enterprise Manager Database Instance Home Page, click the link labeled Server. Oracle Enterprise Manager displays Database Server Page.
2. On the top left-hand side of the Database Server Page under the Storage heading, click the link labeled Migrate to Oracle ASM.
3. If prompted for Oracle ASM login credentials, then enter the user SYS, provide the SYS password that was set for the Oracle ASM instance during installation, and connect as SYSDBA. Oracle Enterprise Manager displays the Migrate Database To Oracle ASM: Migration Options Page.

 For more information about authentication, see "Authentication for Accessing Oracle ASM Instances" on page 3-23.

4. On the Migrate Database To ASM: Migration Options Page, which is the first step in a four-step process, verify the information about the files that you plan to migrate to Oracle ASM. If the target database is in ARCHIVELOG mode, then you could perform online or offline migration by selecting the corresponding option. Otherwise, using offline migration is the default. If you perform an online migration, then you can suspend the migration by selecting the check box next to Suspend Migration Job Before Switching Database To ASM.

 Additionally, you can enter an e-mail address to which Oracle Enterprise Manager sends a message to notify you about the suspension. By default on this page, the Recovery-related Files option is selected. Deselect this option if you do not want to use it. Also verify the entry for the initialization parameter file. Lastly, the Parallelize File Copy Operations option is selected by default. Deselect this if you do not want Oracle Enterprise Manager to perform copy operations in parallel.

 Click Next when you complete your selections on this page and Oracle Enterprise Manager displays the Migrate Database To ASM: Disk Group Options page.
5. On the Disk Group Options page under Database Area, verify the location where Oracle ASM should create data files, temporary files, redo log files, and control files. Also verify the fast recovery area where Oracle ASM should create the recovery-related files such as archived redo log files, backup files, and so on. Also under fast recovery area, the option for Setup fast recovery area without Migrating Recovery-related Files is selected by default. If needed, change the selection to migrate the files. Click **Next** when you complete your selections on the Disk Group Options page.

6. If you chose to use a fast recovery area and Oracle Enterprise Manager displays a warning that the available space on the disk group is less than the specified fast recovery area size for the migration, then you can either continue by clicking **Yes**, or click **No** to stop the operation and modify your storage.

7. When you continue, Oracle Enterprise Manager displays the Schedule page on which you can specify a job name and a date and time for the migration job to begin. Click **Next** when you have configured your desired settings.

8. Oracle Enterprise Manager displays the Review page on which you can review all of your selections before beginning your migration operation. To expand the tablespace details and review them, click the plus (+) sign next to Tablespace and Files To Be Migrated. Click **Back** to modify any of your selections or **Submit Job** to begin the migration. Click **Cancel** to cancel the operation.

Caution: If your migration job fails, then do not start your database until you complete a recovery operation. Otherwise, you may corrupt your database.

9. After you submit your job, Oracle Enterprise Manager should display a confirmation dialog indicating that the migration job was successful. Click **View Status** on the confirmation dialog to examine the progress of your migration job.

 After the migration job has completed, the Oracle ASM links on the Oracle Enterprise Manager page may not display immediately. You can wait for the links to display after a subsequent refresh, or restart the Oracle Enterprise Manager agent as follows:

 $ emctl stop dbconsole
 $ emctl start dbconsole

Oracle ASM Support Workbench

Oracle Enterprise Manager provides Oracle ASM Support Workbench to monitor Oracle ASM alerts and incidents.

To access Support Workbench for Oracle ASM:

1. Click the **Software and Support** tab on the database home page.

2. Click **Support Workbench** under the **Support** section on the **Software and Support** page.

3. Click **Support Workbench**(ASM_instance_name) under the **Related Links** section on the **Support Workbench** page.

 Figure 9–17 shows the Oracle ASM Support Workbench page with the **Problems** tab displayed. You can view information about current and past problems in this tab. On this page, you have options to view additional details and create a package that you can send to Oracle Support Services.
To create a package, select an incident and click **Package** on the Support Workbench Problems page. Support Workbench guides you through the packaging process.

Figure 9–18 shows step one the Oracle ASM Support Workbench **Create New Package** wizard.

Figure 9–19 shows the Oracle ASM Support Workbench page with the **Packages** tab displayed. On this tab, you can view and edit information about incident packages created for problems.
You can view additional details for a problem by selecting a problem on the Problems tab, and then clicking on View. The problem details page displays as shown in Figure 9–20.

On the Problem Details page, you can access additional diagnostic tools. You can also use quick packaging to send an incident package to Oracle Support Services.
See Also:

- *Oracle Database Administrator’s Guide* for information about viewing problems with Oracle Enterprise Manager Support Workbench
- *Oracle Database 2 Day DBA* for information about accessing the Oracle Enterprise Manager Support Workbench home page and viewing problems using Oracle Enterprise Manager Support Workbench

Oracle by Example Series

Oracle by Example (OBE) has a series on the *Oracle Database 2 Day DBA* book. This OBE steps you through Oracle Database tasks and includes annotated screen shots.

To view the Oracle Database OBE, point your browser to the following location:

http://www.oracle.com/technology/obe/11gr2_2day_dba/index.html
This chapter describes how to administer Oracle Automatic Storage Management Cluster File System (Oracle ACFS) using Oracle Enterprise Manager.

This chapter contains the following topics:

- Managing Oracle ACFS with Oracle Enterprise Manager
- Managing Oracle ACFS Snapshots with Oracle Enterprise Manager

All Oracle ASM administration tasks begin with the Oracle Automatic Storage Management Home page in Oracle Enterprise Manager. For information about the Oracle ASM home page and how to access that page, see "Oracle Automatic Storage Management Home Page" on page 9-1.

For information about using command-line tools to administer Oracle ACFS file systems, see Chapter 13, "Oracle ACFS Command-Line Tools". For information about the basic steps for creating Oracle ACFS file systems, see "Basic Steps to Manage an Oracle ACFS" on page 13-1.

Managing Oracle ACFS with Oracle Enterprise Manager

This section discusses how to manage Oracle ACFS volumes and file systems with Oracle Enterprise Manager.

This section contains the following topics:

- Creating Oracle ACFS Volumes and File Systems
- Viewing and Modifying Oracle ACFS Volumes and File Systems

Creating Oracle ACFS Volumes and File Systems

To create an Oracle ACFS volume, perform the following steps.

1. Access the Disk Groups page from the Oracle ASM home page.

2. Click the Volumes link in the General tab of the Disk Group page. See Figure 10–6 on page 10-5.

3. Click Create in the Volumes tab of the Disk Group page.

The Create ASM Volume page displays, shown in Figure 10–1.

Enter the volume name (maximum 11 characters), disk group name that contains the volume, and the initial size of the volume.
You can also select the redundancy setting for the volume and the region settings for primary and mirror extents. For information about redundancy settings, see "Mirroring, Redundancy, and Failure Group Options" on page 4-23. For information about hot and cold disk regions, see "Intelligent Data Placement" on page 4-15.

Figure 10–1 shows the Oracle ASM Create ASM Volume page.

To create an Oracle ACFS file system on a volume in a disk group, perform the following steps.

1. Access the Volumes tab of the Disk Group page. See Figure 10–6 on page 10-5.

2. Select an existing volume in the disk group and click Create ASM Cluster File System.

 Figure 10–2 shows the Create ASM Cluster File System page.

 The compatibility parameters COMPATIBLE.ASM and COMPATIBLE.ADVM must be set to 11.2 or higher for the disk group. See "Disk Group Compatibility Attributes" on page 4-33.

3. On the Create ASM Cluster File System page, enter the information to create a file system. You can optionally register and mount the file system.

 You must enter the volume name. You can enter an optional volume label.

 You can optionally choose to register and mount the file system when it is created. Select a mount point from available directories.

 Enter the host credentials needed to run the command when prompted. To register or mount a file system, you need root or administrator privileges. For information about the registry process, see "About the Oracle ACFS Mount Registry" on page 5-7.
After a directory has been selected, click **Show Command** to have Oracle Enterprise Manager generate the commands that you can run at an operating system prompt. Examples of commands on a Linux system are:

```
/sbin/mkfs -t acfs -b 4k /dev/asm/volume1-361
/sbin/acfsutil registry -f -a /dev/asm/volume1-361 /oracle/acfsmounts/acfs2
/bin/mount -t acfs -rw /dev/asm/volume1-361 /oracle/acfsmounts/acfs2
```

You can also generate the commands to register or mount an Oracle ACFS file system on the **ASM Cluster File System** tab. See **Figure 10–3** on page 10-3.

Figure 10–2 Oracle Automatic Storage Management Create Oracle ACFS Page

<table>
<thead>
<tr>
<th>Create ASM Cluster File System</th>
<th>Show Command</th>
<th>Cancel</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating ASM Cluster File System creates the on-disk structure. Specify a volume device that is not currently used by any file system to prevent loss of data on the volume. The file system needs to be mounted before it is available for use.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dev/asm/volume1-361</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Viewing and Modifying Oracle ACFS Volumes and File Systems

To view information about Oracle ACFS file systems, click the **ASM Cluster File System** link in the Oracle ASM home page.

Figure 10–3 shows the **ASM Cluster File System** tab in Oracle Enterprise Manager. This tab lists all of the Oracle ACFS associated with the Oracle ASM instance.

On this page, you can choose to mount, dismount, delete, create snapshot, view content, register, and deregister a selected file system. In addition, you can create a file system, mount all file systems, or dismount all file systems.

For each Oracle ACFS, the columns provide information for Mount Point, Availability, State, Snapshots, Used (%), Used (GB), Size (GB), Allocated Space, Redundancy, Volume, and Disk Group. Redundancy, Volume, and Disk Group columns are on the far right of the page and are not shown in the illustration. The mount point, snapshots, volume, and disk group are provided as links to further information.

Figure 10–3 Oracle Automatic Storage Management Oracle ACFS Page

<table>
<thead>
<tr>
<th>Mount</th>
<th>Dismount</th>
<th>Delete</th>
<th>Create Snapshot</th>
<th>View Content</th>
<th>Register</th>
<th>Deregister</th>
<th>Actions</th>
<th>Resize</th>
<th>G</th>
<th>Allocated Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To view information about a specific volume, click the volume name in the **Volume** column on the **ASM Cluster File System** page.

Figure 10–4 shows the **General** tab of the **ASM Volumes** page.

Figure 10–4 Oracle Automatic Storage Management General Tab of the Volumes Page

To view information about a file system, click the link in the **Mount Point** column on the **ASM Cluster File System** page.

Figure 10–5 shows the **General** tab of the **ASM Cluster File System** page.
To view information about a disk group for an Oracle ACFS, click the disk group name in the Disk Group column on the ASM Cluster File System page. The General tab of the Disk Group page displays as shown in Figure 9–7 on page 9-10.

To view information about volumes in a disk group, click the Volumes tab at the top of the Disk Group page.

Figure 10–6 shows the Oracle ACFS Volume page.

Managing Oracle ACFS Snapshots with Oracle Enterprise Manager

To view information about existing snapshots or create snapshots for a file system, perform the following steps.

1. Click the ASM Cluster File System tab on the Oracle ASM home page
2. Click a mount point link in the Mount Point column as shown in Figure 10–3 on page 10-3
3. Click the Snapshots tab, shown in Figure 10–7.
Optionally, you can click a number link for existing snapshots in the Snapshots column on the ASM Cluster File System page to display the Snapshots page.

On the Snapshots page, you can create snapshots or search for and display specific snapshots. To search for a snapshot, enter a name with optional wildcard characters in the search field then click Search.

![Figure 10–7 Oracle Automatic Storage Management Oracle ACFS Snapshots Tab](image)

To create a snapshot, perform the following steps.

1. Click Create in the Snapshots page.

 Figure 10–8 shows the Create Snapshot page.

2. Complete the information on the page.

 Accept the default snapshot name, or provide a name. Optionally, you can choose to delete the oldest snapshot.

3. When you have completed the screen, you can click OK to run the command, or click Show Command to view the generated command.

 For example, the following is a generated command for creating a snapshot:

   ```
   /sbin/acfsutil snap create "snapshot_20090702_142135" /oracle/acfsmounts/acfs1
   ```

 To run the generated command, you need the appropriate privileges on the host computer. Oracle Enterprise Manager prompts you to enter host credentials if they have not been set up.
You can also open a Telnet session from the Create Snapshot page to manually enter the generated operating system command.

Figure 10–8 Oracle Automatic Storage Management Create Snapshot Page

To drill down in a snapshot directory, click the snapshot name in the Snapshots page to display the Search and List Directory page.

Figure 10–9 Oracle Automatic Storage Management Search and List Directory Page
Oracle ASM Configuration Assistant

Oracle ASM Configuration Assistant (ASMCA) supports installing and configuring Oracle ASM instances, disk groups, volumes, and Oracle Automatic Storage Management Cluster File System (Oracle ACFS). In addition, you can use the ASMCA command-line interface as a non-GUI utility.

This chapter discusses the following topics:
- Oracle ASM Configuration Assistant GUI Tool
- Oracle ASM Configuration Assistant Command-Line Interface

Oracle ASM Configuration Assistant GUI Tool

This section contains the following topics:
- Starting Oracle ASM Configuration Assistant
- Managing Oracle ASM Instances with Oracle ASM Configuration Assistant
- Upgrading an Oracle ASM Instance with Oracle ASM Configuration Assistant
- Managing Disk Groups with Oracle ASM Configuration Assistant
- Managing Oracle ADVM Volumes with Oracle ASM Configuration Assistant
- Managing Oracle ACFS File Systems with Oracle ASM Configuration Assistant
- Managing Security and Encryption for Oracle ACFS File Systems with Oracle ASM Configuration Assistant
- Creating an Oracle ACFS File System for a Database Home

Starting Oracle ASM Configuration Assistant

To start ASMCA, enter `asmca` at a command prompt inside the Oracle Grid Infrastructure home. For example:

```
$ asmca
```

The GUI tool displays and attempts to connect to the Oracle ASM instance identified with the Oracle system identifier (SID) set to `+ASM`.

- If ASMCA detects an Oracle ASM instance that is not running, then ASMCA prompts whether you want to start the instance.
- If ASMCA detects an Oracle ASM instance from a previous release, then ASMCA prompts whether you want to upgrade the instance. Oracle recommends that you respond `No` to this prompt.
An Oracle ASM instance should be upgraded with Oracle Universal Installer (OUI). OUI automatically defaults to upgrade mode when it detects an Oracle ASM instance at a previous release level. See "Upgrading an Oracle ASM Instance with Oracle Universal Installer" on page 3-17.

To continue the upgrade process with ASMCA, see "Upgrading an Oracle ASM Instance with Oracle ASM Configuration Assistant" on page 11-4. If you need help with upgrading an Oracle ASM instance, contact Oracle Support Services.

To start the command-line ASMCA, see "Oracle ASM Configuration Assistant Command-Line Interface" on page 11-17.

Managing Oracle ASM Instances with Oracle ASM Configuration Assistant

Oracle ASM Configuration Assistant enables you to create an Oracle ASM instance if an Oracle ASM instance is not found on the host, as shown in Figure 11–1.

On the Create ASM page, you enter the SYS password for the administrator of the Oracle ASM instance and the password for the ASMSNMP user that can monitor this Oracle ASM instance. Note that ASMSNMP is a less privileged user that is primarily used by Oracle Enterprise Manager to monitor Oracle ASM instances.

See Also:

- Oracle Grid Infrastructure Installation Guide for information about installing Oracle ASM
- Oracle Database Installation Guide for information about reviewing database accounts and passwords

You can select the listener with which you want to register this Oracle ASM instance. Click ASM Parameters to update the initialization parameters for the Oracle ASM instance.
In order to use Automatic Storage Management (ASM), you need to have an ASM instance running on your machine. There are no ASM instances running on this machine. Use this page to specify parameters for a new ASM instance which will be created when you click Create ASM.

The new ASM instance requires its own SYS user with SYSASM privileges for remote management. Specify SYS password:

SYS Password

Confirm SYS Password

Oracle recommends that you use a less privileged ASMSNMP user with SYSDBA privileges to monitor the ASM instance. Specify ASMSNMP password:

Monitor Password

Confirm Password

Choose the listener this ASM instance is to be registered with:

Listener

Choose the listener "LISTENER".

The default settings for creating an ASM instance work for most installations. If you would like to make changes to the defaults, click the ASM Parameters button.

When you can click **ASM Parameters** in the **Create ASM** page, you can update initialization parameters for an Oracle ASM instance on the Oracle ASM Configuration Assistant page, as shown in Figure 11–2.

For information about Oracle ASM instance initialization parameters, see “Configuring Initialization Parameters for Oracle ASM Instances” on page 3-2.
Upgrading an Oracle ASM Instance with Oracle ASM Configuration Assistant

Note:

- For information about performing an Oracle ASM Rolling Upgrade from 11.1.0.6 to 11.2.0.1, refer to Oracle Database Readme.
- For information about upgrading Oracle ASM from version 11.2.0.1 to 11.2.0.2, see "Out of Place Upgrades" on page 3-22.

Oracle ASM Configuration Assistant also enables you to upgrade an existing Oracle ASM instance to the current software level. However, the recommended practice is to upgrade an Oracle ASM instance with Oracle Universal Installer (OUI). OUI automatically defaults to upgrade mode when it detects an Oracle ASM instance at a previous release level. See "Upgrading an Oracle ASM Instance with Oracle Universal Installer" on page 3-17.

The following procedure describes how to upgrade an Oracle ASM instance from 11g Release 1 (11.1) to 11g Release 2 (11.2). In this scenario:

- The Oracle ASM and Oracle Database instances 11g Release 1 (11.1) exist in separate homes.
- The Oracle Grid Infrastructure software 11g Release 2 (11.2) is installed in a separate home.
- The Oracle ASM instance 11g Release 2 (11.2) is set up as an Oracle Restart (single-instance) configuration.
1. Shut down the Oracle Enterprise Manager agent, Oracle Database instance, and the listener in the older database home.
 - Run `emctl stop dbconsole` to stop the Oracle Enterprise Manager agent.
 - Connect to the database instance with SQL*Plus as a privileged user and run the `SHUTDOWN` command.
 - Run `lsnrctl` and enter the `STOP` command to stop the listener.

 See Also:
 - Oracle Enterprise Manager manuals and online help for information about starting and stopping the Oracle Enterprise Manager agent
 - *Oracle Database Administrator’s Guide* for more information about starting up and shutting down Oracle instances
 - *Oracle Database Net Services Administrator’s Guide* for information about configuring a listener

2. Run Oracle Universal Installer (OUI) and select the **Install Oracle Grid Infrastructure Software Only** option.

3. Complete the screens in the OUI installer and run the scripts as prompted by the OUI installer.
 For example, on Linux you must run the `root.sh` script as the root user.
   ```sh
   # GRID_HOME/grid/perl/bin/root.sh
   ``
   When you run the `root.sh` script on Linux, note the instructions in the output of that script. You must run different scripts as root to configure either a standalone (single-instance) or cluster configuration after OUI has completed.

   **See Also:** *Oracle Grid Infrastructure Installation Guide* for information about installing Oracle Grid Infrastructure

4. After the OUI has completed, perform the procedures that are described in the output of the `root.sh` script that you ran during the installation.
   For example, for a standalone (single-instance) configuration on Linux, run the following script as root to upgrade the necessary services, including Oracle Cluster Synchronization Services (CSS).
   ```sh
 # GRID_HOME/grid/perl/bin/perl -I/GRID_HOME/perl -I/GRID_HOME/crs/install GRID_HOME/crs/install/roothas.pl
 ``
 For an upgrade, you must update the node list by running OUI as the installation user in the Oracle Grid Infrastructure home.
   ```sh
   $ GRID_HOME/oui/bin/runInstaller -updateNodeList -silent -local CRS=false ORACLE_HOME=ASM_11G_R1_HOME
   $ GRID_HOME/oui/bin/runInstaller -updateNodeList -silent -local CRS=true ORACLE_HOME=GRID_HOME
   ``

5. Ensure that the current Oracle Cluster Synchronization Services (CSS) are running in the home where the Oracle ASM instance is located. For example:
   On Linux run the `crsctl check css` command. If the CSS daemon is not running, run `localconfig add` as the root user.
On Windows, you can use the `crsctl` and `localconfig` commands or the Windows Services GUI tool. To use Windows Services GUI tool, double-click the Services icon in the Windows Control Panel and locate the `OracleCSService` service. The status of `OracleCSService` should be `Started` and its startup type should be `Automatic`.

6. Run the Network Configuration Assistant (NETCA) to configure the listener.

Start Network Configuration Assistant (NETCA) in the Oracle Grid Infrastructure home with `netca`. Follow the prompts in the wizard to add and configure the listener in the Oracle Grid Infrastructure home.

7. Run ASMCA from the Oracle Grid Infrastructure home to complete the upgrade.

For information about starting ASMCA, see "Starting Oracle ASM Configuration Assistant" on page 11-1. If the Oracle ASM instance has been shut down during the Oracle Grid Infrastructure configuration, start that instance when ASMCA prompts you to start that instance.

When ASMCA detects an earlier version of Oracle ASM, the assistant automatically determines the location of that instance and the location of the Oracle Grid Infrastructure home, as shown in Figure 11–3.

Enter a password for the `ASMSNMP` user. Note that `ASMSNMP` is a less privileged user that is primarily used by Oracle Enterprise Manager to monitor Oracle ASM instances.

When you have completed the page, select **Upgrade ASM** to complete the upgrade. After the process has completed, you can exit from ASMCA.

When upgrading an Oracle ASM instance to the current software level, ASMCA moves the Oracle ASM instance pre-11g Release 2 (11.2) to the Oracle Grid Infrastructure home and updates the appropriate environmental variables.

8. Ensure that the Oracle Database instance and Oracle Enterprise Manager agent are running in the Oracle Database 11g Release 1 (11.1) home.

Start the following services if necessary.

- Connect to the Oracle Database instance with SQL*Plus as a privileged user and run the `STARTUP` command.
- Restart the Oracle Enterprise Manager agent with `emctl start dbconsole`.

---

**Note:** The procedure described in this section upgrades the Oracle ASM instance only. Oracle Database, and Oracle Enterprise Manager, will not have the latest features. To upgrade Oracle Database, see *Oracle Database Upgrade Guide*. 

---
After upgrading an Oracle ASM instance, you can copy or move an Oracle ASM instance. After copying or moving the SPFILE, you must restart the instance with the SPFILE in the new location to use that SPFILE. For information, see "Backing Up, Copying, and Moving an Oracle ASM Initialization Parameter File" on page 3-4.

See Also:
- Oracle Database Upgrade Guide for information about upgrading an Oracle ASM instance
- Oracle Grid Infrastructure Installation Guide for information about installing Oracle Grid Infrastructure and performing a rolling upgrade of Oracle ASM

Managing Disk Groups with Oracle ASM Configuration Assistant

Oracle ASM Configuration Assistant enables you to configure or create Oracle ASM disk groups with the Configure ASM Disk Groups tab, as shown in Figure 11–4. The disk group tab displays selected details about the disk group, such as name, size, free space, usable space, redundancy level, and state of the disk group.

See Also: Oracle Database Reference for descriptions of disk group information displayed in the V$ASM_DISKGROUP view

You can right click a selected disk group in the screen to display the configuration options menu. The menu options enable you to:
- Add disks to the disk group
- Edit the disk group attributes
- Manage templates for the disk group
- Create an Oracle ACFS file system on the disk group for a database home
- Dismount and mount the disk group
- Drop the disk group

Figure 11–4 Oracle ASM Configuration Assistant Configure Disk Groups Page

There are additional options for creating a disk group, mounting all disk groups, and dismounting all disk groups.

Oracle ASM Configuration Assistant enables you to create an Oracle ASM disk group by clicking Create on the Oracle ASM Configuration Assistant disk group page. The page for creating a disk group is shown in Figure 11–5.
On this page, you can enter a name for the disk group, select the redundancy level, change the disk discovery path to locate disks in a different directory, identify the disks that you want to be in the disk group, enter a name for a failure group, and specify if the failure group is a quorum type. A quorum failure group is a special type of failure group and disks in these failure groups do not contain user data and a quorum failure group is not considered when determining redundancy requirements with respect to user storage. However, a quorum failure group counts when mounting a disk group. For information about quorum failure groups, see "Oracle Cluster Registry and Voting Files in Oracle ASM Disk Groups" on page 4-10.

The default disk group compatibility settings are 11.2 for Oracle ASM compatibility, 10.1 for database compatibility, and no value for Oracle ADVM compatibility. For information about disk group compatibility attributes, see "Disk Group Compatibility" on page 4-32. For information about disk discovery, see "Oracle ASM Disk Discovery" on page 4-19 and "ASM_DISKSTRING" on page 3-7.

You can choose to show advanced options when creating a disk group, as shown in Figure 11-6. The advanced options page enables you to set additional options, such as disk group compatibility settings and allocation unit (AU) size. When you are finished with the create disk group specifications, click OK.

**Note:** The disk group compatibility settings can only be advanced. You cannot revert to a lower compatibility setting after you advance the disk group compatibility settings. See "Overview of Disk Group Compatibility" on page 4-32.
For more information about managing disk groups, see Chapter 4, "Administering Oracle ASM Disk Groups".

Managing Oracle ADVM Volumes with Oracle ASM Configuration Assistant

Oracle ASM Configuration Assistant enables you to create or configure an Oracle ADVM volume, as shown in Figure 11–7.

Right click a selected volume in the Oracle ASM Configuration Assistant screen to display the configuration options menu. The menu options include:

- Enable a disabled volume
- Disable an enabled volume
- Resize a volume that has not been mounted on an Oracle ACFS file system
- Delete a volume

There are options for creating a volume, enabling all volumes, and disabling all volumes.
Oracle ASM Configuration Assistant enables you to create Oracle ADVM volumes, as shown in Figure 11–7.

Click **Create** to create a volume. You must provide a unique volume name for the existing Oracle ASM disk group that you select from the list. The volume name can be a maximum of 11 alphanumeric characters; dashes are not allowed. The first character must be alphabetic.

Specify the size for the volume. You can optionally choose to display advanced options for creating a volume which enables you to specify the redundancy level and striping characteristics.

The compatibility parameters `COMPATIBLE.ASM` and `COMPATIBLE.ADVM` must be set to 11.2 or higher for the disk group to contain an Oracle ADVM volume. To use Oracle ACFS encryption, replication, security, or tagging, the disk group on which the volume is created for the file system must have compatibility attributes for `ASM` and `ADVM` set to 11.2.0.2. See "Disk Group Compatibility Attributes" on page 4-33.

Before creating an Oracle ADVM volume on AIX, ensure that the necessary user authorizations have been created. For information, refer to "Oracle ACFS Command-line Tools for the AIX Environment" on page 13-32.
Managing Oracle ACFS File Systems with Oracle ASM Configuration Assistant

Oracle ASM Configuration Assistant enables you to create or configure an Oracle ACFS file system, as shown in Figure 11–9.

To configure an existing file system, right click a selected file system in the Oracle ASM Configuration Assistant screen to display the configuration options menu.

The menu options include:

- Show mount command for the file system
- Show dismount command for the file system
- Register mount point for the file system
- Deregister mount point for the file system
- Resize the file system
- Delete the file system

Some commands require root privileges, such as mounting a file system. Oracle ASM Configuration Assistant generates the command for you to run manually as root or as a privileged user.

There are buttons for Create, Show Mount All, and Show Dismount All commands.

For information about Oracle ACFS, see Chapter 5, "Introduction to Oracle ACFS".
Oracle ASM Configuration Assistant enables you to create an Oracle ACFS file system, as shown in Figure 11–9.

Select **Create**, then select an existing Oracle ADVM volume from the list and determine the mount point field, show in Figure 11–10. The mount point must be an existing directory. The file system must be mounted to make it available. The mount command must be manually run as root or the Windows Administrator at an operating system prompt. For information about mounting an Oracle ACFS file system, see "mount" on page 13-23 for Linux or "acfsmountvol" on page 13-43 for Windows.

You can also choose to create an Oracle ACFS file system for an Oracle Database. For more information about creating a file system for a database home, see "Creating an Oracle ACFS File System for a Database Home" on page 11-16.
For information about Oracle ACFS, see Chapter 5, "Introduction to Oracle ACFS". For a summary of the basic steps for creating an Oracle ACFS file system, see "Basic Steps to Manage an Oracle ACFS" on page 13-1.

Managing Security and Encryption for Oracle ACFS File Systems with Oracle ASM Configuration Assistant

Oracle ASM Configuration Assistant enables you to configure security and encryption for an Oracle ACFS file system, as shown in Figure 11-11.
You must initialize the security system as the first step in configuring security for an Oracle ACFS file system. You must also initialize the encryption system as the first step in encrypting an Oracle ACFS file system. You do not have to use both Oracle ACFS security and encryption on the same file system. If you decide to use both security and encryption, then encryption must be initialized and set before enabling encryption on a security realm.

After you complete the entry fields in the dialog shown in Figure 11–11, click Show Command to display the commands you must run as a root or Administrator user at an operating system prompt. For example:

```
/sbin/acfsutil sec init -u grid -g asmadmin
/sbin/acfsutil encr init
```

For information about the `acfsutil sec init` and `acfsutil encr init` commands, refer to "acfsutil sec init" on page 13-67 and "acfsutil encr init" on page 13-84.

After security has been initialized, you can use the menu options to manage security and encryption for an Oracle ACFS file system, as shown in Figure 11–12. These menu options include:

- Enable Encryption
- Set Encryption
- Disable Encryption
- Prepare and Enable Security
- Disable Security
- Enable Security
Creating an Oracle ACFS File System for a Database Home

To create an Oracle ACFS file system for a database home, you can select the **Create ACFS for Database Home** from the disk group configuration options menu, as shown in Figure 11–4 on page 11-8. The **Create ACFS Hosted Database Home** dialog displays as shown in Figure 11–13.

In this dialog, you must enter:

- **Database Home Volume Name**
  This is the name of the Oracle ADVM volume you want to create. For information about Oracle ADVM volumes, see "About Oracle ACFS" on page 5-4.

- **Database Home Mount Point**
  This the mount point for the file system where you want to install the database home. The file system that contains the database home should not be located under the Oracle Grid Infrastructure base (ORACLE_BASE for grid) directory. For information about mount points and database homes, see "About Oracle ACFS and Oracle Database Homes" on page 5-5.

- **Database Home Size in gigabytes (GB)**
The default is 6 GB and the minimum size allowed.

- **Database Home Owner Name**
  This is the operating system name of the user that installs the database and owns the software in the database home.

- **Database Home Owner Group**
  This is the operating system group of the owner of the database home.

The mount point must be an existing directory. The file system must be mounted to make it available. The mount command must be manually run as `root` or the Windows Administrator at an operating system prompt. For information about mounting an Oracle ACFS file system, see "mount" on page 13-23 for Linux or "acfsmountvol" on page 13-43 for Windows.

For information on the mount registry, see "About the Oracle ACFS Mount Registry" on page 5-7.

**Figure 11–13  Oracle ASM Configuration Assistant Create Oracle ACFS Hosted Database Home Page**

**Oracle ASM Configuration Assistant Command-Line Interface**

The ASMCA command-line interface provides non-GUI support for configuring Oracle ASM disk groups, volumes, and Oracle ACFS.

- **Running ASMCA Command-Line**
- **ASMCA Commands**

**Running ASMCA Command-Line**

The syntax for running the ASMCA command-line tool is:
asmca -silent command_name[options]

Table 11–1 contains the options available with the asmca command-line tool.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-silent</td>
<td>Specifies to run asmca in command-line mode.</td>
</tr>
<tr>
<td>command_name</td>
<td>Specifies the command to run. The command can be any of the following:</td>
</tr>
<tr>
<td>options</td>
<td>Specifies the options to run for a command. The options vary by command. See &quot;ASMCA Commands&quot; on page 11-18.</td>
</tr>
<tr>
<td>-help</td>
<td>Displays help for running ASMCA in silent mode.</td>
</tr>
<tr>
<td>-asmsnmpPassword asmsnmp_password</td>
<td>The Oracle ASM monitor user (ASMSNMP) password. This is optional and only required when creating and migrating an Oracle ASM instance.</td>
</tr>
<tr>
<td>-sysAsmPassword sysasm_password</td>
<td>The SYSASM password for Oracle ASM instance. This option is required.</td>
</tr>
</tbody>
</table>

The following is an example of the -help option.

$ asmca -help
asmca [-silent] [-sysAsmPassword <SYS user password>] [-asmsnmpPassword <ASMSNMP password>] {<command> <options>}
Please refer to the manual for details.
You can enter one of the following commands:
...

**ASMCA Commands**

This section describes the commands that can be run with ASMCA command-line.

- Configure an Oracle ASM Instance
- Upgrade an Oracle ASM Instance
- Configure Parameters for an Oracle ASM Instance
- Delete an Oracle ASM Instance
- Create a Disk Group
- Add a Disk to a Disk Group
- Create a Volume
- Create an Oracle ACFS File System

Configure an Oracle ASM Instance
-configureASM configures or creates an Oracle ASM instance.

Syntax
asmca -silent
   -configureASM
      [-sysAsmPassword sysasm_password]
      [-asmsnmpPassword asm_monitor_password]
      [ {-param paramname=paramvalue, ... } ]
      [ {-diskString discovery_path
          -diskGroupName diskgroup
          -diskList disk_list
          [-redundancy {HIGH | NORMAL | EXTERNAL} } ] ]

Table 11-2 contains the options available with the -configureASM command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-param paramname=paramvalue,...</td>
<td>Specifies a list of initialization parameters with values for the Oracle ASM instance.</td>
</tr>
<tr>
<td>-diskString discovery_path</td>
<td>Specifies the Oracle ASM discovery string for locating disks.</td>
</tr>
<tr>
<td>-diskGroupName diskgroup</td>
<td>Specifies the name of the Oracle ASM disk group to create.</td>
</tr>
<tr>
<td>-diskList disk_list</td>
<td>Specifies a comma-delimited list of disk names to be added to the disk group.</td>
</tr>
<tr>
<td>-redundancy {HIGH</td>
<td>NORMAL</td>
</tr>
</tbody>
</table>

For additional options that are common to multiple commands, see Table 11-1 on page 11-18.

Examples
To configure an Oracle ASM instance:

Example 11–1  Using asmca -silent -configureASM
asmca -silent
   -configureASM
      -diskString= '/devices/disk*'  
      -sysAsmPassword my_sysasm_password
      -asmsnmpPassword my_asmsnmp_passwd

Upgrade an Oracle ASM Instance
-upgradeASM upgrades an Oracle ASM instance from a previous release to the current software release.

Upgrading an Oracle ASM instance with ASMCA only updates the Oracle ASM instance software and does not configure Oracle Clusterware or the listener.
An Oracle ASM instance should be upgraded with Oracle Universal Installer (OUI). OUI automatically defaults to upgrade mode when it detects an Oracle ASM instance at a previous release level. See "Upgrading an Oracle ASM Instance with Oracle Universal Installer" on page 3-17.

**Syntax**

```
asmca -silent
 -upgradeASM
 -local -lastnode
 [-asmsnmpPassword asmsnmp_password]
```

The options available with the `-upgradeASMInstance` command are common to multiple commands. For a description of those options, see Table 11–1 on page 11-18.

**Examples**

To upgrade an Oracle ASM instance:

**Example 11–2 Using `asmca -silent -upgradeASM`**

```
asmca -silent
 -upgradeASM
 -asmsnmpPassword my_asmsnmp_passwd
```

**Configure Parameters for an Oracle ASM Instance**

`-configureParameter` modifies the parameters of an Oracle ASM instance.

**Syntax**

```
asmca -silent
 -configureParameter
 [{ -param paramname=paramvalue,... }]
 [-sysAsmPassword sysasm_password]
```

Table 11–3 contains the options available with the `-configureParameter` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-param paramname=paramvalue,...</code></td>
<td>Specifies a list of initialization parameters with values for the Oracle ASM instance.</td>
</tr>
</tbody>
</table>

For additional options that are common to multiple commands, see Table 11–1 on page 11-18.

**Examples**

To configure parameters for an Oracle ASM instance:

**Example 11–3 Using `asmca -silent -configureParameter`**

```
asmca -silent
 -configureParameter
 (-param
 asm_power_limit=3,
 asm_disk_string='/devices/disk*')
 -sysAsmPassword my_sysasm_password
```
Delete an Oracle ASM Instance

-deleteASM deletes an Oracle ASM instance. The operation stops and an error is raised if there is a database using the Oracle ASM instance.

Syntax

```
asmca -silent
 -deleteASM
 [-sysAsmPassword sysasm_password]
 [-force]
 [-dropDiskGroups]
```

Table 11–4 contains the options available with the -deleteASM command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-force</td>
<td>Forces the deletion of an Oracle ASM instance.</td>
</tr>
<tr>
<td>-dropDiskGroups</td>
<td>Drops the disk groups on this instance.</td>
</tr>
</tbody>
</table>

For additional options that are common to multiple commands, see Table 11–1 on page 11-18.

Examples

To delete an Oracle ASM instance:

**Example 11–4  Using asmca -silent -deleteASM**

```
asmca -silent
 -deleteASM
 -sysAsmPassword my_sysasm_password
 -force
```

Create a Disk Group

-createDiskGroup creates disk groups in an Oracle ASM instance.

Syntax

```
asmca -silent
 -createDiskGroup
 [-diskString discovery_path]
 [-diskGroupName diskgroup]
 [-disk disk_path [-diskName disk] | -diskList disk_list
 [-diskSize disk_size_MB]
 [-failuregroup failure_group]
 [-force|-noforce]
 [-quorum|-noquorum]]
 [-redundancy{HIGH | NORMAL | EXTERNAL}]]
 [-au_size value]
 [-compatible.asm value]
 [-compatible.rdbms value]
 [-compatible.advm value]
 [-sysAsmPassword sysasm_password]
```
Table 11–5 contains the options available with the `-createDiskGroup` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-diskString discovery_path</code></td>
<td>Specifies the Oracle ASM discovery string for locating disks.</td>
</tr>
<tr>
<td><code>-diskGroupName diskgroup</code></td>
<td>Specifies the name of the Oracle ASM disk group to create.</td>
</tr>
<tr>
<td><code>-disk disk_path</code></td>
<td>Specifies the full path of the disk device.</td>
</tr>
<tr>
<td><code>-diskName disk</code></td>
<td>Specifies a user-supplied disk name.</td>
</tr>
<tr>
<td><code>-diskList disk_list</code></td>
<td>Specifies a comma-delimited list of disk names to be added to the disk group.</td>
</tr>
<tr>
<td><code>-diskSize disk_size_MB</code></td>
<td>Specifies the size of the disk to use for Oracle ASM storage.</td>
</tr>
<tr>
<td><code>-failuregroup failure_group</code></td>
<td>Specifies the failure group name.</td>
</tr>
<tr>
<td>`-force</td>
<td>-noforce`</td>
</tr>
<tr>
<td>`-quorum</td>
<td>-noquorum`</td>
</tr>
<tr>
<td>`-redundancy {HIGH</td>
<td>NORMAL</td>
</tr>
<tr>
<td><code>-au_size</code></td>
<td></td>
</tr>
<tr>
<td><code>-compatible.asm</code></td>
<td>Specifies the attribute setting.</td>
</tr>
<tr>
<td><code>-compatible.rdbms</code></td>
<td>Specifies the attribute setting.</td>
</tr>
<tr>
<td><code>-compatible.advm</code></td>
<td>Specifies the attribute setting.</td>
</tr>
</tbody>
</table>

For additional options that are common to multiple commands, see Table 11–1 on page 11-18.

The default disk group compatibility settings are 11.2 for Oracle ASM compatibility, 10.1 for database compatibility, and no value for Oracle ADVM compatibility. For information about disk group compatibility attributes, see "Disk Group Compatibility" on page 4-32.

Examples

To create disk groups in an Oracle ASM instance:

**Example 11–5 Using asmca -silent -createDiskGroup**

```
$ asmca -silent -createDiskGroup
 -diskGroupName mynewdg
 -disk '/devices/diskes/*'
 -disk '/devices/diskk/*'
 -redundancy NORMAL
 -au_size 64
 -compatible.asm '11.2.0.0.0'
 -compatible.rdbms '11.2.0.0.0'
 -compatible.advm '11.2.0.0.0'

DiskGroup mynewdg created successfully.
```
Add a Disk to a Disk Group

-addDisk add disks to an existing disk group in an Oracle ASM instance.

Syntax

```
asmca -silent
 -addDisk
 [-diskString discovery_path]
 [-diskGroupName diskgroup]
 [-disk disk_path [-diskName disk]]
 -diskList disk_list
 [-diskSize disk_size_MB]
 [-failuregroup failure_group]
 [-force | -noforce]
 [-quorum | -noquorum]
 [-sysAsmPassword sysasm_password]
```

Table 11–6 contains the options available with the -addDisk command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-diskString discovery_path</td>
<td>Specifies the Oracle ASM discovery string for locating disks.</td>
</tr>
<tr>
<td>-diskGroupName diskgroup</td>
<td>Specifies the name of the Oracle ASM disk group to update.</td>
</tr>
<tr>
<td>-diskList disk_list</td>
<td>Specifies a comma-delimited list of disk names to be added to the disk group.</td>
</tr>
<tr>
<td>-diskSize disk_size_MB</td>
<td>Specifies the size of the disk to use for Oracle ASM storage.</td>
</tr>
<tr>
<td>-failuregroup failure_group</td>
<td>Specifies the failure group name.</td>
</tr>
<tr>
<td>-force</td>
<td>-noforce</td>
</tr>
<tr>
<td>-quorum</td>
<td>-noquorum</td>
</tr>
</tbody>
</table>

For additional options that are common to multiple commands, see Table 11–1 on page 11-18.

Examples

To add disks to an existing disk group:

```
Example 11–6 Using asmca -silent -addDisk

asmca -silent
 -addDisk
 -diskGroupName mynewdg
 -disk '/devices/disk11'
 -disk '/devices/disk12'
```

Disks added successfully to diskgroup mynewdg.

Create a Volume

-createVolume creates Oracle ADVM volumes.
### Syntax

```bash
asmca -silent
 -createVolume
 [-volumeName volume_name
 -volumeDiskGroupName diskgroup
 -volumeSizeGB size_GB
 [-volumeRedundancy {INHERIT | HIGH | NORMAL | EXTERNAL}] ...]
 [-sysAsmPassword sysasm_password]
```

Table 11-7 contains the options available with the `createVolume` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-volumeName volume_name</code></td>
<td>Specifies the name of the volume to create.</td>
</tr>
<tr>
<td><code>-volumeDiskGroupName diskgroup</code></td>
<td>Specifies the name of the disk group where you want to create the volume.</td>
</tr>
<tr>
<td><code>-volumeSizeGB size_GB</code></td>
<td>Specifies the size of the volume in Gigabytes.</td>
</tr>
<tr>
<td><code>-volumeRedundancy</code></td>
<td>Specifies the redundancy setting for the volume.</td>
</tr>
</tbody>
</table>

For additional options that are common to multiple commands, see Table 11–1 on page 11-18.

### Examples

To create an Oracle ADVM volume:

**Example 11–7 Using asmca -silent -createVolume**

```bash
$ asmca -silent
 -createVolume
 -volumeName volume1
 -volumeDiskGroupName mynewdg
 -volumeSizeGB 1

Volume volume1 created successfully.
```

### Create an Oracle ACFS File System

`-createACFS` creates an Oracle Automatic Storage Management Cluster File System (Oracle ACFS).

This command does not mount the Oracle ACFS file system. For information about mounting an Oracle ACFS file system, see "mount" on page 13-23 for Linux environments and "acfsmountvol" on page 13-43 for Windows environments.

### Syntax

```bash
asmca -silent
 -createACFS
 { -acfsVolumeDevice volume_device
 [-sysAsmPassword sysasm_password]
```

Table 11-8 contains the options available with the `createACFS` command.
For additional options that are common to multiple commands, see Table 11–1 on page 11-18.

**Examples**

To create an Oracle ACFS file system:

**Example 11–8 Using asmca -silent -createACFS**

```
$ asmca -silent
 -createACFS
 -acfsVolumeDevice /dev/asm/volume1-457
```

ACFS creation on /dev/asm/volume1-457 completed successfully. The ACFS should be mounted for use.

**Table 11–8 Options for the -createACFS command**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-acfsVolumeDevice</td>
<td>Specifies the name of the Oracle ADVM volume device.</td>
</tr>
</tbody>
</table>
This chapter describes the Oracle Automatic Storage Management (Oracle ASM) Command-Line Utility (ASMCMD). This chapter contains the following topics:

- About ASMCMD
- ASMCMD Instance Management Commands
- ASMCMD File Management Commands
- ASMCMD Disk Group Management Commands
- ASMCMD Template Management Commands
- ASMCMD File Access Control Commands
- ASMCMD Volume Management Commands

### About ASMCMD

ASMCMD is a command-line utility that you can use to manage Oracle ASM instances, disk groups, file access control for disk groups, files and directories within disk groups, templates for disk groups, and volumes.

You can run the ASMCMD utility in either interactive or noninteractive mode.

This section contains the following topics:

- Types of ASMCMD Commands
- About Oracle ASM Files, Filenames, Directories, and Aliases
- Preparing to Run ASMCMD
- Running ASMCMD in Interactive Mode
- Running ASMCMD in Noninteractive Mode
- Getting Help

### Types of ASMCMD Commands

The types of ASMCMD commands are listed in Table 12–1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMCMD Instance Management Commands</td>
<td>dsget, dsset, lsct, lsop, lspwusr, orapwusr, shutdown, spbackup, spcopy, spget, spmove, spset, startup</td>
</tr>
<tr>
<td>ASMCMD File Management Commands</td>
<td>cd, cp, du, find, ls, lsol, mkalias, pwd, rm, rmalias</td>
</tr>
</tbody>
</table>
System-Generated Filename or Fully Qualified Filename

Every file created in Oracle ASM gets a system-generated filename, otherwise known as a fully qualified filename. This is similar to a complete path name in a local file system.

Oracle ASM generates filenames according to the following scheme:

```
+diskGroupName/databaseName/fileType/fileTypeTag.fileNumber.incarnation
```

An example of a fully qualified filename is the following:

```
+data/orcl/CONTROLFILE/Current.256.541956473
```

In the previous fully qualified filename, `data` is the disk group name, `orcl` is the database name, `CONTROLFILE` is the file type, and so on.

Only the slash (\/) is supported by ASMCMD. Filenames are not case sensitive, but are case retentive. If you type a path name as lowercase, ASMCMD retains the lowercase.

For more information about Oracle ASM filenames, refer to "Fully Qualified File Name Form" on page 7-4.

Directory

As in other file systems, an Oracle ASM directory is a container for files, and an Oracle ASM directory can be part of a tree structure of other directories. The fully qualified filename represents a hierarchy of directories in which the plus sign (+) represents the root directory. In each disk group, Oracle ASM automatically creates a directory hierarchy that corresponds to the structure of the fully qualified filenames in the disk group. The directories in this hierarchy are known as system-generated directories.
ASMCMD enables you to move up and down in this directory hierarchy with the `cd` (change directory) command. The ASMCMD `ls` (list directory) command lists the contents of the current directory, while the `pwd` command prints the name of the current directory.

When you start ASMCMD, the current directory is set to root (+). For an Oracle ASM instance with two disk groups, for example, `data` and `fra`, entering an `ls` command with the root directory as the current directory produces the following output:

```
ASMCMD> ls
data/
fra/
```

The following example demonstrates navigating the Oracle ASM directory tree (refer to the fully qualified filename shown previously):

```
ASMCMD> cd +data/orcl/CONTROLFILE
ASMCMD> ls
Current.256.541956473
Current.257.541956475
```

You can create your own directories as subdirectories of the system-generated directories using the ASMCMD `mkdir` command. The directories that you create can have subdirectories, and you can navigate the hierarchy of both system-generated directories and user-created directories with the `cd` command.

The following example creates the directory `mydir` under `orcl` in the disk group `data`:

```
ASMCMD> mkdir +data/orcl/mydir
```

---

**Note:** The directory `orcl` is a system-generated directory. The contents of `data` represent the contents of disk group `data`.

---

If you start ASMCMD with the `-p` flag, then ASMCMD shows the current directory as part of its prompt. See "Including the Current Directory in the ASMCMD Prompt" on page 12-8.

```
ASMCMD [+] > cd data/orcl
ASMCMD [+data/orcl] >
```

ASMCMD retains the case of the directory that you entered.

---

**Alias**

Aliases are filenames that are references or pointers to system-generated filenames. However, aliases are user-friendly names. Aliases are similar to symbolic links in UNIX or Linux computers. You can create aliases to simplify Oracle ASM filename administration. You can create aliases with the `mkalias` ASMCMD command or a `SQL ALTER DISKGROUP` command.

An alias has at a minimum the disk group name as part of its complete path. You can create aliases at the disk group level or in any system-generated or user-created subdirectory. The following are examples of aliases:

```
+data/ctl1.f
+data/orcl/ctl1.f
+data/mydir/ctl1.f
```
If you run the ASMCMD `ls` (list directory) with the `-l` flag, each alias is listed with the system-generated file to which the alias refers.

```plaintext
cntl.f => +data/orcl/CONTROLFILE/Current.256.541956473
```

For more information about aliases, refer to "Alias Oracle ASM Filename Forms" on page 7-5.

**Absolute Path and Relative Path**

When you run an ASMCMD command that accepts a filename or directory name as an argument, you can use the name as either an absolute path or a relative path.

An absolute path refers to the full path of a file or directory. An absolute path begins with a plus sign (+) followed by a disk group name, followed by subsequent directories in the directory tree. The absolute path includes directories until the file or directory of interest is reached. A complete system-generated filename, otherwise known as the fully qualified filename, is an example of an absolute path to a file.

Using an absolute path enables the command to access the file or directory regardless of where the current directory is set. The following `rm` command uses an absolute path for the filename:

```plaintext
ASMCMD [+] > rm +data/orcl/datafile/users.259.555341963
```

The following `cd` command uses an absolute path to the directory.

```plaintext
ASMCMD [+data/mydir] > cd +data/orcl/CONTROLFILE
```

A relative path includes only the part of the filename or directory name that is not part of the current directory. That is, the path to the file or directory is relative to the current directory.

In the following example, the `rm` command operates on the file `undotbs1.272.557429239`, which in this case is a relative path. ASMCMD appends the current directory to the command argument to obtain the absolute path to the file. In this example this is `+data/orcl/DATAFILE/undotbs1.272.557429239`.

```plaintext
ASMCMD [+] > cd +data
ASMCMD [+data] > cd orcl/DATAFILE
ASMCMD [+data/orcl/DATAFILE] > ls
EXAMPLE.269.555342243
SYSAUX.257.555341961
SYSTEM.256.555341961
UNDOTBS1.258.555341963
UNDOTBS1.272.557429239
USERS.259.555341963
ASMCMD [+data/orcl/DATAFILE] > rm undotbs1.272.557429239
```

Paths to directories can also be relative. You can go up or down the hierarchy of the current directory tree branch by providing a directory argument to the `cd` command whose path is relative to the current directory.

In addition, you can use the pseudo-directories "." and ".." rather than a directory name. The "." pseudo-directory is the current directory. The "." pseudo-directory is the parent directory of the current directory.

The following example demonstrates how to use relative directory paths and pseudo-directories:

```plaintext
ASMCMD [+data/orcl] > cd DATAFILE
```
ASMCMD [+data/orcl/DATAFILE] > cd ..
ASMCMD [+data/orcl] >

**Wildcard Characters**

The wildcard characters * and % match zero or more characters anywhere within an absolute or relative path, which saves typing of the full directory or file name. The two wildcard characters behave identically. There are various ASMCMD commands that accept wildcards. These include cd, du, find, ls, lsa, lsattr, lsdg, lsdsn, lsgnp, lsus, and rm.

If a wildcard pattern matches only one directory when using wildcard characters with cd, then cd changes the directory to that destination. If the wildcard pattern matches multiple directories, then ASMCMD does not change the directory but instead returns an error.

**Example 12–1** illustrates the use of wildcards.

**Example 12–1 Using wildcards with ASMCMD commands**

```
ASMCMD [*] > cd +data/orcl/*FILE
ASMCMD-08005: +data/orcl/*FILE: ambiguous

ASMCMD [*] > cd +data/orcl/C*
ASMCMD [data/orcl/CONTROLFILE] >

ASMCMD [*] > ls +fra/orcl/A%
2009_07_13/
2009_07_14/

ASMCMD [*] > ls +fra/orcl/ARCHIVELOG/2009%
+fra/orcl/ARCHIVELOG/2009_07_13/:
thread_1_seq_3.260.692103543
thread_1_seq_4.261.692108897
thread_1_seq_5.262.692125993
thread_1_seq_6.263.692140729
thread_1_seq_7.264.692143333

+fra/orcl/ARCHIVELOG/2009_07_14/:
thread_1_seq_8.271.692158265
thread_1_seq_9.272.692174597

ASMCMD [*] > ls data/orcl/*
+data/orcl/CONTROLFILE/:
Current.260.692103157

+data/orcl/DATAFILE/:
EXAMPLE.265.692103187
SYSAUX.257.692103045
SYSTEM.256.692103045
UNDOTBS0.258.692103045
 USERS.259.692103045

+data/orcl/ONLINELOG/:
group_1.261.692103161
group_2.262.692103165
group_3.263.692103169
```
Preparing to Run ASMCMD

You can run the ASMCMD utility in either interactive or noninteractive mode.

Before running ASMCMD, review the items in the following list.

- Log in to the host which contains the Oracle ASM instance that you plan to administer.
  You must log in as a user that has SYSASM or SYSDBA privileges through operating system authentication. The SYSASM privilege is the required connection to administer the Oracle ASM instance. See “Authentication for Accessing Oracle ASM Instances” on page 3-23.

  **See Also:** Refer to the *Oracle Database Administrator’s Guide* for information about operating system authentication

- To connect to the Oracle ASM instance, run ASMCMD that is located in the `bin` subdirectory of the Oracle Grid Infrastructure home (Oracle ASM home).
  Connect as SYSASM, the default connection, to administer an Oracle ASM instance.

  Ensure that the `ORACLE_HOME` and `ORACLE_SID` environment variables to refer to the Oracle ASM instance. Depending on your operating system, you might have to set other environment variables to properly connect to the Oracle ASM instance.

  Ensure that the `bin` subdirectory of your Oracle Grid Infrastructure home is in your `PATH` environment variable.

  **See Also:** Refer to the *Oracle Database Administrator’s Guide* for more information about setting environment variables

The default value of the Oracle ASM SID for a single-instance database is `+ASM`. In Oracle Real Application Clusters environments, the default value of the Oracle ASM SID on any node is `+ASMnode#`.

- To use most of the ASMCMD commands, ensure that the Oracle ASM instance is started and the Oracle ASM disk groups are mounted.
  If the Oracle ASM instance is not running or if the `ORACLE_SID` is set incorrectly, ASMCMD runs only those commands that do not require an Oracle ASM instance. The commands include `startup`, `shutdown`, `lsdisk`, `help`, and `exit`. If you attempt to run other ASMCMD commands, an error message displays.

- You can connect to the database instance as SYSDBA by running ASMCMD that is located in the `bin` directory of the Oracle Database home.
  Ensure that the `ORACLE_HOME` and `ORACLE_SID` environment variables to refer to the database instance. Depending on your operating system, you might have to set other environment variables to properly connect to the database instance.

  You must include the `-a` option to connect as SYSDBA. See “Specifying the Type of Connection” on page 12-8.
With this connection, there is a limited set of operations that can be run. For more information, see “The SYSDBA Privilege for Managing Oracle ASM Components” on page 3-27.

When administering disk groups, Oracle recommends that you run ASMCMD from the database home of the database instance that is the owner of the files in the disk group.

Running ASMCMD in Interactive Mode

The interactive mode of the ASMCMD utility provides a shell-like environment where you are prompted to enter ASMCMD commands. The syntax for starting ASMCMD in interactive mode is:

```
asmcmd [-V]
asmcmd [-v] [-a connection_type] [-p]
```

Table 12–2 summarizes the ASMCMD options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-V</td>
<td>Displays the version of ASMCMD and then exits.</td>
</tr>
<tr>
<td>-v</td>
<td>Displays additional information with some commands to help users diagnose problems.</td>
</tr>
<tr>
<td>-a connection_type</td>
<td>Specifies the privilege to connect as when accessing an Oracle ASM or database instance. Can be either SYSASM or SYSDBA. The default is SYSASM and is used when administering the Oracle ASM instance.</td>
</tr>
<tr>
<td>-p</td>
<td>Displays the current directory in the prompt.</td>
</tr>
</tbody>
</table>

ASMCMD can be started with multiple options. For example:

```
asmcmd -p -v
```

For the majority of the examples in this chapter, ASMCMD was started with the -p and -v options

Running ASMCMD without Any Options

To run ASMCMD in interactive mode without any options:

1. Enter the following at the operating system command prompt:

   ```
 asmcmd
   ```

   Oracle displays an ASMCMD command prompt as follows:

   ```
 ASMCMD>
   ```

2. Enter an ASMCMD command and press Enter. The command runs and displays its output, if any, and then ASMCMD prompts for the next command.

3. Continue entering ASMCMD commands until you have completed the tasks.

4. Enter the `exit` or `quit` command to exit ASMCMD.
Specifying the Type of Connection
You can specify the `-a` option to choose the type of connection, either `SYSASM` or `SYSDBA`. The default value is `SYSASM` and is used when administering an Oracle ASM instance. Connect as `SYSDBA` when connecting to the database instance.

For example:

```
$ asmcmd -a sysasm
```

Specifying the Verbose Mode
You can specify the `-v` option with the `asmcmd` command to display additional information with some commands to help users diagnose problems as shown in the following example:

```
$ asmcmd -v
```

Including the Current Directory in the ASMCMD Prompt
You can specify the `-p` option with the `asmcmd` command to include the current directory in the ASMCMD prompt as shown in the following example:

```
$ asmcmd -p
ASMCMD [+] > cd data
ASMCMD [+data] >
```

Displaying the ASMCMD Version Number
You can specify the `-V` option when starting `asmcmd` to display the `asmcmd` version number. After displaying the version number, `asmcmd` immediately exits.

For example:

```
$ asmcmd -V
asmcmd version 11.2.0.1.0
$
```

Running ASMCMD in Noninteractive Mode
In noninteractive mode, you run a single ASMCMD command by including the command and command options on the command line when invoking ASMCMD. ASMCMD runs the command, generates output if any, and then exits. The noninteractive mode is especially useful for running scripts.

To run ASMCMD in noninteractive mode where `command` is any valid ASMCMD command and `options` is a list of command options, at the command prompt enter the following:

```
asmcmd command options
```

In noninteractive mode, ASMCMD returns the codes listed in Table 12–3.

<table>
<thead>
<tr>
<th>Type</th>
<th>Return Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>0</td>
<td>No issues for the command.</td>
</tr>
<tr>
<td>General</td>
<td>1</td>
<td>Internal error.</td>
</tr>
<tr>
<td>General</td>
<td>255 or -1</td>
<td>External user error as returned by a command.</td>
</tr>
<tr>
<td>lsdsk</td>
<td>0</td>
<td>Results include member disks only.</td>
</tr>
</tbody>
</table>
Example 12–2 shows how to run ASMCMD in the noninteractive mode. The first example runs the `ls` command to list the disk groups for the Oracle ASM instance. The second example redirects the output of the `lsod` command to the `my_lsod_test` file. The third example runs `lsdsk` using a pattern with a wildcard character to list specific disks in the data disk group.

**Example 12–2 Running ASMCMD commands in noninteractive mode**

$ asmcmd ls -l

State  Type  Rebal  Name
MOUNTED NORMAL  N  DATA/
MOUNTED NORMAL  N  FRA/

$ asmcmd lsod -H -G data > my_lsod_test

$ asmcmd lsdsk -G data '/devices/diska*' Path
  /devices/diska1
  /devices/diska2
  /devices/diska3

Example 12–3 raises an error with an incorrect disk group name and the return code equal (255) is displayed.

**Example 12–3 Displaying a return code when running ASMCMD in noninteractive mode**

$ asmcmd ls -l dat

ASMCMD-08001: diskgroup 'dat' does not exist or is not mounted

$ echo $?

255

Example 12–4 shows an example of ASMCMD commands run in noninteractive mode inside a script.

**Example 12–4 Running ASMCMD commands in a script**

```
#!/bin/sh
for ((i = 1; i <=3; i++))
do
 asmcmd lsdsk -G data '/devices/diska'$i
done
```

$ ./asmcmd_test_script

Path
  /devices/diska1
Path
  /devices/diska2
Path
  /devices/diska3

---

**Table 12–3 (Cont.) ASMCMD return codes**

<table>
<thead>
<tr>
<th>Type</th>
<th>Return Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsdsk</td>
<td>1</td>
<td>Results include candidate disks only.</td>
</tr>
<tr>
<td>lsdsk</td>
<td>2</td>
<td>Results include both member and candidate disks.</td>
</tr>
</tbody>
</table>
Getting Help

Type `help` at the ASMCMD prompt or as a command in noninteractive mode to view general information about ASMCMD and a list of available ASMCMD commands.

You can type `help command` to display help text for a specific command, including usage information about how to run the command with its options.

The following is an example of the use of the `help` command.

**Example 12–5  Displaying ASMCMD help text**

ASMCMD [+] > help startup

    startup [--nomount] [--restrict] [--pfile <pfile.ora>]

    Start the ASM instance.

    [--nomount] specifies the nomount option.
    [--restrict] start the instance in restricted mode.
    [--pfile <pfile.ora>] specifies the location of the pfile.

ASMCMD Instance Management Commands

This section describes the ASMCMD Oracle ASM instance management commands.

Some commands in this section affect the Grid Plug and Play (GPnP) profile, which is a resource in a clustered configuration. In an Oracle Restart configuration, the profile is actually located in a resource attribute, not the Grid Plug and Play (GPnP) profile. However, the functionality of the commands is the same for both configurations.

Table 12–4 provides a summary of the Oracle ASM instance management commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsget</td>
<td>Retrieves the discovery diskstring value that is used by the Oracle ASM instance and its clients.</td>
</tr>
<tr>
<td>dsset</td>
<td>Sets the disk discovery diskstring value that is used by the Oracle ASM instance and its clients.</td>
</tr>
<tr>
<td>lsct</td>
<td>Lists information about current Oracle ASM clients.</td>
</tr>
<tr>
<td>lsop</td>
<td>Lists the current operations on a disk group or Oracle ASM instance.</td>
</tr>
<tr>
<td>lspwusr</td>
<td>Lists the users from an Oracle ASM password file.</td>
</tr>
<tr>
<td>orapwusr</td>
<td>Adds, drops, or changes an Oracle ASM password user.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shuts down an Oracle ASM instance.</td>
</tr>
<tr>
<td>spbackup</td>
<td>Backs up an Oracle ASM SPFILE.</td>
</tr>
<tr>
<td>spcopy</td>
<td>Copies an Oracle ASM SPFILE.</td>
</tr>
<tr>
<td>spget</td>
<td>Retrieves the location of the Oracle ASM SPFILE.</td>
</tr>
<tr>
<td>spmove</td>
<td>Moves an Oracle ASM SPFILE.</td>
</tr>
<tr>
<td>spset</td>
<td>Sets the location of the Oracle ASM SPFILE.</td>
</tr>
<tr>
<td>startup</td>
<td>Starts up an Oracle ASM instance.</td>
</tr>
</tbody>
</table>
dsget

**Purpose**
Retrieves the discovery diskstring value that is used by the Oracle ASM instance and its clients.

**Syntax and Description**
dsget [[--normal][--parameter][--profile[--force]]]
The syntax options for the dsget command are described in Table 12–5.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--normal</td>
<td>Retrieves the discovery string from the Grid Plug and Play (GPnP) profile and the one that is set in the Oracle ASM instance. It returns one row each for the profile and parameter setting. This is the default setting.</td>
</tr>
<tr>
<td>--parameter</td>
<td>Retrieves the ASM_DISKSTRING parameter setting of the Oracle ASM instance.</td>
</tr>
<tr>
<td>--profile[--force]</td>
<td>Retrieves the discovery string from the GPnP profile. If --force is specified with --profile, dsget retrieves the discovery string from the local GPnP profile.</td>
</tr>
</tbody>
</table>

**Example**
The following example uses dsget to retrieve the current discovery diskstring value from the GPnP profile and the ASM_DISKSTRING parameter.

*Example 12–6 Using the ASMCMD dsget command*
ASMCMD [*] > dsget
profile: /devices/disk*
pbparameter: /devices/disk*

dset

**Purpose**
Sets the discovery diskstring value that is used by the Oracle ASM instance and its clients.

The specified diskstring must be valid for existing mounted disk groups. The updated value takes effect immediately.

**Syntax and Description**
dset [[--normal][--parameter][--profile[--force]]] diskstring
The syntax options for the dsset command are described in Table 12–6.
For information about disk discovery and the discovery diskstring, see "Oracle ASM Disk Discovery" on page 4-19.

Example
The following example uses dsset to set the current value of the discovery diskstring in the GnP profile.

**Example 12–7 Using the ASMCMD dsset command**

ASMCMD [+ > dsset /devices/disk*

### Lsct

**Purpose**
Lists information about current Oracle ASM clients from the V$ASM_CLIENT view. A client, such as Oracle Database or Oracle ASM Dynamic Volume Manager (Oracle ADVM), uses disk groups that are managed by the Oracle ASM instance to which ASMCMD is currently connected.

**Syntax and Description**
```
lsct [-gH] [diskgroup]
```

Table 12–7 lists the options for the lsct command.

### Table 12–6 Options for the dsset command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--normal</td>
<td>Sets the discovery string in the Grid Plug and Play (GnP) profile and in the Oracle ASM instance. The update occurs after the Oracle ASM instance has successfully validated that the specified discovery string has discovered all the necessary disk groups and voting files. This command fails if the instance is not using a server parameter file (SPFILE). This is the default setting.</td>
</tr>
<tr>
<td>--parameter</td>
<td>Specifies that the diskstring is updated in memory after validating that the discovery diskstring discovers all the current mounted disk groups and voting files. The diskstring is not persistently recorded in either the SPFILE or the GnP profile.</td>
</tr>
<tr>
<td>--profile [--force]</td>
<td>Specifies the discovery diskstring that is pushed to the GnP profile without any validation by the Oracle ASM instance, ensuring that the instance can discover all the required disk groups. The update is guaranteed to be propagated to all the nodes that are part of the cluster. If --force is specified with --profile, the specified diskstring is pushed to the local GnP profile without any synchronization with other nodes in the cluster. This command option updates only the local profile file. This option should only be used for recovery. The command fails if the Oracle Clusterware stack is running.</td>
</tr>
</tbody>
</table>

**diskstring** Specifies the value for the discovery diskstring.
If `diskgroup` is specified, then only information about that disk group is listed.

Example
The following example displays information about the clients that are accessing the data disk group.

Example 12–8 Using the ASMCMD lsct command

```
ASMCMD [+] > lsct data

DB_Name Status Software_Version Compatible_version Instance_Name Disk_Group
+ASM CONNECTED 11.2.0.2.0 11.2.0.0.0 +ASM DATA
asmvol CONNECTED 11.2.0.2.0 11.2.0.0.0 +ASM DATA
orcl CONNECTED 11.2.0.2.0 11.2.0.0.0 orcl DATA
```

**lsop**

**Purpose**
Lists the current operations on a disk group in an Oracle ASM instance.

**Syntax and Description**
```
lsop
```

`lsop` displays information from the `V$ASM_OPERATION` view.

**Example**
The following are examples of the `lsop` command. The examples list operations on the disk groups of the current Oracle ASM instance.

Example 12–9 Using the ASMCMD lsop command

```
ASMCMD [+] > lsop
Group_Name Dsk_Num State Power
DATA REBAL WAIT 2

ASMCMD [+] > lsop
Group_Name Dsk_Num State Power
FRA REBAL REAP 3
```

**lspwusr**

**Purpose**
List the users from the local Oracle ASM password file.

**Syntax and Description**
```
lspwusr [-H]
```

Table 12–7 (Cont.) Options for the lsct command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-g</code></td>
<td>Selects from the <code>GV$ASM_CLIENT</code> view. <code>GV$ASM_CLIENT.INST_ID</code> is included in the output.</td>
</tr>
<tr>
<td><code>-H</code></td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td><code>diskgroup</code></td>
<td>Specifies the disk group.</td>
</tr>
</tbody>
</table>
Table 12–8 lists the options for the `lspwusr` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--H</code></td>
<td>Suppresses column headers from the output.</td>
</tr>
</tbody>
</table>

**Examples**
The following is an example of the `lspwusr` example. The example lists the current users in the local Oracle ASM password file.

**Example 12–10 Using the ASMCMD lspwusr command**

ASMCMD [+] > lspwusr
Username sysdba sysoper sysasm
  SYS   TRUE   TRUE   TRUE
  ASMSNMP TRUE  FALSE  FALSE

**orapwusr**

**Purpose**
Add, drop, or modify an Oracle ASM password file user.

**Syntax and Description**

```
orapwusr { {--add|--modify|--password}
 [--privilege{sysasm|sysdba|sysoper}] } | --delete | user
```

Table 12–9 lists the options for the `orapwusr` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--add</code></td>
<td>Adds a user to the password file. Also prompts for a password.</td>
</tr>
<tr>
<td><code>--modify</code></td>
<td>Changes a user in the password file.</td>
</tr>
<tr>
<td><code>--password</code></td>
<td>Prompts for and then changes the password of a user.</td>
</tr>
<tr>
<td><code>--privilege role</code></td>
<td>Sets the role for the user. The options are <code>sysasm</code>, <code>sysdba</code>, and <code>sysoper</code>.</td>
</tr>
<tr>
<td><code>--delete</code></td>
<td>Drops a user from the password file.</td>
</tr>
<tr>
<td><code>user</code></td>
<td>Name of the user to add, drop, or modify.</td>
</tr>
</tbody>
</table>

`orapwusr` attempts to update passwords on all nodes in a cluster. The command requires the `SYSASM` privilege to run. A user logged in as `SYSDBA` cannot change its password using this command.

**Examples**
The following is an example of the `orapwusr` command. This example adds the `hruser` to the Oracle ASM password file with the role of the user set to `SYSDBA`.

**Example 12–11 Using the ASMCMD orapwusr command**

ASMCMD [+] > orapwusr --add --privilege sysdba hruser
### shutdown

**Purpose**
Shuts down an Oracle ASM instance.

**Syntax and Description**
```bash
shutdown [--normal | --abort | --immediate]
```

Table 12–10 lists the options for the `shutdown` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--normal</td>
<td>Shut down normal.</td>
</tr>
<tr>
<td>--abort</td>
<td>Shut down aborting all existing operations.</td>
</tr>
<tr>
<td>--immediate</td>
<td>Shut down immediately.</td>
</tr>
</tbody>
</table>

The default action is a normal shutdown if an option is not specified.

Oracle strongly recommends that you shut down all database instances that use the Oracle ASM instance and dismount all file systems mounted on Oracle ASM Dynamic Volume Manager (Oracle ADVM) volumes before attempting to shut down the Oracle ASM instance with the abort (`--abort`) option.

For more information about shutting down an Oracle ASM instance, see "Shutting Down an Oracle ASM Instance" on page 3-16.

**Example**
The following are examples of the `shutdown` command. The first example performs a shut down of the Oracle ASM instance with normal action. The second example performs a shut down with immediate action. The third example performs a shut down that aborts all existing operations.

**Example 12–12 Using the ASMCMD shutdown command**
```bash
ASMCMD [*] > shutdown --normal
ASMCMD [*] > shutdown --immediate
ASMCMD [*] > shutdown --abort
```

### spbackup

**Purpose**
Backs up an Oracle ASM SPFILE to a backup file.

**Syntax and Description**
```bash
spbackup source destination
```

Table 12–11 lists the options for the `spbackup` command.
spbackup should be used when you want to make single or multiple backups of an SPFILE in the same or a different disk group without creating an SPFILE in the target disk group.

Note the following about the use of spbackup:

- spbackup can back up an Oracle ASM SPFILE from a disk group to a disk group or to an operating system file.
- spbackup can back up an Oracle ASM SPFILE from an operating system file to a disk group.
- spbackup can back up an Oracle ASM SPFILE when the SPFILE is being used by an open Oracle ASM instance.
- spbackup can make multiple backups of an Oracle ASM SPFILE in the same disk group.

spbackup does not affect the GPnP profile. The backup file that is created is not a special file type and is not identified as an SPFILE. This backup file cannot be copied with spcopy. To copy this backup file to and from a disk group, use the ASMCMD cp command.

To make a copy of a backup file in a disk group that is identified as an SPFILE file:

1. Use the ASMCMD cp command to copy the backup file from the disk group to an operating system file. See "cp" on page 12-21.
2. Use the ASMCMD spcopy command to copy the operating system file to a disk group. See "spcopy" on page 12-16.

Example

The following are examples of the spbackup command. The first example backs up the SPFILE in the data disk group. The second example backs up the SPFILE from the data disk group to the fra disk group.

Example 12–13 Using the ASMCMD spbackup command

ASMCMD> spbackup +DATA/asm/asmparameterfile/registry.253.721810181
       +DATA/spfileBackASM.bak

ASMCMD> spbackup +DATA/asm/asmparameterfile/registry.253.721810181
       +FRA/spfileBackASM.bak

spcopy

Purpose

Copies an Oracle ASM SPFILE from the source location to an SPFILE in the destination location.

Syntax and Description

spcopy [-u] source destination
Table 12–12 lists the options for the `spcopy` command.

**Table 12–12 Options for the spcopy command**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-u</code></td>
<td>Updates the Grid Plug and Play (GPnP) profile.</td>
</tr>
<tr>
<td><code>source</code></td>
<td>Specifies the source file name.</td>
</tr>
<tr>
<td><code>destination</code></td>
<td>Specifies the destination.</td>
</tr>
</tbody>
</table>

Note the following about the use of `spcopy`:

- `spcopy` can copy an Oracle ASM SPFILE from a disk group to a different disk group or to an operating system file.
- `spcopy` can copy an Oracle ASM SPFILE from an operating system file to a disk group.
- `spcopy` can copy an Oracle ASM SPFILE when the SPFILE is being used by an open Oracle ASM instance.
- `spcopy` cannot make multiple copies of an Oracle ASM SPFILE in the same disk group. You can use `spbackup` for that purpose.

To update the GPnP profile, include the `-u` option with `spcopy`. You can also use `spset` to update the GPnP profile if `spcopy` is run without the `-u` option. See "spset" on page 12-19. For information about copying and moving an Oracle ASM instance initialization parameter file after upgrading, see "Backing Up, Copying, and Moving an Oracle ASM Initialization Parameter File" on page 3-4.

After copying the SPFILE and updating the GPnP profile, you must restart the instance with the SPFILE in the new location to use that SPFILE. When the Oracle ASM instance is running with the SPFILE in the new location, you can remove the source SPFILE.

To copy an Oracle ASM SPFILE into a disk group using `spcopy`, the `COMPATIBLE.ASM` attribute must be set to 11.2 or greater in the target disk group.

See Also: The `CREATE SPFILE` SQL statement in the Oracle Database SQL Language Reference for information about creating a server parameter file

**Example**

The following are examples of the `spcopy` command. The first example copies the Oracle ASM SPFILE from the `data` disk group to the `fra` disk group. The second example copies the Oracle ASM SPFILE from the `data` disk group to an operating system location. The third example copies an Oracle ASM SPFILE from an operating system location to the `data` disk group and updates the GPnP profile with the `-u` option.

**Example 12–14 Using the ASMCMD spcopy command**

```
ASMCMD> spcopy +DATA/asm/asmparameterfile/registry.253.721810181 +FRA/spfileCopyASM.ora

ASMCMD> spcopy +DATA/asm/asmparameterfile/registry.253.721810181 $ORACLE_HOME/dbs/spfileCopyASM.ora

ASMCMD> spcopy -u /u01/oracle/product/11.2.0/grid/dbs/spfileTestASM.ora
```
spget

**Purpose**
Retrieves the location of the Oracle ASM SPFILE from the Grid Plug and Play (GPnP) profile.

**Syntax and Description**
`spget`

The location retrieved by `spget` is the location in the GPnP profile, but not always the location of the SPFILE currently used. For example, the location could have been recently updated by `spset` or `spcopy` with the `-u` option on an Oracle ASM instance that has not been restarted. After the next restart of the Oracle ASM, this location points to the Oracle ASM SPFILE currently being used.

**Example**
The following is an example of the `spget` command that retrieves and displays the location of the SPFILE from the GPnP profile.

**Example 12–15 Using the ASMCMD spget command**
```
ASMCMD [+D] > spget
+DATA/asm/asmparameterfile/registry.253.691575633
```

spmove

**Purpose**
Moves an Oracle ASM SPFILE from source to destination and automatically updates the GPnP profile.

**Syntax and Description**

```
spmove source destination
```

Table 12–13 lists the options for the `spmove` command.

**Table 12–13 Options for the spmove command**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Specifies the source file.</td>
</tr>
<tr>
<td>destination</td>
<td>Specifies the destination file.</td>
</tr>
</tbody>
</table>

Note the following about the use of `spmove`:

- `spmove` can move an Oracle ASM SPFILE when the open instance is using a PFILE or a different SPFILE. After moving the SPFILE, you must restart the instance with the SPFILE in the new location to use that SPFILE.
- `spmove` cannot move an Oracle ASM SPFILE when the SPFILE is being used by an open Oracle ASM instance.
For information about copying and moving an Oracle ASM instance initialization parameter file after upgrading, see "Backing Up, Copying, and Moving an Oracle ASM Initialization Parameter File" on page 3-4.

To use `spmove` to move an Oracle ASM SPFILE into a disk group, the disk group attribute `COMPATIBLE.ASM` must be set to 11.2 or greater.

**Example**
The following are examples of the `spmove` command. The first example moves an Oracle ASM SPFILE from the data disk group to an operating system location. The second example moves an SPFILE from an operating system location to the data disk group.

*Example 12–16 Using the ASMCMD `spmove` command*

```
ASMCMD> spmove +DATA/spfileASM.ora /u01/oracle/product/11.2.0/grid/dbs/spfileMoveASM.ora

ASMCMD> spmove /u01/oracle/product/11.2.0/grid/dbs/spfile+ASM.ora +DATA/ASM/spfileMoveASM.ora
```

**spset**

**Purpose**
Sets the location of the Oracle ASM SPFILE in the Grid Plug and Play (GnP) profile.

**Syntax and Description**

```
spset location
```

*Table 12–14 lists the options for the `spset` command.*

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Specifies the location of the Oracle ASM SPFILE. The location is the full path to the SPFILE.</td>
</tr>
</tbody>
</table>

**Example**
The following is an example of the `spset` command that sets the location of the Oracle ASM SPFILE command in the data disk group.

*Example 12–17 Using the ASMCMD `spset` command*

```
ASMCMD> spset +DATA/asm/asmparameterfile/asmspfile.ora
```

**startup**

**Purpose**
Starts up an Oracle ASM instance.

**Syntax and Description**

```
startup [--nomount] [--restrict] [--pfile pfile]
```

*Table 12–15 lists the options for the startup command.*
The default action is a startup that mounts disk groups and enables Oracle ASM Dynamic Volume Manager (Oracle ADVM) volumes. For information about disk groups that are mounted at startup time, see “About Mounting Disk Groups at Startup” on page 3-15.

For more information about starting up an Oracle ASM instance, see "Starting Up an Oracle ASM Instance" on page 3-13.

Example
The following is an example of the startup command that starts the Oracle ASM instance without mounting disk groups and uses the asm_init.ora initialization parameter file.

Example 12–18  Using the ASMCMD startup command
ASMCMD> startup --nomount --pfile asm_init.ora

ASMCMD File Management Commands
This section describes the ASMCMD file management commands.
Table 12–16 provides a summary of the file management commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd</td>
<td>Changes the current directory to the specified directory.</td>
</tr>
<tr>
<td>cp</td>
<td>Enables you to copy files between disk groups, and between a disk group and the operating system.</td>
</tr>
<tr>
<td>du</td>
<td>Displays the total disk space occupied by files in the specified Oracle ASM directory and all of its subdirectories, recursively.</td>
</tr>
<tr>
<td>find</td>
<td>Lists the paths of all occurrences of the specified name (with wildcards) under the specified directory.</td>
</tr>
<tr>
<td>ls</td>
<td>Lists the contents of an Oracle ASM directory, the attributes of the specified file, or the names and attributes of all disk groups.</td>
</tr>
<tr>
<td>lsdir</td>
<td>Lists the open files.</td>
</tr>
<tr>
<td>mkalias</td>
<td>Creates an alias for system-generated filenames.</td>
</tr>
<tr>
<td>mkdir</td>
<td>Creates Oracle ASM directories.</td>
</tr>
<tr>
<td>pwd</td>
<td>Displays the path of the current Oracle ASM directory.</td>
</tr>
<tr>
<td>rm</td>
<td>Deletes the specified Oracle ASM files or directories.</td>
</tr>
<tr>
<td>rmalias</td>
<td>Deletes the specified alias, retaining the file that the alias points to.</td>
</tr>
</tbody>
</table>
cd

**Purpose**
Changes the current directory to the specified directory.

**Syntax and Description**
cd [dir]

Table 12–17 lists the options for the cd command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
<td>Name of the directory.</td>
</tr>
</tbody>
</table>

_dir_ can be specified as either an absolute path or a relative path, including the . and .. pseudo-directories. _dir_ can contain wildcard characters. See "Wildcard Characters" on page 12-5.

**Examples**
The following are examples of the cd command changing into various directories.

**Example 12–19 Using the ASMCMD cd command**

ASMCMD [+data/hr] > cd +data/orcl

ASMCMD [+data/orcl] > cd DATAFILE

ASMCMD [+data/orcl/DATAFILE] > cd ..

cp

**Purpose**
Enables you to copy files between Oracle ASM disk groups and between a disk group and the operating system.

**Syntax and Description**
cp [-i][-f] src_file[rem_connect_str:]tgt_file
cp [-i][-f][rem_connect_str:]src_file tgt_file

Table 12–18 lists the syntax options for the cp command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i</td>
<td>Specifies the interactive option. Prompts before copying or overwriting a file.</td>
</tr>
<tr>
<td>-f</td>
<td>Specifies the force option. If the destination file exists, remove it and then try again without user interaction.</td>
</tr>
<tr>
<td>rem_connect_str</td>
<td>Specifies the connection string for a remote instance.</td>
</tr>
<tr>
<td>src_file</td>
<td>Name of the source file to copy.</td>
</tr>
</tbody>
</table>
cp cannot copy files between two remote instances. The local Oracle ASM instance must be either the source or the target of the operation.

You can use the cp command to:

- Copy files from a disk group to the operating system
- Copy files from a disk group to a disk group
- Copy files from the operating system to a disk group

Some file types cannot be the source or destination of the cp command. These file types include OCR and OCR backup file types. To back up, copy, or move an Oracle ASM SPFILE, use the spbackup, spcopy, or spmove commands.

rem_connect_str is not required for a local instance copy, which is the default case. For a remote instance copy, you must specify the connect string and Oracle ASM prompts for a password in a non-echoing prompt. The rem_connect_str is in the form:

```
user@host[.port_number].SID
```

user, host, and SID are required in the rem_connect_str parameter. The default port number is 1521.

The connection privilege (SYSASM or SYSDBA) is determined by the use of the -a option when starting ASMCMD. For more information, refer to "Specifying the Type of Connection" on page 12-8.

See Also: Oracle Database Net Services Administrator’s Guide for more information about connection strings

src_file must be either a fully qualified file name or an Oracle ASM alias.

The cp command performs a bit-wise copy. There is no data transformation.

Examples
The following are examples of the cp command. The first example shows a copy of a file in the data disk group to a file on the operating system. The second example shows a copy of a file on the operating system to the data disk group. The third example shows how to copy a file in the data disk group to a remote server. If the password is not included in the command line, you are prompted to enter the password.

Example 12–20 Using the ASMCMD cp command

```
ASMCMD [+] > cp +data/orcl/datafile/EXAMPLE.265.691577295 /mybackups/example.bak
 copying +data/orcl/datafile/EXAMPLE.265.691577295 -> /mybackups/example.bak

ASMCMD [+] > cp /mybackups/examples.bak +data/orcl/datafile/myexamples.bak
 copying /mybackups/examples.bak -> +data/orcl/datafile/myexamples.bak

ASMCMD [+] > cp +data/orcl/datafile/EXAMPLE.265.691577295
sys@myserver.+ASM:/scratch/backup/myexamples.bak
Enter Password:
```

Table 12–18 (Cont.) Options for the cp command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tgt_file</td>
<td>A user alias for the created target file name or an alias directory name.</td>
</tr>
</tbody>
</table>
du

Purpose
Displays the total space used for files in the specified directory and in the entire directory tree under the directory.

Syntax and Description
```
du [-H] [dir]
```
Table 12–19 lists the syntax options for the du command.

Table 12–19 Options for the du command
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
<td>Name of the directory.</td>
</tr>
<tr>
<td>-H</td>
<td>Suppresses column headings from the output.</td>
</tr>
</tbody>
</table>

If you do not specify `dir`, then information about the current directory is displayed. `dir` can contain wildcard characters. See "Wildcard Characters" on page 12-5.

The following two values are displayed, both in units of megabytes.
- `Used_MB` - This value does not include mirroring.
- `Mirror_used_MB` - This value includes mirroring.

For example, if a normal redundancy disk group contains 100 MB of data and each file in the disk group is 2-way mirrored, then `Used_MB` is 100 MB and `Mirror_used_MB` is roughly 200 MB.

Example
The following is an example of the du command. The example shows disk space used in the `orcl` directory in the `data` disk group, including all of the directories under the `orcl` directory.

Example 12–21 Using the ASMCMD du command
```
ASMCMD [+] > du data/orcl
Used_MB Mirror_used_MB
1756 3519
```

find

Purpose
Displays the absolute paths of all occurrences of the specified name pattern (with wildcards) in a specified directory and its subdirectories.

Syntax and Description
```
find [--type type] dir pattern
```
Table 12–20 lists the syntax options for the find command.

Table 12–20 Options for the find command
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--type type</td>
<td>Type of target to find.</td>
</tr>
</tbody>
</table>
This command searches the specified directory and all subdirectories under it in the directory tree for the supplied *pattern*. The value used for *pattern* can be a directory name or a filename, and can include wildcard characters. See "Wildcard Characters" on page 12-5.

The ASMCMD *find* command is case insensitive.

In the output of the command, directory names are suffixed with the slash character (/) to distinguish them from filenames.

Use the \--type flag to find all the files of a particular type (specified as *type*). For example, you can search for control files by specifying *type* as CONTROLFILE. Valid values for *type* are listed in Table 7-1, "File types supported by Oracle ASM" on page 7-1. These are type values from the *type* column of the V$ASM_FILE view.

**Examples**

The following are examples of the *find* command. The first example searches the data disk group for files that begin with undo. The second example returns the absolute path of all the control files (\--type CONTROLFILE) in the +data/orcl directory.

**Example 12-22 Using the ASMCMD find command**

```
ASMCMD [+] > find +data undo*
+data/ORCL/DATAFILE/UNDOTBS1.258.691577151

ASMCMD [+] > find --type CONTROLFILE +data/orcl *
+data/orcl/CONTROLFILE/Current.260.691577263
```

### ls

**Purpose**

Lists the contents of an Oracle ASM directory, the attributes of the specified file, or the names and attributes of all disk groups.

**Syntax and Description**

```
ls [-lsdLtGh][--absolutePath][--reverse][--permission][pattern]
```

Table 12-21 lists the syntax options for the *ls* command.
Table 12–21 Options for the ls command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>Displays only filenames and directory names.</td>
</tr>
<tr>
<td>-l</td>
<td>Displays extended file information, including striping and redundancy information and whether the file was system-generated (indicated by Y under the SYS column) or user-created (as with an alias, indicated by N under the SYS column). When used in the &quot;ls -l +&quot; command, displays directory information. Not all possible file attributes or disk group attributes are included. To view the complete set of column values for a file or a disk group, query the V$ASM_FILE and V$ASM_DISKGROUP views.</td>
</tr>
<tr>
<td>-s</td>
<td>Displays file space information.</td>
</tr>
<tr>
<td>-d</td>
<td>If the value for the pattern argument is a directory, then ls displays information about that directory, rather than the directory contents. Typically used with another flag, such as the -l flag.</td>
</tr>
<tr>
<td>--reverse</td>
<td>Reverses the sort order of the listing.</td>
</tr>
<tr>
<td>-t</td>
<td>Sorts the listing by timestamp (latest first) instead of by name.</td>
</tr>
<tr>
<td>-L</td>
<td>If the value for the pattern argument is an alias, then ASMCMD displays information about the file that it references. Typically used with another flag, such as the -l flag.</td>
</tr>
<tr>
<td>--absolutepath</td>
<td>For each listed file, displays the absolute path of the alias that references it, if any.</td>
</tr>
<tr>
<td>-g</td>
<td>GV$ASM_DISKGROUP.INST_ID is included in the output.</td>
</tr>
<tr>
<td>-H</td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td>--permission</td>
<td>Shows the permissions of a file (V$ASM_FILE.permission, V$ASM_FILE.owner, V$ASM_FILE.usergroup, V$ASM_ALIAS.name).</td>
</tr>
<tr>
<td>pattern</td>
<td>Name of a file, directory, or a pattern.</td>
</tr>
</tbody>
</table>

Command options enable you to modify and customize the output of the command. Table 12–21 lists the options and their descriptions. For disk group information, this command queries the V$ASM_DISKGROUP_STAT view by default. If you specify all of the options, then the command shows a union of their attributes, with duplicates removed. If you enter ls +, the top level directory structure is displayed.

**pattern** can be a file name, directory name, or a pattern including wildcard characters. See "Wildcard Characters" on page 12-5.

- If **pattern** is a directory name, then ls lists the contents of the directory and depending on flag settings, ls also lists information about each directory member. Directories are listed with a trailing slash (/) to distinguish them from files.
- If the value that you enter for **pattern** is a file name, then ls lists the file and depending on the flag settings, ls also lists information about the file. The file must be located in the current directory if the file name is specified with a relative path.

**Examples**
The following are examples of the ls command that display various information about directories and the contents of the directories.
**Example 12–23** Using the ASMCMD ls command

```
ASMCMD [+] > ls +data/orcl/datafile
EXAMPLE.265.691577295
SYSAUX.257.691577149
SYSTEM.256.691577149
UNDOTBS1.258.691577151
USERS.259.691577151

ASMCMD [+] > ls -lt +data/orcl/datafile
<table>
<thead>
<tr>
<th>Type</th>
<th>Redund</th>
<th>Striped</th>
<th>Time</th>
<th>Sys</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAFILE</td>
<td>MIRROR</td>
<td>COARSE</td>
<td>JUL 13 08:00:00</td>
<td>Y</td>
<td>EXAMPLE.265.691577295</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>MIRROR</td>
<td>COARSE</td>
<td>JUL 13 05:00:00</td>
<td>Y</td>
<td>SYSAUX.257.691577149</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>MIRROR</td>
<td>COARSE</td>
<td>JUL 13 02:00:00</td>
<td>Y</td>
<td>USERS.259.691577151</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>MIRROR</td>
<td>COARSE</td>
<td>JUL 13 02:00:00</td>
<td>Y</td>
<td>UNDOTBS1.258.691577151</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>MIRROR</td>
<td>COARSE</td>
<td>JUL 13 02:00:00</td>
<td>Y</td>
<td>SYSTEM.256.691577149</td>
</tr>
</tbody>
</table>

ASMCMD [+] > ls -l +data/orcl/datafile/sy*
<table>
<thead>
<tr>
<th>Type</th>
<th>Redund</th>
<th>Striped</th>
<th>Time</th>
<th>Sys</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAFILE</td>
<td>MIRROR</td>
<td>COARSE</td>
<td>JUL 13 05:00:00</td>
<td>Y</td>
<td>SYSAUX.257.691577149</td>
</tr>
<tr>
<td>DATAFILE</td>
<td>MIRROR</td>
<td>COARSE</td>
<td>JUL 13 02:00:00</td>
<td>Y</td>
<td>SYSTEM.256.691577149</td>
</tr>
</tbody>
</table>

ASMCMD [+] > ls -s +data/orcl/datafile
<table>
<thead>
<tr>
<th>Block_Size</th>
<th>Blocks</th>
<th>Bytes</th>
<th>Space</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8192</td>
<td>12801</td>
<td>104865792</td>
<td>214958080</td>
<td>EXAMPLE.265.691577295</td>
</tr>
<tr>
<td>8192</td>
<td>88321</td>
<td>723525632</td>
<td>1452277760</td>
<td>SYSAUX.257.691577149</td>
</tr>
<tr>
<td>8192</td>
<td>88321</td>
<td>723525632</td>
<td>1452277760</td>
<td>SYSTEM.256.691577149</td>
</tr>
<tr>
<td>8192</td>
<td>7681</td>
<td>62922752</td>
<td>131072000</td>
<td>UNDOTBS1.258.691577151</td>
</tr>
<tr>
<td>8192</td>
<td>641</td>
<td>5251072</td>
<td>12582912</td>
<td>USERS.259.691577151</td>
</tr>
</tbody>
</table>

ASMCMD [+] > ls --permission +data/orcl/datafile
<table>
<thead>
<tr>
<th>User</th>
<th>Group</th>
<th>Permission</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>rw-rw-rw-</td>
<td>EXAMPLE.265.691577295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rw-rw-rw-</td>
<td>SYSAUX.257.691577149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rw-rw-rw-</td>
<td>SYSTEM.256.691577149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rw-rw-rw-</td>
<td>UNDOTBS1.258.691577151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rw-rw-rw-</td>
<td>USERS.259.691577151</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lsOf

Purpose
Lists the open files of the local clients.

Syntax and Description
```
lsOf [-H] [-G diskgroup|--dbname db| -C instance]
```

Table 12–22 lists the syntax options for the `lsOf` command.

Table 12–22 Options for the lsOf command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-H</td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td>-G diskgroup</td>
<td>List files only from the specified disk group.</td>
</tr>
<tr>
<td>--dbname db</td>
<td>List files only from the specified database.</td>
</tr>
<tr>
<td>-C instance</td>
<td>List files only from the specified instance.</td>
</tr>
</tbody>
</table>
Example

The following are examples of the `lsof` command. The first example lists the open files for the `data` disk group. The second example lists the open files for the Oracle ASM instance.

Example 12–24 Using the ASMCMD lsof command

```bash
ASMCMD [+] > lsof -G data
DB_Name  Instance_Name  Path
orcl     orcl           +data/orcl/controlfile/current.260.691577263
orcl     orcl           +data/orcl/datafile/example.265.691577295
orcl     orcl           +data/orcl/datafile/sysaux.257.691577149
orcl     orcl           +data/orcl/datafile/system.256.691577149
orcl     orcl           +data/orcl/datafile/undotbs1.258.691577151
orcl     orcl           +data/orcl/datafile/users.259.691577151
orcl     orcl           +data/orcl/onlinelog/group_1.261.691577267
orcl     orcl           +data/orcl/onlinelog/group_2.262.691577271
orcl     orcl           +data/orcl/onlinelog/group_3.263.691577275
orcl     orcl           +data/orcl/tempfile/temp.264.691577287
```

```bash
ASMCMD [+] > lsof -C +ASM
DB_Name  Instance_Name  Path
asmvol   +ASM           +data/VOLUME1.271.679226013
asmvol   +ASM           +data/VOLUME2.272.679227351
```

mkalias

Purpose

Creates an alias for the specified system-generated filename.

Syntax and Description

`mkalias file alias`

Table 12–23 lists the syntax options for the `mkalias` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>file</code></td>
<td>System-generated file name.</td>
</tr>
<tr>
<td><code>alias</code></td>
<td>Alias for the file name.</td>
</tr>
</tbody>
</table>

`alias` must be in the same disk group as the system-generated file. Only one alias is permitted for each Oracle ASM file.

Example

The following example creates the `sysaux.f` alias for the fully qualified filename `+data/orcl/DATAFILE/SYSAUX.257.721811945`. Following the `mkalias` command, `ls --absolutepath` is run to check the results.

Example 12–25 Using the ASMCMD mkalias command

```bash
ASMCMD [+data/orcl/datafile] > mkalias SYSAUX.257.721811945 sysaux.f
```

```bash
ASMCMD [+data/orcl/datafile] > ls --absolutepath
none => EXAMPLE.265.721812093
+DATA/ORCL/DATAFILE/sysaux.f => SYSAUX.257.721811945
```
mkdir

Purpose
Creates Oracle ASM directories under the current directory.

Syntax and Description

```
mkdir dir [dir...]  
```

Table 12–24 lists the syntax options for the `mkdir` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dir</code></td>
<td>Directory name to create.</td>
</tr>
</tbody>
</table>

The directory from which `mkdir` is run can be a system-created or user-created directory. You cannot create a directory at the root (+) level.

Example
The following is an example of the `mkdir` command. The example creates the directories `subdir1` and `subdir2` at the disk group level in the disk group `data`.

Example 12–26 Using the ASMCMD mkdir command

```
ASMCMD [+data] > mkdir subdir1 subdir2  
```

```
ASMCMD [+data] > ls  
ASM/  
ORCL/  
subdir1/  
subdir2/  
```

pwd

Purpose
Displays the absolute path of the current directory.

Syntax and Description

```
pwd                                          
```

Example
The following is an example of the `pwd` command. The example displays the current directory.

Example 12–27 Using the ASMCMD pwd command

```
ASMCMD [+data/orcl/datafile] > pwd  
+data/orcl/datafile  
```
rm

Purpose
Deletes the specified Oracle ASM files and directories.

Syntax and Description
rm [-f|-r] pattern[...]

Table 12–25 lists the syntax options for the rm command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>Recursively deletes files and subdirectories.</td>
</tr>
<tr>
<td>-f</td>
<td>Forces the deletion of files and subdirectories.</td>
</tr>
<tr>
<td>pattern</td>
<td>Name of a file, directory, or wildcard pattern.</td>
</tr>
</tbody>
</table>

If pattern is a file or alias, then the rm command can delete the file or alias only if it is not currently in use. If pattern is a directory, then the rm command can delete it only if it is empty (unless the -r flag is used) and it is not a system-generated directory. If pattern is an alias, then the rm command deletes both the alias and the file to which the alias refers. To delete only an alias and retain the file that the alias references, use the rmalias command.

Note: When you delete all of the files in a system-created directory, the directory is removed. If the parent directories are empty, all of the parent directories are also removed.

pattern can contain wildcard characters. See "Wildcard Characters" on page 12-5.

If you use a wildcard, the rm command deletes all of the matches except nonempty directories, unless you use the -r flag. To recursively delete, use the -r flag. With -r option you can delete a nonempty directory, including all files and directories in it and in the entire directory tree underneath it. If you use the -r flag or a wildcard character, then the rm command prompts you to confirm the deletion before proceeding, unless you specify the -f flag.

If a wildcard character matches an alias or a system-generated file that has an alias, then both the alias and the system-generated file that it references are deleted. When using the -r flag to delete an alias that matches a wildcard pattern, either the alias or the system-generated file that has an alias must be present in the directory in which you run the rm command.

For example, if you have a user alias, +data/dir1/file.alias that points to +data/orcl/DATAFILE/System.256.146589651, then running the rm -r +data/dir1 command removes the +data/dir1/file.alias and +data/orcl/DATAFILE/System.256.146589651.

Example
The following are examples of the rm command. The first example deletes the myexamples.bak file. The second example removes the subdir2 directory and its contents.
Example 12–28 Using the ASMCMD rm command

ASMCMD [+data/orcl/datafile] > rm myexamples.bak

ASMCMD [+data] > rm -r subdir2

You may delete multiple files and/or directories.
Are you sure? (y/n) y

rmalias

Purpose
Removes the specified aliases, retaining the files that the aliases reference.

Syntax and Description

```
rmalias [-r] alias [alias...]
```

Table 12–26 lists the syntax options for the `rmalias` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>Recursively removes aliases.</td>
</tr>
<tr>
<td>alias</td>
<td>Alias for the file name or directory.</td>
</tr>
</tbody>
</table>

The `-r` flag enables you to remove all of the aliases in the current directory and in the entire directory tree beneath the current directory. If any user-created directories become empty after deleting aliases, they are also deleted. Files and directories created by the system are not deleted.

Example
The following is an example of the `rmalias` command. The example deletes the alias `sysaux.f`, retaining the data file that it references.

Example 12–29 Using the ASMCMD rmalias command

ASMCMD [+data/orcl/datafile] > rmalias sysaux.f

ASMCMD Disk Group Management Commands

This section describes the ASMCMD disk group management commands.

Table 12–27 provides a summary of the disk group management commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chdg</td>
<td>Changes a disk group (add, drop, or rebalance).</td>
</tr>
<tr>
<td>chkdg</td>
<td>Checks or repairs a disk group.</td>
</tr>
<tr>
<td>dropdg</td>
<td>Drops a disk group.</td>
</tr>
<tr>
<td>iostat</td>
<td>Displays I/O statistics for disks.</td>
</tr>
<tr>
<td>lsattr</td>
<td>Lists the attributes of a disk group.</td>
</tr>
<tr>
<td>lsdg</td>
<td>Lists disk groups and their information.</td>
</tr>
<tr>
<td>lsdsk</td>
<td>Lists disks Oracle ASM disks.</td>
</tr>
</tbody>
</table>
chdg

Purpose
Changes a disk group (adds disks, drops disks, resizes disks, or rebalances a disk group) based on an XML configuration file.

Syntax and Description

```bash
chdg { config_file.xml | 'contents_of_xml_file' }
```

Table 12–28 lists the syntax options for the `chdg` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config_file</code></td>
<td>Name of the XML file that contains the changes for the disk group. <code>chdg</code> searches for the XML file in the directory where ASMCMD was started unless a path is specified. For examples of the valid tags and XML configuration file, see Example 12–30 and Example 12–31.</td>
</tr>
<tr>
<td><code>contents_of_xml_file</code></td>
<td>The XML script enclosed in single quotations.</td>
</tr>
</tbody>
</table>

chdg modifies a disk group based on an XML configuration file. The modification includes adding or deleting disks from an existing disk group, and the setting rebalance power level. The power level can be set to the same values as the `ASM_POWER_LIMIT` initialization parameter. For information about the initialization parameter, see "ASM_POWER_LIMIT" on page 3-8.

When adding disks to a disk group, the diskstring must be specified in a format similar to the `ASM_DISKSTRING` initialization parameter. For information about the initialization parameter, see "ASM_DISKSTRING" on page 3-7.

The failure groups are optional parameters. The default causes every disk to belong to a its own failure group. For information about failure groups, see "Oracle ASM Failure Groups" on page 4-25.
Dropping disks from a disk group can be performed through this operation. An individual disk can be referenced by its Oracle ASM disk name. A set of disks that belong to a failure group can be specified by the failure group name. For information about dropping disks, see "Dropping Disks from Disk Groups" on page 4-14.

You can resize a disk inside a disk group with chdg. The resize operation fails if there is not enough space for storing data after the resize. For information about resizing disks, see "Resizing Disks in Disk Groups" on page 4-16.

Example 12–30 shows the basic structure and the valid tags with their respective attributes for the chdg XML configuration file.

Example 12–30 Tags for the chdg XML configuration template

```xml
<chdg> update disk clause (add/delete disks/failure groups)
    name         disk group to change
    power        power to perform rebalance

    <add> items to add are placed here
    </add>

    <drop> items to drop are placed here
    </drop>

    <fg> failure group
        name         failure group name
    </fg>

    <dsk> disk
        name         disk name
        string       disk path
        size         size of the disk to add
    </dsk>

</chdg>
```

For information about creating a disk group with ASMCMD mkdg, see "mkdg" on page 12-43. For information about altering disk groups, see "Altering Disk Groups" on page 4-11. For information about XML, see http://www.oracle.com/technology/tech/xml/index.html

Example

The following is an example of an XML configuration file for chdg. This XML file alters the disk group named data. The failure group fg1 is dropped and the disk data_0001 is also dropped. The /dev/disk5 disk is added to failure group fg2. The rebalance power level is set to 3.

Example 12–31 chdg sample XML configuration file

```xml
<chdg name="data" power="3">
    <drop>
        <fg name="fg1"></fg>
        <dsk name="data_0001"/>
    </drop>

    <add>
        <fg name="fg2">
            <dsk string="/dev/disk5"/>
        </fg>
    </add>
</chdg>
```
The following are examples of the `chdg` command with the configuration file or configuration information on the command line.

Example 12–32 Using the ASMCMD chdg command

```
ASMCM [+] > chdg data_config.xml
```

```
ASMCM [+] > chdg '<chdg name="data" power="3">
<drop><fg name="fg1"></fg><dsk name="data_0001"/></drop>
<add><fg name="fg2"><dsk string="/dev/disk5"/></fg></add></chdg>'
```

chkdg

Purpose
Checks or repairs the metadata of a disk group.

Syntax and Description

```
chkdg [--repair] diskgroup
```

Table 12–29 lists the syntax options for the `chkdg` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--repair</td>
<td>Repairs the disk group.</td>
</tr>
<tr>
<td>diskgroup</td>
<td>Name of disk group to check or repair.</td>
</tr>
</tbody>
</table>

`chkdg` checks the metadata of a disk group for errors and optionally repairs the errors.

Example
The following is an example of the `chkdg` command used to check and repair the `data` disk group.

Example 12–33 Using the ASMCMD chkdg command

```
ASMCM [+] > chkdg --repair data
```

dropdg

Purpose
Drops a disk group.

Syntax and Description

```
dropdg [-r] [-f] [-r] diskgroup
```

Table 12–30 lists the syntax options for the `dropdg` command.
dropdg drops an existing disk group. The disk group should not be mounted on multiple nodes.

Example

These are examples of the use of `dropdg`. The first example forces the drop of the disk group data, including any data in the disk group. The second example drops the disk group `fra`, including any data in the disk group.

Example 12–34 Using the ASMCMD dropdg command

```
ASMCMD [+] > dropdg -r -f data
```

```
ASMCMD [+] > dropdg -r fra
```

iostat

Purpose

Displays I/O statistics for Oracle ASM disks in mounted disk groups.

Syntax and Description

```
iostat [-etH][-io][-region][-G diskgroup][interval]
```

`iostat` lists disk group statistics using the `V$ASM_DISK_IOSSTAT` view.

Table 12–31 Options for the iostat command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-e</code></td>
<td>Displays error statistics (Read_Err, Write_Err).</td>
</tr>
<tr>
<td><code>-G diskgroup</code></td>
<td>Displays statistics for the disk group name.</td>
</tr>
<tr>
<td><code>-H</code></td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td><code>-io</code></td>
<td>Displays information in number of I/Os, instead of bytes.</td>
</tr>
<tr>
<td><code>-t</code></td>
<td>Displays time statistics (Read_Time, Write_Time).</td>
</tr>
<tr>
<td><code>-region</code></td>
<td>Displays information for cold and hot disk regions (Cold_Reads, Cold_Writes, Hot_Reads, Hot_Writes).</td>
</tr>
<tr>
<td><code>interval</code></td>
<td>Refreshes the statistics display based on the interval value (seconds). Use Ctrl-C to stop the interval display.</td>
</tr>
</tbody>
</table>

Table 12–32 shows the statistics for a disk group. To view the complete set of statistics for a disk group, use the `V$ASM_DISK_IOSSTAT` view.
If a refresh interval is not specified, the number displayed represents the total number of bytes or I/Os. If a refresh interval is specified, then the value displayed (bytes or I/Os) is the difference between the previous and current values, not the total value.

Example

The following are examples of the `iostat` command. The first example displays disk I/O statistics for the `data` disk group in total number of bytes. The second example displays disk I/O statistics for the `data` disk group in total number of I/O operations.

Example 12–35 Using the ASMCMD iostat command

```
ASMCMD [+] > iostat -G data
Group_Name  Dsk_Name   Reads       Writes
DATA        DATA_0000  180488192   473707520
DATA        DATA_0001  1089585152  469538816
DATA        DATA_0002  191648256   489570304
DATA        DATA_0003  175724032   424845824
DATA        DATA_0004  183421952   781429248
DATA        DATA_0005  1102540800  855269888
DATA        DATA_0006  171290624   447662592
DATA        DATA_0007  172281856   361337344
DATA        DATA_0008  173225472   390840320
DATA        DATA_0009  288497152   838680576
DATA        DATA_0010  196657152   375764480
DATA        DATA_0011  436420096   356003840

ASMCMD [+] > iostat --io -G data
```
lsattr

Purpose
Lists the attributes of a disk group.

Syntax and Description

```
lsattr [-G diskgroup] [-Hlm] [pattern]
```

Table 12–33 lists the syntax options for the `lsattr` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-G diskgroup</code></td>
<td>Disk group name.</td>
</tr>
<tr>
<td><code>-H</code></td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>Display names with values.</td>
</tr>
<tr>
<td><code>-m</code></td>
<td>Displays additional information, such as the RO and Sys columns.</td>
</tr>
<tr>
<td><code>pattern</code></td>
<td>Display the attributes that contain pattern expression.</td>
</tr>
</tbody>
</table>

Information about disk group attributes is retrieved from the `V$ASM_ATTRIBUTE` view. For information about disk group attributes, see "Disk Group Attributes" on page 4-2.

The RO (read-only) column identifies those attributes that can only be set when a disk group is created. The Sys column identifies those attributes that are system-created.

To display information about the disk group template attributes, see "lstmpl" on page 12-51.

Example

The following are examples of the `lsattr` command. The first displays information about all attributes for the `data` disk group. The second example displays only those attributes with names containing the string `compat` for the `fra` disk group. Note the use of both the `%` and `*` wildcard characters on Linux.

Example 12–36 Using the ASMCMD lsattr command

```
ASMCMD [+] > lsattr -G data -l
Name                        Value
access_control.enabled      FALSE
```
lsdg

Purpose
Lists mounted disk groups and their information. `lsdg` queries `V$ASM_DISKGROUP_STAT` by default. If the `--discovery` flag is specified, the `V$ASM_DISKGROUP` is queried instead. The output also includes notification of any current rebalance operation for a disk group. If a disk group is specified, then `lsdg` returns only information about that disk group.

Syntax and Description

```
lsdg [-gH] [--discovery] [pattern]
```

Table 12–34 lists the options for the `lsdg` command.

Table 12–34 Options for the lsdg command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>Displays the disk group attributes listed in Table 12–35.</td>
</tr>
<tr>
<td>--discovery</td>
<td>Selects from <code>V$ASM_DISKGROUP</code>, or from <code>GV$ASM_DISKGROUP</code> if the <code>-g</code> flag is also specified. This option is always enabled if the Oracle ASM instance is version 10.1 or earlier. This flag is disregarded if <code>lsdg</code> is running in non-connected mode.</td>
</tr>
<tr>
<td>-g</td>
<td>Selects from <code>GV$ASM_DISKGROUP_STAT</code>, or from <code>GV$ASM_DISKGROUP</code> if the <code>--discovery</code> flag is also specified. <code>GV$ASM_DISKGROUP.INST_ID</code> is also included in the output. The <code>REBAL</code> column of the <code>GV$ASM_OPERATION</code> view is also included in the output.</td>
</tr>
<tr>
<td>-H</td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td>pattern</td>
<td>Returns only information about the specified disk group or disk groups that match the supplied pattern. See "Wildcard Characters" on page 12-5.</td>
</tr>
</tbody>
</table>

Table 12–35 shows the attributes for each disk group. To view the complete set of attributes for a disk group, use the `V$ASM_DISKGROUP_STAT` or `V$ASM_DISKGROUP` view.

See Also: *Oracle Database Reference* for descriptions of disk group information displayed in the `V$ASM_DISKGROUP` view.
The following example lists the attributes of the data disk group.

Example 12–37 Using the ASMCMD lsdg command

```
ASMCMD [+] > lsdg data
```

<table>
<thead>
<tr>
<th>State</th>
<th>Type</th>
<th>Rebal</th>
<th>Sector</th>
<th>Block</th>
<th>AU</th>
<th>Total_MB</th>
<th>Free_MB</th>
<th>Req_mir_free_MB</th>
<th>Usable_file_MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUNTED</td>
<td>NORMAL</td>
<td>N</td>
<td>512</td>
<td>4096</td>
<td>4194304</td>
<td>12288</td>
<td>8835</td>
<td>1117</td>
<td>3859</td>
</tr>
</tbody>
</table>

(continued)

<table>
<thead>
<tr>
<th>Offline_disks</th>
<th>Voting_files</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
<td>DATA</td>
</tr>
</tbody>
</table>

lsdsk

Purpose

Lists Oracle ASM disks.

Syntax and Description

```
lsdsk [-kptgMHI][-G diskgroup][--member|--candidate]
       [--discovery][--statistics][pattern]
```

Table 12–36 lists the options for the lsdsk command.
The `lsdsk` command can run in connected or non-connected mode. The connected mode is always attempted first. The `-I` option forces non-connected mode.

- In connected mode, `lsdsk` uses the `V$ASM_DISK_STAT` and `V$ASM_DISK` dynamic views to retrieve disk information. The `V$ASM_DISK_STAT` view is used by default.
- In non-connected mode, `lsdsk` scans disk headers to retrieve disk information. Some information is not available in this mode and some options are not valid combinations with this mode.

Note: The non-connected mode is not supported on Windows.
pattern restricts the output to only disks that match the pattern specified. Wild-card characters and slashes (/ or \) can be part of the pattern. pattern should be specified as the last option for the command. For information about wildcards, see "Wildcard Characters" on page 12-5.

The -k, -p, -t, and --statistics options modify how much information is displayed for each disk. If any combination of the options are specified, then the output shows the union of the attributes associated with each flag.

Example
The following are examples of the lsdsk command. The first and second examples list information about disks in the data disk group. The third example lists information about candidate disks.

Example 12–38 Using the ASMCMD lsdsk command

```
ASMCMD [+]> lsdsk -t -G data
Create_Date Mount_Date Repair_Timer Path
13-JUL-09 13-JUL-09 0 /devices/diska1
13-JUL-09 13-JUL-09 0 /devices/diska2
13-JUL-09 13-JUL-09 0 /devices/diska3
13-JUL-09 13-JUL-09 0 /devices/diskb1
13-JUL-09 13-JUL-09 0 /devices/diskb2
13-JUL-09 13-JUL-09 0 /devices/diskb3
13-JUL-09 13-JUL-09 0 /devices/diskc1
13-JUL-09 13-JUL-09 0 /devices/diskc2
...
```

```
ASMCMD [+]> lsdsk -p -G data /devices/diska*
Group_Num Disk_Num Incarn Mount_Stat Header_Stat Mode_Stat State Path
1 0 2105454210 CACHED MEMBER ONLINE NORMAL /devices/diska1
1 1 2105454199 CACHED MEMBER ONLINE NORMAL /devices/diska2
1 2 2105454205 CACHED MEMBER ONLINE NORMAL /devices/diskc3
...
```

```
ASMCMD [+]> lsdsk --candidate -p
Group_Num Disk_Num Incarn Mount_Stat Header_Stat Mode_Stat State Path
0 5 2105454171 CLOSED CANDIDATE ONLINE NORMAL /devices/diskl1
0 25 2105454191 CLOSED CANDIDATE ONLINE NORMAL /devices/diskl2
0 18 2105454184 CLOSED CANDIDATE ONLINE NORMAL /devices/diskl3
0 31 2105454197 CLOSED CANDIDATE ONLINE NORMAL /devices/diskl1
0 21 2105454187 CLOSED CANDIDATE ONLINE NORMAL /devices/diskk2
0 26 2105454192 CLOSED CANDIDATE ONLINE NORMAL /devices/diskk3
0 14 2105454180 CLOSED CANDIDATE ONLINE NORMAL /devices/diskk1
...
```

lsod

Purpose
Lists the open Oracle ASM disks.

Syntax and Description
```
lsod [-H] [-G diskgroup] [-p process] [pattern]
```

Table 12–37 lists the syntax options for the lsod command.
The rebalance operation (RBAL) opens a disk both globally and locally so the same disk may be listed twice in the output for the RBAL process.

Example
The following are examples of the lsod command. The first example lists the open devices associated with the data disk group and the LGWR process. The second example lists the open devices associated with the LGWR process for disks that match the diska pattern.

Example 12–39 Using the ASMCMD lsod command

```
ASMCMD [+] > lsod -G data --process *LGWR*
Instance Process                  OSPID Path
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diska1
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diska2
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diska3
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diskb1
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diskb2
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diskb3
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diskd1

ASMCMD [+] > lsod --process *LGWR* *diska*
Instance Process                  OSPID Path
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diska1
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diska2
1        oracle@dadvmn0652 (LGWR) 26593 /devices/diska3
```

For another example of the lsod command, see Example 12–2 on page 12-9.

md_backup

Purpose
The md_backup command creates a backup file containing metadata for one or more disk groups.

Syntax and Description
```
md_backup backup_file
   [ -G 'diskgroup[,diskgroup,...]' ]
```

Table 12–38 describes the options for the md_backup command.
By default all the mounted disk groups are included in the backup file, which is saved in the current working directory if a path is not specified with the file name.

Oracle Automatic Storage Management Cluster File System (Oracle ACFS) volume and file system information is not backed up.

Example

The first example shows the use of the backup command when run without the disk group option. This example backs up all the mounted disk groups and creates the backup image in the `/scratch/backup/alldgs20100422` file. The second example creates a backup of the data disk group. The metadata backup that this example creates is saved in the `/scratch/backup/data20100422` file.

Example 12–40 Using the ASMCMD md_backup command

```plaintext
ASMCMD [+] > md_backup /scratch/backup/alldgs20100422
Disk group metadata to be backed up: DATA
Disk group metadata to be backed up: FRA
Current alias directory path: ORCL/ONLINELOG
Current alias directory path: ORCL/PARAMETERFILE
Current alias directory path: ORCL
Current alias directory path: ASM
Current alias directory path: ORCL/DATAFILE
Current alias directory path: ORCL/CONTROLFILE
Current alias directory path: ORCL/ARCHIVELOG/2010_04_20
Current alias directory path: ORCL
Current alias directory path: ORCL/BACKUPSET/2010_04_21
Current alias directory path: ORCL/ARCHIVELOG/2010_04_19
Current alias directory path: ORCL/BACKUPSET/2010_04_22
Current alias directory path: ORCL/ONLINELOG
Current alias directory path: ORCL/BACKUPSET/2010_04_22
Current alias directory path: ORCL/ARCHIVELOG
Current alias directory path: ORCL/ARCHIVELOG/2010_04_22
Current alias directory path: ORCL/BACKUPSET
Current alias directory path: ORCL/ARCHIVELOG/2010_04_22
Current alias directory path: ORCL/DATAFILE
Current alias directory path: ORCL/CONTROLFILE
Current alias directory path: ORCL/ARCHIVELOG/2010_04_22
Current alias directory path: ORCL/BACKUPSET
Current alias directory path: ORCL/ARCHIVELOG/2010_04_22
Current alias directory path: ORCL/DATAFILE
Current alias directory path: ORCL/CONTROLFILE
Current alias directory path: ORCL/ARCHIVELOG/2010_04_22

ASMCMD [+] > md_backup /scratch/backup/data20100422 -G data
Disk group metadata to be backed up: DATA
Current alias directory path: ORCL/ONLINELOG
Current alias directory path: ASM
Current alias directory path: ORCL/PARAMETERFILE
Current alias directory path: ASM/ASMPARAMETERFILE
Current alias directory path: ORCL/PARAMETERFILE
Current alias directory path: ORCL
Current alias directory path: ASM/ASMPARAMETERFILE
Current alias directory path: ORCL/DATAFILE
Current alias directory path: ORCL/CONTROLFILE
Current alias directory path: ORCL/ARCHIVELOG/2010_04_22
Current alias directory path: ORCL/BACKUPSET
```

Table 12–38 Options for the md_backup command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup_file</td>
<td>Specifies the backup file in which you want to store the metadata.</td>
</tr>
<tr>
<td>-G diskgroup</td>
<td>Specifies the disk group name of the disk group that must be backed up.</td>
</tr>
</tbody>
</table>
md_restore

Purpose
The `md_restore` command restores disk groups from a metadata backup file.

Syntax and Description
```
md_restore backup_file [--silent]
    [--full] --nodg --newdg -o 'old_diskgroup:new_diskgroup [, ...]' [-S sql_script_file] [-G 'diskgroup[, diskgroup...]' ]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>backup_file</code></td>
<td>Reads the metadata information from <code>backup_file</code>.</td>
</tr>
<tr>
<td><code>--silent</code></td>
<td>Ignore errors. Typically, if <code>md_restore</code> encounters an error, it stops. Specifying this flag ignores any errors.</td>
</tr>
<tr>
<td><code>--full</code></td>
<td>Specifies to create a disk group and restore metadata.</td>
</tr>
<tr>
<td><code>--nodg</code></td>
<td>Specifies to restore metadata only.</td>
</tr>
<tr>
<td><code>--newdg -o old_diskgroup:new_diskgroup</code></td>
<td>Specifies to create a disk group with a different name when restoring metadata. The <code>-o</code> option is required with <code>--newdg</code>.</td>
</tr>
<tr>
<td><code>-S sql_script_file</code></td>
<td>Write SQL commands to the specified SQL script file instead of executing the commands.</td>
</tr>
<tr>
<td><code>-G diskgroup</code></td>
<td>Select the disk groups to be restored. If no disk groups are defined, then all disk groups are restored.</td>
</tr>
</tbody>
</table>

Example
The first example restores the disk group `data` from the backup script and creates a copy. The second example takes an existing disk group `data` and restores its metadata. The third example restores disk group `data` completely but the new disk group that is created is named `data2`. The fourth example restores from the backup file after applying the overrides defined in the `override.sql` script file.

Example 12–41 Using the ASMCMD md_restore command
```
ASMCMD [+] > md_restore --full -G data --silent /scratch/backup/alldgs20100422
ASMCMD [+] > md_restore --nodg -G data --silent /scratch/backup/alldgs20100422
ASMCMD [+] > md_restore --newdg -o 'data:data2' --silent /scratch/backup/data20100422
ASMCMD [+] > md_restore -S override.sql --silent /scratch/backup/data20100422
```

mkdg

Purpose
Creates a disk group based on an XML configuration file.
Syntax and Description

mkdg {config_file.xml | 'contents_of_xml_file'}

Table 12–40 lists the syntax options for the mkdg command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config_file</td>
<td>Name of the XML file that contains the configuration for the new disk group. A</td>
</tr>
<tr>
<td>contents_of_xml_file</td>
<td>The XML script enclosed in single quotations.</td>
</tr>
</tbody>
</table>

mkdg creates a new disk group with an XML configuration file that specifies the name of the disk group, redundancy, attributes, and paths of the disks that form the disk group. Redundancy is an optional parameter; the default is normal redundancy. For some types of redundancy, disks are required to be gathered into failure groups. In the case that failure groups are not specified for a disk group, each disk in the disk group belongs to its own failure group.

It is possible to set some disk group attribute values during disk group creation. Some attributes, such as AU_SIZE and SECTOR_SIZE, can be set only during disk group creation. For more information about disk group attributes, refer to "Disk Group Attributes" on page 4-2.

The default disk group compatibility settings are 10.1 for Oracle ASM compatibility, 10.1 for database compatibility, and no value for Oracle ADVM compatibility. For information about disk group compatibility attributes, see "Disk Group Compatibility" on page 4-32.

Example 12–42 shows the basic structure and the valid tags with their respective attributes for the mkdg XML configuration file.

Example 12–42 Tags for mkdg XML configuration file

```xml
<dg>  
  name          disk group name  
  redundancy    normal, external, high  
</dg>

<fg>  
  name          failure group name  
</fg>

<dsk>  
  name          disk name  
  string        disk path  
  size          size of the disk to add  
</dsk>

<a>  
  name          attribute name  
  value         attribute value  
</a>
</dg>
```
For information about altering a disk group with ASMCMD chdg, see "chdg" on page 12-31. For information about creating a disk group, see "Creating Disk Groups" on page 4-3. For information about XML, see http://www.oracle.com/technology/tech/xml/index.html

Example

The following is an example of an XML configuration file for mkdg. The configuration file creates a disk group named data with normal redundancy. Two failure groups, fg1 and fg2, are created, each with two disks identified by associated disk strings. The disk group compatibility attributes are all set to 11.2.

Example 12–43 mkdg sample XML configuration file

```xml
<dg name="data" redundancy="normal">
  <fg name="fg1">
    <dsk string="/dev/disk1"/>
    <dsk string="/dev/disk2"/>
  </fg>
  <fg name="fg2">
    <dsk string="/dev/disk3"/>
    <dsk string="/dev/disk4"/>
  </fg>
  <a name="compatible.asm" value="11.2"/>
  <a name="compatible.rdbms" value="11.2"/>
  <a name="compatible.advm" value="11.2"/>
</dg>
```

The following are examples of the mkdg command. The first example runs mkdg with an XML configuration file in the directory where ASMCMD was started. The second example runs mkdg using information on the command line.

Example 12–44 Using the ASMCMD mkdg command

```
ASMCD [+] > mkdg data_config.xml
```

```
ASMCD [+] > mkdg '<dg name="data"><dsk string="/dev/disk*"/></dg>'
```

mount

Purpose

Mounts a disk group.

Syntax and Description

```
mount [--restrict] {[-a] | [-f]} diskgroup[ diskgroup ...]
```

Table 12–41 lists the syntax options for the mount command.

Table 12–41 Options for the mount command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskgroup</td>
<td>Name of the disk group.</td>
</tr>
<tr>
<td>-a</td>
<td>Mounts all disk groups.</td>
</tr>
<tr>
<td>--restrict</td>
<td>Mounts in restricted mode.</td>
</tr>
<tr>
<td>-f</td>
<td>Forces the mount operation.</td>
</tr>
</tbody>
</table>
This operation mounts one or more disk groups. A disk group can be mounted with or without force or restricted options. For more information about mounting disk groups, see "Mounting and Dismounting Disk Groups" on page 4-43.

Example
The following are examples of the `mount` command showing the use of the force, restrict, and all options.

Example 12–45 Using the ASMCMD mount command
```
ASMCMD [+] > mount -f data
ASMCMD [+] > mount --restrict data
ASMCMD [+] > mount -a
```

offline

Purpose
Offline disks or failure groups that belong to a disk group.

Syntax and Description
```
offline -G diskgroup
    { -F failgroup | -D disk }
    [-t {minutes | hours}]
```

Table 12–42 lists the syntax options for the `offline` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Disk group name.</td>
</tr>
<tr>
<td>-F failgroup</td>
<td>Failure group name.</td>
</tr>
<tr>
<td>-D disk</td>
<td>Specifies a single disk name.</td>
</tr>
<tr>
<td>-t minutes</td>
<td>Specifies the time before the specified disk is dropped as <code>nm</code> or <code>nh</code>,</td>
</tr>
<tr>
<td>hours</td>
<td>where <code>n</code> specifies minutes and <code>h</code> specifies hours. For example, <code>120m</code> or</td>
</tr>
<tr>
<td></td>
<td><code>2h</code>. The default unit is hours.</td>
</tr>
</tbody>
</table>

When a failure group is specified, this implies all the disks that belong to it should be offline.

Example
The following are examples of the `offline` command. The first example offlines the `failgroup1` failure group of the `data` disk group. The second example offlines the `data_0001` disk of the `data` disk group with a time of 1.5 hours before the disk is dropped.

Example 12–46 Using the ASMCMD offline command
```
ASMCMD [+] > offline -G data -F failgroup1
ASMCMD [+] > offline -G data -D data_0001 -t 1.5h
```
online

Purpose
Online all disks, a single disk, or a failure group that belongs to a disk group.

Syntax and Description
```bash
online -G diskgroup { -a | -F failgroup | -D disk } [-w]
```

Table 12–43 lists the syntax options for the `online` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Online all offline disks in the disk group.</td>
</tr>
<tr>
<td>-G diskgroup</td>
<td>Disk group name.</td>
</tr>
<tr>
<td>-F failgroup</td>
<td>Failure group name.</td>
</tr>
<tr>
<td>-D disk</td>
<td>Disk name.</td>
</tr>
<tr>
<td>-w</td>
<td>Wait option. Causes ASMCMD to wait for the disk group to be rebalanced before returning control to the user. The default is not waiting.</td>
</tr>
</tbody>
</table>

When a failure group is specified, this implies all the disks that belong to it should be onlined.

Example
The following are examples of the `online` command. The first example onlines all disks in the `failgroup1` failure group of the `data` disk group with the `wait` option enabled. The second example onlines the `data_0001` disk in the `data` disk group.

Example 12–47 Using the ASMCMD online command
```bash
ASMCMD [+] > online -G data -F failgroup1 -w
ASMCMD [+] > online -G data -D data_0001
```

rebal

Purpose
Rebalances a disk group.

Syntax and Description
```bash
rebal [--power power] [-w] diskgroup
```

Table 12–44 lists the syntax options for the `rebal` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskgroup</td>
<td>Disk group name.</td>
</tr>
<tr>
<td>--power power</td>
<td>Power setting.</td>
</tr>
</tbody>
</table>
The power level can be set to the same values as the `ASM_POWER_LIMIT` initialization parameter. A value of 0 disables rebalancing. If the rebalance power is not specified, the value defaults to the setting of the `ASM_POWER_LIMIT` initialization parameter. For information about the power level, see "ASM_POWER_LIMIT" on page 3-8 and "Tuning Rebalance Operations" on page 4-18.

You can determine if a rebalance operation is occurring with the ASMCMD `lsop` command. See "lsop" on page 12-13. For more information about rebalancing a disk group, see "Manually Rebalancing Disk Groups" on page 4-17.

Example
The following is an example of the `rebal` command that rebalances the `fra` disk group with a power level set to 4.

Example 12–48 Using the ASMCMD rebal command

```
ASMCMD [+] > rebal --power 4 fra
```

```
ASMCMD [+] > lsop
Group_Name Dsk_Num State Power
FRA REBAL RUN 4
```

remap

Purpose
Marks a range of blocks as unusable on the disk and relocates any data allocated in that range.

Syntax and Description

```
remap diskgroup disk block_range
```

Table 12–45 lists the syntax options for the `remap` command.

Table 12–45 Options for the remap command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diskgroup</code></td>
<td>Disk group name in which a disk must have data relocated.</td>
</tr>
<tr>
<td><code>disk</code></td>
<td>Name of the disk that must have data relocated. The name must match the <code>NAME</code> column in the <code>V$ASM_DISK</code> view.</td>
</tr>
<tr>
<td><code>block_range</code></td>
<td>Range of physical blocks to relocate in the format <code>start_range_number-end_range_number</code>.</td>
</tr>
</tbody>
</table>

The `remap` command only relocates blocks. It does not correct or repair blocks that contain corrupted contents. The command uses a physical block size based on the `SECTOR_SIZE` disk group attribute.
Examples
The first example remaps blocks 5000 through 5999 for disk DATA_0001 in disk group DATA. The second example remaps blocks 6230 through 6339 for disk FRA_0002 in disk group FRA.

Example 12-49 Using the ASMCMD remap command
ASMCMD [+] > remap DATA DATA_0001 5000-5999
ASMCMD [+] > remap FRA FRA_0002 6230-6339

setattr

Purpose
Sets the attributes for an Oracle ASM disk group.

Syntax and Description
setattr -G diskgroup attribute_name attribute_value

Table 12–46 lists the syntax options for the setattr command.

Table 12–46 Options for the setattr command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Disk group name.</td>
</tr>
<tr>
<td>attribute_name</td>
<td>Name of the attribute.</td>
</tr>
<tr>
<td>attribute_value</td>
<td>Value of the attribute.</td>
</tr>
</tbody>
</table>

The COMPATIBLE.ASM attribute must be advanced before advancing other disk group compatibility attributes and its value must be greater than or equal to the value of other disk group compatibility attributes.

For information about disk group attributes, see "Disk Group Attributes" on page 4-2.

Example
The following are examples of the setattr command. The first example sets the disk group attribute COMPATIBLE.ASM to 11.2 for the data disk group. The second example sets the disk group attribute COMPATIBLE.RDBMS to 11.2 for the data disk group.

Example 12–50 Using the ASMCMD setattr command
ASMCMD [+] > setattr -G data compatible.asm 11.2.0.0.0
ASMCMD [+] > setattr -G data compatible.rdbms 11.2.0.0.0

umount

Purpose
Dismounts a disk group.

Syntax and Description
umount [-a | [-f] diskgroup]
Table 12–47 lists the syntax options for the umount command.

Table 12–47 Options for the umount command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskgroup</td>
<td>Name of the disk group.</td>
</tr>
<tr>
<td>-a</td>
<td>Dismounts all mounted disk groups. These disk groups are listed in the output of the V$ASM_DISKGROUP view.</td>
</tr>
<tr>
<td>-f</td>
<td>Forces the dismount operation.</td>
</tr>
</tbody>
</table>

Example
The following are examples of the umount command. The first example dismounts all disk groups mounted on the Oracle ASM instance. The second example forces the dismount of the data disk group.

Example 12–51 Using the ASMCMD umount command

ASA CMD [+] > umount -a

ASA CMD [+] > umount -f data

ASMCMD Template Management Commands

This section describes the ASMCMD template management commands.

Table 12–48 provides a summary of the template management commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chtmpl</td>
<td>Changes the attributes of a template.</td>
</tr>
<tr>
<td>lstmpl</td>
<td>Lists disk group templates.</td>
</tr>
<tr>
<td>mktmpl</td>
<td>Adds a template to a disk group.</td>
</tr>
<tr>
<td>rmtmpl</td>
<td>Removes a template from a disk group.</td>
</tr>
</tbody>
</table>

chtmpl

Purpose
Changes the attributes of a template.

Syntax and Description

chtmpl -G diskgroup{[--striping {coarse|fine}]
[--redundancy {high|mirror|unprotected}] [--primary {hot|cold}]
[--secondary {hot|cold}]} template

Table 12–49 lists the syntax options for the chtmpl command.

Table 12–49 Options for the chtmpl command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Name of the disk group.</td>
</tr>
</tbody>
</table>
At least one of these options is required: --striping, --redundancy, --primary, or --secondary.

For information about updating templates, see "Modifying a Disk Group Template" on page 7-17.

Example

The following is an example of the chtmpl command that updates the mytemplate template of the data disk group. The redundancy attribute is set to high and the striping attribute is set to fine.

Example 12–52 Using the ASMCMD chtmpl command

ASMCMD [+] > chtmpl -G data --redundancy high --striping fine mytemplate

Istmpl

Purpose

Lists all templates for all disk groups or the templates for a specified disk group.

Syntax and Description

Istmpl [-H] [-G diskgroup] [pattern]

Table 12–50 lists the syntax options for the lsttmpl command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Specifies disk group name.</td>
</tr>
<tr>
<td>-H</td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td>-l</td>
<td>Displays all details.</td>
</tr>
<tr>
<td>pattern</td>
<td>Displays the templates that match pattern expression.</td>
</tr>
</tbody>
</table>

For information about template attributes, see "Template Attributes" on page 7-15.

Example

The following is an example of the lsttmpl command. The example lists all details of the templates in the data disk group.
Example 12–53 Using the ASMCMD lstmpl command

ASMCMD [+] > lstmpl -l -G data

<table>
<thead>
<tr>
<th>Group_Name</th>
<th>Group_Num</th>
<th>Name</th>
<th>Stripe</th>
<th>Sys</th>
<th>Redund</th>
<th>PriReg</th>
<th>MirrReg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>1</td>
<td>ARCHIVELOG</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>AUTOCOMMITFILE</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>AUTOBACKUP</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>BACKUPSET</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>CHANGECURRENT</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>CONTROLFILE</td>
<td>FINE</td>
<td>Y</td>
<td>HIGH</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>DATAGUARDFILE</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>DATAGUARDCONFIG</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>DUMPSET</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>FLASHBACK</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>FLASHFILE</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>MYTEMPLATE</td>
<td>FINE</td>
<td>N</td>
<td>HIGH</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>OCRFILE</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>ONLINELOG</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>PARAMETERFILE</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>TEMPFILE</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
<tr>
<td>DATA</td>
<td>1</td>
<td>XTRANSPORT</td>
<td>COARSE</td>
<td>Y</td>
<td>MIRROR</td>
<td>COLD</td>
<td>COLD</td>
</tr>
</tbody>
</table>

mktmpl

Purpose

Adds a template to a disk group.

Syntax and Description

mktmpl -G diskgroup [--striping {coarse | fine}]
[--redundancy {high | mirror | unprotected}]
[--primary {hot | cold}]
[--secondary {hot | cold}] template

Table 12–51 lists the syntax options for the mktmpl command.

Table 12–51 Options for the mktmpl command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Name of the disk group.</td>
</tr>
<tr>
<td>template</td>
<td>Name of the template to create.</td>
</tr>
<tr>
<td>--striping [coarse</td>
<td>fine]</td>
</tr>
<tr>
<td>--redundancy [high</td>
<td>mirror</td>
</tr>
<tr>
<td>--primary [hot</td>
<td>cold]</td>
</tr>
<tr>
<td>--secondary [hot</td>
<td>cold]</td>
</tr>
</tbody>
</table>

For information about adding templates, see “Adding Templates to a Disk Group” on page 7-17.
Example
The following is an example of the `mktmpl` command that adds the `mytemplate` template to the `data` disk group. The new template has the redundancy set to mirror and the striping set to coarse.

Example 12–54 Using the ASMCMD `mktmpl` command
ASMCD [+] > mktmpl -G data --redundancy mirror --striping coarse mytemplate

rmtmpl

Purpose
Removes a template from a disk group.

Syntax and Description
```
rmtmpl -G diskgroup template
```

Table 12–52 lists the syntax options for the `rmtmpl` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-G</code> diskgroup</td>
<td>Name of the disk group.</td>
</tr>
<tr>
<td>template</td>
<td>Name of the template to delete.</td>
</tr>
</tbody>
</table>

For information about template attributes, see "Template Attributes" on page 7-15.

Example
The following is an example of the `rmtmpl` command that removes the `mytemplate` template from the `data` disk group.

Example 12–55 Using the ASMCMD `rmtmpl` command
ASMCD [+] > rmtmpl -G data mytemplate

ASMCMD File Access Control Commands

This section describes the ASMCMD Oracle ASM File Access Control commands. For information about Oracle ASM File Access Control, see “Managing Oracle ASM File Access Control for Disk Groups” on page 4-39.

Table 12–53 provides a summary of ASMCMD Oracle ASM File Access Control commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chgrp</td>
<td>Changes the user group of a file or list of files.</td>
</tr>
<tr>
<td>chmod</td>
<td>Changes permissions of a file or list of files.</td>
</tr>
<tr>
<td>chown</td>
<td>Changes the owner of a file or list of files.</td>
</tr>
<tr>
<td>groups</td>
<td>Lists the user groups to which a user belongs.</td>
</tr>
<tr>
<td>grpmod</td>
<td>Adds or removes users from an existing user group.</td>
</tr>
</tbody>
</table>
ASMCMD File Access Control Commands

Table 12–53 (Cont.) Summary of ASMCMD file access control commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsgrp</td>
<td>Lists user groups.</td>
</tr>
<tr>
<td>lsusr</td>
<td>Lists users in a disk group.</td>
</tr>
<tr>
<td>mkgrp</td>
<td>Creates a new user group.</td>
</tr>
<tr>
<td>mkusr</td>
<td>Adds a user to disk group.</td>
</tr>
<tr>
<td>passwd</td>
<td>Changes the password of a user.</td>
</tr>
<tr>
<td>rmgrp</td>
<td>Deletes a user group.</td>
</tr>
<tr>
<td>rmusr</td>
<td>Deletes a user from a disk group.</td>
</tr>
</tbody>
</table>

chgrp

Purpose
Changes the user group of a file or list of files.

Syntax and Description

```
chgrp usergroup file [file ...]
```

Table 12–54 lists the syntax options for the chgrp command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>usergroup</td>
<td>Name of the user group.</td>
</tr>
<tr>
<td>file</td>
<td>Name of a file.</td>
</tr>
</tbody>
</table>

Only the file owner or the Oracle ASM administrator can use this command. If the user is the file owner, then he must also be either the owner or a member of the group for this command to succeed.

This command accepts a file name or multiple file names separated by spaces.

Examples

The following are examples of the chgrp command that change the Oracle ASM user group of the specified files.

Example 12–56 Using the ASMCMD chgrp command

```
ASMCMD [+] > chgrp asm_data +data/orcl/controlfile/Current.260.684924747
```

```
```

chmod

Purpose
Changes permissions of a file or list of files.

Syntax and Description

```
chmod mode file [file ...]
```
mode can be one of the following forms:

- \{ugo | ug | uo | go | ul | g | o | a\} \{+\|-\} \{r|w|rw\}

 a specifies permissions for all users, u specifies permissions for the owner of the file, g specifies the group permissions, and o specifies permissions for other users.

- \{0|4|6\} \{0|4|6\} \{0|4|6\}

 The first digit specifies owner permissions, the second digit specifies group permissions, and the third digit specifies other permissions.

Table 12–55 lists the syntax options for the chmod command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Read write permissions</td>
</tr>
<tr>
<td>4</td>
<td>Read only permissions</td>
</tr>
<tr>
<td>0</td>
<td>No permissions</td>
</tr>
<tr>
<td>u</td>
<td>Owner permissions, used with r or w</td>
</tr>
<tr>
<td>g</td>
<td>Group permissions, used with r or w</td>
</tr>
<tr>
<td>o</td>
<td>Other user permissions, used with r or w</td>
</tr>
<tr>
<td>a</td>
<td>All user permissions, used with r or w</td>
</tr>
<tr>
<td>+</td>
<td>Add a permission, used with r or w</td>
</tr>
<tr>
<td>-</td>
<td>Removes a permission, used with r or w</td>
</tr>
<tr>
<td>r</td>
<td>Read permission</td>
</tr>
<tr>
<td>w</td>
<td>Write permission</td>
</tr>
</tbody>
</table>

This command accepts a file name or multiple file names separated by spaces. The specified files must be closed.

You can only set file permissions to read-write, read-only, and no permissions. You cannot set file permissions to write-only.

To view the permissions on a file, use the ASMCMD ls command with the --permission option. See "ls" on page 12-24.

Examples

The following are examples of the chmod command that change the permissions of the specified files.

Example 12–57 Using the ASMCMD chmod command

```
ASMCMD [+fra/orcl/archivelog/flashback] > chmod u+rw log_7.264.684968167 log_8.265.684972027


ASMCMD [+] > ls --permission +fra/orcl/archivelog/flashback

User  Group  Permission  Name
grid  asm_fra  rw-r-----  log_7.264.684968167
grid  asm_fra  rw-r-----  log_8.265.684972027
```
chown

Purpose
Changes the owner of a file or list of files.

Syntax and Description
```
chown user[:usergroup] file[file...]
```

Table 12–56 lists the syntax options for the `chown` command.

Table 12–56 Options for the chown command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>user</code></td>
<td>The name of the user that becomes the new owner.</td>
</tr>
<tr>
<td><code>usergroup</code></td>
<td>Name of the user group to which the user belongs.</td>
</tr>
<tr>
<td><code>file</code></td>
<td>Name of a file.</td>
</tr>
</tbody>
</table>

`user` typically refers to the user that owns the database instance home. Oracle ASM File Access Control uses the operating system (OS) name to identify a database.

This command accepts a file name or multiple file names separated by spaces. The specified files must be closed.

Only the Oracle ASM administrator can use this command.

Examples

The following are examples of the `chown` command that change the owner of the specified files to the `oracle1` operating system user.

Example 12–58 Using the ASMCMD chown command

```
ASMCMD [+fra/orcl/archivelog/flashback] > chown oracle1 log_7.264.684968167 log_8.265.684972027

```

groups

Purpose
Lists all the user groups to which the specified user belongs.

Syntax and Description
```
groups diskgroup user
```

Table 12–57 lists the syntax options for the `groups` command.

Table 12–57 Options for the groups command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diskgroup</code></td>
<td>Name of the disk group to which the user belongs.</td>
</tr>
<tr>
<td><code>user</code></td>
<td>Name of the user.</td>
</tr>
</tbody>
</table>
Examples
The following is an example of the `groups` command that displays the user groups of the data disk group to which the `oracle1` user belongs.

Example 12–59 Using the ASMCMD groups command

```
ASMCMD [+] > groups data oracle1
asm_data
```

grpmod

Purpose
Adds or removes operating system (OS) users to and from an existing Oracle ASM user group.

Syntax and Description

```
grpmod { --add | --delete } diskgroup usergroup user [user...]
```

Table 12–58 lists the syntax options for the `grpmod` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--add</code></td>
<td>Specifies to add users to the user group.</td>
</tr>
<tr>
<td><code>--delete</code></td>
<td>Specifies to delete users from the user group.</td>
</tr>
<tr>
<td><code>diskgroup</code></td>
<td>Name of the disk group to which the user group belongs.</td>
</tr>
<tr>
<td><code>usergroup</code></td>
<td>Name of the user group.</td>
</tr>
<tr>
<td><code>user</code></td>
<td>Name of the user to add or remove from the user group.</td>
</tr>
</tbody>
</table>

Only the owner of the user group can use this command. The command requires the SYSASM privilege to run.

This command accepts an operating system user name or multiple user names separated by spaces. The operating system users are typically owners of a database instance home.

Examples
The following are examples of the `grpmod` command. The first example adds the `oracle1` and `oracle2` users to the `asm_fra` user group of the `fra` disk group. The second example removes the `oracle2` user from the `asm_data` user group of the data disk group.

Example 12–60 Using the ASMCMD grpmod command

```
ASMCMD [+] > grpmod --add fra asm_fra oracle1 oracle2
ASMCMD [+] > grpmod --delete data asm_data oracle2
```

lsgrp

Purpose
Lists all Oracle ASM user groups or only groups that match a specified pattern.
Syntax and Description

lsgrp [-Ha] [-G diskgroup][pattern]

Table 12–59 lists the syntax options for the lsgrp command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-H</td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td>-a</td>
<td>Lists all columns.</td>
</tr>
<tr>
<td>-G diskgroup</td>
<td>Limits the results to the specified disk group name.</td>
</tr>
<tr>
<td>pattern</td>
<td>Displays the user groups that match the pattern expression.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the lsgrp command. The first example displays a subset of information about the user groups whose name matches the asm% pattern. The second example displays all information about all the user groups.

Example 12–61 Using the ASMCMD lsgrp command

ASMCMD [+] > lsgrp asm%
DG_Name Grp_Name Owner
FRA asm_fra grid
DATA asm_data grid

ASMCMD [+] > lsgrp -a
DG_Name Grp_Name Owner Members
FRA asm_fra grid oracle1
DATA asm_data grid oracle1 oracle2

lsusr

Purpose

Lists Oracle ASM users in a disk group.

Syntax and Description

lsusr [-Ha] [-G diskgroup][pattern]

Table 12–60 lists the syntax options for the lsusr command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>List all users and the disk groups to which the users belong.</td>
</tr>
<tr>
<td>-H</td>
<td>Suppresses column headings.</td>
</tr>
<tr>
<td>-G diskgroup</td>
<td>Limits the results to the specified disk group name.</td>
</tr>
<tr>
<td>pattern</td>
<td>Displays the users that match the pattern expression.</td>
</tr>
</tbody>
</table>

Examples

The following is an example of the lsusr command. The example lists users in the data disk group and also shows the operating system Id assigned to the user.
Example 12–62 Using the ASMCMD lsusr command

```
ASMCMOD [+] > lsusr -G data
User_Num OS_ID OS_Name
 3    1001  grid
 1    1021  oracle1
 2    1022  oracle2
```

mkgrp

Purpose
Creates a new Oracle ASM user group.

Syntax and Description

```
mkgrp diskgroup usergroup [user] [user...]
```

Table 12–61 lists the syntax options for the `mkgrp` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskgroup</td>
<td>Name of the disk group to which the user group is added.</td>
</tr>
<tr>
<td>usergroup</td>
<td>Name of the user group to add. 30 is the maximum number of characters.</td>
</tr>
<tr>
<td>user</td>
<td>Name of the database user to add to the user group.</td>
</tr>
</tbody>
</table>

You can optionally specify a list of users to be included as members of the new user group.

Examples

The following is an example of the `mkgrp` command. This example creates the `asm_data` user group in the `data` disk group and adds the `oracle1` and `oracle2` users to the user group.

Example 12–63 Using the ASMCMD mkgrp command

```
ASMCMOD [+] > mkgrp data asm_data oracle1 oracle2
```

mkusr

Purpose

Adds an operating system (OS) user to a disk group.

Syntax and Description

```
mkusr diskgroup user
```

Table 12–62 lists the syntax options for the `mkusr` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskgroup</td>
<td>Specifies the name of the disk group to which the user is to be added.</td>
</tr>
</tbody>
</table>
The user to be added must be a valid operating system user. Only a user authenticated as SYSASM can run this command.

Examples
The following are examples of the `mkusr` command. The first example adds the `oracle1` user to the `data` disk group. The second example adds the `oracle2` user to the `fra` disk group.

Example 12–64 Using the ASMCMD mkusr command

```
ASMCMD [+] > mkusr data oracle1
ASMCMD [+] > mkusr fra oracle2
```

passwd

Purpose
Changes the password of a user.

Syntax and Description
```
passwd user
```

Table 12–63 lists the syntax options for the `passwd` command.

Example 12–65 Using the ASMCMD passwd command

```
ASMCMD [+] > passwd oracle2
Enter old password (optional): 
Enter new password: ******
```

rmgrp

Purpose
Removes a user group from a disk group.
Syntax and Description

\texttt{rmgrp diskgroup usergroup}

Table 12–64 lists the syntax options for the \texttt{rmgrp} command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskgroup</td>
<td>Name of the disk group to which the user group belongs.</td>
</tr>
<tr>
<td>usergroup</td>
<td>Name of the user group to delete.</td>
</tr>
</tbody>
</table>

Removing a group might leave some files without a valid user group. To ensure that those files have a valid group, explicitly update those files to a valid user group. See "\texttt{chgrp}" on page 12-54.

The command must be run by the owner of the user group and also requires the SYSASM privilege to run.

Examples

The following is an example of the \texttt{rmgrp} command that removes the \texttt{asm_data} user group from the \texttt{data} disk group.

\textit{Example 12–66 Using the ASMCMD rmgrp command}

\texttt{ASMCMD [+]} \texttt{rmgrp data asm_data}

\texttt{rmusr}

Purpose

Deletes an operating system (OS) user from a disk group.

Syntax and Description

\texttt{rmusr [-r] diskgroup user}

Table 12–65 lists the syntax options for the \texttt{rmusr} command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>Removes all files in the disk group that the user owns at the same time that the user is removed.</td>
</tr>
<tr>
<td>diskgroup</td>
<td>Specifies the name of the disk group from which the user is to be deleted.</td>
</tr>
<tr>
<td>user</td>
<td>Name of the user to delete.</td>
</tr>
</tbody>
</table>

The command requires the SYSASM privilege to run.

Examples

The following is an example of the \texttt{rmusr} command that removes the \texttt{oracle2} user from the \texttt{data} disk group.

\textit{Example 12–66 Using the ASMCMD rmusr command}

\texttt{ASMCMD [+]} \texttt{rmusr data oracle2}
Example 12–67 Using the ASMCMD rmusr command

ASMCMD [+> rmusr data oracle2

ASMCMD Volume Management Commands

This section describes the ASMCMD volume management commands.

For information about Oracle ASM Dynamic Volume Manager (Oracle ADVM), see "Overview of Oracle ASM Dynamic Volume Manager" on page 5-18.

Table 12–66 provides a summary of the Oracle ADVM volume management commands. To successfully run these commands, the local Oracle ASM instance must be running and the disk group required by this command must have been created and mounted in the Oracle ASM instance.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>volcreate</td>
<td>Creates an Oracle ADVM volume in the specified disk group.</td>
</tr>
<tr>
<td>voldelete</td>
<td>Deletes an Oracle ADVM volume.</td>
</tr>
<tr>
<td>voldisable</td>
<td>Disables Oracle ADVM volumes in mounted disk groups.</td>
</tr>
<tr>
<td>volenableView</td>
<td>Enables Oracle ADVM volumes in mounted disk groups.</td>
</tr>
<tr>
<td>volinfo</td>
<td>Displays information about Oracle ADVM volumes.</td>
</tr>
<tr>
<td>volresize</td>
<td>Resizes an Oracle ADVM volume.</td>
</tr>
<tr>
<td>volset</td>
<td>Sets attributes of an Oracle ADVM volume in mounted disk groups.</td>
</tr>
<tr>
<td>volstat</td>
<td>Reports volume I/O statistics.</td>
</tr>
</tbody>
</table>

volcreate

Purpose

Creates an Oracle ADVM volume in the specified disk group.

Syntax and Description

volcreate -G diskgroup -s size
[--column number] [--width stripe_width]
[--redundancy { high | mirror | unprotected }]
[--primary { hot | cold }] [--secondary { hot | cold }] volume

Table 12–67 describes the options for the volcreate command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Name of the disk group containing the volume.</td>
</tr>
<tr>
<td>-s size</td>
<td>Size of the volume to be created in units of K, M, G, T, P, or E. The unit designation must be appended to the number specified. No space is allowed. For example: 200M or 20G</td>
</tr>
<tr>
<td>--column number</td>
<td>Number of columns in a stripe set. Values range from 1 to 8. The default value is 4.</td>
</tr>
</tbody>
</table>
When creating an Oracle ADVM volume, a volume device name is created with a unique Oracle ADVM persistent disk group number that is concatenated to the end of the volume name. The unique number can be one to three digits.

On Linux, the volume device name is in the format `volume_name-nnn`, such as `volume1-123`. On Windows the volume device name is in the format `asm-volume_name-nnn`, such as `asm-volume1-123`. For information on mounting the volume device file, see "Creating an Oracle ACFS File System" on page 13-2.

You can determine the volume device name with the `volinfo` command, described in "volinfo" on page 12-66.

A successful volume creation automatically enables the volume device.

The volume device file functions as any other disk or logical volume to mount file systems or for applications to use directly.

For information about redundancy settings, see "Mirroring, Redundancy, and Failure Group Options" on page 4-23. For information about hot and cold disk regions, see "Intelligent Data Placement" on page 4-15.

Before creating an Oracle ADVM volume on AIX, ensure that the necessary user authorizations have been created. For information, refer to "Oracle ACFS Command-line Tools for the AIX Environment" on page 13-32.

Examples

The following is an example of the `volcreate` command that creates `volume1` in the `data` disk group with the size set to 10 gigabytes.

Example 12–68 Using the ASMCMD volcreate command

```
ASMCMD [+] > volcreate -G data -s 10G --width 64K --column 8 volume1
```

```
ASMCMD [+] > volinfo -G data volume1
Diskgroup Name: DATA

Volume Name: VOLUME1
Volume Device: /dev/asm/volume1-123
```
State: ENABLED
Size (MB): 10240
Resize Unit (MB): 512
Redundancy: MIRROR
Stripe Columns: 8
Stripe Width (K): 64
Usage:
Mountpath:

voldelete

Purpose
Deletes an Oracle ADVM volume.

Syntax and Description

```
voldelete -G diskgroup volume
```

Examples
The following is an example of the `voldelete` command that deletes `volume1` from the `data` disk group.

Example 12–69 Using the ASMCMD voldelete command

ASMCMD [+]> voldelete -G data volume1

voldisable

Purpose
Disables Oracle ADVM volumes in mounted disk groups and removes the volume device on the local node.

Syntax and Description

```
voldisable { -a | -G diskgroup -a | -G diskgroup volume }
```

Examples
The following is an example of the `voldisable` command that deletes `volume1` from the `data` disk group.

Example 12–69 Using the ASMCMD voldisable command

ASMCMD [+]> voldisable -G data volume1
You can disable volumes before shutting down an Oracle ASM instance or dismounting a disk group to verify that the operations can be accomplished normally without including a force option due to open volume files. Disabling a volume also prevents any subsequent opens on the volume or device file because it no longer exists.

Before disabling a volume, you must ensure that there are no active file systems associated with the volume. You must first dismount the Oracle ACFS file system before disabling the volume. See “Dismounting an Oracle ACFS File System” on page 13-18.

You can delete a volume without first disabling the volume.

Examples
The following is an example of the `voldisable` command that disables `volume1` in the `data` disk group.

Example 12–70 Using the ASMCMD voldisable command

```
ASMCMD [+] > voldisable -G data volume1
```

volenable

Purpose
Enables Oracle ADVM volumes in mounted disk groups.

Syntax and Description

```
volenable { -a | -G diskgroup -a | -G diskgroup volume }
```

Table 12–70 describes the options for the `volenable` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>When used without a disk group name, specifies all volumes within all disk groups.</td>
</tr>
<tr>
<td></td>
<td>When used with a disk group name (<code>-G diskgroup -a</code>), specifies all volumes within that disk group.</td>
</tr>
<tr>
<td>-G diskgroup</td>
<td>Name of the disk group containing the volume.</td>
</tr>
<tr>
<td>volume</td>
<td>Name of the volume.</td>
</tr>
</tbody>
</table>

A volume is enabled when it is created.
Examples
The following is an example of the `volenable` command that enables `volume1` in the `data` disk group.

Example 12–71 Using the ASMCMD volenable command

ASMCMD [+] > volenable -G data volume1

volinfo

Purpose
Displays information about Oracle ADVM volumes.

Syntax and Description

```
volinfo{-a | -G diskgroup -a | -G diskgroup volume }  
volinfo [--show_diskgroup | --show_volume] volumedevice
```

Table 12–71 describes the options for the `volinfo` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| -a | When used without a disk group name, specifies all volumes within all disk groups.
 | When used with a disk group name (`-G diskgroup -a`), specifies all volumes within that disk group. |
| -G diskgroup | Name of the disk group containing the volume. |
| volume | Name of the volume. |
| --show_diskgroup | Returns only the disk group name. A volume device name is required. |
| --show_volume | Returns only the volume name. A volume device name is required. |
| volumedevice | Name of the volume device. |

Examples
The first example displays information about the `volume1` volume in the `data` disk group. This example was produced in a Linux environment. The second example displays information about the `asm-volume1` volume in the `data` disk group and was produced in a Windows environment.

The mount path field displays the last mount path for the volume.

Example 12–72 Using the ASMCMD volinfo command

ASMCMD [+] > volinfo -G data volume1

Diskgroup Name: DATA
Volume Name: VOLUME1
Volume Device: /dev/asm/volume1-123
State: ENABLED
Size (MB): 10240
Resize Unit (MB): 512
Redundancy: MIRROR
Stripe Columns: 8
Stripe Width (K): 64
volresize

Purpose

Resizes an Oracle ADVM volume.

Syntax and Description

```
volresize -G diskgroup -s size [-f] volume
```

Table 12–72 describes the options for the `volresize` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-G diskgroup</code></td>
<td>Name of the disk group containing the volume.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Forces the shrinking of a volume that is not an Oracle ACFS volume and suppresses any warning message.</td>
</tr>
<tr>
<td><code>volume</code></td>
<td>Name of the volume.</td>
</tr>
<tr>
<td><code>-s size</code></td>
<td>New size of the volume in units of K, M, G, or T.</td>
</tr>
</tbody>
</table>

If the volume is mounted on a non-Oracle ACFS file system, then dismount the file system first before resizing. If the new size is smaller than current, you are warned of possible data corruption. Unless the `-f` (force) option is specified, you are prompted whether to continue with the operation.

If there is an Oracle ACFS file system on the volume, then you cannot resize the volume with the `volresize` command. You must use the `acfsutil size` command, which also resizes the volume and file system. For information, see "acfsutil size" on page 13-98.

Examples

The following is an example of the `volresize` command that resizes `volume1` in the `data` disk group to 20 gigabytes.

Example 12–73 Using the ASMCMD volresize command

```
ASMCMD [+] > volresize -G data -s 20G volume1
```
volset

Purpose
Sets attributes of an Oracle ADVM volume in mounted disk groups.

Syntax and Description
```
volset -G diskgroup [ --usagestring string ]
  [ --mountpath mount_path ]
  [ --primary { hot | cold } ] [ --secondary { hot | cold } ] volume
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Name of the disk group containing the volume.</td>
</tr>
<tr>
<td>--usagestring string</td>
<td>Optional usage string to tag a volume which can be up to 30 characters. This string is set to ACFS when the volume is attached to an Oracle ACFS file system and should not be changed.</td>
</tr>
<tr>
<td>--mountpath mount_path</td>
<td>Optional string to tag a volume with its mount path string which can be up to 1024 characters. This string is set when the file system is mounted and should not be changed.</td>
</tr>
<tr>
<td>--primary { hot</td>
<td>cold }</td>
</tr>
<tr>
<td>--secondary { hot</td>
<td>cold }</td>
</tr>
<tr>
<td>volume</td>
<td>Name of the volume.</td>
</tr>
</tbody>
</table>

When running the `mkfs` command to create a file system, the usage field is set to ACFS and mountpath field is reset to an empty string if it has been set. The usage field should remain at ACFS.

When running the `mount` command to mount a file system, the mountpath field is set to the mount path value to identify the mount point for the file system. After the value is set by the `mount` command, the mountpath field should not be updated.

Examples
The following is an example of a `volset` command that sets the `usage` string for a volume that is not associated with a file system.

Example 12–74 Using the ASMCMD volset command
```
ASMCMD [+] > volset -G data --usagestring 'no file system created' volume1
```

volstat

Purpose
Reports I/O statistics for Oracle ADVM volumes.

Syntax and Description
```
volstat [-G diskgroup] [volume]
```
Table 12–74 describes the options for the volstat command.

Table 12–74 Options for the volstat command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-G diskgroup</td>
<td>Name of the mounted disk group containing the volume.</td>
</tr>
<tr>
<td>volume</td>
<td>Name of the volume.</td>
</tr>
</tbody>
</table>

The following apply when using the volstat command.

- If the disk group is not specified and the volume name is specified, all mounted disk groups are searched for the specified volume name.
- If the disk group name is specified and the volume name is omitted, all volumes are displayed for the named disk group.
- If both the disk group name and the volume name are omitted, all volumes on all disk groups are displayed.

Examples

The following is an example of the volstat command that displays information about volumes in the data disk group.

Example 12–75 Using the ASMCMD volstat command

```
ASMCMD [+] > volstat -G data
DISKGROUP NUMBER / NAME:  1 / DATA

<table>
<thead>
<tr>
<th>VOLUME_NAME</th>
<th>READS</th>
<th>BYTES_READ</th>
<th>READ_TIME</th>
<th>READ_ERRS</th>
<th>WRITES</th>
<th>BYTES_WRITTEN</th>
<th>WRITE_TIME</th>
<th>WRITE_ERRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME1</td>
<td>10085</td>
<td>2290573312</td>
<td>22923</td>
<td>0</td>
<td>1382</td>
<td>5309440</td>
<td>1482</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Oracle ASM Command-Line Utility 12-69
Command-line tools for managing and implementing Oracle Automatic Storage Management Cluster File System (Oracle ACFS), include the following:

- Basic Steps to Manage an Oracle ACFS
- Oracle ACFS Command-line Tools for Linux and UNIX Environments
- Oracle ACFS Command-line Tools for the Solaris Environment
- Oracle ACFS Command-line Tools for the AIX Environment
- Oracle ACFS Command-line Tools for Windows Environments
- Oracle ACFS Command-Line Tools for Tagging
- Oracle ACFS Command-Line Tools for Replication
- Oracle ACFS Command-Line Tools for Security
- Oracle ACFS Command-Line Tools for Encryption
- Oracle ACFS Command-Line Utilities for Multiple Environments

Note: Oracle ACFS encryption, replication, security, and tagging are available starting with Oracle Automatic Storage Management 11g Release 2 (11.2.0.2) on Linux.

Basic Steps to Manage an Oracle ACFS

This section provides an outline of the basic steps when managing an Oracle ACFS using command-line utilities.

The examples in this section show operating system commands that are run in a Linux environment system. ASMCMD commands manage the volumes, but you can also use SQL*PLus, Oracle ASM Configuration Assistant (ASMCA), and Oracle Enterprise Manager to manage volumes.

This section contains these topics:

- Creating an Oracle ACFS File System
- Accessing an Oracle ACFS File System on a Different Node in the Cluster
- Managing Oracle ACFS Snapshots
- Securing Oracle ACFS File Systems
- Encrypting Oracle ACFS File Systems
- Tagging Oracle ACFS File Systems
Creating an Oracle ACFS File System

To create and verify a file system, perform the following steps:

1. Create an Oracle ASM volume in a mounted disk group with the ASMCMD volcreate command.

 The compatibility parameters COMPATIBLE.ASM and COMPATIBLE.ADVM must be set to 11.2 or higher for the disk group to contain an Oracle ADVM volume. To use Oracle ACFS encryption, replication, security, or tagging, the disk group on which the volume is created for the file system must have compatibility attributes for ASM and ADVM set to 11.2.0.2. See “Disk Group Compatibility Attributes” on page 4-33.

 Start ASMCMD connected to the Oracle ASM instance. You must be a user in the OSASM operating system group. See “About Privileges for Oracle ASM” on page 3-24.

 When configuring Oracle ADVM volume devices within a disk group, Oracle recommends assigning the Oracle Grid Infrastructure user and Oracle ASM administrator roles to users who have root privileges.

 To create a volume:

 ASMCMD [+] > volcreate -G data -s 10G volume1

 The volume name must be less than or equal to eleven alphanumeric characters, starting with an alphabetic character.

 When creating an Oracle ASM volume, a volume device name is created that includes a unique Oracle ADVM persistent disk group number. The volume device file functions in the same manner as any other disk or logical volume to mount file systems or for applications to use directly.

 For information about the volcreate command, see “volcreate” on page 12-62.

2. Determine the device name of the volume that was created.

 You can determine the volume device name with the ASMCMD volinfo command or from the VOLUME_DEVICE column in the V$ASM_VOLUME view.

 For example:

 ASMCMD [+] > volinfo -G data volume1
 Diskgroup Name: DATA

 Volume Name: VOLUME1
 Volume Device: /dev/asm/volume1-123
 State: ENABLED

 SQL> SELECT volume_name, volume_device FROM V$ASM_VOLUME
 WHERE volume_name = 'VOLUME1';

<table>
<thead>
<tr>
<th>VOLUME_NAME</th>
<th>VOLUME_DEVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME1</td>
<td>/dev/asm/volume1-123</td>
</tr>
</tbody>
</table>
For information about the `volinfo` command, see "volinfo" on page 12-66.

See Also: *Oracle Database Reference* for information about the `V$ASM_VOLUME` view

3. Create a file system with the Oracle ACFS `mkfs` command.

Create a file system using an existing volume device.

For example:

```bash
$ /sbin/mkfs -t acfs /dev/asm/volume1-123
```

```
mkfs.acfs: version                   = 11.2.0.1.0.0
mkfs.acfs: on-disk version           = 39.0
mkfs.acfs: volume                    = /dev/asm/volume1-123
mkfs.acfs: volume size               = 10737418240
mkfs.acfs: Format complete.
```

See "`mkfs`" on page 13-22 (Linux or UNIX) or "`acfsformat`" on page 13-42 (Windows). The root privilege is not required. The ownership of the volume device file dictates who can run this command.

4. Optionally register the file system with the `acfsutil registry` command.

For example:

```bash
$ /sbin/acfsutil registry -a /dev/asm/volume1-123 /u01/app/acfsmounts/myacfs
```

```
acfsutil registry: mount point /u01/app/acfsmounts/myacfs successfully added to Oracle Registry
```

See "`acfsutil registry`" on page 13-96. The root or asmadmin privileges are required to modify the registry. The Windows Administrator privilege is equivalent to the root privilege on Linux.

Registering a file system is optional. After registering an Oracle ACFS file system in the cluster mount registry, the file system is mounted automatically on each cluster member listed in the registry entry during the next registry check action. This automatic process runs every 30 seconds and eliminates the requirement to manually mount the file system on each member of the cluster.

Registering an Oracle ACFS file system also causes the file system to be mounted automatically whenever Oracle Clusterware or the system is restarted.

Note: In an Oracle Grid Infrastructure Clusterware configuration, you can run `srvctl add filesystem` to automount a file system; this method is required when an Oracle Database home is installed on an Oracle ACFS file system. However, that file system should not be added to the registry. For information about Server Control Utility (SRVCTL), see *Oracle Real Application Clusters Administration and Deployment Guide*.

For more information, see "About the Oracle ACFS Mount Registry" on page 5-7.
5. Mount the file system with the Oracle ACFS `mount` command. You can mount a file system before or after registering the file system. If the file system has been registered, you can wait for the file system to be mounted automatically.

For example:

```
# /bin/mount -t acfs /dev/asm/volume1-123 /u01/app/acfsmounts/myacfs
```

See "mount" on page 13-23 (Linux or UNIX) or "acfsmountvol" on page 13-43 (Windows). The `root` privilege is required to run the `mount` command and the `Windows Administrator` privilege is required to run the `acfsmountvol` command.

After the file system has been mounted, ensure that the permissions are set to allow access to the file system for the appropriate users. For example:

```
# chown -R oracle:dba /u01/app/acfsmounts/myacfs
```

6. Create a test file in the file system.

The user that creates the test file should be a user that is intended to access the file system. This test ensures that the appropriate user can write to the file system.

For example:

```
$ echo "Oracle ACFS File System" > /u01/app/acfsmounts/myacfs/myfile
```

7. List the contents of the test file that was created in the file system.

For example:

```
$ cat /u01/app/acfsmounts/myacfs/myfile
Oracle ACFS File System
```

Accessing an Oracle ACFS File System on a Different Node in the Cluster

If the node is part of a cluster, perform the following steps on node 2 to view the test file you created on node 1.

Note: If the file system has been registered with the Oracle ACFS mount registry, you can skip steps 1 to 3.

1. Enable the volume that was previously created and enabled on node 1.

Start ASMCMD connected to the Oracle ASM instance. You must be a user in the OSASM operating system group. See "About Privileges for Oracle ASM" on page 3-24.

For example:

```
ASMCMD [+*] > volenable -G data volumel
```

See "volenable" on page 12-65.

2. View information about the volume that you created on node 1.

For example:

`ASMCMND [+] > volinfo -G data volumel`

See "volinfo" on page 12-66.

3. Mount the file system using the Oracle ACFS `mount` command.

 For example:

 `# /bin/mount -t acfs /dev/asm/volume1-123 /u01/app/acfsmounts/myacfs`

 See "mount" on page 13-23 (Linux or UNIX) or "acfsmountvol" on page 13-43 (Windows). The root privilege is required to run the `mount` command and the Windows Administrator privilege is required to run the `acfsmountvol` command.

 After the file system has been mounted, ensure that the permissions are set to allow access for the appropriate users.

4. List the contents of the test file you previously created on the file system.

 For example:

 `$ cat /u01/app/acfsmounts/myacfs/myfile`

 Oracle ACFS File System

 The contents should match the file created previously on node 1.

Managing Oracle ACFS Snapshots

To create and verify a snapshot on node 1:

1. Create snapshot of the new file system created on node 1.

 For example:

 `$ /sbin/acfsutil snap create mysnapshot_20090725 /u01/app/acfsmounts/myacfs`

 See "acfsutil snap create" on page 13-99.

2. Update the test file in the file system so that it is different than the snapshot.

 For example:

 `$ echo "Modifying a file in Oracle ACFS File System" > /u01/app/acfsmounts/myacfs/myfile`

3. List the contents of the test file and the snapshot view of the test file.

 For example:

 `$ cat /u01/app/acfsmounts/myacfs/myfile`

 `$ cat /u01/app/acfsmounts/myacfs/.ACFS/snaps/mysnapshot_20090725/myfile`

 The contents of the test file and snapshot should be different. If node 1 is in a cluster, then you can perform the same list operation on node 2.

To manage snapshots with Oracle Enterprise Manager, see "Managing Oracle ACFS Snapshots with Oracle Enterprise Manager" on page 10-5.
Securing Oracle ACFS File Systems

This section discusses the basic operations to manage security for an Oracle ACFS file system.

The scenario in this section shows how could you use Oracle ACFS security to ensure that only the maintenance user can access medical history files during the maintenance period. Also, Oracle ACFS encryption is also enabled on the same file system.

The scenario in this section assumes you are not planning to use Oracle ACFS replication on the file system. You cannot use Oracle ACFS security with replication.

The disk group on which the volume is created for the file system has compatibility attributes for ASM and ADVM set to 11.2.0.2. For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.

The basic steps to manage security are:

1. Initialize security for Oracle ACFS.

 Run the acfsutil sec init command to configure storage for security credentials and identify an operating system user as the first security administrator and the operating system security group. The security administrator must belong to the operating system group. This command must be run before any other security command and requires root privileges to run.

 The acfsutil sec init command is only run once to set up Oracle ACFS security for each cluster and can be run from any node in the cluster. Other security commands can also be run from any node in a cluster. Security administrators are common for all Oracle ACFS file systems in a cluster.

 For example, the following command initializes security for a cluster and creates the first security administrator (medHistAdmin1).

   ```
   # /sbin/acfsutil sec init -u medHistAdmin1 -g medHistAdminGrp
   ```

 The medHistAdmin1 security administrator must belong to the medHistAdminGrp operating system group. That group is identified as the security group for the security administrators.

 When the root user runs the command, the root user assigns a temporary security password to the first security administrator. The first security administrator should now change the temporary password with the acfsutil sec admin password command. The valid password format is described in "acfsutil sec init" on page 13-67.

   ```
   $ /sbin/acfsutil sec admin password
   ```

 Note that all acfsutil sec commands (other than acfsutil sec init) must be run by an Oracle ACFS security administrator and the administrator is prompted for the security administrator's password when each command is run.

Note: When prompting for the security administrator's password, the following text displays: *Realm management password*

The password required is the Oracle ACFS security administrator's password, not the operating system password of the user.

Security administrators are allowed to browse all directories in an Oracle ACFS file system whether or not they have the underlying operating system permissions.
and whether or not any realm checks allow it. This enables a security administrator to check the location of the files when securing them with Oracle ACFS security realms. However, a security administrator cannot view the contents of individual files without the appropriate operating system and security realm permissions.

For more information, refer to "acfsutil sec init" on page 13-67 and "acfsutil sec admin password" on page 13-62.

2. Add additional security administrators as necessary.

The first security administrator can add additional security administrators to administer Oracle ACFS security with the acfsutil sec admin add command.

For example, add a new security administrator medHistAdmin2.

$ /sbin/acfsutil sec admin add medHistAdmin2

The medHistAdmin2 user must belong to the operating system group (medHistAdminGrp) identified as the security administrator group with the acfsutil sec init command.

The medHistAdmin2 security administrator should change the assigned temporary security password with the acfsutil sec admin password command. The medHistAdmin2 administrator can add new security administrators.

For more information, refer to "acfsutil sec admin add" on page 13-61 and "acfsutil sec admin password" on page 13-62.

3. Prepare an Oracle ACFS file system for security.

Run the acfsutil sec prepare on an Oracle ACFS file system before adding any security realms.

For example, prepare the Oracle ACFS file system mounted on /acfsmounts/acfs1 for Oracle ACFS security.

$ /sbin/acfsutil sec prepare -m /acfsmounts/acfs1

By default, security is enabled for a file system after running this command. You can explicitly disable or enable security with the acfsutil sec disable or acfsutil sec enable commands. For more information, refer to "acfsutil sec disable" on page 13-64 and "acfsutil sec enable" on page 13-65.

This command automatically creates the SYSTEM_BackupOperators security realm. Administrators can add users to this realm which gives those users realm permissions to make backups of realm-secured files in the Oracle ACFS file system.

For more information, refer to "acfsutil sec prepare" on page 13-69.

4. Provide encryption for this file system.

Encrypting the file system is optional, but is enabled in this scenario.

a. First, run the acfsutil encr init command to initialize encryption and create the storage necessary for the encryption keys. This command must be run one time for each cluster on which encryption is set up.

For example, the following command initializes encryption for a cluster.

/sbin/acfsutil encr init
This command must be run before any other encryption command and requires root or administrator privileges to run. For more information, refer to "acfsutil encr init" on page 13-84.

b. Next, run the `acfsutil encr set` command to set encryption for the Oracle ACFS file system.

For example, the following command sets encryption for the file system mounted on the `/acfsmounts/acfs1` directory.

```
# /sbin/acfsutil encr set -m /acfsmounts/acfs1/
```

The `acfsutil encr set` command transparently generates a volume encryption key which is stored in the key store that was previously configured with the `acfsutil encr init` command. This command requires root or administrator privileges to run.

For more information, refer to "acfsutil encr init" on page 13-84 and "acfsutil encr set" on page 13-87.

5. Create a security realm on the file system.

Run the `acfsutil sec realm create` command to create a security realm for a file system.

For example, create a security realm named `medHistRealm` which contains medical records files with all files encrypted in the realm.

```
$ /sbin/acfsutil sec realm create medHistRealm -m /acfsmounts/acfs1/ -e on -a AES -k 128
```

The `-e` option specifies that all the files in the realm are encrypted with the AES algorithm and the key length set to 128 bits. The file system must first be prepared for encryption with the `acfsutil encr init` and `acfsutil encr set` commands. Note that you do not have to enter the same value for the `-k` option with `acfsutil sec realm create` as you have entered with the `acfsutil encr set` command.

For more information, refer to "acfsutil sec realm create" on page 13-73.

6. Create security rules.

Run the `acfsutil sec rule create` command to creates rules which determine access to the files and directories of a security realm.

For example, create rules that allow the `medMaintenance` user to access medical records for the time period 10 PM to 2 AM for file maintenance.

```
$ /sbin/acfsutil sec rule create medHistRule1a -m /acfsmounts/acfs1/ -t time 22:00:00,02:00:00 -o ALLOW
$ /sbin/acfsutil sec rule create medHistRule1b -m /acfsmounts/acfs1/ -t username medMaintenance -o ALLOW
```

You can edit rules with the `acfsutil sec rule edit` command.

For more information, refer to "acfsutil sec rule create" on page 13-77 and "acfsutil sec ruleset edit" on page 13-81.

7. Create security rule sets and add rules to rule sets.

Run the `acfsutil sec ruleset create` command to create a rule set to which rules can be added.
For example, create a rule set named medRuleSet1 that includes rules for operations on the files and directories of the security medHistRealm realm.

$ /sbin/acfsutil sec ruleset create medRuleSet1 -m /acfsmounts/acfs1/

Add the rules to the medRuleSet1 rule set.

$ /sbin/acfsutil sec ruleset edit medRuleSet1 -m /acfsmounts/acfs1/ -a medHistRule1a,medHistRule1b -o ALL_TRUE

The ALL_TRUE option is the default action, but is added here to emphasize that both rules in each rule set must be true.

For more information, refer to "acfsutil sec ruleset create" on page 13-80 and "acfsutil sec ruleset edit" on page 13-81.

8. Add objects to a security realm.

Run the acfsutil sec realm add command to add objects, such as command rules, rule sets, and files, to a security realm.

For example, add the medRuleSet1 rule set and all the files in the /acfsmounts/acfs1/medicalrecords directory to the medHistRealm.

$ /sbin/acfsutil sec realm add medHistRealm -m /acfsmounts/acfs1/ -l ALL:medRuleSet1 -f -r /acfsmounts/acfs1/medicalrecords

When adding a rule set to a realm, the rule set is added with a command rule, such as ALL:medRuleSet1. Only one rule set can be included with each command rule. To display a list of the command rules, use acfsutil sec info with the -c option. Refer to "acfsutil sec info" on page 13-66.

Add backup operators to the SYSTEM_BackupOperators security realm that was automatically created with the acfsutil sec prepare command.

$ /sbin/acfsutil sec realm add SYSTEM_BackupOperators -m /acfsmounts/acfs1/ -G sysBackupGrp

Users that belong to the sysBackupGrp operating system group can now make backups of realm-secured files in the Oracle ACFS file system.

For more information, refer to "acfsutil sec realm add" on page 13-70 and "acfsutil sec realm delete" on page 13-74.

Run the acfsutil sec info command to display information for a security realm. For example, display security information for the medHistRealm realm.

$ /sbin/acfsutil sec info -m /acfsmounts/acfs1/ -n medHistRealm

To display the security realms to which a file or a directory belongs, run the acfsutil sec info file command. For example:

$ /sbin/acfsutil sec info file -m /acfsmounts/acfs1/ /acfsmounts/acfs1/medicalrecords

For more information, refer to "acfsutil sec info" on page 13-66 and "acfsutil sec info file" on page 13-66.

10. Save security metadata as a backup.

Run the acfsutil sec save command to save the security metadata of a file system.
Basic Steps to Manage an Oracle ACFS

For example, save the security metadata of the `/acfsmounts/acfs1` file system to the `acfs1_backup.xml` file.

```
$ /sbin/acfsutil sec save -m /acfsmounts/acfs1
    -p acfs1_backup.xml
```

The `acfs1_backup.xml` security metadata backup file is saved in the `/acfsmounts/acfs1/.Security/backup/` directory. The saved XML file can be loaded with the `acfsutil sec load` command.

For more information, refer to "acfsutil sec save" on page 13-82 and "acfsutil sec load" on page 13-68.

You can run some `acfsutil sec` commands in a batch file with the `acfsutil sec batch` command. For example, you could create a batch file that contains a group of `acfsutil sec rule` and `acfsutil sec ruleset` commands. For more information, refer to "acfsutil sec batch" on page 13-63.

Auditing and diagnostic data for Oracle ACFS security is saved to log files. For more information about Oracle ACFS security, including the log files, refer to "Oracle ACFS Security" on page 5-12.

Encrypting Oracle ACFS File Systems

This section discusses the basic operations to manage encryption on an Oracle ACFS file system. The examples in this section show a scenario in which the medical history files are encrypted in an Oracle ACFS file system.

The steps in this section assume Oracle ACFS security is not configured for the file system; however, you can use both Oracle ACFS security and encryption on the same file system. If you decide to use both security and encryption, then both encryption and security must be initialized for the cluster containing the file system. After security is initialized on the file system, then an Oracle ACFS security administrator runs `acfsutil sec` commands to provide encryption for the file system. For information about setting up security with encryption, refer to "Securing Oracle ACFS File Systems" on page 13-6.

The steps in this section assume you are not planning to use Oracle ACFS replication on the file system. You cannot use Oracle ACFS encryption with replication.

The disk group on which the volume is created for the file system has compatibility attributes for `ASM` and `ADVM` set to `11.2.0.2`. For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.

The basic steps to manage encryption are:

1. Initialize encryption.

 Run the `acfsutil encr init` command to initialize encryption and create the storage necessary for the encryption keys. This command must be run one time for each cluster on which encryption is set up.

 For example, the following command initializes encryption for a cluster.

   ```
   # /sbin/acfsutil encr init
   ```

 This command must be run before any other encryption command and requires root or administrator privileges to run.

 For more information, refer to "acfsutil encr init" on page 13-84.

2. Set encryption parameters.
Run the `acfsutil encr set` command to set the encryption parameters for the entire Oracle ACFS file system.

For example, the following command sets the AES encryption algorithm and a file key length of 128 for a file system mounted on the `/acfsmounts/acfs1` directory.

```
# /sbin/acfsutil encr set -a AES -k 128 -m /acfsmounts/acfs1/
```

The `acfsutil encr set` command also transparently generates a volume encryption key which is stored in the key store that was previously configured with the `acfsutil encr init` command.

This command requires root or administrator privileges to run.

For more information, refer to "acfsutil encr set" on page 13-87.

3. Enable encryption.

Run the `acfsutil encr on` command to enable encryption for directories and files.

For example, the following command enables encryption recursively on all files in the `/acfsmounts/acfs1/medicalrecords` directory.

```
# /sbin/acfsutil encr on -r /acfsmounts/acfs1/medicalrecords
   -m /acfsmounts/acfs1/
```

For users that have appropriate permissions to access files in the `/acfsmounts/acfs1/medicalrecords` directory, they can still read the decrypted files.

This command can be run by an administrator or the file owner.

For more information, refer to "acfsutil encr on" on page 13-85.

4. Display encryption information.

Run the `acfsutil encr info` command to display encryption information for directories and files.

```
# /sbin/acfsutil encr info -m /acfsmounts/acfs1/
   -r /acfsmounts/acfs1/medicalrecords
```

This command can be run by an administrator or the file owner.

For more information, refer to "acfsutil encr info" on page 13-83.

Auditing and diagnostic data for Oracle ACFS encryption is saved to log files. For more information about Oracle ACFS encryption, including the log files, refer to "Oracle ACFS Encryption" on page 5-14.

Tagging Oracle ACFS File Systems

This section discusses the operations to manage tagging on directories and files in an Oracle ACFS file system.

The disk group on which the volume is created for the file system has compatibility attributes for ASM and ADVM set to 11.2.0.2. For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.

Oracle ACFS implements tagging with Extended Attributes. There are some requirements for using Extended Attributes; refer to "Oracle ACFS Tagging" on page 5-18.
The steps to manage tagging are:

1. Specify tag names for directories and files.

 Run the `acfsutil tag set` command to set tags on directories or files. You can use these tags to specify which objects are replicated.

 For example, add the `comedy` and `drama` tags to the files in the subdirectories of the `/acfsmounts/repl_data/films` directory.

   ```
   $ /sbin/acfsutil tag set -r comedy /acfsmounts/repl_data/films/comedies
   $ /sbin/acfsutil tag set -r drama /acfsmounts/repl_data/films/dramas
   $ /sbin/acfsutil tag set -r drama /acfsmounts/repl_data/films/mysteries
   ```

 In this example, the `drama` tag is purposely used twice and that tag is changed in a later step.

 You must have system administrator privileges or be the file owner to run this command.

 For more information, refer to "acfsutil tag set" on page 13-49.

2. Display tagging information.

 Run the `acfsutil tag info` command to display the tag names for directories or files in Oracle ACFS file systems. Files without tags are not be displayed.

 For example, display tagging information for files in the `/acfsmounts/repl_data/films` directory.

   ```
   $ /sbin/acfsutil tag info -r /acfsmounts/repl_data/films
   ```

 Display tagging information for files with the `drama` tag in the `/acfsmounts/repl_data/films` directory.

   ```
   $ /sbin/acfsutil tag info -t drama -r /acfsmounts/repl_data/films
   ```

 You must have system administrator privileges or be the file owner to run this command.

 For more information, refer to "acfsutil tag info" on page 13-48.

3. Remove and change tag names if necessary.

 Run the `acfsutil tag unset` command to remove tags on directories or files. For example, unset the `drama` tag on the files in the `mysteries` subdirectory of the `/acfsmounts/repl_data/films` directory because you want to apply a different tag to the subdirectory.

   ```
   $ /sbin/acfsutil tag unset -r drama /acfsmounts/repl_data/films/mysteries
   ```

 Add the `mystery` tag to the files in the `mysteries` subdirectory of the `/acfsmounts/repl_data/films` directory.

   ```
   $ /sbin/acfsutil tag set -r mystery /acfsmounts/repl_data/films/mysteries
   ```

 You must have system administrator privileges or be the file owner to run these commands.

 For more information, refer to "acfsutil tag unset" on page 13-50.

 For more information about tagging an Oracle ACFS file system, refer to "Oracle ACFS Tagging" on page 5-18.
Replicating Oracle ACFS File Systems

This section discusses the operations to manage replication on an Oracle ACFS file system.

The steps in this section assume you are not planning to use Oracle ACFS security or encryption on the file system. You cannot use Oracle ACFS replication with security or encryption.

The disk groups on which volumes are created for the primary and standby file systems must have compatibility attributes for ASM and ADVM set to 11.2.0.2. For information about disk group compatibility, refer to "Disk Group Compatibility" on page 4-32.

The steps to manage replication are:

1. Determine the storage capacity necessary for replication on the sites hosting the primary and standby file systems. The primary and standby file systems should have a minimum size of 4 GB.

 Calculate the storage requirement for the primary file system, then use the same size requirement for the standby file system. If Oracle ACFS tagging is used to replicate only a subset of the files in the primary file system, then the size requirement for the standby file system is proportional to that subset of the primary file system.

 Run the `acfsutil info fs` command with the `-s interval` option to display the amount and rate of change to the file system for the node on which it is run. The amount of change includes all user and metadata modifications to the file system. This amount approximates the size of replication logs that are generated when recording changes to the file system.

To approximate the extra storage capacity necessary for the replication logs, determine the following:

- The time interval during which the site hosting the primary file system may experience network connectivity problems or slowdowns when accessing the site hosting the standby file system.

- The time interval during which the site hosting the standby file system may be taken offline for maintenance.

These time intervals are used in calculating the amount and rate of change in storage space. You need to account for the time interval when the primary file system cannot send the replication logs over to the standby file system at its usual rate or when standby file systems are inaccessible while undergoing maintenance. The replication logs can accumulate on the site hosting the primary file system and eventually cause that site to run out of space.

For the following scenario, assume \(t = 60 \) minutes is the time interval in your environment that would adequately account for network problems or maintenance on site hosting the standby file system.

Run `acfsutil info fs -s 1200` on the primary file system to collect the average rate of change over a 24 hour period with a 20 minute interval.

```bash
$ /sbin/acfsutil info fs -s 1200 /acfsmounts/repl_data
```

With the output, you can determine the average rate of change, the peak rate of change, and how long the peaks last. However, the command displays information only for the node on which the command is run. To collect the total amount of change in the file system the command must be run on every node that
is modifying the file system. Note that the maximum number of supported nodes is eight.

The following formula approximates the extra storage capacity needed:

Extra storage capacity to hold replication logs =
(Number-nodes-on-primary * 1GB) +
(peak amount of change generated across all nodes for time t)

Assume that during peak workload intervals, the total amount of change reported for 60 minutes is approximately 6 GB for all nodes. Using the storage capacity formula, 10 GB of excess storage capacity on the site hosting the primary file system is required for storage of the replication logs.

Extra storage capacity to hold replication logs = (4 * 1GB) + 6GB = 10GB

Next, check that the network transfer rate is greater than or equal to the rate of change in the output of the `acfsutil info fs -s` command. For example, if the output shows a 5 MB peak rate of change per second, then you need to ensure the network can reliably transfer at least 5 MB per second.

To determine your network transfer rate, calculate the time required to FTP a 1 GB file from the primary file system to the intended standby file system during application usage.

The replication transfer rate =

\[
\text{[FTP rate (MB/s)]} \times [0.8 - (\text{number of nodes on primary file system} \times 0.05)]
\]

For example, if the 1 GB file transfers in 30 seconds, then the FTP rate is 34 MB per second (1000 MB/30 seconds). If you have a four node primary mounting the file system, the replication transfer rate equals:

\[
34 \text{ MB/s} \times [0.8 - (4 \times 0.05)] = 34 \times (0.8 - 0.2) = 34 \times 0.6 = 20.4 \text{ MB/s}
\]

The replication transfer rate must be sufficient to easily sustain the anticipated peak rate of change, and account for network problems when the primary file system experienced difficulty sending replication logs to the standby file system.

For more information, refer to "acfsutil info fs" on page 13-92.

2. Set up tags, user names, and service names.

When starting replication on an Oracle ACFS file system, first perform the following steps:

- Determine the user name and password that the sites hosting the primary and standby file systems use to connect to the remote Oracle ASM instance as the Oracle ASM and DBA administrator. All nodes that have the file system mounted must support this user name and password. The user must have `SYSASM` and `SYSDBA` privileges. For example:

\[
\text{SQL}> \text{CREATE USER primary_admin IDENTIFIED BY primary_passwd;}
\text{SQL> GRANT sysasm,sysdba TO primary_admin;}
\]

Oracle wallets can also be used to manage security credentials.
Basic Steps to Manage an Oracle ACFS

Oracle ACFS Command-Line Tools

13-15

See Also:

- Oracle Database Advanced Security Administrator’s Guide for information about Oracle wallets
- Oracle Database SecureFiles and Large Objects Developer’s Guide for information about wallet management
- Oracle Database Net Services Reference for information about wallet parameters in the SQLNET.ORA file

Determine a unique service name for the replicated file system.

If the primary and standby file systems can be mounted on the same node then unique service names must be used for the primary and standby file systems. If both file systems can never be mounted on the same node, for example the file systems are located in different clusters, then the service names can be the same. Using unique service names for the primary and standby file systems requires the use of the -c option during replication initialization. Service names are limited to a maximum of 128 bytes.

Using this service name, create a net service alias on the sites hosting the primary and standby file system that connects to the remote site. This alias along with the user name and password are used as the connection string in the replication initialization commands.

For example, the following are examples of connect descriptors with net service aliases for the sites hosting the primary and standby file systems.

```sql
primary_repl_site=(DESCRIPTION=
    (ADDRESS=(PROTOCOL=tcp)(HOST=primary1.example.com)(PORT=1521))
    (ADDRESS=(PROTOCOL=tcp)(HOST=primary2.example.com)(PORT=1521))
    (CONNECT_DATA=(SERVICE_NAME=primary_service)))

standby_repl_site=(DESCRIPTION=
    (ADDRESS=(PROTOCOL=tcp)(HOST=standby1.example.com)(PORT=1521))
    (CONNECT_DATA=(SERVICE_NAME=standby_service)))
```

See Also: Oracle Database Net Services Administrator’s Guide for information about connect descriptors

Optionally set tags on directories and files to replicate only selected files in an Oracle ACFS file system. You can also add tags to files after replication has already started. For information about the steps to tag files, refer to “Tagging Oracle ACFS File Systems” on page 13-11.

3. Configure the site hosting the standby file system.

Before replicating an Oracle ACFS file system, configure the site hosting the standby file system by performing the following procedures.

- Create a new file system of adequate size to hold the replicated files and associated replication logs from the primary file system. For example: /standby/repl_data
- Mount the file system on one node only.
- Run the acfsutil repl init standby command. If this command is interrupted for any reason, the user must re-create the file system, mount it on one node only, and rerun the command. This command requires the following configuration information:
Basic Steps to Manage an Oracle ACFS

1. The connect string to be used to connect to the site hosting the primary file system. For example:

 primary_admin/primary_passwd@primary_repl_site

 The user primary_admin must have SYSASM and SYSDBA privileges.

 - If the standby file system is using a different service name than the primary file system, then use the -c option. This option specifies the service name for the standby file system. For example:

 standby_repl_service

 - The mount point of the standby file system. For example:

 /standby/repl_data

 For example, run the following `acfsutil repl init standby` command on the site hosting the standby file system.

 $ /sbin/acfsutil repl init standby
 -p primary_admin/primary_passwd@primary_repl_site
 -c standby_repl_service /standby/repl_data

 The `acfsutil repl init standby` command requires root or system administrator privileges to run.

 For more information, refer to "acfsutil repl init" on page 13-54.

4. Configure the site hosting the primary file system.

 After the standby file system has been set up, configure the site hosting the primary file system and start replication by performing the following procedures.

 Run the `acfsutil repl init primary` command. This command requires the following configuration information:

 - The connect string to be used to connect to the site hosting the standby file system. For example:

 standby_admin/standby_passwd@standby_repl_site

 The user standby_admin must have SYSASM and SYSDBA privileges.

 - The mount point of the primary file system. For example:

 /acfsmounts/repl_data

 - If the primary file system is using a different service name than the standby file system, then use the -c option. This option specifies the service name on the site hosting the primary file system. For example:

 primary_repl_service

 - If the mount point is not the same on the site hosting the standby file system as it is on the site hosting the primary file system, specify the mount point on the standby file system with the -m standby_mount_point option. For example:

 -m /standby/repl_data

 For example, run the following `acfsutil repl init primary` command on the site hosting the primary file system.

 $ /sbin/acfsutil repl init primary
 -s standby_admin/standby_passwd@standby_repl_site
 -m /standby/repl_data -c primary_repl_service
 /acfsmounts/repl_data
The `acfsutil repl init` primary command requires root or system administrator privileges to run.

For more information, refer to "acfsutil repl init" on page 13-54.

5. Monitor information about replication on the file system.

 The `acfsutil repl info` command displays information about the state of the replication processing on the primary or standby file system.

 For example, run the following `acfsutil repl info` command on the site hosting the primary file system to display configuration information.

   ```bash
   $ /sbin/acfsutil repl info -c -v /acfsmounts/repl_data
   ```

 You must have system administrator or Oracle ASM administrator privileges to run this command.

 For information, refer to "acfsutil repl info" on page 13-52.

6. Manage replication background processes.

 Run the `acfsutil repl bg` command to start, stop, or retrieve information about replication background processes.

 For example, the following example displays information about the replication processes for the `/acfsmounts/repl_data` file system.

   ```bash
   $ /sbin/acfsutil repl bg info /acfsmounts/repl_data
   ```

 You must have system administrator or Oracle ASM administrator privileges to run the `acfsutil repl bg info` command.

 For more information, refer to "acfsutil repl bg" on page 13-51.

7. Pause replication momentarily only if necessary.

 Run the `acfsutil repl pause` to momentarily stop replication. You should run the `acfsutil repl resume` command soon as possible to resume replication.

 For example, the following command pauses replication on the `/acfsmounts/repl_data` file system.

   ```bash
   $ /sbin/acfsutil repl pause /acfsmounts/repl_data
   ```

 The following command resumes replication on the `/acfsmounts/acfs2` file system.

   ```bash
   $ /sbin/acfsutil repl resume /acfsmounts/repl_data
   ```

 You must have system administrator or Oracle ASM administrator privileges to run these commands.

 For more information, refer to "acfsutil repl pause" on page 13-56 and "acfsutil repl resume" on page 13-57.
For more information about replicating an Oracle ACFS file system, refer to "Oracle ACFS Replication" on page 5-16.

Deregistering, Dismounting, and Disabling Volumes and Oracle ACFS File Systems

This section discusses the operations to deregister or dismount a file system and disable a volume. This section contains these topics:

- Deregistering an Oracle ACFS File System
- Dismounting an Oracle ACFS File System
- Disabling a Volume

Deregistering an Oracle ACFS File System

You can deregister an Oracle ACFS file system if you do not want the file system to be automatically mounted.

For example:

$ /sbin/acfsutil registry -d /u01/app/acfsmounts/myacfs

If you deregister a file system, then you must explicitly mount the file system after Oracle Clusterware or the system is restarted.

For more information about the registry, see "About the Oracle ACFS Mount Registry" on page 5-7. For information about acfsutil registry, see "acfsutil registry" on page 13-96.

Dismounting an Oracle ACFS File System

You can dismount a file system without deregistering the file system or disabling the volume on which the file system is mounted.

For example, you can dismount a file system and run fsck to check the file system.

/bin/umount /u01/app/acfsmounts/myacfs

/sbin/fsck -a -v -y -t acfs /dev/asm/volume1-123

After you dismount a file system, you must explicitly mount the file system.

Use umount on Linux systems or acfsdismount on Windows systems. For information about the commands to dismount a file system, see “umount” on page 13-25 or “acfsdismount” on page 13-41.

Use fsck on Linux systems or acfschkdsk on Windows systems to check a file system. For information about the commands to check a file system, see “fsck” on page 13-20 or “acfschkdsk” on page 13-39.

Note: On an Oracle ACFS file system df reports space usage by internal metadata plus user files and directories. du only reports the space usage of user files and directories. Depending on the size of the volume and number of the nodes, internal metadata is allocated in varying sizes. Additionally, with replication enabled an internal replication log is allocated for each node that is used to record changes to the file system before exposing the replication log to user space daemons to transport to the standby.
Disabling a Volume
To disable a volume, you must first dismount the file system on which the volume is mounted.

For example:

```
# /bin/umount /u01/app/acfsmounts/myacfs
```

After a file system is dismounted, you can disable the volume and remove the volume device file.

For example:

```
ASMCM> voldisable -G data volumel
```

Dismounting the file system and disabling a volume does not destroy data in the file system. You can enable the volume and mount the file system to access the existing data. For information about `voldisable` and `volenable`, see "voldisable" on page 12-64 and "volenable" on page 12-65.

Removing an Oracle ACFS File System and a Volume
To permanently remove a volume and Oracle ACFS file system, perform the following steps. These steps destroy the data in the file system.

1. Deregister the file system with `acfsutil registry -d`.

 For example:

   ```
   $ /sbin/acfsutil registry -d /oracle/acfsmounts/acfs1
   acfsutil registry: successfully removed ACFS mount point
   /oracle/acfsmounts/acfs1 from Oracle Registry
   ```

 For information about running `acfsutil registry`, see "acfsutil registry" on page 13-96.

2. Dismount the file system.

 For example:

   ```
   # /bin/umount /oracle/acfsmounts/acfs1
   ```

 You must dismount the file system on all nodes of a cluster.

 Use `umount` on Linux systems or `acfsdismount` on Windows systems. For information about running `umount` or `acfsdismount`, see "umount" on page 13-25 or "acfsdismount" on page 13-41.

3. Remove the file system with `acfsutil rmfs`.

 If you were not planning to remove the volume in a later step, this step is necessary to remove the file system. Otherwise, the file system is removed when the volume is deleted.

 For example:

   ```
   $ /sbin/acfsutil rmfs /dev/asm/volume1-123
   ```

 For information about running `acfsutil rmfs`, see "acfsutil rmfs" on page 13-97.

4. Optionally you can disable the volume with the ASMCMD `voldisable` command.

 For example:
ASMCMD> voldisable -G data volume1

For information about running voldisable, see "voldisable" on page 12-64.

5. Delete the volume with the ASMCMD voldelete command.

For example:

ASMCMD> voldelete -G data volume1

For information about running voldelete, see "voldelete" on page 12-64.

Oracle ACFS Command-line Tools for Linux and UNIX Environments

Table 13–1 contains a summary of the Oracle ACFS commands for Linux and UNIX.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsck</td>
<td>Checks and repairs an Oracle ACFS file system.</td>
</tr>
<tr>
<td>mkfs</td>
<td>Creates an Oracle ACFS file system.</td>
</tr>
<tr>
<td>mount</td>
<td>Mounts an Oracle ACFS file system.</td>
</tr>
<tr>
<td>umount</td>
<td>Dismounts an Oracle ACFS file system.</td>
</tr>
</tbody>
</table>

The commands in Table 13–1 have been extended with additional options to support Oracle ACFS. All other Linux and UNIX file system commands operate without change for Oracle ACFS.

For example, Oracle ACFS adds a set of Oracle ACFS-specific mount options to those provided with the base operating system platform. You should review both the mount options for the Linux and UNIX platforms in addition to the Oracle ACFS-specific options for the complete set of file system mount options.

File systems on Oracle ADVM volumes that are not Oracle ACFS file systems, such as ext3, are managed with the same Linux commands that are listed in Table 13–1 using the file-specific options for the type of file system. You can refer to the man pages for options available for the Linux commands in Table 13–1.

fsck

Purpose
Checks and repairs an Oracle ACFS file system.

Syntax and Description

```
fsck -t acfs -h /dev/null
fsck[-a|-f][-v] -t acfs [-n|-y] volume_device
```

- `fsck -t acfs -h` displays usage text and exits.

Table 13–2 contains the options available with the `fsck` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Specifies to automatically fix the file system.</td>
</tr>
</tbody>
</table>
fsck checks and repairs an existing Oracle ACFS. This command can only be run on a
dismounted file system. root privileges are required to run fsck. The Oracle ACFS
driver must be loaded for fsck to work.

By default, fsck only checks for and reports any errors. The -a flag must be specified
to instruct fsck to fix errors in the file system.

In a few cases, fsck prompts for questions before proceeding to check a file system.
These cases include:

- If fsck detects that another fsck is in progress on the file system
- If fsck detects that the Oracle ACFS driver is not loaded
- If the file system does not appear to be Oracle ACFS

In checking mode, fsck also prompts if there are transaction logs that have not been
processed completely due to an incomplete shutdown. To run in a non-interactive
mode, include either the -y or -n options to answer yes or no to any questions.

fsck creates working files before it checks a file system. These working files are
created in /usr/tmp if space is available. /tmp is used if /usr/tmp does not exist. If
insufficient space is available in the tmp directory, fsck attempts to write to the
current working directory. The files that fsck creates are roughly the size of the file
system being checked divided by 32K. At most two such files are allocated. For
example, a 2 GB file system being checked causes fsck to generate one or two 64K
working files in the /usr/tmp directory. These files are deleted after fsck has
finished.

In the event that fsck finds a file or directory in the file system for which it cannot
determine its name or intended location (possibly due to a corruption in its parent
directory), it places this object in the /lost+found directory when fsck is run in fix
mode. For security reasons only the root user on Linux can read files in
/lost+found. If the administrator can later determine the original name and location
of the file based on its contents, the file can be moved or copied into its intended
location.

The file names in the /lost+found directory are in the following formats:

parent.id.file.id.time-in-sec-since-1970
parent.id.dir.id.time-in-sec-since-1970

The id fields are the internal Oracle ACFS numeric identifiers for each file and
directory in the file system.

You can use acfsutil info id id mount_point to attempt to determine the
directory associated with parent.id. This directory is assumed to be where the
deleted object originated. For information about `acfsutil info`, see "acfsutil info file" on page 13-92.

If the parent directory is not known, the parent id field is set to `UNKNOWN`.

Note: It is not possible to see the contents of the `/lost+found` directory from a snapshot.

Examples

The following example shows how to check and repair an Oracle ACFS file system.

Example 13–1 Using the fsck command

```
# /sbin/fsck -a -v -y -t acfs /dev/asm/volume1-123
```

mkfs

Purpose

Creates an Oracle ACFS file system.

Syntax and Description

```
mkfs -t acfs -h
mkfs [-v] [-f] -t acfs [-b blocksize] [-n name] volume_device [blocks]
```

`mkfs -t acfs -h` displays usage text and exits.

Table 13–3 contains the options available with the `mkfs` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t</code> <code>acfs</code></td>
<td>Specifies the type of file system on Linux. <code>acfs</code> designates the Oracle ACFS type.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
<tr>
<td><code>-n name</code></td>
<td>Specifies the name for the file system. A name can be a maximum of 64 characters. <code>acfsutil info fs</code> returns the name if one was specified.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Specifies the force option. This action creates the file system even if there is an existing Oracle ACFS on the volume device, although only if the file system is dismounted. This option overwrites structures on the original file system. Use this option with caution.</td>
</tr>
<tr>
<td><code>-h</code></td>
<td>Displays the usage help text and exits.</td>
</tr>
<tr>
<td><code>-b blocksize</code></td>
<td>The default block size is 4K and this is the only size supported in 11g Release 2 (11.2).</td>
</tr>
<tr>
<td><code>blocks</code></td>
<td>Specifies the number of blocks that the file system should consume on the named device. The quantity specified can be in units of K (kilobytes), M (megabytes), G (gigabytes), or T (terabytes). If a unit is not specified, the default is bytes. If the number of blocks specified is not a multiple of the block size, then the value is rounded up to the closest multiple. If this option is not specified, the entire device is consumed.</td>
</tr>
</tbody>
</table>
Oracle ACFS Command-line Tools for Linux and UNIX Environments

mkfs is used to create the on disk structure needed for Oracle ACFS file system to be mounted. The `mkfs` command is the traditional UNIX command used to build a file system. After `mkfs` runs successfully, the **USAGE** column in the `V$ASM_VOLUME` view displays ACFS. **root** privilege is not required. The ownership of the volume device file dictates who can run this command. The minimum file system size is 200 MB. The Oracle ACFS driver must be loaded for `mkfs` to work.

Examples

Before creating an Oracle ACFS file system, first determine which Oracle ADVM volume devices are available. You can use the ASMCMD `volinfo` command to display information about the volumes and volume devices.

```
ASMCMD [+] > volinfo -a
...
  Volume Name: VOLUME1
  Volume Device: /dev/asm/volume1-123
  State: ENABLED
...
```

See "volinfo" on page 12-66.

Next create an Oracle ACFS file system on the volume device file.

```
Example 13–2  Using the mkfs command

$ /sbin/mkfs -t acfs /dev/asm/volume1-123
```

mount

Purpose

Mounts an Oracle ACFS file system.

Syntax and Description

```
mount -h
mount [-v] -t acfs [-o options] volume_device mount_point
```

- `mount -h` displays usage text and exits.
- **Table 13–4** contains the options available with the `mount` command.

```
Table 13–4  Options for the Linux mount command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Displays the usage help text and exits.</td>
</tr>
<tr>
<td>-t acfs</td>
<td>Specifies the type of file system on Linux. acfs designates the Oracle ACFS type.</td>
</tr>
<tr>
<td>-v</td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
</tbody>
</table>
```
mount attaches a file system to the Oracle ACFS hierarchy at the mount point that is the name of a directory. The mount happens on the node where the mount command was issued. The mount command returns an error if the file system is not in a dismounted state on this node.

It is not always possible to return the cause of a mount failure to the mount command. When this happens Oracle ACFS writes the cause of the failure to the system console and associated system log file.

After mount runs successfully, the MOUNTPATH field in the V$ASM_VOLUME view displays the directory name on which the file system is now mounted.

An Oracle ACFS file system should only be mounted on one mount point. The same mount point name should be used on all cluster members.

The mount command lists all mounted file systems if it is run with no parameters.

root privilege is required to run mount.

Examples

The first example shows how to mount volume1-123 on the mount point /u01/app/acfsmounts/myacfs. The second example shows how to mount all the registered Oracle ACFS file systems. The dummy names (none) have been entered for the device and directory as they are required, but not used, when the all option is specified.
Example 13–3 Using the mount command

/bin/mount -t acfs /dev/asm/volume1-123 /u01/app/acfsmounts/myacfs

/bin/mount -t acfs -o all none none

umount

Purpose
Dismounts an Oracle ACFS file system.

Syntax and Description

```
umount -h
umount [-v] volume_device | mount_point
umount -a [-t acfs]
```

- `umount -h` displays usage text and exits.
- `Table 13–5` contains the options available with the `umount` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-h</code></td>
<td>Displays the usage help text and exits.</td>
</tr>
<tr>
<td><code>-t acfs</code></td>
<td>Specifies the type of file system on Linux. <code>acfs</code> designates the Oracle ACFS type.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
<tr>
<td><code>-a</code></td>
<td>Specifies to dismount all Oracle ACFS file systems on this node.</td>
</tr>
<tr>
<td><code>volume_device</code></td>
<td>Specifies an Oracle ADVM volume device file that has been formatted by <code>mkfs</code>.</td>
</tr>
<tr>
<td><code>mount_point</code></td>
<td>Specifies the directory where the file system is mounted. This directory must exist before you run the <code>mount</code> command.</td>
</tr>
</tbody>
</table>

`umount` detaches an Oracle ACFS from the file system hierarchy on the current node. If the file system is busy, `umount` fails.

`root` privileges are required to run the `umount` command.

Examples

The following examples show how to dismount an Oracle ACFS file system. The first example uses the volume device file and the second example uses the file system.

Example 13–4 Using the umount command

```
# /bin/umount /dev/asm/volume1-123

# /bin/umount /u01/app/acfsmounts/myacfs
```

Oracle ACFS Command-line Tools for the Solaris Environment

`Table 13–6` contains a summary of the Oracle ACFS commands for Solaris.
The commands in Table 13–6 have been extended with additional options to support Oracle ACFS on Solaris.

fsck

Purpose
Checks and repairs an Oracle ACFS file system on the Solaris operating system.

Syntax and Description

```plaintext
fsck -F acfs -o h /dev/null
fsck -F acfs [{-n | N} | {-y | Y}] [-o options] volume_device
```

- `fsck -F acfs -o h /dev/null` displays usage text and exits.
- `Table 13–7` contains the options available with the `fsck` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-F acfs</code></td>
<td>Specifies the type of file system on Solaris. acfs designates the Oracle ACFS type.</td>
</tr>
<tr>
<td>`-n</td>
<td>N`</td>
</tr>
<tr>
<td>`-y</td>
<td>Y`</td>
</tr>
</tbody>
</table>
| `-o` | Specifies that options follow (a, f, h, v). Options are preceded with the `-o` flag and entered as a comma-delimited string. For example: `-o a,v`
 - a
 Specifies to automatically fix the file system.
 - f
 Forces the file system into mountable state without completing a file system check or fix.
 - h
 Displays the usage text and exits.
 - v
 Specifies verbose mode. The progress is displayed as the operation occurs. |
| `volume_device` | Specifies an Oracle ADVM device file. |

`fsck` checks and repairs an existing Oracle ACFS file system. This command can only be run on a dismounted file system. `root` privileges are required to run `fsck`. The Oracle ACFS driver must be loaded for `fsck` to work.
By default, `fsck` only checks for and reports any errors. The `-o a` option must be specified to instruct `fsck` to fix errors in the file system.

In a few cases, `fsck` prompts for questions before proceeding to check a file system. These cases include:

- If `fsck` detects that another `fsck` is in progress on the file system
- If `fsck` detects that the Oracle ACFS driver is not loaded
- If the file system does not appear to be Oracle ACFS

In checking mode, `fsck` also prompts if there are transaction logs that have not been processed completely due to an incomplete shutdown. To run in a non-interactive mode, include either the `-y` or `-n` options to answer yes or no to any questions.

`fsck` creates working files before it checks a file system. These working files are created in `/usr/tmp` if space is available. `/tmp` is used if `/usr/tmp` does not exist. If insufficient space is available in the `tmp` directory, `fsck` attempts to write to the current working directory. The files that `fsck` creates are roughly the size of the file system being checked divided by 32K. At most two such files are allocated. For example, a 2 GB file system being checked causes `fsck` to generate one or two 64K working files in the `/usr/tmp` directory. These files are deleted after `fsck` has finished.

In the event that `fsck` finds a file or directory in the file system for which it cannot determine its name or intended location (possibly due to a corruption in its parent directory), it places this object in the `/lost+found` directory when `fsck` is run in fix mode. For security reasons only the root user on Linux can read files in `/lost+found`. If the administrator can later determine the original name and location of the file based on its contents, the file can be moved or copied into its intended location.

The file names in the `/lost+found` directory are in the following formats:

parent.id.file.id.time-in-sec-since-1970
parent.id.dir.id.time-in-sec-since-1970

The id fields are the internal Oracle ACFS numeric identifiers for each file and directory in the file system.

You can use `acfsutil info id id mount_point` to attempt to determine the directory associated with `parent.id`. This directory is assumed to be where the deleted object originated. For information about `acfsutil info file`, see "acfsutil info file" on page 13-92.

If the parent directory is not known, the parent id field is set to `UNKNOWN`.

Note: It is not possible to see the contents of the `/lost+found` directory from a snapshot.

Examples

The following example shows how to check and repair an Oracle ACFS file system.

Example 13–5 Using the fsck command

```bash
# /usr/sbin/fsck -F acfs -y -o a,v /dev/asm/volume1-123
```
mkfs

Purpose
Creates an Oracle ACFS file system on the Solaris operating system.

Syntax and Description

```
mkfs -F acfs -o h /dev/null
mkfs -F acfs [-o options] volume_device size
```

- `mkfs -F acfs -o h /dev/null` displays usage text and exits.

Table 13-8 contains the options available with the `mkfs` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-F acfs</code></td>
<td>Specifies the type of file system on Solaris. <code>acfs</code> designates the Oracle ACFS type.</td>
</tr>
</tbody>
</table>
| `-o options` | Specifies that options follow (b, f, h, n, v). Options are preceded with the `-o` flag and entered as a comma-delimited string. For example: `-o f,v`
 - `b=blocksize`
 Specifies the block size of the new file system. The default block size is 4K and this is the only size supported.
 - `h`
 Displays the usage text and exits.
 - `f`
 Specifies the force option. This action creates the file system even if there is an existing Oracle ACFS on the volume device, although only if the file system is dismounted. This option overwrites structures on the original file system. Use this option with caution.
 - `n=name`
 Specifies the name for the file system. A name can be a maximum of 64 characters. `acfsutil info fs` returns the name if one was specified.
 - `v`
 Specifies verbose mode. The progress is displayed as the operation occurs. |
| `volume_device` | Specifies an Oracle ADVM device file. |
| `size` | Specifies the size of the file system in 512-byte units or in units of K | M | G | T | P. Units specified are in K (kilobytes), M (megabytes), G (gigabytes), T (terabytes), or P (petabytes). |

`mkfs` is used to create the on disk structure needed for Oracle ACFS file system to be mounted. The `mkfs` command is the traditional UNIX command used to build a file system. After `mkfs` runs successfully, the `USAGE` column in the `V$ASM_VOLUME` view displays `ACFS`. `root` privilege is not required. The ownership of the volume device file dictates who can run this command. The minimum file system size is 200 MB. The Oracle ACFS driver must be loaded for `mkfs` to work.
Examples
Before creating an Oracle ACFS file system, first determine which Oracle ADVM volume devices are available. You can use the ASMCMD volinfo command to display information about the volumes and volume devices.

```
ASMCMD [+] > volinfo -a
... Volume Name: VOLUME1
       Volume Device: /dev/asm/volume1-123
       State: ENABLED
...
```

See "volinfo" on page 12-66.

Next create an Oracle ACFS file system on the volume device file.

Example 13–6 Using the mkfs command

```
$ /usr/sbin/mkfs -F acfs /dev/asm/volume1-123
```

Mount

Purpose
Mounts an Oracle ACFS file system on the Solaris operating system.

Syntax and Description

```
mount -F acfs [-o h] /tmp /dev/null
mount -F acfs [-r] [-o options] volume_device mount_point
```

mount -F acfs -o h /tmp /dev/null displays usage text and exits.

Table 13–9 contains the options available with the `mount` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-F acfs</code></td>
<td>Specifies the type of file system on Solaris. <code>acfs</code> designates the Oracle ACFS type.</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>Mounts in read-only mode.</td>
</tr>
</tbody>
</table>
Oracle ACFS Command-line Tools for the Solaris Environment

Oracle Automatic Storage Management Administrator’s Guide

-o
Specifies that options follow. Options are preceded with the -o flag followed by a comma-delimited string of options. For example: -o all,v

The following options are available:

- all
 Reads the Oracle ACFS mount registry created with the acfsutil registry command and mounts all the file systems in it. A mount -o all command is automatically run at Oracle ACFS startup.
 The -o all option requires two placeholders to satisfy the command arguments: a dummy argument for the volume device and any valid directory.
 When the -o all option is specified, other -o options are ignored. To specify mount options for a registry entry, include those options with the acfsutil registry command when you add the entry to the registry.

- devices/nodevices
 Allows or disallows the opening of any character or block special devices from this mount.

- exec/noexec
 Allows or disallows the execution of programs in this file system.

- h
 Displays the usage help text and exits.

- rootsuid/norootsuid
 Allows or disallows the execution of setuid to root executables (binaries by non-root users whose permissions allow set user Id execution, and are owned by root).
 rootsuid is the default action. If norootsuid is specified, an attempt to run these executables as a non-root user fails with a permission denied error.

- ro
 Mounts the file system in read-only mode.

- rw
 Mounts the file system in read-write mode.

- setuid/nosetuid
 Allows or disallows the execution of setuid and setgid programs.

- suid/nosuid
 Allows or disallows the execution of setuid and setgid programs and the opening of any character or block special devices from this mount.

- v
 Specifies verbose mode. The progress is displayed as the operation occurs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o</td>
<td>Specifies that options follow. Options are preceded with the -o flag followed by a comma-delimited string of options. For example: -o all,v</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume_device</td>
<td>Specifies an Oracle ADVM volume device file that has been formatted by mkfs.device is required but can be a dummy value.</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted. This directory must exist before you run the mount command.</td>
</tr>
</tbody>
</table>
mount attaches a file system to the Oracle ACFS hierarchy at the mount point that is the name of a directory. The mount occurs on the node where the mount command was issued. The mount command returns an error if the file system is not in a dismounted state on this node.

It is not always possible to return the cause of a mount failure to the mount command. When this happens Oracle ACFS writes the cause of the failure to the system console and associated system log file.

After mount runs successfully, the MOUNTPATH field in the V$ASM_VOLUME view displays the directory name on which the file system is now mounted.

An Oracle ACFS file system should only be mounted on one mount point. The same mount point name should be used on all cluster members.

root privilege is required to run mount.

Examples
The first example shows how to mount volume1-123 on the mount point /u01/app/acfsmounts/myacfs. The second example shows how to mount all the registered Oracle ACFS file systems. Placeholder arguments must be provided for the volume device name and mount point when specifying the -o all option. The volume device can be a dummy value, such as none. Any valid directory can be specified for the mount point, such as /tmp.

Example 13–7 Using the mount command

```bash
# /sbin/mount -F acfs /dev/asm/volume1-123 /u01/app/acfsmounts/myacfs

# /sbin/mount -F acfs -o all none /tmp
```

umount/umountall

Purpose
Dismounts an Oracle ACFS file system on the Solaris operating system.

Syntax and Description

- `umount -V [mount_point | volume_device]`
- `umountall -F acfs`

`umountall -F acfs` dismounts all Oracle ACFS file systems.

Table 13–10 contains the options available with the umount command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-V</code></td>
<td>Echoes the complete command line, but does not run the command. Use this option is used to verify and validate the command line before execution. Valid only with <code>umount</code>.</td>
</tr>
<tr>
<td><code>mount_point</code></td>
<td>Specifies the directory where the file system is mounted. Valid only with <code>umount</code>.</td>
</tr>
<tr>
<td><code>volume_device</code></td>
<td>Specifies the Oracle ADVM volume device name associated with the file system. Valid only with <code>umount</code>.</td>
</tr>
<tr>
<td><code>-F acfs</code></td>
<td>Specifies the type of file system on Solaris. acfs designates the Oracle ACFS type. Valid only with <code>umountall</code>.</td>
</tr>
</tbody>
</table>
umount and umountall detach an Oracle ACFS from the file system hierarchy on the current node. If a file system is busy, umount and umountall fail. root privileges are required to run the umount and umountall commands.

Examples
The following examples show how to dismount an Oracle ACFS file system. The first example specifies the mount point of the file system that you want to dismount. The second example specifies the volume device associated with the file system that you want to dismount. The third example dismounts all Oracle ACFS file systems.

Example 13–8 Using the umount command

```
# /sbin/umount /dev/asm/volume1-123
# /sbin/umount /u01/app/acfsmounts/myacfs
# /sbin/umountall -F acfs
```

Oracle ACFS Command-line Tools for the AIX Environment

During the installation of Oracle ACFS and Oracle ADVM with Oracle Grid Infrastructure on AIX, several system security classes (authorizations) are created for Oracle ACFS and Oracle ADVM operations. These authorizations enable the following operations:

- Configuration of Oracle ACFS and Oracle ADVM devices
- Removal of Oracle ACFS and Oracle ADVM devices
- Definition of Oracle ACFS and Oracle ADVM devices

These authorizations are collected in a role (oracle_devmgmt) which is assigned by default to the Oracle Grid Infrastructure user and Oracle ASM administrator. You can run the lsrole or rolelist command after installation to see this new role. These commands can be run at any time to ensure that the user has the proper authorization to manage Oracle ACFS and Oracle ADVM.

For example, run the following as the Oracle ASM administrator:

```
$ rolelist -e
oracle_devmgmt
```

After the initial installation on an AIX operating system, the shell from which the root script was run will not inherit the new role. If the role is not present for the user, then the swrole command must be run before performing Oracle ACFS or Oracle ADVM operations.

For example, run the following as the Oracle ASM administrator:

```
$ swrole oracle_devmgmt
```

Alternatively, you can open a new shell to perform Oracle ACFS or Oracle ADVM operations.

During the removal of Oracle Grid Infrastructure, the oracle_devmgmt role and its associated authorizations are deleted from the system.

See Also: Oracle Grid Infrastructure on AIX, refer to Oracle Grid Infrastructure Installation Guide for AIX Based Systems for more information about installing
Table 13–11 contains a summary of the Oracle ACFS commands for the AIX operating system.

Table 13–11 Summary of Oracle ACFS commands for AIX

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsck</td>
<td>Checks and repairs an Oracle ACFS file system on AIX.</td>
</tr>
<tr>
<td>mkfs</td>
<td>Creates an Oracle ACFS file system on AIX.</td>
</tr>
<tr>
<td>mount</td>
<td>Mounts an Oracle ACFS file system on AIX.</td>
</tr>
<tr>
<td>umount/umountall</td>
<td>Dismounts an Oracle ACFS file system on AIX.</td>
</tr>
</tbody>
</table>

The commands in Table 13–11 have been extended with additional options to support Oracle ACFS on AIX.

fsck

Purpose
Checks and repairs an Oracle ACFS file system on the AIX operating system.

Syntax and Description

```
fsck -V acfs [-n|-y] [-o options] volume_device
```

Table 13–12 contains the options available with the AIX fsck command.

Table 13–12 Options for the AIX fsck command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-V acfs</td>
<td>Specifies an Oracle ADVM volume on AIX. acfs designates the Oracle ACFS type.</td>
</tr>
<tr>
<td>-n</td>
<td>Answers no to any prompts.</td>
</tr>
<tr>
<td>-y</td>
<td>Answers yes to any prompts.</td>
</tr>
<tr>
<td>-o options</td>
<td>Specifies that options follow (a, f, v). Options are preceded with the -o flag and entered as a comma-delimited string. For example: -o a,v</td>
</tr>
<tr>
<td></td>
<td>■ a</td>
</tr>
<tr>
<td></td>
<td>■ f</td>
</tr>
<tr>
<td></td>
<td>■ v</td>
</tr>
<tr>
<td>volume_device</td>
<td>Specifies the primary Oracle ADVM volume device.</td>
</tr>
</tbody>
</table>

fsck checks and repairs an existing Oracle ACFS. This command can only be run on a dismounted file system. root privileges are required to run fsck. The Oracle ACFS driver must be loaded for fsck to work.

By default, fsck only checks for and reports any errors. The -a flag must be specified to instruct fsck to fix errors in the file system.
In a few cases, fsck prompts for questions before proceeding to check a file system. These cases include:

- If fsck detects that another fsck is in progress on the file system
- If fsck detects that the Oracle ACFS driver is not loaded
- If the file system does not appear to be Oracle ACFS

In checking mode, fsck also prompts if there are transaction logs that have not been processed completely due to an incomplete shutdown. To run in a non-interactive mode, include either the -y or -n options to answer yes or no to any questions.

fsck creates working files before it checks a file system. These working files are created in /usr/tmp if space is available. /tmp is used if /usr/tmp does not exist. If insufficient space is available in the tmp directory, fsck attempts to write to the current working directory. The files that fsck creates are roughly the size of the file system being checked divided by 32K. At most two such files are allocated. For example, a 2 GB file system being checked causes fsck to generate one or two 64K working files in the /usr/tmp directory. These files are deleted after fsck has finished.

In the event that fsck finds a file or directory in the file system for which it cannot determine its name or intended location (possibly due to a corruption in its parent directory), it places this object in the /lost+found directory when fsck is run in fix mode. For security reasons only the root user on Linux can read files in /lost+found. If the administrator can later determine the original name and location of the file based on its contents, the file can be moved or copied into its intended location.

The file names in the /lost+found directory are in the following formats:

parent.id.file.id.time-in-sec-since-1970
parent.id.dir.id.time-in-sec-since-1970

The id fields are the internal Oracle ACFS numeric identifiers for each file and directory in the file system.

You can use acfsutil info id id mount_point to attempt to determine the directory associated with parent.id. This directory is assumed to be where the deleted object originated. For information about acfsutil info, see "acfsutil info file" on page 13-92.

If the parent directory is not known, the parent id field is set to UNKNOWN.

Note: It is not possible to see the contents of the /lost+found directory from a snapshot.

Examples

The following example shows how to check and repair an Oracle ACFS file system.

Example 13–9 Using the fsck command

/usr/sbin/fsck -V acfs -y -o a,v /dev/asm/volume1-123
mkfs

Purpose
Creates an Oracle ACFS file system on the AIX operating system.

Syntax and Description
```
mkfs -V acfs -o /dev/null
mkfs -V acfs [-v name] [-s size] [-o options] volume_device
```

`mkfs -V acfs -o /dev/null` displays usage text and exits.

Table 13–13 contains the options available with the AIX `mkfs` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-V acfs</td>
<td>Specifies the type of file system on AIX. acfs designates the Oracle ACFS type.</td>
</tr>
<tr>
<td>-v name</td>
<td>Specifies the name for the file system. A name can be a maximum of 64 characters. <code>acfsutil info fs</code> returns the name if one was specified.</td>
</tr>
<tr>
<td>-s size</td>
<td>Specifies the size of the file system in 512-byte units or in units of K</td>
</tr>
</tbody>
</table>
| -o options | Specifies that options follow (b, f, h, v). Options are preceded with the -o flag and entered as a comma-delimited string. For example: `-o f,v`
 - b=blocksize
 Specifies the block size of the new file system. The default block size is 4K and this is the only size supported.
 - f
 Specifies the force option. This action creates the file system even if there is an existing Oracle ACFS on the volume device, although only if the file system is dismounted. This option overwrites structures on the original file system. Use this option with caution.
 - h
 Displays the usage text and exits.
 - v
 Specifies verbose mode. The progress is displayed as the operation occurs. |
| volume_device | Specifies an Oracle ADVM device file that is to be formatted. |

`mkfs` is used to create the on disk structure needed for Oracle ACFS file system to be mounted. The `mkfs` command is the traditional UNIX command used to build a file system. After `mkfs` runs successfully, the USAGE column in the `V$ASM_VOLUME` view displays ACFS.root privilege is not required. The ownership of the volume device file dictates who can run this command. The minimum file system size is 200 MB. The Oracle ACFS driver must be loaded for `mkfs` to work.
Examples

Before creating an Oracle ACFS file system, first determine which Oracle ADVM volume devices are available. You can use the ASMCMD volinfo command to display information about the volumes and volume devices.

ASMCMD [+] > volinfo -a
...
 Volume Name: VOLUME1
 Volume Device: /dev/asm/volume1-123
 State: ENABLED
...

See "volinfo" on page 12-66.

Next create an Oracle ACFS file system on the volume device file.

Example 13–10 Using the mkfs command

$ /usr/sbin/mkfs -V acfs /dev/asm/volume1-123

mount

Purpose

Mounts an Oracle ACFS file system on the AIX operating system.

Syntax and Description

mount -V acfs -o h /dev/null /xxx
mount -v acfs [-o options] volume_device mount_point

mount -V acfs -o h /dev/null /xxx displays usage text and exits.

Table 13–14 contains the options available with the mount command.

Table 13–14 Options for the AIX mount command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v acfs</td>
<td>Specifies the type of file system on AIX. acfs designates the Oracle ACFS type.</td>
</tr>
</tbody>
</table>
mount attaches a file system to the Oracle ACFS hierarchy at the mount point that is the name of a directory. The mount happens on the node where the mount command was issued. The mount command returns an error if the file system is not in a dismounted state on this node.

Table 13–14 (Cont.) Options for the AIX mount command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o options</td>
<td>Specifies that options follow. Options are preceded with the -o flag followed by a comma-delimited string of options. For example: -o all,ro,v</td>
</tr>
<tr>
<td>h</td>
<td>Displays the usage help text and exits.</td>
</tr>
<tr>
<td>nosuid</td>
<td>Specifies that the execution of setuid and setgid programs by way of this mount is not allowed.</td>
</tr>
<tr>
<td>nodev</td>
<td>Specifies that you cannot open devices from this mount.</td>
</tr>
<tr>
<td>norootsuid</td>
<td>Fails the execution of binaries by non-root users whose permissions allow set user Id execution, and are owned by root. An attempt to run these executables as a non-root user fails with a permission denied error.</td>
</tr>
<tr>
<td>rootsuid</td>
<td>Allows the execution of binaries by non-root users of set user Id files owned by root. This is the default action.</td>
</tr>
<tr>
<td>ro</td>
<td>Mounts the file system in read-only mode.</td>
</tr>
<tr>
<td>rw</td>
<td>Mounts the file system in read-write mode.</td>
</tr>
<tr>
<td>v</td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
</tbody>
</table>

volume_device | Specifies an Oracle ADVM volume device file that has been formatted by mkfs. device is required but can be a dummy value. |

mount_point | Specifies the directory where the file system is mounted. This directory must exist before you run the mount command. |
It is not always possible to return the cause of a mount failure to the `mount` command. When this happens Oracle ACFS writes the cause of the failure to the system console and associated system log file.

After `mount` runs successfully, the MOUNTPATH field in the V$ASM_VOLUME view displays the directory name on which the file system is now mounted.

An Oracle ACFS file system should only be mounted on one mount point. The same mount point name should be used on all cluster members.

`root` privilege is required to run `mount`.

Examples

The first example shows how to mount `volume1-123` on the mount point `/u01/app/acfsmounts/myacfs`. The second example shows how to mount all the registered Oracle ACFS file systems. The dummy names (`none`) have been entered as placeholders for the device and directory as these arguments are required, but not used, when the `all` option is specified.

Example 13–11 Using the mount command

```bash
# /usr/bin/mount -v acfs /dev/asm/volume1-123 /u01/app/acfsmounts/myacfs
# /usr/bin/mount -v acfs -o all none none
```

umount/umountall

Purpose

Dismounts an Oracle ACFS file system on the AIX operating system.

Syntax and Description

```
umount [mount_point | volume_device]
umountall -F acfs
```

`umountall -F acfs` dismounts all Oracle ACFS file systems.

Table 13–15 Options for the AIX umount command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| `mount_point` | Specifies the directory where the file system is mounted. Valid only with `umount`.
| `volume_device` | Specifies the Oracle ADVM volume device name associated with the file system. Valid only with `umount`.
| `-F acfs` | Specifies the type of file system on AIX. `acfs` designates the Oracle ACFS type. Valid only with `umountall`.

`umount` and `umountall` detach an Oracle ACFS from the file system hierarchy on the current node. If a file system is busy, `umount` and `umountall` fail.

`root` privileges are required to run the `umount` and `umountall` commands.

Examples

The following examples show how to dismount an Oracle ACFS file system. The first example specifies the mount point of the file system that you want to dismount. The
second example specifies the volume device associated with the file system that you want to dismount. The third example dismounts all Oracle ACFS file systems.

Example 13–12 Using the umount command

```
# /usr/bin/umount /dev/asm/volume1-123
# /usr/bin/umount /u01/app/acfsmounts/myacfs
# /usr/bin/umountall -F acfs
```

Oracle ACFS Command-line Tools for Windows Environments

Table 13–16 contains a summary of the Oracle ACFS file system commands for Windows. These commands have been extended to support Oracle ACFS. All other Windows file system commands operate without change for Oracle ACFS.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acfschkdsk</td>
<td>Checks and repairs an Oracle ACFS file system on Windows.</td>
</tr>
<tr>
<td>acfsdismount</td>
<td>Dismounts an Oracle ACFS on Windows.</td>
</tr>
<tr>
<td>acfsformat</td>
<td>Creates an Oracle ACFS file system on Windows.</td>
</tr>
<tr>
<td>acfsmountvol</td>
<td>Mounts an Oracle ACFS file system on Windows.</td>
</tr>
<tr>
<td>acfsutil detach</td>
<td>Prepares the Oracle ACFS driver for module unload on Windows.</td>
</tr>
</tbody>
</table>

Table 13–17 contains a summary of the non-Oracle ACFS file system commands for Windows.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>advmutil dismount</td>
<td>Dismounts Oracle ASM volume devices for file systems that are not Oracle ACFS on Windows.</td>
</tr>
<tr>
<td>advmutil list</td>
<td>Lists Oracle ASM volume devices for file systems that are not Oracle ACFS on Windows.</td>
</tr>
<tr>
<td>advmutil mount</td>
<td>Mounts Oracle ASM volume devices for file systems that are not Oracle ACFS on Windows.</td>
</tr>
</tbody>
</table>

acfschkdsk

Purpose

Checks and repairs an Oracle ACFS file system.

Syntax and Description

```
acfschkdsk [/h]
acfschkdsk [/a | f] [/v] [/n | y] volume_device
```

Table 13–18 contains the options available with the `acfschkdsk` command.
acfschkdsk checks and repairs an existing Oracle ACFS. This command can only be run on a file system that has been dismounted clusterwide.

The Oracle ACFS driver must be loaded for acfschkdsk to work. If the driver is not loaded, the administrator is prompted to ensure this is intentional. For information about loading drivers, see "Oracle ACFS Drivers Resource Management" on page B-3.

The Oracle ACFS driver normally ensures that acfschkdsk is the only user of the file system clusterwide. In extreme cases it may be necessary to fix a file system without loading the driver if the file system automount causes the system to fail. The verifications that are normally done by the driver for exclusive access are bypassed in this case.

By default acfschkdsk only checks for and only reports errors. The /a flag must be specified to instruct acfschkdsk to fix errors in the file system.

In a few cases, acfschkdsk prompts for questions before proceeding to check a file system. For example, if acfschkdsk detects that another acfschkdsk is in progress on the file system, or if acfschkdsk detects that the Oracle ACFS driver is not loaded, or if the file system does not appear to be Oracle ACFS. In checking mode, acfschkdsk also prompts if there are transaction logs that have not been processed completely due to an incomplete shutdown. To run in a non-interactive mode, include either the /y or /n options to answer yes or no to any questions.

acfschkdsk creates working files before it checks a file system. These working files are created in the temp directory if space is available. If insufficient space is available, acfschkdsk attempts to write in the current working directory. The files acfschkdsk creates are roughly the size of the file system being checked divided by 32K. At most two files are allocated. These files are deleted when acfschkdsk has finished.

In the event that acfschkdsk finds a file or directory in the file system for which it cannot determine its name or intended location (possibly due to a corruption in its parent directory), it places this object in the \lost+found directory when acfschkdsk is run in fix mode. For security reasons, only the Windows Administrator can read files in \lost+found. If the administrator can later determine the original name and location of the file based on its contents, the file can be moved or copied into its intended location.

The file names in the \lost+found directory are in the following formats:

parent.id.file.id.time-in-sec-since-1970
parent.id.dir.id.time-in-sec-since-1970

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a</td>
<td>Specifies to automatically fix the file system.</td>
</tr>
<tr>
<td>/f</td>
<td>Forces the file system into mountable state without completing a file system check or fix.</td>
</tr>
<tr>
<td>/v</td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
<tr>
<td>/h</td>
<td>Displays the usage help text and exits.</td>
</tr>
<tr>
<td>/n</td>
<td>Answers no to any prompts.</td>
</tr>
<tr>
<td>/y</td>
<td>Answers yes to any prompts.</td>
</tr>
<tr>
<td>volume_device</td>
<td>Specifies the Oracle ADVM volume device.</td>
</tr>
</tbody>
</table>
The \textit{id} fields are the internal Oracle ACFS numeric identifiers for each file and directory in the file system.

You can use \texttt{acfsutil info id id mount_point} to attempt to determine the directory associated with parent.\textit{id}. This directory is assumed to be where the deleted object originated. For information about \texttt{acfsutil info file}, see “\texttt{acfsutil info file}” on page 13-92.

If the parent directory is not known, the parent \textit{id} field is set to \texttt{UNKNOWN}.

\begin{quote}
\textbf{Note:} It is not possible to see the contents of the \texttt{\textbackslash lost+found} directory from a snapshot.
\end{quote}

\section*{Examples}

The following example shows how to check an Oracle ACFS file system on Windows. The verbose mode is enabled in this example.

\begin{quote}
\textbf{Example 13–13 Using the \texttt{acfschkdsk} command}
\end{quote}

\texttt{C:\> acfschkdsk /v asm-volume1-311}

\begin{quote}
\textbf{acfsdismount}
\end{quote}

\section*{Purpose}

Dismounts an Oracle ACFS file system and removes its mount point (name space attachment).

\section*{Syntax and Description}

\begin{verbatim}
acfsdismount [/h]
acfsdismount [/v] {drive_letter | mount_point}
acfsdismount [/v]/all
\end{verbatim}

\begin{quote}
\textbf{Table 13–19} contains the options available with the \texttt{acfsdismount} command.
\end{quote}

\textbf{Table 13–19 Options for the \texttt{acfsdismount} command}

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/v</td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
<tr>
<td>/h</td>
<td>Displays help text and exits.</td>
</tr>
<tr>
<td>/all</td>
<td>Specifies to dismount all Oracle ACFS file systems on this node.</td>
</tr>
<tr>
<td>drive_letter</td>
<td>Specifies the drive letter followed by a colon.</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the full path of the mount point including the drive letter.</td>
</tr>
</tbody>
</table>

\texttt{acfsdismount} removes the mount point (name space attachment) for the specified file system on the current node and dismounts the file system if it is mounted. When the file system is in the dismounted state, the data is preserved on the device and the file system can be re-mounted with the \texttt{acfsmountvol} command.

Windows Administrator privileges are required to use the \texttt{acfsdismount} command.
Examples
The following examples show how to dismount an Oracle ACFS file system. The first example dismounts a file system using only the drive letter. The second example dismounts a file system using the full path name. The third example dismounts all mounted file systems. All the examples enable the verbose mode.

Example 13–14 Using the acfsdismount command
C:\> acfsdismount /v O:
C:\> acfsdismount /v O:\mnt\n
C:\oracle>acfsdismount /v /all
acfsdismount: valid path name: C:\oracle\acfsmounts\acfs1
acfsdismount: opening handle to volume C:\oracle\acfsmounts\acfs1
acfsdismount: locking volume C:\oracle\acfsmounts\acfs1
acfsdismount: dismounting volume C:\oracle\acfsmounts\acfs1
acfsdismount: removing volume mount point on C:\oracle\acfsmounts\acfs1
acfsdismount: closing handle to volume C:\oracle\acfsmounts\acfs1 and exiting cleanly

acfsformat

Purpose
Creates an Oracle ACFS file system.

Syntax and Description
acfsformat [/h]

Table 13–20 contains the options available with the acfsformat command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/v</td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
<tr>
<td>/n name</td>
<td>Specifies the name for the file system. This is also known as a volume label. acfsutil info fs returns the name if one was specified. This can also be displayed from the VOL_LABEL column in the V$ASM_ACFSVOLUMES view.</td>
</tr>
<tr>
<td>/f</td>
<td>Specifies the force option. This action creates the file system even if there is an existing Oracle ACFS on the device, although only if the file system is dismounted. This option overwrites structures on the original file system. Use this option with caution.</td>
</tr>
<tr>
<td>/h</td>
<td>Displays the usage help text.</td>
</tr>
<tr>
<td>/b blocksize</td>
<td>The default block size is 4K and this is the only size supported in 11g Release 2 11.2.</td>
</tr>
</tbody>
</table>
Oracle ACFS Command-line Tools for Windows Environments

Table 13–20 (Cont.) Options for the acfsformat command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blocks</td>
<td>Specifies the number of blocks that the file system should consume on the named device. The quantity specified can be in units of K (kilobytes), M (megabytes), G (gigabytes), or T (terabytes). If a unit is not specified, the default is bytes. If number of blocks specified is not a multiple of the block size, than the value is rounded up to the closest multiple. If this option is not specified, the entire device is consumed.</td>
</tr>
<tr>
<td>volume_device</td>
<td>Specifies an Oracle ADVM device file to be formatted.</td>
</tr>
</tbody>
</table>

acfsformat creates the on disk structure needed for Oracle ACFS to be mounted. acfsformat performs a quick format on the target volume. After acfsformat runs successfully, the USAGE column in the V$ASM_VOLUME view displays ACFS.

Windows Administrator privileges are not required to use this command. The minimum file system size is 200 MB. The Oracle ACFS driver must be loaded for acfsformat to work.

Examples
This example shows how to create an Oracle ACFS file system. The verbose option is specified in this example.

Example 13–15 Using the acfsformat command

C:\> acfsformat /v asm-volumel-311

acfsmountvol

Purpose
Mounts an Oracle ACFS file system.

Syntax and Description

acfsmountvol /h
acfsmountvol
acfsmountvol [/v] /all
acfsmountvol [/v] {drive_letter | dir} volume_device

Table 13–21 contains the options available with the acfsmountvol command.

Table 13–21 Options for the acfsmountvol command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/v</td>
<td>Specifies verbose mode. The progress is displayed as the operation occurs.</td>
</tr>
<tr>
<td>/h</td>
<td>Displays the help usage text and exits.</td>
</tr>
<tr>
<td>/all</td>
<td>Reads the ACFS mount registry created with acfsutil registry and mounts the file systems listed in it on this node.</td>
</tr>
<tr>
<td>drive_letter</td>
<td>The Windows drive letter to link to an Oracle ADVM volume device.</td>
</tr>
<tr>
<td>dir</td>
<td>Specifies the full directory of the mount point including the drive letter.</td>
</tr>
</tbody>
</table>
Oracle ACFS Command-line Tools for Windows Environments

acfsmountvol attaches an Oracle ACFS to the file system hierarchy at the specified path name or drive letter. dir must be an empty directory. Oracle ACFS mount points can be created on any empty directory and they can be hierarchical (nested).

After acfsmountvol runs successfully, the MOUNTPATH column in the V$ASM_VOLUME view displays the full path or drive letter on which the file system is now mounted. If no arguments are specified, the command lists all mounted Oracle ACFS file systems on this node.

It is not always possible to return the cause of a mount failure to the acfsmountvol command. When this happens Oracle ACFS writes the cause of the failure to the Windows system event logger.

An Oracle ACFS file system should only be mounted on one mount point. The same mount point name should be used on all cluster members.

Windows Administrator privileges are required to mount an Oracle ACFS.

Examples
The first example shows how to mount asm-volume1-311 on the mount point identified as the F: drive. The second example shows how to mount asm-volume1-215 on the mount point specified by c:\oracle\acfsmounts\acfs1\. The first two examples enable verbose mode. The third example lists all the mounted file systems on the node.

Example 13–16 Using the acfsmountvol command
C:\> acfsmountvol /v F: asm-volume1-215
C:\> acfsmountvol /v c:\oracle\acfsmounts\acfs1 asm-volume1-311
C:\oracle> acfsmountvol
asm-volume1-311
C:\oracle\acfsmounts\acfs1

acfsutil detach

Purpose
Prepares the Oracle ACFS driver for module unload.

Syntax and Description
acfsutil detach

acfsutil detach prepares Oracle ACFS for having its driver unloaded. Oracle ACFS registers itself as a base file system upon driver load. In order for the Windows service control manager to send a stop command to the driver, Oracle ACFS must unregister itself as a base file system in addition to deleting any device objects associated with the driver.

After acfsutil detach has completed successfully, and all volumes have been dismounted, then the administrator can run the Windows service control manager's
stop command to the Oracle ACFS driver. If the acfsutil detach command is not used, then the stop command does not call the Oracle ACFS driver unload routine. This command can only be run by the Windows Administrator. It is called automatically by the Oracle ACFS shutdown scripts.

Examples
The following examples show how to detach all Oracle ACFS file systems and unload drivers on Windows. The first example dismounts all the Oracle ACFS file systems volume devices. The second example detaches the volume devices.

Example 13–17 Using the acfsutil detach command
C:\> acfsdismount /all
C:\> acfsutil detach

advmutil dismount

Purpose
The advmutil dismount command dismounts Oracle ADVM volume devices for file systems that are not Oracle ACFS.

Syntax and Description
advmutil dismount [/unregister][drive_letter | dir]
advmutil dismount [/unregister][/all | /dg=disk_group]

Table 13–22 contains the options available with the Windows advmutil dismount command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drive_letter</td>
<td>Specifies the drive letter to dismount.</td>
</tr>
<tr>
<td>dir</td>
<td>Specifies the directory of the mount point, including the drive letter.</td>
</tr>
<tr>
<td>/all</td>
<td>Specifies to dismount all file systems on this node.</td>
</tr>
<tr>
<td>/unregister</td>
<td>Optionally unregister an Oracle ADVM volume device and its drive letter from the system registry. Upon startup of the Oracle ASM instance and Oracle ACFS, the unregistered drive letter and Oracle ADVM volume symbolic links are not created.</td>
</tr>
<tr>
<td>/dg=disk_group</td>
<td>Optional name of the disk group containing the registered Oracle ADVM volume devices to create drive letters or possibly mount or dismount file systems.</td>
</tr>
</tbody>
</table>

Note: To format an Oracle ADVM volume device with NTFS, it must be mounted on a drive letter. After formatting, Oracle ADVM volume devices with NTFS can be mounted on either a drive letter or a directory.

To successfully run this command, the local Oracle ASM instance must be running and the disk groups required by this command must have been created and mounted in the Oracle ASM instance and volumes enabled.
Examples

These examples show how to dismount a file system that is not Oracle ACFS.

1. The first example shows how to remove a drive letter for an Oracle ADVM volume device which disallows access to the file system.

2. The second example shows how to remove a drive letter for an Oracle ADVM volume device which disallows access to the file system and removes it from the registry.

3. The third example shows how to remove a drive letter for all registered Oracle ADVM volume devices which disallows access to all file systems.

4. The fourth example shows how to remove a drive letter for all registered Oracle ADVM volume devices in a particular Oracle ASM disk group which disallows access to all related file systems.

Example 13–18 Using the advmutil dismount command

C:\> advmutil dismount H:

C:\> advmutil dismount H: /unregister

C:\> advmutil dismount /all

C:\> advmutil dismount /dg=data

advmutil list

Purpose

The advmutil list command lists the Oracle ADVM volume devices that were registered with advmutil mount /register.

Syntax and Description

advmutil list /registry

Table 13–23 contains the options available with the Windows advmutil list command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list /registry</td>
<td>Lists the drive letter and corresponding Oracle ADVM volume device name contained in the Windows registry.</td>
</tr>
</tbody>
</table>

To successfully run this command, the local Oracle ASM instance must be running and the disk groups required by this command must have been created and mounted in the Oracle ASM instance and volumes enabled.

For information about listing Oracle ADVM volume devices for Oracle ACFS, see "acfsutil info file" on page 13-92.

Examples

The following example shows how to list all entries in the system registry.
Example 13–19 Using the advmutil list command

C:\> advmutil list /registry

<table>
<thead>
<tr>
<th>Drive Letter</th>
<th>Asm Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>H:</td>
<td>asm-volume1-123</td>
</tr>
<tr>
<td>K:</td>
<td>asm-volume2-245</td>
</tr>
</tbody>
</table>

advmutil mount

Purpose
The `advmutil mount` command mounts Oracle ADVM volume devices for file systems that are not Oracle ACFS.

Syntax and Description
`advmutil mount [/register] {drive_letter | dir} volume_device`
`advmutil mount [/all | /dg=disk_group]`

Table 13–24 contains the options available with the Windows `advmutil mount` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drive_letter</td>
<td>Specifies the drive letter to mount.</td>
</tr>
<tr>
<td>dir</td>
<td>Specifies the directory of the mount point, including the drive letter.</td>
</tr>
<tr>
<td>volume_device</td>
<td>Indicates the Oracle ADVM volume device.</td>
</tr>
<tr>
<td>/all</td>
<td>Specifies to mount all non-Oracle ACFS file systems on this node.</td>
</tr>
<tr>
<td>/register</td>
<td>Optionally register an Oracle ADVM volume device and its drive letter in the Windows system registry. After startup of the Oracle ASM instance and Oracle ACFS, all registered drive letters and Oracle ADVM volume symbolic links are created. This allows for automatic file system mounting by Windows as is also done for Oracle ACFS file systems.</td>
</tr>
<tr>
<td>/dg=disk_group</td>
<td>Optional name of the disk group containing the registered Oracle ADVM volume devices to create drive letters or possibly mount or dismount file systems.</td>
</tr>
</tbody>
</table>

Note: To format an Oracle ADVM volume device with NTFS, it must be mounted on a drive letter. After formatting, Oracle ADVM volume devices with NTFS can be mounted on either a drive letter or a directory.

To successfully run this command, the local Oracle ASM instance must be running and the disk groups required by this command must have been created and mounted in the Oracle ASM instance and volumes enabled.

For information about registering Oracle ADVM volume devices for Oracle ACFS, see "acfsutil registry" on page 13-96.
Examples

These examples show how to mount a file system that is not Oracle ACFS.

1. The first example shows how to create a drive letter for an Oracle ASM volume device for use as a non-Oracle ACFS access which you could then use to format the volume for use with NTFS.

2. The second example shows how to create a drive letter for an Oracle ASM volume device for use as a non-Oracle ACFS access which you could then use to format the volume for use with NTFS and save it in the Windows system registry.

3. The third example shows how to create a drive letter for all Oracle ASM volume devices which were saved in the system registry which also allows a file system to be accessible.

4. The fourth example shows how to create a drive letter for all Oracle ASM volume devices in a particular Oracle ASM disk group which were saved in the system registry which also allows a file system to be accessible.

Example 13–20 Using the advmutil mount command

C:\> advmutil mount H: asm-volume1-123
C:\> advmutil mount H: asm-volume1-123 /register
C:\> advmutil mount /all
C:\> advmutil mount /dg=data

Oracle ACFS Command-Line Tools for Tagging

Table 13–25 contains a summary of the commands for Oracle ACFS tagging.

You can use acfsutil help on all platforms to display help text. You run acfsutil version on all platforms to display the Oracle ACFS version.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acfsutil tag info</td>
<td>Displays the tags for directories or files in Oracle ACFS file systems.</td>
</tr>
<tr>
<td>acfsutil tag set</td>
<td>Adds a tag to directories or files in an Oracle ACFS file system.</td>
</tr>
<tr>
<td>acfsutil tag unset</td>
<td>Removes a tag from directories or files in an Oracle ACFS file system.</td>
</tr>
</tbody>
</table>

acfsutil tag info

Purpose
Displays the tag names for tagged directories or file names in Oracle ACFS file systems.

Syntax and Description
acfsutil tag info [-r] [-t tag] path [path ...]
acfsutil tag info [-t tag]

acfsutil -h displays help text and exits.

Table 13–26 contains the options available with the acfsutil tag info command.
The `acfsutil tag info` command can recursively apply the operation to all child files and subdirectories if the `\-r` option is included with specified directory path names.

If no path names are specified, the `acfsutil tag info` command searches all Oracle ACFS mount points for tagged files.

Only the paths of tagged files in an Oracle ACFS file system are displayed. If the `\-t tag` option is included, only tag names matching `tag` are displayed.

Any user may use this command to display tag info on a directory that the user has read access privileges.

Examples
The following example show the use of the `acfsutil tag info` command.

Example 13–21 Using the acfsutil tag info command
```
$ /sbin/acfsutil tag info -r /u01/app/acfsmounts/myacfs/myrepfiles/
```

`acfsutil tag set`

Purpose
Adds the given tag to the specified files or directories in an Oracle ACFS file system.

Syntax and Description

acfsutil tag set [-r] tag path [path ...]

acfsutil -h displays help text and exits.

Table 13–27 contains the options available with the `acfsutil tag set` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tag</code></td>
<td>Specifies a tag name string. Enclose the string in quotes if the string contains a space. The tag string can be composed of ASCII characters that include: a-b, A-Z, 0-9, the space character, the hyphen, and the underscore. The maximum length of a tag name is 32 characters.</td>
</tr>
<tr>
<td><code>path</code></td>
<td>Specifies the path string to one or more files or directories.</td>
</tr>
<tr>
<td><code>\-r</code></td>
<td>Specifies recursive action on the specified path.</td>
</tr>
</tbody>
</table>

The command can recursively apply the operation to all child files and subdirectories for the specified directory path names.
When adding a tag name to a file or directory, the existing tags on that file or directory remain unchanged. New files that are created after a directory is assigned a tag implicitly inherit tags from their parent directories. Existing files in the directory do not inherit the new tag; these files must be explicitly assigned the tag. Renaming or moving a file to a subdirectory does not cause the inheritance of tag names from the new parent directory.

Any user who has the privilege to modify the target file or directory may run this command.

Examples
The following example show the use of the `acfsutil tag set` command.

Example 13–22 Using the acfsutil tag set command

$ /sbin/acfsutil tag set repl_grp1 -r /u01/app/acfsmounts/myacfs/myrepfiles/*.dat

acfsutil tag unset

Purpose
Removes the given tag name from the specified file or directory.

Syntax and Description

acfsutil tag unset [-r] tag path [path ...]

acfsutil -h displays help text and exits.

Table 13–28 contains the options available with the `acfsutil tag unset` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tag</td>
<td>Specifies a tag name string. Enclose the string in quotes if the string contains a space.</td>
</tr>
<tr>
<td>path</td>
<td>Specifies the path string to one or more files or directories.</td>
</tr>
<tr>
<td>-r</td>
<td>Specifies recursive action on the specified path.</td>
</tr>
</tbody>
</table>

The command can recursively apply the operation to all child files and subdirectories for the specified directory path names.

When removing a tag name from a file or directory, other existing tags on that file or directory remain unchanged.

Any user who has privilege to modify the target file or directory may run this command.

Examples
The following example show the use of the `acfsutil tag unset` command.

Example 13–23 Using the acfsutil tag unset command

$ /sbin/acfsutil tag unset repl_grp1 -r
 /u01/app/acfsmounts/myacfs/myrepfiles/*.log
Oracle ACFS Command-Line Tools for Replication

Table 13–29 contains a summary of the commands for Oracle ACFS replication.

You can use `acfsutil help` on all platforms to display help text. You run `acfsutil version` on all platforms to display the Oracle ACFS version.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>acfsutil repl bg</code></td>
<td>Starts, stops, or displays information about the Oracle ACFS replication background processes.</td>
</tr>
<tr>
<td><code>acfsutil repl info</code></td>
<td>Displays information about replication processing on an Oracle ACFS file system.</td>
</tr>
<tr>
<td><code>acfsutil repl init</code></td>
<td>Initiates replication on files in an Oracle ACFS file system.</td>
</tr>
<tr>
<td><code>acfsutil repl pause</code></td>
<td>Pauses replication on an Oracle ACFS file system.</td>
</tr>
<tr>
<td><code>acfsutil repl resume</code></td>
<td>Resumes replication on an Oracle ACFS file system.</td>
</tr>
<tr>
<td><code>acfsutil repl sync</code></td>
<td>Synchronizes primary and standby file systems.</td>
</tr>
<tr>
<td><code>acfsutil repl terminate</code></td>
<td>Stops all replication activity on the Oracle ACFS file system.</td>
</tr>
<tr>
<td><code>acfsutil repl trace</code></td>
<td>Specifies the trace level for replication information.</td>
</tr>
<tr>
<td><code>acfsutil repl update</code></td>
<td>Updates replication information while replication is running.</td>
</tr>
</tbody>
</table>

Table 13–30 contains the options available with the `acfsutil repl bg` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>start</code></td>
<td>Starts the replication background processing.</td>
</tr>
<tr>
<td><code>stop</code></td>
<td>Stops the replication background processing</td>
</tr>
<tr>
<td><code>info</code></td>
<td>Displays information about the replication background processes.</td>
</tr>
<tr>
<td><code>mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

Oracle ACFS replication uses background processes to transport file system changes, to communicate between the sites hosting the primary and standby file systems, to monitor the state of replication processing, and to apply file system changes to the standby file system. These background processes must be running for replication to function.
When replication is started with the `acfsutil repl init` command, these background processes are started and are registered with Oracle Clusterware so that they are automatically restarted after a reboot or system crash. Usually it is not necessary to run the `acfsutil repl bg` command because Oracle Clusterware automatically starts and stops the background processes as file systems are mounted and unmounted or node membership changes after replication is initialized. However, replication cannot progress if one of the daemons is not running. In this case running `repl bg stop` followed by `repl bg start` ensures that all the daemons are running.

`acfsutil bg start` ensures that all the necessary daemons for replication are running. The daemons may run on different cluster nodes. `acfsutil bg stop` ensures that no daemons for the file system are running on the local node and relocates the daemons to another node if available.

You must have system administrator privileges to run the `acfsutil repl bg start` or `acfsutil repl bg stop` commands. You must have system administrator or Oracle ASM administrator privileges to run the `acfsutil repl bg info` command.

Examples

The following examples show the use of the `acfsutil repl bg` command.

Example 13–24 Using the acfsutil repl bg command

```bash
$ /sbin/acfsutil repl bg start /u01/app/acfsmounts/myacfs
$ /sbin/acfsutil repl bg stop /u01/app/acfsmounts/myacfs
$ /sbin/acfsutil repl bg info /u01/app/acfsmounts/myacfs
```

acfsutil repl info

Purpose

Displays information about replication processing on an Oracle ACFS file system.

Syntax and Description

```
acfsutil repl info -h
acfsutil repl info -c [-v] mount_point
acfsutil repl info -s [-v][-l] [-n number[m|h|d|w|y]]
    [-r start_time[#stop_time]] [-f eventlog] mount_point
acfsutil repl info [-a|-e|-t][-v][-l]
    [-r start_time[#stop_time]] [-f eventlog] mount_point
```

`acfsutil repl info -h` displays help text and exits.

Table 13–31 contains the options available with the `acfsutil repl info` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Displays only apply records from the replication event log. An apply record contains the date and time that the set of file system changes were captured on the primary file system and the date and time that they were applied on the standby file system.</td>
</tr>
<tr>
<td>-c</td>
<td>Displays configuration information.</td>
</tr>
<tr>
<td>-e</td>
<td>Displays only error records from the replication event log.</td>
</tr>
</tbody>
</table>
To display information about replication configuration, use `acfsutil repl info` with the `-c` option. To display information about replication statistics, use `acfsutil repl info` with the `-s` option. To display information about replication events, use `acfsutil repl info` with the `-a`, `-e`, or `-t` options.

You must have system administrator or Oracle ASM administrator privileges to run this command.

Examples
The following examples show the use of the `acfsutil repl info` command.

Example 13–25 Using the `acfsutil repl info` command

$ /sbin/acfsutil repl info -c /u01/app/acfsmounts/myacfs

$ /sbin/acfsutil repl info -s -n d5 /u01/app/acfsmounts/myacfs

$ /sbin/acfsutil repl info -a -v /u01/app/acfsmounts/myacfs
acfsutil repl init

Purpose
Initiates replication on all the files in an Oracle ACFS file system or only those files with a specified list of tags.

Syntax and Description

```bash
acfsutil repl init -h

acfsutil repl init primary -s standby_connect_string [tagname...] [-m standby_mount_point] [-c primary_service] [-d trace_level] [-z [on | off]] mount_point

acfsutil repl init standby -p primary_connect_string [tagname...] [-c standby_service] [-d trace_level] [-z [on | off]] mount_point
```

`acfsutil repl init -h` displays help text and exits.

Table 13–32 contains the options available with the `acfsutil repl init` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Specifies replication of the primary file system.</td>
</tr>
<tr>
<td>standby</td>
<td>Specifies replication of the standby file system.</td>
</tr>
<tr>
<td>-s standby_connect_string</td>
<td>Specifies the connection string for the site hosting the standby file system. The user in the connection string must have SYSASM and SYSDBA privileges.</td>
</tr>
<tr>
<td>-p primary_connect_string</td>
<td>Specifies the connection string for the site hosting the primary file system. The user in the connection string must have SYSASM and SYSDBA privileges.</td>
</tr>
<tr>
<td>tagname</td>
<td>Specifies the tag names of the files to be replicated.</td>
</tr>
<tr>
<td>-m standby_mount_point</td>
<td>Specifies the directory where the standby file system is mounted if it is different than the primary file system. This is valid only for the primary file system initialization.</td>
</tr>
<tr>
<td>-c primary_service</td>
<td>Specifies the service name for the primary file system. Required if the primary file system is using a different service name than the standby file system.</td>
</tr>
<tr>
<td>-c standby_service</td>
<td>Specifies the service name for the standby file system. Required if the standby file system is using a different service name than the primary file system.</td>
</tr>
<tr>
<td>-d trace_level</td>
<td>Specifies the trace level setting (0..6) for replication logs.</td>
</tr>
<tr>
<td>-z on</td>
<td>off</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted. For <code>repl init primary</code>, <code>mount_point</code> specifies the primary file system. For <code>repl init standby</code>, <code>mount_point</code> specifies the standby file system.</td>
</tr>
</tbody>
</table>

When the `acfsutil repl init primary` command completes successfully, processing begins to replicate initial copies of all specified files to the standby file system. In addition, any changes to these files and any new files subsequently created in the file system on the primary file system are captured and transported to the
standby file system. However, successful completion of the command does not indicate that the specified files have been copied in full to the standby file system. To monitor the progress of the initial replication of all specified files to the standby file system, users run the acfsutil repl info -c command.

The first phase of the initial replication copy process begins with a complete copy of the file system directory tree structure, not the files within the directory tree, to the standby file system. During this time, attempts to rename directories may fail. After the directory tree structure has been successfully copied to the standby file system, replication initialization begins the second phase of the initial copy process: copying all files to be replicated to the standby file system. While a file is being copied to the standby file system during this initial replication phase, writes and truncates to that file are blocked.

Symbolic link files are replicated as is. If the symbolic link resolves to an absolute path name, and that path name does not exist on the standby file system, then referencing the symbolic link results in errors.

A new service name must be created for replication. You cannot use the +ASM service name.

A file system being replicated can only be mounted on one path for the primary or standby file system. Otherwise, dismounting any one of the paths on a node where it is mounted on multiple paths stops the replication background threads.

A replicated Oracle ACFS file system must be mounted on the same directory within a cluster. The file system does not have to be mounted on all of the nodes in a cluster, but if it is mounted, it must be mounted on the directory specified with the acfsutil repl init command. In addition, no other file system can be mounted on that directory on other nodes.

A single Oracle ACFS file system cannot be configured both as a primary and a standby file system. If replication is configured on the same host or within the same cluster, then the primary and standby file systems cannot use the same named mount point.

The sites hosting the primary and standby file systems must be running the same operating system and must have the same machine architecture.

Oracle wallets can also be used to manage security credentials.

See Also:
- *Oracle Database Advanced Security Administrator’s Guide* for information about Oracle wallets
- *Oracle Database SecureFiles and Large Objects Developer’s Guide* for information about wallet management
- *Oracle Database Net Services Reference* for information about wallet parameters in the SQLNET.ORA file

You must have system administrator privileges to run this command.

Examples
The following examples show the use of the acfsutil repl init command.

Example 13–26 Using the acfsutil repl init command

```
$ /sbin/acfsutil repl init primary
   -s standby_admin/standby_passwd@standby_repl_site
```
acfsutil repl pause

Purpose
Pauses replication on an Oracle ACFS file system.

Syntax and Description
acfsutil repl pause
acfsutil repl pause -h
acfsutil repl pause mount_point

acfsutil repl pause -h displays help text and exits.
Table 13–33 contains the options available with the acfsutil repl pause command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

The acfsutil repl pause command temporarily stops the replication process until the acfsutil repl resume command is run. The command can be run at either the site hosting the primary or a standby file system. acfsutil repl resume should be run soon after acfsutil repl pause to resume replication.

The acfsutil repl pause command can be used to temporarily stop the transportation of replication logs from the primary file system to the standby file system, but logs continue to be generated on the primary file system. Note that logs are not deleted until they are transported to the standby file system and applied to the standby file system.

The acfsutil repl pause command can also be used to temporarily stop the application of replication logs to a standby file system, but the command does not stop the transportation of logs to the standby file system. Note that logs are not deleted from the standby file system until they are applied to the file system.

When replication is paused on either the site hosting the primary or standby file system, replication logs still accumulate on the standby and primary file system. These logs can consume all available storage space in the file system so you must check available storage on the sites hosting the file systems if you have paused replication. Ensure that you run acfsutil repl resume before the accumulated replication logs consume all available space in the file system.

You must have system administrator or Oracle ASM administrator privileges to run this command.

Examples
The following example shows the use of the acfsutil repl pause command.

Example 13–27 Using the acfsutil repl pause command

$ /sbin/acfsutil repl pause /u01/app/acfsmounts/myacfs
acfsutil repl resume

Purpose
Resumes replication on an Oracle ACFS file system where replication has been paused.

Syntax and Description

```
acfsutil repl resume
acfsutil repl resume -h
acfsutil repl resume mount_point
```

acfsutil repl resume -h displays help text and exits.

Table 13–34 contains the options available with the `acfsutil repl resume` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

This command resumes the replication process after the `acfsutil repl pause` command has been run. This command should be run soon after replication has been paused with the `acfsutil repl pause` command.

You must have system administrator or Oracle ASM administrator privileges to run this command.

Examples
The following example shows the use of the `acfsutil repl resume` command.

```
Example 13–28 Using the acfsutil repl resume command
$ /sbin/acfsutil repl resume /u01/app/acfsmounts/myacfs
```

acfsutil repl sync

Purpose
Synchronizes primary and standby file systems.

Syntax and Description

```
acfsutil repl sync
acfsutil repl sync -h
acfsutil repl sync [apply] mount_point
```

acfsutil repl sync -h displays help text and exits.

Table 13–35 contains the options available with the `acfsutil repl sync` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply</td>
<td>Specifies that all changes be applied to the standby file system.</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the primary file system is mounted.</td>
</tr>
</tbody>
</table>
The `acfsutil repl sync` command can be used to synchronize the state of the primary and standby file system. This command can only be run on the site hosting the primary file system.

You should first quiesce your applications and run a `sync(1)` call so that the synchronized state is known and meaningful to you. The `acfsutil repl sync` command then causes all outstanding replication data to be shipped from the primary to the standby file system.

The `acfsutil repl sync` command returns success when this transfer is complete or, if the `apply` parameter is supplied, when all of these changes have been successfully applied to the standby file system. At this point, unless an unmount of the last node on the primary site cluster is about to occur, applications can be restarted. `acfsutil repl sync` can be used prior to dismounting the file system on the last node to ensure that all modifications have been sent to the standby file system.

If `acfsutil repl info -c` reports the primary file system is in the `Initializing` state, the `acfsutil repl sync` command does not guarantee that all files to be replicated in the file system have been sent to the standby file system. Files that existed in the file system prior to running the `acfsutil repl init` command are sent to the standby file system in the background.

You must have system administrator or Oracle ASM administrator privileges to run this command.

Examples

The following example shows the use of the `acfsutil repl sync` command.

```
Example 13–29 Using the acfsutil repl sync command

$ /sbin/acfsutil repl sync /u01/app/acfsmounts/myacfs
```

acfsutil repl terminate

Purpose

Stops all replication activity on the Oracle ACFS file system at the site where it is run.

Syntax and Description

```
acfsutil repl terminate -h
acfsutil repl terminate primary mount_point
acfsutil repl terminate standby [immediate] mount_point
```

`acfsutil repl terminate -h` displays help text and exits.

Table 13–36 contains the options available with the `acfsutil repl terminate` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Stops replication on the primary file system.</td>
</tr>
<tr>
<td>standby</td>
<td>Stops replication on the standby file system.</td>
</tr>
<tr>
<td>immediate</td>
<td>Stops replication processing immediately on the standby file system.</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>
The `acfsutil repl terminate` command stops all replication processing. When terminating replication, you should terminate replication for the primary file system first, and then the standby file system. The command must be run on both sites if both sites hosting the file systems are available.

After `acfsutil repl terminate standby` has been run, you can use the standby file system in read-write mode. After `acfsutil repl terminate` has been run on either the primary file system or standby file system, you must start replication from the beginning with the `acfsutil repl init` command.

The `repl terminate standby` command waits until replication data at the standby file system has been applied. If you want to terminate replication immediately without applying all the replication data, use the `immediate` option. However, this option can leave some files at the standby file system in an indeterminate state.

To momentarily stop Oracle ACFS replication, you can use the `acfsutil repl pause` command, followed soon after by the `acfsutil repl resume` command.

You must have system administrator privileges to run this command.

Examples

The following example shows the use of the `acfsutil repl terminate` command.

```
Example 13–30  Using the acfsutil repl terminate command

$ /sbin/acfsutil repl terminate /u01/app/acfsmounts/myacfs
```

acfsutil repl trace

Purpose
Sets the replication trace level for gathering trace information on an Oracle ACFS file system.

Syntax and Description

```
acfsutil repl trace -h
acfsutil repl trace level mount_point
```

- `acfsutil repl trace -h` displays help text and exits.
- `acfsutil repl trace level mount_point`

Table 13–38 contains the options available with the `acfsutil repl trace` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>level</code></td>
<td>Specifies the trace level setting (0..6). The default level is 2.</td>
</tr>
<tr>
<td><code>mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

Increasing the trace level can have a performance impact and should be done at the recommendation of Oracle support services.

Trace files for Oracle ACFS replication are stored in the following locations:

- `GRID_HOME/log/host_name/acfsrepl*`
- `GRID_HOME/log/host_name/client/acfsutil.log`

You must have system administrator or Oracle ASM administrator privileges to run this command.
Examples
The following example shows the use of the `acfsutil repl trace` command.

Example 13–31 Using the `acfsutil repl trace` command
$ /sbin/acfsutil repl trace 5 /u01/app/acfsmounts/myacfs

acfsutil repl update

Purpose
Updates replication information while replication is running on an Oracle ACFS file system.

Syntax and Description
```
acfsutil repl update -h
acfsutil repl update
   [-p primary_connect_string | -s standby_connect_string]
   [-z on|off] mount_point
```

`acfsutil repl update -h` displays help text and exits.

Table 13–38 contains the options available with the `acfsutil repl update` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-p primary_connect_string</code></td>
<td>Specifies the connection string for the primary file system. The user in the connection string must have <code>SYSASM</code> and <code>SYSDBA</code> privileges.</td>
</tr>
<tr>
<td><code>-s standby_connect_string</code></td>
<td>Specifies the connection string for the standby file system. The user in the connection string must have <code>SYSASM</code> and <code>SYSDBA</code> privileges.</td>
</tr>
<tr>
<td>`-z on</td>
<td>off`</td>
</tr>
<tr>
<td><code>mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

The `acfsutil repl update` command updates replication information after replication has been started. This command can only be run on the site hosting the primary file system. The connection strings for the primary and standby file systems can be altered.

While replication is running, compression can be turned on or off with the `-z` option. You must have system administrator privileges to run this command.

Examples
The following example shows the use of the `acfsutil repl update` command.

Example 13–32 Using the `acfsutil repl update` command
$ /sbin/acfsutil repl update -s mystandby@oracle.com /u01/app/acfsmounts/myacfs
Oracle ACFS Command-Line Tools for Security

Table 13–39 contains a summary of the commands for Oracle ACFS security.

You can use `acfsutil help` on all platforms to display help text. You run `acfsutil version` on all platforms to display the Oracle ACFS version.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acfsutil sec admin add</td>
<td>Adds a security administrator.</td>
</tr>
<tr>
<td>acfsutil sec admin password</td>
<td>Changes the password of a security administrator.</td>
</tr>
<tr>
<td>acfsutil sec admin remove</td>
<td>Removes a security administrator.</td>
</tr>
<tr>
<td>acfsutil sec batch</td>
<td>Runs a batch file.</td>
</tr>
<tr>
<td>acfsutil sec disable</td>
<td>Disables Oracle ACFS security.</td>
</tr>
<tr>
<td>acfsutil sec enable</td>
<td>Enables Oracle ACFS security.</td>
</tr>
<tr>
<td>acfsutil sec info</td>
<td>Displays Oracle ACFS file system security information.</td>
</tr>
<tr>
<td>acfsutil sec info file</td>
<td>Lists the security realms that a specified file or directory belongs to.</td>
</tr>
<tr>
<td>acfsutil sec init</td>
<td>Initializes Oracle ACFS file system security.</td>
</tr>
<tr>
<td>acfsutil sec load</td>
<td>Loads Oracle ACFS file system security metadata.</td>
</tr>
<tr>
<td>acfsutil sec prepare</td>
<td>Prepares an Oracle ACFS file system for security.</td>
</tr>
<tr>
<td>acfsutil sec realm add</td>
<td>Adds objects to an Oracle ACFS file system realm.</td>
</tr>
<tr>
<td>acfsutil sec realm clone</td>
<td>Clones an Oracle ACFS file system realm.</td>
</tr>
<tr>
<td>acfsutil sec realm create</td>
<td>Creates an Oracle ACFS file system realm.</td>
</tr>
<tr>
<td>acfsutil sec realm delete</td>
<td>Removes objects from an Oracle ACFS file system realm.</td>
</tr>
<tr>
<td>acfsutil sec realm destroy</td>
<td>Removes an Oracle ACFS file system realm.</td>
</tr>
<tr>
<td>acfsutil sec rule clone</td>
<td>Clones an Oracle ACFS file system security rule.</td>
</tr>
<tr>
<td>acfsutil sec rule create</td>
<td>Creates an Oracle ACFS file system security rule.</td>
</tr>
<tr>
<td>acfsutil sec rule destroy</td>
<td>Removes an Oracle ACFS file system security rule.</td>
</tr>
<tr>
<td>acfsutil sec rule edit</td>
<td>Updates an Oracle ACFS file system security rule.</td>
</tr>
<tr>
<td>acfsutil sec ruleset clone</td>
<td>Clones an Oracle ACFS file system security rule set.</td>
</tr>
<tr>
<td>acfsutil sec ruleset create</td>
<td>Creates an Oracle ACFS file system security rule set.</td>
</tr>
<tr>
<td>acfsutil sec ruleset destroy</td>
<td>Removes an Oracle ACFS file system rule set.</td>
</tr>
<tr>
<td>acfsutil sec ruleset edit</td>
<td>Updates an Oracle ACFS file system rule set.</td>
</tr>
<tr>
<td>acfsutil sec save</td>
<td>Saves Oracle ACFS file system security metadata.</td>
</tr>
</tbody>
</table>

acfsutil sec admin add

Purpose

Adds a new security administrator for an Oracle ACFS file system.

Syntax and Description

```
acfsutil sec admin add -h
acfsutil sec admin add admin
```
acfsutil sec admin add -h displays help text and exits.

Table 13–40 contains the options available with the acfsutil sec admin add command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>Specifies a security administrator user name. The user specified must be an existing operating system user and a member of the security group specified with the acfsutil sec init command.</td>
</tr>
</tbody>
</table>

Security administrators are common for all Oracle ACFS file systems in a cluster. A temporary password must be provided for the new security administrator. The password must conform to the format that is described in “acfsutil sec init” on page 13-67.

The new security administrator can change the password with the acfsutil sec admin password command. For information, refer to “acfsutil sec admin password” on page 13-62.

Security administrators are allowed to browse all directories in an Oracle ACFS file system whether or not they have the underlying operating system permissions and whether or not any realm checks allow it. This enables a security administrator to check the location of the files when securing them with Oracle ACFS security realms. However, a security administrator cannot view the contents of individual files without the appropriate operating system and security realm permissions.

Only an existing security administrator can run this command.

Examples
The following example shows the use of the acfsutil sec admin add command.

Example 13–33 Using the acfsutil sec admin add command

```bash
$ /sbin/acfsutil sec admin add sec_admin_three
```

acfsutil sec admin password

Purpose
Changes the password of a security administrator for an Oracle ACFS file system.

Syntax and Description
acfsutil sec admin password -h
acfsutil sec admin password

acfsutil sec admin password -h displays help text and exits.

The acfsutil sec admin password command changes the security password for the administrator that is running the command. When you run this command, you are prompted to enter a new password. The password must conform to the format that is described in “acfsutil sec init” on page 13-67.

Every time a security administrator runs an acfsutil sec command, the administrator is prompted for the security administrator's password.
Note: When prompting for the security administrator's password, the following text displays: Realm management password

The password required is the Oracle ACFS security administrator's password, not the operating system password of the user.

Only a security administrator can run this command.

Examples
The following example shows the use of the acfsutil sec admin password command.

Example 13–34 Using the acfsutil sec admin password command
$ /sbin/acfsutil sec admin password

acfsutil sec admin remove

Purpose
Removes a security administrator from an Oracle ACFS file system.

Syntax and Description
acfsutil sec admin remove -h
acfsutil sec admin remove admin

acfsutil sec admin remove -h displays help text and exits.
Table 13–41 contains the options available with the acfsutil sec admin remove command.

Table 13–41 Options for the acfsutil sec admin remove command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>Specifies an existing security administrator user name.</td>
</tr>
</tbody>
</table>

Only a security administrator can run this command.

Examples
The following example shows the use of the acfsutil sec admin remove command.

Example 13–35 Using the acfsutil sec admin remove command
$ /sbin/acfsutil sec admin remove sec_admin_three

acfsutil sec batch

Purpose
Runs a specified batch file.
Syntax and Description

\texttt{acfsutil sec batch -h}
\texttt{acfsutil sec batch batch_file}

\texttt{acfsutil sec batch -h} displays help text and exits.

Table 13–42 contains the options available with the \texttt{acfsutil sec batch} command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{batch_file}</td>
<td>Specifies an existing batch file name. The batch file contains a list of \texttt{acfsutil sec} commands.</td>
</tr>
</tbody>
</table>

The batch file can only contain security realm management commands. Interactive commands are not recommended. The \texttt{acfsutil sec admin add}, \texttt{acfsutil sec admin password}, and \texttt{acfsutil sec init} commands are not supported in the batch file. Also, other \texttt{acfsutil} commands, such as \texttt{acfsutil encr} commands, are not allowed in the batch file. If a command in the batch file fails, subsequent commands in the batch file are not run.

The following are examples of commands that can be in a batch file:

\begin{verbatim}
acfsutil sec realm create my_realm1 -m /mnt1 -e off
acfsutil sec realm create my_realm2 -m /mnt2 -e off
\end{verbatim}

Only a security administrator can run this command. When the command is run, the administrator is prompted once for a password.

Examples

The following example shows the use of the \texttt{acfsutil sec batch} command.

\begin{verbatim}
Example 13–36 Using the \texttt{acfsutil sec batch} command
$ /sbin/acfsutil sec batch my_batch_file
\end{verbatim}

\texttt{acfsutil sec disable}

Purpose

Disables Oracle ACFS security on a mount point or a realm in a mount point.

Syntax and Description

\texttt{acfsutil sec disable -h}
\texttt{acfsutil sec disable -m mount_point} [\texttt{realm}]

\texttt{acfsutil sec disable -h} displays help text and exits.

Table 13–43 contains the options available with the \texttt{acfsutil sec disable} command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{m mount_point}</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td>\texttt{realm}</td>
<td>Specifies the name of the security realm in the Oracle ACFS file system.</td>
</tr>
</tbody>
</table>
The `acfsutil sec disable -m mount_point` command disables security functionality on the Oracle ACFS file system specified by the mount point. When security is disabled on the file system, security realms do not enforce realm authorization.

The `acfsutil sec disable -m mount_point realm` command disables security for a specific realm.

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec disable` command.

Example 13–37 Using the acfsutil sec disable command

```
$ /sbin/acfsutil sec disable -m /u01/app/acfsmounts/myacfs my_realm
```

acfsutil sec enable

Purpose
Enables Oracle ACFS security on a mount point or a realm in a mount point.

Syntax and Description
```
acfsutil sec enable -h
acfsutil sec enable -m mount_point [realm]
```

`acfsutil sec enable -h` displays help text and exits.

Table 13–44 contains the options available with the `acfsutil sec enable` command.

Table 13–44 Options for the acfsutil sec enable command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>realm</code></td>
<td>Specifies the name of the security realm.</td>
</tr>
</tbody>
</table>

The `acfsutil sec enable -m mount_point` command enables security functionality on the Oracle ACFS file system specified by the mount point. When security is enabled on the file system, security realms that have been enabled enforce realm authorization. You should run this command before enabling any individual security realm.

The `acfsutil sec enable -m mount_point realm` command enables security for a specific realm. The realm enforces authorization if security has been enabled on the file system.

Only a security administrator can run this command.

Examples

These example shows the use of the `acfsutil sec enable` command.

Example 13–38 Using the acfsutil sec enable command

```
$ /sbin/acfsutil sec enable -m /u01/app/acfsmounts/myacfs
$ /sbin/acfsutil sec enable -m /u01/app/acfsmounts/myacfs my_realm
```
acfsutil sec info

Purpose
Displays information about Oracle ACFS security.

Syntax and Description
```shell
acfsutil sec info -h
acfsutil sec info -m mount_point
       [[-n [realm] | -l [rule] | -s [ruleset] | -c ]]
```

`acfsutil sec info -h` displays help text and exits.

Table 13–45 contains the options available with the `acfsutil sec info` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td>-n realm</td>
<td>Displays information about the specified security realm. If the realm name is omitted, a list of all realms is displayed.</td>
</tr>
<tr>
<td>-l rule</td>
<td>Displays information about the specified rule. If the rule name is omitted, a list of all rules is displayed.</td>
</tr>
<tr>
<td>-s ruleset</td>
<td>Displays information about the specified rule set. If the rule set name is omitted, a list of all rule sets is displayed.</td>
</tr>
<tr>
<td>-c</td>
<td>Lists all the command rules.</td>
</tr>
</tbody>
</table>

The `acfsutil sec info` command retrieves information about the list of realms, rules, and rulesets on the specified mount point. By specifying a particular realm, rule, or ruleset, you can retrieve information specific about the specified realm, rule, or ruleset.

If the `-m` option is specified without any other options, then the security enabled status and prepared status are displayed for the specified mount point.

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec info` command.

Example 13–39 Using the acfsutil sec info command
```shell
$ /sbin/acfsutil sec info -m /u01/app/acfsmounts/myacfs -n my_realm
```

acfsutil sec info file

Purpose
Lists the names of the Oracle ACFS security realms that the specified file or directory belongs to.

Syntax and Description
```shell
acfsutil sec info file -h
acfsutil sec info file -m mount_point path
```
acfsutil sec info file -h displays help text and exits.

Table 13–46 contains the options available with the `acfsutil sec info file` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td>path</td>
<td>Specifies the path of the file or directory in the file system.</td>
</tr>
</tbody>
</table>

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec info file` command.

Example 13–40 Using the acfsutil sec info file command

```
$ /sbin/acfsutil sec info file -m /u01/app/acfsmounts/myacfs
  /u01/app/acfsmounts/myacfs/myfiles
```

acfsutil sec init

Purpose
Initializes Oracle ACFS security.

Syntax and Description

```
acfsutil sec init -h
acfsutil sec init -u admin -g admin_sec_group
```

acfsutil sec init -h displays help text and exits.

Table 13–47 contains the options available with the `acfsutil sec init` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u admin</td>
<td>Specifies the first security administrator user name. The user specified must be an existing operating system user and a member of the operating system group specified by the -g option.</td>
</tr>
<tr>
<td>-g admin_sec_group</td>
<td>Specifies the name of the security group for the administrator. The group specified must be an existing operating system group.</td>
</tr>
</tbody>
</table>

The `acfsutil sec init` command creates the storage necessary for security credentials and identifies an operating system user as the first security administrator. The command also identifies the operating system group that is the designated security group. All users that are security administrators must be members of the designated security group. Security administrators are common for all Oracle ACFS file systems.

The `acfsutil sec init` command is run once to set up Oracle ACFS security for each cluster and can be run from any node in the cluster. Other security commands can also be run from any node in a cluster.
Only the root user can run this command. The root user specifies a temporary password for the security administrator. The security administrator password must conform to the following format:

- The maximum number of characters is 20.
- The minimum number of characters is 8.
- The password must contain at least one digit.
- The password must contain at least one letter.

The new security administrator can change the password with the `acfsutil sec admin password` command. For information, refer to "acfsutil sec admin password" on page 13-62.

Security administrators are allowed to browse all directories in an Oracle ACFS file system whether or not they have the underlying operating system permissions and whether or not any realm checks allow it. This enables a security administrator to check the location of the files when securing them with Oracle ACFS security realms. However, a security administrator cannot view the contents of individual files without the appropriate operating system and security realm permissions.

Examples
The following example shows the use of the `acfsutil sec init` command.

Example 13–41 Using the acfsutil sec init command
$ /sbin/acfsutil sec init -u grid -g asmadmin

acfsutil sec load

Purpose
Loads Oracle ACFS security metadata into a file system identified by a mount point.

Syntax and Description
```
acfsutil sec load -h
acfsutil sec load -m mount_point -p file
```

acfsutil sec load -h displays help text and exits.

Table 13–48 contains the options available with the acfsutil sec load command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td>-p file</td>
<td>Specifies the name of an existing saved security metadata file.</td>
</tr>
</tbody>
</table>

The `acfsutil sec load` command loads the security metadata in a saved XML file into the specified Oracle ACFS file system.

To run the `acfsutil sec load` command, the destination mount point must have a file system that has been prepared for security and does not contain any user-created security objects.

If the file system mounted on destination mount point contains security objects, then you must run `acfsutil sec prepare -u` to remove all previously created security
objects on the file system. After successfully running `acfsutil sec prepare -u`, you must run `acfsutil sec prepare` to prepare the file system for security. After successfully running `acfsutil sec prepare`, you can run `acfsutil sec load` on the file system. For information about preparing security on or removing security from a file system, refer to “acfsutil sec prepare” on page 13-69.

The `acfsutil sec load` command does not load system security realms from the backup file. System security realms are created with the `acfsutil sec prepare` command; `acfsutil sec load` does not recreate these realms. For information about the system-created security realms, refer to “acfsutil sec prepare” on page 13-69.

Only a security administrator can run this command.

Examples

The following example shows the use of the `acfsutil sec load` command.

Example 13–42 Using the `acfsutil sec load` command

```
$ /sbin/acfsutil sec load -m /u01/app/acfsmounts/myacfs -p my_metadata_file.xml
```

acfsutil sec prepare

Purpose

Prepares an Oracle ACFS file system for security features.

Syntax and Description

```
acfsutil sec prepare -h
acfsutil sec prepare [-u] -m mount_point
```

`acfsutil sec prepare -h` displays help text and exits.

Table 13–49 contains the options available with the `acfsutil sec prepare` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>-u</code></td>
<td>Backs out security for the specified mount point.</td>
</tr>
<tr>
<td></td>
<td>This command removes security from in the file system and reverses the file system to the state before <code>acfsutil sec prepare</code> was run on the file system.</td>
</tr>
<tr>
<td></td>
<td>This command removes all realm-secured files and directories from the realms and then destroys all Oracle ACFS security rules, rule sets and realms from the file system. However, the .Security directory and its contents, including log files and the security metadata backup files, are not deleted.</td>
</tr>
<tr>
<td></td>
<td>If you want to remove encryption and security is being used, then this command must be run before encryption is backed out.</td>
</tr>
<tr>
<td></td>
<td>To back out encryption, refer to “acfsutil encr set” on page 13-87.</td>
</tr>
</tbody>
</table>

The `acfsutil sec prepare` command must be run before any of the realm management commands. This command prepares the specified Oracle ACFS file system for security and by default turns security on for the file system.
This command creates the /mount_point/.Security, /mount_point/.Security/backup, and /mount_point/.Security/logs directories where mount_point is the option specified in the command line.

This command creates three system security realms.

- **SYSTEM_Logs**
 This is a system-created realm to protect the Oracle ACFS security log files in the directory .Security/realm/logs/ directory.

- **SYSTEM_SecurityMetadata**
 This is a system-created realm to protect the Oracle ACFS metadata XML file in the directory .Security/backup/ directory.

- **SYSTEM_BackupOperators**
 This is a system-created realm that can be used to authorize users that can back up realm-secured files and directories. You can add users, groups, rule sets, and command rules to this realm to provide fine-grain authorization for backing up realm-secured files and directories. A user must be added to this realm to back up realm-secured files and directories.

You can add users, groups, rule sets, and command rules to system realms with the acfsutil sec realm add command, the same as for user-created realms. However, adding files and directories to system realms is not recommended.

System security realms cannot be removed by a security administrator with the acfsutil sec admin destroy command. These realms are only removed when security is backed out of a file system when executing the acfsutil sec prepare command with the -u option.

Only a security administrator can run this command.

Examples

The following example shows the use of the acfsutil sec prepare command.

Example 13–43 Using the acfsutil sec prepare command

```bash
$ /sbin/acfsutil sec prepare -m /u01/app/acfsmounts/myacfs
```

acfsutil sec realm add

Purpose

Adds objects to an Oracle ACFS security realm.

Syntax and Description

```bash
acfsutil sec realm add -h
acfsutil sec realm add realm -m mount_point
     [-u user,...][-G os_group,...]
     [-l commandrule:ruleset,commandrule:ruleset,...]
     [-e [-a AES],[k 128|192|256]]
     [-f [-r] path ...]
```

acfsutil sec realm add -h displays help text and exits.

Table 13–50 contains the options available with the acfsutil sec realm add command.
The `acfsutil sec realm add` command adds objects to the specified realm. The objects to be added include users, groups, command rules, rule sets, and files. If the command encounters an error when adding an object, a message is displayed and the command continues processing the remaining objects.

Multiple entries can be added in a comma separated list when adding users, operating system groups, or command rules. Do not use spaces in the comma separated list. If spaces are added, then enclose the list in quotes.

If the `-e` option is specified, then encryption must have been initialized for the cluster and set on the file system. For more information, refer to "acfsutil sec encr init" on page 13-84 and "acfsutil sec encr set" on page 13-87.

If the entire mount point, which includes the `.Security` directory, is added to the realm then the security administrator operating system group should be added to the realm to maintain security logging and backing up operations.

The supported command rules are: ALL, APPENDFILE, CHGRP, CHMOD, CHOWN, CREATEFILE, DELETEFILE, EXTEND, IMMUTABLE, LINKFILE, MKDIR, MAPREAD, MAPWRITE, OPENFILE, OVERWRITE, READDIR, READ, RENAME, RMDIR, SYMLINK, TRUNCATE, and WRITE.

The `ALL` command rule specifies all file system operations on the realm-secured files and directories. The `IMMUTABLE` command rule can be set on a realm to archive the files and directories in the realm. `IMMUTABLE` denies any changes to the files and directories in the realm except changes to the atime attribute. The atime attribute changes when a user accesses the file.

Table 13–50 Options for the `acfsutil sec realm add` command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>realm</code></td>
<td>Specifies the realm name to add.</td>
</tr>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>-u user</code></td>
<td>Specifies user names to add.</td>
</tr>
<tr>
<td><code>-G os_group</code></td>
<td>Specifies the operating system groups to add.</td>
</tr>
<tr>
<td><code>-1 commandrule:ruleset</code></td>
<td>Specifies the filters to add. The <code>commandrule</code> switch is used to add one or more command rules to the realm with a rule set. <code>ruleset</code> specifies the rule set associated with the command rule for this realm. Only one rule set can be included with each command rule. To display a list of the command rules, use <code>acfsutil sec info</code> with the <code>-c</code> option. Refer to "acfsutil sec info" on page 13-66.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Enables encryption on the realm. Turning encryption on for the realm causes all files contained in the realm to be encrypted. These files remain encrypted until they are no longer part of an encrypted realm. Files that are encrypted are not re-encrypted to match the new specified encryption parameters.</td>
</tr>
<tr>
<td><code>-a [AES]</code></td>
<td>Specifies the encryption algorithm for the realm.</td>
</tr>
<tr>
<td>`-k {128</td>
<td>192</td>
</tr>
<tr>
<td><code>-f [-r] path ...</code></td>
<td>Adds files specified by <code>path</code> to the realm. <code>-r</code> specifies a recursive operation. File paths must be separated by spaces and must be placed at the end of the command. If a specified file is not realm secured, the file is encrypted or decrypted to match the encryption status for the realm.</td>
</tr>
</tbody>
</table>

The `acfsutil sec realm add` command adds objects to the specified realm. The objects to be added include users, groups, command rules, rule sets, and files. If the command encounters an error when adding an object, a message is displayed and the command continues processing the remaining objects.

Multiple entries can be added in a comma separated list when adding users, operating system groups, or command rules. Do not use spaces in the comma separated list. If spaces are added, then enclose the list in quotes.

If the `-e` option is specified, then encryption must have been initialized for the cluster and set on the file system. For more information, refer to "acfsutil sec encr init" on page 13-84 and "acfsutil sec encr set" on page 13-87.

If the entire mount point, which includes the `.Security` directory, is added to the realm then the security administrator operating system group should be added to the realm to maintain security logging and backing up operations.

The supported command rules are: ALL, APPENDFILE, CHGRP, CHMOD, CHOWN, CREATEFILE, DELETEFILE, EXTEND, IMMUTABLE, LINKFILE, MKDIR, MAPREAD, MAPWRITE, OPENFILE, OVERWRITE, READDIR, READ, RENAME, RMDIR, SYMLINK, TRUNCATE, and WRITE.

The `ALL` command rule specifies all file system operations on the realm-secured files and directories. The `IMMUTABLE` command rule can be set on a realm to archive the files and directories in the realm. `IMMUTABLE` denies any changes to the files and directories in the realm except changes to the atime attribute. The atime attribute changes when a user accesses the file.
If the SYMLINK command rule includes the path of a destination file belonging to a security realm, the operation is denied. If the path of the destination file does not belong to a realm, the soft link for the file can be created. Whether the path of the source file belongs to a security realm does not affect the SYMLINK command rule.

Only a security administrator can run this command.

Examples
The following example shows the use of the acfsutil sec realm add command.

Example 13–44 Using the acfsutil sec realm add command

$ /sbin/acfsutil sec realm add my_security_realm -m /u01/app/acfsmounts/myacfs
 -G my_os_group

acfsutil sec realm clone

Purpose
Clones an Oracle ACFS security realm.

Syntax and Description

```
acfsutil sec realm clone -h
acfsutil sec realm clone realm -s src_mount_point new_realm
   [-e][-f][-G][-l][-u]
acfsutil sec realm clone realm -s src_mount_point
   new_realm [-d destination_mount_point]
   [-e][-f][-G][-l][-u]
```

`acfsutil sec realm clone -h` displays help text and exits.

Table 13–51 contains the options available with the `acfsutil sec realm clone` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>realm</code></td>
<td>Specifies the realm name to be cloned.</td>
</tr>
<tr>
<td><code>-s src_mount_point</code></td>
<td>Specifies the directory where the source file system is mounted.</td>
</tr>
<tr>
<td><code>new_realm</code></td>
<td>Specifies the new realm name.</td>
</tr>
<tr>
<td><code>-d destination_mount_ point</code></td>
<td>Specifies the directory for the destination mount point for the new realm.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Copy encryption attributes to the new realm.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Copy file objects to the new realm.</td>
</tr>
<tr>
<td><code>-G</code></td>
<td>Copy operating system groups to the new realm.</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>Copy filters to the new realm.</td>
</tr>
<tr>
<td><code>-u</code></td>
<td>Copy users to the new realm.</td>
</tr>
</tbody>
</table>

The `acfsutil sec realm clone` makes a copy of the specified realm in the destination mount point. If the source and mount points are different and the new realm name is not specified, then the realm is cloned using the existing realm name in the Oracle ACFS file system specified by destination mount point. If the destination
mount point is not specified, then the cloned realm is located in the source mount point and a new unique realm name must be specified.

If the -l option is specified and the destination mount point is different than the source mount point, then the rules and rule sets must be cloned first.

If the -e option is specified and the destination mount point is different than the source mount point, then encryption must be set on destination mount point. For more information, refer to "acfsutil encr set" on page 13-87.

The -f option can only be used if the destination mount point is the same as the source mount point.

Only a security administrator can run this command.

Examples
The following example shows the use of the acfsutil sec realm clone command.

Example 13–45 Using the acfsutil sec realm clone command
$ /sbin/acfsutil sec realm clone my_security_realm -s /u01/app/acfsmounts/myacfs my_new_security_realm -d /u02/app/acfsmounts/myacfs -G

acfsutil sec realm create

Purpose
Creates an Oracle ACFS security realm.

Syntax and Description
acfsutil sec realm create -h
acfsutil sec realm create realm -m mount_point
 -e {on | off} [-a {AES} -k {128|192|256} | off] [-o {enable | disable}] [-d "description"]

acfsutil sec realm create -h displays help text and exits.

Table 13–52 contains the options available with the acfsutil sec realm create command.

Table 13–52 Options for the acfsutil sec realm create command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>realm</td>
<td>Specifies the realm name.</td>
</tr>
<tr>
<td>-m mount_point</td>
<td>Specifies the mount point for the file system. A mount point is specified as a path on Linux/Unix.</td>
</tr>
<tr>
<td>-e on</td>
<td>off</td>
</tr>
<tr>
<td>-a AES</td>
<td>Specifies the encryption algorithm.</td>
</tr>
<tr>
<td>-k {128</td>
<td>192</td>
</tr>
<tr>
<td>-o {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>-d "description"</td>
<td>Specifies a realm description.</td>
</tr>
</tbody>
</table>

The acfsutil sec create realm creates a new realm in the specified Oracle ACFS file system. The new realm name must be unique in the file system identified by the mount point.
The realm is enabled by default unless the `-o disable` option is specified.

If the `-e on` option is specified, then encryption must have been initialized for the cluster and set on the file system. For more information, refer to "acfsutil encr init" on page 13-84 and "acfsutil encr set" on page 13-87.

If the `-e off` option is specified, you cannot specify the `-a` and `-k` options.

Only a security administrator can run this command.

Examples

The following example shows the use of the `acfsutil sec realm create` command.

```bash
$ /sbin/acfsutil sec realm create my_security_realm -m /u01/app/acfsmounts/myacfs -e on -a AES -k 192 -o enable
```

acfsutil sec realm delete

Purpose

Deletes objects from an Oracle ACFS security realm.

Syntax and Description

```bash
acfsutil sec realm delete -h
acfsutil sec realm delete realm -m mount_point
   [-u user,...][-G os_group,...]
   [-l commandrule:ruleset,commandrule:ruleset,...]
   [-f [-r] path,...]([-e])
```

`acfsutil sec realm delete -h` displays help text and exits.

Table 13–53 contains the options available with the `acfsutil sec realm delete` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>realm</code></td>
<td>Specifies the realm name.</td>
</tr>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>-u user</code></td>
<td>Specifies user names to delete.</td>
</tr>
<tr>
<td><code>-G os_group</code></td>
<td>Specifies the operating system groups to delete.</td>
</tr>
<tr>
<td><code>-l commandrule:ruleset</code></td>
<td>Specifies the filters to delete from the realm. To display a list of the command rules, use <code>acfsutil sec info</code> with the <code>-c</code> option. <code>ruleset</code> specifies the rule set associated with the command rule for this realm.</td>
</tr>
<tr>
<td><code>-f [-r] path...</code></td>
<td>Deletes files specified by <code>path</code> from the realm. <code>-r</code> specifies a recursive operation. File paths must be separated by spaces. If this is the last realm securing the file, the file is encrypted or decrypted to match the file system level encryption state.</td>
</tr>
</tbody>
</table>
The `acfsutil sec realm delete` command removes objects from the specified realm. The objects to be deleted include users, groups, rule sets, and files. If the command encounters an error when deleting an object, a message is displayed and the command continues processing the remaining objects.

Multiple entries can be added in a comma separated list when adding users, operating system groups, or command rules. Do not use spaces in the comma separated list. If spaces are added, then enclose the list in quotes.

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec realm delete` command.

Example 13–47 Using the acfsutil sec realm delete command

```bash
$ /sbin/acfsutil sec realm delete my_security_realm -m /u01/app/acfsmounts/myacfs -f -r /u01/app/acfsmounts/myacfs/myoldfiles/*.log
```

acfsutil sec realm destroy

Purpose
Destroys an Oracle ACFS security realm.

Syntax and Description

```bash
acfsutil sec realm destroy -h
acfsutil sec realm destroy realm -m mount_point
```

`acfsutil sec realm destroy -h` displays help text and exits.

Table 13–54 contains the options available with the acfsutil sec realm destroy command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>realm</code></td>
<td>Specifies the realm name.</td>
</tr>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

The `acfsutil sec destroy realm` removes a security realm from the specified Oracle ACFS file system. Destroying the realm does not destroy the objects in the realm; this command simply removes the security associated with the realm from the objects.

Only a security administrator can run this command.
Examples
The following example shows the use of the `acfsutil sec realm destroy` command.

Example 13-48 Using the acfsutil sec realm destroy command

```
$ /sbin/acfsutil sec realm destroy my_security_realm -m /u01/app/acfsmounts/myacfs
```

acfsutil sec rule clone

Purpose
Clones a security rule.

Syntax and Description
```
acfsutil sec rule clone -h
acfsutil sec rule clone rule -s src_mount_point new_rule
acfsutil sec rule clone -s src_mount_point
    [new_rule] -d mount_point
```

`acfsutil sec rule clone -h` displays help text and exits.

Table 13–55 contains the options available with the acfsutil sec rule clone command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rule</code></td>
<td>Specifies the existing name of the rule. If the name contains a space, enclose in quotes (" ").</td>
</tr>
<tr>
<td><code>-s src_mount_point</code></td>
<td>Specifies the directory where the source file system is mounted.</td>
</tr>
<tr>
<td><code>-d mount_point</code></td>
<td>Specifies the directory for the destination mount point of the file system.</td>
</tr>
<tr>
<td><code>new_rule</code></td>
<td>Specifies the new name of the rule. If the name contains a space, enclose in quotes (" ").</td>
</tr>
</tbody>
</table>

If the source and mount points are different and the new rule name is not specified, then the rule is cloned using the existing rule name in the Oracle ACFS file system specified by destination mount point. If the destination mount point is not specified, then the cloned rule is located in the source mount point and a new unique rule name must be specified.

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec rule clone` command.

Example 13–49 Using the acfsutil sec rule clone command

```
$ /sbin/acfsutil sec rule clone my_security_rule -s /u01/app/acfsmounts/myacfs
    my_new_security_rule -d /u02/app/acfsmounts/myacfs
```
acfsutil sec rule create

Purpose
Creates a security rule.

Syntax and Description

```bash
acfsutil sec rule create -h
acfsutil sec rule create rule -m mount_point
   -t rule_type rule_value[,rule_value]
   [-o {ALLOW|DENY}]
```

`acfsutil sec rule create -h` displays help text and exits.

Table 13–56 contains the options available with the `acfsutil sec rule create` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rule</code></td>
<td>Specifies the name of the rule. If the name contains a space, enclose in quotes (" ").</td>
</tr>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>-t rule_type rule_value</code></td>
<td>Specifies a rule type and a rule value. The rule type can be application, hostname, time, or username. The rule value depends on the type of rule.</td>
</tr>
<tr>
<td><code>-o option</code></td>
<td>Specifies options preceded by <code>-o</code>. The option specified can be ALLOW or DENY. The default value is DENY.</td>
</tr>
</tbody>
</table>

The `acfsutil sec rule create` command creates a new rule in the Oracle ACFS file system specified by the mount point. The new rule can be added to a rule set and that rule set can be added to a security realm.

The rule type is specified with the `-t` option and includes the following:

- **application**
 The name of an application which is allowed or denied access to the objects protected by a realm.

- **hostname**
 The name of the machine from which a user accesses the objects protected by a realm. Access from a node can be allowed or denied using this rule. The hostname should be one of the cluster node names and not any other external nodes which could have mounted the Oracle ACFS file system as a network File System (NFS) mount.

- **time**
 The time interval (*start_time,end_time*) of access to a realm. Access can be allowed or denied to objects protected by a realm only during certain times of the day by setting this rule in a realm. The time is based on the local time of the host.

- **username**
 The name of a user to be added or deleted from a realm. This option can be used to deny access for any user that belongs to a security group that is part of a realm.

Only a security administrator can run this command.
Examples
The following example shows the use of the `acfsutil sec rule create` command.

Example 13–50 Using the `acfsutil sec rule create` command
```
$ /sbin/acfsutil sec rule create my_security_rule -m /u01/app/acfsmounts/myacfs
  -t username security_user_one,security_user_two -o ALLOW
```

`acfsutil sec rule destroy`

Purpose
Removes a security rule.

Syntax and Description
```
acfsutil sec rule destroy -h
acfsutil sec rule destroy rule -m mount_point
```

`acfsutil sec rule destroy -h` displays help text and exits.

Table 13–57 contains the options available with the `acfsutil sec rule destroy` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule</td>
<td>Specifies the name of the rule. If the name contains a space,</td>
</tr>
<tr>
<td></td>
<td>enclose in quotes (" ").</td>
</tr>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

The `acfsutil sec rule destroy` command removes a rule from the rule sets in the Oracle ACFS file system specified by the mount point. A rule set is not destroyed if all the rules are destroyed. The empty rule set must be explicitly destroyed.

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec rule destroy` command.

Example 13–51 Using the `acfsutil sec rule destroy` command
```
$ /sbin/acfsutil sec rule destroy my_security_rule -m /u01/app/acfsmounts/myacfs
```

`acfsutil sec rule edit`

Purpose
Updates a security rule.

Syntax and Description
```
acfsutil sec rule edit -h
acfsutil sec rule edit rule -m mount_point
  { [-t rule_type rule_value [, rule_value]] [-o {ALLOW | DENY}] }
acfsutil sec rule edit -h displays help text and exits.
```

Table 13–57 Options for the `acfsutil sec rule destroy` command
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule</td>
<td>Specifies the name of the rule. If the name contains a space,</td>
</tr>
<tr>
<td></td>
<td>enclose in quotes (" ").</td>
</tr>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>
Table 13–58 contains the options available with the `acfsutil sec rule edit` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rule</code></td>
<td>Specifies the name of the rule. If the name contains a space, enclose in quotes (" ").</td>
</tr>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>-t rule_type rule_value</code></td>
<td>Specifies a rule type and a rule value. The rule type can be application, hostname, time, or username. Rule value depends on the type of rule.</td>
</tr>
<tr>
<td><code>-o option</code></td>
<td>Specifies options preceded by <code>-o</code>. The option specified can be ALLOW or DENY.</td>
</tr>
</tbody>
</table>

The `acfsutil sec rule edit` updates a rule. Only a security administrator can run this command.

Examples

The following example shows the use of the `acfsutil sec rule edit` command.

Example 13–52 Using the `acfsutil sec rule edit` command

```
$ /sbin/acfsutil sec rule edit my_security_rule -m /u01/app/acfsmounts/myacfs -t username security_user_three,security_user_four -o ALLOW
```

`acfsutil sec ruleset clone`

Purpose

Clones a security rule set.

Syntax and Description

```
acfsutil sec ruleset clone -h
acfsutil sec ruleset clone ruleset -s mount_point new_ruleset
acfsutil sec ruleset clone ruleset -s mount_point [new_ruleset] -d mount_point
```

`acfsutil sec ruleset clone -h` displays help text and exits.

Table 13–59 contains the options available with the `acfsutil sec ruleset clone` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rule_set</code></td>
<td>Specifies the existing name of the rule set. If the name contains a space, enclose in quotes (" ").</td>
</tr>
<tr>
<td><code>-s mount_point</code></td>
<td>Specifies the directory where the source file system is mounted.</td>
</tr>
<tr>
<td><code>-d mount_point</code></td>
<td>Specifies the directory for the destination mount point of the file system.</td>
</tr>
<tr>
<td><code>new_rule_set</code></td>
<td>Specifies the new name of the rule set. If the name contains a space, enclose in quotes (" ").</td>
</tr>
</tbody>
</table>
If the source mount point is different from destination mount point, the rules in the rule set must be cloned first.

If the source and mount points are different and the new rule set name is not specified, then the rule set is cloned using the existing rule set name in the Oracle ACFS file system specified by destination mount point. If the destination mount point is not specified, then the cloned rule set is located in the source mount point and a new unique rule set name must be specified.

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec ruleset clone` command.

Example 13–53 Using the `acfsutil sec ruleset clone` command

```bash
$ /sbin/acfsutil sec ruleset clone
  my_security_ruleset -s /u01/app/acfsmounts/myacfs
  my_new_security_ruleset -d /u02/app/acfsmounts/myacfs
```

`acfsutil sec ruleset create`

Purpose
Creates a security rule set.

Syntax and Description
```
acfsutil sec ruleset create -h
acfsutil sec ruleset create rule_set -m mount_point
  [-o {ALL_TRUE | ANY_TRUE}]
```

`acfsutil sec ruleset create -h` displays help text and exits.

Table 13–60 Options for the acfsutil sec ruleset create command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule_set</td>
<td>Specifies the name of the rule set. If the name contains a space, enclose in quotes (" ").</td>
</tr>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td>-o option</td>
<td>Specifies options preceded by -o. The option specified can be ALL_TRUE or ANY_TRUE. The default value is ALL_TRUE.</td>
</tr>
</tbody>
</table>

The `acfsutil sec ruleset create` command creates a new rule set in the specified mount point.

Only a security administrator can run this command.

Examples
The following example shows the use of the `acfsutil sec ruleset create` command.
Example 13–54 Using the acfsutil sec ruleset create command

$ /sbin/acfsutil sec ruleset create
 my_security_ruleset -m /u01/app/acfsmounts/myacfs -o ANY_TRUE

acfsutil sec ruleset destroy

Purpose
Removes a security rule set.

Syntax and Description
acfsutil sec ruleset destroy -h
acfsutil sec ruleset destroy rule_set -m mount_point

acfsutil sec ruleset destroy -h displays help text and exits.
Table 13–61 contains the options available with the acfsutil sec ruleset destroy command.

Table 13–61 Options for the acfsutil sec ruleset destroy command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule_set</td>
<td>Specifies the name of the rule set. If the name contains a space, enclose in quotes (" ").</td>
</tr>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

The acfsutil sec ruleset destroy command removes a rule set from the Oracle ACFS file system specified by the mount point. Only a security administrator can run this command.

Examples
The following example shows the use of the acfsutil sec ruleset destroy command.

Example 13–55 Using the acfsutil sec ruleset destroy command

$ /sbin/acfsutil sec ruleset destroy
 my_security_ruleset -m /u01/app/acfsmounts/myacfs

acfsutil sec ruleset edit

Purpose
Updates a security rule set.

Syntax and Description
acfsutil sec ruleset edit -h
acfsutil sec ruleset edit rule_set -m mount_point
 [[-a rule,..] [-d rule,..] [-o {ALL_TRUE|ANY_TRUE}]]

acfsutil sec ruleset edit -h displays help text and exits.
Table 13–62 contains the options available with the acfsutil sec ruleset edit command.
The `acfsutil sec ruleset edit` command updates a rule set in the Oracle ACFS file system specified by the mount point.

Only a security administrator can run this command.

Examples

The following example shows the use of the `acfsutil sec ruleset edit` command.

Example 13–56 Using the acfsutil sec ruleset edit command

```bash
$ /sbin/acfsutil sec ruleset edit
    my_security_ruleset -m /u01/app/acfsmounts/myacfs
    -a my_new_rule -o ANY_TRUE
```

acfsutil sec save

Purpose

Saves Oracle ACFS file system security metadata.

Syntax and Description

```
acfsutil sec save -h
acfsutil sec save -m mount_point -p file
```

`acfsutil sec save -h` displays help text and exits.

Table 13–63 contains the options available with the `acfsutil sec save` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>-p file</code></td>
<td>Specifies a file name to store the security metadata. The file is saved in the <code>mount_point/Security/backup/</code> directory.</td>
</tr>
</tbody>
</table>

The `acfsutil sec save` command saves the security metadata for an Oracle ACFS file system to an XML file. By default, the file is saved in the `/mount_point/Security/backup/` directory.

This file can be backed up as a regular file by a backup application. System realms protect this file and allow only members of these realms to access this file and prevent all other users including the root user and system administrator from access. For
information about the system-created security realms, refer to "acfsutil sec prepare" on page 13-69.

Only a security administrator can run this command.

Examples
The following example shows the use of the acfsutil sec save command.

Example 13–57 Using the acfsutil sec save command

$ /sbin/acfsutil sec save -m /u01/app/acfsmounts/myacfs -p my_metadata_file.xml

Oracle ACFS Command-Line Tools for Encryption

Table 13–64 contains a summary of the commands for Oracle ACFS encryption.

You can use acfsutil help on all platforms to display help text. You run acfsutil version on all platforms to display the Oracle ACFS version.

Table 13–64 Summary of commands for Oracle ACFS encryption

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acfsutil encr info</td>
<td>Displays encryption-related information about Oracle ACFS file systems.</td>
</tr>
<tr>
<td>acfsutil encr init</td>
<td>Creates storage for encryption keys.</td>
</tr>
<tr>
<td>acfsutil encr off</td>
<td>Disables encryption for an Oracle ACFS file system.</td>
</tr>
<tr>
<td>acfsutil encr on</td>
<td>Encrypts an Oracle ACFS file system.</td>
</tr>
<tr>
<td>acfsutil encr rekey</td>
<td>Generates a new key and re-encrypts an Oracle ACFS file system.</td>
</tr>
<tr>
<td>acfsutil encr set</td>
<td>Sets or changes encryption parameters for an Oracle ACFS file system.</td>
</tr>
</tbody>
</table>

acfsutil encr info

Purpose
Displays encryption-related information about Oracle ACFS file systems, directories, or files.

Syntax and Description
acfsutil encr info -m mount_point [[-r] path [path...]]

acfsutil encr info -h displays help text and exits.

Table 13–65 contains the options available with the acfsutil encr info command.

Table 13–65 Options for the acfsutil encr info command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td>-r</td>
<td>Specifies recursive action under an existing directory folder identified by path.</td>
</tr>
<tr>
<td>path</td>
<td>Specifies the absolute or relative path of a directory. Multiple path values are allowed.</td>
</tr>
</tbody>
</table>
If `-m` is specified without a `path`, the encryption status, algorithm, and key length are displayed for the file system level.

If `-r` is specified with a `path`, the encryption status, algorithm, and key length are displayed for all objects under the directory specified by `path`.

Any user can run this command to display encryption information about a file system, directory, or file.

Examples
The following are examples of the use of `acfsutil encr info`.

Example 13–58 Using the acfsutil encr info command

```shell
# /sbin/acfsutil encr info -m /u01/app/acfsmounts/myacfs

# /sbin/acfsutil encr info -m /u01/app/acfsmounts/myacfs
  -r /u01/app/acfsmounts/myacfs/myfiles
```

acfsutil encr init

Purpose

Creates storage for encryption keys.

Syntax and Description

`acfsutil encr init [-p]`

`acfsutil encr init -h` displays help text and exits.

Table 13–66 contains the options available with the `acfsutil encr init` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-p</code></td>
<td>Creates PKCS (password-protected) storage for keys.</td>
</tr>
</tbody>
</table>

The `acfsutil encr init` command must be run before any other encryption `acfsutil` commands can be run. This command must be run once for each cluster on which Oracle ACFS encryption is run.

If the `-p` option is specified, you must provide a password when prompted. The password must conform to the format that is described in "acfsutil sec init" on page 13-67.

If the `-p` option is not specified, a single sign-on (SSO) wallet is created.

Only a user with root or system administrator privileges can run this command.

Examples
The following is an example of the use of `acfsutil encr init`.

Example 13–59 Using the acfsutil encr init command

```shell
# /sbin/acfsutil encr init
```
acfsutil encr off

Purpose
Disables encryption for an Oracle ACFS file system, directories, or individual files.

Syntax and Description

```bash
acfsutil encr off -m mount_point [(-r) path [path...]]
```

`acfsutil encr off -h` displays help text and exits.

Table 13–68 contains the options available with the `acfsutil encr off` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>Specifies to disable encryption recursively under an existing directory identified by <code>path</code>.</td>
</tr>
<tr>
<td><code>path</code></td>
<td>Specifies the absolute or relative path of a directory. Multiple path values are allowed.</td>
</tr>
</tbody>
</table>

This command cannot be run on security realm-protected files.

Only an administrator can run this command on an Oracle ACFS file system (`-m` option without a `path` specified). When the `-m` option is specified without a `path`, all the files under the mount point are decrypted.

Only a user with root or system administrator privileges can run this command to disable encryption on a file system. The file owner can also run this command to disable encryption on a directory or file.

Examples
The following are examples of the use of `acfsutil encr off`.

Example 13–60 Using the acfsutil encr off command

```bash
# /sbin/acfsutil encr off -m /u01/app/acfsmounts/myacfs
# /sbin/acfsutil encr off -m /u01/app/acfsmounts/myacfs
   -r /u01/app/acfsmounts/myacfs/myfiles
```

acfsutil encr on

Purpose
Encrypts an Oracle ACFS file system, directories, or individual files.

Syntax and Description

```bash
acfsutil encr on -m mount_point
   [-a {AES} -k {128|192|256}] [(-r) path [path...]]
```

`acfsutil encr on -h` displays help text and exits.

Table 13–68 contains the options available with the `acfsutil encr on` command.
This command cannot be run on realm-protected files.

The default values for the -a and -k are determined by the volume parameters specified when `acfsutil encr set` was run. To set the key length at the volume level, use the `acfsutil encr set` command.

Only an administrator can run this command on an Oracle ACFS file system (-m option without a path specified). When the -m option is specified without a path, all the files under the mount point are encrypted.

Only a user with root or system administrator privileges can run this command to enable encryption on a file system. The file owner can also run this command to enable encryption on a directory or file.

Examples

The following are examples of the use of `acfsutil encr on`.

Example 13–61 Using the acfsutil encr on command

```
# /sbin/acfsutil encr on -m /u01/app/acfsmounts/myacfs
# /sbin/acfsutil encr on -m /u01/app/acfsmounts/myacfs
   -a AES -k 128 -r /u01/app/acfsmounts/myacfs/myfiles
```

acfsutil encr rekey

Purpose

Generates a new key and re-encrypts volume or file.

Syntax and Description

```
acfsutil encr rekey -m mount_point
   [-f [-r] path [path...]] [-v] [-a AES] [-k {128 | 192 | 256}]
```

`acfsutil encr rekey` -h displays help text and exits.

Table 13–69 contains the options available with the `acfsutil encr rekey` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>
Oracle ACFS Command-Line Tools for Encryption

This command cannot be run on security realm-protected files.

The default values for the -a and -k are determined by the volume parameters specified when acfsutil encr set was run.

Only a user with root or system administrator privileges can run this command with the -v option. The file owner can also run this command with the -f option to rekey encryption on the directory or file.

Examples
The following are examples of the use of acfsutil encr rekey.

Example 13–62 Using the acfsutil encr rekey command

```
# /sbin/acfsutil encr rekey -m /u01/app/acfsmounts/myacfs -v
# /sbin/acfsutil encr rekey -m /u01/app/acfsmounts/myacfs -f
   -r /u01/app/acfsmounts/myacfs/myfiles
```

acfsutil encr set

Purpose
Sets or changes encryption parameters for an Oracle ACFS file system.

Syntax and Description

```
acfsutil encr set [-a {AES} -k {128|192|256} | -u] -m mount_point
```

`acfsutil encr set -h` displays help text and exits.

Table 13–70 contains the options available with the `acfsutil encr set` command.

Table 13–70 Options for the acfsutil encr set command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a algorithm</td>
<td>Specifies the algorithm. Advanced Encryption Standard (AES) is the default value and the only encryption supported for this release. The algorithm must be specified if -k is specified.</td>
</tr>
</tbody>
</table>
Before running the `acfsutil encr set` command, you must first run the `acfsutil encr init` command.

The `acfsutil encr set` command configures encryption parameters for a file system, transparently generates a volume encryption key, and stores that generated key in the key store that was previously configured with the `acfsutil encr init` command.

In addition, `acfsutil encr set` creates the `mount_point/.Security/encryption/logs/` directory that contains the log file `(encr-host_name.log)` that collects auditing and diagnostic data.

Password requirements when storing the key are dependent on how the encryption key storage was configured. If `-p` was specified with `acfsutil encr init`, then a password is required to run this command.

Only a user with root or system administrator privileges can run the `acfsutil encr set` command.

Examples
The following example shows the use of `acfsutil encr set` command.

```
Example 13–63 Using the acfsutil encr set command

# /sbin/acfsutil encr set -a AES -k 256 -m /u01/app/acfsmounts/myacfs
```

Oracle ACFS Command-Line Utilities for Multiple Environments

Table 13–71 contains a summary of the Oracle ACFS command utilities for multiple environments.

When the options are entered with commands on a Windows platform, use `/` instead of `-` with the option. For example, to display help for `acfsutil` on a Linux platform, use `acfsutil -h`. On a Windows platform, use `acfsutil /h`.

Note that a mount point on a Windows operating system can be a drive letter or a directory including the drive letter.

You can use `acfsutil help` on all platforms to display help text. You run `acfsutil version` on all platforms to display the Oracle ACFS version.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-k</code> {128</td>
<td>192</td>
</tr>
<tr>
<td><code>-u</code></td>
<td>Backs out encryption. Decrypts all encrypted files in the file system and reverts the file system to the state before <code>acfsutil encr set</code> was run on the file system. If security is being used, then this command can only be run after security has been backed out. To remove security, refer to “acfsutil sec prepare” on page 13-69.</td>
</tr>
<tr>
<td><code>-m mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>
acfsdbg

Purpose
Debugs an Oracle ACFS file system.

Syntax and Description

```plaintext
acfsdbg -h
acfsdbg [-r][-l] volume_device
```

Table 13–72 contains the options available with the acfsdbg command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Prints out the usage message which displays the various options that are available when invoking the <code>acfsdbg</code> command, then exits.</td>
</tr>
<tr>
<td>-r</td>
<td>Operates in read-only mode. No data is modified on the file system and all write commands are disabled. If the device is mounted anywhere, <code>acfsdbg</code> may not display the latest data because some of it is cached by the file system mounts.</td>
</tr>
<tr>
<td>-l</td>
<td>Processes kernel log files. The default is to not process the log files.</td>
</tr>
<tr>
<td>volume_device</td>
<td>Specifies the device name of the volume.</td>
</tr>
</tbody>
</table>

acfsdbg is an extension to fsck and acfschkdsk, and is an interactive program that views and modifies on disk structures of the file system. This command is intended for experienced development and support engineers to examine on disk structures to diagnose problems. Use with caution.
When acfsdbg is started, it displays a command prompt. At the command prompt, you can enter the subcommands listed in Table 13–73.

You can also use acfsdbg for scripts by echoing acfsdbg subcommands with a shell pipe to the acfsdbg binary.

By default the file system is not modified when running the tool. If the -l option is used, the file system metadata in the transaction logs is applied before the interactive disk block dump session. The volume device must specify a volume with a dismounted Oracle ACFS file system. If the volume device has a mounted Oracle ACFS file system, acfsdbg displays an error message and exits.

You must be the administrator or a member of the Oracle ASM administrator group to run acfsdbg.

Subcommands
Table 13–73 lists the subcommands of acfsdbg.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculate</td>
<td>Calculates simple arithmetic expressions</td>
<td>calculate [-v] expr [...]</td>
</tr>
<tr>
<td></td>
<td>Valid operators: + * / % &</td>
<td>^ ~ << >></td>
</tr>
<tr>
<td></td>
<td>White space starts a new expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-1 represents a negative 1</td>
<td></td>
</tr>
<tr>
<td>cksum</td>
<td>Generates and replaces checksum in header</td>
<td>cksum [-C</td>
</tr>
<tr>
<td></td>
<td>Header offset can be an expression as used by the calculate subcommand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White space starts a new header offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Command is disabled in read-only mode</td>
<td></td>
</tr>
<tr>
<td>close</td>
<td>Closes the open handle to the device</td>
<td>close</td>
</tr>
<tr>
<td>echo</td>
<td>Echoes text on command line to stdout</td>
<td>echo</td>
</tr>
<tr>
<td>fenum</td>
<td>Displays the specified File Entry TAble (FETA) entry</td>
<td>fenum [-f</td>
</tr>
<tr>
<td></td>
<td>-f Displays all on disk structures related to this structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-e Displays all on disk extent information related to this structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-d Casts the structure as a directory and displays its contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FETA_entry_number The File Entry Table number used to identify a file on the file system</td>
<td></td>
</tr>
<tr>
<td>help</td>
<td>Displays help message</td>
<td>help</td>
</tr>
<tr>
<td>offset</td>
<td>Displays structure at disk offset</td>
<td>offset [-c cast] [-f</td>
</tr>
<tr>
<td></td>
<td>-f Displays all on disk structures related to this structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-d Casts the structure as a directory and displays its contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disk_offset Disk offset to display. The value can be an expression as used by the calculate subcommand</td>
<td></td>
</tr>
<tr>
<td>open</td>
<td>Opens a handle to a device. The default is the volume device name entered on the command line</td>
<td>open [volume_device]</td>
</tr>
</tbody>
</table>
Examples

These examples show the use of the `acfsdbg` subcommands.

Example 13–64 Using the `acfsdbg` command

```
$ /sbin/acfsdbg /dev/asm/volume1-123
acfsdbg: version                   = 11.2.0.0.2.0
Oracle ASM Cluster File System (ACFS) On-Disk Structure Version: 38.0
The ACFS volume was created at Mon Aug 2 14:57:45 2009
acfsdbg>

acfsdbg> calculate 60*1024
61440
61440
61440
0xf000
0170000
1111:0000:0000:0000

acfsdbg> prompt "acfsdbg test>"
```
acfsdbg test>

echo "offset 64*1024" | acfsdbg /dev/asm/volume1-123

acfsutil info file

Purpose
Displays information for a file in an Oracle ACFS file system.

Syntax and Description
acfsutil info file -h
acfsutil info file path

acfsutil info file -h displays help text and exits.
Table 13–74 contains the options available with the acfsutil info file command.

| Table 13–74 Options for the acfsutil info file command |
|----------------------------------|--|
| Option | Description |
| path | Specifies the full path name of a file. |

The *acfsutil info file* command displays information about a file in an Oracle ACFS file system. The information includes the extent map which details the locations of the blocks comprising the file and the used versus allocated storage for a file. Additional details displayed for a file include security, replication, and tagging information.

You must have read access to the specified file to run *acfsutil info file*.

Examples
The following is an example of *acfsutil info file*.

Example 13–65 Using the acfsutil info file command

$ /sbin/acfsutil info file /u01/app/acfsmounts/myacfs/myfile

acfsutil info fs

Purpose
Displays detailed Oracle ACFS file system information.

Syntax and Description
acfsutil info fs -h
acfsutil info fs [\-o item\-s interval] mount_point

acfsutil info fs -h displays help text and exits.
Table 13–75 contains the options available with the acfsutil info fs command.
Oracle ACFS Command-Line Utilities for Multiple Environments

Oracle ACFS Command-Line Tools

acfsutil info fs displays information and statistics about Oracle ACFS file systems.

The -o item option displays file system information for the item specified.

The -s option displays the amount and rate of change currently on a file system for the node that the command is run on.

With no option specified, the command displays file system information that includes the volume device name, the size of the file system, the amount of space available on the volume device, the file system mount time on this node, the state of the file system, the user specified block size, the number of ACFS snapshots, the space consumed by snapshots in the file system, and the optional name or volume label associated with the file system. The possible file system states are displayed in the flags line. These states include:

- Offline indicates that the underlying devices are not accessible, possibly due to an Oracle ASM instance failure, disk group forced dismount, or an irrecoverable
I/O error. The file system on this node can only be dismounted. All other attempts at access result in errors.

- **Available** indicates that the file system is on line and operational
- **Corrupt** indicates that fsck or acfschkdsk should be run on the file system at the earliest possible convenience to correct a detected inconsistency

Any user can run `acfsutil info fs`.

Examples
The following are examples of the use of `acfsutil info fs`.

Example 13–66 displays information about the specified file system in a Linux environment.

Example 13–66 Using the `acfsutil info fs` command on Linux

```
$ /sbin/acfsutil info fs /u01/app/acfsmounts/myacfs
ACFS Version: 11.2.0.1.0.0
flags:       MountPoint,Available
mount time:  Tue Jun 29 10:18:27 2009
volumes:     1
total size:  268435456
total free:  163360768
primary volume: /dev/asm/volume1-228
label:       
flags:       Primary,Available,ADVM
on-disk version: 39.0
allocation unit: 4096
major, minor:  252, 116737
size:        268435456
free:        163360768
ADVM diskgroup DATA
ADVM resize increment: 268435456
ADVM redundancy:  mirror
ADVM stripe columns: 4
ADVM stripe width:  131072
number of snapshots: 3
snapshot space usage: 106496
```

```
$ /sbin/acfsutil info fs -o iscorrupt /u01/app/acfsmounts/myacfs
0
```

Example 13–67 illustrates the use of `acfsutil info fs` in a Windows environment.

Example 13–67 Using the `acfsutil info fs` command on Windows

```
C:\oracle>acfsutil info fs /o freespace c:\oracle\acfsmounts\acfs1
968667136

C:\oracle>acfsutil info fs /o totalspace c:\oracle\acfsmounts\acfs1
1073741824

C:\oracle>acfsutil info fs /o volume c:\oracle\acfsmounts\acfs1
1

C:\oracle>acfsutil info fs /o primaryvolume c:\oracle\acfsmounts\acfs1
asm-volume1-311
```
Example 13–68 illustrates the use of `acfsutil info fs` with `-s` option to display the current amount and rate of change on a file system.

Example 13–68 Using the `acfsutil info fs` command with the `-s` option

```bash
$ /sbin/acfsutil info fs -s /u01/app/acfsmounts/myacfs
amount of change since mount: 359.22 MB
average rate of change since mount: 3 KB

$ /sbin/acfsutil info fs -s 60 /u01/app/acfsmounts/myacfs
amount of change since mount: 359.22 MB
average rate of change since mount: 3 KB/s

amount of change: 15.02 MB rate of change: 256 KB/s
amount of change: 9.46 MB rate of change: 161 KB/s
amount of change: 7.32 MB rate of change: 125 KB/s
amount of change: 6.89 MB rate of change: 117 KB/s
...```

**acfsutil info id**

**Purpose**

Displays Oracle ACFS file system information for a given identifier and mount point.

**Syntax and Description**

```
acfsutil info id
acfsutil info id -h
acfsutil info id num mount_point
```

`acfsutil info id -h` displays help text and exits.

Table 13–76 contains the options available with the `acfsutil info id` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mount_point</code></td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
<tr>
<td><code>num</code></td>
<td>Specifies the Oracle ACFS file identifier number reported by the Oracle ACFS driver. The number should be specified in decimal format.</td>
</tr>
</tbody>
</table>

`acfsutil info id` is used to translate an internal numeric Oracle ACFS file identifier to a path name in the file system. This is useful when the Oracle ACFS driver reports I/O errors to the system event logger associated with a particular file in an Oracle ACFS and identifies it by its internal identifier. You must have administrator privileges or you must be a member of the Oracle ASM administrator group to run `acfsutil info id`.

**Examples**

The following is an example of `acfsutil info id`. 
Example 13–69  Using the acfsutil info id command

$ /sbin/acfsutil info id /u01/app/acfsmounts/myacfs

acfsutil registry

Purpose
Registers an Oracle ACFS file system with the Oracle ACFS mount registry.

Syntax and Description

```
acfsutil registry [-h]
acfsutil registry
acfsutil registry -a [-f][-n {nodes|all}]
 [-o moptions] device mount_point
acfsutil registry -d {device | mount_point}
acfsutil registry -l {device | mount_point}
acfsutil registry -m device
```

acfsutil registry -h displays help text and exits.

Table 13–77 contains the options available with the acfsutil registry command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Specifies to add the device, mount point, and associated <code>moptions</code> to the Oracle ACFS mount registry. The Oracle ASM volume device specified must exist on the local node to add the information to the mount registry.</td>
</tr>
<tr>
<td></td>
<td>The arguments represent all the information needed to mount the file system. At Oracle ACFS startup time these file systems are automatically mounted. On Windows the volume mount points on the specified directories are created if they do not exist.</td>
</tr>
<tr>
<td></td>
<td>Duplicate device entries are not allowed. Duplicate mount points are allowed but must be include the -n option for disjoint node-specific mounts.</td>
</tr>
<tr>
<td>-d</td>
<td>Deletes the device or mount point from the Oracle ACFS mount registry. If a mount point is specified and it is not unique in the Oracle ACFS mount registry, the command fails and you must run the command again specifying the device as an argument.</td>
</tr>
<tr>
<td>-f</td>
<td>This is used in combination with -a when the specified device might exist in the registry and the administrator wants to replace the registration.</td>
</tr>
<tr>
<td>-n</td>
<td>This is used in combination with -a and specifies an optional comma-delimited list of nodes, or the <code>all</code> keyword. This specifies which nodes should attempt to mount this device on the specified mount point. Host names should be specified. The <code>all</code> keyword is functionally equivalent to not specifying a list of nodes and indicates that the device should be mounted on all nodes. Mounting on all nodes is the default behavior.</td>
</tr>
<tr>
<td>-o moptions</td>
<td>Specifies the mount options for use when mounting the file system. For Linux only. All options are available except the <code>all</code> option. See “mount” on page 13-23.</td>
</tr>
<tr>
<td>-l</td>
<td>Lists all the mount points currently in the registry on a single line, with fields separated by a colon (:).</td>
</tr>
</tbody>
</table>
Oracle ACFS Command-Line Utilities for Multiple Environments

acfsutil registry adds or deletes a file system from the Oracle ACFS persistent mount registry. The mount registry is a global registry that is used at Oracle ACFS startup on each node to mount all file systems specified in it. root or asmadmin privileges are required to modify the registry. For information about operating system group privileges, see "About Privileges for Oracle ASM" on page 3-24.

Any user is allowed to display the contents of the registry. To mount all the file systems in the Oracle ACFS mount registry, use the platform specific mount command with the all option. This is done automatically at Oracle ACFS startup on each node.

If no options are specified, the command displays all of the Oracle ACFS mounts in the registry.

**Note:** Do not register an Oracle ACFS file system that has had an individual file system Cluster Ready Services (CRS) resource added. For example, do not register a file system with `acfsutil registry` if the Oracle ACFS file system has been registered using `srvctl add filesystem`.

See "About the Oracle ACFS Mount Registry" on page 5-7.

**Examples**

The following examples show the use of `acfsutil registry`. The first example shows how to add the volume device file and file system mount point to the registry. The second example shows how to list the registered mount point associated with the specified volume device file. The third example shows how to delete the specified volume device file from the registry.

**Example 13–70 Using the acfsutil registry command**

```bash
$ /sbin/acfsutil registry -a /dev/asm/volume1-123 /u01/app/acfsmounts/myacfs
$ /sbin/acfsutil registry -m /dev/asm/volume1-123
$ /sbin/acfsutil registry -d /dev/asm/volume1-123
```

acfsutil rmfs

**Purpose**

Removes an Oracle ACFS file system.

**Syntax and Description**

`acfsutil [-h]`
**acfsutil rmfs** device

**acfsutil rmfs** -h displays help text and exits.

Table 13–78 contains the options available with the **acfsutil rmfs** command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>Specifies an Oracle ACFS device file that has been formatted.</td>
</tr>
</tbody>
</table>

**acfsutil rmfs** is used to remove an Oracle ACFS that is dismounted. When the command is run, the superblock of the file system is disabled. **root** or **asmadmin** privileges are required to run this command. For information about operating system group privileges, see "About Privileges for Oracle ASM" on page 3-24.

After **acfsutil rmfs** runs successfully, the **MOUNTPATH** and **USAGE** columns in the **V$ASM_VOLUME** view are cleared for the device. The removed Oracle ACFS can be restored using **fsck** or **acfschkdsk**. The device can be reformatted with a new Oracle ACFS using the **mkfs** or **acfsformat** commands.

**Examples**
The following example shows the use of **acfsutil rmfs** to remove the specified volume device file and associated file system.

**Example 13–71 Using the acfsutil rmfs command**

$ /sbin/acfsutil rmfs /dev/asm/volume1-123

---

**acfsutil size**

**Purpose**

Resizes an Oracle ACFS file system.

**Syntax and Description**

**acfsutil size** [-h]

**acfsutil size** [+/-]n[K|M|G|T|P] [device] mount_point

**acfsutil size** -h displays help text and exits.

Table 13–79 contains the options available with the **acfsutil size** command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+/-]n</td>
<td>Specifies the new size for the Oracle ACFS file system where n is a valid positive whole number greater than zero. The number can be preceded by a + or - to indicate the amount to add or decrease. If no operand exists, the new size is the absolute size.</td>
</tr>
<tr>
<td>K</td>
<td>M</td>
</tr>
<tr>
<td>device</td>
<td>Specifies the optional volume device file.</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted</td>
</tr>
</tbody>
</table>
acfsutil size grows or shrinks the mounted Oracle ACFS and its underlying Oracle ADVM storage to match the new size specified. This operation also resizes the underlying Oracle ASM Volume file to match the new length that is specified. The disk group must have enough free storage to accommodate any requested increase to the file system size.

Reducing a file system size returns unused storage space located at the end of the file system to the disk group. Shrinking in this release is intended for accidents when the wrong initial size or resize increment was specified, and before the storage was actually used. After storage has been used for user data or file system metadata, it may not be possible to shrink the file system, even if the files using that storage have been deleted.

---

**Note:** Defragmenting a file system is not supported in this release; only unused storage can be deallocated from the end of the file system.

---

The size value is rounded up based on the block size of the file system and the allocation unit of the Oracle ASM volume device file. To determine the Oracle ASM volume device resize increment, examine the `RESIZE_UNIT_MB` field in the `V$ASM_VOLUME` view, or look for `Resize Unit` in the output of `asmcmd volinfo`.

There is a limit of 5 extents for the file system's internal storage bitmap. This causes any attempts to increase the file system to fail after it has been increased four or more times. However, if after increasing the file system four times or more times the file system size is decreased, then you may be able to increase the file system size again if the size of the increase is less than the size of the decrease.

When the limit on a file system expansion has been reached, running `fsck` or `acfschkdsk` with the `-a` option may consolidate the internal storage bitmap, allowing future file system expansion.

*root* or users who are members of the `asmadmin` group can run this command. For information about operating system group privileges, see “About Privileges for Oracle ASM” on page 3-24.

### Examples

The following example shows the use of `acfsutil size`. This example increases the primary device file of `/u01/app/acfsmounts/myacfs` file system by 500 MB.

```bash
Example 13–72 Using the acfsutil size command
$ /sbin/acfsutil size +500M /u01/app/acfsmounts/myacfs
```

**acfsutil snap create**

**Purpose**

Creates a read-only snapshot of an Oracle ACFS file system.

**Syntax and Description**

```
acfsutil snap create [-h]
acfsutil snap create snapshot mount_point
acfsutil snap create -h displays help text and exits.
```
Table 13–80 contains the options available with the `acfsutil snap create` command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snapshot</td>
<td>Specifies a name for the snapshot. The .ACFS/snaps directory itself cannot be snapped.</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

`acfsutil snap create` creates a read-only snapshot of the Oracle ACFS mounted on `mount_point`.Snapshots are not separate file systems. The snapshot appears in `.ACFS/snaps/snapshot` and is a complete replica of the file system at the time the snapshot command was given. Snapshots usually use very little storage initially as they share file system blocks with the original file system until a file changes.

Tools such as `du` report the total disk space usage of the snapshotted files, which includes the storage shared with the original versions of the files. To determine the total space used for the snapshots, use the `acfsutil info fs` command. See "`acfsutil info file`" on page 13-92.

Oracle ACFS snapshots are immediately available for use after they are created. They are always online under the `.ACFS/snaps` directory when the original file system is mounted. No separate command is needed to mount them.

The last modification time of `.ACFS/snaps/snapshot` is set to the time the snapshot was created, not the last modification time of the root directory of the file system at the time of the snapshot creation. You can use an `ls -l` or similar command in the `.ACFS/snaps` directory to determine the age of each snapshot.

Administrator privileges are required to use this command or you must be a member of the Oracle ASM administrator group.

For more information about Oracle ACFS snapshots, see "About Oracle ACFS Snapshots" on page 5-8.

Examples

The following examples show the use of `acfsutil snap create`. The first and second examples create snapshots of the Oracle ACFS file system mounted on `/u01/app/acfsmounts/myacfs`. The third example lists the contents of the .ACFS/snaps directory.

**Example 13–73  Using the `acfsutil snap create` command**

```
$ /sbin/acfsutil snap create mysnapshot_0900609b /u01/app/acfsmounts/myacfs
$ /sbin/acfsutil snap create mysnapshot_0900609c /u01/app/acfsmounts/myacfs
$ ls /u01/app/acfsmounts/myacfs/.ACFS/snaps
 mysnapshot_0900609a mysnapshot_0900609b mysnapshot_0900609c
```

**acfsutil snap delete**

**Purpose**

Deletes a read-only snapshot of an Oracle ACFS file system.
Syntax and Description
acfsutil snap delete [-h]
acfsutil snap delete snapshot mount_point

acfsutil snap delete -h displays help text and exits.
Table 13–81 contains the options available with the acfsutil snap delete command.

Table 13–81 Options for the acfsutil snap delete command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snapshot</td>
<td>Specifies a name for the snapshot.</td>
</tr>
<tr>
<td>mount_point</td>
<td>Specifies the directory where the file system is mounted.</td>
</tr>
</tbody>
</table>

acfsutil snap delete deletes the snapshot named snapshot in the Oracle ACFS mounted on mount_point. After successful completion of the command, the representation of the snapshot in the .ACFS/snaps directory is removed. The command fails if any file within the snapshot is open on any cluster node.

Administrator privileges are required to use this command or you must be a member of the Oracle ASM administrator group.

Examples
The following example deletes a snapshot of the file system mounted on /u01/app/acfsmounts/myacfs.

Example 13–74 Using the acfsutil snap delete command
$ /sbin/acfsutil snap delete mysnapshot_0900609b /u01/app/acfsmounts/myacfs

acfsutil tune

Purpose
The acfsutil tune command displays the value of a specific tunable parameter or all Oracle ACFS tunable parameters, or sets the value of a tunable parameter in a persistent manner on a particular node.

Syntax and Description
acfsutil [-h]
acfsutil tune [tunable_name]
acfsutil tune tunable_name=value

acfsutil tune -h displays help text and exits.
Table 13–82 contains the options available with the acfsutil tune command.

Table 13–82 Options for the acfsutil tune command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunable_name</td>
<td>Specifies the name of the tunable parameter.</td>
</tr>
<tr>
<td>value</td>
<td>Specifies the value for a tunable parameter.</td>
</tr>
</tbody>
</table>


The only Oracle ACFS tunable parameter is the Windows specific `AcfsMaxOpenFiles`, which limits the number of open Oracle ACFS files on Windows. Normally you do not have to change the value of this tunable parameter.

Changing a tunable parameter has an immediate effect and persists across restarts. You must be a root user or the Windows Administrator to change the value of a tunable parameter.

**Examples**
The first example prints Oracle ACFS tunable parameters. The second example changes the value of a tunable parameter.

*Example 13–75 Using the acfsutil tune command*

```bash
$ /sbin/acfsutil tune
$ acfsutil tune AcfsMaxOpenFiles=50000
```

**advmutil canonical**

**Purpose**

`advmutil canonical` displays the canonical name of the specified Oracle ADVM device name.

**Syntax and Description**

`advmutil [-h]`  
`advmutil canonical volume_device`

`advmutil canonical -h` displays help text and exits.

*Table 13–83 contains the options available with the advmutil canonical command.*

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>volume_device</code></td>
<td>Specifies a string identifying a Oracle ADVM volume device.</td>
</tr>
</tbody>
</table>

There are several different formats that can identify an Oracle ADVM volume device, but a normalized, unambiguous (canonical) name should be used when the volume device name is used with other commands such as SRVCTL.

For example, on the Windows operating system you can use the following prefixes with a volume device name: `\\`, `\??\`, `\?

The `advmutil canonical` command would return the canonical name that another utility would recognize without having to strip off extra characters. The command would most likely be used in a script.

**Examples**
The following examples show the use of `advmutil canonical` on a Windows operating system. For each example, the command returns the canonical name of the volume device.

*Example 13–76 Using advmutil canonical*

```bash
[C:\] advmutil canonical asm-volume1-274
```
advmutil tune

Purpose
advmutil tune displays the value of a specific Oracle ADVM parameter or sets the value of a specific Oracle ADVM parameter.

Syntax and Description
advmutil [-h ]
advmutil tune parameter [= value]

advmutil tune -h displays help text and exits.

Table 13–84 contains the options available with the advmutil tune command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter</td>
<td>Specifies the parameter for which you want to set or display the value.</td>
</tr>
<tr>
<td>value</td>
<td>Optional value provided to set the value of the specified parameter.</td>
</tr>
</tbody>
</table>

If a value is not provided, the advmutil tune command displays the value that is currently assigned to the specified parameter.

The parameters that can be specified with advmutil tune are the maximum kernel memory (max_memory) or the maximum time in minutes for the deadlock timer (deadlock_timer).

The maximum kernel memory (max_memory) specifies the maximum operating system (OS) kernel memory in megabytes that can be consumed by the Oracle ASM Dynamic Volume Manager driver to cache Oracle ASM extent maps.

Note: The deadlock_timer parameter should only be set by Oracle Support Services.

Examples
The first example sets the maximum kernel memory. The second example queries the current setting for the maximum kernel memory to be consumed by the Oracle ADVM. The third example changes the maximum time in minutes for the deadlock timer. The fourth example queries the current setting of a parameter.
**Example 13–77 Using advmutil tune**

$ /sbin/advmutil tune max_memory = 40

$ /sbin/advmutil tune max_memory
   max_memory = 40 (0x28)

$ /sbin/advmutil tune deadlock_timer = 20

$ /sbin/advmutil tune deadlock_timer
   deadlock_timer = 20 (0x14)

advmutil volinfo

**Purpose**

advmutil volinfo displays information about Oracle ADVM volume devices.

**Syntax and Description**

advmutil volinfo [-h]
advmutil volinfo [-l][-L] volume_device

advmutil volinfo -h displays help text and exits.

Table 13–85 contains the options available with the advmutil volinfo command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume_device</td>
<td>Specifies the volume device name.</td>
</tr>
<tr>
<td>-l</td>
<td>Separates the Oracle ADVM volume device information by field descriptions and colons on one line.</td>
</tr>
<tr>
<td>-L</td>
<td>Separates the Oracle ADVM volume device information by spaces on one line.</td>
</tr>
</tbody>
</table>

advmutil volinfo displays information about the specified Oracle ADVM volume device in a list format by default. The -l option on Linux (/l on Windows) formats the display into a colon-separated string with field descriptions. The -L option on Linux (/L on Windows) formats the display into a space-separated string in a format suitable for scripting.

**Examples**

The first example displays information about an Oracle ADVM volume device, using the advmutil volinfo command with the volume device name. The second example displays information about the volume device using the -l option. The third example displays information about the volume device using the -L option.

**Example 13–78 Using advmutil volinfo**

$ /sbin/advmutil volinfo /dev/asm/volume1-123
Device : /dev/asm/volume1-228
Interface Version: 1
Size (MB): 256
Resize Increment (MB): 256
Redundancy: mirror
Stripe Columns: 4
Stripe Width (KB): 128
Disk Group: DATA
Volume: VOLUME1
Compatible.advm : 11.2.0.0.0

/sbin/advmutil volinfo -l /dev/asm/volume1-228
Device : /dev/asm/volume1-228 : Interface Version : 1 : Size (MB) : 256 :
Resize Increment (MB) : 256 : Redundancy : mirror : Stripe Columns : 4 :
Stripe Width (KB) : 128 : Disk Group : DATA : Volume : VOLUME1 :
Compatible.advm : 11.2.0.0.0

/sbin/advmutil volinfo -L /dev/asm/volume1-228
/dev/asm/volume1-228 1 256 256 mirror 4 128 DATA VOLUME1 11.2.0.0.0
Creating Database Files in Oracle ASM Using SQL*Plus

This appendix describes how to deploy Oracle Automatic Storage Management (Oracle ASM) using SQL*Plus under the following topics:

- Creating a Database that Uses Oracle ASM
- Creating Tablespaces in Oracle ASM
- Creating Redo Logs in Oracle ASM
- Creating Control Files in Oracle ASM
- Creating Archive Log Files in Oracle ASM

See Also: Oracle Database Administrator’s Guide for information about using Oracle Managed Files (OMF)

Creating a Database that Uses Oracle ASM

The recommended method of creating your database is to use Database Configuration Assistant (DBCA). However, if you create your database manually using the CREATE DATABASE statement, then Oracle ASM enables you to create a database and all of its underlying files with a minimum of input.

The following section describes an example of using the CREATE DATABASE statement, where database files are created and managed automatically by Oracle ASM.

Creating a Database that Uses Oracle ASM: Example

This example creates a database with the following Oracle ASM files:

- A SYSTEM tablespace data file in disk group data.
- A SYSAUX tablespace data file in disk group data. The tablespace is locally managed with automatic segment-space management.
- A multiplexed online redo log with two online log groups, one member of each in data and fra (fast recovery area).
- If automatic undo management mode is enabled, then an undo tablespace data file in directory data.
- If you do not specify a value for the CONTROL_FILES initialization parameter, then two control files, one in data and another in fra (fast recovery area). The control file in data is the primary control file.
The following initialization parameter settings are included in the initialization parameter file:

```
DB_CREATE_FILE_DEST = +data
DB_RECOVERY_FILE_DEST = +fra
DB_RECOVERY_FILE_DEST_SIZE = 10G
```

The following statement is run at the SQL prompt:

```
CREATE DATABASE orcl;
```

### Creating Tablespaces in Oracle ASM

When Oracle ASM creates a data file for a permanent tablespace (or a temporary file for a temporary tablespace), the data file is set to auto-extensible with an unlimited maximum size and 100 MB default size. You can use the `AUTOEXTEND` clause to override this default extensibility and the `SIZE` clause to override the default size.

Oracle ASM applies attributes to the data file, as specified in the system default template for a data file as shown in the table in "Managing Disk Group Templates" on page 7-15. You can also create and specify your own template.

Files in a tablespace might be in both Oracle ASM files and non-Oracle ASM files due to the tablespace history. RMAN commands enable non-Oracle ASM files to be relocated to an Oracle ASM disk group and enable Oracle ASM files to be relocated as non-Oracle ASM files.

For example, if there is a disk group named `data`, then you can create a tablespace `tblspace` in that disk group with the following SQL statement:

```
CREATE TABLESPACE tblspace DATAFILE +data;
```

The following example illustrates the usage of Oracle ASM with defaults. This example enables Oracle ASM to create and manage the tablespace data file for you, using Oracle supplied defaults that are adequate for most situations.

Assume the following initialization parameter setting:

```
DB_CREATE_FILE_DEST = +data
```

The following statement creates the tablespace and its data file:

```
CREATE TABLESPACE tblspace;
```

### Creating Redo Logs in Oracle ASM

Online redo logs can be created in multiple disk groups, either implicitly in an initialization parameter file or explicitly in an `ALTER DATABASE...ADD LOGFILE` statement. Each online log should have one log member in multiple disk groups. The filenames for log file members are automatically generated. All partially created redo log files, created because of a system error, are automatically deleted.

For example, if there are disk groups named `data1` and `data2`, you can create a log file with a member in each disk group with the following SQL statement:

```
ALTER DATABASE ADD LOGFILE (+data1,+data2);
```

The following example creates a log file with a member in each of the disk groups `data1` and `data2`. The following parameter settings are included in the initialization parameter file:

```
DB_CREATE_ONLINE_LOG_DEST_1 = +data1
DB_CREATE_ONLINE_LOG_DEST_2 = +data2
```
The following statement is run at the SQL prompt:

```
ALTER DATABASE ADD LOGFILE;
```

Creating Control Files in Oracle ASM

Control files can be explicitly created in multiple disk groups. The filenames for control files are automatically generated.

If you must specify a control file by name, then you can use alias filenames to reference Oracle ASM files and use easy to understand names. Using aliases in the specification of a control file during its creation enables you to later refer to the control file with a user-specified name. An alias can also be specified as a control file name in the `CONTROL_FILES` initialization parameter.

When creating a control file, data files and log files that are stored in Oracle ASM disk groups should be given to the `CREATE CONTROLFILE` command using the file reference form of their Oracle ASM filenames. However, the use of the `RESETLOGS` option requires the use of a file creation form for the specification of the log files.

Creating Control Files in Oracle ASM: Example 1

The following `CREATE CONTROLFILE` statement is generated by an `ALTER DATABASE BACKUP CONTROLFILE TO TRACE` command for a database with data files and log files created on disk groups `data` and `fра`:

```
CREATE CONTROLFILE REUSE DATABASE "ORCL" NORESETLOGS ARCHIVELOG
MAXLOGFILES 16
MAXLOGMEMBERS 3
MAXDATAFILES 100
MAXINSTANCES 8
MAXLOGHISTORY 292

LOGFILE
GROUP 1
 '//DATA/orcl/onlinelog/group_1.261.685366203',
 '//FRA/orcl/onlinelog/group_1.257.685366205'
) SIZE 50M BLOCKSIZE 512,
GROUP 2
 '//DATA/orcl/onlinelog/group_2.262.685366207',
 '//FRA/orcl/onlinelog/group_2.258.685366211'
) SIZE 50M BLOCKSIZE 512,
GROUP 3
 '//DATA/orcl/onlinelog/group_3.263.685366213',
 '//FRA/orcl/onlinelog/group_3.259.685366215'
) SIZE 50M BLOCKSIZE 512

-- STANDBY LOGFILE
DATAFILE
 '//DATA/orcl/datafile/system.256.685366089',
 '//DATA/orcl/datafile/sysaux.257.685366089',
 '//DATA/orcl/datafile/undotbs1.258.685366091',
 '//DATA/orcl/datafile/users.259.685366091'
CHARACTER SET WE8MSWIN1252
```

Creating Control Files in Oracle ASM: Example 2

This example is a `CREATE CONTROLFILE` statement for a database with data files, but uses a `RESETLOGS` clause, and thus uses the creation form for log files:

```
```
Creating Archive Log Files in Oracle ASM

Disk groups can be specified as archive log destinations in the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DEST_n initialization parameters. When destinations are specified in this manner, the archive log filenames are unique, even if archived twice.

If LOG_ARCHIVE_DEST is set to a disk group name, LOG_ARCHIVE_FORMAT is ignored. Unique filenames for archived logs are automatically created by the Oracle database. If LOG_ARCHIVE_DEST is set to a directory in a disk group, LOG_ARCHIVE_FORMAT has its normal semantics.

The following sample archive log names might be generated with DB_RECOVERY_FILE_DEST set to +data. ORCL is the value of the DB_UNIQUE_NAME parameter:

+DATA/ORCL/ARCHIVELOG/2009_09_23/thread_1_seq_38.614.541956473
+DATA/ORCL/ARCHIVELOG/2009_09_23/thread_4_seq_35.609.541956477
+DATA/ORCL/ARCHIVELOG/2009_09_23/thread_2_seq_34.603.541956487
+DATA/ORCL/ARCHIVELOG/2009_09_25/thread_3_seq_100.621.541956497
+DATA/ORCL/ARCHIVELOG/2009_09_25/thread_1_seq_38.614.541956511
This appendix discusses limits, advanced administration, and troubleshooting for Oracle Automatic Storage Management Cluster File System (Oracle ACFS).

See Also: Articles available at My Oracle Support (http://support.oracle.com) for information about Oracle ACFS and Oracle ADVM.

This appendix contains the following topics:

- Limits of Oracle ACFS
- Limits of Oracle ADVM
- Oracle ACFS Drivers Resource Management
- Oracle ACFS Registry Resource Management
- Oracle ACFS Individual File System Resource Management
- Oracle ACFS and Oracle Restart
- Understanding Oracle ACFS I/O Failure Console Messages

For information about Oracle ACFS, see Chapter 5, "Introduction to Oracle ACFS".

Limits of Oracle ACFS

The limits of Oracle ACFS are discussed in this section.

The topics contained in this section are:

- Oracle ACFS Disk Space Usage
- Oracle ACFS Error Handling
- Oracle ACFS and NFS

Oracle ACFS Disk Space Usage

Oracle ACFS supports 64 million files in a file system, 63 snapshots, up to 64 mounts on 32-bit systems, and 256 mounts on 64-bit systems.

Oracle ACFS preallocates large user files to improve performance when writing data. This storage is not returned when the file is closed, but it is returned when the file is deleted. Oracle ACFS also allocates local metadata files as nodes mount the file system for the first time. This can result in a mount failing due to an out of space error, and much of this storage must be contiguous. This storage is approximately 64-128 megabytes per node. Oracle ACFS also keeps local bitmaps available to reduce...
contention on the global storage bitmap when searching for free space. This disk space is reported as in use by tools such as the UNIX `df` command even though some of it may not actually be allocated as of yet. This local storage pool can be as large as 128 megabytes per node.

**Oracle ACFS Error Handling**

Oracle ASM instance failure or forced shutdown while Oracle ACFS or another file system is using an Oracle ADVM volume results in I/O failures. The volumes must be closed and re-opened to access the volume again. This requires dismounting any file systems that were mounted when the local Oracle ASM instance failed. After the instance is restarted, the corresponding disk group must be mounted with the volume enabled followed by a remount of the file system. See "Deregistering, Dismounting, and Disabling Volumes and Oracle ACFS File Systems" on page 13-18.

If any file systems are currently mounted on Oracle ADVM volume files, the `SHUTDOWN ABORT` command should not be used to terminate the Oracle ASM instance without first dismounting those file systems. Otherwise, applications encounter I/O errors and Oracle ACFS user data and metadata being written at the time of the termination may not be flushed to storage before the Oracle ASM storage is fenced. If there is not time to permit the file system to dismount, then you should run two `sync` commands to flush cached file system data and metadata to persistent storage before issuing the `SHUTDOWN ABORT` operation.

Oracle ACFS does not interrupt the operating system environment when a metadata write fails, whether due to Oracle ASM instance failure or storage failure. Instead, Oracle ACFS isolates errors to an individual file system, putting it in an offline error state. The only operation that succeeds on that node for that file system from that point forward is a dismount operation. Another node recovers any outstanding metadata transactions, assuming it can write the metadata out to the storage. It is possible to remount the file system on the offlined node after the I/O condition is resolved.

It might not be possible for an administrator to dismount a file system while it is in the offline error state if there are processes referencing the file system, such as a directory of the file system being the current working directory for a process. To dismount the file system in this case it would be necessary to identify all processes on that node with references to files and directories on the file system and cause them to exit. The Linux `fuser` or `lsof` commands or Window `handle` command list information about processes and open files.

If Oracle ACFS detects inconsistent file metadata returned from a read operation, based on checksum or expected type comparisons, Oracle ACFS takes the appropriate action to isolate the affected file system components and generate a notification that `fsck` or `acfschkdsk` should be run as soon as possible. Each time the file system is mounted a notification is generated with a system event logger message until `fsck` or `acfschkdsk` is run.

**Oracle ACFS and NFS**

When exporting file systems through NFS on Linux, use the `-fsid=num` exports option. This option forces the file system identification portion of the file handle used to communicate with NFS clients to be the specified number instead of a number derived from the major and minor number of the block device on which the file system is mounted. You can use any 32-bit number for `num`, but it must be unique among all the exported file systems. In addition, `num` must be unique among members of the cluster and must be the same `num` on each member of the cluster for a given file system. This is needed because Oracle ASM DVM block device major numbers are not
guaranteed to be the same across reboots of the same node or across different nodes in the cluster.

**Limits of Oracle ADVM**

The limits of Oracle ADVM and these discussed in this section.

The default configuration for an Oracle ADVM volume is four columns of 64 megabytes (MB) extents in length and a 128 KB stripe width. Oracle ADVM writes data as 128 kilobytes (KB) stripe chunks in round robin fashion to each column and fills a stripe set of four 64 MB extents with 2000 stripe chunks before moving to a second stripe set of four 64 MB extents for volumes greater than 256 MB. Note that setting the number of columns on an Oracle ADVM dynamic volume to 1 effectively turns off striping for the Oracle ADVM volume.

On Linux platforms Oracle ASM Dynamic Volume Manager (Oracle ADVM) volume devices are created as block devices regardless of the configuration of the underlying storage in the Oracle ASM disk group. Do not use `raw (8)` to map Oracle ADVM volume block devices into raw volume devices.

**Oracle ACFS Drivers Resource Management**

The Oracle ACFS drivers resource is supported only for Oracle Grid Infrastructure cluster configurations; it is not supported for Oracle Restart configurations. See "Oracle ACFS and Oracle Restart" on page B-6.

The Oracle ACFS drivers resource (`ora.drivers.acfs`) is created by the Grid Infrastructure root script that is run following the Grid Infrastructure installation. The Oracle ASM instance resource (`ora.asm`) names the drivers resource as a weak dependency. Consequently, the start action for the drivers resource is also called whenever the start action for the `ora.asm` resource is issued. The start action for the drivers resource includes support for loading the Oracle ACFS, Oracle ADVM, and Oracle Kernel Services Driver (OKS) drivers into the operating system.

Following an Oracle Grid Infrastructure installation on Linux and UNIX platforms, a root script is run that includes actions for copying the Oracle ACFS components; including the Oracle ACFS, OKS, and Oracle ADVM drivers; into operating system-specific locations.

The Oracle ASM instance is started during the Grid Infrastructure installation process whenever Oracle Clusterware Registry (OCR) and the voting files are configured within an Oracle ASM disk group. In that case, the Oracle ACFS drivers are initially loaded during Grid Infrastructure Installation based on the resource dependency. The Oracle ASM instance can also be started using the Oracle ASM Configuration Assistant and the Oracle ACFS drivers are loaded based on that action. In steady state mode, the Oracle ACFS drivers are automatically loaded during Oracle Clusterware initialization when the Oracle High Availability Services Daemon (O HassD) calls the start action for the Oracle ASM instance resource that also results in loading the Oracle ACFS drivers due to the resource dependency relationship. The start action for the Oracle ACFS drivers resource attempts to load the Oracle ACFS, Oracle ADVM, and OKS drivers into the native operating system.

The policy for the Oracle ACFS drivers is that they remain loaded until Oracle Clusterware is shut down. The `ora.drivers.acfs` resource is managed automatically by Oracle High Availability Services Daemon (O HassD) and its state cannot be manually manipulated by `srvctl` or `crsctl`.
The Oracle ACFS registry resource is supported only for Oracle Grid Infrastructure cluster configurations; it is not supported for Oracle Restart configurations. See "Oracle ACFS and Oracle Restart" on page B-6.

The Oracle ACFS registry resource (ora.registry.acfs) is created by the root script that is run following Grid Infrastructure installation. The start action for the Oracle ACFS mount registry resource is automatically called during Grid Infrastructure initialization to activate the local node state of the clusterwide Oracle ACFS mount registry. If this initialization is successful, the state of this resource is set to online; otherwise, the state of the resource is set to offline. The state of the Oracle ACFS registry resource is determined only by the active state of the mount registry. The online status is independent of any registry contents or the current state of any individual registered file systems that may exist within the Oracle ACFS registry.

In addition to activating the local node state of the mount registry, the Oracle ACFS registry resource start action assists in establishing a clusterwide Oracle ACFS file name space. On each node, the resource start action scans the contents of the clusterwide mount registry and mounts any file systems designated for mounting on the local cluster member. Before mounting a registered file system, the resource start action confirms that the associated file system storage stack is active and will mount the disk group, enable the volume file, and create the mount point if necessary to complete the mount operation.

The check action for the Oracle ACFS registry resource assists in maintaining the clusterwide Oracle ACFS file system name space. On each node, the check action scans the contents of the mount registry for newly created entries and mounts any Oracle ACFS file systems registered for mounting on the local node. Consequently, a new Oracle ACFS file system can be created and registered on one node of the cluster, and is automatically mounted on all cluster members designated by the Oracle ACFS registry entry.

The Oracle ACFS registry resource check action also assists with file system recoveries. Recovering a file system from an offline state requires dismounting and remounting the file system. As the Oracle ACFS registry resource check action scans the mount registry searching for newly created file systems, it also checks for any offline file systems on the local node and if found, attempts to dismount and remount each offline file system. If the remount is successful, the file system transitions from offline to fully active status.

The Oracle ACFS registry resource stop action is usually called during the Grid Infrastructure shutdown sequence of operations. To transition the registry resource to an offline state, all file systems on this cluster member that are configured with Oracle ADVM devices must be dismounted. A mounted file system maintains an open reference on its Oracle ADVM device special file and associated dynamic volume file that must be closed before the Oracle ASM instance can be shutdown normally. The registry resource stop action scans the operating system’s internal mount table searching for any mounted file system that is configured with an Oracle ADVM device file. If any is found, the stop action attempts to dismount that file system. However, if there are open references resulting from applications or users of that file system, then the file system cannot be dismounted until these are closed. If the dismount operation fails, the process IDs of any processes holding an open reference on the file system are displayed and logged to enable the administrator to resolve the open references and dismount the file systems. The internal mount table entries can include registered and unregistered Oracle ACFS file systems, and other local file systems that were mounted on an Oracle ADVM device file.
The Oracle ACFS registry resource clean action is called implicitly if the resource stop action fails to transition the resource to the offline state. In that case, the registry resource clean action can be called to effectively force the resource offline. The registry resource clean action scans the operating system internal mount table searching for any file system that is mounted upon an Oracle ADVM device. If any is found, the resource clean action attempts to unmount the file system as in the resource stop action. However, if there are open references that prevent the file system from being dismounted, the clean resource action displays and logs the Process Identifiers of any process holding a reference, terminates the referencing processes, and then dismounts the file system. At the completion of the clean action, the registry resource is set to an offline state and other participants in the Grid Infrastructure shutdown sequence can now be stopped.

Whenever Oracle Clusterware is started on a cluster node, the Oracle ACFS startup operations for the node consult the cluster mount registry and attempt to mount all Oracle ACFS file systems that are registered for this node. Following each file system addition to the mount registry, the newly registered file system is automatically mounted on each node designated by the registry entry. If a registered file system is automatically mounted and is later dismounted, it is not automatically remounted until the system is rebooted or Oracle Clusterware is restarted. It can be manually remounted using the `mount` command or Oracle Enterprise Manager.

The Oracle ACFS cluster mount registry action routines attempt to mount each Oracle ACFS file system on its registered mount point and create the mount point if it does not exist. The registry action routines also mount any Oracle ASM disk groups and enable any Oracle ADVM volumes required to support the Oracle ACFS mount operation. In the event that a file system enters into an offline error state, the registry action routines attempt to recover the file system and return it to an on-line state by dismounting and remounting the file system. For information about the offline error state, see "About Oracle ACFS Integration with Oracle ASM" on page 5-9.

### Oracle ACFS Individual File System Resource Management

The Oracle ACFS individual file system resource is supported only for Oracle Grid Infrastructure cluster configurations; it is not supported for Oracle Restart configurations. See "Oracle ACFS and Oracle Restart" on page B-6.

Oracle ASM Configuration Assistant (ASMCA) facilitates the creation of Oracle ACFS individual file system resources (`ora.diskgroup.volume.acfs`). During database creation with Database Configuration Assistant (DBCA), the individual file system resource is included in the dependency list of its associated disk group so that stopping the disk group also attempts to stop any dependent Oracle ACFS file systems.

An Oracle ACFS individual file system resource is typically created for use with application resource dependency lists. For example, if an Oracle ACFS file system is configured for use as an Oracle Database home, then a resource created for the file system can be included in the resource dependency list of the Oracle Database application. This dependency causes the file system and stack to be automatically mounted due to the start action of the database application.

An Oracle ACFS file system that is to be mounted from a dependency action should not be included in the Oracle ACFS mount registry.

The start action for an Oracle ACFS individual file system resource is to mount the file system. This individual file system resource action includes confirming that the associated file system storage stack is active and mounting the disk group, enabling the volume file, and creating the mount point if necessary to complete the mount.
operation. If the file system is successfully mounted, the state of the resource is set to online; otherwise, it is set to offline.

The check action for an individual file system resource verifies that the file system is mounted. It sets the state of the resource to online status if mounted, otherwise the status is set to offline.

The stop action for an Oracle ACFS individual file system resource attempts to dismount the file system. If the file system cannot be dismounted due to open references, the stop action displays and logs the process identifiers for any processes holding a reference.

Use of the `srvctl start` and `stop` actions to manage the individual file system resources maintains their correct resource state.

**Oracle ACFS and Oracle Restart**

Oracle Restart does not support root-based Oracle ACFS resources for this release. Consequently, the following operations are not automatically performed:

- Loading Oracle ACFS drivers
- Mounting Oracle ACFS file systems listed in the Oracle ACFS mount registry
- Mounting resource-based Oracle ACFS database home file systems

The Oracle ACFS resources associated with these actions are not created for Oracle Restart configurations.

While Oracle ACFS resource management is fully supported for Oracle Grid Infrastructure configurations, the Oracle ACFS resource-based management actions must be replaced with alternative, sometimes manual, operations in Oracle Restart configurations.

**Understanding Oracle ACFS I/O Failure Console Messages**

Oracle ACFS logs information for I/O failures in the operating-specific system event log.

A console message has the following format:

```
[Oracle ACFS]: I/O failure (error_code) with device device_name during a operation_name op_type.
Impact: acfs_type Object: object_type Oper.Context: operation_context
Snapshot?: yes_or_no AcfsObjectID: acfs_object_id . Internal ACFS Location: code_location.
```

The italicized variables in the console message syntax correspond to the following:

- **I/O failure**
  The operating system specific error code, in Hex, seen by Oracle ACFS for a failed I/O. This may indicate a hardware problem, or it might indicate a failure to initiate the I/O for some other reason.

- **Device**
  The device involved, usually the ADVM device file, but under some circumstances it might be a string indicating the device minor number

- **Operation name**
  The kind of operation involved:
user data, metadata, or paging

■ Operation type
The type of operation involved:
synch read, synch write, asynch read, or asynch write

■ File entry number
The Oracle ACFS File entry number of the file system object involved, as a decimal number. The acfsutil info fileid tool finds the corresponding file name.

■ Offset
The disk offset of the I/O, as a decimal number.

■ Length of I/O
The length of the I/O in bytes, as decimal number.

■ File system object impacted
An indication that the file system object involved is either node-local, or is a resource accessed clusterwide. For example:
Node or Cluster

■ Type of object impacted
A string indicating the kind of file system object involved, when possible. For example:
Unknown, User Dir., User Symlink, User File, Sys. Dir, Sys. File, or MetaData
  ■ Sys. Dir.
  Oracle ACFS-administered directory within the visible namespace
  ■ sys.File
  Oracle ACFS-administered file within the visible namespace
  ■ MetaData
  Oracle ACFS-administered resources outside of the visible namespace

■ Operational context
A higher-level view of what code context was issuing the I/O. This is for use by Oracle Support Services. For example:
Unknown, Read, Write, Grow, Shrink, Commit, or Recovery

■ Snapshot
An indication of whether, if possible to determine, the data involved was from a Snapshot. For example:
Yes, No, or ?

■ Object type of the file system
An internal identifier for the type of file system object. For use by Oracle Support Services.

■ Location of the code
An internal identifier of the code location issuing this message. For use by Oracle Support Services.
The following is an example from /var/log/messages in a Linux environment:

[Oracle ACFS]: I/O failure (0xc0000001) with device /dev/sdb during a metadata synch write.
Impact: Node   Object: MetaData   Oper.Context: Write
Oracle Automatic Storage Management Cluster

An Oracle Automatic Storage Management (Oracle ASM) cluster is a collection of interconnected nodes, each with an Oracle ASM instance, operating as a unified cluster using Oracle Clusterware. An Oracle ASM cluster presents a shared pool of storage to one or more Oracle Databases that are also operating on the nodes. The databases can also be clustered using Oracle Real Application Clusters, but that is not a requirement. The disks that provide the shared storage pool must be accessible from all of the nodes in the Oracle ASM cluster.

ASMLIB

ASMLIB is an application programming interface (API) developed by Oracle to simplify the operating system-to-database interface and to exploit the capabilities of vendors' storage arrays on Linux-based systems.

Cluster File System (CFS)

A Cluster File System, or CFS, is a file system that is distributed across multiple computer systems. Generally, the computer systems share access to a disk connected through a Storage Area Network (SAN). The CFS component on each individual computer system coordinates access to the disks using a global communication mechanism.

Cluster Synchronization Services (CSS)

Cluster Synchronization Services (CSS) provide the foundation for coordinated, inter-process communication activities across a set of nodes. CSS services include group services, lock services, node information and cluster configuration services, and node monitoring services that detect nodes joining and leaving the cluster.

CSS Cluster

A CSS cluster is the cluster configuration defined by the CSS cluster membership services. CSS maintains the authoritative membership for an Oracle cluster and monitors nodes joining and leaving the cluster configuration. There is at most one CSS cluster defined for a given set of nodes.

disk group

An Oracle ASM disk group is a collection of disks that Oracle ASM manages as a unit. Within a disk group, Oracle ASM exposes a file system interface for Oracle Database files. The content of files that are stored in a disk group are evenly distributed, or striped, to eliminate hot spots and to provide uniform performance across the disks. Oracle ASM files may also be optionally mirrored within a disk group. The performance of disks in a disk group is comparable to the performance of raw devices.
Direct Attached Storage (DAS)

Direct Attached Storage, or DAS, consists of storage devices that attach directly to host without an intervening network. DAS generally costs less than SAN attached storage, but also offers less flexibility and functionality. Examples of DAS include SATA disks, common to most desktop systems, and SCSI disks that are found on many servers.

extent

An extent, also called data extent, is the raw storage used to hold the contents of a file. Each extent consists of one or more allocation units (AU) on a specific disk.

extent map

An extent map is a list of extent pointers that point to all the data extents of a file. This is the raw storage for the file. Each extent pointer gives the disk and allocation unit of the data extent. For reliability, each extent pointer also includes a check byte to ensure it has not been damaged. This is particularly important when using an in-memory copy of the extent map to direct file I/O to a particular disk location.

fibre channel

Fibre channel is a set of standards that define the interface between computer systems and peripherals. The fibre channel interface is a serial bus interface originally designed to supersede the SCSI standard. However, both the fibre channel and SCSI interfaces have evolved independently of each other and have benefited from the existence of the other. Fibre is spelled with re rather than an er to indicate a distinction from terms such as fiber optics. Both copper and fiber optics are commonly used as a media for fibre channel.

file system

A file system is a software component providing structured access to disks. File systems present objects, such as files, to application programs. Access to files is generally specified with standard API defining operating system calls such as Open/Close and Read/Write that the application program uses for accessing files. File systems are usually provided as a component of an operating system, but may be provided as an independent software component.

file

A file is an object presented to an application program by a file system. A file is subdivided into blocks by the file system. A file system typically places what appears to the application program as consecutive blocks, into nonconsecutive locations on disks. The mapping of the file blocks to the locations on disks is kept in what is known as an extent map.

host bus adapter (HBA)

A host bus adapter (HBA), or host adapter, connects a host system to other network and storage devices, such as, eSATA, and SCSI devices.

Logical Unit Number (LUN)

In storage technology, the term LUN is often used to denote a disk presented to a computer system by a storage array. In SCSI terminology, a Logical Unit Number, or LUN, is a number representing a device address presented to a computer system.

mirroring

In storage systems, mirroring is a means for protecting the integrity of data by storing copies of data on multiple disks. If a disk fails, then a secondary copy of the data is available on a second or third disk. Generally, mirroring can be deployed in one of two
ways. In the most common case, as with a RAID storage array, a fixed amount of physical storage space on a single disk is uniformly copied on multiple disks. Through software on the storage array, the physically mirrored space on multiple devices is presented to the host as a single disk. Another approach to mirroring is to copy fixed segments of a file onto multiple disks. Oracle ASM uses the second approach for maximum flexibility.

**Network Attached Storage (NAS)**

Network Attached Storage, or NAS, comprises a class of systems providing file services to host computers. A device driver in the operating system accesses data using protocols such as NFS or Common Internet File System (CIFS). From the application program's point of view, Network Attached Storage appears as a file system local to the host computer on which the application program resides.

**Network File System (NFS)**

A network file system, or NFS, is an industry standard providing Network Attached Storage on many platforms. NFS extends the local file system framework to provide device sharing to users on an IP network. The user view of an NFS is that a remote file system on a host appears as if it were locally mounted.

**partition**

Operating systems typically provide a means for splitting a disk into sections called partitions. To an application, a partition appears as an independent disk, even though that is not the case. The operating system provides a command for managing the size and locations of partitions on a disk. This command writes a partition map onto the disk in an area that is not visible to the application program.

**Redundant Array of Inexpensive Disks (RAID)**

Redundant Array of Inexpensive Disks, or RAID, is a means for combining multiple disks through software and presenting them to a host as a collection of apparently distinct disks. Mirroring and striping are two means used for combining the disks as a collection. RAID can be implemented as a software component of a computer system or as software operating inside of a storage array. RAID operates on the physical presentation of storage as opposed to Oracle ASM mirroring and striping at the logical file level.

**Storage Area Network (SAN)**

Storage Area Network, or SAN, is a specialized network designed for attaching storage devices, such as disk arrays and tape drives, to computer systems. The most common network infrastructure used in SANs is fibre channel. SANs provide great flexibility by allowing a common interconnect infrastructure in which any storage device can be connected to any computer system. Zoning and LUN masking are commonly used for access control for SANs. Zoning is a mechanism where the SAN infrastructure determines the access rights of storage devices to computer systems. LUN masking is a mechanism where the storage device determines the access rights of what computer systems are permitted to connect to the device.

**Small Computer System Interface (SCSI)**

Small Computer System Interface, or SCSI, is a standard defining the interface between computer systems and peripherals, most commonly storage devices. The SCSI standard defines both the logical and physical aspects of the interface between computer systems and peripherals.
striping

In storage systems, striping is a means for spreading data across multiple disks as opposed to storing the data on a single disk. Striping is usually done to improve performance. Generally, striping can be deployed in one of two ways. In the most common case, as with a RAID storage array, a fixed amount of physical storage space that could have been stored on a single disk is uniformly striped across multiple disks. Through software on the storage array, the physically striped space on multiple devices is presented to the host as a single disk. Another approach to striping is to stripe fixed segments of a file across multiple disks connected to the host. Oracle ASM uses the second approach for maximum performance.

volume

In the storage realm, the meaning of volume has many related definitions. Volumes are often thought of as the virtual entity represented as a Logical Unit Number (LUN). Volumes often are presented as an aggregation of pieces from several disks. A volume is managed by a software component called a volume manager.

volume manager

A volume manager is a software component that manages the mapping of the collection of the pieces of the disks into a volume.
Index

A

access control
  disk groups, 4-39
ACCESS_CONTROL.ENABLED
disk group attribute, 4-2, 4-41
ACCESS_CONTROL.UMASK
disk group attribute, 4-2, 4-41
ACFS
  see Oracle Automatic Storage Management Cluster File System
acfschkdsk command, 13-39
acfsdbg command, 13-89
acfsdismount command, 13-41
acfsformat command, 13-42
acfsmountvol command, 13-43
acfsutil detach command, 13-44
acfsutil encr command, 13-85
acfsutil encr info command, 13-83
acfsutil encr init command, 13-84
acfsutil encr off command, 13-85
acfsutil encr rekey command, 13-86
acfsutil encr set command, 13-87
acfsutil info file command, 13-92
acfsutil info fs command, 13-92
acfsutil info id command, 13-95
acfsutil registry command, 13-96
acfsutil repl bg command, 13-51
acfsutil repl info command, 13-52
acfsutil repl init command, 13-54
acfsutil repl pause command, 13-56
acfsutil repl resume command, 13-57
acfsutil repl sync command, 13-57
acfsutil repl terminate command, 13-58
acfsutil repl trace command, 13-59
acfsutil repl update command, 13-60
acfsutil rmfs command, 13-97
acfsutil sec admin add command, 13-61
acfsutil sec admin password command, 13-62
acfsutil sec admin remove command, 13-63
acfsutil sec batch command, 13-63
acfsutil sec disable command, 13-64
acfsutil sec enable command, 13-65
acfsutil sec info command, 13-66
acfsutil sec info file command, 13-66
acfsutil sec init command, 13-67
acfsutil sec load command, 13-68
acfsutil sec prepare command, 13-69
acfsutil sec realm add command, 13-70
acfsutil sec realm clone command, 13-72
acfsutil sec realm create command, 13-73
acfsutil sec realm delete command, 13-74
acfsutil sec realm destroy command, 13-75
acfsutil sec rule clone command, 13-76
acfsutil sec rule create command, 13-77
acfsutil sec rule destroy command, 13-78
acfsutil sec rule edit command, 13-78
acfsutil sec ruleset clone command, 13-79
acfsutil sec ruleset create command, 13-80
acfsutil sec ruleset destroy command, 13-81
acfsutil sec ruleset edit command, 13-81
acfsutil sec save command, 13-82
acfsutil size command, 13-98
acfsutil snap create command, 13-99
acfsutil snap delete command, 13-100
acfsutil tag info command, 13-48
acfsutil tag set command, 13-49
acfsutil tag unset command, 13-50
acfsutil tune command, 13-101
active session history sampling
  Oracle Automatic Storage Management, 3-22
adding
  Oracle Automatic Storage Management, 3-22
  Oracle ASM, 1-7
advmutil canonical command, 13-102
advmutil dismount command, 13-45
advmutil list command, 13-46
advmutil mount command, 13-47
advmutil tune command, 13-103
advmutil volinfo command, 13-104
aliases
  dropping from a disk group, 7-10
  managing in Oracle ASM, 7-9
allocation units
  different sizes enabled by compatibility attributes, 4-37
Oracle ASM, 1-7
size for disk groups, 4-7
ALTER DISKGROUP command, 4-11
archive log files
creating in Oracle ASM, A-4
ASM
see Oracle Automatic Storage Management
ASM SPFILE in a disk group
enabled by compatibility attributes, 4-37
ASM_DISKGROUPS initialization parameter
Oracle ASM instance, 3-7
ASM_DISKSTRING initialization parameter
discovering disks, 1-10
Oracle ASM instance, 3-7
ASM_POWER_LIMIT initialization parameter
Oracle ASM instance, 3-8
rebalancing process, 3-8
values enabled by compatibility attributes, 4-37
ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter
Oracle ASM instance, 3-9
asmadmin group, 3-25
ASMCA
see Oracle ASM Configuration Assistant
ASMCMD
about, 12-1
cd command, 12-21
chdg command, 12-31
chgrp command, 12-54
chkgd command, 12-33
chmod command, 12-54
chown command, 12-56
chtmpl command, 12-50
command option updates, xxviii
cp command, 12-21
disk group management commands, 12-30
dropdg command, 12-33
dsget command, 12-11
dsset command, 12-11
du command, 12-23
enhancements, xxviii
exit command, 12-7
file management commands, 12-20
find command, 12-23
groups command, 12-56
grpmod command, 12-57
help command, 12-10
including directory in prompt, 12-8
instance management commands, 12-10
iostat command, 12-34
ls command, 12-24
lsattr command, 12-36
lsct command, 12-12
lsdg command, 12-37
lsdisk command, 12-38
lsgrp command, 12-57
lsod command, 12-40
lsf command, 12-26
lsop command, 12-13
lstmpl command, 12-13
lsusr command, 12-58
md_backup command, 12-41
md_restore command, 12-43
mkalias command, 12-27
mkdg command, 12-43
mkdir command, 12-28
mkgrp command, 12-59
mktmpl command, 12-52
mkusr command, 12-59
mount command, 12-45
offline command, 12-46
online command, 12-47
Oracle ASM file access control commands, 12-53
orapwusr command, 12-14
passwd command, 12-60
preparing to run, 12-6
pwd command, 12-28
rebal command, 12-47
remap command, 12-48
rm command, 12-29
rmalias command, 12-30
rmgrp command, 12-60
rmtmpl command, 12-53
rmusr command, 12-61
running in a database home, 12-6
running in an Oracle grid infrastructure
home, 12-6
setattr command, 12-49
shutdowm command, 12-15
spbackup command, 12-15
spcopy command, 12-16
specifying the verbose mode, 12-8
spget command, 12-18
spmove command, 12-18
spset command, 12-19
startup command, 12-19
SYSASM privilege, 12-8
template management commands, 12-50
type of connection, 12-8
umount command, 12-49
volcreate command, 12-62
voldelete command, 12-64
voldisable command, 12-64
vollenable command, 12-65
volinfo command, 12-66
volresize command, 12-67
volset command, 12-68
volstat command, 12-68
volume management commands, 12-62
ASMCMD utility, 12-1
asmdba group, 3-25
asmoper group, 3-25
ASMSNMP user
for monitoring the Oracle ASM instance, 3-24
Oracle ASM, 9-4, 11-2, 11-6
attributes
disk group compatibility, 4-33
DISK_REPAIR_TIME, 4-28
for disk groups, 4-2, 4-5
in templates for Oracle Automatic Storage

Index-2
Management, 7-15

AU_SIZE
different sizes enabled by compatibility attributes, 4-37
disk group attribute, 1-7, 4-2, 4-5

authentication
Oracle ASM, 3-23

backing up
Oracle Automatic Storage Management files, 9-23
backup and restore
Oracle ACFS, 5-8

capacity
managing in disk groups, 4-21
cd command
ASMCMD, 12-21
CELL.SMART_SCAN_CAPABLE
disk group attribute, 4-2
chdg command
ASMCMD, 12-31
chgrp command
ASMCMD, 12-54
chkdg command
ASMCMD, 12-33
chmod command
ASMCMD, 12-54
chown command
ASMCMD, 12-56
chtmpl command
ASMCMD, 12-50
Cluster File System (CFS), Glossary-1
clusterware resource types
Kernel Services Driver (OKS), 5-10
Oracle ACFS, 5-10
Oracle ADVM, 5-10

command rules
Oracle ACFS security, 13-71
compatibility
disk groups, xxxii, 4-32, 9-7, 9-15
Oracle ASM and database instances, 3-1
reverting disk groups to previous settings, 4-37
COMPATIBLE
database initialization parameter, 4-34
COMPATIBLE.ADVM
disk group attribute, 4-2, 4-5, 4-34
COMPATIBLE.ASM
disk group attribute, 4-2, 4-5, 4-33
compatible.asm, xxxii
COMPATIBLE.RDBMS
disk group attribute, 4-2, 4-5, 4-34
compatible.rdbms, xxxii
configuration page
Oracle Automatic Storage Management, 9-3
configuring
Oracle Automatic Storage Management, 9-3
control file
creating in Oracle ASM, A-3
cp command
ASMCMD, 12-21
creating
database using Oracle ASM, A-1
disk groups, 4-3
disk groups in a new installation, 4-6

data extent, Glossary-2
DB_CACHE_SIZE initialization parameter
Oracle ASM instance, 3-9
default configuration
Oracle ADVM, B-3
diagnostic directory
Oracle ASM instance, 3-10
DIAGNOSTIC_DEST initialization parameter
Oracle ASM instance, 3-10
Direct Attached Storage (DAS), Glossary-2
directories
managing disk group, 7-11
discovering disks, 4-19
Oracle ASM, 1-10
disk discovery
about, 4-19
improving time, 4-21
in Oracle ASM, 4-19
rules, 4-20
disk failure
in Oracle Automatic Storage Management, 4-25
disk group compatibility, 9-7, 9-15
considerations for replicated environments, 4-38
setting, 4-34
disk group management commands
ASMCMD, 12-30
disk groups, 3-15
access control, 4-39
ACCESS_CONTROL_ENABLED attribute, 4-41
ACCESS_CONTROL UMASK attribute, 4-41
adding disks to, 9-7
adding templates to, 7-17
administering, 4-1
allocation unit size, 4-7
altering membership of, 4-11
and Oracle Cluster Registry (OCR), 4-10
and voting files, 4-10
attributes, 4-2, 4-5
checking internal consistency, 4-45
compatibility, xxxii, 4-32
compatibility attributes, 4-33
creating, 4-3
creating for a new installation, 4-6
creating Oracle Enterprise Manager, 9-5
creating with SQL*Plus, 4-3
discovering disks, 4-19
dismounting, 1-11
dropping, 4-45
dropping disks from, 4-14, 9-11
dropping in Oracle Enterprise Manager, 9-12
managing capacity in, 4-21
manually rebalancing, 4-17
monitoring disk space usage in Oracle Enterprise Manager, 9-13
mounting, 1-11
mounting and dismounting, 4-43
mounting with force, 4-44
names, 4-3
Oracle ASM, 1-5
performance and scalability, 4-31
preferred read, 3-9
quorum failure groups, 4-10
rebalancing, 1-11
renaming, 4-46
resizing disks in, 4-16
reverting compatibility, 4-37
sector size, 4-8
undropping disks in, 4-17
disk regions
and rebalance operations, 4-16
intelligent data placement, 4-15
Oracle Automatic Storage Management, 4-15
DISK_REPAIR_TIME
disk group attribute, 4-2, 4-28
disks
adding, 1-11
discovering, 1-10, 4-19
dropping, 1-11
Oracle ASM, 1-6
preparing for Oracle ASM, 2-1
dismounting
disk groups, 1-11
dismounting or shutting down
Oracle ACFS, 5-11
driver model
Oracle ACFS, 5-6
drivers resource
Oracle ACFS, B-3
dropdg command
ASMCMD, 12-33
dropping
aliases from a disk group, 7-10
disk groups, 4-45
disks, 1-11
disks from a disk group, 4-14
disks from disk groups in Oracle Enterprise Manager, 9-11
files from a disk group, 7-10
Oracle ASM templates, 7-18
dsget command
ASMCMD, 12-11
disset command
ASMCMD, 12-11
du command
ASMCMD, 12-23
dynamic views, 6-1

E
encrypting file systems
Oracle ACFS, 13-10
encryption
configuring with Oracle ASMCA, 11-14
enabled by compatibility attributes, 4-37
Oracle ACFS, 0-xxvi, 5-14
encryption keys
Oracle ACFS, 5-14
Enterprise Manager
see Oracle Enterprise Manager
Exadata storage
enabled by compatibility attributes, 4-37
exit command
ASMCMD, 12-7
Extended Attributes
requirements for tagging, 5-18
extent, Glossary-2
extent map, Glossary-2
extents
Oracle ASM, 1-7
variable size, 1-7, 4-22, 4-37

F
failure groups
about, 4-25
and mirroring, 4-23
Oracle ASM, 1-5
preferred read, xxxii, 4-29
quorum type, 4-10
fast mirror resync, xxxi, 4-27, 9-10, 9-11
enabled by compatibility attributes, 4-37
fast rebalance, xxxii
fibre channel, Glossary-2
file, Glossary-2
file access and security
Oracle ACFS, 5-9
file access control
enabled by compatibility attributes, 4-37
Oracle Automatic Storage Management, 4-39
file management commands
ASMCMD, 12-20
file systems, Glossary-2
file templates
understanding, 1-10
filenames
Oracle Automatic Storage Management, 7-2
files
Oracle ASM, 1-7
templates, 1-10
find command
ASMCMD, 12-23
fsck command
AIX, 13-33
Linux and UNIX, 13-20
Solaris, 13-26
G

grid infrastructure configuration
  Oracle ACFS, 5-10
grid infrastructure installation
  Oracle ACFS, 5-10
group plug and play (GPPN)
  retrieving the location of an ASM SPFILE, 12-18
  setting the location of the ASM SPFILE, 12-19
groups
  OSASM, xxxi, xxxii, 3-24, 3-27, 3-28
groups command
  ASMCMD, 12-56
grpmod command
  ASMCMD, 12-57

H

help command
  ASMCMD, 12-10
host bus adapter (HBA), Glossary-2

I

individual file system resource
  Oracle ACFS, B-5
initialization parameter files
  backing up, copying, and moving, 3-4
  Oracle Automatic Storage Management, 3-3
initialization parameters
  COMPATIBLE, 4-34
  database for use with Oracle ASM instance, 3-11
  Oracle ASM instance, 3-6
  Oracle Automatic Storage Management, 3-2
  setting for Oracle ASM instance, 3-5
instance management commands
  ASMCMD, 12-10
INSTANCE_TYPE initialization parameter
  Oracle ASM instance, 3-10
instances
  Oracle ASM, 1-2
intelligent data placement
  and rebalance operations, 4-16
  disk regions, 4-15
  enabled by compatibility attributes, 4-37
I/O failure console messages
  Oracle ACFS, B-6
iostat command
  ASMCMD, 12-34

K

keys
  encryption, 5-14

L

LARGE_POOL_SIZE initialization parameter
  Oracle ASM instance, 3-10
Logical Unit Number (LUN), Glossary-2
ls command
  ASMCMD, 12-24
lsattr command
  ASMCMD, 12-36
lct command
  ASMCMD, 12-12
lsdg command
  ASMCMD, 12-37
lsdsk command
  ASMCMD, 12-38
lsgrp command
  ASMCMD, 12-57
lsod command
  ASMCMD, 12-40
lsop command
  ASMCMD, 12-26
lspwusr command
  ASMCMD, 12-13
lstmpl command
  ASMCMD, 12-51
lsusr command
  ASMCMD, 12-58

M

managing capacity in disk groups, 4-21
managing file access control
  Oracle Automatic Storage Management, 9-17
managing file access control page
  Oracle Automatic Storage Management, 9-17
managing files
  Oracle Automatic Storage Management, 9-19
managing files page
  Oracle Automatic Storage Management, 9-19
managing templates
  Oracle Automatic Storage Management, 7-15, 9-20
managing templates page
  Oracle Automatic Storage Management, 9-20
managing users
  Oracle Automatic Storage Management, 9-4
md_backup command
  ASMCMD, 12-41
md_restore command
  ASMCMD, 12-43
memory management
  Oracle Automatic Storage Management, 3-5
migrating a database
  to Oracle ASM, 3-29
mirror
  fast resync, xxxi, 4-27, 9-10, 9-11
mirroring
  and failure groups, 4-23
  Oracle ASM, 1-5
  storage systems, Glossary-2
  with failure groups, 1-5
mkalias command
  ASMCMD, 12-27
mkdg command
ASMCMD, 12-43
mkdir command
ASMCMD, 12-28
mkfs command
AIX, 13-35
Linux and UNIX, 13-22
Solaris, 13-28
mkgrp command
ASMCMD, 12-59
mktmpl command
ASMCMD, 12-52
mkusr command
ASMCMD, 12-59
modifying a file
disk regions, 4-16
monitoring performance
Oracle Automatic Storage Management, 9-22
mount command
AIX, 13-36
ASMCMD, 12-45
Linux and UNIX, 13-23
Solaris, 13-29
mount model
Oracle ACFS, 5-7
mount registry
Oracle ACFS, 5-7
mounting
disk groups, 1-11
mounting and dismounting disk groups, 4-43
mounting at startup, 3-15
mounting disk groups
using force, 4-44

namespace
Oracle ACFS, 5-7
naming
disk groups, 4-3
Network Attached Storage (NAS), Glossary-3
Network File System (NFS), Glossary-3
new features
Oracle Automatic Storage Management, xxv
NOWAIT keyword
in REBALANCE clause, 4-11

OCR in disk groups
enabled by compatibility attributes, 4-37
offline command
ASMCMD, 12-46
online command
ASMCMD, 12-47
operating system authentication
for Oracle Automatic Storage Management, 3-28
option updates
ASMCMD commands, xxviii
Oracle ACFS
see Oracle Automatic Storage Management Cluster

File System
Oracle ACFS security
command rules, 13-71
Oracle ADVM
see Oracle Automatic Storage Management
Dynamic Volume Manager
Oracle ASM
see Oracle Automatic Storage Management
Oracle ASM Configuration Assistant
about, 11-1
addDisk command, 11-23
commands, 11-18
configureASM command, 11-19
configureParameter command, 11-20
configuring an Oracle ACFS, 11-12
configuring an Oracle ASM volume, 11-10
configuring disk groups, 11-7
configuring Oracle ACFS encryption, 11-14
configuring Oracle ACFS security, 11-14
createACFS command, 11-24
createDiskGroup command, 11-21
createVolume command, 11-23
creating an Oracle ACFS, 11-13
creating an Oracle ASM instance, 11-2
creating an Oracle ASM volume, 11-11
creating disk groups, 11-8
deleteASM command, 11-21
mounting or dismounting an Oracle ACFS, 11-12
running in command-line mode, 11-17
running in silent mode, 11-17
starting, 11-1
updating Oracle ASM instance parameters, 11-3
upgradeASM command, 11-19
upgrading an Oracle ASM instance, 11-4
Oracle ASM file access control commands
ASMCMD, 12-53
Oracle ASM preferred read
failure groups, xxxii
Oracle Automatic Storage Management
accessing files with the XML DB virtual folder, 7-12
accessing the home page, 9-1, 10-1
active session history sampling, 3-22
administering, 3-1
aliases, 7-9
ASMSNMP, 9-4, 11-2, 11-6
authentication, 3-23
backing up initialization parameter files, 3-4
command-line utility, 12-1
concepts, 1-2
configuration page, 9-3
creating an Oracle Automatic Storage Management instance, 3-2
copying initialization parameter files, 3-4
creating a database in, A-1
creating archive log files in, A-4
creating control file in, A-3
creating files in the database, 7-7
creating redo logs in, A-2
creating tablespaces in, A-2
database initialization parameters, 3-11
diagnostic directory, 3-10
discovering disks, 1-10, 4-19
disk discovery, 4-19
disk discovery string, 1-10
disk failures in, 4-25
disk groups, 1-5
disk regions, 4-15
disks, 1-6
downgrading an instance, 3-19
failure groups, 4-25
file access control, 4-39
file templates, 1-10
filenames, 7-2
files, 1-7
initialization parameter files, 3-3
initialization parameters, 3-6
instances, 1-2
integration with Oracle ACFS, 5-9
managing file access control page, 9-17
managing files page, 9-19
managing templates page, 9-20
memory management, 3-5
migrating a database to, 3-29
mirroring and failure groups, 1-5
monitoring disk group space usage, 9-13
moving initialization parameter files, 3-4
new features, xxv
one operating system group for all
privileges, 3-24
operating system authentication for, 3-28
overview, 1-1
password file authentication for, 3-28
performance page, 9-22
preparing disks, 2-1
privileges, 3-24
rolling upgrade, 3-22
separate operating system groups for
privileges, 3-25
setting initialization parameters, 3-5
shutting down an instance, 3-16
starting up an instance, 3-13
understanding, 1-2
upgrading an instance with Oracle ASM
Configuration Assistant, 11-4
upgrading an instance with Oracle Universal
Installer, 3-17
users page, 9-4
views, 6-1
with Oracle Enterprise Manager, 9-1, 10-1
XML DB virtual folder, 7-12
Oracle Automatic Storage Management Cluster File System
about, 5-4
administration, 5-9
and Oracle Database homes, 5-5
backup and restore, 5-8
basic steps to access a file system, 13-4
basic steps to create a file system, 13-2
basic steps to dismount and remove a volume and
file system, 13-19
basic steps to manage snapshots, 13-5
basic steps to manage with command-line
tools, 13-1
clusterware resource types, 5-10
command-line tools, 13-1
dismount or shut down, 5-11
driver model, 5-6
drivers resource, B-3
encrypting file systems, 13-10
encryption, 0-xxvi, 5-14
encryption keys, 5-14
file access and security, 5-9
grid infrastructure configuration, 5-10
grid infrastructure installation, 5-10
individual file system resource, 5-5
integration with Oracle ASM, 5-9
I/O failure console messages, B-6
mount model, 5-7
mount registry, 5-7
namespace, 5-7
ora.diskgroup.volume.acfs file system
resource, 5-11
ora.drivers.acfs drivers resource, 5-10
ora.registry.acfs registry resource, 5-11
overview, 5-1
registry resource, B-4
replicating file systems, 13-13
replication, 5-16
securing file systems, 13-6
security, 0-xxv, 5-12
snapshots, 5-8
supported file types, 5-1
tagging, 5-18
tagging file systems, 13-11
views, 6-6
Oracle Automatic Storage Management Dynamic Volume Manager
default configuration, B-3
overview, 5-6, 5-18
Oracle Automatic Storage Management rolling upgrades, xxxi
Oracle Cluster Registry (OCR)
in disk groups, 4-10
Oracle Database homes
and Oracle ACFS, 5-5
Oracle Enterprise Manager
support workbench for Oracle Automatic Storage Management, 9-25
Oracle Restart
about, 3-13
with Oracle ASM, 3-13
ora.diskgroup.volume.acfs file system resource
Oracle ACFS, 5-11
ora.drivers.acfs drivers resource
Oracle ACFS, 5-10
orapwusr command
ASMCMD, 12-14
ora.registry.acfs registry resource
Oracle ACFS, 5-11
OSASM group, xxxi, xxxii, 3-24, 3-25, 3-27, 3-28
OSDBA group, 3-25
OSOPER group, 3-25
OSTMG10048, 4-19
overview
Oracle ACFS, 5-1
Oracle ADVM, 5-6, 5-18
Oracle ASM, 1-1

partitions
disks, Glossary-3
passwd command
ASMCMD, 12-60
password file authentication
for Oracle Automatic Storage Management, 3-28
performance page
Oracle Automatic Storage Management, 9-22
preferred read
failure groups, xxxii
preferred read failure groups, 3-9, 4-29, 4-30
administering, 4-30
preparing disks
for Oracle ASM, 2-1
privileges
ASMCMD, 12-8
for one operating system group, 3-24
Oracle ASM, 3-24
separate operating system groups, 3-25
SYSASM, xxxi, xxxii, 3-26, 3-27, 3-28, 9-2, 9-5, 9-6, 9-8
PROCESSES initialization parameter
Oracle ASM instance, 3-10
pwd command
ASMCMD, 12-28

quorum failure group, 4-10

read errors
recovery, 4-26
rebal command
ASMCMD, 12-47
rebalance
ASM fast rebalance, xxxii
 tuning, 4-18
REBALANCE NOWAIT clause, 4-11
REBALANCE WAIT clause, 4-11
rebalancing
disk groups, 1-11, 4-17
rebalancing process
ASM_POWER_LIMIT initialization parameter, 3-8
recovery
read errors, 4-26
write errors, 4-27
redo logs
creating in Oracle ASM, A-2

REDUNDANCY_LOWERED column
in V$ASM_FILE, 4-21
Redundant Array of Inexpensive Disks
(raid), Glossary-3
registry resource
Oracle ADVM, B-4
remap command
ASMCMD, 12-48
REMOTE_LOGIN_PASSWORDFILE initialization parameter
Oracle ASM instance, 3-11
renamedg tool
renaming disk groups, 4-46
renaming disk groups, 4-46
replicated environments
disk group compatibility considerations, 4-38
replicating file systems
Oracle ACFS, 13-13
replication
enabled by compatibility attributes, 4-37
Oracle ACFS, 5-16
resizing disks in disk groups, 4-16
restricting at startup, 3-15
resync
fast mirror, xxxi, 4-27, 9-10, 9-11
reverting compatibility settings
disk groups, 4-37
rm command
ASMCMD, 12-29
rmalias command
ASMCMD, 12-30
rmgrp command
ASMCMD, 12-60
rmtmpl command
ASMCMD, 12-53
rmusr command
ASMCMD, 12-61
rolling upgrade
Oracle Automatic Storage Management, 3-22
Oracle Automatic Storage Management, xxxi
running
ASMCMD, 12-6
ASMCMD in a database home, 12-6
ASMCMD in an Oracle grid infrastructure, 12-6

sector size
disk groups, 4-8
enabled by compatibility attributes, 4-37
SECTOR_SIZE
disk group attribute, 4-3
securing file systems
Oracle ACFS, 13-6
security
configuring with Oracle ASMCA, 11-14
enabled by compatibility attributes, 4-37
Oracle ACFS, 0-xxv, 5-12
setattr command
ASMCMD, 12-49

**SHARED_POOL_SIZE** initialization parameter
- Oracle ASM instance, 3-11

**shutdown command**
- ASMCMD, 12-15

Small Computer System Interface (SCSI), Glossary-3

**snapshots**
- Oracle ACFS, 5-8

**spbackup command**
- ASMCMD, 12-15
  - backing up an Oracle ASM SPFILE, 12-15

**spcopy command**
- ASMCMD, 12-16
  - copying an Oracle ASM SPFILE, 12-16

**spget command**
- ASMCMD, 12-18
  - retrieving the location of an ASM SPFILE, 12-18

**spmove command**
- ASMCMD, 12-18
  - moving an Oracle ASM SPFILE, 12-18

**spset command**
- ASMCMD, 12-19
  - setting the location of an ASM SPFILE, 12-19

**startup**
- mounting disk groups, 3-15
- restricting disk groups, 3-15

**startup command**
- ASMCMD, 12-19

Storage Area Network (SAN), Glossary-3

**striping**
- files, 1-8
- Oracle ASM, 1-8
- storage systems, Glossary-4

**supported file types**
- Oracle ACFS, 5-1

SYSASM privilege, xxxi, xxxii, 3-26, 3-27, 3-28, 9-2, 9-5, 9-6, 9-8

---

**T**

**tablespaces**
- creating in Oracle ASM, A-2

**tagging**
- enabled by compatibility attributes, 4-37
- Extended Attributes requirements, 5-18
- Oracle ACFS, 5-18
- requirements for Oracle ACFS, 5-18

**tagging file systems**
- Oracle ACFS, 13-11

**template management commands**
- ASMCMD, 12-50

**templates**
- adding to a disk group, 7-17
- attributes, 7-15
- dropping, 7-18
- for specifying redundancy and striping, 7-18
- managing Oracle ASM, 7-15
- modifying an Oracle ASM, 7-17
- Oracle ASM, 1-10
- user-defined for Oracle ASM, 7-18

---

**U**

**umount command**
- AIX, 13-38
- ASMCMD, 12-49
- Linux and UNIX, 13-25
- Solaris, 13-31

**umountall command**
- AIX, 13-38
- Solaris, 13-31

**undropping disks in disk groups**, 4-17

users page
- Oracle Automatic Storage Management, 9-4

---

**V**

**V$ASM_ACFS_ENCRYPTION_INFO view**, 6-6
**V$ASM_ACFS_SNAPSHOTS view**, 6-6
**V$ASM_ACFSVOLUMES view**, 6-6
**V$ASM_ALIAS view**, 6-1
**V$ASM_ATTRIBUTE view**, 4-36, 6-1
  - enabled by compatibility attributes, 4-37
**V$ASM_CLIENT view**, 6-1
**V$ASM_DISK view**, 6-1
**V$ASM_DISK_IOSTAT view**, 6-2
**V$ASM_DISK_STAT view**, 6-2
**V$ASM_DISKGROUP view**, 4-36, 6-2
**V$ASM_DISKGROUP_STAT view**, 6-2
**V$ASM_FILE view**, 6-2
**V$ASM_FILESYSTEM view**, 6-6
**V$ASM_OPERATION view**, 6-2
**V$ASM_TEMPLATE view**, 6-2
**V$ASM_USER view**, 6-2
**V$ASM_USERGROUP view**, 6-2
**V$ASM_USERGROUP_MEMBER view**, 6-2
**V$ASM_VOLUME view**, 6-6
**V$ASM_VOLUME_STAT view**, 6-6
**variable size extents**, 1-7, 4-22
  - enabled by compatibility attributes, 4-37

views
- displaying information, 6-1

**volcreate command**
- ASMCMD, 12-62

**voldelete command**
- ASMCMD, 12-64

**voldisable command**
- ASMCMD, 12-64

**volenable command**
- ASMCMD, 12-65

**volinfo command**
- ASMCMD, 12-66

**volresize command**
- ASMCMD, 12-67

**volset command**
- ASMCMD, 12-68

**volstat command**
- ASMCMD, 12-68

**volume management commands**
- ASMCMD, 12-62

**volume manager**, Glossary-4

**volumes**
enabled by compatibility attributes, 4-37
storage systems, Glossary-4
voting files in disk groups, 4-10
enabled by compatibility attributes, 4-37

W

WAIT keyword
  in REBALANCE clause, 4-11
write errors
  recovery, 4-27

X

XML DB
  virtual folder for Oracle ASM, 7-12