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Preface

This book describes how to use the unique extensions and features included with the
Sun Performance Library™ subroutines that are supported by the Oracle™ Solaris
Studio Fortran 95, C++, and C compilers.

Before You Read This Book
In order to fully use the information in this document, the reader should have a
working knowledge of the Fortran or C language and some understanding of the
base LAPACK and BLAS libraries available from Netlib
(http://www.netlib.org).

What Is Not in This Book
This book does not repeat information included in existing LAPACK books or
sources on Netlib. Refer to the next section “Related Documents and Web Sites” on
page xii for a list of sources that contain reference material for the base routines upon
which Sun Performance Library is based.
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Related Documents and Web Sites
A number of books and web sites provide reference information on the routines in
the base LAPACK and BLAS libraries upon which the Sun Performance Library is
based. The LAPACK Users’ Guide, Third Edition, Anderson E. and others. SIAM, 1999,
augments the material in this manual and provide essential information:

The LAPACK Users’ Guide, Third Edition is the official reference for the base LAPACK
version 3.1.1 routines. An online version of the LAPACK Users’ Guide is available at
http://www.netlib.org/lapack/lug/, and the printed version is available
from the Society for Industrial and Applied Mathematics (SIAM)
http://www.siam.org.

Sun Performance Library routines contain performance enhancements, extensions,
and features not described in the LAPACK Users’ Guide. However, because Sun
Performance Library maintains compatibility with the base LAPACK routines, the
LAPACK Users’ Guide can be used as a reference for the LAPACK routines and the
Fortran interfaces.

Online Resources
Online information describing the performance library routines that form the basis of
the Sun Performance Library can be found at the following URLs.

Note – LINPACK has been removed from the Sun Performance Library. The
LINPACK libraries and documentation are still available from www.netlib.org.

LAPACK version 3.1.1 http://www.netlib.org/lapack/

BLAS, levels 1 through 3 http://www.netlib.org/blas/

FFTPACK version 4 http://www.netlib.org/fftpack/

VFFTPACK version 2.1 http://www.netlib.org/vfftpack/

Sparse BLAS http://www.netlib.org/sparse-blas/index.html

NIST (National Institute of
Standards and Technology)
Fortran Sparse BLAS

http://math.nist.gov/spblas/

SuperLU version 3.0 http://crd.lbl.gov/~xiaoye/SuperLU/
xii Sun Performance Library User’s Guide for Oracle Solaris Studio 12.2 • September 2010



Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[ ] Brackets contain arguments that
are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos
Preface xiii



Shell Prompts

Supported Platforms
This Oracle Solaris Studio release supports systems that use the SPARC® and x86
families of processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and
Xeon EM64T. The supported systems for the version of the Oracle Solaris Operating
System you are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

In this document, these x86 related terms mean the following:

■ x86 refers to the larger family of 64-bit and 32-bit x86 compatible products.

■ x64 points out specific 64-bit information about AMD64 or EM64T systems.

■ 32-bit x86 points out specific 32-bit information about x86 based systems.

For supported systems, see the hardware compatibility lists.

Accessing Solaris Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index page at
http://www.oracle.com/technetwork/server-storage/solarisstudio
/documentation.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
xiv Sun Performance Library User’s Guide for Oracle Solaris Studio 12.2 • September 2010



Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Resources for Developers
Visit
http://www.oracle.com/technetwork/server-storage/solarisstudio to
find these frequently updated resources:

■ Articles on programming techniques and best practices

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

Type of Documentation Format and Location of Accessible Version

Manuals HTML from the Oracle Solaris Studio 12.2 collection at
http://docs.sun.com

Online help HTML available through the Help menu in the IDE

Release notes HTMLThe documentation is available from the
documentation index page at
http://www.oracle.com/technetwork/server-stora
ge/solarisstudio/documentation
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Oracle Welcomes Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of its
documentation. If you find any errors or have any other suggestions for
improvement, go to http://docs.sun.com and click Feedback. Indicate the title
and part number of the documentation along with the chapter, section, and page
number, if available. Please let us know if you want a reply.
xvi Sun Performance Library User’s Guide for Oracle Solaris Studio 12.2 • September 2010



CHAPTER 1

Introduction

Sun Performance Library is a set of optimized, high-speed mathematical subroutines
for solving linear algebra and other numerically intensive problems. Sun
Performance Library is based on a collection of public domain applications available
from Netlib at http://www.netlib.org. Sun has enhanced these public domain
applications and bundled them as the Sun Performance Library.

The Sun Performance Library User’s Guide explains the Sun-specific enhancements to
the base applications available from Netlib. Reference material describing the base
routines is available from Netlib and the Society for Industrial and Applied
Mathematics (SIAM).

1.1 Libraries Included With Sun
Performance Library
Sun Performance Library contains enhanced versions of the following standard
libraries:

■ LAPACK version 3.1.1 – For solving linear algebra problems.

■ BLAS1 (Basic Linear Algebra Subprograms) – For performing vector-vector
operations.

■ BLAS2 – For performing matrix-vector operations.

■ BLAS3 – For performing matrix-matrix operations.

Note – LINPACK has been removed from Sun Performance Library. LAPACK
version 3.1.1 supersedes LINPACK and all previous versions of LAPACK. If the
LINPACK routines are still needed, the LINPACK library and documentation can be
obtained from http://www.netlib.org.
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Sun Performance Library is available in both static and dynamic library forms. There
are optimized SPARC versions for sparcvis, sparcvis2, and sparcfmaf architectures on
Solaris 10 operating systems. There are also optimized versions for x86/x64
architectures on Solaris 10 systems, along with SuSE Linux Enterprise Server 9 and
Redhat Enterprise Linux 4 systems. All versions have support for parallel
programming on multiprocessor platforms. (See the Sun Studio release notes for
details.)

Sun Performance Library LAPACK routines have been compiled with a Fortran 95
compiler and remain compatible with the Netlib LAPACK version 3.1.1 library. The
Sun Performance Library versions of these routines perform the same operations as
the Fortran callable routines and have the same interface as the standard Netlib
versions.

LAPACK contains driver, computational, and auxiliary routines. Sun Performance
Library does not support the auxiliary routines, because auxiliary routines can
change or be removed from LAPACK without notice. Because the auxiliary routines
are not supported, they are not documented in the Sun Performance Library User’s
Guide or the section 3P man pages.

Many auxiliary routines contain LA as the second and third characters in the routine
name; however, some do not. Appendix B of the LAPACK Users’ Guide contains a list
of auxiliary routines.

1.1.1 Netlib
Netlib is an online repository of mathematical software, papers, and databases
maintained by AT&T Bell Laboratories, the University of Tennessee, Oak Ridge
National Laboratory, and professionals from around the world.

Netlib provides many libraries, in addition to the libraries used in Sun Performance
Library. While some of these libraries can appear similar to libraries used with Sun
Performance Library, they can be different from, and incompatible with Sun
Performance Library.

Using routines from other libraries can produce compatibility problems, not only
with Sun Performance Library routines, but also with the base Netlib LAPACK
routines. When using routines from other libraries, refer to the documentation
provided with those libraries.

For example, Netlib provides a CLAPACK library, but the CLAPACK interfaces differ
from the C interfaces included with Sun Performance Library. A LAPACK 90 library
package is also available on Netlib. The LAPACK 90 library contains interfaces that
differ from the Sun Performance Library Fortran 95 interfaces and the Netlib
LAPACK version 3.1.1 interfaces. If using LAPACK 90, refer to the documentation
provided with that library.
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For the base libraries supported by Sun Performance Library, Netlib provides
detailed information that can supplement this user’s guide. The LAPACK Users’
Guide, Third Edition describes LAPACK algorithms and how to use the routines, but it
does not describe the Sun Performance Library extensions made to the base routines.

1.2 Sun Performance Library Features
Sun Performance Library routines can increase application performance on both
serial and multiprocessor (MP) platforms, because the serial speed of many Sun
Performance Library routines has been increased, and many routines have been
parallelized. Sun Performance Library routines also have SPARC, AMD, and Intel
specific optimizations that are not present in the base Netlib libraries.

Sun Performance Library provides the following optimizations and extensions to the
base Netlib libraries:

■ Extensions that support Fortran 95 and C language interfaces

■ Fortran 95 language features, including type independence, compile time
checking, and optional arguments.

■ Consistent API across the different libraries in Sun Performance Library

■ Compatibility with LAPACK 1, LAPACK 2.0, and LAPACK 3.x libraries

■ Increased performance, and in some cases, greater accuracy

■ Optimizations for specific SPARC and x86/x64 instruction set architectures

■ Support for 64-bit enabled Solaris and Linux operating environments

■ Support for parallel processing compiler options for SPARC and x86/x64
platforms

■ Support for multiple processor hardware options
Chapter 1 Introduction 1-3



1.3 Mathematical Routines
The Sun Performance Library routines are used to solve the following types of linear
algebra and numerical problems:

■ Elementary vector and matrix operations – Vector and matrix products; plane
rotations; 1, 2-, and infinity-norms; rank-1, 2, k, and 2k updates

■ Linear systems – Solve full-rank systems, compute error bounds, solve Sylvester
equations, refine a computed solution, equilibrate a coefficient matrix

■ Least squares – Full-rank, generalized linear regression, rank-deficient, linear
equality constrained

■ Eigenproblems – Eigenvalues, generalized eigenvalues, eigenvectors, generalized
eigenvectors, Schur vectors, generalized Schur vectors

■ Matrix factorizations or decompositions – SVD, generalized SVD, QL and LQ, QR and
RQ, Cholesky, LU, Schur, LDLT and UDUT

■ Support operations – Condition number, in-place or out-of-place transpose, inverse,
determinant, inertia

■ Sparse matrices – Solve symmetric, structurally symmetric, and unsymmetric
coefficient matrices using direct methods and a choice of fill-reducing ordering
algorithms, and user-specified orderings

■ Convolution and correlation in one and two dimensions

■ Fast Fourier transforms, Fourier synthesis, cosine and quarter-wave cosine
transforms, cosine and quarter-wave sine transforms

■ Complex vector FFTs and FFTs in two and three dimensions

■ Sorting operations

1.4 Compatibility With Previous LAPACK
Versions
The Sun Performance Library routines that are based on LAPACK support the
expanded capabilities and improved algorithms in LAPACK 3.1.1, but are completely
compatible with both LAPACK l and LAPACK 2.0. Maintaining compatibility with
previous LAPACK versions:

■ Reduces linking errors due to changes in subroutine names or argument lists.

■ Ensures results are consistent with results generated with previous LAPACK
versions.
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■ Minimizes programs terminating due to differences between argument lists.

1.5 Getting Started With Sun Performance
Library
This section shows the most basic compiler options used to compile an application
that uses the Sun Performance Library routines.

To use the Sun Performance Library, type one of the following commands.

On x86/x64 and SPARC platforms,

or on SPARC platforms,

On x86/64 platforms, -xmemalign=8s is ignored and therefore can be omitted:

Because Sun Performance Library routines are compiled with -dalign, this
option should be used for compilation of all Fortran files if any routine in the
program makes a Sun Performance Library call. On SPARC platforms, C and C++
user code that calls Sun Performance Library routines should be compiled with
option -xmemalign=8s. If -xmemalign=8s cannot be used, enabling Trap 6 is a
low performance workaround that allows misaligned data. See Section 1.5.1,
“Enabling Trap 6 on SPARC Platforms” on page 1-6 for more details.

While there are no data alignment restrictions on x86/x64 platforms, misaligned data
might require extra instructions to properly handle memory transfers, which in turn
can cause poor performance.

The -library=sunperf option includes additional compiler and system libraries
(e.g. Fortran run-time and micro-tasking library) and sets run-time search paths for
the resulting executable or shared library.

To summarize, use

■ -dalign on all Fortran files at compile time or, on SPARC platforms, use
-xmemalign=8s or enable trap 6

my_system% f95 -dalign my_file.f -library=sunperf

my_system% cc -xmemalign=8s my_file.c -library=sunperf
my_system% CC -xmemalign=8s my_file.cpp -library=sunperf

my_system% cc my_file.c -library=sunperf
my_system% CC my_file.cpp -library=sunperf
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■ the same command line options for compiling and linking

■ -library=sunperf or -library=sunperf -staticlib=sunperf

See Section 3.2, “Compiling” on page 3-2, and Chapter 4 for additional options that
optimize application performance.

1.5.1 Enabling Trap 6 on SPARC Platforms
On SPARC platforms where data misalignment can cause failure, if an application
cannot be compiled using -dalign or -xmemalign=8s, enable trap 6 to provide a
handler for misaligned data. To enable trap 6 on SPARC platforms, do the following:

1. Place this assembly code in a file called trap6_handler.s.

2. Assemble trap6_handler.s.

The first parallelizable subroutine invoked from Sun Performance Library will call
a routine named trap6_handler_. If a trap6_handler_ is not specified, Sun
Performance Library will call a default handler that does nothing. Not supplying a
handler for any misaligned data will cause a trap that will be fatal. (fbe (1) is the
command that will create object files from assembly language source files .)

3. Include trap6_handler.o on the command line.

.global trap6_handler_

.text

.align 4
trap6_handler_:
retl
ta    6

my_system% fbe trap6_handler.s

my_system% f95 any.f trap6_handler.o -library=sunperf
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CHAPTER 2

Using Sun Performance Library

This chapter describes using the Sun Performance Library to improve the execution
speed of applications written in Fortran 95 or C. The performance of many
applications can be increased by using Sun Performance Library without making
source code changes or recompiling. However, some modifications to applications
might be required to gain peak performance with Sun Performance Library.

2.1 Improving Application Performance
The following sections describe ways of using Sun Performance Library routines
without making source code changes or recompiling.

2.1.1 Replacing Routines With Sun Performance Library
Routines
Many applications use one or more of the base Netlib libraries, such as LAPACK or
BLAS. Because Sun Performance Library maintains the same interfaces and
functionality of these libraries, base Netlib routines can be replaced with Sun
Performance Library routines. Application performance is increased, because Sun
Performance Library routines can be faster than the corresponding Netlib routines or
similar routines provided by other vendors.
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2.1.2 Improving Performance of Other Libraries
Many commercial math libraries are built around a core of generic BLAS and
LAPACK routines. When an application has a dependency on proprietary interfaces
in another library that prevents the library from being completely replaced, the BLAS
and LAPACK routines used in that library can be replaced with the Sun Performance
Library BLAS and LAPACK routines. Because replacing the core routines does not
require any code changes, the proprietary library features can still be used, and the
other routines in the library can remain unchanged.

2.1.3 Using Tools to Restructure Code
Some libraries that do not directly use Sun Performance Library routines can be
modified by using automatic code restructuring tools that replace existing code with
Sun Performance Library code. For example, a source- to- source conversion tool can
replace existing BLAS code structures with calls to the Sun Performance Library
BLAS routines. These conversion tools can also recognize many user written matrix
multiplications and replace them with calls to the matrix multiplication subroutine in
Sun Performance Library.

2.2 Fortran Interfaces
Sun Performance Library contains f95 interfaces and legacy f77 interfaces for
maintaining compatibility with the standard LAPACK and BLAS libraries and
existing codes. Sun Performance Library f95 and legacy f77 interfaces use the
following conventions:

■ All arguments are passed by reference.

■ Types of arguments must be consistent within a call (For example, do not mix
REAL*8 and REAL*4 parameters in the same call.

■ Arrays are stored columnwise.

■ Indices are based at one, in keeping with standard Fortran practice.

When calling Sun Performance Library routines:

■ Do not prototype the subroutines with the Fortran 95 INTERFACE statement. Use
the USE SUNPERF statement instead.

■ Do not use -ext_names=plain to compile routines that call routines from Sun
Performance Library.
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2.2.1 Fortran SUNPERF Module for Use With Fortran 95
Sun Performance Library provides a Fortran module for additional ease-of-use
features with Fortran 95 programs. To use this module, include the following line in
Fortran 95 codes.

USE SUNPERF

USE statements must precede all other statements in the code, except for the
PROGRAM or SUBROUTINE statement.

The SUNPERF module contains interfaces that simplify the calling sequences and
provides the following features:

■ Type Independence – Sun Performance Library supports interfaces where the type of
the data arguments will automatically be recognized, eliminating the need for
type-dependent prefixes (S, D, C, or Z). In the FORTRAN 77 routines, the type
must be specified as part of the routine name. For example, DGEMM is a double
precision matrix multiply and SGEMM is a single precision matrix multiply. When
calling GEMM with the Fortran 95 interfaces, Fortran will infer the type from the
arguments that are passed. Passing single-precision arguments to GEMM gets
results that are equivalent to specifying SGEMM, and passing double-precision
arguments gets results that are equivalent to DGEMM. For example, CALL
DSCAL(20,5.26D0,X,1) could be changed to CALL SCAL(20, 5.26D0, X, 1).

■ Compile-Time Checking – In FORTRAN 77, it is generally impossible for the
compiler to determine what arguments should be passed to a particular routine. In
Fortran 95, the USE SUNPERF statement allows the compiler to determine the
number, type, size, and shape of each argument to each Sun Performance Library
routine. It can check the calls against the expected value and display errors during
compilation.

■ Optional Arguments – Sun Performance Library supports interfaces where some
arguments are optional. In FORTRAN 77, all arguments must be specified in the
order determined by the interface for all routines. All interfaces will support f95
style OPTIONAL attributes on arguments that are not required. Using routines with
optional arguments, such as GEMM, are useful for new development. Specifically
named routines, such as DGEMM, are maintained to support legacy code. To
determine the optional arguments for a routine, refer to the section 3P man pages.
In the section 3P man pages, optional arguments are enclosed in square brackets
[ ].

■ 64-bit Integer Support– When using the 64-bit interfaces provided with Sun
Performance Library, integer arguments need to be promoted to 64-bits, and the
routine name needs to be modified by appending _64 to the routine name. With
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the SUNPERF module, 64-bit integers will automatically be recognized, which
eliminates the need for appending _64 to the routine name, as shown in the
following code example:

When using Sun Performance Library routines with optional arguments, the _64
suffix is required for 64-bit integers, as shown in the following code example:

For a detailed description of using the Sun Performance Library 64-bit interfaces, see
Section 3.2.1, “Compiling Code for a 64-Bit Enabled Operating Environments” on
page 3-3.

Because the sunperf.mod file is compiled with -dalign, any code that contains the
USE SUNPERF statement must be compiled with -dalign. The following error occurs
if the code is not compiled with -dalign.

SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)

! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL DAXPY(N,ALPHA,X,1_8,Y,1_8)

END

SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)

! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL AXPY_64(ALPHA=ALPHA,X=X,Y=Y)

END

 use sunperf
              ^

"test_code.f", Line = 2, Column = 11: ERROR: Procedure "SUNPERF"
and this compilation must both be compiled with -a dalign, or
without -a dalign.
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2.2.2 Optional Arguments
Sun Performance Library routines support Fortran 95 optional arguments, where
argument values that can be inferred from other arguments can be omitted. For
example, the SAXPY routine is defined as follows in the man page.

The N, INCX, and INCY arguments are optional. Note the square bracket notation in
the man pages that denotes the optional arguments.

Suppose the user tries to call the SAXPY routine with the following arguments.

If mismatches in the type, shape, or number of arguments occur, the compiler would
issue the following error message:

ERROR: No specific match can be found for the generic subprogram call
"AXPY".

Using the arguments defined above, the following examples show incorrect calls to
the SAXPY routine due type, shape, or number mismatches.

■ Incorrect type of the arguments–If SAXPY is called as follows:

A compiler error occurs because mixing parameter types, such as COMPLEX ALPHA
and REAL X, is not supported.

■ Incorrect shape of the arguments– If SAXPY is called as follows:

A compiler error occurs because the XA argument is two dimensional, but the
interface is expecting a one-dimensional argument.

■ Incorrect number of arguments– If SAXPY is called as follows:

SUBROUTINE SAXPY([N], ALPHA, X, [INCX], Y, [INCY])
REAL ALPHA
INTEGER INCX, INCY, N
REAL X(*), Y(*)

USE SUNPERF
COMPLEX ALPHA
REAL    X(100), Y(100), XA(100,100), RALPHA
INTEGER INCX, INCY

CALL AXPY(100, ALPHA, X, INCX, Y, INCY)

CALL AXPY(N, RALPHA, XA, INCX, Y, INCY)

CALL AXPY(RALPHA, X, INCX, Y)
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A compiler error occurs because the compiler cannot find a routine in the AXPY
interface group that takes four arguments of the following form.

In the following example, the f95 keyword parameter passing capability can
allow a user to make essentially the same call using that capability.

This is a valid call to the AXPY interface. It is necessary to use keyword parameter
passing on any parameter that appears in the list after the first OPTIONAL
parameter is omitted.

The following calls to the AXPY interface are valid.

2.3 Fortran Examples
To increase the performance of single processor applications, identify code constructs
in an application that can be replaced by calls to Sun Performance Library routines.
Performance of multiprocessor applications can be increased by identifying
opportunities for parallelization.

To increase application performance by modifying code to use Sun Performance
Library routines, identify blocks of code that exactly duplicate the capability of a Sun
Performance Library routine. The following code example is the matrix-vector
product y ← Ax + y, which can be replaced with the DGEMV subroutine.,

AXPY(REAL, REAL 1-D ARRAY, INTEGER, REAL 1-D ARRAY)

CALL AXPY(ALPHA=RALPHA,X=X,INCX=INCX,Y=Y)

CALL AXPY(N,RALPHA,X,Y=Y,INCY=INCY)
CALL AXPY(N,RALPHA,X,INCX,Y)
CALL AXPY(N,RALPHA,X,Y=Y)
CALL AXPY(ALPHA=RALPHA,X=X,Y=Y)

      DO I = 1, N
          DO J = 1, N
              Y(I) = Y(I) + A(I,J) * X(J)
          END DO
      END DO
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In other cases, a block of code can be equivalent to several Sun Performance Library
calls or contain portions of code that can be replaced with calls to Sun Performance
Library routines. Consider the following code example.

The code example can be rewritten to use the Sun Performance Library routine DGER,
as shown here.

The same code example can also be rewritten using Fortran 95 specific statements, as
shown here.

Because the code to replace negative numbers with zero in V2 has no natural analog
in Sun Performance Library, that code is pulled out of the outer loop. With that code
removed to its own loop, the rest of the loop is a rank- 1 update of the general matrix
x that can be replaced with the DGER routine from BLAS.

The amount of performance increase can also depend on the data the Sun
Performance Library routine uses. For example, if V2 contains many negative or zero
values, the majority of the time might not be spent in the rank- 1 update. In this case,
replacing the code with a call to DGER might not increase performance.

Evaluating other loop indexes can affect the Sun Performance Library routine used.
For example, if the reference to K is a loop index, the loops in the code sample shown
above might be part of a larger code structure, where the loops over DGEMV or DGER

      DO I = 1, N
          IF (V2(I,K) .LT. 0.0) THEN
              V2(I,K) = 0.0
          ELSE
              DO J = 1, M
                  X(J,I) = X(J,I) + Vl(J,K) * V2(I,K)
              END DO
          END IF
      END DO

      DO I = 1, N
          IF (V2(I,K) .LT. 0.0) THEN
             V2(I,K) = 0.0
          END IF
      END DO
      CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)

WHERE (V(1:N,K) .LT. 0.0) THEN
       V(1:N,K) = 0.0
END WHERE
CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)
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could be converted to some form of matrix multiplication. If so, a single call to a
matrix multiplication routine can increase performance more than using a loop with
calls to DGER.

Because all Sun Performance Library routines are MT-safe (multithread safe), using
the auto-parallelizing compiler to parallelize loops that contain calls to Sun
Performance Library routines can increase performance on multiprocessor platforms.

An example of combining a Sun Performance Library routine with an
auto-parallelizing compiler parallelization directive is shown in the following code
example.

Sun Performance Library contains a routine named DGBMV to multiply a banded
matrix by a vector. By putting this routine into a properly constructed loop, Sun
Performance Library routines can be used to multiply a banded matrix by a matrix.
The compiler will not parallelize this loop by default, because the presence of
subroutine calls in a loop inhibits parallelization. However, Sun Performance Library
routines are MT-safe, so a user can use parallelization directives that instruct the
compiler to parallelize this loop.

Compiler directives can also be used to parallelize a loop with a subroutine call that
ordinarily would not be parallelizable. For example, it is ordinarily not possible to
parallelize a loop containing a call to some of the linear system solvers, because some
vendors have implemented those routines using code that is not MT-safe. Loops
containing calls to the expert drivers of the linear system solvers (routines whose
names end in SVX) are usually not parallelizable with other implementations of
LAPACK. Because the implementation of LAPACK in Sun Performance Library
allows parallelization of loops containing such calls, users of multiprocessor
platforms can get additional performance by parallelizing these loops.

2.4 C Interfaces
The Sun Performance Library routines can be called from within a FORTRAN 77,
Fortran 95, or C program. However, C programs must still use the FORTRAN 77
calling sequence.

      C$PAR DOALL
      DO I = 1, N
             CALL DGBMV ('No transpose', N, N, ALPHA, A, LDA,
     $     B(l,I), 1, BETA, C(l,I), 1)
      END DO
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Sun Performance Library contains native C interfaces for each of the routines
contained in LAPACK, BLAS, FFTPACK, VFFTPACK, and SPARSE BLAS. The Sun
Performance Library C interfaces have the following features:

■ Function names have C names

■ Function interfaces follow C conventions

■ C functions do not contain redundant or unnecessary arguments for a C function

The following example compares the standard LAPACK Fortran interface and the
Sun Performance Library C interfaces for the DGBCON routine.

Note that the names of the arguments are the same and that arguments with the
same name have the same base type. Scalar arguments that are used only as input
values, such as NORM and N, are passed by value in the C version. Arrays and scalars
that will be used to return values are passed by reference.

The Sun Performance Library C interfaces improve on CLAPACK, available on
Netlib, which is an f2c translation of the standard libraries. For example, all of the
CLAPACK routines are followed by a trailing underscore to maintain compatibility
with Fortran compilers, which often postfix routine names in the object (.o) file with
an underscore. The Sun Performance Library C interfaces do not require a trailing
underscore.

Sun Performance Library C interfaces use the following conventions:

■ Input-only scalars are passed by value rather than by reference. Complex and
double complex arguments are not considered scalars because they are not
implemented as a scalar type by C.

■ Complex scalars can be passed as either structures or arrays of length 2.

■ Types of arguments must match even after C does type conversion. For example,
be careful when passing a single precision real value, because a C compiler can
automatically promote the argument to double precision.

■ Arrays are stored columnwise. For Fortran programmers, this is the natural order
in which arrays are stored. For C programmers, this is the transpose of the order
in which they usually work. References in the documentation and man pages to
rows refer to columns and vice versa.

■ Array indices are based at one, in conformance with Fortran conventions, rather
than being zero as in C.

CALL DGBCON (NORM, N, NSUB, NSUPER, DA, LDA, IPIVOT, DANORM,
DRCOND, DWORK, IWORK2, INFO)

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,
int lda, int *ipivot, double danorm, double drcond,
int *info)
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For example, the Fortran interface to IDAMAX, which C programs access as
idamax_, would return a 1 to indicate the first element in a vector. The C interface
to idamax, which C programs access as idamax, would also return a 1, to indicate
the first element of a vector. This convention is observed in function return values,
permutation vectors, and anywhere else that vector or array indices are used.

Note – Some Sun Performance Library routines use malloc internally, so user codes
that make calls to Sun Performance Library and to sbrk might not work correctly.

The SPARC version of the Sun Performance Library uses global integer registers %g2,
%g3, and %g4 in 32-bit mode and %g2 through %g5 in 64-bit mode as scratch
registers. User code should not use these registers for temporary storage, and then
call a Sun Performance Library routine. The data will be overwritten when the Sun
Performance Library routine uses these registers.

2.5 C Examples
Transforming user-written code sequences into calls to Sun Performance Library
routines increases application performance. The following code example adapted
from LAPACK shows one example.

int    i;
float a[n], b[n], largest;

largest = a[0];
for (i = 0; i < n; i++)
{
if (a[i] > largest)
    largest = a[i];
    if (b[i] > largest
    largest = b[i];
}
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No Sun Performance Library routine exactly replicates the functionality of this code
example. However, the code can be accelerated by replacing it with several calls to
the Sun Performance Library routine isamax, as shown in the following code
example.

Compare the differences between calling the native C isamax routine in Sun
Performance Library, shown in the previous code example, with calling the isamax
routine in CLAPACK, shown in the following code example.

int    i, large_index;
float a[n], b[n], largest;

large_index = isamax (n, a, l) - 1;
largest = a[large_index];
large_index = isamax (n, b, l) - 1;
if (b[large_index] > largest)
     largest = b[large_index];

/* 1. Declare scratch variable to allow 1 to be passed by value */
int one = l;
/* 2. Append underscore to conform to FORTRAN naming system */
/* 3. Pass all arguments, even scalar input-only, by reference */
/* 4. Subtract one to convert from FORTRAN indexing conventions */
large_index = isamax_ (&n, a, &one) - l;
largest = a[large_index]; large_index = isamax_ (&n, b, &one) - l;
if (b[large_index] > largest)
     largest = b[large_index];
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CHAPTER 3

Optimization

This chapter describes how to use compiler and linking options to optimize
applications for:

■ Specific instruction-set architectures

■ 32-bit and 64-bit enabled operating environments

TABLE 3-1 shows a comparison of the 32-bit and 64-bit operating environments. These
items are described in greater detail in the following sections.

TABLE 3-1 Comparison of 32-bit and 64-bit Operating Environments

32-bit (ILP 32) 64-bit (LP64)

-xarch on SPARC
platforms

sparcvis,
sparcvis2,
sparcfmaf

sparcvis, sparcvis2,
sparcfmaf

-xarch on x86
platforms

generic, sse2 sse2

addressing -m32 -m64

Fortran Integers INTEGER, INTEGER*4 INTEGER*8

C Integers int long

Floating-point S/D/C/Z S/D/C/Z

API Names of routines Names of routines with _64 suffix
3-1



3.1 Using The Sun Performance Library
The Sun Performance Library was compiled using the f95 compiler provided with
this release. The Sun Performance Library routines were compiled using -dalign,
-xparallel.

3.1.1 Fortran
When linking the program, use -dalign -library=sunperf and the same
command line options that were used when compiling.

Sun Performance Library is linked into an application with the -library switch
rather than the -l switch that is used to link in other libraries, as shown here.

3.1.2 C and C++
When linking your program, use -library=sunperf and the same command line
options that were used when compiling. If on a SPARC system, include the option
-xmemalign=8s as shown here. (-xmemalign=8s is ignored on x86/x64 platforms.)

If -dalign or -xmemalign=8s cannot be used for compilation, supply a trap 6
handler as described in Section 1.5, “Getting Started With Sun Performance Library”
on page 1-5

3.2 Compiling
Compile with the most appropriate -xarch= option for best performance. At link
time, use the same -xarch= option that was used at compile time to select the
version of the Sun Performance Library optimized for a specific instruction-set
architecture.

 my_system% f95 -dalign my_file.f -library=sunperf

my_system% cc -xmemalign=8s my_file.c -library=sunperf
my_system% CC -xmemalign=8s my_file.cpp -library=sunperf
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Note – Using instruction-set specific optimization options improves application
performance on the selected instruction set architecture, but limits code portability.

For a detailed description of the different -xarch options, refer to the Fortran User’s
Guide or the C User’s Guide.

The following lists the -xarch values for SPARC instruction-set architectures:

■ SPARC64VI platforms: Use -xarch=sparcfmaf

■ UltraSPARC III, IV or IV+ platforms. Use -xarch=sparcvis2.

■ UltraSPARC I or UltraSPARC II platforms. Use -xarch=sparcvis

The following are the -xarch values for x86 instruction-set architectures:

■ AMD Opteron platforms. Use -xarch=sse2

■ Intel Core-Duo, AMD Barcelona platforms. Use -xarch=sse3

■ Generic x86systems. Use -xarch=generic

3.2.1 Compiling Code for a 64-Bit Enabled Operating
Environments
To compile code for a 64-bit enabled operating environment, use -m64 and convert
all integer arguments to 64-bit arguments. 64-bit routines require the use of 64-bit
integers.

Sun Performance Library provides 32-bit and 64-bit interfaces. To use the 64-bit
interfaces:

■ Modify the Sun Performance Library routine name. For C and Fortran 95 code,
append _64 to the names of Sun Performance Library routines (for example,
rfftf_64 or CFFTB_64). For Fortran 95 code with the USE SUNPERF statement,
the _64 suffix is not strictly required for specific interfaces, such as DGEMM. The
_64 suffix is still required for the generic interfaces, such as GEMM.

■ Promote integers to 64 bits. Double precision variables and the real and
imaginary parts of double complex variables are already 64 bits. Only the integers
are promoted to 64 bits.

3.2.2 64-Bit Integer Arguments
These additional 64-bit-integer interfaces are available only when linking with -m64.
Codes compiled for 32-bit operating environments (-m32) cannot call the
64-bit-integer interfaces.
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To call the 64-bit-integer interfaces directly, append the suffix _64 to the standard
library name. For example, use daxpy_64() in place of daxpy().

However, if calling the 64-bit integer interfaces indirectly, do not append _64 to the
name of the Sun Performance Library routine. Calls to the Sun Performance Library
routine will access a 32-bit wrapper that promotes the 32-bit integers to 64-bit
integers, calls the 64-bit routine, and then demotes the 64-bit integers to 32-bit
integers.

For best performance, call the routine directly by appending _64 to the routine name.

For C programs, use long instead of int arguments. The following code example
shows calling the 64-bit integer interfaces directly.

The following code example shows calling the 64-bit integer interfaces indirectly.

For Fortran programs, use 64-bit integers for all integer arguments. The following
methods can be used to convert integer arguments to 64-bits:

■ To promote all default integers (integers declared without explicit byte sizes) and
literal integer constants from 32 bits to 64 bits, compile with -xtypemap=
integer:64.

■ To promote specific integer declarations, change INTEGER or INTEGER*4 to
INTEGER*8.

■ To promote integer literal constants, append _8 to the constant.

Consider the following code example.

INTEGER*8 arguments cannot be used in a 32-bit environment. Routines in the 32-bit
libraries, v8plusa, v8plusb, cannot be called with 64-bit arguments. However, the
64-bit routines can be called with 32-bit arguments.

#include <sunperf.h>
long n, incx, incy;
double alpha, *x, *y;
daxpy_64(n, alpha, x, incx, y, incy);

#include <sunperf.h>
int  n, incx, incy;
double alpha, *x, *y;
daxpy   (n, alpha, x, incx, y, incy);

INTEGER*8 N
REAL*8 ALPHA, X(N), Y(N)

! _64 SUFFIX: N AND 1_8 ARE 64-BIT INTEGERS
CALL DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
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When passing constants in Fortran 95 code that have not been compiled with
-xtypemap, append _8 to literal constants to effect the promotion. For example,
when using Fortran 95, change CALL DSCAL(20,5.26D0,X,1) to CALL
DSCAL(20_8,5.26D0,X,1_8). This example assumes USE SUNPERF is included in
the code, because the _64 has not been appended to the routine name.

The following code example shows calling CAXPY from Fortran 95 using 32-bit
arguments.

The following code example shows calling CAXPY from Fortran 95 (without the USE
SUNPERF statement) using 64-bit arguments.

When using 64-bit arguments, the _64 must be appended to the routine name if the
USE SUNPERF statement is not used.

The following Fortran 95 code example shows calling CAXPY using 64-bit arguments.

       PROGRAM TEST
       COMPLEX ALPHA
       INTEGER,PARAMETER :: INCX=1, INCY=1, N=10
       COMPLEX X(N), Y(N)

       CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)

       PROGRAM TEST
       COMPLEX   ALPHA
       INTEGER*8, PARAMETER :: INCX=1, INCY=1, N=10
       COMPLEX   X(N), Y(N)

       CALL CAXPY_64(N, ALPHA, X, INCX, Y, INCY)

       PROGRAM TEST
       USE SUNPERF
       .
       .
       .
       COMPLEX   ALPHA
       INTEGER*8, PARAMETER :: INCX=1, INCY=1, N=10
       COMPLEX   X(N), Y(N)

       CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)
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In C routines, the size of long is 32 bits when compiling for V8plus and 64 bits when
compiling for V9. The following code example shows calling the dgbcon routine
using 32-bit arguments.

The following code example shows calling the dgbcon routine using 64-bit
arguments.

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,
            int lda, int *ipivot, double danorm, double drcond,
            int *info)

void dgbcon_64 (char norm, long n, long nsub, long nsuper,
double *da, long lda, long *ipivot, double danorm,

                double *drcond, long *info)
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CHAPTER 4

Parallel Processing

This chapter describes using the Sun Performance Library in multiprocessor
environments.Section 4.1, “Shared Memory Parallelism” on page 4-1 discusses
parallel computing in shared memory environments using OpenMP threaded
parallelization. Section 4.2, “Distributed-Memory Parallelism” on page 4-5 discusses
components that are available in the Sun Performance Library for computing on a
distributed-memory environment.

4.1 Shared Memory Parallelism

4.1.1 Run-Time Issues
At run time, if running with compiler parallelization, Sun Performance Library uses
the same pool of threads that the compiler does. The per-thread stack size must be set
to at least 4 Mbytes on 32-bit platforms and 8 Mbytes on 64-bit platforms. This is
done with the STACKSIZE environment variable (units in Kbytes). To set the
per-thread stack size to 4 Mbytes in a 32-bit environment:

To set the per-thread stack size to 8 Mbytes in a 64-bit environment:

Setting the STACKSIZE environment variable is not required for programs running
with POSIX or Solaris threads. In this case, user-created threads that call Sun
Performance Library routines must have a stack size of at least 4 Mbytes. Failure to
supply an adequate stack size for the Sun Performance Library routines might result

my_host% setenv STACKSIZE 4000

my_host% setenv STACKSIZE 8000
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in stack overflow problems. Symptoms of stack overflow problems include runtime
failures that could be difficult to diagnose. For more information on setting the stack
size of user-created threads, see the pthread_create(3THR),
pthread_attr_init(3THR) and pthread_attr_setstacksize(3THR) man
pages for POSIX threads or the thr_create(3THR) for Solaris threads.

4.1.2 Degree of Parallelism
Selected routines in the Sun Performance Library are parallelized using compiler
directives, library routines, and environment variables from the OpenMP Fortran
Application Program Interface. The number of threads these routines will perform in
parallel is controlled by the environment variable OMP_NUM_THREADS, which is set
by the user at run time. Environment variable PARALLEL can also be used, but if
both are set they must have the same value; otherwise, a fatal error will occur upon
execution. Both environment variables can be overridden by calling the Sun
Performance Library routine USE_THREADS or the OpenMP routine
OMP_SET_NUM_THREADS in the user code.

A user code can be parallelized by:

■ setting environment variable OMP_NUM_THREADS to a value greater than 1, and

■ using compiler parallel directives such as those from the OpenMP API, and/or

■ using appropriate compiler flags (-xopenmp=parallel, -xautopar).

The Sun Performance Library routines execute in parallel if

■ OMP_NUM_THREADS is set to a value greater than 1, and

■ the routines are not being called from a parallel region

The Sun Performance Library employs OpenMP directives in its parallelization and
does not support nested parallelism. If the user code is parallelized as stated above,
when a Sun Performance Library routine is called it will execute in serial if it detects
that it is being called from a parallel region; otherwise, it will execute in parallel.

POSIX or Solaris threads can also be created to execute in parallel selected regions in
the user code. When it is called under this parallel model, a Sun Performance
Library routine cannot detect that it is being called from a parallel region. Therefore,
the environment variable OMP_NUM_THREADS must be set to 1 (or must be unset) or a
call to USE_THREAD(1)must be made in appropriate places in the user code.
Otherwise, nested parallelism with undefined results will occur.
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For example, if the program containing the following code segment is linked with
-xopenmp=parallel and OMP_NUM_THREADS is set to 4, the loop will execute in
parallel, and there will be four instances of DGEMM running concurrently. However,
each DGEMM instance will run in serial since only one level of parallelization is
supported.

In the following code example, if the program is not linked with -xautopar, the
loop will not be parallelized, but each instance of DGEMM will be executed by four
threads.

If the program containing the following code segment is linked with -xopenmp=
parallel and if OMP_NUM_THREADS is set to a value greater than 1, the region
shown will be executed by a single thread. However, each DGEMM call will be
executed by OMP_NUM_THREADS threads.

In the following code example, there will be at most two-way parallelism, regardless
of the number of OpenMP threads available for execution. Only one level of
parallelism exists, which are the two sections. Further parallelism within a DGEMM
call is suppressed.

!$OMP PARALLEL
DO I = 1, N

CALL DGEMM(...)
END DO

!$OMP END PARALLEL

DO I = 1, N
CALL DGEMM(...)

END DO

!$OMP SINGLE
DO I = 1, N

CALL DGEMM(...)
END DO

!$OMP END SINGLE

!$OMP PARALLEL SECTIONS
!$OMP SECTION

DO I = 1, N / 2
CALL DGEMM(...)

END DO
!$OMP SECTION

DO I = N / 2 + 1, N
CALL DGEMM(...)

END DO
!$OMP END PARALLEL SECTIONS
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4.1.3 Synchronization Mechanisms
One characteristic of the POSIX/Solaris threading model is that bound threads of a
running application relinquish the CPUs when they are idle, thus providing good
throughput and resource usage in a shared (over-subscribed) environment. By
default, bound threads in a compiler-parallelized code spin-wait when they are idle,
which can result in suboptimal throughput when there are other applications in the
system competing for CPU resource. In this case, environment variable
SUNW_MP_THR_IDLE can be used to control the behavior of a thread after it finishes
its share of a parallel job:

Here, value can either be spin or sleep n s or sleep n ms , and spin is the default.
sleep puts the thread to sleep after spin-waiting n units. The wait unit can be
seconds (s, the default unit) or milliseconds (ms). sleep with no arguments puts the
thread to sleep immediately after completing a parallel task. If SUNW_MP_THR_IDLE
contains an illegal value or isn’t set, spin is used as the default.

The following settings would cause threads to spin-wait (default behavior), spin for 2
seconds before sleeping, or spin for 100 milliseconds before sleeping, respectively.
Using Sun Performance Library routines does not change the spin-wait behavior of
the code.

4.1.4 Parallel Processing Examples
This section demonstrates using the OMP_NUM_THREADS environment variable along
with compile and link options to create code that execute serially and in parallel.

To create a serial application:

■ Call one or more Sun Performance Library routines

■ Link with -library=sunperf, placing the flag at the end of the command line.
Do not compile or link with -xopenmp=parallel, or -xautopar

■ Unset OMP_NUM_THREADS environment variable or set it to 1

The following example shows how to compile and link with the shared Sun
Performance library libsunperf.so.

my_host% setenv SUNW_MP_THR_IDLE value

% setenv SUNW_MP_THR_IDLE spin
% setenv SUNW_MP_THR_IDLE 2s
% setenv SUNW_MP_THR_IDLE 100ms

my_host% cc -xmemalign=8s -xarch=native any.c -library=sunperf
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or

To create a parallel application that execute on multiple processors:

■ Call one or more Sun Performance Library routines

■ Use the same parallelization option (-xopenmp=parallel or -xautopar) in the
compile and link commands

■ Link with -library=sunperf, placing the flag at the end of the command line

■ Set OMP_NUM_THREADS to the number of available processors before running the
executable

For example, to use 24 processors, type the following commands:

The previous example allows Sun Performance Library routines to run in parallel,
but no part of the user code my_app.f will run in parallel. For the compiler to
attempt to parallelize my_app.f, either -xopenmp=parallel or -xautopar is
required on the compile line:

4.2 Distributed-Memory Parallelism
Sun Performance Library includes a ScaLAPACK implementation to provide
distributed-memory linear algebra routines for Sun HPC Clustertools 8.1 users. This
allows for high performance parallel computation in cluster environments. This
section gives an overview of using ScaLAPACK in Open Message-passing Interface
(MPI) 1.3 environment. For in depth information regarding Scalapack, see the
ScaLAPACK Users’ Guide available at http://netlib.org/scalapack.

my_host% f95 -dalign -xarch=native any.f95 -library=sunperf

my_host% f95 -dalign -xarch=native my_app.f -library=sunperf
my_host% setenv OMP_NUM_THREADS 24
my_host% ./a.out

my_host% f95 -dalign -xopenmp=parallel my_app.f -library=sunperf
my_host% setenv OMP_NUM_THREADS 24
my_host% ./a.out
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4.2.1 Scalapack Components and Dependencies
ScaLAPACK provides message-passing implementations of the LAPACK routines.
The ScaLAPACK library also includes PBLAS which contain message-passing
implementations of BLAS. Both ScaLAPACK and PBLAS make direct calls to the
shared memory counterparts and leverage the tuned shared memory performance
library routines to increase performance. Additionally, ScaLAPACK and PBLAS rely
on BLACS, Basic Linear Algebra Communication Subprograms, for inter-process
communication. BLACS is closely knit to MPI and must be compiled with for a
specific MPI implementation. Sun Performance library includes a BLACS lib for
OpenMPI 1.3, which is also compatible with Sun HPC Clustertools 8.1.

4.2.2 Scalapack Data Distribution
ScaLAPACK assumes a multi-processor environment. Typically, the processes are
viewed as a P X Q grid. The BLACS_GRIDINIT routine performs the mapping of
processing to a process grid. For general dense matrices the data is distribution
across the processes using a block cyclical distribution. Other matrix types, such as
banded and tridiagonal, use different distribution schemes. Distributing the matrix
across the processes allows for parallel computation as each process operates on a
portion of the matrix. BLACS also offers multiple topologies to optimize process
communication. The shape of the process grid and the topology specified by the user
can greatly effect performance. See the ScaLAPACK Users’ Guide for more details.

4.2.3 Compiling and Linking
Though included with Sun Performance Library, ScaLAPACK and BLACS routines
exists in separate libraries. The following command can be used to compile and link
and application using Scalapack:

my_system% mpif90 -dalign myfile.f -lscalapack -lblacs_openmpi
-library=sunperf
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CHAPTER 5

Working With Matrices

Most matrices can be stored in ways that save both storage space and computation
time. Sun Performance Library uses the following storage schemes:

■ Banded storage

■ Packed storage

The Sun Performance Library processes matrices that are in one of four forms:

■ General

■ Triangular

■ Symmetric

■ Tridiagonal

Storage schemes and matrix types are described in the following sections.

5.1 Matrix Storage Schemes
Some Sun Performance Library routines that work with arrays stored normally have
corresponding routines that take advantage of these special storage forms. For
example, DGBMV will form the product of a general matrix in banded storage and a
vector, and DTPMV will form the product of a triangular matrix in packed storage and
a vector.

5.1.1 Banded Storage
A banded matrix is stored so the jth column of the matrix corresponds to the jth
column of the Fortran array.
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The following code copies a banded general matrix in a general array into banded
storage mode.

This method of storing banded matrices is compatible with the storage method used
by LAPACK and BLAS.

5.1.2 Packed Storage
A packed vector is an alternate representation for a triangular, symmetric, or
Hermitian matrix. An array is packed into a vector by storing the elements
sequentially column by column into the vector. Space for the diagonal elements is
always reserved, even if the values of the diagonal elements are known, such as in a
unit diagonal matrix.

An upper triangular matrix or a symmetric matrix whose upper triangle is stored in
general storage in the array A, can be transferred to packed storage in the array AP as
shown below. This code comes from the comment block of the LAPACK routine
DTPTRI.

 C     Copy the matrix A from the array AG to the array AB. The
 C     matrix is stored in general storage mode in AG and it will
 C     be stored in banded storage mode in AB. The code to copy
 C     from general to banded storage mode is taken from the
 C     comment block in the original DGBFA by Cleve Moler.
 C
       NSUB = 1
       NSUPER = 2
       NDIAG = NSUB + 1 + NSUPER
       DO ICOL = 1, N
         I1 = MAX0 (1, ICOL - NSUPER)
         I2 = MIN0 (N, ICOL + NSUB)
         DO IROW = I1, I2
           IROWB = IROW - ICOL + NDIAG
           AB(IROWB,ICOL) = AG(IROW,ICOL)
         END DO
       END DO

   JC = 1
   DO J = 1, N
      DO I = 1, J
         AP(JC+I-1) = A(I,J)
      END DO
      JC = JC + J
    END DO
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Similarly, a lower triangular matrix or a symmetric matrix whose lower triangle is
stored in general storage in the array A, can be transferred to packed storage in the
array AP as shown below:

5.2 Matrix Types
The general matrix is the most common type, and most operations in the Sun
Performance Library operate on the general matrix. In many cases, there are routines
that will work with the other types of matrices. For example, DGEMM computes the
product of two general matrices, and DTRMM computes the product of a triangular
matrix and a general matrix.

5.2.1 General Matrices
The storage of a general matrix is such that there is a one-to-one correspondence
between the elements of the matrix and the elements of the array. Element Aij of
matrix A is stored in element A(I,J) of the corresponding array A. The general matrix
has no special storage scheme since each of its elements is stored explicitly. In
contrast, only the nonzero upper-diagonal, diagonal, and lower-diagonal elements of
a general band matrix are stored. The following example shows how a general band
matrix is stored in a two-dimensional array. Array locations marked with x are not
accessed.

   JC = 1
   DO J = 1, N
      DO I = J, N
         AP(JC+I-1) = A(I,J)
      END DO
      JC = JC + N - J + 1
   END DO
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5.2.2 Triangular Matrices
There are two storage schemes for a triangular matrix. In the unpacked scheme
where the matrix is stored in a two-dimensional array, there is a one-to-one
correspondence between all elements of the matrix and the elements of the array, but
zero entries in the matrix are neither set nor accessed in the array (denoted by x). In
the packed storage scheme, nonzero elements of the matrix are packed by column in
a one-dimensional array.

A triangular matrix can be stored using packed storage.

General Band Matrix General Band Matrix in Packed Storage

Triangular Band Matrix Triangular Matrix in
Unpacked Storage

Triangular Matrix in Packed
Storage

a11 a12 a13 0 0

a21 a22 a23 a24 0

0 a32 a33 a34 a35

0 0 a43 a44 a45

0 0 0 a54 a55

x x a13 a24 a35

x a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 x

a11 0 0

a21 a22 0

a31 a32 a33

a11 x x

a21 a22 x

a31 a32 a33

a11

a21

a31

a22

a32

a33
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A triangular band matrix can be stored in packed storage using a two-dimensional
array as shown below. Elements marked with x are not accessed..

5.2.3 Symmetric Matrices
A real symmetric or complex Hermitian matrix is similar to a triangular matrix in
that only elements in its upper or lower triangle is explicitly stored in the
corresponding elements of a two-dimensional array. The remaining elements of the
array (denoted by x below) are neither set nor accessed. The active upper or lower
triangle can also be packed by column into a one-dimensional array.

Triangular Band Matrix Triangular Band Matrix
in Packed Storage

Symmetric Matrix Symmetric Matrix in Unpacked
Storage

Symmetric Matrix in
Packed Storage

a11 0 0

a21 a22 0

0 a32 a33

a11 a22 a33

a21 a32 x

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 x x

a21 a22 x

a31 a32 a33

a11

a21

a31

a22

a32

a33
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5.2.4 Tridiagonal Matrices
A tridiagonal matrix has nonzero elements only on the main diagonal, the first
superdiagonal, and the first subdiagonal. It is stored using three one-dimensional
arrays.

Tridiagonal Matrix Storage for Tridiagonal Matrix

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

a21

a32

a43

a11

a22

a33

a44

a12

a23

a34
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CHAPTER 6

Sparse Computation

The Sun Performance Library has two software packages, SPSOVLE and SuperLU,
that can be used to factor and solve sparse linear systems of equations.

Mainly written in Fortran, SPSOLVE is a collection of routines that solve symmetric,
structurally symmetric, and unsymmetric coefficient matrices, using one of several
ordering methods, including a user-specified ordering. In previous releases,
SPSOLVE was referred to as the sparse solver package. It contains interfaces for
FORTRAN 77; Fortran 95 and C interfaces are not currently provided. To use
SPSOLVE routines from Fortran 95, use the FORTRAN 77 interfaces. To call SPSOLVE
from C, append an underscore to the routine name (dgssin_(), dgssor_(), and so on),
pass arguments by reference, and use one-based array indexing. (See Section 6.1.3,
“Unsymmetric Sparse Matrices” on page 6-3 for an example of one-based and
zero-based array indexing. For information on how to call Fortran routines from C,
see the Fortran Programming Guide.)

The SuperLU package in the Sun Performance Library is the sequential version
(version 3.0) of the public domain application that solves general unsymmetric
sparse systems. While it is sequential, SuperLU does make use of several level 2 and
level 3 BLAS routines that are parallelized. For detailed documentation of its
algorithm, routines and data structures, see [5, 6, 7]. SuperLU is written in C;
therefore, array indexing must be zero-based regardless of whether its routines are
being called from Fortran-based SPSOLVE or a C driver program. (See SuperLU
Interface for more detail and examples.)

6.1 Sparse Matrices
Sparse matrices are usually represented in formats that minimize storage
requirements. By taking advantage of the sparsity and not storing zeros, considerable
storage space can be saved. The storage format used by SPSOLVE and SuperLU is
the compressed sparse column (CSC) format (also called the Harwell-Boeing format).
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The CSC format represents a sparse matrix with two integer arrays and one floating
point array. The integer arrays (colptr and rowind) specify the location of the
nonzeros of the sparse matrix, and the floating point array (values) is used for the
nonzero values.

The column pointer (colptr) array consists of n+1 elements where colptr(i) points to
the beginning of the ith column, and colptr(i+1)-1 points to the end of the ith column.
The row indices (rowind) array contains the row indices of the nonzero values. The
values arrays contains the corresponding nonzero numerical values.

The following matrix data formats exist for a sparse matrix of neqns equations and
nnz nonzeros:

■ Symmetric

■ Structurally symmetric

■ Unsymmetric

Currently, SuperLU only supports unsymmetric matrices. The most efficient data
representation often depends on the specific problem. The following sections show
examples of sparse matrix data formats.

6.1.1 Symmetric Sparse Matrices
A symmetric sparse matrix is a matrix where a(i, j) = a(j, i) for all i and j. Because of
this symmetry, only the lower triangular values need to be passed to the solver
routines. The upper triangle can be determined from the lower triangle.

An example of a symmetric matrix is shown below. This example is derived from A.
George and J. W-H. Liu. “Computer Solution of Large Sparse Positive Definite
Systems.”

To represent A in CSC format:

■ colptr: 1, 6, 7, 8, 9, 10

■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 5

■ values: 4.0, 1.0, 2.0, 0.5, 2.0, 0.5, 3.0, 0.625, 16.0

A

4.0 1.0 2.0 0.5 2.0
1.0 0.5 0.0 0.0 0.0
2.0 0.0 3.0 0.0 0.0
0.5 0.0 0.0 0.625 0.0
2.0 0.0 0.0 0.0 16.0

=
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6.1.2 Structurally Symmetric Sparse Matrices
A structurally symmetric sparse matrix has nonzero values with the property that if
a(i, j) ≠ 0, then a(j, i) ≠ 0 for all i and j. When solving a structurally symmetric system,
the entire matrix must be passed to the solver routines.

An example of a structurally symmetric matrix is shown below.

To represent A in CSC format:

■ colptr: 1, 3, 6, 7, 9

■ rowind: 1, 2, 1, 2, 4, 3, 2, 4

■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

6.1.3 Unsymmetric Sparse Matrices
An unsymmetric sparse matrix does not have a(i, j) = a(j, i) for all i and j. The
structure of the matrix does not have an apparent pattern. When solving an
unsymmetric system, the entire matrix must be passed to the solver routines. An
example of an unsymmetric matrix is shown below.

To represent A in CSC format:

■ One-based indexing:

■ colptr: 1, 6, 7, 8, 9, 11

■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 2, 5

■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

■ Zero-based indexing:

■ colptr: 0, 5, 6, 7, 8, 10

■ rowind: 0, 1, 2, 3, 4, 1, 2, 3, 1, 4

■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

A

1.0 3.0 0.0 0.0
2.0 4.0 0.0 7.0
0.0 0.0 6.0 0.0
0.0 5.0 0.0 8.0

=

A

1.0 0.0 0.0 0.0 0.0
2.0 6.0 0.0 0.0 9.0
3.0 0.0 7.0 0.0 0.0
4.0 0.0 0.0 8.0 0.0
5.0 0.0 0.0 0.0 10.0

=
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6.2 Sun Performance Library Sparse BLAS
The Sun Performance Library sparse BLAS package is based on the following two
packages:

■ Netlib Sparse BLAS package, by Dodson, Grimes, and Lewis consists of sparse
extensions to the Basic Linear Algebra Subroutines that operate on sparse vectors.

■ NIST (National Institute of Standards and Technology) Fortran Sparse BLAS
Library consists of routines that perform matrix products and solution of
triangular systems for sparse matrices in a variety of storage formats.

Refer to the following sources for additional sparse BLAS information.

■ For information on the Sun Performance Library Sparse BLAS routines, refer to
the section 3P man pages for the individual routines.

■ For more information on the Netlib Sparse BLAS package refer to
http://www.netlib.org/sparse-blas/index.html.

■ For more information on the NIST Fortran Sparse BLAS routines, refer to
http://math.nist.gov/spblas/

The Netlib Sparse BLAS and NIST Fortran Sparse BLAS Library routines each use
their own naming conventions, as described in the following sections.

6.2.1 Netlib Sparse BLAS
Each Netlib Sparse BLAS routine has a name of the form Prefix-Root-Suffix where
the:

■ Prefix represents the data type.

■ Root represents the operation.

■ Suffix represents whether or not the routine is a direct extension of an existing
dense BLAS routine.

TABLE 6-1 lists the naming conventions for the Netlib Sparse BLAS vector routines.

TABLE 6-1 Netlib Sparse BLAS Naming Conventions

Operation Root of Name Prefix and Suffix

Dot product -DOT- S-I D-I C-UI Z-UI C-CI Z-CI

Scalar times a vector
added to a vector

-AXPY- S-I D-I C-I Z-I
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The prefix can be one of the following data types:

■ S: SINGLE

■ D: DOUBLE

■ C: COMPLEX

■ Z: COMPLEX*16 or DOUBLE COMPLEX

The I, CI, and UI suffixes denote sparse BLAS routines that are direct extensions to
dense BLAS routines.

6.2.2 NIST Fortran Sparse BLAS
Each NIST Fortran Sparse BLAS routine has a six-character name of the form
XYYYZZ where:

■ X represents the data type.

■ YYY represents the sparse storage format.

■ ZZ represents the operation.

Apply Givens rotation -ROT- S-I D-I

Gather x into y -GTHR- S- D- C- Z- S-Z D-Z C-Z Z-Z

Scatter x into y -SCTR- S- D- C- Z-

TABLE 6-1 Netlib Sparse BLAS Naming Conventions

Operation Root of Name Prefix and Suffix
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TABLE 6-2 shows the values for X, Y, and Z.

6.3 SPSOLVE Interface
SPSOLVE computes the solution of a sparse system through a sequence of steps:
Initialization, ordering to reduce fill-in, symbolic factorization, numeric factorization,
and triangular solve. A user code may call individual routines or make use of a
one-call interface to perform these steps.

TABLE 6-2 NIST Fortran Sparse BLAS Routine Naming Conventions

X: Data Type

X S: single precision
D: double precision
C: complex
Z: double complex

YYY: Sparse Storage Format

YYY Single entry formats: COO: coordinate
CSC: compressed sparse column
CSR: compressed sparse row
DIA: diagonal
ELL: ellpack
JAD: jagged diagonal
SKY: skyline

Block entry formats: BCO: block coordinate
BSC: block compressed sparse column
BSR: block compressed sparse row
BDI: block diagonal
BEL: block ellpack
VBR: block compressed sparse row

ZZ: Operation

ZZ MM:matrix-matrix product
SM:solution of triangular system (supported for all formats except COO)
RP: right permutation (for JAD format only)
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6.3.1 SPSOLVE Routines
Listed in the table below are user-accessible routines in SPSOLVE and their functions.

Matrices with the same structure but with different numerical values can be solved
by calling SPSOLVE routines in the order shown below:

TABLE 6-3 SPSOLVE Sparse Solver Routines

Routine Function

DGSSFS() One call interface to sparse solver

DGSSIN() Sparse solver initialization

DGSSOR() Fill reducing ordering and symbolic factorization

DGSSUO() Sets user-specified ordering permutation and performs symbolic
factorization (called in place of DGSSOR)

DGSSFA() Matrix value input and numeric factorization

DGSSSL() Triangular solve

Utility Routine Function

DGSSRP() Returns permutation used by solver.

DGSSCO() Returns condition number estimate of coefficient matrix.

DGSSDA() De-allocates sparse solver.

DGSSPS() Prints solver statistics.

call dgssin() ! initialization, input coefficient matrix structure
call dgssor() ! fill-reducing ordering, symbolic factorization

! (or call dgssuo() to specify a user ordering,
! and perform symbolic factorization)

do m = 1, number_of_structurally_identical_matrices
   call dgssfa() ! input coefficient matrix values, numeric

! factorization
   do r = 1, number_of_right_hand_sides
      call dgsssl() ! triangular solve
   enddo
enddo
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The one-call interface is not as flexible as the regular interface, but it covers the most
common case of factoring a single matrix and solving some number right-hand sides.
Additional calls to dgsssl() are used to solve for additional right-hand sides, as
shown in the following example.

6.3.2 Routine Calling Order
To use SPSOLVE, its routines must be called in the order shown below:

1. One Call Interface: For solving single matrix

a. DGSSFS() - Initialize, order, factor, solve

b. DGSSSL() - Additional solves (optional): repeat DGSSSL() as needed

c. DGSSDA() - Deallocate working storage

2. Regular Interface: For solving multiple matrices with the same structure

a. DGSSIN() - Initialize

b. DGSSOR() or DGSSUO() - Order and symbolically factor

c. DGSSFA() - Factor

d. DGSSSL() - Solve: repeat DGSSFA() or DGSSSL() as needed

e. DGSSDA() - Deallocate working storage

6.3.3 SPSOLVE Examples
The following examples show solving a symmetric system using the one-call
interface, and solving a symmetric system using the regular interface. In EXAMPLE 6-1,
the one-call interface is used to solve a symmetric system, and in EXAMPLE 6-2,
individual routines are called to solve a symmetric system. EXAMPLE 6-5 shows how

call dgssfs() ! initialization, input coefficient matrix structure
              ! fill-reducing ordering, symbolic factorization

! input coefficient matrix values, numeric factorization
              ! triangular solve
do r = 1, number_of_right_hand_sides
    call dgsssl() ! triangular solve
enddo
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the Fortran SPSOLVE interface can be called from a C program. (For more
information on how to call Fortran routines from C programs, see the Fortran
Programming Guide.)

EXAMPLE 6-1 Solving a Symmetric System–One-Call Interface

my_system% cat example_1call.f

      program example_1call

c

c This program is an example driver that calls the sparse solver.

c    It factors and solves a symmetric system, by calling the

c    one-call interface.

c

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(6), rowind(9)

      double precision  values(9), rhs(5), xexpct(5)

      integer           i

c

c Sparse matrix structure and value arrays. From George and Liu,

c  page 3.

c    Ax = b, (solve for x) where:

c

c      4.0   1.0   2.0   0.5   2.0       2.0       7.0

c      1.0   0.5   0.0   0.0   0.0       2.0       3.0

c  A = 2.0   0.0   3.0   0.0   0.0   x = 1.0   b = 7.0

c      0.5   0.0   0.0   0.625 0.0      -8.0      -4.0

c      2.0   0.0   0.0   0.0  16.0      -0.5      -4.0

c

      data colstr / 1, 6, 7, 8, 9, 10 /

      data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0, 3.0d0,

     &              0.625d0, 16.0d0 /

      data rhs    / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

      data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c  set calling parameters

c

      mtxtyp= 'ss'

      pivot = 'n'
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      neqns  = 5

      nrhs   = 1

      ldrhs  = 5

      outunt = 6

      msglvl = 0

      ordmthd = 'mmd'

c

c  call single call interface

c

      call dgssfs ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              values, nrhs  , rhs,    ldrhs , ordmthd,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

     &      ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

  300 format(i5,3d20.12) ! i/sol/xexpct values

  400 format(a60,i20) ! fail message, sparse solver error number

      end

EXAMPLE 6-1 Solving a Symmetric System–One-Call Interface (Continued)
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my_system% f95 -dalign example_1call.f -library=sunperf

my_sytem% a.out

    i              rhs(i)     expected rhs(i)               error

    1  0.200000000000D+01  0.200000000000D+01 -0.528466159722D-13

    2  0.200000000000D+01  0.200000000000D+01  0.105249142734D-12

    3  0.100000000000D+01  0.100000000000D+01  0.350830475782D-13

    4 -0.800000000000D+01 -0.800000000000D+01  0.426325641456D-13

    5 -0.500000000000D+00 -0.500000000000D+00  0.660582699652D-14

EXAMPLE 6-2 Solving a Symmetric System–Regular Interface

my_system% cat example_ss.f

      program example_ss

c

c This program is an example driver that calls the sparse solver.

c  It factors and solves a symmetric system.

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(6), rowind(9)

      double precision  values(9), rhs(5), xexpct(5)

      integer           i

c

c Sparse matrix structure and value arrays. From George and Liu,

c  page 3.

c    Ax = b, (solve for x) where:

c

c      4.0   1.0   2.0   0.5   2.0       2.0       7.0

c      1.0   0.5   0.0   0.0   0.0       2.0       3.0

c  A = 2.0   0.0   3.0   0.0   0.0   x = 1.0   b = 7.0

c      0.5   0.0   0.0   0.625 0.0      -8.0      -4.0

c      2.0   0.0   0.0   0.0  16.0      -0.5      -4.0

c

      data colstr / 1, 6, 7, 8, 9, 10 /

      data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

      data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0,

     &             3.0d0, 0.625d0, 16.0d0 /

EXAMPLE 6-1 Solving a Symmetric System–One-Call Interface (Continued)
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      data rhs    / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

      data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c  initialize solver

c

      mtxtyp= 'ss'

      pivot = 'n'

      neqns  = 5

      outunt = 6

      msglvl = 0

c

c  call regular interface

c

      call dgssin ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110

c

c  ordering and symbolic factorization

c

      ordmthd = 'mmd'

      call dgssor ( ordmthd, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  numeric factorization

c

      call dgssfa ( neqns, colstr, rowind, values, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  solution

c

      nrhs   = 1

      ldrhs  = 5

      call dgsssl ( nrhs, rhs, ldrhs, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

EXAMPLE 6-2 Solving a Symmetric System–Regular Interface (Continued)
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c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

     &      ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

  300 format(i5,3d20.12) ! i/sol/xexpct values

  400 format(a60,i20) ! fail message, sparse solver error number

      end

my_system% f95 -dalign example_ss.f -library=sunperf

my_sytem% a.out

    i              rhs(i)     expected rhs(i)               error

    1  0.200000000000D+01  0.200000000000D+01 -0.528466159722D-13

    2  0.200000000000D+01  0.200000000000D+01  0.105249142734D-12

    3  0.100000000000D+01  0.100000000000D+01  0.350830475782D-13

    4 -0.800000000000D+01 -0.800000000000D+01  0.426325641456D-13

    5 -0.500000000000D+00 -0.500000000000D+00  0.660582699652D-14

EXAMPLE 6-3 Solving a Structurally Symmetric System With Unsymmetric
Values–Regular Interface

my_system% cat example_su.f

      program example_su

c

c This program is an example driver that calls the sparse solver.

c    It factors and solves a structurally symmetric system

EXAMPLE 6-2 Solving a Symmetric System–Regular Interface (Continued)
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c    (w/unsymmetric values).

c

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(5), rowind(8)

      double precision  values(8), rhs(4), xexpct(4)

      integer           i

c

c  Sparse matrix structure and value arrays.  Coefficient matrix

c    has a symmetric structure and unsymmetric values.

c    Ax = b, (solve for x) where:

c

c      1.0   3.0   0.0   0.0       1.0        7.0

c      2.0   4.0   0.0   7.0       2.0       38.0

c  A = 0.0   0.0   6.0   0.0   x = 3.0   b = 18.0

c      0.0   5.0   0.0   8.0       4.0       42.0

c

      data colstr / 1, 3, 6, 7, 9 /

      data rowind / 1, 2, 1, 2, 4, 3, 2, 4 /

data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

     &              8.0d0 /

      data rhs    / 7.0d0, 38.0d0, 18.0d0, 42.0d0 /

      data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0 /

c

c  initialize solver

c

      mtxtyp= 'su'

      pivot = 'n'

      neqns  = 4

      outunt = 6

      msglvl = 0

c

c  call regular interface

c

      call dgssin ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110

EXAMPLE 6-3 Solving a Structurally Symmetric System With Unsymmetric
Values–Regular Interface (Continued)
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c

c  ordering and symbolic factorization

c

      ordmthd = 'mmd'

      call dgssor ( ordmthd, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  numeric factorization

c

      call dgssfa ( neqns, colstr, rowind, values, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  solution

c

      nrhs   = 1

      ldrhs  = 4

      call dgsssl ( nrhs, rhs, ldrhs, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

     &      ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

EXAMPLE 6-3 Solving a Structurally Symmetric System With Unsymmetric
Values–Regular Interface (Continued)
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  300 format(i5,3d20.12)     ! i/sol/xexpct values

400 format(a60,i20) ! fail message, sparse solver error number

      end

my_system% f95 -dalign example_su.f -library=sunperf

my_system% a.out

    i              rhs(i)     expected rhs(i)               error

    1  0.100000000000D+01  0.100000000000D+01  0.000000000000D+00

    2  0.200000000000D+01  0.200000000000D+01  0.000000000000D+00

    3  0.300000000000D+01  0.300000000000D+01  0.000000000000D+00

    4  0.400000000000D+01  0.400000000000D+01  0.000000000000D+00

EXAMPLE 6-4 Solving an Unsymmetric System–Regular Interface

my_system% cat example_uu.f

      program example_uu

c

c This program is an example driver that calls the sparse solver.

c    It factors and solves an unsymmetric system.

c

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(6), rowind(10)

      double precision  values(10), rhs(5), xexpct(5)

      integer           i

c

c Sparse matrix structure and value arrays. Unsummetric matrix A.

c    Ax = b, (solve for x) where:

c

c      1.0   0.0   0.0   0.0   0.0       1.0        1.0

c      2.0   6.0   0.0   0.0   9.0       2.0       59.0

c  A = 3.0   0.0   7.0   0.0   0.0   x = 3.0   b = 24.0

c      4.0   0.0   0.0   8.0   0.0       4.0       36.0

EXAMPLE 6-3 Solving a Structurally Symmetric System With Unsymmetric
Values–Regular Interface (Continued)
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c      5.0   0.0   0.0   0.0  10.0       5.0       55.0

c

      data colstr / 1, 6, 7, 8, 9, 11 /

      data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 2, 5 /

data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

     &              8.0d0, 9.0d0, 10.0d0 /

      data rhs    / 1.0d0, 59.0d0, 24.0d0, 36.0d0, 55.0d0 /

      data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0 /

c

c  initialize solver

c

      mtxtyp= 'uu'

      pivot = 'n'

      neqns  = 5

      outunt = 6

      msglvl = 3

      call dgssin ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110

c

c  ordering and symbolic factorization

c

      ordmthd = 'mmd'

      call dgssor ( ordmthd, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  numeric factorization

c

      call dgssfa ( neqns, colstr, rowind, values, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  solution

c

      nrhs   = 1

      ldrhs  = 5

      call dgsssl ( nrhs, rhs, ldrhs, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

EXAMPLE 6-4 Solving an Unsymmetric System–Regular Interface (Continued)
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      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

     &      ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

  300 format(i5,3d20.12)     ! i/sol/xexpct values

400 format(a60,i20) ! fail message, sparse solver error number

      end

my_system% f95 -dalign example_uu.f -library=sunperf

my_system% a.out

  i              rhs(i)     expected rhs(i)               error

    1  0.100000000000D+01  0.100000000000D+01  0.000000000000D+00

    2  0.200000000000D+01  0.200000000000D+01  0.000000000000D+00

    3  0.300000000000D+01  0.300000000000D+01  0.000000000000D+00

    4  0.400000000000D+01  0.400000000000D+01  0.000000000000D+00

    5  0.500000000000D+01  0.500000000000D+01  0.000000000000D+00

EXAMPLE 6-5 Calling SPSOLVE Routines From C

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <sys/time.h>

#include <sunperf.h>

int main() {

/*

EXAMPLE 6-4 Solving an Unsymmetric System–Regular Interface (Continued)
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 Sparse matrix structure and value arrays. Coefficient matrix

 is a general unsymmetric sparse matrix.

 Ax = b, (solve for x) where:

     1.0  0.0  7.0   9.0   0.0        1.0           17.0

     2.0  4.0  0.0   0.0   0.0        1.0            6.0

 A = 0.0  5.0  8.0   0.0   0.0    x = 1.0       b = 13.0

     0.0  0.0  0.0  10.0  11.0        1.0           21.0

     3.0  6.0  0.0   0.0  12.0        1.0           21.0

*/

/* Array indices must be one-based for calling SPSOLVE routines */

int colstr[]    = {1, 4, 7, 9, 11, 13};

int rowind[]    = {1, 2, 5, 2, 3, 5, 1, 3, 1, 4, 4, 5};

double values[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

                   7.0, 8.0, 9.0, 10.0, 11.0, 12.0};

double rhs[]    = {17.0, 6.0, 13.0, 21.0, 21.0};

double xexpct[] = {1.0, 1.0, 1.0, 1.0, 1.0};

    int n = 5, nnz = 12, nrhs = 1, msglvl = 0, outunt = 6, ierr,

          i,j,k, int_ierr;

    double t[4], handle[150];

    char type[] = "uu", piv = ’n’;

/* Last two parameters in argument list indicate lengths of

 * character arguments type and piv

 */

    dgssin_(type, &piv, &n, colstr, rowind, &outunt, &msglvl,

               handle, &ierr,2,1);

    if (ierr != 0) {

      int_ierr = ierr;

      printf("dgssin err = %d\n", int_ierr);

      return -1;

    }

    char ordmth[] = "mmd";

    dgssor_(ordmth, handle, &ierr, 3);

    if (ierr != 0) {

      int_ierr = ierr;

      printf("dgssor err = %d\n", int_ierr);

      return -1;

    }

EXAMPLE 6-5 Calling SPSOLVE Routines From C (Continued)
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6.4 SuperLU Interface
SuperLU has two driver routines, simple and expert, that can be called to completely
solve a general unsymmetric sparse system in a similar manner to the one-call
interface in SPSOLVE. These and other SuperLU user-callable routines are available
in single precision, double precision, complex and double complex data types. Single

    dgssfa_(&n, colstr, rowind, values, handle, &ierr);

    if (ierr != 0) {

      int_ierr = ierr;

      printf("dgssfa err = %d\n", int_ierr);

      return -1;

    }

    dgsssl_(&nrhs, rhs, &n, handle, &ierr);

    if (ierr != 0) {

      int_ierr = ierr;

      printf("dgsssl err = %d\n", int_ierr);

      return -1;

    }

    printf("i   computed solution      expected solution\n");

    for (i=0; i<n; i++)

      printf("%d         %lf            %lf\n", i,rhs[i], 1.0);

}

my_system% cc -m32 -xmemalign=8s dr.c -library=sunperf

my_system% ./a.out

i   computed solution      expected solution

0         1.000000            1.000000

1         1.000000            1.000000

2         1.000000            1.000000

3         1.000000            1.000000

4         1.000000            1.000000

EXAMPLE 6-5 Calling SPSOLVE Routines From C (Continued)
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precision names of all external routines are listed the following tables. Man pages
(section 3P) are available for these routines. Also see the man page of SuperMatrix
for a description of the sparse matrix data structure that is used in the application.

TABLE 6-4 SuperLU Computational Routines

Routine Function

sgstrf Computes factorization

sgssvx Factorizes and solves (expert driver)

sgssv Factorizes and solves (simple driver)

sgstrs Computes triangular solve

sgsrfs Improves computed solution; provides error bounds

slangs Computes one-norm, Frobenius-norm, or infinity-norm

sgsequ Computes row and column scalings

sgscon Estimates reciprocal of condition number

slaqgs Equilibrates a general sparse matrix

TABLE 6-5 SuperLU Utility Routines

Routine Function

LUSolveTime Returns time spent in solve stage

LUFactTime Returns time spent in factorization stage

LUFactFlops Returns number of floating point operations in
factorization stage

LUSolveFlops Returns number of floating point operations in solve
stage

sQuerySpace Returns information on the memory statistics

sp_ienv Returns specified machine dependent parameter

sPrintPerf Prints statistics collected by the computational routines

set_default_options Sets parameters that control solver behavior to default
options

StatInit Allocates and initializes structure that stores
performance statistics

StatFree Frees structure that stores performance statistics

Destroy_Dense_Matrix Deallocates a SuperMatrix in dense format

Destroy_SuperNode_Matrix Deallocates a SuperMatrix in supernodal format
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Destroy_CompCol_Matrix Deallocates a SuperMatrix in compressed sparse
column format

Destroy_CompCol_Permuted Deallocates a SuperMatrix in permuted compressed
sparse column format

Destroy_SuperMatrix_Store Deallocates actual storage that stores matrix in a
SuperMatrix

sCopy_CompCol_Matrix Copies a SuperMatrix in compressed sparse column
format

sCreate_CompCol_Matrix Allocates a SuperMatrix in compressed sparse column
format

sCreate_Dense_Matrix Allocates a SuperMatrix in dense format

sCreate_CompRow_Matrix Allocates a SuperMatrix in compressed sparse row
format

sCreate_SuperNode_Matrix Allocates a SuperMatrix in supernodal format

sp_preorder Permutes columns of original sparse matrix

sp_sgemm Multiplies a SuperMatrix by a dense matrix

TABLE 6-5 SuperLU Utility Routines (Continued)

Routine Function
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6.4.1 Calling from C
SuperLU routines are written in C. Therefore, column- and row-related indices must be
zero-based. In the following example, double precision simple driver dgssv is called
to compute factors L and U and to solve for the solution matrix.

EXAMPLE 6-6 SuperLU Simple Driver

#include <stdio.h>
#include <sunperf.h>

#define M 5
#define N 5

int main(int argc, char *argv[])
{
    SuperMatrix A, L, U, B1, B2;
    int      perm_r[M];  /* row permutations from partial pivoting */
    int      perm_c[N];  /* column permutation vector */
    int      info, i;
    superlu_options_t options;
    SuperLUStat_t stat;
    trans_t  trans = NOTRANS;

    printf("Example code calling SuperLU simple driver to factor a \n");
    printf("general unsymmetric matrix and solve two right-hand-side matrices\
n");

   /* the matrix in Harwell-Boeing format. */
    int m = M;
    int n = M;
    int nnz = 12;
    double *dp;
   /* nonzeros of A, column-wise */
    double a[] = {1.0, 2.0, 3.0,  4.0, 5.0,  6.0,
                  7.0, 8.0, 9.0, 10.0, 11.0, 12.0};
   /* row index of nonzeros */
    int asub[] = {0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4};
   /* column pointers */
    int xa[]   = {0, 3, 6, 8, 10, 12};

    /* Create Matrix A in the format expected by SuperLU */
    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

    int nrhs = 1;
    double rhs1[] = {17.0, 6.0, 13.0, 21.0, 21.0};
    double rhs2[] = {17*.3, 6*.3, 13*.3, 21*.3, 21*.3};
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    /* right-hand side matrix B1, B2 */
    dCreate_Dense_Matrix(&B1, m, nrhs, rhs1, m, SLU_DN, SLU_D, SLU_GE);
    dCreate_Dense_Matrix(&B2, m, nrhs, rhs2, m, SLU_DN, SLU_D, SLU_GE);

    /* set options that control behavior of solver to default parameters */
    set_default_options(&options);
    options.ColPerm = NATURAL;

    /* Initialize the statistics variables. */
    StatInit(&stat);
    /* factor input matrix and solve the first right-hand-side matrix */
    dgssv(&options, &A, perm_c, perm_r, &L, &U, &B1, &stat, &info);

    printf("\nsolution matrix B1:\n");
    dp = (double *) (((NCformat *)B1.Store)->nzval);
    printf("    i    rhs[i]     expected\n");
    for (i=0; i<M; i++)
      printf("%5d   %7.4lf     %7.4lf\n", i, dp[i], 1.0);
    printf("Factor time  = %8.2e sec\n", stat.utime[FACT]);
    printf("Solve time   = %8.2e sec\n\n\n", stat.utime[SOLVE]);

    /* solve the second right-hand-side matrix */
    dgstrs(trans, &L, &U, perm_c, perm_r, &B2, &stat, &info);

    printf("solution matrix B2:\n");
    dp = (double *) (((NCformat *)B2.Store)->nzval);
    printf("    i    rhs[i]     expected\n");
    for (i=0; i<M; i++)
      printf("%5d   %7.4lf     %7.4lf\n", i, dp[i], 0.3);
    printf("Solve time   = %8.2e sec\n", stat.utime[SOLVE]);

    StatFree(&stat);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B1);
    Destroy_SuperMatrix_Store(&B2);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
}

EXAMPLE 6-6 SuperLU Simple Driver (Continued)
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Running the above example:

my_system% cc -xmemalign=8s simple.c -library=sunperf
my_system% a.out

Example code calling SuperLU simple driver to factor a
general unsymmetric matrix and solve two right-hand-side matrices

solution matrix B1:
    i    rhs[i]     expected
    0    1.0000      1.0000
    1    1.0000      1.0000
    2    1.0000      1.0000
    3    1.0000      1.0000
    4    1.0000      1.0000
Factor time  = 5.43e-02 sec
Solve time   = 6.76e-03 sec

solution matrix B2:
    i    rhs[i]     expected
    0    0.3000      0.3000
    1    0.3000      0.3000
    2    0.3000      0.3000
    3    0.3000      0.3000
    4    0.3000      0.3000
Solve time   = 6.76e-03 sec

EXAMPLE 6-7 SuperLU Expert Driver

#include <stdio.h>
#include <sunperf.h>

#define M    5
#define N    5
#define NRHS 1

int main(int argc, char *argv[])
{
    SuperMatrix A, L, U, B, X;
    int      perm_r[M];  /* row permutations from partial pivoting */
    int      perm_c[N];  /* column permutation vector */
    int      etree[N];   /* elimination tree */
    double   ferr[NRHS]; /* estimated forward error bound */
    double   berr[NRHS]; /* component-wise relative backward error */
    double   C[N], R[M]; /* column and row scale factors */
    double   rpg, rcond;

char equed[1]; /* Specifies the form of equilibration that was done */
    double   *work, *dp; /* user-supplied workspace */
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int lwork = 0; /* 0 for workspace to be allocated by system malloc */
    int      info, i;
    superlu_options_t options;
    SuperLUStat_t stat;
    mem_usage_t    mem_usage;

    printf("Example code calling SuperLU expert driver\n\n");

    /* the matrix in Harwell-Boeing format. */
    int m = M;
    int n = M;
    int nnz = 12;
   /* nonzeros of A, column-wise */
    double a[] = {1.0, 2.0, 3.0,  4.0, 5.0,  6.0,
                  7.0, 8.0, 9.0, 10.0, 11.0, 12.0};
    /* row index of nonzeros */
    int asub[] = {0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4};
    /* column pointers */
    int xa[]   = {0, 3, 6, 8, 10, 12};
    int nrhs = NRHS;
    double rhs[] = {17.0, 6.0, 13.0, 21.0, 21.0};

    /* Create Matrix A in the format expected by SuperLU */
    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

    /* right-hand-side matrix B */
    dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);

    /*  solution matrix X */
    dCreate_Dense_Matrix(&X, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);
    set_default_options(&options);
    options.ColPerm = NATURAL;

    /* Initialize the statistics variables. */
    StatInit(&stat);

dgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork,
           &B, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info);
    dp = (double *) (((NCformat *)X.Store)->nzval);
    printf("    i    rhs[i]     expected\n");
    for (i=0; i<M; i++)
      printf("%5d   %7.4lf     %7.4lf\n",
             i, dp[i], 1.0);
    printf("Factor time  = %8.2e sec\n", stat.utime[FACT]);
    printf("Solve time   = %8.2e sec\n", stat.utime[SOLVE]);

    StatFree(&stat);

EXAMPLE 6-7 SuperLU Expert Driver (Continued)
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Running the above example:

6.4.2 Calling from Fortran
The simplest way to call SuperLU from Fortran is through the SPSOLVE interface.
SuperLU can be selected to solve an unsymmetric coefficient matrix through input
argument MTXTYP of routine DGSSIN(), which is the initialization routine in
SPSOLVE. The same argument also exists in the one-call interface routine
DGSSFS(). Valid options for MTXTYP are listed in the following table. To invoke
SuperLU, select ’s0’ or ’S0’ as matrix type. Since SPSOLVE is Fortran-based, all
column and row indices associated with the input matrix should be one-based.
However, if SuperLU is invoked through DGSSIN() or DGSSFS() (by setting MTXTYP
= ’s0’ or ’S0’), these indices must be zero-based.

    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
}

my_system% cc -xmemalign=8s expert.c -library=sunperf
my_system% a.out
Example code calling SuperLU expert driver

    i    rhs[i]     expected
    0    1.0000      1.0000
    1    1.0000      1.0000
    2    1.0000      1.0000
    3    1.0000      1.0000
    4    1.0000      1.0000
Factor time  = 1.25e-03 sec
Solve time   = 1.70e-04 sec

TABLE 6-6 Matrix Type Options for DGSSIN() and DGSSFS()

Option Type of Matrix Solver

’sp’ or ’SP’ symmetric structure, positive-definite values SPSOLVE

’ss’ or ’SS’ symmetric structure, symmetric values SPSOLVE

’su’ or ’SU’ symmetric structure, unsymmetric values SPSOLVE

’uu’ or ’UU’ unsymmetric structure, unsymmetric values SPSOLVE

’s0’ or ’S0’ unsymmetric structure, unsymmetric values SuperLU

EXAMPLE 6-7 SuperLU Expert Driver (Continued)
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A call to routine DGSSOR() must follow DGSSIN() to perform fill-reduce ordering
and symbolic factorization. A character argument (ORDMTHD) is used to select the
desired ordering method. This argument also exists in the one-call interface routine
DGSSFS(). Valid ordering methods for SPSOLVE and SuperLU are listed in the
following table. The user may also provide a particular ordering to the solver by
calling DGSSUO() in place of DGSSOR(). The input permutation array must be
zero-based.

As shown above, the general nested dissection method is not available in SuperLU.
On the other hand, the minimum degree ordering on A’+A and approximate
minimum degree column ordering are not available in SPSOLVE.

6.4.3 Examples
The following code examples show how SuperLU can be selected through the regular
interface and the one-call interface of SPSOLVE to factorize and solve a general
unsymmetric system of equations.

TABLE 6-7 Matrix Ordering Options for DGSSOR() and DGSSFS()

Option Ordering Method Solver

’nat’ or ’NAT’ natural ordering (no ordering) SPSOLVE, SuperLU

’mmd’ or ’MMD’ minimum degree on A’*A (default) SPSOLVE, SuperLU

’gnd’ or ’GND’ general nested dissection SPSOLVE

’spm’ or ’SPM’ Minimum degree ordering on A’+A SuperLU

’sam’ or ’SAM’ Approximate minimum degree
column

SuperLU
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EXAMPLE 6-8 Invoking SuperLU through SPSOLVE Interface

      program SLU

c This program is an example driver that calls the regular interface of SPSOLVE
c  to invoke SuperLU to factor and solve a general unsymmetric system.

      implicit none
      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs, i
      character         mtxtyp*2, pivot*1, ordmthd*3
      double precision  handle(150)
      integer           colstr(6), rowind(12)
      double precision  values(12), rhs(5), xexpct(5)

c  Sparse matrix structure and value arrays.  Coefficient matrix
c    is a general unsymmetric sparse matrix.
c    Ax = b, (solve for x) where:

c       1.0   0.0   7.0   9.0   0.0      1.0       17.0
c       2.0   4.0   0.0   0.0   0.0      1.0        6.0
c  A =  0.0   5.0   8.0   0.0   0.0  x = 1.0   b = 13.0
c       0.0   0.0   0.0  10.0  11.0      1.0       21.0
c       3.0   6.0   0.0   0.0  12.0      1.0       21.0

c  Array indices must be zero-based for calling SuperLU
      data colstr / 0, 3, 6, 8, 10, 12 /
      data rowind / 0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4 /
      data values / 1.0, 2.0, 3.0,  4.0, 5.0,  6.0,
     $              7.0, 8.0, 9.0, 10.0, 11.0, 12.0 /
      data rhs    / 17.0, 6.0, 13.0, 21.0, 21.0 /
      data xexpct / 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0 /

c  initialize solver
      mtxtyp= ’s0’
      pivot = ’n’
      neqns  = 5
      outunt = 6
      msglvl = 0

c  call regular interface
      call dgssin(mtxtyp, pivot,  neqns , colstr, rowind,outunt, msglvl,
     &            handle, ier)
      if ( ier .ne. 0 ) goto 110

c  ordering and symbolic factorization
      ordmthd = ’mmd’
      call dgssor(ordmthd, handle, ier)
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Running the above example:

      if ( ier .ne. 0 ) goto 110

c  numeric factorization
      call dgssfa ( neqns, colstr, rowind, values, handle, ier )
      if ( ier .ne. 0 ) goto 110

c  solution
      nrhs   = 1
      ldrhs  = 5
      call dgsssl ( nrhs, rhs, ldrhs, handle, ier )
      if ( ier .ne. 0 ) goto 110

c  deallocate sparse solver storage
      call dgssda ( handle, ier )
      if ( ier .ne. 0 ) goto 110

c  print values of sol
      write(6,200) ’i’, ’rhs(i)’, ’expected rhs(i)’, ’error’
      do i = 1, neqns
        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))
      enddo
      stop

  110 continue
c call to sparse solver returns an error
      write ( 6 , 400 )
     &      ’ example: FAILED sparse solver error number = ’, ier
      stop

  200 format(4x,a1,3x,a6,3x,a15,4x,a6)
  300 format(i5,3x,f5.2,7x,f5.2,8x,e10.2)     ! i/sol/xexpct values
  400 format(a60,i20)   ! fail message, sparse solver error number
      end

my_system% f95 -dalign slu.f -library=sunperf
my_system% a.out

    i   rhs(i)   expected rhs(i)     error
    1    1.00        1.00          0.00E+00
    2    1.00        1.00         -0.33E-15
    3    1.00        1.00          0.22E-15
    4    1.00        1.00         -0.11E-15
    5    1.00        1.00          0.22E-15

EXAMPLE 6-8 Invoking SuperLU through SPSOLVE Interface (Continued)
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EXAMPLE 6-9 Invoking SuperLU through One-Call SPSOLVE Interface

program SLU_SINGLE
c This program is an example driver that calls the regular interface of SPSOLVE
c  to invoke SuperLU to factor and solve a general unsymmetric system.

      implicit none
      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs, i
      character         mtxtyp*2, pivot*1, ordmthd*3
      double precision  handle(150)
      integer           colstr(6), rowind(12)
      double precision  values(12), rhs(5), xexpct(5)

c  Sparse matrix structure and value arrays.  Coefficient matrix
c    is a general unsymmetric sparse matrix.
c    Ax = b, (solve for x) where:

c       1.0   0.0   7.0   9.0   0.0      1.0       17.0
c       2.0   4.0   0.0   0.0   0.0      1.0        6.0
c  A =  0.0   5.0   8.0   0.0   0.0  x = 1.0   b = 13.0
c       0.0   0.0   0.0  10.0  11.0      1.0       21.0
c       3.0   6.0   0.0   0.0  12.0      1.0       21.0

c  Array indices must be zero-based for calling SuperLU
      data colstr / 0, 3, 6, 8, 10, 12 /
      data rowind / 0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4 /
      data values / 1.0, 2.0, 3.0,  4.0, 5.0,  6.0,
     $              7.0, 8.0, 9.0, 10.0, 11.0, 12.0 /
      data rhs    / 17.0, 6.0, 13.0, 21.0, 21.0 /
      data xexpct / 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0 /

c  initialize solver
      mtxtyp= ’s0’
      pivot = ’n’
      neqns  = 5
      outunt = 6
      msglvl = 0
      ordmthd = ’mmd’
      nrhs = 1
      ldrhs = 5

c  One-call routine of SPSOLVE
      call dgssfs (mtxtyp, pivot, neqns , colstr, rowind,
     &             values, nrhs , rhs, ldrhs , ordmthd,
     &             outunt, msglvl, handle, ier)
      if ( ier .ne. 0 ) goto 110

c  deallocate sparse solver storage
      call dgssda ( handle, ier )
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Running the above example:

6.5 References
The following books and papers provide additional information for the sparse BLAS
and sparse solver routines.

1. D.S. Dodson, R.G. Grimes, and J.G. Lewis, Sparse Extensions to the Fortran Basic
Linear Algebra Subprograms, ACM Transactions on Mathematical Software, June
1991, Vol 17, No. 2.

      if ( ier .ne. 0 ) goto 110

c  print values of sol
      write(6,200) ’i’, ’rhs(i)’, ’expected rhs(i)’, ’error’
      do i = 1, neqns
        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))
      enddo
      stop

  110 continue
c call to sparse solver returns an error
      write ( 6 , 400 )
     &      ’ example: FAILED sparse solver error number = ’, ier
      stop

  200 format(4x,a1,3x,a6,3x,a15,4x,a6)
  300 format(i5,3x,f5.2,7x,f5.2,8x,e10.2)     ! i/sol/xexpct values
  400 format(a60,i20)   ! fail message, sparse solver error number
      end

my_system% f95 -dalign slu_single.f -library=sunperf
my_system% a.out

    i   rhs(i)   expected rhs(i)     error
    1    1.00        1.00          0.00E+00
    2    1.00        1.00         -0.33E-15
    3    1.00        1.00          0.22E-15
    4    1.00        1.00         -0.11E-15
    5    1.00        1.00          0.22E-15

EXAMPLE 6-9 Invoking SuperLU through One-Call SPSOLVE Interface (Continued)
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CHAPTER 7

Using Sun Performance Library
Signal Processing Routines

The discrete Fourier transform (DFT) has always been an important analytical tool in
many areas in science and engineering. However, it was not until the development of
the fast Fourier transform (FFT) that the DFT became widely used. This is because
the DFT requires O(N2) computations, while the FFT only requires O(Nlog2N)
operations.

Sun Performance Library contains a set of routines that computes the FFT, related
FFT operations, such as convolution and correlation, and trigonometric transforms.

This chapter is divided into the following three sections.

■ Forward and Inverse FFT Routines

■ Sine and Cosine Transforms

■ Convolution and Correlation

Each section includes examples that show how the routines might be used.

For information on the Fortran 95 and C interfaces and types of arguments used in
each routine, see the section 3P man pages for the individual routines.

For example, to display the man page for the SFFTC routine, type

man -s 3P sfftc

Routine names must be lowercase. For an overview of the FFT routines, type

man -s 3P fft
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7.1 Forward and Inverse FFT Routines
TABLE 7-1 lists the names of the FFT routines and their calling sequence. Double
precision routine names are in square brackets. See the individual man pages for
detailed information on the data type and size of the arguments.

Sun Performance Library FFT routines use the following arguments.

■ OPT: Flag indicating whether the routine is called to initialize or to compute the
transform.

TABLE 7-1 FFT Routines and Their Arguments

Routine Name Arguments

Linear Routines

CFFTS [ZFFTD] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)

SFFTC [DFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)

CFFTSM [ZFFTDM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC, WORK,
LWORK, ERR)

SFFTCM [DFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC, WORK,
LWORK, ERR)

CFFTC [ZFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK, ERR)

CFFTCM [ZFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC, WORK,
LWORK, ERR)

Two-Dimensional Routines

CFFTS2 [ZFFTD2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC, WORK,
LWORK, ERR)

SFFTC2 [DFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC, WORK,
LWORK, ERR)

CFFTC2 [ZFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC, WORK,
LWORK, ERR)

Three-Dimensional Routines

CFFTS3 [ZFFTD3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
TRIGS, IFAC, WORK, LWORK, ERR)

SFFTC3 [DFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
TRIGS, IFAC, WORK, LWORK, ERR)

CFFTC3 [ZFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1, LDY2,
TRIGS, IFAC, WORK, LWORK, ERR)
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■ N1, N2, N3: Problem dimensions for one, two, and three dimensional transforms.

■ X: Input array where X is of type COMPLEX if the routine is a complex-to-complex
transform or a complex-to-real tranform. X is of type REAL for a real-to-complex
transform.

■ Y: Output array where Y is of type COMPLEX if the routine is a complex-to-complex
transform or a real-to-complex tranform. Y is of type REAL for a complex-to-real
transform.

■ LDX1, LDX2 and LDY1, LDY2: LDX1 and LDX2 are the leading dimensions of the
input array, and LDY1 and LDY2 are the leading dimensions of the output array.
The FFT routines allow the output to overwrite the input, which is an in-place
transform, or to be stored in a separate array apart from the input array, which is
an out-of-place transform. In complex-to-complex tranforms, the input data is of
the same size as the output data. However, real-to-complex and complex-to-real
transforms have different memory requirements for input and output data. Care
must be taken to ensure that the input array is large enough to acommodate the
transform results when computing an in-place tranform.

■ TRIGS: Array containing the trigonometric weights.

■ IFAC: Array containing factors of the problem dimensions. The problem sizes are
as follows:

■ Linear FFT: Problem size of dimension N1

■ Two-dimensional FFT: Problem size of dimensions N1 and N2

■ Three-dimensional FFT: Problem size of dimensions N1, N2, and N3

While N1, N2, and N3 can be of any size, a real-to-complex or a complex-to-real
transform can be computed most efficiently when

and a complex-to-complex transform can be computed most efficiently when

where p, q, r, s, t, u, and v are integers and p, q, r, s, t, u, v ≥ 0.

■ WORK: Workspace whose size depends on the routine and the number of threads
that are being used to compute the transform if the routine is parallelized.

■ LWORK: Size of workspace. If LWORK is zero, the routine will allocate a workspace
with the required size.

■ SCALE: A scalar with which the output is scaled. Occasionally in literature, the
inverse transform is defined with a scaling factor of for one-dimensional
transforms, for two-dimensional transforms, and
for three-dimensional transforms. In such case, the inverse transform is said to be
normalized. If a normalized FFT is followed by its inverse FFT, the result is the
original input data. The Sun Performance Library FFT routines are not
normalized. However, normalization can be done easily by calling the inverse FFT
routine with the appropriate scaling factor stored in SCALE.
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q× 4
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■ ERR: A flag returning a nonzero value if an error is encountered in the routine and
zero otherwise.

7.1.1 Linear FFT Routines
Linear FFT routines compute the FFT of real or complex data in one dimension only.
The data can be one or more complex or real sequences. For a single sequence, the
data is stored in a vector. If more than one sequence is being transformed, the
sequences are stored column-wise in a two-dimensional array and a one-dimensional
FFT is computed for each sequence along the column direction. The linear forward
FFT routines compute

,

where , or expressed in polar form,

.

The inverse FFT routines compute

,

or in polar form,

.

With the forward transform, if the input is one or more complex sequences of size
N1, the result will be one or more complex sequences, each consisting of N1
unrelated data points. However, if the input is one or more real sequences, each
containing N1 real data points, the result will be one or more complex sequences that
are conjugate symmetric. That is,
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The imaginary part of X(0) is always zero. If N1 is even, the imaginary part of
is also zero. Both zeros are stored explicitly. Because the second half of each sequence
can be derived from the first half, only complex data points are computed and
stored in the output array. Here and elsewhere in this chapter, integer division is
rounded down.

With the inverse transform, if an N1-point complex-to-complex transform is being
computed, then N1 unrelated data points are expected in each input sequence and N1
data points will be returned in the output array. However, if an N1-point
complex-to-real transform is being computed, only the first complex data
points of each conjugate symmetric input sequence are expected in the input, and the
routine will return N1 real data points in each output sequence.

For each value of N1, either the forward or the inverse routine must be called to
compute the factors of N1 and the trigonometric weights associated with those
factors before computing the actual FFT. The factors and trigonometric weights can
be reused in subsequent transforms as long as N1 remains unchanged.

TABLE 7-2 lists the single precision linear FFT routines and their purposes. For
routines that have two-dimensional arrays as input and output, TABLE 7-2 also lists
the leading dimension requirements. The same information applies to the
corresponding double precision routines except that their data types are double
precision and double complex. See TABLE 7-2 for the mapping. See the individual man
pages for a complete description of the routines and their arguments.

TABLE 7-2 Single Precision Linear FFT Routines

Name Purpose
Size and Type
of Input

Size and Type
of Output Leading Dimension Requirements

In-place Out-of-Place

SFFTC OPT = 0 initialization

OPT = -1 real-to-complex
forward linear FFT of a
single vector

N1,
Real

,

Complex

SFFTC OPT = 0 initialization

OPT = 1 complex-to-real
inverse linear FFT of
single vector

,

Complex

N1
Real

CFFTC OPT = 0 initialization

OPT = -1
complex-to-complex
forward linear FFT of a
single vector

N1,
Complex

N1,
Complex

X N1
2

-------( )

N1
2

------- 1+

N1
2

------- 1+

N1
2

------- 1+

N1
2

------- 1+
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TABLE 7-2 Notes.

■ LDX1 is the leading dimension of the input array.

■ LDY1 is the leading dimension of the output array.

■ N1 is the first dimension of the FFT problem.

■ N2 is the second dimension of the FFT problem.

■ When calling routines with OPT = 0 to initialize the routine, the only error checking
that is done is to determine if N1 < 0

OPT = 1
complex-to-complex
inverse linear FFT of a
single vector

N1,
Complex

N1,
Complex

SFFTCM OPT = 0 initialization

OPT = -1 real-to-complex
forward linear FFT of M
vectors

N1 × M,
Real

,

Complex

LDX1 = 2 × LDY1 LDX1 ≥ N1

CFFTSM OPT = 0 initialization

OPT = 1 complex-to-real
inverse linear FFT of M
vectors

,

Complex

N1 × M,
Real

LDX1 ≥

LDY1=2 × LDX1

LDX1 ≥

LDY1 ≥ N1

CFFTCM OPT = 0 initialization

OPT = -1
complex-to-complex
forward linear FFT of M
vectors

N1 × M,
Complex

N1 × M,
Complex

LDX1 ≥ N1
LDY1 ≥ N1

LDX1 ≥ N1
LDY1 ≥ N1

OPT = 1
complex-to-complex
inverse linear FFT of M
vectors

N1 × M,
Complex

N1 × M,
Complex

LDX1 ≥ N1
LDY1 ≥ N1

LDX1 ≥ N1
LDY1 ≥ N1

TABLE 7-2 Single Precision Linear FFT Routines (Continued)

Name Purpose
Size and Type
of Input

Size and Type
of Output Leading Dimension Requirements

In-place Out-of-Place

N1
2

------- 1+⎝ ⎠
⎛ ⎞ M×

N1
2

------- 1+⎝ ⎠
⎛ ⎞ M× N1

2
------- 1+ N1

2
------- 1+
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EXAMPLE 7-1 shows how to compute the linear real-to-complex and complex-to-real
FFT of a set of sequences.

EXAMPLE 7-1 Linear Real-to-Complex FFT and Complex-to-Real FFT

my_system% cat testscm.f
       PROGRAM TESTSCM
       IMPLICIT NONE
       INTEGER :: LW, IERR, I, J, K, LDX, LDC
       INTEGER,PARAMETER :: N1 = 3, N2 = 2, LDZ = N1,
      $        LDC = N1, LDX = 2*LDC
       INTEGER, DIMENSION(:) :: IFAC(128)
       REAL :: SCALE
       REAL, PARAMETER :: ONE = 1.0
       REAL, DIMENSION(:) :: SW(N1), TRIGS(2*N1)
       REAL, DIMENSION(0:LDX-1,0:N2-1) :: X, V, Y
       COMPLEX, DIMENSION(0:LDZ-1, 0:N2-1) :: Z
* workspace size

LW = N1
SCALE = ONE/N1
WRITE(*,*)
$ 'Linear complex-to-real and real-to-complex FFT of a sequence'

       WRITE(*,*)
       X = RESHAPE(SOURCE = (/.1, .2, .3,0.0,0.0,0.0,7.,8.,9.,
      $    0.0, 0.0, 0.0/), SHAPE=(/6,2/))

V = X
       WRITE(*,*) 'X = '
       DO I = 0,N1-1
         WRITE(*,'(2(F4.1,2x))') (X(I,J), J = 0, N2-1)
       END DO
       WRITE(*,*)
* intialize trig table and compute factors of N1
       CALL SFFTCM(0, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,
      $ SW, LW, IERR)
       IF (IERR .NE. 0) THEN
          PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
          STOP
       END IF

* Compute out-of-place forward linear FFT.
* Let FFT routine allocate memory.
       CALL SFFTCM(-1, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,
      $            SW, 0, IERR)
      IF (IERR .NE. 0) THEN
        PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
        STOP
      END IF
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      WRITE(*,*) 'out-of-place forward FFT of X:'
      WRITE(*,*)'Z ='
      DO I = 0, N1/2
         WRITE(*,'(2(A1, F4.1,A1,F4.1,A1,2x))') ('(',REAL(Z(I,J)),
     $ ',',AIMAG(Z(I,J)),')', J = 0, N2-1)
      END DO
      WRITE(*,*)
* Compute in-place forward linear FFT.
* X must be large enough to store N1/2+1 complex values
      CALL SFFTCM(-1, N1, N2, ONE, X, LDX, X, LDC, TRIGS, IFAC,
     $            SW, LW, IERR)
      IF (IERR .NE. 0) THEN
         PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
         STOP
      END IF
      WRITE(*,*) 'in-place forward FFT of X:'
      CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, X, LDC, N2)
      WRITE(*,*)
* Compute out-of-place inverse linear FFT.
      CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, X, LDX, TRIGS, IFAC,
     $            SW, LW, IERR)
      IF (IERR .NE. 0) THEN
         PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
         STOP
      END IF
      WRITE(*,*) 'out-of-place inverse FFT of Z:'
      DO I = 0, N1-1
         WRITE(*,'(2(F4.1,2X))') (X(I,J), J = 0, N2-1)
      END DO
      WRITE(*,*)
* Compute in-place inverse linear FFT.
      CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, Z, LDZ*2, TRIGS,
     $            IFAC, SW, 0, IERR)
      IF (IERR .NE. 0) THEN
         PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
         STOP
      END IF

      WRITE(*,*) 'in-place inverse FFT of Z:'
      CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Z, LDZ*2, N2)
      WRITE(*,*)
      END PROGRAM TESTSCM
      SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
      INTEGER N1, N2, N3, I, J, K
      REAL A(LD1, LD2, *)
      DO K = 1, N3

EXAMPLE 7-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)
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EXAMPLE 7-1 Notes:

         DO I = 1, N1
            WRITE(*,'(5(F4.1,2X))') (A(I,J,K), J = 1, N2)
         END DO
         WRITE(*,*)
      END DO
      END
      SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
      INTEGER N1, N2, N3, I, J, K
      COMPLEX A(LD1, LD2, *)
      DO K = 1, N3
         DO I = 1, N1
            WRITE(*,'(5(A1, F4.1,A1,F4.1,A1,2X))') ('(',REAL(A(I,J,K)),
     $            ',',AIMAG(A(I,J,K)),')', J = 1, N2)
         END DO
         WRITE(*,*)
      END DO
      END
my_system% f95 -dalign testscm.f -xlibrary=sunperf
my_system% a.out
Linear complex-to-real and real-to-complex FFT of a sequence
X =
0.1 7.0
0.2 8.0
0.3 9.0
out-of-place forward FFT of X:
Z =
( 0.6, 0.0) (24.0, 0.0)
(-0.2, 0.1) (-1.5, 0.9)
in-place forward FFT of X:
( 0.6, 0.0) (24.0, 0.0)
(-0.2, 0.1) (-1.5, 0.9)
out-of-place inverse FFT of Z:
0.1 7.0
0.2 8.0
0.3 9.0

in-place inverse FFT of Z:
0.1 7.0
0.2 8.0
0.3 9.0

EXAMPLE 7-1 Linear Real-to-Complex FFT and Complex-to-Real FFT (Continued)
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The forward FFT of X is actually

Because of symmetry, Z(2) is the complex conjugate of Z(1), and therefore only the
first two complex values are stored. For the in-place forward transform,
SFFTCM is called with real array X as the input and output. Because SFFTCM expects
the output array to be of type COMPLEX, the leading dimension of X as an output
array must be as if X were complex. Since the leading dimension of real array X is
LDX = 2 × LDC, the leading dimension of X as a complex output array must be LDC.
Similarly, in the in-place inverse transform, CFFTSM is called with complex array Z as
the input and output. Because CFFTSM expects the output array to be of type REAL,
the leading dimension of Z as an output array must be as if Z were real. Since the
leading dimension of complex array Z is LDZ, the leading dimension of Z as a real
output array must be LDZ × 2.

EXAMPLE 7-2 shows how to compute the linear complex-to-complex FFT of a set of
sequences.

(0.6, 0.0) (24.0, 0.0)

Z = (-0.2, 0.1) (-1.5, 0.9)

(-0.2, -0.1) (-1.5, -0.9)

EXAMPLE 7-2 Linear Complex-to-Complex FFT

my_system% cat testccm.f
       PROGRAM TESTCCM
       IMPLICIT NONE
       INTEGER :: LDX1, LDY1, LW, IERR, I, J, K, LDZ1, NCPUS,
      $           USING_THREADS, IFAC(128)
       INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1, LDZ1 = N1,
      $                      LDY1 = N1+2
       REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/N1
       COMPLEX :: Z(0:LDZ1-1,0:N2-1), X(0:LDX1-1,0:N2-1),
      $           Y(0:LDY1-1,0:N2-1)

       REAL :: TRIGS(2*N1)
       REAL, DIMENSION(:), ALLOCATABLE :: SW
* get number of threads
       NCPUS = USING_THREADS()
* workspace size
       LW = 2 * N1 * NCPUS
       WRITE(*,*)'Linear complex-to-complex FFT of one or more sequences'
       WRITE(*,*)
       ALLOCATE(SW(LW))
       X = RESHAPE(SOURCE =(/(.1,.2),(.3,.4),(.5,.6),(.7,.8),(.9,1.0),

N1
2

------- 1+ 2=
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      $ (1.1,1.2),(1.3,1.4),(1.5,1.6),(1.7,1.8),(1.9,2.0),(2.1,2.2),
      $ (1.2,2.0)/), SHAPE=(/LDX1,N2/))
       Z = X
       WRITE(*,*) 'X = '
       DO I = 0, N1-1
          WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(X(I,J)),
      $           ',',AIMAG(X(I,J)),')', J = 0, N2-1)
       END DO

WRITE(*,*)
* intialize trig table and compute factors of N1
       CALL CFFTCM(0, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
      $            SW, LW, IERR)
       IF (IERR .NE. 0) THEN
         PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
         STOP
       END IF
* Compute out-of-place forward linear FFT.
* Let FFT routine allocate memory.
       CALL CFFTCM(-1, N1, N2, ONE, X, LDX1, Y, LDY1, TRIGS, IFAC,
      $            SW, 0, IERR)
       IF (IERR .NE. 0) THEN
          PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR
          STOP
       END IF
* Compute in-place forward linear FFT. LDZ1 must equal LDX1
       CALL CFFTCM(-1, N1, N2, ONE, Z, LDX1, Z, LDZ1, TRIGS,
      $            IFAC, SW, 0, IERR)
       WRITE(*,*) 'in-place forward FFT of X:'
       DO I = 0, N1-1
          WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Z(I,J)),
      $           ',',AIMAG(Z(I,J)),')', J = 0, N2-1)
       END DO

       WRITE(*,*)
       WRITE(*,*) 'out-of-place forward FFT of X:'
       WRITE(*,*) 'Y ='
       DO I = 0, N1-1

WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Y(I,J)),
      $        ',',AIMAG(Y(I,J)),')', J = 0, N2-1)
       END DO
       WRITE(*,*)
* Compute in-place inverse linear FFT.
       CALL CFFTCM(1, N1, N2, SCALE, Y, LDY1, Y, LDY1, TRIGS, IFAC,
      $            SW, LW, IERR)
       IF (IERR .NE. 0) THEN
          PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

EXAMPLE 7-2 Linear Complex-to-Complex FFT (Continued)
Chapter 7 Using Sun Performance Library Signal Processing Routines 7-11



7.1.2 Two-Dimensional FFT Routines
For the linear FFT routines, when the input is a two-dimensional array, the FFT is
computed along one dimension only, namely, along the columns of the array. The
two-dimensional FFT routines take a two-dimensional array as input and compute
the FFT along both the column and row dimensions. Specifically, the forward
two-dimensional FFT routines compute

,

          STOP
       END IF
       WRITE(*,*) 'in-place inverse FFT of Y:'
       WRITE(*,*) 'Y ='
       DO I = 0, N1-1
          WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Y(I,J)),
      $           ',',AIMAG(Y(I,J)),')', J = 0, N2-1)
       END DO
       DEALLOCATE(SW)
       END PROGRAM TESTCCM
my_system% f95 -dalign testccm.f -library=sunperf
my_system% a.out
Linear complex-to-complex FFT of one or more sequences
X =
( 0.1, 0.2) ( 0.7, 0.8) ( 1.3, 1.4) ( 1.9, 2.0)
( 0.3, 0.4) ( 0.9, 1.0) ( 1.5, 1.6) ( 2.1, 2.2)
( 0.5, 0.6) ( 1.1, 1.2) ( 1.7, 1.8) ( 1.2, 2.0)
in-place forward FFT of X:
(  0.9,  1.2) (  2.7,  3.0) (  4.5,  4.8) ( 5.2,  6.2)
( -0.5, -0.1) ( -0.5, -0.1) ( -0.5, -0.1) ( 0.4, -0.9)
( -0.1, -0.5) ( -0.1, -0.5) ( -0.1, -0.5) ( 0.1,  0.7)
out-of-place forward FFT of X:
Y =
(  0.9,  1.2) (  2.7,  3.0) (  4.5,  4.8) ( 5.2,  6.2)
( -0.5, -0.1) ( -0.5, -0.1) ( -0.5, -0.1) ( 0.4, -0.9)
( -0.1, -0.5) ( -0.1, -0.5) ( -0.1, -0.5) ( 0.1,  0.7)
in-place inverse FFT of Y:
Y =
( 0.1, 0.2) ( 0.7, 0.8) ( 1.3, 1.4) ( 1.9, 2.0)
( 0.3, 0.4) ( 0.9, 1.0) ( 1.5, 1.6) ( 2.1, 2.2)
( 0.5, 0.6) ( 1.1, 1.2) ( 1.7, 1.8) ( 1.2, 2.0)

EXAMPLE 7-2 Linear Complex-to-Complex FFT (Continued)

X k n,( ) x j l,( )e

2– πiln
N2

-----------------

j 0=

N1 1–

∑
l 0=

N2 1–

∑ e

2– πijk
N1

-----------------

,= k 0 … N1, 1 n,–, 0 … N2 1–, ,= =
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and the inverse two-dimensional FFT routines compute

.

For both the forward and inverse two-dimensional transforms, a complex-to-complex
transform where the input problem is N1 × N2 will yield a complex array that is also
N1 × N2.

When computing a real-to-complex two-dimensional transform (forward FFT), if the
real input array is of dimensions N1 × N2, the result will be a complex array of
dimensions . Conversely, when computing a complex-to-real transform
(inverse FFT) of dimensions N1 × N2, an complex array is required as
input. As with the real-to-complex and complex-to-real linear FFT, because of
conjugate symmetry, only the first complex data points need to be stored in the
input or output array along the first dimension. The complex subarray

can be obtained from as follows:

To compute a two-dimensional transform, an FFT routine must be called twice. One
call initializes the routine and the second call actually computes the transform. The
initialization includes computing the factors of N1 and N2 and the trigonometric
weights associated with those factors. In subsequent forward or inverse transforms,
initialization is not necessary as long as N1 and N2 remain unchanged.

IMPORTANT: Upon returning from a two-dimensional FFT routine, Y(0 : N - 1, :)
contains the transform results and the original contents of Y(N : LDY-1, :) is
overwritten. Here, N = N1 in the complex-to-complex and complex-to-real transforms
and N = in the real-to-complex transform.

x j l,( ) X k n,( )e

2πiln
N2

--------------

k 0=

N1 1–

∑
n 0=

N2 1–

∑ e

2πijk
N1

--------------

,= j 0 … N1, 1 l,–, 0 … N2 1–, ,= =

N1
2

------- 1+( ) N2×
N1
2

------- 1+( ) N2×

N1
2

------- 1+

X N1
2

------- 1:+ N1 1– :,( ) X 0:N1
2

------- :,( )

X k n,( ) X* N1 k n,–( ),=

k N1
2

------- 1 … N1, 1–,+=

n 0 … N2, 1–,=

N1
2

------- 1+
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TABLE 7-3 lists the single precision two-dimensional FFT routines and their purposes.
The same information applies to the corresponding double precision routines except
that their data types are double precision and double complex. See TABLE 7-3 for the
mapping. Refer to the individual man pages for a complete description of the
routines and their arguments.

TABLE 7-3 Notes:

■ LDX1 is leading dimension of input array.

■ LDY1 is leading dimension of output array.

■ N1 is first dimension of the FFT problem.

■ N2 is second dimension of the FFT problem.

■ When calling routines with OPT = 0 to initialize the routine, the only error
checking that is done is to determine if N1, N2 < 0.

TABLE 7-3 Single Precision Two-Dimensional FFT Routines

Name Purpose
Size, Type of
Input

Size, Type of
Output Leading Dimension Requirements

In-place Out-of-Place

SFFTC2 OPT = 0 initialization

OPT = -1 real-to-complex
forward two-dimensional
FFT

N1 × N2, Real ,
Complex

LDX1 = 2 × LDY1

LDY1 ≥
LDX1 ≥ N1
LDY1 ≥

CFFTS2 OPT = 0 initialization

OPT = 1 complex-to-real
inverse two-dimensional
FFT

,
Complex

N1 × N2, Real LDX1 ≥
LDY1=2 × LDX1

LDX1 ≥
LDY1≥ 2 × LDX1

LDY1 is even

CFFTC2 OPT = 0 initialization

OPT = -1
complex-to-complex
forward two-dimensional
FFT

N1 × N2,
Complex

N1 × N2,
Complex

LDX1 ≥ N1
LDY1 = LDX1

LDX1 ≥ N1
LDY1 ≥ N1

OPT = 1
complex-to-complex
inverse two-dimensional
FFT

N1 × N2,
Complex

N1 × N2,
Complex

LDX1 ≥ N1
LDY1 = LDX1

LDX1 ≥ N1
LDY1 = LDX1

N1
2

------- 1+( ) N2×
N1
2

------- 1+ N1
2

------- 1+

N1
2

------- 1+( ) N2× N1
2

------- 1+ N1
2

------- 1+
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The following example shows how to compute a two-dimensional real-to-complex
FFT and complex-to-real FFT of a two-dimensional array.

EXAMPLE 7-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a
Two-Dimensional Array

my_system% cat testsc2.f
       PROGRAM TESTSC2
       IMPLICIT NONE
       INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1,
      $         LDY1 = N1/2+1, LDR1 = 2*(N1/2+1)
       INTEGER LW, IERR, I, J, K, IFAC(128*2)
       REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2)
       REAL :: V(LDR1,N2), X(LDX1, N2), Z(LDR1,N2),
      $        SW(2*N2), TRIGS(2*(N1+N2))
       COMPLEX :: Y(LDY1,N2)
       WRITE(*,*) $'Two-dimensional complex-to-real and real-to-complex FFT'
       WRITE(*,*)
       X = RESHAPE(SOURCE = (/.1, .2, .3, .4, .5, .6, .7, .8,
      $            2.0,1.0, 1.1, 1.2/), SHAPE=(/LDX1,N2/))
       DO I = 1, N2
          V(1:N1,I) = X(1:N1,I)
       END DO
       WRITE(*,*) 'X ='
       DO I = 1, N1
          WRITE(*,'(5(F5.1,2X))') (X(I,J), J = 1, N2)
       END DO
       WRITE(*,*)
* Initialize trig table and get factors of N1, N2
       CALL SFFTC2(0,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,
      $            IFAC,SW,0,IERR)
* Compute 2-dimensional out-of-place forward FFT.
* Let FFT routine allocate memory.
* cannot do an in-place transform in X because LDX1 < 2*(N1/2+1)
       CALL SFFTC2(-1,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,
      $            IFAC,SW,0,IERR)
       WRITE(*,*) 'out-of-place forward FFT of X:'
       WRITE(*,*)'Y ='
       DO I = 1, N1/2+1
          WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(',REAL(Y(I,J)),
      $           ',',AIMAG(Y(I,J)),')', J = 1, N2)
       END DO
       WRITE(*,*)
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* Compute 2-dimensional in-place forward FFT.
* Use workspace already allocated.
* V which is real array containing input data is also
* used to store complex results; as a complex array, its first
* leading dimension is LDR1/2.
       CALL SFFTC2(-1,N1,N2,ONE,V,LDR1,V,LDR1/2,TRIGS,
      $            IFAC,SW,LW,IERR)
       WRITE(*,*) 'in-place forward FFT of X:'
       CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, V, LDR1/2, N2)
* Compute 2-dimensional out-of-place inverse FFT.
* Leading dimension of Z must be even
       CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1,Z,LDR1,TRIGS,
      $            IFAC,SW,0,IERR)
       WRITE(*,*) 'out-of-place inverse FFT of Y:'
       DO I = 1, N1
          WRITE(*,'(5(F5.1,2X))') (Z(I,J), J = 1, N2)
       END DO
       WRITE(*,*)
* Compute 2-dimensional in-place inverse FFT.
* Y which is complex array containing input data is also
* used to store real results; as a real array, its first
* leading dimension is 2*LDY1.
       CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1,Y,2*LDY1,
      $            TRIGS,IFAC,SW,0,IERR)
       WRITE(*,*) 'in-place inverse FFT of Y:'
       CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Y, 2*LDY1, N2)
       END PROGRAM TESTSC2
       SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
       INTEGER N1, N2, N3, I, J, K
       REAL A(LD1, LD2, *)
       DO K = 1, N3
          DO I = 1, N1
             WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)
          END DO
          WRITE(*,*)
       END DO
       END

EXAMPLE 7-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a
Two-Dimensional Array (Continued)
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7.1.3 Three-Dimensional FFT Routines
Sun Performance Library includes routines that compute three-dimensional FFT. In
this case, the FFT is computed along all three dimensions of a three-dimensional
array. The forward FFT computes

,

       SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
       INTEGER N1, N2, N3, I, J, K
       COMPLEX A(LD1, LD2, *)
       DO K = 1, N3
          DO I = 1, N1
             WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(A(I,J,K)),
      $              ',',AIMAG(A(I,J,K)),')', J = 1, N2)
          END DO
          WRITE(*,*)
       END DO
       END
my_system% f95 -dalign testsc2.f -library=sunperf
my_system% a.out
Two-dimensional complex-to-real and real-to-complex FFT
x =
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 2.0 1.2
out-of-place forward FFT of X:
Y =
(  8.9, 0.0) ( -2.9,  1.8) ( -0.7, 0.0) ( -2.9, -1.8)
( -1.2, 1.3) (  0.5, -1.0) ( -0.5, 1.0) (  0.5, -1.0)
in-place forward FFT of X:
( 8.9, 0.0) ( -2.9, 1.8) ( -0.7, 0.0) ( -2.9, -1.8)
( -1.2, 1.3) ( 0.5, -1.0) ( -0.5, 1.0) ( 0.5, -1.0)
out-of-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 2.0 1.2
in-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 2.0 1.2

EXAMPLE 7-3 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a
Two-Dimensional Array (Continued)

X k n m, ,( ) x j l h, ,( ) e
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e
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∑
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∑
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∑=
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k = 0, …, N1 - 1

n = 0, …, N2 - 1

m = 0, …, N3 - 1

and the inverse FFT computes

,

j = 0, …, N1 - 1

l = 0, …, N2 - 1

h = 0, …, N3 - 1

In the complex-to-complex transform, if the input problem is N1 × N2 × N3, a
three-dimensional transform will yield a complex array that is also N1 × N2 × N3.
When computing a real-to-complex three-dimensional transform, if the real input
array is of dimensions N1 × N2 × N3, the result will be a complex array of dimensions

. Conversely, when computing a complex-to-real FFT of dimensions
N1 × N2 × N3, an complex array is required as input. As with the
real-to-complex and complex-to-real linear FFT, because of conjugate symmetry, only
the first complex data points need to be stored along the first dimension. The
complex subarray can be obtained from as follows:

To compute a three-dimensional transform, an FFT routine must be called twice:
Once to initialize and once more to actually compute the transform. The initialization
includes computing the factors of N1, N2, and N3 and the trigonometric weights
associated with those factors. In subsequent forward or inverse transforms,
initialization is not necessary as long as N1, N2, and N3 remain unchanged.

IMPORTANT: Upon returning from a three-dimensional FFT routine, Y(0 : N - 1, :, :)
contains the transform results and the original contents of Y(N:LDY1-1, :, :) is
overwritten. Here, N = N1 in the complex-to-complex and complex-to-real transforms
and N = in the real-to-complex transform.

x j l h, ,( ) X k n m, ,( ) e

2πihm
N3

-----------------

e

2πiln
N2

--------------

e

2πijk
N1

--------------

k 0=

N1 1–

∑
n 0=

N2 1–

∑
m 0=

N3 1–

∑=

N1
2

------- 1+( ) N2 N3××
N1
2

------- 1+( ) N2 N3××

N1
2

------- 1+
X N1

2
------- 1:+ N1 1– :, :,( ) X 0:N1

2
------- :, :,( )

X k n m, ,( ) X∗ N1 k n m, ,–( ),=

k N1
2

------- 1 …N1 1–,+=

n 0 … N2, 1–,=

m 0 … N3, 1–,=

N1
2

------- 1+
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TABLE 7-4 lists the single precision three-dimensional FFT routines and their purposes.
The same information applies to the corresponding double precision routines except
that their data types are double precision and double complex. See TABLE 7-4 for the
mapping. See the individual man pages for a complete description of the routines
and their arguments.

TABLE 7-4 Notes:

■ LDX1 is first leading dimension of input array.

■ LDX2 is the second leading dimension of the input array.

■ LDY1 is the first leading dimension of the output array.

■ LDY2 is the second leading dimension of the output array.

TABLE 7-4 Single Precision Three-Dimensional FFT Routines

Name Purpose Size, Type of Input Size, Type of Output Leading Dimension Requirements

In-place Out-of-Place

SFFTC3 OPT = 0
initialization

OPT = -1
real-to-complex
forward
three-dimensional
FFT

N1 × N2 × N3, Real ,
Complex

LDX1=2 × LDY1

LDX2 ≥ N2
LDY1 ≥
LDY2 = LDX2

LDX1 ≥ N1
LDX2 ≥ N2
LDY1 ≥
LDY2 ≥ N2

CFFTS3 OPT = 0
initialization

OPT = 1
complex-to-real
inverse
three-dimensional
FFT

,
Complex

N1 × N2 × N3, Real LDX1 ≥
LDX2 ≥ N2
LDY1=2 × LDX1

LDY2=LDX2

LDX1 ≥
LDX2 ≥ N2
LDY1 ≥
2 × LDX1

LDY1 is even
LDY2 ≥ N2

CFFTC3 OPT = 0
initialization

OPT = -1
complex-to-compl
ex forward
three-dimensional
FFT

N1 × N2 × N3,
Complex

N1 × N2 × N3,
Complex

LDX1 ≥ N1
LDX2 ≥ N2
LDY1=LDX1
LDY2=LDX2

LDX1 ≥ N1
LDX2 ≥ N2
LDY1 ≥ N1
LDY2 ≥ N2

OPT = 1
complex-to-compl
ex inverse
three-dimensional
FFT

N1 × N2 × N3,
Complex

N1 × N2 × N3,
Complex

LDX1 ≥ N1
LDX2 ≥ N2
LDY1=LDX1
LDY2=LDX2

LDX1 ≥ N1
LDX2 ≥ N2
LDY1 ≥ N1
LDY2 ≥ N2

N1
2

------- 1+( ) N2 N3××

N1
2

------- 1+ N1
2

------- 1+

N1
2

------- 1+( ) N2 N3×× N1
2

------- 1+ N1
2

------- 1+
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■ N1 is the first dimension of the FFT problem.

■ N2 is the second dimension of the FFT problem.

■ N3 is the third dimension of the FFT problem.

■ When calling routines with OPT = 0 to initialize the routine, the only error checking
that is done is to determine if N1, N2, N3 < 0.

EXAMPLE 7-4 shows how to compute the three-dimensional real-to-complex FFT and
complex-to-real FFT of a three-dimensional array.

EXAMPLE 7-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a
Three-Dimensional Array

my_system% cat testsc3.f
       PROGRAM TESTSC3
       IMPLICIT NONE
       INTEGER LW, NCPUS, IERR, I, J, K, USING_THREADS, IFAC(128*3)
       INTEGER, PARAMETER :: N1 = 3, N2 = 4, N3 = 2, LDX1 = N1,
      $                      LDX2 = N2, LDY1 = N1/2+1, LDY2 = N2,
      $                      LDR1 = 2*(N1/2+1), LDR2 = N2
       REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2*N3)

       REAL :: V(LDR1,LDR2,N3), X(LDX1,LDX2,N3), Z(LDR1,LDR2,N3),
      $        TRIGS(2*(N1+N2+N3))
       REAL, DIMENSION(:), ALLOCATABLE :: SW
       COMPLEX :: Y(LDY1,LDY2,N3)

WRITE(*,*)
$'Three-dimensional complex-to-real and real-to-complex FFT'

       WRITE(*,*)
* get number of threads
       NCPUS = USING_THREADS()
* compute workspace size required
       LW = (MAX(MAX(N1,2*N2),2*N3) + 16*N3) * NCPUS
       ALLOCATE(SW(LW))
       X = RESHAPE(SOURCE =
      $    (/ .1, .2, .3, .4, .5, .6, .7, .8, .9,1.0,1.1,1.2,
      $     4.1,1.2,2.3,3.4,6.5,1.6,2.7,4.8,7.9,1.0,3.1,2.2/),
      $     SHAPE=(/LDX1,LDX2,N3/))
       V = RESHAPE(SOURCE =
      $    (/.1,.2,.3,0.,.4,.5,.6,0.,.7,.8,.9,0.,1.0,1.1,1.2,0.,
      $     4.1,1.2,2.3,0.,3.4,6.5,1.6,0.,2.7,4.8,7.9,0.,
      $     1.0,3.1,2.2,0./), SHAPE=(/LDR1,LDR2,N3/))
       WRITE(*,*) 'X ='
       DO K = 1, N3
          DO I = 1, N1
             WRITE(*,'(5(F5.1,2X))') (X(I,J,K), J = 1, N2)
          END DO
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          WRITE(*,*)
       END DO
* Initialize trig table and get factors of N1, N2 and N3
       CALL SFFTC3(0,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,
      $            IFAC,SW,0,IERR)
* Compute 3-dimensional out-of-place forward FFT.
* Let FFT routine allocate memory.
* cannot do an in-place transform because LDX1 < 2*(N1/2+1)
       CALL SFFTC3(-1,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,
      $            IFAC,SW,0,IERR)
       WRITE(*,*) 'out-of-place forward FFT of X:'
       WRITE(*,*)'Y ='
       DO K = 1, N3
          DO I = 1, N1/2+1
             WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(',REAL(Y(I,J,K)),
      $              ',',AIMAG(Y(I,J,K)),')', J = 1, N2)
          END DO
          WRITE(*,*)
       END DO

* Compute 3-dimensional in-place forward FFT.
* Use workspace already allocated.
* V which is real array containing input data is also
* used to store complex results; as a complex array, its first
* leading dimension is LDR1/2.
       CALL SFFTC3(-1,N1,N2,N3,ONE,V,LDR1,LDR2,V,LDR1/2,LDR2,TRIGS,
      $            IFAC,SW,LW,IERR)
       WRITE(*,*) 'in-place forward FFT of X:'
       CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, N3, V, LDR1/2, LDR2)
* Compute 3-dimensional out-of-place inverse FFT.
* First leading dimension of Z (LDR1) must be even
       CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2,Z,LDR1,LDR2,TRIGS,
      $            IFAC,SW,0,IERR)
       WRITE(*,*) 'out-of-place inverse FFT of Y:'
       DO K = 1, N3
         DO I = 1, N1
            WRITE(*,'(5(F5.1,2X))') (Z(I,J,K), J = 1, N2)
         END DO
         WRITE(*,*)
       END DO
* Compute 3-dimensional in-place inverse FFT.
* Y which is complex array containing input data is also
* used to store real results; as a real array, its first
* leading dimension is 2*LDY1.
       CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2,Y,2*LDY1,LDY2,

EXAMPLE 7-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a
Three-Dimensional Array (Continued)
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      $            TRIGS,IFAC,SW,LW,IERR)
       WRITE(*,*) 'in-place inverse FFT of Y:'
       CALL PRINT_COMPLEX_AS_REAL(N1, N2, N3, Y, 2*LDY1, LDY2)
       DEALLOCATE(SW)
       END PROGRAM TESTSC3
       SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)
       INTEGER N1, N2, N3, I, J, K
       REAL A(LD1, LD2, *)
       DO K = 1, N3
          DO I = 1, N1
             WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)
          END DO
          WRITE(*,*)
       END DO
       END
       SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)
       INTEGER N1, N2, N3, I, J, K

COMPLEX A(LD1, LD2), *)
       DO K = 1, N3
          DO I = 1, N1
             WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(A(I,J,K)),
      $              ',',AIMAG(A(I,J,K)),')', J = 1, N2)
          END DO
          WRITE(*,*)
       END DO
       END
my_system% f95 -dalign testsc3.f -xlibrary=sunperf
my_system% a.out
Three-dimensional complex-to-real and real-to-complex FFT
X =
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2
out-of-place forward FFT of X:
Y =
( 48.6, 0.0) ( -9.6, -3.4) ( 3.4, 0.0) ( -9.6, 3.4)
( -4.2, -1.0) ( 2.5, -2.7) ( 1.0, 8.7) ( 9.5, -0.7)
(-33.0, 0.0) (  6.0, 7.0) ( -7.0,  0.0) (  6.0, -7.0)
(  3.0, 1.7) ( -2.5, 2.7) ( -1.0, -8.7) ( -9.5,  0.7)
in-place forward FFT of X:
( 48.6, 0.0) ( -9.6, -3.4) ( 3.4, 0.0) ( -9.6, 3.4)
( -4.2, -1.0) ( 2.5, -2.7) ( 1.0, 8.7) ( 9.5, -0.7)

EXAMPLE 7-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a
Three-Dimensional Array (Continued)
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7.1.4 Comments
When doing an in-place real-to-complex or complex-to-real transform, care must be
taken to ensure the size of the input array is large enough to hold the results. For
example, if the input is of type complex stored in a complex array with first leading
dimension N, then to use the same array to store the real results, its first leading
dimension as a real output array would be 2 × N. Conversely, if the input is of type
real stored in a real array with first leading dimension 2 × N, then to use the same
array to store the complex results, its first leading dimension as a complex output
array would be N. Leading dimension requirements for in-place and out-of-place
transforms can be found in TABLE 7-2, TABLE 7-3, and TABLE 7-4.

In the linear and multi-dimensional FFT, the transform between real and complex
data through a real-to-complex or complex-to-real transform can be confusing
because N1 real data points correspond to complex data points. N1 real data
points do map to N1 complex data points, but because there is conjugate symmetry
in the complex data, only data points need to be stored as input in the
complex-to-real transform and as output in the real-to-complex transform. In the
multi-dimensional FFT, symmetry exists along all the dimensions, not just in the first.
However, the two-dimensional and three-dimensional FFT routines store the complex
data of the second and third dimensions in their entirety.

While the FFT routines accept any size of N1, N2 and N3, FFTs can be computed most
efficiently when values of N1, N2 and N3 can be decomposed into relatively small
primes. A real-to-complex or a complex-to-real transform can be computed most
efficiently when

(-33.0, 0.0) (  6.0, 7.0) ( -7.0, 0.0) (  6.0, -7.0)
(  3.0, 1.7) ( -2.5, 2.7) ( -1.0, -8.7) ( -9.5, 0.7)
out-of-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2
in-place inverse FFT of Y:
0.1 0.4 0.7 1.0
0.2 0.5 0.8 1.1
0.3 0.6 0.9 1.2
4.1 3.4 2.7 1.0
1.2 6.5 4.8 3.1
2.3 1.6 7.9 2.2

EXAMPLE 7-4 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a
Three-Dimensional Array (Continued)
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,

and a complex-to-complex transform can be computed most efficiently when

,

where p, q, r, s, t, u, and v are integers and p, q, r, s, t, u, v ≥ 0.

The function xFFTOPT can be used to determine the optimal sequence length, as
shown in EXAMPLE 7-5. Given an input sequence length, the function returns an
optimal length that is closest in size to the original length.

EXAMPLE 7-5 RFFTOPT Example

my_system% cat fft_ex01.f

      PROGRAM TEST

      INTEGER         N, N1, N2, N3, RFFTOPT

C

      N = 1024

      N1 = 1019

      N2 = 71

      N3 = 49

C

      PRINT *, ’N Original  N Suggested’

      PRINT ’(I5, I12)’, (N, RFFTOPT(N))

      PRINT ’(I5, I12)’, (N1, RFFTOPT(N1))

      PRINT ’(I5, I12)’, (N2, RFFTOPT(N2))

      PRINT ’(I5, I12)’, (N3, RFFTOPT(N3))

      END

my_system% f95 -dalign fft_ex01.f -library=sunperf

my_system% a.out

 N Original  N Suggested

 1024        1024

 1019        1024

   71          72

   49          49

N1 N2 N3, , 2
p

3
q× 4

r× 5
s×=

N1 N2 N3, , 2
p

3
q× 4

r× 5
s× 7

t
11

u
13

v×××=
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7.2 Cosine and Sine Transforms
Input to the DFT that possess special symmetries occur in various applications. A
transform that exploits symmetry usually saves in storage and computational count,
such as with the real-to-complex and complex-to-real FFT transforms. The Sun
Performance Library cosine and sine transforms are special cases of FFT routines that
take advantage of the symmetry properties found in even and odd functions.

Note – Sun Performance Library sine and cosine transform routines are based on the
routines contained in FFTPACK (http://www.netlib.org/fftpack/). Routines
with a V prefix are vectorized routines that are based on the routines contained in
VFFTPACK (http://www.netlib.org/vfftpack/).

7.2.1 Fast Cosine and Sine Transform Routines
TABLE 7-5 lists the Sun Performance Library fast cosine and sine transforms. Names of
double precision routines are in square brackets. Routines whose name begins with
'V' can compute the transform of one or more sequences simultaneously. Those
whose name ends with 'I' are initialization routines.

TABLE 7-5 Fast Cosine and Sine Transform Routines and Their Arguments

Name Arguments

Fast Cosine Transforms for Even Sequences

COST [DCOST] (LEN+1, X, WORK)

COSTI [DCOSTI] (LEN+1, WORK)

VCOST [VDCOST] (M, LEN+1, X, WORK, LD, TABLE)

VCOSTI [VDCOSTI] (LEN+1, TABLE)

Fast Cosine Transforms for Quarter-Wave Even Sequences

COSQF [DCOSQF] (LEN, X, WORK)

COSQB [DCOSQB] (LEN, X, WORK)

COSQI [DCOSQI] (LEN, WORK)

VCOSQF [VDCOSQF] (M, LEN, X, WORK, LD, TABLE)

VCOSQB [VDCOSQB] (M, LEN, X, WORK, LD, TABLE)

VCOSQI [VDCOSQI] (LEN, TABLE)
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TABLE 7-5 Notes:

■ M: Number of sequences to be transformed.

■ LEN, LEN-1, LEN+1: Length of the input sequence or sequences.

■ X: A real array which contains the sequence or sequences to be transformed. On
output, the real transform results are stored in X.

■ TABLE: Array of constants particular to a transform size that is required by the
transform routine. The constants are computed by the initialization routine.

■ WORK: Workspace required by the transform routine. In routines that operate on a
single sequence, WORK also contains constants computed by the initialization
routine.

7.2.2 Fast Cosine Transforms
A special form of the FFT that operates on real even sequences is the fast cosine
transform (FCT). A real sequence x is said to have even symmetry if x(n) = x(-n)
where n = -N + 1, …, 0, …, N. An FCT of a sequence of length 2N requires N + 1 input
data points and produces a sequence of size N + 1. Routine COST computes the FCT
of a single real even sequence while VCOST computes the FCT of one or more
sequences. Before calling [V]COST, [V]COSTI must be called to compute
trigonometric constants and factors associated with input length N + 1. The FCT is its

Fast Sine Transforms for Odd Sequences

SINT [DSINT] (LEN-1, X, WORK)

SINTI [DSINTI] (LEN-1, WORK)

VSINT [VDSINT] (M, LEN-1, X, WORK, LD, TABLE)

VSINTI [VDSINTI] (LEN-1, TABLE)

Fast Sine Transforms for Quarter-Wave Odd Sequences

SINQF [DSINQF] (LEN, X, WORK)

SINQB [DSINQB] (LEN, X, WORK)

SINQI [DSINQI] (LEN, WORK)

VSINQF [VDSINQF] (M, LEN, X, WORK, LD, TABLE)

VSINQB [VDSINQB] (M, LEN, X, WORK, LD, TABLE)

VSINQI [VDSINQI] (LEN, TABLE)

TABLE 7-5 Fast Cosine and Sine Transform Routines and Their Arguments (Continued)

Name Arguments
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own inverse transform. Calling VCOST twice will result in the original N +1 data
points. Calling COST twice will result in the original N +1 data points multiplied by
2N.

An even sequence x with symmetry such that x(n) = x(-n - 1) where n =
-N + 1, … , 0, …, N is said to have quarter-wave even symmetry. COSQF and COSQB

compute the FCT and its inverse, respectively, of a single real quarter-wave even
sequence. VCOSQF and VCOSQB operate on one or more sequences. The results of
[V]COSQB are unormalized, and if scaled by , the original sequences are obtained.
An FCT of a real sequence of length 2N that has quarter-wave even symmetry
requires N input data points and produces an N-point resulting sequence.
Initialization is required before calling the transform routines by calling [V]COSQI.

7.2.3 Fast Sine Transforms
Another type of symmetry that is commonly encountered is the odd symmetry where
x(n) = -x(-n) for n = -N+1, …, 0, …, N. As in the case of the fast cosine transform, the
fast sine transform (FST) takes advantage of the odd symmetry to save memory and
computation. For a real odd sequence x, symmetry implies that x(0) = -x(0) = 0.
Therefore, if x is of length 2N then only N = 1 values of x are required to compute the
FST. Routine SINT computes the FST of a single real odd sequence while VSINT
computes the FST of one or more sequences. Before calling [V]SINT, [V]SINTI
must be called to compute trigonometric constants and factors associated with input
length N - 1. The FST is its own inverse transform. Calling VSINT twice will result in
the original N -1 data points. Calling SINT twice will result in the original N -1 data
points multiplied by 2N.

An odd sequence with symmetry such that x(n) = -x(-n - 1), where
n = -N + 1, …, 0, …, N is said to have quarter-wave odd symmetry. SINQF and SINQB
compute the FST and its inverse, respectively, of a single real quarter-wave odd
sequence while VSINQF and VSINQB operate on one or more sequences. SINQB is
unnormalized, so using the results of SINQF as input in SINQB produces the original
sequence scaled by a factor of 4N. However, VSINQB is normalized, so a call to
VSINQF followed by a call to VSINQB will produce the original sequence. An FST of
a real sequence of length 2N that has quarter-wave odd symmetry requires N input
data points and produces an N-point resulting sequence. Initialization is required
before calling the transform routines by calling [V]SINQI.

7.2.4 Discrete Fast Cosine and Sine Transforms and
Their Inverse
Sun Performance Library routines use the equations in the following sections to
compute the fast cosine and sine transforms and inverse transforms.

1
4N
-------
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7.2.4.1 [D]COST: Forward and Inverse Fast Cosine Transform (FCT)
of a Sequence

The forward and inverse FCT of a sequence is computed as

.

[D]COST Notes:

■ N + 1 values are needed to compute the FCT of an N-point sequence.

■ [D]COST also computes the inverse transform. When [D]COST is called twice, the
result will be the original sequence scaled by .

7.2.4.2 V[D]COST: Forward and Inverse Fast Cosine Transforms of
Multiple Sequences (VFCT)

The forward and inverse FCTs of multiple sequences are computed as

For i = 0, M - 1

.

V[D]COST Notes

■ M × (N+1) values are needed to compute the VFCT of M N-point sequences.

■ The input and output sequences are stored row-wise.

■ V[D]COST is normalized and is its own inverse. When V[D]COST is called twice,
the result will be the original data.

7.2.4.3 [D]COSQF: Forward FCT of a Quarter-Wave Even Sequence

The forward FCT of a quarter-wave even sequence is computed as

.

N values are needed to compute the forward FCT of an N-point quarter-wave even
sequence.

7.2.4.4 [D]COSQB: Inverse FCT of a Quarter-Wave Even Sequence

The inverse FCT of a quarter-wave even sequence is computed as

X k( ) x 0( ) 2 x n( ) πnk
N

----------⎝ ⎠
⎛ ⎞cos

n 1=

N 1–

∑ x N( ) πk( ),cos+ += k 0 … N, ,=

1
2N
-------

X i k,( ) x i 0,( )
2N

---------------
1
N
---- x i n,( ) πnk

N
----------⎝ ⎠

⎛ ⎞cos
n 1=

N 1–

∑ x i N,( )
2N

----------------- πk( ),cos+ += k 0 … N, ,=

X k( ) x 0( ) 2 x n( ) πn 2k 1+( )
2N

---------------------------⎝ ⎠
⎛ ⎞ ,cos

n 1=

N 1–

∑+= k 0 … N 1–, ,=
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.

Calling the forward and inverse routines will result in the original input scaled by
.

7.2.4.5 V[D]COSQF: Forward FCT of One or More Quarter-Wave
Even Sequences

The forward FCT of one or more quarter-wave even sequences is computed as

For i = 0, M - 1

.

V[D]COSQF Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized so that if the inverse routine V[D]COSQB is called
immediately after calling V[D]COSQF, the original data is obtained.

7.2.4.6 V[D]COSQB: Inverse FCT of One or More Quarter-Wave Even
Sequences

The inverse FCT of one or more quarter-wave even sequences is computed as

For i = 0, M - 1

.

V[D]COSQB Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized so that if V[D]COSQB is called immediately after
calling V[D]COSQF, the original data is obtained.

7.2.4.7 [D]SINT: Forward and Inverse Fast Sine Transform (FST) of a
Sequence

The forward and inverse FST of a sequence is computed as

x n( ) X k( ) πn 2k 1+( )
2N

---------------------------⎝ ⎠
⎛ ⎞cos ,

k 0=

N 1–

∑= n 0 … N 1–, ,=

1
4N
-------

X i k,( ) 1
N
---- x i 0,( ) 2 x i n,( ) πn 2k 1+( )

2N
---------------------------⎝ ⎠

⎛ ⎞cos
n 1=

N 1–

∑+ ,= k 0 … N 1–, ,=

x i n,( ) X i k,( ) πn 2k 1+( )
2N

---------------------------⎝ ⎠
⎛ ⎞cos ,

k 0=

N 1–

∑= n 0 … N 1–, ,=
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.

[D]SINT Notes:

■ N-1 values are needed to compute the FST of an N-point sequence.

■ [D]SINT also computes the inverse transform. When [D]SINT is called twice, the
result will be the original sequence scaled by .

7.2.4.8 V[D]SINT: Forward and Inverse Fast Sine Transforms of
Multiple Sequences (VFST)

The forward and inverse fast sine transforms of multiple sequences are computed as

For i = 0, M - 1

.

V[D]SINT Notes:

■ M × (N - 1) values are needed to compute the VFST of M N-point sequences.

■ The input and output sequences are stored row-wise.

■ V[D]SINT is normalized and is its own inverse. Calling V[D]SINT twice yields
the original data.

7.2.4.9 [D]SINQF: Forward FST of a Quarter-Wave Odd Sequence

The forward FST of a quarter-wave odd sequence is computed as

.

N values are needed to compute the forward FST of an N-point quarter-wave odd
sequence.

7.2.4.10 [D]SINQB: Inverse FST of a Quarter-Wave Odd Sequence

The inverse FST of a quarter-wave odd sequence is computed as

X k( ) 2 x n( ) π n 1+( ) k 1+( )
N

--------------------------------------⎝ ⎠
⎛ ⎞ ,sin

n 0=

N 2–

∑= k 0 … N 2–, ,=

1
2N
-------
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2N
----------- x i n,( ) π n 1+( ) k 1+( )

N
--------------------------------------⎝ ⎠
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N 2–

∑= k 0 … N 1–, ,=
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.

Calling the forward and inverse routines will result in the original input scaled by
.

7.2.4.11 V[D]SINQF: Forward FST of One or More Quarter-Wave Odd
Sequences

The forward FST of one or more quarter-wave odd sequences is computed as

For i = 0, M - 1

.

V[D]SINQF Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized so that if the inverse routine V[D]SINQB is called
immediately after calling V[D]SINQF, the original data is obtained.

7.2.4.12 V[D]SINQB: Inverse FST of One or More Quarter-Wave Odd
Sequences

The inverse FST of one or more quarter-wave odd sequences is computed as

For i = 0, M - 1

.

V[D]SINQB Notes:

■ The input and output sequences are stored row-wise.

■ The transform is normalized, so that if V[D]SINQB is called immediately after
calling V[D]SINQF, the original data is obtained.
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k 0=

N 1–

∑= n 0 … N 1–, ,=

1
4N
-------

X i k,( ) 1

4N
----------- 2 x n i,( ) π n 1+( ) 2k 1+( )

2N
-----------------------------------------⎝ ⎠

⎛ ⎞sin x N 1 i,–( ) πkcos+
n 0=

N 2–

∑ ,= k 0 … N 1–, ,=

x n i,( ) 4

4N
----------- X k i,( ) π n 1+( ) 2k 1+( )

2N
-----------------------------------------⎝ ⎠

⎛ ⎞ ,sin
k 0=

N 1–

∑= n 0 … N 1–, ,=
Chapter 7 Using Sun Performance Library Signal Processing Routines 7-31



7.2.5 Fast Cosine Transform Examples
EXAMPLE 7-6 calls COST to compute the FCT and the inverse transform of a real even
sequence. If the real sequence is of length 2N, only N + 1 input data points need to be
stored and the number of resulting data points is also N + 1. The results are stored in
the input array.

EXAMPLE 7-6 Compute FCT and Inverse FCT of Single Real Even Sequence

my_system% cat cost.f

       program Drive cost

       implicit none

       integer,parameter :: len=4

       real x(0:len),work(3*(len+1)+15), z(0:len), scale

       integer i

       scale = 1.0/(2.0*len)

       call RANDOM_NUMBER(x(0:len))

       z(0:len) = x(0:len)

write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length
',

     $          len,' requires ', len+1,' data points'

       write(*,'(5(f8.3,2x),/)')(x(i),i=0,len)

       call costi(len+1, work)

       call cost(len+1, z, work)

       write(*,*)'Forward fast cosine transform'

       write(*,'(5(f8.3,2x),/)')(z(i),i=0,len)

       call cost(len+1, z, work)

       write(*,*)

$ 'Inverse fast cosine transform (results scaled by 1/2*N)'

       write(*,'(5(f8.3,2x),/)')(z(i)*scale,i=0,len)

       end

my_system% f95 -dalign cost.f -library=sunperf

my_system% a.out

Input sequence of length 4 requires 5 data points

0.557 0.603 0.210 0.352 0.867

Forward fast cosine transform

3.753 0.046 1.004 -0.666 -0.066

Inverse fast cosine transform (results scaled by 1/2*N)

0.557 0.603 0.210 0.352 0.867
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EXAMPLE 7-7 calls VCOSQF and VCOSQB to compute the FCT and the inverse FCT,
respectively, of two real quarter-wave even sequences. If the real sequences are of
length 2N, only N input data points need to be stored, and the number of resulting
data points is also N. The results are stored in the input array.

EXAMPLE 7-7 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences

my_system% cat vcosq.f
    program vcosq
    implicit none
    integer,parameter :: len=4, m = 2, ld = m+1
    real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)
    integer i, j
    call RANDOM_NUMBER(x)
    z = x
    write(*,'(a27,i1)')' Input sequences of length ',len
    do j = 1,m
       write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $     'seq',j,' = (',(x(j,i),i=1,len),')'
    end do
    call vcosqi(len, work)
    call vcosqf(m,len, z, xt, ld, work)
    write(*,*)
 $ 'Forward fast cosine transform for quarter-wave even sequences'
    do j = 1,m
       write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $     'seq',j,' = (',(z(j,i),i=1,len),')'
    end do
    call vcosqb(m,len, z, xt, ld, work)
    write(*,*)
 $  'Inverse fast cosine transform for quarter-wave even sequences'

    write(*,*)'(results are normalized)'
    do j = 1,m
       write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
 $     'seq',j,' = (',(z(j,i),i=1,len),')'
    end do
    end
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7.2.6 Fast Sine Transform Examples
In EXAMPLE 7-8, SINT is called to compute the FST and the inverse transform of a real
odd sequence. If the real sequence is of length 2N, only N - 1 input data points need
to be stored and the number of resulting data points is also N - 1. The results are
stored in the input array.

my_system% f95 -dalign vcosq.f -library=sunperf
my_system% a.out
Input sequences of length 4
seq1 = (0.557 0.352 0.990 0.539 )
seq2 = (0.603 0.867 0.417 0.156 )
Forward fast cosine transform for quarter-wave even sequences
seq1 = (0.755 -.392 -.029 0.224 )
seq2 = (0.729 0.097 -.091 -.132 )
Inverse fast cosine transform for quarter-wave even sequences
(results are normalized)
seq1 = (0.557 0.352 0.990 0.539 )
seq2 = (0.603 0.867 0.417 0.156 )

EXAMPLE 7-8 Compute FST and the Inverse FST of a Real Odd Sequence

my_system% cat sint.f
      program Drive sint
      implicit none
      integer,parameter :: len=4
      real x(0:len-2),work(3*(len-1)+15), z(0:len-2), scale
      integer i
      call RANDOM_NUMBER(x(0:len-2))
      z(0:len-2) = x(0:len-2)
      scale = 1.0/(2.0*len)
      write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length ',
    $       len,' requires ', len-1,' data points'
      write(*,'(3(f8.3,2x),/)')(x(i),i=0,len-2)
      call sinti(len-1, work)
      call sint(len-1, z, work)
      write(*,*)'Forward fast sine transform'
      write(*,'(3(f8.3,2x),/)')(z(i),i=0,len-2)

EXAMPLE 7-7 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences
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In EXAMPLE 7-9 VSINQF and VSINQB are called to compute the FST and inverse FST,
respectively, of two real quarter-wave odd sequences. If the real sequence is of length
2N, only N input data points need to be stored and the number of resulting data
points is also N. The results are stored in the input array.

      call sint(len-1, z, work)
      write(*,*)

$ 'Inverse fast sine transform (results scaled by 1/2*N)'
      write(*,'(3(f8.3,2x),/)')(z(i)*scale,i=0,len-2)
      end
my_system% f95 -dalign sint.f -library=sunperf
my_system% a.out
Input sequence of length 4 requires 3 data points
0.557 0.603 0.210
Forward fast sine transform
2.291 0.694 -0.122
Inverse fast sine transform (results scaled by 1/2*N)
0.557 0.603 0.210

EXAMPLE 7-9 Compute FST and Inverse FST of Two Real Quarter-Wave Odd
Sequences

my_system% cat vsinq.f
      program vsinq
      implicit none
      integer,parameter :: len=4, m = 2, ld = m+1
      real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)
      integer i, j
      call RANDOM_NUMBER(x)
      z = x
      write(*,'(a27,i1)')' Input sequences of length ',len
      do j = 1,m
         write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
     $         'seq',j,' = (',(x(j,i),i=1,len),')'
      end do
      call vsinqi(len, work)
      call vsinqf(m,len, z, xt, ld, work)
      write(*,*)
    $ 'Forward fast sine transform for quarter-wave odd sequences'
      do j = 1,m
      write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
    $       'seq',j,' = (',(z(j,i),i=1,len),')'
      end do

EXAMPLE 7-8 Compute FST and the Inverse FST of a Real Odd Sequence (Continued)
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7.3 Convolution and Correlation
Two applications of the FFT that are frequently encountered especially in the signal
processing area are the discrete convolution and discrete correlation operations.

7.3.1 Convolution
Given two functions x(t) and y(t), the Fourier transform of the convolution of x(t) and
y(t), denoted as x y, is the product of their individual Fourier transforms: DFT(x

y)=X Y where denotes the convolution operation and denotes pointwise
multiplication.

Typically, x(t) is a continuous and periodic signal that is represented discretely by a
set of N data points xj, j = 0, …, N -1, sampled over a finite duration, usually for one
period of x(t) at equal intervals. y(t) is usually a response that starts out as zero,
peaks to a maximum value, and then returns to zero. Discretizing y(t) at equal

      call vsinqb(m,len, z, xt, ld, work)
      write(*,*)
    $ 'Inverse fast sine transform for quarter-wave odd sequences'
      write(*,*)'(results are normalized)'
      do j = 1,m
      write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')
    $       'seq',j,' = (',(z(j,i),i=1,len),')'
      end do
      end
my_system% f95 vsinq.f -library=sunperf
my_system% a.out
Input sequences of length 4
seq1 = (0.557 0.352 0.990 0.539 )
seq2 = (0.603 0.867 0.417 0.156 )
Forward fast sine transform for quarter-wave odd sequences
seq1 = (0.823 0.057 0.078 0.305 )
seq2 = (0.654 0.466 -.069 -.037 )
Inverse fast sine transform for quarter-wave odd sequences
(results are normalized)
seq1 = (0.557 0.352 0.990 0.539 )
seq2 = (0.603 0.867 0.417 0.156 )

EXAMPLE 7-9 Compute FST and Inverse FST of Two Real Quarter-Wave Odd
Sequences (Continued)

★

★ ★
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intervals produces a set of N data points, yk, k = 0, …, N -1. If the actual number of
samplings in yk is less than N, the data can be padded with zeros. The discrete
convolution can then be defined as

(x y)j .

The values of , are the same as those of but in the
wrap-around order.

The Sun Performance Library routines allow the user to compute the convolution by
using the definition above with k = 0, …, N -1, or by using the FFT. If the FFT is used
to compute the convolution of two sequences, the following steps are performed:

■ Compute X = forward FFT of x

■ Compute Y = forward FFT of y

■ Compute Z = X Y DFT(x y)

■ Compute z = inverse FFT of Z; z = (x y)

One interesting characteristic of convolution is that the product of two polynomials is
actually a convolution. A product of an m-term polynomial

and an n-term polynomial

has m + n - 1 coefficients that can be obtained by

,

where k = 0, …, m + n - 2.

7.3.2 Correlation
Closely related to convolution is the correlation operation. It computes the
correlation of two sequences directly superposed or when one is shifted relative to
the other. As with convolution, we can compute the correlation of two sequences
efficiently as follows using the FFT:

■ Compute the FFT of the two input sequences.

■ Compute the pointwise product of the resulting transform of one sequence and
the complex conjugate of the transform of the other sequence.

★ xj k– yk,
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2

------- 1+=

N
2
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■ Compute the inverse FFT of the product.

The routines in the Performance Library also allow correlation to be computed by the
following definition:

.

There are various ways to interpret the sampled input data of the convolution and
correlation operations. The argument list of the convolution and correlation routines
contain parameters to handle cases in which

■ The signal and/or response function can start at different sampling time

■ The user might want only part of the signal to contribute to the output

■ The signal and/or response function can begin with one or more zeros that are
not explicitly stored.

7.3.3 Sun Performance Library Convolution and
Correlation Routines
Sun Performance Library contains the convolution routines shown in TABLE 7-6.

The [S,D,C,Z]CNVCOR routines are used to compute the convolution or correlation
of a filter with one or more input vectors. The [S,D,C,Z]CNVCOR2 routines are used to
compute the two-dimensional convolution or correlation of two matrices.

TABLE 7-6 Convolution and Correlation Routines

Routine Arguments Function

SCNVCOR,
DCNVCOR,
CCNVCOR,ZCNVCOR

CNVCOR,FOUR,NX,X,IFX,
INCX,NY,NPRE,M,Y,IFY,
INC1Y,INC2Y,NZ,K,Z,
IFZ,INC1Z,INC2Z,WORK,
LWORK

Convolution or correlation of a filter
with one or more vectors

SCNVCOR2,
DCNVCOR2,
CCNVCOR2,
ZCNVCOR2

CNVCOR,METHOD,TRANSX,
SCRATCHX,TRANSY,
SCRATCHY,MX,NX,X,LDX,
MY,NY,MPRE,NPRE,Y,LDY,
MZ,NZ,Z,LDZ,WORKIN,
LWORK

Two-dimensional convolution or
correlation of two matrices

SWIENER, DWIENER N_POINTS,ACOR,XCOR,
FLTR,EROP,ISW,IERR

Wiener deconvolution of two signals

Corr x y,( ) j x j k+ yk,
k 0=

N 1–

∑≡ j 0 … N 1–, ,=
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7.3.4 Arguments for Convolution and Correlation
Routines
The one-dimensional convolution and correlation routines use the arguments shown
in TABLE 7-7.

TABLE 7-7 Arguments for One-Dimensional Convolution and Correlation Routines
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.
‘R’ or ‘r’ specifies that correlation is computed.

FOUR ‘T’ or ‘t’ specifies that the Fourier transform method is used.
‘D’ or ‘d’ specifies that the direct method is used, where the
convolution or correlation is computed from the definition of
convolution and correlation. *

NX Length of filter vector, where NX ≥ 0.

X Filter vector

IFX Index of first element of X, where NX ≥ IFX ≥ 1

INCX Stride between elements of the vector in X, where INCX > 0.

NY Length of input vectors, where NY ≥ 0.

NPRE Number of implicit zeros prefixed to the Y vectors, where NPRE ≥ 0.

M Number of input vectors, where M ≥ 0.

Y Input vectors.

IFY Index of the first element of Y, where NY ≥ IFY ≥ 1

INC1Y Stride between elements of the input vectors in Y, where INC1Y > 0.

INC2Y Stride between input vectors in Y, where INC2Y > 0.

NZ Length of the output vectors, where NZ ≥ 0.

K Number of Z vectors, where K ≥ 0. If K < M, only the first K vectors
will be processed. If K > M, all input vectors will be processed and the
last M-K output vectors will be set to zero on exit.

Z Result vectors

IFZ Index of the first element of Z, where NZ ≥ IFZ ≥ 1

INC1Z Stride between elements of the output vectors in Z, where INCYZ > 0.

INC2Z Stride between output vectors in Z, where INC2Z > 0.

WORK Work array

LWORK Length of work array
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The two-dimensional convolution and correlation routines use the arguments shown
in TABLE 7-8.

* When the lengths of the two sequences to be convolved are similar, the FFT method is faster than the direct
method. However, when one sequence is much larger than the other, such as when convolving a large time-se-
ries signal with a small filter, the direct method performs faster than the FFT-based method.

TABLE 7-8 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.
‘R’ or ‘r’ specifies that correlation is computed.

METHOD ‘T’ or ‘t’ specifies that the Fourier transform method is used.
‘D’ or ‘d’ specifies that the direct method is used, where the
convolution or correlation is computed from the definition of
convolution and correlation. *

TRANSX ‘N’ or ‘n’ specifies that X is the filter matrix
‘T’ or ‘t’ specifies that the transpose of X is the filter matrix

SCRATCHX ‘N’ or ‘n’ specifies that X must be preserved
‘S’ or ‘s’ specifies that X can be used for scratch space. The
contents of X are undefined after returning from a call where X is
used for scratch space.

TRANSY ‘N’ or ‘n’ specifies that Y is the input matrix
‘T’ or ‘t’ specifies that the transpose of Y is the input matrix

SCRATCHY ‘N’ or ‘n’ specifies that Y must be preserved
‘S’ or ‘s’ specifies that Y can be used for scratch space. The
contents of X are undefined after returning from a call where Y is
used for scratch space.

MX Number of rows in the filter matrix X, where MX ≥ 0

NX Number of columns in the filter matrix X, where NX ≥ 0

X Filter matrix. X is unchanged on exit when SCRATCHX is ‘N’ or ‘n’
and undefined on exit when SCRATCHX is ‘S’ or ‘s’.

LDX Leading dimension of array containing the filter matrix X.

MY Number of rows in the input matrix Y, where MY ≥ 0.

NY Number of columns in the input matrix Y, where NY ≥ 0

MPRE Number of implicit zeros prefixed to each row of the input matrix Y
vectors, where MPRE ≥ 0.

NPRE Number of implicit zeros prefixed to each column of the input matrix
Y, where NPRE ≥ 0.
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7.3.5 Work Array WORK for Convolution and
Correlation Routines
The minimum dimensions for the WORK work arrays used with the one-dimensional
and two-dimensional convolution and correlation routines are shown in TABLE 7-11.
The minimum dimensions for one-dimensional convolution and correlation routines
depend upon the values of the arguments NPRE, NX, NY, and NZ.

The minimum dimensions for two-dimensional convolution and correlation routines
depend upon the values of the arguments shown TABLE 7-9.

Y Input matrix. Y is unchanged on exit when SCRATCHY is ‘N’ or ‘n’
and undefined on exit when SCRATCHY is ‘S’ or ‘s’.

LDY Leading dimension of array containing the input matrix Y.

MZ Number of output vectors, where MZ ≥ 0.

NZ Length of output vectors, where NZ ≥ 0.

Z Result vectors

LDZ Leading dimension of the array containing the result matrix Z, where
LDZ ≥ MAX(1,MZ).

WORKIN Work array

LWORK Length of work array

* When the sizes of the two matrices to be convolved are similar, the FFT method is faster than the direct method.
However, when one sequence is much larger than the other, such as when convolving a large data set with a
small filter, the direct method performs faster than the FFT-based method.

TABLE 7-9 Arguments Affecting Minimum Work Array Size for Two-Dimensional
Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

MX Number of rows in the filter matrix

MY Number of rows in the input matrix

MZ Number of output vectors

NX Number of columns in the filter matrix

NY Number of columns in the input matrix

NZ Length of output vectors

TABLE 7-8 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2 (Continued)

Argument Definition
Chapter 7 Using Sun Performance Library Signal Processing Routines 7-41



MYC_INIT and NYC_INIT depend upon the following, where X is the filter matrix
and Y is the input matrix.

The values assigned to the minimum work array size is shown in TABLE 7-11.

MPRE Number of implicit zeros prefixed to each row of the input matrix

NPRE Number of implicit zeros prefixed to each column of the input
matrix

MPOST MAX(0,MZ-MYC)

NPOST MAX(0,NZ-NYC)

MYC MPRE + MPOST + MYC_INIT, where MYC_INIT depends upon filter
and input matrices, as shown in TABLE 7-10

NYC NPRE + NPOST + NYC_INIT, where NYC_INIT depends upon filter
and input matrices, as shown in TABLE 7-10

TABLE 7-10 MYC_INIT and NYC_INIT Dependencies

Y Transpose(Y)

X Transpose(X) X Transpose(X)

MYC_INIT MAX(MX,MY) MAX(NX,MY) MAX(MX,NY) MAX(NX,NY)

NYC_INIT MAX(NX,NY) MAX(MX,NY) MAX(NX,MY) MAX(MX,MY)

TABLE 7-11 Minimum Dimensions and Data Types for WORK Work Array Used With
Convolution and Correlation Routines

Routine Minimum Work Array Size (WORK) Type

SCNVCOR, DCNVCOR 4*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY))

REAL, REAL*8

CCNVCOR, ZCNVCOR 2*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY)))

COMPLEX,
COMPLEX*16

SCNVCOR2*, DCNVCOR21

* Memory will be allocated within the routine if the workspace size, indicated by LWORK, is not large enough.

MY + NY + 30 COMPLEX,
COMPLEX*16

CCNVCOR21, ZCNVCOR21 If MY = NY: MYC + 8
If MY ≠ NY: MYC + NYC + 16

COMPLEX,
COMPLEX*16

TABLE 7-9 Arguments Affecting Minimum Work Array Size for Two-Dimensional
Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition
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7.3.6 Sample Program: Convolution
EXAMPLE 7-10 uses CCNVCOR to perform FFT convolution of two complex vectors.

EXAMPLE 7-10 One-Dimensional Convolution Using Fourier Transform Method and
COMPLEX Data

my_system% cat con_ex20.f

      PROGRAM TEST

C

      INTEGER           LWORK

      INTEGER           N

      PARAMETER        (N = 3)

      PARAMETER        (LWORK = 4 * N + 15)

      COMPLEX           P1(N), P2(N), P3(2*N-1), WORK(LWORK)

      DATA P1 / 1, 2, 3 /,  P2 / 4, 5, 6 /

C

      EXTERNAL          CCNVCOR

C

      PRINT *, ’P1:’

      PRINT 1000, P1

      PRINT *, ’P2:’

      PRINT 1000, P2

      CALL CCNVCOR (’V’, ’T’, N, P1, 1, 1, N, 0, 1, P2, 1, 1, 1,

     $              2 * N - 1, 1, P3, 1, 1, 1, WORK, LWORK)

C

      PRINT *, ’P3:’

      PRINT 1000, P3

C

 1000 FORMAT (1X, 100(F4.1,’ +’,F4.1,’i  ’))

C

      END

my_system% f95 -dalign con_ex20.f -xlibrary=sunperf

my_system% a.out

 P1:

  1.0 + 0.0i   2.0 + 0.0i   3.0 + 0.0i

 P2:

  4.0 + 0.0i   5.0 + 0.0i   6.0 + 0.0i

 P3:

  4.0 + 0.0i  13.0 + 0.0i  28.0 + 0.0i  27.0 + 0.0i  18.0 + 0.0i
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If any vector overlaps a writable vector, either because of argument aliasing or
ill-chosen values of the various INC arguments, the results are undefined and can
vary from one run to the next.

The most common form of the computation, and the case that executes fastest, is
applying a filter vector X to a series of vectors stored in the columns of Y with the
result placed into the columns of Z. In that case, INCX = 1, INC1Y = 1, INC2Y ≥ NY,
INC1Z = 1, INC2Z ≥ NZ. Another common form is applying a filter vector X to a series
of vectors stored in the rows of Y and store the result in the row of Z, in which case
INCX = 1, INC1Y ≥ NY, INC2Y = 1, INC1Z ≥ NZ, and INC2Z = 1.
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Convolution can be used to compute the products of polynomials. EXAMPLE 7-11 uses
SCNVCOR to compute the product of 1 + 2x + 3x2 and 4 + 5x + 6x2.

Making the output vector longer than the input vectors, as in the example above,
implicitly adds zeros to the end of the input. No zeros are actually required in any of
the vectors, and none are used in the example, but the padding provided by the
implied zeros has the effect of an end-off shift rather than an end-around shift of the
input vectors.

EXAMPLE 7-11 One-Dimensional Convolution Using Fourier Transform Method and REAL
Data

my_system% cat con_ex21.f

      PROGRAM TEST

      INTEGER     LWORK, NX, NY, NZ

      PARAMETER  (NX = 3)

      PARAMETER  (NY = NX)

      PARAMETER  (NZ = 2*NY-1)

      PARAMETER  (LWORK = 4*NZ+32)

      REAL        X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

      DATA X / 1, 2, 3 /,  Y / 4, 5, 6 /, WORK / LWORK*0 /

C

      PRINT 1000, ’X’

      PRINT 1010, X

      PRINT 1000, ’Y’

      PRINT 1010, Y

      CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,

     $NY, 0, 1, Y, 1, 1, 1,   NZ, 1, Z, 1, 1, 1, WORK, LWORK)

      PRINT 1020, ’Z’

      PRINT 1010, Z

 1000 FORMAT (1X, ’Input vector ’, A1)

 1010 FORMAT (1X, 300F5.0)

 1020 FORMAT (1X, ’Output vector ’, A1)

      END

my_system% f95 -dalign con_ex21.f -library=sunperf

my_system% a.out

 Input vector X

    1.   2.   3.

 Input vector Y

    4.   5.   6.

 Output vector Z

    4.  13.  28.  27.  18.
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EXAMPLE 7-12 will compute the product between the vector [ 1, 2, 3 ] and the circulant
matrix defined by the initial column vector [ 4, 5, 6 ].

EXAMPLE 7-12 Convolution Used to Compute the Product of a Vector and Circulant
Matrix

my_system% cat con_ex22.f

      PROGRAM TEST

C

      INTEGER     LWORK, NX, NY, NZ

      PARAMETER  (NX = 3)

      PARAMETER  (NY = NX)

      PARAMETER  (NZ = NY)

      PARAMETER  (LWORK = 4*NZ+32)

      REAL        X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

      DATA X / 1, 2, 3 /,  Y / 4, 5, 6 /, WORK / LWORK*0 /

C

      PRINT 1000, ’X’

      PRINT 1010, X

      PRINT 1000, ’Y’

      PRINT 1010, Y

      CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,

     $NY, 0, 1, Y, 1, 1, 1,   NZ, 1, Z, 1, 1, 1,

     $WORK, LWORK)

      PRINT 1020, ’Z’

      PRINT 1010, Z

C

 1000 FORMAT (1X, ’Input vector ’, A1)

 1010 FORMAT (1X, 300F5.0)

 1020 FORMAT (1X, ’Output vector ’, A1)

      END

my_system% f95 -dalign con_ex22.f -library=sunperf

my_system% a.out

 Input vector X

    1.   2.   3.

 Input vector Y

    4.   5.   6.

 Output vector Z

   31.  31.  28.
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The difference between this example and the previous example is that the length of
the output vector is the same as the length of the input vectors, so there are no
implied zeros on the end of the input vectors. With no implied zeros to shift into, the
effect of an end-off shift from the previous example does not occur and the
end-around shift results in a circulant matrix product.

EXAMPLE 7-13 Two-Dimensional Convolution Using Direct Method

my_system% cat con_ex23.f
      PROGRAM TEST
C
      INTEGER           M, N
      PARAMETER        (M = 2)
      PARAMETER        (N = 3)
C
      INTEGER           I, J
      COMPLEX           P1(M,N), P2(M,N), P3(M,N)
      DATA P1 / 1, -2, 3, -4, 5, -6 /,  P2 / -1, 2, -3, 4, -5, 6 /
      EXTERNAL          CCNVCOR2
C
      PRINT *, ’P1:’
      PRINT 1000, ((P1(I,J), J = 1, N), I = 1, M)
      PRINT *, ’P2:’
      PRINT 1000, ((P2(I,J), J = 1, N), I = 1, M)
C
      CALL CCNVCOR2 (’V’, ’Direct’, ’No Transpose X’, ’No Overwrite X’,
     $   ’No Transpose Y’, ’No Overwrite Y’, M, N, P1, M,
     $   M, N, 0, 0, P2, M, M, N, P3, M, 0, 0)
C
      PRINT *, ’P3:’
      PRINT 1000, ((P3(I,J), J = 1, N), I = 1, M)
C
 1000 FORMAT (3(F5.1,’ +’,F5.1,’i  ’))
C
      END
my_system% f95 -dalign con_ex23.f -library=sunperf
my_system% a.out
 P1:
  1.0 +  0.0i    3.0 +  0.0i    5.0 +  0.0i
 -2.0 +  0.0i   -4.0 +  0.0i   -6.0 +  0.0i
 P2:
 -1.0 +  0.0i   -3.0 +  0.0i   -5.0 +  0.0i
  2.0 +  0.0i    4.0 +  0.0i    6.0 +  0.0i
 P3:
-83.0 +  0.0i  -83.0 +  0.0i  -59.0 +  0.0i
 80.0 +  0.0i   80.0 +  0.0i   56.0 +  0.0i
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APPENDIX A

Sun Performance Library Routines

This appendix lists the Sun Performance Library routines by library, routine name,
and function.

For a description of the function and a listing of the Fortran and C interfaces, refer to
the section 3P man pages for the individual routines. For example, to display the man
page for the SBDSQR routine, type man -s 3P sbdsqr. The man page routine names
use lowercase letters.

For many routines, separate routines exist that operate on different data types. Rather
than list each routine separately, a lowercase x is used in a routine name to denote
single, double, complex, and double complex data types. For example, the routine
xBDSQR is available as four routines that operate with the following data types:

■ SBDSQR – Single data type

■ DBDSQR – Double data type

■ CBDSQR – Complex data type

■ ZBDSQR – Double complex data type

If a routine name is not available for S, B, C, and Z, the x prefix will not be used and
each routine name will be listed

If a routine name is not available for S, D, C, and Z, the x prefix will not be used and
each routine name will be listed. Also available (but not listed) in 64-bit enable
operating environments are the corresponding routines in 64-bit. Their names are
denoted by the _64 suffix. For example, the 64-bit version of xBDSQR is

■ SBDSQR_64

■ DBDSQR_64

■ CBDSQR_64

■ ZBDSQR_64
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A.0.1 LAPACK Routines
TABLE A-1 lists the Sun Performance Library LAPACK routines. (P) denotes routines
that are parallelized..

TABLE A-1 LAPACK (Linear Algebra Package) Routines

Routine Function

Bidiagonal Matrix

SBDSDC or
DBDSDC

Computes the singular value decomposition (SVD) of a bidirectional
matrix, using a divide and conquer method.

xBDSQR Computes SVD of real upper or lower bidiagonal matrix, using the
bidirectional QR algorithm.

Diagonal Matrix

SDISNA or
DDISNA

Computes the reciprocal condition numbers for eigenvectors of real
symmetric or complex Hermitian matrix.

General Band Matrix

xGBBRD Reduces real or complex general band matrix to upper bidiagonal form.

xGBCON Estimates the reciprocal of the condition number of general band matrix
using LU factorization.

xGBEQU Computes row and column scalings to equilibrate a general band matrix
and reduce its condition number.

xGBRFS Refines solution to general banded system of linear equations.

xGBSV Solves a general banded system of linear equations (simple driver).

xGBSVX Solves a general banded system of linear equations (expert driver).

xGBTRF LU factorization of a general band matrix using partial pivoting with row
interchanges.

xGBTRS (P) Solves a general banded system of linear equations, using the factorization
computed by xGBTRF.

General Matrix (Unsymmetric or Rectangular)

xGEBAK Forms the right or left eigenvectors of a general matrix by backward
transformation on the computed eigenvectors of the balanced matrix
output by xGEBAL.

xGEBAL Balances a general matrix.

xGEBRD Reduces a general matrix to upper or lower bidiagonal form by an
orthogonal transformation.

xGECON Estimates the reciprocal of the condition number of a general matrix, using
the factorization computed by xGETRF.
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xGEEQU Computes row and column scalings intended to equilibrate a general
rectangular matrix and reduce its condition number.

xGEES Computes the eigenvalues and Schur factorization of a general matrix
(simple driver).

xGEESX Computes the eigenvalues and Schur factorization of a general matrix
(expert driver).

xGEEV Computes the eigenvalues and left and right eigenvectors of a general
matrix (simple driver).

xGEEVX Computes the eigenvalues and left and right eigenvectors of a general
matrix (expert driver).

xGEGS Depreciated routine replaced by xGGES.

xGEGV Depreciated routine replaced by xGGEV.

xGEHRD Reduces a general matrix to upper Hessenberg form by an orthogonal
similarity transformation.

xGELQF (P) Computes LQ factorization of a general rectangular matrix.

xGELS Computes the least squares solution to an over-determined system of
linear equations using a QR or LQ factorization of A.

xGELSD Computes the least squares solution to an over-determined system of
linear equations using a divide and conquer method using a QR or LQ
factorization of A.

xGELSS Computes the minimum-norm solution to a linear least squares problem
by using the SVD of a general rectangular matrix (simple driver).

xGELSX Depreciated routine replaced by xSELSY.

xGELSY Computes the minimum-norm solution to a linear least squares problem
using a complete orthogonal factorization.

xGEQLF (P) Computes QL factorization of a general rectangular matrix.

xGEQP3 Computes QR factorization of general rectangular matrix using Level 3
BLAS.

xGEQPF Depreciated routine replaced by xGEQP3.

xGEQRF (P) Computes QR factorization of a general rectangular matrix.

xGERFS Refines solution to a system of linear equations.

xGERQF (P) Computes RQ factorization of a general rectangular matrix.

xGESDD Computes SVD of general rectangular matrix using a divide and conquer
method.

xGESV Solves a general system of linear equations (simple driver).

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
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xGESVX Solves a general system of linear equations (expert driver).

xGESVD Computes SVD of general rectangular matrix.

xGETRF (P) Computes an LU factorization of a general rectangular matrix using partial
pivoting with row interchanges.

xGETRI Computes inverse of a general matrix using the factorization computed by
xGETRF.

xGETRS (P) Solves a general system of linear equations using the factorization
computed by xGETRF.

General Matrix-Generalized Problem (Pair of General Matrices)

xGGBAK Forms the right or left eigenvectors of a generalized eigenvalue problem
based on the output by xGGBAL.

xGGBAL Balances a pair of general matrices for the generalized eigenvalue
problem.

xGGES Computes the generalized eigenvalues, Schur form, and left and/or right
Schur vectors for two nonsymmetric matrices.

xGGESX Computes the generalized eigenvalues, Schur form, and left and/or right
Schur vectors.

xGGEV Computes the generalized eigenvalues and the left and/or right
generalized eigenvalues for two nonsymmetric matrices.

xGGEVX Computes the generalized eigenvalues and the left and/or right
generalized eigenvectors.

xGGGLM Solves the GLM (Generalized Linear Regression Model) using the GQR
(Generalized QR) factorization.

xGGHRD Reduces two matrices to generalized upper Hessenberg form using
orthogonal transformations.

xGGLSE Solves the LSE (Constrained Linear Least Squares Problem) using the GRQ
(Generalized RQ) factorization.

xGGQRF Computes generalized QR factorization of two matrices.

xGGRQF Computes generalized RQ factorization of two matrices.

xGGSVD Computes the generalized singular value decomposition.

xGGSVP Computes an orthogonal or unitary matrix as a preprocessing step for
calculating the generalized singular value decomposition.

General Tridiagonal Matrix

xGTCON Estimates the reciprocal of the condition number of a tridiagonal matrix,
using the LU factorization as computed by xGTTRF.

xGTRFS Refines solution to a general tridiagonal system of linear equations.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
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xGTSV Solves a general tridiagonal system of linear equations (simple driver).

xGTSVX Solves a general tridiagonal system of linear equations (expert driver).

xGTTRF Computes an LU factorization of a general tridiagonal matrix using partial
pivoting and row exchanges.

xGTTRS (P) Solves general tridiagonal system of linear equations using the
factorization computed by x.

Hermitian Band Matrix

CHBEV or ZHBEV (Replacement with newer version CHBEVD or ZHBEVD suggested)
Computes all eigenvalues and eigenvectors of a Hermitian band matrix.

CHBEVD or
ZHBEVD

Computes all eigenvalues and eigenvectors of a Hermitian band matrix
and uses a divide and conquer method to calculate eigenvectors.

CHBEVX or
ZHBEVX

Computes selected eigenvalues and eigenvectors of a Hermitian band
matrix.

CHBGST or
ZHBGST

Reduces Hermitian-definite banded generalized eigenproblem to standard
form.

CHBGV or ZHBGV (Replacement with newer version CHBGVD or ZHBGVD suggested)
Computes all eigenvalues and eigenvectors of a generalized Hermitian-
definite banded eigenproblem.

CHBGVD or
ZHBGVD

Computes all eigenvalues and eigenvectors of generalized Hermitian-
definite banded eigenproblem and uses a divide and conquer method to
calculate eigenvectors.

CHBGVX or
ZHBGVX

Computes selected eigenvalues and eigenvectors of a generalized
Hermitian-definite banded eigenproblem.

CHBTRD or
ZHBTRD

Reduces Hermitian band matrix to real symmetric tridiagonal form by
using a unitary similarity transform.

Hermitian Matrix

CHECON or
ZHECON

Estimates the reciprocal of the condition number of a Hermitian matrix
using the factorization computed by CHETRF or ZHETRF.

CHEEV or ZHEEV (Replacement with newer version CHEEVR or ZHEEVR suggested)
Computes all eigenvalues and eigenvectors of a Hermitian matrix (simple
driver).

CHEEVD or
ZHEEVD

(Replacement with newer version CHEEVR or ZHEEVR suggested)
Computes all eigenvalues and eigenvectors of a Hermitian matrix and uses
a divide and conquer method to calculate eigenvectors.

CHEEVR or
ZHEEVR

Computes selected eigenvalues and the eigenvectors of a complex
Hermitian matrix.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
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CHEEVX or
ZHEEVX

Computes selected eigenvalues and eigenvectors of a Hermitian matrix
(expert driver).

CHEGST or
ZHEGST

Reduces a Hermitian-definite generalized eigenproblem to standard form
using the factorization computed by CPOTRF or ZPOTRF.

CHEGV or ZHEGV (Replacement with newer version CHEGVD or ZHEGVD suggested)
Computes all the eigenvalues and eigenvectors of a complex generalized
Hermitian-definite eigenproblem.

CHEGVD or
ZHEGVD

Computes all the eigenvalues and eigenvectors of a complex generalized
Hermitian-definite eigenproblem and uses a divide and conquer method
to calculate eigenvectors.

CHEGVX or
ZHEGVX

Computes selected eigenvalues and eigenvectors of a complex generalized
Hermitian-definite eigenproblem.

CHERFS or
ZHERFS

Improves the computed solution to a system of linear equations when the
coefficient matrix is Hermitian indefinite.

CHESV or ZHESV Solves a complex Hermitian indefinite system of linear equations (simple
driver).

CHESVX or
ZHESVX

Solves a complex Hermitian indefinite system of linear equations (simple
driver).

CHETRD or
ZHETRD

Reduces a Hermitian matrix to real symmetric tridiagonal form by using a
unitary similarity transformation.

CHETRF or
ZHERTF

Computes the factorization of a complex Hermitian indefinite matrix,
using the diagonal pivoting method.

CHETRI or
ZHETRI

Computes the inverse of a complex Hermitian indefinite matrix, using the
factorization computed by CHETRF or ZHETRF.

CHETRS (P) or
ZHETRS (P)

Solves a complex Hermitian indefinite matrix, using the factorization
computed by CHETRF or ZHETRF.

Hermitian Matrix in Packed Storage

CHPCON or
ZHPCON

Estimates the reciprocal of the condition number of a Hermitian indefinite
matrix in packed storage using the factorization computed by CHPTRF or
ZHPTRF.

CHPEV or ZHPEV (Replacement with newer version CHPEVD or ZHPEVD suggested)
Computes all the eigenvalues and eigenvectors of a Hermitian matrix in
packed storage (simple driver).

CHPEVX or
ZHPEVX

Computes selected eigenvalues and eigenvectors of a Hermitian matrix in
packed storage (expert driver).

CHPEVD or
ZHPEVD

Computes all the eigenvalues and eigenvectors of a Hermitian matrix in
packed storage and uses a divide and conquer method to calculate
eigenvectors.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
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CHPGST or
ZHPGST

Reduces a Hermitian-definite generalized eigenproblem to standard form
where the coefficient matrices are in packed storage and uses the
factorization computed by CPPTRF or ZPPTRF.

CHPGV or ZHPGV (Replacement with newer version CHPGVD or ZHPGVD suggested)
Computes all the eigenvalues and eigenvectors of a generalized
Hermitian-definite eigenproblem where the coefficient matrices are in
packed storage (simple driver).

CHPGVX or
ZHPGVX

Computes selected eigenvalues and eigenvectors of a generalized
Hermitian-definite eigenproblem where the coefficient matrices are in
packed storage (expert driver).

CHPGVD or
ZHPGVD

Computes all the eigenvalues and eigenvectors of a generalized
Hermitian-definite eigenproblem where the coefficient matrices are in
packed storage, and uses a divide and conquer method to calculate
eigenvectors.

CHPRFS or
ZHPRFS

Improves the computed solution to a system of linear equations when the
coefficient matrix is Hermitian indefinite in packed storage.

CHPSV or ZHPSV Computes the solution to a complex system of linear equations where the
coefficient matrix is Hermitian in packed storage (simple driver).

CHPSVX or
ZHPSVX

Uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations where the coefficient matrix is
Hermitian in packed storage (expert driver).

CHPTRD or
ZHPTRD

Reduces a complex Hermitian matrix stored in packed form to real
symmetric tridiagonal form.

CHPTRF or
ZHPTRF

Computes the factorization of a complex Hermitian indefinite matrix in
packed storage, using the diagonal pivoting method.

CHPTRI or
ZHPTRI

Computes the inverse of a complex Hermitian indefinite matrix in packed
storage using the factorization computed by CHPTRF or ZHPTRF.

CHPTRS (P) or
ZHPTRS (P)

Solves a complex Hermitian indefinite matrix in packed storage, using the
factorization computed by CHPTRF or ZHPTRF.

Upper Hessenberg Matrix

xHSEIN Computes right and/or left eigenvectors of upper Hessenberg matrix
using inverse iteration.

xHSEQR Computes eigenvectors and Shur factorization of upper Hessenberg matrix
using multishift QR algorithm.

Upper Hessenberg Matrix-Generalized Problem (Hessenberg and Triangular Matrix)

xHGEQZ Implements single-/double-shift version of QZ method for finding the
generalized eigenvalues of the equation det(A - w(i) * B) = 0.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
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Real Orthogonal Matrix in Packed Storage

SOPGTR or
DOPGTR

Generates an orthogonal transformation matrix from a tridiagonal matrix
determined by SSPTRD or DSPTRD.

SOPMTR or
DOPMTR

Multiplies a general matrix by the orthogonal transformation matrix
reduced to tridiagonal form by SSPTRD or DSPTRD.

Real Orthogonal Matrix

SORGBR or
DORGBR

Generates the orthogonal transformation matrices from reduction to
bidiagonal form, as determined by SGEBRD or DGEBRD.

SORGHR or
DORGHR

Generates the orthogonal transformation matrix reduced to Hessenberg
form, as determined by SGEHRD or DGEHRD.

SORGLQ or
DORGLQ

Generates an orthogonal matrix Q from an LQ factorization, as returned
by SGELQF or DGELQF.

SORGQL or
DORGQL

Generates an orthogonal matrix Q from a QL factorization, as returned by
SGEQLF or DGEQLF.

SORGQR or
DORGQR

Generates an orthogonal matrix Q from a QR factorization, as returned by
SGEQRF or DGEQRF.

SORGRQ or
DORGRQ

Generates orthogonal matrix Q from an RQ factorization, as returned by
SGERQF or DGERQF.

SORGTR or
DORGTR

Generates an orthogonal matrix reduced to tridiagonal form by SSYTRD or
DSYTRD.

SORMBR or
DORMBR

Multiplies a general matrix with the orthogonal matrix reduced to
bidiagonal form, as determined by SGEBRD or DGEBRD.

SORMHR or
DORMHR

Multiplies a general matrix by the orthogonal matrix reduced to
Hessenberg form by SGEHRD or DGEHRD.

SORMLQ (P) or
DORMLQ (P)

Multiplies a general matrix by the orthogonal matrix from an LQ
factorization, as returned by SGELQF or DGELQF.

SORMQL (P) or
DORMQL (P)

Multiplies a general matrix by the orthogonal matrix from a QL
factorization, as returned by SGEQLF or DGEQLF.

SORMQR (P) or
DORMQR (P)

Multiplies a general matrix by the orthogonal matrix from a QR
factorization, as returned by SGEQRF or DGEQRF.

SORMR3 or
DORMR3

Multiplies a general matrix by the orthogonal matrix returned by STZRZF
or DTZRZF.

SORMRQ (P) or
DORMRQ (P)

Multiplies a general matrix by the orthogonal matrix from an RQ
factorization returned by SGERQF or DGERQF.

SORMRZ or
DORMRZ

Multiplies a general matrix by the orthogonal matrix from an RZ
factorization, as returned by STZRZF or DTZRZF.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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SORMTR or
DORMTR

Multiplies a general matrix by the orthogonal transformation matrix
reduced to tridiagonal form by SSYTRD or DSYTRD.

Symmetric or Hermitian Positive Definite Band Matrix

xPBCON Estimates the reciprocal of the condition number of a symmetric or
Hermitian positive definite band matrix, using the Cholesky factorization
returned by xPBTRF.

xPBEQU Computes equilibration scale factors for a symmetric or Hermitian positive
definite band matrix.

xPBRFS Refines solution to a symmetric or Hermitian positive definite banded
system of linear equations.

xPBSTF Computes a split Cholesky factorization of a real symmetric positive
definite band matrix.

xPBSV Solves a symmetric or Hermitian positive definite banded system of linear
equations (simple driver).

xPBSVX Solves a symmetric or Hermitian positive definite banded system of linear
equations (expert driver).

xPBTRF Computes Cholesky factorization of a symmetric or Hermitian positive
definite band matrix.

xPBTRS (P) Solves symmetric positive definite banded matrix, using the Cholesky
factorization computed by xPBTRF.

Symmetric or Hermitian Positive Definite Matrix

xPOCON Estimates the reciprocal of the condition number of a symmetric or
Hermitian positive definite matrix, using the Cholesky factorization
returned by xPOTRF.

xPOEQU Computes equilibration scale factors for a symmetric or Hermitian positive
definite matrix.

xPORFS Refines solution to a linear system in a Cholesky-factored symmetric or
Hermitian positive definite matrix.

xPOSV Solves a symmetric or Hermitian positive definite system of linear
equations (simple driver).

xPOSVX Solves a symmetric or Hermitian positive definite system of linear
equations (expert driver).

xPOTRF (P) Computes Cholesky factorization of a symmetric or Hermitian positive
definite matrix.

xPOTRI Computes the inverse of a symmetric or Hermitian positive definite matrix
using the Cholesky-factorization returned by xPOTRF.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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xPOTRS (P) Solves a symmetric or Hermitian positive definite system of linear
equations, using the Cholesky factorization returned by xPOTRF.

Symmetric or Hermitian Positive Definite Matrix in Packed Storage

xPPCON Reciprocal condition number of a Cholesky-factored symmetric positive
definite matrix in packed storage.

xPPEQU Computes equilibration scale factors for a symmetric or Hermitian positive
definite matrix in packed storage.

xPPRFS Refines solution to a linear system in a Cholesky-factored symmetric or
Hermitian positive definite matrix in packed storage.

xPPSV Solves a linear system in a symmetric or Hermitian positive definite matrix
in packed storage (simple driver).

xPPSVX Solves a linear system in a symmetric or Hermitian positive definite matrix
in packed storage (expert driver).

xPPTRF Computes Cholesky factorization of a symmetric or Hermitian positive
definite matrix in packed storage.

xPPTRI Computes the inverse of a symmetric or Hermitian positive definite matrix
in packed storage using the Cholesky-factorization returned by xPPTRF.

xPPTRS (P) Solves a symmetric or Hermitian positive definite system of linear
equations where the coefficient matrix is in packed storage, using the
Cholesky factorization returned by xPPTRF.

Symmetric or Hermitian Positive Definite Tridiagonal Matrix

xPTCON Estimates the reciprocal of the condition number of a symmetric or
Hermitian positive definite tridiagonal matrix using the Cholesky
factorization returned by xPTTRF.

xPTEQR Computes all eigenvectors and eigenvalues of a real symmetric or
Hermitian positive definite system of linear equations.

xPTRFS Refines solution to a symmetric or Hermitian positive definite tridiagonal
system of linear equations.

xPTSV Solves a symmetric or Hermitian positive definite tridiagonal system of
linear equations (simple driver).

xPTSVX Solves a symmetric or Hermitian positive definite tridiagonal system of
linear equations (expert driver).

xPTTRF Computes the LDLH factorization of a symmetric or Hermitian positive
definite tridiagonal matrix.

xPTTRS (P) Solves a symmetric or Hermitian positive definite tridiagonal system of
linear equations using the LDLH factorization returned by xPTTRF.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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Real Symmetric Band Matrix

SSBEV or DSBEV (Replacement with newer version SSBEVD or DSBEVD suggested)
Computes all eigenvalues and eigenvectors of a symmetric band matrix.

SSBEVD or
DSBEVD

Computes all eigenvalues and eigenvectors of a symmetric band matrix
and uses a divide and conquer method to calculate eigenvectors.

SSBEVX or
DSBEVX

Computes selected eigenvalues and eigenvectors of a symmetric band
matrix.

SSBGST or
DSBGST

Reduces symmetric-definite banded generalized eigenproblem to standard
form.

SSBGV or DSBGV (Replacement with newer version SSBGVD or DSBGVD suggested)
Computes all eigenvalues and eigenvectors of a generalized symmetric-
definite banded eigenproblem.

SSBGVD or
DSBGVD

Computes all eigenvalues and eigenvectors of generalized symmetric-
definite banded eigenproblem and uses a divide and conquer method to
calculate eigenvectors.

SSBGVX or
DSBGVX

Computes selected eigenvalues and eigenvectors of a generalized
symmetric-definite banded eigenproblem.

SSBTRD or
DSBTRD

Reduces symmetric band matrix to real symmetric tridiagonal form by
using an orthogonal similarity transform.

Symmetric Matrix in Packed Storage

xSPCON Estimates the reciprocal of the condition number of a symmetric packed
matrix using the factorization computed by xSPTRF.

SSPEV or DSPEV (Replacement with newer version SSPEVD or DSPEVD suggested)
Computes all the eigenvalues and eigenvectors of a symmetric matrix in
packed storage (simple driver).

SSPEVX or
DSPEVX

Computes selected eigenvalues and eigenvectors of a symmetric matrix in
packed storage (expert driver).

SSPEVD or
DSPEVD

Computes all the eigenvalues and eigenvectors of a symmetric matrix in
packed storage and uses a divide and conquer method to calculate
eigenvectors.

SSPGST or
DSPGST

Reduces a real symmetric-definite generalized eigenproblem to standard
form where the coefficient matrices are in packed storage and uses the
factorization computed by SPPTRF or DPPTRF.

SSPGVD or
DSPGVD

Computes all the eigenvalues and eigenvectors of a real generalized
symmetric-definite eigenproblem where the coefficient matrices are in
packed storage, and uses a divide and conquer method to calculate
eigenvectors.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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SSPGV or DSPGV (Replacement with newer version SSPGVD or DSPGVD suggested)
Computes all the eigenvalues and eigenvectors of a real generalized
symmetric-definite eigenproblem where the coefficient matrices are in
packed storage (simple driver).

SSPGVX or
DSPGVX

Computes selected eigenvalues and eigenvectors of a real generalized
symmetric-definite eigenproblem where the coefficient matrices are in
packed storage (expert driver).

xSPRFS Improves the computed solution to a system of linear equations when the
coefficient matrix is symmetric indefinite in packed storage.

xSPSV Computes the solution to a system of linear equations where the
coefficient matrix is a symmetric matrix in packed storage (simple driver).

xSPSVX Uses the diagonal pivoting factorization to compute the solution to a
system of linear equations where the coefficient matrix is a symmetric
matrix in packed storage (expert driver).

SSPTRD or
DSPTRD

Reduces a real symmetric matrix stored in packed form to real symmetric
tridiagonal form using an orthogonal similarity transform.

xSPTRF Computes the factorization of a symmetric packed matrix using the
Bunch-Kaufman diagonal pivoting method.

xSPTRI Computes the inverse of a symmetric indefinite matrix in packed storage
using the factorization computed by xSPTRF.

xSPTRS (P) Solves a system of linear equations by the symmetric matrix stored in
packed format using the factorization computed by xSPTRF.

Real Symmetric Tridiagonal Matrix

SSTEBZ or
DSTEBZ

Computes the eigenvalues of a real symmetric tridiagonal matrix.

xSTEDC Computes all the eigenvalues and eigenvectors of a symmetric tridiagonal
matrix using a divide and conquer method.

xSTEGR Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using Relatively Robust Representations.

xSTEIN Computes selected eigenvectors of a real symmetric tridiagonal matrix
using inverse iteration.

xSTEQR Computes all the eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using the implicit QL or QR algorithm.

SSTERF or
DSTERF

Computes all the eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using a root-free QL or QR algorithm variant.

SSTEV or DSTEV (Replacement with newer version SSTEVR or DSTEVR suggested)
Computes all eigenvalues and eigenvectors of a real symmetric tridiagonal
matrix (simple driver).

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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SSTEVX or
DSTEVX

Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix (expert driver).

SSTEVD or
DSTEVD

(Replacement with newer version SSTEVR or DSTEVR suggested)
Computes all the eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using a divide and conquer method.

SSTEVR or
DSTEVR

Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix using Relatively Robust Representations.

xSTSV Computes the solution to a system of linear equations where the
coefficient matrix is a symmetric tridiagonal matrix.

xSTTRF Computes the factorization of a symmetric tridiagonal matrix.

xSTTRS (P) Computes the solution to a system of linear equations where the
coefficient matrix is a symmetric tridiagonal matrix.

Symmetric Matrix

xSYCON Estimates the reciprocal of the condition number of a symmetric matrix
using the factorization computed by SSYTRF or DSYTRF.

SSYEV or DSYEV (Replacement with newer version SSYEVR or DSYEVR suggested)
Computes all eigenvalues and eigenvectors of a symmetric matrix.

SSYEVX or
DSYEVX

Computes eigenvalues and eigenvectors of a symmetric matrix (expert
driver).

SSYEVD or
DSYEVD

(Replacement with newer version SSYEVR or DSYEVR suggested)
Computes all eigenvalues and eigenvectors of a symmetric matrix and
uses a divide and conquer method to calculate eigenvectors.

SSYEVR or
DSYEVR

Computes selected eigenvalues and eigenvectors of a symmetric
tridiagonal matrix.

SSYGST or
DSYGST

Reduces a symmetric-definite generalized eigenproblem to standard form
using the factorization computed by SPOTRF or DPOTRF.

SSYGV or DSYGV (Replacement with newer version SSYGVD or DSYGVD suggested)
Computes all the eigenvalues and eigenvectors of a generalized
symmetric-definite eigenproblem.

SSYGVX or
DSYGVX

Computes selected eigenvalues and eigenvectors of a generalized
symmetric-definite eigenproblem.

SSYGVD or
DSYGVD

Computes all the eigenvalues and eigenvectors of a generalized
symmetric-definite eigenproblem and uses a divide and conquer method
to calculate eigenvectors.

xSYRFS Improves the computed solution to a system of linear equations when the
coefficient matrix is symmetric indefinite.

xSYSV Solves a real symmetric indefinite system of linear equations (simple
driver).

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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xSYSVX Solves a real symmetric indefinite system of linear equations (expert
driver).

SSYTRD or
DSYTRD

Reduces a symmetric matrix to real symmetric tridiagonal form by using a
orthogonal similarity transformation.

xSYTRF Computes the factorization of a real symmetric indefinite matrix using the
diagonal pivoting method.

xSYTRI Computes the inverse of a symmetric indefinite matrix using the
factorization computed by xSYTRF.

xSYTRS (P) Solves a system of linear equations by the symmetric matrix using the
factorization computed by xSYTRF.

Triangular Band Matrix

xTBCON Estimates the reciprocal condition number of a triangular band matrix.

xTBRFS Determines error bounds and estimates for solving a triangular banded
system of linear equations.

xTBTRS (P) Solves a triangular banded system of linear equations.

Triangular Matrix-Generalized Problem (Pair of Triangular Matrices)

xTGEVC Computes right and/or left generalized eigenvectors of two upper
triangular matrices.

xTGEXC Reorders the generalized Schur decomposition of a real or complex matrix
pair using an orthogonal or unitary equivalence transformation.

xTGSEN Reorders the generalized real-Schur or Schur decomposition of two
matrixes and computes the generalized eigenvalues.

xTGSJA Computes the generalized SVD from two upper triangular matrices
obtained from xGGSVP.

xTGSNA Estimates reciprocal condition numbers for specified eigenvalues and
eigenvectors of two matrices in real-Schur or Schur canonical form.

xTGSYL Solves the generalized Sylvester equation.

Triangular Matrix in Packed Storage

xTPCON Estimates the reciprocal or the condition number of a triangular matrix in
packed storage.

xTPRFS Determines error bounds and estimates for solving a triangular system of
linear equations where the coefficient matrix is in packed storage.

xTPTRI Computes the inverse of a triangular matrix in packed storage.

xTPTRS (P) Solves a triangular system of linear equations where the coefficient matrix
is in packed storage.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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Triangular Matrix

xTRCON Estimates the reciprocal or the condition number of a triangular matrix.

xTREVC Computes right and/or left eigenvectors of an upper triangular matrix.

xTREXC Reorders Schur factorization of matrix using an orthogonal or unitary
similarity transformation.

xTRRFS Determines error bounds and estimates for triangular system of a linear
equations.

xTRSEN Reorders Schur factorization of matrix to group selected cluster of
eigenvalues in the leading positions on the diagonal of the upper
triangular matrix T and the leading columns of Q form an orthonormal
basis of the corresponding right invariant subspace.

xTRSNA Estimates the reciprocal condition numbers of selected eigenvalues and
eigenvectors of an upper quasi-triangular matrix.

xTRSYL Solves Sylvester matrix equation.

xTRTRI Computes the inverse of a triangular matrix.

xTRTRS (P) Solves a triangular system of linear equations.

Trapezoidal Matrix

xTZRQF Depreciated routine replaced by routine xTZRZF.

xTZRZF Reduces a rectangular upper trapezoidal matrix to upper triangular form
by means of orthogonal transformations.

Unitary Matrix

CUNGBR or
ZUNGBR

Generates the unitary transformation matrices from reduction to
bidiagonal form, as determined by CGEBRD or ZGEBRD.

CUNGHR or
ZUNGHR

Generates the orthogonal transformation matrix reduced to Hessenberg
form, as determined by CGEHRD or ZGEHRD.

CUNGLQ or
ZUNGLQ

Generates a unitary matrix Q from an LQ factorization, as returned by
CGELQF or ZGELQF.

CUNGQL or
ZUNGQL

Generates a unitary matrix Q from a QL factorization, as returned by
CGEQLF or ZGEQLF.

CUNGQR or
ZUNGQR

Generates a unitary matrix Q from a QR factorization, as returned by
CGEQRF or ZGEQRF.

CUNGRQ or
ZUNGRQ

Generates a unitary matrix Q from an RQ factorization, as returned by
CGERQF or ZGERQF.

CUNGTR or
ZUNGTR

Generates a unitary matrix reduced to tridiagonal form, by CHETRD or
ZHETRD.
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CUNMBR or
ZUNMBR

Multiplies a general matrix with the unitary transformation matrix
reduced to bidiagonal form, as determined by CGEBRD or ZGEBRD.

CUNMHR or
ZUNMHR

Multiplies a general matrix by the unitary matrix reduced to Hessenberg
form by CGEHRD or ZGEHRD.

CUNMLQ (P) or
ZUNMLQ (P)

Multiplies a general matrix by the unitary matrix from an LQ factorization,
as returned by CGELQF or ZGELQF.

CUNMQL (P) or
ZUNMQL (P)

Multiplies a general matrix by the unitary matrix from a QL factorization,
as returned by CGEQLF or ZGEQLF.

CUNMQR (P) or
ZUNMQR (P)

Multiplies a general matrix by the unitary matrix from a QR factorization,
as returned by CGEQRF or ZGEQRF.

CUNMRQ (P) or
ZUNMRQ (P)

Multiplies a general matrix by the unitary matrix from an RQ
factorization, as returned by CGERQF or ZGERQF.

CUNMRZ or
ZUNMRZ

Multiplies a general matrix by the unitary matrix from an RZ factorization,
as returned by CTZRZF or ZTZRZF.

CUNMTR or
ZUNMTR

Multiplies a general matrix by the unitary transformation matrix reduced
to tridiagonal form by CHETRD or ZHETRD.

Unitary Matrix in Packed Storage

CUPGTR or
ZUPGTR

Generates the unitary transformation matrix from a tridiagonal matrix
determined by CHPTRD or ZHPTRD.

CUPMTR or
ZUPMTR

Multiplies a general matrix by the unitary transformation matrix reduced
to tridiagonal form by CHPTRD or ZHPTRD.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)
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A.0.2 BLAS1 Routines
TABLE A-2 lists the Sun Performance Library BLAS1 routines. No Sun Performance
Library BLAS1 routines are currently parallelized.

TABLE A-2 BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines

Routine Function

SASUM, DASUM,
SCASUM, DZASUM

Sum of the absolute values of a vector

xAXPY Product of a scalar and vector plus a vector

xCOPY Copy a vector

SDOT, DDOT, DSDOT,
SDSDOT, CDOTU,
ZDOTU, DQDOTA,
DQDOTI

Dot product (inner product)
Quad-precision DQDOTA, DQDOTI available only on SPARC

CDOTC, ZDOTC Dot product conjugating first vector

SNRM2, DNRM2,
SCNRM2, DZNRM2

Euclidean norm of a vector

xROTG Set up Givens plane rotation

xROT, CSROT, ZDROT Apply Given’s plane rotation

SROTMG, DROTMG Set up modified Given’s plane rotation

SROTM, DROTM Apply modified Given’s rotation

ISAMAX, DAMAX,
ICAMAX, IZAMAX

Index of element with maximum absolute value

xSCAL, CSSCAL,
ZDSCAL

Scale a vector

xSWAP Swap two vectors

CVMUL, ZVMUL Compute scaled product of complex vectors
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A.0.3 BLAS2 Routines
TABLE A-3 lists the Sun Performance Library BLAS2 routines. (P) denotes routines that
are parallelized.

TABLE A-3 BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines

Routine Function

xGBMV Product of a matrix in banded storage and a vector

xGEMV (P) Product of a general matrix and a vector

SGER (P), DGER (P),
CGERC (P), ZGERC (P),
CGERU (P), ZGERU (P)

Rank-1 update to a general matrix

CHBMV, ZHBMV Product of a Hermitian matrix in banded storage and a vector

CHEMV (P), ZHEMV (P) Product of a Hermitian matrix and a vector

CHER (P), ZHER (P) Rank-1 update to a Hermitian matrix

CHER2, ZHER2 Rank-2 update to a Hermitian matrix

CHPMV (P), ZHPMV (P) Product of a Hermitian matrix in packed storage and a vector

CHPR, ZHPR Rank-1 update to a Hermitian matrix in packed storage

CHPR2, ZHPR2 Rank-2 update to a Hermitian matrix in packed storage

SSBMV, DSBMV Product of a symmetric matrix in banded storage and a vector

SSPMV (P), DSPMV (P) Product of a Symmetric matrix in packed storage and a vector

SSPR, DSPR Rank-1 update to a real symmetric matrix in packed storage

SSPR2 (P), DSPR2 (P) Rank-2 update to a real symmetric matrix in packed storage

SSYMV, (P) DSYMV (P) Product of a symmetric matrix and a vector

SSYR (P), DSYR (P) Rank-1 update to a real symmetric matrix

SSYR2 (P), DSYR2 (P) Rank-2 update to a real symmetric matrix

xTBMV Product of a triangular matrix in banded storage and a vector

xTBSV Solution to a triangular system in banded storage of linear
equations

xTPMV Product of a triangular matrix in packed storage and a vector

xTPSV Solution to a triangular system of linear equations in packed
storage

xTRMV (P) Product of a triangular matrix and a vector

xTRSV (P) Solution to a triangular system of linear equations
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A.0.4 BLAS3 Routines
TABLE A-4 lists the Sun Performance Library BLAS3 routines. (P) denotes routines that
are parallelized.

A.0.5 Sparse BLAS Routines
TABLE A-5 lists the Sun Performance Library sparse BLAS routines. (P) denotes
routines that are parallelized.

TABLE A-4 BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines

Routine Function

xGEMM (P) Product of two general matrices

CHEMM (P) or
ZHEMM (P)

Product of a Hermitian matrix and a general matrix

CHERK (P) or
ZHERK (P)

Rank-k update of a Hermitian matrix

CHER2K (P) or
ZHER2K (P)

Rank-2k update of a Hermitian matrix

xSYMM (P) Product of a symmetric matrix and a general matrix

xSYRK (P) Rank-k update of a symmetric matrix

xSYR2K (P) Rank-2k update of a symmetric matrix

xTRMM (P) Product of a triangular matrix and a general matrix

xTRSM (P) Solution for a triangular system of equations

TABLE A-5 Sparse BLAS Routines

Routines Function

xAXPYI Adds a scalar multiple of a sparse vector X to a full vector Y.

xBCOMM (P) Block coordinate matrix-matrix multiply.

xBDIMM (P) Block diagonal format matrix-matrix multiply.

xBDISM (P) Block Diagonal format triangular solve.

xBELMM (P) Block Ellpack format matrix-matrix multiply.

xBELSM (P) Block Ellpack format triangular solve.

xBSCMM (P) Block compressed sparse column format matrix-matrix multiply.

xBSCSM (P) Block compressed sparse column format triangular solve.
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xBSRMM (P) Block compressed sparse row format matrix-matrix multiply.

xBSRSM (P) Block compressed sparse row format triangular solve.

xCOOMM (P) Coordinate format matrix-matrix multiply.

xCSCMM (P) Compressed sparse column format matrix-matrix multiply

xCSCSM (P) Compressed sparse column format triangular solve

xCSRMM (P) Compressed sparse row format matrix-matrix multiply.

xCSRSM (P) Compressed sparse row format triangular solve.

xDIAMM (P) Diagonal format matrix-matrix multiply.

xDIASM (P) Diagonal format triangular solve.

SDOTI, DDOTI,
CDOTUI, or ZDOTUI

Computes the dot product of a sparse vector and a full vector.

CDOTCI, or ZDOTCI Computes the conjugate dot product of a sparse vector and a full
vector.

xELLMM (P) Ellpack format matrix-matrix multiply.

xELLSM (P) Ellpack format triangular solve.

xCGTHR Given a full vector, creates a sparse vector and corresponding
index vector.

xCGTHRZ Given a full vector, creates a sparse vector and corresponding
index vector and zeros the full vector.

xJADMM (P) Jagged diagonal matrix-matrix multiply.

SJADRP or DJADRP Right permutation of a jagged diagonal matrix.

xJADSM (P) Jagged diagonal triangular solve.

SROTI or DROTI Applies a Givens rotation to a sparse vector and a full vector.

xCSCTR Given a sparse vector and corresponding index vector, puts those
elements into a full vector.

xSKYMM (P) Skyline format matrix-matrix multiply.

xSKYSM (P) Skyline format triangular solve.

xVBRMM (P) Variable block sparse row format matrix-matrix multiply.

xVBRSM (P) Variable block sparse row format triangular solve.

TABLE A-5 Sparse BLAS Routines (Continued)
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A.0.6 Sparse Solver Routines
The following tables list routines from SPSOLVE and SuperLU sparse solvers in the
Sun Performance Library. (P) denotes routines that are parallelized.

TABLE A-6 SPSOLVE Routines

Routines Function

xGSSFS (P) One call interface to SPSOLVE.

xGSSIN SPSOLVE initialization.

xGSSOR Fill reducing ordering and symbolic factorization.

xGSSFA (P) Matrix value input and numeric factorization.

xGSSSL Triangular solve.

xGSSUO Sets user-specified ordering permutation.

xGSSRP Returns permutation used by solver.

xGSSCO Returns condition number estimate of coefficient matrix.

xGSSDA Deallocate SPSOLVE memory.

xGSSPS Prints solver statistics.

TABLE A-7 SuperLU Routines

Routine Function

xgstrf Computes factorization

xgssvx Factorizes and solves (expert driver)

xgssv Factorizes and solves (simple driver)

xgstrs Computes triangular solve

xgsrfs Improves computed solution; provides error bounds

xlangs Computes one-norm, Frobenius-norm, or infinity-
norm

xgsequ Computes row and column scalings

xgscon Estimates reciprocal of condition number

xlaqgs Equilibrates a general sparse matrix

LUSolveTime Returns time spent in solve stage

LUFactTime Returns time spent in factorization stage

LUFactFlops Returns number of floating point operations in
factorization stage
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LUSolveFlops Returns number of floating point operations in solve
stage

xQuerySpace Returns information on the memory statistics

sp_ienv Returns specified machine dependent parameter

xPrintPerf Prints statistics collected by the computational
routines

set_default_options Sets parameters that control solver behavior to default
options

StatInit Allocates and initializes structure that stores
performance statistics

StatFree Frees structure that stores performance statistics

Destroy_Dense_Matrix Deallocates a SuperMatrix in dense format

Destroy_SuperNode_Matrix Deallocates a SuperMatrix in supernodal format

Destroy_CompCol_Matrix Deallocates a SuperMatrix in compressed sparse
column format

Destroy_CompCol_Permuted Deallocates a SuperMatrix in permuted compressed
sparse column format

Destroy_SuperMatrix_Store Deallocates actual storage that stores matrix in a
SuperMatrix

xCopy_CompCol_Matrix Copies a SuperMatrix in compressed sparse column
format

xCreate_CompCol_Matrix Allocates a SuperMatrix in compressed sparse column
format

xCreate_Dense_Matrix Allocates a SuperMatrix in dense format

xCreate_CompRow_Matrix Allocates a SuperMatrix in compressed sparse row
format

xCreate_SuperNode_Matrix Allocates a SuperMatrix in supernodal format

sp_preorder Permutes columns of original sparse matrix

sp_sgemm
sp_dgemm
sp_cgemm
sp_zgemm

Multiplies a SuperMatrix by a dense matrix

TABLE A-7 SuperLU Routines (Continued)
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A.0.7 Signal Processing Library Routines
Sun Performance Library contains routines for computing the fast Fourier transform,
sine and cosine transforms, and convolution and correlation.

A.0.7.1 FFT Routines

Sun Performance Library provides a set of FFT interfaces that supersedes a subset of
the FFTPACK and VFFTPACK routines provided in earlier Sun Performance Library
releases. The old FFT interfaces are included for backward compatibility, and users
are encouraged to use the new interfaces. For information on individual FFT
routines, see the section 3P man pages.

TABLE A-8 shows the mapping between the Sun Performance Library FFT routines
and the corresponding FFTPACK and VFFTPACK routines. (P) denotes routines that
are parallelized.

TABLE A-8 FFT Routines

Routine Replaces Function

CFFTC (P) CFFTI

CFFTF (P)
CFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a complex
sequence.

CFFTC2 (P) CFFT2I

CFFT2F (P)
CFFT2B (P)

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward or inverse FFT of a two-
dimensional complex array.

CFFTC3 (P) CFFT3I

CFFT3F (P)
CFFT3B (P)

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward or inverse FFT of three-
dimensional complex array.

CFFTCM (P) VCFFTI

VCFFTF (P)
VCFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a set of data
sequences stored in a two-dimensional complex array.

CFFTS RFFTI, RFFTB
EZFFTI, EZFFTB

Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a complex sequence.

CFFTS2 RFFT2I

RFFT2B

Initialize the trigonometric weight and factor tables or compute
the two-dimensional inverse FFT of a two-dimensional complex
array.

CFFTS3 (P) RFFT3I

RFFT3B

Initialize the trigonometric weight and factor tables or compute
the three-dimensional inverse FFT of three-dimensional complex
array.
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CFFTSM VRFFTI

VRFFTB (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a set of data sequences
stored in a two-dimensional complex array.

DFFTZ DFFTI, DFFTF
DEZFFTI, DEZFFTF

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a double precision
sequence.

DFFTZ2 DFFT2I

DFFT2F

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward FFT of a two-dimensional double
precision array.

DFFTZ3 (P) DFFT3I

DFFT3F

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward FFT of three-dimensional double
precision array.

DFFTZM VDFFTI

VDFFTF (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a set of data sequences
stored in a two-dimensional double precision array.

SFFTC RFFTI, RFFTF
EZFFTI, EZFFTF

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a real sequence.

SFFTC2 RFFT2I

RFFT2F

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward FFT of a two-dimensional real
array.

SFFTC3 (P) RFFT3I

RFFT3F

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward FFT of three-dimensional real
array.

SFFTCM VRFFTI

VRFFTF (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward FFT of a set of data sequences
stored in a two-dimensional real array.

ZFFTD DFFTI, DFFTB
DEZFFTI, DEZFFTB

Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a double complex sequence.

ZFFTD2 DFFT2I

DFFT2B

Initialize the trigonometric weight and factor tables or compute
the two-dimensional inverse FFT of a two-dimensional double
complex array.

ZFFTD3 (P) DFFT3I

DFFT3B

Initialize the trigonometric weight and factor tables or compute
the three-dimensional inverse FFT of three-dimensional double
complex array.

ZFFTDM VDFFTI

VDFFTB (P)
Initialize the trigonometric weight and factor tables or compute
the one-dimensional inverse FFT of a set of data sequences
stored in a two-dimensional double complex array.

TABLE A-8 FFT Routines (Continued)

Routine Replaces Function
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A.0.7.2 Fast Cosine and Sine Transforms

Sun Performance Library fast cosine and sine transform routines are based on the
routines contained in FFTPACK (http://www.netlib.org/fftpack/). Routines
with a V prefix are vectorized routines that are based on the routines contained in
VFFTPACK (http://www.netlib.org/vfftpack/).

TABLE A-9 lists the Sun Performance Library sine and cosine transform routines.

ZFFTZ (P) ZFFTI

ZFFTF (P)
ZFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a double complex
sequence.

ZFFTZ2 (P) ZFFT2I

ZFFT2F (P)
ZFFT2B (P)

Initialize the trigonometric weight and factor tables or compute
the two-dimensional forward or inverse FFT of a two-
dimensional double complex array.

ZFFTZ3 (P) ZFFT3I

ZFFT3F (P)
ZFFT3B (P)

Initialize the trigonometric weight and factor tables or compute
the three-dimensional forward or inverse FFT of three-
dimensional double complex array.

ZFFTZM (P) VZFFTI

VZFFTF (P)
VZFFTB (P)

Initialize the trigonometric weight and factor tables or compute
the one-dimensional forward or inverse FFT of a set of data
sequences stored in a two-dimensional double complex array.

TABLE A-9 Sine and Cosine Transform Routines

Routine Function

COSQB, DCOSQB,
VCOSQB, VDCOSQB

Cosine quarter-wave synthesis.

COSQF, DCOSQF,
VCOSQF, VDCOSQF

Cosine quarter-wave transform.

COSQI, DCOSQI,
VCOSQI, VDCOSQI

Initialize cosine quarter-wave transform and synthesis.

COST, DCOST,
VCOST, VDCOST

Cosine even-wave transform.

COSTI, DCOSTI,
VCOSTI, VDCOSTI

Initialize cosine even-wave transform.

SINQB, DSINQB,
VSINQB, VDSINQB

Sine quarter-wave synthesis.

TABLE A-8 FFT Routines (Continued)

Routine Replaces Function
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A.0.7.3 Convolution and Correlation Routines

TABLE A-10 lists the Sun Performance Library convolution and correlation routines.

A.0.8 Miscellaneous Signal Processing Routines
TABLE A-11 lists the miscellaneous Sun Performance Library signal processing
routines.

See the section 3P man pages for information on using each routine.

SINQF, DSINQF,
VSINQF, VDSINQF

Sine quarter-wave transform.

SINQI, DSINQI,
VSINQI, VDSINQI

Initialize sine quarter-wave transform and synthesis.

SINT, DSINT, VSINT,
VDSINT

Sine odd-wave transform.

SINTI, DSINT,
VSINTI, VDSINTI

Initialize sine odd-wave transform.

TABLE A-10 Convolution and Correlation Routines

Routines Function

xCNVCOR Computes convolution or correlation

xCNVCOR2 Computes two-dimensional convolution or correlation

TABLE A-11 Convolution and Correlation Routines

Routines Function

RFFTOPT, DFFTOPT,
CFFTOPT, ZFFTOPT

Compute the length of the closest FFT

SWIENER or DWEINER Performs Wiener deconvolution of two signals

xTRANS (P) Transposes array

TABLE A-9 Sine and Cosine Transform Routines (Continued)

Routine Function
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A.0.9 Sort Routines
TABLE A-12 lists the Sun Performance Library sort routines. (P) denotes routines that
are parallelized on Solaris/SPARC platforms. All routines are single-threaded on
Solaris/x86 platforms whether denoted by (P) or not.

TABLE A-12 Sort Routines

Routines Function

BLAS_DSORT (P) Sorts a real (double precision) vector X in increasing or decreasing
order using quick sort algorithm.

BLAS_DSORTV (P) Sorts a real (double precision) vector X in increasing or decreasing
order using quick sort algorithm and overwrite P with the
permutation vector.

BLAS_DPERMUTE (P) Permutes a real (double precision) array in terms of the
permutation vector P, output by DSORTV.

BLAS_ISORT (P) Sorts an integer vector X in increasing or decreasing order using
quick sort algorithm.

BLAS_ISORTV (P) Sorts a real vector X in increasing or decreasing order using quick
sort algorithm and overwrite P with the permutation vector.

BLAS_IPERMUTE (P) Permutes an integer array in terms of the permutation vector P,
output by DSORTV.

BLAS_SSORT (P) Sorts a real vector X in increasing or decreasing order using quick
sort algorithm.

BLAS_SSORTV (P) Sorts a real vector X in increasing or decreasing order using quick
sort algorithm and overwrite P with the permutation vector.

BLAS_SPERMUTE (P) Permutes a real array in terms of the permutation vector P, output
by DSORTV.
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Index
Symbols
%g2, %g3, %g4, and %g5 global integer registers, 2-10
_64, appending to routine name, 2-4, 3-3

Numerics
2D FFT routines

complex sequences as input, 7-13
conjugate symmetry, 7-13
data storage format, 7-13
forward 2D FFT, 7-13
inverse 2D FFT, 7-13
real sequences as input, 7-13
routines, 7-2, 7-14

3D FFT routines
complex sequences as input, 7-18
conjugate symmetry, 7-18
data storage format, 7-18
forward 3D FFT, 7-18
inverse 3D FFT, 7-18
real sequences as input, 7-18
routines, 7-2, 7-19

64-bit code
C, 3-6
Fortran 95, 3-5
See also 64-bit enabled Solaris operating

environment
64-bit enabled Solaris operating environment

appending _64 to routine names, 3-3
compiling code, 3-3
integer promotion, 3-4

64-bit integer arguments, 2-3
promoting integers to 64-bits, 3-3, 3-4

64-bit integer interfaces, calling, 3-4

A
accessible documentation, -xv
architectures, 1-2
argument data types

summary, 7-39
arguments

convolution and correlation, 7-40
FFT routines, 7-2

automatic code restructuring tools, 2-2

B
banded matrix, 5-1
bidiagonal matrix, A-2
BLAS1, 1-1, A-17
BLAS2, 1-1, A-18
BLAS3, 1-1, A-19

C
C

64-bit code, 3-6
array storage, 2-9
examples, 2-10
routine calling conventions, 2-9

C interfaces
advantages, 2-9
compared to Fortran interfaces, 2-9
routine calling conventions, 2-9

calling 64-bit integer interfaces, 3-4
calling conventions
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C, 2-9
f77/f95, 2-2

CLAPACK, 1-2
compatibility, LAPACK, 1-2, 1-4
compile-time checking, 2-3
conjugate symmetric, 7-5
conjugate symmetry

2D FFT routines, 7-13
3D FFT routines, 7-18
FFT routines, 7-5

convolution, 7-37
convolution and correlation

arguments, 7-40
routines, 7-39, 7-40

correlation, 7-38
cosine transforms, 7-25

D
-dalign, 3-2
data storage format

2D FFT routines, 7-13
3D FFT routines, 7-18
FFT routines, 7-5

data types
arguments, 7-39

DFT
efficiency of FFT versus DFT, 7-1

diagonal matrix, A-2
discrete Fourier transform

See DFT
documentation index, -xiv
documentation, accessing, -xiv to ??

E
environment variable

STACKSIZE, 4-1
even sequences

fast cosine transform routines, 7-26

F
f95 interfaces

calling conventions, 2-2
fast cosine transform routines, 7-27

even sequences, 7-26
forward and inverse, 7-28
forward transform (multiple quarter-wave even

sequences), 7-30
forward transform (quarter-wave even

sequence), 7-29
inverse transform (multiple quarter-wave even

sequences), 7-30
inverse transform (quarter-wave even

sequence), 7-29
multiple sequences, 7-29
quarter-wave even sequences, 7-26

fast Fourier transform
See FFT

fast sine transform routines, 7-28
forward and inverse, 7-30
forward and inverse (multiple sequences), 7-31
forward transform (multiple quarter-wave odd

sequences), 7-32
forward transform (quarter-wave odd

sequence), 7-31
inverse transform (multiple quarter-wave odd

sequences), 7-32
inverse transform (quarter-wave odd

sequence), 7-31
odd sequences, 7-26
quarter-wave odd sequences, 7-26

features, 1-3
FFT

efficiency of FFT versus DFT, 7-1
FFT routines

2D FFT routines, 7-2
3D FFT routines, 7-2
arguments, 7-2
complex sequences as input, 7-5
conjugate symmetry, 7-5
data storage format, 7-5
forward and inverse, 7-2
linear FFT routines, 7-2, 7-6
linear forward FFT, 7-4
linear forward FFT (polar form), 7-4
linear inverse FFT, 7-4
linear inverse FFT (polar form), 7-4
real sequences as input, 7-5
sequence length for most efficient

computation, 7-3, 7-24
FFTPACK, 7-26, A-23, A-25
Fortran 95

64-bit code, 3-5
compile-time checking, 2-3
optional arguments, 2-3, 2-5
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type independence, 2-3
USE SUNPERF, 2-3

Fortran interfaces
summary, 2-2

G
general band matrix, A-2
general matrix, A-2
general tridiagonal matrix, A-4
global integer registers, 2-10

H
Hermitian band matrix, A-5
Hermitian matrix, A-5
Hermitian matrix in packed storage, A-6

I
including routines in development environment, 2-1

L
LAPACK, 1-1, A-2
LAPACK 90, 1-2
LAPACK compatibility, 1-2, 1-4
-library=sunperf, 1-5, 3-2
LINPACK, 1-1

M
malloc, 2-10
man pages

section 3P, 7-1, A-1
matrix

banded, 5-1
bidiagonal, A-2
diagonal, A-2
general, 5-3, A-2
general band, A-2
general tridiagonal, A-4
Hermitian, A-5
Hermitian band, A-5
Hermitian in packed storage, A-6
real orthogonal, A-8
real orthogonal in packed storage, A-8
real symmetric band, A-11
real symmetric tridiagonal, A-12
sparce, 6-1
structurally symmetric sparse, 6-3

symmetric, 5-5, A-13
symmetric in packed storage, A-11
symmetric or Hermitian-positive definite, A-9
symmetric or Hermitian-positive definite

band, A-9
symmetric or Hermitian-positive definite in

packed storage, A-10
symmetric or Hermitian-positive definite

tridiagonal, A-10
symmetric sparse, 6-2
trapezoidal, A-15
triangular, 5-4, A-14, A-15
triangular band, A-14
triangular in packed storage, A-14
tridiagonal, 5-6
unitary, A-15
unitary in packed storage, A-16
upper Hessenberg, A-7

MT-safe routines, 2-8

N
Netlib, 1-2
Netlib Sparse BLAS

naming conventions, 6-4
NIST Fortran Sparse BLAS

naming conventions, 6-5
number of threads, 4-2

O
odd sequences

fast sine transform routines, 7-26
optional f95 arguments, 2-3, 2-5

P
packed storage, 5-2
parallel processing

number of threads, 4-2
promoting integer arguments to 64-bits, 3-3, 3-4

Q
quarter-wave even sequences

fast cosine transform routines, 7-26
quarter-wave odd sequences

fast sine transform routines, 7-26

R
real orthogonal matrix, A-8
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real orthogonal matrix in packed storage, A-8
real symmetric band matrix, A-11
real symmetric tridiagonal matrix, A-12
replacing routines, 2-2
routines

2D FFT routines, 7-2, 7-14
3D FFT routines, 7-2, 7-19
BLAS1, A-17
BLAS2, A-18
BLAS3, A-19
C calling conventions, 2-9
convolution and correlation, 7-39, 7-40
f95 calling conventions, 2-2
fast cosine transform routines, 7-26, 7-27
fast cosine transform routines (multiple

sequences), 7-29
fast sine transform routines, 7-26, 7-28
FFTPACK, A-23, A-25
forward and inverse FFT, 7-2
forward fast cosine transform routines, 7-28
forward fast cosine transform routines (multiple

quarter-wave even sequences), 7-30
forward fast cosine transform routines (quarter-

wave even sequence), 7-29
forward fast sine transform routines, 7-30
forward fast sine transform routines (multiple

quarter-wave odd sequences), 7-32
forward fast sine transform routines (multiple

sequences), 7-31
forward fast sine transform routines (quarter-

wave odd sequence), 7-31
inverse fast cosine transform routines, 7-28
inverse fast cosine transform routines (multiple

quarter-wave even sequences), 7-30
inverse fast cosine transform routines (quarter-

wave even sequence), 7-29
inverse fast sine transform routines, 7-30
inverse fast sine transform routines (multiple

quarter-wave odd sequences), 7-32
inverse fast sine transform routines (multiple

sequences), 7-31
inverse fast sine transform routines (quarter-

wave odd sequence), 7-31
LAPACK, A-2
linear FFT routines, 7-2, 7-6
sparse BLAS, A-19
VFFTPACK, A-23, A-25

S
section 3P man pages, 7-1, A-1
shell prompts, -xiv
sine transforms, 7-25
sparse BLAS, A-19
sparse matrices

structurally symmetric, 6-3
symmetric, 6-2

sparse matrix, 6-1
SPSOLVE sparse solver routines, 6-6
STACKSIZE environment variable, 4-1
structurally symmetric sparse matrix, 6-3
SuperLU sparse solver routines, 6-20
symmetric matrix, 5-5, A-13
symmetric matrix in packed storage, A-11
symmetric or Hermitian positive definite band

matrix, A-9
symmetric or Hermitian positive definite matrix, A-

9
symmetric or Hermitian positive definite matrix in

packed storage, A-10
symmetric or Hermitian positive definite tridiagonal

matrix, A-10
symmetric sparse matrix, 6-2
synchronization, 4-4

T
threads

synchronization, 4-4
trapezoidal matrix, A-15
triangular band matrix, A-14
triangular matrix, 5-4, A-14, A-15
triangular matrix in packed storage, A-14
tridiagnonal matrix, 5-6
type Independence, 2-3
typographic conventions, -xiii

U
unitary matrix, A-15
unitary matrix in packed storage, A-16
upper Hessenberg matrix, A-7
USE SUNPERF

enabling Fortran 95 features, 2-3
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V
VFFTPACK, 7-26, A-23, A-25

X
-xarch, 3-2
xFFTOPT, 7-25
-xtypemap, 3-4
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