Oracle Solaris Studio 12.2 dbxtool
Tutorial

September 2010

“Introduction” on page 2

“The Example Program” on page 2

“Configuring dbxtool” on page 3

“Diagnosing a Core Dump” on page 7

“Using Breakpoints and Stepping” on page 14

“Using Advanced Breakpoint Techniques” on page 22
“Using Breakpoint Scripts to Patch Your Code” on page 41

Introduction

This tutorial uses a “buggy” example program to demonstrate how to use dbxtool, the stand-alone graphical
user interface (GUI) for the dbx debugger, effectively. It starts with the basics and then moves on to more
advanced features.

The Example Program

This tutorial uses a simplified and somewhat artificial simulation of the dbx debugger. The source code for
this C++ program is available in the examples/debugger/debug_tutorial directory in your installed Oracle
Solaris Studio 12.2 software.

1. Copy the directory to your own private working area. For example:

cp -r /opt/solstudiol2.2/examples/debugger/debug_tutorial ~/debug_tutorial
2. Build the program:

make

CC -g -c main.cc

CC -g -c interp.cc

CC -g -c cmd.cc

CC -g -c debugger.cc

CC -g -c cmds.cc

CC -g main.o interp.o cmd.o debugger.o cmds.o -o a.out

The program is made up of the following modules:

cmd. h cmd. cc Class Cmd, a base for implementing
debugger commands

interp.h interp.cc Class Interp, a simple command
interpreter

debugger.h debugger.cc Class Debugger, mimics the main

semantics of a debugger

cmds.h cmds. cc Implementations of various debugging
commands
main.h main.cc Themain() function and error handling.

Sets up an Interp, creates various
commands and assigns them to the
Interp. Runsthe Interp.

Run the program and try a few dbx commands:

$ a.out

> exec date

Sun Jun 21 16:13:06 PDT 2009
> display var
will display
> stop in X

> run running ...
stopped in X

’ ’

var

Oracle Solaris Studio 12.2 dbxtool Tutorial 2

var = {

a = '100’'
b = '101"'
c = '<error>’
d = '102’
e = '103’
f ="'104"
} .
> quit
Goodby
$

Configuring dbxtool

Start dbxtool by typing:

installation_directory/bin/dbxtool

The first time you start dbxtool, the window looks like the following:

fie B Detany yew Db Pleken H
a0 R O O =B e
Lol aaeh L B3

rw ﬁ_

e P % [Coraak Bty Fioeas b
ties ke lit

el

If you are reading this tutorial in your web browser, it is probably taking up half your screen, so you will find it
beneficial to customize dbxtool to make it a half-screen application as well.

The following are examples of the various ways you can customize dbxtool.

= Make the toolbar icons smaller:
= Right-click anywhere in the toolbar and choose Small Toolbar Icons.
= Move the Call Stack window out of the way:

Oracle Solaris Studio 12.2 dbxtool Tutorial 3

1. Click the header of the Call Stack window and drag the window downward and to the right. Let it go
when the red outline is in this position:

2. Now click on the right pointing arrow in the header of the Call Stack window:

Mame f

The Call Stack window is minimized in the right margin:

Oracle Solaris Studio 12.2 dbxtool Tutorial 4

| $oBIS 18D [|

If you hold the cursor over the minimized Call Stack icon, the Call Stack window is maximized until
you transfer focus to another window. If you click the minimized Call Stack icon, the Call Stack

window is maximized until you click the icon again.

4. Now you should be able to narrow the main window to half-screen:

Oracle Solaris Studio 12.2 dbxtool Tutorial

Ete Edt Debug iew Tools Yndow

w

B Dbx Console ¥ x Brealpo
For imformacion abour new feacures ses help changes'
To remove chis message, pur dbreny SUPPress_SCarcup
jdbx} cd fshared/dp/branches/acen /o ldarea/100714./ o0
fdbxl debug

Ho progras loaded

vy]

= Minimize the Breakpoints window:

1. Click the Breakpoints tab.

2. Click the down arrow on the tab to minimize the Breakpoints window.

Oracle Solaris Studio 12.2 dbxtool Tutorial

¥ ¥ |Proc
| Context

Breakpoints

= Undock the Process I/O window:

1. Clickand hold on the header of the Process I/O window, drag the window outside of the dbxtool
window, and drop it onto your desktop. Now you can easily interact with the input and output of
programs you are debugging while having easy access to the other tabs in the dbxtool window.

2. Tore-dock the Process I/O window in the dbxtool window, right-click in the Process I/O window and
choose Dock window.

= Set the font size in the editor. After you have some source code displayed in the Editor window:
1. Choose Tools > Options.
2. Inthe Options window, select the Fonts & Colors category.
3. Onthe Syntax tab, make sure All Languages is selected from the Languages drop-down list.
4. Click the browse button next to the Font text box.
5. Inthe Font Chooser dialog box, set the font, style, and size, and click OK.
6. Click OK in the Options window.

= Set the font size in the terminal windows. The Dbx Console and Process I/O windows are ANSI terminal
emulators.

Choose Tools > Options.

In the Options window, select the Miscellaneous category.
Click the Terminal tab.

Select settings like Font Size and Click To Type.

Click OK.

G R =

Diagnosing a Core Dump

Now that you have configured dbxtool to suit your preferences, let's find some bugs.
Run the example program again, except this time press Return without entering a command:

$ a.out

> display var

will display 'var’

>

Segmentation Fault (core dumped)

$

Now start dbxtool with the executable and the core file:

$ dbxtool a.out core

Tip - Notice that the doxtool command accepts the same arguments as the dbx command.

dbxtool displays something like the following:

Oracle Solaris Studio 12.2 dbxtool Tutorial 7

File Edt Debug view Teole Window Help
@ﬁﬂ&ﬁ\l :Q'--_?@ @ B s
iDiusscmhll(= -j{.?:lrnnin.l:l: x | ﬁ_]r‘te-fl:l.cc xl
EE-E- AeSE a3 GJ

Bl Intercp::iquitil

Bz |

83 i done = true;

B4

a5

BE

a7

BE

as

o0

a1

82 Incepp::findiconsc char *nams) consc

83 |

54 for (Cmd *®*cp = l_t't'l'llﬁﬂ.f Yep: cp+t)

| 1f (strcmp((*cp)=->nams (), Dams)

=13 return *cp:

a7 return NULL:

og
a5

wodd

Inteep:iStrip comment (char *line) const
{

[

Variables | R e s s g] Threads
REeading ld.so.l

Reading libCstd.so.1

Feading libCrun._so.1

Reading libm.seo.l

Reading likbe.so.l

Reading LibCstd_isa.so.l

Feading Libe psr.so.l

Program terminaced hy signal SEGV {no mapping at the faulc address)
Ox££0318£0: strcmp+0x0LTO: 1d [¥0l]l, %gl

Current function is Interp::find

(dbx) cd fsec/pubs/Writersfarice/Aven/debug tutorial

tdbx) runargs

idbx} intercept =set =unhandled, =unexpected
(dbix) |:|

O Breakpoits

IN

Here are some things to notice:

= In the Dbx Console window, you see a message like the following:

Oracle Solaris Studio 12.2 dbxtool Tutorial 8

program terminated by signal SEGV (no mapping at fault address)
0xff0318f0: strcmp+0x0170: 1d %ol], %gl
Current function is Interp::find

= Even though the SEGV happened in the strcmp () function, dbx automatically shows the first frame with a
function that has debugging information. See how the stack trace in the Call Stack window has a border
around the icon for the current frame:

Call Stack

Marme

[strempi0x2beed, 0x0, 0x2heed, 0x71756974, |~
C Interp:: findithis = Qxfflaff150, name = (nil))

[Interp::dispatchithis = 0xfflhff1 50, line = Dxffli
[Interpe:runithis = Oxfflbff1 507

[main)

The Call Stack window shows the parameter names and values. You can see that the second parameter
passed to strcmp () is 0x0 and that the value of name is NULL.

= Inthe Editor window, the lavender stripe and a triangle instead of a green stripe and arrow, signify the
location of the call to strcmp () rather than the actual location of the error:

Tip - If you do not see parameter values, check that the dbx environment variable stack_verbose is set to
oninyour .dbxrc file. You can also turn on verbose mode in the Call Stack window by right-clicking in
the window and selecting the Verbose checkbox to add a check mark.

Oracle Solaris Studio 12.2 dbxtool Tutorial

[[Dwassemtey | T maince x| W rterpce x|

| 4] ¥]iw](C

BE-0- A5 a2 uJ
81

Incecp: tquitci) -
8z |
a3 i_dons = trus;
a4)
BS
Bé
“ -
an " Find a Cmd with the glven name
“ l
S0
91 Cmd *
82 Incerp::findiconst char "name) const B
531 | =
54 for (Cmd *®*cp = i_cmds:; *cp:; cp++)
| if (strcmpl(*cp)-*name(), name) == 0) e
9& LETurn “op:
a7 return NULL;
S8)
a8
oo
101 .
102 * Eliminace everything pasc a 'E' in "line’
m -
104
105 wvoid
L€ TIntecp::strip comment (char *line) const
w7 | -
L] I Y

Functions usually fail when they are passed bad values as parameters. Here are some ways to check the values

passed to stremp():

= Check the values of the parameters in the Variables window.

Click the Variables tab.

L | Value
- <Entet new wWachs =
— . Ded4410
g o (i this Dtfoft1 S0
i@ name (i)

Oracle Solaris Studio 12.2 dbxtool Tutorial

10

Note that the value of name is NULL. That value is quite likely to be the cause of the SEGV, but let's check
the value of the other parameter, (*cp) ->name().

In the Variables window, expand the cp node and then expand the (cp*) node. The name in question is
“quit”, which is fine:

' nrables ¥ x Dbx Conscie Thremds
Hamea < alue
e
ILJ fsec Ox44410
Q’J ? Eitep On-44508
= [cnterp B
L &_name T
&= N this Dxftl 150
*'v' e ired

Tip - If expanding the *cp node does not show additional variables, check that the dbx environment
variable output_inherited_members inyour .dbxrc file is set to on. You can also turn on the display of
inherited members by right-clicking in the window and selecting the Inherited Members checkbox to add
a check mark.

= Use Balloon Evaluation to confirm the value of a parameter. In the Editor window, put the cursor over the
name variable being passed to strcmp (). A tip is displayed showing the value of name as NULL.

Oracle Solaris Studio 12.2 dbxtool Tutorial 1

El}u;ﬂnﬂly = T main e x| UF interp.ex ll 1] k|[wiC
EEH-8- A%yd A G
a2 |
B3 i_done = True;
B4 1
B3
BE
B7
Ba
L]
g0
€l Cmd *
52 TInterp:ifincdiconst char *nams) const |nems= (el
83 |
54 for (Cmd **op = i cmda; *cpr op+ conyl char “rame.
" if (mtromp | ("cpi=->name (|, name) == Q)
BE return Yeps
57 return NULL:
58 1
L]
Loa
Lol
102
Lo3
log
los weoid
LOE !nt-&:p:::t:l.p__c-:.ur&htl:un.n:. "lipe) const
1w |
Loa char *poundx = stfchrilins, "'4°);

[»

——

Using balloon evaluation, you can also place the cursor over an expression like (*cp) ->name (). In this
case, you cannot do so because that expression contains function calls.

Tip-
Balloon evaluation of expressions with function calls is disabled because:
= Youare debugging a core file.

= Function calls might have side effects and you don't want them to occur as a result of casual hovering
of the cursor in the Editor window.

Now it is abundantly clear that the value of name should not be NULL. But which code passed this bad value
to Interp::find()? To find out you can:

= Move up the call stack by choosing Debug > Stack > Make Caller Current or clicking the Make Caller

=]

Current button on the toolbar:

Oracle Solaris Studio 12.2 dbxtool Tutorial

12

Call Stack

Marme
[strempi0x2bees, 0x0, 0x2heed, 0x71756974, |~

[Interp:: fincithis = Qxfflaff150, name = (nil))

C Interp::dispatchithis = 0xfflhff1 50, line = Dxffli
[Interpe:runithis = Oxfflbff1 507

[main(}

= In the Call Stack window, double-click on the frame corresponding to Interp: :dispatch(). The Editor

window now highlights the corresponding code:

'._MI-;_I-_' E_mmmx' Jinterpcc x| 4] [>][c
BE-0- AeSE o &g
128 e
129 char *token = scrtok(line, DELIMITERS):
130 argvlargo++] = token: first tok
131
132 while (token = satrtok(NULL, DELINITERS), I rest of che tcoken
133 if jarge »>= HMAXARGS) |
134 pEintt ("Too many argumsnts at '%s'\n", token):
135 return;
13E }
137 argvacge++] = token;
138 }
139 argvlargc++] = NULL: gent in=
140
4 Cmd *emd = find{argv[0]): Losk for Cmd name|
142 '
143 if ('emd) |
144 printf ("Unrecognized command 'f$s3'\n", acgv[0]);
145 '
148 } elae |]
147 it ('isatcy()) j
148 echo (analog of dbx -=)
145 prompt () :
150 for (char *™avp = Argv; “avp; avp++)
151 printf ("3 ", ®avp):
153 printf("\n");
153 }
154

This code is unfamiliar. And a quick glance doesn't really point to any clues other than that the value of

argv[0]is NULL.

It might easier to debug this problem dynamically using breakpoints and stepping.

Oracle Solaris Studio 12.2 dbxtool Tutorial

13

.|1|

Using Breakpoints and Stepping

Breakpoints let you stop a program a bit before the manifestation of a bug and step through the code in the
hope of discovering what went wrong.

If you haven't already done so, now might be a good time to undock the Process I/O window.

You ran the program from the command line earlier. Now reproduce the bug by running the program in
dbxtool:

1. Click the Run button @ on the toolbar or type run in the Dbx Console window.
2. Press Return in the Process I/O window. This time, an alert box tells you about the SEGV:

a.out - Signal Caught

Signal received:. SIGSEGY (11) with sigoode MAPERR (1)
From process: 0
Far program a.out, pid 15 671

ou may discard the signal or forward it and you may continue or pause the

process
To control which signals are caught or ignored use Debug-=Dhx Configure

|:| Don't Catch this Signal Again

Digcard and Pause Digcard and Continue Forward and Continue

3. Inthealert box, click Discard and Pause. The Editor window once again highlights the call to strcmp () in

Interp::find().

4. Click the Make Caller Current button in the toolbar to go to the unfamiliar code you saw earlier in
Interp::dispatch(). Now you can set a breakpoint a bit before the call to find (). Later you can step
through the code in the hope of learning why things went wrong.

Setting Breakpoints

There are several ways to set a breakpoint. First, if the line numbers are not showing, enable line numbers in
the editor by right-clicking in the left margin and selecting the Show Line Numbers checkbox.

= Toggle aline breakpoint by clicking in the left margin next to line 127.

Oracle Solaris Studio 12.2 dbxtool Tutorial

14

KIE3IElr

128
128
130

* Pacss 'lin=s' and dispacch che commandon Lo 1T any.

vold
Interp: :dispatchichar *line)
{

const int MAXARGS = 8:

const char *DELIMITERS = " Yit\n": ff "word"™ delimiters
 break 'lins' into "word"s and score them in fargv!
char *argw|[MAXARGS+1]: / 41 for msntin=l NULL

char *token = strtok(|line, DELIMITEES):
acegnylargoe++] = coken; / ficst token

= Set a function breakpoint by doing the following:

1. Select Interp: :dispatch in the Editor window.

2. Choose Debug > New Breakpoint or right-click and choose New Breakpoint. The New Breakpoint
dialog box opens.

Oracle Solaris Studio 12.2 dbxtool Tutorial

15

Mew Breakpoint

Breakpoirt Type: [Function

—=ettings

Function: |Irrterp::dispatch

Y Unigue Function With this MName
o All Member Functions With this Name
i_) On Return

~Fitters

Condition:

Count Limit; | |1r| Current Court;
While In: |

Thread: |

—Actions

Action:

Script:

Cancel

Notice that the Function field is seeded with the selected function name.
3. Click OK.

= [tis easiest to set a function breakpoint from the dbx command line. To do so, type the stop in command

in the Dbx Console window:

(dbx) stop in dispatch
(4) stop in Interp::dispatch(char*)
(dbx)

Notice that you didn't have to type Interp: :dispatch. Just the function name sufficed.

By now the Editor is getting cluttered:

Oracle Solaris Studio 12.2 dbxtool Tutorial 16

[Disassembly = [mance = | fE merp.cc x 1Urii=2

@ E-8- Q%S 6 cz G4
116 I £ ! 1 =
117
118
118| wvolid
120, Interp::dispatchichar *line)
121 {
i const int MAXARGS = 8:
123 const char *DELIMITERES = " \t\n";
124
125 I
126 char "argw[MAKARGS+1]:
a int arge = 0O;
128
129 rhar *rtnken = atrtakd]lines. DBELTHMTTERS :

You can clean up this clutter using the Breakpoints window.

1. Click the Breakpoints tab (or maximize it if you minimized it earlier).

2. Select the line breakpoint and one of the function breakpoints, right-click, and choose Delete.

Advantages of Function Breakpoints

Setting a line breakpoint by toggling in the editor might be intuitive. However, many dbx users prefer
function breakpoints for the following reasons:

= [tis often easiest just to type si dispatch in the Dbx Console window. It saves you having to open a file in
the editor and scroll to a line just to place a breakpoint.

= You can create function breakpoints by selecting any text in the editor. So you can set a breakpoint on a
function from its call site instead of opening a file.

Tip - si is an alias for stop in. Most dbx users define many aliases and put them in the dbx configuration
file ~/.dbxrc. Some common examples are:

alias si stop in
alias sa stop at
alias s step
alias n next
alias r run

= The name of a function breakpoint is descriptive in the Breakpoints window. The name of a line
breakpoint is not - who knows whatis at interp.cc:127? (Actually, you can find what's at line 127 by
right-clicking the line breakpoint in the Breakpoints window and choosing GoTo Source, or by
double-clicking on the breakpoint.)

= Function breakpoints persist better. Because dbxtool persists breakpoints, line number breakpoints
might easily become skewed if you edit code or do a source code control merge. Function names are less
sensitive to edits.

Using Watches and Stepping

So, now you have a single breakpoint at Interp: :dispatch(). If you click Run @ again and press Return
in the Process I/O window, the program stops at the first line of the dispatch () function that contains
executable code.

Oracle Solaris Studio 12.2 dbxtool Tutorial 17

Dlsa:s,einl;,.h,- x| E]rrwn-:c x| '-Errll:fpcl: ® | [4] Bliw=]|t
BR-8- AoFE e & a4
108 it (poundx)

110 *poundx = '\0°;

111 }

1132

113

114

115

118

117

118

119| woid

120 Inmterp::dispatchichar *line)

131 |

r= const intc MAXARGS = B;

123 const char *DELIMITERS = " %tim";
124

125

You already know that the culprit is the argv[0] being passed to find(), so keep an eye on argv using
watches:

1. Select an instance of argv in the Editor window.

2. Choose Debug > New Watch or right-click and choose New Watch. The New Watch dialog box opens
seeded with the selected text:

MNew Watch

Watch Expression. |arcohe

Gualified Form:

3. Click OK.
4. Open the Watches window by choosing Window > Watches.
5. Expandargv.

Oracle Solaris Studio 12.2 dbxtool Tutorial

18

Waiches ' @ x| Vanabies Dbk Console | Threads
Nﬁu ; | 'l;';uh_.uu : fﬁl
§ O arg (Oxfiotebcd “wifubieeabinfubwecs” Dol 3074 “7wifutt, w2 T@" Dxff... =1
& argvo] Ox fafebod " ifubNoee waBx ifxb ek '
= argv{t] ! 3074 "o B2 T
= argv(2] OxMMafebed " insbNes waBx b e s {
[argv(3] Onffbfecad “n" =
2 arguf4) 0x23 “«=bad address 0w00000023>" :
& argvs] Ox fOf7E70 ™ {
2] argv(s) {mily =
= argv{7] O O13700 ™ |
1% arovisl 11 12m00 ™ =4

What is all of this garbage? Notice that argv is uninitialized and because it's a local variable, it might
“inherit” random values left on the stack from previous calls. Could this be the cause of problems? Let's
not get ahead of ourselves and proceed methodically.

6. Click Step Over two times until the green PC arrow points to int argc =0;.

7. It's clear that argc is going to be an index into argv so keep an eye on it as well and create a watch for it
also. Notice that it is also currently uninitialized and might contain garbage values.

8. Because you created the watch for argc second it appears under argv in the Watches window. It would be
nice if it showed up on the first row of the window. You could delete the watches and re-enter them in the
desired order. However, in this case, there's a quick trick you can use. Clicking the Name column header
sorts the column. Click it until you get something like the following (notice the sort triangle):

% x| Variables Dt Consale | Threads
= Mame Vakse i
<Erher new walchs -
& arge 1024
i E" gy (D TbfebeD "uffubfixescafn fMxbMxec’” 0x1 3074 " Pu i, S TE@" Ol
[argyin) O tiirtebeh “udfublneelxafud b ixeck"
& argwit] O 3074 " P, wS2 TiE" 1
& argviz) Ouffistebcd “wifublixesloadutihlvecs"
E argi3 Ouffbfec2d "n"
& argui4] 0x23 "=bad address Ox00000023" |
[args) QA OF7ETO ™
[l arasial {mili il
9. Click Step Over . Notice how argc now shows its initialized value of 0. It is displayed in bold to

signify that the value just changed.

Oracle Solaris Studio 12.2 dbxtool Tutorial 19

Watches ¥ x| Variables
= Mame

[argvld]
[orgv(1]
[argv(2]
= orgvl 3|
E argvi4]

[0 argv{s]
Bl s il

Dibx Console Thrends
| Valua

o

(0 fofebeD "uffe b esnxafxfiNabMoec$® Dt 3074 "*Faffuff wS2 “T@" Duff
Ouifhlebed "wifxbiveslcabud fixbicecE”

OV 3074 " Pocffloff, w92 Tig"

OxiMatebed "wWinsbMseewabaiMhises s

Ouffofec24 *n"

0x23 "<bad sddress 0x0000D023="

Oxffofrern ™

il

10. Our application is going to call strtok(). Click Step Over to step over the function, and observe, for
example, by using balloon evaluation, that token is NULL.

i

Tip - What does strok() do? You can read the strok(3) man page, but in short, it helps break up a string,
for example, line, into tokens delimited by one of DELIMETERS/

11. Clicking Step Over again assigns the token to argv and then thereis a call to strtok() in aloop. As you

step over, you don't enter the loop (there are no more tokens) and instead a NULL is assigned. Step over
that assignment too and you are at the threshold of the call to find. If you recall, this is where our program

crashed.

12. Double check that the program crashes here by stepping over the call to find (). Sure enough, the Signal

Caught alert box is displayed again.

a.out - Signal Caught

Signal received:. SIGSEGY (11) with sigcode MAPERR (1)

From process: 0

For program a.out, pid 16 618

You may dizcard the signal or forward it and you may continue or pause the

Process

To control which signals are caught or ignored use Debug-=Dhx Configure

|:| Don't Catch this Signal Again

Discard and Pause

Discard and Continue Forward and Continue

Click Discard and Pause as before.

13. So the first call to find () after stopping in Interp: :dispatch isindeed where things go wrong.

This may have been obvious but the point is to illustrate that you can quickly get back to where you were.

Here's how:

Oracle Solaris Studio 12.2 dbxtool Tutorial

20

=]

b. Toggle aline breakpoint at the call site of find ().

a. Click Make Caller Current

c. Open the Breakpoints window and disable the Interp: :dispatch() function breakpoint.
dbxtool should look like this:

[Disassembly *| | mancc x| & nterpce 1IE| 4]l

RE-0- a2SE ae @&

128

1258 char *rtaoken = stetok(lins, DELIMITEERS):

130 argrr[argo++] = token;

131

13z while (token = strtok|MULL, DELIMITERS)) | rest of
133 if jarge »= MAXARGES) |

134 princt (™1 many argumsncs at '%s'Y\n", token):
135 return;

136 I

137 arger[argo++] = token:

138 i

138 aregviarge++] = NULL:

140

FR Cmel *emd = find{argv[0]): Look for Cmd by name
142

143 if [lcmd) |

144 princt ("Unces anizecl Hifita il '.:‘-:"l.]l."* argv[0]h:
145

14&] slae |

147 it (lisactcyil)y |

148 1 1

las prompt () :

150 for (char "Tawvp = argv; Yawvp; avps+)

151 princf(™%a ", *awp):

152 prinet {"yn"):

153 i

154

[4] I | []

d. The downward arrow indicates that two breakpoints are set on line 141 and that one of them is
disabled.

14. Click Run @ and press Return in the Process I/O window, and the program will end up right back in
front of the call to find (). (Notice how the Run button evokes re-starting. When debugging you re-start
much more often that just start.)

Tip - If you rebuild your program, for example, after discovering and fixing bugs, you need not exit
dbxtool and restart it. When you click the Run button, dbx detects that the program (or any of its
constituents) has been recompiled, and reloads it.

So itis more efficient to simply keep dbxtool on your desktop, perhaps minimized, ready to use on your
debugging problems.

15. So where's the bug? Look at the watches again:

Oracle Solaris Studio 12.2 dbxtool Tutorial 21

Wlches o0 o @ X | Vanables | D Console | Threads

= Hame | Walue [EE

TR =]
'_;' arge 2
¥ 7 argy (Cni}(ril) Dxffafebed "wiMabMxeswaiwMebMeech” Duffbiec24 "™ Ix23 "<b
£ argw|d) ril}
& argwi] ril) 1
& argw|2) Oxffiofebed "wffuhfweeixaBlfixhfxecy”
[argv(3] Duffofec2d "
] argw[4] w23 "<bad address 0x00000023=" B
] argvis) DuefHOF7ET0 ™
-

=1 araxisl rill

Here you can make the great intuitive leap that argv[@] is NULL because the first call to strtok() returns
NULL and that is because the line was empty and had no tokens.

Tip - Shall you fix this bug before proceeding with the remainder of this tutorial?
You can. You can also choose to remember not to press Return and create empty lines.

Or, if you will mostly be running the program under the debugger, you can “patch” it in the debugger, as
described in “Using Breakpoint Scripts to Patch Your Code” on page 41.

The developer of the example code should probably have tested for this condition and bypassed the rest of
Interp::dispatch().

Discussion

The above example llustrates the most common debugging pattern, where one stops the misbehaving
program at some point before things have gone wrong and then steps through the code comparing the intent
of the code with the way the code actually behaves.

Could you have found the bug more directly, without all the stepping and watching? In fact, yes, but you will
first have to learn some more techniques for using breakpoints.

Using Advanced Breakpoint Techniques

This section demonstrates some advanced techniques for using breakpoints:

Using breakpoint counts

Using bounded breakpoints
Picking a useful breakpoint count
Watchpoints

Using breakpoint conditions
Micro replay using pop

Using fix and continue

This section, and the example program, are inspired by an actual bug discovered in dbx using much the same
sequence described in this section..

The source code includes a sample input file named in, which triggers a bug in our example program. in
contains the following:

display nonexistent var # should yield an error
display var
stop in X # will cause one "stopped" message and display

Oracle Solaris Studio 12.2 dbxtool Tutorial 22

stop in Y # will cause second "stopped" message and display
run
cont
cont
run
cont
cont

Notice that there are no empty lines so as not to trigger the bug you discovered in the previous section.

When you run the program with the input file, the output is as follows:

$ a.out < in

> display nonexistent_var

error: Don’t know about ’'nonexistent var’
> display var

will display 'var’
> stop in X
> stop in Y
> run
running ...
stopped in X
var = {
a = "100’'
b = '101
c = '<error>’
d = "102
e = "103’
f = '104"
}
> cont
stopped in Y
var = {
a = "105"'
b = '106"'
c = '<error>’
d = "107"'
e = '108’
f = '109’'
}
> cont
exited
> run
running ...
stopped in X
var = {
a = '110’'
b = "111"
error: cannot get value of ’'var.c’
c = '<error>’
d = "112"
e = "113’
f =114’
}
> cont
stopped in Y
var = {
a = "115’'
b = "116"'
error: cannot get value of ’'var.c’
c = '<error>’
d = "117"'
e = '118’
f = '119’
}
> cont
exited
Goodby

This output might seem voluminous but the point of this example is to illustrate techniques to be used with
long running, complex programs where stepping through code or tracing just aren't practical.

Notice that when showing the value of field ¢, you get a value of <error>. Such a situation might occur if the
field contains a bad address.

Oracle Solaris Studio 12.2 dbxtool Tutorial 23

The Problem

Notice that when you ran the program a second time, you received additional error messages that you didn't
get on the first run:

error: cannot get value of ’'var.c’

The error() function uses a variable, err_silent, to silence error messages in certain circumstances. For
example, in the case of the display command, instead of displaying an error message, problems are displayed
as c = '<error>’.

Step 1: Repeatability
The first step is to set up a debug target and configure it so the bug can easily be repeated by clicking Run

Start debugging the program as follows:

1. Ifyouhaven't yet compiled the example program, do so by following the instructions in “The Example
Program” on page 2.

2. Choose Debug > Debug Executable.
3. Inthe Debug Executable dialog box, browse for or type in the path to the executable.
4. Inthe Arguments field, type:
< in
5. Copy and paste the directory portion of the executable path into the Run Directory field.
6. Click Debug.

Oracle Solaris Studio 12.2 dbxtool Tutorial 24

Dabug Targst: vexporthomaidebug ol oul | - .
Host localhcat {wangione, Solnrs_Sparc) | - Hogls
Configuration

Rurring | Debugging Options | RunTime Memory Checiing
| ¢ Caneral

| Brguments in

| Puiih Dir echay fexpart e Blabig ol
| Erveircmmers

| Ar gt s

1
| Brgumerts for the mani) function

Debug Cancel H=in

In a real world situation, you might want to populate the Arguments field or the Environment field as well.
You can change any properties of the configuration by choosing Debug > Configure Current Session.

When debugging a program, dbxtool creates a debug target. You can always use the same debugging
configuration by choosing Debug > Debug Recent and then choosing the desired executable.

It is sometimes easier to set many of these properties from the dbx command line. They will be stored in the
debug target configuration.

The purpose of much of what follows is to sustain easy repeatability as you add breakpoints so that you can
always go to alocation of interest by clicking Run without having to click Continue on various intermediate
breakpoints.

Step 2: First Breakpoint

Let's put a breakpoint inside the error () function in the case where it prints an error message. This
breakpoint will be a line breakpoint on line 33.

In a larger program, one can easily change the current function in the Editor window by typing the following,
for example, in the Dbx Console window:

(dbx) func error
The lavender stripe indicates the match found by the func command.

1. Create the line breakpoint by clicking in the left margin of the Editor window on top of the number 33.

Oracle Solaris Studio 12.2 dbxtool Tutorial 25

[FDisassembly x| @jmance x| @ imerpec x| 4=l

RE-8- QPR o &

24 “mid P
25
268 int El:r_ailenl; = 0;
27
28| wvoid
29| error(const char *msg)
3o |
if (err_=ilent > O]
32 return;
@ prinet(“=rror: ¥s\n", msg): -
34 b
35
36| int
37| maini)
el | =
as debugger = new Debugger:
40
41 Interp interp;
42
43 interp.addinew CmdQuic()): I—
44 interp.addinev Cmdlelp ()):
45
48 interp.addinew CmdExec()}:
47
48 interp.addinew CmdDisplay()):
45 interp.add(nev CmdStop()):
50 interp,add(new CmdBuni)); -

2. ClickRun @ to run the program and upon hitting the breakpoint, look at the stack trace. It shows the
error message being emitted due to the simulated command in the in file:

> display var # should yield an error

The callto error() is expected behaviour.

Call Stack ©

Mame
C errorimsg = 0x14014 "Don't know about 'nonexistent_var) |)

[| Debugger:displayithis = 0x443d8 expression = Oxffhfec0d
[] cmeDisplay:: performithis = 0x44600, argy = OxffbfehEs)
[Interp:dispatchithis = 0xffbfeed0, ine = Oxffbfebic "display
[Interp:zrunithis = Dxffbfeedn)

[main()

3. Click Continue @ to continue the process and hit the breakpoint again. This time you receive the
unexpected error message.

Oracle Solaris Studio 12.2 dbxtool Tutorial 26

Call Stack

Marme

[p

[errorimsg = 0x1 404c "cannot get value of "var.c™)

[] Debugger: evaluateFieldHelpithis = 0x443d8, field = 0x1408
[| Debugger:evaluateField{this = Ox443d3, field = 0x1408¢ "e"
[] Debugger: prirtFieldithis = 0x443cd3, field = 0x1408: "c")

[] Debugger;: evaluateDisplay(this = 0x443c8)

[| Debugger: golthis = Dxd43d8)

[] Debugger: runProgramithis = 0x443d3)

[] CmdRun:: performithis = 0x44630, argy = OxffbfebsE)

[Interp::dispatchithis = 0xffbfees0, ne = Oxffbfebfc "run™)
[Interpe:runithis = Oxfflbfees)

[main)

Step 3: Breakpoint Counts
It would be better to arrive at this location repeatedly on each run without having to click Continue after the

first hit of the breakpoint due to the command:

> display var # should yield an error

You can edit the program or input script and eliminate the first troublesome display command. However, the
specific input sequence you are working with might be a key to reproducing this bug so let's not perturb the
situation.

Because you are interested in the second time you reach this breakpoint let's set its count to 2:

1. Inthe Breakpoints window, right-click the breakpoint and choose Customize.
2. Inthe Customize Breakpoint dialog box, type 2 in the Count Limit field.
3. Click OK.

Oracle Solaris Studio 12.2 dbxtool Tutorial 27

Customize Breakpoint

Ereakpoint Type:

—=ettings

File: |ats'pul:asﬁ.-"'~l'r'rtersJ'a|'iceJ'Aten.fdehug_tuturialJ’main.cc

Line:[33

~Fitters

Condition;

Court Limit: |2 |v| Current Count; |0

While In: |

Thread: |

—Actions

Action;

Seript:

Cancel

Now you can repeatedly arrive at the location you are interested in.

Step 4: Bounded Breakpoints

In this case it was trivial to choose a count of 2. But sometimes the place at which you are interested in
stopping is called many times. Later you'll see how you can easily choose a good count value. But for now let's
explore another way of stopping in error () only in the invocation you are interested in.

Open the Customize Breakpoint dialog box as before for the breakpoint inside error() and disable
breakpoint counts by selecting Always stop from the drop-down list for the Count Limit.

Now click Run and pay attention to the stack trace the two times you stop in error(). The first time it looks
like this:

Call Stack

MHame
[errorimsg = 0x14014 "Den't know about 'nonexistert_var™) [|

[] Debugger:display(this = 0x443d3, expression = 0xffhfec0d
[] CmdDisplay::performithis = 0x44600, argy = Oxffhfeh&a)
[Interp::dispatchithis = Oxfflhfess0, line = Oxfibfebfc "display
[Interp::runithis = Dxffbfeesn)

1 main()

The second time it looks like this:

Oracle Solaris Studio 12.2 dbxtool Tutorial 28

Call Stack

MName

[errorimsg = 0x1404¢ "cannot get value of 'var.c™)

[| Debugger:evaluateFieldHelpithis = Dx443d8, field = 0x1408
[] Debugger: evaluateField(this = 0x443d3, field = 0x1408c "z
[] Debugger: printField(this = 0x443d3, field = 0x1408c "c")

[| Debugger:evaluateDisplay(this = 0x443d8)

[] Debugger: golthis = 0x443d3)

[] Debugger: runProgramithis = 0x443d8)

[cmdRun: performithis = 0x44630, argv = OxffbiebfE)

[Interpe:dispatchithis = 0xffbfees0, ine = Dxffbfebfc "run®)
[Interp::runthis = 0xffbfeed0)

[main)

You'd like to arrange to stop at this breakpoint when it's called all the way from runProgram (frame [7]). To
do so, open the Customize Breakpoint dialog box again and set the While In field to runProgram.

Customize Breakpoint

Breakpoirt Type:

—Settings

File: |atJ'pubsMl'riters.farice!ﬁten!ﬂebug_tl,rturialJ'main.l::l::
Line:|33

—Filters

Condition: |

Count Limit; Current Count:

While . |runProgram

Thread:

—Actions

Action; |Stop

Script: |

Now, again, you can repeatedly and trivially arrive at the point you're interested in.

Oracle Solaris Studio 12.2 dbxtool Tutorial

Step 5: Looking for a Cause

Why is the unwanted error message being emitted? Obviously it is because err_silent isnot > 0. Let's look at

the value of err_silent with balloon evaluation. Put your cursor over err_silent in line 31 and wait for its
value to be displayed.

|] Disassembty x| T mance x| 5 interp.cc :rl A F| =L
ER-8- %S d a9 G
24 : i I =
23
26| inc err Silemt = 0;
a7
28| woid er_gilert = 0
28| erroriconat ¢
30 | ey
i if (err_silent > D)
= recurn;
B pEintf ("error: Va\n", meg); |
L I | ’—‘
e

Let's follow the stack to see where err_silent was set. Two clicks of Make Caller Current getyou to

evaluateField(), which has already called evaluateFieldPrepare() simulating a complex function that
might be manipulatingerr_silent.

[Disazzembly Hl @mﬂm.cc Jll @rtwpx:c ®| I detugger oo Hl '?ﬂzli
@ @E-8- QSR au &g

108 char buf[1024]; =

110 anprintf (buf, sizeof (buf), "vd", w++):

A | return sctrdup (but) ;

112 b

113)

114

115

11E Support for Debugger::ewvaluateDiaplay

117 -

118 char *

118 Debugger: :evaluateFisldiconat chare *fisld) -

1200 =

121 evaluateFieldPrepare (field) | 8
| char *valus = svaluaceFisldHelp (field);

123 evaluateFleldFinish(field):

Another click of Make Caller Current gets you to printField(). Here err_silent is being incremented.

printField() hasalso already called printFieldPrepare(),also simulating a complex function that might

be manipulating err_silent.

Oracle Solaris Studio 12.2 dbxtool Tutorial

30

[Dmassembly = | @ {mancc x| #inmerpec x|] debuggerce x

R E-8- QSR S -

113 3
114

115

116

117

118, char

L

LdH Debugger: tevaluateFieldiconst char *Lisld)

130
1Z1
1232
123
124
Lds] |
126
127
128
128

evaluacteFieldPrepares (field):

char ®"wvalus = evaluateFileldHelp(field);
evaluacteFieldFinishifield) ;

ceturn value;

130 woid

13l Debu
1321 |
133
134
F |
136
137
138
139

gger:iprintFileld{const char *field)

err silentd+;

princFisldPrepare (Lisld) @

conat char ®"valus = evaluateFiesldifis=sld):
err silent--;

princf ("\t%a = '%s'\n", field, walue):

af

Noticehowanerr silent++andanerr silent-- bracket some code.

Soit could be thaterr_silent goes wrong in either printFieldPrepare() or evaluateFieldPrepare(),or
that it is already wrong when control gets to printField().

Let's find out whether it was wrong before or after the call to printField()by putting a breakpoint in

printField(

).

Step 6: More Breakpoint Counts

Setabreakpointin printField().

1. Selectpri

ntField(), right-click, and choose New Breakpoint.

2. The New breakpoint type pre-selected and the Function field pre-populated with printfield.

3. Click OK.

Oracle Solaris Studio 12.2 dbxtool Tutorial

31

Mew Breakpoint

Breakpoirt Type: [Function

—=ettings

Function: [printField

Y Unigue Function With this MName
o All Member Functions With this Name
i_) On Return

~Fitters

Condition:

Count Limit; | |1r| Current Court;

Vhile Ir; |

Thread: |

—Actions

Action:

Script:

Cancel

4. Click Run
first field, var.a. err_silent is 0, which is OK.

Oracle Solaris Studio 12.2 dbxtool Tutorial

. The first time you hit the breakpoint is during the first run, on the first stop, and on the

32

(P omassertly x| @jmance *| Wriepce x| asimersz|

@ E-8- Q%S s &

113
114
115
L1E
117
118
115
120
121
122
123
174
1Z5
LIE
127
128
1259
130
131
132
(=7
134
133
13e

char
Delbu
{

wvolid
Delbu
{

gger: ievaluateFleldiconst char *fisld)

evaluateFieldPrepare (field) ;

chat *value = svaluateFieldHelp(Lfield)
evaluateFieldFinish (fi=ld) ;

raturn valus;

o _silent = 0
gger:ipri char *field)
it 2rr_si

err_ailentd+;
printFieldPrepare (field)

consat char *valus = svaluateFiliseld(fizld):

err silsnc--;

5. Click Continue. err_silent is still OK.

6. Click Continue again. err_silent is still OK.

It is going to take a while until you reach the particular call to printField() that resulted in the unwanted
error message. You need to use a breakpoint count on the printField breakpoint. But what shall the count
be set to? In this simple example, one could attempt to count the runs and the stops and the fields being
displayed but in practice things might not be so predictable. However there is a way to figure what the count
should be semi-automatically.

1. Open the Customize Breakpoint dialog box for the breakpoint on printField() and set the Count Limit
field to infinity.

Oracle Solaris Studio 12.2 dbxtool Tutorial

33

Customize Breakpoint

Ereakpoint Type:

—=ettings

Function: |Dehugger::prirrtFieId(mnst char*)
Y Unigue Function With this MName

o All Member Functions With this Name
i_) On Return

~Fitters

Condition:

Count Limit: ||m=in-,t-!If Current Count:

Vhile Ir; |

Thread: |

—Actions

Action:

Script:

Cancel

This setting means that you will never stop at this breakpoint. However, it will still be counting.

2. Atthis point, it will be helpful to have the Breakpoints window show more properties, such as counts.

a. Click the Change Visible Columns button ﬁ at the top right corner of the Breakpoints window.
b. Select Count Limit, Count, and While In.
c. Click OK.

Oracle Solaris Studio 12.2 dbxtool Tutorial

34

Change Visible Columns

Choose the Columns to Display in the List

Mame

|:| Condition: Condition
Cortext; Cortext
Court: Court

Count Limit: Court Limit
[DD

[| Thread: Thread

|:| Timestamp: Timestamp
While In: VWhile In

(] 1 Cancel

3. Re-run the program. You will hit the breakpoint inside error(); the one bounded by runProgram().

4. Now look at the count for the breakpoint on printField().

B Mame Count | CountLimi While i Context 4]
|#] B maince33 0 = Debugger . [16845] a.ou =
|'|7 O Debugger:-printFiekd{canst char' 15 Infi... ™ [16845] a.out

It's 15 and that is the count you want.

5. Click the drop-down list in the Count Limit column and select Use current Count value to transfer the
current count to the count limit, and press Return.

Now if you run the program you will stop in printField() thelast time it's called before the unwanted error
message!

Step 6: Narrowing Down the Cause

Use balloon evaluation to inspect err_silent again. Now it is -1. Most likely one err_silent- - too many, or
one err_silent++ too few, was executed before you got to printField().

How can you locate this mismatched pair of err_silents? In a small program like this example it can be done
by careful code inspection. But in a large program there might be a prohibitive number of pairings of

err_silent++;
err_silent--;

A quicker way to locate the mismatched pair is by using watchpoints.

Oracle Solaris Studio 12.2 dbxtool Tutorial 35

Tip - It might also be the case that it is not a mismatched set of err_silent++; and err_silent--; atall, buta
rogue pointer overwriting the contents of err_silent. Watchpoints would be more effective in catching such
aproblem.

Step 7: Using Watchpoints
To create a watchpointon err_silent:
1. Selecttheerr_silent variable, right-click, and choose New Breakpoint.

2. Set Breakpoint Type to Access. Notice how the Settings section changes and how the Address field is &
err_silent.

3. Select After in the When field.
4. Select Write in the Operation field.
5. Click OK.

Mew Breakpoint

Breakpoirt Type: |[Access

Settings

Address: |8= err_silent

Length: |ﬁDefaurt:-

When: - EBefore Y After

Operation; || Read wiite [| Execute

Filters

Condition: |

Count Limit: current Count:

While In: |

Thread: |

Actions

Action; |Stop

Seript: |

Cancel

6. Now run the program. You stop in init (). Things look OK here, that is, err_silent was incremented to
1 and execution stopped after that.

7. Click Continue. You stop in init () again.
8. Click Continue again. You stop in init () again.

9. Click Continue again. You stop in init () again.

Oracle Solaris Studio 12.2 dbxtool Tutorial 36

10. Click Continue again. Now you stop in stopIn(). Things look OK here too, that is, no -1s.

It might take a while before err_silent is set to -1 and you don't want to be slavishly clicking Continue lest
your eyes glaze over and you miss the time it actually changed to -1. But there is a better way.

Step 8: Breakpoint Conditions

To add a condition to your watchpoint:

1. Inthe Breakpoints window, right-click the After write breakpoint and choose Customize.

2. Be sure that After is selected in the When field.

Tip - Selecting After is important because you want to know what the value of err_silent was changed to.

3. Setthe Condition field to err_silent == -1.
4. Click OK.

Customize Breakpoint

Breakpoint Type:

Settings

Address: |8=er|'_3ilerrt

Length: |4

When: - Before Y After
wirte || Execute

Operation: || Read

Fiters

Condition; Err silent == -

Count Limit; |

Current Count;

While In: |

Thread: |

Actions

Action;

Seript:

Cancel

Now re-run the program. You stop in checkThings (). This is the first time err_silent is set to -1. As you
look for the matching err_silent++ you see what looks like a bug: err_silent is incremented only in the

else portion of the function.

Oracle Solaris Studio 12.2 dbxtool Tutorial

37

[B Disassembly x| Elnﬂ'ncc lli B interp cc I!] debugger cc = 41 0=t

B E-0- A58 o &
207 . =l
208

208

210| woid

21l| Debugger: :checkThinga(l

21a] |

Z13 kool bhad = false;

Z14 if (fieacCheck()) |

Z15 bad = additionalChecki():
216 } els= |

217 €L Silent++;

Zl8 bad = alternativeChecki):

218 I

(=3 ez:Fu1lent——;

221 if (kad)

222 ereor ("Things are in a bad way"™) ;
223| }

224

e
Ladn

226 L
2l 5] t =
g
228
230
231
=32
233| wveoid -

L] |.| . _. L4

Could this be the bug you've been looking for?

Step 9: Verifying the Diagnosis by Popping the Stack
Let's double check that you indeed went through the else block of the function.

One way to do so would be to set a breakpoint on checkThings () and run the program. But checkThings ()
might be called many times. You can use breakpoint counts or bounded breakpoints to get to the right
invocation of checkThings () but there's a quicker way to replay what was recently executed.

= Choose Debug > Stack > Pop Topmost Call.

Tip - Notice the Pop Topmost Call does not undo everything. In particular, the value of err_silent is
already wrong. But this should be okay since you are switching from data debugging to control flow
debugging

You find yourself at the call to checkThings (). In fact, the process state has reverted to the beginning of the
line containing the call to checkThings ().

Now you can click Step Into and observe as checkThings () is called again. As you step through
checkThings () (), you can verify that indeed the process executes the if block where err_silent is not
incremented and then is decremented to -1.

Oracle Solaris Studio 12.2 dbxtool Tutorial

[Disassemily x| Firterpcc x| §)maince |5 detugperee k|
BE-B- QS d a2 4

4 b=t

202 Debugger: talrernat iveCheck()

203 |
04 recurn false;
205 1}
20E
207
208 * Simulate checking of program is runnable
Z0s
210 woid
21l Debugger::checkThings ()
212 |
213 bool had = falae;
14 if (ficscCheck()) I
o bad = additionalChecki():
216 } =las |
217 err milent++;
218 bad = alternativeChscki):
e L 1
220 err_silent--;
221 if {bad)
222 erEok ("Things are in a bad way™):
a2 I

It looks like you have found the programming error. But let's triple check it.

Step 10: Using Fix to Further Verify Our Diagnosis

Let's fix the code in place and verify that the bug has indeed gone away.

1. Fixthe code by putting the err_silent++ above the if statement so it looks like this:

Oracle Solaris Studio 12.2 dbxtool Tutorial

s,

39

I Disassembly x| 05 mterpee *| G| mance x| 00 debuggerce x|

BE-8- A5 g &

202 Debugger::alternativeCheck()

203 |

=04 rerurn false;

205 |}

208

207

z08 ' Simulace ch=cking of program Ls punnabls
208

210| woid

211 DPebugger::icheckThings i)

213 |
213 bool bad = false;
14 trl‘_ﬂiltnl‘.'l"i'.:
15 if (firscChecki}) {
= bad = additionalCheck();
217) mlae |
z18
219 bad = alternativeCheck():
22]
22 err silent--;
222 1T [(had)
e error ("Things are in a bad way"):

2. Choose Debug > Apply Code Changes.

3. Disable the printField breakpoint and the watchpoint but leave the breakpointin error() enabled.

[#¥] 3@ maincc3s 1] w [Debugger: . a.out
[O pevugger prinFisld(const char 0 Infin.. = a.0u
[] P after writs & a.out’ maince'em_ 0 - a.out

4. Re-run the program.

You'll note that the program completes without hitting the breakpointin error() and its output is as

expected.

Oracle Solaris Studio 12.2 dbxtool Tutorial

40

'terEor>"”
‘g’
‘ip3’
‘104!

= '108'
'10&"'
'SgrEor>”
‘107!
‘ioe’
‘108!

Discussion

The above still illustrates the same pattern as discussed at the end of “Using Breakpoints and Stepping” on
page 14, that is, where one stops the misbehaving program at some point before things have gone wrong and
then steps through the code comparing the intent of the code with the way the code actually behaves. The
main difference is that finding the point before things have gone wrong is a bit more involved.

Using Breakpoint Scripts to Patch Your Code

In “Using Breakpoints and Stepping” on page 14, you discovered a bug where an empty line yields a NULL
first token and causes a SEGV. Here's one way to quickly hack around it:

1. Delete all of the breakpoints you created in previous sections.

2. Delete the <in argument in the Debug Executable dialog box.

3. Togglealine breakpointatline 130 in interp.cc:

Disassembly Hl & interpce = | T main.ce x|] debugger o % | [ATx][=]]

BR-8- A% S a3 &g

120 TIncecp::dispatchichar ®*lins)

131 {

122 const int NANARGS = 8;

123 conast char *DELINITERS = " \tim";

124

1325 rea line X -

126 chatr “argv[MAMARGS+1]:

127 int arge = 0

128

129 chat *token = strtok(line, DELIMITERS): |
[argviargec++] = token: / 2irst l:a.-l'.el.g

131

1az while |token = strtok{NULL, DELINITERS)) rest ol token

133 if (acgc »= HAMARGI) |

134 princf ("Too many acguments ac '%¥s'\n", token):

135 recurn;

4. Inthe Breakpoints window, right-click the breakpoint you just created (newer breakpoints are added at
the bottom) and choose Customize.

Oracle Solaris Studio 12.2 dbxtool Tutorial 41

5. In the Customize Breakpoint dialog box, type token == 0 in the Condition field.
6. Select Run Script from the Action drop-down list.
7. In the Script field, type assign token = line.

Tip - Why not assign token = “dummy”? Because dbx cannot allocate the dummy string in the debugged

process. On the other hand, line is known to be equal to "".

The dialog box should look like this:

Customize Breakpoint

Ereakpoint Type:

—=ettings

File: |J‘puhs.ﬁ.-“-.l'l"rte|'sIa|'i::em.tenfdehug_tutul'ial.ﬁmerp.cc
Line:/130

~Fitters

Count Limit: Current Count. 0

While In;

Thread: |

—Actions

Action: [Run Script

Script: Iassign token = line

Cancel

8. Click OK.

Now, if you run the program and enter an empty line, instead of crashing, it will behave like this:

Oracle Solaris Studio 12.2 dbxtool Tutorial

recognized command '

& I

How this works might be clearer if you look at the command that dbxtool sent to dbx:

when at "interp.cc":130 -if token == 0 { assign token = line; }

Oracle Solaris Studio 12.2 dbxtool Tutorial

43

Copyright ©2010 This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer software” or “commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

821-2127

XSun

microsystems

Oracle Corporation 500 Oracle Parkway, Redwood City, CA 94065 U.S.A.

