
Oracle® E-Business Suite
Integrated SOA Gateway Developer's Guide
Release 12.1
Part No. E12065-06

June 2010

Oracle E-Business Suite Integrated SOA Gateway Developer's Guide, Release 12.1

Part No. E12065-06

Copyright © 2008, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Melody Yang

Contributor: Rekha Ayothi, Neeraj Chauhan, Anil Kemisetti, Saritha Nalagandla, Surya Narayana
Nellepalli, Nadakuditi Ravindra, Dilbaghsingh Sardar, Vijayakumar Shanmugam, Shivdas Tomar, Abhishek
Verma

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

This software and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third party content, products and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third
party content, products or services.

 iii

Contents

Send Us Your Comments

Preface

1 Oracle E-Business Suite Integrated SOA Gateway Overview
Oracle E-Business Suite Integrated SOA Gateway Overview... 1-1

Major Components Features and Definitions.. 1-3

2 Discovering and Viewing Integration Interfaces
Overview... 2-1
Searching and Viewing Integration Interfaces...2-1
Reviewing Interface Details.. 2-6
Reviewing WSDL Element Details... 2-10
Understanding SOAP Messages... 2-19

3 Using PL/SQL APIs as Web Services
Overview... 3-1
Using PL/SQL WSDLs at Design Time...3-1

Creating a New BPEL Project...3-6
Creating a Partner Link for the Web Service.. 3-8
Adding a Partner Link for File Adapter... 3-12
Adding Invoke Activities... 3-21
Adding Assign Activities... 3-25

Deploying and Testing the BPEL Process...3-37
Deploying the BPEL Process.. 3-38
Testing the BPEL Process... 3-39

iv

4 Using XML Gateway Inbound and Outbound Interfaces
Overview... 4-1
Using XML Gateway Inbound Services... 4-2

Using XML Gateway Inbound Services at Design Time.. 4-2
Creating a New BPEL Project.. 4-7
Creating a Partner Link... 4-9
Adding Partner Links for File Adapter... 4-12
Adding Invoke Activities.. 4-18
Adding Assign Activities.. 4-21

Deploying and Testing the BPEL Process at Run Time..4-26
Deploying the BPEL Process... 4-27
Testing the BPEL Process...4-28

Using XML Gateway Outbound Through Subscription Model.. 4-30
Using XML Gateway Outbound Services at Design Time... 4-30

Creating a New BPEL Project.. 4-32
Creating a Partner Link for AQ Adapter... 4-33
Adding a Receive Activity... 4-39
Adding a Partner Link for File Adapter.. 4-41
Adding an Invoke Activity.. 4-47
Adding an Assign Activity.. 4-49

Deploying and Testing the BPEL Process at Run Time..4-51
Deploying the BPEL Process... 4-52
Testing the BPEL Process...4-53

5 Using Business Events Through Subscription Model
Overview... 5-1
Using a Business Event in Creating a BPEL Process at Design Time...................................... 5-1

Creating a New BPEL Project...5-5
Creating a Partner Link for AQ Adapter... 5-6
Adding a Receive Activity... 5-13
Adding a Partner Link for File Adapter... 5-15
Adding an Invoke Activity.. 5-21
Adding an Assign Activity.. 5-23

Deploying and Testing the BPEL Process at Run Time... 5-25
Deploying the BPEL Process.. 5-26
Testing the BPEL Process... 5-27

6 Using Concurrent Programs
Overview... 6-1

 v

Using Concurrent Program WSDLs at Design Time.. 6-1
Creating a New BPEL Project...6-5
Creating a Partner Link for the Web Service.. 6-7
Adding a Partner Link for File Adapter... 6-10
Adding Invoke Activities... 6-15
Adding Assign Activities... 6-19

Deploying and Testing the BPEL Process at Run Time... 6-23
Deploying the BPEL Process.. 6-24
Testing the BPEL Process... 6-25

7 Using Business Service Objects
Overview... 7-1
Using Business Service Object WSDLs at Design Time.. 7-1

Creating a New BPEL Project...7-5
Creating a Partner Link.. 7-7
Adding a Partner Link for File Adapter... 7-9
Adding an Invoke activity... 7-15
Adding an Assign activity... 7-18

Deploying and Testing the BPEL Process at Run Time... 7-24
Deploying the BPEL Process.. 7-24
Testing the BPEL Process... 7-25

8 Using Java APIs for Forms Services
Overview... 8-1
Using Java APIs for Forms Services at Design Time..8-1

Creating a New BPEL Project...8-6
Creating a Partner Link.. 8-7
Adding a Partner Link for File Adapter... 8-11
Adding Invoke Activities... 8-15
Adding Assign Activities... 8-19

Deploying and Testing the BPEL Process...8-27
Deploying the BPEL Process.. 8-27
Testing the BPEL Process... 8-28

9 Using Composite Services - BPEL
Overview... 9-1
Viewing Composite Services.. 9-2
Downloading Composite Services..9-2
Modifying and Deploying BPEL Processes.. 9-4

vi

10 Creating and Using Custom Integration Interfaces
Overview... 10-1
Creating Custom Integration Interfaces... 10-2

Creating Custom Integration Interfaces of Interface Types... 10-2
Creating Custom Integration Interfaces of Composite Services...10-8
Creating Custom Business Events Using Workflow XML Loader................................... 10-14

Using Custom Integration Interfaces as Web Services.. 10-22
Using Custom Interface WSDL in Creating a BPEL Process at Design Time................... 10-23

Creating a New BPEL Project.. 10-26
Creating a Partner Link for the Web Service... 10-28
Adding a Partner Link for File Adapter.. 10-31
Adding Invoke Activities.. 10-36
Adding Assign Activities.. 10-39

Deploying and Testing the BPEL Process at Run Time..10-46
Deploying the BPEL Process... 10-47
Testing the BPEL Process...10-49

11 Working With Oracle Workflow Business Event System to Invoke Web
Services

Oracle Workflow and Service Invocation Framework Overview.. 11-1
Web Service Invocation Using Service Invocation Framework... 11-2

Understanding Message Patterns in WSDL... 11-3
Defining Web Service Invocation Metadata... 11-5

Step 1: Creating a Web Service Invoker Business Event.. 11-6
Step 2: Creating Local and Error Event Subscriptions to the Invoker Event................11-8
Step 3: Creating a Receive Event and Subscription (Optional).................................. 11-17

Understanding Web Service Input Message Parts... 11-21
Supporting WS-Security.. 11-26

Calling Back to Oracle E-Business Suite With Web Service Response............................... 11-28
Invoking Web Services... 11-30
Managing Errors.. 11-36
Testing Web Service Invocation... 11-37
Troubleshooting Web Service Invocation Failure..11-43
Extending Seeded Java Rule Function.. 11-48
Other Invocation Usage Considerations... 11-54

A Integration Repository Annotation Standards
General Guidelines... A-1
Java Annotations... A-4

 vii

PL/SQL Annotations... A-11
Concurrent Program Annotations.. A-17
XML Gateway Annotations.. A-19
Business Event Annotations... A-31
Business Entity Annotation Guidelines... A-37
Composite Service - BPEL Annotation Guidelines..A-105
Glossary of Annotations... A-112

B Configuring Server Connection
Overview... B-1

C Sample Payload
Sample Payload for Creating Supplier Ship and Debit Request.. C-1
Sample Payload for Inbound Process Purchase Order XML Transaction...............................C-3

D Understanding Basic BPEL Process Creation
Overview... D-1

Glossary

Index

 ix

Send Us Your Comments

Oracle E-Business Suite Integrated SOA Gateway Developer's Guide, Release 12.1
Part No. E12065-06

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 xi

Preface

Intended Audience
Welcome to Release 12.1 of the Oracle E-Business Suite Integrated SOA Gateway
Developer's Guide.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Computer desktop application usage and terminology.

• Oracle E-Business Suite integration interfaces.

• B2B, A2A and BP integrations.

This documentation assumes familiarity with Oracle E-Business Suite. It is written for
the technical consultants, implementers and system integration consultants who
oversee the functional requirements of these applications and deploy the functionality
to their users.

If you have never used Oracle E-Business Suite, we suggest you attend one or more of
the Oracle E-Business Suite training classes available through Oracle University.

See Related Information Sources on page xiii for more Oracle E-Business Suite product
information.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is
available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

xii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible
to all users, including users that are disabled. To that end, our documentation includes
features that make information available to users of assistive technology. This
documentation is available in HTML format, and contains markup to facilitate access by
the disabled community. Accessibility standards will continue to evolve over time, and
Oracle is actively engaged with other market-leading technology vendors to address
technical obstacles so that our documentation can be accessible to all of our customers.
For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Oracle E-Business Suite Integrated SOA Gateway Overview
2 Discovering and Viewing Integration Interfaces
3 Using PL/SQL APIs as Web Services
4 Using XML Gateway Inbound and Outbound Interfaces
5 Using Business Events Through Subscription Model
6 Using Concurrent Programs
7 Using Business Service Objects
8 Using Java APIs for Forms Services
9 Using Composite Services - BPEL
10 Creating and Using Custom Integration Interfaces
11 Working With Oracle Workflow Business Event System to Invoke Web Services
A Integration Repository Annotation Standards
B Configuring Server Connection
C Sample Payload
D Understanding Basic BPEL Process Creation
Glossary

 xiii

Related Information Sources
This book is included on the Oracle E-Business Suite Documentation Library, which is
supplied in the Release 12.1 Media Pack. You can download soft-copy documentation
as PDF files from the Oracle Technology Network at
http://www.oracle.com/technology/documentation/. The Oracle E-Business Suite
Release 12.1 Documentation Library contains the latest information, including any
documents that have changed significantly between releases. If substantial changes to
this book are necessary, a revised version will be made available on the "virtual"
documentation library on My Oracle Support (formerly OracleMetaLink).

If this guide refers you to other Oracle E-Business Suite documentation, use only the
latest Release 12.1 versions of those guides.

Online Documentation

All Oracle E-Business Suite documentation is available online (HTML or PDF).

• Online Help - Online help patches (HTML) are available on My Oracle Support.

• PDF Documentation - See the Oracle E-Business Suite Documentation Library for
current PDF documentation for your product with each release. The Oracle
E-Business Suite Documentation Library is also available on My Oracle Support and
is updated frequently.

• Release Notes - For information about changes in this release, including new
features, known issues, and other details, see the release notes for the relevant
product, available on My Oracle Support.

• Oracle Electronic Technical Reference Manual - The Oracle Electronic Technical
Reference Manual (eTRM) contains database diagrams and a detailed description of
database tables, forms, reports, and programs for each Oracle E-Business Suite
product. This information helps you convert data from your existing applications
and integrate Oracle E-Business Suite data with non-Oracle applications, and write
custom reports for Oracle E-Business Suite products. The Oracle eTRM is available
on My Oracle Support.

Related Guides

You should have the following related books on hand. Depending on the requirements
of your particular installation, you may also need additional manuals or guides.

Oracle Alert User's Guide

This guide explains how to define periodic and event alerts to monitor the status of
your Oracle E-Business Suite data.

Oracle E-Business Suite Concepts

This book is intended for all those planning to deploy Oracle E-Business Suite Release
12, or contemplating significant changes to a configuration. After describing the Oracle

xiv

E-Business Suite architecture and technology stack, it focuses on strategic topics, giving
a broad outline of the actions needed to achieve a particular goal, plus the installation
and configuration choices that may be available.

Oracle E-Business Suite CRM System Administrator's Guide

This manual describes how to implement the CRM Technology Foundation (JTT) and
use its System Administrator Console.

Oracle E-Business Suite Desktop Integration Framework Developer's Guide

Oracle E-Business Suite Desktop Integration Framework is a development tool that lets
you define custom integrators for use with Oracle Web Applications Desktop
Integrator. This guide describes how to define and manage integrators and all
associated supporting objects, as well as how to download and upload integrator
definitions.

Oracle E-Business Suite Developer's Guide

This guide contains the coding standards followed by the Oracle E-Business Suite
development staff. It describes the Oracle Application Object Library components
needed to implement the Oracle E-Business Suite user interface described in the Oracle
E-Business Suite User Interface Standards for Forms-Based Products. It provides information
to help you build your custom Oracle Forms Developer forms so that they integrate
with Oracle E-Business Suite. In addition, this guide has information for customizations
in features such as concurrent programs, flexfields, messages, and logging.

Oracle E-Business Suite Flexfields Guide

This guide provides flexfields planning, setup, and reference information for the Oracle
E-Business Suite implementation team, as well as for users responsible for the ongoing
maintenance of Oracle E-Business Suite product data. This guide also provides
information on creating custom reports on flexfields data.

Oracle Application Framework Developer's Guide

This guide contains the coding standards followed by the Oracle E-Business Suite
development staff to produce applications built with Oracle Application Framework.
This guide is available in PDF format on My Oracle Support and as online
documentation in JDeveloper 10g with Oracle Application Extension.

Oracle Application Framework Personalization Guide

This guide covers the design-time and run-time aspects of personalizing applications
built with Oracle Application Framework.

Oracle E-Business Suite Installation Guide: Using Rapid Install

This book is intended for use by anyone who is responsible for installing or upgrading
Oracle E-Business Suite. It provides instructions for running Rapid Install either to carry
out a fresh installation of Oracle E-Business Suite Release 12, or as part of an upgrade
from Release 11i to Release 12. The book also describes the steps needed to install the
technology stack components only, for the special situations where this is applicable.

Oracle Application Server Adapter for Oracle Applications User's Guide (Oracle

 xv

Fusion Middleware Adapter for Oracle Applications User's Guide)

This guide covers the use of Adapter for Oracle Applications in developing integrations
between Oracle E-Business Suite and trading partners.

Please note that the user's guide can be found in the following documentation libraries:

• As part of the Oracle Application Server in 10g, Oracle Application Server Adapter for
Oracle Applications User's Guide is available in the Oracle Application Server 10g
Documentation Library.

• As part of the Oracle Fusion Middleware and SOA Suite in 11g, Oracle Fusion
Middleware Adapter for Oracle Applications User's Guide is available in the Oracle
Fusion Middleware 11g Documentation Library.

Oracle E-Business Suite System Administrator's Guide Documentation Set

This documentation set provides planning and reference information for the Oracle
E-Business Suite System Administrator. Oracle E-Business Suite System Administrator's
Guide - Configuration contains information on system configuration steps, including
defining concurrent programs and managers, enabling Oracle Applications Manager
features, and setting up printers and online help. Oracle E-Business Suite System
Administrator's Guide - Maintenance provides information for frequent tasks such as
monitoring your system with Oracle Applications Manager, administering Oracle
E-Business Suite Secure Enterprise Search, managing concurrent managers and reports,
using diagnostic utilities including logging, managing profile options, and using alerts.
Oracle E-Business Suite System Administrator's Guide - Security describes User
Management, data security, function security, auditing, and security configurations.

Oracle E-Business Suite User's Guide

This guide explains how to navigate, enter data, query, and run reports using the user
interface (UI) of Oracle E-Business Suite. This guide also includes information on setting
user profiles, as well as running and reviewing concurrent requests.

Oracle E-Business Suite User Interface Standards for Forms-Based Products

This guide contains the user interface (UI) standards followed by the Oracle E-Business
Suite development staff. It describes the UI for the Oracle E-Business Suite products and
how to apply this UI to the design of an application built by using Oracle Forms.

Oracle Diagnostics Framework User's Guide

This manual contains information on implementing and administering diagnostics tests
for Oracle E-Business Suite using the Oracle Diagnostics Framework.

Oracle E-Business Suite Integrated SOA Gateway User's Guide

This guide describes the high level service enablement process, explaining how users
can browse and view the integration interface definitions and services residing in
Oracle Integration Repository.

Oracle E-Business Suite Integrated SOA Gateway Implementation Guide

xvi

This guide explains how integration repository administrators can manage and
administer the Web service activities for integration interfaces including native
packaged integration interfaces, composite services (BPEL type), and custom
integration interfaces. It also describes how to invoke Web services from Oracle
E-Business Suite by employing the Oracle Workflow Business Event System, and how
to manage Web service security, configure logs, and monitor SOAP messages.

Oracle e-Commerce Gateway User's Guide

This guide describes the functionality of Oracle e-Commerce Gateway and the
necessary setup steps in order for Oracle E-Business Suite to conduct business with
trading partners through Electronic Data Interchange (EDI). It also contains how to run
extract programs for outbound transactions, import programs for inbound transactions,
and the relevant reports.

Oracle e-Commerce Gateway Implementation Manual

This guide describes implementation details, highlighting additional setup steps needed
for trading partners, code conversion, and Oracle E-Business Suite. It also provides
architecture guidelines for transaction interface files, troubleshooting information, and a
description of how to customize EDI transactions.

Oracle Report Manager User's Guide

Oracle Report Manager is an online report distribution system that provides a secure
and centralized location to produce and manage point-in-time reports. Oracle Report
Manager users can be either report producers or report consumers. Use this guide for
information on setting up and using Oracle Report Manager.

Oracle iSetup Developer's Guide

This manual describes how to build, test, and deploy Oracle iSetup Framework
interfaces.

Oracle iSetup User's Guide

This guide describes how to use Oracle iSetup to migrate data between different
instances of the Oracle E-Business Suite and generate reports. It also includes
configuration information, instance mapping, and seeded templates used for data
migration.

Oracle Web Applications Desktop Integrator Implementation and Administration
Guide

Oracle Web Applications Desktop Integrator brings Oracle E-Business Suite
functionality to a spreadsheet, where familiar data entry and modeling techniques can
be used to complete Oracle E-Business Suite tasks. You can create formatted
spreadsheets on your desktop that allow you to download, view, edit, and create Oracle
E-Business Suite data, which you can then upload. This guide describes how to
implement Oracle Web Applications Desktop Integrator and how to define mappings,
layouts, style sheets, and other setup options.

Oracle Workflow Administrator's Guide

 xvii

This guide explains how to complete the setup steps necessary for any product that
includes workflow-enabled processes. It also describes how to manage workflow
processes and business events using Oracle Applications Manager, how to monitor the
progress of runtime workflow processes, and how to administer notifications sent to
workflow users.

Oracle Workflow Developer's Guide

This guide explains how to define new workflow business processes and customize
existing Oracle E-Business Suite-embedded workflow processes. It also describes how
to define and customize business events and event subscriptions.

Oracle Workflow User's Guide

This guide describes how users can view and respond to workflow notifications and
monitor the progress of their workflow processes.

Oracle Workflow API Reference

This guide describes the APIs provided for developers and administrators to access
Oracle Workflow.

Oracle Workflow Client Installation Guide

This guide describes how to install the Oracle Workflow Builder and Oracle XML
Gateway Message Designer client components for Oracle E-Business Suite.

Oracle XML Gateway User's Guide

This guide describes Oracle XML Gateway functionality and each component of the
Oracle XML Gateway architecture, including Message Designer, Oracle XML Gateway
Setup, Execution Engine, Message Queues, and Oracle Transport Agent. It also explains
how to use Collaboration History that records all business transactions and messages
exchanged with trading partners.

The integrations with Oracle Workflow Business Event System, and the
Business-to-Business transactions are also addressed in this guide.

Oracle XML Publisher Report Designer's Guide

Oracle XML Publisher is a template-based reporting solution that merges XML data
with templates in RTF or PDF format to produce a variety of outputs to meet a variety
of business needs. Using Microsoft Word or Adobe Acrobat as the design tool, you can
create pixel-perfect reports from the Oracle E-Business Suite. Use this guide to design
your report layouts.

This guide is available through the Oracle E-Business Suite online help.

Oracle XML Publisher Administration and Developer's Guide

Oracle XML Publisher is a template-based reporting solution that merges XML data
with templates in RTF or PDF format to produce a variety of outputs to meet a variety
of business needs. Outputs include: PDF, HTML, Excel, RTF, and eText (for EDI and
EFT transactions). Oracle XML Publisher can be used to generate reports based on
existing Oracle E-Business Suite report data, or you can use Oracle XML Publisher's

xviii

data extraction engine to build your own queries. Oracle XML Publisher also provides a
robust set of APIs to manage delivery of your reports via e-mail, fax, secure FTP,
printer, WebDav, and more. This guide describes how to set up and administer Oracle
XML Publisher as well as how to use the Application Programming Interface to build
custom solutions.

This guide is available through the Oracle E-Business Suite online help.

Integration Repository
The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Oracle E-Business Suite Integrated SOA Gateway Overview 1-1

1
Oracle E-Business Suite Integrated SOA

Gateway Overview

Oracle E-Business Suite Integrated SOA Gateway Overview
Building on top of Oracle Fusion Middleware and service-oriented architecture (SOA)
technology, Oracle E-Business Suite Integrated SOA Gateway (ISG) provides a
customer-focused robust communication and integration infrastructure between
independently managed components and loosely coupled applications. This
infrastructure not only allows greater and effective business integration between
heterogeneous applications, but also facilitates the development and execution of
complex business processes into highly flexible and reusable Web services. With this
standardized and interoperable Web service platform, Oracle E-Business Suite
Integrated SOA Gateway provides a powerful framework that accelerates dynamic
business processes and service integration between applications over the Web.

Oracle E-Business Suite Integrated SOA Gateway is a complete set of service
infrastructure. It supports almost all integration interface types and services invoked
within Oracle E-Business Suites no matter if they are native packaged interfaces or the
services that are orchestrated using native services. With this pre-built, reusable
business services and service-oriented components, Oracle E-Business Suite Integrated
SOA Gateway provides a capability of allowing various users to perform different tasks
and to monitor and manage service integration throughout the entire service
deployment life cycle.

For example, system integration developers can perform end-to-end service integration
activities including creating and annotating custom integration interfaces, orchestrating
discrete Web services into meaningful end-to-end business processes, defining Web
service invocation metadata, and testing the Web service invocation.

Application users or system integration analysts can then browse through and search
on available integration interfaces and services, regardless of custom or Oracle
packaged ones, as well as view each interface details through the centralized repository.

Integration repository administrators can take further actions on transforming native

1-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

interfaces into Web services, and then deploying the services for public use and access.
The administrators are also responsible for enforcing service related securities,
monitoring and managing the entire integrated service deployment life cycle to ensure
smooth service integration between applications.

With pre-built, reusable business services and an essential service-oriented framework
allowing service generation, deployment, invocation, and management, Oracle
E-Business Suite Integrated SOA Gateway is the intrinsic part of Oracle E-Business Suite
for service enablement. It not only enables services within and beyond Oracle
E-Business Suite, but also facilitates dynamic business execution through a seamless
service integration and consumption over the internet.

For more information about each integration interface and service, see Oracle E-Business
Suite Integrated SOA Gateway User's Guide; for more information on implementing and
administering Oracle E-Business Suite Integrated SOA Gateway, see Oracle E-Business
Suite Integrated SOA Gateway Implementation Guide.

Major Features
Oracle E-Business Suite Integrated SOA Gateway contains the following features:

• Provide robust, consistent integration framework with extensive infrastructure
based on SOA principles

• Integrate loosely coupled and heterogeneous applications

• Contain pre-built and reusable business services

• Provide native service enablement capability within the Oracle E-Business Suite

• Use native services as building blocks to create composite services

• Support annotated custom integration interfaces from Oracle Integration
Repository

• Enforce function security and role-based access control security to allow only
authorized users to execute administrative functions

• Support multiple authentication types for inbound service requests in securing Web
service content and authenticating Web service operations

• Provide centralized, user-friendly user interface for logging configuration

• Enable Web service invocation from Oracle E-Business Suite

• Audit and monitor Oracle E-Business Suite service operations from native SOA
Monitor

Oracle E-Business Suite Integrated SOA Gateway Overview 1-3

Major Components Features and Definitions
The better understand Oracle E-Business Suite Integrated SOA Gateway and its key
components, this section describes some key features and the definition of each
component.

Native Service Enablement
Service enablement is the key feature within Oracle E-Business Suite Integrated SOA
Gateway. It provides a mechanism that allows native packaged integration interface
definitions residing in Oracle Integration Repository to be further transformed into Web
services that comply with Web standards. Additionally, these services can be deployed
from the Integration Repository to the application server allowing more consumptions
over the Web.

To understand the basic concept of Web services and how the service works, the
following diagram illustrates the essential components of enabling services:

A Service Provider is the primary engine underlying the Web services. It facilitates the
service enablement for various types of interfaces.

A Service Consumer (Web service client) is the party that uses or consumes the services
provided by the Service Provider.

A Service Broker (Service Registry) describes the service's location and contract to
ensure service information is available to any potential service consumer.

Composite Services
Composite services use the native service as building blocks to construct the sequence
of business flows. Basically, this interface type orchestrates the invocation sequence of
discrete Web services into a meaningful end-to-end business process through a Web

1-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

service composition language BPEL (business process execution language).

For example, use Oracle BPEL Process Manager (BPEL PM) to integrate the
Order-to-Receipt business process that contains sales order entry, item availability
check, pack and ship, and invoice to Accounts Receivable sub processes handled by
various applications. This approach effectively tightens up the control of each
individual process and makes the entire business flow more efficiently.

Oracle Integration Repository and Service Enablement
Oracle Integration Repository, an integral part of Oracle E-Business Suite, is the
centralized repository that contains numerous interface endpoints exposed by
applications within the Oracle E-Business Suite.

To effectively manage all integration interfaces and services incurred within the Oracle
E-Business Suite, Oracle E-Business Suite Integrated SOA Gateway now supports
complex business processes or composite services, Web service generation and
deployment, as well as business event subscriptions through the centralized Integration
Repository.

You can browse these interface definitions and services through the Oracle Integration
Repository user interfaces. Users with administrator privileges can further perform
administrative tasks through the same interfaces.

Oracle Integration Repository supports the following interface types:

• PL/SQL

• XML Gateway

• Concurrent Programs

• Business Events

• Open Interface Tables/Views

• EDI

• Business Service Object (Service Beans)

• Java APIs for Forms

Note: Java APIs for Forms are XML document-based integration
points wrapped in Java classes for executing business logic in
Oracle Forms. These specialized Java classes are categorized as a
subtype of Java interface.

• Composite Services

Oracle E-Business Suite Integrated SOA Gateway Overview 1-5

Service Invocation Framework
To invoke all integration services from Oracle E-Business Suite, Oracle E-Business Suite
Integrated SOA Gateway uses the Service Invocation Framework (SIF) that leverages
Oracle Workflow Java Business Event System (JBES) and a seeded Java rule function to
allow any WSDL-described service to be invoked.

By using this service invocation framework, developers or implementors can interact
with Web services through WSDL descriptions instead of working directly with SOAP
APIs, the usual programming model. This approach lets you use WSDL as a normalized
description of disparate software, and allows you to access this software in a manner
that is independent of protocol or location.

Since this feature is the major development framework in invoking Web services within
the entire Oracle E-Business Suite, detailed implementation information is described in
a separate chapter in this book.

See Web Service Invocation Using Service Invocation Framework, page 11-2.

SOA Monitor
SOA Monitor is a centralized, light-weight service execution monitoring and
management tool. It not only monitors all the SOAP requests that SOA Provider and
Web Service Provider process, but also provides auditing feature for the SOAP
messages if the auditing feature is enabled.

With SOA Monitor, the Integration Repository Administrator can effectively manage
and identify errors incurred during the service deployment life cycle and take necessary
actions to expedite the interaction between services.

Manage Security
Security is the most critical feature that is designed to guard service content from
unauthorized access.

To ensure secure access and the execution of integration interfaces and Web services,
Oracle E-Business Suite integrated SOA Gateway enforces the security rules through
security grants to authorize interface methods access or feature access (such as the
downloading composite services feature) to appropriate users. Multiple organization
access control security rule is also implemented for authorizing interface execution
related to multiple organizations.

Additionally, Web service security rule is enforced for Web service authentication,
requiring an username and password to be passed as part of the security header in the
SOAP request sent to the Web service.

Discovering and Viewing Integration Interfaces 2-1

2
Discovering and Viewing Integration

Interfaces

Overview
Similar to regular users or system integration analysts, system integration developers
can view integration interfaces and their details from Oracle Integration Repository, as
well as review generated or deployed Web service WSDL files in the appropriate Web
Service region. The developers cannot perform administrative tasks, such as generating
or deploying Web services, which are done by the integration repository administrators.

However, the developers have more privileges than the analysts in viewing all types of
integration interfaces including public, private, and internal interface types from Oracle
Integration Repository. These privileges allow developers to have sufficient integration
interface information which could be useful to better understand each integration
interface from different perspectives.

Note: System integration analysts can view Public integration interfaces
only, and they do not have the access privileges to view Private to
Application and Internal to Oracle interfaces from the Oracle Integration
Repository.

This section covers the following topics:

• Searching and Viewing Integration Interfaces, page 2-1

• Reviewing Interface Details, page 2-6

• Reviewing WSDL Element Details, page 2-10

Searching and Viewing Integration Interfaces
To better understand each integration interface and the integration between different

2-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

applications, Oracle E-Business Suite Integrated SOA Gateway allows system
integration developers and integration repository administrators to have more interface
access privileges in viewing all integration interface types regardless of public, private,
or internal interface types.

Browsing the Integration Interfaces

When viewing integration interfaces, you can browse by product family, by interface
type, or by standard based on your selection in the View By drop-down list. Expand the
navigation tree in one of these views to see a list of the available interfaces.

For more information on how to browse the interfaces, see Browsing the Integration
Interfaces, Oracle E-Business Suite Integrated SOA Gateway User's Guide.

Searching the Integration Interfaces

To search for an integration interface, click Search to access the main Search page. After
clicking the Show More Search Options link in the Search page, you can find Private to
Application and Internal to Oracle interface types along with Public and All displayed
from the Scope drop-down menu. If 'All' is selected from the Scope field, then all
integration interfaces including public, private to application, and internal to Oracle
interfaces can be listed in the results region.

Note: System integration analysts can view Public integration interfaces
only, and they do not have the access privileges to view Private to
Application and Internal to Oracle interfaces from the Oracle Integration
Repository.

In addition, they can only find 'All' (default) and 'Public' list of values
available from the Scope drop-down list. And only Public integration
interfaces will be retrieved and listed in the search result even if they
do not change the default value 'All' in the Scope field.

For detailed information on Public, Private to Application, and Internal
to Oracle, see Scope, Oracle E-Business Suite Integrated SOA Gateway
User's Guide.

By using the search feature, you can easily locate a deployed Web service for a
particular product or product family if you want to use the deployed service for a
partner link creation while orchestrating the BPEL process.

For example, to locate all deployed Web services for concurrent program, first select
'Concurrent Program' from the Interface drop-down list and then click Show More
Search Options to select 'Deployed' for the Web Service Status field. After executing the
search, you should find all deployed Web services for the concurrent program interface
type.

Discovering and Viewing Integration Interfaces 2-3

Searching for Deployed Web Services

Searching for Java APIs for Forms Interfaces

Java APIs for Forms interfaces are XML document-based integration points wrapped in
Java classes for executing business logic in Oracle Forms. These specialized Java classes
are categorized with subtype 'Java APIs for Forms' and displayed in the Integration
Repository under the Java interface type.

To locate a Java APIs for Forms interface, you must perform a search by clicking Show
More Search Options to display more search fields. Enter the following key search
values along with any product family or scope if needed as the search criteria:

• Category: Interface Subtype

• Category Value: Java APIs for Forms

2-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Searching for Java APIs for Forms Interfaces

To view an interface details, click the interface name link that you would like to view
from the search result region to view the information details. See Reviewing Interface
Details, page 2-6.

Searching for Custom Integration Interfaces

Annotated custom interface definitions, once they are uploaded successfully, are
merged into the interface types they belong to and displayed together with Oracle
interfaces from the Integration Repository browser window. To easily distinguish
annotated custom interface definitions from Oracle interfaces, the Interface Source
"Custom" is used to categorize those custom integration interfaces in contrast to
Interface Source "Oracle" for Oracle interfaces.

Therefore, you can search for custom integration interfaces by clicking Show More
Search Options to display more search fields.

Discovering and Viewing Integration Interfaces 2-5

Searching for Custom Integration Interfaces

Enter the following information along with any interface type, product family, or scope
if needed as the search criteria:

• Interface Source: Custom

For information on how to view custom integration interfaces, see Viewing Custom
Integration Interfaces, Oracle E-Business Suite Integrated SOA Gateway User's Guide.

For more information on each search field in the Search page, see Searching for an
Integration Interface, Oracle E-Business Suite Integrated SOA Gateway User's Guide.

To search for all integration interface types:

1. Log on Oracle Integration Repository with the username granted with the system
integration developer role. Select the Integrated SOA Gateway responsibility from
the navigation menu. Select the Integration Repository link to open the repository
browser.

2. Click Search to open the main Search page.

3. Enter appropriate search information such as product family, product, interface
type, or business entity.

2-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Click Show More Search Options to open more search options.

• To search custom integration interfaces, select 'Custom' in the Interface Source
field.

• To search Java APIs for Forms interfaces, select 'Interface Subtype' in the
Category field and 'Java API for Forms' in the Category Value field.

5. To view deployed integration interfaces, select 'Deployed' from the Web Service
Status field drop-down list.

6. To view all integration interfaces, select All from the Scope field. This allows all
integration interfaces including Public, Internal to Oracle, and Private to
Application displayed in the results region.

7. To view integration interfaces of Public, Internal to Oracle, or Private to Application
type, select 'Public', 'Internal to Oracle', or 'Private to Application' from the Scope
drop-down list respectively.

8. Click Go to execute the search. All interfaces that match your search criteria are
displayed.

9. Select an interface type from the search result to view the interface details.

Reviewing Interface Details
After searching for an integration interface, integration developers can review a selected
interface details by clicking on an interface name from the search result page. This
opens the interface details page where you can view the interface general information, a
description region, a source region, and an interface methods or procedure and
functions region.

If the selected interface has a Web service generated successfully, then the Web Service -
SOA Provider region is displayed in the interface details page.

Discovering and Viewing Integration Interfaces 2-7

Viewing Interface Details Page

Note: For Business Service Object interface type, since it is service
enabled by Web Service Provider, you will find the Web Service - Web
Service Provider region instead in the interface details if the services are
available.

If it is for XML Gateway Map interface type, you may also find the Web
Service - Web Service Provider region available. This is because XML
Gateway Map interfaces can be service enabled by Web Service
Provider in Oracle E-Business Suite Release 12.0. Hence, if your system
is upgraded from the Release 12.0, and your system has already have
service enabled through Web Service Provider in the Release 12.0, you
can find the Web Service - Web Service Provider region displayed
along with the Web Service - SOA Provider region if you also have
service available in this release.

In the Web Service - SOA Provider region (or Web Service - Web Service Provider
region), you can notice the following fields:

• Web Service Status: This field indicates whether the service is deployed or not. It
can have either one of the following possible values:

2-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Generated: It indicates that the selected interface has WSDL description
available.

• Deployed: It indicates that the selected interface has been successfully deployed
to the application server.

• View WSDL link: Click this link allowing you to view the generated or deployed
WSDL code.

For more information on how to view WSDL file, see Reviewing WSDL Element
Details, page 2-10.

• Authentication Type: This field contains the following read-only check boxes:

• Username Token

This authentication type provides username and password information in the
security header for a Web service provider to use in authenticating the SOAP
request. It is the concept of Oracle E-Business Suite username/password (or the
username/password created through the Users window in defining an
application user).

• SAML Token (Sender Vouches)

This authentication type is used for Web services relying on sending a
username only through SAML Assertion.

These authentication types are used by SOA Provider to secure Web service content
and authenticate Web service operation. Prior to deploying or redeploying a Web
service generated by SOA Provider, an integration repository administrator must
first select at least one authentication type. Once the service has been successfully
deployed, the Web Service Status field is changed from 'Generated' to 'Deployed'
along with the selected authentication type(s).

For more information on how to deploy a service, see Deploying and Undeploying
Web Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Note: Please note that not all integration interface definitions can be
service enabled. Oracle Integration Repository supports service
enablement only for the following interface types:

• PL/SQL

• XML Gateway Map (inbound)

• Concurrent Program

• Business Service Object (Service Beans)

Discovering and Viewing Integration Interfaces 2-9

• Java APIs for Forms

Java APIs for Forms are XML document-based integration points
wrapped in Java classes for executing business logic in Oracle
Forms. These specialized Java classes are categorized as a subtype
of Java interface.

The Business Event and XML Gateway Map (outbound) interface types
are supported through subscription model. Non-service enabled public
interfaces are Open Interface Tables, Open Interface Views, and EDI
interface. For the Composite Services - BPEL interface type, since it uses
native integration services as building blocks to orchestrate a business
process with service endpoints through BPEL language, this type of
interface itself is already service enabled.

Based on the interface type support model described above, for those
interface types that can be service enabled, an integration repository
administrator can perform additional tasks to generate, deploy, or
redeploy a Web services for a selected interface type. Additionally, the
administrator can perform other administrative tasks including
subscribing to a selected business event, creating security grants, and
viewing available log messages written during service generation and
deployment. For detailed information on these administrative tasks,
see:

• Generating Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide

• Deploying and Undeploying Web Services, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide

• Subscribing to Business Events, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide

• Creating Grants, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide

• Viewing Generate and Deploy Time Logs, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide

Once the Web services representing in WSDL are generated, integration developers can
then use them in creating a composite service - BPEL process to insert or update Oracle
E-Business Suite.

How to use WSDL definitions in creating composite service - BPEL processes, see each
individual chapter described in this book for details.

2-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Reviewing WSDL Element Details
If an interface can be exposed as a Web service, the corresponding WSDL file is created
and can be accessed through the interface details page.

By clicking the View WSDL link, a new window containing the WSDL document
appears. This XML-based document describes a selected Web service as a set of
endpoints operating on messages containing document-oriented information.

Locating the Interface Exposed as a Web Service

For example, click the deployed View WSDL link for the PL/SQL: Invoice Creation from
the interface details page, the WSDL document appears.

Discovering and Viewing Integration Interfaces 2-11

Note: The http:// address in the new window has the exact WSDL URL
information that appeared in the interface details page. This address
can be copied and used directly in any of the Web service clients for
invoking Web services.

For example, it can be used while creating a partner link for the
invocation of the interface that is exposed as Web service in a BPEL
process.

WSDL Document Structure
A WSDL document is simply a set of definitions. There is a definitions element at the
root, and definitions inside. The definitions element defines the set of services that the
Web service offers.

It often contains an optional TargetNamespace property, a convention of XML
schema that enables the WSDL document to refer to itself.

The structure of this definitions element can be like:
<definitions name="nmtoken"
 <targetNamespace="uri">
 <import namespace="uri" location="uri"/> *
</definitions>

For example, a corresponding WSDL document for the Invoice Creation API

2-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

(AR_INVOICE_API_PUB) that is exposed as a Web service appears in a new window.
<definitions name="AR_INVOICE_API_PUB"
targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/"
xmlns:tns="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_invoice_
api_pub/
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns1="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_invoice
_api_pub/create_invoice/"
xmlns:tns2="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_invoice
_api_pub/create_single_invoice/>

For example, the definitions element specifies that this WSDL document is the called
'AR_INVOICE_API_PUB'. It also specifies numerous namespaces that will be used
throughout the remainder of the document. It also specifies a default namespace:
xmlns=http://schemas.xmlsoap.org/wsdl/.

In addition to the definitions element, Web services are defined using the following six
major elements:

• Types: It provides data type definitions used to describe the messages exchanged.

• Message: It represents an abstract definition of the data being transmitted.

A message consists of logical parts, each of which is associated with a definition
within some type system.

• PortType: It is a set of abstract operations. Each operation refers to an input
message and output messages.

• Binding: It specifies concrete protocol and data format specifications for the
operations and messages defined by a particular portType.

• Port: It specifies an address for a binding, thus defining a single communication
endpoint.

• Service: It is used to aggregate a set of related ports.

The following diagram shows the relationship of the basic parts of WSDL:

Discovering and Viewing Integration Interfaces 2-13

Types
The types element contains all data types used in all method calls described in the
WSDL. It can be used to specify the XML Schema (xsd:schema) that is used to describe
the structure of a WSDL Part.

The structure of this Types element can be like:
<definitions...>
 <types>
 <xsd:schema.../>*
 </types>
</definitions>

For example, the Invoice Creation Web service contains the following two functions:

• CREATE_INVOICE

• CREATE_SINGLE_INVOICE

Each function is described in the data type definition. WSDL prefers the use of XSD as
the type of system mechanism to define the types in a message schema. As a result, the
message schema location of the CREATE_INVOICE function is defined in the
APPS_XX_BPEL_CREATE_INVOICE_AR_INVOICE_API_PUB-24CREATE_INV.xsd.
The message schema location of the CREATE_SINGLE_INVOICE function is defined in
the
APPS_XX_BPEL_CREATE_SINGLE_INVOICE_AR_INVOICE_API_PUB-24CREATE_S
IN.xsd.

2-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/create_invoice/">
 <include

schemaLocation="https://host.us.oracle.com:1234/webservices/SOAProvider/
plsql/ar_invoice_api_pub/APPS_XX_BPEL_CREATE_INVOICE_AR_INVOICE_API_PUB-
24CREATE_INV.xsd"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/create_single_invoice/">
 <include

schemaLocation="https://host.us.oracle.com:1234/webservices/SOAProvider/
plsql/ar_invoice_api_pub/APPS_XX_BPEL_CREATE_SINGLE_INVOICE_AR_INVOICE_A
PI_PUB-24CREATE_SIN.xsd"/>
 </schema>
...

In addition to message schema locations and schema elements that help to define Web
messages, the Types element can also take a complex data type as input.

For example, the Responsibility, Responsibility Application, Security Group, NLS
Language, and Organization ID complex types listed under the "SOAHeader" as shown
below are used in passing values that would be used to set applications context during
service execution.
...
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/">
 <element name="SOAHeader">
 <complexType>
 <sequence>
 <element name="Responsibility" minOccurs="0" type="string"/>
 <element name="RespApplication" minOccurs="0" type="string"/>
 <element name="SecurityGroup" minOccurs="0" type="string"/>
 <element name="NLSLanguage" minOccurs="0" type="string"/>
 <element name="Org_Id" minOccurs="0" type="string" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>

Message
The Message element defines the name of the message. It consists of one or more Part
elements, which describe the content of a message using Element or Type attributes.

Parts are a flexible mechanism for describing the logical abstract content of a message.

Discovering and Viewing Integration Interfaces 2-15

A binding may reference the name of a part in order to specify binding-specific
information about the part.

The structure of this element can be like:
<definitions...>
 <message name="nmtoken"> *
 <part name="nmtoken" element="qname"? type="qname"? />
 </message>
</definitions>

A typical document-style Web service could have a header and body part in the input
message and output message as well. For example, the Message element for the Invoice
Creation Web service appears:
<message name="CREATE_INVOICE_Input_Msg">
 <part name="header" element="tns:SOAHeader"/>
 <part name="body" element="tns1:InputParameters"/>
</message>
<message name="CREATE_INVOICE_Output_Msg">
 <part name="body" element="tns1:OutputParameters"/>
</message>
<message name="CREATE_SINGLE_INVOICE_Input_Msg">
 <part name="header" element="tns:SOAHeader"/>
 <part name="body" element="tns2:InputParameters"/>
</message>
<message name="CREATE_SINGLE_INVOICE_Output_Msg">
 <part name="body" element="tns2:InputParameters"/>
</message>

Each message defined by the associated schema includes input message and output
message parts. For example, the Invoice Creation Web service has two functions:

• CREATE_INVOICE

The input message of this function which has all its parameter is defined by
CREATE_INVOICE_Input_Msg.

The output message of this function which gives its result is defined by
CREATE_INVOICE_Output_Msg.

The schema of input and output messages is defined in the
APPS_XX_BPEL_CREATE_INVOICE_AR_INVOICE_API_PUB-24CREATE_INV.x
sd.

• CREATE_SINGLE_INVOICE

The input message of this function which has all its parameter is defined by
CREATE_SINGLE_INVOICE_Input_Msg.

The output message of this function which gives its result is defined by
CREATE_SINGLE_INVOICE_Output_Msg.

The schema of input and output messages is defined in the
APPS_XX_BPEL_CREATE_SINGLE_INVOICE_AR_INVOICE_API_PUB-24CREAT
E_INV.xsd

The value of body part of each message will be set as SOAP body; the value of header

2-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

part will be set in the SOAP header which is required for Web service authorization.

For more information, see Understanding Web Service Input Message Parts, page 11-21
.

PortType
The portType element combines multiple message elements to form a complete one-way
or round-trip operation supported by a Web service.

For example, a portType can combine one request (input message element) and one
response (output message element) message into a single request/ response operation
for the synchronous request - response operation, most commonly used in SOAP
services.

If it is for one-way operation, then the operation would contain an Input element only.

The structure of this element can be like:
<wsdl:definitions...>
 <wsdl:portType name="nmtoken">*
 <operation name="nmtoken"/>
 <wsdl:input name="nmtoken"? message="qname">?
 </wsdl:input>
 <wsdl:output name="nmtoken"? message="qname">?
 </wsdl:output>
 <wsdl:fault name="nmtoken"? message="qname">?
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portype>
</wsdl:definitions>

Note: An optional Fault element can be used for error handling in both
request-response and solicit response Operation models. This feature is
not supported in this release.

In this Invoice Creation Web service example, corresponding to above two functions,
AR_INVOICE_API_PUB_PortType has the following two operations:

• CREATE_INVOICE

• Input: CREATE_INVOICE_Input_Msg

• Output: CREATE_INVOICE_Output_Msg

• CREATE_SINGLE_INVOICE

• Input: CREATE_SINGLE_INVOICE_Input_Msg

• Output: CREATE_SINGLE_INVOICE_Output_Msg

Discovering and Viewing Integration Interfaces 2-17

<portType name="AR_INVOICE_API_PUB_PortType">
 <operation name="CREATE_INVOICE">
 <input name="tns:CREATE_INVOICE_Input_Msg" />
 <output name="tns:CREATE_INVOICE_Output_Msg" />
 </operation>
 <operation name="CREATE_SINGLE_INVOICE">
 <input name="tns:CREATE_SINGLE_INVOICE_Input_Msg" />
 <output name="tns:CREATE_SINGLE_INVOICE_Output_Msg" />
 </operation>
</portype>

Binding
A binding defines message format and protocol details for operations and messages
defined by a particular portType. It provides specific details on how a portType operation
will actually be transmitted over the Web. Bindings can be made available through
multiple transports, including HTTP GET, HTTP POST, or SOAP.

A port defines an individual endpoint by specifying a single address for a binding.

The structure of this element can be like:
<wsdl:definitions...>
 <wsdl:binding name="nmtoken" type="qname">*
 <wsdl:operation name="nmtoken"/>
 <wsdl:input> ?
 </wsdl:input>
 <wsdl:output>?
 </wsdl:output>
 <wsdl:fault name="nmtoken"? message="qname">?
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

In the same example, the binding element as shown below describes the SOAP binding
for PortType AR_INVOICE_API_PUB_PortType.

2-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<binding name="AR_INVOICE_API_PUB_Binding"
type="tns:AR_INVOICE_API_PUB_PortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CREATE_INVOICE">
 <soap:operation

soapAction="https://host.us.oracle.com:1234/webservices/SOAProvider/plsq
l/ar_invoice_api_pub/"/>
 <input>
 <soap:header message="tns:CREATE_INVOICE_Input_Msg" part="header"
use="literal" />
 <soap:body parts="body" use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="CREATE_SINGLE_INVOICE">
 <soap:operation

soapAction="https://host.us.oracle.com:1234/webservices/SOAProvider/plsq
l/ar_invoice_api_pub/"/>
 <input>
 <soap:header message="tns:CREATE_SINGLE_INVOICE_Input_Msg"
part="header" use="literal" />
 <soap:body parts="body" use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding

The binding used is always document style, SOAP over http binding. It also defines
the content of SOAP header and SOAP body.

Note: Because it is a document-style service (style="document"), the
request and response messages will consist of simply XML documents,
instead of using the wrapper elements required for the remote
procedure call (RPC-style) Web service. The transport attribute
indicates the transport of the SOAP messages is through SOAP HTTP.

Within each operation, the soap:operation element indicates the
binding of a specific operation (such as CREATE_INVOICE) to a
specific SOAP implementation. The soapAction attribute specifies
that the SOAPAction HTTP header be used for identifying the service.

The soap:header element allows header to be defined that is transmitted inside the
Header element of the SOAP Envelope. The SOAHeader comprises of Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and Org_Id complex types within the
Types element.

The soap:body element enables you to specify the details of the input and output
messages for a specific operation.

Discovering and Viewing Integration Interfaces 2-19

Service
The service element defines the Web service, and typically consists of one or more Port
elements. A port defines an individual endpoint by specifying a single address for a
binding.

The service binding is commonly created using SOAP.

The structure of this element can be like:
<wsdl:definitions...>
 <wsdl:service name="nmtoken">*
 <wsdl:port name="nmtoken" binding="qname"> *
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

In this example, the Service element AR_INVOICE_API_PUB_Service defines physical
location of service endpoint where the service is hosted for the portType
AR_INVOICE_API_PUB_PortType.
<service name="AR_INVOICE_API_PUB_Service">
 <port name="AR_INVOICE_API_PUB_Port"
binding="tns:AR_INVOICE_API_PUB_Binding">
 <soap:address

location="https://host.us.oracle.com:1234/webservices/SOAProvider/plsql/
ar_invoice_api_pub/"/>
 </port>
 </service>

Understanding SOAP Messages
SOAP (Simple Object Access Protocol) is a lightweight, XML-based protocol
specification for exchanging structured information in the implementation of Web
services in computer networks. For example, Web service provider receives SOAP
requests from Web service clients to invoke Web services and also sends the
corresponding SOAP responses out to the clients.

To support all integration interface types and services in Oracle E-Business Suite
Integrated SOA Gateway, all SOAP messages are authenticated, authorized, and service
enabled through SOA Provider except for Business Service Object services and generic
XML Gateway messages that are enabled through Web Service Provider.

SOAP Message Structure

SOAP is an XML-based protocol and acts as a building block for Web service
communication. SOAP messages are contained in one of the SOAP components called
Envelope. The SOAP envelop defines an overall framework for describing what is in a
message; who should deal with it, and whether it is optional or mandatory. It consists
of the following elements:

• Header (Optional)

2-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

An envelope element can optionally have a Header element. If an envelope contains
a Header element, it must contain no more than one, and it must appear as the first
child of the envelope. The first level child elements of the Header element are called
Header Blocks.

Header blocks can be used in the following mechanisms:

• It provides a mechanism for attaching security related information targeted at a
specific recipient.

For more information, see SOAP Security Header, page 2-21.

• It can be used to set applications context values required for services.

For more information, see SOAP Header for Applications Context, page 2-25.

• It can be used to populate mandatory header variables for XML Gateway
inbound transactions to be completed successfully.

For more information, see SOAP Header for XML Gateway Messages, page 2-
28

• Body

Every envelope element must contain exactly one Body element that holds the
message. Immediate child elements of the Body element are called Body Blocks or
Parts.

• Attachment (Optional)

A SOAP message can carry multiple attachments and these attachments can be of
any type including text, binary, image, and so on.

The following diagram depicts the structure of a SOAP message.

Discovering and Viewing Integration Interfaces 2-21

SOAP Message Structure

A skeleton of a SOAP message can be like:
<xml version="1.0">
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>
...
</soap:Header>

<soap:Body>
...
 <soap:Fault>
 ...
 </soap:Fault>
</soap:Body>

</soap:Envelope>

SOAP Security Header
When a SOAP request message is received through SOA Provider, the SOAP message is

2-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

passed on to OC4J Web Service Framework for authentication. The framework
authenticates the SOAP message based on the specified authentication type(s) during
the service deployment. The identified authentication information is embedded in the
wsse:security Web Security headers.

UsernameToken-based SOAP Security Header
A UsernameToken-based SOAP header should include the following wsse:security
section:
<soapenv:Header>
<http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd"
soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>Username</wsse:Username>
 <wsse:Password>Password</<wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

</soapenv:Header>

Note: When a <wsse:security> header includes a
mustUnderstand="1" attribute, then the receiver must generate a
fault if it is unable to interpret or process security tokens contained
the <wsse:security> header block according to the corresponding
WS SOAP message security token profiles.

See A Sample Fault SOAP Response for Business Service Object, page 2-
37.

A typical WS-Security header in a SOAP Request can be like:
<soapenv:Header>
<http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd"
soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>myUser</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">myPasswd</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

</soapenv:Header>

The UsernameToken based security mechanism includes UsernameToken profile which
provides username and password information in the Web service security header.
Username is a clear text; password is the most sensitive part of the UsernameToken
profile. In this security model, the supported password type is plain text password (or
PasswordText).

The username/password in SOAP Header of a SOAP message will be passed for Web

Discovering and Viewing Integration Interfaces 2-23

service authentication. The username/password discussed here in wsse:security is
the Oracle E-Business Suite username/password (or the username/password created
through the Users window in defining an application user).

Passing security header elements along with the SOAP request is essential to the
success of invoking Oracle E-Business Suite Web services through SOA Provider or
Web Service Provider.

If these security header values are not passed, the Web service will not be authenticated
and the execution of the service will be failed.

Detailed instructions on how to pass the security header along with the SOAP request
when invoking an Oracle E-Business Suite Web service from a BPEL process, see
Passing Values to Security Headers, page 3-10.

SAML Token-based SOAP Security Header
Security Assertion Markup Language (SAML) is an XML-based standard for
exchanging authentication and authorization data between security domains, that is,
between an identity provider and a service provider.

When a Web application invokes a service that uses SAML as its authentication
mechanism, this SOAP request message containing or referencing SAML assertions is
received through SOA Provider and passed on to OC4J Web Service Framework for
authentication. The framework authenticates the SOAP message based on the
wsse:security Web Security headers. As part of the validation and processing of the
assertions, the receiver or authentication framework must establish the relationship
between the subject, claims of the referenced SAML assertions, and the entity providing
the evidence to satisfy the confirmation method defined for the statements.

A trusted entity uses the sender-vouches confirmation method to ensure that it is acting
on behalf of the subject of SAML statements attributed with a sender-vouches
SubjectConfirmation element.

The following SOAP example describes a trusted entity uses the sender-vouches subject
confirmation method with an associated <ds:Signature> element to establish its
identity and to assert that it has sent the message body on behalf of the subject(s):

2-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<soapenv:Envelope
xmlns:fnd="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_p
kg/" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <ds:Signature Id="Signature-26598842"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#id-31755621">
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>hbb/y+b3whhaFakWGO+bnkNm5/Q=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>

jiXB+bsTfqd0uYxnaPAJcooCGb9UrKfzqSlGu/lE0nbL+sPkQQzmaB+ZKMFxUAc5pJStyeBu
3DIg
6bEXSknB3JeJaHy6UFeGKZz3ROf4WKqRvDLXsa10Ei6Id66go3goqYzYtoUA4J43MjLJbKUw
5KG/
LGBImRKABFPRP4qlAlQ=
 </ds:SignatureValue>
 <ds:KeyInfo Id="KeyId-1042529">
 <wsse:SecurityTokenReference wsu:Id="STRId-6382436"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd"><wsse:KeyIdentifier

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-so
ap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-
token-profile-1.0#X509SubjectKeyIdentifier">ADoNKKuduSTKTwi7jqEzCxwD7JU=
</wsse:KeyIdentifier></wsse:SecurityTokenReference>
 </ds:KeyInfo></ds:Signature>
 <Assertion AssertionID="be7d9814c36381c27fefa89d8f27e126"
IssueInstant="2010-02-27T17:26:21.241Z" Issuer="www.oracle.com"
MajorVersion="1" MinorVersion="1"
xmlns="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><Conditions
NotBefore="2010-02-27T17:26:21.241Z"
NotOnOrAfter="2011-02-27T17:26:21.241Z"/>
 <AuthenticationStatement
AuthenticationInstant="2010-02-27T17:26:21.241Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <Subject>
 <NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"
 NameQualifier="notRelevant">SYSADMIN</NameQualifier>
 <SubjectConfirmation>

Discovering and Viewing Integration Interfaces 2-25

<ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:sender-vouches</Confi
rmationMethod>
 </SubjectConfirmation>
 </Subject>
 </AuthenticationStatement>
 </Assertion>
 </wsse:Security>

 <fnd:SOAHeader>
 <!--Optional:-->
 <fnd:Responsibility>UMX</fnd:Responsibility>
 <!--Optional:-->
 <fnd:RespApplication>FND</fnd:RespApplication>

 </fnd:SOAHeader>
 </soapenv:Header>

 <soapenv:Body wsu:Id="id-31755621"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <tes:InputParameters
xmlns:tes="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_p
kg/testusername/">
 <!--Optional:-->
 <tes:X_USER_NAME>AMILLER</tes:X_USER_NAME>
 </tes:InputParameters>
 </soapenv:Body>
</soapenv:Envelope>

Note: SAML Token based security can be used to authenticate users in
both Single Sign-On (SSO) and non-SSO enabled environments. The
format of the NameIdentifier in the SAML assertion indicates if the
user has been authenticated against LDAP (SSO user) or Oracle
E-Business Suite FND_USER table (for non-SSO user).

The SAML assertion in the above SOAP message is for non-SSO
enabled environment. If the username in the NameIdentifier tag is
of the form of LDAP DN as shown below, then the username is verified
in the registered OID for SSO user.
<NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecif
ied"

NameQualifier="notRelevant">orclApplicationCommonName=PROD
1,cn=EBusiness,cn=Products,cn=OracleContext,dc=us,dc=oracl
e,dc=com</NameIdentifier>

For more information about SAML Token sender-vouches based security, see SAML
Sender-Vouches Token Based Security, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

SOAP Header for Applications Context
Applications context contains many crucial elements that are used in passing values

2-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

that may be required in proper functioning of Oracle E-Business Suite Web services. For
example, the context header information is required for an API transaction or a
concurrent program in order for an Oracle E-Business Suite user that has sufficient
privileges to run the program.

Applications Context in SOAHeader Part of a SOAP Request

These context header elements defined in SOAHeader part of SOAP request for
PL/SQL, Concurrent Program, and Java APIs for Forms services are:

• Responsibility

It is the Oracle E-Business Suite application responsibility information. It accepts
responsibility_key (such as SYSTEM_ADMINISTRATOR) as its value.

• RespApplication

It is the responsibility application short name information. It accepts Application
Short Name (such as FND) as its value.

• SecurityGroup

It accepts Security Group Key (such as STANDARD) as its value.

• NLSLanguage (optional)

It is an optional parameter to be passed in SOAHeader part of a SOAP request for
PL/SQL and Concurrent Program services.

If the NLS Language element is specified, SOAP requests can be consumed in the
language passed. All corresponding SOAP responses and error messages can also
be returned in the same language. If no language is identified, then the default
language of the user will be used.

• Org_Id (optional for PL/SQL and Concurrent Program services)

• It is an optional parameter to be passed in SOAHeader part of a SOAP request
for PL/SQL and Concurrent Program services. If a service execution is
dependent on any particular organization, then you must pass the Org_Id
element of that SOAP request.

• Org_Id is a mandatory value that must be passed for the Java APIs for Forms
services.

The following SOAP message shows the SOAHeader part highlighted in bold text:

Discovering and Viewing Integration Interfaces 2-27

<soapenv:Header>
<http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd"
soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>myUser</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">myPasswd</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security><ozf:SOAHeader>
 <ozf:Responsibility>OZF_USER</ozf:Responsibility>
 <ozf:RespApplication>OZF</ozf:RespApplication>
 <ozf:SecurityGroup>STANDARD</ozf:SecurityGroup>
 <ozf:NLSLanguage>AMERICAN</ozf:NLSLanguage>
 <ozf:Org_Id>204</ozf:Org_Id>
</ozf:SOAHeader>
</soapenv:Header>

Applications Context in ServiceBean_Header Part of a SOAP Request

These context header elements defined in ServiceBean_Header part of SOAP
requests for Business Service Object services are:

• RESPONSIBILITY_NAME

It is the Oracle E-Business Suite application responsibility information. It can accept
both the name (Responsibility_Name, such as System Administrator) and
the key (in the format of {key}responsibility_key, such as
{key}SYSTEM_ADMINISTRATOR) as its values.

• RESPONSIBILITY_APPL_NAME

It is the responsibility application short name information. It accepts Application
Short Name (such as FND) as its value.

• SECURITY_GROUP_NAME

It accepts Security Group Key (such as STANDARD) as its value.

• NLSLanguage (optional)

It is an optional parameter to be passed in ServiceBean_Header part of a SOAP
request for Business Service Object service.

If the NLS Language element is specified (such as AMERICAN), SOAP requests can
be consumed in the language passed. All corresponding SOAP responses and error
messages can also be returned in the same language. If no language is identified,
then the default language of the user will be used.

• Org_Id (optional)

It is an optional parameter to be passed in ServiceBean_Header part of a SOAP
request for Business Service Object service.

2-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

If a service execution is dependent on any particular organization, then you must
pass the Org_Id element of that SOAP request.

The following SOAP request example includes the ServiceBean_Header part
highlighted in bold text for business service object:
<soapenv:Envelope
xmlns:ser="http://xmlns.oracle.com/apps/fnd/ServiceBean"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/apps/fnd/rep/ws">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-22948433"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsse:Username>sysadmin</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">sysadmin</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security><ser:ServiceBean_Header>
 <ser:RESPONSIBILITY_NAME>System
Administrator</ser:RESPONSIBILITY_NAME>

<ser:RESPONSIBILITY_APPL_NAME>sysadmin</ser:RESPONSIBILITY_APPL_NAME>
 <ser:SECURITY_GROUP_NAME>standard</ser:SECURITY_GROUP_NAME>
 <ser:NLS_LANGUAGE>american</ser:NLS_LANGUAGE>
 <ser:ORG_ID>202</ser:ORG_ID>
 </ser:ServiceBean_Header>
 </soapenv:Header>
 <soapenv:Body>
 <ws:IntegrationRepositoryService_GetInterfaceByType>
 <interfaceType>XMLGATEWAY</interfaceType>
 </ws:IntegrationRepositoryService_GetInterfaceByType>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Header for XML Gateway Messages
The SOAP header part can also be used to populate header variables for XML Gateway
inbound transactions to be completed successfully. These XML Gateway header
parameters defined in the SOAHeader (through SOA Provider) or
XMLGateway_Header (through Web Service Provider) part of a SOAP Request are
described in the following table:

The following code snippet shows the SOAHeader part of a SOAP request for an XML
Gateway inbound message through SOA Provider:

Discovering and Viewing Integration Interfaces 2-29

<soapenv: Envelope
xmlns:ecx="http://xmlns.oracle.com/apps/ecx/soaprovider/xmlgateway/ecx__
cbodi/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sys="http://xmlns.oracle.com/xdb/SYSTEM">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-10586449"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsse:Username>SYSADMIN</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">SYSADMIN</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 <ecx:SOAHeader>
 <sys:ECXMSG>
 <MESSAGE_TYPE></MESSAGE_TYPE>
 <MESSAGE_STANDARD></MESSAGE_STANDARD>
 <TRANSACTION_TYPE></TRANSACTION_TYPE>
 <TRANSACTION_SUBTYPE></TRANSACTION_SUBTYPE>
 <DOCUMENT_NUMBER></DOCUMENT_NUMBER>
 <PARTYID></PARTYID>
 <PARTY_SITE_ID></PARTY_SITE_ID>
 <PARTY_TYPE></PARTY_TYPE>
 <PROTOCOL_TYPE></PROTOCOL_TYPE>
 <PROTOCOL_ADDRESS></PROTOCOL_ADDRESS>
 <USERNAME></USERNAME>
 <PASSWORD></PASSWORD>
 <ATTRIBUTE1></ATTRIBUTE1>
 <ATTRIBUTE2></ATTRIBUTE2>
 <ATTRIBUTE3></ATTRIBUTE3>
 <ATTRIBUTE4></ATTRIBUTE4>
 <ATTRIBUTE5></ATTRIBUTE5>
 </sys:ECXMSG>
 </ecx:SOAHeader>
 </soapenv:Header>

The following table describes the XML Gateway header information in SOAHeader part
of a SOAP request:

XMLGateway Header Information in SOAHeader Part of a SOAP Request

Attribute Description

MESSAGE_TYPE Payload message format. This defaults to XML.
Oracle XML Gateway currently supports only XML.

2-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Attribute Description

MESSAGE_STANDARD Message format standard as displayed in the Define
Transactions form and entered in the Define XML
Standards form. This defaults to OAG. The message
standard entered for an inbound XML document
must be the same as the message standard in the
trading partner setup.

TRANSACTION_TYPE External Transaction Type for the business
document from the Trading Partner table. The
transaction type for an inbound XML document
must be the same as the transaction type defined in
the Trading Partner form.

TRANSACTION_SUBTYPE External Transaction Subtype for the business
document from the Trading Partner table. The
transaction subtype for an inbound XML document
must be the same as the transaction subtype defined
in the Trading Partner form.

DOCUMENT_NUMBER The document identifier used to identify the
transaction, such as a purchase order or invoice
number. This field is not used by the XML Gateway,
but it may be passed on inbound messages.

PROTOCOL_TYPE Transmission Protocol is defined in the Trading
Partner table.

PROTOCOL_ADDRESS Transmission address is defined in the Trading
Partner table.

USERNAME USERNAME is defined in the Trading Partner table.

PASSWORD The password associated with the USERNAME is
defined in the Trading Partner table.

PARTY_SITE_ID The party site identifier for an inbound XML
document must be the same as the Source Trading
Partner location defined in the Trading Partner form.

ATTRIBUTE1 This parameter may be defined by the base
application.

Discovering and Viewing Integration Interfaces 2-31

Attribute Description

ATTRIBUTE2 This parameter may be defined by the base
application.

ATTRIBUTE3 For outbound messages, this field has the value from
the Destination Trading Partner Location Code in
the Trading Partner table. For inbound messages, the
presence of this value generates another XML
message that is sent to the trading partner identified
in the Destination Trading Partner Location Code in
the Trading Partner table. This value must be
recognized by the hub to forward the XML message
to the final recipient of the XML Message.

Note: For more information, see Destination
Trading Partner Location Code in the Oracle XML
Gateway User's Guide.

ATTRIBUTE4 This parameter may be defined by the base
application.

ATTRIBUTE5 This parameter may be defined by the base
application.

• The Username and Password in SOAHeader here is the username
and password associated with trading partner setup.

The Username and Password in <wsse:Security> discussed
earlier is the Oracle E-Business Suite username/password (or the
username/password created through the Users window in defining
an application user).

• The PARTYID and PARTY_TYPE parameters are note used.

The following code snippet shows the XMLGateway_Header part of a SOAP request
through Web Service Provider:

2-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<soap:Envelope>
 <soap:Header>
...
 <ns1:XMLGateway_Header
 xmlns:ns1="http://xmlns.oracle.com/apps/fnd/XMLGateway
 soapenv:mustUnderstand="0">
 <ns1:MESSAGE_TYPE>XML</ns1:MESSAGE_TYPE>
 <ns1:MESSAGE_STANDARD>OAG</ns1:MESSAGE_STANDARD>
 <ns1:TRANSACTION_TYPE>PO</ns1:TRANSACTION_TYPE>
 <ns1:TRANSACTION_SUBTYPE>PROCESS</ns1:TRANSACTION_SUBTYPE>
 <ns1:DOCUMENT_NUMBER>123</ns1:DOCUMENT_NUMBER>
 <ns1:PARTY_SITE_ID>4444</ns1:PARTY_SITE_ID>
 </ns1:XMLGateway_Header>
 </soap:Header>
...
</soap:Envelope>

The following table describes the XML Gateway header information in
XMLGateway_Header part of a SOAP request:

XMLGateway_Header Part of a SOAP Request

Parameter Name Description

MESSAGE_TYPE Payload message format. This defaults to XML.
Oracle XML Gateway currently supports only XML.

MESSAGE_STANDARD Message format standard as displayed in the Define
Transactions form and entered in the Define XML
Standards form. This defaults to OAG. The message
standard entered for an inbound XML document
must be the same as the message standard in the
trading partner setup.

TRANSACTION_TYPE External Transaction Type for the business
document from the Trading Partner table. The
transaction type for an inbound XML document
must be the same as the transaction type defined in
the Trading Partner form.

TRANSACTION_SUBTYPE External Transaction Subtype for the business
document from the Trading Partner table. The
transaction subtype for an inbound XML document
must be the same as the transaction subtype defined
in the Trading Partner form.

Discovering and Viewing Integration Interfaces 2-33

Parameter Name Description

DOCUMENT_NUMBER The document identifier used to identify the
transaction, such as a purchase order or invoice
number. This parameter is not used by the XML
Gateway, but it may be passed on inbound
messages.

PARTY_SITE_ID The party site identifier for an inbound XML
document must be the same as the Source Trading
Partner location defined in the Trading Partner form.

Examples of SOAP Messages Through SOA Provider
To better understand SOAP request and response messages received through SOA
Provider, the following sample SOAP messages are described in this section:

• A Sample SOAP Request, page 2-33

• A Sample SOAP Response, page 2-35

• A Sample Fault SOAP Response, page 2-35

A Sample SOAP Request
The following example shows a SOAP request for a PL/SQL service:

2-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<soapenv:Envelope xmlns:ser="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd"
xmlns:ozf="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_req
uest_pub/"
xmlns:cre="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_req
uest_pub/create_sd_request/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>trademgr</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">welcome</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 <ozf:SOAHeader>
 <ozf:Responsibility>OZF_USER</ozf:Responsibility>
 <ozf:RespApplication>OZF</ozf:RespApplication>
 <ozf:SecurityGroupE>STANDARD</ozf:SecurityGroup>
 <ozf:NLSLanguage>AMERICAN</ozf:NLSLanguage>
 <ozf:Org_Id>204</ozf:Org_Id>
 </ozf:SOAHeader>
 </soapenv:Header>
 <soapenv:Body>
 <cre:InputParameters>
 <cre:P_API_VERSION_NUMBER>1.0</cre:P_API_VERSION_NUMBER>
 <cre:P_INIT_MSG_LIST>T</cre:P_INIT_MSG_LIST>
 <cre:P_COMMIT>F</cre:P_COMMIT>
 <cre:P_VALIDATION_LEVEL>100</cre:P_VALIDATION_LEVEL>
 <cre:P_SDR_HDR_REC>
 <cre:REQUEST_NUMBER>SDR-CREATE-A1</cre:REQUEST_NUMBER>

<cre:REQUEST_START_DATE>2008-08-18T12:00:00</cre:REQUEST_START_DATE>
 <cre:REQUEST_END_DATE>2008-10-18T12:00:00</cre:REQUEST_END_DATE>>
 <cre:USER_STATUS_ID>1701</cre:USER_STATUS_ID>
 <cre:REQUEST_OUTCOME>IN_PROGRESS</cre:REQUEST_OUTCOME>
 <cre:REQUEST_CURRENCY_CODE>USD</cre:REQUEST_CURRENCY_CODE>
 <cre:SUPPLIER_ID>601</cre:SUPPLIER_ID>
 <cre:SUPPLIER_SITE_ID>1415</cre:SUPPLIER_SITE_ID>
 <cre:REQUESTOR_ID>100001499</cre:REQUESTOR_ID>
 <cre:ASSIGNEE_RESOURCE_ID>100001499</cre:ASSIGNEE_RESOURCE_ID>
 <cre:ORG_ID>204</cre:ORG_ID>
 <cre:ACCRUAL_TYPE>SUPPLIER</cre:ACCRUAL_TYPE>
 <cre:REQUEST_DESCRIPTION>Create</cre:REQUEST_DESCRIPTION>

<cre:SUPPLIER_CONTACT_EMAIL_ADDRESS>sdr.supplier@testing.com</cre:SUPPLI
ER_CONTACT_EMAIL_ADDRESS>

<cre:SUPPLIER_CONTACT_PHONE_NUMBER>2255</cre:SUPPLIER_CONTACT_PHONE_NUMB
ER>
 <cre:REQUEST_TYPE_SETUP_ID>400</cre:REQUEST_TYPE_SETUP_ID>
 <cre:REQUEST_BASIS>Y</cre:REQUEST_BASIS>
 <cre:USER_ID>1002795</cre:USER_ID>
 </cre:P_SDR_HDR_REC>
 <cre:P_SDR_LINES_TBL>
 <cre:P_SDR_LINES_TBL_ITEM>
 <cre:PRODUCT_CONTEXT>PRODUCT</cre:PRODUCT_CONTEXT>
 ...
 </cre:P_SDR_LINES_TBL_ITEM>

Discovering and Viewing Integration Interfaces 2-35

</cre:P_SDR_LINES_TBL>
 <cre:P_SDR_CUST_TBL>
 ...
 </cre:P_SDR_CUST_TBL>
 </cre:InputParameters>>
</soapenv:Body>
</soapenv:Envelope>

A Sample SOAP Response
The following example shows a SOAP response for a PL/SQL service:
<env:Envelope xmlns:env=""http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <OutputParameters
xmlns="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_request
_pub/create_sd_request/">
 <X_RETURN_STATUS>S</X_RETURN_STATUS>
 <X_MSG_COUNT>23</X_MSG_COUNT>
 <X_MSG_DATA xsi:nil="true"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
 <X_REQUEST_HEADER_ID>162</X_REQUEST_HEADER_ID>
 </OutputParameters>
 </env:Body>
</env:Envelope>

A Sample Fault SOAP Response
The SOAP Fault element is used to carry error and status information within a SOAP
message.

For example, the following fault response message indicates that the service is not
deployed:
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <Fault xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <faultcode xmlns="">SOAP-ENV:Server</faultcode>
 <faultstring xmlns="">Service is not deployed.</faultstring>
 </env:Fault>
 </env:Body>
</env:Envelope>

Examples of SOAP Messages Through Web Service Provider
To better understand SOAP request and response messages for business service object
exposed to Web services through Web Service Provider, the following sample SOAP
messages are described in this section:

• A Sample SOAP Request for Business Service Object, page 2-36

• A Sample SOAP Response for Business Service Object, page 2-36

• A Sample Fault SOAP Response for Business Service Object, page 2-37

2-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

A Sample SOAP Request for Business Service Object
The following example shows a valid SOAP request for business service object:
<soapenv:Envelope
xmlns:ser="http://xmlns.oracle.com/apps/fnd/ServiceBean"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/apps/fnd/rep/ws">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-22948433"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsse:Username>sysadmin</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">sysadmin</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 <ser:ServiceBean_Header>
 <ser:RESPONSIBILITY_NAME>System
Administrator</ser:RESPONSIBILITY_NAME>

<ser:RESPONSIBILITY_APPL_NAME>sysadmin</ser:RESPONSIBILITY_APPL_NAME>
 <ser:SECURITY_GROUP_NAME>standard</ser:SECURITY_GROUP_NAME>
 <ser:NLS_LANGUAGE>american</ser:NLS_LANGUAGE>
 <ser:ORG_ID>202</ser:ORG_ID>
 </ser:ServiceBean_Header>
 </soapenv:Header>
 <soapenv:Body>
 <ws:IntegrationRepositoryService_GetInterfaceByType>
 <interfaceType>XMLGATEWAY</interfaceType>
 </ws:IntegrationRepositoryService_GetInterfaceByType>
 </soapenv:Body>
</soapenv:Envelope>

A Sample SOAP Response for Business Service Object
The following example shows a valid SOAP response for business service object:

Discovering and Viewing Integration Interfaces 2-37

<soapenv:Envelope xmlns:env=http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <oans:IntegrationRepositoryService_GetInterfaceByType_Response
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:oans="http://xmlns.oracle.com/apps/fnd/rep/ws">
 <interfaceClass>
 <ClassId>906</ClassId>
 <ClassName>XMLGATEWAY:CLN:SHIP_ORDER_CONFIRM_OUT</ClassName>
 <IrepName>CLN:SHIP_ORDER_CONFIRM_OUT</IrepName>
 <SecurityGroupId xsi:nil="true"/>
 <ClassType>XMLGATEWAY</ClassType>
 <ProductCode>cln</ProductCode>
 <ImplementationName xsi:nil="true"/>
 <DeployedFlag>N</DeployedFlag>
 <GeneratedFlag>N</GeneratedFlag>
 <CompatibilityFlag>N</CompatibilityFlag>
 <AssocClassId xsi:nil="true"/>
 <ScopeType>PUBLIC</ScopeType>
 <LifecycleMode>ACTIVE</LifecycleMode>
 <SourceFileProduct>CLN</SourceFileProduct>
 ...

 <InterfaceFunction>
 ...
 </InterfaceFunction>
 </InterfaceClass>
 </oans:IntegrationRepositoryService_GetInterfaceByType_Response>
 </env:Body>
</env:Envelope>

A Sample Fault SOAP Response for Business Service Object
The SOAP Fault element is used to carry error and status information within a SOAP
message.

For example, if a SOAP request message contains invalid header information or the
header is missing from the request, then Fault element appears as a body entry in the
response message as shown below for business service object:
<env:Envelope xmlns:env=http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <Fault xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <faultcode>SOAP-ENV:Client</faultcode>
 <faultstring>InvalidHeader: Invalid or missing header in
request.</faultstring>
 </env:Fault>
 </env:Body>
</env:Envelope>

Using PL/SQL APIs as Web Services 3-1

3
Using PL/SQL APIs as Web Services

Overview
Oracle E-Business Suite Integrated SOA Gateway allows you to use PL/SQL application
programming interfaces (APIs) to insert or update data in Oracle E-Business Suite. APIs
are stored procedures that let you update or retrieve data from Oracle E-Business Suite.

Once a PL/SQL API interface definition is exposed as a Web service representing in
WSDL URL, the generated Web service can be deployed from the Oracle Integration
Repository to Oracle E-Business Suite application server. Services can then be exposed
to customers through service provider and invoked through any of the Web service
clients or orchestration tool including Oracle JDeveloper, Apache Axis, .NET Web
Service Client, Oracle BPEL Process Manager, and Oracle Enterprise Service Bus (ESB).

For example, these deployed Web services can be orchestrated into a meaningful
business process with service endpoints using a BPEL language. At run time, the BPEL
process can be deployed to Oracle BPEL server or a third party BPEL server that can be
consumed by customers.

To better understand how each individual Web service represented in WSDL URL can
be used in inserting or updating application data, detailed design-time and run-time
tasks in creating and deploying a BPEL process are discussed in this chapter. For the
example described in the following sections, we use Oracle JDeveloper 10.1.3.3.0 as a
design-time tool to create the BPEL process and use Oracle SOA Suite BPEL server
10.1.3.3.0 for the process deployment.

Using PL/SQL WSDLs at Design Time
BPEL Process Scenario

Take PL/SQL Supplier Ship and Debit Request API OZF_SD_REQUEST_PUB as an
example to explain the BPEL process creation.

When the creation of a ship and debit request is received, the creation information
including input ship and debit payload will be read and passed to create a ship and

3-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

debit request. Once the request is created, the request number will then be returned to
the requestor.

If the BPEL process is successfully executed after deployment, you should find a ship
and debit request is created in the Oracle Order Management. The request number
should be the same as the payload input value.

Prerequisites to Create a BPEL Process Using a PL/SQL Web Service

Before performing the design-time tasks for PL/SQL Web services, you need to ensure
the following tasks are in place:

Note: Before generating the Web service for a selected interface, you
can also create a security grant to a specific user (such as
"TRADEMGR") or user group if necessary to ensure the user has the
access privilege to the interface.

• An integration repository administrator needs to successfully generate and deploy a
Web service to the application server.

• An integration developer needs to locate and record the deployed WSDL URL for
the PL/SQL exposed as a Web service.

• SOAHeader variables need to be populated for Web service authorization.

Please note that certain PL/SQL APIs exposed from Oracle E-Business Suite Integrated
SOA Gateway take record types as input. Such APIs expect default values to be
populated for parameters within these record types for successful execution.

The default values are FND_API.G_MISS_CHAR for characters,
FND_API.G_MISS_DATE for dates, and FND_API.G_MISS_NUM for numbers. Oracle
E-Business Suite Integrated SOA Gateway can default these values when the
parameters within the record type are passed as nil values, for example, as shown
below:
<PRICE_LIST_REC>
<ATTRIBUTE1 xsi:nil="true"/>
<ATTRIBUTE2 xsi:nil="true"/>
<ATTRIBUTE3 xsi:nil="true"/>
...
</PRICE_LIST_REC>

Deploying PL/SQL WSDL URL

An integration repository administrators must first create a Web service for a selected
interface definition, and then deploy the service from Oracle Integration Repository to
the application server.

For example, the administrator must perform the following steps before letting the
integration developers use the deployed WSDL in creating a BPEL process:

1. To generate a Web service, locate the interface definition first (such as a PL/SQL

Using PL/SQL APIs as Web Services 3-3

interface OZF_SD_REQUEST_PUB) and click Generate WSDL in the interface details
page.

Once the service is successfully generated, the Web Service - SOA Provider region
appears in the interface details page. For detailed instruction on how to generate a
Web service, see Generating Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

2. To deploy a generated Web service, select at least one authentication type and click
Deploy in the Web Service - SOA Provider region of the interface details page to
deploy the service.

Once the service is successfully deployed, the selected authentication type(s) will be
displayed along with 'Deployed' Web Service Status. For more information on
securing Web services with authentication types, see Managing Web Service
Security, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

For detailed instruction on how to deploy a Web service, see Deploying,
Undeploying, and Redeploying Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

Searching and Recording WSDL URL

Apart from the required tasks performed by the administrators, an integration
developer also needs to log on to the system to locate and record the deployed Web
service WSDL URL for the interface that needs to be orchestrated into a meaningful
business process in Oracle JDeveloper using BPEL language.

This can be done by clicking the View WSDL link in the interface details page to open a
new window. Copy the WSDL URL from the new window. This URL will be used later
in creating a partner link for the interface exposed as a Web service during the BPEL
process creation at design time.

3-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Viewing and Recording a Deployed WSDL URL

How to search for an interface and review the interface details, see Searching and
Viewing Integration Interfaces, page 2-1.

Setting Variables in SOAHeader for SOAP Request

You must populate certain variables in the BPEL process for SOAHeader elements to
pass values that would be used to set application context during service execution.
These SOAHeader elements for PL/SQL interface type are Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and Org_Id.

Note: The user information is defined by the wsseUsername property
passed within the security headers. Detailed instructions on how to
pass the security headers along with the SOAP request, see Passing
Values to Security Headers, page 3-10.

The expected values for these elements are described in the following table:

Using PL/SQL APIs as Web Services 3-5

Header Variables and Expected Values for PL/SQL Interface Type

Element Name Expected Value

Responsibility responsibility_key (such as
"SYSTEM_ADMINISTRATOR")

RespApplication Application Short Name (such as "FND")

SecurityGroup Security Group Key (such as "STANDARD")

NLSLanguage NLS Language (such as "AMERICAN")

Org_Id Org Id (such as "202")

Note: NLS Language and Org_Id are optional values to be passed.

• If the NLS Language element is specified, SOAP requests can be
consumed in the language passed. All corresponding SOAP
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

• If a service execution is dependent on any particular organization,
then you must pass the Org_Id element of that SOAP request.

The context information can be specified by configuring an Assign activity before the
Invoke activity in the BPEL PM.

Detailed information on how to set SOAHeader for the SOAP request, see Assigning
SOAHeader Parameters, page 3-25.

BPEL Process Creation Flow

Based on the single invoice creation scenario, the following design-time tasks are
discussed in this chapter:

1. Create a new BPEL project, page 3-6

Use this step to create a new BPEL project called ShipDebitRequest.bpel using
an Synchronous BPEL Process template. This automatically creates two dummy
activities - Receive and Reply - to receive input from a third party application and
to reply output of the BPEL process back to the request application.

2. Create a Partner Link, page 3-8

3-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Use this step to create a ship and debit request in Oracle Order Management by
using the Supplier Ship and Debit Request API OZF_SD_REQUEST_PUB exposed as
Web service.

3. Add a Partner Link for File Adapter, page 3-12

Use this step to synchronous read invoice header details passed from the first
Assign activity.

4. Add Invoke activities, page 3-21

Use this step to configure two Invoke activities in order to:

• Point to the File Adapter to synchronous read invoice header details that is
passed from the first Assign activity.

• Point to the OZF_SD_REQUEST_PUB partner link to initiate the request creation
with payload and transaction details received from the Assign activities.

5. Add Assign activities, page 3-25

Use this step to configure Assign activities in order to pass request header details,
payload information and request number to appropriate Invoke activities to
facilitate the request creation. At the end, pass the request number to the request
application through the dummy Reply activity.

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

3. Select All Items from the Filter By box. This produces a list of available categories.

4. Expand the General node and then select Projects.

5. Select BPEL Process Project from the Items group.

6. Click OK. The BPEL Process Project dialog box appears.

Using PL/SQL APIs as Web Services 3-7

Entering BPEL Project Information

7. In the Name field, enter a descriptive name such as ShipDebitRequest.

Note: SOA Provider does not support service creation for PL/SQL
stored procedures or packages which have '$' character in
parameter type names. The presence of $ in the name would cause
the XSD generation to fail.

8. From the Template list, select Synchronous BPEL Process. Select Use Default
Project Settings.

9. Use the default input and output schema elements in the Input/Output Elements
dialog box.

10. Click Finish.

A new synchronous BPEL process is created with the Receive and Reply activities.
The required source files including bpel.xml, using the name you specified (for
example ShipDebitRequest.bpel) are also generated.

3-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

New BPEL Process Diagram

Creating a Partner Link for the Web Service
Use this step to create a Partner Link called OZF_SD_REQUEST_PUB.

To create a partner link for OZF_SD_REQUEST_PUB Web service:

1. In JDeveloper BPEL Designer, drag and drop the PartnerLink service from the
Component Palette into the Partner Link border area of the process diagram. The
Service Name dialog box appears.

2. Copy the WSDL URL corresponding to the OZF_SD_REQUEST_PUB service that
you recorded earlier from the Integration Repository, and paste it in the WSDL File
field.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Using PL/SQL APIs as Web Services 3-9

Click Yes to have the Partner Name value populated automatically. The name is
defaulted to OZF_SD_REQUEST_PUB.

Select Partner Role and My Role fields from the drop-down lists.

3-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Create Partner Link

Click Apply.

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

4. Passing Values to Security Headers

Select the Property tab and click the Create Property icon to select the following
properties from the property name drop-down list in order to pass the security
headers along with the SOAP request:

• wsseUsername

Specify the username to be passed in the Property Value box.

• wssePassword

Specify the corresponding password for the username to be passed in the
Property Value box.

• wsseHeaders

Enter credentials as the property value.

Click Apply to save the selected property values.

Using PL/SQL APIs as Web Services 3-11

Adding Properties

5. Click OK to complete the partner link configuration.

3-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Viewing a Partner Link from BPEL Diagram

Partner Link OZF_SD_REQUEST_PUB is added to the Services section in the BPEL
process diagram.

Adding a Partner Link for File Adapter
Use this step to configure a BPEL process by reading current contents of a file.

To add a Partner Link for File Adapter to Read Payload:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service such as ReadPayload. You can add an
optional description of the service.

4. Click Next. The Operation dialog box appears.

Using PL/SQL APIs as Web Services 3-13

Specifying the Operation

5. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

3-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Input File Directory

6. Select Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/ as the directory name.

Note: You must ensure the input payload file
InputCreateSDRequest.xml is available in the directory
'/usr/tmp/' folder of SOA Suite server (or D:\HOL in case of SOA
Server in Windows machine).

Uncheck the Delete Files after successful retrieval check box. Click Next to open
the File Name dialog box.

7. Enter the name of the file for the synchronous read file operation. For example,
enter InputCreateSDRequest.xml.

Using PL/SQL APIs as Web Services 3-15

Specifying the Input File Name

Click Next. The Messages dialog box appears.

8. Select Browse for schema file in Schema Location.

The Type Chooser window is displayed.

3-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying Message Schema

Click Import Schema Files button on the top right corner of the Type Chooser
window.

Enter the schema location for the service. Such as
http://<myhost>:<port>/webservices/SOAProvider/plsql/ozf_sd_r
equest_pub/APPS_ISG_CREATE_SD_REQUEST_OZF_SD_REQUEST_PUB-24CR
EATE_SD_.xsd.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<myhost>:<port>/webservices/SOAProvider/plsql/ozf_sd_r
equest_pub/?wsdl).

Select the Add to Project check box and click OK.

Using PL/SQL APIs as Web Services 3-17

Importing Schema File

Click OK for Import schema prompt.

The Imported Schemas folder is automatically added to the Type Chooser window.

3-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Identifying Message Schema

Expand the Imported Schemas folder and select InputParameters Message in the
APPS_ISG_CREATE_SD_REQUEST_OZF_SD_REQUEST_PUB-24CREATE_SD_.xs
d. Click OK.

The selected xsd is displayed as Schema Location, and the InputParameters is
selected as Schema Element.

Using PL/SQL APIs as Web Services 3-19

Viewing Selected Message Schema and Element

9. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file ReadPayload.wsdl.

3-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The ReadPayload Partner Link appears in the BPEL process diagram.

Using PL/SQL APIs as Web Services 3-21

Adding the Partner Link for File Adapter

Adding Invoke Activities
This step is to configure two Invoke activities:

• Read request creation details that is passed from the first Assign activity using
ReadPayload partner link for File Adapter.

• Send the payload and request details received from the Assign activities to create a
ship and debit request by using the OZF_SD_REQUEST_PUB partner link.

To add an Invoke activity for ReadPayload Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, between the
Receive and Reply activities.

2. Link the Invoke activity to the ReadPayload service. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Enter 'ReadPayload_InputVariable' as the input variable name. You can also accept
the default name.

3-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Creating a Variable

Select Global Variable, and then enter a name for the variable. Click OK.

4. Click the Create icon next to the Output Variable field to create a new variable. The
Create Variable dialog box appears.

Enter 'ReadPayload_OutputVariable' as the output variable name. You can also
accept the default name.

Select Global Variable, and then enter a name for the variable. Click OK.

Editing the Invoke Activity

Using PL/SQL APIs as Web Services 3-23

5. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Adding an Invoke Activity

To add an Invoke activity for OZF_SD_REQUEST_PUB Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, after the first
Invoke activity and the Reply activity.

2. Link the Invoke activity to the OZF_SD_REQUEST_PUB service. The Edit Invoke
dialog box appears.

3. Enter a name for the Invoke activity such as 'Invoke_EBS_SDR_Service'.

In the Operation field, select CREATE_SD_REQUEST from the drop-down list.

4. Create global Input and Output variables as
CREATE_SD_REQUEST_InputVariable and
CREATE_SD_REQUEST_OutputVariable.

Click OK in Edit Invoke.

3-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Invoke Activity

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Using PL/SQL APIs as Web Services 3-25

Viewing the Invoke Activities in the BPEL Process Diagram

Adding Assign Activities
This step is to configure four Assign activities:

1. To set the SOAHeader details for ship and debit SOAP request.

Note: You also need to populate certain variables in the BPEL
process for SOAHeader elements to pass values that may be
required to set application context during service execution. These
SOAHeader elements are Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and
Org_Id.

2. To set input payload for SOAP request.

3. To set input for SOAP request.

4. To set the SOAP response to output.

To add the first Assign activity to set SOAHeader details:

3-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Assigning SOAHeader Parameters:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between two
Invoke activities.

Adding an Assign Activity

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetSOAHeader'.

4. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

5. Enter the first pair of parameters:

• In the From navigation tree, select type Expression and then enter 'OZF_USER'
in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > CREATE_SD_REQUEST_InputVariable > header >
ns1:SOAHeader and select ns1:Responsibility. The XPath field should contain
your selected entry.

Using PL/SQL APIs as Web Services 3-27

Assign Responsibility Parameter

• Click OK.

6. Enter the second pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter 'OZF' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > CREATE_SD_REQUEST_InputVariable > header >
ns1:SOAHeader and select ns1:RespApplication. The XPath field should
contain your selected entry.

• Click OK.

7. Enter the third pair of parameters:

• In the From navigation tree, select type Expression and then enter
'STANDARD' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > CREATE_SD_REQUEST_InputVariable > header >

3-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

ns1:SOAHeader and select ns5:SecurityGroup. The XPath field should contain
your selected entry.

• Click OK.

8. Enter the fourth pair of parameters:

• In the From navigation tree, select type Expression and then enter 'AMERICAN'
in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > CREATE_SD_REQUEST_InputVariable > header >
ns1:SOAHeader and select ns1:NLSLanguage. The XPath field should contain
your selected entry.

• Click OK.

9. Enter the fifth pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter '204' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > CREATE_SD_REQUEST_InputVariable > header >
ns1:SOAHeader and select ns1:Org_Id. The XPath field should contain your
selected entry.

• Click OK.

10. The Edit Assign dialog box appears.

Using PL/SQL APIs as Web Services 3-29

Assign Parameters

11. Click Apply and then OK to complete the configuration of the Assign activity.

To enter the second Assign activity to pass payload information to the
Invoke_EBS_SDR_Service Invoke activity:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
'SetSOAHeader' Assign activity and the 'Invoke_EBS_SDR_Service' Invoke activity.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
second Assign activity called 'SetPayload'.

3. Enter the following information:

• In the From navigation tree, navigate to Variable > Process > Variables >
ReadPayload_OutVariable and select InputParameters.

• In the To navigation tree, select type Variable and then navigate to Variable >
Process > Variables > CREATE_SD_REQUEST_InputVariable and select
Body.

3-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Click OK.

Assigning Parameters

4. The Edit Assign dialog box appears.

5. Click Apply and then OK to complete the configuration of the Assign activity.

Defining Schema for BPEL Process Input Request

Before setting the input request for the SOAP request, you need to define necessary
schema for BPEL process request.

1. From the Applications Navigator window, expand the ShipDebitRequest >
Integration Content > Schemas folder to open the ShipDebitRequest.xsd file.

2. In the Design mode, expand 'ShipDebitRequestProcessRequest' to view elements
within process request.

Using PL/SQL APIs as Web Services 3-31

Defining Schema for BPEL Process Request

3. From element properties, change the name from 'input' to 'request_number'.

4. Select and right-click on the 'request_number' element to open the pop-up menu.

Select Insert after element – request_number > element option. New element
'element1' is displayed in the schema design window underneath the
'request_number' element.

From element properties section, change the name from 'element1' to 'description'
and enter type as 'string'.

3-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding Schema Elements

5. Similarly insert another element called 'req_max_qty' after element 'description'.

Enter default value as '200' and type as 'decimal'.

Using PL/SQL APIs as Web Services 3-33

Defining Schema Elements

Right-click on mouse and select Rebuild option.

3-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Rebuilding Schema Elements

Look for compilation messages in Log to ensure the successful compilation.

To set the third Assign activity to pass the input request to the
Invoke_EBS_SDR_Service Invoke activity:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
second Assign activity 'SetPayload' and the Invoke_EBS_SDR_Service Invoke
activity.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
third Assign activity called 'SetInput'.

3. Enter the following information:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload > client:ShipDebitRequestProcessRequst and select
client:request_number. The XPath field should contain your selected entry.

• In the To navigation tree, select type Variable and then navigate to Variable >
Process > Variables > Create_SD_REQUEST_InputVariable > Body >
ns3:InputParameters >ns3:P_SDR_HDR_REC and select
ns3:REQUEST_NUMBER. The XPath field should contain your selected entry.

Using PL/SQL APIs as Web Services 3-35

Assigning Parameters

• Click OK.

4. Enter the second pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload > client:ShipDebitRequestProcessRequst and select
client:description. The XPath field should contain your selected entry.

• In the To navigation tree, select type Variable and then navigate to Variable >
Process > Variables > Create_SD_REQUEST_InputVariable > Body >
ns3:InputParameters >ns3:P_SDR_HDR_REC and select
ns3:REQUEST_DESCRIPTION. The XPath field should contain your selected
entry.

• Click OK.

5. Enter the third pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, navigate to Variable > Process > Variables >

3-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

inputVariable > Payload > client:ShipDebitRequestProcessRequst and select
client:req_max_qty. The XPath field should contain your selected entry.

• In the To navigation tree, select type Variable and then navigate to Variable >
Process > Variables > Create_SD_REQUEST_InputVariable > Body >
ns3:InputParameters >ns3:P_SDR_LINES_TBL >
ns3:P_SDR_LINES_TBL_ITEM and select ns3:MAX_QTY. The XPath field
should contain your selected entry.

• Click OK.

6. The Edit Assign dialog box appears.

Click Apply and then OK to complete the configuration of the Assign activity.

To add the fourth Assign activity to set SOAP response to output:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
Invoke_EBS_SDR_Service Invoke and the Reply activities.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
fourth Assign activity called 'SetResponse'.

3. Enter the following information:

• In the From navigation tree, select type Variable. Navigate to Variable >
Process > Variables > CREATE_SD_REQUEST_OutputVariable and select
body.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > outputVariable and select payload.

Using PL/SQL APIs as Web Services 3-37

Assigning Parameters

• Click OK.

4. The Edit Assign dialog box appears.

Click Apply and then OK to complete the configuration of the Assign activity.

Deploying and Testing the BPEL Process
After creating a BPEL process using the WSDL URL generated from a PL/SQL interface
definition, you can deploy it to a BPEL server if needed. To ensure that this process is
modified or orchestrated appropriately, you can also manually test the BPEL process by
initiating the business process contained in the BPEL process to test the interface
integration.

Prerequisites

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you
have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

3-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The payload information for the creation of supplier ship and debit request, see Sample
Payload for Creating Supplier Ship and Debit Request, page C-1.

To validate your BPEL process, perform the following run-time tasks:

1. Deploy the BPEL process, page 3-38

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Test the BPEL process, page 3-39

After deploying a BPEL process, you can manage the process from the BPEL
console to manually initiate the business process and test the interface integration
contained in your BPEL process.

Deploying the BPEL Process
You must deploy the BPEL process (ShipDebitRequest.bpel) that you created
earlier before you can run it.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the
ShipDebitRequest project.

2. Right-click the project and click Make action from the menu.

Look for any compilation error messages in Message Log.

Right-click the project and select Deploy >Integration Server Connection name >
Deploy to Default Domain action from the menu.

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

Using PL/SQL APIs as Web Services 3-39

Deploying the BPEL Process

Look for 'Build successful' message in Apache Ant – Log to ensure that the BPEL
project is compiled and successfully deployed.

Testing the BPEL Process
To validate whether the BPEL process that you created works or not, you need to
manually initiate the process after it has been successfully deployed to the BPEL server.
Therefore, the validation starts with the BPEL console to ensure that you can find the
deployed BPEL process listed in the console. Then, you can log on to Oracle E-Business
Suite to manually initiate the purchase order approval and acknowledgement processes
and to confirm that the relevant event is raised and the updated purchased order details
is also written in the XML file.

To test the BPEL process:

1. Log into Oracle Application Server 10g BPEL Console (
http://<soaSuiteServerHostName>:<port>/BPELConsole). The BPEL
Console login page appears.

2. Enter the username and password and click Login.

3. In the BPEL Console, confirm that ShipDebitRequest has been deployed.

3-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Deployed BPEL Processes

4. Click the ShipDebitRequest link to open the Initiate tab

5. In the payload region, enter the following fields:

• request_number: Enter an unique number in this field, such as BPEL-1.

Note: The Request Number entered here should be unique each
time that you initiate. The Supplier Ship and Debit Request
Number should be unique across users in Supplier Ship and
Debit of Oracle Trade Management.

• description: Enter appropriate description information.

• req_max_qty: Enter 100 as the value.

Using PL/SQL APIs as Web Services 3-41

Specifying Input Payload Information

Click Post XML Message to initiate the process.

6. Verifying SOAP Response in BPEL Console

3-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Verifying SOAP Response in BPEL Console

You can view the SOAP response displayed synchronously in BPEL Console. Look
for 'S' in X_RETURN_STATUS (for success). If 'E' is displayed in
X_RETURN_STATUS, then it means error has occurred while processing the
service. Look for detailed exception message in SOA Monitor.

7. Verifying Created Supplier Ship and Debit Request in Oracle Trade
Management

Log on to Oracle E-Business Suite with the Oracle Trade Management User
responsibility. Select the Supplier Ship and Debit link from the navigation menu to
open the Ship and Debit Overview window.

Using PL/SQL APIs as Web Services 3-43

Verifying in Oracle Trade Management

8. Notice that the Request Number BPEL-1 entered earlier is displayed in the list.
Click the request number BPEL-1 link to open the Ship and Debit Request Details
page for the created request. Verify the details.

3-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Verifying the Ship and Debit Request Details

Using XML Gateway Inbound and Outbound Interfaces 4-1

4
Using XML Gateway Inbound and Outbound

Interfaces

Overview
Oracle E-Business Suite Integrated SOA Gateway provides a communication
infrastructure between Oracle E-Business Suite and Web consumers. Inbound and
outbound XML data is exchanged between the consumers and Oracle E-Business Suite
through Oracle XML Gateway.

Oracle XML Gateway provides a common, standards-based approach for XML
integration. XML is key to an integration solutions, as it standardizes the way in which
data is searched, exchanged, and presented thereby enabling interoperability
throughout the supply chain.

Oracle XML Gateway provides a set of services that can be easily integrated with Oracle
E-Business Suite to support XML messaging. It uses the message propagation feature of
Oracle Advanced Queuing to integrate with Oracle Transport Agent to deliver
outbound XML messages to and receive inbound XML messages or transactions from
business partners.

To enable bidirectional integration with Oracle E-Business Suite and consumers, Oracle
E-Business Suite Integrated SOA Gateway supports XML Gateway Map interface type
through the following approaches:

• For an inbound XML Gateway Map interface, once a Web service of an inbound
XML Gateway interface is deployed, the deployed service representing in WSDL
can be used in creating a BPEL process to insert inbound data into Oracle
E-Business Suite.

• For an outbound XML Gateway Map interface, since an outbound message is first
enqueued to the ECX_OUTBOUND queue, Oracle E-Business Suite Integrated SOA
Gateway supports it through subscription model by first dequeuing the message to
retrieve outbound data from Oracle E-Business Suite by using a BPEL process. The

4-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

retrieved data can then be passed to trading partners or consumers who subscribed
to the message.

To better understand how to use a deployed Web service of an inbound XML Gateway
interface as well as understand how the subscription model works for an outbound
XML Gateway, the following topics are introduced in this chapter:

• Using XML Gateway Inbound Web Services, page 4-2

• Using XML Gateway Inbound Services at Design Time, page 4-2

• Deploying and Testing the BPEL Process at Run Time, page 4-26

• Using XML Gateway Outbound Through Subscription Model, page 4-30

• Using XML Gateway Outbound Messages in Creating a BPEL Process at Design
Time, page 4-30

• Deploying and Testing a BPEL Process at Run Time, page 4-28

For the examples described in the following sections, we use Oracle JDeveloper
10.1.3.3.0 as a design-time tool to create the BPEL processes and use Oracle SOA Suite
BPEL server 10.1.3.3.0 for the process deployment.

Using XML Gateway Inbound Services
This section includes the following topics:

• Using XML Gateway Inbound Services at Design Time, page 4-2

• Deploying and Testing the BPEL Process at Run Time, page 4-26

Using XML Gateway Inbound Services at Design Time
BPEL Process Scenario

Take the XML Gateway Inbound Process PO XML Transaction as an example to explain
the BPEL process creation. In this example, the XML Gateway inbound message map is
exposed as a Web service through PROCESS_PO_007 inbound map. It allows sales
order data including header and line items to be inserted into Order Management
system while an associated purchase order is created.

When a purchase order is sent by a trading partner, the purchase order data is used as
input to the BPEL process along with ECX Header properties such as MESSAGE_TYPE,
MESSAGE_STANDARD, TRANSACTION_TYPE, TRANSACTION_SUBTYPE,
PARTY_SITE_ID, and DOCUMENT_NUMBER. The BPEL process then pushes this
purchase order in ECX_INBOUND queue. Agent Listeners running on ECX_INBOUND
would enable further processing by the Execution Engine. Oracle XML Gateway picks

Using XML Gateway Inbound and Outbound Interfaces 4-3

this XML message, does trading partner validation, and inserts order data to Order
Management Application.

If the BPEL process is successfully executed after deployment, you should get the same
order information inserted into the Order Management table once a purchase order is
created.

Prerequisites to Configure a BPEL Process Using an XML Gateway Inbound Service

Before performing the design-time tasks for XML Gateway Inbound services, you need
to ensure the following tasks are in place:

• An integration repository administrator needs to successfully deploy the XML
Gateway Inbound message map to the application server.

• An integration developer needs to locate and record the deployed WSDL URL for
the inbound message map exposed as a Web service.

• XML Gateway header variables need to be populated for XML transaction.

• Agent listeners need to be up and running.

Deploying XML Gateway Inbound WSDL URL

An integration repository administrator must first create a Web service for the selected
XML Gateway inbound map, and then deploy the service from Oracle Integration
Repository to the application server.

For example, the administrator must perform the following steps before letting the
integration developers use the deployed WSDL in creating a BPEL process:

1. To generate a Web service, locate the interface definition first (such as an XML
Gateway inbound interface INBOUND:Process Purchase Order XML
Transaction (ONT:POI)) and click Generate WSDL in the interface details
page.

Once the service is successfully generated, the Web Service - SOA Provider region
appears in the interface details page.

Note: Since XML Gateway Map interface types can be service
enabled by Web Service Provider (for Oracle E-Business Suite
Release 12.0) and SOA Provider (after the Release 12.0), you may
also find the Web Service - Web Service Provider region as well if
there are Web services generated through Web Service Provider
from Oracle E-Business Suite Release 12.0.

However, there is no design difference in terms of creating BPEL
processes using XML Gateway inbound services whether the
services are enabled through SOA Provider or Web Service
Provider.

4-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

For detailed instruction on how to generate a Web service, see Generating Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select at least one authentication type and click
Deploy in the Web Service - SOA Provider region of the interface details page to
deploy the service.

Once the service is successfully deployed, the selected authentication type(s) will be
displayed along with 'Deployed' Web Service Status. For more information on
securing Web services with authentication types, see Managing Web Service
Security, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

For information on how to deploy a Web service, see Deploying, Undeploying, and
Redeploying Web Services, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

Searching and Recording WSDL URL

An integration developer also needs to log on to the system to locate and record the
deployed Web service WSDL URL for the inbound message map.

This WSDL information will be used later in creating a partner link for the inbound
map exposed as a Web service during the BPEL process creation at design time.

Using XML Gateway Inbound and Outbound Interfaces 4-5

Confirming and Recording a Deployed WSDL URL

How to search for an interface and review the interface details, see Searching and
Viewing Integration Interfaces, page 2-1.

Populating XML Gateway Header Variables

You need to populate certain variables in the BPEL PM in order to provide XML
Gateway header information for Oracle E-Business Suite. The MESSAGE_TYPE,
MESSAGE_STANDARD, TRANSACTION_TYPE, TRANSACTION_SUBTYPE,
DOCUMENT_NUMBER and PARTY_SITE_ID are the mandatory header variables that you
need to populate for the XML transaction to complete successfully.

Refer to Adding an Assign activity, page 4-21 for more information.

Ensuring Agent Listeners Are Up and Running

You also need to ensure that listeners on the ECX_INBOUND, ECX_TRANSACTION
queues are up and running. Use the following steps to configure these listeners in
Oracle E-Business Suite:

1. Log in to Oracle E-Business Suite with the Workflow Administrator responsibility.

2. Click the Workflow Administrator Web Applications link from the Navigator.

3. Click the Workflow Manager link under Oracle Applications Manager.

4-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Click the status icon next to Agent Listeners.

5. Configure and schedule the ECX Inbound Agent Listener and the ECX Transaction
Agent Listener. Select the listener, and select Start from the Actions box. Click Go if
they are not up and running.

BPEL Process Creation Flow

After deploying the BPEL process, you should get the same order information inserted
into the Order Management table once a purchase order is created.

Based on the XML Gateway Inbound Process PO XML Transaction business scenario,
the following design-time tasks are discussed in this chapter:

1. Create a new BPEL project, page 4-7

Use this step to create a new BPEL project called XMLGatewayInbound.bpel
using an Synchronous BPEL Process template. This automatically creates two
dummy activities - Receive and Reply - to receive input from a trading partner and
to reply output of the BPEL process back to the request application.

2. Create a Partner Link, page 4-9

Use this step to create a partner link to allow the inbound message to be inserted to
the Oracle E-Business Suite.

3. Add a Partner Link for File Adapter, page 4-12

Use this step to add a partner link for File Adapter in order to pick up an XML file
received from the trading partner to get the XML message.

4. Add Invoke activities, page 4-18

Use this step to add two Invoke activities in order to:

1. To get the XML message details that is received from the Receive activity.

2. To enqueue the purchase order information to the ECX_INBOUND queue.

5. Add Assign activities, page 4-21

Use this step to create two Assign activities in order to:

1. To pass XML message obtained from the first Invoke activity to the second
Invoke activity.

2. To pass ECX header variables to the second Invoke activity as input variables.

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Using XML Gateway Inbound and Outbound Interfaces 4-7

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

3. Select All Items from the Filter By box. This produces a list of available categories.

4. Expand the General node and then select Projects.

5. Select BPEL Process Project from the Items group.

6. Click OK. The BPEL Process Project dialog box appears.

4-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Entering BPEL Project Information

7. In the Name field, enter a descriptive name such as XMLGatewayInbound.

8. From the Template list, select Asynchronous BPEL Process and then select Use
Default Project Settings.

9. Use the default input and output schema elements in the Input/Output Elements
dialog box.

10. Click Finish.

A new asynchronous BPEL process is created with the Receive and Callback
activities. The required source files including bpel.xml, using the name you
specified (for example, XMLGInbound.bpel) are also generated.

Using XML Gateway Inbound and Outbound Interfaces 4-9

New BPEL Process Diagram

Creating a Partner Link
Use this step to create a Partner Link called ONT_POI to insert sales order data to Oracle
E-Business Suite.

To create a partner link to insert sales data to Oracle E-Business Suite:

1. In JDeveloper BPEL Designer, drag and drop the PartnerLink service from the
Component Palette into the Partner Link border area of the process diagram. The
Service Name dialog box appears.

2. Copy the WSDL URL corresponding to the XML Gateway inbound map
INBOUND:Process Purchase Order XML Transaction (ONT:POI) that
you recorded earlier in the WSDL File field.

A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name value populated automatically. The name is
defaulted to ONT_POI.

4-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Select Partner Role and My Role fields from the drop-down lists.

Create Partner Link

Click Apply.

3. Select the Property tab and click the Create Property icon to select the following
properties from the property name drop-down list in order to pass the security
header along with the SOAP request:

• wsseUsername

Specify the username to be passed in the Property Value box.

• wssePassword

Specify the corresponding password for the username to be passed in the
Property Value box.

• wsseHeaders

Enter credentials as the property value.

Click Apply to save the selected property values.

Using XML Gateway Inbound and Outbound Interfaces 4-11

Adding Properties

4. Click OK to complete the partner link configuration. The partner link is created
with the required WSDL settings, and is represented in the BPEL project by a new
icon in the border area of the process diagram.

4-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding the Partner Link

Adding Partner Links for File Adapter
Use this step to configure a BPEL process by adding a partner link for File Adapter to
get the XML Message.

To add the Partner Link for File Adapter to get the XML Message:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service, such as GetXMLMsg. You can add an
optional description of the service.

4. Click Next and the Operation dialog box appears.

Using XML Gateway Inbound and Outbound Interfaces 4-13

Specifying the Operation

5. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

4-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Configuring the Input File

6. Select Physical Path radio button and enter the physical path for incoming file
directory information. For example, enter /usr/tmp/.

Note: To be able to locate the file from the physical directory you
specified here, you must first place the input payload file (such as
order_data_xmlg.xml) to the specified directory.

Alternatively, click Browse to locate the incoming file directory information.

Uncheck the Delete files after successful retrieval check box. Click Next.

7. Enter the name of the file for the synchronous read file operation. For example,
enter order_data_xmlg.xml. Click Next. The Messages dialog box appears.

8. Select Browse to open the Type Chooser.

Click Import Schema Files button on the top right corner of the Type Chooser
window. This opens the Import Schema File pop-up window.

Enter the schema location for the service. Such as
http://<myhost>:<port>/webservices/SOAProvider/xmlgateway/ont
__poi/PROCESS_PO_007.xsd.

Schema location for your service can be found from the service WSDL URL (for

Using XML Gateway Inbound and Outbound Interfaces 4-15

example,
http://<myhost>:<port>/webservices/SOAProvider/xmlgateway/ont
__poi/?wsdl).

Importing Project Schema

Select the Add to Project check box and click OK.

9. Click OK to the Import Project Schema message prompt.

4-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Importing Project Schema Message Prompt

The Imported Schemas folder is automatically added to the Type Chooser window.

10. Expand the Imported Schemas folder and select PROCESS_PO_007.xsd >
PROCESS_PO_007. Click OK.

The selected xsd is displayed as Schema Location, and PROCESS_PO_007 is
selected as Schema Element.

11. Click OK to populate the selected values in the Messages dialog box.

Using XML Gateway Inbound and Outbound Interfaces 4-17

Populating Selected Message Schema and Element

12. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file GetXMLMsg.wsdl.

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The GetXMLMsg Partner Link appears in the BPEL process diagram.

4-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding the Partner Link for File Adapter

Adding Invoke Activities
This step is to configure three Invoke activities:

1. To get the XML message details that is received from the Receive activity by
invoking the GetXMLMsg partner link in an XML file.

2. To enqueue the purchase order information to the ECX_INBOUND queue by
invoking ONT_POI partner link in an XML file.

To add the first Invoke activity for a partner link to get XML message:

1. In JDeveloper BPEL Designer, drag and drop the first Invoke activity from the
Component Palette into the Activity box of the process diagram, between the
Receive and Callback activities.

2. Link the Invoke activity to the GetXMLMsg service. The Edit Invoke dialog box

Using XML Gateway Inbound and Outbound Interfaces 4-19

appears.

3. Enter a name for the Invoke activity and then click the Create icon next to the Input
Variable field to create a new variable. The Create Variable dialog box appears.

4. Select Global Variable and then enter a name for the variable. You can also accept
the default name. Click OK.

5. Enter a name for the Invoke activity and click the Create icon next to the Output
Variable field to create a new variable. The Create Variable dialog box appears.

6. Select Global Variable, and enter a name for the variable. You can also accept the
default name. Click OK.

Editing Invoke Activity

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The first Invoke activity appears in the process diagram.

To add the second Invoke activity for a partner link to enqueue PO information:

1. In JDeveloper BPEL Designer, drag and drop the second Invoke activity from the
Component Palette into the Activity box of the process diagram, between the first

4-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Invoke and Callback activities.

2. Link the Invoke activity to the ONT_POI service. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity and then click the Create icon next to the Input
Variable field to create a new variable. The Create Variable dialog box appears.

4. Select Global Variable and then enter a name for the variable. You can also accept
the default name. Click OK.

Editing Invoke Activity

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

5. The process diagram appears.

Using XML Gateway Inbound and Outbound Interfaces 4-21

Adding Invoke Activities

Adding Assign Activities
This step is to configure two Assign activities:

1. To pass XML message as an input to the Invoke activity for enqueuing message.

2. To pass XML Gateway header variables as input variables to the Invoke activity in
order to provide context information for Oracle E-Business Suite.

To add the first Assign activity to pass XML message as input to the Invoke activity:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between the two
Invoke activities.

4-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding an Assign Activity

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetOrderXML'.

4. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

5. Enter the following information:

• In the From navigation tree, select type Variable. Navigate to Variable >
Process > Variables > Invoke_SynchRead_OutputVariable and select
Process_PO_007.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >

Using XML Gateway Inbound and Outbound Interfaces 4-23

Variables > Invoke_PROCESSPO_InputVariable and select body.

Assigning Parameters

• Click OK. The Edit Assign dialog box appears.

6. Click Apply and then OK to complete the configuration of the Assign activity.

To add the second Assign activity to pass XML Gateway header variables to the
Invoke activity:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
SetOrderXML Assign activity and the second Invoke activity.

4-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding Assign Activity

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
second Assign activity called 'SetECXHeader'.

3. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

4. Enter the first pair of parameters:

• In the From navigation tree, select type Expression and then enter 'XML' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_PROCESSPO_InputVariable > header > ns1:SOAHeader
> ns3:ECXMSG and select MESSAGE_TYPE.

The XPath field should contain your selected entry.

Using XML Gateway Inbound and Outbound Interfaces 4-25

Assigning XML Gateway Header Parameter Value

• Click OK.

5. Use the same mechanism described in step 3 and 4 to enter the following additional
parameters:

• MESSAGE_STANDARD: 'OAG'

• TRANSACTION_TYPE: 'PO'

• TRANSACTION_SUBTYPE: 'PROCESS'

• DOCUMENT_NUMBER: 'order_xml_01'

• PARTY_SIDE_ID: 'BWSANJOSE'

4-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Assigning XML Gateway Header Parameters

6. Click Apply and OK to complete the configuration of the Assign activity.

Deploying and Testing the BPEL Process at Run Time
After creating a BPEL process using the WSDL URL generated from the XML Gateway
inbound message map interface definition, you can deploy it to a BPEL server if needed.
To ensure that this process is modified or orchestrated appropriately, you can also
manually test the BPEL process by initiating the business process contained in the BPEL
process to test the interface integration.

Prerequisites

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you
have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

To validate your BPEL process, perform the following run-time tasks:

1. Deploy the BPEL process, page 4-27

Using XML Gateway Inbound and Outbound Interfaces 4-27

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Test the BPEL process, page 4-28

After deploying a BPEL process, you can manage the process from the BPEL
console to validate the interface integration contained in your BPEL process.

Deploying the BPEL Process
You must deploy the BPEL process (XMLGatewayInbound.bpel) that you created
earlier before you can run it. The BPEL process is first compiled and then deployed to
the BPEL server.

Note: Before deploying the BPEL Process for XML Gateway Inbound
service, you should:

• Load the order_data_xmlg.xml file into the specified directory
'/usr/tmp/' folder of SOA Suite server (or D:\HOL in case of SOA
Server in Windows machine).

• Edit the input file order_data_xmlg.xml by entering values for
<REFERENCEID> and <POID> such as 'order_xml_01'.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the
XMLGInbound project.

2. Right-click the project and click Make action from the menu.

Look for any compilation error messages in Message Log.

Messages Window

Right-click the project and select Deploy >Integration Server Connection name >
Deploy to Default Domain action from the menu.

4-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

3. Look for 'Build successful' message in Apache Ant – Log to ensure that the BPEL
project is compiled and successfully deployed.

Testing the BPEL Process
Once the BPEL process is deployed, it can be seen in the BPEL console. You can manage
and monitor the process from the BPEL console. You can also test the process and the
integration interface by manually initiating the process.

To test the BPEL process:

1. Log into Oracle Application Server 10g BPEL Console (
http://<soaSuiteServerHostName>:<port>/BPELConsole). The BPEL
Console login page appears.

2. Enter the username and password and click Login.

The Oracle Enterprise Manager 10g BPEL Control appears.

3. In the BPEL Console, confirm that XMLGInbound has been deployed.

4. Click the XMLGInbound link to open the Initiate tab

5. Click Post XML Message to initiate the process.

Using XML Gateway Inbound and Outbound Interfaces 4-29

Verifying Records in Oracle E-Business Suite

Once the BPEL process is successfully initiated and completed, you can validate it
through the relevant module in Oracle E-Business Suite.

To validate it in Oracle Transaction Monitor:

You can validate it from the Transaction Monitor. The Transaction Monitor is a tool for
monitoring the status of inbound and outbound transactions originating from and
going into Oracle E-Business Suite that have been processed by the XML Gateway and
delivered or received by the Oracle Transport Agent. It shows a complete history and
audit trail of these documents.

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
Applications responsibility.

Select the Transaction Monitor link to open the search window to search for the
order.

Searching from the Transaction Monitor

2. Clear From Date and To Date fields and enter 'order_xml_01' in the Document ID
field.

3. Select Customer as the Party Type. Click Go to execute the search.

This retrieves XML inbound transaction 'order_xml_01' in the Inbound Search
Results region.

4. Confirm that the transaction 'order_xml_01' has status 'SUCCESS'.

To validate it in Oracle Order Management:

4-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

1. Log on to the Forms-based Oracle E-Business Suite with the Order Management,
Super User responsibility.

2. Select Order Returns > Sales Order. Sales Order Forms would open up.

3. Search for an order by entering the order number in the Customer PO field (such as
'order_xml_01'). This would bring up the details of newly created order.

Sales Orders

You can also select the Items tab for item details.

Using XML Gateway Outbound Through Subscription Model
This section includes the following topics:

• Using XML Gateway Outbound Messages in Creating a BPEL Process at Design
Time, page 4-30

• Deploying and Testing a BPEL Process at Run Time, page 4-51

Using XML Gateway Outbound Services at Design Time
For an outbound XML Gateway Map interface, since an outbound message is first
enqueued to the ECX_OUTBOUND queue, Oracle E-Business Suite Integrated SOA
Gateway supports it through subscription model by first dequeuing the message to

Using XML Gateway Inbound and Outbound Interfaces 4-31

retrieve outbound data and then invoking an appropriate outbound XML Gateway map
to update Oracle E-Business Suite.

BPEL Process Scenario

Take XML Gateway outbound interface 'PO acknowledgement XML Transaction' as an
example. The XML Gateway outbound interface is exposed as a Web service through
ECX_CBODO_OAG62_OUT outbound map.

When a purchase order is created and approved, on approval of the purchase order, a
workflow will be triggered which creates the Purchase Order Acknowledgement flow
and sends out the PO Acknowledgement as an XML file. The workflow delivers the
Confirm BOD as the PO Acknowledgement to ECX_OUTBOUND queue for delivery to
the other system.

The correlation Id for this message is set to "BPEL" and the Oracle BPEL PM listens to
ECX_OUTBOUND queue for the message with the correlation Id = "BPEL". Confirm
BOD as the PO Acknowledgement is written as an output XML file using File Adapter.

If the BPEL process is successfully executed after deployment, you should get the same
order book reference ID (Customer PO) information from the output XML file once a
purchase order is approved.

Prerequisites to Create a BPEL Process Using XML Gateway Outbound Messaging

You need to set up the correlation identifier in Oracle E-Business Suite. The correlation
identifier enables you to label messages meant for a specific agent, in case there are
multiple agents listening on the outbound queue. The agent listening for a particular
correlation picks up the messages that match the correlation identifier for the agent.

To set up the correlation identifier:

1. Log in to Oracle E-Business Suite with the XML Gateway responsibility. The
Navigator page appears.

2. Click the XML Gateway link.

3. Click the Define Lookup Values link under XML Gateway.

4. Search for COMM_METHOD in the Type field to see if it exists in the system.

5. Add a new record to the COMM_METHOD type by entering BPEL for the Code field
and Meaning field. Enter description information and save the record.

Oracle XML Gateway puts the correlation of BPEL when enqueueing the message
on the ECX_OUTBOUND queue.

Once you have the correlation identifier set up correctly, you also need to ensure the
trading partner that you want to use has the Protocol Type field set to BPEL.

BPEL Process Creation Flow

Based on the PO acknowledgement XML Transaction scenario, the following

4-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

design-time tasks are discussed in this chapter:

1. Create a new BPEL project, page 4-32

Use this step to create a new BPEL project called XMLGOutbound.bpel.

2. Create a Partner Link for AQ Adapter, page 4-33

Use this step to dequeue the event details from the ECX_OUTBOUND queue.

3. Add a Receive activity, page 4-39

Use the Receive activity to take PO acknowledgement details as an input to the
Assign activity.

4. Add a Partner Link for File Adapter, page 4-41

This is to write PO acknowledgement details in an XML file as an output file.

5. Add an Invoke activity, page 4-47

This is to write PO acknowledgement information to an XML file through invoking
the partner link for File Adapter.

6. Add an Assign activity, page 4-49

Use the Assign activity to take the output from the Receive activity and to provide
input to the Invoke activity.

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

3. Select All Technologies from the Filter By box. This produces a list of available
categories.

4. Expand the General node and then select Projects.

5. Select BPEL Process Project from the Items group.

6. Click OK. The BPEL Process Project dialog box appears.

Using XML Gateway Inbound and Outbound Interfaces 4-33

7. In the Name field, enter a descriptive name such as XMLGOutbound.

8. From the Template list, select Empty BPEL Process and then select Use Default
Project Settings.

9. Click Finish.

Creating a New BPEL Project

A new BPEL project is created with the required source files including bpel.xml,
using the name you specified (for example, XMLGOutbound.bpel).

Creating a Partner Link for AQ Adapter
Use this step to create a Partner Link called GetAck for AQ Adapter to dequeue the
XML Gateway outbound message (for example, ECX_CBODO_OAG62_OUT) in the
ECX_OUTBOUND queue.

To create a partner link for AQ Adapter:

1. In JDeveloper BPEL Designer, drag and drop the AQ Adapter service from the
Component Palette into the Partner Link border area of the process diagram. The
Adapter Configuration Wizard appears.

2. Enter a service name in the Service Name dialog box, for example GetAck. You can

4-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

also add an optional description of the service.

Entering Service Name

3. Click Next. The Service Connection dialog box appears.

4. You can use an existing database connection by selecting a database connection
from the Connection list or define a new database connection by clicking New to
open the Create Database Connection Wizard.

Note: You need to connect to the database where Oracle E-Business
Suite is running.

To create a new database connection:

1. Click New to open the Create Database Connection Wizard. Click Next and
enter an unique connection name and then select a connection type, such as
Oracle (JDBC), for the database connection. Click Next.

2. Enter an appropriate username and password to authenticate the database
connection in the Authentication dialog box. Click Next

3. Specify the following information in the Connection dialog box:

Using XML Gateway Inbound and Outbound Interfaces 4-35

• Driver: Thin

• Host Name: Enter the host name for the database connection. For example,
myhost01.example.com.

• JDBC Port: Enter JDBC port number (such as 1521) for the database
connection.

• SID: Specify an unique SID value (such as sid01)for the database
connection.

4. Click Next to test your database connection.

The status message "Success!" indicates a valid connection.

5. Click Next to return to the Service Connection dialog box providing a summary
of the database connection.

5. The JNDI (Java Naming and Directory Interface) name corresponding to the
database connection you specified appears automatically in the JNDI Name field of
the Service Connection dialog box. Alternatively, you can enter a different JNDI
name.

6. Click Next to open Operation dialog box.

Select Dequeue radio button and this selected value is also populated in the
Operation Name field.

4-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

7. Click Next to open the Queue Name dialog box.

Select Default Schema as the Database Schema field. Enter 'ECX_OUTBOUND' as
the Queue Name field.

Using XML Gateway Inbound and Outbound Interfaces 4-37

8. Click Next to open the Queue Parameter dialog box.

4-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Enter the following information:

• Enter an unique consumer name.

• Enter message selector rule information (such as
tab.user_data.transaction_type='PO' AND
tab.user_data.transaction_subtype='POO').

9. Click Next. The Messages dialog box opens.

Click Browse to open the Type Chooser window to select CONFIRM_BOD_002.xsd
as the Schema Location and CONFIRM_BOD_002 as the Schema Element.

10. Click Next to proceed to the Finish dialog box to confirm that you have finished
defining the AQ Adapter for the GetAck service.

11. Click Finish. The wizard generates the WSDL file corresponding to the GetAck
service.

Using XML Gateway Inbound and Outbound Interfaces 4-39

Click Apply and then OK to complete the partner link configuration. The partner
link is created with the required WSDL settings, and is represented in the BPEL
project by a new icon in the border area of the process diagram.

Adding a Receive Activity
This step is to configure a Receive activity to receive XML data from the partner link
GetAck that you configured for the AQ adapter service.

The XML data received from the Receive activity is used as an input variable to the
Assign activity that will be created in the next step.

To add a Receive activity:

1. In JDeveloper BPEL Designer, drag and drop the Receive activity from the BPEL
Activities section of the Component Palette into the Activity box of the process
diagram.

2. Link the Receive activity to the GetAck partner link. The Receive activity will take
event data from the partner link. The Edit Receive dialog box appears.

3. Enter a name for the receive activity. Click the Create icon next to the Variable field
to create a new variable. The Create Variable dialog box appears.

4. Select Global Variable, and then enter a name for the variable. You can accept the
default name. Click OK to return to the Edit Receive dialog box.

5. Select Create Instance check box. Click Apply and OK to finish configuring the
Receive activity.

4-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Receive Activity

The Receive activity appears in the BPEL process diagram.

Using XML Gateway Inbound and Outbound Interfaces 4-41

Adding a Receive Activity

Adding a Partner Link for File Adapter
Use this step to configure a partner link by writing the purchase order
acknowledgement to an XML file.

To add a Partner Link for File Adapter:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration wizard appears.

2. The Service Name dialog box appears.

4-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Service Name

3. Enter a name for the File Adapter service, such as WriteAck. You can add an
optional description of the service.

4. Click Next and the Operation dialog box appears.

Using XML Gateway Inbound and Outbound Interfaces 4-43

Specifying the Operation

5. Specify the operation type, for example Write File. This automatically populates the
Operation Name field.

Click Next to access the File Configuration dialog box.

4-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Configuring the Output File

6. For the Directory specified as field, select Logical Path. Enter directory path in the
Directory for Outgoing Files field, and specify a naming convention for the output
file such as POAck%yyMMddJJmmss%.xml.

7. Confirm the default write condition: Number of Messages Equals 1. Click Next. The
Messages dialog box appears.

8. Select Browse check box to locate the schema location and schema element.

The Type Chooser dialog box appears. Expand the Project Schema Files >
CONFIRM_BOD_002.xsd and select CONFIRM_BOD_002.

Using XML Gateway Inbound and Outbound Interfaces 4-45

Type Chooser

Click OK to populate the selected schema location and element.

9. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file WriteAck.wsdl.

4-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The WriteAck Partner Link appears in the BPEL process diagram.

Using XML Gateway Inbound and Outbound Interfaces 4-47

Adding the Partner Link for File Adapter

Adding an Invoke Activity
This step is to configure an Invoke activity to send the purchase order
acknowledgement that is received from the Receive activity to the WriteAck partner
link in an XML file.

To add an Invoke activity:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, after the Receive
activity.

2. Link the Invoke activity to the WriteAck service. The Invoke activity will send
event data to the partner link. The Edit Invoke dialog box appears.

4-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Invoke Activity

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

4. Select Global Variable, and then enter a name for the variable. You can also accept
the default name. Click OK.

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Using XML Gateway Inbound and Outbound Interfaces 4-49

Adding an Invoke Activity

Adding an Assign Activity
Use this step to pass the purchase order acknowledgement details from the Receive
activity to the Invoke activity.

To add an Assign activity:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between the
Receive activity and the Invoke activity.

4-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding an Assign Activity

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

4. In the From navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Receive_DEQUEUE_InputVariable and select CONFIRM_BOD_002.
The XPath field should contain your selected entry.

5. In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_Write_InputVariable and select CONFIRM_BOD_002. The
XPath field should contain your selected entry.

Using XML Gateway Inbound and Outbound Interfaces 4-51

Specifying Assign Parameters

6. Click OK.

Click Apply and then OK in the Edit Assign dialog box to complete the
configuration of the Assign activity.

Deploying and Testing the BPEL Process at Run Time
After creating the BPEL process, you can deploy it to a BPEL server. To ensure that this
process is modified or orchestrated appropriately, you can also test the BPEL process by
initiating the business process contained in the BPEL process to test the interface
integration.

Prerequisites

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you
have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

To validate the BPEL process, preform the following run-time tasks:

4-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

1. Deploy the BPEL process, page 4-52

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Manually test the BPEL process, page 4-53

After deploying a BPEL process, you can manage the process from the BPEL
console to manually initiate the business process and test the interface integration
contained in your BPEL process.

Deploying the BPEL Process
Before manually test the BPEL process, you first need to deploy it to the BPEL server.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the
XMLGOutbound project.

2. Right-click the project and click Make action from the menu.

Look for any compilation error messages in Message Log.

Right-click the project and select Deploy >Integration Server Connection name >
Deploy to Default Domain action from the menu.

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

Using XML Gateway Inbound and Outbound Interfaces 4-53

Deploying the BPEL Process

3. Look for 'Build successful' message in Apache Ant – Log to ensure that the BPEL
project is compiled and successfully deployed.

Testing the BPEL Process
To validate whether the BPEL process that you created works or not, you need to
manually initiate the process after it has been successfully deployed to the BPEL
console. You can log on to Oracle E-Business Suite to manually create and book the
order as well as generate the order acknowledgement by submitting a Workflow
Background Process concurrent request.

Login to the BPEL console to validate the BPEL process which writes purchase order
acknowledgement in an output directory after receiving from the XML Gateway
ECX_OUTBOUND queue.

To manually test the BPEL process:

1. Log on to Oracle E-Business Suite with the XML Gateway responsibility.

This is to ensure that the XML Gateway trading partner is set up correctly so that a
purchase order can have a valid customer that has been defined.

2. Select Define Trading Partner from the navigation menu to access the Trading

4-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Partner Setup window.

3. Enter the header values on the Trading Partner Setup form as follows:

• Trading Partner Type: Customer

• Trading Partner Name: For example, Business World

• Trading Partner Site: Enter a trading partner site information. For example,
2391 L Street, San Jose, CA 95106

• Company Admin Email: Enter a valid email address.

4. Enter the following trading partner details:

• Transaction Type: ECX

• Transaction SubType: CBODO

• Standard Code: OAG

• External Transaction Type: BOD

• External Transaction SubType: CONFIRM

• Direction: Out

• Map: ECX_CBODO_OAG62_OUT

• Connection / Hub: DIRECT

• Protocol Type: BPEL

• Username: 'operation'

• Password: enter 'welcome' twice

• Protocol Address: 'http:ebssoa.sample.com'

• Source Trading Partner Location Code: BWSANJOSE

Using XML Gateway Inbound and Outbound Interfaces 4-55

Trading Partner Setup

5. Save the trading partner details. Switch responsibility back to Order Management
Super User, Vision Operations (USA) and select Customer > Standard from the
navigation menu to open the Enter Customer form.

6. Search on the 'Business World' in the Name field and click Find.

7. Select the Business World with the following information from the search results.

• Party Number: 2813

• Customer Number: 1608

• Account Name: Business World

• Identifying check box: checked

• Address: 2391 L Street, San Jose, CA 95106

8. Select and open this customer information. Enter 'BWSANJOSE' in the EDI Location
field.

9. In Business Purposes tab, create a new row with the following values:

4-56 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Usage: Sold To

• Check on 'Primary' Check box

Save your work.

10. Use the following steps to generate acknowledgement for already created order.

1. Select Order Returns > Sales Order to open the Sales Order form.

2. Retrieve the order that you have created earlier by entering the order ID in the
Customer PO field.

3. Click Book Order to book the order.

Booking an Order

11. Switch to the System Administrator responsibility and select Request > Run.

12. Select Single Request and click OK.

13. Enter the following information in the Submit Request form:

Using XML Gateway Inbound and Outbound Interfaces 4-57

Specifying Parameters

• Name: Workflow Background Process

• Enter the following parameters:

• Item Type: OM Send Acknowledgement

• Process Deferred: Y

• Process Timeout: N

• Process Stuck: N

• Click OK.

14. Click Submit to submit the 'send acknowledgement' request.

15. View your request by entering the request ID to ensure its status is 'Success'.

Validating Using Oracle Transaction Monitor

To validate it using Oracle Transaction Monitor, you need to log on to Oracle
E-Business Suite with the Workflow Administrator Web Applications responsibility.
Select Transaction Monitor to open the search window to search for the order.

4-58 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Searching from the Transaction Monitor

Validating Using Oracle BPEL Console

Log into Oracle BPEL Console to confirm that the XMLGOutbound process has been
deployed. This process is continuously polling the ECX_OUTBOUND queue for
purchase order acknowledgement.

To verify, select the instance of your deployed process which opens up in the Instances
tab of your selected BPEL process.

Click on the Audit Tab to view the Receive activity. Click the view xml document link
to open the received XML file. Note the Reference ID such as Customer PO.

Using XML Gateway Inbound and Outbound Interfaces 4-59

Viewing XML File for the Receive Activity

Go to the directory you specified for the write operation, for example outputDir -
logical location (typically c:\temp) where the File Adapter has placed the file after
writing the PO Acknowledgement in an XML file (such as 'POAck060719175318.xml').

Open this 'POAck060719175318.xml' file. You should find the Reference ID as
order_xmlg_008 (the order booked) for which the acknowledgement is generated.

4-60 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Validating the Output File

Using Business Events Through Subscription Model 5-1

5
Using Business Events Through

Subscription Model

Overview
The Oracle Workflow Business Event System (BES) is an application service that
leverages the Oracle Advanced Queuing (AQ) infrastructure to communicate business
events between systems. The Business Event System consists of the Event Manager and
workflow process event activities.

The Event Manager lets you register subscriptions to significant events; event activities
representing business events within workflow processes let you model complex
business flows or logics within workflow processes.

Events can be raised locally or received from an external system or the local system
through AQ. When a local event occurs, the subscribing code is executed in the same
transaction as the code that raised the event, unless the subscriptions are deferred.

Oracle E-Business Suite Integrated SOA Gateway supports business events through
event subscription. An integration repository administrator can subscribe to a business
event from the business event interface details page. The subscription to that event can
be enqueued as an out agent. An integration developer can create a BPEL process in
Oracle JDeveloper to include the subscribed event at design time and update
application data if needed at run time.

To better understand how the subscription model works for business events, detailed
tasks at design time and run time are included in this chapter. For the example
described in the following sections, we use Oracle JDeveloper 10.1.3.3.0 as a design-time
tool to create the BPEL process and use Oracle SOA Suite BPEL server 10.1.3.3.0 for the
process deployment.

Using a Business Event in Creating a BPEL Process at Design Time
BPEL Process Scenario

5-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Take a PO XML Raise business event as an example to explain the BPEL process
creation.

When a purchase order is created and approved, a Purchase Order Approved business
event oracle.apps.po.evnt.xmlpo is raised. Since the subscription to this event is
created through the interface details page (internally, an event subscription is
automatically created for the selected event with WF_BPEL_QAGENT as Out Agent), and
enqueued in WF_EVENT_T structure to Advanced Queue WF_BPEL_Q, we will create a
BPEL process to first dequeue the subscription from the WF_BPEL_Q queue to get the
event details. The event details will be passed through BPEL process activities and then
will be written in XML file as an output file.

If the BPEL process is successfully executed after deployment, you should get the same
purchase order information from the output file once a purchase order is approved.

Prerequisites to Create a BPEL Process Using a Business Event

Integration repository administrators must first subscribe to a business event from the
Oracle Integration Repository user interface. Internally, an event subscription is
automatically created for that event with WF_BPEL_QAGENT as Out Agent.

For example, a business event oracle.apps.po.event.xmlpo needs to be
subscribed. A confirmation message appears if the event subscription is successfully
created.

Using Business Events Through Subscription Model 5-3

Subscribing to a Business Event

To subscribe to a business event, the administrators will first locate an event from the
Oracle Integration Repository, and then click Subscribe in the interface detail page to
create the subscription.

For information on how to subscribe to business events, see Subscribing to Business
Events, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Note: If a BPEL process is created with the business event that you have
subscribed to it, in order for the subscribed business event to be
successfully enqueued to WF_BPEL_Q queue, you need to make sure:

• The consumer name must be unique.

• The BPEL process is deployed before raising the business event.

Once the subscription is created and enqueued, an integration developer can then
orchestrate the subscribed event into a meaningful business process in Oracle
JDeveloper using BPEL language at design time.

BPEL Process Creation Flow

Based on the PO XML Raise business event scenario, the following design-time tasks
are discussed in this chapter:

1. Create a new BPEL project, page 5-5

Use this step to create a new BPEL project called GetPurchaseOrder.bpel.

5-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Create a Partner Link for AQ Adapter, page 5-6

Use this step to dequeue the event details from the WF_BPEL_Q queue.

3. Add a Receive activity, page 5-13

Use the Receive activity to take event details as an input to the Assign activity.

4. Create a Partner Link for File Adapter, page 5-15

This is to write event details in an XML file as an output file.

5. Add an Invoke activity, page 5-21

This is to write business event information to an XML file through invoking the
partner link for File Adapter.

6. Add an Assign activity, page 5-23

Use the Assign activity to take the output from the Receive activity and to provide
input to the Invoke activity.

Using Business Events Through Subscription Model 5-5

Example of a BPEL Project Using Business Events

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

3. Select All Technologies from the Filter By box. This produces a list of available
categories.

4. Expand the General node and then select Projects.

5. Select BPEL Process Project from the Items group.

6. Click OK. The BPEL Process Project dialog box appears.

5-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

7. In the Name field, enter a descriptive name such as GetPurchaseOrder.

8. From the Template list, select Empty BPEL Process and then select Use Default
Project Settings.

9. Click Finish.

Creating a New Project

A new BPEL project is created with the required source files including bpel.xml,
using the name you specified (for example, GetPurchaseOrder.bpel).

Creating a Partner Link for AQ Adapter
Use this step to create a Partner Link called GetPurchaseOrder for AQ Adapter to
dequeue the subscription to oracle.apps.po.evnt.xmlpo event.

To create a partner link for AQ Adapter to dequeue the event subscription:

1. In JDeveloper BPEL Designer, drag and drop the AQ Adapter service from the
Component Palette into the Partner Link border area of the process diagram. The
Adapter Configuration Wizard appears.

2. Enter a service name in the Service Name dialog box, for example
GetPurchaseOrder. You can also add an optional description of the service.

Using Business Events Through Subscription Model 5-7

3. Click Next. The Service Connection dialog box appears.

4. You can use an existing database connection by selecting a database connection
from the Connection list or define a new database connection by clicking New to
open the Create Database Connection Wizard.

Note: You need to connect to the database where Oracle E-Business
Suite is running.

To create a new database connection:

1. Click New to open the Create Database Connection Wizard. Click Next and
enter an unique connection name and then select a connection type for the
database connection. Click Next.

2. Enter an appropriate username and password to authenticate the database
connection in the Authentication dialog box. Click Next

3. Specify the following information in the Connection dialog box:

• Driver: Thin

• Host Name: Enter the host name for the database connection. For example,
myhost01.example.com.

5-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• JDBC Port: Enter JDBC port number (such as 1521) for the database
connection.

• SID: Specify an unique SID value (such as sid01)for the database
connection.

4. Click Next to test your database connection.

The status message "Success!" indicates a valid connection.

5. Click Next to return to the Service Connection dialog box providing a summary
of the database connection.

5. The JNDI (Java Naming and Directory Interface) name corresponding to the
database connection you specified appears automatically in the JNDI Name field of
the Service Connection dialog box. Alternatively, you can enter a different JNDI
name.

6. Click Next to open Operation dialog box.

Select Dequeue radio button and this selected value is also populated in the
Operation Name field.

Using Business Events Through Subscription Model 5-9

7. Click Next to open the Queue Name dialog box.

Select Default Schema as the Database Schema field. Enter 'WF_BPEL_Q' as the
Queue Name field.

5-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

8. Click Next to open the Queue Parameter dialog box.

Using Business Events Through Subscription Model 5-11

Enter the following information:

• Enter an unique consumer name.

Important: In order for the subscribed business event to be
successfully enqueued to WF_BPEL_Q queue, the consumer
name must be unique.

• Enter message selector rule information (such as
tab.user_data.geteventname()='oracle.apps.po.evnt.xmlpo').

9. Click Next. The Messages dialog box opens where you can define the message that
will be contained in the Business Event System payload for the APPS.WF_BPEL_Q
queue.

Click Browse to open the Type Chooser window to select APPS_WF_EVENT_T.xsd
as the Schema Location and WF_EVENT_T as the Schema Element.

5-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

10. Click Next to proceed to the Finish dialog box to confirm that you have finished
defining the AQ Adapter for the GetPurchaseOrder service.

11. Click Finish. The wizard generates the WSDL file corresponding to the
GetPurchaseOrder service.

Using Business Events Through Subscription Model 5-13

Click Apply and then OK to complete the partner link configuration. The partner
link is created with the required WSDL settings, and is represented in the BPEL
project by a new icon in the border area of the process diagram.

Adding a Receive Activity
This step is to configure a Receive activity to receive XML data from the partner link
GetPurchaseOrder that you configured for the AQ adapter service for the business
event.

The XML data received from the Receive activity is used as an input variable to the
Assign activity that will be created in the next step.

To add a Receive activity to obtain Purchase Order XML data:

1. In JDeveloper BPEL Designer, drag and drop the Receive activity from the BPEL
Activities section of the Component Palette into the Activity box of the process
diagram.

2. Link the Receive activity to the GetPurchaseOrder partner link. The Receive
activity will take event data from the partner link. The Edit Receive dialog box
appears.

3. Enter a name for the receive activity such as 'Receive_PO' and then click the Create
icon next to the Variable field to create a new variable. The Create Variable dialog
box appears.

5-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Creating a Variable

4. Select Global Variable and then enter a name for the variable. You can accept the
default name. Click OK to return to the Edit Receive dialog box.

5. Select Create Instance check box then click Apply and then OK to finish
configuring the Receive activity.

Editing the Receive Activity

The Receive activity appears in the BPEL process diagram.

Using Business Events Through Subscription Model 5-15

Process Diagram with Receive Activity

Adding a Partner Link for File Adapter
Use this step to configure a business event by writing the event data to an XML file.

To add a Partner Link for File Adapter:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration wizard appears.

2. The Service Name dialog box appears.

5-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Service Name

3. Enter a name for the file adapter service such as WritePurchaseOrder. You can
add an optional description of the service.

4. Click Next and the Operation dialog box appears.

Using Business Events Through Subscription Model 5-17

Specifying the Operation

5. Specify the operation type, for example Write File. This automatically populates the
Operation Name field.

Click Next to access the File Configuration dialog box.

5-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Configuring the Output File

6. For the Directory specified as field, select Physical Path. Enter directory path in the
Directory for Outgoing Files field, and specify a naming convention for the output
file such as PO_%SEQ%.xml.

7. Confirm the default write condition: Number of Messages Equals 1. Click Next. The
Messages dialog box appears.

8. Select Native format translation is not required (Schema is Opaque) check box.

Using Business Events Through Subscription Model 5-19

Specifying Message Schema

9. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file WritePurchaseOrder.wsdl.

5-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The WritePurchaseOrder Partner Link appears in the BPEL process diagram.

Using Business Events Through Subscription Model 5-21

Adding the Partner Link for File Adapter

Adding an Invoke Activity
This step is to configure an Invoke activity to write the purchase order approved event
details that is received from the Receive activity to the WritePurchaseOrder partner
link in an XML file.

To add an Invoke activity:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, after the Receive
activity.

2. Link the Invoke activity to the WritePurchaseOrder service. The Invoke activity
will send event data to the partner link. The Edit Invoke dialog box appears.

5-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Invoke Activity

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Creating a Variable

4. Select Global Variable and then enter a name for the variable. You can also accept
the default name. Click OK to close the Create Variable dialog box.

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the

Using Business Events Through Subscription Model 5-23

Invoke activity.

The Invoke activity appears in the process diagram.

Process Diagram With Invoke Activity

Adding an Assign Activity
Use this step to pass the purchase order approved event details from the Receive
activity to the Invoke activity.

To add an Assign activity:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between the
Receive activity and the Invoke activity.

5-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Process Diagram with Assign Activity

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation dialog box appears.

Using Business Events Through Subscription Model 5-25

Defining the Copy Operation

4. In the From navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Receive_PO_DEQUEUE_InputVariable > WF_EVENT_T and select
ns3:WF_EVENT_T element. The XPath field should contain your selected entry.

5. In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_WritePO_Write_InputVariable > WF_EVENT_T and select
Opaque. The XPath field should contain your selected entry.

6. Click OK to close the Create Copy Operation dialog box.

Click Apply and then OK in the Edit Assign dialog box to complete the
configuration of the Assign activity.

Deploying and Testing the BPEL Process at Run Time
After creating a BPEL process with the subscribed event, you can deploy it to a BPEL
server if needed. To ensure that this process is modified or orchestrated appropriately,
you can also test the BPEL process by initiating the business process contained in the
BPEL process to test the interface integration.

Prerequisites

5-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you
have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

To validate the BPEL process, preform the following run-time tasks:

1. Deploy the BPEL process, page 5-26

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Manually initiate the BPEL process, page 5-27

After deploying a BPEL process, you can manage the process from the BPEL
console to manually initiate the business process and test the interface integration
contained in your BPEL process.

Deploying the BPEL Process
Before manually test the BPEL process, you first need to deploy it to the BPEL server.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the
GetPurchaseOrder project.

2. Right-click the project and click Make action from the menu.

Look for any compilation error messages in Message Log.

Right-click the project and select Deploy >Integration Server Connection name >
Deploy to Default Domain action from the menu.

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

Using Business Events Through Subscription Model 5-27

Deploying the BPEL Process

3. Look for 'Build successful' message in Apache Ant – Log to ensure that the BPEL
project is compiled and successfully deployed.

Compilation and Deployment Message Logs

Testing the BPEL Process
To validate whether the BPEL process that you created works or not, you need to
manually initiate the process after it has been successfully deployed to the BPEL
console. Therefore, the validation starts with the BPEL console to ensure that you can
find the deployed BPEL process listed in the console. Then, you can log on to Oracle
E-Business Suite to manually initiate the purchase order approval and
acknowledgement processes and to confirm that the relevant event is raised and the
updated purchased order details is also written in the XML file.

To manually test the BPEL process:

1. Log into Oracle Application Server 10g BPEL Console (
http://<soaSuiteServerHostName>:<port>/BPELConsole). The BPEL
Console login page appears.

5-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Enter the username and password and click Login.

The Oracle Enterprise Manager 10g BPEL Control appears.

3. In the BPEL Console, confirm that GetPurchaseOrder has been deployed.

Deployed BPEL Processes

4. Log on to Oracle E-Business Suite with the XML Gateway responsibility.

This is to ensure that the XML Gateway trading partner is set up correctly so that a
purchase order can have a valid supplier that has been defined.

5. Select Define Trading Partner from the navigation menu to access the Trading
Partner Setup window.

6. Enter the header values on the Trading Partner Setup form as follows:

• Trading Partner Type: Supplier

• Trading Partner Name: For example, Advanced Network Devices

• Trading Partner Site: Enter a trading partner site information. For example,
2000 Century Way, Santa Clara, CA 95613-4565

• Company Admin Email: Enter a valid email address.

7. Enter the following trading partner details:

• Transaction Type: PO

Using Business Events Through Subscription Model 5-29

• Transaction SubType: PRO

• Standard Code: OAG

• External Transaction Type: PO

• External Transaction SubType: Process

• Direction: Out

• Map: itg_process_po_007_out

• Connection / Hub: DIRECT

• Protocol Type: SOAP

8. Save the trading partner details. Switch responsibility back to Purchasing, Vision
Operations (USA) and select Purchase Order from the navigation menu.

9. Create a purchase order with the header values reflecting the trading partner you
previously defined in the Purchase Order window:

• Supplier: Enter a supplier information, such as 'Advanced Network Devices'

• Site: Select a site information, such as 'SANTA CLARA-ERS'

5-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

10. On the Lines tab, enter a data row with the following values:

• Type: Goods

• Item: CM13139

• Quantity: 1

• Description: Hard Drive - 8GB

• Promised: Enter any future date in the format of dd-mmm-yyyy (such as
23-JUN-2008)

11. Save your purchase order. The status of the purchase order is 'Incomplete'.

Note: Because the trading partner is set up and valid, the
transmission method is automatically set to XML.

12. Click Approve to approve the purchase order.

The status of the purchase order is now changed to 'Approved'. For future
reference, note the value of the PO, Rev field (for example, the PO number 5789).

Once the purchase order is approved, the business event
oracle.apps.po.event.xmlpo is raised.

13. Log into Oracle BPEL Process Manager, and return to the BPEL Console to confirm
that the GetPurchaseOrder process has been completed.

Using Business Events Through Subscription Model 5-31

To verify, select the instance of your deployed process which opens up in the
Instances tab of your selected BPEL process.

14. Double-click on the Receive activity in the BPEL process diagram and click the
View XML document link to open the XML file. Please note that the purchase order
(number 5789) has been received.

5-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Examining the Receive Event Name

15. Examine the Assign and Invoke activities as well for the event raised and document
number.

16. Go to the directory you specified for the write operation, for example outputDir
(typically c:\temp). Open the output file (for example PO_1.xml), and confirm
that the order number is the same as that of the approved purchase order.

Using Business Events Through Subscription Model 5-33

Confirming the Output Order Number

Using Concurrent Programs 6-1

6
Using Concurrent Programs

Overview
A concurrent program is an instance of an execution file with associated parameters.
Concurrent programs use a concurrent program executable to locate the correct
execution file. The execution file can be an operating system file or database stored
procedure which contains your application logic (such as PL/SQL, Java). Several
concurrent programs may use the same execution file to perform their specific tasks,
each having different parameter defaults.

The concurrent program can be exposed as a Web service based integration interface.
An integration repository administrator can further deploy a generated service from
Oracle Integration Repository to the application server.

This deployed service can be exposed to customers through service provider and
invoked through any of the Web service clients.

For example, an integration developer can take a deployed Web service WSDL URL and
directly use it to define a partner link for the Web service that a BPEL process connects
to in order to perform tasks, or carry information between the Web service and the
BPEL process.

Detailed information on how to create a BPEL process to invoke the Web service and
use it to update Oracle E-Business Suite is discussed in this chapter. For the example
described in the following sections, we use Oracle JDeveloper 10.1.3.3.0 as a design-time
tool to create the BPEL process and use Oracle SOA Suite BPEL server 10.1.3.3.0 for the
process deployment.

Using Concurrent Program WSDLs at Design Time
BPEL Process Scenario

This example uses Departure Shipment Notice Outbound WSHDSNO concurrent
program to explain the BPEL process creation.

6-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

When a shipment notice generation request is received as an input to the BPEL process,
a sales order information including header and line items are read by a File Adapter.
The sales order data is then passed through to create a departure shipment notice
(DSNO). The shipment notice creation document number will be passed back to the
request application.

If the BPEL process is successfully executed after deployment, you should be able to
validate if the generated shipment notice has correct trading partner information as
described in the sales order.

Prerequisites to Create a BPEL Process Using a Concurrent Program Web Service

Before performing design-time tasks for concurrent programs, you need to ensure the
following tasks are in place:

• An integration repository administrator needs to successfully deploy the generated
concurrent program Web service to the application server.

• An integration developer needs to locate and record the deployed WSDL URL for
the concurrent program exposed as a Web service.

• SOAHeader elements should be populated in order to run the concurrent program
for SOAP request

Deploying the Concurrent Program WSDL URL

An integration repository administrator must first create a Web service for the selected
interface definition, and then deploy the service from Oracle Integration Repository to
the application server.

For example, the administrator must perform the following steps before letting
integration developers use the deployed WSDL in creating a BPEL process:

1. To generate a Web service, locate the interface definition first from the Oracle
Integration Repository (such as Departure Shipment Notice Outbound WSHDSNO
concurrent program) and click Generate WSDL in the interface details page. The
Web Service - SOA Provider region appears in the interface details page. For
detailed instruction on how to generate a Web service, see Generating Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select at least one authentication type and click
Deploy in the Web Service - SOA Provider region of the interface details page to
deploy the service.

Once the service is successfully deployed, the selected authentication type(s) will be
displayed along with 'Deployed' Web Service Status. For more information on
securing Web services with authentication types, see Managing Web Service
Security, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

For detailed instruction on how to deploy a Web service, see Deploying Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Using Concurrent Programs 6-3

Searching and Recording WSDL URL

Apart from the required tasks performed by the administrator, an integration developer
also needs to log on to the system to locate and record the deployed Web service WSDL
URL for the interface (such as WSHDSNO concurrent program) that needs to be
orchestrated into a meaningful business process in Oracle JDeveloper using BPEL
language.

This WSDL information will be used directly for a partner link during the BPEL process
creation at design time.

Confirming and Recording a Deployed WSDL URL

How to search for an interface and review the interface details, see Searching and
Viewing Integration Interfaces, page 2-1.

Setting Variables in SOAHeader for SOAP Request

You must populate certain variables in the BPEL process for SOAHeader elements to
pass values that may be required to set application context during service execution.
These SOAHeader elements for concurrent program interface type are
Responsibility, RespApplication, SecurityGroup, NLSLanguage, and

6-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Org_Id.

Note: The user information is defined by the wsseUsername property
passed within the security headers. Detailed instructions on how to
pass the security headers along with the SOAP request, see Passing
Values to Security Headers, page 6-9.

The expected values for these elements are described in the following table:

Header Variables and Expected Values for Concurrent Program Interface Type

Element Name Expected Value

Responsibility responsibility_key (such as
"SYSTEM_ADMINISTRATOR")

RespApplication Application Short Name (such as "FND")

SecurityGroup Security Group Key (such as "STANDARD")

NLSLanguage NLS Language (such as "AMERICAN")

Org_Id Org Id (such as "202")

Note: NLS Language and Org_Id are optional values to be passed.

• If the NLS Language element is specified, SOAP requests can be
consumed in the language passed. All corresponding SOAP
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

• If a service execution is dependent on any particular organization,
then you must pass the Org_Id element of that SOAP request.

The context information can be specified by configuring an Assign activity before the
Invoke activity in the BPEL PM.

BPEL Process Creation Flow

Based on the scenario, the following design-time tasks are discussed in this chapter:

1. Create a new BPEL project, page 6-5

Use this step to create a new BPEL project called ShipNotice.bpel. This

Using Concurrent Programs 6-5

automatically creates two dummy activities - Receive and Reply - to receive input
from a third party application and to reply output of the BPEL process back to the
request application.

2. Create a Partner Link, page 6-7

Use this step to create a partner link for the Departure Shipment Notice Outbound
Shipment_Notice concurrent service.

3. Add a Partner Link for File Adapter, page 6-10

This is to synchronous read sales order details received from the trading partner.

4. Add Invoke activities, page 6-15

Use this step to create two Invoke activities in order to:

1. Point to the File Adapter - Synchronous Read operation to read the order details
from the Assign activity.

2. Point to the Shipment_Notice Web service to create the shipment notice with
header and line details.

5. Add Assign activities, page 6-19

Use this step to create three Assign activities in order to:

1. To pass the SOAHeader variables for the invocation of the DSNO concurrent
program service.

2. To pass the order details from the output of the Synchronous Read - File
Adapter service to the input of the DSNO creation.

3. To set the SOAP response to output.

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

6-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

3. Select All Items from the Filter By box. This produces a list of available categories.

4. Expand the General node and then select Projects.

5. Select BPEL Process Project from the Items group.

6. Click OK. The BPEL Process Project dialog box appears.

Entering BPEL Project Information

7. In the Name field, enter a descriptive name for example ShipNotice.

8. From the Template list, select Synchronous BPEL Process and then select Use
Default Project Settings.

9. Use the default input and output schema elements in the Input/Output Elements
dialog box.

10. Click Finish.

A new synchronous BPEL process is created with the Receive and Reply activities.
The required source files including bpel.xml, using the name you specified (for
example, ShipNotice.bpel) are also generated.

Using Concurrent Programs 6-7

New BPEL Process Diagram

Creating a Partner Link for the Web Service
Use this step to create a Partner Link called Shipment_Notice for the Web service
exposed through WSHDSNO concurrent program.

To create a partner link for Shipment_Notice Web service:

1. In JDeveloper BPEL Designer, drag and drop the PartnerLink service from the
Component Palette into the Partner Link border area of the process diagram. The
Service Name dialog box appears.

2. Copy the WSDL URL corresponding to the Departure Shipment Notice Outbound
WSHDSNO service that you recorded earlier in the WSDL File field. Click OK.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name value populated automatically.

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

6-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding the Partner Link

4. You can optionally change the default partner link name by double-clicking the
icon to open the Edit Partner Link window. For example, change it from WSHDSNO
to Shipment_Notice.

Select the Partner Role value from the drop-down list. Click Apply.

Using Concurrent Programs 6-9

Editing Partner Link Parameters

5. Passing Values to Security Headers

Select the Property tab and click the Create Property icon to select the following
properties from the property name drop-down list in order to pass the security
headers along with the SOAP request:

• wsseUsername

Specify the username to be passed in the Property Value box.

• wssePassword

Specify the corresponding password for the username to be passed in the
Property Value box.

• wsseHeaders

Enter credentials as the property value.

Click Apply to save the selected property values.

6-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding Properties

6. Click OK to complete the partner link configuration.

Adding a Partner Link for File Adapter
Use this step to configure a BPEL process by synchronously reading a sales order to
obtain the order details.

To add a Partner Link for File Adapter to read order details:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service, for example ReadOrder. You can add an
optional description of the service.

4. Click Next and the Operation dialog box appears.

Using Concurrent Programs 6-11

Specifying the Operation

5. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

6. Select Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/ as the directory name.

Uncheck the Delete Files after successful retrieval check box. Click Next to open
the File Name dialog box.

7. Enter the name of the file for the synchronous read file operation. For example,
enter 'order_data.xml'. Click Next. The Messages dialog box appears.

6-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying Message Schema

8. Select Browse for schema file in Schema Location. The Type Chooser window is
displayed.

1. Click Import Schema Files button on the top right corner of the Type Chooser
window.

2. Enter the schema location for the service. Such as
http://<myhost>:<port>/webservices/SOAProvider/concurrentp
rogram/wshdsno/APPS_ISG_CP_REQUEST_CP_SUBMIT.xsd.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<myhost>:<port>/webservices/SOAProvider/concurrentp
rogram/wshdsno/?wsdl).

3. Select the Add to Project check box and click OK.

4. Click OK for Import schema prompt.

The Imported Schemas folder is automatically added to the Type Chooser
window.

5. Select schema element by expanding the Imported Schemas folder >
APPS_ISG_CP_REQUEST_CP_SUBMIT.xsd > InputParameters.

Using Concurrent Programs 6-13

Click OK.

The selected schema location and element values are displayed.

Viewing Selected Message Schema and Element

9. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file ReadOrder.wsdl.

6-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The ReadOrder Partner Link appears in the BPEL process diagram.

Using Concurrent Programs 6-15

Adding the Partner Link for File Adapter

Adding Invoke Activities
This step is to configure two Invoke activities:

• Read order details that is passed from the first Assign activity through the
ReadOrder partner link for File Adapter.

• Send the order header and line details received from the Assign activities to
generate an outbound shipment notice (DSNO) by using the Shipment_Notice
partner link.

To add an Invoke activity for ReadOrder Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, between the
Receive and Reply activities.

2. Link the Invoke activity to the ReadOrder service. The Invoke activity will send
order data to the partner link. The Edit Invoke dialog box appears.

6-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Invoke Activity

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Creating an Input Variable

4. Select Global Variable and then enter a name for the variable. You can also accept
the default name. Click OK.

5. Click the Create icon next to the Output Variable field. Select Global Variable and

Using Concurrent Programs 6-17

then enter a name for the variable. You can also accept the default name. Click OK.

Creating an Output Variable

6. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

To add the second Invoke activity for Shipment_Notice Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, after the Invoke
and Reply activities.

2. Link the Invoke activity to the Shipment_Notice service. The Invoke activity will
send event data to the partner link. The Edit Invoke dialog box appears.

3. Enter a name for the Invoke activity such as 'Invoke_ShipmentNotice'. Select input
and output global variables as described in the first Invoke activity creation
procedure.

6-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing Invoke Variables

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The second Invoke activity appears in the process diagram.

Using Concurrent Programs 6-19

Adding Invoke Activities

Adding Assign Activities
This step is to configure three Assign activities:

1. To pass the application context for SOAHeader in the invocation of the DSNO
concurrent program service.

2. To pass the order details from the output of the Synchronous Read - File Adapter
service to the input of the DSNO creation through the Invoke_ShipmentNotice
Invoke activity.

3. To set the SOAP response to output.

Assigning SOAHeader Parameters:

To add the first Assign activity to pass SOAHeader variables used in the invocation of
the DSNO concurrent program service:

6-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

1. Add the first Assign activity by dragging and dropping the Assign activity from the
Component Palette into the Activity box of the process diagram, between the two
Invoke activities.

2. Enter 'SOAHeader' as the Assign name in the Edit Assign dialog box. Click OK.

3. Enter the first pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter
'ORDER_MGMT_SUPER_USER' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:Responsibility. The XPath field should contain
your selected entry.

• Click OK.

4. Enter the second pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter 'ONT' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:RespApplication. The XPath field should
contain your selected entry.

• Click OK.

5. Enter the third pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter
'STANDARD' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:SecurityGroup. The XPath field should contain
your selected entry.

• Click OK.

6. Enter the fourth pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

Using Concurrent Programs 6-21

• In the From navigation tree, select type Expression and then enter 'AMERICAN'
in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:NLSLanguage. The XPath field should contain
your selected entry.

• Click OK.

7. Enter the fifth pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter '202' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:Org_Id. The XPath field should contain your
selected entry.

• Click OK.

8. The Edit Assign dialog box appears.

Click Apply and then OK to complete the configuration of the Assign activity.

To add the second Assign activity to set order details to the Invoke_ShipmentNotice
Invoke activity:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between Assign
and Invoke activities.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetOrderDetails'.

4. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

5. Enter the first pair of parameters:

• In the From navigation tree, select type elect type Variable. Navigate to
Variable > Process > Variables >
InvokeReadOrder_SynchRead_OutputVariable > InputParameters and select
ns1:InputParametersr.

6-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The XPath field should contain your selected entry.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > InvokeShipmentNotice_WSHDSNO_InputVariable > body and
select ns1:InputParameters. The XPath field should contain your selected entry.

• Click OK.

Assigning Parameters

6. The Edit Assign dialog box appears.

Click Apply and then OK to complete the configuration of the Assign activity.

To add the third Assign activity to set SOAP response to output:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
Invoke and the Reply activities.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
third Assign activity called 'SetCPdetails'.

3. Enter the following information:

Using Concurrent Programs 6-23

• In the From navigation tree, select type Variable. Navigate to Variable >
Process > Variables > InvokeShipmentNotice_WSHDSNO_OutputVariable
and select body.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > OutputVariable and select payload.

Assigning Parameters

• Click OK.

4. Click Apply and then OK to complete the configuration of the Assign activity.

Deploying and Testing the BPEL Process at Run Time
After creating a BPEL process using the WSDL URL generated from the concurrent
program interface definition, you can deploy it to a BPEL server if needed. To ensure
that this process is modified or orchestrated appropriately, you can also manually test
the BPEL process by initiating the business process contained in the BPEL process to
test the interface integration.

Prerequisites

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you

6-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

To validate your BPEL process, perform the following run-time tasks:

1. Deploy the BPEL process, page 6-24

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Test the BPEL process, page 6-25

After deploying a BPEL process, you can manage the process from the BPEL
console to validate the interface integration contained in your BPEL process.

Deploying the BPEL Process
You must deploy the BPEL process (ShipNotice.bpel) that you created earlier before
you can run it.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the ShipNotice
project.

2. Right-click the project and click Make action from the menu.

Look for any compilation error messages in Message Log.

Right-click the project and select Deploy >Integration Server Connection name >
Deploy to Default Domain action from the menu.

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

Using Concurrent Programs 6-25

Deploying the BPEL Process

3. Look for 'Build successful' message in Apache Ant – Log. The BPEL project is
compiled and successfully deployed.

Testing the BPEL Process
To validate whether the BPEL process that you created works or not, you need to
manually initiate the process after it has been successfully deployed to the BPEL server.
Therefore, the validation starts with the BPEL console to ensure that you can find the
deployed BPEL process listed in the console. Then, you can log on to Oracle E-Business
Suite to manually initiate the processes and to confirm that the departure shipment
notice outbound (DSNO) is generated in the XML file.

To test the BPEL process:

1. Log into Oracle Application Server 10g BPEL Console (
http://<soaSuiteServerHostName>:<port>/BPELConsole). The BPEL
Console login page appears.

2. Enter the username and password and click Login. The The Oracle Enterprise
Manager 10g BPEL Console appears with a list of deployed BPEL processes.

6-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Deployed BPEL Processes

3. In the BPEL Console, confirm that ShipNotice has been deployed.

4. Click the ShipNotice link to open the Initiate tab.

5. Enter the payload input field and click Post XML Message to initiate the process.

6. The BPEL process is now initiated. You can check the process flow by clicking the
Visual Flow icon.

Using Concurrent Programs 6-27

BPEL Console Initiate Page

7. Double-click the Invoke_ShipmentNotice icon from the process flow chart and click
View XML document link to open the XML file. This file records the Request ID
that is returned for the transaction.

Verifying Records in Oracle E-Business Suite

Before verifying the records in Oracle E-Business Suite, you must first ensure that the
concurrent request is completed successfully.

1. Log on to Oracle E-Business Suite with the System Administrator responsibility.
Select View > Requests to open the Find Requests window.

2. Search for the concurrent request by entering the Request Id that you got from the
audit trail and then click Find.

3. The request details page is displayed. You can check the Phase and Status of the
request to see if the Status of the request is Complete.

Once the concurrent request is completed successfully, you can validate it in Oracle
E-Business Suite.

Since DSNO (departure shipment notice outbound) is an outbound XML message,
relevant XML Gateway setup tasks must be configured appropriately in order for the
shipment notice to be delivered to the right recipient.

See Oracle XML Gateway User's Guide for details.

6-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

You can validate if the ship-to address, purchase order, and requested ship date
addressed in the DSNO XML file are the same in your sales order.

Using Business Service Objects 7-1

7
Using Business Service Objects

Overview
A business service object, formerly known as Service Bean, is a high-level service
component that allows OA Framework or BC4J components to be deployed as Web
services. It is the tool by which Oracle E-Business Suite employs service oriented
architecture (SOA) and Web services to facilitate integration with each other and with
third party trading partners.

Business service object interfaces provide access to SOA services to facilitate integration
between Oracle E-Business Suite and trading partners. They often employ service data
objects as parameters to pass complex data.

To better utilize these business service objects for broader customers, integration
repository administrators can first generate Web services and then deploy them to the
application server. Integration developers can orchestrate those deployed services into a
meaning business process with service endpoints using a BPEL language. This process
can take the data from a business partner and then insert or update Oracle E-Business
Suite if necessary.

To better understand how to use business service object interfaces in updating Oracle
E-Business Suite, detailed design-time and run-time tasks are included in this chapter.
For the example described in the following sections, we use Oracle JDeveloper 10.1.3.3.0
as a design-time tool to create the BPEL process and use Oracle SOA Suite BPEL server
10.1.3.3.0 for the process deployment.

Using Business Service Object WSDLs at Design Time
BPEL Process Scenario

This example uses PurchaseOrderService
/oracle/apps/fnd/framework/toolbox/tutorial/PurchaseOrderService
business service object interface to explain the BPEL process creation.

When a purchase order approval request is received, the purchase order details is read

7-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

by a File Adapter. The order data is then passed to the approvePurchaseOrder method
within the PurchaseOrderService to initiate the single PO approval process. The
approval information is then replied back to the requestor.

If the BPEL process is successfully executed after deployment, you should notice the
purchase order status changed from Incomplete to Approved.

Prerequisites to Create a BPEL Process Using a Business Service Object Web Service

• An integration repository administrator needs to successfully generate and deploy a
Web service to the application server.

• An integration developer needs to locate and record the deployed WSDL URL for
the BSO interface exposed as a Web service.

• Header variables need to be populated for Web service authorization.

Generating and Deploying WSDL URL

An integration repository administrator must first create a Web service for a selected
interface definition, and then deploy the service from Oracle Integration Repository to
the application server.

For example, the administrator must perform the following steps before letting the
integration developers use the deployed WSDL in creating a BPEL process:

1. To generate a Web service, locate the business service object interface definition first
from the Oracle Integration Repository (such as PurchaseOrderService
/oracle/apps/fnd/framework/toolbox/tutorial/PurchaseOrderServ
ice) and click Generate WSDL in the interface details page.

Since business service object interfaces are service enabled by using Web Service
Provider, once the service is successfully generated, the Web Service - Web Service
Provider region appears in the interface details page. For detailed instruction on
how to generate a Web service, see Generating Web Services, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select at least one authentication type and click
Deploy in the Web Service - Web Service Provider region of the interface details
page to deploy the service. Once the service is successfully deployed, the selected
authentication type(s) will be displayed along with 'Deployed' Web Service Status.
For more information on securing Web services with authentication types, see
Managing Web Service Security, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

For detailed instruction on how to deploy a Web service, see Deploying Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Searching and Recording WSDL URL

Apart from the required tasks performed by the administrator, an integration developer
also needs to log on to the system to locate and record the deployed Web service WSDL

Using Business Service Objects 7-3

URL for the interface that needs to be orchestrated into a meaningful business process
in Oracle JDeveloper using BPEL language.

This WSDL information will be used later in creating a partner link for the interface
exposed as a Web service during the BPEL process creation at design time.

Confirming and Recording a Deployed WSDL URL

How to search for an interface and review the interface details, see Searching and
Viewing Integration Interfaces, page 2-1.

Setting Header Variables for SOAP Request

You need to populate certain variables in the BPEL process for header elements to pass
values that may be required to set application context during service execution. These
header elements for Business Service Object interface type are
RESPONSIBILITY_NAME, RESPONSIBILITY_APPL_NAME,
SECURITY_GROUP_NAME, NLS_LANGUAGE, and ORG_ID.

Note: The user information is defined by the wsseUsername property
passed within the security headers. Detailed instructions on how to
pass the security headers along with the SOAP request, see Passing
Values to Security Headers, page 7-8.

The expected values for these elements are described in the following table:

7-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Header Variables and Expected Values for Business Service Object Interfaces

Element Name Expected Value

RESPONSIBILITY_NAME responsibility_name (such as "System
Administrator") or
{key}responsibility_key (such as
"{key}SYSTEM_ADMINISTRATOR")

RESPONSIBILITY_APPL_NAME Application Short Name (such as "FND")

SECURITY_GROUP_NAME Security Group Key (such as "STANDARD")

NLS_LANGUAGE NLS Language (such as "AMERICAN")

ORG_ID Org ID (such as "202")

Note: NLS_Language and ORG_ID are optional values to be passed.

• If the NLS Language element is specified, SOAP requests can be
consumed in the language passed. All corresponding SOAP
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

• If a service execution is dependent on any particular organization,
then you must pass the ORG_ID element in the
ServiceBean_Header of that SOAP request.

The context information can be specified by configuring an Assign activity before the
Invoke activity in the BPEL PM.

Detailed information on how to set header variables for the SOAP request, see
Assigning ServiceBean_Header Parameters, page 7-19.

BPEL Process Creation Flow

Based on the scenario, the following design-time tasks are discussed in this chapter:

1. Create a new BPEL project, page 7-5

Use this step to create a new BPEL project called ApprovePO.bpel. This
automatically creates two dummy activities - Receive and Reply - to receive input
from a third party application and to reply output of the BPEL process back to the
request application.

Using Business Service Objects 7-5

2. Create a Partner Link, page 7-7

Use this step to create a partner link for PurchaseOrderService Web services.

3. Add a Partner Link for File Adapter, page 7-9

This is to synchronous read purchase order details received from the requestor.

4. Add Invoke activities, page 7-15

Use this step to create two Invoke activities in order to:

1. Point to the File Adapter - Synchronous Read operation to read the purchase
order from the input file.

2. Point to the PurchaseOrderService Web service to initiate the single purchase
order approval process.

5. Add Assign activities, page 7-18

Use this step to create three Assign activities in order to:

1. To set the SOAHeader details.

2. Pass the purchase order details read from the File Adapter as an input to the
Invoke activity for PurchaseOrderService Web service.

3. Pass single purchase order approval information to the requestor through the
Reply activity.

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

3. Select All Items from the Filter By box. This produces a list of available categories.

4. Expand the General node and then select Projects.

5. Select BPEL Process Project from the Items group.

7-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

6. Click OK. The BPEL Process Project dialog box appears.

Entering BPEL Project Information

7. In the Name field, enter a descriptive name for example ApprovePO.

8. From the Template list, select Synchronous BPEL Process and then select Use
Default Project Settings.

9. Use the default input and output schema elements in the Input/Output Elements
dialog box.

10. Click Finish.

A new synchronous BPEL process is created with the Receive and Reply activities.
The required source files including bpel.xml, using the name you specified (for
example, ApprovePO.bpel) are also generated.

Using Business Service Objects 7-7

New BPEL Process Diagram

Creating a Partner Link
Use this step to configure a Partner Link called PurchaseOrderService.

To create a partner link for PurchaseOrderService:

1. In JDeveloper BPEL Designer, drag and drop the PartnerLink service from the
Component Palette into the Partner Link border area of the process diagram. The
Service Name dialog box appears.

2. Copy the WSDL URL corresponding to the PurchaseOrderService
/oracle/apps/fnd/framework/toolbox/tutorial/PurchaseOrderServ
ice that you recorded earlier in the WSDL File field.

A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the PurchaseOrderService partner link created in the process
diagram.

The Partner Name and Partner Link Type values populated automatically. You can
select the Partner Role value from the drop-down list.

Click Apply.

7-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Partner LInk

3. Passing Values to Security Headers

Select the Property tab and click the Create Property icon to select the following
properties from the property name drop-down list in order to pass the security
headers along with the SOAP request:

• wsseUsername

Specify the username to be passed in the Property Value box.

• wssePassword

Specify the corresponding password for the username to be passed in the
Property Value box.

• wsseHeaders

Enter credentials as the property value.

Click Apply to save the selected property values.

Using Business Service Objects 7-9

Adding Properties

4. Click OK to complete the partner link configuration. The partner link is created
with the required WSDL settings, and is represented in the BPEL project by a new
icon in the border area of the process diagram.

Adding a Partner Link for File Adapter
Use this step to synchronous read the purchase order details received from the third
party application.

To add a Partner Link for File Adapter:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration Wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service for example ReadPO. You can add an
optional description of the service.

4. Click Next and the Operation dialog box appears.

7-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

5. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

6. Select Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/ as the directory name.

Uncheck the Delete Files after successful retrieval check box. Click Next to open
the File Name dialog box.

7. Enter the name of the file for the synchronous read file operation. For example,
enter 'Input.xml'. Click Next. The Messages dialog box appears.

Using Business Service Objects 7-11

Specifying Message Schema

8. Select Browse for schema file in Schema Location. The Type Chooser window is
displayed.

1. Click Import Schema Files button on the top right corner of the Type Chooser
window.

2. Enter the schema location for the service. Such as
http://<myhost>:<port>/webservices/AppsWSProvider/oracle/a
pps/fnd/framework/toolbox/tutorial/PurchaseOrderService.xs
d.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<myhost>:<port>/AppsWSProvider/oracle/apps/fnd/fram
ework/toolbox/tutorial/PurchaseOrderService?wsdl).

7-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Importing Schema Location

3. Select the Add to Project check box and click OK.

4. Click OK for Import schema prompt.

The Imported Schemas folder is automatically added to the Type Chooser
window.

5. Select schema element by expanding the Imported Schemas folder >
PurchaseOrderService.xsd > PurchaseOrderService_ApprovePurchaseOrder.

Click OK.

The selected schema location and element values are displayed.

Using Business Service Objects 7-13

Viewing Selected Message Schema and Element

9. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file ReadPO.wsdl.

7-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The ReadPO Partner Link appears in the BPEL process diagram.

Using Business Service Objects 7-15

Adding the Partner Link for File Adapter

Adding an Invoke activity
This step is to configure two Invoke activities:

1. Point to the File Adapter ReadPO to synchronous read the purchase order from the
Receive activity.

2. Point to the PurchaseOrderService partner link to send the transaction
information that is received from the Assign activities to initiate the single purchase
order approval process.

To add an Invoke activity for ReadPO Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, between the
Receive and Reply activities.

2. Link the Invoke activity to the ReadPO service. The Invoke activity will send event
data to the partner link. The Edit Invoke dialog box appears.

7-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Invoke Activity

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Creating a Variable

4. Select Global Variable and then enter a name for the variable. You can also accept
the default name. Click OK.

5. Enter a name for the Invoke activity and then click the Create icon next to the

Using Business Service Objects 7-17

Output Variable field to create a new variable. The Create Variable dialog box
appears.

6. Select Global Variable and then enter a name for the variable. You can also accept
the default name. Click OK.

7. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Adding an Invoke Activity

To add an Invoke activity for PurchaseOrderService Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, after the Invoke
and Reply activities.

2. Link the Invoke activity to the PurchaseOrderService service. The Invoke
activity will send event data to the partner link. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity such as 'InvokePOService'. Create input and

7-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

output variables described in the first Invoke activity. Click OK to close the Create
Variable dialog box.

4. Click Apply and then OK to finish configuring the Invoke activity.

The Invoke activity appears in the process diagram.

Adding an Invoke Activity

Adding an Assign activity
This step is to configure three Assign activities:

1. To set the header details.

Note: You need to populate certain variables in the BPEL process
for ServiceBean_Header elements to pass values that may be
required to embed application context into SOAP envelopes for
Web service authorization. These ServiceBean_Header elements for
Business Service Object interface type are

Using Business Service Objects 7-19

RESPONSIBILITY_NAME, RESPONSIBILITY_APPL_NAME,
SECURITY_GROUP_NAME, NLS_LANGUAGE, and ORG_ID.

Detailed information on how to set ServiceBean_Header for the
SOAP request, see Assigning ServiceBean_Header Parameters,
page 7-19.

2. To pass the purchase order details read from the File Adapter as an input to the
second Invoke activity for PurchaseOrderService partner link.

3. To pass single purchase order approval information to the requestor through the
dummy Reply activity.

To add the first Assign activity to pass header details:

Assigning ServiceBean_Header Parameters:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between the two
Invoke activities.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetServiceBeanHeader'.

4. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

5. Enter the first pair of parameters:

• In the From navigation tree, select type Expression and then enter 'Purchasing,
Vision Operations (USA)' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables >
InvokePurchaseOrderService_PurchaseOrderService_AcknowledgePurchase
Order_InputVariable > header> ns4:ServiceBean_Header and select
ns4:RESPONSIBILITY_NAME. The XPath field should contain your selected
entry.

7-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Assign Responsibility Parameter

• Click OK.

6. Enter the second pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter 'PUR' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables >
InvokePurchaseOrderService_PurchaseOrderService_AcknowledgePurchase
Order_InputVariable > header> ns4:ServiceBean_Header and select
ns4:RESPONSIBILITY_APPL_NAME. The XPath field should contain your
selected entry.

• Click OK.

7. Enter the third pair of parameters:

• In the From navigation tree, select type Expression and then enter
'STANDARD' in the Expression box.

Using Business Service Objects 7-21

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables >
InvokePurchaseOrderService_PurchaseOrderService_AcknowledgePurchase
Order_InputVariable > header> ns4:ServiceBean_Header and select
ns4:SECURITY_GROUP_NAME. The XPath field should contain your selected
entry.

• Click OK.

8. Enter the fourth pair of parameters:

• In the From navigation tree, select type Expression and then enter 'AMERICAN'
in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables >
InvokePurchaseOrderService_PurchaseOrderService_AcknowledgePurchase
Order_InputVariable > header> ns4:ServiceBean_Header and select
ns4:NLS_LANGUAGE. The XPath field should contain your selected entry.

• Click OK.

9. Enter the fifth pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter '204' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables >
InvokePurchaseOrderService_PurchaseOrderService_AcknowledgePurchase
Order_InputVariable > header> ns4:ServiceBean_Header and select
ns4:ORG_ID. The XPath field should contain your selected entry.

• Click OK.

10. The Edit Assign dialog box appears.

11. Click Apply and then OK to complete the configuration of the Assign activity.

To enter the second Assign activity to pass PO details to the InvokePOService Invoke
activity:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between the
Assign and Invoke activities.

7-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetPOApproval'.

4. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

5. Enter the following information:

• In the From navigation tree, navigate to Variable > Process > Variables >
InvokeReadPO_SynchRead_OutputVariable >
PurchaseOrderService_ApprovePurchaseOrder > and select
ns5:PurchaseOrderService_ApprovePurchaseOrder. The XPath field should
contain your selected entry.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables >
InvokePurchaseOrderService_PurchaseOrderService_AcknowledgePurchase
Order_InputVariable > body and select
ns5:PurchaseOrderService_AcknowledgePurchaseOrder. The XPath field
should contain your selected entry.

Using Business Service Objects 7-23

• Click OK.

6. Click Apply and then OK to complete the configuration of the Assign activity.

To enter the third Assign activity to set the SOAP response to output:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
InvokePOService Invoke and the Reply activities.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
second Assign activity called 'SetPOStatus'.

3. Enter the following information:

• In the From navigation tree, select type Variable. Navigate to Variable >
Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_AcknowledgePurchase
Order_OutputVariable and select body.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > outputVariable and select payload.

• Click OK.

7-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Edit Assign dialog box appears.

4. Click Apply and then OK to complete the configuration of the Assign activity.

Deploying and Testing the BPEL Process at Run Time
After creating a BPEL process using the WSDL URL generated from the business
service object interface definition, you can deploy it to a BPEL server if needed. To
ensure that this process is modified or orchestrated appropriately, you can also
manually test the BPEL process by initiating the business process contained in the BPEL
process to test the interface integration.

Prerequisites

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you
have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

To validate your BPEL process, perform the following run-time tasks:

1. Deploy the BPEL process, page 7-24

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Test the BPEL process, page 7-25

After deploying a BPEL process, you can manage the process from the BPEL
console to manually initiate the business process and test the interface integration
contained in your BPEL process.

Deploying the BPEL Process
You must deploy the Approve Purchase Order BPEL process (POApprove.bpel) that
you created earlier before you can run it.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the POApprove
project.

2. Right-click the project and click Make action from the menu.

Look for any compilation error messages in Message Log.

Right-click the project and select Deploy >Integration Server Connection name >
Deploy to Default Domain action from the menu.

Using Business Service Objects 7-25

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

Deploying the BPEL Process

3. Look for 'Build successful' message in Apache Ant – Log to ensure that the BPEL
project is compiled and successfully deployed.

Testing the BPEL Process
Once the BPEL process is deployed, it can be seen in the BPEL console. You can manage
and monitor the process from the BPEL console. You can also test the process and the
integration interface by logging on to Oracle E-Business Suite to manually initiate the
processes.

To test the BPEL process:

1. Log into Oracle Application Server 10g BPEL Console (
http://<soaSuiteServerHostName>:<port>/BPELConsole). The BPEL
Console login page appears.

2. Enter the username and password and click Login.

The Oracle Enterprise Manager 10g BPEL Control appears.

3. In the BPEL Console, confirm that 'POApprove' has been deployed.

7-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Click the ApprovePO link to open the Initiate tab

5. Enter the payload input field and click Post XML Message to initiate the process.

6. The audit trail provides information about the steps that have been executed. You
can check the audit trail by clicking the Audit Instance icon.

This is to verify that a purchase order is approved successfully.

Validating the Process in Oracle E-Business Suite

Additionally, you can validate the BPEL process in Oracle E-Business Suite. Log on to
Oracle E-Business Suite with the Purchasing responsibility. Open up the Purchase
Orders form and search for the supplier to bring up the purchase order details. Notice
that the Status field is 'Approved'.

Using Java APIs for Forms Services 8-1

8
Using Java APIs for Forms Services

Overview
Java APIs are business interfaces based on Java classes. Some specialized Java classes
are XML document-based integration points wrapped in Java classes for executing
business logic in Oracle Forms. These Java classes are categorized with subtype 'Java
APIs for Forms'. You can locate them through performing a search with 'subtype of an
interface' category and 'Java APIs for Forms' as category value.

Similar to other service enabled integration interface types, Oracle E-Business Suite
Integrated SOA Gateway allows these specialized Java classes to be service enabled
through SOA Provider.

Once this XML document-based integration point becomes a Web service, the generated
Web service can be deployed from the Oracle Integration Repository to Oracle
Application Server. Services can then be exposed to customers through service provider
and invoked through any of the Web service clients or orchestration tool including
Oracle JDeveloper, Apache Axis, .NET Web Service Client, Oracle BPEL Process
Manager, and Oracle Enterprise Service Bus (ESB).

To better understand how each individual Web service represented in WSDL URL can
be used in inserting or updating application data, detailed design-time and run-time
tasks in creating and deploying a BPEL process are discussed in this chapter. For the
example described in the following sections, we use Oracle JDeveloper 10.1.3.3.0 as a
design-time tool to create the BPEL process and use Oracle SOA Suite BPEL server
10.1.3.3.0 for the process deployment.

Using Java APIs for Forms Services at Design Time
BPEL Process Scenario

This example uses CreateAndMaintainSalesOrders
oracle.apps.ont.services.oexoeord.OEXOEORDServices_DocStyle Java
API for Forms interface to explain the BPEL process creation.

8-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

When a create order request is received, the order information including header and
line items will be read and passed to create a sales order. Once the order is created, the
order number will then be returned to the requestor.

If the BPEL process is successfully executed after deployment, you should find a sales
order is created in the Oracle E-Business Suite. The order number should be the same as
the payload input value.

Prerequisites to Create a BPEL Process Using a Java API for Forms Web Service

Before performing the design-time tasks for the Web service, you need to ensure the
following tasks are in place:

• An integration repository administrator needs to successfully generate and deploy a
Web service to the application server.

• An integration developer needs to locate and record the deployed WSDL URL for
the document-based Java interface exposed as a Web service.

• SOAHeader variables need to be populated for Web service authorization.

Deploying a Java API for Forms WSDL URL

An integration repository administrators must first create a Web service for a selected
document-based Java interface definition, and then deploy the service from Oracle
Integration Repository to the application server.

For example, the administrator must perform the following steps before letting the
integration developers use the deployed WSDL in creating a BPEL process:

1. To generate a Web service, locate the Java API for Forms interface definition first
(such as CreateAndMaintainSalesOrders
oracle.apps.ont.services.oexoeord.OEXOEORDServices_DocStyle)
through a search.

Using Java APIs for Forms Services 8-3

Searching Java APIs for Forms Interfaces

From the main Search page, click Show More Search Options to display more
fields for search. Enter the following criteria:

• Category: Interface Subtype

• Category Value: Java API for Forms

Click Go to execute the search. This retrieves all Java APIs for Forms interfaces from
the Oracle Integration Repository.

Click the CreateAndMaintainSalesOrders Java API for Forms link to display the
interface details page and click Generate WSDL.

Once the service is successfully generated, the Web Service - SOA Provider region
appears in the interface details page. For detailed instruction on how to generate a
Web service, see Generating Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

2. To deploy a generated Web service, select at least one authentication type and click
Deploy in the Web Service - SOA Provider region of the interface details page to
deploy the service.

Once the service is successfully deployed, the selected authentication type(s) will be
displayed along with 'Deployed' Web Service Status. For more information on
securing Web services with authentication types, see Managing Web Service
Security, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

For detailed instruction on how to deploy a Web service, see Deploying,
Undeploying, and Redeploying Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

Searching and Recording WSDL URL

8-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Apart from the required tasks performed by the administrators, an integration
developer also needs to log on to the system to locate and record the deployed Web
service WSDL URL for the interface that needs to be orchestrated into a meaningful
business process in Oracle JDeveloper using BPEL language.

This WSDL information will be used later in creating a partner link for the interface
exposed as a Web service during the BPEL process creation at design time.

Viewing and Recording a Deployed WSDL URL

How to search for an interface and review the interface details, see Searching and
Viewing Integration Interfaces, page 2-1.

Setting Variables in SOAHeader for SOAP Request

You must populate certain variables in the BPEL process for SOAHeader elements to
pass values that would be used to set applications context during service execution.
These SOAHeader elements for Java APIs for Forms interfaces are Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and Org_Id.

Note: The user information is defined by the wsseUsername property
passed within the security headers. Detailed instructions on how to
pass the security headers along with the SOAP request, see Passing
Values to Security Headers, page 8-10.

The expected values for these elements are described in the following table:

Using Java APIs for Forms Services 8-5

Header Variables and Expected Values for Java APIs for Forms Interfaces

Element Name Expected Value

Responsibility responsibility_key (such as
"SYSTEM_ADMINISTRATOR")

RespApplication Application Short Name (such as "FND")

SecurityGroup Security Group Key (such as "STANDARD")

NLSLanguage (optional) NLS Language (such as "AMERICAN")

Org_Id Org Id (such as "202")

Note:

• Unlike SOAHeader used in other interface types to set context
header, Org_Id is a mandatory value that must be passed when
using a Java APIs for Forms service.

• NLS Language is an optional value to be passed.

If the NLS Language element is specified, SOAP requests can be
consumed in the language passed. All corresponding SOAP
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

The context information can be specified by configuring an Assign activity before the
Invoke activity in the BPEL PM.

Detailed information on how to set SOAHeader for the SOAP request, see Assigning
SOAHeader Parameters, page 8-20.

BPEL Process Creation Flow

Based on the sales order creation scenario, the following design-time tasks are discussed
in this chapter:

1. Create a new BPEL project, page 8-6

Use this step to create a new BPEL project called CreateSalesOrder.bpel using
an Synchronous BPEL Process template. This automatically creates two dummy
activities - Receive and Reply - to receive input from a third party application and
to reply output of the BPEL process back to the request application.

8-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Create a Partner Link, page 8-7

Use this step to create an order in Oracle E-Business Suite by using the
CreateAndMaintainSalesOrders (
oracle.apps.ont.services.oexoeord.OEXOEORDServices_DocStyle)
API exposed as a Web service.

3. Add a Partner Link for File Adapter, page 8-11

Use this step to synchronous read order header details passed from the first Assign
activity.

4. Add Invoke activities, page 8-15

Use this step to configure two Invoke activities in order to:

• Point to the File Adapter to synchronous read order header details that is
passed from the first Assign activity.

• Point to the OEXOEORDServices_DocStyle partner link to initiate the order
creation with payload and transaction details received from the Assign
activities.

5. Add Assign activities, page 8-19

Use this step to configure Assign activities in order to pass order header details,
payload information and order number to appropriate Invoke activities to facilitate
order creation. At the end, pass the order number to the request application
through the dummy Reply activity.

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

3. Select All Items from the Filter By box. This produces a list of available categories.

4. Expand the General node and then select Projects.

5. Select BPEL Process Project from the Items group.

Using Java APIs for Forms Services 8-7

6. Click OK. The BPEL Process Project dialog box appears.

Entering BPEL Project Information

7. In the Name field, enter a descriptive name such as CreateSalesOrder.

8. From the Template list, select Synchronous BPEL Process. Select Use Default
Project Settings.

9. Use the default input and output schema elements in the Input/Output Elements
dialog box.

10. Click Finish.

A new synchronous BPEL process is created with the Receive and Reply activities.
The required source files including bpel.xml, using the name you specified (for
example CreateSalesOrder.bpel) are also generated.

Creating a Partner Link
Use this step to create a Partner Link called OEXOEORDServices_DocStyle.

To create a partner link for CreateOrder Web service:

1. In JDeveloper BPEL Designer, drag and drop the PartnerLink service from the

8-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Component Palette into the Partner Link border area of the process diagram. The
Service Name dialog box appears.

2. Copy the deployed WSDL URL corresponding to the
CreateAndMaintainSalesOrders service that you recorded earlier in the WSDL File
field.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name, Partner Link Type values populated
automatically.

You can select appropriate values for the Partner Role and My Role fields.

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

Using Java APIs for Forms Services 8-9

4. You can optionally change the default partner link name by double-clicking the
icon to open the Edit Partner Link window if you like.

Select the Partner Role value from the drop-down list.

Click Apply.

8-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Partner Link

5. Passing Values to Security Headers

Select the Property tab and click the Create Property icon to select the following
properties from the property name drop-down list in order to pass the security
headers along with the SOAP request:

• wsseUsername

Specify the username to be passed in the Property Value box.

• wssePassword

Specify the corresponding password for the username to be passed in the
Property Value box.

• wsseHeaders

Enter credentials as the property value.

Click Apply to save the selected property values.

Using Java APIs for Forms Services 8-11

Adding Properties

6. Click OK to complete the partner link configuration.

Adding a Partner Link for File Adapter
Use this step to configure a BPEL process by reading current contents of a file.

To add a Partner Link for File Adapter to Read Payload:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service such as ReadPayload. You can add an
optional description of the service.

4. Click Next. The Operation dialog box appears.

8-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

5. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

6. Select Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/ as the directory name.

Uncheck the Delete Files after successful retrieval check box. Click Next to open
the File Name dialog box.

7. Enter the name of the file for the synchronous read file operation. For example,
enter 'Input.xml'. Click Next. The Messages dialog box appears.

Using Java APIs for Forms Services 8-13

Specifying Message Schema

8. Select Browse for schema file in Schema Location. The Type Chooser window is
displayed.

1. Click Import Schema Files button on the top right corner of the Type Chooser
window.

2. Enter the schema location for the service in the Import Schema File pop-up
window.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<myhost>:<port>/webservices/SOAProvider/java/oracle
/apps/ont/services/oexoeord/OEXOEORDServices_DocStyle/?wsd
l).

3. Select the Add to Project check box and click OK.

4. Click OK for Import schema prompt.

The Imported Schemas folder is automatically added to the Type Chooser
window.

5. Select an appropriate schema element by expanding the Imported Schemas
folder. Click OK.

8-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The selected schema location and element values are displayed.

9. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file ReadPayload.wsdl.

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The ReadPayload Partner Link appears in the BPEL process diagram.

Using Java APIs for Forms Services 8-15

Adding the Partner Link for File Adapter

Adding Invoke Activities
This step is to configure two Invoke activities:

• Read sales order creation details that is passed from the first Assign activity using
ReadPayload partner link for File Adapter.

• Send the payload and order details received from the Assign activities to create an
sales order by using the CreateSalesOrder partner link.

To add an Invoke activity for ReadPayload Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, between the
Receive and Reply activities.

2. Link the Invoke activity to the ReadPayload service. The Invoke activity will send
invoice data to the partner link. The Edit Invoke dialog box appears.

8-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Invoke Activity

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Creating a Variable

4. Select Global Variable, and then enter a name for the variable. You can also accept
the default name. Click OK.

5. click the Create icon next to the Output Variable field to create a new variable. The

Using Java APIs for Forms Services 8-17

Create Variable dialog box appears.

Select Global Variable, and then enter a name for the variable. You can also accept
the default name. Click OK.

6. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Adding an Invoke Activity

To add an Invoke activity for OEXOEORDServices_DocStyle Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, after the Invoke
and Reply activities.

2. Link the Invoke activity to the OEXOEORDServices_DocStyle service. The
Invoke activity will send event data to the partner link. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity such as 'InvokeCreateOrder'. Click the Create
icon next to the Input Variable field to create a new variable. The Create Variable

8-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

dialog box appears.

Creating a Variable

Select Global Variable, and then enter a name for the variable. You can also accept
the default name. Click OK.

4. click the Create icon next to the Output Variable field to create a new variable. The
Create Variable dialog box appears.

Select Global Variable, and then enter a name for the variable. You can also accept
the default name. Click OK.

5. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Using Java APIs for Forms Services 8-19

Adding an Invoke Activity

Adding Assign Activities
This step is to configure four Assign activities:

1. To set the SOAHeader for SOAP request.

Note: You need to populate certain variables in the BPEL process
for SOAHeader elements to pass values that may be required to set
application context during service execution. These SOAHeader
elements are Responsibility, RespApplication,
SecurityGroup, NLSLanguage, and Org_Id.

2. To pass the payload information to the InvokeCreateOrder Invoke activity.

3. To pass the order number information to the InvokeCreateOrder Invoke
activity.

4. To pass the order number information back to the dummy Reply activity.

8-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

To add the first Assign activity to set SOAHeader for SOAP request:

Assigning SOAHeader Parameters:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between the two
Invoke activities.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as 'SetHeader'.

4. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

5. Enter the first pair of parameters:

• In the From navigation tree, select type Expression and then enter
'ORDER_MGMT_SUPER_USER' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > InvokeCreateOrder_createSalesOrder_InputVariable > header>
ns1:SOAHeader and select ns1:Responsibility. The XPath field should contain
your selected entry.

Using Java APIs for Forms Services 8-21

Assigning the Responsibility Parameter

• Click OK.

6. Enter the second pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter 'ONT' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > InvokeCreateOrder_createSalesOrder_InputVariable > header>
ns1:SOAHeader and select ns1:RespApplication. The XPath field should
contain your selected entry.

• Click OK.

7. Enter the third pair of parameters:

• In the From navigation tree, select type Expression and then enter
'STANDARD' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >

8-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Variables > InvokeCreateOrder_createSalesOrder_InputVariable > header>
ns1:SOAHeader and select ns1:SecurityGroup. The XPath field should contain
your selected entry.

• Click OK.

8. Enter the fourth pair of parameters:

• In the From navigation tree, select type Expression and then enter 'AMERICAN'
in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > InvokeCreateOrder_createSalesOrder_InputVariable > header>
ns1:SOAHeader and select ns1:NLSLanguage. The XPath field should contain
your selected entry.

• Click OK.

9. Enter the fifth pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter '204' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > InvokeCreateOrder_createSalesOrder_InputVariable > header>
ns1:SOAHeader and select ns1:Org_Id. The XPath field should contain your
selected entry.

• Click OK.

10. The Edit Assign dialog box appears.

Using Java APIs for Forms Services 8-23

Assign Parameters

11. Click Apply and then OK to complete the configuration of the Assign activity.

To enter the second Assign activity to pass payload information to the
InvokeCreateOrder Invoke activity:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between
Assign and Invoke activities.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
second Assign activity called 'SetPayload'.

3. Enter the following information:

• In the From navigation tree, navigate to Variable > Process > Variables >
InvokeReadPayload_SynchRead_OutputVariable and select an appropriate
variable.

• In the To navigation tree, select type Variable and then navigate to Variable >
Process > Variables > InvokeCreateOrder_createSalesOrder_InputVariable >
Body and select ns1:createSalesOrder_Request. The XPath field should contain

8-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

your selected entry.

• Click OK.

4. The Edit Assign dialog box appears.

Assign Parameters

5. Click Apply and then OK to complete the configuration of the Assign activity.

Defining Schema for BPEL Process Input Request

Before setting the input request for the SOAP request, you need to define necessary
schema for BPEL process request.

1. From the Applications Navigator window, expand the CreateSalesOrder >
Integration Content > Schemas folder to open the CreateSalesOrder.xsd file.

2. In the Design mode, expand 'CreateSalesOrderProcessRequest' to view elements
within process request.

Using Java APIs for Forms Services 8-25

Defining Schema for BPEL Process Request

3. From element properties, change the name from 'input' to 'ordernumber'.

4. Right-click on mouse and select Rebuild option.

Look for compilation messages in Log to ensure the successful compilation.

To enter the third Assign activity to pass the order number to the InvokeCreateOrder
Invoke activity:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
second Assign activity and the InvokeCreateOrder Invoke activity.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
third Assign activity called 'SetOrderNumber'.

3. Enter the following information:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload > client:CreateSalesOrderProcessRequest and select
client:ordernumber. The XPath field should contain your selected entry.

• In the To navigation tree, select type Variable and then navigate to Variable >
Process > Variables > InvokeCreateOrder_createSalesOrder_InputVariable >
Body > ns1:createSalesOrder_Request >
ns3:ViewAndUpdateSalesOrderHeaderDetails and select ns3:OrderNumber.
The XPath field should contain your selected entry.

8-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Click OK.

4. The Edit Assign dialog box appears.

Click Apply and then OK to complete the configuration of the Assign activity.

To add the fourth Assign activity to reply back customer order number:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
InvokeCreateOrder Invoke and the Reply activities.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
fourth Assign activity called 'SetCustomNumber'.

3. Enter the following information:

• In the From navigation tree, select type Variable. Navigate to Variable >
Process > Variables > InvokeCreateOrder_createSalesOrder_OutputVariable
and select body.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > outputVariable and select payload.

• Click OK.

Using Java APIs for Forms Services 8-27

4. The Edit Assign dialog box appears.

5. Click Apply and then OK to complete the configuration of the Assign activity.

Deploying and Testing the BPEL Process
After creating a BPEL process using the WSDL URL generated from the Java API for
Forms interface definition, you can deploy it to a BPEL server if needed. To ensure that
this process is modified or orchestrated appropriately, you can also manually test the
BPEL process by initiating the business process contained in the BPEL process to test
the interface integration.

Prerequisites

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you
have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

To validate your BPEL process, perform the following run-time tasks:

1. Deploy the BPEL process, page 8-27

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Test the BPEL process, page 8-28

After deploying a BPEL process, you can manage the process from the BPEL
console to manually initiate the business process and test the interface integration
contained in your BPEL process.

Deploying the BPEL Process
You must deploy the Create Sales Order BPEL process (CreateSalesOrder.bpel)
that you created earlier before you can run it.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the
CreateSalesOrder project.

2. Right-click the project and click Make action from the menu.

Look for any compilation error messages in Message Log.

Right-click the project and select Deploy >Integration Server Connection name >
Deploy to Default Domain action from the menu.

8-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

3. Look for 'Build successful' message in Apache Ant – Log to ensure that the BPEL
project is compiled and successfully deployed.

Testing the BPEL Process
To validate whether the BPEL process that you created works or not, you need to
manually initiate the process after it has been successfully deployed to the BPEL server.
Therefore, the validation starts with the BPEL console to ensure that you can find the
deployed BPEL process listed in the console. Then, you can log on to Oracle E-Business
Suite to validate the process creation.

To test the BPEL process:

1. Log into Oracle Application Server 10g BPEL Console (
http://<soaSuiteServerHostName>:<port>/BPELConsole). The BPEL
Console login page appears.

2. Enter the username and password and click Login.

The Oracle Enterprise Manager 10g BPEL Control appears. The list of deployed
processes is shown under Deployed BPEL Processes. You can confirm that
CreateSalesOrder has been deployed.

Using Java APIs for Forms Services 8-29

3. Click the CreateSalesOrder link to open the Initiate tab

4. In the payload section, enter an unique number in the ordernumber field, such as
BPEL_1, and click Post XML Message to initiate the process.

5. Verifying Records in Oracle E-Business Suite

Log on to the Forms-based Oracle E-Business Suite with the Oracle Management
Super User, Vision Operation (USA) responsibility.

6. Select Order Returns > Sales Order. Sales Order Forms would open up.

7. Search for an order by entering the order number (such as BPEL_1) in the Customer
PO field. This would bring up the details of a newly created order.

Using Composite Services - BPEL 9-1

9
Using Composite Services - BPEL

Overview
Composite services use native services as building blocks to orchestrate the business
invocation sequence from discreate Web services into a meaningful end-to-end business
flow through a Web service composition language BPEL. Strictly speaking, this type of
interface is comparatively service enabled without additional service generation process
as required by native interface types.

At design time, based on business needs, an integration developer can create a
composite service - BPEL type by using any of the Web service WSDL URL that has
been successfully generated and deployed to Oracle Application Server.

At run time, the developer can also view each composite service details by selecting an
appropriate composite service from the Oracle Integration Repository browser,
download the selected composite service from the repository to their local directories,
open them in Oracle JDeveloper to modify the BPEL project if necessary before
deploying it to a BPEL server in Oracle SOA Suite or a third party BPEL PM server.

This chapter discusses each run-time task listed below for using BPEL composite
services. Detailed design-time tasks on how to create a BPEL composite service are
included in each individual interface described earlier in this book.

• Viewing composite services, page 9-2

• Downloading composite services, page 9-2

• Modifying and deploying BPEL processes, page 9-4

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1.

9-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Viewing Composite Services
Similar to all other users, system integration developers can view a composite service
by navigating to the Composite Service interface type directly from the Oracle
Integration Repository Browser window or by performing a search by selecting
Composite Service interface type in the Search page.

Clicking on a composite service name link from the navigation tree or search results,
you will find the composite service interface details page where displays composite
service name, description, BPEL file, and other annotated information.

Composite Service Details Page

The composite service details page allows you to perform the following tasks in the
BPEL Files region:

• View an abstract WSDL file by clicking the URL link

• Review XML representation file by clicking the URL link

You can also download a corresponding composite service project file, such as BPEL
file, to your local machine. See: Downloading Composite Services, page 9-2.

Downloading Composite Services
In addition to viewing composite service details and reviewing a WSDL abstract, the
developers can download the composite service relevant files aggregated in a .JAR file
to your local machine.

Important: In general, only system integration developers and
integration repository administrators can download the composite

Using Composite Services - BPEL 9-3

services. However, general users (system integration analysts) who are
granted with the download privilege, an Integration Repository
Download Composite Service permission set
FND_REP_DOWNLOAD_PERM_SET, can also perform the download
action.

For more information on how to grant Download Composite Service
privilege, see Role-Based Access Control (RBAC) Security, Oracle
E-Business Suite Integrated SOA Gateway Implementation Guide.

Downloading Composite Services

To download the .ZIP file for a composite service, navigate to the composite service
details page for a service that you want to download, and then click Download Service
to download the file to your local machine.

After you download the file, you can unzip the BPEL .JAR file and open the BPEL
process in Oracle JDeveloper for further modification on service endpoints if needed.
Additionally, You can deploy the BPEL process to a BPEL server through Oracle BPEL
Process Manager. How to modify and deploy BPEL projects, see Modifying and
deploying BPEL processes, page 9-4.

To download a composite service:

1. Log on to Oracle Integration Repository with the system integration developer role.
Select the Integrated SOA Gateway responsibility from the navigation menu. Select
the Integration Repository link.

2. In the Integration Repository tab, select 'Interface Type' from the View By
drop-down list.

3. Expand the Composite Service interface type node to locate your desired composite

9-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

service.

4. Click the composite service that you want to download it to open the Composite
Service Interface Details page.

5. Click Download Service to download the selected composite file to your local
machine.

Modifying and Deploying BPEL Processes
After downloading a composite service BPEL project, an integration developer can
optionally modify the BPEL project. This can be done by first unzipping the BPEL .JAR
file and then opening the BPEL file in Oracle JDeveloper to modify the BPEL process
endpoints if necessary.

Additionally, the BPEL process can be further deployed to a BPEL server in Oracle SOA
Suite BPEL PM or a third party BPEL PM in a J2EE environment. To ensure that this
process is modified or orchestrated appropriately, you can manually test the BPEL
process by initiating the business process contained in the BPEL process to test the
interface integration.

The modification of a BPEL process uses the similar logic during the BPEL process
creation. See Understanding BPEL Business Processes, page D-1 and design-time
tasks for each interface type discussed earlier in this book.

How to test and validate the BPEL process that contains an interface exposes as a Web
service, refer to the run-time tasks of the interface type described in this book.

For BPEL process modification and deployment described in this section, we use Oracle
JDeveloper 10.1.3.3.0 to modify the BPEL process and use Oracle SOA Suite BPEL server
10.1.3.3.0 for the process deployment.

To modify a BPEL process:

1. Open a BPEL file in Oracle JDeveloper BPEL Designer.

2. From the File menu, select Open.

3. Locate your BPEL file from the directory that you want to modify. Click Open in
the Open window.

4. The selected BPEL process diagram appears.

5. Modify the BPEL process endpoints if necessary.

6. Save your work.

To deploy a BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the BPEL project

Using Composite Services - BPEL 9-5

that you want to deploy.

2. Right-click the project and select Deploy action from the menu. Click on Invoke
Deployment Tool and enter your BPEL Process Manager information.

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager setup
appropriately.

Deploying the BPEL Process

3. The Password Prompt dialog box appears.

Enter the password for the default domain in the Domain Password field and click
OK.

The BPEL project is compiled and successfully deployed.

Creating and Using Custom Integration Interfaces 10-1

10
Creating and Using Custom Integration

Interfaces

Overview
To support custom integration interfaces, Oracle E-Business Suite Integrated SOA
Gateway provides a mechanism allowing these custom interfaces to be displayed
through the Oracle Integration Repository browser along with Oracle packaged
interfaces. This enables Oracle Integration Repository a single source of truth in
centrally displaying all integration interfaces regardless of custom or Oracle packaged
ones within the entire Oracle E-Business Suite.

Custom interface definitions can be created for various interface types including custom
interface definitions for XML Gateway Map, Business Event, PL/SQL, Concurrent
Program, Business Service Object, Java (except for Java APIs for Forms subtype) and
Composite Service for BPEL type.

Note: Please note that custom interface types of EDI, Open Interface
Tables, Interface Views, and Java APIs for Forms interfaces are not
supported in this release.

Oracle Integration Repository currently does not support the creation
of custom Product Family and custom Business Entity.

Depending on your business needs, integration developers can create custom
integration interfaces first, and then annotate the custom interfaces based on the
Integration Repository annotation standards. Once these custom interfaces are
annotated, appropriate validation on the annotated custom interfaces is required before
they are uploaded to the Integration Repository by an integration repository
administrator.

For custom integration interfaces of interface types

If a custom interface created for a supported interface type has been uploaded to Oracle

10-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Integration Repository, to use this custom interface, an integration repository
administrator should first create necessary security grants, and then generate and
deploy the Web service WSDL file to the application server if the custom interface type
can be service enabled. Thus, the deployed service can be exposed to customers through
a service provider and invoked through any of the Web service clients or orchestration
tools.

For custom composite service - BPEL type

If a custom interface is needed for a composite service - BPEL type, the integration
developer will first create a composite service by orchestrating discrete native services
into a meaningful process flow using BPEL. Based on the annotation standards
specifically for composite service, the developer will then annotate the composite
service, and create and unzip the JAR file of the BPEL project. Like custom interfaces of
other interface types, appropriate validation on the BPEL project JAR file is required to
ensure its compliance with the annotation standards before it is uploaded to the
Integration Repository.

To have a better understanding of how to create custom interfaces as well as how to use
custom interfaces as Web services, the following topics are discussed in this chapter:

• Creating Custom Integration Interfaces, page 10-2

• Using Custom Integration Interfaces as Web Services, page 10-22

Creating Custom Integration Interfaces
The following topics are discussed in this section:

• Creating Custom Integration Interfaces of Interface Types, page 10-2

• Creating Custom Integration Interfaces of Composite Services, page 10-8

• Creating Custom Business Events Using Workflow XML Loader, page 10-14

Creating Custom Integration Interfaces of Interface Types
Custom interface definitions can be created and annotated for almost all interface types.
After appropriate validation, these custom interfaces will be uploaded to Oracle
Integration Repository and embedded into the interface categories where they belong.

Note: Please note that custom interface types of EDI, Open Interface
Tables and Interface Views are not supported in this release.

Oracle Integration Repository currently does not support the creation
of custom Product Family and custom Business Entity.

Creating and Using Custom Integration Interfaces 10-3

Enabling Custom Integration Interfaces
The custom interface design and service enablement process flow can be illustrated in
the following diagram:

Note: Not all integration interface definitions can be service enabled.
Oracle Integration Repository supports service enablement only for the
following interface types:

• PL/SQL

• XML Gateway Map (inbound)

• Concurrent Program

• Business Service Object (Service Beans)

Please note that the Business Event and XML Gateway Map (outbound)
interface types are supported through subscription model.

1. A system integration developer annotates a custom integration interface definition
based on the Integration Repository annotation standards for the supported
interface types.

See: Creating and Annotating Custom Integration Interfaces, page 10-4.

10-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. The integration repository administrator validates the annotated custom interface
definitions against the annotation standards. This validation is performed by
executing the Integration Repository Parser to read the annotated file and then
generate an Integration Repository loader file (iLDT) if no error occurred.

3. If no error occurs during the validation, an integration repository administrator will
then upload the generated iLDT file to Oracle Integration Repository through
backend processing.

How to generate and upload the iLDT files, see Generating and Uploading iLDT
Files, page 10-7.

After the upload, you can search and view the uploaded custom interface from the
Integration Repository user interface for verification.

4. The administrator then creates necessary security grants for the custom interfaces.

5. The administrator generates Web services for selected custom interfaces if the
interface types that the custom interfaces belong to can be service enabled.

6. The administrator deploys the WSDL Web services from Oracle Integration
Repository to the application server.

See: Viewing Custom Interfaces and Performing Administrative Tasks, page 10-7.

Custom Integration Interface Annotation Example
The key essence of successfully creating custom integration interfaces relies on properly
explanation of the new interface feature or definition. Once a custom interface
definition of a specific interface type is created, an integration developer must properly
annotate the custom file based on the Integration Repository annotation standards so
that the interface file of a specific interface type can be displayed with appropriate
description from the browser interface.

For example, the integration developer can create a Supplier Ship and Debit Request
custom interface using PL/SQL API. This custom PL/SQL API package specification file
(zz_sdrequest_s.pls) can be as follows:

Creating and Using Custom Integration Interfaces 10-5

set verify off
whenever sqlerror exit failure rollback;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;

create or replace package ZZ_SDREQUEST as
/* $Header: zz_sdrequest_s.pls $ */

-- Custom procedure to create single supplier ship and debit request

procedure ZZ_CREATE_SDREQUEST (
CP_API_VERSION_NUMBER IN NUMBER,
CP_INIT_MSG_LIST IN VARCHAR2 := FND_API.G_FALSE,
CP_COMMIT IN VARCHAR2 := FND_API.G_FALSE,
CP_VALIDATION_LEVEL IN NUMBER := FND_API.G_VALID_LEVEL_FULL,
CX_RETURN_STATUS OUT VARCHAR2,
CX_MSG_COUNT OUT NUMBER,
CX_MSG_DATA OUT VARCHAR2,
CP_SDR_HDR_REC IN OZF_SD_REQUEST_PUB.SDR_HDR_REC_TYPE,
CP_SDR_LINES_REC IN OZF_SD_REQUEST_PUB.SDR_lines_rec_type,
CP_SDR_CUST_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CP_SDR_BILLTO_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CX_REQUEST_HEADER_ID OUT NUMBER
)
;
end ZZ_SDREQUEST;

/
commit;
exit;

Based on the PL/SQL API annotation standards, the integration developer must
annotate the Supplier Ship and Debit Request custom package specification file by
adding the annotation information specifically in the following places:

• Annotate the PL/SQL API package specification

• Annotate the PL/SQL procedure

The annotations for the procedure should be placed between the definition and ';'.

Please note that you only need to annotate the custom package specification file, but not
the package body file.

How to annotate custom interfaces for the interface types supported by Oracle
Integration Repository, see Integration Repository Annotation Standards, page A-1.

10-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

set verify off
whenever sqlerror exit failure rollback;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;

create or replace package ZZ_SDREQUEST as
/* $Header: zz_sdrequest_s.pls $ */
/*#
* This custom PL/SQL package can be used to create supplier ship and
debit request for single product.
* @rep:scope public
* @rep:product OZF
* @rep:displayname Single ship and debit request
* @rep:category BUSINESS_ENTITY OZF_SSD_REQUEST
*/

-- Custom procedure to create single supplier ship and debit request

procedure ZZ_CREATE_SDREQUEST (
CP_API_VERSION_NUMBER IN NUMBER,
CP_INIT_MSG_LIST IN VARCHAR2 := FND_API.G_FALSE,
CP_COMMIT IN VARCHAR2 := FND_API.G_FALSE,
CP_VALIDATION_LEVEL IN NUMBER := FND_API.G_VALID_LEVEL_FULL,
CX_RETURN_STATUS OUT VARCHAR2,
CX_MSG_COUNT OUT NUMBER,
CX_MSG_DATA OUT VARCHAR2,
CP_SDR_HDR_REC IN OZF_SD_REQUEST_PUB.SDR_HDR_REC_TYPE,
CP_SDR_LINES_REC IN OZF_SD_REQUEST_PUB.SDR_lines_rec_type,
CP_SDR_CUST_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CP_SDR_BILLTO_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CX_REQUEST_HEADER_ID OUT NUMBER
)
/*#
* Use this procedure to create single supplier ship and debit request
* @param CP_API_VERSION_NUMBER Version of the custom API
* @param CP_INIT_MSG_LIST Flag to initialize the message stack
* @param CP_COMMIT Indicates Flag to commit within the program
* @param CP_VALIDATION_LEVEL Indicates the level of the validation
* @param CX_RETURN_STATUS Indicates the status of the program
* @param CX_MSG_COUNT Provides the number of the messages returned by
the program
* @param CX_MSG_DATA Returns messages by the program
* @param CP_SDR_HDR_REC Contains details of the new Ship Debit Request
to be created
* @param CP_SDR_LINES_REC Contains the product line information for the
new Ship Debit Request
* @param CP_SDR_CUST_REC Contains the Customer information for the new
Ship Debit Request
* @param CP_SDR_BILLTO_REC Contains the Bill-to information for the new
Ship Debit Request
* @param CX_REQUEST_HEADER_ID Returns the id of the new Ship Debit
Request created
* @rep:displayname Create ship and debit request
* @rep:category BUSINESS_ENTITY OZF_SSD_REQUEST
* @rep:scope public
* @rep:lifecycle active
*/
;
end ZZ_SDREQUEST;

/
commit;

Creating and Using Custom Integration Interfaces 10-7

exit;

Generating and Uploading iLDT Files
Once annotated custom integration interface definitions are created, these annotated
source files need to be validated against the annotation standards before they can be
uploaded to Oracle Integration Repository. This validation is performed by executing
the Integration Repository Parser (IREP Parser), a design time tool, to read the
annotated files and then generate an Integration Repository loader file (iLDT) if no
error occurred.

Note: Please note that Integration Repository Parser does not support
the integration interfaces registered under custom applications.

It is currently tested and certified for Linux, Unix, Oracle Solaris on
SPARC, HP-UX Itanium, HP-UX PA-RISC, IBM AIX on Power Systems
and Windows.

Once an iLDT file is generated, an integration repository administrator can upload the
generated file to Oracle Integration Repository where the custom interfaces can be
exposed to all users.

How to set up the Integration Repository Parser, and use it to generate and upload the
iLDT file, refer to:

• Setting Up and Using Integration Repository Parser, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide

• Generating ILDT Files, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide

• Uploading ILDT Files to Integration Repository, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide

Viewing Custom Interfaces and Performing Administrative Tasks
Searching and Viewing Custom Interfaces

Once annotated custom interface definitions are uploaded successfully, they are merged
into the interface types they belong to and displayed together with Oracle interfaces
from the Integration Repository browser window. To easily distinguish annotated
custom interface definitions from Oracle interfaces, the Interface Source "Custom" is
used to categorize those custom integration interfaces in contrast to Interface Source
"Oracle" for Oracle interfaces.

To search for custom integration interfaces, you can use either one of the following
ways:

• From the Interface List page, select 'Custom' from the Interface Source drop-down

10-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

list along with a value for the Scope field to restrict the custom integration
interfaces display.

• From the Search page, click Show More Search Options to select 'Custom' from the
Interface Source drop-down list along with any interface type, product family, or
scope if needed as the search criteria.

After executing the search, all matched custom integration interfaces will be displayed.
For more information on how to search and view custom integration interfaces, see
Searching Custom Integration Interfaces, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide and Viewing Custom Integration Interfaces, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Performing Administrative Tasks

Once custom integration interfaces are uploaded and displayed from the Integration
Repository browser interface types, all the administrative tasks are the same for the
native integration interfaces. These administrative tasks including creating security
grants for newly created custom interfaces if needed, generating Web services, and
deploying Web services. See Administering Custom Integration Interfaces and Services,
Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

How to use custom integration interfaces as Web services to perform necessary
transactions for your business needs, see a custom interface example described in the
Using Custom Integration Interfaces as Web Services, page 10-22.

Creating Custom Integration Interfaces of Composite Services
Integration developers can create new composite services by orchestrating discrete Web
services into meaningful business processes using BPEL language. With appropriate
annotation specifically for the composite services and validation against the annotation
standards, the validated JAR files of the composite service BPEL projects can be
uploaded to the Integration Repository.

Creating Custom Composite Services

The following diagram illustrates the custom integration interface design flow for
composite service - BPEL type:

1. A system integration developer orchestrates a composite service using a Web

Creating and Using Custom Integration Interfaces 10-9

service composition language BPEL.

2. The integration developer annotates the composite service based on the Integration
Repository annotation standards specifically for the composite service interface
type.

See: Creating and Annotating Custom Composite Services, page 10-9.

3. The integration developer creates a JAR file of the composite service BPEL project.

4. The integration repository administrator unzips the JAR file first and then validates
the annotated custom interface definitions against the annotation standards
specifically for composite services. This validation is performed by executing the
Integration Repository Parser to read the annotated files and then generate an
Integration Repository loader file (iLDT) if no error occurs.

5. An integration repository administrator uploads the generated iLDT file to Oracle
Integration Repository through backend processing.

See: Generating and Uploading iLDT Files, page 10-13.

After the upload, you can search and view the uploaded custom interface from the
Integration Repository user interface for verification.

Once custom integration interface definitions are uploaded and displayed from the
Integration Repository browser, integration repository administrators and the
integration developers can download the composite services for modification if needed.
For information on how to download composite services, see Viewing and
Downloading Custom Composite Services, page 10-13.

Custom Composite Service Annotation Example
As mentioned earlier that the key essence of successfully creating custom integration
interfaces relies on properly explanation of the new interface feature or definition. Once
a custom interface definition of a specific interface type is created, an integration
developer must properly annotate the custom source file based on the Integration
Repository annotation standards so that the interface file of a specific interface type can
be displayed with appropriate description from the browser interface.

For example, a create invoice composite service - BPEL project is created. To annotate
the composite service *.bpel file, you open the *.bpel file in text editor and place the
annotation within the comments section in the beginning of the file as highlighted
below:

10-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

//
Oracle JDeveloper BPEL Designer

 Created: Tue Oct 30 17:10:13 IST 2007
 Author: jdole
 Purpose: Synchronous BPEL Process
 /*#
 * This is a bpel file for creating invoice.
 * @rep:scope public
 * @rep:displayname Create Invoice
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:interface oracle.apps.po.CreateInvoice
 * @rep:category BUSINESS_ENTITY INVOICE
 */

//

-->
<process name="CreateInvoice">
 targetNamespace="http://xmlns.oracle.com/CreateInvoice"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"

xmlns:ns4="http://xmlns.oracle.com/pcbpel/adapter/file/ReadPayload/"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns5="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:client="http://xmlns.oracle.com/CreateInvoice"

xmlns:ns6="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"

xmlns:ns1="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/CREATE_SINGLE_INVOICE_1037895/"

xmlns:ns3="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/APPS/BPEL_CREATE_SINGLE_INVOICE_1037895/AR_INVOICE_API_PUB-24CREATE
_INV/"
 xmlns:ns2="http://xmlns.oracle.com/pcbpel/adapter/appscontext/"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc">

 <!--
///
PARTNERLINKS
 List of services participating in this BPEL process
///
-->
<partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information
associated

Creating and Using Custom Integration Interfaces 10-11

with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="client:CreateInvoice"
 myRole="CreateInvoiceProvider"/>
 <partnerLink name="CREATE_SINGLE_INVOICE_1037895"
 partnerRole="CREATE_SINGLE_INVOICE_1037895_ptt_Role"

partnerLinkType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt_PL"/>
 <parnterLink name="ReadPayload" partnerRole="SynchRead_role"
 partnerLinkType="ns4:SynchRead_plt"/>
</partnerLinks>
<!--
///
VARIABLES
 List of messages and XML documents used within this BPEL process
///
-->
<variables>
<!--Reference to the message passed as input during initiation-->
 <variable name="inputVariable"
 messageType="client:CreateInvoiceRequestMessage"/>
<!--Reference to the message that will be returned to the requester-->
 <variable name="outputVariable"
 messageType="client:CreateInvoiceResponseMessage"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 messageType="ns1:Request"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 messageType="ns1:Response"/>
 <variable name="Invoke_2_SynchRead_InputVariable"
 messageType="ns4:Empty_msg"/>
 <variable name="Invoke_2_SynchRead_OutputVariable"
 messageType="ns4:InputParameters_msg"/>
</variables>
<!--
///
ORCHESTRATION LOGIC
 Set of activities coordinating the flow of messages across the
 services integrated within this business process
///
-->
<sequence name="main">
 <!--Receive input from requestor. (Note: This maps to operation
defined in CreateInvoice.wsdl)-->
 <receive name="receiveInput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="inputVariable" createInstance="yes"/>
 <!--Generate reply to synchronous request-->
 <assign name="SetHeader">
 <copy>
 <from expression="''operations'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Username"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to

10-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Responsibility"/>
 </copy>
 <copy>
 <from expression="''204'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"
 query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:ORG_ID"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns1:SecurityHeader/ns1:ResponsibilityName"/>
 </copy>
 </assign>
 <invoke name="InvokeReadPayload" partnerLink="ReadPayload"
 portType="ns4:SynchRead_ptt" operation="SynchRead"
 inputVariable="Invoke_2_SynchRead_InputVariable"
 outputVariable="Invoke_2_SynchRead_OutputVariable"/>
 <assign name="SetPayload">
 <copy>
 <from variable="Invoke_2_SynchRead_OutputVariable"
 part="InputParameters" query="/ns3:InputParameters"/>
 Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body" query="/ns1:SOARequest/ns3:InputParameters"/>
 </copy>
 </assign>
 <assign name="SetDate">
 <copy>
 <from expression="xp20:current-date()">
 <to to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body"

query="/ns1:SOARequest/ns3:InputParameters/ns3:P_TRX_HEADER_TBL/ns3:P_TR
X_HEADER_TBL_ITEM/ns3:TRX_DATE"/>
 </copy>
 </assign>
 <invoke name="Invoke_1" partnerLink="CREATE_SINGLE_INVOICE_1037895"
 portType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt"
 operation="CREATE_SINGLE_INVOICE_1037895"

inputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"

outputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"/>
 <assign name="AssignResult">
 <copy>
 <from
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 part="body"

query="/ns1:SOAResponse/ns3:OutputParameters/ns3:X_MSG_DATA"/>
 <to variable="outputVariable" part="payload"
 query="/client:CreateInvoiceProcessResponse/client:result"/>
 </copy>

Creating and Using Custom Integration Interfaces 10-13

</assign>
 <reply name="replyOutput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="outputVariable"/>
 </sequence>
</process>

For more information on how to annotate composite service BPEL type, see Composite
Service - BPEL Annotations, page A-105.

Generating and Uploading iLDT Files
Once annotated custom composite services are created, these annotated source files
need to be validated against the annotation standards specifically for composite service
- BPEL type before they can be uploaded to Oracle Integration Repository. This
validation is performed by executing the Integration Repository Parser (IREP Parser), a
design time tool, to read the annotated files and then generate an Integration Repository
loader file (iLDT) if no error occurred.

Note: Please note that Integration Repository Parser does not support
the integration interfaces registered under custom applications.

It is currently tested and certified for Linux, Unix, Oracle Solaris on
SPARC, HP-UX Itanium, HP-UX PA-RISC, IBM AIX on Power Systems
and Windows.

Once an iLDT file is generated, an integration repository administrator can upload the
generated file to Oracle Integration Repository where the custom interfaces can be
exposed to all users.

How to set up the Integration Repository Parser, and use it to generate and upload the
iLDT file, see:

• Setting Up and Using Integration Repository Parser, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide

• Generating ILDT Files, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide

• Uploading ILDT Files to Integration Repository, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide

Viewing and Downloading Custom Composite Services
Once annotated custom composite service definitions are uploaded successfully, they
are merged into the Composite Service BPEL type and displayed together with Oracle
interfaces from the Integration Repository browser window. To easily distinguish
annotated custom composite services from Oracle interfaces, the Interface Source
"Custom" is used to categorize those custom interfaces in contrast to Interface Source
"Oracle" for Oracle interfaces.

10-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

To search for custom composite services, from the Search page, click Show More
Search Options to expand the search criteria. Select 'Custom' from the Interface Source
drop-down list along with 'Composite Service' interface type, product family, or scope
if needed as the search criteria.

After executing the search, all matched custom composite services will be displayed.

Downloading Custom Composite Services

Similar to downloading native packaged composite services, the integration repository
administrators and the integration developers can click Download Service in the
composite service interface details page to download the relevant custom composite
files aggregated in a .JAR file to your local directory.

For more information on how to search and download custom composite services, see
Downloading Composite Services, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

Creating Custom Business Events Using Workflow XML Loader
Oracle E-Business Suite Integrated SOA Gateway allows you to create custom business
events in the Business Event System and then download the events that you have
created, annotate the event source codes, validate the files, and then upload the files
back to the event system using Workflow XML Loader.

The Workflow XML Loader is a command line utility that lets you upload and
download XML definitions for Business Event System objects between a database and a
flat file. When you download Business Event System object definitions from a database,
Oracle Workflow saves the definitions as an XML file. When you upload object
definitions to a database, Oracle Workflow loads the definitions from the source XML
file into the Business Event System tables in the database, creating new definitions or
updating existing definitions as necessary.

XML files uploaded or downloaded by the Workflow XML Loader should have the
extension .wfx to identify them as Workflow object XML definitions.

Use the following steps to create custom business events:

1. Locate and Download Business Events, page 10-14

2. Annotate the XML Definition File, page 10-17

3. Validate the Annotated Source File Using Integration Repository Parser, page 10-19

4. Upload Annotated File to the Database, page 10-20

5. Upload iLDT Files to Integration Repository, page 10-21

Step 1: Locating and Downloading Business Events
After creating custom business events in the Oracle Workflow Business Event System,

Creating and Using Custom Integration Interfaces 10-15

first locate them and then download them using Workflow XML Loader.

Locating Your Business Events

To download XML definitions for Business Event System objects between a database
and a flat file, run the Workflow XML Loader by running Java against
oracle.apps.fnd.wf.WFXload with the following command syntax:
jre oracle.apps.fnd.wf.WFXload -d{e} <user> <password> <connect string>
<protocol> <language> <xml file> <object> {<key>} {<OWNER_TAG>}
{<owner>}

For example, you can download either a single event or a group of events:

• Use the following command to download a single business event, such as wfdemoe
.wfx. In the filename, first two or three chars refers to the product and the last
character 'e' refers to Event.
java oracle.apps.fnd.wf.WFXLoad -d apps_read_only apps
hostdb:12345:sid100 thin US wfdemoe.wfx EVENTS
abc.apps.wf.bes.demo.event

• Use the following command to download a group of business events with wildcard:
java oracle.apps.fnd.wf.WFXLoad -d apps_read_only apps
hostdb:12345:sid100 thin US wfdemoe.wfx EVENTS abc.apps.wf.bes.%

After successfully downloading the event XML definitions, open the .wfx file in any
text editor. You will find the content of a wfdemoe.wfx file, for example, containing
one event shown as follows:

10-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<?xml version = '1.0' encoding = 'UTF-8'?>
...

<oracle.apps.wf.event.all.sync><ExternalElement>
<OraTranslatibility>
<XlatElement Name="WF_EVENTS">
<XladID>
<Key>NAME</Key>
</XladID>
<XlatElement Name="DISPLAY_EVENTS" MaxLen="80" Expansion="50"/>
<XladID>
<Key Type="CONSTANT">DISPLAY_EVENTS</Key>
</XladID>
<XlatElement Name="DESCRIPTION" MaxLen="2000" Expansion="50"/>
<XladID>
<Key Type="CONSTANT">DESCRIPTION</Key>
</XladID>
</XlatElement>
</OraTranslatibility>
</ExternalElement>
<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>#NEW</GUID>
 <NAME>abc.apps.wf.demo.event</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_MAME>Oracle Workflow</OWNER_MAME>
 <OWNER_TAG>FMD</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>U</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>
 <JAVA_GENERATE_FUNC/>
 <DISPLAY_NAME>Demo Business Event</DISPLAY_NAME>
 <DESCRIPTION>Business event created for annotation demo.</DESCRIPTION>
 <IREP_ANNOTATION>/*#
* Business event created for annotation demo.
*
* @rep:scope public
* @rep:displayname Demo Business Event
* @rep:product FND
* @rep:category BUSINESS_ENTITY
*/
</IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>
</oracle.apps.wf.event.all.sync>

The Workflow XML Loader automatically creates a template for integration repository
annotation as highlighted in bold between <IREP_ANNOTATION> and
</IREP_ANNOTATION>. This is where appropriate annotations need to be placed or
modified for a business event based on the business event annotation standards.

To download business events XML definitions:

1. Log on to Oracle Workflow page with the Workflow Administrator Web
Applications responsibility. Select the Business Events link from the Navigator to
open the Events page.

Creating and Using Custom Integration Interfaces 10-17

2. Enter search criteria in the Search region to locate your business events.

3. Change your directory to the same environment where your application is running.

For example, if your application is running on seed100, then change your
directory to seed100 where your business events exist.
/slot/ems3404/appmgr/apps/apps_st/appl
. ./APPSseed100.env

4. Download the events from the database using oracle.apps.fnd.wf.WFXload
with the following syntax:
jre oracle.apps.fnd.wf.WFXload -d{e} <user> <password> <connect
string> <protocol> <language> <xml file> <object> {<key>}
{<OWNER_TAG>} {<owner>}

5. Open the .wfx file in any text editor and notice that one business event has been
placed there.

Step 2: Annotating an XML Definition
After successfully downloading the XML definition file from a database, you should
open the .wfx file containing one business event in any text editor and modify the
annotation appropriately based on Integration Repository business event annotation
standards.

The appropriate annotation includes:

• Enter meaningful description.

• Enter conditions under which the business event is raised.

• Enter UI action that invokes the business event if applicable.

• Verify scope. By default, the Workflow XML Loader annotates scope as 'public'.

• Verify display name. By default, the Workflow XML Loader uses the same display
name as that mentioned in business event definition.

• Verify product. By default, the Workflow XML Loader uses Owner Tag as the
Application Short Name.

Make sure that the Owner Tag corresponds to Application Short Name in
FND_APPLICATION. Owner Name typically corresponds to Application Name
but if your product is part of a larger application, you may enter an appropriate
name in Owner Name.

• Enter BUSINESS_ENTITY code that your respective business event belongs to.

• Enter additional annotation properties if needed.

10-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Please note that the IREP properties should not be blank. For example, the Workflow
XML Loader only adds the template for Business Entity as rep:category
BUSINESS_ENTITY, page A-125, but you should add an appropriate business entity to
which the event belongs. Similarly, other @rep properties cannot be left blank either.

The following is a sample business event annotation for Oracle Workflow:
* Business Event created to demonstrate using WFXLoad to annotate
Business Events.
*
* @rep:scope internal
* @rep:displayname Demo Business Event
* @rep:product OWF
* @rep:lifecycle active
* @rep:category BUSINESS_ENTITY WF_EVENT
*/

Important: If you decide not to annotate or publish the event in Oracle
Integration Repository, you should remove the annotation only but
leave the following tags unchanged. Presence of these tags is an
indication that the event was reviewed for annotation.
<IREP_ANNOTATION/>

or
<IREP_ANNOTATION></IREP_ANNOTATION>

If the Loader sees these empty tags, it interprets that the business event
was reviewed for annotation and it does not need to be published to the
Integration Repository. Next time, when the user downloads these
events, the Loader will insert empty IREP_ANNOTATION tags as
shown in the following example.

However, if you remove the entire IREP_ANNOTATION tags for the
business event and upload it, then on subsequent download the Loader
will insert partially filled annotation template for the business event.

Creating and Using Custom Integration Interfaces 10-19

<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>#NEW</GUID>
 <NAME>oracle.apps.wf.demo.event.noannotate</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_MAME>Oracle Workflow</OWNER_MAME>
 <OWNER_TAG>FMD</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>U</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>
 <JAVA_GENERATE_FUNC/>
 <DISPLAY_NAME>Demo Business Event with no
annotation</DISPLAY_NAME>
 <DESCRIPTION>Business second event created for
annotation demo.</DESCRIPTION><IREP_ANNOTATION>/*#
* Business event created for annotation demo.
*
* @rep:scope public
* @rep:displayname Demo Business Event
* @rep:product FND
* @rep:category BUSINESS_ENTITY
*/
</IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>

For more information on Integration Repository Business Event Annotation Standards,
see Business Event Annotations, page A-31.

Step 3: Validating the Annotated Source File Using Integration Repository Parser
Integration Repository Parser is a standalone design time tool. It can be executed to
validate the annotated custom interface definitions against the annotation standards
and to generate an iLDT file if no error occurs.

After annotating the XML definition for a business event, execute the standalone
Integration Repository Parser (IREP Parser) using the following command syntax to
validate whether the annotation in .wfx file is valid:

Command Syntax:

$IAS_ORACLE_HOME/perl/bin/perl $FND_TOP/bin/irep_parser.pl -g -v
-username=<a fnd username> <product>:<relative path from product
top>:<fileName>:<version>=<Complete File Path, if not in currect
directory>

For example:

$IAS_ORACLE_HOME/perl/bin/perl $FND_TOP/bin/irep_parser.pl -g -v
-username=sysadmin
owf:patch/115/xml/US:wfdemoe.wfx:12.0=./wfdemoe.wfx

While executing the parser, pay attention to any error messages on the console.
Typically these errors would be due to incorrect annotation or some syntax errors in the
annotated file. Ensure that the annotations are correct and the file has proper syntax.

10-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

If no error occurs in the annotated interface file, an iLDT (*.ildt) file would be
generated. An integration repository administrator needs to upload the generated iLDT
file to the Integration Repository where the custom business events can be exposed to
all users. See Step 5: Uploading iLDT Files to Integration Repository, page 10-21.

Integration Repository Parser (irep_parser.pl)

The irep_parser is a design time tool. It reads interface annotation documentation in
program source files and validates it according to its file type. If the -generate flag is
supplied (and other conditions met), then it will generate iLDT files. Any validation
errors will be reported, usually along with file name and line number, like the result of
grep -n.

Additionally, it can handle almost all types of application source files. While validating
the annotated files against the annotation standards of supported interface types, if files
that do not match will be ignored.

The parser will return an exit value of 0 if no errors occurred during processing.
Otherwise, it will return a count of the number of files that had errors. Files with
incomplete information for generation (class resolution) are considered errors only if
the -generate flag is used.

However, before executing the Integration Repository Parser, you need to install perl
modules and apply necessary patches. For setup information, see Setting Up and Using
Integration Repository Parser, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

For information on the Integration Repository Parser (irep_parser.pl) usage details
including supported file types and options, files specifications, and environment, see
Integration Repository Parser (irep_parser.pl) Usage Details, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Step 4: Uploading Annotated File Back to a Database
After validating the annotated source file .wfx, upload the file back to the database
where you downloaded it earlier so that the annotated file can be stored in the
appropriate tables in business event system for future references.

Note: To view custom business events through the Integration
Repository browser window, an integration repository administrator
needs to upload the generated iLDT files to the Integration Repository.
For information on uploading iLDT files, see Step 5: Uploading iLDT
Files to Integration Repository, page 10-21.

The Workflow XML Loader lets you upload business event system XML definitions in
either normal upload mode (-u) or force upload mode (-uf):

• Normal upload mode (-u): If you created an event with a customization level of
Core or Limit, the Workflow XML Loader will be able to update
IREP_ANNOTATION into the Business Event System WF_EVENTS table in the

Creating and Using Custom Integration Interfaces 10-21

database. This normal mode will not make any updates to events or subscriptions
with a customization level of User.

Use the following command to upload the annotated .wfx file back to a database:

java oracle.apps.fnd.wf.WFXLoad -u apps_read_only apps
hostdb:12345:sid100 thin US wfdemoe.wfx

• Force upload mode (-uf): The Workflow XML Loader loads the object definitions
from the source XML file into the Business Event System tables in the database and
overwrites any existing definitions, even for events or subscriptions with a
customization level of User.

Therefore, if you created an event with a customization level of User, use the
following force upload option to make sure the IREP_ANNOTATION can be
uploaded back into the database.

java oracle.apps.fnd.wf.WFXLoad -uf apps_read_only apps
hostdb:12345:sid100 thin US wfdemoe.wfx

For more information on how to use Workflow XML Loader, see Using the Workflow
XML Loader, Oracle Workflow Administrator's Guide.

Step 5: Uploading ILDT Files to Integration Repository
After the validation using the Integration Repository Parser, an iLDT file will be
generated if no error occurs during the iLDT generation. In order for users to view the
custom business events through the Integration Repository, an integration repository
administrator needs to manually upload the generated iLDT file to the Integration
Repository using FNDLOAD command.
$FND_TOP/bin/FNDLOAD <db_connect> 0 Y UPLOAD
$fnd/patch/115/import/wfirep.lct <ildt file>

For example, FND_TOP/bin/FNDLOAD apps/apps@instance_name 0 Y UPLOAD
$FND_TOP/patch/115/import/wfirep.lct SOAIS_pls.ildt

For detailed information on how to upload the iLDT files, see Uploading ILDT Files to
Integration Repository, Oracle E-Business Suite Integrated SOA Gateway Implementation
Guide.

Viewing Custom Interfaces and Performing Administrative Tasks
Searching and Viewing Custom Interfaces

Annotated custom interface definitions, once they are uploaded successfully, are
merged into the interface types they belong to and displayed together with Oracle
interfaces from the Integration Repository browser window. To easily distinguish
annotated custom interface definitions from Oracle interfaces, the Interface Source
"Custom" is used to categorize those custom integration interfaces in contrast to
Interface Source "Oracle" for Oracle interfaces.

To search for custom integration interfaces, you can use either one of the following

10-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

ways:

• From the Interface List page, select 'Custom' from the Interface Source drop-down
list along with a value for the Scope field to restrict the custom integration
interfaces display.

• From the Search page, click Show More Search Options to select 'Custom' from the
Interface Source drop-down list along with any interface type (such as 'Business
Event'), product family, or scope if needed as the search criteria.

After executing the search, all matched custom integration interfaces will be displayed.
For more information on how to search and view custom integration interfaces, see
Searching Custom Integration Interfaces, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide and Viewing Custom Integration Interfaces, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Performing Administrative Tasks

Once custom business events are uploaded and displayed from the Integration
Repository browser interface types, all the administrative tasks are the same for the
native interfaces. These administrative tasks including creating security grants for
newly created custom events if needed, and subscribing to custom business events. See
Administering Custom Integration Interfaces and Services, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

How to use custom integration interfaces as Web services to perform necessary
transactions for your business needs, see a custom interface example described in the
Using Custom Integration Interfaces as Web Services, page 10-22.

Using Custom Integration Interfaces as Web Services

Overview
With appropriate annotation and validation, a custom integration interface can be
created or built around a business entity for the interface type that Oracle Integration
Repository supports. If the interface type that the custom interface belongs to can be
service enabled, you can use the custom interface as a Web service to update or retrieve
data from Oracle E-Business Suite or perform other business transactions over the Web.

For example, an integration developer can create a new or customized interface for
Supplier Ship and Debit Request business entity using a PL/SQL API. Once the interface
is uploaded to Oracle Integration Repository, it will be displayed under the PL/SQL API
interface type from the Integration Repository browser. To differentiate the custom
interfaces from Oracle native packaged ones, all custom integration interfaces have
Interface Source 'Custom' in contrast to Oracle interfaces with Interface Source 'Oracle'
when you view them from the repository.

To better understand how to use deployed custom interfaces as Web services in
fulfilling your business needs, detailed design-time and run-time tasks in creating and

Creating and Using Custom Integration Interfaces 10-23

deploying a BPEL process are discussed in this section. For the example described in the
following sections, we use Oracle JDeveloper 10.1.3.3.0 as a design-time tool to create
the BPEL process and use Oracle SOA Suite BPEL server 10.1.3.3.0 for the process
deployment.

Using Custom Interface WSDL in Creating a BPEL Process at Design Time
BPEL Process Scenario

Take a custom PL/SQL API ZZ_SDREQUEST as an example to explain the BPEL process
creation.

When the request of creating a supplier ship and debit request is received, the request
information including payload and request number will be read and passed to create a
supplier ship and debit request. Once the supplier ship and debit request for a product
is created, the request number will then be returned to the requestor.

After deploying the BPEL process, you should find a supplier ship and debit request is
created in the Oracle E-Business Suite. The request number should be the same as the
payload input value.

Prerequisites to Create a BPEL Process Using a Custom Web Service

Before performing design-time tasks for concurrent programs, you need to ensure the
following tasks are in place:

• An integration repository administrator needs to locate the custom interface and
then create security grants so that the right person can access the interface.

• An integration repository administrator needs to successfully deploy the generated
custom Web service to the application server.

• An integration developer needs to locate and record the deployed WSDL URL for
the custom interface exposed as a Web service.

Creating Security Grants on the Custom Interface

To be able to verify and use this custom interface, the administrator will first locate the
custom interface (with 'Custom' interface source) from the repository, and then create
security grants on the custom interface so that users with appropriate privileges can
execute the interface and access the application for secured transactions.

For example, the administrator can grant the custom API access privilege to a user who
has Oracle Trade Management access responsibility. After the execution of this custom
API, the granted user can log on to Oracle Trade Management and verify the supplier
and debit request creation details.

How to create security grants, see Creating Grants, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide.

Deploying the WSDL URL for the Custom Interface

An integration repository administrator must perform the following steps before letting

10-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

integration developers use the deployed WSDL in creating a BPEL process:

1. To generate a Web service, locate the interface definition first (such as a custom
PL/SQL interface ZZ_SDREQUEST) and click Generate WSDL in the interface
details page.

Once the service is successfully generated, the Web Service - SOA Provider region
appears in the interface details page. For detailed instruction on how to generate a
Web service, see Generating Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

2. To deploy a generated Web service, select at least one authentication type and click
Deploy in the Web Service - SOA Provider region of the interface details page to
deploy the service.

Once the service is successfully deployed, the selected authentication type(s) will be
displayed along with 'Deployed' Web Service Status. For more information on
securing Web services with authentication types, see Managing Web Service
Security, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

For detailed instruction on how to deploy a Web service, see Deploying,
Undeploying, and Redeploying Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

Searching and Recording WSDL URL

Apart from the required tasks performed by the administrators, an integration
developer also needs to log on to the system to locate and record the deployed Web
service WSDL URL for the custom interface that needs to be orchestrated into a
meaningful business process in Oracle JDeveloper using BPEL language.

This WSDL information will be used later in creating a partner link for the custom
interface exposed as a Web service during the BPEL process creation at design time.

Creating and Using Custom Integration Interfaces 10-25

Viewing and Recording a Deployed WSDL URL for the Custom Interface

How to search for an interface and review the interface details, see Searching and
Viewing Integration Interfaces, page 2-1.

BPEL Process Creation Flow

Based on the supplier and debit request creation scenario, the following design-time
tasks are discussed in this chapter:

1. Create a new BPEL project, page 10-26

Use this step to create a new BPEL project called
ZZ_CreateSingle_ShipDebitRequest.bpel using an Synchronous BPEL
Process template. This automatically creates two dummy activities - Receive and
Reply - to receive input from a third party application and to reply output of the
BPEL process back to the request application.

2. Create a Partner Link, page 10-28

Use this step to create an invoice in Oracle E-Business Suite by using the Single Ship
and Debit Request custom API ZZ_SDREQUEST exposed as Web service.

3. Add a Partner Link for File Adapter, page 10-31

Use this step to synchronous read input data details passed from the first Assign
activity to create supplier ship and debit request.

4. Add Invoke activities, page 10-36

10-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Use this step to configure two Invoke activities in order to:

• Point to the File Adapter to synchronous read input data details that is passed
from the first Assign activity.

• Point to the ZZ_SDREQUEST partner link to initiate the supplier ship and debit
request creation with payload and request number details received from the
Assign activities.

5. Add Assign activities, page 10-39

Use this step to configure Assign activities in order to pass application context
header variables, payload information and request number to appropriate Invoke
activities to facilitate the single supplier ship and debit request creation. At the end,
pass the request number to the request application through the dummy Reply
activity.

For general information and basic concept of a BPEL process, see Understanding BPEL
Business Processes, page D-1 and Oracle BPEL Process Manager Developer's Guide for
details.

Creating a New BPEL Project
Use this step to create a new BPEL project that will contain various BPEL process
activities.

To create a new BPEL project:

1. Open JDeveloper BPEL Designer.

2. From the File menu, select New. The New Gallery dialog box appears.

3. Select All Items from the Filter By box. This produces a list of available categories.

4. Expand the General node and select Projects.

5. Select BPEL Process Project from the Items group.

6. Click OK. The BPEL Process Project dialog box appears.

Creating and Using Custom Integration Interfaces 10-27

Entering BPEL Project Information

7. In the Name field, enter a descriptive name such as
ZZ_CreateSingle_ShipDebitRequest.

8. From the Template list, select Synchronous BPEL Process and then select Use
Default Project Settings.

9. Use the default input and output schema elements in the Input/Output Elements
dialog box.

10. Click Finish.

A new synchronous BPEL process is created with the Receive and Reply activities.
The required source files including bpel.xml, using the name you specified (for
example, ZZ_CreateSingle_ShipDebitRequest.bpel) are also generated.

10-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

New BPEL Process Diagram

Creating a Partner Link for the Web Service
Use this step to create a Partner Link called ZZ_CreateSD_Request.

To create a partner link for Single Ship and Debit Request Web service:

1. In JDeveloper BPEL Designer, drag and drop the PartnerLink service from the
Component Palette into the Partner Link border area of the process diagram. The
Service Name dialog box appears.

2. Copy the WSDL URL corresponding to the custom service, ZZ_SDREQUEST, that
you recorded earlier in the WSDL File field.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name value populated automatically.

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

Creating and Using Custom Integration Interfaces 10-29

Adding the Partner Link

4. You can optionally change the default partner link name by double-clicking the
icon to open the Edit Partner Link window if you like.

Select the Partner Role value from the drop-down list.

Click Apply.

10-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Editing the Partner LInk Parameters

5. Select the Property tab and click the Create Property icon to select the following
properties from the property name drop-down list in order to pass the security
header along with the SOAP request:

• wsseUsername

Specify the username such as trademgr to be passed in the Property Value
box.

• wssePassword

Specify the corresponding password such as welcome for the username to be
passed in the Property Value box.

• wsseHeaders

Enter credentials as the property value.

Click Apply to save the selected property values.

Creating and Using Custom Integration Interfaces 10-31

Adding Properties

6. Click OK to complete the partner link configuration.

Adding a Partner Link for File Adapter
Use this step to configure a BPEL process to read input payload.

To add a Partner Link for File Adapter to Read Payload:

1. In JDeveloper BPEL Designer, drag and drop the File Adapter service from the
Adapter Service section of the Component Palette into the Partner Link area of the
process diagram. The Adapter Configuration Wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service such as Read_Payload. You can add an
optional description of the service.

4. Click Next. The Operation dialog box appears.

10-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

5. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

Creating and Using Custom Integration Interfaces 10-33

Configuring the Input File

6. Select the Physical Path radio button and enter the physical path for incoming file
directory information. For example, enter /usr/tmp/.

Note: To be able to locate the file from the physical directory you
specified here, you must first place the input payload file (such as
Inputzzsdrequest.xml) to the specified directory.

Alternatively, click Browse to locate the incoming file directory information.

Uncheck the Delete Files after successful retrieval check box. Click Next to open
the File Name dialog box.

7. Enter the name of the file for the synchronous read file operation. For example,
enter Inputzzsdrequest.xml. Click Next. The Messages dialog box appears.

8. Select Browse in the Schema Location field to open the Type Chooser window.

Click Import Schema File... icon on the top right corner of the Type Chooser
window.

9. Enter the schema location for the custom service, such as
http://<host>:<port>/webservices/SOAProvider/plsql/zz_sdreque
st/APPS_XX_BPEL_ZZ_CREATE_SDREQUEST_RE_ZZ_SDREQUEST_ZZ_CREATE

10-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

_SDREQU.xsd.

The schema location for your custom service can be found from the custom service
WSDL (for example,
http://<host>:<port>/webservices/SOAProvider/plsql/zz_sdreque
st/?wsdl).

Select the 'Add to Project' check box and click OK.

10. Click OK to import schema prompt. The imported schema section will be added to
the Type Choose window.

Specifying Message Schema

11. Browse the imported schema by selecting Imported Schemas >
APPS_XX_BPEL_ZZ_CREATE_SDREQUEST_RE_ZZ_SDREQUEST_ZZ_CREATE_
SDREQU.xsd > InputParameters.

Click OK. The selected .xsd is displayed as Schema Location, and
InputParameters is displayed as Schema Element.

Creating and Using Custom Integration Interfaces 10-35

12. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file Read_Payload.wsdl.

Completing the Partner Link Configuration

Click Apply and OK to complete the configuration and create the partner link with
the required WSDL settings for the File Adapter Service.

The Read_Payload Partner Link appears in the BPEL process diagram:

10-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding the Partner Link for File Adapter

Adding Invoke Activities
This step is to configure two Invoke activities:

• Read supplier ship and debit request creation details that is passed from the first
Assign activity using Read_Payload partner link for File Adapter.

• Send the payload and request number details received from the Assign activities to
create a single supplier ship and debit request by using the ZZ_SDREQUEST partner
link.

To add an Invoke activity for Read_Payload Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, between the
Receive and Reply activities.

2. Link the Invoke activity to the Read_Payload service. The Invoke activity will
send request data to the partner link. The Edit Invoke dialog box appears.

Creating and Using Custom Integration Interfaces 10-37

Editing the Invoke Activity

3. Enter a name for the Invoke activity such as 'Invoke_Readpayload', and then click
the Create icon next to the Input Variable field to create a new variable. The Create
Variable dialog box appears.

Creating a Variable

4. Enter a name for the variable such as 'Invoke_Readpayload_InputVariable' and
select Global Variable. Click OK in the Create Variable dialog box.

Enter a name for the output variable such as 'Invoke_Readpayload_OutputVariable'

10-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

and select Global Variable. Click OK in the Create Variable dialog box.

Click Apply and OK in the Edit Invoke dialog box to finish configuring the Invoke
activity.

The Invoke activity appears in the process diagram.

Adding an Invoke Activity

To add an Invoke activity for ZZ_SDREQUEST Partner Link:

1. In JDeveloper BPEL Designer, drag and drop the Invoke activity from the
Component Palette into the Activity box of the process diagram, after the Invoke
and Reply activities.

2. Link the Invoke activity to the ZZ_SDREQUEST service. The Invoke activity will
send the request number to the partner link. The Edit Invoke dialog box appears.

3. Enter a name for the Invoke activity such as 'Invoke_zzsdrequest'.

Select the Operation as ZZ_CREATE_SDREQUEST.

4. Click the Create icon next to the Input Variable field to create a new variable such
as 'Invoke_zzsdrequest_InputVariable'. Select Global Variable and click OK in the
Create Variable dialog box.

Creating and Using Custom Integration Interfaces 10-39

5. Click the Create icon next to the Output Variable field to create a new variable such
as 'Invoke_zzsdrequest_OutVariable'. Select Global Variable and click OK in the
Create Variable dialog box. Click Apply and OK in the Edit Invoke dialog box to
complete the Invoke activity creation.

The Invoke activity appears in the process diagram.

Adding an Invoke Activity

Adding Assign Activities
This step is to configure four Assign activities:

1. To set the applications context information obtained from the dummy Receive
activity, that will be used in passing variables for SOAHeader elements of the SOAP
request.

Note: You need to populate certain variables in the BPEL process
for SOAHeader elements to pass values that may be required to set

10-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

applications context during service execution. These SOAHeader
elements are Responsibility, RespApplication,
SecurityGroup, NLSLanguage, and Org_Id.

2. To pass the payload information to the Invoke_zzsdrequest Invoke activity.

3. To pass the supplier ship and debit request number information to the
Invoke_zzsdrequest Invoke activity.

4. To pass the supplier ship and debit request number information back to the dummy
Reply activity as an output.

To add the first Assign activity to pass applications context details to the
Invoke_Readpayload Invoke activity:

1. In JDeveloper BPEL Designer, drag and drop the Assign activity from the
Component Palette into the Activity box of the process diagram, between the
Receive activity and the first Invoke activity.

Creating and Using Custom Integration Interfaces 10-41

Adding an Assign Activity

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as 'SetHeader'.

4. On the Copy Operation tab, click Create and then select Copy Operation from the
menu. The Create Copy Operation window appears.

5. Enter the first pair of parameters:

• In the From navigation tree, select type Expression and then enter '204' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_zzsdrequest_InputVariable >header> ns5:SOAHeader
and select ns5:ORG_ID. The XPath field should contain your selected entry.

• Click OK.

10-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

6. Enter the second pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter
'TRADE_MANAGEMENT_USER' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader
and select ns5:Responsibility. The XPath field should contain your selected
entry.

• Click OK.

7. Enter the third pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter 'OZF' in the
Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader
and select ns5:RespApplication. The XPath field should contain your selected
entry.

• Click OK.

8. Enter the fourth pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter
'STANDARD' in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader
and select ns5:SecurityGroup. The XPath field should contain your selected
entry.

• Click OK.

9. Enter the fifth pair of parameters by selecting Copy Operation from the Create
drop-down list with the following values:

• In the From navigation tree, select type Expression and then enter 'AMERICAN'
in the Expression box.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader

Creating and Using Custom Integration Interfaces 10-43

and select ns5:NLSLanguage. The XPath field should contain your selected
entry.

• Click OK.

10. The Edit Assign dialog box appears.

11. Click OK to complete the configuration of the Assign activity.

To enter the second Assign activity to pass payload information to the
Invoke_zzsdrequest Invoke activity:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between two
Invoke activities.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
second Assign activity called 'SetPayload'.

3. Enter the following information:

• In the From navigation tree, navigate to Variable > Process > Variables >
Invoke_ReadPayload_OutVariable >
ZZ_CreateSingle_ShipDebitRequestProcessRequest.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > Invoke_zzsdrequest_InputVariable > Body.

10-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Assign Parameters

Click OK in the Create Copy Operation window.

4. Click OK to complete the configuration of the Assign activity.

To enter the third Assign activity to pass the supplier ship and debit request number
to the Invoke_zzsdrequest Invoke activity:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
second Assign activity and the Invoke_zzsdrequest Invoke activity.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
third Assign activity called 'SetRequestNumber'.

3. Enter the following information:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload >
client:ZZ_CreateSingle_ShipDebitRequestProcessRequest > client:input. The
XPath field should contain your selected entry.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >

Creating and Using Custom Integration Interfaces 10-45

Variables > Invoke_zzsdrequest_InputVariable > Body > ns3:InputParameters
>ns3:CP_SDR_HDR_REC > ns3:REQUEST_NUMBER and select ns3:
TRX_NUMBER. The XPath field should contain your selected entry.

Assigning Parameters

• Click OK in the Create Copy Operation window.

4. Click OK in the Assign window to complete the configuration of the Assign
activity.

To add the fourth Assign activity to reply back supplier ship and debit request
number:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the Component Palette into the Activity box of the process diagram, between the
Invoke_zzsdrequest Invoke and the Reply activities.

2. Repeat Step 2 to Step 4 described in creating the first Assign activity to add the
fourth Assign activity called 'SetRequestNumber'.

3. Enter the following information:

• In the From navigation tree, select type Variable. Navigate to Variable >

10-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Process > Variables > Invoke_zzsdrequest_OutputVariable > Body.

• In the To navigation tree, select type Variable. Navigate to Variable > Process >
Variables > outputVariable > payload.

Assign Parameters

4. Click OK in the Create Copy Operation window.

5. Click OK in the Assign window to complete the configuration of the Assign
activity.

Deploying and Testing the BPEL Process at Run Time
After creating a BPEL process using the WSDL URL generated from a custom PL/SQL
interface definition, you can deploy it to a BPEL server if needed. To ensure that this
process is modified or orchestrated appropriately, you can also manually test the BPEL
process by initiating the business process contained in the BPEL process to test the
interface integration.

Prerequisites

Before deploying the BPEL process using Oracle JDeveloper, you must ensure that you
have established the connectivity between the deign-time environment and the
run-time servers including the application server and the integration server.

Creating and Using Custom Integration Interfaces 10-47

How to configure the necessary server connection, see Configuring Server Connection,
page B-1.

To validate your BPEL process, perform the following run-time tasks:

1. Deploy the BPEL process, page 10-47

Once you deploy the process to a BPEL server, it becomes available so that you can
run the process manually to test it for validation.

2. Test the BPEL process, page 10-49

After deploying a BPEL process, you can manage the process from the BPEL
console to manually initiate the business process and test the interface integration
contained in your BPEL process.

Deploying the BPEL Process
You must deploy the Create Single Supplier Ship and Debit Request BPEL process (
ZZ_CreateSingle_ShipDebitRequest.bpel) that you created earlier before you
can run it.

To deploy the BPEL process:

1. In the Applications Navigator of JDeveloper BPEL Designer, select the
ZZ_CreateSingle_ShipDebitRequest project.

2. Right-click the project and select Make action from the menu to ensure the
successful server connections.

10-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Validation of Server Connections

You can look for any compilation error messages in Messages Log.

3. Right-click the project and select Deploy action from the menu. Click on
IntegrationServerConnection name and enter your BPEL Process Manager
information.

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the process if you have the BPEL Process Manager set up
appropriately.

Creating and Using Custom Integration Interfaces 10-49

Deploying the BPEL Process

4. The Password Prompt dialog box appears.

Enter the password for the default domain in the Domain Password field and click
OK.

The BPEL project is compiled and successfully deployed.

Testing the BPEL Process
To validate whether the BPEL process that you created works or not, you need to
manually initiate the process after it has been successfully deployed to the BPEL server.
Therefore, the validation starts with the BPEL console to ensure that you can find the
deployed BPEL process listed in the console. Then, you can log on to Oracle E-Business
Suite to validate that the supplier ship and debit request is successfully created with the
request number you specified.

To test the BPEL process:

1. Log into Oracle Application Server 10g BPEL Console (
http://<soaSuiteServerHostName>:<port>/BPELConsole). The BPEL
Console login page appears.

10-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Enter the username and password and click Login.

The Oracle Enterprise Manager 10g BPEL Control appears.

3. In the BPEL Console, confirm that ZZ_CreateSingle_ShipDebitRequest has been
deployed.

Deployed BPEL Processes

4. Click the ZZ_CreateSingle_ShipDebitRequest link to open the Initiate tab.

5. Enter Payload input field, such as 'SD-Request1' and click Post XML Message to
initiate the process.

Note: The Request Number entered here should be unique each
time that you initiate the process because this number will be used
as the Supplier Ship and Debit number across users in Oracle Trade
Management.

Creating and Using Custom Integration Interfaces 10-51

Entering Payload Information

6. You can verify SOAP Response in BPEL Console.

Verifying SOAP Response in BPEL Console

Look for 'S' in CX_RETURN_STATUS for success. If 'E' is displayed instead, then it
means error has occurred while processing the service. Look for detailed exception
message in SOA Monitor.

7. Log on to Oracle E-Business Suite as trademgr/welcome and then select the

10-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Oracle Trade Management User responsibility. Select the 'Supplier Ship and Debit'
link form the navigation menu to open the Ship and Debit Overview window.

8. Verify if the request number 'SD-Request1' that you entered in Step 5 appears in the
list.

9. Click the request number 'SD-Request' link to open the Ship and Debit Request
Details page. You can verify the request details.

Creating and Using Custom Integration Interfaces 10-53

Working With Oracle Workflow Business Event System to Invoke Web Services 11-1

11
Working With Oracle Workflow Business

Event System to Invoke Web Services

This chapter covers the following topics:

• Oracle Workflow and Service Invocation Framework Overview

• Web Service Invocation Using Service Invocation Framework

• Calling Back to Oracle E-Business Suite With Web Service Response

• Invoking Web Services

• Managing Errors

• Testing Web Service Invocation

• Troubleshooting Web Service Invocation Failure

• Extending Seeded Java Rule Function

• Other Invocation Usage Considerations

Oracle Workflow and Service Invocation Framework Overview
Oracle E-Business Suite Integrated SOA Gateway leverages Oracle Workflow Java
Business Event System to provide infrastructure for Web Service Invocation natively
from Oracle E-Business Suite.

Oracle Workflow is the primary process management solution within Oracle E-Business
Suite. It consists of some key components enabling you model and automate business
processes and activities in a process diagram based on user-defined business rules,
providing routing mechanism to support each decision maker in the process, facilitating
subscriptions to significant events or services between systems, and implementing
workflow process definitions at run time with monitoring capability of each workflow
state as well as handling errors. Since it provides a total solution of managing and
streamlining complex business processes and supporting highly-integrated workflow in
and out from Oracle E-Business Suite, Oracle E-Business Suite Integrated SOA Gateway
relies on Oracle Workflow to enable the service invocation process and provide the

11-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

following functionality:

• It relies on Business Event System to create events and event subscriptions as well
as to parse a given WSDL representing a Web service to be consumed as
subscription parameters.

• It uses the Oracle Workflow seeded Java rule function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription to help
invoke Web services.

• It relies on the Oracle Workflow Test Business Event page to test service invocation
by raising an invoker event raised from PL/SQL or Java and execute synchronous
and asynchronous subscriptions to the event.

• It utilizes the Error processing feature provided in Business Event System to
manage errors during subscription execution and sends error notifications to
SYSADMIN user with Web service definition, error and event details.

• It utilizes workflow Notification System to send error notifications to and process
responses from SYSADMIN.

For detailed information about Oracle Workflow, see Oracle Workflow User's Guide,
Oracle Workflow Developer's Guide, and Oracle Workflow Administrator's Guide.

To better understand how service invocation framework is used in facilitating the
invocation of Web services, the following topics are discussed in this chapter:

• Web Service Invocation Using Service Invocation Framework, page 11-2

• Calling Back to Oracle E-Business Suite With Web Service Response, page 11-28

• Invoking Web Services, page 11-30

• Managing Errors, page 11-36

• Testing Web Service Invocation, page 11-37

• Troubleshooting Web Service Invocation Failure, page 11-43

• Extending Seeded Java Rule Function, page 11-48

• Other Invocation Usage Considerations, page 11-54

Web Service Invocation Using Service Invocation Framework
Service invocation framework provides an infrastructure allowing developers to
interact with Web services through WSDL descriptions and to invoke Web services
from Oracle E-Business Suite.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-3

To achieve this goal, the invocation framework uses a wizard based user interface in
Oracle Workflow Business Event System to parse a given Web service WSDL URL
during the subscription creation and store identified service information or metadata as
subscription parameters that will be used later during service invocation.

Since a WSDL URL is used in representing a Web service, the underlying service can be
a simple native Web Service or it can be a BPEL process.

Please note that the service invocation framework discussed here only supports
document-based Web service invocation. The invocation framework does not support
RPC (remote procedure call) style Web service invocation.

The following diagram illustrates the high level service invocation process flow:

To successfully invoke Web services at run time, Web service invocation metadata must
first be in place. In addition to defining the invocation metadata, the concepts of
message patterns, Web service input message parts, and Web service security that the
service invocation framework supports are also introduced in this section.

The section covers the following topics:

• Understanding Message Patterns, page 11-3

• Defining Web Service Invocation Metadata, page 11-5

1. Creating a Web Service Invoker Business Event, page 11-6

2. Creating Local and Error Event Subscriptions to the Invoker Event, page 11-8

3. Creating a Receive Event and Event Subscription (Optional), page 11-17

• Understanding Web Service Input Message Parts, page 11-21

• Supporting WS-Security, page 11-26

Understanding Message Patterns in WSDL
There are two major message exchange patterns — a request-response pattern, and a
one-way (request - only) pattern.

11-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Request - Response Message Pattern

The request - response message exchange pattern is where a client asks a service provider
a question and then receives the answer to the question. The answer may come in the
form of a fault or exception. Both the request and the response are independent
messages. The request - response pattern is often implemented using synchronous
operations for simple operations. For longer running operations, asynchronous (with
message correlation) is often chosen.

Request - Response Message Pattern

• A synchronous operation is one that waits for a response before continuing on. This
forces operations to occur in a serial order. It is often said that an operation, "blocks"
or waits for a response. Many online banking tasks are programmed in
request/response mode.

For example, a request for an account balance is executed as follows:

• A customer (the client) sends a request for an account balance to the Account
Record Storage System (the server).

• The Account Record Storage System (the server) sends a reply to the customer
(the client), specifying the dollar amount in the designated account.

• An asynchronous operation is one that does not wait for a response before
continuing on. This allows operations to occur in parallel. Thus, the operation does
not, "block" or wait for the response. Asynchronous operations let clients continue
to perform their work while waiting for responses that may be delayed. This is
accomplished by returning an asynchronous handle that runs a thread in the
background, allowing the client to continue execution until the response is ready.

Important: In this release, the Web service invocation framework only
supports Synchronous Request - Response message pattern and One -
Way (Request Only) message pattern.

Request Only Message Pattern

The request only operation model includes one input element, which is the client's
request to the server. No response is expected.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-5

Request Only Message Pattern

For example, client zip code locations send updated weather data to the service when
local conditions change using the request only operation. The server updates the data
but no response is sent back.

Defining Web Service Invocation Metadata
Because the service invocation is taken place in the Oracle Workflow Business Event
System, before invoking a Web service, the Web service invocation metadata including
events and event subscriptions must be defined first through the Business Event
System.

This section discusses the following topics:

1. Creating a Web Service Invoker Business Event, page 11-6

A Web service Invoker business event that serves as a request message (or Web
service input message) for a service needs to be created first.

2. Creating Local and Error Event Subscriptions to the Invoker Event, page 11-8

After defining the Invoker event, you need to create the following two
subscriptions:

• Create a Local subscription with 'Invoke Web Service' Action Type, page 11-8

This event subscription indicates that when a triggering event occurs, the action
item of this subscription is to invoke a Web service defined as part of this
subscription.

• Create an Error subscription with 'Launch Workflow' Action Type, page 11-15

This error subscription enables error processing in the Business Event System
that is used to communicate with SYSADMIN user of an error condition in
subscription execution.

3. Creating a Receive Event and Event Subscription (Optional), page 11-17

This step is required only if a Web service has an output or a response message to
communicate or callback to Oracle E-Business Suite. Once a receive event is in
place, you must create an External subscription to the receive event to pass the Web

11-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

service response message.

If a Web service does not require a response, then you do not need to create a
receive event, nor the event subscription.

Step 1: Creating a Web Service Invoker Business Event
A business event is an occurrence in an internet or intranet application or program that
might be significant to other objects in a system or to external agents. For instance, the
creation of a purchase order is an example of a business event in a purchasing
application.

Use the Oracle Workflow Business Event System to define a Web service invoker
business event.

The invoker event can be served as a request message (or Web service input message) in
a message pattern to send inquiries to a service.

To invoke a Web service through the Business Event System, we will first create an
invoker business event, and then subscribe to the invoker event later with an
appropriate action type.

Note: In this release, the Web service invocation framework supports
the following types of service invocation:

• One-way (request only) service that a consumer or client sends a
message to a service, and the service does not need to reply.

• Synchronous request-response service type that requires a
response before an operation continues.

If an invoker event requires a response, then you must define a
receive business event to communicate or callback into Oracle
E-Business Suite after the Web service is successfully invoked. See
Creating a Receive Event and Event Subscription (Optional), page
11-17.

For more information about business events, see Events, Oracle Workflow Developer's
Guide.

To create an invoker event:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility. Select the Business Events link, and choose Events in the horizontal
navigation if the Events page is not already displayed.

2. In the Events page, click Create Event to open the Create Event page.

3. Enter the following information in the Create Event page:

Working With Oracle Workflow Business Event System to Invoke Web Services 11-7

• Name: Enter an event name, such as
oracle.apps.wf.xmlgateway.invoke

• Display Name: Enter an event display name, such as
oracle.apps.wf.xmlgateway.invoke

• Description: Enter a description for the event

• Status: Enabled

• Generate Function: Specify a generate function for the PL/SQL based event if
the application where the event occurs will not provide the event data

• Java Generate Function: Specify a generate function for the Java based event if
the application where the event occurs will not provide the event data

• Owner Name: Specify the program or application name that owns the event
(such as Oracle Workflow)

• Owner Tag: Specify the program or application ID that owns the event (such as
'FND')

Create Invoker Event

4. Click Apply to save your work.

Leave this page open to create a receive event.

For more information on how to create a business event, see Oracle Workflow Developer's
Guide for details.

11-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Step 2: Creating Local and Error Event Subscriptions to the Invoker Event
• Create a Local subscription with 'Invoke Web Service' Action Type, page 11-8

This event subscription indicates that when a triggering event occurs, the action
item of this subscription is to invoke a Web service that you have created in the
invoke event.

• Create an Error subscription with 'Launch Workflow' Action Type, page 11-15

This error subscription enables error processing in the Business Event System that is
used to communicate with SYSADMIN user of an error condition in subscription
execution.

It sends a workflow notification to SYSADMIN with Web service definition, error
details, and event details allowing the SYSADMIN to process the errors if needed.

Create a Local Subscription With 'Invoke Web Service' Action Type
To subscribe to an invoker event, you must create a subscription with 'Invoke Web
Service' Action Type which indicates that when a triggering event occurs, the action
item of this subscription is to invoke a Web service. This requires you enter a WSDL
URL representing a Web service of any type (such as a native Web service or BPEL
process) in the Create Event Subscription - Invoke Web Service wizard. That WSDL
information entered in the wizard will then be parsed into service metadata for further
selections.

Note: A BPEL process itself is a Web service, defining and supporting a
client interface through WSDL and SOAP. The BPEL process WSDL
URL can be created through a partner link which allows the request to
be published to the Oracle BPEL Process Manager to connect to Web
services.

When a triggering event occurs, the Business Event System executes the
subscription through the seeded Java function and invokes the BPEL
process.

After you select appropriate service metadata, this selected data will be stored as
subscription parameters as follows:

• SERVICE_WSDL_URL

• SERVICE_NAME

• SERVICE_PORT

• SERVICE_PORTYPE

• SERVICE_OPERATION

Working With Oracle Workflow Business Event System to Invoke Web Services 11-9

The seeded Java Rule Function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription uses these
subscription parameters during the service invocation.

Note: Oracle E-Business Suite Integrated SOA Gateway allows
developers to extend the invoker subscription seeded rule function
using Java coding standards for more specialized service invocation
processing. For more information on customizing seeded Java rule
function, see Extending Seeded Rule Function, page 11-48.

Apart from the subscription parameters that have been parsed and stored through the
Invoke Web Service Subscription page, the following information could also be
captured if it is specified as additional subscription parameters that will then be used by
the seeded Java rule function to enable message processing for Web service invocation:

• Message transformation

If the invoker event's XML payload (to be used as Web service input message)
requires to be transformed into a form that complies with the input message
schema, the seeded Java rule function could perform XSL transformation on the
payload before invoking the Web service. Similarly, if the Web service output
message requires to be transformed into a form that is required for processing by
Oracle E-Business Suite, the seeded Java rule function could perform XSL
transformation on the response before calling back to Oracle E-Business Suite.

• WFBES_OUT_XSL_FILENAME

• WFBES_IN_XSL_FILENAME

After event payload is either passed during the event raise or generated by generate
function after the event raise, the seeded Java rule function uses these subscription
parameters to obtain the XSL file names if XSL transformations are required on the
Web service input and output messages. At run time, if event parameters are
passed with the same names, then the event parameters override the subscription
parameters.

For more information on these transformation parameters, see Understanding Web
Service Input Message Parts, page 11-21.

• WS-Security: Information required to add UsernameToken header to a SOAP
request.

If the Web service being invoked enforces Username/Password based
authentication, then the service invocation framework also supports the
UsernameToken based WS-Security header during Web service invocation. The
SOAP username and optional password locator information will be passed to the
seeded Java rule function as the following subscription parameters when the Java
rule function is defined through the Invoke Web Service wizard:

11-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• WFBES_SOAP_USERNAME

• WFBES_SOAP_PASSWORD_MOD

• WFBES_SOAP_PASSWORD_KEY

For more information on these WS-Security parameters, see Supporting
WS-Secuirty, page 11-26.

• Callback: Callback to Oracle E-Business Suite with Web service response

• WFBES_CALLBACK_EVENT

• WFBES_CALLBACK_AGENT

To process a Web service output or response (synchronous request - response)
message, the callback mechanism is used to communicate the response using a
business event back to Oracle E-Business Suite by enqueueing the event to an
Inbound Workflow Agent. A new or waiting workflow process can be started or
executed.

For more information on these callback parameters, see Calling Back to Oracle
E-Business Suite With Web Service Response, page 11-28.

Creating a Local Event Subscription with 'Invoke Web Service' Action Type

Working With Oracle Workflow Business Event System to Invoke Web Services 11-11

Create an Event Subscription

To create a local event subscription with 'Invoke Web Service' action type:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility. Select the Business Events link, and choose Subscriptions in the
horizontal navigation.

2. In the Event Subscriptions page, click Create Subscription to open the Create Event
Subscription page.

3. Enter the following information in the Create Event Subscription page:

• Subscriber: Select the local system

• Source Type: Local

• Event Filter: Select the event name that you just created, such as
oracle.apps.wf.xmlgateway.invoke

• Phase: 50

If the event is raised from Java, the phase number determines whether an event
will be invoked right away or enqueued to WF_JAVA_DEFFERED queue.

Note: If the invoker event is raised from PL/SQL, it is always
deferred to WF_JAVA_DEFERRED queue regardless of the

11-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

phase because the subscription has a Java rule function that
cannot be executed in the database.

• If the phase is >=100, then the event is enqueued to WF_JAVA_DEFFERED
queue and will be dispatched later.

• If the phase is <100, then the event is dispatched immediately to the Java
Business Event System soon after an triggering event occurs.

• Status: Enabled

• Rule Data: Message

• Action Type: Invoke Web Service

• On Error: Stop and Rollback

4. Click Next. This opens a Create Event Subscription - Invoke Web Service wizard
allowing you to enter a WSDL URL that will be parsed into service metadata for
further selection.

Create Event Subscription - Invoke Web Service Wizard

1. Enter WSDL URL information for the Web service to be invoked. Click Next to
parse the WSDL and display all services.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-13

Create Event Subscription - Invoke Web Service: Select Service

2. Select an appropriate service name from the drop-down list. Click Next to
display all ports for a selected service

Create Event Subscription - Invoke Web Service: Select Service Port

3. Select an appropriate service port and click Next to display all operations for a
selected port.

11-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Create Event Subscription - Invoke Web Service: Select Operation

4. Select an appropriate service operation and click Next. This opens the last page
of the Create Event Subscription - Invoke Web Service wizard.

Create Event Subscription - Invoke Web Service: Subscription Documentation

5. In the Subscription Documentation of the Create Event Subscription - Invoke
Web Service page, the default Java Rule Function name
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription is
automatically populated.

Important: If you have extended the functionality of the seeded
rule function, manually enter your custom function name here.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-15

6. In the Documentation region, enter an application name or program name that
owns the subscription (such as 'Oracle Workflow') in the Owner Name field
and the program ID (such as 'FND') in the Owner Tag field. Click Apply.

For more information, see Defining Event Subscriptions, Oracle Workflow Developer's
Guide.

Create an Error subscription with 'Launch Workflow' Action Type
To enable the error processing feature during the service invocation, you must create an
Error subscription to the invoker business event.

Once subscribing to this error processing, if any error occurs during the invocation, the
error process sends a workflow notification to SYSADMIN. This information includes
Web service definition, event details, and error details allowing SYSADMIN to easily
identify the error. The notification also provides an option for SYSADMIN to respond to
the error. The SYSADMIN can invoke the Web service again after the underlying issue
that caused the error is resolved, abort the errored event if needed, or reassign an
errored notification to another user if appropriate.

For detailed information on managing errors during Web service invocation, see
Managing Errors, page 11-36.

To create an error subscription with 'Launch Workflow' action type:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility. Select the Business Events link, and choose Subscriptions in the
horizontal navigation.

2. In the Event Subscriptions page, click Create Subscription to open the Create Event
Subscription page.

3. Enter the following information in the Create Event Subscription page:

• Subscriber: Select the local system

• Source Type: Error

• Event Filter: Select the event name that you just created, such as
oracle.apps.wf.xmlgateway.invoke

• Phase: this can be any phase number

• Status: Enabled

• Rule Data: Key

• Action Type: Launch Workflow

• On Error: Stop and Rollback

11-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Click Next to open the Create Event Subscription - Launch Workflow page.

5. Enter the following information in the Action region:

• Workflow Type: WFERROR

• Workflow Process: DEFAULT_EVENT_ERROR2

• Priority: Normal

6. In the Documentation region, enter an application or program name that owns the
event subscription (such as Oracle Workflow) in the Owner Name field and
application or program ID (such as 'FND') in the Owner Tag field.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-17

7. Click Apply.

Step 3: Creating a Receive Event and Subscription (Optional)
A receive event can serve as a communication vehicle to communicate or callback to
Oracle E-Business Suite if a Web service has an output or response message required to
be communicated back after the Web service is successfully invoked. However, whether
you need to create a receive event and external subscription to the receive event
depends on the following criteria:

• Your message pattern

• Where your event is raised from (Java or PL/SQL layer)

• Event subscription phase number

For Synchronous Request-Response Web Service Invocation

• If the Web service invoker event is raised from Java code in the middle tier, and the
invoker subscription is synchronous with subscription phase < 100, then the Web
service is invoked as soon as the event is raised, and if successful the response can
be read by the calling application and is available immediately by using
BusinessEvent.getResponseData() method after calling
BusinessEvent.raise().

In this case, the response may not have to be communicated back to Oracle
E-Business Suite using callback event. Hence, you may not need to create a receive

11-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

event and the subscription to the event.

• If the Web service invoker event is raised from Java code with the subscription
phase is >= 100, or if the event is raised from PL/SQL, the event message will be
enqueued to WF_JAVA_DEFERRED queue. In this situation, you will need to create
a receive event and external subscription to the event if the Web service has an
output or a response message. Callback event with callback agent is required to
receive the output message into Oracle E-Business Suite.

This receive event can also be used as a callback into Oracle E-Business Suite to let
the interested parties know through raising this event that the Web service response
is available.

See: Calling Back to Oracle E-Business Suite With Web Service Response, page 11-
28.

If a receive event is required, after creating the receive event, you must create an
external event subscription to the receive event. The Web service response message
communicated through the receive event is always enqueued to an inbound
workflow agent. In order to process an event from the inbound workflow agent, an
external subscription is required.

For Request-only Web Service

If it is a request-only Web service which does not require a response, you do not need to
create a receive event.

To create a receive event:

1. In the Events page, click Create Event to open another Create Event page.

2. Enter the following information in the Create Event page:

• Name: Enter an event name, such as
oracle.apps.wf.xmlgateway.receive

• Display Name: Enter an event display name, such as
oracle.apps.wf.xmlgateway.receive

• Description: Enter a description for the event

• Status: Enabled

• Owner Name: Enter an application or program name that owns the event (such
as 'Oracle Workflow')

• Owner Tag: Enter the application or program ID that owns the event (such as
'FND')

Working With Oracle Workflow Business Event System to Invoke Web Services 11-19

Create Receive Event

3. Click Apply to create a receive event.

To create a receive event subscription:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
Applications responsibility. Select the Business Events link, and choose
Subscriptions in the horizontal navigation.

2. In the Event Subscriptions page, click Create Subscription to open the Create Event
Subscription page.

3. Enter the following information in the Create Event Subscription page:

• Subscriber: Select the local system

• Source Type: External

• Event Filter: Select the receive event name that you just created, such as
oracle.apps.wf.xmlgateway.receive

• Phase: any phase number

• Status: Enabled

• Rule Data: Key

• Action Type: any action type

• On Error: Stop and Rollback

11-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Click Next to open the Create Event Subscription - Launch Workflow page.

Please note that the type of the Create Event Subscription page to be shown
depends on the value selected in the Action Type field. If "Launch Workflow" is
selected, you will see the Create Event Subscription - Launch Workflow page. If
other action types are selected, different types of the create event subscription pages
are displayed. By entering an appropriate action type through the subscription
page, you can launch a workflow process or just execute a custom rule function for
the event defined as part of this subscription.

5. Enter the following information in the Action region:

• Workflow Type: Enter any workflow type that is waiting for the response

• Workflow Process: Enter any workflow process that is waiting for the response

• Priority: Normal

6. In the Documentation region, enter an application or program name in the Owner
Name field (such as 'Oracle Workflow') and application or program ID in the
Owner Tag field (such as 'FND').

Working With Oracle Workflow Business Event System to Invoke Web Services 11-21

7. Click Apply.

Understanding Web Service Input Message Parts
A message consists of one or more logical parts. Each part describes the logical abstract
content of a message. For example, a typical document-style Web service could have a
header and body part in the input message.

For example, consider the operation PROCESSPO in Oracle E-Business Suite XML
Gateway service (
http://<hostname>:<port>/webservices/SOAProvider/xmlgateway/ont_
_poi/?wsdl) as described below.

11-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<definitions targetNamespace="ONT__POI"
targetNamespace="http://xmlns.oracle.com/apps/ont/soaprovider/xmlgateway
/ont__poi/">
<type>
 <schema elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/apps/ont/soaprovider/xmlgateway
/ont__poi/">
 <include
schemaLocation="http://rws60066rems.us.oracle.com:8078/webservices/SOAPr
ovider/xmlgateway/ont__poi/PROCESS_PO_007.xsd"/>
 </schema>
...
<message name="PROCESSPO_Input_Msg">
 <part name="header" element="tns:SOAHeader"/>
 <part name="body" element="tns1:PROCESS_PO_007"/>
</message>
...
<binding name="ONT__POI_Binding" type="tns:ONT__POI_PortType">
<soap: binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="PROCESSPO">
 <soap:operation
soapAction="http://host:port/webservices/SOAProvider/xmlgateway/ont__poi
/"/>
 <input>
 <soap:header message="tns:PROCESSPO_Input_Msg" part="header"
use="literal"/>
 <soap:body parts="body" use="literal"/>
 </input>
 </operation>
</binding>
...
</definitions>

The operation PROCESSPO requires input message PROCESSPO_Input_Msg, which has
two parts:

• Body: The value of PROCESS_PO_007 type to be set as SOAP body is sent as
business event payload.

• Header: The value of SOAHeader type to be sent in the SOAP header which is
required for Web Service authorization.

To better understand the Web service operation's input message, the section includes
the following topics:

• Event Payload as SOAP Body, page 11-22

• Other Web Service Input Message Parts, page 11-25

Event Payload as SOAP Body

Any detail information needed to describe what occurred in an event, in addition to the
event name and event key, is called the event data. For example, the event data for a
purchase order event includes the item numbers, descriptions, and cost.

During the event creation, you can have the event data specified either with or without

Working With Oracle Workflow Business Event System to Invoke Web Services 11-23

using the Generate Function for an event from both PL/SQL and Java. If the application
where the event occurs does not provide event data, then you can use the Generate
Function while creating the event. The Generate Function will produce the complete
event data from the event name, event key, and an optional parameter list at the event
raise. Otherwise, you do not need to specify the Generate Function field if the
application where the event occurs does provide event data. In other words, the event
payload can be passed in either one of the following ways:

• Event data or payload is passed through the Generate Function during the event
raise.

• Event data or payload is passed along with the event itself without using the
Generate function.

Note: The generate function must follow a standard PL/SQL or Java
API. See Oracle Workflow Developer's Guide and Oracle Workflow API
Reference.

The event data can be structured as an XML document and passed as SOAP body
during the event raise. The seeded Java rule function accepts this SOAP body through
business event payload. The SOAP body is described in a well-formed XML element
that would be embedded into SOAP envelope.

• BusinessEvent.setData(String)

• WF_EVENT.Raise(…. p_event_data => ….);

Message Transformation Parameters to Support XSL Transformation

If the invoker event's XML payload (to be used as Web service input message) requires
to be transformed into a form that complies with the input message schema, the seeded
Java rule function could perform XSL transformation on the payload before invoking
the Web service. Similarly, if the Web service output message requires to be
transformed into a form that is required for processing by Oracle E-Business Suite, the
seeded Java rule function could perform XSL transformation on the response before
calling back to Oracle E-Business Suite.

Note: An input message is the XML payload that is passed to the Web
service in the SOAP request. An output message is the XML document
received as a response from the Web service after a successful
invocation.

For the synchronous request - response operation, when the output (response) message,
an XML document, is available, if this XML document requires to be transformed to a
form that is easier for Oracle E-Business Suite to understand, then XSL transformation
on the output message will be performed.

11-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Note: The XSL filename is given based on the format of <File
Name>:<Application Short Name>:<Version>.

For example, "PO_XSL_1_1_2.xsl:FND:1.1".

The XSL file names are passed to the seeded Java rule function as the following
subscription parameters while creating the subscription to the Web service invoker
event through the Create Event Subscription - Invoke Web Service wizard:

• WFBES_OUT_XSL_FILENAME: XSL file to perform transformation on the output
(response) message

For example, WFBES_OUT_XSL_FILENAME=PO_XSL_OUT_2.xsl:FND:1.1

• WFBES_IN_XSL_FILENAME: XSL file to perform transformation on the input
message

For example, WFBES_IN_XSL_FILENAME=PO_XSL_IN_2.xsl:FND:1.1

At run time, the XSL filenames are passed through the same parameters as event
parameters. If event parameters are passed with the same names as the subscription
parameters that have been parsed and stored, the event parameter values override the
subscription parameter values. For example, the event parameters are passed as
follows:

• BusinessEvent.setStringProperty("WFBES_OUT_XSL_FILENAME",
"PO_XSL_OUT_2.xsl:FND:1.1");

• BusinessEvent.setStringProperty("WFBES_IN_XSL_FILENAME",
"PO_XSL_IN_2.xsl:FND:1.1");

If WFBES_OUT_XSL_FILENAME is null, no outbound transformation will be performed.
If WFBES_IN_XSL_FILENAME is null, no inbound transformation will be performed.

Loading XSL files to Oracle E-Business Suite

The seeded Java rule function performs the XSL transformation on the input and output
messages by using the XML Gateway API,
ECX_STANDARD.perform_xslt_transformation; therefore, the XSL files for the
XSL transformation on input and output messages are loaded to Oracle XML Gateway
using the oracle.apps.ecx.loader.LoadXSLTToClob loader.

Note: For information on the XSL transformation PL/SQL API, see
Execution Engine APIs, Oracle XML Gateway User's Guide.

As a result, use the following steps to perform XSL transformation during service
invocation:

1. Upload the XSL files to Oracle E-Business Suite using the
oracle.apps.ecx.loader.LoadXSLTToClob loader in Oracle XML Gateway.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-25

2. Specify the XSL file names (such as PO_XSL_IN_2.xsl:FND:1.1) in the event or
subscription parameters (WFBES_IN_XSL_FILENAME and
WFBES_OUT_XSL_FILENAME) if applicable for XSL transformation on input and
output messages.

For example, upload the XSL files to Oracle E-Business Suite as follows:
java oracle.apps.ecx.loader.LoadXSLTToClob apps apps
ap601sdb:4115:owf12dev PO_XSL_IN_2.xsl FND 1.1

For more information, see Loading and Deleting an XSLT Style Sheet, Oracle XML
Gateway User's Guide.

Other Web Service Input Message Parts

Apart from passing the SOAP body part as event payload, service invocation
framework also supports passing values for other parts that are defined for the Web
service operation's input message using the business event parameter with the
following format:

WFBES_INPUT_<partname>

<partname> is same as the part name in the input message definition in WSDL.

For example, the header part for above example is passed to business event as
parameter WFBES_INPUT_header during the invoker event raise. The following code
snippet shows the header part that is used to pass username, responsibility,
responsibility application, and NLS language elements for Web service authorization:
String headerPartMsg = "<ns1:SOAHeader
xmlns:ns1=\"http://xmlns.oracle.com/xdb/SYSTEM\" " +
 "env:mustUnderstand=\"0\"
xmlns:env=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n" +
 " <ns1:MESSAGE_TYPE>XML</ns1:MESSAGE_TYPE>\n" +
 " <ns1:MESSAGE_STANDARD>OAG</ns1:MESSAGE_STANDARD>\n" +
 " <ns1:TRANSACTION_TYPE>PO</ns1:TRANSACTION_TYPE>\n" +
 " <ns1:TRANSACTION_SUBTYPE>PROCESS</ns1:TRANSACTION_SUBTYPE>\n"
+
 " <ns1:DOCUMENT_NUMBER>123</ns1:DOCUMENT_NUMBER>\n" +
 " <ns1:PARTY_SITE_ID>4444</ns1:PARTY_SITE_ID>\n" +
 "</ns1:SOAHeader>\n";
businessEvent.setStringProperty("WFBES_INPUT_header", headerPartMsg);

Note: Please note that this WFBES_INPUT_<partname> parameter
can only be passed at run time during the event raise, not through the
event subscription. Several constants are defined in interface
oracle.apps.fnd.wf.bes.InvokerConstants for use in Java
code.

If the Web service input message definition has several parts, value for the part that is
sent as SOAP body is passed as event payload. Values for all other parts are passed as
event parameters with parameter name format WFBES_INPUT_<partname>. If the
value for a specific input message part is optional to invoke the Web service, you still
have to pass the parameter with null value so that invoker subscription knows to which

11-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

part the event payload should be set as SOAP body.

For example, if input message part myheader for a Web service is optional and does
not require a valid value for the invocation to succeed, the event parameter for the input
should still be set with null value as follows.
businessEvent.setStringProperty("WFBES_INPUT_myheader", null);

Supporting WS-Security
Web service security (WS-Security) is a communication protocol providing a means for
applying security to Web services. It describes enhancements to SOAP messaging to
provide quality of protection through message integrity and single message
authentication. It also describes how to attach security tokens to SOAP messages to
enhance security features.

Service invocation framework supports WS-Security in a general-purpose mechanism
for associating security tokens with messages to authenticate Web service requests and
service invocation from Oracle E-Business Suite.

To accomplish this goal, service invocation framework supports WS-Security through
UsernameToken based security.

UsernameToken Based Security
This security mechanism provides a basic authentication for Web service invocation by
passing a username and an optional password in the SOAP Header of a SOAP request
sent to the Web service provider.

Please note that the username/password information discussed in this UsernameToken
based security model is the concept of Oracle E-Business Suite username/password.

If the Web service being invoked enforces Username/Password based authentication,
then the service invocation framework also supports the UsernameToken based
WS-Security header during Web service invocation.

Note: SOAP requests invoking the Web services should include
security header consisting of Username and Plain text password.
Encryption is not supported in this release.

Username

The username is a clear text, and its value for the operation is stored in the subscription
parameter:

WFBES_SOAP_USERNAME

For example, WFBES_SOAP_USERNAME =SYSADMIN

Following sample code describes how the username is stored with the subscription as
Web service metadata:

Working With Oracle Workflow Business Event System to Invoke Web Services 11-27

SERVICE_WSDL_URL=http://myhost.us.oracle.com:8040/OA_HTML/XMLGatewayWSDL
SERVICE_NAME=XMLGateway SERVICE_PORT=XMLGatewayPort
SERVICE_PORTTYPE=XMLGatewayPortType SERVICE_OPERATION=ReceiveDocument
WFBES_SOAP_USERNAME=kwalker

Password

Password is the most sensitive part of the UsernameToken profile. Service invocation
framework supports the UsernameToken based WS-Security during service invocation
with username and an optional password with Type PasswordText.

Note: The PasswordText password type is the password written in
clear text. There is another password type called 'PasswordDigest'
which is a base64-encoded SHA1 hash value of the UTF8-encoded
password and this type of password is not supported in this release.

The password corresponding to the SOAP username is stored in FND vault using a
PL/SQL script $FND_TOP/sql/afvltput.sql. For example,

sqlplus apps/apps@db @$FND_TOP/sql/afvltput.sql <Module> <Key>
<Value>

• <Module> parameter represents the application code such as FND, PO, AR, AP and
so on for which the service invocation is being implemented.

• <Key> parameter should be uniquely named within the module in consideration
for namespace issues. It is the developer's discretion to name the key.

• <Value> parameter represents the password value.

The module and key values to retrieve the password corresponding to the SOAP
username are passed to the following invoker subscription parameters:

• WFBES_SOAP_PASSWORD_MOD

For example, WFBES_SOAP_PASSWORD_MOD=FND

• WFBES_SOAP_PASSWORD_KEY

For example, WFBES_SOAP_PASSWORD_KEY=sysadmin

For example, if you want to store the password "sysadmin" for a Web service, it could
be stored as follows:

sqlplus apps/apps@db @$FND_TOP/sql/afvltput.sql FND sysadmin
sysadmin

At run time, if event parameters are passed with the same names as the subscription
parameters that have been parsed and stored, the event parameter values take
precedence over subscription parameters.

For example, the event parameters are passed as follows:

• BusinessEvent.setStringProperty("WFBES_SOAP_USERNAME",

11-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

"SYSADMIN");

• BusinessEvent.setStringProperty("WFBES_SOAP_PASSWORD_MOD",
"FND");

• BusinessEvent.setStringProperty("WFBES_SOAP_PASSWORD_KEY",
"sysadmin");

In summary, use the following steps to pass username and password for WS-Security
during Web service invocation:

1. Pass the username to event or subscription parameter WFBES_SOAP_USERNAME.

2. Store the password in FND Vault using $FND_TOP/sql/afvltput.sql script
through appropriate module and key.

3. Pass the module name and key to event or subscription parameters
WFBES_SOAP_PASSWORD_MOD and WFBES_SOAP_PASSWORD_KEY.

Calling Back to Oracle E-Business Suite With Web Service Response
As mentioned earlier that Oracle Workflow is the primary process management
solution within Oracle E-Business Suite; Oracle Workflow Business Event System, an
essential component within Oracle Workflow, provides event and subscription features
that help identify integration points within Oracle E-Business Suite. Thus, to
successfully invoke Web services from Oracle E-Business Suite requires highly
integrated environment with Oracle Workflow.

To support synchronous request - response service operation, if a Web service has an
output or a response message, service invocation framework uses the callback
mechanism in Oracle Workflow to communicate the response message back to Oracle
E-Business Suite through the Business Event System.

Note: A synchronous request - response message is a common message
exchange pattern in Web service operation where a client asks a service
provider a question and then waits for a response before continuing on.
For more information, see: Understand Message Patterns, page 11-3.

This callback feature takes the invoker event's event key to enqueue the callback event
to the specified inbound agent (the callback agent) for the response. In addition, if a
workflow process invokes a Web service using "Raise" event activity and waits for Web
service response using "Receive" event activity, the invoker event key should be same as
the invoker and/or waiting workflow process's item key so that when callback is
performed, the waiting workflow process is correctly identified by WF_ENGINE.EVENT
API.

By using both the callback events and agents, Web service invocation can be integrated
back with a waiting workflow process or any other module within Oracle E-Business

Working With Oracle Workflow Business Event System to Invoke Web Services 11-29

Suite. Web service invocation uses the following callback subscription or event
parameters:

• WFBES_CALLBACK_EVENT

This parameter can have a valid business event to be raised upon completion of the
Web service with the service output message as payload.

For example, it can be like:

WFBES_CALLBACK_EVENT=oracle.apps.wf.myservice.callback

• WFBES_CALLBACK_AGENT

This parameter can have a valid business event system agent to which the event
with the service response message as payload can be enqueued.

Important: This parameter will work only if
WFBES_CALLBACK_EVENT is not null, otherwise the output
message is lost and there is no callback.

For example, it can be like the default inbound agent (or any other inbound queue)
for Web service messages:

WFBES_CALLBACK_AGENT=WF_WS_JMS_IN

Note: If you have defined custom agents, you can also specify the
custom agent name as the parameter value.

Since Web service output message is enqueued to the inbound agent mentioned in
WFBES_CALLBACK_AGENT, it is required to set up a Workflow Agent Listener
on the inbound agent (if it is not yet set up) in order to process the callback/receive
business event messages.

Note: Callback event can be used as correlation ID when the
response message is enqueued to a callback agent. This helps
administrators to create specialized agent listeners on a callback
agent to process callback events.

For example, if the callback event for a service invocation is
oracle.apps.wf.myservice.callback, and the callback
agent is WF_WS_JMS_IN, when this event is enqueued to
WF_WS_JMS_IN upon a successful service invocation, the event
oracle.apps.wf.myservice.callback is used as Correlation
ID in WF_WS_JMS_IN to help create an agent listener to process
that event.

At run time, if event parameters are passed with the same names as the subscription
parameters that have been parsed and stored, the event parameter values take

11-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

precedence over subscription parameters. For example, the event parameters are passed
as follows:

• BusinessEvent.setStringProperty("WFBES_CALLBACK_EVENT",
"oracle.apps.wf.myservice.callback");

• BusinessEvent.setStringProperty("WFBES_CALLBACK_AGENT",
"WF_WS_JMS_IN");

To use the callback feature during the service invocation, you must create a receive
event and subscribe to the receive event. See: Creating a Receive Event and Event
Subscription (Optional), page 11-17.

The better understand how to invoke a Web service, see Example of Invoking a Web
Service From a Workflow Process, page 11-33

Invoking Web Services
Oracle Workflow Business Event System is a workflow component that allows events to
be raised from both PL/SQL and Java layers. Therefore, the service invocation from
Oracle E-Business Suite can be from PL/SQL or Java

Service Invocation from PL/SQL

1. Application raises a business event using PL/SQL API WF_EVENT.Raise.

The event data can be passed to the Event Manger within the call to the
WF_EVENT.Raise API, or the Event Manger can obtain the event data or message
payload by calling the Generate function for the event if the data or payload is
required for a subscription.

Note: See Oracle Workflow API Reference for information about
WF_EVENT.Raise API.

2. Oracle Workflow Business Event System (BES) identifies that the event has a
subscription with Java Rule Function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription.

3. The Business Event System enqueues the event message to WF_JAVA_DEFERRED
queue. The Java Deferred Agent Listener then dequeues and executes the
subscription whose Java rule function invokes the Web service.

4. If callback event and agent parameters are mentioned, the Web service response is
communicated back to Oracle E-Business Suite using the callback information. The
Java Deferred Agent Listener process that runs in Concurrent Manager (CM) tier
invokes the Web service.

Service Invocation from Java

Working With Oracle Workflow Business Event System to Invoke Web Services 11-31

1. Java Application raises a business event using Java method
oracle.apps.fnd.wf.bes.BusinessEvent.raise either from OA
Framework page controller/AMImpl or Java code running on Concurrent Manager
tier.

2. Since the event is raised in Java where the subscription's seeded Java Rule Function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription is accessible,
whether the rule function is executed inline or deferred is determined by the phase
of the subscription.

• If the invoker subscription is created with Phase >= 100, the event is enqueued
to WF_JAVA_DEFERRED queue.

• If the invoker subscription is created with Phase < 100, the event is dispatched
inline.

If the event is raised from OA Framework page, the dispatch logic executes
(that uses WSIF to invoke the Web service) within OACORE OC4J container.

Note: If the Web service invoker event is raised from Java code in
the middle tier, and the invoker subscription is synchronous with
subscription phase < 100, then the Web service is invoked as soon
as the event is raised, and if successful the response can be read by
the calling application and is available immediately by using
method BusinessEvent.getResponseData().

If the event is raised from Java code with the subscription phase is
>= 100 or if the event is raised from PL/SQL, the event message will
be enqueued to WF_JAVA_DEFERRED queue. If the Web service
has an output or a response message, callback event with callback
agent is required to receive the output message into Oracle
E-Business Suite.

The following sample Java code raises a business event that invokes Web service
and reads the response in the same session:

11-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

package oracle.apps.fnd.wf.bes;

import java.sql.Connection;

import oracle.apps.fnd.common.AppsLog;
import oracle.apps.fnd.common.Log;
import oracle.apps.fnd.wf.bes.InvokerConstants;
import oracle.apps.fnd.wf.common.WorkflowContext;

public class InvokeWebService {

 static Log mLog;
 static WorkflowContext mCtx;

 public InvokeWebService() {
 }

 public static Connection getConnection(String dbcFile) {
 Connection conn = null;

 System.setProperty("dbcfile", dbcFile);
 WorkflowContext mCtx = new WorkflowContext();

 mLog = mCtx.getLog();
 mLog.setLevel(Log.STATEMENT);
 ((AppsLog)mLog).reInitialize();
 mLog.setModule("%");

 return mCtx.getJDBCConnection();
 }

 public static void main(String[] args)
 {
 BusinessEvent event;
 Connection conn;
 conn = getConnection(args[0]);

 try {
 // Proxyt host and port requires to be set in Java
options
 System.setProperty("http.proxyHost", args[1]);
 System.setProperty("http.proxyPort", args[2]);

 event = new BusinessEvent
("oracle.apps.wf.IrepService.invoke", "eventKey1");

 // Input XML message for Web Service

 String input = null;
 input =
"<ns3:IntegrationRepositoryService_GetInterfaceFunctionByName
xmlns:ns3=\"http://xmlns.oracle.com/apps/fnd/rep/ws\"> \n"+
<fullMethodName>SERVICEBEAN:/oracle/apps/fnd/rep/ws/IntegrationRepos
itoryService:getInterfaceFunctionByNameSERVICEBEAN:/oracle/apps/fnd/
rep/ws/IntegrationRepositoryService:getInterfaceFunctionByName</full
MethodName>\n"+
"</ns3:IntegrationRepositoryService_GetInterfaceFunctionByName>";
 event.setData(input);

 String headerPartMsg = "<ns1:SOAHeader
xmlns:ns1=\"http://xmlns.oracle.com/xdb/SYSTEM\" " +

Working With Oracle Workflow Business Event System to Invoke Web Services 11-33

"env:mustUnderstand=\"0\"
xmlns:env=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n" +
 " <ns1:MESSAGE_TYPE>XML</ns1:MESSAGE_TYPE>\n" +
 " <ns1:MESSAGE_STANDARD>OAG</ns1:MESSAGE_STANDARD>\n" +
 " <ns1:TRANSACTION_TYPE>PO</ns1:TRANSACTION_TYPE>\n" +
 "
<ns1:TRANSACTION_SUBTYPE>PROCESS</ns1:TRANSACTION_SUBTYPE>\n" +
 " <ns1:DOCUMENT_NUMBER>123</ns1:DOCUMENT_NUMBER>\n" +
 " <ns1:PARTY_SITE_ID>4444</ns1:PARTY_SITE_ID>\n" +
 "</ns1:SOAHeader>\n";
businessEvent.setStringProperty("WFBES_INPUT_header",
headerPartMsg);

 event.raise(conn);
 conn.commit();

 Object resp = event.getResponseData();
 if (resp != null) {
 System.out.println(resp.toString());
 }
 else {
 System.out.println("No response received");
 }
 }
 catch (Exception e) {
 System.out.println("Exception occured " +
e.getMessage());
 e.printStackTrace();
 }
 }
}

Example of Invoking a Web Service From a Workflow Process
The following example is to invoke a Web service through launching a workflow
process including the following nodes or activities:

• An invoker business event to invoke a Web service.

For example, INVOKE_SERVICE is an event activity with event action "Raise".

• A receive business event to receive a response or Web service output message.

For example, RECEIVE_SERVICE is an event activity with event action "Receive".

• Other activities could be used in the process for XML message processing, notifying
users of Web service invocation response, regular transaction processing and so on.

For example, SERVICE_INVOKED is a notification activity to send a notification
message when a Web service is successfully invoked.

The following workflow process diagram illustrates the service invocation process flow:

11-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Workflow Process Diagram to Invoke a Web Service

Defining Service Invocation Metadata

To define the service invocation metadata with the callback feature, you must have the
following necessary event and subscription in place:

1. An invoker event, such as INVOKE_SERVICE in the workflow diagram.

This activity is used to pass the event XML payload to be used as SOAP body and
other required event parameters required for Web service invocation as already
discussed.

See: Creating a Web Service Invoker Business Event, page 11-6.

2. Local and error event subscriptions to the invoker event. See: Creating Local and
Error Event Subscriptions to the Invoker Event, page 11-8.

3. A receive event (such as RECEIVE_SERVICE in the workflow diagram) and the
External subscription to the receive event.

Important: The receive event is raised with the same event key as
the event key for invoker event. It is important that the waiting
workflow process's item key and the invoker event's event key are
the same.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-35

If callback event and agent parameters are set, this activity waits for the receive
event to occur after Web service invocation is successful.

See: Creating a Receive Event and Event Subscription (Optional), page 11-17.

Verifying Workflow Agent Listener Status

In order to process a Web service response message from the inbound agent, you need
to verify if a Workflow Agent Listener is running on that agent.

Use the following steps for verification:

1. Log on to Oracle Workflow with Oracle Workflow Web Administrator
responsibility.

2. From the navigation menu, select Oracle Applications Manager, and click the
Workflow Manager link.

3. Click the Agent Listener status icon to open the Service Components page.

4. Locate the Workflow Agent Listener that you use for the callback agent listener. For
example, locate the 'Workflow Inbound JMS Agent Listener' for processing a Web
service response message to ensure it is up and running.

Validating a Workflow Agent Listener's Status

After the verification, you can launch the workflow process to invoke a Web service
with a callback response through Oracle Workflow. You can also validate the process
by reviewing the progress status of each activity contained in your workflow process
diagram.

When the Web service has been successfully invoked from the automated workflow
process, you should receive a workflow notification message if the notification activity
is included in the process.

11-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Receiving a Notification Message

For more information on how to create and launch a workflow, see Oracle Workflow
Developer's Guide.

Managing Errors
Service invocation framework uses the same way of handling errors in Business Event
System to manage errors occurred during the execution of business event subscriptions.
If the service invocation returns a fault message, the event is enqueued to error queue to
trigger error processing. If an exception occurred during invocation process is due to
service unavailability, the service faults should be logged and error subscription should
be invoked.

To effectively process run-time exceptions for the events that are enqueued to an error
queue, service invocation framework uses the following event ERROR process to
specifically trigger error processing during the service invocation:

• DEFAULT_EVENT_ERROR2: Default Event Error Process (One Retry Option)

Note: The DEFAULT_EVENT_ERROR2 Error workflow process is
created under WFERROR itemtype.

For example, if there is a run-time exception when the Workflow Java Deferred Agent
Listener executes event subscription to invoke the Web service, the event is enqueued to
WF_JAVA_ERROR queue. If the event has an Error subscription defined to launch
Error workflow process WFERROR:DEFAULT_EVENT_ERROR2, the Workflow Java Error
Agent Listener executes the error subscription which sends a notification to SYSADMIN
with Web service definition, error details and event details. Since Oracle Workflow
default event error handler provides options for SYSADMIN to retry the Web service
invocation process after verifying that the reported error has been corrected,
SYSADMIN can invoke the Web service again from the notification if necessary.

However, if there is a run-time exception when invoking the Web service by raising the
Invoker event with synchronous subscription (phase <100), the exception thrown to the

Working With Oracle Workflow Business Event System to Invoke Web Services 11-37

calling application. It is the responsibility of the calling application to manage the
exception.

Enabling Error Processing During Service Invocation

To enable the error processing feature during the service invocation, you must create an
Error subscription with the following values:

• 'Error' source type

• 'Launch Workflow' action type

• 'WFERROR:DEFAULT_EVENT_ERROR2' workflow process

Create an Error Subscription With 'Launch Workflow' Action Type

To access the Create Event Subscription page, log on to Oracle E-Business Suite with the
Workflow Administrator Web Applications responsibility. Select the Business Events
link and choose the Subscriptions subtab. In the Event Subscriptions page, click Create
Subscription.

Detailed information on how to create an error subscription for service invocation, see
Create an Error subscription with 'Launch Workflow' Action Type, page 11-15.

Testing Web Service Invocation
Service invocation framework uses the Oracle Workflow Test Business Event page to

11-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

check the basic operation of Business Event System by raising a test event from either
Java or PL/SQL layer and executing synchronous and asynchronous subscriptions to
that event. This testing feature provides a flexible mechanism which easily lets you
validate whether a Web service can be successfully invoked from concurrent manager
tier and OACORE OC4J.

You can test a Web service invocation using one of the following ways:

• Using the Test Business Event Page to Manually Raise an Event, page 11-38

• Using Command Line to Raise an Event, page 11-42

Using the Test Business Event Page
Use the Test Business Event page to test a event by raising it from both PL/SQL API and
Java method.

• For an invoker event raised using Raise in Java option, the Web service is invoked
from OACORE OC4J if the subscription phase < 100.

If the Web service is successfully invoked, the Test Business Event page reloads and
displays the XML Response region right after the XML Content field.

If there is a run-time exception when invoking the Web service using synchronous
subscription, the exception message is shown on the Test Business Event page.

Displaying XML Response for Successful Service Invocation

• For an invoker event raised using Raise in PLSQL option, the Web service is
invoked from the concurrent manager tier. The raised event will be enqueued to
WF_JAVA_DEFERRED and then dispatched by Workflow Java Deferred Agent
Listener.

The seeded Java rule function uses the callback event and agent to communicate the
response or Web service output message back to Oracle E-Business Suite through
Business Event System.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-39

Note: Since Java Deferred Agent Listener is responsible for
dispatching the subscription and invoking Web services from
concurrent manager tier, please ensure that Workflow Java
Deferred Agent Listener is up and running.

To validate, log on to Oracle Applications Manager and select the
Workflow Manager link. Choose Agent Listeners and search on
Workflow Java Deferred Agent Listener to view its status.

Testing Service Invocations

After logging on to Oracle Workflow with the Workflow Administrator Web
responsibility. Select the Business Events link to search for an event that you want to
test. From the search result table, click the Test icon next to the event you want to raise.
This opens the Test Business Event page where you can raise the event with an unique
event key. Enter event parameters for the invoker event subscription and a valid XML
message that complies with input message schema. The Test Business Event page will
also display response XML message if appropriate.

Please note that the Test Business Event page will retain all the data entered. Therefore,
if there is a need to raise another event, you must click Clear to clear all data that you
have entered.

Following parameters may be specified when raising the event from the Test Business
Event page to invoke a Web service:

• Message transformation: XSL transformation for Web service input message and
output message

• WFBES_OUT_XSL_FILENAME

• WFBES_IN_XSL_FILENAME

• WS-Security: Information required to add UsernameToken header to a SOAP
request

• WFBES_SOAP_USERNAME

• WFBES_SOAP_PASSWORD_MOD

• WFBES_SOAP_PASSWORD_KEY

• Input Message part value: Pass values for any part that may be required to embed
application context into SOAP envelopes

• WFBES_INPUT_<partname>

11-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Note: The WFBES_INPUT_<partname> parameter can only be
passed at run time during event raise.

• Callback: Callback to Oracle E-Business Suite with Web service response

• WFBES_CALLBACK_EVENT

• WFBES_CALLBACK_AGENT

• SOAP Body:

• XML Input message (Required)

For information about these parameters, see:

• Understanding Web Service Input Message Parts, page 11-21

• Supporting WS-Security, page 11-26

• Calling Back to Oracle E-Business Suite With Web Service Response, page 11-28

Testing Invocation with Callback Required

If you want to test an invocation with callback to Oracle E-Business Suite, then you
must enter the following parameters and values:

• WFBES_CALLBACK_EVENT: receive event

• WFBES_CALLBACK_AGENT: WF_WS_JMS_IN (or any other Inbound Queue as
the value)

Please note that for testing from the Test Business Event page, since the XML message is
prewritten and entered in the XML Content field, if there is an error in the input XML
message, the error notification will not provide you with an option to correct it before
retrying the process.

Before testing the invocation, for easier debugging or troubleshooting purposes
throughout the test, you can enable the diagnostics and logging feature to directly
display on-screen logs in the test page. For instructions on how to turn on this logging
feature, see Troubleshooting invocation failures on OACORE OC4J, page 11-43.

To test an event invocation:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility and select the Business Events link.

2. Search on a business event that you want to run the test, such as
oracle.apps.wf.xmlgateway.invoke and click Go.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-41

3. Select the business event that you want to raise from the result table and click the
Test icon to open the Test Business Event page.

4. Enter a unique event key in the Event Key field and leave the Sand Date field blank.

5. Enter appropriate parameters in the Enter Parameters region.

6. In the Event Data region, enter the following information:

• Upload Option: Write XML

• XML Content: Enter appropriate XML information as input message. For
example, you can enter:
<ReceiveDocument xmlns="http://xmlns.oracle.com/xdb/SYSTEM">
 <PO_DOCUMENT>
 <PO_NUM>12345</PO_NUM>
 <PO_TYPE>standards</PO_TYPE>
 </DESCRIPTION>
 </PO_DOCUMENT>
</ReceiveDocument>

7. Click Raise in Java to raise an event from OACORE OC4J.

If the Web service is successfully invoked, the Test Business Event page reloads and
displays the XML Response region right after the XML Content field.

11-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

8. Click Raise in PLSQL to raise an event is from the concurrent manager tier.

For more information about testing business events, see To Raise a Test Event, Oracle
Workflow Developer's Guide.

Using Command Lines
You can also use the command line API based test method to raise both PL/SQL or Java
based events.

• For PL/SQL based events, use PL/SQL WF_EVENT.Raise API to test Web service
invocation from the concurrent manager tier JVM. Java Deferred Agent Listener
dispatches the subscription and invokes Web services from concurrent manager
tier.

Note: Since Java Deferred Agent Listener is responsible for
dispatching the subscription and invoking Web services from
concurrent manager tier, please ensure that Workflow Java
Deferred Agent Listener is up and running.

To validate, log on to Oracle Applications Manager and select the
Workflow Manager link. Choose Agent Listeners and search on
Workflow Java Deferred Agent Listener to view its status.

• For Java based Web events, use Java method
oracle.apps.fnd.wf.bes.BusinessEvent.raise to test Web service
invocation.

For example, we could have a test class
oracle.apps.fnd.wf.bes.WFInvokerTestCase with classpatch set to
$AF_CLASSPATH.
java oracle.apps.fnd.wf.bes.WSInvokerTestCase <DBC file> <proxy
host> <proxy port>

Working With Oracle Workflow Business Event System to Invoke Web Services 11-43

Troubleshooting Web Service Invocation Failure
Web services can be invoked from any one of following tiers:

• OACORE OC4J: Web service invocations from OA Framework page using a
synchronous event subscription (phase < 100) is executed from within the OACORE
OC4J container.

• Concurrent Manager (CM) Tier JVM: The following Web service invocations are
executed from CM tier JVM within Java Deferred Agent Listener that runs within
Workflow Agent Listener Service:

• Invocations from PL/SQL either through synchronous or asynchronous event
subscriptions

• Invocations from Java/OA Framework through synchronous event
subscriptions

• Standalone JVM: Web service invocations from a Java process that runs outside
OACORE or CM using a synchronous event subscription executes from within that
JVM.

In most cases, the Web service resides outside the firewall and the executing host does
not have direct access to the WSDL or the Web service endpoint to send the SOAP
request. Without properly setting up and configuring the proxy parameters for each tier
that Web service invocations occur, WSDL files will not be parsed and consumed
during subscription or Web services will not be successfully invoked.

How to set up proxy host and port appropriately at each layer, see detailed information
described in the Setup Tasks, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

At run time, if a Web service invocation fails, an exception is thrown and the invoker
event is enqueued to WF_ERROR queue. Since the Web service can be invoked from
any one of the layers described earlier, how to troubleshoot and resolve the failure
invocation can be discussed as follows based on layer that Web service invocations
occur:

• Troubleshooting invocation failure on OACORE OC4J, page 11-43

• Troubleshooting invocation failure on Concurrent Manager (CM) Tier JVM, page
11-47

• Troubleshooting invocation failure on Standalone JVM, page 11-47

Troubleshooting Invocation Failure on OACORE OC4J
For the purposes of easier debugging or troubleshooting throughout a test run of the

11-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Web service invocation from within an OA Framework page, on-screen logging
mechanism should be used.

Enabling On-screen Logging

You can enable the on-screen logging feature and have the logs directly displayed at the
bottom of the Test Business Event page. These logs provide processing details while
executing the code to invoke the Web service.

If there is a fault or a run-time exception in processing the event and invoking the
service, the on-screen logging quickly discloses what is happening.

Enabling on-screen logging involves the following two steps:

1. Setting FND: Diagnostics Profile Option, page 11-44

2. Displaying On-screen Logging, page 11-44

Setting FND: Diagnostics Profile Option

Before using the Test Business Event page, first set the FND: Diagnostics profile option
to 'Yes' at an appropriate level to enable the Diagnostics link on the global menu of the
HTML-based application pages.

Note: Through the Diagnostics link, we can enable database trace,
profiling, and on-screen logging that will help troubleshooting the
transactions performed from the HTML-based application pages.

Setting FND: Diagnostics Profile Option

With the diagnostics feature, the on-screen logging can be enabled which helps us track
the WebServiceInvokeSubscription's log messages when an invoker event is raised from
the Test Business Event page and subsequently the Web service is invoked.

Displaying On-screen Logging

After setting the FND: Diagnostics profile option to 'Yes', you should find the

Working With Oracle Workflow Business Event System to Invoke Web Services 11-45

Diagnostics link available in the upper right corner of your HTML page.

By selecting the Diagnostics link and entering appropriate information, the on-screen
logging feature can be enabled. Once you locate a desired event and test its invocation,
relevant log messages directly appear at the bottom of your test page for an easier
debugging or troubleshooting if needed.

Important: If the FND: Diagnostics profile option is not set to 'Yes', then
the Diagnostics link will not be visible as a global menu for selection.
See: Setting FND: Diagnostics Profile Option, page 11-44.

To display on-screen logs while testing your service invocation in the Test Business
Event page:

1. Log on to Oracle Workflow with appropriate responsibility, and select the Business
Events link to locate an invoker business event hat you want to run the test, such as
oracle.apps.wf.xmlgateway.invoke and click Go to perform a search.

2. From the search result table, select the business event that you want to raise and
click the Test icon to open the Test Business Event page.

3. Click the Diagnostics link in the upper right corner of the page.

4. Enter the following information to enable the on-screen logs:

• Diagnostics: Show Log on Screen

• Log Level: Statement (1)

• Module: %

5. Click Go. The on-screen logging is now enabled.

11-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

6. Navigate to the Test Business Event page and raise an event to execute the
invocation testing.

Review On-Screen Log Messages

After you have enabled the on-screen logging feature, during the testing, you should
find relevant log messages displayed at the bottom of the Test Business Event page.
This provides the detailed information of all processing by the code that invokes the
Web service.

For example, you can review WebServiceInvokerSupscription log messages displayed
on the same page to verify the service execution status, exception or fault if there is any,
and whether the callback succeeded or not.

The following example log indicates that the service execution is completed with
callback response message enqueued to WF_WS_JMS_IN inbound queue if the
'WFBES_CALLBACK_EVENT' parameter value is set to receive event and
'WFBES_CALLBACK_AGENT' parameter value is set to 'WF_WS_JMS_IN':

WebServiceInvokerSubscription Logs

For detailed information on how to enable the logging feature, see Enabling On-Screen
Logging, page 11-43.

Working With Oracle Workflow Business Event System to Invoke Web Services 11-47

Troubleshooting Invocation Failure on Concurrent Manager (CM) Tier JVM
To troubleshoot Web service invocation failure on Concurrent Manager (CM) Tier JVM,
you must ensure that the Error subscription is created for the all Web service invoker
events to capture complete exception details when invocation happens from Workflow
Java Deferred Agent Listener.

Error Subscription

For all Web service invoker events, error subscription is required to enable error
processing in the Business Event System that is used to communicate with SYSADMIN
user of an error condition in subscription execution. It sends a workflow notification to
SYSADMIN with Web service definition, error details, and event details allowing the
SYSADMIN to process the errors if needed.

For example, if an error occurs during the invocation and the event is enqueued to
WF_JAVA_ERROR queue, with an Error subscription defined to launch Error workflow
process WFERROR:DEFAULT_EVENT_ERROR2, the Workflow Java Error Agent
Listener executes the error subscription which sends a notification to SYSADMIN with
Web service definition, error details and event details.

For more information, see Managing Errors, page 11-36.

Enabling Workflow Java Deferred Agent Listener Logging

Since Oracle Workflow default event error handler provides options for SYSADMIN to
retry the Web service invocation process after verifying that the reported error has been
corrected, SYSADMIN can invoke the Web service again from the notification if
necessary. However, if further analysis of the steps leading to the exception is required,
use Workflow Java Deferred Agent Listener logging mechanism to set STATEMENT
level log for Workflow Java Deferred Agent Listener and retry the failed Web service
invocation to obtain detailed steps leading to the exception.

For more information, see Java Agent Listeners, Oracle Workflow Administrator's Guide.

Troubleshooting Invocation Failure on Standalone JVM
When invoking a Web service from a Java process that runs outside OACORE or CM by
calling BusinessEvent.raise method to raise the invoker event with a synchronous
'Invoke Web Service' subscription, the following situation can occur:

• If the invocation is successful, the method returns the response message.

• If there was a run-time exception, BusinessEventException, thrown by the method
that could be used to get the complete stack trace.

For details, see the sample Java code in the Service Invocation from Java section,
Invoking Web Services, page 11-30.

11-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Extending Seeded Java Rule Function
Oracle E-Business Suite Integrated SOA Gateway allows developers to extend the
invoker subscription seeded rule function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription using Java
coding standards for more specialized processing.

Developers can extend the seeded rule function to override following methods:

• preInvokeService

• postInvokeService

• invokeService

• addWSSecurityHeader

• setInputParts

For detailed information about these methods, see Oracle Workflow API Reference.

preInvokeService
This method is used for pre processing before Web service invocations.
protected String preInvokeService(Subscription eo,
 BusinessEvent event,
 WorkflowContext context)
throws BusinessEventException;

The Web service input message or request message is available by calling
event.getData(). This is the business event payload passed when raising the
invoker event or generated by business event Generate function.

This method can perform additional processing on the request data if required. The
default implementation through the seeded Java rule function performs XSL
transformation using the XSL file specified in WFBES_IN_XSL_FILENAME if input
payload message is available.

postInvokeService
protected void postInvokeService(Subscription eo,
 BusinessEvent event,
 WorkflowContext context,
 String requestData,
 String responseData)
throws BusinessEventException;

If the operation is synchronous request - response, the response is available in
parameter responseData.

This method performs additional processing on the response and update application
state if required. The default implementation through seeded Java rule function

Working With Oracle Workflow Business Event System to Invoke Web Services 11-49

performs the following tasks:

• XSL transformation on a response or Web service output message based on
WFBES_OUT_XSL_FILENAME

• Call back to Workflow Business Event System based on WFBES_CALLBACK_EVENT
and WFBES_CALLBACK_AGENT parameter values

invokeService
protected String invokeService(String wsdlLocation,
 String serviceName,
 String invokePort,
 String portTypeName,
 String operationName,
 String eventData)
throws Exception;

This invokeService method provides the implementation that makes use of Web
service invocation metadata and invokes the Web service using WSIF APIs. This
method can be overridden if a different implementation is required other than WSIF to
invoke Web services.

addWSSecurityHeader
protected void addWSSecurityHeader(ArrayList headersList) throws
Exception;

This method adds WS-Security compliant header to the SOAP request. The default
implementation through Java seeded rule function adds UsernameToken element to the
security header based on event parameters WFBES_SOAP_USERNAME,
WFBES_SOAP_PASSWORD_MOD, and WFBES_SOAP_PASSWORD_KEY. This method can
be overridden to add any WS-Security header or have custom logic to retrieve
username and password to build UsernameToken element. The well-formed XML
Element should be added to the ArrayList.

The following code snippet shows WS-Security added to a SOAP header:

11-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

try {
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder bldr = factory.newDocumentBuilder();
 Document doc = bldr.newDocument();

 Element sec = doc.createElement("wsse:Security");
 Attr attr = doc.createAttribute("xmlns:wsse");

attr.setValue("http://docs.oasis-open.org/wss/2004/01/oasis-200401-wssws
security-secext-1.0.xsd");
 sec.setAttributeNode(attr);
 doc.appendChild(sec);

 Element unt = doc.createElement("wsse:UsernameToken");
 sec.appendChild(unt);
 build XML message
 }
 catch (Exception e) {
 }
 headersList.add(doc.getDocumentElement());

setInputParts
protected void setInputParts(WSIFMessage inputMessage,Input input,String
eventData) throws Exception

This setInputParts method supports setting input part values such as header, body,
or other parts, that are defined for the Web service operation's input message. The
default implementation through Java seeded rule function adds the event data payload
as the body of the input message. It also adds any other parts provided as event
parameters in the triggering event.

The event parameters that contain input message parts must be identified by parameter
names with the following format:

WFBES_INPUT_<partname>

This method can be overridden to set specific input parts that you require or to set
values for RPC (remote procedure call) style Web service invocation.

Important: The service invocation framework supports invoking
document-based Web service only. The RPC style Web service
invocation is not naturally supported in this release unless you extend
this method to set input part values for RPC style.

The following code snippet shows how this method is used to set values for document
style Web service invocation:

Working With Oracle Workflow Business Event System to Invoke Web Services 11-51

protected void setInputParts(WSIFMessage inputMessage, Input input,
String eventData)
throws Exception {
 BusinessEvent event = this.getBusinessEvent();
 String bindingStyle = this.getBindingStyle();
 if (bindingStyle.equalsIgnoreCase("document") {
 String headerPartMsg =
event.getStringProperty("WFBES_INPUT_header");
 // header part
 inputMessage.setObjectPart("header",
getDocumentElement(headerPartMsg));
 // body part
 inputMessage.setObjectPart("body", getDocumentElement(eventData));
 else {
 // Web service style is RPC
 // Code can be added to set input parts for RPC style invocation
 }
}

Sample Codes
The following code shows how to extend the seeded Java rule function:

11-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

package oracle.apps.fnd.wf.bes;

import java.io.ByteArrayInputStream;

import java.util.ArrayList;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import oracle.apps.fnd.common.Log;
import oracle.apps.fnd.wf.bes.server.Subscription;
import oracle.apps.fnd.wf.common.WorkflowContext;

import org.apache.wsif.WSIFConstants;
import org.apache.wsif.WSIFMessage;
import org.apache.wsif.WSIFOperation;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class MyWebServiceInvoker
 extends WebServiceInvokerSubscription
 implements SubscriptionInterface
{

 private static final String CLASS_PREFIX =
 MyWebServiceInvoker.class.getName() + ".";

 public MyWebServiceInvoker()
 {
 }

 final protected String invokeService(String wsdlLocation,
 String serviceName,
 String invokePort,
 String portTypeName,
 String operationName,
 String eventData)
 throws Exception {
 super.preInvokeService(wsdlLocation, serviceName, invokePort,
 portTypeName, operationName, eventData);

 // Perform special pre invocation processing like updating application
 // state and so on.
 }

 final protected void postInvokeService(Subscription eo,
 BusinessEvent event,
 WorkflowContext context,
 String requestData,
 String responseData)
 throws Exception {

 super.postInvokeService(eo, event, context, requestData,
 responseData);

 // Perform special post invocation processing like updating application
 // state and so on.
 }

Working With Oracle Workflow Business Event System to Invoke Web Services 11-53

/**
 * Implementing addSOAPHeaders method to include custom header
 * required to invoke an EBS Web Service.
 */
 final protected void addSOAPHeaders(WSIFOperation operation)
 throws Exception {
 String METHOD_NAME = "addSOAPHeaders";
 mLog.write(CLASS_PREFIX + METHOD_NAME, "BEGIN", Log.PROCEDURE);

 WSIFMessage hdrMsg = operation.getContext();
 ArrayList hdr = new ArrayList();

 // Call seeded implementation to add WS-Security header
 super.addWSSecurityHeader(hdr);

 // Add my own Custom header
 mLog.write(CLASS_PREFIX + METHOD_NAME, "Adding Custom header",
 Log.STATEMENT);
 addMyCustomHeader(hdr);

 // Set the headers to WSIFOperation
 hdrMsg.setObjectPart(WSIFConstants.CONTEXT_REQUEST_SOAP_HEADERS,
 hdr);
 operation.setContext(hdrMsg);

 mLog.write(CLASS_PREFIX + METHOD_NAME, "END", Log.PROCEDURE);
 }

 final protected void addMyCustomHeader(ArrayList headersList)
 throws Exception {
 String METHOD_NAME = "addMyCustomHeader";
 // Adding special Custom Header to the WSIF's SOAP request
 String custHdr =
 "ns1:SOAHeader
 xmlns:ns1=\"http://xmlns.oracle.com/xdb/SYSTEM\" " +
 "env:mustUnderstand=\"0\"
 xmlns:env=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n" +
 " <ns1:MESSAGE_TYPE>XML</ns1:MESSAGE_TYPE>\n" +
 " <ns1:MESSAGE_STANDARD>OAG</ns1:MESSAGE_STANDARD>\n" +
 " <ns1:TRANSACTION_TYPE>PO</ns1:TRANSACTION_TYPE>\n" +
 " <ns1:TRANSACTION_SUBTYPE>PROCESS</ns1:TRANSACTION_SUBTYPE>\n" +
 " <ns1:DOCUMENT_NUMBER>123</ns1:DOCUMENT_NUMBER>\n" +
 " <ns1:PARTY_SITE_ID>4444</ns1:PARTY_SITE_ID>\n" +
 " </ns1:SOAHeader>\n";

 if (custHdr != null && !"".equals(custHdr)) {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder bldr = factory.newDocumentBuilder();
 Document doc = bldr.newDocument();

 doc = bldr.parse(new
 ByteArrayInputStream(custHdr.getBytes()));

 // Add the element to the Headers list
 headersList.add((Element)doc.getFirstChild());
 }
 catch (Exception e) {
 throw new BusinessEventException(

11-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

"Exception when creating header element - "+e.getMessage());
 }
 }
 mLog.write(CLASS_PREFIX + METHOD_NAME, "END", Log.PROCEDURE);
 }

}

Other Invocation Usage Considerations
While implementing the service invocation framework to invoke Web services, some
limitations need to be considered.

• WFBES_INPUT_<partname> parameter can only be passed at run time during the
event raise.

• The service invocation framework supports invoking only document-based Web
services.

• Support One-to-One relationship of event subscriptions

To successfully invoke Web services, each event should only have one subscription
(with 'Invoker Web Service' action type) associated with it. This one-to-one
relationship of event subscription is especially important in regards to synchronous
request - response service invocation.

For detailed information about implementation consideration on service invocation
framework, see Implementation Limitation and Consideration, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Integration Repository Annotation Standards A-1

A
Integration Repository Annotation

Standards

General Guidelines
The Oracle Integration Repository is a centralized repository that contains numerous
integration interface endpoints exposed by applications throughout the entire Oracle
E-Business Suite. The Integration Repository is populated by the parsing of annotated
source code files. Source code files are the "source of truth" for Integration Repository
metadata, and it is vitally important that they are annotated in a prescribed and
standardized fashion.

This section describes what you should know in general about Integration Repository
annotations, regardless of the source code file type that you are working with.

Annotation Syntax

Annotations are modifiers that contain an annotation type and zero or more
member-value pairs. Each member-value pair associates a value with a different
member of the annotation type.

The annotation syntax is similar to Javadoc syntax:

@NameSpace:TypeName keyString

@NameSpace:TypeName freeString

@NameSpace:TypeName keyString keyString keyString

@NameSpace:TypeName keyString freeString

@NameSpace:TypeName {inline annotation} {inline annotation}

Element Definitions

NameSpace identifies the group of annotations that you are using. It is case sensitive.
The annotations currently in use are in the rep namespace. Future annotations may be
introduced in different namespaces.

TypeName identifies the name of the annotation type. It is case sensitive. For

A-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

consistency across product teams, always use lowercase typenames.

keyString is the first word that follows the annotation. It is a whole string that
excludes spaces.

freeString is a string that follows the keystring. It may have spaces or inline
annotations. It is terminated at the beginning of the next annotation or at the end of the
documentation comment.

Format Requirement

In your source code file, repository annotations will appear as a Javadoc-style block of
comments.

Use the following general procedure. (If you are working in Java and your file already
has robust Javadoc comments, then in many cases you'll only need to add the
appropriate "@rep:" tags.)

• Choose which interfaces you will expose to the Integration Repository. Be mindful
that you can annotate interfaces as public, private, or internal, as well as active, obsolete
, deprecated, or planned.

Only interfaces that you annotate as public will appear in the external Integration
Repository UI; private and internal interfaces will appear in an internal-only Oracle
UI. Consequently, all interfaces that have previously been documented as public in
customer manuals should be defined as public in your source file annotations.

• In your source file, set off the beginning of the annotation block according to the
following conditional rule:

• For Java, insert "slash-star-star" characters (/**).

• For non-Java files, insert "slash-star-pound" characters (/*#).

• Enter a text description. Use complete sentences and standard English.

• Where applicable, add plain Javadoc tags such as @param and @return.

• Next, add "@rep:" tags such as @rep:scope and @rep:product.

• Optionally, add a nonpublishable comment using the @rep:comment annotation.
(Use for reminders, notes, and so on. The parsers skip this annotation.)

• End the annotation block with a "star-slash" (*/).

Refer to the following example. Note that the first line could alternatively be
slash-star-pound (/*#) if the source file was PL/SQL or another non-Java technology.

Integration Repository Annotation Standards A-3

/**
 * This is the first sentence of a description of a sample
 * interface. This description can span multiple lines.
 * Be careful for public interfaces, where the description is
 * displayed externally in the Integration Repository UI.
 * It should be reviewed for content as well as spelling and
 * grammar errors. Additionally, the first sentence of
 * the description should be a concise summary of the
 * interface or method, as the repository UI will display
 * the first sentence by itself.
 *
 * @param <param name> <parameter description>
 @rep:paraminfo {@rep:innertype <typeName>} {@rep:precision <value>}
{@rep:required}
 * @rep:scope <public | internal | private>
 * @rep:product <product short code>
 * @rep:displayname Sample Interface
 */

Annotation Syntax Checker and iLDT Generator

A syntax checker is available at the following directory:
$IAS_ORACLE_HOME/perl/bin/perl $FND_TOP/bin/irep_parser.pl

Details about the checker can be found by using the -h flag.

Class Level vs. Method Level

For the purpose of classifying annotation requirements, we are using loose definitions
of the terms "class" and "method". In the context of interface annotations, PL/SQL
packages are thought of as classes, and PL/SQL functions or procedures are thought of
as methods. For some technologies there are different annotation requirements at the
class level and the method level. See the "Required" and "Optional" annotation lists
below for details.

Concurrent Program Considerations

In cases where a Concurrent Program (CP) is implemented with an underlying
technology that is also an interface type (such as a PL/SQL or Java CP) there may be
some confusion as to what needs to be annotated.

Assuming that you intend to have the Concurrent Program exposed by the repository,
you should annotate the Concurrent Program. Do not annotate the underlying
implementation (such as PL/SQL file) unless you intend to expose it separately from the
concurrent program in the repository.

The annotation standards for the following integration interfaces are discussed in this
chapter:

• Java Annotations, page A-4

• PL/SQL Annotations, page A-11

• Concurrent Program Annotations, page A-17

• XML Gateway Annotations, page A-19

A-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Business Event Annotations, page A-31

• Business Entity Annotations, page A-37

• Composite Service - BPEL Annotations, page A-105

• Glossary of Annotations, page A-112

Java Annotations
Users will place their annotations in Javadoc comments, immediately before the
declaration of the class or method.

Required Class-level Annotations
• must begin with description sentence(s), page A-112

• rep:scope, page A-115

• rep:product, page A-116

• rep:implementation, page A-116 (only required for Java business service objects; not
required for plain Java or SDOs)

• rep:displayname, page A-117

• rep:service, page A-135

• rep:servicedoc, page A-136

Optional Class-level Annotations
• link, page A-120

• see, page A-121

• rep:lifecycle, page A-119

• rep:category, page A-125

Use BUSINESS_ENTITY at the class level only if all underlying methods have the
same business entity. In those cases, you do not need to repeat the annotation at the
method level.

• rep:compatibility, page A-119

• rep:standard, page A-128

Integration Repository Annotation Standards A-5

• rep:ihelp, page A-122

• rep:metalink, page A-123

• rep:doccd, page A-124

• rep:synchronicity, page A-137

Required Method-level Annotations
• must begin with description sentence(s), page A-112

• param, page A-130

Use only when applicable and when other tags such as @see and @rep:metalink
do not provide parameter explanations.

• return, page A-131 (if applicable)

• rep:paraminfo, page A-131

• rep:displayname, page A-117

• rep:businessevent, page A-134 (if an event is raised)

Optional Method-level Annotations
• link, page A-120

• see, page A-121

• rep:scope, page A-115

• rep:lifecycle, page A-119

• rep:compatibility, page A-119

• rep:category, page A-125

Use BUSINESS_ENTITY at the method level only when a class methods have
heterogeneous business entities.

• rep:ihelp, page A-122

• rep:metalink, page A-123

• rep:doccd, page A-124

• rep:appscontext, page A-138

A-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• rep:synchronicity, page A-137

• rep:primaryinstance, page A-139

Template
You can use the following template when annotating Business Service Objects:
Interface Template:

 /**
 * < Interface description
 * ...
 * >
 *
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:product <product code>
 * @rep:compatibility <S|N>
 * @rep:implementation <full implementation class name>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 */

Methods Template:

 /**
 * < Method description
 * ...
 * >
 *
 * @param <paramName> < Parameter description
 * ... >
 * @rep:paraminfo {@rep:innertype <typeName>} {@rep:precision <value>}
{@rep:required}
 *
 *
 * @return < Parameter description
 * ... >
 * @rep:paraminfo {@rep:innertype <typeName>} {@rep:precision <value>}
{@rep:required}
 *
 *
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:compatibility <S|N>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 * @rep:businessevent <businessEventName>
 */

Examples
For reference, here is an example of an annotated Purchase Order service:

Integration Repository Annotation Standards A-7

...
package oracle.apps.po.tutorial;

import oracle.jbo.domain.Number;

import oracle.svc.data.DataList;
import oracle.svc.data.DataService;
import oracle.svc.msg.MessageService;

import oracle.apps.fnd.common.VersionInfo;

/**
 * The Purchase Order service lets you to view, update, acknowledge and
 * approve purchase orders. It also lets you receive items, and obtain
 * pricing by line item.
 *
 * @see oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderSDO
 * @see
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderAcknowledgements
SDO
 * @see
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderReceiptsSDO
 *
 * @rep:scope public
 * @rep:displayname Purchase Order Service
 * @rep:implementation
oracle.apps.fnd.framework.toolbox.tutorial.server.PurchaseOrderSAMImpl
 * @rep:product PO
 * @rep:category BUSINESS_ENTITY PO_PURCHASE_ORDER
 * @rep:service
 */
public interface PurchaseOrder extends DataService, MessageService
{
 public static final String RCS_ID="$Header$";
 public static final boolean RCS_ID_RECORDED =
 VersionInfo.recordClassVersion(RCS_ID,
"oracle.apps.fnd.framework.toolbox.tutorial");

 /**
 * Approves a purchase order.
 *
 * @param purchaseOrder purchase order unique identifier
 * @rep:paraminfo {@rep:required}
 *
 * @rep:scope public
 * @rep:displayname Approve Purchase Orders
 * @rep:businessevent oracle.apps.po.approve
 */
 public void approvePurchaseOrder(Number poNumber);

 /**
 * Acknowledges purchase orders, including whether the terms have
 * been accepted or not. You can also provide updated line
 * item pricing and shipment promise dates with the acknowledgement.
 *
 * @param purchaseOrders list of purchase order objects
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderAcknowledgements
SDO} {@required}
 *
 * @rep:scope public

A-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

* @rep:displayname Receive Purchase Order Items
 * @rep:businessevent oracle.apps.po.acknowledge
 */
 public void acknowledgePurchaseOrders(DataList purchaseOrders);

 /**
 * Receives purchase order items. For each given purchase order
 * shipment, indicate the quantity to be received and, optionally,
 * the receipt date if today's date is not an acceptable receipt date.
 *
 * @param purchaseOrders list of purchase order objects
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderReceiptsSDO}
{@required}
 *
 * @rep:scope public
 * @rep:displayname Receive Purchase Order Items
 * @rep:businessevent oracle.apps.po.receive_item
 */
 public void receiveItems(DataList purchaseOrders);

 /**
 * Gets the price for a purchase order line item.
 *
 * @param poNumber purchase order unique identifier
 * @rep:paraminfo {@required}
 * @param lineNumber purchase order line unique identifier
 * @rep:paraminfo {@required}
 * @return the item price for the given purchase order line
 *
 * @rep:scope public
 * @rep:displayname Get Purchase Order Line Item Price
 */
 public Number getItemPrice(Number poNumber,
 Number lineNumber);

Here is an example of an annotated Purchase Order SDO data object:

Integration Repository Annotation Standards A-9

/*==
=====+
 | Copyright (c) 2004 Oracle Corporation, Redwood Shores, CA, USA
|
 | All rights reserved.
|

+===
====+
 | HISTORY
|

+===
====*/
package oracle.apps.po.tutorial;

import oracle.jbo.domain.Number;

import oracle.svc.data.DataObjectImpl;
import oracle.svc.data.DataList;

/**
 * The Purchase Order Data Object holds the purchase order data
including
 * nested data objects such as lines and shipments.
 *
 * @see oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderLineSDO
 *
 * @rep:scope public
 * @rep:displayname Purchase Order Data Object
 * @rep:product PO
 * @rep:category BUSINESS_ENTITY PO_PURCHASE_ORDER
 * @rep:servicedoc
 */
public class PurchaseOrderSDO extends DataObjectImpl
{
 public PurchaseOrderSDO ()
 {
 super();
 }

 /**
 * Returns the purchase order header id.
 *
 * @return purchase order header id.
 */
 public Number getHeaderId()
 {
 return (Number)getAttribute("HeaderId");
 }

 /**
 * Sets the purchase order header id.
 *
 * @param value purchase order header id.
 * @rep:paraminfo {@rep:precision 5} {@rep:required}
 */
 public void setHeaderId(Number value)
 {
 setAttribute("HeaderId", value);
 }

A-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

 /**
 * Returns the purchase order name.
 *
 * @return purchase order name.
 * @rep:paraminfo {rep:precision 80}
 */
 public String getName()
 {
 return (String)getAttribute("Name");
 }

 /**
 * Sets the purchase order header name.
 *
 * @param value purchase order header name.
 * @rep:paraminfo {@rep:precision 80}
 */
 public void setName(String value)
 {
 setAttribute("Name", value);
 }

 /**
 * Returns the purchase order description.
 *
 * @return purchase order description.
 * @rep:paraminfo {rep:precision 120}
 */
 public String getDescription()
 {
 return (String)getAttribute("Description");
 }

 /**
 * Sets the purchase order header description.
 *
 * @param value purchase order header description.
 * @rep:paraminfo {@rep:precision 80}
 */
 public void setDescription(String value)
 {
 setAttribute("Description", value);
 }

 /**
 * @return the purchase order lines DataList.
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderLineSDO}
 */
 public DataList getLines()
 {
 return (DataList)getAttribute("Lines");
 }

 /**
 * @param list the putrchase order lines DataList.
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderLineSDO}
 */
 public void setLines(DataList list)
 {

Integration Repository Annotation Standards A-11

setAttribute("Lines", list);
 }

}

PL/SQL Annotations
You can annotate *.pls and *.pkh files.

For PL/SQL packages, only the package spec should be annotated. Do not annotate the
body.

Before annotating, make sure that no comments beginning with /*# are present. The
"slash-star-pound" characters are used to set off repository annotations, and will result
in either an error or undesirable behavior if used with normal comments.

To annotate, use a text editor (such as emacs or vi.) to edit the file. For each package,
begin your annotations at the second line immediately after the CREATE OR REPLACE
PACKAGE <package_name> AS line. (The first line after CREATE OR REPLACE
PACKAGE <package_name> AS should be the /* $Header: $ */ line.)

Required Class-level Annotations
• must begin with description sentence(s), page A-112

• rep:scope, page A-115

• rep:product, page A-116

• rep:displayname, page A-117

• rep:category, page A-125

Use BUSINESS_ENTITY at the class level only if all underlying methods have the
same business entity. In those cases, you do not need to repeat the annotation at the
method level.

• rep:businessevent, page A-134 (if an event is raised)

Optional Class-level Annotations
• link, page A-120

• see, page A-121

• rep:lifecycle, page A-119

• rep:compatibility, page A-119

• rep:ihelp, page A-122

A-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• rep:metalink, page A-123

• rep:doccd, page A-124

Required Method-level Annotations
• must begin with description sentence(s), page A-112

• param, page A-130

Use only when applicable and when other tags such as @see and @rep:metalink
do not provide parameter explanations.

• return, page A-131 (if applicable)

• rep:displayname, page A-117

• rep:paraminfo, page A-131

• rep:businessevent, page A-134 (if an event is raised)

Optional Method-level Annotations
• link, page A-120

• see, page A-121

• rep:scope, page A-115

• rep:lifecycle, page A-119

• rep:compatibility, page A-119

• rep:category, page A-125

Use BUSINESS_ENTITY at the method level only when a class methods have
heterogeneous business entities.

• rep:ihelp, page A-122

• rep:metalink, page A-123

• rep:doccd, page A-124

• rep:appscontext, page A-138

• rep:primaryinstance, page A-139

Integration Repository Annotation Standards A-13

Template
You can use the following template when annotating PL/SQL files:

A-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

.

.

.
CREATE OR REPLACE PACKAGE <package name> AS
/* $Header: $ */
/*#
 * <Put your long package description here
 * it can span multiple lines>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:displayname <display name>
 * @rep:compatibility <compatibility code>
 * @rep:businessevent <Business event name>
 * @rep:category BUSINESS_ENTITY <entity name>
 */

 .
 .
 .

/**
 * <Put your long procedure description here
 * it can span multiple lines>
 * @param <param name 1> <param description 1>
 * @param <param name 2> <param description 2>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:displayname <display name>
 * @rep:compatibility <compatibility code>
 * @rep:businessevent <Business event name>
 */
PROCEDURE <procedure name> (. . .);

.

.

.

/**
 * <Put your long function description here
 * it can span multiple lines>
 * @param <param name 1> <param description 1>
 * @param <param name 2> <param description 2>
 * @return <return description>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:displayname <display name>
 * @rep:compatibility <compatibility code>
 * @rep:businessevent <Business event name>
 */
FUNCTION <function name> (. . .);

.

.

.

END <package name>;

Integration Repository Annotation Standards A-15

/

commit;
exit;

Example
For reference, here is an example of an annotated PL/SQL file:

A-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

set verify off
whenever sqlerror exit failure rollback;
whenever oserror exit failure rollback;

create or replace package WF_ENGINE as

/*#
 * This is the public interface for the Workflow engine. It allows
 * execution of various WF engine functions.
 * @rep:scope public
 * @rep:product WF
 * @rep:displayname Workflow Engine
 * @rep:lifecycle active
 * @rep:compatibility S
 * @rep:category BUSINESS_ENTITY WF_WORKFLOW_ENGINE
 */

g_nid number; -- current notification id
g_text varchar2(2000); -- text information

--
-- AddItemAttr (PUBLIC)
-- Add a new unvalidated run-time item attribute.
-- IN:
-- itemtype - item type
-- itemkey - item key
-- aname - attribute name
-- text_value - add text value to it if provided.
-- number_value - add number value to it if provided.
-- date_value - add date value to it if provided.
-- NOTE:
-- The new attribute has no type associated. Get/set usages of the
-- attribute must insure type consistency.
--
/*#
 * Adds Item Attribute
 * @param itemtype item type
 * @param itemkey item key
 * @param aname attribute name
 * @param text_value add text value to it if provided.
 * @param number_value add number value to it if provided.
 * @param date_value add date value to it if provided.
 * @rep:scope public
 * @rep:lifecycle active
 * @rep:displayname Add Item Attribute
 */
procedure AddItemAttr(itemtype in varchar2,
 itemkey in varchar2,
 aname in varchar2,
 text_value in varchar2 default null,
 number_value in number default null,
 date_value in date default null);

--
-- AddItemAttrTextArray (PUBLIC)
-- Add an array of new unvalidated run-time item attributes of type
text.

Integration Repository Annotation Standards A-17

-- IN:
-- itemtype - item type
-- itemkey - item key
-- aname - Array of Names
-- avalue - Array of New values for attribute
-- NOTE:
-- The new attributes have no type associated. Get/set usages of
these
-- attributes must insure type consistency.
--

END WF_ENGINE;
/

commit;
exit;

Concurrent Program Annotations
To annotate a concurrent program, select the System Administration responsibility and
click on OA Framework based Define Concurrent Program page. Query the Concurrent
Program and go to the Annotations field. Enter your annotations there and commit to
save your work.

After annotating and committing, you will need to use FNDLOAD to recreate the LDTs
for your concurrent programs.

Required Class-level Annotations
• must begin with description sentence(s), page A-112

The annotation takes precedence over the concurrent program own definition in the
LDT. One or the other must exist; otherwise, interface generation will fail.

• rep:scope, page A-115

• rep:product, page A-116

• rep:displayname, page A-117

The annotation takes precedence over the concurrent program own definition in the
LDT. One or the other must exist; otherwise, interface generation will fail.

• rep:category, page A-125

• rep:businessevent, page A-134 (if an event is raised)

Note: There is no required method-level annotations for concurrent
programs.

A-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Optional Class-level Annotations
• link, page A-120

• see, page A-121

• rep:lifecycle, page A-119

• rep:compatibility, page A-119

• rep:ihelp, page A-122

• rep:metalink, page A-123

• rep:doccd, page A-124

• rep:usestable, page A-127

• rep:usesmap, page A-140

Note: There is no optional method-level annotations for concurrent
programs.

Template
You can use the following template when annotating Concurrent Programs:
/*#
 * <Put your long description here
 * it can span multiple lines>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:category OPEN_INTERFACE <open interface name> <sequence_num>
 * @rep:usestable <table or view name> <sequence_num> <direction>
 * @rep:category BUSINESS_ENTITY <BO type>
 * @rep:category <other category> <other value>
 * @rep:businessevent <name of business event>
 */

Example
For reference, here is an example of an annotated Concurrent Program:

Integration Repository Annotation Standards A-19

/**
 * Executes the Open Interface for Accounts Payable Invoices. It uses
the
 * following tables: AP_INVOICES_INTERFACE, AP_INVOICE_LINES_INTERFACE.
 * @rep:scope public
 * @rep:product AP
 * @rep:lifecycle active
 * @rep:category OPEN_INTERFACES AP_INVOICES_INTERFACE 1
 * @rep:usestable AP_INVOICES_INTERFACE 2 IN
 * @rep:usestable AP_INVOICE_LINES_INTERFACE 3 IN
 * @rep:category BUSINESS_ENTITY AP_INVOICE
 */

XML Gateway Annotations
Use the following procedure to annotate an XML Gateway map for transaction
information:

1. Check out an existing map from source code and open it in Message Designer.

2. Find out which Internal Transaction Type, Subtype, Standard, and Direction this
particular map is associated with. Note that this entry must exist in XML Gateway
to be loaded into the Integration Repository.

Click Message Designer File.... > Properties and select the Map tab. Annotate the
map using the Map Description field after your existing description. Be sure to
enter the @rep:interface annotation with <Internal Transaction

A-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Type>:<Subtype>, @rep:standard, and @rep:direction accordingly.

(Optional) If this map is designed to fully support a given standard such as OAG,
then set @rep:standard to the standard, version and spec name. However, if the
map is designed with the intention of supporting standards through additional
custom transformations (such as, it is "ready" for the standard), then use the
rep:category_STANDARD_READY, page A-125 annotation to denote this.

• A given Internal Transaction Type and Subtype should have
only one map seeded by product teams for a given Standard
and Direction (regardless of Party Type). Additional maps
containing the same types in the annotations would be rejected
and treated as errors. Note that there may exist different maps
based on the External Transaction Type and Subtype, but as
these are meant to be Trading Partner-specific, we do not enter
them in the repository. In future releases, we will enforce these
rules natively within XML Gateway.

• If a single map is reused in more than one Internal Transaction
Type and Subtype, then you may enter multiple annotations,
each within its own comment block (i.e. between /*# ... */). The
parser will create entries in the Integration Repository for each
annotation set. Although this capability is supported, you are

Integration Repository Annotation Standards A-21

encouraged to use two different maps to accommodate
potentially changing interfaces. See the following example of
map reuse:

Int T Int ST D Ext T Ext ST STD Party
Type

AR Invoice O Invoice Process OAG C

AR Credit O Invoice Process OAG C

AR Debit O Invoice Process OAG C

In this scenario, since the external representation does not
change, the same map can be reused. However, the internal
processing and authorization considerations may differ based
on the Internal Transaction Type and Subtype. In this case, the
map can have three annotation blocks, one for each Internal
Transaction Type and Subtype; such as. AR-Invoice, AR-Credit,
and AR-Debit.

• Parameters are typically used in outbound maps for specifying
keys used in queries to produce outbound data. Inbound maps
do not have parameters.

3. Save the annotated map, check it into source control, and release as a patch as
usual. The annotations are updated as part of the Integration Repository loaders.

Required Class-level Annotations
• must begin with description sentence(s), page A-112

• rep:scope, page A-115

• rep:product, page A-116

• rep:displayname, page A-117

• rep:category, page A-125

• rep:standard, page A-128

• rep:interface, page A-129

A-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• rep:businessevent, page A-134 (if an event is raised)

• rep:direction, page A-135

Note: There is no required method-level annotations for XML Gateway.

Optional Class-level Annotations
• link, page A-120

• see, page A-121

• param, page A-130

Use only when applicable and when other tags such as @see and @rep:metalink
do not provide parameter explanations.

• rep:paraminfo, page A-131

• rep:lifecycle, page A-119

• rep:compatibility, page A-119

• rep:ihelp, page A-122

• rep:metalink, page A-123

• rep:doccd, page A-124

• rep:synchronicity, page A-137

Note: There is no optional method-level annotations for XML Gateway.

Template
You can use the following template when annotating XML Gateway:

Integration Repository Annotation Standards A-23

Sample Inbound Map Annotation

 /*#
 * Sample map annotation public description.
 *
 * @rep:interface <transaction_type:sub_type>
 * @rep:standard <OAG|cXML> <7.2|7.3> <specname>
 * @rep:direction IN
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:product <product code>
 * @rep:compatibility <S|N>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 * @rep:category STANDARD_READY <standard:version:specification>
 * @rep:businessevent <businessEventName>
 */

Sample Outbound Map Annotation

 /*#
 * Sample map annotation public description.
 *
 * @param <paramName> <Parameter description>
 * @rep:paraminfo {@rep:required}
 *
 * @rep:interface <transaction_type:sub_type>
 * @rep:standard <OAG|cXML> <7.2|7.3> <specname>
 * @rep:direction OUT
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:product <product code>
 * @rep:compatibility <S|N>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 * @rep:category STANDARD_READY <standard:version:specification>
 * @rep:businessevent <businessEventName>
 */

Important Note

A given map should be unique to a given Internal Transaction Type /
Subtype, Standard and Direction. This is because the External
Transaction Type / Subtype are meant for Trading Partner specific values
to be specified in the Trading Partner Details form and the entries in
the Integration Repository are NOT Trading Partner specific. Moreover,
there should not be a need to change maps on a per Trading Partner
basis, and if it does, then those maps should not be part of the
Integration Repository entries.
Given the current data model however, it is possible that a given map
could differ by External Transaction Type / Subtype and even by Trading
Partner. Going forward, this would not be allowed for seeded maps and
the Integration Repository parser would return an error if it finds
multiple maps which point to the same Internal Transaction Type /
Subtype.
Additional Notes

 * Parameters are typically used in outbound maps for specifying keys
used in queries to produce outbound data

A-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Example
For reference, here is an example of an annotated XML Gateway interface:

Integration Repository Annotation Standards A-25

<?xml version="1.0" encoding="UTF-8"?>
<!-- $Header: MapPrinter.java 115.12 2009/06/13 21:17:58 mtai noship $
-->
<!-- WARNING: This file should only be edited using Message Designer -->
<?xGateway mapType="MAP" ?>
<?xGatewayVersion designerVersion="2.6.3.0.0" ?>
<ECX_MAPPINGS>
<MAP_CODE>Create Purchase Order</MAP_CODE>
<DESCRIPTION>This is a sample map to demonstrate annotations in the
Interface Repository.
 /*#
 * Sample map annotation public description.
 *
 * @rep:interface PO:POC
 * @rep:standard OAG 7.2 Process_PO_001
 * @rep:direction IN
 * @rep:scope public
 * @rep:displayname Create Purchase Order
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:category BUSINESS_OBJECT PURCHASE_ORDER
 * @rep:businessevent oracle.apps.po.received
 */
 /*#
 * Sample map annotation public description for reused transaction
 *
 * @rep:interface PO:POU
 * @rep:standard OAG 7.2 Process_PO_001
 * @rep:direction IN
 * @rep:scope public
 * @rep:displayname Update Purchase Order
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:category BUSINESS_OBJECT PURCHASE_ORDER
 * @rep:businessevent oracle.apps.po.received
 */
</DESCRIPTION>
<OBJECT_ID_SOURCE>1</OBJECT_ID_SOURCE>
<OBJECT_ID_TARGET>2</OBJECT_ID_TARGET>
<ENABLED>Y</ENABLED>
<ECX_MAJOR_VERSION>2</ECX_MAJOR_VERSION>
<ECX_MINOR_VERSION>6</ECX_MINOR_VERSION>
<ECX_OBJECTS>
<OBJECT_ID>1</OBJECT_ID>
<OBJECT_NAME>SRC</OBJECT_NAME>
<OBJECT_TYPE>XML</OBJECT_TYPE>
<OBJECT_DESCRIPTION>Source Definition</OBJECT_DESCRIPTION>
<OBJECT_STANDARD>OAG</OBJECT_STANDARD>
<ROOT_ELEMENT>INVENTORY</ROOT_ELEMENT>

<ECX_OBJECT_LEVELS>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<OBJECT_ID>1</OBJECT_ID>
<OBJECT_LEVEL>0</OBJECT_LEVEL>
<OBJECT_LEVEL_NAME>INVENTORY</OBJECT_LEVEL_NAME>
<PARENT_LEVEL>0</PARENT_LEVEL>
<ENABLED>Y</ENABLED>
<ECX_OBJECT_ATTRIBUTES>

A-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>0</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>INVENTORY</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>

<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>Y</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>VERSION_INFO</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>SAVED_WITH</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>3</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>MINIMUM_VER</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>4</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME_LIST</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>

Integration Repository Annotation Standards A-27

<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>5</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>4</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>4</HAS_ATTRIBUTES>
<LEAF_NODE>0</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>6</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>NAME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>7</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>LOC</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>8</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>TYPE</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>

A-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>9</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>IDX</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
</ECX_OBJECT_LEVELS>
</ECX_OBJECTS>
<ECX_OBJECTS>
<OBJECT_ID>2</OBJECT_ID>
<OBJECT_NAME>TGT</OBJECT_NAME>
<OBJECT_TYPE>XML</OBJECT_TYPE>
<OBJECT_DESCRIPTION>Target Definition</OBJECT_DESCRIPTION>
<OBJECT_STANDARD>OAG</OBJECT_STANDARD>
<ROOT_ELEMENT>INVENTORY</ROOT_ELEMENT>

<ECX_OBJECT_LEVELS>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<OBJECT_ID>2</OBJECT_ID>
<OBJECT_LEVEL>0</OBJECT_LEVEL>
<OBJECT_LEVEL_NAME>INVENTORY</OBJECT_LEVEL_NAME>
<PARENT_LEVEL>0</PARENT_LEVEL>
<ENABLED>Y</ENABLED>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>0</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>INVENTORY</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG`

<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>Y</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>VERSION_INFO</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>

Integration Repository Annotation Standards A-29

<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>SAVED_WITH</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>3</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>MINIMUM_VER</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>4</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME_LIST</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>5</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>4</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>4</HAS_ATTRIBUTES>
<LEAF_NODE>0</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>

A-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>6</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>NAME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>7</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>LOC</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>8</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>TYPE</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>9</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>IDX</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
</ECX_OBJECT_LEVELS>
</ECX_OBJECTS>
</ECX_MAPPINGS>
<SCRIPT SRC="/oracle_smp_chronos/oracle_smp_chronos.js"></SCRIPT>

Integration Repository Annotation Standards A-31

Business Event Annotations
This section describes what you should know about Integration Repository annotations
for business events, and includes the following topics:

• Annotating Business Events

• Annotations for Business Events - Syntax

• Required Annotations

• Optional Annotations

• Template

• Example

Annotating Business Events
• You should annotate business events in *.wfx files.

• You should annotate only events. Subscriptions need not be annotated; they will
not be available in Integration Repository.

• Before annotating, make sure that no comments beginning with /*# are present.
These "slash-star-pound" characters are used to mark the start of repository
annotations, and will produce errors or unspecified behavior if used in normal
comments.

• To annotate, use a text editor such as emacs or vi to edit the file.

• In the .wfx file, place the annotations within the <IREP_ANNOTATION> tag for the
business event. Note that the <IREP_ANNOTATION> tag is a child node of the
<WF_EVENTS> tag.

• For .wfx files having multiple business event definitions, each of the business event
definitions should be separately annotated. That is, you should place the annotation
within an <IREP_ANNOTATION> tag for the appropriate business events.

• Enter a meaningful description that covers the condition under which the business
event is raised, and the UI action that invokes the business event.

• Define product codes in FND_APPLICATION.

• Use existing business entities for your events. For the list of existing business
entities, see Business Entity Annotation Guidelines, page A-37.

A-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• If you decide not to annotate or publish the event after all, you should remove the
annotation only, and not the associated tags.

The presence of either the <IREP_ANNOTATION/> tag or
<IREP_ANNOTATION></IREP_ANNOTATION> tag is an indication to the loader
that the business event has been reviewed for annotation and does not need to be
published to integration repository. The next time the user downloads these events,
the loader will insert empty <IREP_ANNOTATION> tags.

• If you remove the entire <IREP_ANNOTATION> tag for the business event and then
upload it, on a subsequent download the loader will insert a partially filled
annotation template for the business event.

Annotations for Business Events - Syntax
The annotations for business events are:
<IREP_ANNOTATION>
/*#
* This event is raised after the Purchase Order has been pushed
* to Oracle Order management open interface tables. This event
* will start the workflow OEOI/R_OEOI_ORDER_IMPORT to import the
* order.
* @rep:scope public
* @rep:displayname OM Generic Inbound Event
* @rep:product ONT
* @rep:category BUSINESS_ENTITY ONT_SALES_ORDER
*/
</IREP_ANNOTATION>

Refer to General Guidelines for Annotations, page A-1 for details of element definitions.

Required Annotations
Follow the links below to view syntax and usage of each annotation.

• Must begin with description sentence(s)

• rep:displayname, page A-117

• rep:scope, page A-115

• rep:product, page A-116

• rep:category BUSINESS_ENTITY, page A-125

Optional Annotations
• link, page A-120

• see, page A-121

• rep:lifecycle, page A-119

Integration Repository Annotation Standards A-33

• rep:compatibility, page A-119

• rep:ihelp, page A-122

• rep:metalink, page A-123

• rep:doccd, page A-124

Template
You can use this template when annotating .wfx files.

A-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

.

.

.

<oracle.apps.wf.event.all.sync>
.
.
.
<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>...</VERSION>
 <GUID>....</GUID>
 <NAME>event name</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_NAME> ... </OWNER_NAME>
 <OWNER_TAG>...</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>...</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>..</LICENSED_FLAG>
 <DISPLAY_NAME>...</DISPLAY_NAME>
 <DESCRIPTION> Description for business event </DESCRIPTION>
 <IREP_ANNOTATION>
 /*#
 * Put your long package description here; it can span multiple lines.
 *
 * @rep:scope <scope>
 * @rep:displayname <display name>
 * @rep:product <product or pseudoproduct short code>
 * @rep:category BUSINESS_ENTITY <entity name>
 */
 </IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>

.

.

.

<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>...</VERSION>
 <GUID>....</GUID>
 <NAME>event name</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_NAME> ... </OWNER_NAME>
 <OWNER_TAG>...</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>...</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>..</LICENSED_FLAG>
 <DISPLAY_NAME>...</DISPLAY_NAME>
 <DESCRIPTION> Description for business event </DESCRIPTION>
 <IREP_ANNOTATION>
 /*#
 * Put your long package description here; it can span multiple lines.
 *
 * @rep:scope <scope>
 * @rep:displayname <display name>
 * @rep:product <product or pseudoproduct short code>

Integration Repository Annotation Standards A-35

* @rep:category BUSINESS_ENTITY <entity name>
 */
 </IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>

.

.

.
</oracle.apps.wf.event.all.sync>

Example
For reference, here is an example of an annotated .wfx file:

A-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- $Header: oeevtname.wfx 120.0 2005/06/01 23:11:59 appldev noship
$ -->
- <!-- dbdrv: exec java oracle/apps/fnd/wf WFXLoad.class java
&phase=daa+38 \ -->
- <!-- dbdrv: checkfile(115.2=120.0):~PROD:~PATH:~FILE \ -->
- <!-- dbdrv: -u &un_apps &pw_apps &jdbc_db_addr &jdbc_protocol US \
-->
- <!-- dbdrv: &fullpath_~PROD_~PATH_~FILE -->
- <oracle.apps.wf.event.all.sync>
- <ExternalElement>
- <OraTranslatibility>
- <XlatElement Name="WF_EVENTS">
- <XlatID>
 <Key>NAME</Key>
 </XlatID>
 <XlatElement Name="DISPLAY_NAME" MaxLen="80" Expansion="50" />
- <XlatID>
 <Key Type="CONSTANT">DISPLAY_NAME</Key>
 </XlatID>
 <XlatElement Name="DESCRIPTION" MaxLen="2000" Expansion="50" />
- <XlatID>
 <Key Type="CONSTANT">DESCRIPTION</Key>
 </XlatID>
 </XlatElement>
 </OraTranslatibility>
 </ExternalElement>
- <WF_TABLE_DATA>
+ <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>A3BBD9D401776AE4E0340800208ACA52</GUID>
 <NAME>oracle.apps.ont.oi.po_ack.create</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION />
 <OWNER_NAME>Oracle Order Management</OWNER_NAME>
 <OWNER_TAG>ONT</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>L</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>
 <DISPLAY_NAME>Event for 3A4 Outbound Acknowledgment</DISPLAY_NAME>
 <DESCRIPTION>Event for 3A4 Outbound Acknowledgment</DESCRIPTION>
 <IREP_ANNOTATION>/*# * This event confirms the buyer of the results of
order import. This event will start the workflow
OEOA/R_OEOA_SEND_ACKNOWLEDGMENT. * * @rep:scope public *
@rep:displayname Event for 3A4 Outbound Acknowledgment * @rep:product
ONT * @rep:category BUSINESS_ENTITY ONT_SALES_ORDER */</IREP_ANNOTATION>

 </WF_EVENTS>
 </WF_TABLE_DATA>
- <WF_TABLE_DATA>
- <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>9B8BF9DB705D09C9E0340800208ACA52</GUID>
 <NAME>oracle.apps.ont.oi.po_inbound.create</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION />
 <OWNER_NAME>Oracle Order Management</OWNER_NAME>
 <OWNER_TAG>ONT</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>L</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>

Integration Repository Annotation Standards A-37

<DISPLAY_NAME>OM Generic Inbound Event</DISPLAY_NAME>
 <DESCRIPTION>OM Generic Inbound Event</DESCRIPTION>
 <IREP_ANNOTATION>/*# * This event is raised after the Purchase Order
has been pushed to Oracle Order management open interface tables. This
event will start the workflow OEOI/R_OEOI_ORDER_IMPORT to import the
order. * * @rep:direction OUT * @rep:scope public * @rep:displayname OM
Generic Inbound Event * @rep:lifecycle active * @rep:product ONT *
@rep:compatibility S * @rep:category BUSINESS_ENTITY ONT_SALES_ORDER
*/</IREP_ANNOTATION>
 </WF_EVENTS>
 </WF_TABLE_DATA>
 </oracle.apps.wf.event.all.sync>

Business Entity Annotation Guidelines
Business entities are things that either perform business activities or have business
activities performed on them. Account numbers, employees, purchase orders,
customers, and receipts are all examples of business entities.

What Is the Importance of Business Entities?

Business entities are highly desired search criteria in the context of the Integration
Repository. The design of the Integration Repository UI includes "browse by business
entity" functionality.

Where Do Business Entities Appear in Repository Annotations?

The rep:category BUSINESS_ENTITY annotation is where you associate a given
interface with a business entity. For a general description of the rep:category
annotation, see rep:category, page A-125.

Note: In certain cases where the entity's display name itself is
sufficiently self-descriptive, it can serve as the description as well.

Existing Business Entities

Custom integration interfaces can use only seeded or existing business entities.

Note: Integration Repository currently does not support the creation of
custom Product Family and custom Business Entity.

The following table lists the existing business entities:

List of Business Entities

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AHL_DOCUMENT Document Electronic Document or
Document Reference

A-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AHL_ITEM_COMPOSITION Tracked Item Composition It is the list of item groups or
non-tracked items that a
tracked item is composed of.

AHL_ITEM_GROUP Alternate Item Group A group of similar items
where one can be
interchanged for another
while performing
maintenance.

AHL_MAINT_OPERATION Maintenance Operation It defines resource and
material requirements. It is
basic definition of work.

AHL_MAINT_REQUIREME
NT

Maintenance Requirement It is maintenance requirement
definition. It defines routes,
applicability on item or unit
instances. It also defines
frequency based on time and
counters.

AHL_MAINT_ROUTE Maintenance Route It contains set of operations,
and defines dispositions,
resource and material
requirements.

AHL_MAINT_VISIT Maintenance Visit It connects an unit or item
instance with a block of tasks.
It is an organization and
department where the
maintenance work takes
place, and when the work is
to be accomplished.

AHL_MAINT_WORKORDER Maintenance Workorder Maintenance Workorder with
a schedule

AHL_MASTER_CONFIG Master Configuration A Master Configuration
models the structure of an
electromechanical system
assembly.

Integration Repository Annotation Standards A-39

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AHL_OSP_ORDER Outside Service Order An order that contains the
information required to
service parts by a third party
organization.

AHL_PROD_CLASS Product Classification It is the categorization of units
or items pertaining to
maintenance and usage.

AHL_UNIT_CONFIG Unit Configuration An Unit Configuration
describes the structure of an
assembled electromechanical
system.

AHL_UNIT_EFFECTIVITY Unit Maintenance Plan
Schedule

Unit Maintenance Plan with a
due date

AHL_UNIT_SCHEDULES Unit Usage Event Event describes usage of a
configured unit for a specific
time period, such as an
airplane flight.

AME_ACTION Approval Action Approval Action specifies an
action to be performed, if the
conditions of an approval rule
is satisfied. For example,
'Require approvals up to the
first three superiors'.

AME_APPROVAL Approval Approval

AME_APPROVER_GROUP Approvals Management
Approver Group

A predefined group of
approvers who will be
assigned to approve actions of
specific business
processes/transactions.

AME_APPROVER_TYPE Approver Type Classification of approvers
who can be used in
Approvals Management. For
example, all HR employees
are classified as the approver
type as PER in Approvals
Management.

A-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AME_ATTRIBUTE Approvals Management
Attribute

Object to capture business
attributes for a transaction
which requires approval. For
example,
INVOICE_AMOUNT can be
an attribute which captures
the total amount of an
invoice.

AME_CONDITION Approval Rule Condition Condition based on the
Approvals Management
attribute that evaluates the
approval rules. An example of
condition on the attribute
INVOICE_AMOUNT can be
"INVOICE_AMOUNT >
10,000 USD".

AME_CONFIG_VAR Approval Configuration
Variable

A set of approval
configurations which controls
certain behavior within
Approvals Management.

AME_ITEM_CLASS Approvals Management Item
Class

It is the classification of
certain Approval
Management objects into
different classes like Header,
Line Item, Cost Center.

AME_RULE Approvals Business Rule Approval Business rule
consisting of a set of
conditions, when satisfied,
will dictate some actions to
happen (which will result in a
list of approvers).

AME_TRANSACTION_TYPE Approval Transaction Type A set of approval attributes,
conditions, and rules making
up a approval policy.

AMS_BUDGETS Marketing Budget It is the budget for Marketing
Campaigns, Events, and other
marketing activities.

Integration Repository Annotation Standards A-41

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AMS_CAMPAIGN Marketing Campaign Marketing Campaign

AMS_EVENT Marketing Event Marketing Event

AMS_LEAD Sales Lead Sales Lead

AMS_LIST Marketing List Marketing List

AMS_METRIC Marketing Metric It is a measurement of
marketing operations, such
as, number of responses
generated by a campaign.

AP_INVOICE Payables Invoice Payables Invoice

AP_PAYMENT Supplier Payment Supplier Payment

AP_PAYMENT_ADVICE Payment Advice Payment Advice

AP_SUPPLIER Supplier Supplier

AP_SUPPLIER_CONTACT Supplier Contact Supplier Contact

AP_SUPPLIER_SITE Supplier Site Supplier Site

AR_ADJUSTMENT Receivables Invoice
Adjustment

Receivables Invoice
Adjustment

AR_BILLS_RECEIVABLE Bills Receivable Bills Receivable

AR_CHARGEBACK Chargeback Chargeback

AR_CREDIT_MEMO Credit Memo Credit Memo

AR_CREDIT_REQUEST Credit Request Credit Request

AR_DEBIT_MEMO Debit Memo Debit Memo

AR_DEPOSIT Deposit Deposit

A-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AR_INVOICE Receivables Invoice Receivables Invoice

AR_PREPAYMENT Prepayment Prepayment

AR_RECEIPT Receivables Receipt Receivables Receipt

AR_REMITTANCE Remittance Remittance

AR_REVENUE Revenue Revenue

AR_SALES_CREDIT Sales Credit Sales Credit

AR_SALES_TAX_RATE Sales Tax Rate Sales Tax Rate

ASN_OPPORTUNITY Sales Opportunity Sales Opportunity

ASN_SALES_TEAM Sales Team Sales Team on an
Opportunity or an Account,
or a Lead

ASO_QUOTE Sales Quote(1) A sales quote is a business
object that contains detailed
information on the products,
prices, terms, etc. in the
solution proposed to potential
customers(1).

AS_OPPORTUNITY Sales Opportunity(1) Sales Opportunity(1)

BEN_CWB_3RD_PARTY_ST
OCK_OPTS

Third Party Stock Option Third Party Stock Options

BEN_CWB_AUDIT Compensation Workbench
Audit

It records every change event
within a Compensation
Workbench user session. This
covers all compensation
elements.

BEN_CWB_AWARD Compensation Workbench
Award

It is an employee monetary
award. For example, salary
raise, salary bonus, or shares.

Integration Repository Annotation Standards A-43

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

BEN_CWB_BUDGET Compensation Workbench
Budget

it is the budget of money or
shares available for a manager
to distribute including base
salaries and bonuses.

BEN_CWB_PERSON Compensation Workbench
Person

Snapshot of a HR person on a
specific date, for
Compensation Workbench
processing.

BEN_CWB_PLAN Compensation Workbench
Plan

It is a Compensation Plan,
such as Salary Raise Plan,
Bonus Plan or Stock Option
Plan.

BEN_CWB_TASK Compensation Workbench
Task

It is the task performed in
managing a Compensation
Workbench Plan. For
example, budgeting,
allocation of amounts,
submitting work and
approval.

BIS_REPORT BIS Report BIS Report

BOM_BILL_OF_MATERIAL Bill of Material This interface adds, changes,
and deletes Bill of Material of
any type.

BOM_MFG_ROUTING Product Manufacturing
Routing

A routing defines the
step-by-step operations
required to produce an
assembly in accordance with
its Bill of Material.

BOM_PRODUCT_FAMILY Product Family Product Family for Planning
Purposes

CAC_APPOINTMENT Appointment Appointment or Meeting for a
given date and time period

A-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

CAC_BUSINESS_OBJECT_M
ETA_DATA

Business Object Meta Data
Definition

Metadata definition for a
Business Entity. It is used to
dynamically link to external
business entities. Also it is
used for querying entity
details, building dynamic
LOVs and search pages.

CAC_CAL_TASK Calendar Task Task that will appear on
User's Calendar as a time
Blocking Task or a Todo.

CAC_NOTE Note Notes or Comments
associated to different
Business Objects

CAC_RS_TIME_BOOKING Resource Time Booking Time Booking for Person and
non Person (e.g. Conference
room) Resources

CAC_SCHEDULE Schedule Schedule

CAC_SCHEDULE_TEMPLAT
E

Schedule Template Schedule Template

CAC_SYNC_SERVER Calendar Synchronization
Server

Calendar server to
synchronize calendar entities
like Task, Appointments,
Contacts etc. to external
calendars.

CAC_TASK_TEMPLATE Calendar Task Template Calendar Task Template

CCT_ADVANCED_TELEPH
ONY_SDK

Advanced Telephony SDK This SDK allows telephony
integration with Oracle
E-Business Suite using server
side integration.

CCT_BASIC_TELEPHONY_S
DK

Basic Telephony SDK This SDK allows telephony
integration with Oracle
E-Business Suite using client
side integration.

Integration Repository Annotation Standards A-45

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

CE_BANK_STATEMENT Bank Statement Bank Statement

CE_RECONCILIATION_ITE
M

Reconciliation Item Reconciliation Item

CHV_PLANNING_SCHEDU
LE

Buyer Forecast Buyer Forecast

CHV_SHIPPING_SCHEDUL
E

Buyer Shipment Request Buyer Shipment Request

CLN_TRADING_PARTNER_
COLL

Collaboration Trading Partner Trading Partner

CLN_TRADING_PARTNER_
COLL_EVENT

Trading Partner Collaboration
Event

Trading Partner Collaboration
Event

CN_COMP_PLANS Incentive Compensation Plan Incentive Compensation Plan

CN_INCENTIVES Incentive Compensation Variable compensation or
rebates that can be monetary
or non-monetary rewards for
sales people, partners or
customers.

CSD_REPAIR_ESTIMATE Repair Estimate Repair Estimate shows the
total cost for the repair
execution, which can include
material, labor and expense
charge lines.

CSD_REPAIR_LOGISTICS Repair Logistics Repair Logistics track the
receiving and shipping of the
customer item being repaired
and also the items being
loaned.

CSD_REPAIR_ORDER Repair Order(1) Repair Order(1)

CSF_TASK_DEBRIEF Service Task Debrief Service task debrief of
material, labor and expense

A-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

CSI_COUNTER Counters It provides a mechanism to
define and maintain different
types of Matrixes. These can
be attached to objects in the
Oracle E-Business Suite like
Installed Base Instances, or
Service Contract Lines.

CSI_ITEM_INSTANCE Item Instance Install Base Item Instance

CST_DEPARTMENT_OVER
HEAD

Manufacturing Department
Overhead Rate

Manufacturing Department
Overhead Rate

CST_ITEM_COST Inventory Item Cost Inventory Item Cost

CST_RESOURCE_COST Manufacturing Resource Unit
Cost

Manufacturing Resource Unit
Cost

CS_SERVICE_CHARGE Service Charge Service Charge

CS_SERVICE_REQUEST Service Request Service Request

CZ_CONFIG Configuration Configuration

CZ_CONFIG_MODEL Configuration Model Configuration Model

CZ_MODEL_PUB Configuration Model
Publication

Configuration Model
Publication

CZ_RP_FOLDER Configurator Repository
Folder

Configurator Repository
Folder

CZ_USER_INTERFACE Configuration Model User
Interface

Configuration Model User
Interface

DPP_EXECUTION_REQUES
T

Execution Integration Request It is an entity for integration
of DPP with other
Applications. It is used by
event invoked from DPP UI
and concurrent programs for
integration with external
applications like AR, AP, etc.

Integration Repository Annotation Standards A-47

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

DPP_TRANSACTION_APPR
OVAL

Transaction Approval
Notification

This entity is defined for the
AME Approval for DPP
transaction. It is referenced in
UI on clicking of the Request
Approval button in a New
DPP transaction.

DPP_XMLG_OUTBOUND Outbound pre-approval
process

It is an entity used by events
to trigger preapproval process
through Oracle XML Gateway
for Price Protection.

EAM_ASSET_ACTIVITY_AS
SOCIATION

Maintenance Asset Activity
Association

Maintenance Asset Activity
Association

EAM_ASSET_ACTIVITY_SU
PPRESSION

Asset activity suppression
relations

It indicates that an asset
preventive maintenance
activity is suppressed due to
the performance of another
activity.

EAM_ASSET_AREA Maintenance Asset Area Maintenance Asset Area

EAM_ASSET_ATTRIBUTE_G
ROUPS

Maintenance Asset Attribute
Group

Maintenance Asset Attribute
Group

EAM_ASSET_ATTRIBUTE_V
ALUE

Maintenance Asset Attribute
Value

Maintenance Asset Attribute
Value

EAM_ASSET_METER Maintenance Asset Meter
Association

Maintenance Asset Meter
Association

EAM_ASSET_NUMBER Maintenance Asset Number Maintenance Asset Number

EAM_ASSET_ROUTE Maintenance Asset Route Maintenance Asset Route

EAM_COMPLETE_WO_OPE
RATION

Maintenance Work
Completion

Maintenance Work
Completion

EAM_DEPARTMENT_APPR
OVER

Maintenance Department
Approver

Maintenance Department
Approver - User or
responsibility

A-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

EAM_METER Meter Meter

EAM_METER_READING Meter Reading Meter Reading

EAM_PARAMETER Maintenance Setup Maintenance Setup

EAM_PM_SCHEDULE Preventive Maintenance
Schedule

Preventive Maintenance
Schedule

EAM_SET_NAME Maintenance Set Maintenance Set

EAM_WORK_ORDER Asset Maintenance Work
Order

Asset Maintenance Work
Order

EAM_WORK_REQUEST Maintenance Work Request Maintenance Work Request

ECX_CONFIRM_BOD XML Gateway Confirmation
Message

XML Gateway Confirmation
Message

ECX_MESSAGE_DELIVERY XML Gateway Message
Delivery

It is used by both Oracle and
non Oracle messaging
systems to report delivery
status. Status information is
written to XML Gateway log
tables to track and report
transaction delivery data.

ECX_TRADING_PARTNER XML Gateway Message
Delivery(1)

It is used by both Oracle and
non Oracle messaging
systems to report delivery
status. Status information is
written to XML Gateway log
tables to track and report
transaction delivery data(1).

ECX_TRANSFORMATION XML Gateway
Transformation

This interface is used to apply
a style sheet to an XML
message and return the
transformed XML message
for further processing by the
calling environment.

Integration Repository Annotation Standards A-49

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

EC_CODE_CONVERSION Code Conversion It converts Oracle's Internal
Codes to External System
Codes and vice-versa, such as
Currency Code, Unit Of
Measure.

EC_EDI_TRANSACTION_LA
YOUT

EDI Transaction Layout
Definition Report

EDI Transaction Layout
Definition Report

EC_INBOUND Inbound EDI Message It is an EDI message sent to
the system from a trading
partner.

EC_OUTBOUND Outbound EDI Message It is an EDI message sent from
the system to a trading
partner.

EC_TP_MERGE Trading Partner Merge It indicates a merge of
Trading Partners as a result of
an account merge in the
Trading Community
Architecture (TCA).

EDR_EVIDENCE_STORE E-Records Evidence Store E-Records Evidence Store

EDR_ISIGN_FILE_UPLOAD File Upload Approval
Request

File Upload Approval
Request

EGO_ITEM Catalog Item An item that is listed in the
Item Catalog.

EGO_USER_DEFINED_ATTR
_GROUP

PLM User Defined Attributes This interface adds, changes,
deletes, and queries
User-defined attributes for
any entity.

ENG_CHANGE_ORDER Product Change Order Product or Engineering
Change

FA_ASSET Asset The interface for adding
assets to Oracle Assets.

A-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FA_CAPITAL_BUDGET Capital Budget The interface for uploading
capital budgets to Oracle
Assets.

FA_LEASE_PAYMENT Lease Payment The interface for sending
lease payment lines to Oracle
Payables.

FEM_ACCOUNT_FACT Analytic Account Information Detail level financial account
data

FEM_BALANCES_FACT Analytic Balances It includes Ledger input and
Ledger Profitability
processing results.

FEM_FACT_REPOSITORY Enterprise Analytical Fact
Repository

It contains numeric facts
(often called measurements)
that can be categorized by
multiple dimensions. It
contains either detail-level
facts or facts that have been
aggregated.

FEM_STATISTICAL_FACT Analytic Statistical
Information

It contains dimensional
numerical measures. These
measures are actual statistical
values, both derived and
empirically obtained.

FEM_TRANSACTION_FACT Analytic Transaction
Information

The information represents
counts of events and
interactions for financial
accounts.

FEM_XDIM_ACTIVITY Analytic Activity It describes repeatable tasks
in relation to other
dimensions. It is defined by
an action and acted upon
item. Business processes and
actions of individuals can be
categorized as activities.

Integration Repository Annotation Standards A-51

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FEM_XDIM_AUXILIARY Auxiliary Analytic
Dimensions

It indicates the
"non-foundation" dimensions
for the Enterprise
Performance Foundation.
Unlike Foundation
dimensions, they are not
employed by calculation
engines for value-added
processing.

FEM_XDIM_BUDGET Analytic Budget It identifies budgets and
forecasts.

FEM_XDIM_CAL_PERIOD Analytic Calendar Period Analytic Calendar Period

FEM_XDIM_CCTR_ORG Analytic Organization It indicates Standard Analytic
Organization dimension
made up of Company and
Cost Center.

FEM_XDIM_CHANNEL Analytic Channel It identifies distribution and
sales channels.

FEM_XDIM_COMPANY Company Dimension Standard Analytic Company
dimension

FEM_XDIM_COST_CENTER Cost Center Dimension Standard Analytic Cost
Center dimension

FEM_XDIM_COST_OBJECT Analytic Cost Object A Cost Object is a
multidimensional entity that
describes a cost.

FEM_XDIM_CUSTOMER Analytic Customer It identifies groups or
individuals with a business
relationship to analytic data.

FEM_XDIM_DATASET Analytic Dataset It identifies generic containers
for analytic data.

A-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FEM_XDIM_ENTITY Analytic Consolidation Entity It identifies Consolidation,
Elimination and Operating
Entities for Global
Consolidation System Users.

FEM_XDIM_FINANCIAL_EL
EM

Analytic Financial Element It identifies categories of
amount types for balances,
statistics and rates.

FEM_XDIM_GENERIC_FAC
T_DATA

Analytic User Defined Fact
Data

Tables available for storing
fact data of user defined
dimensionality

FEM_XDIM_GEOGRAPHY Analytic Geography It identifies geographic
locations.

FEM_XDIM_HIERARCHY Analytic Dimension
Hierarchy

It is organized parent-child
relationships of dimension
members.

FEM_XDIM_LEDGER Analytic Ledger It identifies books of account.
It is analogous to a Set of
Books.

FEM_XDIM_LEVEL Analytic Dimension Level It identifies categories for
dimension members.

FEM_XDIM_LINE_ITEM Analytic Line Item It identifies general ledger
accounts, typically as an
extension to Natural
Accounts.

FEM_XDIM_NATURAL_AC
COUNT

Analytic Natural Account It identifies an account within
an organization where
balances are posted for the
five different balance types of
revenue, expense, owners
equity, asset and liability.

FEM_XDIM_PRODUCT Analytic Product It identifies commodities or
services offered for sale.

Integration Repository Annotation Standards A-53

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FEM_XDIM_PROJECT Analytic Project It identifies plans and
endeavors.

FEM_XDIM_SIC Analytic Standard Industrial
Classification

It identifies official codes of
the Standard Industrial
Classification system.

FEM_XDIM_SIMPLE Analytic List of Values only
Dimension

Grouping of all Analytic
dimensions that have no
attributes and serve only as
lists of values.

FEM_XDIM_SOURCE_SYSTE
M

Analytic Source System It identifies the point of origin
for fact and dimension data.

FEM_XDIM_TASK Analytic Task It identifies individual
operations and pieces of
work.

FEM_XDIM_USER_DIMENSI
ON

Analytic User Defined
Dimension

It is the grouping of all
customizable analytic
attributed dimensions.

FF_FORMULA_FUNCTION Fast Formula Function It represents an external
procedural call providing
arbitrary extensions to core
Fast Formula functionality.

FLM_FLOW_SCHEDULE Flow Schedule Flow Schedule

FND_APPS_CTX Oracle E-Business Suite
Applications Security Context

Applications context
representing current user
session

FND_CP_PROGRAM Concurrent Program Discrete unit of work that can
be run in the concurrent
processing system. Typically,
a concurrent program is a
long-running, data-intensive
task, such as generating a
report.

A-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FND_CP_REQUEST Concurrent Request It is the request to the
concurrent processing system
to run a program with a given
set of parameter values, an
optional schedule to repeat,
and optional postprocessing
actions.

FND_CP_REQUEST_SET Concurrent Request Set A convenient way to run
several concurrent programs
with predefined print options
and parameter values.
Request sets group requests
into stages that are submitted
by the set.

FND_FLEX_KFF Key Flexfield Customizable multi-segment
fields

FND_FORM Oracle E-Business Suite
Applications Form

A form is a special class of
function that you may
navigate to them using the
Navigator window.

FND_FUNCTION Oracle E-Business Suite
Applications Function

A function is a part of an
application functionality that
is registered under an unique
name for the purpose of
providing function security.

FND_FUNC_SECURITY Function Security Function security restricts
application functionality to
authorized users.

FND_GFM Oracle E-Business Suite
Applications File

Generic file manager provides
ways to upload/download
files and manipulate the file
attributes.

FND_LDAP_OPERATIONS LDAP Directory Enable Oracle E-Business
Suite to performs operations
against the integrated OID.

Integration Repository Annotation Standards A-55

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FND_MENU Oracle E-Business Suite
Applications Menu

A hierarchical arrangement of
functions and menus of
functions that appears in the
Navigator.

FND_MESSAGE Oracle E-Business Suite
Applications Message
Dictionary

It contains catalog / repository
of messages for the entire
Oracle E-Business Suite.
Message Dictionary facility is
used to display and logging
from application.

FND_NAVIGATION Oracle E-Business Suite
Applications Navigation

Standard ways of navigating
from one page to another
within applications

FND_OBJECT_CLASSIFICAT
ION

OATM Object-Tablespace
Classification

This entity stores seeded,
explicit OATM
object-tablespace
classifications, which can be
further customized.

FND_PROFILE User Profile It is a set of changeable
options that affects the way
the application behaves run
time.

FND_RESPONSIBILITY Responsibility A responsibility defines the
menu structure for a product
in Oracle E-Business Suite.

FND_SSO_MANAGER Single Sign On Manager Single Sign On and Central
Login related APIs

FND_TABLESPACE Tablespace Model Tablespace It classifies all storage-related
objects. Logical Tablespaces
have a 1:1 relation with
physical tablespaces.

FND_USER User It represents a user of Oracle
E-Business Suite.

A-56 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FUN_ARAP_NETTING Payables and Receivables
Netting

Payables and Receivables for
Netting

FUN_IC_TRANSACTION IC Manual Transaction Intercompany transaction will
be between one initiator and
single/multiple recipients.

FUN_INTERCOMPANY_BA
TCH

Intercompany Transaction Set It is intercompany batch
containing transactions
between legal entities.

FV_BUDGETARY_DISCOUN
T

Federal Budgetary Discount It creates Budgetary Discount
Transactions.

FV_BUDGET_JOURNAL Federal Budget Execution
Document

It contains federal budget
records imported into federal
budgetary tables.

FV_FINANCE_CHARGE Federal Finance Charge Federal Finance Charge

FV_IPAC_DISBURSEMENT IPAC Disbursement IPAC Disbursement

FV_PRIOR_YEAR_ADJUSTM
ENT

Prior Year Adjustment Prior Year Adjustment

FV_TREASURY_DISBURSEM
ENT

Treasury Disbursement Treasury Confirmation,
Backout and Void
Disbursement Transactions

FV_YEAR_END_CLOSE Federal Year End Closing
Information

Federal Year End Closing

GHR_DUTY_STATION US Federal Workplace Duty
Station

US Federal Workplace Duty
Station

GHR_EEO_COMPLAINT US Federal EEO Complaint US Federal EEO Complaint

GHR_POSITION_DESCRIPTI
ON

Position Description Position Description

GHR_REQ_FOR_PERSONNE
L_ACTION

Request for Personnel Action Request for Personnel Action

Integration Repository Annotation Standards A-57

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GL_ACCOUNTING_SETUP_
MANAGER

Accounting Setup Manager This represents the
Accounting Setup of Ledgers
and Legal Entities in General
Ledger.

GL_ACCOUNT_COMBINAT
ION

General Ledger Code
Combination

This represents General
Ledger Account
Combinations Defined Under
Chart of Accounts.

GL_BC_PACKETS Budgetary Fund Control
Transaction Packet

Budgetary Fund Control
Transaction Packet

GL_BUDGET_DATA General Ledger Budget Data General Ledger Budget Data

GL_CHART_OF_ACCOUNT
S

Chart of Accounts Chart of Accounts (COA)

GL_DAILY_RATE Daily Currency Conversion
Rate

Daily Currency Conversion
Rate

GL_INTERCOMPANY_TRA
NSACTION

Intercompany Transaction Intercompany Transaction

GL_JOURNAL Journal Entry Journal Entry

GL_PERIOD General Ledger Accounting
Period

This represents the
Accounting Period defined in
Accounting Calendar.

GMD_ACTIVITIES_PUB Product Development
Activity

It creates, modifies, or deletes
activity information.

GMD_FORMULA Process Manufacturing
Formula

Process Manufacturing
Formula

GMD_OPERATION Process Manufacturing
Operation

Process Manufacturing
Operation

A-58 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GMD_OUTBOUND_APIS_P
UB

Process Manufacturing
Quality Outbound
Transaction

It is public level Process
Manufacturing Quality
package containing APIs to
export information to third
party products.

GMD_QC_SAMPLES Process Manufacturing
Quality Sample

Process Manufacturing
Quality Sample

GMD_QC_SPEC Process Manufacturing
Quality Specification

Process Manufacturing
Quality Specification

GMD_QC_SPEC_VR Process Manufacturing
Specification Usage Rule

Process Manufacturing
Specification Usage Rule

GMD_QC_TESTS_PUB Process Manufacturing
Quality Test

Process Manufacturing
Quality Test

GMD_RECIPE Process Manufacturing Recipe Process Manufacturing Recipe

GMD_RECIPE_VALIDITY_R
ULE

Process Manufacturing Recipe
Usage Rule

Process Manufacturing Recipe
Usage Rule

GMD_RESULTS_PUB Process Manufacturing
Quality Test Result

Process Manufacturing
Quality Test Result

GMD_ROUTING Process Manufacturing
Routing

Process Manufacturing
Routing

GMD_STATUS_PUB Process Manufacturing
Product Development Status

It modifies the status for
routings, operations, receipts,
and validity rules.

GME_BATCH Process Manufacturing Batch Process Manufacturing Batch

GME_BATCH_STEP Process Manufacturing Batch
Step

Process Manufacturing Batch
Step

GMF_ALLOCATION_DEFIN
ITION

Process Manufacturing
Expense Allocation Definition

It is the setup data for
allocating indirect expenses
(indirect overheads) to items.

Integration Repository Annotation Standards A-59

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GMF_BURDEN_DETAIL Process Manufacturing
Financials Overhead Detail

It indicates overhead costs
assigned to items that have
been manufactured or
purchased.

GMF_ITEM_COST Process Manufacturing
Financials Item Cost

Process Manufacturing
Financials Item Cost

GMF_RESOURCE_COST Process Manufacturing
Financials Resource Cost

Process Manufacturing
Financials Resource Cost

GMI_ADJUSTMENTS Process Manufacturing
Inventory Adjustment

Process Manufacturing
Inventory Adjustment

GMI_API Process Manufacturing
Inventory Setup

It is the Process
Manufacturing Inventory
transaction to create, modify,
delete items, lots, lot
conversions.

GMI_ITEM Process Manufacturing Item Process Manufacturing Item

GMI_ITEM_LOT_UOM_CON
V

Process Manufacturing Item
Lot UOM Conversion

Process Manufacturing Item
Lot UOM Conversion

GMI_LOT Process Manufacturing Lot Process Manufacturing Lot

GMI_OM_ALLOC_API_PUB Process Manufacturing Sales
Order Inventory Allocation

The Allocate OPM Orders
API is a business object that
can create, modify, or delete
OPM reservation (allocation)
information for Order
Management.

GMI_PICK_CONFIRM_PUB Process Manufacturing Sales
Order Inventory Pick
Confirmation

The Pick Confirm API is a
business object that pick
confirms, or stages the
inventory for a Process Move
Order Line or a Delivery
Detail line.

GMP_CALENDAR_API Process Planning Shop
Calendar

It modifies the Shop
Calendar.

A-60 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GMP_GENERIC_RESOURCE Generic Process
Manufacturing Resource

Manufacturing resource in
Process Manufacturing

GMP_PLANT_RESOURCE Process Manufacturing Plant
Resource

Plant specific manufacturing
resource in Process
Manufacturing

GMP_RSRC_AVL_PKG Process Planning Resource
Availability

It modifies resource
availability.

GMS_AWARD Project Award Budget Project Award Budget

HR_AUTHORIA_INTEGRAT
ION_MAP

Authoria Integration Map Authoria Integration Map

HR_BUDGET HR Budget HR Budget

HR_BUSINESS_GROUP Business Group Business Group

HR_CALENDAR_EVENT HR Calendar Event HR Calendar Event

HR_COST_CENTER Cost Center Cost Center

HR_EVENT HR Bookable Event HR Bookable Event

HR_HELP_DESK HR Help Desk Integration Peoplesoft Help Desk
Integration points with the
Oracle E-Business Suite
HRMS

HR_KI_MAP Knowledge Integration Map Knowledge Integration Map

HR_KI_SYSTEM Knowledge Integration
System

Knowledge Integration
System

HR_LEGAL_ENTITY Legal Entity Legal Entity

HR_LIABILITY_PREMIUM Liability Premium Liability Premium

HR_LOCATION Location Location

Integration Repository Annotation Standards A-61

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

HR_MESSAGE_LINE HRMS Message Line HRMS Message Line

HR_OPERATING_UNIT Operating Unit Operating Unit

HR_ORGANIZATION HRMS Organization HRMS Organization

HR_ORGANIZATION_LINK Organization Link Organization Link

HR_PAY_SCALE Pay Scale Pay Scale

HR_PERSON HR Person(1) HR Person(1)

HR_PERSONAL_DELIVERY_
METHOD

Personal Delivery Method Personal Delivery Method

HR_ROLE HRMS Role HRMS Role

HR_SALARY_BASIS Salary Basis Salary Basis

HR_SELF_SERVICE_TRANS
ACTION

HR Self Service Transaction Self Service Transaction

HR_SOC_INS_CONTRIBUTI
ONS

Social Insurance Contribution Social Insurance Contribution

HR_SUPER_CONTRIBUTIO
N

Superannuation Contribution It indicates payment to a fund
providing for a person's
retirement.

HR_USER_HOOK HRMS User Hook HRMS User Hook

HXC_TIMECARD Timecard Timecard

HXC_TIMECARD_RECURRI
NG_PERIOD

Timecard Recurring Period Timecard Recurring Period

HXC_TIME_INPUT_SOURC
E

Time Input Source It indicates how Timecard
data was input.

A-62 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

HXC_TIME_RECIPIENT Time Recipient Application An application that receives
and processes Time and
Labor Data.

HZ_ACCOUNT_CONTACT Customer Account Contact A person who is the contact
for a customer account.

HZ_ADDRESS Trading Community Address It is an address of a trading
community member, for
example, a customer's or
partner's address.

HZ_CLASSIFICATION Trading Community
Classification

It is a categorization of
parties, using user-defined or
external standards such as the
NAICS, NACE, or SIC.

HZ_CONTACT Trading Community Contact A person who is a contact for
an organization or another
person.

HZ_CONTACT_POINT Contact Point It is a means of contact, for
example, phone or e-mail.

HZ_CONTACT_PREFERENC
E

Contact Preference It is the information about
when and how parties prefer
to be contacted.

HZ_CUSTOMER_ACCOUNT Customer Account A person or organization that
the deploying company has a
selling relationship with.

HZ_EXTERNAL_REFERENC
E

Trading Community External
Reference

Management of operational
mappings between the
trading community database
and external source systems.

HZ_GROUP Trading Community Group Trading Community Group

HZ_ORGANIZATION Trading Community
Organization

It is a party of type
Organization and related
information, including
financial and credit reports.

Integration Repository Annotation Standards A-63

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

HZ_PARTY Party A trading community entity,
either person or organization,
that can enter into business
relationships.

HZ_PERSON Trading Community Person It is a party of type Person
and related information, such
as employment and
education.

HZ_RELATIONSHIP Trading Community
Relationship

A representation of how two
parties are related, based on
the role that each party plays
with respect to the other.

HZ_RELATIONSHIP_TYPE Trading Community
Relationship Type

A categorization of roles that
parties can play in
relationships.

IBC_CONTENT_DELIVERY_
MANAGER

Content Delivery Manager Content Delivery Manager
class provides APIs for
applications to retrieve
content items stored in the
OCM Content Repository.

IBE_CATALOG_PUNCHOU
T

Web Store Catalog Punchout It is a process of enabling
procurement users to choose
items available in iStore
catalog. The login/logout of
procurement users in iStore is
transparent to them.

IBE_CONTENT Web Store Content Web Store Page Content

IBE_ITEM Web Store Item Web Store Product Item

IBE_SALES_ORDER Web Store Sales Order Web Store Sales Order

IBE_SECTION Web Store Section Navigational Hierarchy for
Web content and product

IBE_SESSION_ATTRIBUTES Web Store Session Attributes Session Attributes of Users
visiting the Web Store

A-64 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IBE_SHOPPING_CART Web Store Shopping Cart Web Store Shopping Cart

IBE_SHOPPING_LIST Web Store Shopping List Web Store Shopping List

IBE_SITE Web Store Site Web Store Site

IBE_TEMPLATE Web Store Template Web Store Page Template

IBE_USER Web Store User Users, Contacts, Customers

IBW_PAGE_ACCESS_TRAC
KING

Web Analytics Page Access
Tracking

It captures visit and page
access data required for Web
analytics reporting.

IBY_BANKACCOUNT External Bank Account Supplier or Customer Bank
Account

IBY_CREDITCARD Credit Card Credit Card Payment
Instrument

IBY_EXCEPTION IBY Exception It is an exception generated
by IBY code when an error is
encountered.

IBY_FUNDSCAPTURE_ORD
ER

Funds Capture Order It is a single funds capture
request delivered to a
payment system by the
request payee.

IBY_PAYMENT IBY Payment It indicates payment made
through IBY to the supplier.

IEO_AGENT Interaction Center Agent A person that interacts with a
customer during an
interaction event.

IEX_COLLECTION_CASE Collection Case Collection Case

Integration Repository Annotation Standards A-65

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IEX_COLLECTION_DISPUT
E

Collection Dispute A dispute creates a credit
memo request in Oracle
Receivables to resolve all or
part of an invoice that a
customer contends is not
owed.

IEX_COLLECTION_PROMIS
E

Collection Promise Collection Promise

IEX_COLLECTION_SCORE Collection Score Collection Score

IEX_COLLECTION_STRATE
GY

Collection Strategy Collection Strategy

IEX_PROMISES Collection Payment Promise A promise to pay is a
non-binding agreement from
the customer to make a
payment at a certain date.

IEX_STRATEGY Receivables Collection
Strategy

Strategies are a
pre-configured sequence of
work items that automate the
process of collecting open
receivables and support
complex collections
management activities.

IGC_CONTRACT_COMMIT
MENT

Contract Commitment Contract Commitment

IGC_ENCUMBRANCE_JOU
RNAL

Encumbrance Journal Encumbrance Journal

IGF_AWARD Financial Aid Student Award Financial Aid Student Award

IGF_BASE_RECORD Financial Aid Student Base
Record

Financial Aid Student Base
Record

IGF_COA Student Attendance Cost Student Attendance Cost

IGF_DL Financial Aid Direct Loan Financial Aid Direct Loan

A-66 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IGF_FFELP Financial Aid FFELP Loan Financial Aid FFELP Loan

IGF_FWS Financial Aid Work Study Financial Aid Work Study

IGF_ISIR Institutional Student
Information Record

Institutional Student
Information Record

IGF_PELL Financial Aid Pell Grant Financial Aid Pell Grant

IGF_PROFILE Student Profile Application Student Profile Application

IGF_TODO Financial Aid Student Todo
Item(1)

Financial Aid Student Todo
Item(1)

IGF_VERFN Financial Aid Verification
Item

Financial Aid Verification
Item

IGS_ADM_APPLICATION Admission Application Admission Application

IGS_ADM_FEE Admission Fee Admission Application Fee

IGS_ADV_STAND Advanced Standing Advanced Standing

IGS_DA_REQUEST Degree Audit Request Degree Audit Request

IGS_INQ_APPLICATION Prospective Applicant Inquiry Prospective Applicant Inquiry

IGS_INSTITUTION Institution Institution Party

IGS_PARTY_CHARGE Higher Education Party
Charge

Higher Education Party
Account Charge Transactions

IGS_PARTY_CREDIT Higher Education Party
Credit

Higher Education Party
Account Credit Transactions

IGS_PARTY_REFUND Higher Education Party
Refund

Higher Education Party
Account Refund Transactions

IGS_PERSON_ALTERNATE_
ID

Alternate Person Identifier Person Alternate Identifier
e.g. SSN, Driver Licence etc

Integration Repository Annotation Standards A-67

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IGS_PERSON_CONTACT Person Contact Information Person Contact Information

IGS_PREV_EDUCATION Previous Education Previous Education

IGS_PROGRAM Higher Education Program Higher Education Program

IGS_SPONSORSHIP Student Sponsor Relationship Student Sponsor Relationship

IGS_STUDENT_CONCENTR
ATION

Student Concentration Student Concentration

IGS_STUDENT_PROGRAM Student Program Attempt Student Program Attempt

IGS_STUDENT_UNIT Student Unit Attempt Student Unit Attempt

IGS_TODO Financial Aid Student Todo
Item

Financial Aid Student Todo
Item

IGS_UNIT Higher Education Unit Higher Education Unit

IGW_PROPOSAL Grants Proposal Grants Proposal

IGW_PROPOSAL_BUDGET Grants Proposal Budget Grants Proposal Budget

INV_ACCOUNTING_PERIO
D

Inventory Accounting Period Status of an inventory
accounting period

INV_ALLOCATION Material Allocation Inventory Material Allocation

INV_CONSIGNED_DIAGNO
STICS

Consigned Inventory
Diagnostics

Set of utilities that identify
and communicate
inaccuracies in setup data of
Consigned Inventory from
Supplier feature.

INV_COUNT Material Count Material Count

INV_IC_TRANSACTION_FL
OW

Inventory Intercompany
Invoicing Transaction Flow

It is an execution of the
transactions that generate
intercompany invoices in
Inventory.

A-68 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

INV_IC_TRANSACTION_FL
OW_SETUP

Intercompany Inventory
Transaction Flow Setup

Intercompany Inventory
Transaction Flow Setup

INV_LOT Inventory Lot Inventory Lot

INV_MATERIAL_TRANSAC
TION

Material Transaction Inventory Material
Transaction

INV_MOVEMENT_STATISTI
CS

Movement Statistics Statistics that are associated
with the movement of
material across the border of
two countries.

INV_MOVE_ORDER Material Move Order Physical movement of
inventory from one location
to another within a
warehouse or other facility. It
does not involve a transfer of
the inventory between
organizations.

INV_ONHAND Inventory On Hand Balance Inventory On Hand Balance

INV_ORGANIZATION_SET
UP

Inventory Organization Setup Inventory Organization Setup

INV_PICK_RELEASE_PUB Inventory Pick Release Inventory allocation in
support of pick release

INV_POSITION Inventory Position It indicates on-hand balance
of an Inventory Organization
Hierarchy for a particular
time bucket including
quantity received, quantity
issued and ending balance.

INV_REPLENISHMENT Inventory Replenishment Inventory Material
Replenishment

INV_RESERVATION Material Reservation Inventory Material
Reservation

Integration Repository Annotation Standards A-69

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

INV_SALES_ORDERS Inventory Sales Order It indicates inventory sales
order tracking with references
to the order in Oracle Order
Management or a third party
order management system.

INV_SERIAL_NUMBER Inventory Serial Number Inventory Serial Number

INV_SUPPLIER_CONSIGNE
D_INV

Supplier Consigned Inventory Goods that physically reside
in an inventory organization
but are owned by a supplier.

INV_UNIT_OF_MEASURE Unit Of Measure Inventory Unit Of Measure

IPM_DOCUMENT Imaging Document Electronic documentation to
facilitate the entry and
completion of transactions in
the Oracle E-Business Suite.

IRC_AGENCY Recruiting Agency Third party agency
authorized to recruit for a
Vacancy.

IRC_CANDIDATE_NOTIFY_
PREFS

Candidate Recruitment
Notification Preferences

Candidate Recruitment
Notification Preferences

IRC_CANDIDATE_SAVED_S
EARCH

Candidate Recruitment Saved
Search

Candidate Recruitment Saved
Search

IRC_CANDIDATE_WORK_P
REFERENCES

Candidate Recruitment Work
Preferences

Candidate Recruitment Work
Preferences

IRC_DEFAULT_JOB_POSTIN
G

Default Job Posting Default Job Posting

IRC_JOB_BASKET Job Basket Job Basket

IRC_JOB_OFFER Job Offer It contains details of a job to
be offered to a Recruitment
Candidate.

A-70 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IRC_JOB_OFFER_LETTER_T
EMPLATE

Job Offer Letter Template It is a template for a Job Offer
letter.

IRC_JOB_OFFER_NOTES Job Offer Note Notes for a Job Offer

IRC_JOB_POSTING Job Posting Job Posting

IRC_JOB_SEARCH_LOCATI
ON

Job Search Location It contains locations for the
Candidate Recruitment Saved
Search or for the Candidate
Recruitment Work
Preferences.

IRC_JOB_SEARCH_PROF_A
REA

Job Search Professional Area It contains Professional Areas
for the Candidate
Recruitment Saved Search or
for the Candidate
Recruitment Work
Preferences.

IRC_NOTIFICATION iRecruitment Notification Notifications that are sent to
recruiter, interviewer and
candidate.

IRC_RECRUITING_3RD_PA
RTY_SITE

Recruiting Third Party Site Recruiting Third Party Site

IRC_RECRUITING_DOCUM
ENT

Recruiting Document Recruiting Document

IRC_RECRUITING_SITE Recruiting Site Recruiting Site

IRC_RECRUITING_TEAM Recruiting Team Recruiting Team

IRC_RECRUITMENT_CAND
IDATE

Recruitment Candidate Recruitment Candidate

IRC_VACANCY_CONSIDER
ATION

Vacancy Consideration Vacancy Consideration

Integration Repository Annotation Standards A-71

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

JE_ES_WHT Spanish Withholding Tax
Transaction

Spanish Withholding Tax
Transaction stores
withholding tax transactions
from Payables and other
external sources.

JL_BR_AP_BANK_COLLECT
ION_DOC

Brazilian Payables Bank
Collection Document

Brazilian Payables Bank
Collection Document

JL_BR_AR_BANK_RETURN_
DOC

Brazilian Receivables Bank
Return Document

Brazilian Receivables Bank
Return Document

JTA_BUSINESS_RULE Business Rule Business Rule for Escalation
or Auto Notifications

JTA_ESCALATION Customer Escalation
Management

It manages customer's
escalation of some key
business entities like Service
Requests, Tasks, etc.

JTF_RS_ DYNAMIC_GROUP Resource Group (Dynamic) Dynamic Resource Group
(defined using dynamic SQL
statements)

JTF_RS_DYNAMIC_GROUP Resource Dynamic Group Dynamic Resource Group
(defined using dynamic SQL
statements)

JTF_RS_GROUP Resource Group Grouping of Individual
Resources

JTF_RS_GROUP_MEMBER Resource Group Member Members within a Group

JTF_RS_GROUP_MEMBER_R
OLE

Resource Group Member Role Roles assigned to members in
a group

JTF_RS_GROUP_RELATION Resource Group Hierarchy Resource Group Hierarchy
Element

JTF_RS_GROUP_USAGE Resource Group Usage Functional use of Resource
Groups in different
applications

A-72 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

JTF_RS_RESOURCE Individual Resource Individual Resource

JTF_RS_RESOURCE_AVAIL
ABILITY

Resource Availability Whether an individual
resource is available (Yes/No)
for work assignments at
present time.

JTF_RS_RESOURCE_LOV Resource Person and non-person
resources

JTF_RS_RESOURCE_SKILL Resource Skill Resource Skillsets for work
assignment

JTF_RS_RESOURCE_SKILL_
LEVEL

Resource Skill Level Skill Levels indicating Novice,
Expert, Intermediate for
different skills

JTF_RS_ROLE Person Resource Role Roles assigned to an
individual resource

JTF_RS_ROLE_RELATION Person Resource Role
Hierarchy

Hierarchy of Roles associated
with individual resources,
groups, and group members.

JTF_RS_SALESREP Sales Representative Individual Resources that
represent Enterprise Sales
Force.

JTF_RS_SALES_GROUP_HIE
RARCHY

Sales Group Hierarchy Sales Group Hierarchy

JTF_RS_SRP_TERRITORY Sales Representative Territory Territories that are assigned
to Sales people.

Note: These are not to be
confused with Territory
Manager.

JTF_RS_TEAM Resource Team Teams represent collection of
people, and groups.

Integration Repository Annotation Standards A-73

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

JTF_RS_TEAM_MEMBER Resource Team Member Members of a team that
includes individuals, as well
as groups.

JTF_RS_TEAM_USAGE Resource Team Usage It represents functional use of
Resource Teams in different
applications.

JTF_RS_UPDATABLE_ATTRI
BUTE

Updatable Attributes for
Resources

Individual resource
information that is allowed to
be modified.

JTF_RS_WF_EVENT Resource Business Event Actions in Resource Manager
that raise Workflow Business
Events.

JTF_RS_WF_ROLE Resource Workflow Role It is the Workflow Role
representing Individual,
Group, and Team resources.

JTF_RS_WF_USER_ROLE Resource Workflow User Role It is the Workflow User Role
representing resource roles,
group members, or team
members.

JTH_INTERACTION Customer Interaction It is the communication or
attempted communication
with a customer party.

JTH_INTERACTION_ACTIVI
TY

Customer Interaction Activity A business event that occurs
during an interaction with a
customer party.

JTH_INTERACTION_MEDIA Customer Interaction Media It contains the details of the
communication used in an
interaction. Call, E-mail, Web,
etc.

JTY_TERRITORY Territory Territories for sales
representatives, service
engineers and collections
agents

A-74 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_APPLICATIONAREA Application Area A collection of objects that
define a business application.
Objects can be Business Area,
Data Mart, Loadset, Program,
Report Set, Table, Workflow
etc.

LSH_BUSINESSAREA Business Area A Business Area acts as an
interface with an External
Visualization System (EVS).
For example, a Discoverer
Business Area is an interface
with the Oracle Discoverer
Visualisation tool.

LSH_DATAMART Data Mart A Data Mart stores data
exported from the
Transactional System and is
usually used for Analytical
purposes.

LSH_DOMAIN Life Sciences Data Hub
Domain

The top level container that
owns Application Areas and
is used to store object
definitions in the Library. The
definitions can be Business
Area, Data Mart, Loadset,
Program, etc.

LSH_EXECUTIONSETUP Life Sciences Data Hub
Execution Setup Information

It is a defined object that is a
component of each LSH
executable object instance
(Programs, RS, Load Sets,
Workflows etc.) whose
purpose is to control the
execution of the executable
object.

LSH_EXECUTION_FWK Life Sciences Data Hub
Execution Job

An entity that provides the
surround and the set the rules
for the execution of an object.
Examples are Job Submission
API, Job Log API, etc

Integration Repository Annotation Standards A-75

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_GENERIC_OBJECT Life Science Data Hub
Generic Object

Life Science Data Hub
Generic Object

LSH_LOADSET External Data Load Run A Load Set is an executable
object that is used to define
the structure and behavior of
a Program-like structure that
is used for loading data from
an outside system.

LSH_MAPPING Life Science Data Hub
Column Mapping

A mapping defines a column
level mapping between a
Table like object and a View
like object.

LSH_OBJ_CLASSIFICATION Object Classification An entity that provides the
categories and rules for
classifying an object.

LSH_OBJ_SECURITY Life Sciences Data Hub Object
Security Policy

An entity that provides a set
of rules to define and
implement data security on
objects.

LSH_OUTPUT Life Sciences Data Hub
Output

This is the actual Output that
is generated on execution of
an executable object, such as a
Report Set output, a Data
Mart output, a Program
Output.

LSH_PARAMETER API Parameter A defined object that acts as a
simple scalar variable and is
based on a variable, such as
an input/output Parameter of
a Program, Report Set, etc.

LSH_PARAMETERSET Parameter Set A collection of interrelated
Parameters

A-76 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_PLANNEDOUTPUT Life Science Data Hub
Planned Output

A Planned Output is an
expected output when an
LSH object is executed. It is
defined with the executable
object.

LSH_PROGRAM Life Sciences Data Hub
Program

A Program is a metadata
object that is used to define
the structure and behavior of
a Program-like structure that
is used for processing and/or
reporting on set of data.

LSH_REPORTSET Report Set A Report Set is a group of
reports used to define the
structure and behavior of a
hierarchical structure that is
intended for simultaneously
reporting on sets of data.

LSH_SOURCECODE Software Source Code A Source Code is the actual
program code which is
executed when a Program is
run.

LSH_TABLE Metadata Registered Data
Object

It is a metadata description of
a table-like object (for
example a Oracle view or a
SAS dataset).

LSH_UTILITY Life Sciences Data Hub Setup
Utility

It is a set of tools and utilities.

LSH_VALIDATION Life Sciences Data Hub
Validation

An entity that provides the
rules for validating an object
in the application.

LSH_VARIABLE Life Science Data Hub
Variable

A LSH defined object
equivalent to a SAS variable
or Oracle table column that
serves as a source definition
for LSH Parameters and Table
Columns.

Integration Repository Annotation Standards A-77

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_WORKAREA Application Work Area A container within an
Application Area that
provides the definer a place to
prepare related LSH
Definitional objects for release
and installation to a LSH
schema.

MES_COMPLETION_TRANS
ACTION

Assembly Completion in MES Business Entity for Assembly
Completion in MES

MES_MATERIAL_TRANSAC
TION

MES Material Transaction Business Entity for Material
Transaction in MES

MES_MOVE_TRANSACTIO
N

MES Move Transaction Business Entity for Move
Transaction in MES

MES_TIME_ENTRY Time Entry in MES Import Time Entry Record in
Discrete Manufacturing
Execution system

MSC_ATP_ENQUIRY ATP Enquiry This interface checks the
availability for the item(s) and
returns their availability
picture.

MSC_FORECAST Supply Chain Forecast This interface creates a
forecast for supply chain
planning.

MSC_NOTIFY_PLAN_OUTP
UT

Supply Chain Planned Order Supply chain planned order

MSC_ON_HAND Supply Chain Plan On Hand
Inventory

This interface creates on hand
supply records for supply
chain planning.

MSC_PLANNING_SUPPLY_
DEMAND

Collaborative Planning
Supply / Demand

This interface is used to create
any supply / demand records
in Collaborative Planning.

A-78 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

MSC_PURCHASE_ORDER Supply Chain Plan Purchase
Order

This interface creates a
purchase order supply for
supply chain planning.

MSC_REQUISITION Supply Chain Plan
Requisition

A Purchase Requisition for
Supply Chain Planning

MSC_SALES_ORDER Supply Chain Plan Sales
Order

This interface creates a sales
order demand for supply
chain planning.

MSC_SHIPMENT_NOTICE Supply Chain Plan Advanced
Shipment Notice

This interface creates an
inbound intransit supply for
supply chain planning.

MSC_WORK_ORDER Supply Chain Plan Work
Order

This interface creates a work
order supply for supply chain
planning.

NETTING_BATCH Netting Batch Netting batch is a set of
payables and receivables
transactions.

OCM_GET_DATA_POINTS Credit Review Data Point It is a list of Data Points
(Criterion items against which
the credit standing of a
organization is reviewed) for
a given credit classification,
review type, data point
category, or subcategory.

OCM_GET_EXTRL_DECSN_
PUB

Imported Credit Score and
Recommendation

Import score and
recommendations from
external source

OCM_GUARANTOR_CREDI
T_REQUEST

Guarantor Credit Request It allows user to create
Guarantor credit request.

Integration Repository Annotation Standards A-79

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OCM_RECOMMENDATION
S

Credit Recommendation It is the
recommendation/decision
made by reviewer of the
credit request. For example, a
standard recommendation is
"Approve/Reject".

OCM_WITHDRAW_CREDIT
_REQUEST

Credit Request Withdrawal It allows user to withdraw a
credit request.

OIE_CREDIT_CARD_TRXN Credit Card Transaction Credit Card Transaction

OIE_PCARD_TRXN Procurement Card
Transaction

Procurement Card
Transaction

OIR_REGISTRATION Self Registration of user Self Registration of external
user of the application

OKC_DELIVERABLE Contract Deliverable Contract Deliverable

OKC_LIBRARY_ARTICLE Contract Library Article Contract Library Article

OKC_LIBRARY_CLAUSE Contract Library Clause Contract library clause

OKC_REPOSITORY_CONTR
ACT

Repository Contract A contract that handles
outside the normal
purchasing or sales flows,
such as a non-disclosure
agreement or a partnership
agreement. These contracts
are stored in the Contract
Repository.

OKC_REP_CONTRACT Repository Contract(1) A contract that handles
outside the normal
purchasing or sales flows,
such as a non-disclosure
agreement or partnership
agreement. These contracts
are stored in the Contract
Repository(1).

OKE_CONTRACT Project Contract Project Contract

A-80 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OKL_ACCOUNT_DISTRIBU
TION

Lease Account Distribution Lease Account Distribution

OKL_ACCOUNT_ID Lease Account Lease Account

OKL_AGREEMENT Lease Agreement Lease Agreement

OKL_ASSET_MANAGEMEN
T

Asset Management Manage portfolios and asset
returns

OKL_COLLECTION Collection Bill, collect cash and manage
collections from customers

OKL_COLLECTION_CASE Lease Collection Case Lease Collection Case

OKL_CONTRACT Lease Contract Lease Contract

OKL_CONTRACT_LIFECYC
LE

Contract Management
Lifecycle

It manages revisions,
termination and renewals of
contracts.

OKL_CONTRACT_PARTY Lease Contract Party Lease Contract Party

OKL_CONTRACT_PAYMEN
T

Lease Contract Payment Lease Contract Payment

OKL_CONTRACT_TERM Lease Contract Term Lease Contract Term

OKL_DISBURSEMENT Disbursement Process manually initiated or
automated disbursements

OKL_EXECUTE_FORMULA Lease Formula Lease Formula

OKL_FINANCIAL_PRODUC
T

Lease Contract Financial
Product

Financial Product specified in
lease contract

OKL_INSURANCE Lease Insurance Lease Insurance

OKL_INTEREST Lease Interest Lease Interest

Integration Repository Annotation Standards A-81

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OKL_INVESTMENT_PROGR
AM

Manage Investment Program It manages investor accounts
and investment agreements.

OKL_LATE_POLICY Lease Late Payment Policy Lease Late Payment Policy

OKL_LEASE_RATE Lease Rate Set Lease Rate Set

OKL_MARKETING_PROGR
AM

Marketing Program It manages internal and
partner pricing programs.

OKL_ORIGINATION Origination It manages master
agreements, author lease and
loan contracts.

OKL_REMARKETING Remarketing It manages sale of assets to
vendors and third parties.

OKL_RESIDUAL_VALUE Lease Residual Value Lease Residual Value

OKL_RISK_MANAGEMENT Risk Management It manages credit, pricing,
approval and insurance
policies.

OKL_SALES Sales Qualify, quote and manage
deal opportunities

OKL_STREAM Lease Stream Lease Stream

OKL_TERMINATION_QUOT
E

Lease Termination Quote Lease Termination Quote

OKL_THIRD_PARTY_BILLI
NG

Lease Third Party Billing Lease Third Party Billing

OKL_UNDERWRITING Manage Underwriting It manages credit applications
and lines.

OKL_VENDOR_RELATIONS
HIP

Manage Vendor Relationship It manages vendor accounts
and agreements.

A-82 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OKS_AVAILABLE_SERVICE Service Availability APIs for retrieving customer
service information,
specifically, duration of a
service, availability of service
for a customer and list of
services which can be ordered
for a customer.

OKS_CONTRACT Service Contract Service Contract

OKS_COVERAGE Service Contract Coverage Service contract coverage
service terms

OKS_IMPORT Service Contracts Import Service contracts import is a
process of importing the
legacy data into the Oracle
tables.

OKS_ENTITLEMENT Service Contract Entitlement Service contract customer
entitled services

ONT_SALES_AGREEMENT Sales Agreement This is a business document
that outlines the agreement
between a Customer and
Supplier committing to order
and deliver a specified
amount or quantity over an
agreed period of time.

ONT_SALES_ORDER Sales Order Sales Order is a business
document containing
customer sales order
information. This entity is
used by several Oracle
E-Business Suite applications.

OTA_CATALOG_CATEGOR
Y

Learning Catalog Category Learning Catalog Category

OTA_CERTIFICATION Learning Certification Catalog object that offers
learners the opportunity to
subscribe to and complete one
time and renewable
certifications.

Integration Repository Annotation Standards A-83

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OTA_CHAT Learning Chat Scheduled live discussion that
enables learners and
instructors to exchange
messages online.

OTA_CONFERENCE_SERVE
R

Conference Server Conference server integrates
OLM with Oracle Web
Conferencing (OWC) to
deliver online synchronous
classes.

OTA_COURSE_PREREQUISI
TE

Course Prerequisite A course or competency that a
learner must or should
complete before enrolling in a
given class.

OTA_ENROLLMENT_JUSTIF
ICATION

Learning Enrollment
Justification

Each enrollment justification
and its associated priority
level can determine the order
by which enrollees are
automatically placed in a
class.

OTA_ENROLLMENT_STAT
US_TYPE

Learning Enrollment Status
Type

It indicates predefined
enrollment statuses
(Requested, Placed, Attended,
Waitlisted, Cancelled).

OTA_FINANCE_HEADER Learning Finance Header It is a record of a monetary
amount against a class, a
learner enrollment, or a
resource booking.

OTA_FINANCE_LINE Learning Finance Line It is an individual financial
transaction within a finance
header.

OTA_FORUM Learning Forum It represents message board
that learners and instructors
use to post general learning
topics for discussion.

OTA_LEARNER_ENROLLM
ENT

Learner Enrollment Learner Enrollment

A-84 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OTA_LEARNING_ANNOUN
CEMENT

Learning Announcement Learning Announcement

OTA_LEARNING_CATALO
G_CAT_USE

Learning Catalog Category
Usage

Learning Catalog Category
Usage

OTA_LEARNING_CLASS Learning Class Learning Class

OTA_LEARNING_COURSE Learning Course Learning Course

OTA_LEARNING_CROSS_C
HARGE

Learning Cross Charge Setup Learning Cross Charge Setup

OTA_LEARNING_EXTERNA
L

Learning External Record A class or course that a
person has attended, not
scheduled in the internal
learning catalog.

OTA_LEARNING_OFFERIN
G

Learning Offering Learning Offering

OTA_LEARNING_OFFER_R
ES_CHKLST

Learning Offering Resource
Checklist

Learning Offering Resource
Checklist

OTA_LEARNING_PATH Learning Path Learning Path

OTA_LEARNING_PATH_CA
TEGORY

Learning Path Category Learning Path Category

OTA_LEARNING_PATH_CO
MPONENT

Learning Path Component Learning Path Component

OTA_LP_SUBSCRIPTION Learning Path Subscription It contains subscriptions for
all Learning Paths and
Components. For Example,
Subscriptions to Catalog
Learning Paths and Learning
Paths created by Managers
from Appraisals, Suitability
Matching etc.

Integration Repository Annotation Standards A-85

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OTA_RESOURCE Learning Resource It is a person or an object
needed to deliver a class, such
as a named instructor or a
specific classroom.

OTA_RESOURCE_BOOKING Learning Resource Booking Learning Resource Booking

OTA_TRAINING_PLAN Training Plan Training Plan

OZF_ACCOUNT_PLAN Trade Account Plan Account Plan for Trade
Planning and Promotion
activities

OZF_BUDGET Sales and Marketing Budget It is the budget for
Promotional Offer, Marketing
Campaigns, Events, and other
marketing activities.

OZF_CLAIM Trade Claim Claims that customers could
be seeking money against,
such as Promotional claims,
breakages, transportation
errors etc.

OZF_INDIRECT_SALES Indirect Sales Point of Sales Data,
chargebacks etc,

OZF_OFFERS Promotional Offer Promotional Offers or
Discounts that are given to
Customers from a Vendors
Sales or Marketing
Organization.

OZF_QUOTA Trade Planning Quota Quota and Targets for Trade
Planning and Promotional
Activities

OZF_SOFT_FUND Partner Fund Partner Fund Requests

OZF_SPECIAL_PRICING Special Pricing Special Pricing Requests

A-86 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OZF_SSD_BATCH Supplier Ship and Debit Batch Supplier ship and debit batch
is essentially a claim that the
distributor submits to the
supplier for approval and
payment. The batch contains
accruals for which the
supplier is expected to make
payment for.

OZF_SSD_REQUEST Supplier Ship and Debit
Request

An agreement that allows
distributor to request a special
price from supplier. The ship
and debit request will allow
specifications with respect to
the quantity limits associated
to the price reduction,
product and period.

PAY_BALANCE Payroll Balance Payroll Balance

PAY_BALANCE_ADJUSTME
NT

Payroll Balance Adjustment Payroll Balance Adjustment

PAY_BATCH_ELEMENT_EN
TRY

HRMS Batch Element Entry HRMS Batch Element Entry

PAY_CONTRIBUTION_USA
GE

Payroll Contribution Usage Payroll Contribution Usage

PAY_COST_ALLOCATION Payroll Cost Allocation Payroll Cost Allocation

PAY_DEFINED_BALANCE Payroll Defined Balance Payroll Defined Balance

PAY_ELEMENT HRMS Element HRMS Element

PAY_ELEMENT_CLASSIFIC
ATION

HRMS Element Classification It describes categories of
HRMS Elements such as
Earnings, Deductions and
Information. These influence
subsequent processing.

PAY_ELEMENT_ENTRY HRMS Element Entry HRMS Element Entry

Integration Repository Annotation Standards A-87

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PAY_ELEMENT_LINK HRMS Element Eligibility
Criteria

HRMS Element Eligibility
Criteria

PAY_EMP_TAX_INFO Employee Tax Information Employee Tax Information

PAY_FORMULA_RESULT Payroll Processing Result
Rule

It indicates how the Formula
is to be processed and how its
result is to be used by the
Payroll processes.

PAY_ITERATIVE_RULE Payroll Iterative Rule Payroll Iterative Rule

PAY_LEAVE_LIABILITY Leave Liability It describes leave type and
associated definitions utilized
by the Leave Liability process.

PAY_ORG_PAYMENT_MET
HOD

Organization Payment
Method

It is a Payroll Payment
Method used by the
Organization for employee
compensation.

PAY_PAYMENT_ARCHIVE Payroll Payment Archive Payroll Payment Archive

PAY_PAYROLL_DEFINITIO
N

Payroll Definition Payroll Definition

PAY_PAYROLL_EVENT_GR
OUP

Payroll Event Interpretation
Group

Payroll Event Interpretation
Group

PAY_PAYROLL_TABLE_RE
C_EVENT

Payroll Table Recordable
Event

Payroll Table Recordable
Event

PAY_PERSONAL_PAY_MET
HOD

Personal Payment Method Personal Payment Method

PAY_PROVINCIAL_MEDIC
AL

Provincial Medical Account Provincial Medical Account

PAY_RUN_TYPE Payroll Run Type Payroll Run Type

PAY_TIME_DEFINITION Payroll Time This holds information about
period of time and its usage.

A-88 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PAY_USER_DEFINED_TABL
E

HRMS User Defined Table HRMS User Defined Table

PAY_WORKERS_COMPENS
ATION

Workers Compensation Workers Compensation

PA_AGREEMENT Project Customer Agreement Project Customer Agreement

PA_BILLING_EVENT Project Billing Event Project Billing Event

PA_BUDGET Project Budget Project Budget

PA_BURDEN_COST Project Burden Cost Project Burden Cost

PA_CAPITAL_ASSET Project Capital Asset Project Capital Asset

PA_CUSTOMER_INVOICE Project Customer Invoice Project Customer Invoice

PA_EXPENDITURE Project Expenditure Project Expenditure

PA_EXPENSE_RPT_COST Project Expense Report Cost Project Expense Report Cost

PA_FINANCIAL_TASK Project Financial Task Project Financial Task

PA_FORECAST Project Forecast Project Forecast

PA_IC_TRANSACTION Project Cross Charge Project Cross Charge

PA_INTERCOMPANY_INVO
ICE

Project Intercompany Invoice Project Intercompany Invoice

PA_INTERPROJECT_INVOI
CE

Project Interproject Invoice Project Interproject Invoice

PA_INVENTORY_COST Project Inventory Cost Project Inventory Cost

PA_INVOICE Project Invoice Project Invoice

PA_LABOR_COST Project Labor Cost Project Labor Cost

Integration Repository Annotation Standards A-89

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PA_MISCELLANEOUS_COS
T

Project Miscellaneous Cost Project Miscellaneous Cost

PA_PAYABLE_INV_COST Project Supplier Cost Project Supplier Cost

PA_PERF_REPORTING Project Reporting Project Reporting

PA_PROJECT Project Project

PA_PROJ_COST Project Cost Project Cost

PA_PROJ_DELIVERABLE Project Deliverable Project Deliverable

PA_PROJ_FUNDING Project Funding Project Funding

PA_PROJ_PLANNING_RES
OURCE

Project Planning Resource Project Planning Resource

PA_PROJ_RESOURCE Project Resource Project Resource

PA_RES_BRK_DWN_STRUC
T

Project Resource Breakdown
Structure

Project Resource Breakdown
Structure

PA_REVENUE Project Revenue Project Revenue

PA_TASK Project Task Project Task

PA_TASK_RESOURCE Project Task Resource Project Task Resource

PA_TOT_BURDENED_COST Project Total Burdened Cost Project Total Burdened Cost

PA_USAGE_COST Project Asset Usage Cost Project Asset Usage Cost

PA_WIP_COST Project Work in Process Cost Project Work in Process Cost

PA_WORKPLAN_TASK Project Workplan Task Project Workplan Task

PER_APPLICANT Applicant Applicant

PER_APPLICANT_ASG Applicant Assignment Applicant Assignment

A-90 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_APPRAISAL Worker Appraisal Worker Appraisal

PER_APPRAISAL_PERIOD Appraisal Period It defines appraisal period
information to be used within
a performance plan.

PER_ASSESSMENT Worker Assessment Worker Assessment

PER_BF_BALANCE Third Party Payroll Balance Third Party Payroll Balance

PER_BF_PAYROLL_RESULT
S

Third Party Payroll Results Third Party Payroll Results

PER_CHECKLIST Person Task Checklist It is a checklist containing
tasks which can be copied and
the copy assigned to an
Employee, Contingent
Worker or Applicant, e.g.
'New Hire Checklist'.

PER_COLLECTIVE_AGREE
MENT

Collective Agreement Collective Agreement

PER_COLLECTIVE_AGREE
MENT_ITEM

Collective Agreement Item Collective Agreement Item

PER_COMPETENCE Competence Competence

PER_COMPETENCE_ELEME
NT

Competence Element Competence Element

PER_COMPETENCE_RATIN
G_SCALE

Competence Rating Scale Competence Rating Scale

PER_CONFIG_WORKBENC
H

HCM Configuration
Workbench

It manages enterprise
structure configuration
workbench wizard for setting
up entities such as Locations,
Business Groups, Jobs and
Positions.

Integration Repository Annotation Standards A-91

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_CONTACT_RELATION
SHIP

Contact Relationship Contact Relationship

PER_CWK Contingent Worker Contingent Worker

PER_CWK_ASG Contingent Worker
Assignment

Contingent Worker
Assignment

PER_CWK_RATE Contingent Worker
Assignment Rate

Contingent Worker
Assignment Rate

PER_DISABILITY Disability Disability

PER_DOCUMENTS_OF_REC
ORD

Documents of Record Documents of Record for an
Employee, Contingent
Worker, Applicant or Contact

PER_EMPLOYEE Employee Employee

PER_EMPLOYEE_ABSENCE Employee Absence Employee Absence

PER_EMPLOYEE_ASG Employee Assignment Employee Assignment

PER_EMPLOYMENT_CONT
RACT

Employment Contract Employment Contract

PER_ESTAB_ATTENDANCE
S

Schools and Colleges
Attended

Schools and Colleges
Attended

PER_EX-EMPLOYEE Ex-Employee Ex-Employee

PER_GENERIC_HIERARCH
Y

Generic Hierarchy Generic Hierarchy

PER_GRADE Employee Grade Employee Grade

PER_JOB Job Job

PER_JOB_GROUP Job Group Job Group

A-92 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_MEDICAL_ASSESSME
NT

Medical Assessment Medical Assessment

PER_OBJECTIVE_LIBRARY Objectives Library A repository of reusable
objectives that can be either
created individually or
imported from an external
source.

PER_ORGANIZATION_HIE
RARCHY

Organization Hierarchy Organization Hierarchy

PER_PERFORMANCE_REVI
EW

Employee Performance
Review

Employee Performance
Review

PER_PERF_MGMT_PLAN Performance Management
Plan

It indicates the parameters of
the performance management
process, including the
performance period,
population and appraisal
periods.

PER_PERSON HR Person HR Person

PER_PERSONAL_CONTACT Personal Contact Personal Contact

PER_PERSONAL_SCORECA
RD

Person Scorecard One worker's objectives for a
performance management
plan, which provides a goal
setting, performance review
and scoring basis.

PER_PERSON_ADDRESS Person Address Person Address

PER_PHONE Phone Phone

PER_POSITION Position Position

PER_POSITION_HIERARCH
Y

Position Hierarchy Position Hierarchy

Integration Repository Annotation Standards A-93

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_PREVIOUS_EMPLOYM
ENT

Previous Employment Previous Employment

PER_QUALIFICATION Person Qualification Person Qualification

PER_RECRUITMENT_ACTIV
ITY

Recruitment Activity Recruitment Activity

PER_SALARY_PROPOSAL Salary Proposal Salary Proposal

PER_SALARY_SURVEY Salary Survey Salary Survey

PER_SCORECARD_SHARIN
G

Scorecard Access It holds the list of persons and
access permissions for a
scorecard for which the
owner of the scorecard has
granted access.

PER_SECURITY_PROFILE Security Profile Security Profile

PER_SUPPLEMENTARY_RO
LE

HR Supplementary Role HR Supplementary Role

PER_VACANCY Vacancy Vacancy

PER_VACANCY_REQUISITI
ON

Vacancy Requisition Vacancy Requisition

PER_WORK_COUNCIL_ELE
CTION

Work Council Election Work Council Election

PER_WORK_INCIDENT Work Incident Work Incident

PN_CUSTOMER_SPACE_AS
SIGNMENT

Customer Space Assignment Customer Space Assignment

PN_EMPLOYEE_SPACE_ASS
GNMENT

Employee Space Assignment Employee Space Assignment

PN_PROPERTY Space A property or component of
property, such as a building,
land parcel, floor, or office.

A-94 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PN_RECOVERABLE_EXPEN
SE

Property Recoverable
Expense

Property Recoverable
Expense

PN_VOLUME_HISTORY Variable Rent Volume History Variable Rent Volume History

PO_ACKNOWLEDGEMENT Purchase Order
Acknowledgement

Purchase Order
Acknowledgement

PO_ADVANCED_SHIP_NOT
FN

Advanced Shipment
Notification

Advanced Shipment
Notification

PO_APPROVAL Purchase Order Approval Purchase Order Approval

PO_APPROVAL_HIERARCH
Y

Purchase Order Approval
Hierarchy

Purchase Order Approval
Hierarchy

PO_APPROVED_SUPPLIER_
LIST

Approved Supplier List Approved Supplier List

PO_ATTACHMENTS Procurement Attachments Procurement Attachments

PO_AUCTION Auction Auction

PO_AWARD Award Award

PO_BIDDING_ATTRIBUTES Bidding Attributes Bidding Attributes

PO_BLANKET_PURCHASE_
AGREEMENT

Blanket Purchase Agreement Blanket Purchase Agreement

PO_BLANKET_RELEASE Purchasing Blanket Release A blanket release is issued
against a blanket purchase
agreement to place the actual
order.

PO_CATALOG Purchasing Catalog Purchasing Catalog

PO_CATALOG_CATEGORY Purchasing Catalog Category Purchasing Catalog Category

PO_CHANGE Purchase Order Change Purchase Order Change

Integration Repository Annotation Standards A-95

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PO_CONSUMPTION_ADVI
CE

Consigned Inventory
Consumption Advice

Release or Standard PO for
Consigned Consumption

PO_CONTRACT Purchasing Contract Purchasing Contract

PO_CONTRACT_PURCHAS
E_AGREEMENT

Contract Purchase Agreement Contract Purchase Agreement

PO_CONTRACT_TEMPLAT
E

Purchasing Contract
Template

Purchasing Contract
Template

PO_CONTRACT_TERM Purchasing Contract Term Purchasing Contract Term
(Articles, Deliverables and
Contract Documents)

PO_DOCUMENT_APPROVE
R

Purchasing Document
Approver

Purchasing Document
Approver

PO_EXPENSE_RECEIPT Expense Receipt Expense Receipt

PO_GLOBAL_BLANKET_AG
REEMENT

Global Blanket Purchase
Agreement

Global Blanket Purchase
Agreement

PO_GLOBAL_CONTRACT_
AGREEMENT

Global Contract Purchase
Agreement

Global Contract Purchase
Agreement

PO_GOODS_RECEIPT Goods Receipt Goods Receipt

PO_GOODS_RETURN Goods Return Goods Return

PO_INTERNAL_REQUISITI
ON

Internal Requisition Internal Requisition

PO_NEGOTIATION Sourcing Negotiation Sourcing Negotiation

PO_PLANNED_PURCHASE_
ORDER

Planned Purchase Order Planned Purchase Order

PO_PLANNED_RELEASE Planned PO Release Planned PO Release

PO_PRICE_BREAKS Sourcing Price Break Sourcing Price Break

A-96 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PO_PRICE_DIFFERENTIAL Purchasing Price Differential Purchasing Price Differential
holds the price differentials
for the rate based lines for
requisition lines, PO lines or
Blanket pricebreaks based on
the entity type.

PO_PRICE_ELEMENTS Sourcing Price Element Sourcing Price Element

PO_PURCHASE_REQUISITI
ON

Purchase Requisition Purchase Requisition

PO_QUOTE Sourcing Quote Sourcing Quote

PO_RECEIPT_CORRECTION Receipt Correction Receipt Correction

PO_RECEIPT_TRAVELER Receipt Traveler Receipt Traveler

PO_REQUISITION_APPROV
AL

Requisition Approval Requisition Approval

PO_REQ_APPROVAL_HIER
ARCHY

Requisition Approval
Hierarchy

Requisition Approval
Hierarchy

PO_RFI Request for Information Request for Information

PO_RFQ Request for Quotation Request for Quotation

PO_RFQ_RESPONSE RFQ Response RFQ Response

PO_SERVICES_RECEIPTS Services Receipt Services Receipt

PO_SHIPMENT_AND_BILLI
NG_NOTICE

Shipment / Billing Notice Shipment / Billing Notice

PO_SOURCING_BID Sourcing Bid Sourcing Bid

PO_SOURCING_RULES Sourcing Rule Sourcing Rule

PO_SOURCING_RULE_ASSI
GNMENTS

Sourcing Rule Assignment Sourcing Rule Assignment

Integration Repository Annotation Standards A-97

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PO_STANDARD_PURCHAS
E_ORDER

Standard Purchase Order Standard Purchase Order

PO_SUPPLIER_BANK_ACC
OUNT

Supplier Bank Account Supplier Bank Account

PQH_ADDITIONAL_SECON
D_PENSION

Additional Second Pension Additional Second Pension

PQH_DEFAULT_HR_BUDG
ET_SET

Default HR Budget Set Default HR Budget Set

PQH_EMEA_SENIORITY_SI
TUATION

European Seniority Situation European Seniority Situation

PQH_EMPLOYEE_ACCOM
MODATION

Employee Accommodation Employee Accommodation

PQH_EMPLOYER_ACCOM
MODATION

Employer Provided
Accommodation

Employer Provided
Accommodation

PQH_FR_CORPS French CORPS French CORPS

PQH_FR_SERVICES_VALID
ATION

French Services Validation French Services Validation

PQH_FR_STATUTORY_SITU
ATION

French Statutory Situation French Statutory Situation

PQH_GLOBAL_PAY_SCALE Global Pay Scale Global Pay Scale

PQH_POS_CTRL_BUSINESS
_RULE

Position Control Business
Rule

Position Control Business
Rule

PQH_POS_CTRL_ROUTING Position Control Routing Position Control Routing

PQH_POS_CTRL_TRANS_TE
MPLATE

Position Control Transaction
Template

Position Control Transaction
Template

A-98 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PQH_RBC_RATE_MATRIX Person Eligibility Criteria
Rates Matrix

Rate Matrix stores different
criteria value combinations
and the rate a person is
eligible for if the person's
value matches the criteria
values.

PQH_REMUNERATION_RE
GULATION

Remuneration Regulation Remuneration Regulation

PQH_WORKPLACE_VALID
ATION

Workplace Validation Process Workplace Validation

PQP_PENSION_AND_SAVI
NG_TYPE

Pension and Saving Type Pension and Saving Type

PQP_VEHICLE_ALLOCATIO
N

Vehicle Allocation Vehicle Allocation

PQP_VEHICLE_REPOSITOR
Y

Vehicle Repository Vehicle Repository

PRP_PROPOSAL Sales Proposal Sales Proposal

PSP_EFF_REPORT_DETAILS Employee Effort Report It summarizes employee's
labor distributions over a
period of time. It is used to
ensure accurate disbursement
of labor charges to comply
with Office of Management
and Budget Guidelines.

PV_OPPORTUNITY Partner Opportunity
Assignment

It supports the assignment of
indirect opportunities to
partners.

PV_PARTNER_PROFILE Partner Profiling It is the extensible attribute
model used to capture
additional information about
a partner and their contacts.

Integration Repository Annotation Standards A-99

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PV_PROGRAM Partner Program
Management

It represents the partner
program management
framework which includes
the creation/maintenance of
partner programs and the
associated partner
enrollments/memberships
into those programs.

PV_REFERRAL Partner Business Referral Partner creates referrals to
refer business to vendor. If
referral results in a sale, the
partner gets compensated.
Partner register deals with
vendor for non-competition
purposes.

QA_PLAN Quality Collection Plan Quality Collection Plan

QA_RESULT Quality Result It indicates collection plan
result data collected directly,
through transactions or
collection import.

QA_SPEC Quality Specification A requirement for a
characteristic for an item or
item category specific to a
customer or supplier.

QOT_QUOTE Sales Quote Sales Quote

QP_PRICE_FORMULA Price Formula Price Formula

QP_PRICE_LIST Price List Price List

QP_PRICE_MODIFIER Price Modifier Price Modifier

QP_PRICE_QUALIFIER Price Qualifier Price Qualifier

REPAIR_ORDER Repair Order Repair Order

A-100 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

RLM_CUM Supplier Shipment
Accumulation

It is used to track the total
shipments made by the
supplier for a particular
customer item, based on
CUM management setup.

RLM_SCHEDULE Customer Demand Schedule It refers to customers
production material release.

RRS_SITE Site It indicates the spatial
location of an actual or
planned structure or set of
structures (as a building,
business park,
communication tower,
highway or monument).

SOA_DIAGNOSTICS Diagnostics for Oracle
E-Business Suite Integrated
SOA Gateway

Diagnostics for Oracle
E-Business Suite integrated
SOA Gateway

UMX_ACCT_REG_REQUEST
S

User Account Request It represents requests made
for user accounts, needed to
gain system access.

UMX_ROLE Security Role It represents a set of
permissions in the security
system. Roles are assigned to
users and can be defined in
role inheritance hierarchies. A
Responsibility is a special
type of role.

UMX_ROLE_REG_REQUEST
S

Security Role Request It represents requests made
for roles (as defined in the
security system) to gain
access to a secured part of the
system.

WF_ENGINE Workflow Item It indicates a workflow Item
including processes,
functions, notifications and
event activities.

Integration Repository Annotation Standards A-101

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WF_EVENT Business Event Business Event

WF_NOTIFICATION Workflow Notification Workflow Notification

WF_USER Workflow Directory User Workflow Directory User

WF_WORKLIST Workflow Worklist Content Approve workflow entities
(Expense Reports, PO
Request, HR Offer, HR
Vacancy)

WIP_ACCOUNTING_CLASS WIP Accounting Class WIP Accounting Class

WIP_COMPLETION_TRANS
ACTION

WIP Assembly Completion Business Entity for Assembly
Completion in WIP

WIP_EMPLOYEE_LABOR_R
ATE

WIP Employee Labor Rate WIP Employee Labor Rate

WIP_MATERIAL_TRANSAC
TION

WIP Material Transaction Business Entity for Material
Transaction in WIP

WIP_MOVE_TRANSACTIO
N

WIP Shopfloor Move WIP Shopfloor Move

WIP_PARAMETER Work in Process Setup Work in Process Setup

WIP_PRODUCTION_LINE Production Line Production Line

WIP_REPETITIVE_SCHEDU
LE

Repetitive Schedule Repetitive Schedule

WIP_RESOURCE_TRANSAC
TION

WIP Resource Process Flow WIP Resource Transaction

WIP_SCHEDULE_GROUP WIP Schedule Group WIP Schedule Group

WIP_SHOPFLOOR_STATUS Shopfloor Status Shopfloor Status

WIP_WORK_ORDER Work Order Job/Work Order

A-102 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WMS_CONTAINER Warehouse Management
License Plate

Warehouse Container and
License Plate Management

WMS_DEVICE_CONFIRMA
TION_PUB

Dispatch Task It contains status update for
dispatch task. For example, an
ASRS task, a Carousel task, a
Pick to Light system task.

WMS_DEVICE_INTEGRATI
ON

Warehouse Device Warehouse Device

WMS_EPC_PUB Electronic Product Code It stores Electronic Product
Codes such as GTIN, GID,
SSCC, etc.

WMS_INSTALL Warehouse Management
System Installation Check

This API has two purposes:

• This API checks if WMS
product is installed in the
system, without which
some flags are hidden on
forms.

• The API also returns if an
organization is wms
enabled.

WMS_LABEL Label Printing It holds information to
support the printing of
shipping, package, container,
item and serial labels.

WMS_LICENSE_PLATE License Plate It is an identifier of a
container instance used by
shipping, warehouse
management and shop floor
management.

WMS_RFID_DEVICE Warehouse Management
Radio Frequency
Identification

Warehouse Management
Radio Frequency
Identification Integration

Integration Repository Annotation Standards A-103

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WMS_SHIPPING_TRANSAC
TION

Warehouse Management
Shipping Transaction

Warehouse Management
truck loading and shipping

WSH_CONTAINER_PUB Container Vessel in which goods and
material are packed for
shipment.

WSH_DELIVERY Delivery Group of Shipment Lines

WSH_DELIVERY_LINE Delivery Line Shipment Line

WSH_EXCEPTIONS_PUB Shipping Exception Exceptions automatically
logged for Shipping Entities
such as Change Quantity,
Cancel Shipment in OM, etc.
Exception behavior defined as
"Error", "Warning" or
"Information Only".

WSH_FREIGHT_COSTS_PUB Freight Costs
The cost of transportation
services for the Shipper. For
example, amount Shipper will
pay carrier for transportation
services.

WSH_PICKING_BATCHES_
PUB

Pick Release The process of releasing
delivery lines to warehouse
for allocation and picking.

WSH_TRIP Trip It describes a planned or
historical departure of
shipment from a location.

WSH_TRIP_STOPS_PUB Trip Stop The physical location through
which a Trip will pass where
goods are either dropped off
or picked up.

WSM_INV_LOT_TXN Inventory Lot Transaction Lot based Inventory
Transactions

WSM_LOT_BASED_JOB Lot Based Job Lot Based Job / WIP Lot

A-104 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WSM_LOT_MOVE_TXN Lot Move Transaction Lot based jobs shopfloor
move transactions

WSM_WIP_LOT_TXN WIP Lot Transaction Lot based WIP transactions

XDP_SERVICE_ORDER Service Fulfillment Order An order for one or more
services, which need to be
provisioned by Service
Fulfillment Manager. The
provisioning of these services
often involve systems outside
Oracle E-Business Suite.

XLA_JOURNAL_ENTRY Subledger Accounting Journal
Entry

Subledger Accounting Journal
Entry comprising of a Header,
Line and Distribution

XNB_ADD_BILLSUMMARY Bill Summary Processing This is used for inserting,
creating, or populating new
Bill Summary records into
Oracle E-Business Suite from
external Billing systems.

XNB_ADD_GROUPSALESO
RDER

Billing System Sales Order
Lines Group

All the Sales order lines
information is generated as
one XML Message and
published to third party
billing application.

XNB_ADD_SALESORDER Billing System Sales Order
Addition

Sales order information is
generated as XML Message
and published to third party
billing application.

XNB_SYNC_ACCOUNT Billing System Customer
Account Synchronization

An account information is
generated as XML Message
and published to third party
billing application.

XNB_SYNC_ITEM Billing System Inventory Item
Synchronization

Catalog information is
generated as XML Message
and published to third party
billing application.

Integration Repository Annotation Standards A-105

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

XTR_BANK_BALANCE Bank Account Balance Bank Account Balance

XTR_DEAL_DATA Treasury Deal Treasury Deal

XTR_MARKET_DATA Market Rate Financial Market Rates Data

XTR_PAYMENT XTR Payment Treasury Payment represents
the payments that are being
made.

ZX_DATA_UPLOAD Imported Tax Content This entity code is used in all
the programs of Oracle
E-Business Suite Tax Content
Upload Request Set.

Example: Create Customer
/*#
_*This interface creates a customer. It calls the
_*customer hub API that creates a 'party' to create a
_*party of type 'customer'.
_*@rep:scope public
_*@rep:product OM
_*@rep:displayname Create Customer
_*@rep:category BUSINESS_ENTITY OM_CUSTOMER
_*@rep:lifecycle active
_*@rep:compatibility S
_*/

Composite Service - BPEL Annotation Guidelines
This section describes what you should know about Integration Repository annotations
for Composite Services - BPEL.

Annotating Composite Services - BPEL
• You should annotate BPEL projects in *.bpel files.

• Before annotating, make sure that no comments beginning with /*# are present.
The "slash-star-pound" characters are used to set off repository annotations, and
will result in either an error or undesirable behavior if used with normal comments.

• To annotate, open the .bpel file in text editor to edit the file.

• In the .bpel file, place the annotations within the comments section in beginning of
the file.

A-106 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Enter meaningful description that covers the condition under which the business
event is raised and the UI action that invokes the business event.

• Define product codes in FND_APPLICATION.

• Use existing business entities for your composite services - BPEL processes. For the
list of existing business entities, see Business Entity Annotation Guidelines, page A-
37.

• Interface name in <BPEL_PROCESS_NAME>.bpel should be defined as
'oracle.apps' + product_code + '.<BPEL_PROCESS_NAME>.

• If BPEL process name is "BPEL_PROCESS_NAME", then

• A BPEL Process Jar file should be created with
<prod>_pbel_<BPEL_PROCESS_NAME>.jar.

• <prod>_pbel_<BPEL_PROCESS_NAME>.jar file should be placed under
$product_top/patch/115/jar/bpel.

• <prod>_pbel_<BPEL_PROCESS_NAME>.jar file should be unzipped under
$product_top/patch/115/jar/bpel.

• BPEL file for <BPEL_PROCESS_NAME>.jar should be present under
$product_top/patch/115/jar/bpel/<prod>_pbel_<BPEL_PROCESS_
NAME>.bpel.

• BPEL File Name should not be changed from <BPEL_PROCESS_NAME>.bpel.

• WSDL file for <BPEL_PROCESS_NAME> should be present under
$product_top/patch/115/jar/bpel/<prod>_pbel_<BPEL_PROCESS_
NAME>.bpel.

• WSDL File Name should not be changed from <BPEL_PROCESS_NAME>.wsdl.

• Standalone Parser should be run on annotated
$product_top/patch/115/jar/bpel/<prod>_pbel_<BPEL_PROCESS_
NAME>.bpel/bpel<BPEL_PROCESS_NAME>.bpel.

• $product_top/patch/115/jar/bpel/<prod>_pbel_<BPEL_PROCESS_
NAME>.bpel/bpel<BPEL_PROCESS_NAME>_bpel.ildt should be loaded
into Integration Repository.

• During the execution of a standalone parser, arcs file location of *.bpel file should
be patch/115/jar/bpel.

Annotations for Composite Services - BPEL - Syntax
The annotations for composite services - BPEL are:

Integration Repository Annotation Standards A-107

/*#
 * This is a bpel file for creating invoice.
 * @rep:scope public
 * @rep:displayname Create Invoice
 * @rep:lifecycle active
 * @rep:product inv
 * @rep:compatibility S
 * @rep:interface oracle.apps.inv.CreateInvoice
 * @rep:category BUSINESS_ENTITY INVOICE_CREATION
 */

Refer to General Guidelines for Annotations, page A-1 in Integration Repository for
details of element definitions.

Required Annotations
Follow the links below to view syntax and usage of each annotation.

• Must begin with description sentence(s)

• rep:displayname, page A-117

• rep:scope, page A-115

• rep:product, page A-116

• rep:category BUSINESS_ENTITY, page A-125

Optional Annotations
• link, page A-120

• see, page A-121

• rep:lifecycle, page A-119

• rep:compatibility, page A-119

• rep:ihelp, page A-122

• rep:metalink, page A-123

• rep:doccd, page A-124

Template
You can use the following template when annotating composite - BPEL files:

A-108 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

.

.

.
 /*#
 * <Put your long bpel process description here
 * it can span multiple lines>
 * @rep:scope <scope>
 * @rep:displayname <display name>
 * @rep:lifecycle <lifecycle>
 * @rep:product <product or pseudoproduct short code>
 * @rep:compatibility <compatibility code>
 * @rep:interface <oracle.apps.[product_code].[bpel_process_name]>
 * @rep:category BUSINESS_ENTITY <entity name>
 */
.
.
.

Example
Here is an example of an annotated composite - BPEL file:

Integration Repository Annotation Standards A-109

//
Oracle JDeveloper BPEL Designer

 Created: Tue Oct 30 17:10:13 IST 2007
 Author: jdole
 Purpose: Synchronous BPEL Process
 /*#
 * This is a bpel file for creating invoice.
 * @rep:scope public
 * @rep:displayname Create Invoice
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:interface oracle.apps.po.CreateInvoice
 * @rep:category BUSINESS_ENTITY INVOICE
 */

//

-->
<process name="CreateInvoice">
 targetNamespace="http://xmlns.oracle.com/CreateInvoice"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"

xmlns:ns4="http://xmlns.oracle.com/pcbpel/adapter/file/ReadPayload/"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns5="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:client="http://xmlns.oracle.com/CreateInvoice"

xmlns:ns6="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"

xmlns:ns1="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/CREATE_SINGLE_INVOICE_1037895/"

xmlns:ns3="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/APPS/BPEL_CREATE_SINGLE_INVOICE_1037895/AR_INVOICE_API_PUB-24CREATE
_INV/"
 xmlns:ns2="http://xmlns.oracle.com/pcbpel/adapter/appscontext/"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc">

 <!--
///
PARTNERLINKS
 List of services participating in this BPEL process
///
-->
<partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information
associated

A-110 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="client:CreateInvoice"
 myRole="CreateInvoiceProvider"/>
 <partnerLink name="CREATE_SINGLE_INVOICE_1037895"
 partnerRole="CREATE_SINGLE_INVOICE_1037895_ptt_Role"

partnerLinkType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt_PL"/>
 <parnterLink name="ReadPayload" partnerRole="SynchRead_role"
 partnerLinkType="ns4:SynchRead_plt"/>
</partnerLinks>
<!--
///
VARIABLES
 List of messages and XML documents used within this BPEL process
///
-->
<variables>
<!--Reference to the message passed as input during initiation-->
 <variable name="inputVariable"
 messageType="client:CreateInvoiceRequestMessage"/>
<!--Reference to the message that will be returned to the requester-->
 <variable name="outputVariable"
 messageType="client:CreateInvoiceResponseMessage"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 messageType="ns1:Request"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 messageType="ns1:Response"/>
 <variable name="Invoke_2_SynchRead_InputVariable"
 messageType="ns4:Empty_msg"/>
 <variable name="Invoke_2_SynchRead_OutputVariable"
 messageType="ns4:InputParameters_msg"/>
</variables>
<!--
///
ORCHESTRATION LOGIC
 Set of activities coordinating the flow of messages across the
 services integrated within this business process
///
-->
<sequence name="main">
 <!--Receive input from requestor. (Note: This maps to operation
defined in CreateInvoice.wsdl)-->
 <receive name="receiveInput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="inputVariable" createInstance="yes"/>
 <!--Generate reply to synchronous request-->
 <assign name="SetHeader">
 <copy>
 <from expression="''operations'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Username"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to

Integration Repository Annotation Standards A-111

variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Responsibility"/>
 </copy>
 <copy>
 <from expression="''204'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"
 query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:ORG_ID"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns1:SecurityHeader/ns1:ResponsibilityName"/>
 </copy>
 </assign>
 <invoke name="InvokeReadPayload" partnerLink="ReadPayload"
 portType="ns4:SynchRead_ptt" operation="SynchRead"
 inputVariable="Invoke_2_SynchRead_InputVariable"
 outputVariable="Invoke_2_SynchRead_OutputVariable"/>
 <assign name="SetPayload">
 <copy>
 <from variable="Invoke_2_SynchRead_OutputVariable"
 part="InputParameters" query="/ns3:InputParameters"/>
 Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body" query="/ns1:SOARequest/ns3:InputParameters"/>
 </copy>
 </assign>
 <assign name="SetDate">
 <copy>
 <from expression="xp20:current-date()">
 <to to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body"

query="/ns1:SOARequest/ns3:InputParameters/ns3:P_TRX_HEADER_TBL/ns3:P_TR
X_HEADER_TBL_ITEM/ns3:TRX_DATE"/>
 </copy>
 </assign>
 <invoke name="Invoke_1" partnerLink="CREATE_SINGLE_INVOICE_1037895"
 portType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt"
 operation="CREATE_SINGLE_INVOICE_1037895"

inputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"

outputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"/>
 <assign name="AssignResult">
 <copy>
 <from
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 part="body"

query="/ns1:SOAResponse/ns3:OutputParameters/ns3:X_MSG_DATA"/>
 <to variable="outputVariable" part="payload"
 query="/client:CreateInvoiceProcessResponse/client:result"/>
 </copy>

A-112 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

</assign>
 <reply name="replyOutput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="outputVariable"/>
 </sequence>
</process>

Glossary of Annotations
The following is a list of currently supported annotation types and details about their
recommended use.

<description sentence(s)>

Annotation Type <description sentence(s)>

Syntax Does not require a tag.

Integration Repository Annotation Standards A-113

Annotation Type <description sentence(s)>

Usage Defines a user-friendly description of what the
interface or method does.

Start the description with a summary sentence
that begins with a capital letter and ends with
a period. Do not use all capitals) and do not
capitalize words that are not proper nouns.

An example of a good beginning sentence
could be as follows:

"The Purchase Order Data Object holds the
purchase order data including nested data
objects such as lines and shipments."

In general, a good description has multiple
sentences and would be easily understood by
a potential customer. An exception to the
multiple sentence rule is cases where the
package-level description provides detailed
context information and the associated
method-level descriptions can therefore be
more brief (to avoid repetitiveness).

A bad example would be: "Create an order."

This description is barely usable. A better one
would be:

"Use this package to create a customer order,
specifying header and line information."

You can use the
 tag for forcing a new line
in description. The following is an example on
how to force a new line in the description:

The following is an example on how to force a
new line in the description:

FEM_BUDGETS_ATTR_T is an interface
table for loading and updating
Budget attribute assignments using
the Dimension Member Loader.

These attribute assignments are
properties that further describe
each Budget.
 When loading
Budgets using the Dimension Member
Loader, identify each new member
in the FEM_BUDGETS_B_T table while
providing an assignment row for
each required attribute in the
FEM_BUDGETS_ATTR_T table.

A-114 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type <description sentence(s)>

Example /*#
 * This is a sample description.
Use
 * standard English capitalization
and
 * punctuation. Write descriptions
 * carefully.

Required Required for all interfaces that have
@rep:scope public.

Default If not set, the value is defaulted from the
Javadoc or PL/SQL Doc of the interface or
method.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

Data Model The full description text goes into:

FND_OBJECTS.DESCRIPTION

FND_FORM_FUNCTIONS.DESCRIPTION

The first sentence of the description text goes
into:

FND_OBJECTS_TL.DESCRIPTION

FND_FORM_FUNCTIONS_TL.DESCRIPTION

Comments Optionally, you can use the following HTML
tags in your descriptions:

<body>
<p>

<h1>
<h2>
<h3>

<pre> for multiple code samples (should be
enclosed by <code> tags)

Integration Repository Annotation Standards A-115

@rep:scope

Annotation Type @rep:scope

Syntax @rep:scope public | private |
internal

Usage Indicates where to publish the interface, if at
all.

Example @rep:scope public means publish
everywhere.

Note: Public interfaces are displayed on
the customer-facing UI.

@rep:scope private means that this
interface is published to the Integration
Repository but restricted for use by the
owning team.

@rep:scope internal means publish
within the company.

Required Required for all interfaces.

Default None.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

Data Model FND_OBJECTS.SCOPE

FND_FORM_FUNCTIONS.SCOPE

Comments Private and internal interfaces won't appear
on the customer-facing UI, but will appear on
the Oracle-internal UI.

A-116 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

@rep:product

Annotation Type @rep:product

Syntax @rep:product StringShortCode

Usage Specifies the product shortname of the
interface, as defined in the ARU system.

Example @rep:product PO

Required Required for all interfaces.

Default None.

Level Interface (class) only.

Multiple Allowed No. Use only one per interface.

Data Model FND_OBJECTS.PRODUCT

Comments If the interface belongs to a pseudoproduct,
then use the pseudoproduct's shortname.

If youre team has an abbreviated name that is
different from the application shortname, then
use it instead of the application shortname.
For example, use "GL" instead of "SQLGL".

@rep:implementation

Annotation Type @rep:implementation

Syntax @rep:implementation
StringClassName

Usage Specifies the implementation class name of the
interface.

Example @rep:implementation
oracle.apps.po.server.PurchaseOrde
rsAmImpl

Integration Repository Annotation Standards A-117

Annotation Type @rep:implementation

Required Required for Java only.

Default None.

Level Interface (class).

Multiple Allowed No. Use only one per interface.

Data Model FND_OBJECTS.IMPLEMENTATION_NAME

Comments

@rep:displayname

Annotation Type @rep:displayname

Syntax @rep:displayname StringName

Usage Defines a user-friendly name for the interface.

Example @rep:displayname Purchase Order
Summary

Required Required for all interfaces that have
@rep:scope public.

Default None.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

Data Model FND_OBJECTS_TL.DISPLAY_NAME

FND_FORM_FUNCTIONS_TL.USER_FUNCTIO
N_NAME

A-118 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:displayname

Comments Display Name Guidelines

These guidelines apply to display names for
all technologies (interfaces, classes, methods,
parameters, XMLG maps, and so on).

Display names must meet the following
criteria:

• Be mixed case. Do not use all capitals or
all lower case.

• Be singular rather than plural. For
example, use "Customer" instead of
"Customers".

• Be fully qualified and representative of
your business area.

• Not have underscores (_).

• Not end with a period (.).

• Not be the same as the internal name.

• Not begin with a product code or product
name.

• Not contain obvious redundancies such
as "Package", "API", or "APIs". As you
write your display names, do consider the
UI where the display name will be seen.

For example, use 'Promise Activity' as the
display name, instead of
IEX_PROMISES_PUB. The reason is that
IEX_PROMISES_PUB contains underscores
and is the same as the internal name.

Use 'Process Activity' as the display name,
instead of 'Workflow Process Activity APIs'.
This is because it begins with a product name
and ends with "APIs".

Integration Repository Annotation Standards A-119

@rep:lifecycle

Annotation Type @rep:lifecycle

Syntax @rep:lifecycle active | deprecated
| obsolete | planned

Usage Indicates the lifecycle phase of the interface.

Example @rep:lifecycle active means the
interface is active.

@rep:lifecycle deprecated means the
interface has been deprecated.

@rep:lifecycle obsolete means the
interface is obsolete and must not be used.

@rep:lifecycle planned means the
interface is planned for a future release. This is
used for prototypes and mockups.

Required Optional.

Default The default value is active.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

Data Model FND_OBJECTS.LIFECYCLE

FND_FORM_FUNCTION.LIFECYCLE

Comments The parsers will validate that this annotation
is in sync with the "@deprecated" Javadoc
annotation.

@rep:compatibility

Annotation Type @rep:compatibility

Syntax @rep:compatibility S | N

A-120 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:compatibility

Usage S indicates the lifecycle phase of the interface.

N indicates that backward compatibility is not
assured.

Example @rep:compatibility S

Required Optional.

Default Conditional. The value is defaulted to S for
@rep:scope public. Otherwise, the value
is defaulted to N.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

Data Model FND_OBJECTS.COMPATIBILITY

FND_FORM_FUNCTION.COMPATIBILITY

Comments Integration Repository UI only flags for
@rep:compatibility N.
@rep:compabitility S is not shown or
highlighted in the UI.

@link

Annotation Type @link

Note: This is supported only for a
destination of Java.

Syntax {@link package.class#member label}

Usage Provides a link to another interface or method.

Example {@link
#setAmounts(int,int,int,int) Set
Amounts}

Integration Repository Annotation Standards A-121

Annotation Type @link

Note: This is supported only for a
destination of Java.

Required Optional.

Default None.

Level Interface (class) and API (method).

Multiple Allowed Yes.

Data Model N/A

Comments This is the standard Javadoc "@link"
annotation, where the linked items are
embedded as hyperlinks in the description
that displays in the UI.

Take note of the following rules: Public APIs
must not link to private or internal APIs. @link
annotations must not link to documents that
are not accessible by the Integration
Repository viewer.

@see

Annotation Type @see

Syntax @see StringLocator

Usage Provides a link to another interface or method.

Example @see #setAmounts(int,int,int,int)

Required Optional.

Default None.

Level Interface (class) and API (method).

A-122 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @see

Multiple Allowed Yes.

Data Model FND_CHILD_ANNOTATIONS.VALUE

Comments This is the standard Javadoc "@see"
annotation.

The linked items will display on the UI under
a "See Also" heading.

Usage in PL/SQL Code: @see
package#procedure

@rep:ihelp

Annotation Type @rep:ihelp

Syntax When used as a separate child annotation on a
single line:

@rep:ihelp
<product_shortname>/@<help_target>
#<help_target> <link_text>

When used as an inline annotation, add curly
braces:

{@rep:ihelp
<product_shortname>/@<help_target>
#<help_target> <link_text>}

Usage Provides a link to an existing Oracle
E-Business Suite HTML online help page.

product_shortname is the product short
name.

help_target is the help target that was
manually embedded in the file by the
technical writer, such as, "jtfaccsum_jsp,"
"aolpo," "overview," "ast_aboutcollateral".

Example @see #setAmounts(int,int,int,int)

Required Optional.

Integration Repository Annotation Standards A-123

Annotation Type @rep:ihelp

Default None.

Level Interface (class) and API (method).

Multiple Allowed Yes.

Data Model

Comments The @rep:ihelp annotation is slightly
preferred over the similar @rep:doccd
annotation, as it is both local and more
specific.

@rep:metalink

Annotation Type @rep:metalink

Syntax When used as a separate child annotation on a
single line:

@rep:metalink <bulletin_number>
<link_text>

When used as an inline annotation, add curly
braces:

{@rep:metalink <bulletin_number>
<link_text>}

Usage Provides a link to an existing My Oracle
Support (formerly OracleMetaLink)
Knowledge Document.

Example @rep:metalink 123456.1 See My
Oracle Support Knowledge Document
123456.1

Required Optional.

Default None.

Level Interface (class) and API (method).

A-124 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:metalink

Multiple Allowed Yes.

Data Model

Comments

@rep:doccd

Annotation Type @rep:doccd

Syntax When used as a separate child annotation on a single line:

@rep:doccd <file_name> <link_text>

When used as an inline annotation, add curly braces:

{@rep:doccd <file_name> <link_text>}

Usage Forms a link to a PDF guide on the documentation CD.

Example {@rep:doccd 115xyzug.pdf See the Oracle
Sample Product Users Guide}

Required Optional.

Default None.

Level Interface (class) and API (method).

Multiple Allowed Yes.

Data Model

Integration Repository Annotation Standards A-125

Annotation Type @rep:doccd

Comments • PDF guides on the doc CD should follow the naming
standard for PDF file names. Regardless of what the file
name is, once an @rep:doccd annotation exists in
source code, teams should make every effort to keep
that file name stable and enduring.

If the PDF has been zipped to reduce its file size, then
use @rep:doccd <file_name.zip> <link_text>.

• The @rep:ihelp annotation is slightly preferred over
the similar @rep:doccd annotation, as it is both local
and more specific.

@rep:category

Annotation Type @rep:category

Syntax @rep:category StringLookupType
StringLookupCode SequenceNumber

The StringLookupCode is what you write in your source file.
This is a short form.It cannot have any blank spaces within it
also it has to be in UPPERCASE only (Numbers are
allowed). Meaning a look up code like "ABC D" or "Abcd" is
wrong. It has to be something like the following: "ABCD" or
"ABC_D" or "ABC2". The Look up code has to be registered
with the librarian along with the actual display name.
During run time iRep UI resolves the Look up code against
the library table and paints the display name in the UI

See Annotation Syntax, page A-1 for details about this
annotation's syntax.

Usage Specifies the business category of the interface.

A-126 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:category

Example @rep:category BUSINESS_ENTITY
PO_PURCHASE_ORDER

PO_PURCHASE_ORDER is your string lookup code and
your display name for example could be "Purchase Order".

In this case register PO_PURCHASE_ORDER and its desired
displayed name with the librarian.

@rep:category STANDARD_READY 3A4_IN

Where 3A4_IN IS YOUR Look up code and it resolves to
'ROSETTANET:02.02.00:PIP3A4-Request Purchase Order'
when displayed through UI. Both 3A4_IN and its display
name (ROSETTANET:02.02.00:PIP3A4-Request Purchase
Order) have to be registered with the Librarian. Follow a
similar process for the rest of the category types listed
below.

@rep:category OPEN_INTERFACE
AP_INVOICE_LINES_INTERFACE 1 Where
AP_INVOICE_LINES_INTERFACE is your string lookup
code.

@rep:category MISC_EXTENSIONS <FND_CODE>

Required BUSINESS_ENTITY is mandatory for all interfaces. If the
methods belonging to a class ALL have the same business
entity, you only need to annotate the class. However, if the
methods belonging to a class have heterogeneous business
entities, then you have to annotate each of the methods
appropriately.

See Business Entity Annotation Guidelines, page A-37 for
additional details.

OPEN_INTERFACE is mandatory for CPs that are part of
Open Interfaces.

Default Methods default to the value set on the class.

Level Interface (class) and API (method).

Multiple Allowed Yes.

Data Model FND_LOOKUP_ASSIGNMENTS.LOOKUP_TYPE

FND_LOOKUP_ASSIGNMENTS.LOOKUP_CODE

Integration Repository Annotation Standards A-127

Annotation Type @rep:category

Comments You are encouraged to use the rep:category annotation
liberally in your code. While certain categories are required
(notably BUSINESS_ENTITY and OPEN_INTERFACE), You
are encouraged to create your own categories (consult the
repository librarian) and utilize this annotation to track
product-specific information.

STANDARD_READY specifies where Oracle is standard-ready
but cannot claim standard compliance because a third-party
process is responsible for compliance.

When using MISC_EXTENSIONS, the value for
<FND_CODE> can be any of the following:

• ALL_USER_EXIT

• HR_USER_HOOKS

• HR_DATAPUMP

• PA_CLIENT_EXTENSION

The Stringlookup code cannot be more than 30 characters in
length. For example the String lookup value like
"ROSETTANET:02.02.00:PIP3A7" cannot be more than 30
characters in length. The development teams have to register
both developer key (lookup_code) and display name
(meaning) with the librarian similar to the open interface
process and then use the developer key inside the
annotation.

@rep:usestable

Annotation Type @rep:usestable

Syntax @rep:usestable <table or view name>
<sequence> <direction flag>

A-128 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:usestable

Usage Used when annotating concurrent programs to identify
associated open interface tables or views.

<table or view name> is the name of the table or view.

<sequence> is an integer used to tell the UI the display
order of the different pieces. By convention, in the
rep:category OPEN_INTERFACE, page A-125 annotation,
you will have used 1 for the concurrent program. Here in
the rep:usestable annotations, order the input tables: list
master (header) tables before detail (lines) tables. Finally,
put any output views or tables at the end of the sequence.

<direction flag> is optional and specifies one of the
following: IN (default), OUT, or BOTH.

Example @rep:usestable SampleTable 3 IN

Required Only if the concurrent program is part of an open interface.

Default None.

Level Interface.

Multiple Allowed Yes.

@rep:standard

Annotation Type @rep:standard

Syntax @rep:standard StringType StringVersionNumber
StringSpecName

In the following example @rep:standard OAG 7.2
Process_PO_001 StringType is OAG,
StringVersionNumber is 7.2 and StringSpecName is
Process_PO_001

See Annotation Syntax, page A-1 for details about this
annotation's syntax.

Integration Repository Annotation Standards A-129

Annotation Type @rep:standard

Usage Specifies the business standard name. This annotation is
reserved for where Oracle is compliant with industry
standards.

Example In the example @rep:standard RosettaNet 02.02.00
'Pip3B12-Shipping Order Confirmation, the
StringSpecName is enclosed in Single Quotes because the
spec name has empty spaces. It is not necessary to have
these quotes if the StringSpecName does not have any
empty spaces like the following example @rep:standard
RosettaNet 02.02.00
Pip3B12-PurchaseOrderConfirmation.

Required Optional.

Default Methods default to the value set on the class.

Level Documents and data rows.

Multiple Allowed No. Use only one per each program element (class or
method).

Data Model FND_OBJECTS.STANDARD

FND_OBJECTS.STANDARD_VERSION

FND_OBJECTS.STANDARD_SPEC

Comments

@rep:interface

Annotation Type @rep:interface

Syntax @rep:interface StringClassName where the
StringClassName syntax is
transactiontype:subtype. Refer to the
example below.

Usage Specifies the interface name for technologies where parsing
tools can't easily introspect the interface name.

A-130 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:interface

Example The StringClassName is always
transactiontype:subtype

@rep:interface PO:POC

Required Optional.

Default None.

Level Interface only.

Multiple Allowed No. Use only one per interface.

Data Model FND_OBJECTS.OBJECT_NAME

Comments Used in technologies where there isn't a strong native
definition of the interface, such as XML Gateway and EDI.

@param

Annotation Type @param

Syntax @param paramName paramDescription

Usage Specifies the name and description of a method, procedure,
or function parameter (IN, OUT, or both).

Example @param PONumber The purchase order number.

Required Optional.

Default None.

Level Methods, procedures, and functions.

Multiple Allowed Yes.

Data Model FND_PARAMETERS.PARAMETER_NAME

FND_PARAMETERS.PARAMETER_DESCRIPTION

Integration Repository Annotation Standards A-131

Annotation Type @param

Comments For convenience, Java annotations are also supported.

@return

Annotation Type @return

Syntax @return StringDescription

Usage Specifies the description of a method or function return
parameter.

Example @return The purchase order status.

Required Optional.

Default None.

Level Methods, procedures, and functions.

Multiple Allowed Yes.

Data Model FND_PARAMETERS.PARAMETER_NAME

FND_PARAMETERS.PARAMETER_DESCRIPTION

Comments For convenience, Java annotations are also supported.

@rep:paraminfo

Annotation Type @rep:paraminfo

Syntax @rep:paraminfo {@rep:innertype typeName}
{@rep:precision value} {@rep:required}

A-132 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:paraminfo

Usage rep:paraminfo

The rep:paraminfo annotation must come immediately in
the line following the parameter's @param or @return
annotation it is describing.

rep:innertype

Optional inline annotation to describe the inner type of
generic objects such as collections.

rep:precision

Optional inline annotation to specify the parameter
precision. Used for Strings and numbers.

rep:required

Optional inline annotation to indicate that a not null must be
supplied. This is only needed for non-PL/SQL technologies.

Integration Repository Annotation Standards A-133

Annotation Type @rep:paraminfo

Example /**
 * Acknowledges purchase orders, including
whether
 * the terms have been accepted or not. You
can
 * also provide updated line item pricing
and
 * shipment promise dates with the
acknowledgement.
 *
 * @param purchaseOrders list of purchase
order objects
 * @paraminfo {@rep:innertype
oracle.apps.po.PurchaseOrderAcknowledgements
SDO}
{@rep:required}
 *
 * @rep:scope public
 * @rep:displayname Receive Purchase Order
Items
 */
public void
acknowledgePurchaseOrders(DataList
purchaseOrders);

/**
 * Gets the price for a purchase order line
item.
 *
 * @param poNumber purchase order unique
identifier
 * @paraminfo {@rep:precision 10}
{@rep:required}
 * @param lineNumber purchase order line
unique identifier
 * @paraminfo {@rep:precision 10}
{@rep:required}
 * @return the item price for the given
purchase order line
 * @paraminfo {@rep:precision 10}
 *
 * @rep:scope public
 * @rep:displayname Get Purchase Order Line
Item Price
 */
public Number getItemPrice(Number poNumber,
Number lineNumber);

Required Optional.

Default None.

A-134 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:paraminfo

Level Methods only.

Multiple Allowed Yes. Multiple values can be assigned for different
parameters.

Data Model FND_OBJECT_TYPE_MEMBERS.TYPE

Comments

@rep:businessevent

Annotation Type @rep:businessevent

Syntax @rep:businessevent BusinessEvent

Usage Indicates the name of the business event raised by this
method.

Example @rep:businessevent
oracle.apps.wf.notification.send

Required Optional.

Default Defaulted in file types where the business event can be
derived.

Level Methods only.

Multiple Allowed Yes.

Data Model FND_CHILD_ANNOTATIONS.VALUE

Comments Make sure to use this annotation at every instance where
you raise a business event. Note that business events
themselves do not require an annotation.

Integration Repository Annotation Standards A-135

@rep:direction

Annotation Type @rep:direction

Syntax @rep:direction <OUT | IN>

Usage Indicates whether the interface is outbound or inbound.

Example @rep:direction OUT

Required Required for EDI and XML Gateway annotations only.

Default None.

Level Interface.

Multiple Allowed No.

Data Model

Comments

@rep:service

Annotation Type @rep:service

Syntax @rep:service

Usage Indicates that a Java file is a business service object (as
opposed to a normal Java API) Use this tag as is in your Java
file. Refer to the example section below. It takes no
parameters

A-136 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:service

Example /**
* The Purchase Order service lets you to
view, update, acknowledge and
* approve purchase orders. It also lets you
receive items, and obtain
* pricing by line item.
*
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderSDO
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderAcknowledgementsSDO
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderReceiptsSDO
*
* @rep:scope public
* @rep:displayname Purchase Order Service
* @rep:implementation
oracle.apps.fnd.framework.toolbox.tutorial.s
erver.PurchaseOrderSAMImpl
* @rep:product PO
* @rep:category BUSINESS_ENTITY
PO_PURCHASE_ORDER
* @rep:service
*/

Required Required for Java files at the class level.

Default None.

Level Class.

Multiple Allowed No.

Data Model

Comments

@rep:servicedoc

Annotation Type @rep:servicedoc

Syntax @rep:servicedoc

Integration Repository Annotation Standards A-137

Annotation Type @rep:servicedoc

Usage Indicates that a Java file is an SDO (as opposed to a normal
Java API). Use this tag as is in your java file. Refer to the
example section below. It takes no parameters.

Example /**
* The Purchase Order Data Object holds the
purchase order data including
* nested data objects such as lines and
shipments.
*
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderLineSDO
*
* @rep:scope public
* @rep:displayname Purchase Order Data
Object
* @rep:product PO
* @rep:category BUSINESS_ENTITY
PO_PURCHASE_ORDER
* @rep:servicedoc
*/

Required Required for Java files at the class level.

Default None.

Level Class.

Multiple Allowed No.

Data Model

Comments Developers do not need to enter this annotation because it is
automatically generated.

@rep:synchronicity

Annotation Type @rep:synchronicity

Syntax @rep:synchronicity <SYNCH or ASYNCH>

Usage Specifies synchronous or asynchronous behavior.

A-138 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:synchronicity

Example @rep:synchronicity SYNCH

Required Optional.

Default Is defaulted based on module type. For example, ASYNCH for
XML Gateway and SYNCH for Business Service Object.

Level Class or method.

Multiple Allowed No.

Data Model

Comments

@rep:appscontext

Annotation Type @rep:appscontext

Syntax @rep:appscontext <NONE, APPL, RESP, USER,
NLS, or ORG>

Usage Specifies the context required to execute the method.

Example @rep:appscontext USER

Required Optional.

Default NONE

Level Method.

Multiple Allowed No, only one allowed per method.

Data Model

Comments

Integration Repository Annotation Standards A-139

@rep:comment

Annotation Type @rep:comment

Syntax @rep:comment <comment>

Usage This annotation is skipped by the parsers. It is for use by
product teams when a non-published comment is desired.

Example @rep:comment This is a sample comment.

Required Optional.

Default None.

Level Any.

Multiple Allowed

Data Model

Comments

@rep:primaryinstance

Annotation Type @rep:primaryinstance

Syntax @rep:primaryinstance

Usage To indicate the primary instance of an overloaded method or
procedure.

Example

Required Required for all overloaded methods and procedures.

Default None.

Level Method or procedure.

A-140 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:primaryinstance

Multiple Allowed No.

Data Model

Comments The primary instance's display name and description will be
used in the browser UI when a list of methods is displayed.
The non-primary instances (such as, the overloads) should
have descriptions that emphasize how they differ from the
primary (such as, "This variant allows specification of the
org_id."). The non-primary display names and descriptions
will only be displayed when viewing the details of the
overloaded interface.

@rep:usesmap

Annotation Type @rep:usesmap

Syntax @rep:usesmap <map_name> <sequence_number>

Usage To indicate the E-Commerce Gateway maps that are
associated with a concurrent program.

<map_name> where map_name is the default map name.

<sequence_number> is an integer used to tell the UI the
display order of the different pieces.

Example @rep:usesemap SampleMap 2

Required Optional.

Default None.

Level Any.

Multiple Allowed Yes.

Data Model

Integration Repository Annotation Standards A-141

Annotation Type @rep:usesmap

Comments The default map name has the following naming convention
"EC_XXXX_FF" where XXXX is the 4-letter acronym for your
transaction.

Configuring Server Connection B-1

B
Configuring Server Connection

Overview
If your Web services are exposed and invoked through BPEL PM, to successfully
deploy BPEL processes to Oracle Application Server, you must first establish the
necessary server connection information used at run time in the background.

How to configure the server connection is described in the following sections:

• Creating the Application Server Connection, page B-1

• Creating the Integration Server Connection, page B-6

Creating the Application Server Connection
You must establish a connectivity between the design-time environment and the server
you want to deploy it to. In order to establish such a connectivity, you must create the
application server connection.

Use the following steps to create the application server connection:

1. From Oracle JDeveloper (for example, Oracle JDeveloper 10.1.3.3), select View >
Connection Navigator to open the Connections tab.

2. Right-click on the Application Server and select New Application Server
Connection.

B-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

This opens the Create Application Server Connection wizard. Click Next in the
Welcome page of the wizard.

3. Enter the connection name and select Oracle Application Server 10g 10.1.3 as the
connection type.

Click Next.

Configuring Server Connection B-3

Enter the Server Name and Type

4. Enter a valid username (such as oc4jadmin) and the password information (such
as welcome) and click Next.

B-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Enter Server Authentication Information

5. Select Single Instance radio button. Enter appropriate values for the Server
connection host name, port, and OC4J instance information.

Click Next.

Configuring Server Connection B-5

Specifying Server Connection Information

6. Click Test Connection to validate your server configuration. You should find
"Success!" populated in the Status window.

B-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Validating the Server Connection

Click Finish.

Creating the Integration Server Connection
Use the following steps to create the integration server connection:

1. From Oracle JDeveloper, select View >Connection Navigator to open the
Connections tab.

2. Right-click on the Integration Server and select New Integration Server Connection
.

Configuring Server Connection B-7

This opens the Create Integration Server Connection wizard. Click Next in the
Welcome page of the wizard.

3. Enter the connection name.

Click Next.

B-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Enter the Connection Name

4. Select the Application Server name you just created from the drop-down list. The
Host Name field will be populated automatically based on your selection. Enter
HTTP port number.

Click Next.

Configuring Server Connection B-9

Enter Integration Server Connection Information

5. Click Test Connection to validate your integration server connection. You should
find success messages populated in the Status window.

B-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Validating the Integration Server Connection

Click Finish.

Sample Payload C-1

C
Sample Payload

Sample Payload for Creating Supplier Ship and Debit Request
The following information shows the sample payload in the
InputCreateSDRequest.xml file:

C-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<?xml version="1.0" encoding="UTF-8"?>
 <cre:InputParameters
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cre="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_req
uest_pub/create_sd_request/">
 <cre:P_API_VERSION_NUMBER>1.0</cre:P_API_VERSION_NUMBER>
 <cre:P_INIT_MSG_LIST>T</cre:P_INIT_MSG_LIST>
 <cre:P_COMMIT>F</cre:P_COMMIT>
 <cre:P_VALIDATION_LEVEL>100</cre:P_VALIDATION_LEVEL>
 <cre:P_SDR_HDR_REC>
 <cre:REQUEST_NUMBER>SDR-CREATE-BPEL1</cre:REQUEST_NUMBER>

<cre:REQUEST_START_DATE>2008-08-18T12:00:00</cre:REQUEST_START_DATE>
 <cre:REQUEST_END_DATE>2008-10-18T12:00:00</cre:REQUEST_END_DATE>>
 <cre:USER_STATUS_ID>1701</cre:USER_STATUS_ID>
 <cre:REQUEST_OUTCOME>IN_PROGRESS</cre:REQUEST_OUTCOME>
 <cre:REQUEST_CURRENCY_CODE>USD</cre:REQUEST_CURRENCY_CODE>
 <cre:SUPPLIER_ID>601</cre:SUPPLIER_ID>
 <cre:SUPPLIER_SITE_ID>1415</cre:SUPPLIER_SITE_ID>
 <cre:REQUESTOR_ID>100001499</cre:REQUESTOR_ID>
 <cre:ASSIGNEE_RESOURCE_ID>100001499</cre:ASSIGNEE_RESOURCE_ID>
 <cre:ORG_ID>204</cre:ORG_ID>
 <cre:ACCRUAL_TYPE>SUPPLIER</cre:ACCRUAL_TYPE>
 <cre:REQUEST_DESCRIPTION>Create</cre:REQUEST_DESCRIPTION>

<cre:SUPPLIER_CONTACT_EMAIL_ADDRESS>sdr.supplier@testing.com</cre:SUPPLI
ER_CONTACT_EMAIL_ADDRESS>

<cre:SUPPLIER_CONTACT_PHONE_NUMBER>2255</cre:SUPPLIER_CONTACT_PHONE_NUMB
ER>
 <cre:REQUEST_TYPE_SETUP_ID>400</cre:REQUEST_TYPE_SETUP_ID>
 <cre:REQUEST_BASIS>Y</cre:REQUEST_BASIS>
 <cre:USER_ID>1002795</cre:USER_ID>
 </cre:P_SDR_HDR_REC>
 <cre:P_SDR_LINES_TBL>
 <cre:P_SDR_LINES_TBL_ITEM>
 <cre:PRODUCT_CONTEXT>PRODUCT</cre:PRODUCT_CONTEXT>
 <cre:INVENTORY_ITEM_ID>2155</cre:INVENTORY_ITEM_ID>
 <cre:ITEM_UOM>Ea</cre:ITEM_UOM>
 <cre:REQUESTED_DISCOUNT_TYPE>%</cre:REQUESTED_DISCOUNT_TYPE>
 <cre:REQUESTED_DISCOUNT_VALUE>20</cre:REQUESTED_DISCOUNT_VALUE>
 <cre:COST_BASIS>200</cre:COST_BASIS>
 <cre:MAX_QTY>200</cre:MAX_QTY>
 <cre:APPROVED_DISCOUNT_TYPE>%</cre:APPROVED_DISCOUNT_TYPE>
 <cre:APPROVED_DISCOUNT_VALUE>20</cre:APPROVED_DISCOUNT_VALUE>
 <cre:APPROVED_MAX_QTY>200</cre:APPROVED_MAX_QTY>
 <cre:VENDOR_APPROVED_FLAG>Y</cre:VENDOR_APPROVED_FLAG>
 <cre:PRODUCT_COST_CURRENCY>USD</cre:PRODUCT_COST_CURRENCY>
 <cre:END_CUSTOMER_CURRENCY>USD</cre:END_CUSTOMER_CURRENCY>
 </cre:P_SDR_LINES_TBL_ITEM>
 </cre:P_SDR_LINES_TBL>
 <cre:P_SDR_CUST_TBL>
 <cre:P_SDR_CUST_TBL_ITEM>
 <cre:CUST_ACCOUNT_ID>1290</cre:CUST_ACCOUNT_ID>
 <cre:PARTY_ID>1290</cre:PARTY_ID>
 <cre:SITE_USE_ID>10479</cre:SITE_USE_ID>
 <cre:CUST_USAGE_CODE>BILL_TO</cre:CUST_USAGE_CODE>
 <cre:END_CUSTOMER_FLAG>N</cre:END_CUSTOMER_FLAG>
 </cre:P_SDR_CUST_TBL>
 <cre:P_SDR_CUST_TBL_ITEM>
 <cre:CUST_ACCOUNT_ID>1287</cre:CUST_ACCOUNT_ID>

Sample Payload C-3

<cre:PARTY_ID>1287</cre:PARTY_ID>
 <cre:SITE_USE_ID>1418</cre:SITE_USE_ID>
 <cre:CUST_USAGE_CODE>CUSTOMER</cre:CUST_USAGE_CODE>
 <cre:END_CUSTOMER_FLAG>Y</cre:END_CUSTOMER_FLAG>
 </cre:P_SDR_CUST_TBL>
 </cre:P_SDR_CUST_TBL>
</cre:InputParameters>

Sample Payload for Inbound Process Purchase Order XML Transaction
The following information shows the sample payload in the order_data_xmlg.xml
file:

C-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<?xml version="1.0">
 <PROCESS_PO_007> <!--xmlns="http://TargetNamespace.com/ServiceName"-->
 <CNTROLAREA>
 <BSR>
 <VERB>PROCESS</VERB>
 <NOUN>PO</NOUN>
 <REVISION>007</REVISION>
 </BSR>
 <SENDER>
 <LOGICALID/>
 <COMPONENT>BPEL</COMPONENT>
 <TASK>POISSUE</TASK>
 <REFERENCEID>refid</REFERENCEID>
 <CONFIRMATION>2</CONFIRMATION>
 <LANGUAGE>ENG</LANGUAGE>
 <CODEPAGE>US7ASCII</CODEPAGE>
 <AUTHID>APPS</AUTHID>
 </SENDER>
 <DATETIME qualifier="CREATION">
 <YEAR>2002</YEAR>
 <MONTH>10</MONTH>
 <DAY>09</DAY>
 <HOUR>16</HOUR>
 <MINUTE>45</MINUTE>
 <SECOND>47</SECOND>
 <SUBSECOND>356</SUBSECOND>
 <TIMEZONE>-0800</TIMEZONE>
 </DATETIME>
 </CNTROLAREA>
 <DATAAREA>
 <PROCESS_PO>
 <POORDERHDR>
 <DATETIME qualifier="DOCUMENT">
 <YEAR>2002</YEAR>
 <MONTH>10</MONTH>
 <DAY>09</DAY>
 <HOUR>16</HOUR>
 <MINUTE>40</MINUTE>
 <SECOND>34</SECOND>
 <SUBSECOND>000</SUBSECOND>
 <TIMEZONE>+0100</TIMEZONE>
 </DATETIME>
 <OPERAMT qualifier="EXTENDED" type="T">
 <VALUE>107.86</VALUE>
 <NUMOFDEC>6</NUMOFDEC>
 <SIGN>+</SIGN>
 <CURRENCY>USD</CURRENCY>
 <UOMVALUE>1</UOMVALUE>
 <UOMNUMDEC>0</UOMNUMDEC>
 <UOM>Ea</UOM>
 </OPERAMT>
 <POID>refid</POID>
 <POTYPE>Mixed</POTYPE>
 <CONTRACTS/>
 <DESCRIPTN/>
 <NOTES index="1"/>
 <USERAREA/>
 <PARTNER>
 <NAME index="1"/>
 <ONETIME>0</ONETIME>
 <PARTNRID/>

Sample Payload C-5

<PARTNRTYPE>SoldTo</PARTNRTYPE>
 <PARTNRIDX>BWSANJOSE</PARTNRIDX>
 </PARTNER>
 </POORDERHDR>
 <POORDERLIN>
 <QUANTITY qualifier="ORDERED">
 <VALUE>1</VALUE>
 <NUMOFDEC>0</NUMOFDEC>
 <SIGN>+</SIGN>
 <UOM>Ea</UOM>
 </QUANTITY>
 <OPERAMT qualifier="UNIT" type="T">
 <VALUE>107.86</VALUE>
 <NUMOFDEC>6</NUMOFDEC>
 <SIGN>+</SIGN>
 <CURRENCY>USD</CURRENCY>
 <UOMVALUE>1</UOMVALUE>
 <UOMNUMDEC>0</UOMNUMDEC>
 <UOM>Ea</UOM>
 </OPERAMT>
 <POLINENUM>1</POLINENUM>
 <ITEMRV/>
 <NOTES index="1"/>
 <ITEM>LAP-DLX</ITEM>
 <POLINESCHD>
 <DATETIME qualifier="NEEDDELV">
 <YEAR>2002</YEAR>
 <MONTH>10</MONTH>
 <DAY>09</DAY>
 <HOUR>00</HOUR>
 <MINUTE>00</MINUTE>
 <SECOND>00</SECOND>
 <SUBSECOND>000</SUBSECOND>
 <TIMEZONE>+0100</TIMEZONE>
 </DATETIME>
 <QUANTITY qualifier="ORDERED">
 <VALUE>1</VALUE>
 <NUMOFDEC>0</NUMOFDEC>
 <SIGN>+</SIGN>
 <UOM>Ea</UOM>
 </QUANTITY>
 <PSCLINENUM>1</PSCLINENUM>
 <USERAREA/>
 </POLINESCHD>
 </POORDERLIN>
 </PROCESS_PO>
 </DATAAREA>
</PROCESS_PO_007>

Understanding Basic BPEL Process Creation D-1

D
Understanding Basic BPEL Process

Creation

Overview
To design a composite service, integration developers use a Web service composition
language BPEL to specify the invocation sequence through Oracle BPEL Process
Manager (PM). This composite service has its own WSDL definition and endpoint
through the creation of a Partner Link which allows a business event, for example, to be
published to the Oracle BPEL Process Manager or to interact with a partner service.

To efficiently utilize a BPEL process in orchestrating a meaningful business flow, the
basic concept of creating a BPEL process is discussed in this section.

Understanding BPEL Business Processes
A BPEL process specifies the exact order in which participating Web services should be
invoked either sequentially or in parallel. In a typical scenario, a BPEL process receives
a request. To fulfill it, the process invokes the involved Web services and then responds
to the original requestor. Because the BPEL process communicates with other Web
services, it heavily relies on the WSDL description of the Web services invoked by the
composite services.

For example, a BPEL process consists of steps that are placed in the exact order that will
be invoked. And these steps are called 'activities'. Each activity represents basic
construct and is used for a common task, such as use <invoke> activity to invoke a
Web service; use <reply> to generate a response for synchronous operations.

Key Activities and Message Patterns

In supporting Web services and message exchanges over the Web, there are many
communication patterns to model the processes. For example, a basic request - response
pattern can be used in a synchronous or asynchronous way. A synchronous request -
response pattern is one that waits for a response before continuing on; while an
asynchronous request - response pattern does not wait for a response before continuing on

D-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

which allows operations to occur in parallel until the response is ready. Another pattern
can be request only operation that does not require response at all.

Based on the message patterns, appropriate activities representing various actions can
be orchestrated in a meaningful way and enable the services.

To have better explanation about the message patterns and some key activities that are
frequently used in a BPEL process, the following two message patterns are used to
further describe how to build a simple BPEL process:

Synchronous Request - Response BPEL Process
For synchronous request-response service type, a consumer or client sends a request to
a service, and receives an immediate reply.

Synchronous Request - Response Message Pattern

Many online banking tasks are programmed in request-response mode. For example, a
request for an account balance is executed as follows:

• A customer (the client) sends a request for an account balance to the Account
Record Storage System (the server).

• The Account Record Storage System (the server) sends a reply to the customer (the
client), specifying the dollar amount in the designated account.

The synchronous request-response interaction pattern interpreted in a BPEL process can
be illustrated in the following diagram:

Understanding Basic BPEL Process Creation D-3

Synchronous Request-Response Interaction Pattern in BPEL

In the above diagram, there are two BPEL processes involved to complete the
synchronous request-response service:

• BPEL Process as Client (Request)

When the BPEL process is on the client side of a synchronous transaction, it needs
an Invoke activity to send the request and receive the reply and a PartnerLink to
carry information between the inquiry BPEL process and a Web service.

• BPEL Process as Service (Response)

When the BPEL process is on the service side of a synchronous transaction, it needs
a Receive activity to accept the incoming request, and a Reply activity to return
either the requested information or an error message (a fault). Additionally, it
requires a PartnerLink to carry information between the Web service and the
inquiry BPEL process.

Note: Sometime, an Assign activity is placed before a Reply activity
to take received data as an input variable and assign it the Reply
activity as an output variable in respond to the request.

Partner Link

A partner link defines the location and the role of the Web services that the BPEL
process connects to in order to perform tasks, as well as the variables used to carry
information between the Web service and the BPEL process. A partner link is required
for each Web service that the BPEL process calls.

Invoke Activity

An Invoke activity opens a port in the BPEL process to send and receive data. It uses
this port to submit the required data and receive the response.

In the account balance inquiry example, the Invoke activity submits the account number

D-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

entered by the customer to the server and receives dollar amount in return as the
account balance. For synchronous callbacks, the Java rule function supports the feature
through Business Event System. Thus, only one port is needed for both the send and
receive functions.

Receive Activity

A Receive activity waits for an incoming request data as an input variable. For example,
the Receive activity accepts the account balance inquiry by taking the account number
as an input variable to the server.

Reply Activity

A Reply activity enables the business process to send a response message in reply to a
message that was received through a Receive activity. For example, the Reply activity
takes the account balance from the server as an output variable and sends it back to the
requestor.

The combination of a receive and a reply forms a request-response operation.

Orchestrating a Synchronous BPEL Process
The composite BPEL process design flow should be orchestrated with necessary BPEL
components or activities so as to successfully invoke a synchronous Web service.

Use the account balance inquiry as an example. The service invocation sequence can be
orchestrated in Oracle JDeveloper BPEL Designer as shown in the following diagram:

Understanding Basic BPEL Process Creation D-5

1. A client sends the request by entering account number for the balance inquiry.

2. The Receive activity receives it as an input variable.

3. The Assign activity takes the account number and passes it to the Invoke activity.

4. The Invoke activity submits the account number entered by the client to a
ActBalanceService Partner Link and receives dollar amount in return as the
account balance.

5. The Assign activity then takes the dollar amount as an input variable and passes it
to the Reply activity.

6. The Reply activity takes the account balance and replies to the requestor.

The above composite service - BPEL process requires the following tasks at the design
time:

• Adding a Partner Link

• Adding an Invoke Activity

• Adding a Receive Activity

D-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Adding a Reply Activity

• Adding an Assign Activity

Once a Partner Link is successfully added to a synchronous BPEL project, a WSDL
description URL that corresponds to the ActBalanceService business event service with
appropriate event payload will be automatically generated. This ActBalanceService
Partner Link serves as a bridge to communicate information between the service and
the synchronous BPEL project.

Note: The generated WSDL URL of a BPEL process can also be used in
defining an event subscription if the BPEL process is used for service
invocation through the Business Event System.

One-Way BPEL Process
For One-way or request only service type, there is only one input element which is a
client's request for a service and no response is expected.

Request Only Message Pattern

For example, a stock symbol sends updated price to the stock quote service when the
price change using the request only operation. The server updates the stock price but no
response is sent back.

This type of interaction pattern interpreted in a BPEL process can be illustrated in the
following diagram:

Understanding Basic BPEL Process Creation D-7

One-Way (Request Only) Interaction Pattern in BPEL

The following two BPEL processes are involved in this type of service:

• BPEL Process as Client (Request)

As the client, the BPEL process needs a valid PartnerLink and an Invoke activity
with the target service and the message. As with all partner activities, the WSDL file
defines the interaction.

• BPEL Process as Service

To accept a message from the client's request, the BPEL process needs a Receive
activity only.

In the stock quote update example, the Invoke activity submits a stock symbol along
with a market price to the StockQuote service in a server. The Receive activity takes the
new price as an input and update the StockQuote service.

The following diagram illustrates the service invocation sequence for the stock update
example in Oracle JDeveloper BPEL Designer:

D-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

1. A client sends the stock symbol and updated price.

2. The Receive activity receives it as an input variable.

3. The Assign activity takes the new price and passes it to the Invoke activity.

4. The Invoke activity submits a stock symbol along with an updated price to the
StockQuoteService Partner Link in a server.

This composite service - BPEL process requires the following tasks at the design time:

• Adding a Partner Link

• Adding an Invoke Activity

• Adding a Receive Activity

• Adding an Assign Activity

Like synchronous request - response operation, once a Partner Link is successfully
added to a BPEL project, a WSDL description URL that corresponds to the service with

Understanding Basic BPEL Process Creation D-9

appropriate event payload will be automatically generated.

Glossary-1

Glossary

Agent

A named point of communication within a system.

Agent Listener

A type of service component that processes event messages on inbound agents.

BPEL

Business Process Execution Language (BPEL) provides a language for the specification
of executable and abstract business processes. By doing so, it extends the services
interaction model and enables it to support business transactions. BPEL defines an
interoperable integration model that should facilitate the expansion of automated
process integration in both the intra-corporate and the business-to-business spaces.

Business Event

See Event.

Concurrent Manager

An Oracle E-Business Suite component that manages the queuing of requests and the
operation of concurrent programs.

Concurrent Program

A concurrent program is an executable file that performs a specific task, such as posting
a journal entry or generating a report.

Event

An occurrence in an internet or intranet application or program that might be
significant to other objects in a system or to external agents.

Event Activity

A business event modelled as an activity so that it can be included in a workflow
process.

Glossary-2

Event Data

A set of additional details describing an event. The event data can be structured as an
XML document. Together, the event name, event key, and event data fully
communicate what occurred in the event.

Event Key

A string that uniquely identifies an instance of an event. Together, the event name,
event key, and event data fully communicate what occurred in the event.

Event Message

A standard Workflow structure for communicating business events, defined by the
datatype WF_EVENT_T. The event message contains the event data as well as several
header properties, including the event name, event key, addressing attributes, and error
information.

Event Subscription

A registration indicating that a particular event is significant to a system and specifying
the processing to perform when the triggering event occurs. Subscription processing
can include calling custom code, sending the event message to a workflow process, or
sending the event message to an agent.

Function

A PL/SQL stored procedure that can define business rules, perform automated tasks
within an application, or retrieve application information. The stored procedure accepts
standard arguments and returns a completion result.

Integration Repository

Oracle Integration Repository is the key component or user interface for Oracle
E-Business Suite Integrated SOA Gateway. This centralized repository stores native
packaged integration interface definitions and composite services.

Interface Type

Integration interfaces are grouped into different interface types.

Loose Coupling

Loose coupling describes a resilient relationship between two or more systems or
organizations with some kind of exchange relationship. Each end of the transaction
makes its requirements explicit and makes few assumptions about the other end.

Lookup Code

An internal name of a value defined in a lookup type.

Glossary-3

Lookup Type

A predefined list of values. Each value in a lookup type has an internal and a display
name.

Message

The information that is sent by a notification activity. A message must be defined before
it can be associated with a notification activity. A message contains a subject, a priority,
a body, and possibly one or more message attributes.

Message Attribute

A variable that you define for a particular message to either provide information or
prompt for a response when the message is sent in a notification. You can use a
predefine item type attribute as a message attribute. Defined as a 'Send' source, a
message attribute gets replaced with a runtime value when the message is sent. Defined
as a 'Respond' source, a message attribute prompts a user for a response when the
message is sent.

Notification

An instance of a message delivered to a user.

Notification Worklist

A Web page that you can access to query and respond to workflow notifications.

Operation

An abstract description of an action supported by a service.

Port

A port defines an individual endpoint by specifying a single address for a binding.

Port Type

A port type is a named set of abstract operations and abstract messages involved.

Process

A set of activities that need to be performed to accomplish a business goal.

Service

A service is a collection of related endpoints.

Service Component

An instance of a Java program which has been defined according to the Generic Service
Component Framework standards so that it can be managed through this framework.

Glossary-4

SOA

Service-oriented Architecture (SOA) is an architecture to achieve loose coupling among
interacting software components and enable seamless and standards-based integration
in a heterogeneous IT ecosystem.

SOAP

Simple Object Access Protocol (SOAP) is a lightweight protocol intended for
exchanging structured information in a decentralized, distributed environment. It uses
XML technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols.

Subscription

See Event Subscription.

Web Services

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-related
standards.

Workflow Engine

The Oracle Workflow component that implements a workflow process definition. The
Workflow Engine manages the state of all activities for an item, automatically executes
functions and sends notifications, maintains a history of completed activities, and
detects error conditions and starts error processes. The Workflow Engine is
implemented in server PL/SQL and activated when a call to an engine API is made.

WSDL

Web Services Description Language (WSDL) is an XML format for describing network
services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and messages
are described abstractly, and then bound to a concrete network protocol and message
format to define an endpoint.

WS-Addressing

WS-Addressing is a way of describing the address of the recipient (and sender) of a
message, inside the SOAP message itself.

WS-Security

WS-Security defines how to use XML Signature in SOAP to secure message exchanges,
as an alternative or extension to using HTTPS to secure the channel.

Index-1

Index

B
business events

annotate, 10-17
download, 10-14
Upload file to the database, 10-20
Upload iLDT files, 10-21
validate, 10-19

Business Service Objects Design Tasks
Adding an Assign Activity, 7-18
Adding an Invoke Activity, 7-15
Adding a Partner Link for File Adapter, 7-9
Creating a New BPEL Project, 7-5
Creating a Partner Link, 7-7

C
Composite Services

download, 9-2
modify, 9-4
overview, 9-1
view, 9-2

connection information
Application Server Connection, B-1
Integration Server Connection, B-6

create and upload custom interfaces
business events, 10-14
composite service validation, 10-13
creation, 10-4, 10-9
View and Administer composite services, 10-
13

create and use custom interfaces
create steps, 10-2

overview, 10-1
use custom interfaces, 10-22

create BPEL
message pattern, D-1
One-Way, D-6
Synchronous Request-Response, D-2

create custom interfaces
composite services, 10-8
interface types, 10-2

Creating BPEL Using Business Events
Assign, 5-23
Create a New BPEL Project, 5-5
Create a Partner Link AQ Adapter, 5-6
Create a Partner Link File Adapter, 5-15
invoke, 5-21
receive, 5-13

Creating Invoker Event Subscription
Creating Error Subscription, 11-15
Creating Subscription with 'Invoke Web
Service', 11-8

D
deploy and test bpel

deploy bpel, 7-24
test bpel, 7-25

Deploy and Test Concurrent Program
deploy bpel, 6-24, 6-25

Deploy and Test Custom BPEL
deploy bpel, 10-47
test bpel, 10-49

Deploy and Test Event BPEL
deploy bpel, 5-26

Index-2

test bpel, 5-27
deploy and test Java Forms bpel

deploy, 8-27
test, 8-28

Deploy and Test PL/SQL BPEL
deploy bpel, 3-38
test bpel, 3-39

Discovering and Viewing Integration Interfaces
overview, 2-1
review details, 2-6
review WSDL details, 2-10
search and view interfaces, 2-1
SOAP Messages, 2-19

E
Extensibility

addWSSecurityHeader, 11-49
invokeService, 11-49
postInvokeService, 11-48
preInvokeService, 11-48
setInputParts, 11-50

I
Integration Repository Annotation Standards

annotation glossary, A-112
business entity, A-37
business event, A-31
composite service - BPEL, A-105
concurrent program, A-17
guidelines, A-1
Java, A-4
PL/SQL, A-11
XML Gateway, A-19

Invoke Web service
example, 11-33

Invoke Web Services
Calling Back to Oracle E-Business Suite With
Web Service Responses, 11-28

Invoke Web services through Oracle Workflow
overview, 11-1
Web Service Invocation Using SIF, 11-2

Invoking Web service steps
Creating a receive Event, 11-17
Creating Invoke and Receive Events, 11-6
creating invoker local and error event
subscriptions, 11-8

O
Oracle E-Business Suite Integrated SOA Gateway

component features, 1-3
Major Features, 1-2
Overview, 1-1

S
Sample Payload

Inbound Purchase Order, C-3
Supplier Ship and Debit Request, C-1

Synchronous Request-Response
Orchestrate Synchronous BPEL, D-4

T
Testing Service Invocation

Command Lines, 11-42
Test Business Event Page, 11-38
Troubleshooting Web Service Invocation
Failure

Concurrent Manager (CM) Tier JVM, 11-
47
OACORE OC4J, 11-43
Standalone JVM, 11-47

U
Understanding SOAP Messages

SOAP Header for Applications Context, 2-25
SOAP Header for XML Gateway Messages, 2-
28
SOAP Messages Through SOA Provider, 2-33
SOAP Messages Through Web Service
Provider, 2-35
SOAP Security Header, 2-21

use custom interfaces
design tasks, 10-23
overview, 10-22
run-time tasks, 10-46

Using Business Events
deploy and test bpel, 5-25
overview, 5-1
using Business Events, 5-1

Using Business Service Objects
deploy and test bpel, 7-24
overview, 7-1

Index-3

using Business Service Objects WSDL design
time, 7-1

Using Concurrent Program
design tasks, 6-1
Overview, 6-1
run-time tasks, 6-23

Using Concurrent Program design tasks
Adding a Partner Link for File Adapter, 6-10
Assign activities, 6-19
Creating a New BPEL Project, 6-5
Creating a Partner Link, 6-7
Invoke activities, 6-15

Using custom WSDL
Add an Assign activity, 10-39
Add an Invoke activity, 10-36

Using Custom WSDL
Adding a Partner Link for File Adapter, 10-31
Create a New BPEL Project, 10-26
Create a Partner Link, 10-28

Using Java APIs for Forms Services
Add a Partner Link for File Adapter, 8-11
Adding Assign Activities, 8-19
Add Invoke Activities, 8-15
Create a New BPEL Project, 8-6
Create a Partner Link, 8-7
using Java Forms Services, 8-1

Using Java Forms Services
deploy and test bpel, 8-27
overview, 8-1

Using PL/SQL
deploy and test bpel, 3-37
overview, 3-1
using PL/SQL WSDL, 3-1

Using PL/SQL WSDL
Add an Assign activity, 3-25
Add an Invoke activity, 3-21
Adding a Partner Link for File Adapter, 3-12
Create a New BPEL Project, 3-6
Create a Partner Link, 3-8

Using XML Gateway
deploy bpel, 4-52
overview, 4-1
test bpel, 4-53
using XML Gateway Inbound, 4-2

using XML Gateway Inbound
using XML Gateway Inbound design time, 4-2

Using XML Gateway Inbound by SOA Provider

Assign, 4-21
Creating a New BPEL Project, 4-7
Creating a Partner Link, 4-9, 4-12
Invoke, 4-18

Using XML Gateway Inbound SOA Provider
Run-time tasks, 4-26

Using XML Gateway Inbound SOA Provider
Run-Time Tasks

deploy, 4-27, 4-28
Using XML Gateway outbound

using XML Gateway outbound, 4-30
Using XML Gateway Outbound

deploy and test bpel, 4-51
Using XML Gateway outbound design task

Add an Assign Activity, 4-49
Add an Invoke Activity, 4-47
Add a Partner Link for File Adapter, 4-41
Adding a Receive Activity, 4-39
create a new BPEL project, 4-32
create a Partner Link for AQ Adapter, 4-33
overview, 4-30

W
Web service invocation

consideration, 11-54
Extending Seeded Java Rule Function, 11-48
Testing Web Service Invocation, 11-37
Troubleshooting Web Service Invocation
Failure, 11-43

Web Service Invocation Using SIF
invoking Web services, 11-30
message patterns, 11-3
metadata definition, 11-5
Supporting WS-Security, 11-26
Web Service Input Message Parts, 11-21

	Oracle E-Business Suite Integrated SOA Gateway Developer's Guide
	Preface
	Oracle E-Business Suite Integrated SOA Gateway Overview
	Oracle E-Business Suite Integrated SOA Gateway Overview
	Major Components Features and Definitions

	Discovering and Viewing Integration Interfaces
	Overview
	Searching and Viewing Integration Interfaces
	Reviewing Interface Details
	Reviewing WSDL Element Details
	Understanding SOAP Messages

	Using PL/SQL APIs as Web Services
	Overview
	Using PL/SQL WSDLs at Design Time
	Creating a New BPEL Project
	Creating a Partner Link for the Web Service
	Adding a Partner Link for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the BPEL Process
	Deploying the BPEL Process
	Testing the BPEL Process

	Using XML Gateway Inbound and Outbound Interfaces
	Overview
	Using XML Gateway Inbound Services
	Using XML Gateway Inbound Services at Design Time
	Creating a New BPEL Project
	Creating a Partner Link
	Adding Partner Links for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the BPEL Process at Run Time
	Deploying the BPEL Process
	Testing the BPEL Process

	Using XML Gateway Outbound Through Subscription Model
	Using XML Gateway Outbound Services at Design Time
	Creating a New BPEL Project
	Creating a Partner Link for AQ Adapter
	Adding a Receive Activity
	Adding a Partner Link for File Adapter
	Adding an Invoke Activity
	Adding an Assign Activity

	Deploying and Testing the BPEL Process at Run Time
	Deploying the BPEL Process
	Testing the BPEL Process

	Using Business Events Through Subscription Model
	Overview
	Using a Business Event in Creating a BPEL Process at Design Time
	Creating a New BPEL Project
	Creating a Partner Link for AQ Adapter
	Adding a Receive Activity
	Adding a Partner Link for File Adapter
	Adding an Invoke Activity
	Adding an Assign Activity

	Deploying and Testing the BPEL Process at Run Time
	Deploying the BPEL Process
	Testing the BPEL Process

	Using Concurrent Programs
	Overview
	Using Concurrent Program WSDLs at Design Time
	Creating a New BPEL Project
	Creating a Partner Link for the Web Service
	Adding a Partner Link for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the BPEL Process at Run Time
	Deploying the BPEL Process
	Testing the BPEL Process

	Using Business Service Objects
	Overview
	Using Business Service Object WSDLs at Design Time
	Creating a New BPEL Project
	Creating a Partner Link
	Adding a Partner Link for File Adapter
	Adding an Invoke activity
	Adding an Assign activity

	Deploying and Testing the BPEL Process at Run Time
	Deploying the BPEL Process
	Testing the BPEL Process

	Using Java APIs for Forms Services
	Overview
	Using Java APIs for Forms Services at Design Time
	Creating a New BPEL Project
	Creating a Partner Link
	Adding a Partner Link for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the BPEL Process
	Deploying the BPEL Process
	Testing the BPEL Process

	Using Composite Services - BPEL
	Overview
	Viewing Composite Services
	Downloading Composite Services
	Modifying and Deploying BPEL Processes

	Creating and Using Custom Integration Interfaces
	Overview
	Creating Custom Integration Interfaces
	Creating Custom Integration Interfaces of Interface Types
	Creating Custom Integration Interfaces of Composite Services
	Creating Custom Business Events Using Workflow XML Loader

	Using Custom Integration Interfaces as Web Services
	Using Custom Interface WSDL in Creating a BPEL Process at Design Time
	Creating a New BPEL Project
	Creating a Partner Link for the Web Service
	Adding a Partner Link for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the BPEL Process at Run Time
	Deploying the BPEL Process
	Testing the BPEL Process

	Working With Oracle Workflow Business Event System to Invoke Web Services
	Oracle Workflow and Service Invocation Framework Overview
	Web Service Invocation Using Service Invocation Framework
	Understanding Message Patterns in WSDL
	Defining Web Service Invocation Metadata
	Step 1: Creating a Web Service Invoker Business Event
	Step 2: Creating Local and Error Event Subscriptions to the Invoker Event
	Step 3: Creating a Receive Event and Subscription (Optional)

	Understanding Web Service Input Message Parts
	Supporting WS-Security

	Calling Back to Oracle E-Business Suite With Web Service Response
	Invoking Web Services
	Managing Errors
	Testing Web Service Invocation
	Troubleshooting Web Service Invocation Failure
	Extending Seeded Java Rule Function
	Other Invocation Usage Considerations

	Integration Repository Annotation Standards
	General Guidelines
	Java Annotations
	PL/SQL Annotations
	Concurrent Program Annotations
	XML Gateway Annotations
	Business Event Annotations
	Business Entity Annotation Guidelines
	Composite Service - BPEL Annotation Guidelines
	Glossary of Annotations

	Configuring Server Connection
	Overview

	Sample Payload
	Sample Payload for Creating Supplier Ship and Debit Request
	Sample Payload for Inbound Process Purchase Order XML Transaction

	Understanding Basic BPEL Process Creation
	Overview

	Glossary
	Index

