Solaris Containers: Resource Management
and Solaris Zones Developer's Guide

Part No: 817-1975-13

ORACLE April 2008

Copyright ©2008Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright ©2008Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur 'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

110417@25097

Contents

o =Y - L -2 7

Resource Management in the Solaris Operating Systemcccocovvviriiinnnnnneeeee 11

Understanding Resource Management in the Solaris OS

WOrkload OrganizZationccecereeeecuneereeeuntuneseseenesessesseseesessessesesessesessessesessessessssesessesenns
Resource Organization ...t s 12
ReSOUICe CONIOLSocuviviiiicicii s 13
Extended Accounting FACILILYccoocuvveuiuriercuniierciiiieeneieceieneeeeseeessessese s saenssssesens 14
Writing Resource Management APPLICATIONSc.ceuevueueeremeeiereseicinesenseeseinesesssesesessessesessessesessens 14
ProjectS @A TASKSccccooovieirieieieieiriccce ettt s s s esesnsssesnsnsns 15
Overview 0f Projects and TaSKScccvcveceiirieciniinieneieceneeseesesseie et ssesessessessesessesecsenns 15
J€EC/PrOJECTFILE vttt ettt ettt nean 16
Project and Task API FUNCHONScocuiueicriiricireirecicieiecreieeeneeeense s sessese s ssensesenaennes 17
Code Examples for Accessing project Database ENtriescccovcveencinieerernenecenerneeenernenneenne 18
Programming Issues Associated With Projects and Taskscccoveuveeecinerecinerneeineinenencenennennen. 19
Using the ClInterface to Extended ACCOUNTINGcccoocevireiieinieieiceese s 21
Overview of the C Interface to Extended ACCOUNTINGc.vueveuierircrniinecieineieeerneieeeesenseeeeeneeeene 21
Extended Accounting API FUNCHONSc.cucuiuiueieerieeicineineieietseieieeseseesessetsese e tsesessessesessessessesesae 21
€XACCT SYSTEM CallSouoiiiiiiicc e 22
Operations 0n the @XaCC FILE ..ottt 22
Operations 0N eXACCT ODJECESc.curiuereieriurieciniiriieieireieiscineieeseseisese et esesessessssese e sesesaees 22
Miscellaneous OPErationsccceeeeieremieremememseeiesisesessessessessessessesssssesssse e sassesssssssssens

C Code Examples for Accessing exacct Files

Contents

4 Using the Perl Interface to Extended ACcountingcccccoevvivieeecieneneseecceeeeeesse e 27
Extended ACCOUNTING OVEIVIEWcuvuiueviuceiirieeineireeeietretsesessetsesesessesessessessesesessesessessesessessesseseses 27
Perl INterface t0 TADEXACECT woueuiurueeieirieieiresieireie ettt ettt sse s eas b s ses st essnanna 28

ODBJECt MOEL ...t 28

Benefits of Using the Perl Interface to T1beXaCCTcuuiurivieeiieiieiiiiecieiseeeceeeececeeeenes 28

Perl Double-Typed SCALars ..ot ssessese s sssessessasesensees 29
PErl MOAUIES ...ttt ettt s et s s s s s s ssesesesssssesnsnsssasesesees 29
SuUN::SOLaris: :Project MOAUIE ...ttt 31
SUN: :S01Aris: :TAaSK MOAUIE ..ottt s 32
Sun::S01aris: :EXACCt MOAUIE ...ttt 33
Sun::Solaris::Exacct::Catalog Module ..o 35
Sun::Solaris: :ExacCt: :File ModUle ... 36
Sun::Solaris::Exacct: :0bject MOAUILE ...t
Sun::Solaris::Exacct::0Object::Item Module
Sun::Solaris::Exacct::0bject: :Group Moduleccoovievierererereeeeeeeeeceeeeeeeeenee 40
Sun::Solaris::Exacct::0bject:: Array Moduleeenineceeeeeeeeeeeseeenenes 41
Per] Code EXAMPLESccuviuiieiriicieicieirecieireiet sttt bttt et 42
Output From dump Methodc.ccccuiurieiiiricneinceineccresce ettt 45
RESOUICE CONTIOIS ...ttt ettt

Overview of Resource Controls

Resource Controls Flags and ACHONSccvueeeeriurieeeiirieeicereieeeeeieieneseseeseesessesessessesesensesesaenne 48
rlimit, Resource LIMit ..o 48
FCEL, RESOUICE COMEIOL vttt ettt ee et et ea e e eeaeete e et eseeseeeeesetesesseesentesenrenesseenen 48
Resource Control Values and Privilege Levelscocenirieiricreniencneeeeereeneneeennens 49
Local Actions and LOCAL FLagsc..cvueueureueiciniunieiieneeeineieiciseieeseseiseee s ssessesesssssesessees 49
Global Actions and Global FIags ... 50
Resource Control Sets Associated With a Project, Processes and Tasksccccoveevcurevnnce 51
Signals Used With Resource CONIOLScveureeeicureveeecireirieinerreieieeneseeeeesesseeesesseseesessesseaenns 56

Resource Controls API Functions
Operate on Action-Value Pairs of a Resource CONtrolcoceuveeueeneceninceineneieineeiseneeeineenne 57
Operate on Local Modifiable ValUescocvureueiciniiriciniiniceineeencisecneisesecesesessesesseaens 57
Retrieve Local Read-Only Values ... sesesensens 58
Retrieve Global Read-Only ACHONSc.cvvuevcuriuereeiiiriicieeieeneieieneeseeseeesseesesesse s ssssesessees 58

Resource Control Code EXAMPLESc.vveuiurierieiriinieineineieieneiseesesseie ettt sses et seesenns 58

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Contents

Master Observing Process for Resource CONtIolScevereuneureeerniereeereeneeenerseeseeenseesenens 58
List all the Value-action Pairs for a Specific Resource Controlccoovceuveveuenecrincrenneenne 60
Setproject.cpu-shares and Add aNeW Valueccooeueveereiereieeeeeeereeeeeeeeeeeeeeeeeeenenes 61
Set LWP Limit on Resource Control BIOCKScccviuriueuniuniieiiiniinieneinieineiseieeiseie s

Programming Issues Associated With Resource Controls

Dynamic RESOUICEPOOIS ..ottt 63
OVerview Of RESOUICE POOLScueueeciriiieciciriieicineirietetseece ettt e seesenne 63
SChedULNG ClASSouevveeiriieeieirieeicireicet et naen
Dynamic Resource Pool Constraints and Objectives
SYSLEM PLOPEITIES ..oovoveiiiecittct s s e
POOLS PIOPEITIES ...uvrreeieiieiecieiriecieereie ettt saen 65
Processor Set Properties ... 66
Using l1ibpool to Manipulate Pool CONAIGUIAtIONSc.eveueureeerremreeerenreiriererreeenscereseeenesseeennes 67
MaANIPULALE PSEES vttt et eeaesen
Resource POOLS APT FUNCHIONScvuveiieieeieireieieciretseeeietseeeieesesseie et sese et sese et sese st sesesaessesenaesae

Functions for Operating on Resource Pools and Associated Elements

Functions for Querying Resource Pools and Associated Elementscccccccviuvcuniuniuennn. 70
Resource PoOl Code EXAMPIESc.vuviuiureiiriiriieireiniieicineieeetneiseeeeetseasese st ssessesesnescsenne 72
Ascertain the Number of CPUs in the Resource Pool ... 72
List AILRESOUICE POOIScuveiuirieieciiiiicitiseieeieie ettt esaeen 73
Report Pool Statistics for a GIven POOLccceeuricurinceinineieinieieicenecieseieieeeseeseesessesenseeaes

Set pool. comment Property and Add New Property ...

Programming Issues Associated With Resource POOLScocueccencuriericrnernecenerneeeenneenecnnenneeeene
Design Considerations for Resource Management Applications in Solaris Zones 77
Z0NES OVEIVIEW ...ttt ettt n s 77
IP NetWOTIKING iNl ZOMES ...cecvuevrreciereeeieireeeieeireteeeeesesseeeesessesessessessesessessesessessessssessessesessessesessessessssesnes 78
Design Considerations for Resource Management Applications in ZOnesc.ccceeeeereereereenes 78
General Considerations When Writing Applications for Non-Global Zonesc.c....... 78
Specific Considerations for Shared-IP Non-Global Zonescccccoveveevuveerreneecinencennnecnnenenne 80
Configuration EXAMIPIESccooveieiiiriieeiceieise ettt sss s st ssssssensnans 83
/€TC/PrOJECT PTOJECt FILE ..ottt e 83

Contents

Define TWO PrOJECLScucvreveiuiieiecieiriieiteseieiciseie et seae s ese s sese s sse s ssasescsaeen
Configure Resource CONLIOLS ... sssens
Configure ReSOUICE POOLSc.cccuiurieriiiieiciieeiceiee et sse e ssssesenaees
Configure FSS project. cpu-shares for a PrOJEctoecreeecuncenecineinecencineeeeenseeseenennene

Configure Five Applications with Different Characteristicscceeeereureererrersererenereerennenne

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Preface

The Solaris Containers: Resource Management and Solaris Zones Developer's Guide describes
how to write applications that partition and manage system resources and discusses which APIs
to use. This book provides programming examples and a discussion of programming issues to
consider when writing an application.

Who Should Use This Book

This book is for application developers and ISVs who write applications that control or monitor
the Solaris Operating System resources.

Before You Read This Book

For a detailed overview of resource management, see the System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

How This Book Is Organized
This guide is organized as follows:

Chapter 1, “Resource Management in the Solaris Operating System,” introduces the Solaris 10
Resource Manager product.

Chapter 2, “Projects and Tasks,” provides information about the projects and tasks facilities.

Chapter 3, “Using the C Interface to Extended Accounting,” describes the C interface to the
extended accounting facility.

Chapter 4, “Using the Perl Interface to Extended Accounting,” describes the Perl interface to the
extended accounting facility.

Chapter 5, “Resource Controls,” discusses resource controls and their use.

Chapter 6, “Dynamic Resource Pools,” covers dynamic resource pools.

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=sysadrm
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=sysadrm

Preface

Chapter 7, “Design Considerations for Resource Management Applications in Solaris Zones,”
describes the precautions that need to be taken for applications to work in Solaris zones.

Chapter 8, “Configuration Examples,” provides configuration examples for the /etc/project

file.

Documentation, Support, and Training

Sun Function

Documentation

Supportand
Training

http://www.sun.com/documentation/

http://www.sun.com/supportraining/

Description

Download PDF and HTML
documents, and order printed
documents

Obtain technical support,
download patches, and learn
about Sun courses

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-1 Typographic Conventions

Typeface or Symbol

Meaning

Example

AaBbCc123

The names of commands, files, and directories,
and onscreen computer output

Edit your . login file.
Use 1s -a to list all files.

machine name% you have mail.

AaBbCc123

What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCcl23

Command-line placeholder: replace with a real
name or value

The command to remove a file is rm
Sfilename.

AaBbCcl123

Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.
Perform a patch analysis.
Do not save the file.

[Note that some emphasized items
appear bold online.]

8 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.sun.com/documentation/
http://www.sun.com/supportraining/

Preface

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLEP-2 Shell Prompts

Shell Prompt

C shell prompt machine_nameS
C shell superuser prompt machine_ name#
Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

10

L K R 4 CHAPTER 1

Resource Management in the Solaris Operating
System

The purpose of this manual is to help developers who are writing either utility applications for
managing computer resources or self-monitoring applications that can check their own usage
and adjust accordingly. This chapter provides an introduction to resource management in the
Solaris Operating System (OS). The following topics are included:

= “Understanding Resource Management in the Solaris OS” on page 11
= “Writing Resource Management Applications” on page 14

Understanding Resource Management in the Solaris OS

The main concept behind resource management is that workloads on a server need to be
balanced for the system to work efficiently. Without good resource management, faulty
runaway workloads can bring progress to a halt, causing unnecessary delays to priority jobs. An
additional benefit is that efficient resource management enables organizations to economize by
consolidating servers. To enable the management of resources, the Solaris OS provides a
structure for organizing workloads and resources, and provides controls for defining the
quantity of resources that a particular unit of workload can consume. For an in-depth
discussion of resource management from the system administrator's viewpoint, see Chapter 1,
“Introduction to Solaris 10 Resource Manager,” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

Workload Organization

The basic unit of workload is the process. Process IDs (PIDs) are numbered sequentially
throughout the system. By default, each user is assigned by the system administrator to a
project, which is a network-wide administrative identifier. Each successful login to a project
creates a new task, which is a grouping mechanism for processes. A task contains the login
process as well as subsequent child processes.

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmintro-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmintro-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmintro-1

Understanding Resource Management in the Solaris OS

For more information on projects and tasks, see Chapter 2, “Projects and Tasks (Overview),” in
System Administration Guide: Solaris Containers-Resource Management and Solaris Zones for
the system administrator's perspective or Chapter 2, “Projects and Tasks,” for the developer's
point of view.

Projects can optionally be grouped into zones, which are set up by system administrators for
security purposes to isolate groups of users. A zone can be thought of as a box in which one or
more applications run isolated from all other applications on the system. Solaris zones are
discussed thoroughly in Part II, “Zones,” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones. To learn more about special precautions
for writing resource management applications that run in zones, see Chapter 7, “Design
Considerations for Resource Management Applications in Solaris Zones”

Resource Organization

The system administrator can assign workloads to specific CPUs or defined groups of CPUs in
the system. CPUs can be grouped into processor sets, otherwise known as psets. A pset in turn
can be coupled with one or more thread scheduling classes, which define CPU priorities, into a
resource pool. Resource pools provide a convenient mechanism for a system administrator to
make system resources available to users. Chapter 12, “Resource Pools (Overview),” in System
Administration Guide: Solaris Containers-Resource Management and Solaris Zones covers
resource pools for system administrators. Programming considerations are described in
Chapter 6, “Dynamic Resource Pools.”

The following diagram illustrates how workload and computer resources are organized in the
Solaris OS.

12 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=zone
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=zone
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmpool-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmpool-1

Understanding Resource Management in the Solaris OS

FIGURE 1-1

myAdminProject

Workload and Resource Organization in the Solaris Operating System

Workload organization

myDBProject aDevProject

Task3
Task2

Task4

Process8

Process6
Process4

Process9

Resource Pool 1 Resource Pool 2

1 [1
: i i
i | |
+ H[cpuo] [cPuz] [cPus] | i i HcPus][cPus])
1 [| 1
1 [| 1
1 r 1
1 [} 1

Serveri

Resource organization

Resource Controls

Simply assigning a workload unit to a resource unit is insufficient for managing the quantity of
resources that users consume. To manage resources, the Solaris OS provides a set of flags,
actions, and signals that are referred to collectively as resource controls and are stored in the
/etc/project file. The Fair Share Scheduler (FSS), for example, can allocate shares of CPU
resources among workloads based on the specified importance factor for the workloads. With
these resource controls, a system administrator can set privilege levels and limit definitions for a
specific project, task, or process. To learn how a system administrator uses resource controls,
see Chapter 6, “Resource Controls (Overview),” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones. For programming considerations, see
Chapter 5, “Resource Controls”

Chapter 1 « Resource Management in the Solaris Operating System 13

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmctrls-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmctrls-1

Writing Resource Management Applications

Extended Accounting Facility

In addition to the workload and resource organization, the Solaris OS provides the extended
accounting facility for monitoring and recording system resource usage. The extended
accounting facility provides system administrators with a detailed set of resource consumption
statistics on processes and tasks.

The facility is described in depth for system administrators in Chapter 4, “Extended Accounting
(Overview),” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones. The Solaris OS provides developers with both a C interface and a PERL interface
to the extended accounting facility. Refer to Chapter 3, “Using the C Interface to Extended
Accounting,” for the C interface or Chapter 4, “Using the Perl Interface to Extended
Accounting,” for the PERL interface.

Writing Resource Management Applications

This manual focuses on resource management from the developer's point of view and presents
information for writing the following kinds of applications:

= Resource administration applications — Utilities to perform such tasks as allocating
resources, creating partitions, and scheduling jobs.

= Resource monitoring applications — Applications that check system statistics through
kstats to determine resource usage by systems, workloads, processes, and users.

= Resource accounting utilities — Applications that provide accounting information for
analysis, billing, and capacity planning.

= Self-adjusting applications — Applications that can determine their use of resources and can
adjust consumption as necessary.

= Resource advisory applications — Provide hints of resource needs.???

14 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1

L K R 4 CHAPTER 2

Projects and Tasks

The chapter discusses the workload hierarchy and provides information about projects and
tasks. The following topics are covered:

“Overview of Projects and Tasks” on page 15

“Project and Task API Functions” on page 17

“Code Examples for Accessing project Database Entries” on page 18
“Programming Issues Associated With Projects and Tasks” on page 19

Overview of Projects and Tasks

The Solaris Operating System uses the workload hierarchy to organize the work being
performed on the system. A task is a collection of processes that represents a workload
component. A project is a collection of tasks that represents an entire workload. At any given
time, a process can be a component of only one task and one project. The relationships in the
workload hierarchy are illustrated in the following figure.

FIGURE2-1 Workload Hierarchy

Projecti

Esm Esk2 Esks

[Process1 [Process2 [Process3 | | Process1 | Process2 | [Process1 | Process2 | Process3 | Process4 |

A user who is a member of more than one project can run processes in multiple projects at the
same time. All processes that are started by a process inherit the project of the parent process.
When you switch to a new project in a startup script, all child processes run in the new project.

15

Overview of Projects and Tasks

16

An executing user process has an associated user identity (uid), group identity (gid), and
project identity (projid). Process attributes and abilities are inherited from the user, group, and
project identities to form the execution context for a task.

For an in-depth discussion of projects and tasks, see Chapter 2, “Projects and Tasks
(Overview),” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones. For the administration commands for managing projects and tasks, see Chapter
3, “Administering Projects and Tasks,” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

/etc/projectFile

The project fileis the heart of workload hierarchy. The project database is maintained on a
system through the /etc/project file or over the network through a naming service, such as
NIS or LDAP.

The /etc/project file contains five standard projects.

system This project is used for all system processes and daemons.
user.root All root processes run in the user. root project.
noproject This special project is for IPQoS.

default A default project is assigned to every user.

group.staff This project is used for all users in the group staff.

To access the project file programmatically, use the following structure:

struct project {

char *pj_name; /* name of the project */

projid t pj_projid; /* numerical project ID */

char *pj_comment; /* project comment */

char **pj users; /* vector of pointers to project user names */
char **pj_groups; /* vector of pointers to project group names */
char *pj_attr; /* project attributes */

+
The project structure members include the following:

*pj_name
Name of the project.

pj_projid
Project ID.

*pj_comment
User-supplied project description.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj.task-37
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj.task-37
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj.task-37

Project and Task API Functions

**pj users
Pointers to project user members.

**pj_groups
Pointers to project group members.

s
pj_attr
Project attributes. Use these attributes to set values for resource controls and project pools.

Through project attributes, the resource usage can be controlled. Four prefixes are used to
group the types of resource control attributes:

= project.* - This prefix denotes attributes that are used to control projects. For example,
project.max-device-locked-memory indicates the total amount of locked memory
allowed, expressed as a number of bytes. The project.pool attributes binds a projectto a
resource pool. See Chapter 6, “Dynamic Resource Pools”

= task.* - This prefix is used for attributes that are applied to tasks. For example, the
task.max-cpu-time attribute sets the maximum CPU time that is available to this task’s
processes, expressed as a number of seconds.

= process.* - This prefix is used for process controls. For example, the
process.max-file-size control sets the maximum file offset that is available for writing by
this process, expressed as a number of bytes.

= zone.* - The zone. * prefix is applied to projects, tasks, and processes in a zone. For
example, zone.max- lwps prevents too many LWPs in one zone from affecting other zones.
A zone's total LWPs can be further subdivided among projects within the zone within the
zone by using project.max-lwps entries.

For the complete list of resource controls, see resource_controls(5).

Projectand Task APl Functions

The following functions are provided to assist developers in working with projects. The
functions use entries that describe user projects in the project database.

endprojent(3PROJECT) Close the project database and deallocate resources when
processing is complete.

fgetprojent(3PROJECT) Returns a pointer to a structure containing an entry in the
project database. Rather than using nsswitch. conf,
fgetprojent() readsaline from a stream.

getdefaultproj(3PROJECT) Check the validity of the project keyword, look up the
project, and return a pointer to the project structure if
found.

getprojbyid(3PROJECT) Search the project database for an entry with the number
that specifies the project ID.

Chapter2 « Projects and Tasks 17

http://www.oracle.com/pls/topic/lookup?ctx=816-5175&id=resource-controls-5
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=endprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=fgetprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getdefaultproj-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getprojbyid-3project

Code Examples for Accessing project Database Entries

getprojbyname(3PROJECT) Search the project database for an entry with the string that

specifies project name.

getprojent(3PROJECT) Returns a pointer to a structure containing an entry in the
project database.

inproj(3PROJECT) Check whether the specified user is permitted to use the
specified project.

setproject(3PROJECT) Add a user process to a project.

setprojent(3PROJECT) Rewind the project database to allow repeated searches.

Code Examples for Accessing project Database Entries

EXAMPLE 2-1 Printing the First Three Fields of Each Entry in the project Database
The key points for this example include the following:
m setprojent() rewinds the project database to start at the beginning.

m getprojent() is called with a conservative maximum buffer size that is defined in
project.h.

m endprojent() closesthe project database and frees resources.

#include <project.h>

struct project projent;
char buffer[PROJECT BUFSZ]; /* Use safe buffer size from project.h */

struct project *pp;
setprojent(); /* Rewind the project database to start at the beginning */
while (1) {

pp = getprojent(&projent, buffer, PROJECT BUFSZ);

if (pp == NULL)
break;

printf("ss:%d:%s\n", pp->pj name, pp->pj projid, pp->pj comment);

+

endprojent(); /* Close the database and free project resources */

EXAMPLE2-2 Getting a project Database Entry That Matches the Caller's Project ID

The following example calls getprojbyid() to geta project database entry that matches the
caller's project ID. The example then prints the project name and the project ID.

18 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getprojbyname-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=inproj-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=setproject-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=setprojent-3project

Programming Issues Associated With Projects and Tasks

EXAMPLE2-2 Getting a project Database Entry That Matches the Caller's Project ID (Continued)

#include <project.h>

struct project *pj;
char buffer[PROJECT BUFSZ]; /* Use safe buffer size from project.h */

main()
{
projid t pjid;
pjid = getprojid();
pj = getprojbyid(pjid, &projent, buffer, PROJECT BUFSZ);
if (pj == NULL) {
/* fail; */
}
printf("My project (name, id) is (%s, %d)\n", pp->pj name, pp->pj projid);

Programming Issues Associated With Projects and Tasks

Consider the following issues when writing your application:

= No function exists to explicitly create a new project.
= A user cannot log in if no default project for the user exists in the project database.
= A new taskin the user's default project is created when the user logs in.

= Process association with a new project applies the new project's resource controls and pools
membership to the process.

m setproject() requires privilege. The newtask command does not require privilege if you
own the process. Either can be used to create a task, but only newtask can change the project
of a running process.

= No parent/child relationship exists between tasks.

= Finalized tasks can be created by using newtask -F or by using setproject () to associate
the caller with a new project. Finalized tasks are useful when trying to accurately estimate
aggregate resource accounting.

m Thereentrant functions, getprojent(), getprojbyname(), getprojbyid(),
getdefaultproj(),and inproj (), use buffers supplied by the caller to store returned
results. These functions are safe for use in both single-threaded applications and
multithreaded applications.

= Reentrant functions require these additional arguments: proj, buffer,and bufsize. The
proj argument must be a pointer to a project structure allocated by the caller. On
successful completion, these functions return the project entry in this structure. Storage
referenced by the project structure is allocated from the memory specified by the buffer
argument. bufsize specifies the size in number of bytes.

Chapter2 « Projects and Tasks 19

Programming Issues Associated With Projects and Tasks

® Ifanincorrect buffer size is used, getprojent () returns NULL and sets errno to ERANGE.

20 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

L K R 4 CHAPTER 3

Using the Cinterface to Extended Accounting

This chapter describes the C interface to extended accounting and covers the following topics:

= “Overview of the C Interface to Extended Accounting” on page 21
= “Extended Accounting API Functions” on page 21
= “C Code Examples for Accessing exacct Files” on page 23

Overview of the C Interface to Extended Accounting

Projects and tasks are used to label and separate workloads. The extended accounting
subsystem is used to monitor resource consumption by workloads that are running on the
system. Extended accounting produces accounting records for the workload tasks and
processes.

For an overview of extended accounting and example procedures for administering extended
accounting, see Chapter 4, “Extended Accounting (Overview),” in System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones and Chapter 5,
“Administering Extended Accounting (Tasks),” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

Extended Accounting APl Functions

The extended accounting API contains functions that perform the following:

exacct system calls
Operations on the exacct file
Operations on exacct objects
= Miscellaneous Operations

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct.task.sgm
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct.task.sgm
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct.task.sgm

Extended Accounting API Functions

exacct System Calls

The following table lists the system calls that interact with the extended accounting subsystem.

TABLE3-1 Extended Accounting System Calls

Function Description

putacct(2) Provides privileged processes with the ability to tag accounting records with additional
data that is specific to the process

getacct(2) Enables privileged processes to request extended accounting buffers from the kernel for
currently executing tasks and processes

wracct(2) Requests the kernel to write resource usage data for a specified task or process

Operations on the exacctFile

These functions provide access to the exacct files:

TABLE3-2 exacct File Functions

Function

Description

ea open(3EXACCT)
ea close(3EXACCT)

ea get object(3EXACCT)

ea write object(3EXACCT)

ea next object(3EXACCT)

ea previous object(3EXACCT)

ea get hostname(3EXACCT)

ea get creator(3EXACCT)

Opens an exacct file.
Closes an exacct file.

First time use on a group of objects reads data into an ea_object_t
structure. Subsequent use on the group cycles through the objects in the

group.
Appends the specified object to the open exacct file.

Reads the basic fields (eo_catalogand eo type)intoanea object t
structure and rewinds to the head of the record.

Skips back one object in the exacct file and reads the basic fields
(eo catalogandeo type)intoanea object t.

Gets the name of the host on which the exacct file was created.

Determines the creator of the exacct file.

Operations on exacct Objects

These functions are used to access exacct objects:

22 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=putacct-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=getacct-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=wracct-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-open-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-close-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-get-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-write-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-next-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-previous-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-get-hostname-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-get-creator-3exacct

C Code Examples for Accessing exacct Files

TABLE3-3 exacct Object Functions

Function Description
ea set item(3EXACCT) Assigns an exacct object and sets the value(s).
ea set group(3EXACCT) Sets the values of a group of exacct objects.

ea_match_object_catalog(3EXACCT)Checks an exacct object's mask to see if that object has a specific
catalog tag.

ea_attach_to_object(3EXACCT) Attachesan exacct object to a specified exacct object.

ea attach to group(3EXACCT) Attaches a chain of exacct objects as member items of a specified
group.

ea free item(3EXACCT) Frees the value fields in the specified exacct object.

ea free object(3EXACCT) Frees the specified exacct object and any attached hierarchies of
objects.

Miscellaneous Operations

These functions are associated with miscellaneous operations:

ea_error(3EXACCT)
ea match object catalog(3EXACCT)

CCode Examples for Accessing exacct Files

This section provides code examples for accessing exacct files.

EXAMPLE 3-1 Displaying exacct Data for a Designated pid

This example displays a specific pid's exacct data snapshot from the kernel.

ea object t *scratch;
int unpk_flag = EUP_ALLOC; /* use the same allocation flag */
/* for unpack and free */

/* Omit return value checking, to keep code samples short */

bsize = getacct(P_PID, pid, NULL, 0);
buf = malloc(bsize);

/* Retrieve exacct object and unpack */

getacct(P_PID, pid, buf, bsize);
ea unpack object(&scratch, unpk flag, buf, bsize);

Chapter 3 « Using the CInterface to Extended Accounting 23

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-set-item-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-set-group-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-match-object-catalog-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-attach-to-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-attach-to-group-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-free-item-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-free-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-error-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-match-object-catalog-3exacct

C Code Examples for Accessing exacct Files

EXAMPLE 3-1 Displaying exacct Data for a Designated pid (Continued)

/* Display the exacct record */

disp obj(scratch);

if (scratch->eo type == EO GROUP) {
disp_group(scratch);

}

ea free object(scratch, unpk flag);

EXAMPLE 3-2 Identifying Individual Tasks During a Kernel Build

This example evaluates kernel builds and displays a string that describes the portion of the
source tree being built by this task make. Display the portion of the source being built to aid in
the per-source-directory analysis.

The key points for this example include the following:

= To aggregate the time for a make, which could include many processes, each make is initiated
as a task. Child make processes are created as different tasks. To aggregate across the
makefile tree, the parent-child task relationship must be identified.

= Add a tag with this information to the task's exacct file. Add a current working directory
string that describes the portion of the source tree being built by this task make.

ea set item(&cwd, EXT STRING | EXC_LOCAL | MY _CWD,
cwdbuf, strlen(cwdbuf));

/* Omit return value checking and error processing */

/* to keep code sample short */

ptid = gettaskid(); /* Save "parent" task-id */

tid = settaskid(getprojid(), TASK NORMAL); /* Create new task */

/* Set data for item objects ptskid and cwd */
ea_set item(&ptskid, EXT UINT32 | EXC _LOCAL | MY PTID, &ptid, 0);
ea set item(&cwd, EXT STRING | EXC LOCAL | MY CWD, cwdbuf, strlen(cwdbuf));

/* Set grp object and attach ptskid and cwd to grp */
ea_set_group(&grp, EXT_GROUP | EXC_LOCAL | EXD_GROUP_HEADER);
ea attach to group(&grp, &ptskid);

ea_attach_to group(&grp, &cwd);

/* Pack the object and put it back into the accounting stream */
ea_buflen = ea pack object(&grp, ea buf, sizeof(ea buf));
putacct(P _TASKID, tid, ea buf, ea buflen, EP_EXACCT OBJECT);

/* Memory management: free memory allocate in ea set item */
ea free item(&cwd, EUP ALLOC);

24 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

C Code Examples for Accessing exacct Files

EXAMPLE 3-3 Reading and Displaying the Contents of a System exacct File

This example shows how to read and display a system exacct file for a process or a task.

The key points for this example include the following:

Call ea_get_object() to get the next object in the file. Call ea_get_object () inaloop until
EOF enables a complete traversal of the exacct file.

catalog_name() uses the catalog_itemstructure to convert a Solaris catalog's type ID to a
meaningful string that describes the content of the object's data. The type ID is obtained by
masking the lowest 24 bits, or 3 bytes.

switch(o->eo catalog & EXT_TYPE MASK) {
case EXT _UINT8:
printf(" 8: %u", o->eo item.ei uint8);
break;
case EXT UINT16:

L
The upper 4 bits of TYPE_MASK are used to find out the data type to print the object's actual
data.

disp_group() takesa pointer to a group object and the number of objects in the group. For
each object in the group, disp_group() calls disp_obj () and recursively calls
disp_group() if the object is a group object.

/* Omit return value checking and error processing */
/* to keep code sample short */
main(int argc, char *argv)

{

}

ea file t ef;
ea object t scratch;
char *fname;

fname = argv[1l];
ea open(&ef, fname, NULL, EO NO VALID HDR, O RDONLY, 0);
bzero(&scratch, sizeof (ea object t));
while (ea get object(&ef, &scratch) != -1) {
disp _obj(&scratch);
if (scratch.eo type == EO GROUP)
disp group(&ef, scratch.eo group.eg nobjs);
bzero(&scratch, sizeof (ea object t));

ea_close(&ef);

struct catalog item { /* convert Solaris catalog’s type ID */

/* to a meaningful string */

int type;
char *name;
} catalog[] = {
{ EXD_VERSION, "version\t" },
{ EXD_PROC PID, " opid\t" 3},

Chapter 3 « Using the CInterface to Extended Accounting 25

C Code Examples for Accessing exacct Files

26

EXAMPLE 3-3 Reading and Displaying the Contents of a System exacct File

static char *
catalog name(int type)

{

}

int i = 0;
while (catalog[i].type != EXD NONE) {
if (catalog[i].type == type)
return (catalog[i].name);
else
i++;
}

return ("unknown\t");

static void disp_obj(ea object t *o)

{

}

printf("ss\t", catalog name(o->eo catalog & Oxffffff));
switch(o->eo catalog & EXT _TYPE MASK) {
case EXT_UINT8:
printf(" 8: %u", o->eo item.ei uint8);
break;
case EXT UINT16:

static void disp group(ea file t *ef, uint t nobjs)

{

for (i = 0; i < nobjs; i++) {
ea get object(ef, &scratch));
disp obj(&scratch);
if (scratch.eo type == EO GROUP)
disp group(ef, scratch.eo group.eg nobjs);
}

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

(Continued)

L R 2 4 CHAPTER 4

Using the Perl Interface to Extended
Accounting

The Perl interface provides a Perl binding to the extended accounting tasks and projects. The
interface allows the accounting files produced by the exacct framework to be read by Perl
scripts. The interface also allows the writing of exacct files by Perl scripts.

This chapter includes the following topics:

= “Extended Accounting Overview” on page 27
= “Per] Code Examples” on page 42
= “Output From dump Method” on page 45

Extended Accounting Overview

The exacct is a new accounting framework for the Solaris operating system provides additional
functionality to that provided by the traditional SVR4 accounting mechanism. Traditional
SVR4 accounting has these drawbacks:

= The data collected by SVR4 accounting cannot be modified.

The type or quantity of statistics SVR4 accounting gathers cannot be customized for each
application. Changes to the data SVR4 accounting collects would not work with all of the
existing applications that use the accounting files.

= The SVR4 accounting mechanism is not open.
Applications cannot embed their own data in the system accounting data stream.
= The SVR4 accounting mechanism has no aggregation facilities.
The Solaris Operating system writes an individual record for each process that exists. No

facilities are provided for grouping sets of accounting records into higher-level aggregates.

The exacct framework addresses the limitations of SVR4 accounting and provides a
configurable, open, and extensible framework for the collection of accounting data.

= The data that is collected can be configured using the exacct APL

27

Perl Interface to libexacct

Applications can either embed their own data inside the system accounting files, or create
and manipulate their own custom accounting files.

The lack of data aggregation facilities in the traditional accounting mechanism are
addressed by tasks and projects. Tasks identify a set of processes that are to be considered as
a unit of work. Projects allow the processes executed by a set of users to be aggregated into a
higher-level entity. See theproject(4) man page for more details about tasks and projects.

For a more extensive overview of extended accounting, see Chapter 4, “Extended Accounting
(Overview),” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones.

Perl Interface to libexacct

28

Object Model

The Sun::Solaris: :Exacct module is the parent of all the classes provided by
libexacct(3LIB) library. libexacct(3LIB) provides operations on types of entities: exacct
format files, catalog tags and exacct objects. exacct objects are subdivided into two types.

Items
Single data values
Groups

Lists of items

Benefits of Using the Perl Interface to Libexacct

The Perl extensions to extended accounting provide a Perl interface to the underlying
libexacct(3LIB) API and offer the following enhancements.

Full equivalence to C API provide a Perl interface that is functionally equivalent to the
underlying C APL

The interface provides a mechanism for accessing exacct files that does not require C
coding. All the functionality that is available from C is also available by using the Perl
interface.

Ease of use.

Data obtained from the underlying C APIis presented as Perl data types. Perl data types ease
access to the data and remove the need for buffer pack and unpack operations.

Automated memory management.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=project-4
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmacct-1

Perl Modules

The C APIrequires that the programmer take responsibility for managing memory when
accessing exacct files. Memory management takes the form of passing the appropriate flags
to functions, such as ea_unpack_object(3EXACCT), and explicitly allocating buffers to
pass to the APL The Perl API removes these requirements, as all memory management is
performed by the Perl library.

m Preventincorrect use of API.

The ea_object_t structure provides the in-memory representation of exacct records. The
ea_object_t structure isa union type that is used for manipulating both Group and Item
records. As a result, an incorrectly typed structure can be passed to some of the API
functions. The addition of a class hierarchy prevents this type of programming error.

Perl Double-Typed Scalars

The modules described in this document make extensive use of the Perl double-typed scalar
facility. The double-typed scalar facility allows a scalar value to behave either as an integer or asa
string, depending upon the context. This behavior is the same as exhibited by the $! Perl
variable (errno). The double-typed scalar facility avoids the need to map from an integer value
into the corresponding string in order to display a value. The following example illustrates the
use of double-typed scalars.

Assume $obj is a Sun::Solaris::Item
my $type = $obj->type();

prints out "2 EO ITEM"
printf("sd %s\n", $type, $type);

Behaves as an integer, $i == 2
my $i =0 + $type;

Behaves as a string, $s = "abc EO _ITEM xyx"
my $s = "abc $type xyz";

Perl Modules

The various project, task and exacct-related functions have been separated into groups, and
each group is placed in a separate Perl module. Each function has the Sun Microsystems
standard Sun: :Solaris: : Perl package prefix.

Chapter4 - Using the Perl Interface to Extended Accounting 29

Perl Modules

TABLE 4-1

Perl Modules

Module

Description

“Sun::Solaris::Project Module” on page 31

“Sun:

“Sun:

“Sun:

“Sun:

:Solaris:

:Solaris:

:Solaris:

:Solaris:

:Task Module” on page 32

:Exacct Module” on page 33

:Exacct::Catalog Module” on page 35

:Exacct::File Module” on page 36

Provides functions to access the project
manipulation functions: getprojid(2),
setproject(3PROJECT),

project walk(3PROJECT),
getprojent(3PROJECT),
getprojbyname(3PROJECT),
getprojbyid(3PROJECT),
getdefaultproj (3PROJECT),
inproj(3PROJECT),
getprojidbyname(3PROJECT),
setprojent(3PROJECT),
endprojent(3PROJECT),
fgetprojent(3PROJECT).

Provides functions to access the task
manipulation functions settaskid(2) and
gettaskid(2).

Top-level exacct module. Functions in this
module access both the exacct-related system
calls getacct(2), putacct(2),and wracct(2) as
well as the libexacct(3LIB) library function
ea_error(3EXACCT). This module contains
constants for all the various exacct EO_*, EW_*,
EXR_*,P_*and TASK_* macros.

Provides object-oriented methods to access the
bitfields within an exacct catalog tag as well as
the EXC_*, EXD_* and EXD_* macros.

Provides object-oriented methods to access the
libexacct(3LIB) accounting file functions:

ea open(3EXACCT), ea close(3EXACCT),
ea get creator(3EXACCT),

ea get hostname(3EXACCT),
ea_next_object(3XACCT),

ea previous object(3EXACCT),

ea write object(3EXACCT).

30 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Perl Modules

TABLE4-1 Perl Modules (Continued)

Module Description

“Sun::Solaris::Exacct::0bject Module” on page 38 Provides object-oriented methods to access the
individual exacct accounting file object. An
exacct object is represented as an opaque
reference that is blessed into the appropriate
Sun::Solaris::Exacct::0bject subclass. This
module is further subdivided into the two types
of possible object: Item and Group. Methods are
also provided to access the
ea match object catalog(3EXACCT),
ea attach to object(3EXACCT) functions.

“Sun::Solaris::Exacct::0bject::Item Module” on Provides object-oriented methods to access an

page 39 individual exacct accounting file Item. Objects
of this type inherit from
Sun::Solaris::Exacct::0Object.

“Sun::Solaris::Exacct::0Object: :Group Module” on Provides object-oriented methods to access an

page 40 individual exacct accounting file Group. Objects
of this type inherit from
Sun::Solaris::Exacct::0Object, and provide
access to theea attach to group(3EXACCT)
function. The Items contained within the Group
are presented as a perl array.

“Sun::Solaris::Exacct::0Object:: Array Module”on Private array type, used as the type of the array
page 41 withina
Sun::Solaris::Exacct::0bject::Group.

Sun::Solaris::Project Module

The Sun::Solaris::Project module provides wrappers for the project-related system calls
and the libproject(3LIB) library.

Sun::Solaris::Project Constants

The Sun::Solaris::Project module uses constants from the project-related header files.

MAXPROJID
PROJNAME_MAX
PROJF_PATH
PROJECT_BUFSZ
SETPROJ_ERR_TASK
SETPROJ_ERR_POOL

Chapter4 - Using the Perl Interface to Extended Accounting 31

Perl Modules

32

Sun: :Solaris::Project Functions, Class Methods, and Object
Methods

The perl extensions to the libexacct(3LIB) API provide the following functions for projects.

setproject(3PROJECT)
setprojent(3PROJECT)
getdefaultproj(3PROJECT)
inproj(3PROJECT)
getprojent(3PROJECT)
fgetprojent(3PROJECT)
getprojbyname(3PROJECT)
getprojbyid(3PROJECT)
getprojbyname(3PROJECT)
endprojent(3PROJECT)

The Sun::Solaris: :Project module has no class methods.

The Sun::Solaris::Project module has no object methods.

Sun::Solaris: :Project Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function
:SYSCALLS getprojid()
:LIBCALLS setproject(),activeprojects(),getprojent(),setprojent(),

endprojent(),getprojbyname(),getprojbyid(), getdefaultproj(),
fgetprojent(),inproj(),getprojidbyname()

:CONSTANTS MAXPROJID_TASK, PROJNAME MAX, PROJF_PATH, PROJECT BUFSZ, SETPROJ_ERR,
SETPROJ_ERR_POOL

tALL :SYSCALLS, : LIBCALLS, : CONSTANTS

Sun::Solaris::Task Module

The Sun::Solaris::Task module provides wrappers for the settaskid(2) and gettaskid(2)
system calls.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=setproject-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=setprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getdefaultproj-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=inproj-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=fgetprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getprojbyname-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getprojbyid-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=getprojbyname-3project
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=endprojent-3project

Perl Modules

Sun::Solaris: :Task Constants

The Sun: :Solaris::Task module uses the following constants.

TASK_NORMAL
TASK_FINAL

Sun::Solaris::Task Functions, Class Methods, and Object Methods
The perl extensions to the libexacct(3LIB) API provides the following functions for tasks.

settaskid(2)
gettaskid(2)
The Sun::Solaris::Task module has no class methods.

The Sun: :Solaris: : Task module has no object methods.

Sun::Solaris::Task Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS settaskid(), gettaskid()

: CONSTANTS TASK NORMAL and TASK FINAL
tALL :SYSCALLS and : CONSTANTS

Sun::Solaris: :Exacct Module

The Sun::Solaris: :Exacct module provides wrappers for the ea_error(3EXACCT)
function, and for all the exacct system calls.

Sun::Solaris: :Exacct Constants

The Sun::Solaris: :Exacct module provides constants from the various exacct header files.
The P_PID,P_TASKID, P_PROJID and all the EW_*, EP_*, EXR_* macros are extracted during the
module build process. The macros are extracted from the exacct header files under
/usr/include and provided as Perl constants. Constants passed to the Sun: :Solaris: :Exacct
functions can either be an integer value such as. EW_FINAL or a string representation of the same
variable such as. “EW_FINAL”.

Chapter4 - Using the Perl Interface to Extended Accounting 33

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=settaskid-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=gettaskid-2

Perl Modules

34

Sun: :Solaris: :Exacct Functions, Class Methods, and Object Methods

The perl extensions to the libexacct(3LIB) API provide the following functions for the
Sun::Solaris::Exacct module.

getacct(2)
putacct(2)

wracct(2)
ea_error(3EXACCT)
ea error_str

ea register catalog
ea new file

ea new item
ea_new_group

ea dump object

Note - ea_error_str() is provided as a convenience, so that repeated blocks of code like the
following can be avoided:

if (ea error() == EXR SYSCALL FAIL) {
print("error: $!\n");

} else {
print("error: ", ea error(), "\n");

}

The Sun::Solaris: :Exacct module has no class methods.

The Sun::Solaris: :Exacct module has no object methods.

Sun::Solaris: :Exacct Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS getacct(),putacct(),wracct()
:LIBCALLS ea_error(),ea error_str()
:CONSTANTS P_PID,P_TASKID, P_PROJID

JEW *,EP_* EXR *

: SHORTAND ea register catalog(),ea new catalog(),ea new file(),
ea_new_item(),ea new group(),ea dump object()

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=getacct-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=putacct-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=wracct-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-error-3exacct

Perl Modules

Tag Constant or Function
tALL :SYSCALLS, : LIBCALLS, : CONSTANTS and : SHORTHAND
:EXACCT_CONSTANTS : CONSTANTS, plus the : CONSTANTS tags for Sun: :Solaris: :Catalog,

Sun::Solaris::File,Sun::Solaris::0Object

:EXACCT ALL tALL, plus the :ALL tags for Sun: :Solaris::Catalog, Sun::Solaris::File,
Sun::Solaris::0Object

Sun::Solaris: :Exacct::Catalog Module

The Sun::Solaris::Exacct::Catalog module provides a wrapper around the 32-bit integer
used as a catalog tag. The catalog tag is represented as a Perl object blessed into the
Sun::Solaris::Exacct::Catalog class. Methods can be used to manipulate fields in a catalog
tag.

Sun::Solaris::Exacct::Catalog Constants

All the EXT_*, EXC_* and EXD_* macros are extracted during the module build process from the
/usr/include/sys/exact_catalog.h file and are provided as constants. Constants passed to
the Sun::Solaris::Exacct: :Catalog methods can either be an integer value, such as
EXT_UINTS, or the string representation of the same variable, such as “EXT_UINT8".

Sun::Solaris::Exacct::Catalog Functions, Class Methods, and
Object Methods

The Perl extensions to the libexacct(3LIB) API provide the following class methods
forSun::Solaris::Exacct::Catalog. Exacct(3PERL) andExacct::Catalog(3PERL)

register
new

The Perl extensions to the libexacct(3LIB) API provide the following object methods for
Sun::Solaris::Exacct::Catalog.

value

type
catalog

id

type str
catalog str
id str

Chapter4 - Using the Perl Interface to Extended Accounting 35

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=exacct-3perl
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=exacct--catalog-3perl

Perl Modules

36

Sun::Solaris::Exacct::Catalog Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function
:CONSTANTS EXT *,EXC *and EXD *.
tALL : CONSTANTS

Additionally, any constants defined with the register() function can optionally be exported
into the caller's package.

Sun::Solaris::Exacct::File Module

The Sun::Solaris::Exacct::File module provides wrappers for the exacct functions that
manipulate accounting files. The interface is object-oriented, and allows the creation and
reading of exacct files. The Clibrary calls that are wrapped by this module are:

ea_open(3EXACCT)

ea close(3EXACCT)
ea_next_object(3EXACCT)
ea_previous _object(3EXACCT)
ea write object(3EXACCT)
ea_get object(3EXACCT)
ea_get creator(3EXACCT)
ea_get hostname(3EXACCT)

The file read and write methods operate on Sun: :Solaris: :Exacct: :0bject objects. These
methods perform all the necessary memory management, packing, unpacking and structure
conversions that are required.

Sun::Solaris::Exacct: :File Constants

Sun::Solaris::Exacct::File providesthe EO_HEAD, EO_TAIL,EO NO_VALID_HDR,
EO_POSN_MSK and EO_VALIDATE_MSK constants. Other constants that are needed by the new()
method are in the standard Perl Fcnt1 module. Table 4-2 describes the action of new() for
various values of $oflags and $aflags.

Sun::Solaris::Exacct: :File Functions, Class Methods, and Object
Methods

The Sun::Solaris: :Exacct::File module has no functions.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-open-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-close-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-next-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-previous-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-write-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-get-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-get-creator-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=ea-get-hostname-3exacct

Perl Modules

The Perl extensions to the libexacct(3LIB) API provide the following class method
forSun::Solaris::Exacct::File.

new

The following table describes the new() action for combinations of the $oflags and $aflags
parameters.

TABLE4-2 $oflagsand $aflags Parameters

$oflags $aflags Action

0 RDONLY Absent or EO_HEAD Open for reading at the start of the file.

0 RDONLY EO TAIL Open for reading at the end of the file.

0_WRONLY Ignored File must exist, open for writing at the end of
the file.

0 WRONLY | O CREAT Ignored Create file if the file does not exist. Otherwise,
truncate, and open for writing.

0_RDWR Ignored File must exist, open for reading or writing, at
the end of the file.

0 RDWR | O CREAT Ignored Create file if the file does not exist. Otherwise,

truncate, and open for reading or writing.

Note - The only valid values for $oflags are the combinations of 0O_RDONLY, 0_WRONLY, O_RDWR

or O_CREAT. $aflags describes the required positioning in the file for 0_RDONLY. Either EO_HEAD

or EO_TAIL are allowed. If absent, EO_HEAD is assumed.

The perl extensions to the libexacct(3LIB) API provide the following object methods
forSun::Solaris::Exacct::File.

creator
hostname
next
previous
get
write

Chapter4 - Using the Perl Interface to Extended Accounting

37

Perl Modules

38

Note - Close a Sun: :Solaris: :Exacct: :File. Thereis no explicit close() method for a
Sun::Solaris::Exacct::File. Thefileis closed when the filehandle object is undefined or
reassigned.

Sun::Solaris::Exacct::File Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants that are defined in this module.

Tag Constant or Function
:CONSTANTS EO_HEAD, EO_TAIL,EO NO VALID HDR,EO POSN_MSK, EO VALIDATE_ MSK.
tALL :CONSTANTS and Fent1(: DEFAULT).

Sun::Solaris::Exacct::0bject Module

The Sun::Solaris::Exacct::0bject module serves as a parent of the two possible types of
exacct objects: Items and Groups. An exacct I'temis a single data value, an embedded exacct
object, or a block of raw data. An example of a single data value is the number of seconds of user
CPU time consumed by a process. An exacct Group is an ordered collection of exacct Items
such as all of the resource usage values for a particular process or task. If Groups need to be
nested within each other, the inner Groups can be stored as embedded exacct objects inside the
enclosing Group.

The Sun::Solaris::Exacct: :0bject module contains methods that are common to both
exacct Items and Groups. Note that the attributes of Sun: :Solaris: :Exacct: :0Object and all
classes derived from it are read-only after initial creation via new(). The attributes made
read-only prevents the inadvertent modification of the attributes which could give rise to
inconsistent catalog tags and data values. The only exception to the read-only attributes is the
array used to store the Items inside a Group object. This array can be modified using the normal
perl array operators.

Sun::Solaris::Exacct: :0bject Constants

Sun::Solaris::Exacct::0bject providesthe EO_ERROR, EO_NONE,EO_ITEMand EO_GROUP
constants.

Sun::Solaris::Exacct: :0Object Functions, Class Methods, and Object
Methods

The Sun::Solaris: :Exacct: :0bject module has no functions.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Perl Modules

The Perl extensions to the libexacct(3LIB) API provide the following class method
forSun::Solaris::Exacct::0bject.

dump

The Perl extensions to the libexacct(3LIB) API provide the following object methods
forSun::Solaris::Exacct::0Object.

type

catalog

match catalog
value

Sun::Solaris::Exacct::0bject Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function
: CONSTANTS EO ERROR,EO NONE,EO ITEMand EO GROUP
tALL : CONSTANTS

Sun::Solaris::Exacct::Object: :Item Module

The Sun::Solaris::Exacct::0bject: :Item moduleis used for exacct data Items. An exacct
data Item is represented as an opaque reference, blessed into the
Sun::Solaris::Exacct::0Object: :Item class, which is a subclass of the
Sun::Solaris::Exacct::0bject class. The underlying exacct data types are mapped onto
Perl types as follows.

TABLE4-3 exacct Data Types Mapped to Perl Data Types

exacct type Perlinternal type
EXT UINT8 IV (integer)
EXT UINT16 IV (integer)
EXT UINT32 IV (integer)
EXT UINT64 IV (integer)
EXT_DOUBLE NV (double)

Chapter4 - Using the Perl Interface to Extended Accounting 39

Perl Modules

40

TABLE4-3 exacct Data Types Mapped to Perl Data Types (Continued)

exacct type Perlinternal type

EXT STRING PV (string)

EXT EXACCT OBJECT Sun::Solaris::Exacct::0bject subclass
EXT RAW PV (string)

Sun::Solaris::Exacct::0Object: :Item Constants

Sun::Solaris::Exacct::0Object::Itemhasno constants.

Sun::Solaris::Exacct::0bject: :Item Functions, Class Methods, and
Object Methods

Sun::Solaris::Exacct::0Object::Itemhas no functions.

Sun::Solaris::Exacct::0Object::Iteminherits all class methods from the
Sun::Solaris::Exacct::0bject base class, plus the new() class method.

new

Sun::Solaris::Exacct::0bject: : Item inherits all object methods from the
Sun::Solaris::Exacct::0Object base class.

Sun::Solaris::Exacct::0bject: :ItemExports

Sun::Solaris::Exacct::0bject::Itemhasno exports.

Sun::Solaris::Exacct::0Object: :Group Module

The Sun::Solaris::Exacct::0bject::Group module is used for exacct Group objects. An
exacct Group object is represented as an opaque reference, blessed into the
Sun::Solaris::Exacct::0Object: :Group class, which is a subclass of the
Sun::Solaris::Exacct::0bject class. The Items within a Group are stored inside a Perl array,
and a reference to the array can be accessed via the inherited value () method. This means that
the individual Items within a Group can be manipulated with the normal Perl array syntax and
operators. All data elements of the array must be derived from the
Sun::Solaris::Exacct::0bject class. Group objects can also be nested inside each other
merely by adding an existing Group as a data Item.

Sun::Solaris::Exacct::0Object: :Group Constants

Sun::Solaris::Exacct::0Object: :Group has no constants.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Perl Modules

Sun::Solaris::Exacct::0bject: :Group Functions, Class Methods,
and Object Methods

Sun::Solaris::Exacct::0bject: :Group has no functions.
Sun::Solaris::Exacct::0bject: :Group inherits all class methods from the
Sun::Solaris::Exacct::0bject base class, plus the new() class method.

new

Sun::Solaris::Exacct::0bject: :Group inherits all object methods from the

Sun::Solaris::Exacct::0bject base class, plus the new() class method.

as_hash
as_hashlist

Sun::Solaris::Exacct::0bject: :Group Exports

Sun::Solaris::Exacct::0bject: :Group hasno exports.

Sun::Solaris::Exacct::0bject:: Array Module

The Sun::Solaris::Exacct::0Object::_Array class is used internally for enforcing type
checking of the data Items that are placed in an exacct Group.
Sun::Solaris::Exacct::0bject::_Array should notbe created directly by the user.

Sun::Solaris::Exacct::0Object::_ Array Constants

Sun::Solaris::Exacct::0bject:: Array hasno constants.

Sun::Solaris::Exacct::0bject:: Array Functions, Class Methods,
and Object Methods

Sun::Solaris::Exacct::0Object:: Array hasno functions.
Sun::Solaris::Exacct::0Object:: Array hasinternal-use class methods.

Sun::Solaris::Exacct::0bject::_Array uses perl TIEARRAY methods.

Sun::Solaris::Exacct::0Object::_Array Exports

Sun::Solaris::Exacct::0Object::_Arrayhasno exports.

Chapter4 - Using the Perl Interface to Extended Accounting 41

Perl Code Examples

Perl Code Examples

42

This section shows perl code examples for accessing exacct files.

EXAMPLE 4-1 Using the Pseudocode Prototype

In typical use the Perl exacct library reads existing exacct files. Use pseudocode to show the
relationships of the various Perl exacct classes. Illustrate in pseudocode the process of opening
and scanning an exacct file, and processing objects of interest. In the following pseudocode, the
‘convenience’ functions are used in the interest of clarity.

-- Open the exacct file ($f is a Sun::Solaris::Exacct::File)
my $f = ea new file(...)

-- While not EOF ($0 is a Sun::Solaris::Exacct::0bject)
while (my $o0 = $f->get())

-- Check to see if object is of interest
if ($o->type() == &EO_ITEM)
-- Retrieve the catalog ($c is a Sun::Solaris::Exacct::Catalog)

$c = $o0->catalog()

-- Retrieve the value
$v = $o0->value();

-- $v is a reference to a Sun::Solaris::Exacct::Group for a Group

if (ref($v))

-- $v is perl scalar for Items
else

EXAMPLE4-2 Recursively dumpingan exacct Object

sub dump object

{
my ($obj, $indent) = @ ;
my $istr = ' ' x $indent;
#
Retrieve the catalog tag. Because we are doing this in an array
context, the catalog tag will be returned as a (type, catalog, id)
triplet, where each member of the triplet will behave as an integer
or a string, depending on context. If instead this next line provided
a scalar context, e.g.
my $cat = $obj->catalog()->value();
then $cat would be set to the integer value of the catalog tag.
#

my @cat = $obj->catalog()->value();
#

If the object is a plain item
#

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Perl Code Examples

EXAMPLE4-2 Recursively dumping an exacct Object (Continued)

if ($obj->type() == &EO_ITEM) {
#
Note: The '%s’ formats provide s string context, so the
components of the catalog tag will be displayed as the
symbolic values. If we changed the '%s’ formats to '%d’,
the numeric value of the components would be displayed.
#
printf("ssITEM\n%s Catalog = %s|%s|%s\n"

$istr, $istr, @cat);

$indent++;

#

Retrieve the value of the item. If the item contains in

turn a nested exacct object (i.e. a item or group), then

the value method will return a reference to the appropriate
sort of perl object (Exacct::0Object::Item or

Exacct::0bject::Group). We could of course figure out that
the item contained a nested item or group by examining

the catalog tag in @cat and looking for a type of

EXT_EXACCT_OBJECT or EXT_GROUP.

my $val = $obj->value();
if (ref($val)) {
If it is a nested object, recurse to dump it.
dump object($val, $indent);
} else {
Otherwise it is just a ’'plain’ value, so display it.
printf("ss Value = %s\n", $istr, $val);

}

#
Otherwise we know we are dealing with a group. Groups represent
contents as a perl list or array (depending on context), so we
can process the contents of the group with a ’'foreach’ loop, which
provides a list context. In a list context the value method
returns the content of the group as a perl list, which is the
quickest mechanism, but doesn’t allow the group to be modified.
If we wanted to modify the contents of the group we could do so
like this:
my $grp = $obj->value(); # Returns an array reference
$grp->[0] = $newitem;
but accessing the group elements this way is much slower.
#
} else {

printf("%ssGROUP\n%s Catalog = %s|%s|%s\n"

$istr, $istr, @cat);

$indent++;

'foreach’ provides a list context.

foreach my $val ($obj->value()) {

dump object($val, $indent);

}

printf("ssENDGROUP\n", $istr);
}

Chapter4 - Using the Perl Interface to Extended Accounting 43

Perl Code Examples

44

EXAMPLE 4-3 Creating a New Group Record and Writing to a File

Prototype list of catalog tags and values.
my @items = (

[&EXT_STRING | &EXC _DEFAULT | &EXD_CREATOR => "me" 1,
[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_PID => $$ 1,
[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_UID => $< 1,
[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_GID => $(1,
[&EXT STRING | &EXC DEFAULT | &EXD PROC COMMAND => "/bin/stuff" 1,

)

Create a new group catalog object.
my $cat = new catalog(&EXT GROUP | &EXC DEFAULT | &EXD NONE);

Create a new Group object and retrieve its data array.
my $group = new group($cat);
my $ary = $group->value();

Push the new Items onto the Group array.
foreach my $v (@items) {

push(@$ary, new item(new catalog($v->[0]), $v->[1]1));
}

Nest the group within itself (performs a deep copy).
push(@s$ary, $group);

Dump out the group.
dump_object($group);

EXAMPLE4-4 Dumping an exacct File

#!/usr/bin/perl

use strict;

use warnings;

use blib;

use Sun::Solaris::Exacct qw(:EXACCT_ALL);

die("Usage is dumpexacct

Open the exact file and display the header information.

my $ef = ea new file($ARGV[0], &0 RDONLY) || die(error str());
printf("Creator: %s\n", $ef->creator());

printf("Hostname: %s\n\n", $ef->hostname());

Dump the file contents

while (my $obj = $ef->get()) {
ea_dump_object($obj);

}

Report any errors

if (ea error() '= EXR OK && ea error() != EXR EOF) {
printf("\nERROR: %s\n", ea_error str());
exit(1);

}

exit(0);

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Output From dump Method

Output From dump Method

This example shows the formatted output of the Sun: :Solaris: :Exacct::0Object->dump()
method.

GROUP

Catalog = EXT GROUP|EXC DEFAULT|EXD GROUP PROC PARTIAL

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC PID
Value = 3

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC UID
Value = 0

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC GID
Value = 0

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC PROJID
Value = 0

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC TASKID
Value = 0

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC CPU USER SEC
Value = 0

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC CPU USER NSEC
Value = 0

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC CPU SYS SEC
Value = 890

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC CPU SYS NSEC
Value = 760000000

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC START SEC
Value = 1011869897

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC START NSEC
Value = 380771911

ITEM
Catalog
Value =

ITEM
Catalog
Value =

ITEM
Catalog = EXT STRING|EXC DEFAULT|EXD PROC COMMAND
Value = fsflush

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD PROC TTY MAJOR
Value = 4294967295

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC TTY MINOR
Value = 4294967295

ITEM
Catalog = EXT STRING|EXC DEFAULT|EXD PROC HOSTNAME

EXT UINT64|EXC DEFAULT|EXD PROC FINISH SEC

S

EXT UINT64|EXC_DEFAULT|EXD PROC_FINISH NSEC

S

Chapter4 - Using the Perl Interface to Extended Accounting 45

Output From dump Method

Value = mower

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC FAULTS MAJOR
Value =

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC FAULTS MINOR
Value = 0

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC MESSAGES SND
Value = 0

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC MESSAGES RCV
Value = 0

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC BLOCKS IN
Value = 19

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC BLOCKS OUT
Value = 40833

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC CHARS RDWR
Value = 0

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC CONTEXT VOL
Value = 129747

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC CONTEXT INV
Value = 79

ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC SIGNALS
Value = 0
ITEM
Catalog = EXT UINT64|EXC DEFAULT|EXD PROC SYSCALLS
Value = 0

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC ACCT FLAGS
Value = 1

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD PROC ANCPID
Value = 0

ITEM
Catalog = EXT UINT32|EXC DEFAULT|EXD_PROC WAIT STATUS
Value =

ENDGROUP

S

S

46 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

CHAPTER 5

Resource Controls

This chapter describes resource controls and their properties.

“Overview of Resource Controls” on page 47

“Resource Controls Flags and Actions” on page 48

“Resource Controls API Functions” on page 57

“Resource Control Code Examples” on page 58

“Programming Issues Associated With Resource Controls” on page 62

Overview of Resource Controls

Use the extended accounting facility to determine the resource consumption of workloads on
your system. After the resource consumption has been determined, use the resource control
facility to place bounds on resource usage. Bounds that are placed on resources prevent
workloads from over-consuming resources.

For an overview of resource controls and example commands for administering resource
controls, see Chapter 6, “Resource Controls (Overview),” in System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones and Chapter 7, “Administering
Resource Controls (Tasks),” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.

The resource control facility adds the following benefits.

= Dynamically set
Resource controls can be adjusted while the system is running.
= Containment level granularity

Resource controls are arranged in a containment level of project, task, or process. The
containment level simplifies the configuration and aligns the collected values closer to the
particular project, task, or process.

= Threshold preservation

47

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmctrls-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmctrls-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmctrls.task-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmctrls.task-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmctrls.task-1

Resource Controls Flags and Actions

If an attempt is made to set the maximum value less than the actual resource consumption,
no change in to the maximum value is made.

Resource Controls Flags and Actions

48

This section describes flags, actions, and signals associated with resource controls.

rlimit, Resource Limit

rlimit is process-based. riimit establishes a restricting boundary on the consumption of a
variety of system resources by a process. Each process that the process creates inherits from the
original process. A resource limit is defined by a pair of values. The values specify the current
(soft) limit and the maximum (hard) limit.

A process might irreversibly lower its hard limit to any value that is greater than or equal to the
soft limit. Only a process with superuser ID can raise the hard limit. See setrlimit() and
getrlimit().

The rlimit structure contains two members that define the soft limit and hard limit.

rlim t rlim cur; /* current (soft) limit */
rlim t rlim_max /* hard limit */
rctl, Resource Control

rctl extends the process-based limits of rlimit by controlling resource consumption by
processes, tasks, and projects defined in the project database.

Note - The rctl mechanism is preferred to the use of rlimit to set resource limits. The only
reason to use the rlimit facility is when portability is required across UNIX platforms.

Applications fall into the following broad categories depending on how an application deals
with resource controls. Based on the action that is taken, resource controls can be further
classified. Most report an error and terminate operation. Other resource controls allow
applications to resume operation and adapt to the reduced resource usage. A progressive chain
of actions at increasing values can be specified for each resource control.

The list of attributes for a resource control consists of a privilege level, a threshold value, and an
action that is taken when the threshold is exceeded.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Resource Controls Flags and Actions

Resource Control Values and Privilege Levels

Each threshold value on a resource control must be associated with one of the following
privilege levels:

RCPRIV_BASIC
Privilege level can be modified by the owner of the calling process. RCPRIV_BASIC is
associated with a resource's soft limit.

RCPRIV_PRIVILEGED
Privilege level can be modified only by privileged (superuser) callers.
RCPRIV_PRIVILEGED is associated with a resource's hard limit.

RCPRIV_SYSTEM
Privilege level remains fixed for the duration of the operating system instance.

Figure 5-2 shows the timeline for setting privilege levels for signals that are defined by the
/etc/project file process.max-cpu-time resource control.

Local Actions and Local Flags

The local action and local flags are applied to the current resource control value represented by
this resource control block. Local actions and local flags are value-specific. For each threshold
value that is placed on a resource control, the following local actions and local flags are
available:

RCTL_LOCAL_NOACTION
No local action is taken when this resource control value is exceeded.

RCTL_LOCAL_SIGNAL
The specified signal, set by rctlblk_set_local_action(), is sent to the process that placed
this resource control value in the value sequence.

RCTL_LOCAL_DENY
When this resource control value is encountered, the request for the resource is denied. Set
on all values if RCTL_GLOBAL_DENY_ALWAYS is set for this control. Cleared on all
values if RCTL_GLOBAL_DENY_NEVER is set for this control.

RCTL_LOCAL_MAXIMAL
This resource control value represents a request for the maximum amount of resource for
this control. If RCTL_GLOBAL_INFINITE is set for this resource control,
RCTL_LOCAL_MAXIMAL indicates an unlimited resource control value that is never
exceeded.

Chapter5 « Resource Controls 49

Resource Controls Flags and Actions

50

Global Actions and Global Flags

Global flags apply to all current resource control values represented by this resource control
block. Global actions and global flags are set by rctladm(1M). Global actions and global flags
cannot be set with setrct1(). Global flags apply to all resource controls. For each threshold
value that is placed on a resource control, the following global actions and global flags are
available:

RCTL_GLOBAL_NOACTION
No global action is taken when a resource control value is exceeded on this control.

RCTL_GLOBAL_SYSLOG
A standard message is logged by the syslog () facility when any resource control value on a
sequence associated with this control is exceeded.

RCTL_GLOBAL_NOBASIC
No values with the RCPRIV_BASIC privilege are permitted on this control.

RCTL_GLOBAL_LOWERABLE
Non-privileged callers are able to lower the value of privileged resource control values on
this control.

RCTL_GLOBAL_DENY_ALWAYS
The action that is taken when a control value is exceeded on this control always includes
denial of the resource.

RCTL_GLOBAL_DENY_NEVER
The action that is taken when a control value is exceeded on this control always excludes
denial of the resource. The resource is always granted, although other actions can also be
taken.

RCTL_GLOBAL_FILE_SIZE
The valid signals for local actions include the SIGXFSZ signal.

RCTL_GLOBAL_CPU_TIME
The valid signals for local actions include the SIGXCPU signal.

RCTL_GLOBAL_SIGNAL_NEVER
No local actions are permitted on this control. The resource is always granted.

RCTL_GLOBAL_INFINITE
This resource control supports the concept of an unlimited value. Generally, an unlimited
value applies only to accumulation-oriented resources, such as CPU time.

RCTL_GLOBAL_UNOBSERVABLE
Generally, a task or project related resource control does not support observational control
values. An RCPRIV_BASIC privileged control value placed on a task or process generates an
action only if the value is exceeded by that process.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Resource Controls Flags and Actions

In the Solaris 10 5/08 release, the level n/a was added for resource controls on which no global
action can be configured.

Resource Control Sets Associated With a Project,
Processes and Tasks

The following figure shows the resource control sets associated with tasks, processes and a
project.

Chapter5 « Resource Controls 51

Resource Controls Flags and Actions

FIGURE5-1 Resource Control Sets for Task, Project, and Process

Project

Task

Task rctl set Project rctl set

task.max-cpu-time project.cpu-shares
task.max-lwps project.max-lwps
project.max-tasks
project.max-contracts

v
Process rctl set Process rctl set
process.max-address-space Ce
“—»| process.max-file-descriptors |- - - process.max-data-size
process.max-core-size process.max-file-size
process.max-stack-size process.max-cpu-time

Task rctl set

task.max-cpu-time
task.max-1lwps

Q = Circle designates a process within a task

More than one resource control can exist on a resource, each resource control at a containment
level in the process model. Resource controls can be active on the same resource for both a
process and collective task or collective project. In this case, the action for the process takes

52 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Resource Controls Flags and Actions

precedence. For example, action is taken on process.max-cpu-time before
task.max-cpu-time if both controls are encountered simultaneously.

Resource Controls Associated With a Project

Resource controls associated with a project include the following:

project.cpu-cap
In Solaris 10 8/07, the absolute limit on the amount of CPU resources that can be consumed
by a project. A value of 100 means 100% of one CPU as the project. cpu-cap setting. A
value of 125 is 125%, because 100% corresponds to one full CPU on the system when using
CPU caps.

project.cpu-shares
The number of CPU shares that are granted to this project for use with the fair share
scheduler, FSS(7).

project.max-crypto-memory
Total amount of kernel memory that can be used by libpkcs11 for hardware crypto
acceleration. Allocations for kernel buffers and session-related structures are charged
against this resource control.

project.max-locked-memory
Total amount of physical locked memory allowed.

Note that this resource control replaced project.max-device-locked-memory, which has
been removed.

project.max-msg-ids
Maximum number of System V message queues allowed for a project.

project.max-port-ids
Maximum allowable number of event ports.

project.max-sem-ids
Maximum number of System V semaphores allowed for a project.

project.max-shm-ids
Maximum number of shared memory IDs allowed for this project.

project.max-msg-ids
Maximum number of message queue IDs allowed for this project.

project.max-shm-memory
Total amount of System V shared memory allowed for this project.

project.max-lwps
Maximum number of LWPs simultaneously available to this project.

project.max-tasks
Maximum number of tasks allowable in this project.

Chapter5 « Resource Controls 53

Resource Controls Flags and Actions

54

project.max-contracts
Maximum number of contracts allowed in this project.

Resource Controls Associated With Tasks

Resource controls associated with tasks include the following:

task.max-cpu-time
Maximum CPU time (seconds) available to this task's processes.

task.max-lwps
Maximum number of LWPs simultaneously available to this task's processes.

Resource Controls Associated With Processes

Resource controls associated with processes include the following:

process.max-address-space
Maximum amount of address space (bytes), as summed over segment sizes, available to this
process.

process.max-core-size
Maximum size (bytes) of a core file that is created by this process.

process.max-cpu-time
Maximum CPU time (seconds) available to this process.

process.max-file-descriptor
Maximum file descriptor index that is available to this process.

process.max-file-size
Maximum file offset (bytes) available for writing by this process.

process.max-msg-messages
Maximum number of messages on a message queue. This value is copied from the resource
control at msgget () time.

process.max-msg-qbytes
Maximum number (bytes) of messages on a message queue. This value is copied from the
resource control at msgget () time.When yousetanewproject.max-msg-qgbytes value,
initialization occurs only on the subsequently created values. The new
project.max-msg-gbytes value does not effect existing values.

process.max-sem-nsems
Maximum number of semaphores allowed for a semaphore set.

process.max-sem-ops
Maximum number of semaphore operations that are allowed for a semop () call. This value is
copied from the resource control at msgget () time.A new project.max-sem-ops value only
affects the initialization of subsequently created values and has no effect on existing values.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Resource Controls Flags and Actions

process.max-port-events
Maximum number of events that are allowed per event port.

Zone-Wide Resource Controls

Zone-wide resource controls are available on a system with zones installed. Zone-wide resource
controls limit the total resource usage of all process entities within a zone.

zone.cpu-cap In the Solaris 10 5/08 release, sets an absolute limit on the
amount of CPU resources that can be consumed by a zone. A
value of 100 means 100 percent of one CPU as the
project.cpu-cap setting. A value of 125 is 125 percent, because
100 percent corresponds to one full CPU on the system when
using CPU caps.

zone.cpu-shares Limit on the number of fair share scheduler (FSS) CPU shares
for a zone. The scheduling class must be FSS. CPU shares are
first allocated to the zone, and then further subdivided among
projects within the zone as specified in the
project.cpu-shares entries. A zone with a higher number of
zone. cpu-shares is allowed to use more CPU than a zone with
alow number of shares.

zone.max-locked-memory Total amount of physical locked memory available to a zone.

zone.max- lwps Maximum number of LWPs simultaneously available to this
zone

zone.max-msg-ids Maximum number of message queue IDs allowed for this zone

zone.max-sem-ids Maximum number of semaphore IDs allowed for this zone

zone.max-shm-ids Maximum number of shared memory IDs allowed for this zone

zone.max-shm-memory Total amount of shared memory allowed for this zone

zone.max-swap Total amount of swap that can be consumed by user process

address space mappings and tmpfs mounts for this zone.

For information on configuring zone-wide resource controls, see Chapter 17, “Non-Global
Zone Configuration (Overview),” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones and Chapter 18, “Planning and Configuring Non-Global Zones
(Tasks),” in System Administration Guide: Solaris Containers-Resource Management and Solaris
Zones. Note that it is possible to use the zonecfg command to apply a zone-wide resource
control to the global zone on a system with non-global zones installed.

Chapter5 « Resource Controls 55

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.conf.start-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.conf.start-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.conf.start-1

Resource Controls Flags and Actions

Signals Used With Resource Controls

For each threshold value that is placed on a resource control, the following restricted set of
signals is available:

SIGBART
Terminate the process.

SIGXRES
Signal generated by resource control facility when the resource control limit is exceeded.

SIGHUP
When carrier drops on an open line, the process group that controls the terminal is sent a
hangup signal, SIGHUP.

SIGSTOP
Job control signal. Stop the process. Stop signal not from terminal.

SIGTERM
Terminate the process. Termination signal sent by software.

SIGKILL
Terminate the process. Kill the program.

SIGXFSX
Terminate the process. File size limit exceeded. Available only to resource controls with the
RCTL_GLOBAL_FILE_SIZE property.

SIGXCPU
Terminate the process. CPU time limit exceeded. Available only to resource controls with
the RCTL_GLOBAL_CPUTIME property. See rctlblk_set_value(3C) for more
information.

Other signals might be permitted due to global properties of a specific control.

Note - Calls to setrct() with illegal signals fail.

56 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-set-value-3c

Resource Controls APl Functions

FIGURE5-2 Setting Privilege Levels for Signals

/etc/project

cgi-bin:103:cgi-bin scripts:root,apache: :\
process.max-cpu-time= (privileged, 1000, signal=SIGXCPU

)\
(privileged, 2000, signal=SIGTERM) , \
(privileged,3000,signal=SIGKILL), \

SIGXCPU SIGTERM SIGKILL
./ CGlI
"\ script
| | | | »
| | | | v
0 1000 2000 3000
Time (ms)

Resource Controls APl Functions

The resource controls API contains functions that:

“Operate on Action-Value Pairs of a Resource Control” on page 57
“Operate on Local Modifiable Values” on page 57

“Retrieve Local Read-Only Values” on page 58

“Retrieve Global Read-Only Actions” on page 58

Operate on Action-Value Pairs of a Resource Control

The following list contains the functions that set or get the resource control block.

setrctl(2)
getrctl(2)

Operate on Local Modifiable Values

The following list contains the functions associated with the local, modifiable resource control
block.

rctlblk set privilege(3C)
rctlblk get privilege(3C)
rctlblk set value(3C)
rctlblk get value(3C)

Chapter5 « Resource Controls 57

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=getrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-set-privilege-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-privilege-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-value-3c

Resource Control Code Examples

rctlblk set local action(3C)
rctlblk get local action(3C)
rctlblk set local flags(3C)
rctlblk get local flags(3C)

Retrieve Local Read-Only Values

The following list contains the functions associated with the local, read-only resource control
block.

rctlblk get recipient pid(3C)
rctlblk get firing time(3C)
rctlblk get enforced value(3C)

Retrieve Global Read-Only Actions

The following list contains the functions associated with the global, read-only resource control
block.

rctlblk get global action(3C)
rctlblk get global flags(3C)

Resource Control Code Examples

58

Master Observing Process for Resource Controls

The following example is the master observer process. Figure 5-3 shows the resource controls
for the master observing process.

Note - The line break is not valid in an /etc/project file. The line break is shown here only to
allow the example to display on a printed or displayed page. Each entry in the /etc/project file
must be on a separate line.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-set-local-action-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-local-action-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-set-local-flags-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-local-flags-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-recipient-pid-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-firing-time-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-enforced-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-global-action-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=rctlblk-get-global-flags-3c

Resource Control Code Examples

FIGURE5-3 Master Observing Process

iPlanet
Task N Resource Control: task.max-lwps
RCPRIV_BASIC, v=1000,
P1 signal=SIGXRES
l i Recipient PID = P1
O Q O _|—>RCPRIV_PRIVILEGED, v=1000, deny
P2 P3 P4
/etc/project

iPlanet:200:iPlanet Application Server:root::\

task.max=1lwps= (PRIVILEGED, 1000, deny)

The key points for the example include the following:

= Because the task's limit is privileged, the application cannot change the limit, or specify an
action, such as a signal. A master process solves this problem by establishing the same
resource control as a basic resource control on the task. The master process uses the same
value or a little less on the resource, but with a different action, signal = XRES. The master
process creates a thread to wait for this signal.

= The rctlblkis opaque. The struct needs to be dynamically allocated.
= Note the blocking of all signals before creating the thread, as required by sigwait(2).

® The thread calls sigwait(2) to block for the signal. If sigwait () returns the SIGXRES
signal, the thread notifies the master process' children, which adapts to reduce the number
of LWPs being used. Each child should also be modelled similarly, with a thread in each
child, waiting for this signal, and adapting its process' LWP usage appropriately.

rctlblk t *mlwprcb;
sigset t smask;

/* Omit return value checking/error processing to keep code sample short */
/* First, install a RCPRIV_BASIC, v=1000, signal=SIGXRES rctl */
mlwprcb = calloc(1l, rctlblk size()); /* rctl blocks are opaque: */
rctlblk set value(mlwprcb, 1000);
rctlblk set privilege(mlwprcb, RCPRIV_BASIC);
rctlblk set local action(mlwprcb, RCTL LOCAL SIGNAL, SIGXRES);

if (setrctl("task.max-lwps", NULL, mlwprcb, RCTL INSERT) == -1) {
perror(“setrctl");
exit (1);

}

Chapter5 « Resource Controls 59

Resource Control Code Examples

/* Now, create the thread which waits for the signal */
sigemptyset(&smask) ;
sigaddset(&smask, SIGXRES);
thr sigsetmask(SIG BLOCK, &smask, NULL);

thr create(NULL, 0, sigthread, (void *)SIGXRES, THR DETACHED, NULL));

/* Omit return value checking/error processing to keep code sample short */

void *sigthread(void *a)
{
int sig = (int)a;
int rsig;
sigset t sset;

sigemptyset(&sset);
sigaddset(&sset, sig);

while (1) {
rsig = sigwait(&sset);
if (rsig == SIGXRES) {
notify all children();
/* e.g. sigsend(P_PID, child pid, SIGXRES); */
}

List all the Value-action Pairs for a Specific Resource
Control

The following example lists all the value-action pairs for a specific resource control,
task.max-lwps. The key point for the example is that get rct1(2) takes two resource control
blocks, and returns the resource control block for the RCTL_NEXT flag. To iterate through all
resource control blocks, repeatedly swap the resource control block values, as shown here using
the rcb_tmp rctl block.

rctlblk t *rcbl, *rcb2, *rcb tmp;

/* Omit return value checking/error processing to keep code sample short */
rcbl = calloc(1l, rctlblk size()); /* rctl blocks are opaque: */
/* "rctlblk t rcb" does not work */

rcb2 = calloc(1l, rctlblk size());
getrctl("task.max-lwps", NULL, rcbl, RCTL FIRST);
while (1) {

print rctl(rcbl);

rcb_tmp = rcb2;

rcb2 = rcbil;
rcbl = rcb_tmp; /* swap rcbl with rcb2 */
if (getrctl("task.max-lwps", rcb2, rcbl, RCTL NEXT) == -1) {
if (errno == ENOENT) {
break;
} else {
perror("getrctl");
exit (1);

60 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Resource Control Code Examples

-

Setproject.cpu-shares and Add a New Value

The key points of the example include the following:

= This example is similar to the example shown in “Set pool. comment Property and Add New
Property” on page 74.

= Usebcopy (), rather than buffer swapping as in “List all the Value-action Pairs for a Specific
Resource Control” on page 60.

= To change the resource control value, call setrct1() with the RCTL_REPLACE flag. The
new resource control block is identical to the old resource control block except for the new
control value.

rctlblk_set_value(blkl, nshares);
if (setrctl("project.cpu-shares", blk2, blkl, RCTL REPLACE) !'= 0)

The example gets the project's CPU share allocation, project. cpu-shares, and changes its
value to nshares.

/* Omit return value checking/error processing to keep code sample short */

b1kl = malloc(rctlblk size());

getrctl("project.cpu-shares", NULL, blkl, RCTL FIRST);

my shares = rctlblk get value(blkl);

printout_my shares(my_shares);

/* if privileged, do the following to */

/* change project.cpu-shares to "nshares" */

b1kl = malloc(rctlblk size());

blk2 = malloc(rctlblk size());

if (getrctl("project.cpu-shares", NULL, blkl, RCTL FIRST) != 0) {
perror("getrctl failed");
exit(1);

}

bcopy (blkl, blk2, rctlblk size());

rctlblk set value(blkl, nshares);

if (setrctl("project.cpu-shares", blk2, blkl, RCTL REPLACE) != 0) {
perror(“setrctl failed");
exit(1l);

Set LWP Limit on Resource Control Blocks

In the following example, our application has set a privileged limit of 3000 LWPs that may not
be exceeded. In addition, our application has set a basic limit of 2000 LWPs. When this limit is
exceeded, a SIGXRES is sent to the application. Upon receiving a SIGXRES, our application
might send notification to its child processes that might in turn reduce the number of LWPs the
processes use or need.

Chapter5 « Resource Controls 61

Programming Issues Associated With Resource Controls

/* Omit return value and error checking */
#include <rctl.h>

rctlblk t *rcbl, *rcb2;

/*
* Resource control blocks are opaque
* and must be explicitly allocated.
*/

rcbl = calloc(rctlblk size());

rcb2 = calloc(rctlblk size());

/* Install an RCPRIV_PRIVILEGED, v=3000: do not allow more than 3000 LWPs */
rctlblk set value(rcbl, 3000);

rctlblk set privilege(rcbl, RCPRIV_PRIVILEGED);

rctlblk set local action(rcbl, RCTL LOCAL DENY);

setrctl("task.max-lwps", NULL, rcbl, RCTL INSERT);

/* Install an RCPRIV_BASIC, v=2000 to send SIGXRES when LWPs exceeds 2000 */
rctlblk set value(rcb2, 2000);

rctlblk set privilege(rcb2, RCPRIV_BASIC);

rctlblk set local action(rcb2, RCTL LOCAL SIGNAL, SIGXRES);
setrctl("task.max-1lwps", NULL, rcbh2, RCTL INSERT);

Programming Issues Associated With Resource Controls

Consider the following issues when writing your application:

= The resource control block is opaque. The control block needs to be dynamically allocated.

= Ifabasic resource control is established on a task or project, the process that establishes this
resource control becomes an observer. The action for this resource control block is applied
to the observer. However, some resources cannot be observed in this manner.

= Ifaprivileged resource control is set on a task or project, no observer process exists.
However, any process that violates the limit becomes the subject of the resource control
action.

= Only one action is permitted for each type: global and local.

= Onlyone basic rctlis allowed per process per resource control.

62 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

CHAPTER 6

Dynamic Resource Pools

This chapter describes resource pools and their properties.

“Overview of Resource Pools” on page 63

“Dynamic Resource Pool Constraints and Objectives” on page 64
“Resource Pools API Functions” on page 68

“Resource Pool Code Examples” on page 72

“Programming Issues Associated With Resource Pools” on page 75

Overview of Resource Pools

Resource pools provide a framework for managing processor sets and thread scheduling classes.
Resource pools are used for partitioning machine resources. Resource pools enable you to
separate workloads so that workload consumption of certain resources does not overlap. The
resource reservation helps to achieve predictable performance on systems with mixed
workloads.

For an overview of resource pools and example commands for administering resource pools,
see Chapter 12, “Resource Pools (Overview),” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones and Chapter 13, “Creating and
Administering Resource Pools (Tasks),” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

A processor set groups the CPUs on a system into a bounded entity, on which a process or
processes can run exclusively. Processes cannot extend beyond the processor set, nor can other
processes extend into the processor set. A processor set enables tasks of similar characteristics
to be grouped together and a hard upper boundary for CPU use to be set.

The resource pool framework allows the definition of a soft processor set with a maximum and
minimum CPU count requirement. Additionally, the framework provides a hard-defined
scheduling class for that processor set.

A resource pool defines

63

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmpool-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmpool-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmpool.task-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmpool.task-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmpool.task-1

Dynamic Resource Pool Constraints and Objectives

= Processor set groups
= Scheduling class

Scheduling Class

Scheduling classes provide different CPU access characteristics to threads that are based on
algorithmic logic. The scheduling classes include:

Realtime scheduling class
Interactive scheduling class
Fixed priority scheduling class
Timesharing scheduling class
Fair share scheduling class

For an overview of fair share scheduler and example commands for administering the fair share
scheduler, see Chapter 8, “Fair Share Scheduler (Overview),” in System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones and Chapter 9, “Administering the
Fair Share Scheduler (Tasks),” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.

Do not mix scheduling classes in a set of CPUs. If scheduling classes are mixed in a CPU set,
system performance might become erratic and unpredictable. Use processor sets to segregate
applications by their characteristics. Assign scheduling classes under which the application best
performs. For more information about the characteristics of an individual scheduling class, see
priocntl(1).

For an overview of resource pools and a discussion of when to use pools, see Chapter 6,
“Dynamic Resource Pools.”

Dynamic Resource Pool Constraints and Objectives

The libpool library defines properties that are available to the various entities that are managed
within the pools facility. Each property falls into the following categories:

Configuration constraints
A constraint defines boundaries of a property. Typical constraints are the maximum and
minimum allocations specified in the 1ibpool configuration.

Objective
An objective changes the resource assignments of the current configuration to generate new
candidate configurations that observe the established constraints. (See poold(1M).) An
objective has the following categories:

Workload dependent A workload-dependent objective varies according to the
conditions imposed by the workload. An example of the
workload dependent objective is the utilization objective.

64 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmfss-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmfss-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmfss.task-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmfss.task-1
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmfss.task-1

Dynamic Resource Pool Constraints and Objectives

Workload independent A workload-independent objective does not vary according to
the conditions imposed by the workload. An example of the
workload independent objective is the cpu locality objective.

An objective can take an optional prefix to indicate the importance of the objective. The
objective is multiplied by this prefix, which is an integer from 0 to INT64_MAX,, to
determine the significance of the objective.

System Properties

system.bind-default (writable boolean)
If the specified pool is not found in <filename>/etc/project</filename>, bind to pool
with the pool.default property set to TRUE.

system.comment (writable string)
User description of system. system. comment is not used by the default pools commands,
except when a configuration is initiated by the poolcfg utility. In this case, the system puts
an informative message in the system. comment property for that configuration.

system.name (writable string)
User name for the configuration.

system.version (read-only integer)
libpool version required to manipulate this configuration.

Pools Properties

All pool properties are writable.

pool.active (writable boolean)
If TRUE, mark this pool as active.

pool.comment (writable string)
User description of pool.

pool.default (writable boolean)
If TRUE, mark this pool as the default pool. See the system.bind-default property.

pool.importance (writable integer)
Relative importance of this pool. Used for possible resource dispute resolution.

pool.name (writable string)
User name for pool. setproject(3PROJECT) uses pool.name as the value for the
project.pool project attribute in the project(4) database.

Chapter6 - Dynamic Resource Pools 65

Dynamic Resource Pool Constraints and Objectives

pool.scheduler (writable string)
Scheduler class to which consumers of this pool are bound. This property is optional and if
not specified, the scheduler bindings for consumers of this pool are not affected. For more
information about the characteristics of an individual scheduling class, see priocnt1(1).
Scheduler classes include:

RT for realtime scheduler

TS for timesharing scheduler
IA for interactive scheduler
FSS for fair share scheduler
EX for fixed priority scheduler

Processor Set Properties

pset.comment (writable string)
User description of resource.

pset.default (read-only boolean)
Identifies the default processor set.

pset.escapable (writable boolean)
Represents whether PSET_NOESCAPE is set for this pset. See the pset setattr(2) man
page.

pset.load (read-only unsigned integer)

The load for this processor set. The lowest value is 0. The value increases in a linear fashion
with the load on the set, as measured by the number of jobs in the system run queue.

pset.max (writable unsigned integer)
Maximum number of CPUs that are permitted in this processor set.

pset.min (writable unsigned integer)
Minimum number of CPUs that are permitted in this processor set.

pset.name (writable string)
User name for the resource.

pset.size (read-only unsigned integer)
Current number of CPUs in this processor set.

pset.sys_id (read-only integer)
System-assigned processor set ID.

pset. type (read-only string)
Names the resource type. Value for all processor sets is pset.

pset.units (read-only string)
Identifies the meaning of size-related properties. The value for all processor sets is
population.

66 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Using libpool to Manipulate Pool Configurations

cpu.comment (writable string)
User description of CPU

Using Libpool to Manipulate Pool Configurations

The 1ibpool(3LIB) pool configuration library defines the interface for reading and writing
pools configuration files. The library also defines the interface for committing an existing
configuration to becoming the running operating system configuration. The <pool.h>header
provides type and function declarations for all library services.

The resource pools facility brings together process-bindable resources into a common
abstraction that is called a pool. Processor sets and other entities can be configured, grouped,
and labelled in a persistent fashion. Workload components can be associated with a subset of a
system's total resources. The 1ibpool(3LIB) library provides a C language API for accessing the
resource pools facility. The pooladm(1M), poolbind(1M), and poolcfg(1M) make the resource
pools facility available through command invocations from a shell.

Manipulate psets

The following list contains the functions associated with creating or destroying psets and
manipulating psets.

processor_bind(2) Bind an LWP (lightweight process) or set of LWPs to a
specified processor.

pset_assign(2) Assign a processor to a processor set.

pset bind(2) Bind one or more LWPs (lightweight processes) to a
processor set.

pset_create(2) Create an empty processor set that contains no
processors.

pset _destroy(2) Destroy a processor set and release the associated

constituent processors and processes.

pset setattr(2), pset getattr(2) Set or get processor set attributes.

Chapter6 - Dynamic Resource Pools 67

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=processor-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-assign-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-create-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-destroy-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-setattr-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-getattr-2

Resource Pools API Functions

Resource Pools APl Functions

68

This section lists all of the resource pool functions. Each function has a link to the man page and
a short description of the function's purpose. The functions are divided into two groups,
depending on whether the function performs an action or a query:

= “Functions for Operating on Resource Pools and Associated Elements” on page 68
= “Functions for Querying Resource Pools and Associated Elements” on page 70

The imported interfaces for libpool for swap sets is identical to the ones defined in this
document.

Functions for Operating on Resource Pools and
Associated Elements

The interfaces listed in this section are for performing actions related to pools and the
associated elements.

pool associate(3POOL) Associate a resource with a specified pool.

pool component to_elem(3POOL) Convert specified component to the pool element
type.

pool conf_alloc(3POOL) Create a pool configuration.

pool conf_close(3POOL) Close the specified pool configuration and release the
associated resources.

pool_conf_commit(3POOL) Commit changes made to the specified pool
configuration to permanent storage.

pool conf_export(3POOL) Save the given configuration to the specified location.

pool conf free(3POOL) Release a pool configuration.

pool conf_open(3POOL) Create a pool configuration at the specified location.

pool conf remove(3POOL) Removes the permanent storage for the
configuration.

pool conf rollback(3POOL) Restore the configuration state to the state that is held
in the pool configuration's permanent storage.

pool conf to elem(3POOL) Convert specified pool configuration to the pool
element type.

pool conf_update(3POOL) Update the library snapshot of kernel state.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-associate-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-component-to-elem-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-alloc-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-close-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-commit-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-export-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-free-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-open-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-remove-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-rollback-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-to-elem-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-update-3pool

Resource Pools API Functions

pool create(3POOL)

pool destroy(3POOL)

pool dissociate(3POOL)

pool put property(3POOL)

pool resource create(3POOL)

pool resource_destroy(3POOL)

pool resource to elem(3POOL)

pool resource transfer(3POOL)

pool resource xtransfer(3POOL)

pool rm_property(3POOL)
pool set binding(3POOL)

pool set status(3POOL)
pool to elem(3POOL)
pool value alloc(3POOL)

pool value free(3POOL)

pool value set bool(3POOL)
pool value set double(3POOL)
pool value set int64(3POOL)
pool value set name(3POOL)
pool value set string(3POOL)
pool value set uint64(3POOL)

Chapter6 « Dynamic Resource Pools

Create a new pool with the default properties and
with default resources for each type.

Destroy the specified pool. The associated resources
are not modified.

Remove the association between the given resource
and pool.

Set the named property on the element to the
specified value.

Create a new resource with the specified name and
type for the provided configuration.

Remove the specified resource from the
configuration file.

Convert specified pool resource to the pool element
type.

Transfer basic units from the source resource to the
target resource.

Transfer the specified components from the source
resource to the target resource.

Remove the named property from the element.

Bind the specified processes to the resources that are
associated with pool on the running system.

Modify the current state of the pools facility.
Convert specified pool to the pool element type.

Allocate and return an opaque container for a pool
property value.

Release an allocated property values.

Set a property value of type boolean.

Set a property value of type double.

Set a property value of type int64.

Set a name=value pair for a pool property.
Copy the string that was passed in.

Seta property value of type uint64.

69

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-create-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-destroy-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-dissociate-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-put-property-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-resource-create-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-resource-destroy-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-resource-to-elem-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-resource-transfer-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-resource-xtransfer-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-rm-property-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-set-binding-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-to-elem-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-alloc-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-free-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-set-bool-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-set-double-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-set-int64-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-set-name-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-set-string-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-set-uint64-3pool

Resource Pools API Functions

Functions for Querying Resource Pools and Associated
Elements

The interfaces listed in this section are for performing queries related to pools and the
associated elements.

pool component_info(3POOL)
Return a string that describes the given component.

pool conf info(3POOL)
Return a string describing the entire configuration.

pool conf_location(3POOL)
Return the location string that was provided to pool_conf_open() for the given specified
configuration.

pool conf status(3POOL)
Return the validity status for a pool configuration.

pool conf validate(3POOL)
Check the validity of the contents of the given configuration.

pool dynamic_location(3POOL)
Return the location that was used by the pools framework to store the dynamic
configuration.

pool error(3POOL)
Return the error value of the last failure that was recorded by calling a resource pool
configuration library function.

pool get binding(3POOL)
Return the name of the pool on the running system that contains the set of resources to
which the specified process is bound.

pool get owning resource(3POOL)
Return the resource that currently contains the specified component.

pool get pool(3POOL)
Return the pool with the specified name from the provided configuration.

pool get property(3POOL)
Retrieve the value of the named property from the element.

pool get resource(3POOL)
Return the resource with the given name and type from the provided configuration.

pool get resource binding(3POOL)
Return the name of the pool on the running system that contains the set of resources to
which the given process is bound.

70 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-component-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-location-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-conf-validate-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-dynamic-location-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-error-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-get-binding-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-get-owning-resource-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-get-pool-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-get-property-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-get-resource-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-get-resource-binding-3pool

Resource Pools API Functions

pool get status(3POOL)
Retrieve the current state of the pools facility.

pool info(3POOL)
Return a description of the specified pool.

pool query components(3POOL)
Retrieve all resource components that match the specified list of properties.

pool query pool resources(3POOL)
Return a null-terminated array of resources currently associated with the pool.

pool query pools(3POOL)
Return the list of pools that match the specified list of properties.

pool query resource_components(3POOL)
Return a null-terminated array of the components that make up the specified resource.

pool query resources(3POOL)
Return the list of resources that match the specified list of properties.

pool resource_info(3POOL)
Return a description of the specified resource.

pool resource_type list(3POOL)
Enumerate the resource types that are supported by the pools framework on this platform.

pool static location(3POOL)
Return the location that was used by the pools framework to store the default configuration
for pools framework instantiation.

pool strerror(3POOL)
Return a description of each valid pool error code.

pool value get bool(3POOL)
Get a property value of type boolean.

pool value get double(3POOL)
Get a property value of type doub'le.

pool value get int64(3POOL)
Get a property value of type int64.

pool value get name(3POOL)
Return the name that was assigned to the specified pool property.

pool value get string(3POOL)
Get a property value of type string.

pool value get type(3POOL)
Return the type of the data that is contained by the specified pool value.

Chapter6 - Dynamic Resource Pools 71

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-get-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-query-components-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-query-pool-resources-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-query-pools-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-query-resource-components-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-query-resources-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-resource-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-resource-type-list-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-static-location-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-strerror-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-get-bool-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-get-double-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-get-int64-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-get-name-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-get-string-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-get-type-3pool

Resource Pool Code Examples

pool value get uint64(3POOL)
Get a property value of type uint64.

pool version(3POOL)
Get the version number of the pool library.

pool walk_components(3POOL)
Invoke callback on all components that are contained in the resource.

pool walk pools(3POOL)
Invoke callback on all pools that are defined in the configuration.

pool walk properties(3POOL)
Invoke callback on all properties defined for the given element.

pool walk_resources(3POOL)
Invoke callback on all resources that are associated with the pool.

Resource Pool Code Examples

72

This section contains code examples of the resource pools interface.

Ascertain the Number of CPUs in the Resource Pool

sysconf(3C) provides information about the number of CPUs on an entire system. The
following example provides the granularity of ascertaining the number of CPUs that are defined
in a particular application's pools pset.

The key points for this example include the following:

= pvals[] should bea NULL terminated array.

= pool_query_pool_resources () returnsa list of all resources that match the pvals array
type pset from the application's pool my_pool. Because a pool can have only one instance of
the pset resource, each instance is always returned in nelem. reslist[] contains only one
element, the pset resource.

pool_value_t *pvals[2] = {NULL}; /* pvals[] should be NULL terminated */

/* NOTE: Return value checking/error processing omitted */
/* in all examples for brevity */

conf_loc = pool dynamic_location();

conf = pool conf alloc();

pool conf open(conf, conf loc, PO RDONLY);
my pool name = pool get binding(getpid());
my pool = pool get pool(conf, my pool name);
pvals[@] = pool value alloc();

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-value-get-uint64-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-version-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-walk-components-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-walk-pools-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-walk-properties-3pool
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=pool-walk-resources-3pool

Resource Pool Code Examples

pvals2[2] = { NULL, NULL };
pool value set name(pvals[0], "type");
pool value set string(pvals[0], "pset");

reslist = pool query pool resources(conf, my pool, &nelem, pvals);
pool value free(pvals[0]);

pool query resource components(conf, reslist[@], &nelem, NULL);
printf("pool %s: %u cpu", my pool name, nelem);

pool conf close(conf);

List All Resource Pools
The following example lists all resource pools defined in an application's pools pset.

The key points of the example include the following:

= Open the dynamic conf file read-only, PO_RDONLY. pool_query_pools () returns the list
of poolsin pl and the number of pools in nelem. For each pool, call pool_get property()
to get the pool. name property from the element into the pval value.

= pool_get_property() callspool_to_elem() to convert the Libpool entity to an opaque
value. pool_value_get_string() gets the string from the opaque pool value.

conf = pool conf alloc();
pool conf open(conf, pool dynamic location(), PO RDONLY);
pl = pool query pools(conf, &nelem, NULL);
pval = pool value alloc();
for (i = 0; i < nelem; i++) {
pool get property(conf, pool to elem(conf, pl[i]), "pool.name", pval);
pool value get string(pval, &fname);
printf("ss\n", name);
}
pool value free(pval);
free(pl);
pool conf close(conf);

Report Pool Statistics for a Given Pool
The following example reports statistics for the designated pool.

The key points for the example include the following:

= pool_query_pool_resources() getsalist of all resources in rl. Because the last argument
topool query pool resources() is NULL, all resources are returned. For each resource,
the name, load and size properties are read, and printed.

= The callto strdup() allocateslocal memory and copies the string returned by
get_string(). Thecallto get_string() returnsa pointer that is freed by the next call to
get_property().Ifthe call to strdup() is not included, subsequent references to the
string(s) could cause the application to fail with a segmentation fault.

Chapter6 - Dynamic Resource Pools 73

Resource Pool Code Examples

printf("pool %s\n:" pool name);
pool = pool get pool(conf, pool name);
rl = pool _query pool resources(conf, pool, &nelem, NULL);
for (i = 0; i < nelem; i++) {
pool get property(conf, pool resource to elem(conf, rl[il), "type", pval);
pool value get string(pval, &type);
type = strdup(type);
snprintf(prop name, 32, "%s.%s", type, "name");
pool get property(conf, pool resource to elem(conf, rl[i]),
prop_name, pval);
pool_value get string(val, &res_name);
res _name = strdup(res_name);
snprintf(prop name, 32, "%s.%s", type, "load");
pool get property(conf, pool resource to elem(conf, rl[i]),
prop name, pval);
pool value get uint64(val, &load);
snprintf(prop name, 32, "%s.%s", type, "size");
pool get property(conf, pool resource to elem(conf, rl[i]),
prop name, pval);
pool value get uint64(val, &size);
printf("resource %s: size %llu load %llu\n", res name, size, load);
free(type);
free(res name);
}

free(rl);

Setpool.comment Property and Add New Property

The following example sets the pool. comment property for the pset. The example also creates a
new property in pool.newprop.

The key point for the example includes the following:

= Inthecallto pool_conf_open(), using PO_RDWR on a static configuration file, requires
the caller to be root.

= To commit these changes to the pset after running this utility, issue a pooladm -c
command. To have the utility commit the changes, call pool_conf_commit() with a
nonzero second argument.

pool set comment(const char *pool name, const char *comment)
{
pool t *pool;
pool elem t *pool elem;
pool value t *pval = pool value alloc();
pool conf t *conf = pool conf alloc();
/* NOTE: need to be root to use PO RDWR on static configuration file */
pool conf open(conf, pool static location(), PO RDWR);
pool = pool get pool(conf, pool name);
pool value set string(pval, comment);
pool _elem = pool_ to elem(conf, pool);
pool put property(conf, pool elem, "pool.comment", pval);
printf("pool %s: pool.comment set to %s\n:" pool name, comment);
/* Now, create a new property, customized to installation site */

74 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

Programming Issues Associated With Resource Pools

pool value set string(pval, "New String Property");
pool put property(conf, pool elem, "pool.newprop", pval);
pool conf commit(conf, @); /* NOTE: use @ to ensure only */
/* static file gets updated */
pool value free(pval);
pool conf close(conf);
pool conf free(conf);
/* NOTE: Use "pooladm -c" later, or pool conf commit(conf, 1) */
/* above for changes to the running system */

}

An alternative way of modifying a pool's comment and adding a new pool property is to use
poolcfg(1M).

poolcfg -c 'modify pool pool-name (string pool.comment
poolcfg -c 'modify pool pool-name (string pool.newprop
"New String Property")’

"emt-string")’

Programming Issues Associated With Resource Pools

Consider the following issues when writing your application.

= Each site can add its own list of properties to the pools configuration.

Multiple configurations can be maintained in multiple configuration files. The system
administrator can commit different files to reflect changes to the resource consumption at
different time slots. These time slots can include different times of the day, week, month, or
seasons depending on load conditions.

= Resource sets can be shared between pools, but a pool has only one resource set of a given
type. So, the pset_default can be shared between the default and a particular application's
database pools.

= Usepool_value_*() interfaces carefully. Keep in mind the memory allocation issues for
string pool values. See “Report Pool Statistics for a Given Pool” on page 73.

Chapter6 - Dynamic Resource Pools 75

76

CHAPTER 7

Design Considerations for Resource
Management Applications in Solaris Zones

This chapter provides a brief overview of Solaris zones technology and discusses potential
problems that may be encountered by developers who are writing resource management
applications. For more information on zones, see Part II, “Zones,” in System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones.

Zones Overview

A zone is a virtualized operating system environment that is created within a single instance of
the Solaris Operating System. Zones are a partitioning technology that provides an isolated,
secure environment for applications. When you create a zone, you produce an application
execution environment in which processes are isolated from the rest of the system. This
isolation prevents a process that is running in one zone from monitoring or affecting processes
that are running in other zones. Even a process running with superuser credentials cannot view
or affect activity in other zones. A zone also provides an abstract layer that separates
applications from the physical attributes of the machine on which the zone is deployed.
Examples of these attributes include physical device paths and network interface names.

By default, all systems have a global zone. The global zone has a global view of the Solaris
environment in similar fashion to the superuser model. All other zones are referred to as
non-global zones. A non-global zone is analogous to an unprivileged user in the superuser
model. Processes in non-global zones can control only the processes and files within that zone.
Typically, system administration work is mainly performed in the global zone. In rare cases
where a system administrator needs to be isolated, privileged applications can be used in a
non-global zone. In general, though, resource management activities take place in the global
zone.

77

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=zone
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=zone

IP Networking in Zones

IP Networking in Zones

IP networking in a zone can be configured in two different ways, depending on whether the
non-global zone is given its own exclusive IP instance or shares the IP layer configuration and
state with the global zone. The shared-IP type is the default.

Exclusive-IP zones are assigned zero or more network interface names, and for those network
interfaces they can send and receive any packets, snoop, and change the IP configuration,
including IP addresses and the routing table. Note that those changes do not affect any of the
other IP instances on the system.

Design Considerations for Resource Management
Applicationsin Zones

78

All applications are fully functional in the global zone as they would be in a conventional Solaris
environment. Most applications should run without problem in a non-global environment as
long as the application does not need any privileges. If an application does require privileges,
then the developer needs to take a close look at which privileges are needed and how a particular
privilege is used. If a privilege is required, then a system administrator must assign the
appropriate privilege to the application.

General Considerations When Writing Applications for
Non-Global Zones

The known situations that a developer needs to investigate are as follows:

= System calls that change the system time require the PRIV_SYS_TIME privilege. These
system calls include adj time(2), ntp_adjtime(2),and stime(2).

= System calls that need to operate on files that have the sticky bit set require the
PRIV_SYS_CONFIG privilege. These system calls include chmod(2), creat(2), and open(2).

= The ioct1(2) system call requires the PRIV_SYS_NET_CONFIG privilege to be able to
unlock an anchor on a STREAMS module. .

= The link(2) and unlink(2) system calls require the PRIV_SYS_LINKDIR privilege to create
alink or unlink a directory in a non-global zone. Applications that install or configure
software or that create temporary directories could be affected by this limitation.

= The PRIV_PROC_LOCK_MEMORY privilege is required for the mlock(3C), munlock(3C),
mlockall(3C), munlockall(3C), and plock(3C) functions and the MC_LOCK,
MC_LOCKAS, MC_UNLOCK, and MC_UNLOCKAS flags for the memcnt1(2) system.
This privilege is a default privilege in a non-global zone. See “Privileges in a Non-Global
Zone” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones for more information.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=ntp-adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=stime-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=creat-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=link-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=mlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=munlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=mlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=munlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=plock-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.admin.ov-18
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.admin.ov-18
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=z.admin.ov-18

Design Considerations for Resource Management Applications in Zones

The mknod(2) system call requires the PRIV_SYS_DEVICES privilege to create a block
(S_IFBLK) or character (S_IFCHAR) special file. This limitation affects applications that
need to create device nodes on the fly.

The IPC_SET flag in the msgct1(2) system call requires the PRIV_SYS_IPC_CONFIG
privilege to increase the number of message queue bytes. This limitation affects any
applications that need to resize the message queue dynamically.

The nice(2) system call requires the PRIV_PROC_PRIOCNTL privilege to change the
priority of a process. This privilege is available by default in a non-global zone. Another way
to change the priority is to bind the non-global zone in which the application is running to a
resource pool, although scheduling processes in that zone is ultimately decided by the Fair
Share Scheduler.

The P_ONLINE, P_OFFLINE, P_NOINTR, P_FAULTED, P_SPARE, and PZ-FORCED
flags in the p_online(2) system call require the PRIV_SYS_RES_CONFIG privilege to
return or change process operational status. This limitation affects applications that need to
enable or disable CPUs.

The PC_SETPARMS and PC_SETXPARMS flags in the priocnt1(2)system call requires the

PRIV_PROC_PRIOCNTL privilege to change the scheduling parameters of a lightweight
process (LWP).

System calls that need to manage processor sets (psets), including binding LWPs to psets
and setting pset attributes require the PRIV_SYS_RES_CONFIG privilege. This limitation
affects the following system calls: pset_assign(2), pset_bind(2), pset_create(2),

pset destroy(2),and pset_setattr(2).

The SHM_LOCK and SHM_UNLOCK flags in the shmct1(2) system call require the
PRIV_PROC_LOCK_MEMORY privilege to share memory control operations. If the
application is locking memory for performance purposes, using the intimate shared
memory (ISM) feature provides a potential workaround.

The swapct1(2)system call requires the PRIV_SYS_CONFIG privilege to add or remove
swapping resources. This limitation affects installation and configuration software.

The uadmin(2) system call requires the PRIV_SYS_CONFIG privilege to use the A_REMOUNT,
A FREEZE,A DUMP,and AD IBOOT commands. This limitation affects applications that need
to force crash dumps under certain circumstances.

The clock_settime(3RT) function requires the PRIV_SYS_TIME privilege to set the
CLOCK_REALTIME and CLOCK_HIRES clocks.

The cpc_bind_cpu(3CPC) function requires the PRIV_CPC_CPU privilege to bind request
sets to hardware counters. As a workaround, the cpc_bind curlwp(3CPC) function can be
used to monitor CPU counters for the LWP in question.

The pthread_attr_setschedparam(3C) function requires the PRIV_PROC_PRIOCNTL
privilege to change the underlying scheduling policy and parameters for a thread.

The timer_create(3RT) function requires the PRIV_PROC_CLOCK_HIGHRES privilege
to create a timer using the high-resolution system clock.

Chapter 7 - Design Considerations for Resource Management Applications in Solaris Zones 79

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=nice-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=p-online-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-assign-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-create-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-destroy-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pset-setattr-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=shmctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=swapctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=uadmin-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5171&id=clock-settime-3rt
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=cpc-bind-cpu-3cpc
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=cpc-bind-curlwp-3cpc
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=pthread-attr-setschedparam-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5171&id=timer-create-3rt

Design Considerations for Resource Management Applications in Zones

80

The APIs that are provided by the following list of libraries are not supported in a
non-global zone. The shared objects are present in the zone's /usr/11ib directory, so no link
time errors occur if your code includes references to these libraries. You can inspect your
make files to determine if your application has explicit bindings to any of these libraries and
use pmap(1) while the application is executing to verify that none of these libraries are
dynamically loaded.

libdevinfo(3LIB)
libcfgadm(3LIB)
1ibpool(3LIB)
libtnfct1(3LIB)
libsysevent(3LIB)

Zones have a restricted set of devices, consisting primarily of pseudo devices that form part
of the Solaris programming API. These pseudo devices include /dev/null, /dev/zero,
/dev/poll, /dev/random, /dev/tcp, and so on. Physical devices are not directly accessible
from within a zone unless the device has been configured by a system administrator. Since
devices, in general, are shared resources in a system, to make devices available in a zone
requires some restrictions so system security will not be compromised, as follows:

= The /dev name space consists of symbolic links, that is, logical paths, to the physical
paths in /devices. The /devices name space, which is available only in the global zone,
reflects the current state of attached device instances that have been created by the
driver. Only the logical path /dev is visible in a non-global zone.

= Processes within a non-global zone cannot create new device nodes . For example,
mknod(2) cannot create special files in a non-global zone. The creat(2), 1ink(2),
mkdir(2), rename(2), symlink(2), and unlink(2) system calls fail with EACCES if a file in
/dev is specified. You can create a symbolic link to an entry in /dev, but that link cannot
be created in /dev.

= Devices that expose system data are only available in the global zone. Examples of such
devices include dtrace(7D), kmem(7D), kmdb(7d), ksyms(7D), Lockstat(7D), and
trapstat(1M).

= The /dev name space consists of device nodes made up of a default, “safe” set of drivers
as well as device nodes that have been specified for the zone by the zonecfg(1M)
command.

Specific Considerations for Shared-IP Non-Global
Zones

For non-global zones that are configured to use the shared-IP instance, the following
restrictions apply.

The socket(3SOCKET) function requires the PRIV_NET_RAWACCESS privilege to create
araw socket with the protocol set to IPPROTO_RAW or IPPROTO_IGMP. This limitation
affects applications that use raw sockets or need to create or inspect TCP/IP headers.

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=pmap-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libcfgadm-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libpool-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libtnfctl-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libsysevent-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=creat-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=link-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mkdir-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=rename-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=symlink-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=dtrace-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=kmem-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=kmdb-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=ksyms-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=lockstat-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=trapstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=zonecfg-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5170&id=socket-3socket

Design Considerations for Resource Management Applications in Zones

The t_open(3NSL) function requires the PRIV_NET_RAWACCESS privilege to establish a
transport endpoint. This limitation affects applications that use the /dev/rawip device to
implement network protocols as wall as applications that operate on TCP/IP headers.

No NIC devices that support the DLPI programming interface are accessible in a shared-IP
non-global zone, for example, hme(7D) and ce(7D).

Each non-global shared-IP zone has its own logical network and loopback interface.
Bindings between upper layer streams and logical interfaces are restricted such that a stream
may only establish bindings to logical interfaces in the same zone. Likewise, packets from a
logical interface can only be passed to upper layer streams in the same zone as the logical
interface. Bindings to the loopback address are kept within a zone with one exception:
When a stream in one zone attempts to access the IP address of an interface in another zone.
While applications within a zone can bind to privileged network ports, they have no control
over the network configuration, including IP addresses and the routing table.

Note that these restrictions do not apply to exclusive-IP zones.

Chapter 7 - Design Considerations for Resource Management Applications in Solaris Zones 81

http://www.oracle.com/pls/topic/lookup?ctx=816-5170&id=t-open-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=hme-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=ce-7d

82

L K R 4 CHAPTER 8

Configuration Examples

This chapter show example configurations for the /etc/project file.

“Configure Resource Controls” on page 84

“Configure Resource Pools” on page 84

“Configure FSS project.cpu-shares for a Project” on page 84
“Configure Five Applications with Different Characteristics” on page 85

/etc/project ProjectFile

The project file is a local source of project information. The project file can be used in
conjunction with other project sources, including the NIS maps project.byname and
project.bynumber and the LDAP database project. Programs use the getprojent(3PROJECT)
routines to access this information.

Define Two Projects

/etc/project defines two projects: database and appserver. The user defaults are
user.database and user.appserver. The admin default can switch between user.database
oruser.appserver.

hostname# cat /etc/project

user.database:2001:Database backend:admin::
user.appserver:2002:Application Server frontend:admin::

83

/etc/project Project File

84

Configure Resource Controls
The /etc/project file shows the resource controls for the application.

hostname# cat /etc/project

development:2003:Developers:: :task.ax-lwps=(privileged, 10,deny);
process.max-addressspace=(privileged, 209715200, deny)

Configure Resource Pools
The /etc/project file shows the resource pools for the application.

hostname# cat /etc/project

batch:2001:Batch project:::project.pool=batch pool
process:2002:Process control:::project.pool=process pool

Configure FSSproject. cpu-shares for a Project

Set up FSS for two projects: database and appserver. The database project has 20 CPU shares.
The appserver project has 10 CPU shares.

hostname# cat /etc/project

user.database:2001:database backend:admin::project.cpu-shares=(privileged,
20,deny)

user.appserver:2002:Application Server frontend:admin::project.cpu-shares=
(privileged, 10,deny)

Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

/etc/project Project File

Note - The line break in the lines that precede “20,deny” and “(privileged,” is not valid in an
/etc/project file. The line breaks are shown here only to allow the example to display on a
printed or displayed page. Each entry in the /etc/project file must be on a single line.

If the FSS is enabled but each user and application is not assigned to a unique project, then the
users and applications will all run in the same project. By running in the same project, all
compete for the same share, in a timeshare fashion. This occurs because shares are assigned to
projects, not to users or processes. To take advantage of the FSS scheduling capabilities, assign
each user and application to a unique project.

To configure a project, see “Local /etc/project File Format” in System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones.

Configure Five Applications with Different
Characteristics

The following example configures five applications with different characteristics.

TABLES-1 Target Applications and Characteristics

Application Type and Name Characteristics

Application server, app_server. Negative scalability beyond two CPUs. Assign a two-CPU processor set
toapp_server. Use TS scheduling class.

Database instance, app_db. Heavily multithreaded. Use FSS scheduling class.

Test and development, development. Motif based. Hosts untested code execution. Interactive scheduling
class ensures user interface responsiveness. Use
process.max-address-space to impose memory limitations and
minimize the effects of antisocial processing.

Transaction processing engine, Response time is paramount. Assign a dedicated set of at least two

tp_engine. CPUs to ensure response latency is kept to a minimum. Use timeshare
scheduling class.

Standalone database instance, Heavily multithreaded. Serves multiple time zones. Use FSS scheduling

geo db. class.

Note - Consolidate database applications (app.db and geo_db) onto a single processor set of at
least four CPUs. Use FSS scheduling class. Application app_db gets 25% of the
project.cpu-shares. Application geo_db gets 75% of the project. cpu-shares.

Chapter 8 - Configuration Examples 85

http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj-12
http://www.oracle.com/pls/topic/lookup?ctx=817-1592&id=rmtaskproj-12

/etc/project Project File

Edit the /etc/project file. Map users to resource pools for the app_server, app_db,
development, tp_engine, and geo_db project entries.

hostname# cat /etc/project

user.app_server:2001:Production Application Server::
project.pool=appserver pool

user.app_db:2002:App Server DB:::project.pool=db pool,
project.cpu-shares=(privileged,1,deny)

development:2003:Test and delopment::staff:project.pool=dev.pool,
process.max-addressspace=(privileged, 536870912, deny)

user.tp_engine:Transaction Engine:::project.pool=tp _pool

user.geo db:EDI DB:::project.pool=db pool;
project.cpu-shares=(privileged, 3, deny)

Note - The line break in the lines that begin with “project.pool”, “project.cpu-shares=",
“process.max-addressspace”, and “project.cpu-shares="is not valid in a project file. The line
breaks are shown here only to allow the example to display on a printed or displayed page. Each
entry must be on one and only one line.

Create the pool.host script and add entries for resource pools.

hostname# cat pool.host

create system host

create pset dev pset (unit pset.max = 2)
create pset tp_pset (unit pset.min 2)

create pset db_pset (unit pset.min = 4; uint pset.max = 6)
create pset app _pset (unit pset.min = 1; uint pset.max = 2)
create pool dev pool (string pool.scheduler="IA")

create pool appserver pool (string pool.scheduler="TS")
create pool db pool (string pool.scheduler="FSS")

create pool tp pool (string pool.scheduler="TS")

associate pool pool default (pset pset default)

associate pool dev pool (pset dev pset)

associate pool pool appserver pool (pset app pset)
associate pool db pool (pset db pset)

associate pool tp pool (pset tp pset)

Note - The line break in the line that begins with “boolean” is not valid in a pool.host file. The
line break is shown here only to allow the example to display on a printed or displayed page.
Each entry must be on one and only one line.

Run the pool. host script and modify the configuration as specified in the pool.host file.

hostname# poolcfg —f pool.host

86 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

/etc/project Project File

Read the pool.host resource pool configuration file and initialize the resource pools on the
system.

hostname# pooladm —c

Chapter 8 - Configuration Examples 87

88

Index

E R
exacct file resource controls
display entry, 23 display value-action pairs, 60
display string, 24 global action, 50
exacct file, display system file, 25 global flag, 50
exacct file local action, 49
dump, 44 local flag, 49
exacct object master observer process, 58
create record, 44 privilege levels, 49
dump, 42 process, 54
write file, 44 project, 53
signals, 56
task, 54
F zone, 55
resource pools

fair share scheduler, access resource control block, 61
get defined pools, 73

get number of CPUS, 72
get pool statistics, 73

L pool properties, 65

libexacct processor sets properties, 66-67
perlinterface, 28 properties, 64
perl module, 29 set property, 74

system properties, 65

P
programming issues z

project database, 19-20 zone

resource controls, 62 application design considerations, 78
project database IP networking, 78

getentry, 18 IP type, 78

print entries, 18 overview, 77

Index

zone (Continued)
resource controls, 55

90 Solaris Containers: Resource Management and Solaris Zones Developer's Guide « April 2008

	Solaris Containers: Resource Management and Solaris Zones Developer's Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Resource Management in the Solaris Operating System
	Understanding Resource Management in the Solaris OS
	Workload Organization
	Resource Organization
	Resource Controls
	Extended Accounting Facility

	Writing Resource Management Applications

	Projects and Tasks
	Overview of Projects and Tasks
	/etc/project File

	Project and Task API Functions
	Code Examples for Accessing project Database Entries
	Programming Issues Associated With Projects and Tasks

	Using the C Interface to Extended Accounting
	Overview of the C Interface to Extended Accounting
	Extended Accounting API Functions
	exacct System Calls
	Operations on the exacct File
	Operations on exacct Objects
	Miscellaneous Operations

	C Code Examples for Accessing exacct Files

	Using the Perl Interface to Extended Accounting
	Extended Accounting Overview
	Perl Interface to libexacct
	Object Model
	Benefits of Using the Perl Interface to libexacct
	Perl Double-Typed Scalars

	Perl Modules
	Sun::Solaris::Project Module
	Sun::Solaris::Project Constants
	Sun::Solaris::Project Functions, Class Methods, and Object Methods
	Sun::Solaris::Project Exports

	Sun::Solaris::Task Module
	Sun::Solaris::Task Constants
	Sun::Solaris::Task Functions, Class Methods, and Object Methods
	Sun::Solaris::Task Exports

	Sun::Solaris::Exacct Module
	Sun::Solaris::Exacct Constants
	Sun::Solaris::Exacct Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct Exports

	Sun::Solaris::Exacct::Catalog Module
	Sun::Solaris::Exacct::Catalog Constants
	Sun::Solaris::Exacct::Catalog Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Catalog Exports

	Sun::Solaris::Exacct::File Module
	Sun::Solaris::Exacct::File Constants
	Sun::Solaris::Exacct::File Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::File Exports

	Sun::Solaris::Exacct::Object Module
	Sun::Solaris::Exacct::Object Constants
	Sun::Solaris::Exacct::Object Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object Exports

	Sun::Solaris::Exacct::Object::Item Module
	Sun::Solaris::Exacct::Object::Item Constants
	Sun::Solaris::Exacct::Object::Item Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Item Exports

	Sun::Solaris::Exacct::Object::Group Module
	Sun::Solaris::Exacct::Object::Group Constants
	Sun::Solaris::Exacct::Object::Group Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Group Exports

	Sun::Solaris::Exacct::Object::_Array Module
	Sun::Solaris::Exacct::Object::_Array Constants
	Sun::Solaris::Exacct::Object::_Array Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::_Array Exports

	Perl Code Examples
	Output From dump Method

	Resource Controls
	Overview of Resource Controls
	Resource Controls Flags and Actions
	rlimit, Resource Limit
	rctl, Resource Control
	Resource Control Values and Privilege Levels
	Local Actions and Local Flags
	Global Actions and Global Flags
	Resource Control Sets Associated With a Project, Processes and Tasks
	Resource Controls Associated With a Project
	Resource Controls Associated With Tasks
	Resource Controls Associated With Processes
	Zone-Wide Resource Controls

	Signals Used With Resource Controls

	Resource Controls API Functions
	Operate on Action-Value Pairs of a Resource Control
	Operate on Local Modifiable Values
	Retrieve Local Read-Only Values
	Retrieve Global Read-Only Actions

	Resource Control Code Examples
	Master Observing Process for Resource Controls
	List all the Value-action Pairs for a Specific Resource Control
	Set project.cpu-shares and Add a New Value
	Set LWP Limit on Resource Control Blocks

	Programming Issues Associated With Resource Controls

	Dynamic Resource Pools
	Overview of Resource Pools
	Scheduling Class

	Dynamic Resource Pool Constraints and Objectives
	System Properties
	Pools Properties
	Processor Set Properties

	Using libpool to Manipulate Pool Configurations
	Manipulate psets

	Resource Pools API Functions
	Functions for Operating on Resource Pools and Associated Elements
	Functions for Querying Resource Pools and Associated Elements

	Resource Pool Code Examples
	Ascertain the Number of CPUs in the Resource Pool
	List All Resource Pools
	Report Pool Statistics for a Given Pool
	Set pool.comment Property and Add New Property

	Programming Issues Associated With Resource Pools

	Design Considerations for Resource Management Applications in Solaris Zones
	Zones Overview
	IP Networking in Zones
	Design Considerations for Resource Management Applications in Zones
	General Considerations When Writing Applications for Non-Global Zones
	Specific Considerations for Shared-IP Non-Global Zones

	Configuration Examples
	/etc/project Project File
	Define Two Projects
	Configure Resource Controls
	Configure Resource Pools
	Configure FSS project.cpu-shares for a Project
	Configure Five Applications with Different Characteristics

	Index

