
Oracle® Solaris Studio 12.2: OpenMP API
User's Guide

Part No: 821–1381
September 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2010, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés.Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des marques ou
des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC
International, Inc. UNIX est une marque déposée concédé sous license par X/Open Company, Ltd.

110606@25097

Contents

Preface ...7

1 Introducing the OpenMP API ...11
1.1 Where to Find the OpenMP Specifications .. 11
1.2 Special Conventions Used Here .. 12

2 Compiling and Running OpenMP Programs ... 13
2.1 Compiler Options To Use .. 13
2.2 OpenMP Environment Variables .. 15

2.2.1 Common OpenMP Environment Variables ... 15
2.2.2 Solaris Studio Specific Environment Variables ... 16

2.3 Processor Binding ... 21
2.3.1 Virtual Processor IDs ... 22
2.3.2 Logical IDs ... 22
2.3.3 Interpreting the Value Specified for SUNW_MP_PROCBIND ... 23
2.3.4 Interaction with OS Processor Sets ... 24

2.4 Stacks and Stack Sizes ... 24
2.5 Checking and Analyzing OpenMP Programs .. 25

3 Implementation-Defined Behaviors ..27
3.1 Task Scheduling Points ... 27
3.2 Memory Model .. 27
3.3 Internal Control Variables ... 28
3.4 Dynamic Adjustment of Threads .. 28
3.5 Loop Directive ... 29
3.6 Constructs .. 29

3.6.1 SECTIONS .. 29

3

3.6.2 SINGLE .. 29
3.6.3 ATOMIC .. 29

3.7 Routines .. 29
3.7.1 omp_set_schedule() ... 29
3.7.2 omp_set_max_active_levels() .. 29
3.7.3 omp_get_max_active_levels() .. 30

3.8 Environment Variables ... 30
3.9 Fortran Issues ... 31

3.9.1 THREADPRIVATE Directive ... 31
3.9.2 SHARED Clause .. 31
3.9.3 Runtime Library Definitions ... 32

4 Nested Parallelism ...33
4.1 The Execution Model .. 33
4.2 Control of Nested Parallelism .. 34

4.2.1 OMP_NESTED .. 34
4.2.2 OMP_THREAD_LIMIT ... 35
4.2.3 OMP_MAX_ACTIVE_LEVELS ... 35

4.3 Using OpenMP Library Routines Within Nested Parallel Regions ... 37
4.4 Some Tips on Using Nested Parallelism ... 39

5 Tasking ..41
5.1 The Tasking Model .. 41
5.2 Data Environment ... 42
5.3 TASKWAIT Directive .. 43
5.4 Tasking Example ... 43
5.5 Programming Considerations ... 44

5.5.1 THREADPRIVATE and Thread-Specific Information ... 44
5.5.2 Locks ... 45
5.5.3 References to Stack Data .. 46

6 Automatic Scoping of Variables ..49
6.1 The Autoscoping Data Scope Clause .. 50

6.1.1 __auto Clause .. 50

Contents

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 20104

6.1.2 default(__auto) Clause ... 50
6.2 Scoping Rules for a Parallel Construct .. 50

6.2.1 Scoping Rules For Scalar Variables ... 51
6.2.2 Scoping Rules for Arrays .. 51

6.3 Scoping Rules for a task Construct .. 51
6.3.1 Scoping Rules for Scalar Variables .. 51
6.3.2 Scoping Rules for Arrays .. 52

6.4 General Comments About Autoscoping .. 52
6.5 Restrictions .. 52
6.6 Checking the Results of Autoscoping ... 53
6.7 Autoscoping Examples ... 55

7 Scope Checking ..63
7.1 Using the Scope Checking Feature .. 63
7.2 Restrictions .. 66

8 Performance Considerations ...67
8.1 Some General Recommendations ... 67
8.2 False Sharing And How To Avoid It .. 70

8.2.1 What Is False Sharing? .. 70
8.2.2 Reducing False Sharing .. 71

8.3 Solaris OS Tuning Features .. 71

A Placement of Clauses on Directives .. 73

B Converting to OpenMP ...75
B.1 Converting Legacy Fortran Directives ... 75

B.1.1 Converting Sun-Style Fortran Directives .. 75
B.1.2 Converting Cray-Style Fortran Directives .. 77

B.2 Converting Legacy C Pragmas .. 78
B.2.1 Issues Between Legacy C Pragmas and OpenMP ... 79

Index ..81

Contents

5

6

Preface

The OpenMP API User's Guide summarizes the OpenMP Fortran 95, C, and C++ application
program interface (API) for building multiprocessing applications. Oracle Solaris Studio
compilers support the OpenMP API. This guide is intended for scientists, engineers, and
programmers who have a working knowledge of the Fortran, C, or C++ languages, and the
OpenMP parallel programming model. Familiarity with the Oracle Solaris operating system or
UNIX in general is also assumed.

Supported Platforms
This Oracle Solaris Studio release supports systems that use the SPARC and x86 families of
processor architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. The
supported systems for the version of the Oracle Solaris operating system you are running are
available in the hardware compatibility lists at http://www.sun.com/bigadmin/hcl. These
documents cite any implementation differences between the platform types.

In this document, these x86 related terms mean the following:

■ “x86” refers to the larger family of 64–bit and 32–bit x86 compatible products.
■ “x64” points out specific 64–bit information about AMD64 or EM64T systems.
■ “32–bit x86” points out specific 32–bit information about x86 based systems.

For supported systems, see the hardware compatibility lists.

Accessing Solaris Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index page at
http://www.oracle.com/

technetwork/server-storage/solarisstudio/documentation.
■ Online help for all components of the IDE, the Performance Analyzer, dbxtool, and DLight,

is available through the Help menu, as well as through the F1 key and Help buttons on many
windows and dialog boxes, in these tools.

7

http://www.sun.com/bigadmin/hcl
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive technologies
for users with disabilities. You can find accessible versions of documentation as described in the
following table.

Type of Documentation Format and Location of Accessible Version

Manuals HTML from the Oracle Solaris Studio 12.2 collection on
docs.sun.com

What's New in The Oracle Solaris Studio
12.2 Release (formerly the component
README files)

HTML from the Oracle Solaris Studio 12.2 collection on
docs.sun.com

Man pages Displayed in an Oracle Solaris terminal using the man command

Online help HTML available through the Help menu, Help buttons, and F1
key in the IDE, dbxtool, DLight, and the Performance Analyzer

Release notes HTML from the Oracle Solaris Studio 12.2 collection on
docs.sun.com

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Resources for Developers
Visit http://www.oracle.com/technetwork/server-storage/solarisstudio to find these
frequently updated resources:
■ Articles on programming techniques and best practices
■ Documentation of the software, as well as corrections to the documentation that is installed

with your software
■ Tutorials that take you step-by-step through development tasks using Oracle Solaris Studio

tools

Preface

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 20108

http://docs.sun.com/coll/771.10
http://docs.sun.com/coll/771.10
http://docs.sun.com/coll/771.10
http://www.oracle.com/technetwork/server-storage/solarisstudio

■ Information on support levels
■ User forums at http://forums.sun.com/category.jspa?categoryID=113

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

Preface

9

http://forums.sun.com/category.jspa?categoryID=113

TABLE P–2 Shell Prompts (Continued)
Shell Prompt

C shell for superuser machine_name#

Documentation, Support, and Training
See the following web sites for additional resources:

■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Oracle Welcomes Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of its
documentation. If you find any errors or have any other suggestions for improvement, go to
http://docs.sun.com and click Feedback. Indicate the title and part number of the
documentation along with the chapter, section, and page number, if available. Please let us
know if you want a reply.

Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:

■ Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technology/obe/start/index.html).

■ Download Sample Code (http://www.oracle.com/technology/sample_code/
index.html).

Preface

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201010

http://docs.sun.com
http://www.oracle.com/us/support/systems/index.html
http://education.oracle.com
http://docs.sun.com
http://www.oracle.com/technetwork/index.html
http://forums.oracle.com
http://forums.oracle.com
http://www.oracle.com/technology/obe/start/index.html
http://www.oracle.com/technology/obe/start/index.html
http://www.oracle.com/technology/sample_code/index.html
http://www.oracle.com/technology/sample_code/index.html

Introducing the OpenMP API

The OpenMP Application Program Interface is a portable, parallel programming model for
shared memory multimultithreaded architectures, developed in collaboration with a number of
computer vendors. The specifications were created and are published by the OpenMP
Architecture Review Board.

The OpenMP API is the recommended parallel programming model for all Solaris Studio
compilers on Solaris platforms. See the Appendix for guidelines on converting legacy Fortran
and C parallelization directives to OpenMP.

1.1 Where to Find the OpenMP Specifications
The material presented in this manual describes issues specific to the Solaris Studio
implementation of the OpenMP API. For complete details you must refer to the OpenMP
specification documents.
This manual makes direct references to sections in the OpenMP 3.0 API specification.

The OpenMP 3.0 specification for C, C++, and Fortran 95 can be found on the official OpenMP
website, http://www.openmp.org.

Additional information about OpenMP including tutorials and other resources for developers
can be found on the cOMPunity website, http://www.compunity.org

Latest information about the Solaris Studio compiler releases and their implementation of the
OpenMP API can be found on the Oracle Solaris Studio portal at, http://www.oracle.com/
technetwork/server-storage/solarisstudio

1C H A P T E R 1

11

http://www.openmp.org
http://www.compunity.org
http://www.oracle.com/technetwork/server-storage/solarisstudio
http://www.oracle.com/technetwork/server-storage/solarisstudio

1.2 Special Conventions Used Here
In the tables and examples that follow, Fortran directives and source code are shown in upper
case, but are case-insensitive.

The term structured-block refers to a block of Fortran or C/C++ statements having no transfers
into or out of the block.

Constructs within square brackets, [...], are optional.

Throughout this manual, “Fortran” refers to the Fortran 95 language and compiler, f95.

The terms “directive” and “pragma” are used interchangeably in this manual.

1.2 Special Conventions Used Here

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201012

Compiling and Running OpenMP Programs

This chapter describes compiler and runtime options affecting programs that utilize the
OpenMP API.

Note – To run a parallelized program in a multithreaded environment, you must set the number
of threads in the program greater than one. Do this by setting the OMP_NUM_THREADS
environment variable prior to running the program to a value greater than one, or from the
running program in a call to omp_set_num_threads() function, or by using the num_threads
clause on a PARALLEL directive.

2.1 Compiler Options To Use
To enable explicit parallelization with OpenMP directives, compile your program with the cc,
CC, or f95 option flag -xopenmp. (The f95 compiler accepts both -xopenmp and -openmp as
synonyms.)

The -xopenmp flag accepts the following keyword sub-options.

-xopenmp=parallel Enables recognition of OpenMP pragmas.

The minimum optimization level for -xopenmp=parallel is -xO3.

The compiler changes the optimization from a lower level to -xO3 if
necessary, and issues a warning.

2C H A P T E R 2

13

-xopenmp=noopt Enables recognition of OpenMP pragmas.

The compiler does not raise the optimization level if it is lower than -xO3.

If you explicitly set the optimization level lower than -xO3, as in -xO2

-openmp=noopt the compiler will issue an error.

If you do not specify an optimization level with -openmp=noopt, the
OpenMP pragmas are recognized, the program is parallelized accordingly,
but no optimization is done.

-xopenmp=stubs This option is no longer supported.

An OpenMP stubs library is provided for users’ convenience.

To compile an OpenMP program that calls OpenMP library routines but
ignores the OpenMP pragmas, compile the program without an -xopenmp

option, and link the object files with the libompstubs.a library.

For example, % cc omp_ignore.c -lompstubs

Linking with both libompstubs.a and the OpenMP runtime library
libmtsk.so is unsupported and may result in unexpected behavior.

-xopenmp=none Disables recognition of OpenMP pragmas and does not change the
optimization level.

Additional Notes:

■ If you do not specify —xopenmp on the command line, the compiler assumes —xopenmp=none
(disabling recognition of OpenMP pragmas).

■ If you specify —xopenmp but without a keyword sub-option, the compiler assumes
—xopenmp=parallel.

■ Specifying -xopenmp=parallel or noopt will define the _OPENMP preprocessor token to be
YYYYMM (specifically 200805L for C/C++ and 200805 for Fortran 95).

■ When debugging OpenMP programs with dbx, compile with -xopenmp=noopt -g

■ The default optimization level for -xopenmp might change in future releases. Compilation
warning messages can be avoided by specifying an appropriate optimization level explicitly.

■ With Fortran 95, -xopenmp , -xopenmp=parallel, -xopenmp=noopt will add -stackvar

automatically.
■ When compiling and linking an OpenMP program in separate steps, include -xopenmp on

each of the compile and the link steps.
■ Use the -xvpara C/C++ option or the —vpara Fortran 95 option to display compiler

parallelization messages.
■ For best performance and functionality on Solaris platforms, make sure that the latest

OpenMP runtime library, libmtsk.so, is installed on the running system.

2.1 Compiler Options To Use

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201014

2.2 OpenMP Environment Variables
The OpenMP specification defines several environment variables that control the execution of
OpenMP programs. These are summarized in “2.2.1 Common OpenMP Environment
Variables” on page 15. For details, refer to the OpenMP API Version 3.0 specification at
openmp.org. Additional environment variables that are not part of the OpenMP specification
are defined by this release of the Solaris Studio compilers, and are summarized in “2.2.2 Solaris
Studio Specific Environment Variables” on page 16.

2.2.1 Common OpenMP Environment Variables
OMP_SCHEDULE Sets schedule type for DO, PARALLEL DO, for, parallel for,

directives/pragmas with schedule type RUNTIME specified.

If not defined, a default value of STATIC is used. value is
“type[,chunk]”

Example: setenv OMP_SCHEDULE ’GUIDED,4’

OMP_NUM_THREADS Sets the number of threads to use during execution of a parallel
region.

You can override this value by a num_threads clause, or a call to
omp_set_num_threads().

If not set, a default of 1 is used. value is a positive integer.

Example: setenv OMP_NUM_THREADS 16

OMP_DYNAMIC Enables or disables dynamic adjustment of the number of threads
available for execution of parallel regions.

If not set, a default value of TRUE is used. value is either TRUE or
FALSE.

Example: setenv OMP_DYNAMIC FALSE

OMP_NESTED Enables or disables nested parallelism.

value is either TRUE or FALSE.

The default is FALSE.

Example: setenv OMP_NESTED FALSE

OMP_STACKSIZE Sets the size of the stack for threads created by OpenMP.

2.2 OpenMP Environment Variables

Chapter 2 • Compiling and Running OpenMP Programs 15

http://openmp.org/

Size may be specified as a positive integer in Kilobytes, or with a
suffix B, K, M, or G, for Bytes, Kilobytes, Megabytes, or
Gigabytes.

Example: setenv OMP_STACKSIZE 10M

See also the Solaris Studio environment variable STACKSIZE
described in the next section.

OMP_WAIT_POLICY Sets desired policy regarding waiting threads, ACTIVE or PASSIVE.

ACTIVE threads consume processor time while waiting. PASSIVE
threads do not and may yield the processor or go to sleep.

OMP_MAX_ACTIVE_LEVELS Sets the maximum number of levels of nested active parallel
regions to a non-negative integer value.

OMP_THREAD_LIMIT Sets the number of threads to use in the whole OpenMP program
to a positive integer.

2.2.2 Solaris Studio Specific Environment Variables
Additional multiprocessing environment variables affect execution of OpenMP programs and
are not part of the OpenMP specifications.

PARALLEL For compatibility with legacy programs, setting the
PARALLEL environment variable has the same effect as setting
OMP_NUM_THREADS. However, if both PARALLEL and
OMP_NUM_THREADS are set, they must be set to the same value.

SUNW_MP_WARN Controls warning messages issued by the OpenMP runtime
library. If SUNW_MP_WARN is set to TRUE, the runtime library
issues warning messages to stderr. In addition, the runtime
library outputs the settings of all environment variables for
informational purposes. If the environment variable is set to
FALSE, the runtime library does not issue any warning
messages or output any settings.The default is FALSE.

The OpenMP runtime library has the ability to check for
many common OpenMP violations, such as incorrect
nesting and deadlocks. Runtime checking does add
overhead to the execution of the program. See Chapter 3,
“Implementation-Defined Behaviors.” The runtime library
issues warning messages to stderr if SUNW_MP_WARN is set to
TRUE.

2.2 OpenMP Environment Variables

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201016

Example:

setenv SUNW_MP_WARN TRUE

The runtime library will also issue warning messages if the
program registers a call-back function to accept warning
messages. A program can register a user call-back function
by calling the following function:

int sunw_mp_register_warn (void (*func)(void *));

The address of the call-back function is passed as argument
to sunw_mp_register_warn(). This function returns 0 upon
successfully registering the call-back function, 1 upon
failure.

If the program has registered a call-back function, libmtsk
will call the registered function passing a pointer to the
localized string containing the error message. The memory
pointed to is no longer valid upon return from the call-back
function.

Note – Set SUNW_MP_WARN to TRUEwhile testing or debugging
a program. This will enable you to see any warning messages
from the OpenMP runtime library.

SUNW_MP_THR_IDLE Controls the status of idle threads in an OpenMP program
that are waiting at a barrier or waiting for new parallel
regions to work on. You can set the value to be one of the
following: SPIN, SLEEP, SLEEP(times), SLEEP(timems),
SLEEP(timemc), where time is an integer that specifies an
amount of time, and s, ms, and mc specify the time unit
(seconds, milli-seconds, and micro-seconds, respectively).

SPIN specifies that an idle thread should spin while waiting
at barrier or waiting for new parallel regions to work on.
SLEEP without a time argument specifies that an idle thread
should sleep immediately. SLEEP with a time argument
specifies the amount of time a thread should spin-wait
before going to sleep.

2.2 OpenMP Environment Variables

Chapter 2 • Compiling and Running OpenMP Programs 17

The default idle thread status is to sleep after possibly
spin-waiting for some amount of time. SLEEP, SLEEP(0),
SLEEP(0s), SLEEP(0ms), and SLEEP(0mc) are all
equivalent.

Examples:

setenv SUNW_MP_THR_IDLE SPIN

setenv SUNW_MP_THR_IDLE SLEEP

setenv SUNW_MP_THR_IDLE SLEEP(2s)

setenv SUNW_MP_THR_IDLE SLEEP(20ms)

setenv SUNW_MP_THR_IDLE SLEEP(150mc)

SUNW_MP_PROCBIND This environment variable works on both Solaris and Linux
systems. The SUNW_MP_PROCBIND environment variable can
be used to bind threads of an OpenMP program to virtual
processors on the running system. Performance can be
enhanced with processor binding, but performance
degradation will occur if multiple threads are bound to the
same virtual processor. See “2.3 Processor Binding” on
page 21 for details.

SUNW_MP_MAX_POOL_THREADS Specifies the maximum size of the thread pool. The thread
pool contains only non-user threads that the OpenMP
runtime library creates. It does not contain the master thread
or any threads created explicitly by the user’s program. If this
environment variable is set to zero, the thread pool will be
empty and all parallel regions will be executed by one thread.
The default, if not specified, is 1023. See “4.2 Control of
Nested Parallelism” on page 34 for details.

Note that SUNW_MP_MAX_POOL_THREADS specifies the
maximum number of non-user OpenMP threads to use for
the whole program, while OMP_THREAD_LIMIT specifies the
maximum number of user and non-user OpenMP threads
for the whole program. If both SUNW_MP_MAX_POOL_THREADS

and OMP_THREAD_LIMIT are set they must have consistent
values such that OMP_THREAD_LIMIT is set to one more than
the value of SUNW_MP_MAX_POOL_THREADS.

SUNW_MP_MAX_NESTED_LEVELS Specifies the maximum depth of active nested parallel
regions. Any parallel region that has an active nested depth
greater than the value of this environment variable will be
executed by only one thread. A parallel region is considered
not active if it is an OpenMP parallel region that has a false
if clause. The default, if not specified, is 4. See “4.2 Control
of Nested Parallelism” on page 34 for details.

2.2 OpenMP Environment Variables

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201018

Note that if both SUNW_MP_MAX_NESTED_LEVELS and
OMP_MAX_ACTIVE_LEVELS are set, they must be set to the
same value.

STACKSIZE Sets the stack size for each thread. The value is in kilobytes.
The default thread stack sizes are 4 Mb on 32-bit SPARC V8
and x86 platforms, and 8 Mb on 64-bit SPARC V9 and x86
platforms.

Example:

setenv STACKSIZE 8192 sets the thread stack size to 8 MB

The STACKSIZE environment variable also accepts numerical
values with a suffix of either B, K, M, or G for bytes, kilobytes,
megabytes, or gigabytes respectively. The default is
kilobytes.

Note that if both STACKSIZE and OMP_STACKSIZE are set, they
must be set to the same value. If they are not the same, a run
time error occurs.

SUNW_MP_GUIDED_WEIGHT Sets the weighting factor used to determine the size of
chunks assigned to threads in loops with GUIDED scheduling.
The value should be a positive floating-point number, and
will apply to all loops with GUIDED scheduling in the
program. If not set, the default value assumed is 2.0.

SUNW_MP_WAIT_POLICY Controls the behavior of threads in the program that are
waiting for work (idle), waiting at a barrier, or waiting for a
task. The behavior for each of the above types of wait has
three possibilities: spin for awhile, yield the CPU for awhile,
and sleep until awakened.

The syntax is (shown using csh):

setenv SUNW_MP_WAIT_POLICY

IDLE=val:BARRIER=val:TASKWAIT=val

IDLE=val, BARRIER=val, and TASKWAIT=val are optional
keywords that specify the type of wait being controlled.

For each of these keywords, there is a val setting that
describes the wait behavior, SPIN, YIELD, or SLEEP.

SPIN(time) specifies how long a thread should spin before
yielding the CPU. time can be in seconds, milliseconds, or

2.2 OpenMP Environment Variables

Chapter 2 • Compiling and Running OpenMP Programs 19

microseconds (denoted by s, ms, and mc, respectively). If no
time unit is specified, then seconds is assumed. SPIN with no
time parameter means that the thread should continuously
spin while waiting.

YIELD(number) specifies the number of times a thread
should yield the CPU before sleeping. After each yield of the
CPU, a thread will run again when the operating system
schedules it to run. YIELD with no number parameter
means the thread should continuously yield while waiting.

SLEEP specifies that a thread should immediately go to sleep.

Note that SPIN, SLEEP, and YIELD settings for a particular
type of wait can be specified in any order. The settings are
separated by comma. "SPIN(0),YIELD(0)", is the same as
SLEEP or sleep immediately. When processing the settings
for IDLE, BARRIER, and TASKWAIT, the “left-most wins” rule is
used.

Examples:

% setenv SUNW_MP_WAIT_POLICY “BARRIER=SPIN”

A thread waiting at a barrier spins until all threads in the
team have reached the barrier.

% setenv SUNW_MP_WAIT_POLICY

“IDLE=SPIN(10ms),YIELD(5)”

A thread waiting for work (idle) spins for 10 milliseconds,
then yields the CPU 5 times before going to sleep.

% setenv SUNW_MP_WAIT_POLICY

“IDLE=SPIN(10ms),YIELD(2):BARRIER=SLEEP:TASKWAIT=YIELD(10)”

A thread waiting for work (idle) spins for 10 milliseconds,
then yields the CPU 2 times before going to sleep; a thread
waiting at a barrier goes to sleep immediately; a thread
waiting at a taskwait yields the CPU 10 times before going to
sleep.

2.2 OpenMP Environment Variables

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201020

2.3 Processor Binding
With processor binding, the programmer instructs the operating system that a thread in the
program should run on the same processor throughout the execution of the program.

Processor binding, when used along with static scheduling, benefits applications that exhibit a
certain data reuse pattern where data accessed by a thread in a parallel or worksharing region
will be in the local cache from a previous invocation of a parallel or worksharing region.

From the hardware point of view, a computer system is composed of one or more physical
processors. From the operating system point of view, each of these physical processors maps to
one or more virtual processors onto which threads in a program can be run. If n virtual
processors are available, then n threads can be scheduled to run at the same time. Depending on
the system, a virtual processor may be a processor, a core, etc.

For example, the UltraSPARC T2 physical processor has eight cores, and each core can run
eight simultaneous processing threads; from the Solaris OS point of view, there are 64 virtual
processors onto which threads can be scheduled to run. On Solaris platforms, the number of
virtual processors can be determined by using the psrinfo(1M) command. On Linux systems,
the file /proc/cpuinfo provides information about available processors.

When the operating system binds threads to processors, they are in effect bound to specific
virtual processors, not physical processors.

Set the SUNW_MP_PROCBIND environment variable to bind threads in an OpenMP program to
specific virtual processors. The value specified for SUNW_MP_PROCBIND can be one of the
following:

■ The string "TRUE" or "FALSE" (or lower case "true" or "false").
For example,
% setenv SUNW_MP_PROCBIND "false"

■ A non-negative integer.
For example, % setenv SUNW_MP_PROCBIND "2"

■ A list of two or more non-negative integers separated by one or more spaces.
For example, % setenv SUNW_MP_PROCBIND "0 2 4 6"

■ Two non-negative integers, n1 and n2, separated by a minus ("-"); n1 must be less than or
equal to n2.
For example, % setenv SUNW_MP_PROCBIND "0-6"

Interpretation of the values accepted by SUNW_MP_PROCBIND appears in “2.3.3 Interpreting the
Value Specified for SUNW_MP_PROCBIND” on page 23

Note that the non-negative integers referred to above denote logical identifiers (IDs). Logical
IDs may be different from virtual processor IDs. The difference will be explained below.

2.3 Processor Binding

Chapter 2 • Compiling and Running OpenMP Programs 21

2.3.1 Virtual Processor IDs
Each virtual processor in a system has a unique processor ID. You can use the Solaris OS
psrinfo(1M) command to display information about the processors in a system, including
their processor IDs. Moreover, you can use the prtdiag(1M) command to display system
configuration and diagnostic information.

You can use psrinfo -pv to list all physical processors in the system and the virtual processors
that are associated with each physical processor.

Virtual processor IDs may be sequential or there may be gaps in the IDs. For example, on a Sun
Fire 4810 with 8 UltraSPARC IV processors (16 cores), the virtual processor IDs may be: 0, 1, 2,
3, 8, 9, 10, 11, 512, 513, 514, 515, 520, 521, 522, 523.

2.3.2 Logical IDs
As mentioned above, the non-negative integers specified for SUNW_MP_PROCBIND are logical IDs.
Logical IDs are consecutive integers that start with 0. If the number of virtual processors
available in the system is n, then their logical IDs are 0, 1, ..., n-1, in the order presented by
psrinfo(1M). The following Korn shell script can be used to display the mapping from virtual
processor IDs to logical IDs.

#!/bin/ksh

NUMV=` psrinfo | fgrep "on-line" | wc -l`

set -A VID ` psrinfo | cut -f1`

echo "Total number of on-line virtual processors = $NUMV"
echo

let "I=0"
let "J=0"
while [[$I -lt $NUMV]]

do

echo "Virtual processor ID ${VID[I]} maps to logical ID ${J}"
let "I=I+1"
let "J=J+1"

done

On systems where a single physical processor maps to several virtual processors, it may be
useful to know which logical IDs correspond to virtual processors that belong to the same
physical processor. The following Korn shell script can be used with later Solaris releases to
display this information.

#!/bin/ksh

NUMV=` psrinfo | grep "on-line" | wc -l`

set -A VLIST ` psrinfo | cut -f1`

2.3 Processor Binding

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201022

set -A CHECKLIST ` psrinfo | cut -f1`

let "I=0"

while [$I -lt $NUMV]

do

let "COUNT=0"
SAMELIST="$I"

let "J=I+1"

while [$J -lt $NUMV]

do

if [${CHECKLIST[J]} -ne -1]

then

if [` psrinfo -p ${VLIST[I]} ${VLIST[J]}` = 1]

then

SAMELIST="$SAMELIST $J"
let "CHECKLIST[J]=-1"
let "COUNT=COUNT+1"
fi

fi

let "J=J+1"
done

if [$COUNT -gt 0]

then

echo "The following logical IDs belong to the same physical processor:"
echo "$SAMELIST"
echo " "

fi

let "I=I+1"
done

2.3.3 Interpreting the Value Specified for
SUNW_MP_PROCBIND

If the value specified for SUNW_MP_PROCBIND is TRUE, then the threads will be bound to virtual
processors in a round-robin fashion. The starting processor for the binding is determined by
the runtime library with the goal of achieving best performance.

If the value specified for SUNW_MP_PROCBIND is FALSE, the threads will not be bound to any
processors. This is the default setting.

If the value specified for SUNW_MP_PROCBIND is a non-negative integer, then that integer denotes
the starting logical ID of the virtual processor to which threads should be bound. Threads will
be bound to virtual processors in a round-robin fashion, starting with the processor with the
specified logical ID, and wrapping around to the processor with logical ID 0, after binding to the
processor with logical ID n-1.

2.3 Processor Binding

Chapter 2 • Compiling and Running OpenMP Programs 23

If the value specified for SUNW_MP_PROCBIND is a list of two or more non-negative integers, then
threads will be bound in a round-robin fashion to virtual processors with the specified logical
IDs. Processors with logical IDs other than those specified will not be used.

If the value specified for SUNW_MP_PROCBIND is two non-negative integers separated by a minus
("-"), then threads will be bound in a round-robin fashion to virtual processors in the range that
begins with the first logical ID and ends with the second logical ID. Processors with logical IDs
other than those included in the range will not be used.

If the value specified for SUNW_MP_PROCBIND does not conform to one of the forms described
above, or if an invalid logical ID is given, then an error message will be emitted and execution of
the program will terminate.

Note that the number of threads created by the OpenMP runtime library, libmtsk, depends on
environment variables, API calls in the user’s program, and the num_threads clause.
SUNW_MP_PROCBIND specifies the logical IDs of virtual processors to which the threads should be
bound. Threads will be bound to that set of processors in a round-robin fashion. If the number
of threads used in the program is less than the number of logical IDs specified by
SUNW_MP_PROCBIND, then some virtual processors will not be used by the program. If the
number of threads is greater than the number of logical IDs specified by SUNW_MP_PROCBIND,
them some virtual processors will have more than one thread bound to them.

2.3.4 Interaction with OS Processor Sets
A processor set can be specified using the psrset utility on Solaris platforms, or the taskset
command on Linux platforms. SUNW_MP_PROCBIND does not take processor sets into account. If
the programmer uses processor sets, then it is their responsibility to ensure that the setting of
SUNW_MP_PROCBIND is consistent with the processor set used. Otherwise, the setting of
SUNW_MP_PROCBIND will override the processor set setting on Linux systems, while on Solaris
systems an error message will be issued.

2.4 Stacks and Stack Sizes
The executing program maintains a main stack for the initial (or main) thread executing the
program, as well as distinct stacks for each slave thread. Stacks are temporary memory address
spaces used to hold arguments and automatic variables during invocation of a subprogram or
function reference.

In general, the default main stack size is 8 megabytes. Compiling Fortran programs with the f95
-stackvar option forces the allocation of local variables and arrays on the stack as if they were
automatic variables. Use of -stackvar with OpenMP programs is implied with explicitly
parallelized programs because it improves the optimizer’s ability to parallelize calls in loops.

2.4 Stacks and Stack Sizes

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201024

(See the Fortran User’s Guide for a discussion of the -stackvar flag.) However, this may lead to
stack overflow if not enough memory is allocated for the stack.

Use the limit C-shell command, or the ulimit ksh/sh command, to display or set the size of
the main stack.

Each slave thread of an OpenMP program has its own thread stack. This stack mimics the initial
(or main) thread stack but is unique to the thread. The thread’s PRIVATE arrays and variables
(local to the thread) are allocated on the thread stack. The default size is 4 megabytes on 32-bit
SPARC V8 and x86 platforms, and 8 megabytes on 64-bit SPARC V9 and x86 platforms. The
size of the slave thread stack is set with the OMP_STACKSIZE environment variable.

demo% setenv OMP_STACKSIZE 16384 <-Set thread stack size to 16 Mb (C shell)

demo$ OMP_STACKSIZE=16384 <-Same, using Bourne/Korn shell
demo$ export OMP_STACKSIZE

Finding the best stack size might have to be determined by trial and error. If the stack size is too
small for a thread to run it may cause silent data corruption, or segmentation faults. If you are
unsure about stack overflows, compile your Fortran, C, or C++ programs with the
-xcheck=stkovf compiler option to force a segmentation fault on stack overflow. This stops
the program before any data corruption can occur.

2.5 Checking and Analyzing OpenMP Programs
You can check OpenMP programs for data races and deadlocks by using the Solaris Studio
Thread Analyzer tool. Refer to the Thread Analyzer manual and the tha(1) man page for
details.

You can analyze the performance of OpenMP programs with the Solaris Studio Performance
Analyzer. Refer to the Performance Analyzer manual or the collect(1) and analyzer(1) man
pages for details.

2.5 Checking and Analyzing OpenMP Programs

Chapter 2 • Compiling and Running OpenMP Programs 25

26

Implementation-Defined Behaviors

This chapter notes specific behaviors in the OpenMP 3.0 specification that are implementation
dependent.

3.1 Task Scheduling Points
Task scheduling points in untied task regions occur at the same points as in tied task regions. So
within untied task regions, task scheduling points only appear in the following:

■ encountered task constructs
■ encountered taskwait constructs
■ encountered barrier directives
■ implicit barrier regions
■ at the end of the untied task region

3.2 Memory Model
There is no guarantee that memory accesses by multiple threads to the same variable without
synchronization are atomic with respect to each other. Several implementation-dependent and
application-dependent factors affect whether accesses are atomic or not. Some variables might
be larger than the largest atomic memory operation on the target platform. Some variables
might be mis-aligned or of unknown alignment and the compiler or the run-time system may
need to use multiple loads/stores to access the variable. Sometimes there are faster code
sequences that use more loads/stores.

3C H A P T E R 3

27

3.3 Internal Control Variables
The following internal control variables are defined by the implementation:

■ nthreads-var: Controls the number of threads requested for encountered parallel regions.
The initial value of nthreads-var is 1.

■ dyn-var: Controls whether dynamic adjustment of the number of threads is enabled for
encountered parallel regions. The initial value of dyn-var is TRUE (that is, dynamic
adjustment is enabled).

■ run-sched-var: Controls the schedule that the runtime schedule clause uses for loop regions.
The initial value of run-sched-var is static with no chunk size.

■ def-sched-var: Controls the implementation defined default scheduling of loop regions. The
initial value of def-sched-var is static with no chunk size.

■ stacksize-var: Controls the stack size for threads that the OpenMP implementation creates.
The initial value of stacksize-var is 4 MegaBytes for 32-bit applications and 8 MegaBytes for
64-bit applications.

■ wait-policy-var: Controls the desired behavior of waiting threads. The initial value of
wait-policy-var is PASSIVE.

■ thread-limit-var: Controls the maximum number of threads participating in the OpenMP
program. The initial value of thread-limit-var is 1024.

■ max-active-levels-var: Controls the maximum number of nested active parallel regions. The
initial value of max-active-levels-var is 4.

3.4 Dynamic Adjustment of Threads
The implementation provides the ability to dynamically adjust the number of threads. Dynamic
adjustment is enabled by default. Set the OMP_DYNAMIC environment variable to FALSE, or call
the omp_set_dynamic() routine with the appropriate argument, to disable dynamic
adjustment.

When a thread encounters a parallel construct, the number of threads delivered by this
implementation is determined according to Algorithm 2.1 pp. 35-36 in the OpenMP 3.0
Specification. In exceptional situations, such as when there is a lack of system resources, the
number of threads supplied will be less than described in Algorithm 2.1. In these situations, if
SUNW_MP_WARN is set to TRUE or a callback function is registered via a call to
sunw_mp_register_warn(), a warning message will be issued.

3.3 Internal Control Variables

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201028

3.5 Loop Directive
The integer type used to compute the iteration count of a collapsed loop is long.

The effect of the schedule(runtime) clause when the run-sched-var internal control variable is
set to auto is static with no chunk size.

3.6 Constructs

3.6.1 SECTIONS

The structured blocks in the sections construct are assigned to the threads in the team in a static
with no chunk size fashion, so that each thread gets an approximately equal number of
consecutive structured blocks.

3.6.2 SINGLE

The first thread to encounter the single construct will execute the construct.

3.6.3 ATOMIC

The implementation replaces all atomic directives by enclosing the target statement with a
special, named critical construct. This will enforce exclusive access between all atomic
regions in the program, whether or not these regions update the same or different storage
locations.

3.7 Routines

3.7.1 omp_set_schedule()

The behavior for the Solaris Studio-specific sunw_mp_sched_reserved schedule is the same as
static with no chunk size.

3.7.2 omp_set_max_active_levels()

If omp_set_max_active_levels()is called from within an active parallel region, then the call
will be ignored. A warning message will be issued if SUNW_MP_WARN is set to TRUE or a callback
function is registered by a call to sunw_mp_register_warn().

3.7 Routines

Chapter 3 • Implementation-Defined Behaviors 29

If the argument to omp_set_max_active_levels() is not a non-negative integer, then the call
will be ignored. A warning message will be issued if SUNW_MP_WARN is set to TRUE or a callback
function is registered by a call to sunw_mp_register_warn().

3.7.3 omp_get_max_active_levels()

omp_get_max_active_levels() can be called from anywhere in the program. The call will
return the value of the max-active-levels-var internal control variable.

3.8 Environment Variables

Variable Name Implementation

OMP_SCHEDULE If the schedule type specified for the OMP_SCHEDULE is not one of the valid types
(static, dynamic, guided, or auto), then the environment variable will be ignored,
and the default schedule (static with no chunk size) will be used. A warning
message will be issued if SUNW_MP_WARN is set to TRUE or a callback function is
registered by a call to sunw_mp_register_warn().

If the schedule type specified for the OMP_SCHEDULE environment variable is static,
dynamic, or guided, but the chunk specified size is a negative integer, then the
chunk size used will be as follows: For static, there will be no chunk size . For
dynamic and guided, the chunk size will be 1. A warning message will be issued if
SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

OMP_NUM_THREADS If the value of the variable is not a positive integer, then the environment variable
will be ignored and a warning message will be issued if SUNW_MP_WARN is set to TRUE

or a callback function is registered by a call to sunw_mp_register_warn().

If the value of the variable is greater than the number of threads the implementation
can support, the following actions are taken:

- if dynamic adjustment of the number of threads is enabled, then the number of
threads will be reduced and a warning message will be issued if SUNW_MP_WARN is set
to TRUE or a callback function is registered by a call to sunw_mp_register_warn().

- if, on the other hand, dynamic adjustment of the number of threads is disabled,
then an error message will be issued and the program will stop.

OMP_DYNAMIC If the value specified for OMP_DYNAMIC is neither TRUE nor FALSE, then the value will
be ignored, and the default value TRUE will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

3.8 Environment Variables

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201030

Variable Name Implementation

OMP_NESTED If the value specified for OMP_NESTED is neither TRUE nor FALSE, then the value will
be ignored, and the default value FALSE will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

OMP_STACKSIZE If the value given for OMP_STACKSIZE does not conform to the specified format, then
the value will be ignored, and the default value (4 Megabytes for 32-bit applications,
and 8 Megabytes for 64-bit applications) will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

OMP_WAIT_POLICY The ACTIVE behavior for a thread is spin. The PASSIVE behavior for a thread is sleep,
after possibly spinning for a while.

OMP_MAX_ACTIVE_LEVELS If the value specified for OMP_MAX_ACTIVE_LEVELS is not a nonnegative integer, then
the value will be ignored, and the default value (4) will be used. A warning message
will be issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a
call to sunw_mp_register_warn().

OMP_THREAD_LIMIT If the value specified for OMP_THREAD_LIMIT is not a positive integer, then the value
will be ignored, and the default value (1024) will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

3.9 Fortran Issues
The following apply to Fortran only.

3.9.1 THREADPRIVATEDirective
If the conditions for values of data in the threadprivate objects of threads (other than the initial
thread) to persist between two consecutive active parallel regions do not all hold, then the
allocation status of an allocatable array in the second region might be "not currently allocated".

3.9.2 SHAREDClause
Passing a shared variable to a non-intrinsic procedure may result in the value of the shared
variable being copied into temporary storage before the procedure reference, and back out of
the temporary storage into the actual argument storage after the procedure reference. This
copying into and out of temporary storage can occur only if conditions a, b, and c in OpenMP
3.0 Specification, section 2.9.3.2 page 88, hold, namely:

■ The actual argument is one of the following:
■ A shared variable

3.9 Fortran Issues

Chapter 3 • Implementation-Defined Behaviors 31

■ A subobject of a shared variable
■ An object associated with a shared variable
■ An object associated with a subobject of a shared variable

■ The actual argument is also one of the following:
■ An array section
■ An array section with a vector subscript
■ An assumed-shape array
■ A pointer array

■ The associated dummy argument for this actual argument is an explicit-shape array or an
assumed-size array.

3.9.3 Runtime Library Definitions
Both the include file omp_lib.h and the module file omp_lib are provided in the
implementation.

On Solaris platforms, the OpenMP runtime library routines that take an argument are extended
with a generic interface so arguments of different Fortran KIND types can be accommodated.

3.9 Fortran Issues

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201032

Nested Parallelism

This chapter discusses the features of OpenMP nested parallelism.

4.1 The Execution Model
OpenMP uses a fork-join model of parallel execution. When a thread encounters a parallel
construct, the thread creates a team composed of itself and some additional (possibly zero)
number of threads. The encountering thread becomes the master of the new team. The other
threads of the team are called slave threads of the team. All team members execute the code
inside the parallel construct. When a thread finishes its work within the parallel construct, it
waits at the implicit barrier at the end of the parallel construct. When all team members have
arrived at the barrier, the threads can leave the barrier. The master thread continues execution
of user code beyond the end of the parallel construct, while the slave threads wait to be
summoned to join other teams.

OpenMP parallel regions can be nested inside each other. If nested parallelism is disabled, then
the new team created by a thread encountering a parallel construct inside a parallel region
consists only of the encountering thread. If nested parallelism is enabled, then the new team
may consist of more than one thread.

The OpenMP runtime library maintains a pool of threads that can be used as slave threads in
parallel regions. When a thread encounters a parallel construct and needs to create a team of
more than one thread, the thread will check the pool and grab idle threads from the pool,
making them slave threads of the team. The master thread might get fewer slave threads than it
needs if there is not a sufficient number of idle threads in the pool. When the team finishes
executing the parallel region, the slave threads return to the pool.

4C H A P T E R 4

33

4.2 Control of Nested Parallelism
Nested parallelism can be controlled at runtime by setting various environment variables prior
to execution of the program.

4.2.1 OMP_NESTED

Nested parallelism can be enabled or disabled by setting the OMP_NESTED environment variable
or calling omp_set_nested().

The following example has three levels of nested parallel constructs.

EXAMPLE 4–1 Nested Parallelism Example

#include <omp.h>

#include <stdio.h>

void report_num_threads(int level)

{

#pragma omp single

{

printf("Level %d: number of threads in the team - %d\n",
level, omp_get_num_threads());

}

}

int main()

{

omp_set_dynamic(0);

#pragma omp parallel num_threads(2)

{

report_num_threads(1);

#pragma omp parallel num_threads(2)

{

report_num_threads(2);

#pragma omp parallel num_threads(2)

{

report_num_threads(3);

}

}

}

return(0);

}

Compiling and running this program with nested parallelism enabled produces the following
(sorted) output:

% setenv OMP_NESTED TRUE

% a.out

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 2

4.2 Control of Nested Parallelism

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201034

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Compare with running the same program but with nested parallelism disabled:

% setenv OMP_NESTED FALSE

% a.out

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 2: number of threads in the team - 1

Level 3: number of threads in the team - 1

4.2.2 OMP_THREAD_LIMIT

The OpenMP runtime library maintains a pool of threads that can be used as slave threads in
parallel regions. The setting of the OMP_THREAD_LIMIT environment variable controls the
number of threads in the pool. By default, the number of threads in the pool is at most 1023.

The thread pool consists of only non-user threads that the runtime library creates. It does not
include the initial thread or any thread created explicitly by the user's program.

If OMP_THREAD_LIMIT is set to one (or SUNW_MP_MAX_POOL_THREADS is set to zero), then the
thread pool will be empty and all parallel regions will be executed by one thread.

The following example shows that a parallel region can get fewer threads if there are not
sufficient threads in the pool. The code is the same as the previous example. The number of
threads needed for all the parallel regions to be active at the same time is 8. So the pool needs to
contain at least 7 threads. If we set OMP_THREAD_LIMIT to 6 (or SUNW_MP_MAX_POOL_THREADS to
5), then the pool contains at most 5 slave threads. This implies that two of the four inner-most
parallel regions may not be able to get all the slave threads they ask for. One possible result is
shown below.

% setenv OMP_NESTED TRUE

% OMP_THREAD_LIMIT 6

% a.out

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

4.2.3 OMP_MAX_ACTIVE_LEVELS

The environment variable OMP_MAX_ACTIVE_LEVELS controls the maximum depth of nested
active parallel regions that require more than one thread.

4.2 Control of Nested Parallelism

Chapter 4 • Nested Parallelism 35

Any active parallel region that has an active nested depth greater than the value of this
environment variable will be executed by only one thread. A parallel region is considered active
if it it has no if clause, or if it has an if clause that evaluates to true. The default maximum
number of active nesting levels is 4.

The following code will create 4 levels of nested parallel regions. If OMP_MAX_ACTIVE_LEVELS is
set to 2, then nested parallel regions at nested depth of 3 and 4 are executed single-threaded.

#include <omp.h>

#include <stdio.h>

#define DEPTH 5

void report_num_threads(int level)

{

#pragma omp single

{

printf("Level %d: number of threads in the team - %d\n",
level, omp_get_num_threads());

}

}

void nested(int depth)

{

if (depth == DEPTH)

return;

#pragma omp parallel num_threads(2)

{

report_num_threads(depth);

nested(depth+1);

}

}

int main()

{

omp_set_dynamic(0);

omp_set_nested(1);

nested(1);

return(0);

}

Compiling and running this program with a maximum nesting level of 4 gives the following
possible output. (Actual results will depend on how the OS schedules threads.)

% setenv OMP_MAX_ACTIVE_LEVELS 4

% a.out |sort

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

4.2 Control of Nested Parallelism

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201036

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Running with the nesting level set at 2 gives the following as a possible result:

% setenv OMP_MAX_ACTIVE_LEVELS 2

% a.out |sort

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 4: number of threads in the team - 1

Level 4: number of threads in the team - 1

Level 4: number of threads in the team - 1

Level 4: number of threads in the team - 1

Again, these examples only show some possible results. Actual results will depend on how the
OS schedules threads.

4.3 Using OpenMP Library Routines Within Nested Parallel
Regions

Calls to the following OpenMP routines within nested parallel regions deserve some discussion.

- omp_set_num_threads()

- omp_get_max_threads()

- omp_set_dynamic()

- omp_get_dynamic()

- omp_set_nested()

- omp_get_nested()

The 'set' calls affect future parallel regions at the same or inner nesting levels encountered by the
calling thread only. They do not affect parallel regions encountered by other threads.

The 'get' calls return the values set by the calling thread. When a thread becomes the master of a
team executing a parallel region, all other members of the team inherit the values of the master
thread. When the master thread exits a nested parallel region and continues executing the
enclosing parallel region, the values for that thread revert to their values in the enclosing parallel
region just before executing the nested parallel region.

EXAMPLE 4–2 Calls to OpenMP Routines Within Parallel Regions

#include <stdio.h>

#include <omp.h>

int main()

{

4.3 Using OpenMP Library Routines Within Nested Parallel Regions

Chapter 4 • Nested Parallelism 37

EXAMPLE 4–2 Calls to OpenMP Routines Within Parallel Regions (Continued)

omp_set_nested(1);

omp_set_dynamic(0);

#pragma omp parallel num_threads(2)

{

if (omp_get_thread_num() == 0)

omp_set_num_threads(4); /* line A */

else

omp_set_num_threads(6); /* line B */

/* The following statement will print out

*

* 0: 2 4

* 1: 2 6

*

* omp_get_num_threads() returns the number

* of the threads in the team, so it is

* the same for the two threads in the team.

*/

printf("%d: %d %d\n", omp_get_thread_num(),

omp_get_num_threads(),

omp_get_max_threads());

/* Two inner parallel regions will be created

* one with a team of 4 threads, and the other

* with a team of 6 threads.

*/

#pragma omp parallel

{

#pragma omp master

{

/* The following statement will print out

*

* Inner: 4

* Inner: 6

*/

printf("Inner: %d\n", omp_get_num_threads());

}

omp_set_num_threads(7); /* line C */

}

/* Again two inner parallel regions will be created,

* one with a team of 4 threads, and the other

* with a team of 6 threads.

*

* The omp_set_num_threads(7) call at line C

* has no effect here, since it affects only

* parallel regions at the same or inner nesting

* level as line C.

*/

#pragma omp parallel

{

printf("count me.\n");
}

}

return(0);

4.3 Using OpenMP Library Routines Within Nested Parallel Regions

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201038

EXAMPLE 4–2 Calls to OpenMP Routines Within Parallel Regions (Continued)

}

Compiling and running this program gives the following as one possible result:

% a.out

0: 2 4

Inner: 4

1: 2 6

Inner: 6

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

4.4 Some Tips on Using Nested Parallelism
■ Nesting parallel regions provides an immediate way to allow more threads to participate in

the computation.
For example, suppose you have a program that contains two levels of parallelism and the
degree of parallelism at each level is 2. Also, suppose your system has four cpus and you
want use all four CPUs to speed up the execution of this program. Just parallelizing any one
level will use only two CPUs. You want to parallelize both levels.

■ Nesting parallel regions can easily create too many threads and oversubscribe the system.
Set OMP_THREAD_LIMIT and OMP_MAX_ACTIVE_LEVELS appropriately to limit the number of
threads in use and prevent runaway oversubscription.

■ Creating nested parallel regions adds overhead. If there is enough parallelism at the outer
level and the load is balanced, generally it will be more efficient to use all the threads at the
outer level of the computation than to create nested parallel regions at the inner levels.
For example, suppose you have a program that contains two levels of parallelism. The degree
of parallelism at the outer level is 4 and the load is balanced. You have a system with four
CPUs and want to use all four CPUs to speed up the execution of this program. Then, in
general, using all 4 threads for the outer level could yield better performance than using 2
threads for the outer parallel region, and using the other 2 threads as slave threads for the
inner parallel regions.

4.4 Some Tips on Using Nested Parallelism

Chapter 4 • Nested Parallelism 39

40

Tasking

This chapter describes the OpenMP 3.0 Tasking Model.

5.1 The Tasking Model
OpenMP specification version 3.0 introduced a new feature called tasking. Tasking facilitates
the parallelization of applications where units of work are generated dynamically, as in
recursive structures or while loops.

In OpenMP, an explicit task is specified using the task directive. The task directive defines the
code associated with the task and its data environment. The task construct can be placed
anywhere in the program; whenever a thread encounters a task construct, a new task is
generated.

When a thread encounters a task construct, it may choose to execute the task immediately or
defer its execution until a later time. If task execution is deferred, then the task in placed in a
conceptual pool of tasks that is associated with the current parallel region. The threads in the
current team will take tasks out of the pool and execute them until the pool is empty. A thread
that executes a task may be different from the thread that originally encountered it.

The code associated with a task construct will be executed only once. A task is tied if the code is
executed by the same thread from beginning to end. A task is untied if the code can be executed
by more than one thread, so that different threads execute different parts of the code. By default,
tasks are tied, and a task can be specified to be untied by using the untied clause with the task
directive.

Threads are allowed to suspend execution of a task region at a task scheduling point in order to
execute a different task. If the suspended task is tied, then the same thread later resumes
execution of the suspended task. If the suspended task is untied, then any thread in the current
team may resume the task execution.

The OpenMP specification defines the following task scheduling points for tied tasks:

5C H A P T E R 5

41

■ the point of encountering a task construct
■ the point of encountering a taskwait construct
■ the point of encountering an implicit or explicit barrier
■ the completion point of the task

As implemented in the Solaris Studio compilers, the above scheduling points are also the task
scheduling points for untied tasks.

In addition to explicit tasks specified using the task directive, the OpenMP specification version
3.0 introduces the notion of implicit tasks. An implicit task is a task generated by the implicit
parallel region, or generated when a parallel construct is encountered during execution. The
code for each implicit task is the code inside the parallel construct. Each implicit task is
assigned to a different thread in the team and is tied; that is, an implicit task is always executed
from beginning to end by the thread to which it is initially assigned.

All implicit tasks generated when a parallel construct is encountered are guaranteed to be
complete when the master thread exits the implicit barrier at the end of the parallel region. On
the other hand, all explicit tasks generated within a parallel region are guaranteed to be
complete on exit from the next implicit or explicit barrier within the parallel region.

When an if clause is present on a task construct and the value of the scalar-expression
evaluates to false, the thread that encounters the task must immediately execute the task. The
if clause can be used to avoid the overhead of generating many finely grained tasks and placing
them in the conceptual pool.

5.2 Data Environment
The task directive takes the following data attribute clauses that define the data environment of
the task:

■ default (private | firstprivate | shared | none)
■ private (list)
■ firstprivate (list)
■ shared (list)

All references within a task to a variable listed in the shared clause refer to the variable with that
same name known immediately prior to the task directive.

For each private and firstprivate variable, new storage is created and all references to the
original variable in the lexical extent of the task construct are replaced by references to the new
storage. A firstprivate variable is initialized with the value of the original variable at the
moment the task is encountered.

The OpenMP 3.0 specification version 3.0 (in section 2.9.1) describes how the data-sharing
attributes of variables referenced in parallel, task, and worksharing regions are determined.

5.2 Data Environment

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201042

The data-sharing attributes of variables referenced in a construct may be one of the following:
predetermined, explicitly determined, or implicitly determined. Variables with explicitly
determined data-sharing attributes are those that are referenced in a given construct and are
listed in a data-sharing attribute clause on the construct. Variables with implicitly determined
data-sharing attributes are those that are referenced in a given construct, do not have
predetermined data-sharing attributes, and are not listed in a data-sharing attribute clause on
the construct.

The rules for how the data-sharing attributes of variables are implicitly determined may not
always be obvious. To avoid any surprises, it is recommended that the programmer explicitly
scope all variables that are referenced in a task construct using the data sharing attribute clauses,
rather than rely on the OpenMP implicit scoping rules.

5.3 TASKWAITDirective
Completion of a subset of all explicit tasks bound to a given parallel region may be specified
through the use of the taskwait directive. The taskwait directive specifies a wait on the
completion of child tasks generated since the beginning of the current (implicit or explicit) task.
Note that the taskwait directive specifies a wait on the completion of direct children tasks, not
all descendant tasks.

5.4 Tasking Example
The following C/C++ program illustrates how the OpenMP task and taskwait directives can be
used to compute Fibonacci numbers recursively.

In the example, the parallel directive denotes a parallel region which will be executed by four
threads. In the parallel construct, the single directive is used to indicate that only one of the
threads will execute the print statement that calls fib(n).

The call to fib(n) generates two tasks, indicated by the task directive. One of the tasks
computes fib(n-1) and the other computes fib(n-2), and the return values are added
together to produce the value returned by fib(n). Each of the calls to fib(n-1) and fib(n-2)

will in turn generate two tasks. Tasks will be recursively generated until the argument passed to
fib() is less than 2.

The taskwait directive ensures that the two tasks generated in an invocation of fib() are
completed (that is. the tasks compute i and j) before that invocation of fib() returns.

Note that although only one thread executes the single directive and hence the call to fib(n),
all four threads will participate in executing the tasks generated.

The example is compiled using the Solaris Studio 12.2 C++ compiler.

5.4 Tasking Example

Chapter 5 • Tasking 43

EXAMPLE 5–1 Tasking Example: Computing Fibonacci Numbers

#include <stdio.h>

#include <omp.h>

int fib(int n)

{

int i, j;

if (n<2)

return n;

else

{

#pragma omp task shared(i) firstprivate(n)

i=fib(n-1);

#pragma omp task shared(j) firstprivate(n)

j=fib(n-2);

#pragma omp taskwait

return i+j;

}

}

int main()

{

int n = 10;

omp_set_dynamic(0);

omp_set_num_threads(4);

#pragma omp parallel shared(n)

{

#pragma omp single

printf ("fib(%d) = %d\n", n, fib(n));

}

}

% CC -xopenmp -xO3 task_example.cc

% a.out

fib(10) = 55

5.5 Programming Considerations
Tasking introduces a layer of complexity to an OpenMP program. The programmer needs to
pay special attention to how a program with tasks works. Here are some programming issues to
consider.

5.5.1 THREADPRIVATE and Thread-Specific Information
When a thread encounters a task scheduling point, the implementation may choose to suspend
the current task and schedule the thread to work on another task. This implies that the value of a
threadprivate variable, or other thread-specific information such as the thread number, may
change across a task scheduling point.

5.5 Programming Considerations

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201044

If the suspended task is tied, then the thread that resumes executing the task will be the same
thread that suspended it. Therefore, the thread number will remain the same after the task is
resumed. However, the value of a threadprivate variable may change because the thread may
have been scheduled to work on another task that modified the threadprivate variable before
resuming the suspended task.

If the suspended task is untied, then the thread that resumes executing the task may be different
from the thread that suspended it. Therefore, both the thread number and the value of a
threadprivate variable before and after the task scheduling point may be different.

5.5.2 Locks
OpenMP 3.0 specifies that locks are no longer owned by threads, but by tasks. Once a lock is
acquired, the current task owns it, and the same task must release it before task completion.

The critical construct, on the other hand, remains as a thread-based mutual exclusion
mechanism.

The change in lock ownership requires extra care when using locks. The following program (it
appears as Example A.43.1c in the OpenMP Specification version 3.0) is conforming in
OpenMP 2.5 because the thread that releases the lock lck in the parallel region is the same
thread that acquired the lock in the sequential part of the program (the master thread of a
parallel region and the initial thread are the same). However, it is not conforming in OpenMP
3.0, because the task region that releases the lock lck is different from the task region that
acquires the lock.

EXAMPLE 5–2 Example Using Locks: Non-Conforming in OpenMP 3.0

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main()

{

int x;

omp_lock_t lck;

omp_init_lock (&lck);

omp_set_lock (&lck);

x = 0;

#pragma omp parallel shared (x)

{

#pragma omp master

{

x = x + 1;

omp_unset_lock (&lck);

}

}

omp_destroy_lock (&lck);

5.5 Programming Considerations

Chapter 5 • Tasking 45

EXAMPLE 5–2 Example Using Locks: Non-Conforming in OpenMP 3.0 (Continued)

}

5.5.3 References to Stack Data
A task is likely to have references to data on the stack of the routine where the task construct
appears. Since the execution of a task may be deferred until the next implicit or explicit barrier,
it is possible that a given task will execute after the stack of the routine where it appears has
already been popped and the stack data overwritten, thereby destroying the stack data listed as
shared by the task.

It is the programmer's responsibility to insert the needed synchronizations to ensure that
variables are still on the stack when the task references them. Here are two examples.

In the first example, i is specified to be shared in the task construct, and the task accesses the
copy of i that is allocated on the stack of work().

Task execution may be deferred, so tasks are executed at the implicit barrier at the end of the
parallel region in main() after the work() routine has already returned. So when a task
references i, it accesses some undetermined value that happens to be on the stack at that time.

For correct results, the programmer needs to make sure that work() does not exit before the
tasks have completed. This is done by inserting a taskwait directive after the task construct.
Alternatively, i can be specified to be firstprivate in the task construct, instead of shared.

EXAMPLE 5–3 Stack Data: First Example — Incorrect Version

#include <stdio.h>

#include <omp.h>

void work()

{

int i;

i = 10;

#pragma omp task shared(i)

{

#pragma omp critical

printf("In Task, i = %d\n",i);
}

}

int main(int argc, char** argv)

{

omp_set_num_threads(8);

omp_set_dynamic(0);

#pragma omp parallel

{

work();

5.5 Programming Considerations

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201046

EXAMPLE 5–3 Stack Data: First Example — Incorrect Version (Continued)

}

}

EXAMPLE 5–4 Stack Data: First Example — Corrected Version

#include <stdio.h>

#include <omp.h>

void work()

{

int i;

i = 10;

#pragma omp task shared(i)

{

#pragma omp critical

printf("In Task, i = %d\n",i);
}

/* Use TASKWAIT for synchronization. */

#pragma omp taskwait

}

int main(int argc, char** argv)

{

omp_set_num_threads(8);

omp_set_dynamic(0);

#pragma omp parallel

{

work();

}

}

In our second example, j in the task construct references the j in the sections construct. So
the task accesses the firstprivate copy of j in the sections construct, which (in some
implementations, including the Solaris Studio compilers) is a local variable on the stack of the
outlined routine for the sections construct.

Task execution may deferred so the task is executed at the implicit barrier at the end of the
sections region, after the outlined routine for the sections construct has exited. So when the
task references j, it accesses some undetermined value on the stack.

For correct results, the programmer needs to make sure that the task is executed before the
sections region reaches its implicit barrier. This can be done by inserting a taskwait directive
after the task construct. Alternatively, j can be specified to be firstprivate in the task
construct, instead of shared.

EXAMPLE 5–5 Second Example — Incorrect Version

#include <stdio.h>

#include <omp.h>

5.5 Programming Considerations

Chapter 5 • Tasking 47

EXAMPLE 5–5 Second Example — Incorrect Version (Continued)

int main(int argc, char** argv)

{

omp_set_num_threads(2);

omp_set_dynamic(0);

int j=100;

#pragma omp parallel shared(j)

{

#pragma omp sections firstprivate(j)

{

#pragma omp section

{

#pragma omp task shared(j)

{

#pragma omp critical

printf("In Task, j = %d\n",j);
}

}

}

}

printf("After parallel, j = %d\n",j);
}

EXAMPLE 5–6 Second Example — Corrected Version

#include <stdio.h>

#include <omp.h>

int main(int argc, char** argv)

{

omp_set_num_threads(2);

omp_set_dynamic(0);

int j=100;

#pragma omp parallel shared(j)

{

#pragma omp sections firstprivate(j)

{

#pragma omp section

{

#pragma omp task shared(j)

{

#pragma omp critical

printf("In Task, j = %d\n",j);
}

/* Use TASKWAIT for synchronization. */

#pragma omp taskwait

}

}

}

printf("After parallel, j = %d\n",j);
}

5.5 Programming Considerations

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201048

Automatic Scoping of Variables

Declaring the data sharing attributes of variables referenced in an OpenMP construct is called
scoping. A description of each of the data sharing attributes can be found in section 2.9.3 of the
OpenMP 3.0 specification.

In an OpenMP program, every variable referenced in an OpenMP construct is scoped.
Generally, a variable referenced in a construct may be scoped in one of two ways. Either the
programmer explicitly declares the scope of a variable with a data sharing attribute clause, or
the implementation of the OpenMP API in the compiler automatically applies rules for
predetermined or implicitly determined scopes, according to section 2.9.1 of the OpenMP 3.0
specification.

Most users will find scoping to be the hardest part of using the OpenMP paradigm. Explicitly
scoping variables can be tedious and error-prone, especially with large and complicated
programs. Moreover, the rules for implicitly-determined and predetermined scopes of variables
specified in the OpenMP 3.0 specification may yield some unexpected results. The task
directive, which was introduced in OpenMP Specification 3.0, added to the complexity and
difficulty of scoping.

The automatic scoping feature, called autoscoping, supported by the Solaris Studio compilers
can be a very helpful tool, as it relieves the programmer from having to explicitly determine the
scopes of variables. With autoscoping, the compiler determines the scopes of variables by using
some smart rules in a very simple user model.

Earlier compiler releases limited autoscoping to variables in a parallel construct. Current
Solaris Studio compilers extend the autoscoping feature to variables referenced in a task
construct as well.

6C H A P T E R 6

49

6.1 The Autoscoping Data Scope Clause
Autoscoping is invoked either by specifying the variables to be scoped automatically on a
__auto data scope clause, or by using a default(__auto) clause. Both are extensions to the
OpenMP specification provided by the Solaris Studio compilers.

6.1.1 __autoClause
Syntax: __auto(list-of-variables)

For Fortran, __AUTO(list-of-variables) is also accepted.

The __auto clause on a parallel or task construct directs the compiler to automatically
determine the scope of the named variables in the construct. (Note the two underscores before
auto.)

The __auto clause can appear on a PARALLEL, PARALLEL DO/for, PARALLEL SECTIONS, Fortran
95 PARALLEL WORKSHARE, or TASK directive.

If a variable is specified on the __auto clause, then it cannot be specified in any other data
sharing attribute clause.

6.1.2 default(__auto)Clause
Syntax: default(__auto)

For Fortran, DEFAULT(__AUTO) is also accepted.

The default(__auto) clause on a parallel or task construct directs the compiler to
automatically determine the scope of all variables referenced in the construct that are not
explicitly scoped in any data scope clause.

The default(__auto) clause can appear on a PARALLEL, PARALLEL DO/for, PARALLEL SECTIONS,
Fortran 95 PARALLEL WORKSHARE, or TASK directive.

6.2 Scoping Rules for a Parallel Construct
Under automatic scoping, the compiler applies the following rules to determine the scope of a
variable in a parallel construct.

These rules do not apply to variables scoped implicitly by the OpenMP specification, such as
loop index variables of worksharing DO or FOR loops.

6.1 The Autoscoping Data Scope Clause

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201050

6.2.1 Scoping Rules For Scalar Variables
When autoscoping a scalar variable that is referenced in a parallel construct and that does not
have predetermined or implicitly determined scope, the compiler checks the use of the variable
against the following rules PS1-PS3 in the given order.
■ PS1: If the use of the variable in the parallel region is free of data race conditions for the

threads in the team executing the region, then the variable is scoped SHARED.
■ PS2: If in each thread executing the parallel region, the variable is always written before

being read by the same thread, then the variable is scoped PRIVATE. The variable is scoped as
LASTPRIVATE if it can be scoped PRIVATE and is read before it is written after the parallel
region, and the construct is either a PARALLEL DO or a PARALLEL SECTIONS.

■ PS3: If the variable is used in a reduction operation that can be recognized by the compiler,
then the variable is scoped REDUCTION with that particular operation type.

6.2.2 Scoping Rules for Arrays
■ PA1: If the use of the array in the parallel region is free of data race conditions for the threads

in the team executing the region, then the array is scoped as SHARED.

6.3 Scoping Rules for a taskConstruct
Under automatic scoping, the compiler applies the following rules to determine the scope of a
variable in a task construct.

These rules do not apply to variables scoped implicitly by the OpenMP specification, such as
loop index variables of PARALLEL DO/for loops.

6.3.1 Scoping Rules for Scalar Variables
When autoscoping a scalar variable that is referenced in a task construct and that does not have
predetermined or implicitly determined scope, the compiler checks the use of the variable
against the following rules TS1-TS5 in the given order.
■ TS1: If the use of the variable is read-only in the task construct, and read-only in the parallel

construct in which the task construct is enclosed, then the variable is autoscoped as
FIRSTPRIVATE.

■ TS2: If the use of the variable is free of data race, and the variable will be accessible while the
task is executing, then the variable is autoscoped as SHARED.

■ TS3: If the use of the variable is free of data race, and is read-only in the task construct, and
the variable may not be accessible while the task is executing, then the variable is autoscoped
as FIRSTPRIVATE.

6.3 Scoping Rules for a task Construct

Chapter 6 • Automatic Scoping of Variables 51

■ TS4: If the use of the variable is not free of data race, and in each thread executing the task
region, the variable is always written before being read by the same thread, then the variable
is autoscoped as PRIVATE.

■ TS5: If the use of variable is not free of data race, and is not read-only in task region, and
some read in the task region might get the value defined outside the task, then the variable is
autoscoped as FIRSTPRIVATE.

6.3.2 Scoping Rules for Arrays
Autoscoping for tasks does not handle arrays.

6.4 General Comments About Autoscoping
Note that task autoscoping rules and autoscoping results could change in future releases. Also,
the order that implicitly determined scoping rules and autoscoping rules are applied could
change in future releases as well.

The programmer explicitly requests autoscoping with the _auto(list-of-variables) clause, or the
default(_auto) clause.Specifying default(_auto) or _auto(list-of-variables) clause for a
parallel construct doesn't imply that same clause applies to task constructs that are lexically
or dynamically enclosed in the parallel construct.

When autoscoping a variable that does not have predetermined implicit scope, the compiler
checks the use of the variable against the above rules in the given order. If a rule matches, the
compiler will scope the variable according to the matching rule. If no rule matches, or if
autoscoping cannot handle the variable (there are certain restrictions, described below), the
compiler will scope the variable as SHARED and treat the parallel or task construct as if an IF

(.FALSE.) or if(0) clause were specified.

There aregenerally two reasons why autoscoping fails. One is that the use of the variable does
not match any of the rules. The other is that the source code is too complex for the compiler to
do a sufficient analysis. Function calls, complicated array subscripts, memory aliasing, and
user-implemented synchronizations are some typical causes.

6.5 Restrictions
■ To enable autoscoping, the program must be compiled with -xopenmp at an optimization

level -xO3 or higher. Autoscoping is not enabled if the program is compiled with just
-xopenmp=noopt.

■ Parallel and task autosoping in C and C++ can only handle basic data types: integer, floating
point, and pointer.

6.4 General Comments About Autoscoping

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201052

■ Task autoscoping cannot handle arrays.
■ Task autosoping in C and C++ cannot handle global variables.
■ Task autoscoping cannot handle untied tasks.
■ Task autoscoping cannot handle tasks that are lexically enclosed in some other tasks. For

example:

#pragma omp task /* task1 */

{

...

#pragma omp task /* task 2 */

{

...

}

...

}

In the above example, the compiler does not attempt autoscoping for task2 because it is
lexically nested in task1. The compiler will scope all variables referenced in task2 as SHARED
and treat task2 as if an IF(.FALSE.) or if(0) clause is specified on the task.

■ Only OpenMP directives are recognized and used in the analysis. Calls to OpenMP runtime
routines are not recognized. For example, if a program uses omp_set_lock() and
omp_unset_lock() to implement a critical section, the compiler is not able to detect the
existence of the critical section. Use CRITICAL and END CRITICAL directives if possible.

■ Only synchronizations specified by using OpenMP synchronization directives, such as
BARRIER and MASTER, are recognized and used in data race analysis. User-implemented
synchronizations, such as busy-waiting, are not recognized.

6.6 Checking the Results of Autoscoping
Use compiler commentary to check autoscoping results and to see if any parallel regions were
serialized because autoscoping failed.

The compiler will produce an inline commentary when compiled with the -g debug option.
This generated commentary can be viewed with the er_src command, as shown below. (The
er_src command is provided as part of the Solaris Studio software; for more information, see
the er_src(1) man page or the Solaris Studio Performance Analyzer manual.)

A good place to start is to compile with the -xvpara option. Compiling with —xvpara will give
you a general idea about whether autoscoping for a particular construct was successful or not.
Here is an example:

EXAMPLE 6–1 Autoscoping With -vpara

%cat source1.f

INTEGER X(100), Y(100), I, T

C$OMP PARALLEL DO DEFAULT(__AUTO)

6.6 Checking the Results of Autoscoping

Chapter 6 • Automatic Scoping of Variables 53

EXAMPLE 6–1 Autoscoping With -vpara (Continued)

DO I=1, 100

T = Y(I)

X(I) = T*T

END DO

C$OMP END PARALLEL DO

END

%f95 -xopenmp -xO3 -vpara -c -g source1.f

"source1.f", line 2: Autoscoping for OpenMP construct succeeded.

Check er_src for details

If autoscoping fails for a particular construct, a warning message is issued (with -xvpara) as
shown in this example:

EXAMPLE 6–2 Autoscoping Failure With -vpara

%cat source2.f

INTEGER X(100), Y(100), I, T

C$OMP PARALLEL DO DEFAULT(__AUTO)

DO I=1, 100

T = Y(I)

CALL FOO(X)

X(I) = T*T

END DO

C$OMP END PARALLEL DO

END

%f95 -xopenmp -xO3 -vpara -c -g source2.f

"source2.f", line 2: Warning: Autoscoping for OpenMP construct failed.

Check er-src for details. Parallel region will be executed by

a single thread.

More detailed information appears in the compiler commentary displayed by er_src:

% er_src source2.o

Source file: source2.f

Object file: source2.o

Load Object: source2.o

1. INTEGER X(100), Y(100), I, T

Source OpenMP region below has tag R1

Variables autoscoped as SHARED in R1: y

Variables autoscoped as PRIVATE in R1: t, i

Variables treated as shared because they cannot be autoscoped in R1: x

R1 will be executed by a single thread because autoscoping for some variable s was not successful

Private variables in R1: i, t

Shared variables in R1: y, x

2. C$OMP PARALLEL DO DEFAULT(__AUTO)

Source loop below has tag L1

6.6 Checking the Results of Autoscoping

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201054

L1 parallelized by explicit user directive

L1 autoparallelized

L1 parallel loop-body code placed in function _$d1A2.MAIN_ along with 0 inne r loops

L1 could not be pipelined because it contains calls

3. DO I=1, 100

4. T = Y(I)

5. CALL FOO(X)

6. X(I) = T*T

7. END DO

8. C$OMP END PARALLEL DO

9. END

10.

6.7 Autoscoping Examples
Here are some examples to illustrate how the autoscoping rules work.

EXAMPLE 6–3 A More Complicated Example

1. REAL FUNCTION FOO (N, X, Y)

2. INTEGER N, I

3. REAL X(*), Y(*)

4. REAL W, MM, M

5.

6. W = 0.0

7.

8. C$OMP PARALLEL DEFAULT(__AUTO)

9.

10. C$OMP SINGLE

11. M = 0.0

12. C$OMP END SINGLE

13.

14. MM = 0.0

15.

16. C$OMP DO

17. DO I = 1, N

18. T = X(I)

19. Y(I) = T

20. IF (MM .GT. T) THEN

21. W = W + T

22. MM = T

23. END IF

24. END DO

25. C$OMP END DO

26.

27. C$OMP CRITICAL

28. IF (MM .GT. M) THEN

29. M = MM

30. END IF

31. C$OMP END CRITICAL

32.

33. C$OMP END PARALLEL

34.

35. FOO = W - M

36.

37. RETURN

6.7 Autoscoping Examples

Chapter 6 • Automatic Scoping of Variables 55

EXAMPLE 6–3 A More Complicated Example (Continued)

38. END

The function FOO() contains a parallel region, which contains a SINGLE construct, a
work-sharing DO construct and a CRITICAL construct. If we ignore all the OpenMP parallel
constructs, what the code in the parallel region does is:

1. Copy the value in array X to array Y
2. Find the maximum positive value in X, and store it in M

3. Accumulate the value of some elements of X into variable W.

Let’s see how the compiler uses the above rules to find the appropriate scopes for the variables in
the parallel region.

The following variables are used in the parallel region, I, N, MM, T, W, M, X, and Y. The compiler will
determine the following.

■ Scalar I is the loop index of the work-sharing DO loop. The OpenMP specification mandates
that I be scoped PRIVATE.

■ Scalar N is only read in the parallel region and therefore will not cause data race, so it is
scoped as SHARED following rule S1.

■ Any thread executing the parallel region will execute statement 14, which sets the value of
scalar MM to 0.0. This write will cause data race, so rule S1 does not apply. The write happens
before any read of MM in the same thread, so MM is scoped as PRIVATE according to rule S2.

■ Similarly, scalar T is scoped as PRIVATE.
■ Scalar W is read and then written at statement 21, so rules S1 and S2 do not apply. The

addition operation is both associative and communicative, therefore, W is scoped as
REDUCTION(+) according to rule S3.

■ Scalar M is written in statement 11 which is inside a SINGLE construct. The implicit barrier at
the end of the SINGLE construct ensures that the write in statement 11 will not happen
concurrently with either the read in statement 28 or the write in statement 29, and the latter
two will not happen at the same time because both are inside the same CRITICAL construct.
No two threads can access M at the same time. Therefore, the writes and reads of M in the
parallel region do not cause a data race, and, following rule S1, M is scoped SHARED.

■ Array X is only read and not written in the region, so it is scoped as SHARED by rule A1.
■ The writes to array Y is distributed among the threads, and no two threads will write to the

same elements of Y. As there is no data race, Y is scoped SHARED according to rule A1.

EXAMPLE 6–4 Example with QuickSort

static void par_quick_sort (int p, int r, float *data)

{

if (p < r)

6.7 Autoscoping Examples

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201056

EXAMPLE 6–4 Example with QuickSort (Continued)

{

int q = partition (p, r, data);

#pragma omp task default(__auto) if ((r-p)>=low_limit)

par_quick_sort (p, q-1, data);

#pragma omp task default(__auto) if ((r-p)>=low_limit)

par_quick_sort (q+1, r, data);

}

}

int main ()

{

...

#pragma omp parallel

{

#pragma omp single nowait

par_quick_sort (0, N-1, &Data[0]);

}

...

}

er_src result:

Source OpenMP region below has tag R1

Variables autoscoped as FIRSTPRIVATE in R1: p, q, data

Firstprivate variables in R1: data, p, q

47. #pragma omp task default(__auto) if ((r-p)>=low_limit)

48. par_quick_sort (p, q-1, data);

Source OpenMP region below has tag R2

Variables autoscoped as FIRSTPRIVATE in R2: q, r, data

Firstprivate variables in R2: data, q, r

49. #pragma omp task default(__auto) if ((r-p)>=low_limit)

50. par_quick_sort (q+1, r, data);

The scalar variables p and q, and the pointer variable data, are read-only in the task construct,
read-only in the parallel region. So they are autoscoped as FIRSTPRIVATE according to TS1.

EXAMPLE 6–5 Another Example

int fib (int n)

{

int x, y;

if (n < 2) return n;

#pragma omp task default(__auto)

x = fib(n - 1);

#pragma omp task default(__auto)

y = fib(n - 2);

#pragma omp taskwait

return x + y;

}

6.7 Autoscoping Examples

Chapter 6 • Automatic Scoping of Variables 57

EXAMPLE 6–5 Another Example (Continued)

er_src result:

Source OpenMP region below has tag R1

Variables autoscoped as SHARED in R1: x

Variables autoscoped as FIRSTPRIVATE in R1: n

Shared variables in R1: x

Firstprivate variables in R1: n

24. #pragma omp task default(__auto) /* shared(x) firstprivate(n) */

25. x = fib(n - 1);

Source OpenMP region below has tag R2

Variables autoscoped as SHARED in R2: y

Variables autoscoped as FIRSTPRIVATE in R2: n

Shared variables in R2: y

Firstprivate variables in R2: n

26. #pragma omp task default(__auto) /* shared(y) firstprivate(n) */

27. y = fib(n - 2);

28.

29. #pragma omp taskwait

30. return x + y;

31. }

Scalar n is read-only in the task constructs and read-only in the parallel construct. So n is
autoscoped as FIRSTPRIVATE, according to TS1.

Scalar variables x and y are local variables of function fib(). Accesses to x and y in both tasks
are free of data race. Since there is a taskwait, the two tasks will complete execution before the
thread executing fib(), that encountered the tasks, exits fib(); this implies that x and y will be
around while the two tasks are executing. So x and y are autoscoped as SHARED, according to
TS2.

EXAMPLE 6–6 Another Example

int main(void)

{

int yy = 0;

#pragma omp parallel default(__auto) shared(yy)

{

int xx = 0;

#pragma omp single

{

#pragma omp task default(__auto) // task1

{

xx = 20;

}

}

#pragma omp task default(__auto) // task2

{

yy = xx;

}

6.7 Autoscoping Examples

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201058

EXAMPLE 6–6 Another Example (Continued)

}

return 0;

}

er_src result:

Source OpenMP region below has tag R1

Variables autoscoped as PRIVATE in R1: xx

Private variables in R1: xx

Shared variables in R1: yy

7. #pragma omp parallel default(__auto) shared(yy)

8. {

9. int xx = 0;

10.

Source OpenMP region below has tag R2

11. #pragma omp single

12. {

Source OpenMP region below has tag R3

Variables autoscoped as SHARED in R3: xx

Shared variables in R3: xx

13. #pragma omp task default(__auto) // task1

14. {

15. xx = 20;

16. }

17. }

18.

Source OpenMP region below has tag R4

Variables autoscoped as PRIVATE in R4: yy

Variables autoscoped as FIRSTPRIVATE in R4: xx

Private variables in R4: yy

Firstprivate variables in R4: xx

19. #pragma omp task default(__auto) // task2

20. {

21. yy = xx;

22. }

23. }

In this example, xx is a private variable in the parallel region. One of the threads in the team
modifies its initial value of xx (by executing task1). Then all of the threads encounter task2
that uses xx to do some computation.

In task1, the use of xx is free of data race. Since there is an implicit barrier at the end of the
single construct and task1 should complete before exiting this barrier, xx will be around while
task1 is executing. So, according to TS2, xx is autoscoped as SHARED on task1.

In task2, the use of xx is read-only. However, the use of xx is not read-only in the enclosing
parallel construct. Since xx is predetermined as PRIVATE for the parallel construct, we cannot be
sure that xx will be around while task2 is executing. So, according to TS3, xx is autoscoped
FIRSTPRIVATE on task2.

6.7 Autoscoping Examples

Chapter 6 • Automatic Scoping of Variables 59

EXAMPLE 6–6 Another Example (Continued)

In task2, the use of yy is not free of data race, and in each thread executing task2, the variable
yy is always written before being read by the same thread. So, according to TS4, yy is
autoscoped PRIVATE on task2.

EXAMPLE 6–7 Another Example

int foo(void)

{

int xx = 1, yy = 0;

#pragma omp parallel shared(xx,yy)

{

#pragma omp task default(__auto)

{

xx += 1;

#pragma omp atomic

yy += xx;

}

#pragma omp taskwait

}

return 0;

}

er_src result:

Source OpenMP region below has tag R1

Shared variables in R1: yy, xx

5. #pragma omp parallel shared(xx,yy)

6. {

Source OpenMP region below has tag R2

Variables autoscoped as SHARED in R2: yy

Variables autoscoped as FIRSTPRIVATE in R2: xx

Shared variables in R2: yy

Firstprivate variables in R2: xx

7. #pragma omp task default(__auto)

8. {

9. xx += 1;

10.

11. #pragma omp atomic

12. yy += xx;

13. }

14.

15. #pragma omp taskwait

16. }

The use of xx in the task construct is not read-only, and is not free of data race. But the read of x
the in task region gets the value of x defined outside the task. (In this example, since xx is SHARED
for the parallel region, the definition of x is actually outside the parallel region.) So, according to
TS5, xx is autoscoped as FIRSTPRIVATE.

6.7 Autoscoping Examples

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201060

EXAMPLE 6–7 Another Example (Continued)

The use of yy in the task construct is not read-only, but is free of data race. yy will be accessible
while the task is executing, since there is a taskwait. So, according to TS2, yy is autoscoped as
SHARED.

6.7 Autoscoping Examples

Chapter 6 • Automatic Scoping of Variables 61

62

Scope Checking

Autoscoping can help the programmer decide how to scope variables. However, for some
complicated programs, autoscoping may not be successful or the result of autoscoping may not
be what the programmer expects. Incorrect scoping may cause many inconspicuous yet serious
problems. For example, incorrectly scoping some variable as SHARED may cause a data race;
incorrectly privatizing a variable may result in an undefined value for the variable outside the
construct.

Solaris Studio C, C++, and Fortran compilers provide a compile-time scope-checking feature
where the compiler determines whether variables in an OpenMP program are correctly scoped.

Based on the compiler's capabilities, scope checking can discover potential problems including
data races, inappropriate privatization or reduction of variables, and other scoping issues.
During scope checking, the data-sharing attributes specified by the programmer, the implicit
data-sharing attributes determined by the compiler, and autoscoping results are all checked by
the compiler.

7.1 Using the Scope Checking Feature
To enable scope checking, the OpenMP program should be compiled with the -xvpara and
-xopenmp options, and at optimization level -xO3 or higher. Scope checking does not work if the
program is compiled with just -xopenmp=noopt. If the optimization level is less than -xO3, the
compiler will issue a warning message and will not do any scope checking.

During scope checking, the compiler will check all OpenMP constructs. If the scoping of some
variables causes problems, the compiler will issue warning messages, and, in some cases,
suggestions for the correct data sharing attribute clause to use.

For example:

7C H A P T E R 7

63

EXAMPLE 7–1 Scope Checking

% cat t.c

#include <omp.h>

#include <string.h>

int main()

{

int g[100], b, i;

memset(g, 0, sizeof(int)*100);

#pragma omp parallel for shared(b)

for (i = 0; i < 100; i++)

{

b += g[i];

}

return 0;

}

% cc -xopenmp -xO3 -xvpara source1.c

"source1.c", line 10: Warning: inappropriate scoping

variable ’b’ may be scoped inappropriately as ’shared’

. write at line 13 and write at line 13 may cause data race

"source1.c", line 10: Warning: inappropriate scoping

variable ’b’ may be scoped inappropriately as ’shared’

. write at line 13 and read at line 13 may cause data race

The compiler will not do scope checking if the optimization level is less than -xO3:

% cc -xopenmp=noopt -xvpara source1.c

"source1.c", line 10: Warning: Scope checking under vpara compiler

option is supported with optimization level -xO3 or higher.

Compile with a higher optimization level to enable this feature

A more complicated example:

EXAMPLE 7–2 source2

% cat source2.c

#include <omp.h>

int main()

{

int g[100];

int r=0, a=1, b, i;

#pragma omp parallel for private(a) lastprivate(i) reduction(+:r)

for (i = 0; i < 100; i++)

{

g[i] = a;

b = b + g[i];

r = r * g[i];

7.1 Using the Scope Checking Feature

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201064

EXAMPLE 7–2 source2 (Continued)

}

a = b;

return 0;

}

% cc -xopenmp -xO3 -xvpara source2.c

"source2.c", line 8: Warning: inappropriate scoping

variable ’r’ may be scoped inappropriately as ’reduction’

. reference at line 13 may not be a reduction of the specified type

"source2.c", line 8: Warning: inappropriate scoping

variable ’a’ may be scoped inappropriately as ’private’

. read at line 11 may be undefined

. consider ’firstprivate’

"source2.c", line 8: Warning: inappropriate scoping

variable ’i’ may be scoped inappropriately as ’lastprivate’

. value defined inside the parallel construct is not used outside

. consider ’private’

"source2.c", line 8: Warning: inappropriate scoping

variable ’b’ may be scoped inappropriately as ’shared’

. write at line 12 and write at line 12 may cause data race

"source2.c", line 8: Warning: inappropriate scoping

variable ’b’ may be scoped inappropriately as ’shared’

. write at line 12 and read at line 12 may cause data race

The above artifical example shows some typical errors of scoping that scope checking can
detect.

1. r is specified as a reduction variable whose operation is +, but actually the operation should
be *.

2. a is explicitly scoped as PRIVATE. Since PRIVATE variables do not have an initial value, the
reference on line 11 to a may read some garbage value. The compiler points out this
problem, and suggests that the programmer consider scoping a as FIRSTPRIVATE.

3. Variable i is the loop index variable. In some cases, the programmer may wish to specify it
to be LASTPRIVATE if the value of the loop index is used after the loop. But this is not the case
in the above example; i is not referenced at all after the loop. The compiler issues a warning
and suggests that the programmer scope i as PRIVATE. Using PRIVATE instead of
LASTPRIVATE can lead to better performance.

4. The programmer does not explicitly specify a data-sharing attribute for variable b.
According to page 79, lines 27-28 of the OpenMP Specification 3.0, b will be implicitly
scoped as SHARED. However, scoping b as SHARED will cause a data race. The correct
data-sharing attribute of b should be REDUCTION.

7.1 Using the Scope Checking Feature

Chapter 7 • Scope Checking 65

7.2 Restrictions
■ As mentioned above, scope checking only works with optimization level -xO3 or higher.

Scope checking does not work if the program is compiled with just -xopenmp=noopt.
■ Only synchronizations specified by using OpenMP synchronization directives, such as

BARRIER and MASTER, are recognized and used in the data race analysis. User-implemented
synchronizations, such as busy-waiting, are not recognized.

7.2 Restrictions

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201066

Performance Considerations

Once you have a correct, working OpenMP program, it is worth considering its overall
performance. There are some general techniques that you can utilize to improve the efficiency
and scalability of an OpenMP application, as well as techniques specific to the Sun platforms.
These are discussed briefly here.

For additional information, see Solaris Application Programming, by Darryl Gove, which is
available from http://www.sun.com/books/catalog/solaris_app_programming.xml

Also, visit the Oracle Solaris Studio portal for occasional articles and case studies regarding
performance analysis and optimization of OpenMP applications, at http://www.oracle.com/
technetwork/server-storage/solarisstudio.

8.1 Some General Recommendations
The following are some general techniques for improving performance of OpenMP
applications.

■ Minimize synchronization.
■ Avoid or minimize the use of BARRIER, CRITICAL sections, ORDERED regions, and locks.
■ Use the NOWAIT clause where possible to eliminate redundant or unnecessary barriers.

For example, there is always an implied barrier at the end of a parallel region. Adding
NOWAIT to a final DO in the region eliminates one redundant barrier.

■ Use named CRITICAL sections for fine-grained locking.
■ Use explicit FLUSH with care. Flushes can cause data cache restores to memory, and

subsequent data accesses may require reloads from memory, all of which decrease
efficiency.

By default, idle threads will be put to sleep after a certain time out period. It could be that the
default time out period is not sufficient for your application, causing the threads to go to

8C H A P T E R 8

67

http://www.sun.com/books/catalog/solaris_app_programming.xml
http://www.oracle.com/technetwork/server-storage/solarisstudio
http://www.oracle.com/technetwork/server-storage/solarisstudio

sleep too soon or too late. The SUNW_MP_THR_IDLE environment variable can be used to
override the default time out period, even up to the point where the idle threads will never
be put to sleep and remain active all the time.

■ Parallelize at the highest level possible, such as outer DO/FOR loops. Enclose multiple loops in
one parallel region. In general, make parallel regions as large as possible to reduce
parallelization overhead. For example:

This construct is less efficient:

!$OMP PARALLEL

....

!$OMP DO

....

!$OMP END DO

....

!$OMP END PARALLEL

!$OMP PARALLEL

....

!$OMP DO

....

!$OMP END DO

....

!$OMP END PARALLEL

than this one:

!$OMP PARALLEL

....

!$OMP DO

....

!$OMP END DO

.....

!$OMP DO

....

!$OMP END DO

!$OMP END PARALLEL

■ Use PARALLEL DO/FOR instead of worksharing DO/FOR directives in parallel regions. The
PARALLEL DO/FOR is implemented more efficiently than a general parallel region containing
possibly several loops. For example:

This construct is less efficient:

!$OMP PARALLEL

!$OMP DO

.....

!$OMP END DO

!$OMP END PARALLEL

than this one:

!$OMP PARALLEL DO

8.1 Some General Recommendations

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201068

....

!$OMP END PARALLEL

■ On Solaris systems, use SUNW_MP_PROCBIND to bind threads to processors. Processor
binding, when used along with static scheduling, benefits applications that exhibit a certain
data reuse pattern where data accessed by a thread in a parallel region will be in the local
cache from a previous invocation of a parallel region. See “2.3 Processor Binding” on
page 21.

■ Use MASTER instead of SINGLE wherever possible.
■ The MASTER directive is implemented as an IF-statement with no implicit BARRIER :

IF(omp_get_thread_num() == 0) {...}
■ The SINGLE directive is implemented similar to other worksharing constructs. Keeping

track of which thread reached SINGLE first adds additional runtime overhead. There is an
implicit BARRIER if NOWAIT is not specified. It is less efficient.

Choose the appropriate loop scheduling.
■ STATIC causes no synchronization overhead and can maintain data locality when data

fits in cache. However, STATIC may lead to load imbalance.
■ DYNAMIC,GUIDED incurs a synchronization overhead to keep track of which chunks have

been assigned. And, while these schedules could lead to poor data locality, they can
improve load balancing. Experiment with different chunk sizes.

Use LASTPRIVATE with care, as it has the potential of high overhead.
■ Data needs to be copied from private to shared storage upon return from the parallel

construct.
■ The compiled code checks which thread executes the logically last iteration. This

imposes extra work at the end of each chunk in a parallel DO/FOR. The overhead adds up
if there are many chunks.

Use efficient thread-safe memory management.
■ Applications could be using malloc() and free() explicitly, or implicitly in the

compiler-generated code for dynamic/allocatable arrays, vectorized intrinsics, and so
on.

■ The thread-safe malloc() and free() in libc have a high synchronization overhead
caused by internal locking. Faster versions can be found in the libmtmalloc library. Link
with -lmtmalloc to use libmtmalloc.

Small data cases may cause OpenMP parallel loops to underperform. Use the if clause on
PARALLEL constructs to indicate that a loop should run parallel only in those cases where
some performance gain can be expected.

■ When possible, merge loops. For example:

merge two loops

8.1 Some General Recommendations

Chapter 8 • Performance Considerations 69

!$omp parallel do

do i = ...

statements_1

end do

!$omp parallel do

do i = ...

statements_2

end do

into a single loop

!$omp parallel do

do i = ...

statements_1

statements_2

end do

■ Try nested parallelism if your application lacks scalability beyond a certain level. See “1.2
Special Conventions Used Here” on page 12 for more information about nested parallelism
in OpenMP.

8.2 False Sharing And How To Avoid It
Careless use of shared memory structures with OpenMP applications can result in poor
performance and limited scalability. Multiple processors updating adjacent shared data in
memory can result in excessive traffic on the multiprocessor interconnect and, in effect, cause
serialization of computations.

8.2.1 What Is False Sharing?
Most high performance processors, such as UltraSPARC processors, insert a cache buffer
between slow memory and the high speed registers of the CPU. Accessing a memory location
causes a slice of actual memory (a cache line) containing the memory location requested to be
copied into the cache. Subsequent references to the same memory location or those around it
can probably be satisfied out of the cache until the system determines it is necessary to maintain
the coherency between cache and memory.

However, simultaneous updates of individual elements in the same cache line coming from
different processors invalidates entire cache lines, even though these updates are logically
independent of each other. Each update of an individual element of a cache line marks the line

8.2 False Sharing And How To Avoid It

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201070

as invalid. Other processors accessing a different element in the same line see the line marked as
invalid. They are forced to fetch a more recent copy of the line from memory or elsewhere, even
though the element accessed has not been modified. This is because cache coherency is
maintained on a cache-line basis, and not for individual elements. As a result there will be an
increase in interconnect traffic and overhead. Also, while the cache-line update is in progress,
access to the elements in the line is inhibited.

This situation is called false sharing. If this occurs frequently, performance and scalability of an
OpenMP application will suffer significantly.

False sharing degrades performance when all of the following conditions occur.
■ Shared data is modified by multiple processors.
■ Multiple processors update data within the same cache line.
■ This updating occurs very frequently (for example, in a tight loop).

Note that shared data that is read-only in a loop does not lead to false sharing.

8.2.2 Reducing False Sharing
Careful analysis of those parallel loops that play a major part in the execution of an application
can reveal performance scalability problems caused by false sharing. In general, false sharing
can be reduced by
■ making use of private data as much as possible;
■ utilizing the compiler’s optimization features to eliminate memory loads and stores.

In specific cases, the impact of false sharing may be less visible when dealing with larger
problem sizes, as there might be less sharing.

Techniques for tackling false sharing are very much dependent on the particular application. In
some cases, a change in the way the data is allocated can reduce false sharing. In other cases,
changing the mapping of iterations to threads, giving each thread more work per chunk (by
changing the chunksize value) can also lead to a reduction in false sharing.

8.3 Solaris OS Tuning Features
Starting with the Solaris 9 release, the operating system provides scalability and high
performance for the SunFire systems. New features introduced with Solaris 9 OS that improve
the performance of OpenMP programs without hardware upgrades are Memory Placement
Optimizations (MPO) and Multiple Page Size Support (MPSS), among others.

MPO allows the OS to allocate pages close to the processors that access those pages. SunFire
E20K, and SunFire E25K systems have different memory latencies within the same UniBoard
versus between different UniBoards. The default MPO policy, called first-touch, allocates

8.3 Solaris OS Tuning Features

Chapter 8 • Performance Considerations 71

memory on the UniBoard containing the processor that first touches the memory. The
first-touch policy can greatly improve the performance of applications where data accesses are
made mostly to the memory local to each processor with first-touch placement. Compared to a
random memory placement policy where the memory is evenly distributed throughout the
system, the memory latencies for applications can be lowered and the bandwidth increased,
leading to higher performance.

The MPSS feature is supported as of the Solaris 9 OS release, and allows a program to use
different page sizes for different regions of virtual memory. The default Solaris page size is
relatively small (8KB on UltraSPARC processors and 4KB on AMD64 Opteron processors).
Applications that suffer from too many TLB misses may experience a performance boost by
using a larger page size.

TLB misses can be measured using the Sun Performance Analyzer.

The default page size on a specific platform can be obtained with the Solaris OS command:
/usr/bin/pagesize . The -a option on this command lists all the supported page sizes. (See the
pagesize(1) man page for details.)

There are three ways to change the default page size for an application:

■ Use the Solaris OS command ppgsz(1)
■ Compile the application with the -xpagesize, -xpagesize_heap, and -xpagesize_stack

options. (See the compiler man pages for details.)
■ Use MPSS specific environment variables. See the mpss.so.1(1) man page for details.

8.3 Solaris OS Tuning Features

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201072

Placement of Clauses on Directives

The following table relates clauses to directives and pragmas:

TABLE A–1 Pragmas Where Clauses Can Appear

Clause/Pragma PARALLEL DO/for SECTIONS SINGLE

PARALLEL

DO/for

PARALLEL

SECTIONS

PARALLEL

WORKSHARE

IF Yes Yes Yes Yes

PRIVATE Yes Yes Yes Yes Yes Yes Yes

SHARED Yes Yes Yes Yes

FIRSTPRIVATE Yes Yes Yes Yes Yes Yes Yes

LASTPRIVATE Yes Yes Yes Yes

DEFAULT Yes Yes Yes Yes

REDUCTION Yes Yes Yes Yes Yes Yes

COPYIN Yes Yes Yes Yes

COPYPRIVATE Yes (1)

ORDERED Yes Yes

SCHEDULE Yes Yes

NOWAIT Yes (2) Yes (2) Yes (2)

NUM_THREADS Yes Yes Yes Yes

__AUTO Yes Yes Yes Yes

1. Fortran only: COPYPRIVATE can appear on the END SINGLE directive.

2. For Fortran, a NOWAIT modifier can only appear on the END DO, END SECTIONS, END SINGLE, or
END WORKSHARE directives.

AA P P E N D I X A

73

3. Only Fortran supports WORKSHARE and PARALLEL WORKSHARE.

Placement of Clauses on Directives

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201074

Converting to OpenMP

This chapter gives guidelines for converting legacy programs using Sun or Cray directives and
pragmas to OpenMP.

Note – Legacy Sun and Cray parallelization directives are now deprecated and no longer
supported by Solaris Studio compilers.

B.1 Converting Legacy Fortran Directives
Legacy Fortran programs use either Sun or Cray style parallelization directives. A description of
these directives can be found in the chapter Parallelization in the Fortran Programming Guide.

B.1.1 Converting Sun-Style Fortran Directives
The following tables give OpenMP near equivalents to Sun parallelization directives and their
subclauses. These are only suggestions.

TABLE B–1 Converting Sun Parallelization Directives to OpenMP

Sun Directive Equivalent OpenMP Directive

C$PAR DOALL [qualifiers] !$omp parallel do [qualifiers]

C$PAR DOSERIAL No exact equivalent. You can use:

!$omp master

loop

!$omp end master

BA P P E N D I X B

75

TABLE B–1 Converting Sun Parallelization Directives to OpenMP (Continued)
Sun Directive Equivalent OpenMP Directive

C$PAR DOSERIAL* No exact equivalent. You can use:

!$omp master

loopnest

!$omp end master

C$PAR TASKCOMMON block[,...] !$omp threadprivate (/block/[,...])

The DOALL directive can take the following optional qualifier clauses.

TABLE B–2 DOALLQualifier Clauses and OpenMP Equivalent Clauses

Sun DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

PRIVATE(v1,v2,...) private(v1,v2,...)

SHARED(v1,v2,...) shared(v1,v2,...)

MAXCPUS(n) num_threads(n). No exact equivalent.

READONLY(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

STOREBACK(v1,v2,...) lastprivate(v1,v2,...).

SAVELAST No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

REDUCTION(v1,v2,...) reduction(operator:v1,v2,...) Must supply the reduction operator as well
as the list of variables.

SCHEDTYPE(spec) schedule(spec) (See Table B–3)

The SCHEDTYPE(spec) clause accepts the following scheduling specifications.

TABLE B–3 SCHEDTYPE Scheduling and OpenMP scheduleEquivalents

SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)

Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No exact equivalent.

B.1 Converting Legacy Fortran Directives

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201076

TABLE B–3 SCHEDTYPE Scheduling and OpenMP scheduleEquivalents (Continued)
SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(GSS(m)) schedule(guided, m)

Default m is 1.

B.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP
■ Scoping of private variables must be declared explicitly with OpenMP. With Sun directives,

the compiler uses its own default scoping rules for variables not explicitly scoped in a
PRIVATE or SHARED clause: all scalars are treated as PRIVATE, and all array references are
SHARED. With OpenMP, the default data scope is SHARED unless a DEFAULT(PRIVATE) clause
appears on the PARALLEL DO directive. A DEFAULT(NONE) clause causes the compiler to flag
variables not scoped explicitly. However, see “4.4 Some Tips on Using Nested Parallelism”
on page 39 for information on autoscoping in Fortran.

■ Since there is no DOSERIAL directive, mixing automatic and explicit OpenMP parallelization
may have different effects: some loops may be automatically parallelized that would not have
been with Sun directives.

■ OpenMP provides a richer parallelism model by providing parallel regions and parallel
sections. It could be possible to get better performance by redesigning the parallelism
strategies of a program that uses Sun directives to take advantage of these features of
OpenMP.

B.1.2 Converting Cray-Style Fortran Directives
Cray-style Fortran parallelization directives are identical to Sun-style except that the sentinel
that identifies these directives is !MIC$. Also, the set of qualifier clauses on the !MIC$ DOALL is
different.

TABLE B–4 OpenMP Equivalents for Cray-Style DOALLQualifier Clauses

Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

SHARED(v1,v2,...) SHARED(v1,v2,...)

PRIVATE(v1,v2,...) PRIVATE(v1,v2,...)

AUTOSCOPE No equivalent. Scoping must be explicit, or with the DEFAULT clause, or with
the __AUTO clause

SAVELAST No exact equivalent. You can achieve the same effect by using lastprivate.

MAXCPUS(n) num_threads(n). No exact equivalent.

GUIDED schedule(guided, m)

Default m is 1.

B.1 Converting Legacy Fortran Directives

Appendix B • Converting to OpenMP 77

TABLE B–4 OpenMP Equivalents for Cray-Style DOALLQualifier Clauses (Continued)
Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

SINGLE schedule(dynamic,1)

CHUNKSIZE(n) schedule(dynamic,n)

NUMCHUNKS(m) schedule(dynamic,n/m) where n is the number of iterations

B.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP Directives
The differences are the same as for Sun-style directives, except that there is no equivalent for the
Cray AUTOSCOPE.

B.2 Converting Legacy C Pragmas
The C compiler accepts legacy pragmas for explicit parallelization. These are described in the C
User’s Guide. As with the Fortran directives, these are only suggestions.

The legacy parallelization pragmas are:

TABLE B–5 Converting Legacy C Parallelization Pragmas to OpenMP

Legacy C Pragma Equivalent OpenMP Pragma

#pragma MP taskloop [clauses] #pragma omp parallel for [clauses]

#pragma MP serial_loop No exact equivalent. You can use

#pragma omp master

loop

#pragma MP serial_loop_nested No exact equivalent. You can use

#pragma omp master

loopnest

The taskloop pragma can take on one or more of the following optional clauses.

TABLE B–6 taskloopOptional Clauses and OpenMP Equivalents

taskloopClause OpenMP parallel for Equivalent Clause

maxcpus(n) No exact equivalent. Use num_threads(n)

private(v1,v2,...) private(v1,v2,...)

shared(v1,v2,...) shared(v1,v2,...)

B.2 Converting Legacy C Pragmas

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201078

TABLE B–6 taskloopOptional Clauses and OpenMP Equivalents (Continued)
taskloopClause OpenMP parallel for Equivalent Clause

readonly(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

storeback(v1,v2,...) You can achieve the same effect by using lastprivate(v1,v2,...).

savelast No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

reduction(v1,v2,...) reduction(operator:v1,v2,...). Must supply the reduction operator as
well as the list of variables.

schedtype(spec) schedule(spec) (See Table B–7)

The schedtype(spec) clause accepts the following scheduling specifications.

TABLE B–7 SCHEDTYPE Scheduling and OpenMP scheduleEquivalents

schedtype(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)

Note: Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No exact equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)

Default m is 1.

B.2.1 Issues Between Legacy C Pragmas and OpenMP
■ OpenMP scopes variables declared within a parallel construct as private. A default(none)

clause on a #pragma omp parallel for directive causes the compiler to flag variables not
scoped explicitly.

■ Since there is no serial_loop directive, mixing automatic and explicit OpenMP
parallelization may have different effects: some loops may be automatically parallelized that
would not have been with legacy C directives.

■ Because OpenMP provides a richer parallelism model, it is often possible to get better
performance by redesigning the parallelism strategies of a program that uses legacy C
directives to take advantage of these features.

B.2 Converting Legacy C Pragmas

Appendix B • Converting to OpenMP 79

80

Index

A
accessible documentation, 8
__auto, 50
automatic scoping, 49–61

C
cache line, 70
compiling for OpenMP, 13–25
converting to OpenMP

Cray-style Fortran directives, 77
legacy C pragmas, 78
Sun-style Fortran directives, 75

D
default(_auto), 50
directive, See pragma
documentation, accessing, 7–8
documentation index, 7
dynamic thread adjustment, 15

E
environment variables, 15–20

F
false sharing, 70

G
guided scheduling, 19

I
idle threads, 17
implementation, 27

M
memory placement optimization (MPO), 71

N
nested parallelism, 15, 33, 34
number of threads, OMP_NUM_THREADS, 15

O
OMP_DYNAMIC, 15
OMP_MAX_ACTIVE_LEVELS, 16, 35
OMP_NESTED, 15, 34
OMP_NUM_THREADS, 15
OMP_SCHEDULE, 15
OMP_STACKSIZE, 15
OMP_THREAD_LIMIT, 16
OMP_WAIT_POLICY, 16
OpenMP API specification, 11

81

P
PARALLELenvironment variable, 16
parallelism, nested, 33
performance, 67
pragma, See directive

S
scalability, 70
scheduling, OMP_SCHEDULE, 15
scoping of variables

automatic, 49–61
compiler commentary, 53–55
rules, 50–51

SLEEP, 17
Solaris OS tuning, 71
SPIN, 17
stack size, 19, 24
stacks, 24
STACKSIZE, 19
-stackvar, 24
SUNW_MP_MAX_POOL_THREADS, 35
SUNW_MP_THR_IDLE, 17
SUNW_MP_WAIT_POLICY, 19
SUNW_MP_WARN, 16

T
task construct, automatic scoping rules, 51–52
thread stack size, 19

W
warning messages, 16
weighting factor, 19

X
-xopenmp, 13

Index

Oracle Solaris Studio 12.2: OpenMP API User's Guide • September 201082

	Oracle® Solaris Studio 12.2: OpenMP API User's Guide
	Preface
	Supported Platforms
	Accessing Solaris Studio Documentation
	Documentation in Accessible Formats

	Related Third-Party Web Site References
	Resources for Developers
	Typographic Conventions
	Shell Prompts in Command Examples
	Documentation, Support, and Training
	Oracle Welcomes Your Comments

	Introducing the OpenMP API
	1.1 Where to Find the OpenMP Specifications
	1.2 Special Conventions Used Here

	Compiling and Running OpenMP Programs
	2.1 Compiler Options To Use
	2.2 OpenMP Environment Variables
	2.2.1 Common OpenMP Environment Variables
	2.2.2 Solaris Studio Specific Environment Variables

	2.3 Processor Binding
	2.3.1 Virtual Processor IDs
	2.3.2 Logical IDs
	2.3.3 Interpreting the Value Specified for SUNW_MP_PROCBIND
	2.3.4 Interaction with OS Processor Sets

	2.4 Stacks and Stack Sizes
	2.5 Checking and Analyzing OpenMP Programs

	Implementation-Defined Behaviors
	3.1 Task Scheduling Points
	3.2 Memory Model
	3.3 Internal Control Variables
	3.4 Dynamic Adjustment of Threads
	3.5 Loop Directive
	3.6 Constructs
	3.6.1 SECTIONS
	3.6.2 SINGLE
	3.6.3 ATOMIC

	3.7 Routines
	3.7.1 omp_set_schedule()
	3.7.2 omp_set_max_active_levels()
	3.7.3 omp_get_max_active_levels()

	3.8 Environment Variables
	3.9 Fortran Issues
	3.9.1 THREADPRIVATE Directive
	3.9.2 SHARED Clause
	3.9.3 Runtime Library Definitions

	Nested Parallelism
	4.1 The Execution Model
	4.2 Control of Nested Parallelism
	4.2.1 OMP_NESTED
	4.2.2 OMP_THREAD_LIMIT
	4.2.3 OMP_MAX_ACTIVE_LEVELS

	4.3 Using OpenMP Library Routines Within Nested Parallel Regions
	4.4 Some Tips on Using Nested Parallelism

	Tasking
	5.1 The Tasking Model
	5.2 Data Environment
	5.3 TASKWAIT Directive
	5.4 Tasking Example
	5.5 Programming Considerations
	5.5.1 THREADPRIVATE and Thread-Specific Information
	5.5.2 Locks
	5.5.3 References to Stack Data

	Automatic Scoping of Variables
	6.1 The Autoscoping Data Scope Clause
	6.1.1 __auto Clause
	6.1.2 default(__auto) Clause

	6.2 Scoping Rules for a Parallel Construct
	6.2.1 Scoping Rules For Scalar Variables
	6.2.2 Scoping Rules for Arrays

	6.3 Scoping Rules for a task Construct
	6.3.1 Scoping Rules for Scalar Variables
	6.3.2 Scoping Rules for Arrays

	6.4 General Comments About Autoscoping
	6.5 Restrictions
	6.6 Checking the Results of Autoscoping
	6.7 Autoscoping Examples

	Scope Checking
	7.1 Using the Scope Checking Feature
	7.2 Restrictions

	Performance Considerations
	8.1 Some General Recommendations
	8.2 False Sharing And How To Avoid It
	8.2.1 What Is False Sharing?
	8.2.2 Reducing False Sharing

	8.3 Solaris OS Tuning Features

	Placement of Clauses on Directives
	Converting to OpenMP
	B.1 Converting Legacy Fortran Directives
	B.1.1 Converting Sun-Style Fortran Directives
	B.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP

	B.1.2 Converting Cray-Style Fortran Directives
	B.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP Directives

	B.2 Converting Legacy C Pragmas
	B.2.1 Issues Between Legacy C Pragmas and OpenMP

	Index

