
Solaris DHCP Service Developer's Guide

Part No: 806–6829–11
September 2002

Copyright ©2002 Sun Microsystems 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, JavaBeans and Solaris are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright ©2002 Sun Microsystems 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, JavaBeans et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

110417@25097

Contents

Preface ...9

1 Overview of Solaris DHCP Data Access Architecture ... 13
Modular Framework ... 13
DHCP Server Multithreading .. 14
Data Access Layers .. 14
The Framework Configuration Layer ... 15
The Service Provider Layer API ... 16
Data Store Containers ... 17

2 Architecture Features for Module Writers ... 19
Function Categories .. 19
Considerations for Multithreading ... 20
Synchronizing Access to File-System-Based Containers ... 20
Avoiding Update Collisions ... 21
Naming the Public Module and Data Store Containers ... 22

Public Module Name ... 22
Container Name ... 23

Container Record Formats ... 23
Passing Data Store Configuration Data .. 24
Upgrading Container Versions ... 24
Data Service Configuration and DHCP Management Tools ... 25

Public Module Management Bean API Functions ... 25
Public Module Management Bean Packaging Requirements ... 26

3 Service Provider Layer API ...29
General Data Store Functions .. 29

3

configure() ... 29
mklocation() ... 30
status() ... 31
version() ... 31

dhcptab Functions .. 32
list_dt() ... 32
open_dt() ... 32
lookup_dt() ... 33
add_dt() ... 34
modify_dt() ... 35
delete_dt() ... 35
close_dt() ... 36
remove_dt() ... 36

DHCP Network Container Functions .. 37
list_dn() ... 37
open_dn() ... 37
lookup_dn() ... 38
add_dn() ... 39
modify_dn() ... 39
delete_dn() ... 40
close_dn() ... 40
remove_dn() ... 41

Generic Error Codes ... 41

4 Code Samples and Testing ...43
Code Templates ... 43

General API Functions .. 43
dhcptab API Functions ... 44
DHCP Network Container API Functions ... 47

Testing the Public Module .. 49

Index ..51

Contents

Solaris DHCP Service Developer's Guide • September 20024

Tables

TABLE 1–1 Service Provider Layer API Functions .. 16

5

6

Figures

FIGURE 1–1 Architecture of Data Store Access in DHCP Service ... 15

7

8

Preface

This Solaris DHCP Service Developer's Guide provides information for developers who want to
use a data storage facility not currently supported by the SolarisTM DHCP service. The manual
gives an overview of the data access framework used by Solaris DHCP, general guidelines for
developers, and a listing of the API functions you use to write a module to support the new data
store.

Who Should Use This Book
This book is intended for Solaris programmers interested in extending the data storage choices
available to the Solaris DHCP service.

How This Book Is Organized
This book consists of the following chapters:

Chapter 1, “Overview of Solaris DHCP Data Access Architecture,” provides an overview of the
architecture used for data access in the DHCP service.

Chapter 2, “Architecture Features for Module Writers,” discusses what the architecture requires
of you.

Chapter 3, “Service Provider Layer API,” describes the API functions you will export.

Chapter 4, “Code Samples and Testing,” provides sample code templates and pointers to
locations on Sun's web site where you can find additional aids for writing and debugging code
for the public module.

9

Accessing Sun Documentation Online
The docs.sun.com Web site enables you to access Sun technical documentation online. You can
browse the docs.sun.com archive or search for a specific book title or subject. The URL is
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with on-screen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with a real
name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words, or terms, or words to be
emphasized.

Read Chapter 6 in User's Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface

Solaris DHCP Service Developer's Guide • September 200210

http://docs.sun.com

Preface

11

12

Overview of Solaris DHCP Data Access
Architecture

This chapter presents an overview of the architecture of the Solaris Dynamic Host
Configuration Protocol (DHCP) service introduced in the Solaris 8 7/01 operating
environment. This overview can help you see where your work will fit into the architecture.

For general information about the Solaris DHCP service, see Chapter 7, “About Solaris DHCP
(Overview),” in System Administration Guide: IP Services.

The following topics are included:

■ “Modular Framework” on page 13
■ “DHCP Server Multithreading” on page 14
■ “Data Access Layers” on page 14
■ “The Framework Configuration Layer” on page 15
■ “The Service Provider Layer API” on page 16
■ “Data Store Containers” on page 17

Modular Framework
The Solaris DHCP service includes the DHCP daemon, administrative tools, and separate data
access modules (called public modules) for different data storage facilities. Solaris DHCP
provides an API that enables you to write your own public modules, implemented as shared
objects, to support any data storage facility you want. When you integrate your public module
into the Solaris DHCP framework, the DHCP service stores its data in your database using your
public module. Public modules can be delivered independently of the Solaris DHCP service,
enabling anyone to develop and deliver modules to support any data storage facility.

The first release of Solaris DHCP using this architecture provides public modules for ASCII
files, NIS+, and file-system-based binary data stores. This manual provides information that
enables developers to create their own public modules for any database.

1C H A P T E R 1

13

http://www.oracle.com/pls/topic/lookup?ctx=806-4075&id=dhcp-overview-1
http://www.oracle.com/pls/topic/lookup?ctx=806-4075&id=dhcp-overview-1

DHCP Server Multithreading
The DHCP server implements multithreading, enabling it to service many clients
simultaneously. Public modules are required to be MT-SAFE to support multithreading by the
DHCP server, and this in itself allows the DHCP service to handle a larger number of clients.
However, the capacity of the DHCP server is largely dependent on the capabilities of the data
storage facility and the efficiency of the public module used to access the data. You can
potentially increase the performance and capacity of your Solaris DHCP service by creating a
public module for using a fast, high-capacity data storage facility.

Data Access Layers
The Solaris DHCP modular framework implementation employs the following data access
layers:

■ Application/Service Layer, consisting of all consumers of DHCP service data such as the
DHCP daemon (in.dhcpd), command line management utilities (pntadm, dhtadm,
dhcpconfig), dhcpmgr, and report generators. These data consumers interface with the
DHCP service using calls to API functions implemented by the Framework Configuration
Layer of the architecture.

■ Framework Configuration Layer, consisting of the shared library libdhcpsvc.so and the
/etc/inet/dhcpsvc.conf configuration file. The Framework Configuration Layer
connects the Application/Service Layer and the Service Provider Layer. See “The
Framework Configuration Layer” on page 15 for more information about the Framework
Configuration Layer.

■ Service Provider Layer, consisting of public modules that implement the Service Provider
API functions, which are used by the Application/Service Layer through the Framework
Configuration Layer to manipulate the data store containers and the records within them.
The data store containers are the dhcptab and DHCP network tables.

The following figure shows the interaction of the architecture layers.

DHCP Server Multithreading

Solaris DHCP Service Developer's Guide • September 200214

The Framework Configuration Layer
Functions implemented in libdhcpsvc.so are used by the Application/Service Layer to:

■ locate, load, and unload public modules
■ manage data container version changes
■ access the data store containers
■ manipulate data store records in the containers

The /etc/inet/dhcpsvc.conf contains a number of configuration parameters for the DHCP
service, including the following keywords relevant to the public module developer:

RESOURCE Public module to load. The value of RESOURCE matches the public
module name. For example, the RESOURCE=SUNWfiles refers to public
module ds_SUNWfiles.so. “Naming the Public Module and Data Store
Containers” on page 22 explains the rules for naming public modules.

PATH Location of DHCP containers within the data service that the public
module exports. The value of PATH is specific to the data service. For
example, a UNIXTM path name would be assigned to PATH for the
SUNWfiles resource.

FIGURE 1–1 Architecture of Data Store Access in DHCP Service

The Framework Configuration Layer

Chapter 1 • Overview of Solaris DHCP Data Access Architecture 15

RESOURCE_CONFIG Configuration information specific to the public module. This is an
optional keyword that you can use if the data service requires
configuration information, such as authentication from the user. If you
use this keyword, you must provide a public module management bean
to prompt the user for information to set the keyword value. See
“getComponent()” on page 25. The module must also export the
configure() function to receive the value of this keyword during
module load time. See “configure()” on page 29 for more information.

The Framework Configuration Layer also provides to the Service Provider Layer an optional
API synchronization service, described in “Synchronizing Access to File-System-Based
Containers” on page 20.

The Service Provider Layer API
The Service Provider Layer API consists of functions, data structures, and manifest constants
contained in the /usr/include/dhcp_svc_public.h file.

The functions are summarized in the following table, with links to sections with more detail
about each function.

TABLE 1–1 Service Provider Layer API Functions

API Function Use

General functions for all data store containers

“configure()” on page 29 Pass a configuration string to the data store. Optional function.

“mklocation()” on page 30 Create the location in which the data store will reside.

“status()” on page 31 Return general status information for the data store.

“version()” on page 31 Return the version of the Service Provider Layer API implemented
by the data store container.

Functions for dhcptab containers

“list_dt()” on page 32 Return the dhcptab container name.

“open_dt()” on page 32 Open or create the dhcptab container.

“lookup_dt()” on page 33 Perform a query for records in the dhcptab container.

“add_dt()” on page 34 Add a record to the dhcptab container.

“modify_dt()” on page 35 Modify an existing record in the dhcptab container.

“delete_dt()” on page 35 Delete a record from the dhcptab container.

The Service Provider Layer API

Solaris DHCP Service Developer's Guide • September 200216

TABLE 1–1 Service Provider Layer API Functions (Continued)
API Function Use

“close_dt()” on page 36 Close the dhcptab container.

“remove_dt()” on page 36 Remove the dhcptab container from the data store.

Functions for DHCP network containers

“list_dn()” on page 37 Return a list of DHCP network container names.

“open_dn()” on page 37 Open or create a DHCP network container.

“lookup_dn()” on page 38 Perform a query for records in a DHCP network container.

“add_dn()” on page 39 Add a record to a DHCP network container.

“modify_dn()” on page 39 Modify an existing record in a DHCP network container.

“delete_dn()” on page 40 Delete a record from a DHCP network container.

“close_dn()” on page 40 Close a DHCP network container.

“remove_dn()” on page 41 Remove a DHCP network container from the data store.

Data Store Containers
The dhcptab and DHCP network tables are referred to generically as data store containers. By
default, Solaris DHCP provides support for the container formats shown in the following table.

Data Service Supported Public Module

File-system-based, ASCII format ds_SUNWfiles.so

NIS+ service ds_SUNWnisplus.so

File-system-based, binary format ds_SUNWbinfiles.so

Data Store Containers

Chapter 1 • Overview of Solaris DHCP Data Access Architecture 17

18

Architecture Features for Module Writers

This chapter discusses architectural details you should keep in mind when creating a public
module for a data service.

The following topics are included:

■ “Function Categories” on page 19
■ “Considerations for Multithreading” on page 20
■ “Synchronizing Access to File-System-Based Containers” on page 20
■ “Avoiding Update Collisions” on page 21
■ “Naming the Public Module and Data Store Containers” on page 22
■ “Container Record Formats” on page 23
■ “Passing Data Store Configuration Data” on page 24
■ “Upgrading Container Versions” on page 24
■ “Data Service Configuration and DHCP Management Tools” on page 25

Function Categories
The Service Provider Layer API functions can be divided into three categories:

■ Data store functions, which facilitate activities related to the public module and underlying
data service themselves. These functions include configure(), mklocation(), status(),
and version().

■ dhcptab container functions, which facilitate the creation of the dhcptab container, the
writing of records to the dhcptab container, and the query of records in the dhcptab
container. The open_dt() function creates a handle for the container, and the other
functions take a pointer to that handle. The close_dt() function destroys the handle when
it closes the container.

2C H A P T E R 2

19

■ Network container functions, which facilitate the creation of DHCP network containers, the
writing of records to the network containers, and the query of records in the network
containers. The open_dn() function creates a handle for the container, and the other
functions take a pointer to that handle. The close_dn() function destroys the handle when
it closes the container.

The functions are described in more detail in Chapter 3, “Service Provider Layer API.”

Considerations for Multithreading
The DHCP server implements multithreading, which enables it to service many clients
simultaneously. Public modules are required to be MT-SAFE to support multithreading by the
DHCP server.

To make your module MT-SAFE, you must synchronize calls to add_d?(), delete_d?(), and
modify_d?() so that they are called serially. For example, if one thread is inside add_dn() for a
given DHCP network container, no other thread may be inside add_dn(), delete_dn(),
modify_dn(), or lookup_dn() for that same container. If your public module supports a local
file-system-based data service, you can use the synchronization service to take care of this for
you. See “Synchronizing Access to File-System-Based Containers” on page 20 for more
information.

Synchronizing Access to File-System-Based Containers
When you write a public module that provides access to containers in a local file-system-based
data service (the data service runs on the same machine as the DHCP server), it can be difficult
to synchronize access to the underlying data service between multiple processes and threads.

The Solaris DHCP synchronization service simplifies the design of public modules using local
file-system-based data services by pushing synchronization up into the Framework
Configuration Layer. When you design your module to use this framework, your code becomes
simpler and your design cleaner.

The synchronization service provides public modules with per-container exclusive
synchronization of all callers of the add_d?(), delete_d?(), and modify_d?() Service Provider
Layer API calls. This means that if one thread is inside add_dn() for a given DHCP network
container, no other thread may be inside add_dn(), delete_dn(), modify_dn() or
lookup_dn() for that same container. However, other threads may be within routines that
provide no synchronization guarantees, such as close_dn().

Per-container shared synchronization of all callers of lookup_d?() is also provided. Thus, there
may be many threads performing a lookup on the same container, but only one thread may
perform an add, delete, or modify operation.

Considerations for Multithreading

Solaris DHCP Service Developer's Guide • September 200220

The synchronization service is implemented as a daemon (/usr/lib/inet/dsvclockd). Lock
manager requests are made on the public module's behalf through Framework Configuration
Layer API calls. The interface between the Framework Configuration layer and the lock
manager daemon uses the Solaris doors interprocess communication mechanism. See, for
example, door_create(3DOOR) and door_call(3DOOR).

The Framework Configuration layer starts the dsvclockd daemon if a public module requests
synchronization and the daemon is not already running. The daemon automatically exits if it
manages no locks for 15 minutes. To change this interval, you can create a
/etc/default/dsvclockd file and set the IDLE default to the number of idle minutes before the
daemon terminates.

A public module notifies the Framework Configuration Layer that it requires synchronization
services by providing the following global variable in one of the module's source files:

dsvc_synchtype_t dsvc_synchtype = DSVC_SYNCH_DSVCD;

A public module notifies the Framework Configuration Layer that it does not require
synchronization services by including the following global variable in one of the module's
source files:

dsvc_synchtype_t dsvc_synchtype = DSVC_SYNCH_NONE;

DSVC_SYNCH_DSVCD and DSVC_SYNCH_NONE are the only two synchronization types that exist
currently.

Avoiding Update Collisions
The architecture provides a facility that helps a files-based module avoid record update
collisions. The Service Provider API facilitates the maintenance of data consistency through the
use of a per-record update signature, an unsigned 64–bit integer. The update signature is the
d?_sig element of the d?_rec_t container record data structure, defined in
/usr/include/dhcp_svc_public.h. All layers of the architecture use d?_rec_t records, from
the Application/Service Layer through the Framework Configuration Layer API and on
through to the Service Provider Layer API. Above the Service Provider Layer, the update
signature is an opaque object which is not manipulated by users of the Framework
Configuration Layer API.

When a module receives a d?_rec_t record through a Service Provider Layer API function call,
it should perform a lookup in the data service to find a record that matches the key fields of the
d?_rec_t, and compare the signature of the internal record against the d?_rec_t passed by the
call. If the signature of the internal record does not match that of the passed record, then the
record has been changed since the consumer acquired it from the public module. In this case,
the module should return DSVC_COLLISION, which informs the caller that the record has been
changed since it was acquired. If the signatures match, the module should increment the update
signature of the argument record before it stores the record.

Avoiding Update Collisions

Chapter 2 • Architecture Features for Module Writers 21

http://www.oracle.com/pls/topic/lookup?ctx=817-0715&id=door-create-3door
http://www.oracle.com/pls/topic/lookup?ctx=817-0715&id=door-call-3door

When a module receives a new d?_rec_t record through the Service Provider Layer API, the
module must assign a value to the update signature before it adds the record to the container.
The simplest way is to set the value to 1.

However, in certain rare situations a collision might not be detected if the signature always has
the same initial value. Consider the following scenario. Thread A adds a record with a signature
of 1, and Thread B looks up that record. Thread A deletes the record and creates a new record
with the same key fields and a signature of 1 since it has just been created. Thread B then
modifies the record it looked up, but that has already been deleted. The module compares the
key fields and signatures of the record looked up by Thread B and the record in the data store,
finds them to be the same, and makes the modification. Such a modification attempt should
have been a collision because the records are, in fact, not the same.

The ds_SUNWfiles.so and ds_SUNWbinfiles.so modules provided with Solaris DHCP
address such a possibility. They divide the update signature into two fields to ensure the
uniqueness of each record's signature. The first 16 bit field of the update signature is set to a
randomly generated number. This field never changes in the record after it is set. The lower 48
bit field of the signature is set to 1 and then incremented each time the record is updated.

Note – The modules provided with Solaris DHCP illustrate one approach you can use to avoid
record update collisions. You can devise your own method or use a similar one.

Naming the Public Module and Data Store Containers
The public module and containers must both contain version numbers to enable the
architecture's upgrading mechanism to work.

Public Module Name
You must use the following name format for your public module:

ds_name.so.ver

where name is the name of the module and ver is the container format version number. The
name must use a prefix that is an internationally known identifier associated with your
organization. For example, the public modules that Sun Microsystems provides have names
prefixed with SUNW, the stock ticker symbol for Sun. For example, the NIS+ public module is
named ds_SUNWnisplus.so.1. By including such an identifier in the module name, you avoid
public module name collisions in the /usr/lib/inet/dhcp/svc public module directory.

If your company name is Inet DataBase, for example, you might call your module
ds_IDBtrees.so.1

Naming the Public Module and Data Store Containers

Solaris DHCP Service Developer's Guide • September 200222

Container Name
The container names presented to the administrator through the administrative interface must
always be dhcptab and the dotted IP network address for the DHCP network tables, such as
10.0.0.0.

Internally, the data store container names must contain the version number to enable you to
produce revisions of your container formats whenever necessary. This naming scheme allows
the coexistence of multiple versions of a container, which is a requirement for the architecture's
container version upgrade mechanism to work.

The names used for the containers should include a globally recognizable token to ensure that
the names are unique.

For example, the NIS+ public module provided with Solaris DHCP would create the dhcptab
container internally as SUNWnisplus1_dhcptab. The container for the 172.21.174.0 network
table would be SUNWnisplus1_172.21.174.0.

If your company name is Inet DataBase, and your public module is ds_IDBtrees.so.1, you
would name your containers IDBtrees1_dhcptab and IDBtrees1_172.21.174.0.

Container Record Formats
The Solaris DHCP service uses two types of DHCP containers: the dhcptab container and the
DHCP network container.

The dhcptab container holds DHCP configuration data, described in the dhcptab man page.
Only one instance of a dhcptab container is maintained in the DHCP service.

dhcptab records are passed between the Framework Configuration Layer and the Service
Provider Layer by way of an internal structure, dt_rec_t. The include file
/usr/include/dhcp_svc_public.h shows the structure.

Your public module must ensure that there are no duplicate dhcptab records. No two records
can have identical key field values.

DHCP network containers contain IP address records, described in the dhcp_network man
page. These containers are named to indicate the data store and the dotted IP address of the
network to which the IP addresses belong, such as 10.0.0.0. Any number of DHCP network
containers may exist, one for each network supported by the DHCP service.

DHCP network records are passed between the Framework Configuration Layer and the
Service Provider Layer by way of an internal structure, dn_rec_t. The include file
/usr/include/dhcp_svc_public.h shows the structure.

Your public module must ensure that there are no duplicate network container records. No two
records can have identical key field values.

Container Record Formats

Chapter 2 • Architecture Features for Module Writers 23

Passing Data Store Configuration Data
The Solaris DHCP data access architecture provides an optional feature for passing
data-store-specific configuration data to the public module (and thus the data store). This
feature is implemented as an ASCII string which is passed through the DHCP service
management interface (dhcpconfig or dhcpmgr) and stored by the Framework Configuration
Layer on the DHCP server machine. See the dhcpsvc.conf(4) man page for more information.
You determine what kind of information is passed in the string, and the DHCP administrator
provides the value of the string through the administration tool. The string might, for example,
contain a user name and password needed to log in to a database.

To obtain the information from the DHCP administrator, you must write a JavaBeansTM

component to present an appropriate dialog. The information is then passed to the
management interface as a single ASCII string. You should document the format of the ASCII
string token to facilitate debugging. To support this feature, the public module must implement
and export the configure() function, described in Chapter 3, “Service Provider Layer API.”

Note – The architecture does not encrypt the ASCII string. It is saved in clear text in the
/etc/inet/dhcpsvc.conf file. If you require encrypted information, the bean must encrypt the
information before passing it to the Framework Configuration Layer.

Upgrading Container Versions
You do not need to be concerned with container version upgrades, because the architecture
facilitates the coexistence of different container versions when you follow the naming
guidelines described in “Naming the Public Module and Data Store Containers” on page 22.
The administrative tools use this feature of the architecture to enable DHCP administrators to
automatically upgrade from one container version to another.

The container format version is set in the Framework Configuration Layer configuration file
automatically, either by the installation (when upgrading Solaris DHCP) or through the
administrative interface during initial DHCP service configuration. If you install a new version
of a public module that includes a new container version, the administrative interface
automatically detects the new version, and asks the administrator to decide whether to upgrade
the public module version. The upgrade can be deferred. The DHCP service will continue to
run with the original version of the public module until the administrator upgrades the module.

Passing Data Store Configuration Data

Solaris DHCP Service Developer's Guide • September 200224

Data Service Configuration and DHCP Management Tools
The dhcpmgr and dhcpconfig management tools provide DHCP service configuration
capabilities to system administrators. If you want your module to be available to users of the
tools so they can configure the underlying data service, you must provide a JavaBeansTM

component, known as a bean, for the public module.

The bean provides the public module with the context necessary to set the PATH variable, and
optionally the RESOURCE_CONFIG variable, in dhcpsvc.conf.

Public Module Management Bean API Functions
The dhcpmgr tool provides an interface, com/sun/dhcpmgr/client/DSModule, which defines
the API functions that the public module management bean must implement.

The DSModule interface is contained in the dhcpmgr.jar file. In order to compile the bean
against this interface, you must add /usr/sadm/admin/dhcpmgr/dhcpmgr.jar to the javac
class path. For example, for your bean named myModule.java, type

javac -classpath /usr/sadm/admin/dhcpmgr/dhcpmgr.jar myModule.java

getComponent()

Synopsis

abstract java.awt.Component getComponent()

Description

Returns a component that is displayed as one of the wizard steps for the DHCP Configuration
Wizard. The returned component should be a panel containing GUI components to be used to
obtain data-store-specific data from the user during configuration. The configuration data itself
will be returned to the wizard as a result of calls to the getPath() and getAdditional()

methods. See “getPath()” on page 26 and “getAdditional()” on page 26 for more
information.

getDescription()

Synopsis

abstract java.lang.String getDescription()

Data Service Configuration and DHCP Management Tools

Chapter 2 • Architecture Features for Module Writers 25

Description

Returns a description that is used by the DHCP Configuration Wizard when it adds the data
store to the list of data store selections. For example, the management bean for the
ds_SUNWfiles.so public module returns “Text files” as the description.

getPath()

Synopsis

abstract java.lang.String getPath()

Description

Returns the path/location that is used by the data store (the PATH value in the Framework
Configuration Layer configuration file /etc/inet/dhcpsvc.conf), or null if not set. The
path/location value should be supplied by the user by interaction with the management bean's
component. See “Passing Data Store Configuration Data” on page 24.

getAdditional()

Synopsis

abstract java.lang.String getAdditional()

Description

Returns additional data-store-specific information, such as the RESOURCE_CONFIG value in the
Framework Configuration Layer configuration file /etc/inet/dhcpsvc.conf. The value
returned by this method is most likely supplied by the user by interaction with the management
bean's component. See “Passing Data Store Configuration Data” on page 24.

Public Module Management Bean Packaging
Requirements
Public module management beans must meet the following packaging requirements.

■ The public module management bean must be archived as a JAR file. The name of the JAR
file must consist of the name of the public module and a .jar suffix. For example, the name
of the public module management bean for the ds_SUNWfiles.so public module is
SUNWfiles.jar.

■ The JAR file must contain a manifest that identifies the bean class. For example, the manifest
for the SUNWfiles.jar JAR file contains:

Data Service Configuration and DHCP Management Tools

Solaris DHCP Service Developer's Guide • September 200226

Name: com/sun/dhcpmgr/client/SUNWfiles/SUNWfiles.class

Java-Bean: True

The com/sun/dhcpmgr/client/SUNWfiles/SUNWfiles.class class is the Java class that
implements the com/sun/dhcpmgr/client/DSModule interface.

Data Service Configuration and DHCP Management Tools

Chapter 2 • Architecture Features for Module Writers 27

28

Service Provider Layer API

This chapter lists and describes the API functions exported by public modules and consumed
by the Framework Configuration Layer. The functions are grouped in sections according to
their purpose. Within each section, functions are listed in an order in which you might use
them.

The following topics are included:

■ “General Data Store Functions” on page 29
■ “dhcptab Functions” on page 32
■ “DHCP Network Container Functions” on page 37
■ “Generic Error Codes” on page 41

All implementations that match a certain Service Provider Layer API version must follow this
specification for the API functions they implement. Later versions of the API must be
backward-compatible with earlier versions. This means that additional API calls may be added,
but existing ones cannot be changed or deleted.

See the include file /usr/include/dhcp_svc_public.h for more details about the functions.

General Data Store Functions
This section lists functions related to general data store activities.

configure()

Purpose
To pass a configuration string to the data store.

3C H A P T E R 3

29

Synopsis
int configure(const char *configp);

Description
The configure() function is optional. If it is provided together with the required public
module management bean (see “getComponent()” on page 25), the Framework Configuration
Layer calls this function when the public module loads, and passes in the
public-module-specific configuration string, which is cached by the Framework Configuration
Layer on the DHCP server for the data store module.

Returns
DSVC_SUCCESS, DSVC_MODULE_CFG_ERR

The configure() function returns DSVC_SUCCESS if the module wants the Framework
Configuration Layer to continue to load the module, or DSVC_MODULE_CFG_ERR if the module
wants the Framework Configuration Layer to fail the loading of the module. An example of
such a situation is a configuration string so malformed that the required configuration of the
module cannot take place.

mklocation()

Purpose
To create the directory where the data store containers are to reside.

Synopsis
int mklocation(const char *location);

Description
Creates the directory pointed to by location (if the directory does not exist) for data store
containers to reside.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_EXISTS, DSVC_BUSY, DSVC_INTERNAL,

DSVC_UNSUPPORTED.

General Data Store Functions

Solaris DHCP Service Developer's Guide • September 200230

status()

Purpose
To obtain the general status of the data store.

Synopsis
int status(const char *location);

Description
The status() function instructs the data store to return its general status, and if location is
non-NULL, further validates the location of the data store container by determining if the
container does in fact exist, is accessible, and is formed correctly for the data store type. The
data store must return the appropriate error codes if the facilities it needs are unavailable or it is
otherwise not ready.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NO_LOCATION, DSVC_BUSY, DSVC_INTERNAL.

version()

Purpose
To obtain the version number of the API implemented by the data store.

Synopsis
int version(int *versionp);

Description
Data stores that support the Service Provider Layer API described in this manual are version 1
(one). The version is returned in the int pointed to by versionp.

Returns
DSVC_SUCCESS, DSVC_INTERNAL, DSVC_MODULE_ERR.

General Data Store Functions

Chapter 3 • Service Provider Layer API 31

dhcptab Functions
The API functions described in this section are used with the dhcptab container.

list_dt()

Purpose
To list the name of the dhcptab container.

Synopsis
int list_dt(const char *location, char ***listppp, uint_t *count);

Description
Produces a dynamically allocated list of dhcptab container objects (listppp) found at
location and stores the number of list items in count. If no dhcptab container objects exist,
then DSVC_SUCCESS is returned, listppp is set to NULL, and count is set to 0.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NO_LOCATION.

open_dt()

Purpose
To open a dhcptab container or create a new one.

Synopsis
int open_dt(void **handpp, const char *location, uint_t flags);

Description
Opens an existing dhcptab container or creates a new container at location and initializes
handp to point to the instance handle. Performs any initialization needed by the data store.
When creating a new dhcptab, the caller's identity is used for owner/permissions. Valid flags

include DSVC_CREATE, DSVC_READ, DSVC_WRITE, DSVC_NONBLOCK. Note that the creation of a
dhcptab container as read-only (DSVC_CREATE | DSVC_READ) is invalid.

dhcptab Functions

Solaris DHCP Service Developer's Guide • September 200232

Returns
DSVC_SUCCESS, DSVC_EXISTS, DSVC_ACCESS, DSVC_NOENT, DSVC_NO_LOCATION,

DSVC_BUSY, DSVC_INTERNAL.

lookup_dt()

Purpose
To perform a lookup query for records in the dhcptab container.

Synopsis
int lookup_dt(void *handp, boolean_t partial, uint_t query, int count, const

dt_rec_t *targetp, dt_rec_list_t **resultp, uint_t *records);

Description
Searches the dhcptab container for instances that match the query described by the
combination of query and targetp. If the partial argument is B_TRUE, then partial query
results are acceptable to the caller. Thus, when partial is B_TRUE, any query that returns at least
one matching record is considered successful. When partial is B_FALSE, the query returns
DSVC_SUCCESS only if it has been applied to the entire container.

The query argument consists of 2 fields, each 16 bits long. The lower 16 bits select which fields
{key, type} of targetp are to be considered in the query. The upper 16 bits identify whether a
particular field value selected in the lower 16 bits must match (bit set) or not match (bit clear).
Bits 2 through 15 in both 16-bit fields are currently unused, and must be set to 0. Useful macros
for constructing queries can be found in Example 3–1.

The count field specifies the maximum number of matching records to return. A count value of
-1 requests the return of all records that match, regardless of the number. A count value of 0
causes lookup_dt to return immediately with no data.

resultp is set to point to the returned list of records. If resultp is NULL, then the caller is
simply interested in knowing how many records match the query. Note that these records are
dynamically allocated, and therefore the caller is responsible for freeing them. lookup_dt()
returns the number of matching records in the records argument. A records value of 0 means
that no records matched the query.

The following example includes macros you might find useful for constructing and
manipulating lookup queries for the DHCP network and dhcptab containers.

EXAMPLE 3–1 Useful Macros for Lookup Queries

/*

* Query macros - used for initializing query fields (lookup_d?)

*/

dhcptab Functions

Chapter 3 • Service Provider Layer API 33

EXAMPLE 3–1 Useful Macros for Lookup Queries (Continued)

/* dhcp network container */

#define DN_QCID 0x0001

#define DN_QCIP 0x0002

#define DN_QSIP 0x0004

#define DN_QLEASE 0x0008

#define DN_QMACRO 0x0010

#define DN_QFDYNAMIC 0x0020

#define DN_QFAUTOMATIC 0x0040

#define DN_QFMANUAL 0x0080

#define DN_QFUNUSABLE 0x0100

#define DN_QFBOOTP_ONLY 0x0200

#define DN_QALL (DN_QCID | DN_QCIP | DN_QSIP | DN_QLEASE | \

DN_QMACRO | DN_QFDYNAMIC DN_QFAUTOMATIC |\

DN_QFMANUAL | DN_QFUNUSABLE | \

DN_QFBOOTP_ONLY)

/* dhcptab */

#define DT_DHCPTAB "dhcptab" /* default name of container */

#define DT_QKEY 0x01

#define DT_QTYPE 0x02

#define DT_QALL (DT_QKEY | DT_QTYPE)

/* general query macros */

#define DSVC_QINIT(q) ((q) = 0)

#define DSVC_QEQ(q, v) ((q) = ((q) | (v) | ((v) << 16)))

#define DSVC_QNEQ(q, v) ((q) = ((~(v << 16)) & (q)) | (v)))

#define DSVC_QISEQ(q, v) (((q) & (v)) && ((q) & ((v) << 16)))

#define DSVC_QISNEQ(q, v) (((q) & (v)) && (!((q) & ((v) << 16))))

/* Examples */

uint_t query;

/* search for dhcptab record with key value, but not flags value */

DSVC_QINIT(query);

DSVC_QEQ(query, DT_QKEY);

DSVC_QNEQ(query, DT_QTYPE);

/* search for dhcp network record that matches cid, client ip, server ip.

*/

DSVC_QINIT(query);

DSVC_QEQ(query, (DN_QCID | DN_QCIP | DN_QSIP));

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL.

add_dt()

Purpose
To add a record to the dhcptab container.

dhcptab Functions

Solaris DHCP Service Developer's Guide • September 200234

Synopsis
int add_dt(void *handp, dt_rec_t *newp);

Description
Adds the record newp to the dhcptab container referred to by handp. The signature associated
with newp is updated by the underlying public module. If an update collision occurs, the data
store is not updated. The caller is responsible for freeing any dynamically allocated arguments.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL, DSVC_EXISTS.

modify_dt()

Purpose
To modify a record in the dhcptab container.

Synopsis
int modify_dt(void *handp, const dt_rec_t *origp, dt_rec_t *newp);

Description
Atomically modifies the record origp with the record newp in the dhcptab container referred to
by handp. The signature associated with newp is updated by the underlying public module. If an
update collision occurs, the data store is not updated. The caller is responsible for freeing any
dynamically allocated arguments.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_COLLISION, DSVC_INTERNAL, DSVC_NOENT.

delete_dt()

Purpose
To delete a record from the dhcptab container.

Synopsis
int delete_dt(void *handp, const dt_rec_t *dtp);

dhcptab Functions

Chapter 3 • Service Provider Layer API 35

Description
Deletes the record identified by the key, type and dt_sig fields of dtp from the dhcptab
container referred to by the handle handp. If an update collision occurs, the matching record is
not deleted from the data store, and DSVC_COLLISION is returned. The caller is responsible for
freeing any dynamically allocated arguments.

If the dtp signature (dt_sig) is 0, the matching record is simply deleted with no detection of
update collisions.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_BUSY, DSVC_INTERNAL, DSVC_COLLISION.

close_dt()

Purpose
To close the dhcptab container.

Synopsis
int close_dt(void **handpp);

Description
Frees the instance handle and cleans up per-instance state.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_INTERNAL.

remove_dt()

Purpose
To delete the dhcptab container from the data store location.

Synopsis
int remove_dt(const char *location);

Description
Removes the dhcptab container in location from the data store.

dhcptab Functions

Solaris DHCP Service Developer's Guide • September 200236

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_NO_LOCATION, DSVC_BUSY,

DSVC_INTERNAL.

DHCP Network Container Functions
The API functions described in this section are used to manipulate the DHCP network
containers and the IP address records within them.

list_dn()

Purpose
To return a list of network containers.

Synopsis
int list_dn(const char *location, char ***listppp, uint_t *count);

Description
Produces a dynamically allocated list of network container objects (listppp) found at
location and stores the number of list items in count. If no network container objects exist,
then DSVC_SUCCESS is returned, listppp is set to NULL, and count is set to 0.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NO_LOCATION.

open_dn()

Purpose
To open a network container or create a new one.

Synopsis
int open_dn(void **handpp, const char *location, uint_t flags, const struct

in_addr *netp, const struct in_addr *maskp);

DHCP Network Container Functions

Chapter 3 • Service Provider Layer API 37

Description
Opens an existing DHCP network container or creates a new container specified by netp and
maskp (both host order) in location and initializes handpp to point to the instance handle.
Performs any initialization needed by the data store. When creating a new DHCP network
container, the caller's identity is used for owner/permissions. Valid flags include DSVC_CREATE,
DSVC_READ, DSVC_WRITE, DSVC_NONBLOCK. Note that the creation of a DHCP network container
as read-only (DSVC_CREATE | DSVC_READ) is invalid.

Returns
DSVC_SUCCESS, DSVC_EXISTS, DSVC_ACCESS, DSVC_NOENT, DSVC_NO_LOCATION,

DSVC_BUSY, DSVC_INTERNAL, DSVC_UNSUPPORTED.

lookup_dn()

Purpose
To perform a lookup query for records in a DHCP network container.

Synopsis
int lookup_dn(void *handp, boolean_t partial, uint_t query, int count, const

dn_rec_t *targetp, dn_rec_list_t **resultp, uint_t *records);

Description
Searches a DHCP network container for instances that match the query described by the
combination of query and targetp. If the partial argument is B_TRUE, then partial query
results are acceptable to the caller. Thus, when partial is B_TRUE, any query that returns at least
one matching record is considered successful. When partial is B_FALSE, the query returns
DSVC_SUCCESS only if it has been applied to the entire container.

The query argument consists of 2 fields, each 16 bits long. The lower 16 bits select which fields
{client id, flags, client IP, server IP, expiration, macro, or comment} of targetp are to be
considered in the query. The upper 16 bits identify whether a particular field value selected in
the lower 16 bits must match (bit set) or not match (bit clear). Bits 7 through 15 in both 16-bit
fields are currently unused, and must be set to 0. Useful macros for constructing queries can be
found in Example 3–1.

The count field specifies the maximum number of matching records to return. A count value of
-1 requests the return of all records that match, regardless of the number. A count value of 0
causes lookup_dn to return immediately with no data.

DHCP Network Container Functions

Solaris DHCP Service Developer's Guide • September 200238

resultp is set to point to the returned list of records. If resultp is NULL, then the caller is
simply interested in knowing how many records match the query. Note that these records are
dynamically allocated, and therefore the caller is responsible for freeing them. lookup_dn()
returns the number of matching records in the records argument. A records value of 0 means
that no records matched the query.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL.

add_dn()

Purpose
To add a record to the DHCP network container.

Synopsis
int add_dn(void *handp, dn_rec_t *newp);

Description
Adds the record newp to the DHCP network container referred to by the handle handp. The
signature associated with newp is updated by the underlying public module. If an update
collision occurs, the data store is not updated.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_INTERNAL, DSVC_EXISTS.

modify_dn()

Purpose
To modify a record in a DHCP network container.

Synopsis
int modify_dn(void *handp, const dn_rec_t *origp, dn_rec_t *newp);

Description
Atomically modifies the record origp with the record newp in the DHCP network container
referred to by the handle handp. The signature associated with newp is updated by the
underlying public module. If an update collision occurs, the data store is not updated.

DHCP Network Container Functions

Chapter 3 • Service Provider Layer API 39

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_BUSY, DSVC_COLLISION, DSVC_INTERNAL, DSVC_NOENT.

delete_dn()

Purpose
To delete a record from a DHCP network container.

Synopsis
int delete_dn(void *handp, const dn_rec_t *pnp);

Description
Deletes the record identified by the dn_cip and dn_sig elements of pnp from the DHCP
network container referred to by the handle handp. If an update collision occurs, the matching
record is not deleted from the data store and DSVC_COLLISION is returned.

If the dn_sig signature of pnp is 0, the matching record is simply deleted with no detection of
update collisions.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_BUSY, DSVC_INTERNAL, DSVC_COLLISION.

close_dn()

Purpose
To close the network container.

Synopsis
int close_dn(void **handpp);

Description
Frees the instance handle and cleans up per-instance state.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_INTERNAL.

DHCP Network Container Functions

Solaris DHCP Service Developer's Guide • September 200240

remove_dn()

Purpose
To delete the DHCP network container from the data store location.

Synopsis
int remove_dn(const char *location, const struct in_addr *netp);

Description
Removes DHCP network container netp (host order) in location.

Returns
DSVC_SUCCESS, DSVC_ACCESS, DSVC_NOENT, DSVC_NO_LOCATION, DSVC_BUSY,

DSVC_INTERNAL.

Generic Error Codes
The Framework Configuration Layer and Service Provider Layer API functions will return the
following integer error values. Note that the file /usr/include/dhcp_svc_public.h is the
definitive source for these codes.

* Standard interface errors

*/

#define DSVC_SUCCESS 0 /* success */

#define DSVC_EXISTS 1 /* object already exists */

#define DSVC_ACCESS 2 /* access denied */

#define DSVC_NO_CRED 3 /* No underlying credential */

#define DSVC_NOENT 4 /* object doesn’t exist */

#define DSVC_BUSY 5 /* object temporarily busy (again) */

#define DSVC_INVAL 6 /* invalid argument(s) */

#define DSVC_INTERNAL 7 /* internal data store error */

#define DSVC_UNAVAILABLE 8 /* underlying service required by */

/* public module unavailable */

#define DSVC_COLLISION 9 /* update collision */

#define DSVC_UNSUPPORTED 10 /* operation not supported */

#define DSVC_NO_MEMORY 11 /* operation ran out of memory */

#define DSVC_NO_RESOURCES 12 /* non-memory resources unavailable */

#define DSVC_BAD_RESOURCE 13 /* malformed/missing RESOURCE setting */

#define DSVC_BAD_PATH 14 /* malformed/missing PATH setting */

#define DSVC_MODULE_VERSION 15 /* public module version mismatch */

#define DSVC_MODULE_ERR 16 /* internal public module error */

#define DSVC_MODULE_LOAD_ERR 17 /* error loading public module */

#define DSVC_MODULE_UNLOAD_ERR 18 /* error unloading public module */

#define DSVC_MODULE_CFG_ERR 19 /* module configuration failure */

#define DSVC_SYNCH_ERR 20 /* error in synchronization protocol */

Generic Error Codes

Chapter 3 • Service Provider Layer API 41

#define DSVC_NO_LOCKMGR 21 /* cannot contact lock manager */

#define DSVC_NO_LOCATION 22 /* location nonexistent */

#define DSVC_BAD_CONVER 23 /* malformed/missing CONVER setting */

#define DSVC_NO_TABLE 24 /* table does not exist */

#define DSVC_TABLE_EXISTS 25 /* table already exists */

#define DSVC_NERR (DSVC_TABLE_EXISTS + 1)

Generic Error Codes

Solaris DHCP Service Developer's Guide • September 200242

Code Samples and Testing

This chapter includes some segments of code that illustrate proper use of the API functions.

The following topics are included:

■ “Code Templates” on page 43
■ “Testing the Public Module” on page 49

Code Templates
This section provides templates that show in general how you might use the API functions.

Note – Download the source code for Sun's ASCII files data store (ds_SUNWfiles) in the
developer pages on Sun's web site (http://www.sun.com/developer). The source code for the
module may prove invaluable in writing your own module.

General API Functions
This template uses the general API functions status(), version(), and mklocation().

EXAMPLE 4–1 general.c

* Copyright (c) 2000 by Sun Microsystems, Inc. /*

* Copyright (c) 2000 by Sun Microsystems, Inc.

* All rights reserved.

*/

#pragma ident "@(#)general.c 1.15 00/08/16 SMI"

/*

* This module contains the public APIs for status, version, and mklocation.

*/

4C H A P T E R 4

43

EXAMPLE 4–1 general.c (Continued)

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <dhcp_svc_public.h>

/*

* This API function instructs the underlying datastore to return its

* general status. If the "location" argument is non-NULL, the function

* validates the location for the data store containers (is it formed

* correctly for the data store, and does it exist).

*/

int

status(const char *location)

{

return (DSVC_UNSUPPORTED);

}

/*

* Return the data store API version supported by this module. This version

* was implemented to support version 1 of the API.

*/

int

version(int *vp)

{

*vp = DSVC_PUBLIC_VERSION;

return (DSVC_SUCCESS);

}

/*

* Create the datastore-specific "location" if it doesn’t already exist.

* Containers will ultimately be created there.

*/

int

mklocation(const char *location)

{

return (DSVC_UNSUPPORTED);

}

dhcptabAPI Functions
This template illustrates functions that are used with the dhcptab container.

EXAMPLE 4–2 dhcptab.c

/*

* Copyright (c) 1998-2000 by Sun Microsystems, Inc.

* All rights reserved.

*/

#pragma ident "@(#)dhcptab.c 1.12 00/08/16 SMI"

Code Templates

Solaris DHCP Service Developer's Guide • September 200244

EXAMPLE 4–2 dhcptab.c (Continued)

/*

* This module contains the public API functions for managing the dhcptab

* container.

*/

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <dhcp_svc_public.h>

/*

* List the current number of dhcptab container objects located at

* "location" in "listppp". Return number of list elements in "count".
* If no objects exist, then "count" is set to 0 and DSVC_SUCCESS is

* returned.

*

* This function will block waiting for a result, if the underlying

* data store is busy.

*/

int

list_dt(const char *location, char ***listppp, uint32_t *count)

{

return (DSVC_UNSUPPORTED);

}

/*

* Creates or opens the dhcptab container in "location" and initializes

* "handlep" to point to the instance handle. When creating a new dhcptab,

* the caller’s identity is used for owner/permissions. Performs any

* initialization needed by data store.

*/

int

open_dt(void **handlep, const char *location, uint32_t flags)

{

return (DSVC_UNSUPPORTED);

}

/*

* Frees instance handle, cleans up per instance state.

*/

int

close_dt(void **handlep)

{

return (DSVC_UNSUPPORTED);

}

/*

* Remove dhcptab container in "location" from data store. If the underlying

* data store is busy, this function will block.

*/

int

remove_dt(const char *location)

{

return (DSVC_UNSUPPORTED);

}

Code Templates

Chapter 4 • Code Samples and Testing 45

EXAMPLE 4–2 dhcptab.c (Continued)

/*

* Searches the dhcptab container for instances that match the query

* described by the combination of query and targetp. If the partial

* argument is true, then lookup operations that are unable to

* complete entirely are allowed (and considered successful). The

* query argument consists of 2 fields, each 16 bits long. The lower

* 16 bits selects which fields {key, flags} of targetp are to be

* considered in the query. The upper 16 bits identifies whether a

* particular field value must match (bit set) or not match (bit

* clear). Bits 2-15 in both 16 bit fields are currently unused, and

* must be set to 0. The count field specifies the maximum number of

* matching records to return, or -1 if any number of records may be

* returned. The recordsp argument is set to point to the resulting

* list of records; if recordsp is passed in as NULL then no records

* are actually returned. Note that these records are dynamically

* allocated, thus the caller is responsible for freeing them. The

* number of records found is returned in nrecordsp; a value of 0

* means that no records matched the query.

*/

int

lookup_dt(void *handle, boolean_t partial, uint32_t query, int32_t count,

const dt_rec_t *targetp, dt_rec_list_t **recordsp, uint32_t *nrecordsp)

{

return (DSVC_UNSUPPORTED);

}

/*

* Add the record pointed to by "addp" to from the dhcptab container

* referred to by the handle. The underlying public module will set

* "addp’s" signature as part of the data store operation.

*/

int

add_dt(void *handle, dt_rec_t *addp)

{

return (DSVC_UNSUPPORTED);

}

/*

* Atomically modify the record "origp" with the record "newp" in the

* dhcptab container referred to by the handle. "newp’s" signature will

* be set by the underlying public module. If an update collision

* occurs, either because "origp’s" signature in the data store has changed

* or "newp" would overwrite an existing record, DSVC_COLLISION is

* returned and no update of the data store occurs.

*/

int

modify_dt(void *handle, const dt_rec_t *origp, dt_rec_t *newp)

{

return (DSVC_UNSUPPORTED);

}

/*

* Delete the record referred to by dtp from the dhcptab container

* referred to by the handle. If "dtp’s" signature is zero, the

* caller is not interested in checking for collisions, and the record

Code Templates

Solaris DHCP Service Developer's Guide • September 200246

EXAMPLE 4–2 dhcptab.c (Continued)

* should simply be deleted if it exists. If the signature is non-zero,

* and the signature of the data store version of this record do not match,

* an update collision occurs, no deletion of matching record in data store

* is done, and DSVC_COLLISION is returned.

*/

int

delete_dt(void *handle, const dt_rec_t *dtp)

{

return (DSVC_UNSUPPORTED);

}

DHCP Network Container API Functions
This template illustrates functions used with the the DHCP network containers.

EXAMPLE 4–3 dhcp_network.c

/*

* Copyright (c) 1998-2000 by Sun Microsystems, Inc.

* All rights reserved.

*/

#pragma ident "@(#)dhcp_network.c 1.12 00/08/16 SMI"

/*

* This module contains public API functions for managing dhcp network

* containers.

*/

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <dhcp_svc_public.h>

/*

* List the current number of dhcp network container objects located at

* "location" in "listppp". Return number of list elements in "count".
* If no objects exist, then "count" is set to 0 and DSVC_SUCCESS is

* returned.

*

* This function will block if the underlying data service is busy or is

* otherwise unvailable.

*/

int

list_dn(const char *location, char ***listppp, uint32_t *count)

{

return (DSVC_UNSUPPORTED);

}

/*

* Creates or opens the dhcp network container "netp" (host order) in

* "location" and initializes "handlep" to point to the instance handle.

Code Templates

Chapter 4 • Code Samples and Testing 47

EXAMPLE 4–3 dhcp_network.c (Continued)

* Performs any initialization needed by data store. New containers are

* created with the identity of the caller.

*/

int

open_dn(void **handlep, const char *location, uint32_t flags,

const struct in_addr *netp)

{

return (DSVC_UNSUPPORTED);

}

/*

* Frees instance handle, cleans up per instance state.

*/

int

close_dn(void **handlep)

{

return (DSVC_UNSUPPORTED);

}

/*

* Remove DHCP network container "netp" (host order) in location.

* This function will block if the underlying data service is busy or

* otherwise unavailable.

*/

int

remove_dn(const char *location, const struct in_addr *netp)

{

return (DSVC_UNSUPPORTED);

}

/*

* Searches DHCP network container for instances that match the query

* described by the combination of query and targetp. If the partial

* argument is true, then lookup operations that are unable to

* complete entirely are allowed (and considered successful). The

* query argument consists of 2 fields, each 16 bits long. The lower

* 16 bits selects which fields {client_id, flags, client_ip,

* server_ip, expiration, macro, or comment} of targetp are to be

* considered in the query. The upper 16 bits identifies whether a

* particular field value must match (bit set) or not match (bit

* clear). Bits 7-15 in both 16 bit fields are currently unused, and

* must be set to 0. The count field specifies the maximum number of

* matching records to return, or -1 if any number of records may be

* returned. The recordsp argument is set to point to the resulting

* list of records; if recordsp is passed in as NULL then no records

* are actually returned. Note that these records are dynamically

* allocated, thus the caller is responsible for freeing them. The

* number of records found is returned in nrecordsp; a value of 0 means

* that no records matched the query.

*/

int

lookup_dn(void *handle, boolean_t partial, uint32_t query, int32_t count,

const dn_rec_t *targetp, dn_rec_list_t **recordsp, uint32_t *nrecordsp)

{

return (DSVC_UNSUPPORTED);

}

Code Templates

Solaris DHCP Service Developer's Guide • September 200248

EXAMPLE 4–3 dhcp_network.c (Continued)

/*

* Add the record pointed to by "addp" to from the dhcp network container

* referred to by the handle. The underlying public module will set

* "addp’s" signature as part of the data store operation.

*/

int

add_dn(void *handle, dn_rec_t *addp)

{

return (DSVC_UNSUPPORTED);

}

/*

* Atomically modify the record "origp" with the record "newp" in the dhcp

* network container referred to by the handle. "newp’s" signature will

* be set by the underlying public module. If an update collision

* occurs, either because "origp’s" signature in the data store has changed

* or "newp" would overwrite an preexisting record, DSVC_COLLISION is

* returned and no update of the data store occurs.

*/

int

modify_dn(void *handle, const dn_rec_t *origp, dn_rec_t *newp)

{

return (DSVC_UNSUPPORTED);

}

/*

* Delete the record pointed to by "pnp" from the dhcp network container

* referred to by the handle. If "pnp’s" signature is zero, the caller

* is not interested in checking for collisions, and the record should

* simply be deleted if it exists. If the signature is non-zero, and the

* signature of the data store version of this record do not match, an

* update collision occurs, no deletion of any record is done, and

* DSVC_COLLISION is returned.

*/

int

delete_dn(void *handle, const dn_rec_t *pnp)

{

return (DSVC_UNSUPPORTED);

}

Testing the Public Module
See http://www.sun.com/developer for some downloadable test suites that may help you in
testing your public module.

Testing the Public Module

Chapter 4 • Code Samples and Testing 49

50

Index

A
access to data store containers, synchronizing, 20
Application/Service Layer, 14

D
data access layers

definition of, 14
diagram, 14

data store container
name, 23
provided with Solaris DHCP, 17
record formats, 23
upgrading, 24

dhcpmgr, integrating new data store with, 25
dhcpsvc.conf configuration file, 14
dhcptab container

functions, 32
internal form, 23
name, 23

dn_rec_t and dt_rec_t data structures, 21
dn_sig and dt_sig update signatures, 21
dsvc_synchtype variable, 21
dsvclockd daemon, 21
dsvclockd file, 21
duplicate container records, 23

F
Framework Configuration Layer, 15

G
getAdditional() function, 26
getComponent() function, 25
getDescription() function, 25
getPath() function, 26

H
handles, 19

J
JavaBeans, for public module, 25

L
libdhcpsvc.so library, 14, 21

M
management bean

functions, 25
packaging requirements, 26

modular framework, 13

N
name, public module, 22

51

network container
functions, 37
internal form, 23
name, 23

P
public module, name format, 22

R
record update collisions, 21

S
Service Provider Layer, list of API functions, 16
synchronizing access to data store containers, 20

U
upgrading, containers, 24

Index

Solaris DHCP Service Developer's Guide • September 200252

	Solaris DHCP Service Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Accessing Sun Documentation Online
	Typographic Conventions
	Shell Prompts in Command Examples

	Overview of Solaris DHCP Data Access Architecture
	Modular Framework
	DHCP Server Multithreading
	Data Access Layers
	The Framework Configuration Layer
	The Service Provider Layer API
	Data Store Containers

	Architecture Features for Module Writers
	Function Categories
	Considerations for Multithreading
	Synchronizing Access to File-System-Based Containers
	Avoiding Update Collisions
	Naming the Public Module and Data Store Containers
	Public Module Name
	Container Name

	Container Record Formats
	Passing Data Store Configuration Data
	Upgrading Container Versions
	Data Service Configuration and DHCP Management Tools
	Public Module Management Bean API Functions
	getComponent()
	Synopsis
	Description

	getDescription()
	Synopsis
	Description

	getPath()
	Synopsis
	Description

	getAdditional()
	Synopsis
	Description

	Public Module Management Bean Packaging Requirements

	Service Provider Layer API
	General Data Store Functions
	configure()
	Purpose
	Synopsis
	Description
	Returns

	mklocation()
	Purpose
	Synopsis
	Description
	Returns

	status()
	Purpose
	Synopsis
	Description
	Returns

	version()
	Purpose
	Synopsis
	Description
	Returns

	dhcptab Functions
	list_dt()
	Purpose
	Synopsis
	Description
	Returns

	open_dt()
	Purpose
	Synopsis
	Description
	Returns

	lookup_dt()
	Purpose
	Synopsis
	Description
	Returns

	add_dt()
	Purpose
	Synopsis
	Description
	Returns

	modify_dt()
	Purpose
	Synopsis
	Description
	Returns

	delete_dt()
	Purpose
	Synopsis
	Description
	Returns

	close_dt()
	Purpose
	Synopsis
	Description
	Returns

	remove_dt()
	Purpose
	Synopsis
	Description
	Returns

	DHCP Network Container Functions
	list_dn()
	Purpose
	Synopsis
	Description
	Returns

	open_dn()
	Purpose
	Synopsis
	Description
	Returns

	lookup_dn()
	Purpose
	Synopsis
	Description
	Returns

	add_dn()
	Purpose
	Synopsis
	Description
	Returns

	modify_dn()
	Purpose
	Synopsis
	Description
	Returns

	delete_dn()
	Purpose
	Synopsis
	Description
	Returns

	close_dn()
	Purpose
	Synopsis
	Description
	Returns

	remove_dn()
	Purpose
	Synopsis
	Description
	Returns

	Generic Error Codes

	Code Samples and Testing
	Code Templates
	General API Functions
	dhcptab API Functions
	DHCP Network Container API Functions

	Testing the Public Module

	Index

