
Oracle Solaris Studio 12.2: Simple
Performance Optimization Tool (SPOT)
User's Guide

Part No: 821–2842
November 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2010, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés.Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des marques ou
des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC
International, Inc. UNIX est une marque déposée concédé sous license par X/Open Company, Ltd.

110606@25097

Contents

Preface ...5

1 The Simple Performance Optimization Tool (SPOT) .. 9
Introduction ..9
Requirements for Using SPOT .. 10

Supported Platforms .. 10
Binaries Must Be Prepared Correctly .. 10

The Architecture of SPOT .. 11

2 Running SPOT on Your Application .. 13
Running SPOT ... 13
Command Line Options ... 14

Data Collection Option ... 14
Attach to Running Process Options ... 14
Output Options .. 14
Other Options .. 15

3 Understanding SPOT Reports ..17
Reports Produced by SPOT .. 17
Example Program .. 18
The spot_summary Report .. 19
The SPOT Run Report .. 19

Runtime System and Build Information ... 19
Processor Events .. 20
Instruction Frequency Data .. 23
Bandwidth Data ... 24
Traps Data ... 25

3

Application HW Counter Profile Output ... 27
Application Profile Output ... 28

The spot_diff Report .. 32
Summary of Key Experiment Metrics Table ... 33
Summary of Top Stalls Tables .. 33
Bit Instruction Counts Table .. 35
Flags Table .. 35
Traps Table ... 36
Time Spent in Top Functions Tables ... 36

Notes on the SPOT Reports .. 37

Index ..39

Contents

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 20104

Preface

The Simple Performance Optimization Tool (SPOT) can help you diagnose performance
problems that can limit the speed of an application. Running your application with SPOT is
complementary to running it under the Oracle Solaris Studio Performance Analyzer and
looking at the resulting experiment.

Who Should Use This Book
This manual is intended for application developers with a working knowledge of Fortran, C,
C++, or Java programming languages. Users of the performance tools need some
understanding of the Solaris operating system, or the Linux operating system, and UNIX?
operating system commands. Some knowledge of performance analysis is helpful but is not
required to use the tools.

Accessing Oracle Solaris Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index page at
http://www.oracle.com/

technetwork/server-storage/solarisstudio/documentation/index.html.
■ Online help for all components of the IDE is available through the Help menu, as well as

through the F1 key, and through Help buttons on many windows and dialog boxes, in the
IDE.

■ Online help for the Performance Analyzer and the Thread Analyzer is available through the
Help menu, as well as through the F1 key, and through Help buttons on many windows and
dialog boxes, in the Performance Analyzer.

■ Online help for DLight and dbxtool is available through the Help menu, as through the F1
Key, and through Help button on many windows and dialog boxes, in these tools.

5

http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive technologies
for users with disabilities. You can find accessible versions of documentation as described in the
following table.

Type of Documentation Format and Location of Accessible Version

Manuals and Tutorials HTML from the Oracle Solaris Studio 12.2 collection on
http://docs.sun.com

What's New in the Oracle Solaris Studio 12.2
Release (information that was included in
the component Readmes in previous
releases)

HTML from the Oracle Solaris Studio 12.2 collection on
http://docs.sun.com

Man pages In the installed product through the man command

Online help HTML available through the Help menu Help buttons, and F1
key in the IDE, Performance Analyzer, DLight, and dbxtool.

Release notes HTML from the Oracle Solaris Studio 12.2 collection on
http://docs.sun.com

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Documentation, Support, and Training
See the following web sites for additional resources:

■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Preface

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 20106

http://docs.sun.com
http://docs.sun.com
http://docs.sun.com
http://docs.sun.com
http://www.oracle.com/us/support/systems/index.html
http://education.oracle.com

Oracle Welcomes Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of its
documentation. If you find any errors or have any other suggestions for improvement, go to
http://docs.sun.com and click Feedback. Indicate the title and part number of the
documentation along with the chapter, section, and page number, if available. Please let us
know if you want a reply.

Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:

■ Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technology/obe/start/index.html).

■ Download Sample Code (http://www.oracle.com/technology/sample_code/
index.html).

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

7

http://docs.sun.com
http://www.oracle.com/technetwork/index.html
http://forums.oracle.com
http://forums.oracle.com
http://www.oracle.com/technology/obe/start/index.html
http://www.oracle.com/technology/obe/start/index.html
http://www.oracle.com/technology/sample_code/index.html
http://www.oracle.com/technology/sample_code/index.html

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 20108

The Simple Performance Optimization Tool
(SPOT)

The Simple Performance Optimization Tool (SPOT) can help you diagnose performance
problems that can limit the speed of an application.

This chapter includes information about the following:

■ “Introduction” on page 9
■ “Requirements for Using SPOT” on page 10
■ “The Architecture of SPOT” on page 11

Introduction
The role of SPOT is complementary to running the application under the Oracle Solaris Studio
Performance Analyzer, and looking at the resulting experiment. The profile generated by the
Analyzer tells you where the time was spent in running your application. In certain situations,
however, you may not be able to diagnose your application's problems just by examining its
profile.

Some problems that cannot easily be solved by inspecting the application profile are:

■ Is the time spent in the routine high because the routine itself is slow, or because the routine
is called a large number of times?

■ Is a line of code taking time because it misses cache or because it misses the translation
lookaside buffer (TLB)?

■ Are traps slowing down the application?
■ Is the application reaching a memory bandwidth limit?

While you might be able to identify the causes of these issues by looking at the application's
profile and running additional tools, you might not know what tools are available or which
specific tool to use.

1C H A P T E R 1

9

SPOT simplifies the process of performance analysis by running an application under a
common set of tools and producing HTML reports of its findings, which provides the following
benefits:
■ By creating reports in HTML format, SPOT lets you place the reports on a server that can be

accessed by an entire development team. For example, a SPOT report can be examined by
remote colleagues, or referred to during a meeting. You could even email a URL of a
particular line of source code, or disassembly, to a colleague for further review.

■ The SPOT report archives the compiler build commands as well as the profile for the active
parts of the application. By comparing the current application profile with an older profile,
you can easily check for changed code or changed compiler build flags.

■ SPOT can also profile the application according to the most frequently occurring hardware
events, indicating which routines are encountering which problems.

Requirements for Using SPOT

Supported Platforms
SPOT runs on SPARC and x86 platforms. The specific details included in the SPOT reports are
platform dependent. Some of the tools that SPOT uses are not available on x86 platforms, so
instruction count data, bandwidth data, and trap data are not included when you run SPOT on
these platforms.

Binaries Must Be Prepared Correctly
SPOT works on binaries compiled with the Sun Studio 12, Sun Studio 12 Update 1, or Oracle
Solaris Studio 12.2 compilers, or the GCC for Sun Systems compilers starting with version 4.2.0,
on a SPARC_based or x86–based system running the Solaris 10 5/08 operating system or a later
Solaris 10 update.

When using a Sun Studio or Oracle Solaris Studio compiler. you must compile with
optimizations by using the -O option or the -xO[n] option. When using a GCC compiler, no
particular optimization level is required.

Using the -g option to generate debug information when compiling the binary allows SPOT to
attribute time and processor events back to the source code lines that caused them. For C++
programs, the -g option alone (with no optimization level specified) turns off inlining of
functions, which can have a significant performance impact. So it is better to use the -g0 (zero)
option, which turns on debugging information and does not affect inlining of functions.

A binary compiled as described includes information called annotations that let the tools
instrument the application to generate the counts of the number of calls to routines and the
number of times each individual instruction is executed.

Requirements for Using SPOT

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201010

The Architecture of SPOT
SPOT uses several tools to collect data and generate its report.

■ The rpic tool collects performance counter information over the run of a program and
produces a text summary of the stall time that each processor event contributed to the run
time of the program. For example, it reports the number of seconds spent waiting for data
located in memory.

■ The Binary Improvement Tool (BIT) instruments an application (provided it is compiled as
described in “Binaries Must Be Prepared Correctly” on page 10) and generates information
on the number of times each routine is called, the number of times each individual
instruction is executed, and the instruction frequency for each assembly language
instruction.

■ The collect tool is used by SPOT to profile the application over time and, when you
request extended information, profile where the processor events occur.

■ The bw tool collects system-wide bandwidth utilization data (if possible for the target
platform) when you request extended data and are running SPOT with root privileges.

■ The traps tool is a wrapper for trapstat, which is included in the Oracle Solaris operating
system. It collects trap data when you request extended data and are running SPOT with
root privileges.

The Architecture of SPOT

Chapter 1 • The Simple Performance Optimization Tool (SPOT) 11

■ The er_html tool is a wrapper for the er_print tool, which generates a set of hyperlinked
HTML files from a Performance Analyzer experiment (the data collected by the collect
tool and the BIT tool).

■ The spot_diff tool produces a report that compares multiple SPOT reports.

You can run each of these tools as a stand-alone tool. Only er_html and spot_diff produce
HTML output when run them outside of SPOT.

The Architecture of SPOT

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201012

Running SPOT on Your Application

■ “Running SPOT” on page 13
■ “Command Line Options” on page 14

Running SPOT
You can run SPOT on your application in two ways:

■ By starting your application with the spot command:

spot application_command arguments

SPOT will run the application multiple times, collect data with each tool over the entire run
of the application, and generate a report.

■ By using the spot command to attach SPOT to an existing process that is executing the
application:

spot -P process_id

SPOT will attach to the running process, use each tool for a short period of time to collect
data, and generate a report on the process.

Running SPOT with the -X option produces the most information. However, when you use this
option, SPOT takes longer to collect the data. When you run SPOT with root privileges and this
option, SPOT collects bandwidth utilization and trap data. On some processors, SPOT also
collects hardware counter profiles.

2C H A P T E R 2

13

Command Line Options
You can use the following options with the spot command.

Data Collection Option

-X Request extended statistics. If you run SPOT with root
privileges, SPOT will collect system wide bandwidth
consumption data and system wide trap statistics. Use
a dedicated system when collecting this data. On some
processors, SPOT will also collect hardware counter
profiles of the application using the performance
counters identified by ripc as large contributors to the
overall stall time. To do, it will run the application up
to four additional times.

Attach to Running Process Options

-P process_id Attach SPOT to the running process process_id.

-T seconds Set seconds as the duration of attachment of each of
the five probes to the process. The default is 60
seconds per probe, for a total of 300 seconds.

Output Options
You can specify the following options to determine the location and content of the SPOT
report. The -d and -o options work together to determine the location and the name of the
subdirectory that contains the report.

-d directory Write the SPOT report to a subdirectory of directory.
By default, SPOT writes the report to a subdirectory of
the current directory.

-o subdirectory Write the SPOT report to subdirectory. By default, the
subdirectory is named spot_runn, where n is a unique
number.

Command Line Options

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201014

-D n Set the verbosity level of debug information to be
reported. The value of n can be:

0: No debug output

1: Normal level of debug information (default)

2: Full debug information

The debug information is written to the debug.log file
in the SPOT report.

-q Do not write SPOT output to stdout (same as -D 0).

-v Write the current version and detailed debugging
information to stdout (same as -D 2).

Other Options

-c path Specify a path for the Oracle Solaris Studio
components used by SPOT. This option is useful if
you want to override the default compiler and use a
compiler installed in a different location.

-V Print SPOT version information and exit.

-h Print help information.

Command Line Options

Chapter 2 • Running SPOT on Your Application 15

16

Understanding SPOT Reports

■ “Reports Produced by SPOT” on page 17
■ “Example Program” on page 18
■ “The spot_summary Report” on page 19
■ “The SPOT Run Report” on page 19
■ “The spot_diff Report” on page 32
■ “Notes on the SPOT Reports” on page 37

Reports Produced by SPOT
When you run SPOT, it produces the following directories and files, which it writes to the
current directory unless you specified a different directory with the -d option:

spot_runn/ A subdirectory for each run that contains the SPOT
report for the run. n is a unique number for each run.
You can specify a different subdirectory name with the
-o option.

spot_summary.html A report that lists SPOT runs with the date and time of
each run.

spot_diff.html A report that compares SPOT data from different runs
in a tabular format.

spot_diff.source_list.html A report that lists the compiler used to compile the
application, and the source files compiled.

3C H A P T E R 3

17

Example Program
The following test example program was run with SPOT to generate the reports discussed in
this chapter. The program has three routines, each of which targets a different kind of event:
■ The fp_routine routine does floating point computation on three 80 MB arrays. The

routine has floating point operations, and also (because of the size of the array) significant
amounts of memory traffic, which appears as read and write memory bandwidth
consumption.

■ The cache_miss routine is a test of memory latency. Each pointer chase in the key loop
brings in another cacheline, resulting in many cache misses, and also a significant amount of
memory read bandwidth.

■ The tlb_miss routine is identical to the cache_miss routine except for the way it is called.
The reason for duplicating the code is to show clearly the location in the code where the
events are happening. This routine brings in a new TLB page on every pointer chase in the
key loops, so the routine encounters both cache and TLB misses.

#include <stdio.h>

#include <stdlib.h>

void fp_routine(double *out, double *in1, *double *in2, int n)

{

for (int i=0; i<n; i++) (out[i]=in1[i]+in2[i];)

}

int** cache_miss(int **array, int size, int step)

{

for (int i=0; i<size-step; i++){array[i]=(int*)&array[i+step];}

for (int i=size-step; i<size; i++)

{array[i]=(int*)&array[i-size+step];}

int ** cp=(int**)array[0];

for (int i=0; i<size*16; i++) {cp= (int**)*cp;}

}

int** tlb_miss(int **array, int size, int step)

{

for (int i=0; i<size-step; i++){array[i]=(int*)&array[i+step];}

for (int i=size-step’ i<size’ i++)

{array[i]=(int*)&array[i-size+step];}

int ** cp=(int**)array[0];

for (int i=0; i<size*16; i++) {cp= (int**)*cp;}

return cp;

}

void main()

{

double * out, *in1, *in2;

int **array;

out=(double*) calloc(sizeof(double),10*1024*1024);

in1=(double*) calloc(sizeof(double),10*1024*1024);

Example Program

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201018

in2=(double*) calloc(sizeof(double),10*1024*1024);

for (int rpt=0; rpt <100; rpt++)

fp_routine(out,in1,in2,10*1024*1024);

free(out);

free(in1);

free(in2);

array=(int**)calloc(sizeof(int*),10*1024*1024);

cache_miss(array,10*1024*1024,64/sizeof(int*));

tlb_miss(array,10*1024*1024,8192/sizeof(int*));

free (array);

}

The program was compiled with the Oracle Solaris Studio 12.2 c compiler:

cc -g -O -o test test.c

The spot_summaryReport
The spot_summary.html report is updated each time you run SPOT in the current directory.
The report list the run number, application, and date and time of each run, the date and time
the file was last updated, and the version of SPOT that was used for the runs.

The SPOTRun Report
The SPOT report for each run of your application with SPOT includes a section for each of the
files that SPOT writes to the subdirectory for that run. To display the report, point your web
browser to the index.html file in the subdirectory.

Runtime System and Build Information
The Hardware information, Operating system information, and Application build information
sections of the SPOT report list details on the system on which SPOT was run on the application
and on how the application was compiled. This information can help you to reproduce the same
results at another time.

The SPOT Run Report

Chapter 3 • Understanding SPOT Reports 19

Processor Events
The Application stall information section displays information collected by the ripc tool about
what processor events were encountered during the run of the application. The processor has
event counters that are incremented either each time an event occurs or each cycle during the
duration of an event. Using these counters, SPOT can determine values for the cache miss rate,
or the number of cycles lost due to cache misses. The information is displayed in several text
subsections.

Note – You can run ripc as a stand-alone tool. Type ripc -h for a list of the command line
options, and consult the ripc(1) man page for more information.

The SPOT Run Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201020

The SPOT Run Report

Chapter 3 • Understanding SPOT Reports 21

Analysis of Application Stall Behavior Section
The Analysis of Application Stall Behavior section shows the percentage of the total number of
cycles lost to each type of processor event. The events are different on different processors. For
example, an UltraSPARC IV+ has a third level of cache that is not present on previous
generations of processors.

In this report for a run of the example code, the time is lost due to Data Cache misses, External
Cache misses, and Data TLB misses. Together these three types of events account for more than
93% of the execution count of the benchmark:

■ The Data Cache miss time represents time spent by load instructions that found their data in
the External Cache.

■ The External Cache miss time is accumulated by load instructions where the data was not
resident in either the Data Cache or the External Cache, and had to be fetched from
memory.

■ The Data TLB miss time is caused by memory accesses where the TLB mapping is not
resident in the on-chip TLB, and has to be fetched using a trap to the operating system.

The section also shows data that summarizes the efficiency of the entire run. The IPC is the
number of instructions executed per cycle. The Grouping IPC is an estimate of what the IPC
would be if the processor did not encounter any stall events.

A single line at the bottom of the section reports the number of unfinished floating point traps.
These traps can occur in some exceptional circumstances on most UltraSPARC processors.
They can take a significant time to complete, and are also hard to observe in the profiles. Most of
the time this count should be zero, but if there are a large number of such events, it is definitely
worth investigating what is causing them.

Cache Statistics Section
The Cache Statistics section reports the number of events that occurred as a proportion of the
total number of opportunities for the events to occur, in other words, how much useful work
the processor is achieving each cycle. An example is the number of cache misses as a proportion
of cache references.

Maximum Resources Used By The Process Section
The Maximum Resources Used By The Process section shows data on the memory utilization
for the application, and the user and system time.

Pairs of Top Four Stall Counters Section
The Pairs of Top Four Stall Counters section lists the performance counters that should be
profiled if more detail is required.

The SPOT Run Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201022

Event Graph
If rpic locates the gnuplot software in the system's path, it also generates a graph of how the
events occurred over the entire run time. For example, the following graph clearly shows three
phases of the test application. The first two phases contain only a few TLB misses, but the
graph shows large numbers of misses during the execution of the final tlb_misses routine.

Instruction Frequency Data
The Instruction frequency statistics from BIT section of the report shows information
generated by the BIT tool on the frequency with which different assembly language instructions
are used during the run of the application, providing a more detailed kind of instruction count.

BIT does not generate information about the performance of the application, but it does provide
information about what the application is doing.

The section lists the number of instructions executed, and for these instructions, how many
were located in the delay slot and how many were annulled (not executed).

The Annulled and In Delay Slot columns require some explanation. Every branch instruction
has a delay slot, which is the instruction immediately following the branch. This instruction is
executed together with the branch. The branch can annul the instruction in the delay slot so that
the instruction is performed only if the branch is taken.

The SPOT Run Report

Chapter 3 • Understanding SPOT Reports 23

Note – BITworks by running a modified version of the application, application_name.instr,
which contains instrumentation code that collects count data over the course of the run. For
this instrumentation to work, you must have compiled the application with an optimization
level of -xO1 or higher.

Note – You can run BIT as a stand-alone tool. Type bit -hfor a list of command line options, and
consult the bit(1) man page for more information.

Bandwidth Data
It is not possible to measure the bandwidth consumption of a single process, since one process
can read memory that is attached to processors running other processes. Hence the bandwidth
reported here is system-wide. A consequence is that it is not possible to attribute the memory
activity to a single process if there are multiple processes running on the system.

SPOT collects bandwidth data if you run it with the -X option and root privileges. The average
bandwidth consumption over the entire run of the test program is reported.

The SPOT Run Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201024

If bw locates the gnuplot software in the system's path, it generates a graph of the bandwidth
data. For example, the following graph shows the read memory bandwidth consumed over the
entire run of the application. The fp_routine routine consumes the most bandwidth because it
is three streams of data being used by the processor. The other two routines use less bandwidth
because they are pointer chasing, and therefore testing memory latency.

Note – You can run bw as a stand-alone tool, outside of SPOT. Type bw -hfor a list of the
command line options, and consult the bw(1) man page for more information.

Traps Data
The traps data section displays data that SPOT collects by running the trapstat software for
the duration of the run of the application. SPOT collects this data when you run it with the -X
option and with root privileges.

The SPOT Run Report

Chapter 3 • Understanding SPOT Reports 25

trapstat counts system-wide traps, not just the traps that are due to this process, so it is not
possible to distinguish between traps generated by the application and those generated by other
processes running on the system.

The table reports the average number of traps encountered per second.

If trapstat locates the gnuplot software in the system's path, it also generates a graph of traps
over time. The following graph shows number of TLB traps reported over the entire run of the
test application. As expected, the traps reported by trapstat correspond to the traps reported
by the performance counter on the processor.

The SPOT Run Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201026

Application HW Counter Profile Output
If you request extended information by running SPOT with the -X option, then SPOT profiles
the application using the performance counters that contribute the most stall time to the run of
the application. It generates several profiles of the application that indicate exactly where in the
code the events are occurring.

For this run of the test application, it is apparent that the External Cache (EC) misses are
mainly attributable to the cache_miss and tlb_miss routines.

The SPOT Run Report

Chapter 3 • Understanding SPOT Reports 27

Clicking the More hyperlinks opens more detailed displays of source code (if you compiled the
application with the -g option and the source code is accessible) and the disassembly code.

Application Profile Output
The Application Profile Output section shows a summary of which routines consumed the most
run time.

The SPOT Run Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201028

Clicking the More hyperlink displays a page that allows exploration of the application in more
depth.

The hyperlink at the top of each column lets you make that column the sort key for the data on
the page.

The columns list the following data:

■ The Excl User CPU column displays the amount of time spent in the source code
corresponding to the routine shown on the right.

■ The Incl User CPU column displays the amount of time spent in a given routine, plus the
routines that routine calls, which is apparent when looking at the row for the main routine.
No exclusive time attributed to that routine, but it has 120 seconds of inclusive time, which
is all due to the routines that the main routine calls.

■ The Excl Sys CPU column displays the system time attributed to the various routines.
■ The Excl Wall column displays the number of seconds spent in a given routine. For a single

threaded application, this time is the sum of the user time, system time, and various other
wait and sleep times. For a multithreaded application, it is the time spent by the master
thread, which in many cases might not be actively doing work.

■ The Excl Bit Func column reports the number of times that each function is called. This
count does not extend to library functions, so the routine _memset, which is in a library, is
attributed with a count of zero even through it is called multiple times.

The SPOT Run Report

Chapter 3 • Understanding SPOT Reports 29

■ The Excl Bit Instr Exec column counts the dynamic number of instructions executed during
the run of the application for each routine.

■ The Excl Bit Instr Annul column shows a count of the instructions that were annulled (not
executed) during the run.

On the right side of the page, the Name column contains links to the routines:
■ The trimmed link goes to a trimmed-down version of the disassembly of the routine. The

trimming is done to remove parts of the code that have no time or events attributed to them.
■ The routine name link goes to the complete disassembly for the routine. This file can be very

large since often many routines share the same source file. So the trimmed link is frequently
the more appropriate one to use.

■ The src link goes to the source code for the routine. This link is available only if the program
was compiled with the -g or -g0 option.

■ The Caller-callee link goes to the caller-callee page, which indicates which routines call
which other routines, and how the time is attributed between them.

Source Code Page
The source code report for a routine shoes how time is attributed at the source code level. For
example, the source code report for the tlb_misses routine, the line starting with ## and
highlighted has a high count for user time and dynamic instruction count for one of the
processor events. The source code report also includes compiler commentary about the two
loops in the code that are shown.

Disassembly Page
The disassembly page holds more specific information. A hot line of disassembly is highlighted.
The execution counts for the individual assembly language instructions are shown, so you can
see that the loop is entered once and iterated nearly 170 million times. The hyperlinks let you
rapidly navigate to either line of source code that generated the disassembly instruction of the
target of a branch instruction.

The SPOT Run Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201030

Caller-Callee Page
The caller-callee page shows information for the functions that call the routine (callers) and the
functions that the routing calls (callees).

The SPOT Run Report

Chapter 3 • Understanding SPOT Reports 31

The caller-callee information is complex to read. In each section, the routine of focus is
indicated by an asterisk.

For example, in the section for the main routine, that routine has an asterisk to the left of its
name. The _start routine and the <Total> routine (a synthetic metric representing the run
time of the entire application) are listed above the main routine. This information indicates that
the main routine is called by the _start routine. The four routines listed after the main routine
are routines that are called by the main routine.

The first column lists the attributed user CPU time. About 88 seconds are attributed to the
_start routine. These seconds are the time that _start spends calling the main routine. The
attributed time for the main routine is 0, indicating that no time is spent in that routine. The
attributed time for the four routines called by main adds up to the 88 seconds.

The section of the page for the fp_routine routine shows that almost 30 seconds are spent by
the main routine calling the fp_routine routine. However, in this case, all of that time is spent
directly in the fp_routine routine.

Note – The profile data is collected with the collect tool, so it is stored as a Performance
Analyzer experiment and you can also examine it with the Performance Analyzer or the
er_print tool. For more information, see the analyzer(1) and er_print(2) man pages.

You can also convert experiment data collected by the collect tool to HTML format by using
the er_html tool as a stand-alone tool. Type er_html -hfor a list of the command line options,
and consult the er_html(1) man page for more information.

The spot_diffReport
SPOT automatically runs the spot_diff script after each data collection run. This tool
compares the new run with the preceding ones. The output from the spot_diff script is the
spot_diff.html file, which contains several tables that compare SPOT experiment data.. Large
differences are highlighted to alert you to possible performance problems.

You can call the spot_diff script from the command line for situations where you need greater
control over particular experiments. For example, to generate a spot_diff report called
exp_1-exp_2-diff.html comparing experiment_1 and experiment_2, you would type:

spot_diff -e experiment_1 -e experiment_2 -o exp1-exp2-diff

For more information, see the spot_diff(1) man page.

The spot_diff report examined in this section was automatically generated by SPOT after
running SPOT twice on the test example application. For the first run, test was compiled with
the -xO2 option. For the second run, the application was compiled with the -fast option. The
output from the first run was recorded in the test_xO2_1 directory. The output from the
second run was recorded in the test_fast_1 directory.

The spot_diff Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201032

Summary of Key Experiment Metrics Table
The Summary of Key Metrics section of the report compares several top-level metrics for the
two experiments. You can see that compiling with higher optimization causes both the runtime
and the number of executed instructions to decrease. It is also apparent that the total number of
bytes read and written to the bus is similar, but because the second experiment ran faster, its bus
bandwidth is correspondingly higher.

Summary of Top Stalls Tables
The top causes for stalls are displayed in two tables, one by percent execution time and the other
in absolute seconds. Depending on your preference or the application you are observing, one of
the tables might be more useful than the other in identifying a performance problem.

The spot_diff Report

Chapter 3 • Understanding SPOT Reports 33

For the example used here, it might be more useful to look at the top stalls listed in seconds
because the two runs are doing the same work. The table shows that the optimizations enabled
by the -fast option significantly reduce the stalls. By clicking the column head hyperlinks in
the table to go to the SPOT experiment profiles for the two runs, you can learn that:

■ Prefetch instructions are responsible for reducing the cache stalls.
■ Better code scheduling eliminated back-to-back floating point operations, which reduced

the Floating Point Use stalls.

The spot_diff Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201034

Bit Instruction Counts Table
In both cases, the binary was compiled with an optimization level higher than -xO1, so SPOT
was able to collected instruction count data. This data is displayed in the Bit Instruction Counts
Report.

The difference in instruction counts between the two runs is primarily due to unrolling (and to
a lesser extent, inlining) done when compiling with the -fast option, which greatly reduces the
number of branches and loop-related calculations.

Only instructions that show both high variance between experiments and a high total count are
displayed in this table.

You can see more detailed bit data by clicking the column head hyperlinks and looking at the
instruction frequency statistics in the two experiment profiles.

Flags Table
In the Flags report, you can see that the only difference between the two experiments is the
optimization option.

The spot_diff Report

Chapter 3 • Understanding SPOT Reports 35

Traps Table
While the total number of Data TLB traps in the two experiments is roughly the same, the trap
rate, as shown in the Traps report, is higher in fast experiment because that binary runs in less
time. All other trap rates, which you can see in the hyperlinked experiment reports, are too low
to report.

Time Spent in Top Functions Tables
The time spent in top functions is displayed in two tables, one in percentage of time and one in
seconds of execution time. In both tables, it is apparent that the cache_miss(), fp_routine(),
and tlb_miss() functions are inlined when the application is compiled with the -fast option,
but not when it is compiled with the -xO2 option.

The spot_diff Report

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201036

Notes on the SPOT Reports
Here are some final things to be aware of when using SPOT reports:

■ All of the data and commands used to generate a report are recorded in the same directory
as the report.

■ Each SPOT run directory contains a Performance Analyzer experiment (test.1.er) that is
used to generate the run profile. You can load this experiment into the Performance
Analyzer or the er_print tool if further investigation of the profile is necessary.

■ The SPOT run directory contains log files for the various stages of the run. These log files
report any error conditions that were encountered. The debug.log file contains a transcript
of all of the commands used to generate the run report.

■ The SPOT run report contains information that might be considered confidential, so take
care in handling the report. Examples of information that the report might contain are:
■ The spot command that ran the binary.
■ The location of the binary and where it was run.
■ The location of the compiler used to build the binary.
■ The source code files that contain routines where significant time was spent.

Notes on the SPOT Reports

Chapter 3 • Understanding SPOT Reports 37

38

Index

A
accessible documentation, 6
architecture, 11–12
attaching SPOT to a running process, 13, 14

B
bandwidth data

collecting, 11, 14
reporting, 24–25

binaries, preparing for SPOT, 10
Binary Improvement Tool (BIT), 11, 23
bw tool, 11, 25

C
caller-callee data, reporting, 31–32
collect tool, 11
command line options, 14–15

attach to running process, 14
data collection, 14
output, 14–15

D
disassembly data, reporting, 30–31
documentation, accessing, 5–6
documentation index, 5

E
er_html tool, 12
example program, 18–19

H
hardware counter profiles

collecting, 11, 14
reporting, 27–28

I
instruction frequency data

collecting, 11
reporting, 23

P
processor event information

collecting, 11
reporting, 20

R
ripc tool, 11, 20
running an application with SPOT, 13

39

S
source code data, reporting, 30
spot_diff tool, 12
SPOT report directory, specifying, 14
SPOT report subdirectory, 17

specifying, 14
SPOT reports, 17

run report, 19–32
application profile output, 28–32
bandwidth data, 24–25
hardware counter profile data, 27–28
instruction frequency data, 23
processor event (stall) information, 20–23
runtime system and build information, 19–20
traps data, 25–26

spot_diff report, 17, 32–36
bit instruction counts table, 35
flags table, 35
key experiment metrics table, 33
time spent in top functions table, 36
top stalls table, 33–34
traps table, 36

summary report, 17, 19
supported platforms, 10

T
traps data

collecting, 11, 14
reporting, 25–26

traps tool, 11

Index

Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide • November 201040

	Oracle Solaris Studio 12.2: Simple Performance Optimization Tool (SPOT) User's Guide
	Preface
	Who Should Use This Book
	Accessing Oracle Solaris Studio Documentation
	Documentation in Accessible Formats

	Related Third-Party Web Site References
	Documentation, Support, and Training
	Oracle Welcomes Your Comments
	Typographic Conventions
	Shell Prompts in Command Examples

	The Simple Performance Optimization Tool (SPOT)
	Introduction
	Requirements for Using SPOT
	Supported Platforms
	Binaries Must Be Prepared Correctly

	The Architecture of SPOT

	Running SPOT on Your Application
	Running SPOT
	Command Line Options
	Data Collection Option
	Attach to Running Process Options
	Output Options
	Other Options

	Understanding SPOT Reports
	Reports Produced by SPOT
	Example Program
	The spot_summary Report
	The SPOT Run Report
	Runtime System and Build Information
	Processor Events
	Analysis of Application Stall Behavior Section
	Cache Statistics Section
	Maximum Resources Used By The Process Section
	Pairs of Top Four Stall Counters Section
	Event Graph

	Instruction Frequency Data
	Bandwidth Data
	Traps Data
	Application HW Counter Profile Output
	Application Profile Output
	Source Code Page
	Disassembly Page
	Caller-Callee Page

	The spot_diff Report
	Summary of Key Experiment Metrics Table
	Summary of Top Stalls Tables
	Bit Instruction Counts Table
	Flags Table
	Traps Table
	Time Spent in Top Functions Tables

	Notes on the SPOT Reports

	Index

