Writing Device Drivers

Part No: 816-4854-18

ORACI_EM September 2010



Copyright © 1992, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 1992, 2010, Oracle et/ou ses affiliés. Tous droits réservés.

Celogiciel et la documentation qui 'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder a toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas quelles soient exemptes
derreurs et vous invite, le cas échéant, 4 lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou & toute entité qui délivre la licence de ce logiciel
oul'utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante sapplique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Celogiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n'est pas congu ni n'est
destiné 4 étre utilisé dans des applications a risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires a son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a
d’autres propriétaires qu'Oracle.

AMD, Opteron, lelogo AMD et le logo AMD Opteron sont des marques ou des marques déposées dAdvanced Micro Devices. Intel et Intel Xeon sont des marques ou
des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC
International, Inc. UNIX est une marque déposée concédé sous license par X/Open Company, Ltd.

110417@25097



Contents

PrEface ... 29
Partl Designing Device Drivers for the Solaris Platform ...............cc.ocooouirinnieiniinniseeeceeeenas 35
1 Overview of Solaris Device DIIVErs .................cccccuiiiiiiiiic e 37
Device DIiver BasiCs ...
What Is a Device DIiver? ........cocovevenenecencereeeencenenennns
What Is a Device Driver ENtry POINE? ......c.ocvveniirieeiniiniieieinereeneiseie et ssesenns 38
Device Driver ENtry POINES ......c.vciiiieiiiiece st 39
Entry Points Common t0 ALl DIIVETLS ....c..covceveuiurecuiirienierieeneeieeeneeseeenessesessesesessensessesens 39
Entry Points for BIOCK DeVIce DITVELS ........oceuiureuereuiiereerienieenereienseneeenecneesesenesesensessesensens 42
Entry Points for Character Device Drivers
Entry Points for STREAMS Device Drivers
Entry Points for Memory Mapped Devices
Entry Points for Network Device DIIVETS ........cccccueuiurimniinemnereneeeneeeseieesesesessensenassssssesens 45
Entry Points for SCSTHBA DIIVELS .....ccovviuireeererierineieneesesesensensesesesesssasesessessessessesssssssens 46
Entry Points for PC Card DIIVETS ........cccviureeriurieereerieeeeniereensesseieneseeessesssssssessessesensessesessens 47
Considerations in Device DIiver DeSIZN .....c.oceeureureeeirerneeeinerriiniseinerneeneetsessesessessesessessessesessesseseens 47
DDI/DKI Facilities ....
DIiver CONEXT .ot
Returning EITOTS ..o
Dynamic Memory AllOCAtiON .........couiuiiiriiiciiiccc s 51
HOEPIUGGING ...ttt e saen 51
2 SolarisKerneland DeViceTree ... 53
What Is the KeINel? ......ccciiieiciniiccineiecreiecnetneie ettt tsese e ssessssesessesessessesessessesesacsns 53
Multithreaded Execution ENVIFONIMENT «..c.cuvueuiurieeiiurieeieiniieiecieiseeeseeseseeseisesessesessesesseesesens 55



Contents

VIrtUal MEIMOTY .ouvuieiniiieiceeieiecireiseie et ssctsese e seas s sse bt esessesasassscsasen 55
Devices as SPECIal FALES ....ouiuiviiiriniiiriciciricictr ettt ettt 55
DDI/DKIINEEITACES ....ouvereeriirieniieiireiacieiseeisiesssesseessse s sssesss s asssase s sssssesssesss s sssnans 56
OVErview Of the DEVICE TTEE .....vuvueeuierieiriirieireireieietsei sttt sttt bttt 57
Device Tree Components .57
Displaying the DevVICe TTEE .......cccveureeuiuriiereiriierietieneiereeseaesseaeaessesssseeesseesesessesesessessssesessees 58
Binding a DIiver t0 @ DEVICE .......ccveuvieriirieerciriieeeereieeeneeseiessesesensessesseee s s sssessesssssesessens 60
MUIGItRIEAAING ...t se e 65
Locking Primitives .. 65
Storage Classes of DIVEr DAta ... ssssssssse s ssssens 65
Mutual-EXCIUSION LOCKS ....cuviiiiiciriieicireieicincieieceeie ittt saesesenaeen 66
Readers/WIItEr LOCKS .....vuevueuieiecieirieeiceeienctneieneeseeseie e ese s sssesesseasesesse s ssesasasescsnces 67
SEIMAPROTES ...ttt ettt ettt 67
Thread SYNnchIONIZAtION .......ccocuiviciiiicciece et 68
Condition Variables in Thread Synchronization ... 68

cv wait() and cv_timedwait () Functions

CV_Walt SIQ() FUNCHON .ottt aene
cv_timedwait Sig() FUNCHON ..ottt 71
Choosing a LocKing SCheme ..........occuvrieiiinieieieeece e 72
Potential Locking Pitfalls ........ocvcrieiiirieiciniieicneireeciseieieeseie et ssese e sessesessees 72
Threads Unable to Receive SIgNals .......coecureeiiirierienieieiieeeieeeneesesensessesessenessesensens 73
PIOPEITIES ...ttt ettt bbbt as st s s b et et eseasas b s esesebeseanasassesesenas 75
Device PrOPEITIES ....cuviiiiiiiiciccci s 75
Device Property Names ... 76
Creating and Updating PrOPerties ... 76
LOOKING UP PIOPEITIES ..uveuvevrivreireiriecintiieeiaeinteeeeeseasesesseesesessesesessesssssesessessesessesssessesssasesesnees 76
Prop_op () Entry POINt ..o 78
Managing Events and QUeUeIiNg Tasks ..............ccooururrininiieieirrr e 81

Managing Events ..................
Introduction to Events

Using ddi_log_sysevent() to LOg EVENLS ......cccoviiiiiiiiiiiiiccccciccccs 83

Writing Device Drivers « September 2010



Contents

Defining EVent AtITDULES .......c.vvevcurieeieiriinieiniirieecereienceeieeeesessese s tsese s ssese s ssssesessessesensens 84
QUEUEING TASKS ...coviviiiiicicic ittt s 87
Introduction t0 TaSK QUEUES ........ccveveieveeeereeeeeteeeeeeteeee ettt ee e tens e essesesessesensesesesesensenen 87

Task QUEUE INTEITACES .....cvuvvvuciieieciiiiccie et aen 88

USING TASK QUETES ...oeevuereieciieeieciciieeietseie ettt naen 88
Observing Task QUEUES .......cccueuvecriureeeriiriereeeieseseeense e ese e ese s sse s sas s sasasesensens 89

6 Driver AUtOCONFIGUIAtION .............cc.ooiuriiriieciecee ettt bbbt s s sensnens 93
Driver Loading and Unloading .........cccveecueureeincineieecineiniennerneeeieineeesessessesesessesessessessssessessesess 93
Data Structures Required fOr DITVETS ........cveurieeireuriureeireiriieieiseieieiseieesessetsese e tsesessessesssssssessesesans 94
MOATINKAGE STIUCLULE ..ot 95

modldrv Structure

dev_ops Structure
cb_ops Structure ....

Loadable Driver Interfaces

CANIT() EXAMIPLE oottt 98
CFINL() EXAMPLE ettt ettt et 99
CANTO() EXAMIPLE oottt ettt

Device Configuration Concepts ...
Device Instances and Instance Numbers
Minor Nodes and Minor NUMDETS .......c.cccueurieuriniueineiieineeisieie et seeesessessessessseessans 101
probe () Entry POINt ...
attach() Entry Point
detach () Entry Point

getinfo() Entry POINt ... 110
USING DEVICE DS ....oviiiiiiiiiiii s 112
Registering Device IDS ... 112
Unregistering Device IDS ... 113
7 Device Access: Programmed /O ...t 115
DeVICE MEMOTY ...oiiiiiiiiiiiiii bbb bbb 115
Managing Differences in Device and Host ENdianness ..........c.ccceeveveuneererneererereneeeneenennens 116
Managing Data Ordering Requirements
ddi_device acC attr STIUCLUTE ..ocoiceeiieeceeieeetetee ettt senennes
Mapping Device MEMOIY ..o senis



Contents

Mapping Setup EXAMPLE ...c.coeurrueuiirieeieirieeicieesieitiseee et ssese e esesessesenns 117
Device Access FUNCHONS ......cceuiiiiiiciiiiiciccccc e 118
Alternate Device ACCeSS INEITACES ......cvvurevmvmermerurerieiiniireneierenseriesiesisessesease e ssesseseeseees 120
INEErFUPTHANMIRES ...ttt 121
Interrupt Handler OVEIVIEW ......c.ouccricurinicuniieiricieieiciseeiet et ssescse st sstsessesesessesessesssesseaes 121
Device INTEITUPLS ..cuuiiiiiiccc s 122
High-Level INTEITUPLS .....ccviuieeiciieiciiiriect et saeesenes 122
Legacy INTEITUPLS ...c.cuuiiiiiiiiciiii bbb 123
Standard and Extended Message-Signaled INterrupts ........cccocveeeuveuneeercrneeercuremreensenneneene 123
SOFEWATE INTEITUPLS .cvuvrrveiecreeeiecireeeeicittseee ettt seb et ta bbb saeen
DDI Interrupt FUNCHONS ..coovviiiiiiiiiiiiiciccciiice e
Interrupt Capability FUNCHONS ......c.oveuierieeiiiriieicirtieiciciseecisesceieieese e sseseesenns

Interrupt Initialization and Destruction Functions
Priority Management FUNCHONS ..o
SOft INtErTUPt FUNCHOMS ...uvuvireeiicicirincieieicineete ettt ese et s e seesssesneacs
Interrupt FUNCtion EXAMPILES ......c.vueeeuiinieeieciniinicitineieiciseie e sessesenne
Registering INTEITUPLS ..o
Registering Legacy Interrupts
Registering MSTINTEITUPLS .....cccviiuiiiiiiiiiiiciciiciiisici s sesssaessaes
Interrupt Resource Management ...
The Interrupt Resource Management FEature ...........cccocveeeunirecmneneennerneenerneene e
Callback INEEITACES ......ouuieriiriiiiiicic et
Interrupt Request Interfaces
Example Implementation of Interrupt Resource Management ...........cecveeeeceneerecrrcenenene 139
Interrupt Handler FUNCHONALILY ....couevieeieiiicicircicereeeeieceteeeeeeie et eeesenesensensesenaenne
Handling High-Level INEITUPLS ....cocuvvueueureueicireireicireireieietreteeseesetsesessessesessetseseesessessesessessesesseenes
High-LeVel MULEXES ......cvuvermieeernenieenieniesieensesesenseseae e sese e ese e ssesessessssessessesesssessssssenns

High-Level Interrupt Handling Example

Direct Memory AcCess (DIVIA) ...ttt ettt et 153

DIMA MOUEL .ttt s st et enens s sssesesesesenens

Types of Device DMA
Bus-Master DMA
TRIrd-Party DMA ......coviereicineieicintiseieeasesesseistae ettt sese s e ssessssenns 154

Writing Device Drivers « September 2010



Contents

10

11

First-Party DIMA ... 155
Types of Host Platform DMA ........ccccuvuriciniiniieicireieicneeseiesisesesetsese e ssesssse s ssss s ssssesesasen 155
DMA Software Components: Handles, Windows, and COOKIES ........c.ccvverereeeerieeeerreereenseerennns 155
DIMA OPETALIOIS .euvevevvveieiiririeieieieieittsisteeete ettt sttt bbbttt s bttt s s benesens 156

Performing Bus-Master DMA Transfers .........coccvcreeeeeuneeneceneeneeinerneenessesesessessesessesseseens 156

Performing First-Party DMA TTansfers ........coovereemcrniemcrnineeeneeneseenenseseesesessesenne 157

Performing Third-Party DMA TTansfers .........oereeeeuneneceneeneeineineesessesesessessesesesseseens 157

DMA AHIIDULES .ot e
Managing DIMA RESOUICES ........ccciiuiuiiiiiiiiiiicieieiciiesi ittt sssassne

Object Locking ......c.cveueenee.

Allocating a DMA Handle

Allocating DIMA RESOUICES .....cuuueeemmiuiereacererrieeieseeeeessessesesesseseesessessesessessesessesessesesesseseens

Determining Maximum Burst S1Zes ........cccccvviiriiiiiiiininiiiicecrcceeessseeeeenenne

Allocating Private DMA BUffers ..o ssessesenne

Handling Resource Allocation Failures
Programming the DMA ENGINE .....c.oveveuiricriirieieinieceeeiceseenesesesessese e sessesesessesenns
Freeing the DIMA RESOUICES ........c.cuuiuiuiuiieicicieciieniseesesssese e ssess s saesessassns
Freeing the DMA Handle ........cocceiiniercinieenieeneenesseisese e ssesesessesessesenns
Canceling DMA Callbacks .........ccoviiiiiiiiiiiiiiciecssiecssssss s
Synchronizing Memory Objects
DMA WINAOWS ..ottt

Mapping Device and Kernel Memory ... 177
Memory Mapping Overview
EXPOIting the MapPINg ......coceeeeueureueieiniieeeeineiseieteasesesseesesseseseesesesssssesesse s ssesssssssesssssesesacssesesaces
The segmap(9E) ENtry POINt ..ot e seesessenns 177
The devmap(9E) ENtry POINt ...c.cccuevieiiiiricicireicicicieeeiciseieseisese et sseseesenns 179
Associating Device Memory With User Mappings .........ceceveureereereeeererneeemerinneeersessesensessesensens 181
Associating Kernel Memory With User Mappings
Allocating Kernel Memory fOr USET ACCESS .......cccuiureeuernieemerrernienrenneeenesseseeessessesessesseseene
Exporting Kernel Memory to APPLICAtiONS .....coc.eueueereucrnieremciernierierneenesessessesesesseseesesseseene
Freeing Kernel Memory Exported for USer ACCESS .......ccueueuereriureerniureeererneeeeeneeeesenenens 186
Device Context ManagemMENt ..ottt seseens 187
Introduction t0 DeVICe COMEXL ..c.uvuvuiurruercerierrecieiieeieeresesseeeiereessesesessessesessessessssesssssesessessesesaees 187



Contents

12

13

What Is @ Device CONEXL? ... sasssnes 187
Context Management Model ..........ccceuiininiininciciniieieeese e sesssesans 187
Context Management OPeration ... sisesessssesesssens 189
devmap Callback CTU STIUCIUIE ..ccviveieeieieieeeeeeerestee ettt eve st e s resbesse s eseenees 189
Entry Points for Device Context Management ..........coceeeecereereeureenemeesersesessessesesessessesenne 190
Associating User Mappings With Driver NOtifications .........c.ecccveuveeeverneererernenneeenerrenneenne 197
Managing Mapping ACCESSES ........ccuvuviiuiuiuiuiiiiririiiiieisesesesisisse e ies s ssssssesenen 198
PoOWEr ManagemENT .............cocoivieieieiiiiiiieteie ettt es e s bbb e e st esesesne
Power Management FTameWOTK ..........ccocuiriciniinieiniinieiceiecetseeeeseseceeesese e esessennes
Device Power Management ..o
System Power Management ..........ccccvcuiiiniiininiciiiice i sssssesssesesssesessssesssans
Device Power Management MOdel .......cccvecruricininieicineinicncineeeeeneieicesessesessessesessessesessesns

Power Management Components

Power Management STAtes ...
POWET LEVELS ...
Power Management DepPendencies .........ccueeuureeeieenieeeceneineeeneeneseseinesessesssssesesessesessees 205
Automatic Power Management for DeVICeS .....c..c.vveuneuriureneiniirieenennieeeeieeeenseeee e 206

Device Power Management Interfaces
power () Entry POINt .....ccoiiiiiiiccc e
System Power Management MOdel ........cccvuevcirurieciniinieincineieicneiseieieeseieieisessesessessesesessesessesns
Autoshutdown Threshold ... s
BUSY STALE .t

Hardware State

Automatic Power Management for Systems

Entry Points Used by System Power Management ............ccccveeeeveuneeneemerneerrennememensesneenne 212
Power Management Device Access EXAMPLE ......c.ocuevucureureeeineenieeicineinicincineeeieeneseecesenseeessensesenaes 216
Power Management FLOW 0f CONEIOL ........c.vuivocuiinieciiinieicireieicretneeeeeseseeeessesseaesessesensessesessennes

Changes to Power Management Interfaces

Hardening SOlaris DIIVELS ..ottt bbb

Sun Fault Management Architecture I/O Fault SEIVICES ........cccviurieencmrirricirernicenereeecereeeeennes
What Is Predictive Self-Healing? .........cccccoveuuee
Solaris Fault MANQAGET ........cccuvueueuiueeierieieeneieeenseseee s ese s essnse s sse e sse s sesssssnns
Error HANALNG «..c.veveeiieiciiercce ettt s

Writing Device Drivers « September 2010



Contents

14

Partll

15

Diagnosing FAULLS ......c.ccvvueveuriurieuiiricitineciecteee st ssese et ssese e sseecssesenns
EVENt REGISIIY ..ot
GLOSSATY .ot e
RESOUICES .ottt
Defensive Programming Techniques for Solaris Device Drivers
Using Separate Device Driver INStances ...
Exclusive Use of DDI Access HANdIes ..o
Detecting Corrupted Data ..o eseeseesnns
DIMA TSOLATION ..ottt st
Handling StucK INTEITUPES .....uvveueuieieeieireeeicineesieeitiseeeseiseie et ssese e ssese e ssess s sesseseens
Additional Programming Considerations ........c.ceeeeureureeenerreeemnernerneennersesessennesseessessesenne

Driver Hardening Test Harness

FaUult INJECHON .ecvuiieiiiiiicitc s s
Setting Up the TeSt HATIIESS ....c.vuvurereeeeeirieeicieiseieiciseieseiseieese e sese e sesseseens
TeSHNG the DIIIVET ...uvueveiriiieciiieiciiereiceireee ettt st s
Using Scripts to Automate the Test PrOCess ........ccccvveucuniricrniurecmneneeeeneeeeeeese e
Layered Driver INterface (LDI) ............ccoccooiriririeiieieieeisie ettt sssssesssessssssssssssssssssesnns 257
LDI OVEIVIEW ..ottt bbb bbb 257
Kernel INErfaces ... 258
Layered Identifiers — Kernel Device CONSUIMETS ........c.evueururemcuceremeeerneeenersesnisenessesessesseseene 258
Layered Driver Handles — Target DEVICES .......cvueweueuememiuremererreienenneeensenseseesenessesensesesenne 259
LDI Kernel Interfaces Example
USEE INTEITACES ..uvevecinerieiecirieereciei ettt saen
Device Information Library INterfaces ..........cocveeeeeeereereuniirereeereeenneisenseesesesessensesssssseses 274
Print System Configuration Command INterfaces .........cooeeuveureeurerneerrcrnenererneneersernenenne 276
Device User Command INterfaces ... ssssssssssnas 279
Designing Specific Kinds of DeVice DIIVErS .............c.ccoeunierieineinieineinenceeee e 281
Drivers for Character DEVICES ...

Overview of the Character Driver Structure

Character Device AUtOCONTIGUIAION .....uvrvueeererereieeieirenerersesseneeeseseseesesease e saessessessssssnens

Device Access (Character DIIVETS) ..oo.civviieieeeieeeeeieeeieteeeeee st sesesssse s sesessssessssssessesessesesesseneans



Contents

10

16

open () Entry Point (Character DIIVETS) ........ccocereeereereuemeunieneeneeneaensessesessesessesessessesessens

close () Entry Point (Character DIIVEIS) .......cccocreeeeureureeeeneineeeineeneseeessessesesessesessessessesesnes
I/O Request HANAINEG .......ovuiiiiiiiiicicc s sssssassaes
USEE AQAIESSES ..evvrvrieireiiirtiriieieieieeseite sttt bbbttt
Vectored I/O
Differences Between Synchronous and Asynchronous I/O
Data Transfer MEethOds .....c..coeeuiueeciniuriciiieeeeintieneeieee e esese e seessssenns
Mapping Device MEMOTY .......ccoiiiiiiiiiiiiiicciiicci s
Multiplexing I/O on File DeSCIIPLOrS ........ccoiucuciciriiieiiriiiiseicie e ssssse e
Miscellaneous I/0 CONLIOL ......cueueueuiirieeiriiriieieieieeeiseiseieiet ettt seen
ioctl() Entry Point (Character Drivers)
I/0 Control Support for 64-Bit Capable Device Drivers
Handling copyout () OVEITlOW ......c.occeueirieircireinieicinecineeeceiseeeee e esessesees
32-bit and 64-bit Data Structure MaCIOS .......cccvcureeeererreuererreieieeeserseeeesesseseeseesetseeessessesessessesessesns
How Do the Structure Macros WOrk? ........cccvceeeunireeunineeieinceeeeineseesessesesessesessessessesenns 306
When to Use Structure MACIOS .......cvieeeeeeeirierireireeeieieiseieeseiseisee e ssesssessessese s ssssssseens
Declaring and Initializing Structure Handles ...

Operations on Structure Handles ...t sesseseene

Other OPErations .....c.cccceeuecurieecureiieiricieieeeireese ettt sttt ese st aesseacseeeaesneacs

Drivers for Block Devices

BloCk DIiver Structure OVEIVIEW .......ccccvvureririeeeeieteiniresissssesesessssessesssssesesessssssssssssssesesessssssnens
FILE I/O ettt sttt et s et a st s et e s b st s e rnansenene
Block Device AUtOCONTIGUIALION .......cvuuiuuiuiuiiiiciciieiciieiieeiseieee s sases
Controlling DEVICE ACCESS ....cucvreveeeurirrieeeeirieeeeeeteeeeeeeseaese s ssessessesessessesessessesessessessssessessesessesnes
open () Entry Point (BIOCK DIIVELS) .....cvvcuiureeercineieieciniireeeieineieneieseeseeeesesesseenesessesesessensees
close() Entry Point (Block Drivers)
strategy () Entry POINt ...

DUT STIUCTUTE vttt ettt et et ettt e ear e beebe et e ebeeabesseeasenbeessenbeessensenseensenseennan

Synchronous Data Transfers (BLOCK DIIVEIS) ........cocueiiueiieiineieniieiineisiieceseeesisesssesesssesesnaees

Asynchronous Data Transfers (BIOCK DIIVEIS) ......cccvuurieuiurieeremniernecreenieeneeneeenenesensessessesensens
Checking for Invalid buf REQUESLS ......c.vueueuierimeieirieeicieireeeisesetesses st ssesesnenns
Enqueuing the Request
Starting the FIrst TTAnSTET ..ot ssesessenns
Handling the Interrupting DEVICE ........c.euiuiuiincicieieiieiiiiseese e nsesisssssisesse e sessaesans

Writing Device Drivers « September 2010



Contents

17

dump () and print () ENtry POINS .....c.ccccveereeincireeeicireinecnctreiece ettt sesensessesessesessesessesnes 325
dump () Entry Point (BlOCK DIIVELS) ....covueueiierierieiiinicieineeiciseseseiessesesessese e ssessesenns 325
print () Entry Point (BlOCK DIIVELS) ...c.vcueveuierieeiiiriieieineieicineiseieeceseiesessese e sesnesesaees 325

DiSK DEVICE DIIVETS ..vvcvieieiiisieieieteieesietsteteteesessaste st sese s sssssssssesesesesessssssssssesesesesassssassssesesesasenes 326
Disk ioctls
DiSK PEIfOTINANCE ....cvvveviiecererieieieieieicsisetsie et se s s s s s asssssssssessssssssssnsssesesns 326

SCSITArGEEDIIVENS ........coiiieieieieccce ettt b ettt bbb e sa e e s saesesesasasaneas

Introduction to Target Drivers

Sun Common SCSI Architecture OVEIVIEW .......c.oevevevievereiereeerereeeerereeseseeseeeeeseasesesessesesesessesens 330
General FLOW Of CONTIOL .....cvouiovieiieeeeeeececeeeeeeeeteeeeee ettt se s s s e s s esensanenen
SCSA FUNCHONS 1.ttt ettt et te e e esae s e esseebeessesseessesesssessesssensesseessessesssesesssesenes

Hardware Configuration File ........cccecircncinieiceeicreineeecineieeeesetseecssensesessessesessessesssaesne

Declarations and Data Structures
scsi device Structure
scsi_pkt Structure (Target DIIVEIS) ...t

Autoconfiguration for SCSI Target DITVETS .......cccvveueureeeeeernierrereereeerenseeensesessesensessesessessesensens
probe () Entry Point (SCSI Target DIIVELS) ...c.cccvcureeeueereeeeceniereieeeeneeeneisesensesseesesesseesesessens
attach() Entry Point (SCSI Target Drivers)
detach() Entry Point (SCSI Target Drivers)
getinfo() Entry Point (SCSI Target Drivers)

ReESOUICE ALIOCATION w.ecviireiieicirecieireicicie ettt eaesen
SCS1 init PKET () FUNCHON oottt
SCS1 SYNC PKE () FUNCHION .ottt
scsi destroy pKt() FUNCHON ..ottt
scsi alloc _consistent buf () FUNCHON ..o
scsi free consistent buf() Function

Building and Transportinga Command .........cccoeveeereeerernieneerieneeneeneeenereseseensessesessessesensens
Building a Command ........cccvereeuiureeiiinieeicincisetiseeeseiseie e
Setting Target Capabilities ... s
Transporting @ COMMAIA ......coveuiurreeueinieercrireiereieerseeee e eseessesenns
Command COMPIETION ......vuuruiueiiiriieieireeeieieiseie sttt ene
Reuse of Packets
Auto-Request Sense Mode
Dump Handling ..ot seese s s sessaesans



Contents

12

18

19

SCST OPLIOINS ..ttt bbb bbb 351

SCSI Host Bus Adapter Drivers

Introduction to Host Bus Adapter DIIVELS .......cccvceurieeeirieerireeiricieinecistseieseeiessesetessesessesesesnenes 353
SCSTINLEITACE orviieieiieciretreeciet ettt bbbttt sttt ettt es 354
SCSA HBA INEEITACES .eoveerireinieirierieieeiseiseitise s saesesasss e e e sse s saeses 356
SCSA HBA Entry Point SUMMATY ... 356
SCSA HBA Data StIUCTUIES .....ceviiiiiiciiiiiiciicricss s sssessssssssssaes 357
Per-Target Instance Data ..o 363
Transport Structure CIONING .......c.ccoveeeuieeeciirecieee e eseesenne 364
SCSA HBA FUNCHONS ..ottt 365
HBA Driver Dependency and Configuration ISSUES ..........cecveeeurerererereeeneunernensenensersensereensces 366
Declarations and STIUCTULES .......cueeereeurierieeriireiereieeeeseseesese s sseseesessessesesessesessessessesenns

Entry Points for Module Initialization
Autoconfiguration Entry POINTS ..........cooeeeeuiereeicininieieinieeiseseseisessesesessesesessesessessessesenne
Entry Points for SCSA HBA DIIVELS ......ccveuiurererereeerereneinrinessesesensensessessesseessasesessessessessessessesees
Target Driver Instance InitialiZation ........cccccveeecurierecenenieicinceeneseeeisee e sseseesenne
Resource ALIOCAtion ...
Command Transport ...
Capability Management
Abort and Reset Management ..........cc.cereeeucureueeeuienemeseenesesesnesesessessesessessesesessesessessesessenns
Dynamic RecONfIGUIAtION ......covueuiveeeuniiieiciicieee e e
SCSIHBA Driver SPCIfic ISSUES ....c.cuueuecuieeicireirieeieineieieireseeseesetsesessetsesessetsessesessessesessessesessesns

Installing HBA Drivers

HBA Configuration PrOPEIties ........cccereueuiureueeerrieeieieeseeieisesesessessesesessesesessesessessesessenns

x86 Target Driver Configuration PrOPerties .........ccccveuverreuneurevernerneemenneeeeensenneenenseseesenne 400
SUPPOIL FOr QUETNG ...ttt ettt ettt seb ettt sttt sebe st 401
Drivers for Network Devices ...

GLDv3 Network Device Driver FrameWoOrk .........ccccceeruriririireeinieeieceeeesesseseeeesessseeeenes
GLDV3 MAC RegIiStration .......cccccucuiiiiiiiiiiiiiiiciicc s
GLDV3 Capabilities ......cccvuveueureucuririieiricieireciriresetseeciseeies s sseese e ssesesesseseseessassseaes
GLDv3 Data Paths
GLDv3 State Change NOtICAtIONS .....cc.cueuvecumiureeiiirieenciieeecieee e eseseene
GLDV3 NetWOTK STAtISTICS ..vuvurviverererereiriiiereeesesesstseesssesesessssssssss e sesesessssssssssssesesessssssssssseses

Writing Device Drivers « September 2010



Contents

GLDV3 PrOPEItIes ....cuviiiiiiiiiiiiiiiicci s 414
Summary of GLDV3 INTEITACES ......uvvurvrueuieieciiinieeicineieeeiseieescieieeae e sesseseene 415
GLDv2 Network Device Driver FrameWOIK .........ccccoceveueieieieececieieieeiessese et nsenas 417
GLDvV2 Device Support
GLDv2 DLPI Providers
GLDv2 DLPI Primitives
GLDV2 I/O CONtrOl FUNCHONS ...vovevveieierecieieieieisiisesssesssesssesssssssesssessssssssssssssesssssssssssssssssseses 422
GLDV2 Driver ReqUIrements ..........cccociiiiiiniiniiiiiiiccsssssse s 422
GLDV2 NetWOTK STAtISTICS .uvuvurviverereieiiieieiisieieeteieeesste et sesesessssasassesenes 424
GLDv2 Declarations and Data SEEUCTUIES ........ccoveviveveverereeiieeeeeeseseeesse e sesessssessssesenes 427
GLDv2 Function Arguments
GLDV2 EDtIY POINTS ..ottt sessnaes
GLDV2 REtUITI VAIUES ..oveveieeeeereeieieieiiisisisiesesessessssssssssssessssssssssssssesesssssssssssssssssssssssssssssssseses
GLDV2 Service ROULINES ...coveuerieiiieieiieiiieieirieicrie ettt ettt sttt

20 USBDYIVELS ...ttt ettt b ettt bttt ae s b et et et et enenens
USB in the Solaris ENVIFONIMENT ......cccveueiririiireeieisisisissssesisiessssssssssssssssesessssssssssssssesesesssssssssnes
USBA 2.0 FrAMEWOTK ..ottt s s b s s s sssasssaesenes

USB CHENE DIIVETS ...vvviirieeirieieieieisiiesseesesesesstsesssssesesesesssssesssssssessssssssesssssssssesessssssssssssesesns

Binding CHENt DIIVETS .......cvvueveeriureeeieirieereieeeeeenseseeensessesessessssssessessesessesesessesssssssesssssssessssesessees

How USB Devices Appear to the System
USB Devices and the Solaris Device TTee .........coueuiureuemcrniereemeirienenreeeersee e esseseens 444
Compatible DeVICe NAIMES .....c.vucvuiueverueiieeieeiieniaertinesessesseaesseseseesesessesessessesessesessesesesseseene
Devices With Multiple INTEITACES .....c.eueviuriueuiiriieieiriicicireieeteiseie et e ene
Checking Device Driver BINdIngs ... ssessesenns
Basic DEVICE ACCESS ....c.curuuiiiiiiiiiiiii bbb
Before the Client Driver Is Attached
The DESCIIPLOT TTEE ...uvueiriuiriceciricieirec ettt sttt

Registering Drivers to Gain Device ACCESS ..ot 450
Device COMMUNICALION ....vuvuiiiiiiiiiiciiiiiciic s sass 451
USB ENAPOINES .ttt ettt ettt ettt 451
The Defatlt PIPe ....c.vueuieieieiiiriciiireicieiseie sttt et s 452
Pipe States

OPening PIPES ..o 453
CLOSING PIPES ..ttt 453



Contents

Partlil

21

14

Data TTANSTET ..o 453
FIUSHING PIPES ....ouiiieiiiiiiiiiicicie it 460
Device State Management .........ccoccuviiueiiciiiniiiiiiitsicie s sssassesssesesssanes 461
Hotplugging USB DEVICES ......vuevueuirereeuierieereieiereiteemsesseisesessessesessesessssessessesesesesessessessssenns 461
Power Management ..o s 464
SErialiZation ......cuivcieiiiic s 468
UHIEY FUINCHIONS vttt ettt sese sttt bbb 468
Device Configuration FaCIlItIes .........ccvuurveriurieeremniieneneineeeineeneeeeseneseese e nseseesenne 468
Other UtIlity FUNCHOIS ...c.vueeiiieeiiireicieireeeieiciseietciseae s ssese st ssessese e ssessssesessesnns 470

Sample USB Device Driver

BUilding @ DeVIC@ DIIVEN ............cooviiieeecirire ettt 473

Compiling, Loading, Packaging, and Testing Drivers ................ccccocovniiiiennnncneneeeeeeenes 475
Driver Development SUMMATY .....c.coocreerurruereuieereeneeneeenseesesensesesersesessesessessesessessesessessessesessens
Driver Code LAYOUL ...ttt
HEAdRT FIlES ...ttt e
SOUTCE FILES ..o e
ConfIGUIation FIles .......ceeuurieiiuniieieiierieeireeieieie e e ssesesnenne
Preparing for Driver INStallation .......c..cceveeiciciereieininiciseeee e ssessessenes
Compiling and Linking the DIIVET .....ccveeriereinirreiiineeeirceeneneieeeneisese e ssessesenne
Module Dependencies ... e

Writing a Hardware Configuration File

Installing, Updating, and Removing Drivers
Copying the Driver to @ Module DIreCtory ........ccccnreeuerneeuerneeeeerneineenersesessensesessensessesenne

Installing Drivers with add_drv ...
Updating Driver INfOrmation ........cceeeereereininmerieneenessesesessessesesessesesessesessessessesenne
Removing the Driver
Loading and Unloading DIIVETS ........c.eccvcureeeicirirreecineineieeetneieseesetseseesessesessessessesessessesessessesessesnes
DIIVer PACKAGING ......ouiviieiiiiiciciicctcti et
Package POSINSTALL ......c.vueviurieeicieirictinecii et saeen
Package PreTeIMOVE .......c.ovcviiiieiciiiiciie et e
Criteria for Testing Drivers ....
COoNfIGUrAtION TESHILG ..cvucvueveereereririneereitiereeeriersenseetesaeesessese e ssessessessssasessessessessessensesanes

FUNCHONALIY TESHINE ..vuvvverrierecieeeeecieiseie ittt sese s ses e sese s ses s sacen

Writing Device Drivers « September 2010



Contents

22

23

Error HANALNG ...c.vveeeiciiieiciieiccrccce et ssecasesenns 486
Testing Loading and Unloading ..........cceicicininiiincceicecieeiseeese e 487
Stress, Performance, and Interoperability TEStING .........ccoverevevereeerurerrerreirererenenieneneenennes 487
DDI/DKI Compliance TeSHNG ....c..coveeveueeereermiurieriineeenereeemseressesesessesessessesessesessesessessesenns 487
Installation and Packaging TEeStING ......ccveeueureureerniuneeereinieieiseereesessesesessese e sesseseens 488
Testing Specific TYPes Of DIIVELS ... sesniens 488

Debugging, Testing, and TuNing DeVic@ DFIVErS ...............ccccovrvireeeieiririieee e 491

TeSHING DIIVETS ..ot 491
Enable the Deadman Feature to Avoid a Hard Hang ..........ccccecvecncnicncincnncincnccrcnnene 491
Testing With a Serial CONNECHON .......ccovuiuereriireeririeiereeeieeeee e essesenne
Setting Up TeSt MOAULES .....couvviueiiireicicirecieieeciseee et sessesenne
Avoiding Data Loss on a Test System
Recovering the Device Directory ........ccccoveeecenennennee.

DebUZEING TOOLS ...ucvrvrieiiriiciciiieicetseie ettt saen
Postmortem DeDUZEING .......cvvuvvueuiuriieiiiriericiirictiseieeteie ettt e ene
Using the kmdb Kernel Debugger ...
Using the mdb Modular DebUZEET .......c..cvvueveriiricriiienerieeeiee e eseesenne
Useful Debugging Tasks With kmdb and mab ...........ceeueureeueuneermcrninecnneineeneneenenseenenenne 505

TUNING DIIVET'S ..ot
Kernel StatiStics ......cuueviurieiiciciic e

DTrace for Dynamic Instrumentation

Recommended COdiNg Practices ...............ccoourioiiiiiiieieicn et 521
Debugging Preparation TeChNiQUES ........ccccvvuevciiiriereiniceceieeeeeeie e sseeensens 521
Use a Unique Prefix to Avoid Kernel Symbol Collisions ........c..ceeveuneeeecrneenercuneuncerrerneeenne 521
Use cmn_err() to Log Driver ACHVILY ... 522
Use ASSERT () to Catch Invalid ASSUMPLONS ....cveucureurerericirieeerneeeereecteeeeeesesessesesesseseseeneaes 522
Usemutex_owned () to Validate and Document Locking Requirements ...........cccecueueuee. 523
Use Conditional Compilation to Toggle Costly Debugging Features ...........ccccoeveeevrcuneunc. 523
Declaring a Variable VOIAtile .........ccooiiiiiniciciniiicscceeece e sse s sssens 524
SEIVICEADILILY ..ottt ettt 526
Periodic Health Checks .......ccieuiiirieiiiiceineeicieieeeeisesesessese e sesessesesens 526



Contents

16

PartlVv

APPENAIXES ...ttt s st s s s e s s s s b e st s s s re e s s te st naen 527

Hardware OVEIVIEW ...
SPARC Processor Issues
SPARC Data ALIGNIMENT .....coivieeiiirieeiiireieicieieeieieeseie et nsesses s ssessesesse s sess s sssssesesseen
Member Alignment in SPARC Structures
SPARC BYte OTdEring .....ccovueeevueuieeeeeiiirieneeeieneseeensesesessessessese e sesessesssssssesesesssesssssnsenns
SPARC Re@ister WINAOWS ......c.cuueuiereecrnierieeiieeiereiteensestesesessessesessessessssessessesesesesssesesssnenns
SPARC Multiply and Divide Instructions
X86 ProCESSOI ISSUES .....ooviiiiiicttt st
X86 BYte OTAEIING .....uveeeeereieecieiieeicitieietreiseeeeetseie et s ssenes

X86 ATChItecture ManUAals .......c.coccueeriueurieieinieieirceeiseici ettt ettt eeeaes
Endianness ......
Store Buffers ...
System Memory Model

Total Store Ordering (TSO) ...c.cceeeurereeieireieieirtieee sttt et sesessenns

Partial Store Ordering (PSO) .......cccucuuiiiriiniineieiereieeiseisese e s ssssssessssse e ssesasssenanes
BUS ATCRIEECTUIES .cvivrieiieiceecieireectici ettt ettt

Device IAeNTIICATION ...vucuiucieiiecieiieirecier ettt ettt et

SUPPOTted INLEITUPE TYPES oucveeeereerieiriereieiseieieiseieeseseteesesesseeses e sea e sebe s saeen
BUS SPECIICS evvuvrrviueiriieiseieireieiets ettt ee et es ettt bees

PCILocal Bus.................

PCI Address Domain ....

INEEITUPL ISSUES ...
PROM 01 SPARC MACRINES ....euvviiuiriiiaciiiiicieineieieeseiesseisei st tssessse st sese et es e sesesaessesesasseses
Open Boot PROM 3
Reading and WIIHING ......cccvreeieinieeiciineieeitieeeie et e sseaessenns

Writing Device Drivers « September 2010



Contents

B Summary of Solaris DDI/DKISEIVICES ............ccooiueuriiurinieiniieireeisieie ettt eeaeaes 547
MOAULE FUNCHIONS .ecvrvreieiieiecieiieeietseietetsese s seesese s sese e ese et saen 548
Device Information Tree Node (dev_info_ t) FUNCHONS ....cccoeveieeeeececvereieeeeseeece e 548
Device (deV_ 1) FUNCHOMNS ...voveveieieeeeciicieieteteteeieeete et eve e s s s bbb e s s s s sasesanes
Property Functions ..o
Device Software State Functions
Memory Allocation and Deallocation FUNCHONS ........ccvvureeeururieererneeneernieneeeneeneeensesseseneeseeneaens 550
Kernel Thread Control and Synchronization FUNCHONS ......coeeevcenerrecencineeeicineinicnenneeeeeeneiennes 551
Task Queue Management FUNCHONS .....c.oveueuriueieiniiniciniireecieineeeeiseeeeseseesesessessesesse s s ssssesens 552
Interrupt FUNCHONS ....oviviiiiiiiiicccicc s

Programmed I/O Functions
Direct Memory Access (DMA) Functions

User Space Access FUNCHIOMNS ....c.ououeuiiininiriiiiicicciincecccct ettt nes 563
User Process EVent FUNCHONS .....c.c.cieinniriieiciiciirncccccintceseeeccesse st senes 564
User Process INformation FUNCHONS ......cc.iceuririuririieinicieicieieee ettt seaesees 564
User Application Kernel and Device Access FUNCHONS .......c.ccvuevceiericcrniinicnereicseeeneieaes 565

Time-Related Functions

Power Management FUNCLIONS ..o 567
Fault Management FUNCHIONS ........oueueurieiciniieiciiieeieieeseicieeeensces e ssesssessesssss s s ssesessens 567
Kernel Statistics FUNCHIONS ......cueviveeieireieieiiinicierneeeicinete ettt sesessesseseseessessesessessesessessesessesnes 568
Kernel Logging and Printing FUNCHONS .......c.ccccuiiriiniiniincicciccceieecese e ssesenesssesnsens 569
Buffered I/O FUNCHONS ....cocvuiiiiiiiiiicci s ss s
Virtual Memory Functions
Device ID FUNCHONS ...ttt
SCSIFUNCHONS .ottt st
Resource Map Management FUNCHONS ... 573
System Global STate ..o s 573
UlEY FUNCHOMS wvoveevneieicirieeccteiieectseieetseie et seesseesese s sse s sae s s enae s asesesacen 573
C Making aDevice Driver 64-Bit Ready ............c.ococooviiiniciniccicncccrecereceecenecseeeeenes
Introduction to 64-Bit DIriver DESIZN ......ccccvveveueureeeieuriiereinieereeeseeenesseeenseseseseessessesessessesessens
General CONVEISION STEPS ..c.cucueuiveieiiueisciretsieeietseeeteesesesae et sese et sebe st b sse et sese st sesessessessssesncs

Use Fixed-Width Types for Hardware Registers
Use Fixed-Width Common Access FUNCHONS ..o
Check and Extend Use of Derived TYPES ......ccccvurueuneerierniineacieineieieineeseeisesseessesseseesseseens




Contents

18

Check Changed Fields in DDI Data StrUCLUIES .......coceueueeremceiurememerneeensersesenseneasesensesnesenne
Check Changed Arguments of DDI FUNCHONS ........ovuiiiiiiiiieiiiniiicciciscie e
Modify Routines That Handle Data Sharing ..........cccccveveeeerniemerneneenneneeneneenenseseesenne
Check Structures with 64-bit Long Data Types on x86-Based Platforms

Well Known ioctl Interfaces

DIEVICE SIZES vttt ettt ettt ettt
Console Frame BUffer DIIVELS ...............ccoieiirinirieinicieiceissee sttt sss s sssssssees 585
Solaris Consoles and the Kernel Terminal EMUlator ..........cccccoveeeeeiniisseeeeeereseseeesenenns 585

x86 Platform Console COMMUNICALION .....cvovvereiereerereieiiieeeeeie et se et sesesens 585

SPARC Platform Console COMMUNICAtION ....vurvevereririerinieierieieissessssiessesssssssessssssesssssssnes 586
Console Visual I/O INEEITACES ....ccvreveireireeieieieieieisesesesieesesessessssssssese s ssssssssssesessssssssssssssssesesees 587

I/O CONLIOL INTETTACES .v.veveveieieceeieiereteiieeeeie ettt bbb e b s s asanaeae 587

POlLlEd I/O TNLEITACES ...vvveveeieieierieerieieiiieseesaeeses e sae ettt ss s esasssssssesesssesssssnsesas 588

Video Mode Change Callback INterface .......c.veuveureeevcuneneceniireeineneeeeineeeenneesesesenseseene 588
Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers ...........cccccccveunnuanee 589

VIS DEVINIT ottt ettt st s be e s s sb e s bb e s e sb e e s st e s e snneeesnneeeas

VIS DEFINT oottt et ab e s bbb s b e bb e ab e e satesanesanaenns

VIS CONSDISPLAY

VIS CONSCOPY ettt ettt ettt et s e s et bbt e s bt e e e bb e e s abte s e st e s e sbeesemabesesnbeeeennaeeas

VIS CONSCURSOR

VIS_PUTCMAP
VIS_GETCMAP
Implementing Polled I/O in Console Frame Buffer DIivers ...
Frame Buffer Specific Configuration Module ..........cccoeeureiricieineeencineneicreineeeenseeeneeseneeeennes
The X Window System Frame Buffer Specific DDX Module ........ccocceuveunieercunenecrnienecrcineeennens
Developing, Testing, and Debugging Console Frame Buffer Drivers ..........cccccooueuniiecincinnunnes
Testing the I/O Control Interfaces
Testing the Polled I/O INtErfaces .........ccvuiuiniiniiciciciiiisicise s
Testing the Video Mode Change Callback FUNCtion ...

Additional Suggestions for Testing Console Frame Buffer Drivers

Writing Device Drivers « September 2010



Figures

FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGURE 2-4
FIGURE 2-5
FIGURE 5-1
FIGURE 6-1
FIGURE 9-1
FIGURE 11-1
FIGURE 11-2
FIGURE 12-1
FIGURE 15-1
FIGURE 16-1
FIGURE 17-1
FIGURE 18-1
FIGURE 18-2
FIGURE 18-3
FIGURE 18-4
FIGURE 18-5
FIGURE 20-1
FIGURE 20-2
FIGURE 20-3
FIGURE 20-4
FIGURE 20-5
FIGURE A-1
FIGURE A-2
FIGURE A-3

FIGURE A-4

Yo Y T S 5 o =) T 54
EXample DEVICE TTEE ....cuvuueuiuirieriieieirieeieiseieeeseisese sttt ene 58
DeVICE NOAENAIMIES .....evveeeeieeeeeeereeeeeeeteee ettt es s e esensesess s seneens 61

Specific Driver Node Binding

Generic Driver Node Binding

Event PIUMDING ....c.vvueveieiiccirecreeceieieereieene e sees
Module Loading and Autoconfiguration Entry Points .........ccccocveeeveneeivcineunenees 94
CPU and System I/O Caches ........c.cceucuiureeuniuriciiirieceeeeeee e

Device Context Management ...

Device Context Switched to User Process A .......cocveeveureeeeeeneeneceneenemenseuneeenens
Power Management Conceptual State Diagram
Character Driver ROAAMAD .......cc.euveiueirieuriieeirceieireeieiceseeieseiei s seesesenes
Block Driver ROAAMAD ....c.cueereeiuiiierieieeriieieireieieiseieie et
SCSA BIOCK DIQGIam ......cuvmerierniieerieneieeeneieee e sesessesssensenns
SCSATNLEITACE ..ottt et
Transport Layer FLOW .........c.ccciininiicicccccecsee e
HBA Transport Structures
Cloning Transport Operation
SCSi_ PKt(9S) Structure POINLETS .....ccoeveveueeiieiererereieeeeteee et eaees
Solaris USB ATCHItECTULE «....uvuuveemieieerecieeeeieieeeeeneieee e neseese e sesensenne
Driver and Controller INterfaces .........coveeuveureeeeeinerecineinecineinceesseeeeenseesesenne
A Hierarchical USB DeSCriptor TTEE .......c.cuveueurecericuciricieineicirecreenecsnesesesseacaes
USB Device State Machine
USB Power Management ...........cccuvrueiiemiiiicscsisssssesssssssssssssssssesssssses

Byte Ordering Required for Host Bus Dependency .........ccccovveeeeereecvcnneennnees 532
Data Ordering Host Bus Dependency ..........coecneeecunerercrneeneennerneeeenerseeneenne 533
Machine BlOck DIQram ........c.ccccueucueeeeiuimnieneiseneiseseneniessssssesesse s ssesesssenes 536
Base Address Registers for Memory and I/O ......cccveveveeecneenecrnieneenenneeennes 537



20



Tables

TABLE 1-1
TABLE 1-2
TABLE 1-3
TABLE 1-4
TABLE 1-5
TABLE 1-6
TABLE 1-7
TABLE 4-1
TABLE 5-1
TABLE 6-1
TABLE 8-1
TABLE 8-2
TABLE 9-1
TABLE 12-1
TABLE 17-1
TABLE 18-1
TABLE 18-2
TABLE 18-3
TABLE 19-1
TABLE 20-1
TABLE 20-2
TABLE 22-1
TABLE 22-2
TABLE A-1
TABLE A-2
TABLE B-1
TABLE B-2

TABLE B-3

Entry Points for ALl DIIVer TYPES ...c.oveveureeeeceniericiiereiereeneeenseseesesesseesesessessesensens 40
Additional Entry Points for BIOCK DIIVETS .........ccccviurieererrieerernieeeeneeneeenenneeennens 42
Additional Entry Points for Character DIIVErS .........c.ccevveeeneenerninrerenerenenenenne 43
Entry Points for STREAMS DIIVETS .......covuuiuiuriuiireieieirieeenseesenseese e sseseessesaeens 44
Entry Points for Character Drivers That Use devmap for Memory Mapping ..... 45
Additional Entry Points for SCSTHBA DIIVELS ....c.cvvueveureeereerneerrerieneeerenneeennens 46
Entry Points for PC Card Drivers Only .......ccococeveenerenecereencnneennes 47
Property INterface USES ..........ccuuueiuciiiiniiiiiiiiiecesiisseeiissssssssssssssss s ssenns 77
Functions for Using Name-Value Pairs .........cocooeveereeincneeiceneeneceneneecneiennens 86
POSSIDIE NOAE TYPES «..cvuvrreiinirieiniieeieieieeieitisese it snenns

Callback SUPPOIt INtErfaces .......ccveveueurieueirieirireere et

Interrupt Vector Request Interfaces
Resource Allocation HaNdiNg ........c.ccceueiuiuniiniincincincicicineeeseeeseneneeesennnns
Power Management INterfaces .......c.oocvreeuneureeeecinceneceneinienensceeseseensessenenne
Standard SCSA FUNCHONS ........cciuiiiciiiiiicicicccicice s
SCSA HBA Entry Point SUmmary ...
SCSAHBA FUNCHONS ...viviiciitieici ettt s
SCSA Entry Points
GLDV3 INLEITACES ..ot

Request InitialiZation .........c.ccveuricncininiciniicnce e

Request Transfer SEtUP ......cocveeeeureeereuniereeeieireeeiseseseseseese s sesseseesenns

KMAD MACTOS ..ottt e

Ethernet MII/GMII Physical Layer Interface Kernel Statistics ..........cccccoeuuneunee 516
Device Physical Space in the Ultra 2
Ultra 2 SBus Address Bits ........ccocuvcucecuciniuniiniincinecieieieniesieesessese e ssenaeesenans

Deprecated Property FUNCHONS .....cccveueeereuniecieinieneeineineenenseseeesessesessenseseesenne

Deprecated Memory Allocation and Deallocation Functions ...........ccccccveueunes 551

Deprecated Interrupt FUNCHONS .....c.vueuiereeeueueeeieinieeieneiseeiseisesesessesesenscssesenne 554



Tables

22

TABLE B-4
TABLE B-5
TABLE B-6
TABLE B-7
TABLE B-8
TABLE B-9
TABLE B-10
TABLE B-11
TABLE B-12

TABLE C-1

Deprecated Programmed I/O FUNCHONS ........ccviuiuiicicininiincncceisieianns 558
Deprecated Direct Memory Access (DMA) FUNCHONS ........ccueecuiicrcnereniennnes 562
Deprecated User Space Access FUNCHONS .....c.ouveuevrecueenecenineecinicieineeieenescieeeaes 564
Deprecated User Process Information FUNCHIONS .......coeevecuneerccrncrnceeenernceeenenne 565
Deprecated User Application Kernel and Device Access Functions ................. 565

Deprecated Time-Related Functions

Deprecated Power Management FUNCIONS .......cocureeeveuneerecrneenecnneinceenennceeeenne 567
Deprecated Virtual Memory FUNCHONS ......c..cuveuieieecrnirecercccceeeeennne 570
Deprecated SCSTFUNCHOMNS .....veuveiiueirieieirieieineie ettt ssescseseaees 572
Comparison of ILP32 and LP64 Data TYPES ......ccoveereeeureurereeiereeeieeriereserneeresennens 575

Writing Device Drivers « September 2010



Examples

EXAMPLE 3-1
EXAMPLE 3-2
EXAMPLE 3-3
EXAMPLE 4-1
EXAMPLE 5-1
EXAMPLE 5-2
EXAMPLE 6-1
EXAMPLE 6-2
EXAMPLE 6-3
EXAMPLE 6-4
EXAMPLE 6-5
EXAMPLE 6-6
EXAMPLE 6-7
EXAMPLE 7-1
EXAMPLE 7-2
EXAMPLE 8-1
EXAMPLE 8-2
EXAMPLE 8-3
EXAMPLE 8-4
EXAMPLE 8-5
EXAMPLE 8-6
EXAMPLE 8-7
EXAMPLE 8-8
EXAMPLE 8-9
EXAMPLE 8-10
EXAMPLE 8-11
EXAMPLE 8-12

EXAMPLE 9-1

Using Mutexes and Condition Variables ..........ccccreneneercrnieeecenieneenneeneennens 69
Using cv_timedwait () s 70
USINg cV_wWait_ S1g() s 71
Prop 0P () ROULING ..cuiiiiiiee e
Callingddi_log_sysevent()

Creating and Populating a Name-Value Pair List ........ccccocveernererencenernecencrreennes 85
Loadable Interface SECtION ........c.occueurecuricueinecinineciseceesccseseieteec et eeesenseeaees 97
CANIE () FUNCHOMN wviiiicice ettt 98
Probe(9E) ROULINE ....cooviviieiieieieiieeeteeeteeeeetete ettt ettt as s senees 102
probe(9E) Routine Using ddi_poKeB(IF) .....cceveureueunerrerercrneercrneeeeerneanesenennene 103

Typicalattach () Entry Point

Typical detach() Entry Point
Typical getinfo () Entry Point

MaAPPING SELUP ...ttt
Mapping Setup: BUHTET .......c.ovcuiuricicirircrerecrecreeeeteieee e
Changing Soft Interrupt PHIOTILY .......cccoeueeeveueeeecreireeeireenenee e nessesenne 127
Checking for Pending INtEITUPLS .......c.evuevueerememrerererieneerineisereesenessensenseneesesas 127
Setting Interrupt Masks

Clearing INterrupt MaSKS .......cevcuiureeeriurerereieeeneieeseesesesesessesessensesessesessesenne 127
Registeringa Legacy INTErrupt ......oooevvevevicieeiececece e 129
Removinga Legacy INterrupt ..o 130
Registering a Set 0f MSIINtEITUPLS ......cuuvreeermcueeemcrieereneieenesseeene e 131

Removing MSI Interrupts

Interrupt Example

Handling High-Level Interrupts With attach () .....coccceeeinininencincircincicnanns 148
High-level INterrupt ROULINE ....c..cvueveeumiereeerieeecreinieeneneeeeenessesesessesesenseeensenne 149
Low-Level Soft Interrupt ROULINE .......cvveeeeieuieeieireinieineiseeneisce e 150
DMA Callback EXAMPLE ....ccuvrivieciierirciiireieicineieicieeseeessesesessese e sessesenns 164



Examples

24

EXAMPLE 9-2
EXAMPLE 9-3
EXAMPLE 9-4
EXAMPLE 9-5
EXAMPLE 9-6
EXAMPLE 9-7
EXAMPLE 9-8
EXAMPLE 10-1

EXAMPLE 10-2

EXAMPLE 10-3
EXAMPLE 10-4
EXAMPLE 10-5
EXAMPLE 11-1
EXAMPLE 11-2
EXAMPLE 11-3
EXAMPLE 11-4
EXAMPLE 11-5
EXAMPLE 11-6
EXAMPLE 12-1
EXAMPLE 12-2
EXAMPLE 12-3
EXAMPLE 12-4
EXAMPLE 12-5
EXAMPLE 12-6
EXAMPLE 12-7
EXAMPLE 12-8
EXAMPLE 12-9
EXAMPLE 14-1
EXAMPLE 14-2
EXAMPLE 14-3
EXAMPLE 14-4
EXAMPLE 14-5
EXAMPLE 14-6
EXAMPLE 14-7

EXAMPLE 14-8

Determining Burst Size ... 165
Usingddi_dma_mem_alloC(9F) .. 166
ddi_dma_cookie(9S) EXAMPIE ..ot nseseesenne 168
Freeing DMA RESOUICES ..ot
Canceling DMA Callbacks ....

Setting Up DMA WINAOWS .......covurieuiiieeeciieetireeneseeeessese e seseesensenns
Interrupt Handler Using DMA WINdOWS ........cccvevevcuniureeeenieneeeneereeenenneesesenees 174
SegMaP (9E) ROULINE ....ocveereieeeecieeeetecte ettt ee e be s e s e e s e ereennens 178
Using the segmap () Function to Change the Address Returned by the mmap ()
Al e e e 179
Using the devmap_devmem_setup () ROUtINE .....cocevueecrcerecenernicnereeeeeneenne 182
Usingthe ddi_umem_alloc() ROULINE ....oocuveureeeiiinienicireirecineinceeeneiseeereieeeene 184
devmap_umem_Setup(9F) ROULINE .....coceevevevererereiiiiieieretee e 186
Using the devmap () ROULINE ...c.cccueericireirieicireieecreisccretreeeeeeisese e seseene 191
Using the devmap_access () ROULINE ......cccoeueerneinierecineirecieeeeeeeeeeeneeene 192
Using the devmap_contextmgt () ROULINE ....c.occeiuriericinernecineinceeeneineeneineeene 193

Using the devmap_dup () Routine

Using the devmap_unmap () Routine

devmap(9E) Entry Point With Context Management SUppOrt .......ccccveuveennee. 198
Sample pm-comPONENt ENEIY c..ccuiuieeiciriiricircireeereiseeretreeee et seeseene 204
attach(9E) Routine With pm- components Property ........cccccovceeeeunerreenncrneenn. 204
Multiple Component pm-components ENtIy ......cccveceevernenincrnceneeenerneeenernennene 205
Using the power () Routine for a Single-Component Device .........ccccocuviunanes 209

power(9E) Routine for Multiple-Component Device
detach(9E) Routine Implementing DDI_SUSPEND .......ccccureurememeurememmerememnerenene
attach(9E) Routine Implementing DDI_RESUME .........cccccuiuricmnimrecucmrisicnennns
DEVICE ACCESS ..viiiiiiiict s
Device Operation COMPIEtion .........ccccucuiriuieriineineineeeinieeieeseseeseseseneessesans
Configuration FIle ...ttt seeeesenseaes
DIiver SOUTCE FIle .....c.cuiuieiiieeicireecireireeceeeesee e seee
Write a Short Message to the Layered Device ..........ccccuvivevcuneuniccuncnnienncrneeennn.
Write a Longer Message to the Layered Device
Change the Target DeVICE .......cceueeeeuniereerneieeeieieeeeesseasesesessese e ssesesessesessenne
Device Usage INfOrmation ........c.ceceeeereeercrniereerniuneenenneenenseseseessesensessesenenne
Ancestor Node Usage INformation ...
Child Node Usage INfOrmation .........ccoeeeeereereeeeeineeemerneeneenneesesesessesesenseseesenne

Writing Device Drivers « September 2010



Examples

EXAMPLE 14-9
EXAMPLE 14-10
EXAMPLE 14-11
EXAMPLE 14-12
EXAMPLE 15-1
EXAMPLE 15-2
EXAMPLE 15-3
EXAMPLE 15-4
EXAMPLE 15-5
EXAMPLE 15-6
EXAMPLE 15-7
EXAMPLE 15-8
EXAMPLE 15-9
EXAMPLE 15-10
EXAMPLE 15-11
EXAMPLE 15-12
EXAMPLE 15-13
EXAMPLE 15-14
EXAMPLE 15-15
EXAMPLE 15-16
EXAMPLE 16-1
EXAMPLE 16-2
EXAMPLE 16-3
EXAMPLE 16-4
EXAMPLE 16-5
EXAMPLE 16-6
EXAMPLE 16-7
EXAMPLE 17-1
EXAMPLE 17-2
EXAMPLE 17-3
EXAMPLE 17-4
EXAMPLE 17-5
EXAMPLE 17-6
EXAMPLE 17-7
EXAMPLE 18-1

EXAMPLE 18-2

Layering and Device Minor Node Information - Keyboard ........cccccocevcureunnee 277
Layering and Device Minor Node Information - Network Device ................... 278
Consumers of Underlying Device NOdES .........ccveureerecrnerreceneuneeenerneeeeenneenenenne 279
Consumer of the Keyboard DevVice .........oeuveureueiiuneericrneineeineinceneineeeeesscenenenne 280
Character Driver attach () ROULINE .....cccoveveeeereereieieieiieeeetee e 285
Character Driver open(9E) ROULINE ......c.coevevieiuirereieieiieeeeerere e 287
Ramdisk read(9E) Routine Using uiomove(9F) ......ccccccvveuvcnieevcrninccnnernccnnnn. 292
Programmed I/O write(9E) Routine Using uwritec(9F) ......cccvvvvcnivecnnee 292
read(9E) and write(9E) Routines Using phySi0(9F) ....ccccoocevervivercrnernecunennee 293
aread(9E) and awrite(9E) Routines Using aphysio(9F) ....ccccooevernevercrnennee. 294
minphys(9F) Routine

STrategy(9E) ROULINE ....coovevevevireeieiiiieiereteteeeteeetet ettt eaeaes 296
Interrupt ROULINE ... 297
CHPOTL(IE) ROULINE .ottt seneaes 299
Interrupt Routine Supporting chpolL(9E) ....c.oveevricueiniceriniciriccnicreerecneeenens 300
FOCTL(9E) ROULINE ..ottt ettt s s 301
USINGLOCTL(IE) ettt esaensenenes 302

ioct1(9E) Routine to Support 32-bit Applications and 64-bit Applications ...303
Handling copyout(9F) OVErflow ......c.ccveeeueuneurecrniinireineineicieineieeesneisese e
Using Data Structure Macros to Move Data ...,
Block Driver attach () ROUINE «.....ccueuieevecuieeeciieeiceeneieieee e
Block Driver open(9E) ROULINE ....c.ceveveveeiiieeeeerereteteeeeeeeeteve e
Block Device cloSe(9E) ROULINE ....c.cveveveeeiriieierereteieeeesieieie e enens
Synchronous Interrupt Routine for Block DIivers ...........ccocvevecvnierecrncrneeennee
Enqueuing Data Transfer Requests for Block Drivers ...
Starting the First Data Request for a Block DIIVer ..........ccocvcuviuvcincicicicinienennns
Block Driver Routine for Asynchronous Interrupts ..........ccecoeeveevceverererncnennes
SCSI Target Driver probe(9E) ROULINE .....covueeeriureecrernieierneeneeneiresenenneeennenne
SCSI Target Driver attach(9E) ROULINE .....c.oveevvurieeeceniiricneireiecireieecneisesennes
SCSI Target Driver detach(9E) ROUINE .......c.vcuiuiciciicciccceccenne
Alternative SCSI Target Driver getinfo() Code Fragment .........ccccecueviriunnnnes 342

Completion Routine for a SCSI Driver
Enabling Auto-Request Sense Mode ...
AUMP(IE) ROULIIIE ..ttt se e enenn
Module Initialization for SCSTHBA .......coovovviieeerireeeseeeessseeess e sesnas
HBA Driver Initialization of a SCSI Packet Structure ..........cocceeevevevevreeneeerenenes 376

25



Examples

26

EXAMPLE 18-3
EXAMPLE 18-4
EXAMPLE 18-5
EXAMPLE 18-6
EXAMPLE 18-7
EXAMPLE 18-8
EXAMPLE 18-9
EXAMPLE 18-10
EXAMPLE 18-11
EXAMPLE 18-12
EXAMPLE 19-1

EXAMPLE 19-2

EXAMPLE 19-3
EXAMPLE 19-4
EXAMPLE 19-5
EXAMPLE 19-6
EXAMPLE 19-7
EXAMPLE 20-1
EXAMPLE 20-2
EXAMPLE 20-3
EXAMPLE 22-1
EXAMPLE 22-2
EXAMPLE 22-3
EXAMPLE 22-4
EXAMPLE 22-5
EXAMPLE 22-6
EXAMPLE 22-7
EXAMPLE 22-8
EXAMPLE 22-9
EXAMPLE 22-10
EXAMPLE 22-11
EXAMPLE 22-12
EXAMPLE 22-13
EXAMPLE 22-14

EXAMPLE 22-15

HBA Driver Allocation 0f DMA RESOUICES ......coovevererererririrereeeeresesesesssssssnsenes 379
DMA Resource Reallocation for HBA DIIVETS ....c.ovvvuirerreeeinerenirieiesssensennens 381
HBA Driver tran_destroy_pkt(9E) Entry Point ......c.cccccoovvenereverncrnccencrnennn. 382
HBA Driver tran_sync_pkt(9E) Entry Point .........cccccovciieneninvcncnncncnnennn. 383
HBA Driver tran_dmafree(9E) Entry Point

HBA Driver tran_start(9E) Entry Point ...
HBA Driver Interrupt Handler ..o
HBA Driver tran_getcap(9E) Entry Point .........ccccccvvcnevvcncnecncneercnennne
HBA Driver tran_setcap(9E) Entry Point .........ccccocvevecunenecincnecenerneeecrnenene
HBA Driver tran_reset_notify(9E) Entry Point ..o 396
Themac_init ops() andmac_fini ops() Functions ... 404
Themac_alloc(),mac_register(),andmac_free() Functionsand

MAC_ FEJL1STEI StIUCTUIE ..oovivviieieieieertctete ettt sae e eeaeenes 405
Themac_unregister() FUNCHON ....cccoceieereieieicccce e 406
Themac_ callbacks StIUCLUIE .....ccveveveveveeiiieiererere et ese s sessananas 407
Themc_getcapab () ENtry POINt ..o 408

Themc_tx() Entry Point
Themc_getstat() Entry Point

USB Mouse Compatible Device NamES .......cceveuevreeueerencenirererniceeeneessesescseeenees 445
Compatible Device Names Shown by the Print Configuration Command .....445
USB Audio Compatible Device Names ........cceveuevrieueenenceninerernecieeseeseesesenseenees 446
Setting input-device and output-device With Boot PROM Commands ....493
Setting input-device and output-device With the eeprom Command ........ 494
Using modinfo to Confirm a Loaded Driver

Booting an Alternate Kernel .........occcceeninecrninicneneeneeeeesesesenseeeeenne
Booting an Alternate Kernel With the -a Option .......ccccccecvevevcincivcincicciccicnnnes 498
Recovering a Damaged Device DIireCtory .........cceveeecuneeeereunerneerneuseeennenseeenenne 500
Setting Standard Breakpoints in Kmab .........cc.ccceveiiiininciineininnineieissieienns 502
Setting Deferred Breakpoints in KMAb ..........cccureerecuneerecrneuneencrnceeeernennesennenene 502
Invoking mdb on a Crash DUMP .....ccueeevcrnierecrniineeieeeeeeie e senene 505
Invoking mdb on a Running Kernel ... 505
Reading All Registers on a SPARC Processor With kmdb ........c.ccocveeevucencerencnnce 506
Reading and Writing Registers on an x86 Machine With kmdb .......cccccocvuueeee. 506
Inspecting the Registers of a Different Processor ..........coccveveevecenieveerneereennees 507
Retrieving the Value of an Individual Register From a Specified Processor ..... 507
Displaying Kernel Data Structures With a Debugger ........cccccoeevcuneerecrneureennees 508

Writing Device Drivers « September 2010



Examples

EXAMPLE 22-16
EXAMPLE 22-17
EXAMPLE 22-18
EXAMPLE 22-19
EXAMPLE 22-20
EXAMPLE 22-21
EXAMPLE 22-22
EXAMPLE 22-23

EXAMPLE 22-24

Displaying the Size of a Kernel Data Structure .........ccocveeeeeneereerneereeerseereeennens 508
Displaying the Offset to a Kernel Data Structure ............ccecveeveuvercuerceennenennes 509
Displaying the Relative Addresses of a Kernel Data Structure ...........ccecvvueee 509
Displaying the Absolute Addresses of a Kernel Data Structure ..........cccveunee 509

Usingthe : :prtconf Demd ...

Displaying Device Information for an Individual Node

Using the : :prtconf Demd in Verbose Mode .....c.ccecuceveceneenecineineecenenneeeenenne
Using the : :devbindings Dcmd to Locate Driver Instances ........ccocciieennes 511
Modifying a Kernel Variable With a Debugger ..........cccoocveeuneneerncrnenencrncrnennne 513

27



28



Preface

Writing Device Drivers provides information on developing drivers for character-oriented
devices, block-oriented devices, network devices, SCSI target and HBA devices, and USB
devices for the Solaris Operating System (Solaris OS). This book discusses how to develop
multithreaded reentrant device drivers for all architectures that conform to the Solaris OS
DDI/DKI (Device Driver Interface, Driver-Kernel Interface). A common driver programming
approach is described that enables drivers to be written without concern for platform-specific
issues such as endianness and data ordering.

Additional topics include hardening Solaris drivers; power management; driver
autoconfiguration; programmed I/O; Direct Memory Access (DMA); device context
management; compilation, installation, and testing drivers; debugging drivers; and porting
Solaris drivers to a 64-bit environment.

Note - This Solaris release supports systems that use the SPARC and x86 families of processor
architectures: UltraSPARC, SPARC64, AMDG64, Pentium, and Xeon EM64T. For supported
systems, see the Solaris OS Hardware Compatibility List at http://www.sun.com/bigadmin/
hcl. This document cites any implementation differences between the platform types.

Who Should Use This Book

This book is written for UNIX programmers who are familiar with UNIX device drivers.
Overview information is provided, but the book is not intended to serve as a general tutorial on
device drivers.

Note - The Solaris operating system (Solaris OS) runs on both SPARC and x86 architectures.
The Solaris OS also runs on both 64-bit and 32-bit address spaces. The information in this
document applies to all platforms and address spaces unless specifically noted.

29


http://www.sun.com/bigadmin/hcl
http://www.sun.com/bigadmin/hcl

Preface

How This Book Is Organized

30

This book is organized into the following chapters:

Chapter 1, “Overview of Solaris Device Drivers,” provides an introduction to device drivers
and associated entry points on the Solaris platform. The entry points for each device driver
type are presented in tables.

Chapter 2, “Solaris Kernel and Device Tree,” provides an overview of the Solaris kernel with
an explanation of how devices are represented as nodes in a device tree.

Chapter 3, “Multithreading,” describes the aspects of the Solaris multithreaded kernel that
are relevant for device driver developers.

Chapter 4, “Properties,” describes the set of interfaces for using device properties.

Chapter 5, “Managing Events and Queueing Tasks,” describes how device drivers log events
and how to use task queues to perform a task at a later time.

Chapter 6, “Driver Autoconfiguration,” explains the support that a driver must provide for
autoconfiguration.

Chapter 7, “Device Access: Programmed I/O,” describes the interfaces and methodologies
for drivers to read or write to device memory.

Chapter 8, “Interrupt Handlers,” describes the mechanisms for handling interrupts. These
mechanisms include allocating, registering, servicing, and removing interrupts.

Chapter 9, “Direct Memory Access (DMA),” describes direct memory access (DMA) and the
DMA interfaces.

Chapter 10, “Mapping Device and Kernel Memory,” describes interfaces for managing
device and kernel memory.

Chapter 11, “Device Context Management,” describes the set of interfaces that enable device
drivers to manage user access to devices.

Chapter 12, “Power Management,” explains the interfaces for Power Management, a

framework for managing power consumption.

Chapter 13, “Hardening Solaris Drivers,” describes how to integrate fault management
capabilities into I/O device drivers, how to incorporate defensive programming practices,
and how to use the driver hardening test harness.

Chapter 14, “Layered Driver Interface (LDI),” describes the LDI, which enables kernel
modules to access other devices in the system.

Chapter 15, “Drivers for Character Devices,” describes drivers for character-oriented
devices.

Chapter 16, “Drivers for Block Devices,” describes drivers for a block-oriented devices.

Chapter 17, “SCSI Target Drivers,” outlines the Sun Common SCSI Architecture (SCSA)
and the requirements for SCSI target drivers.

Writing Device Drivers « September 2010



Preface

Chapter 18, “SCSI Host Bus Adapter Drivers,” explains how to apply SCSA to SCSI Host Bus
Adapter (HBA) drivers.

Chapter 19, “Drivers for Network Devices,” describes the Generic LAN driver (GLD). The
GLDv3 framework is a function calls-based interface of MAC plugins and MAC driver
service routines and structures.

Chapter 20, “USB Drivers,” describes how to write a client USB device driver using the
USBA 2.0 framework.

Chapter 21, “Compiling, Loading, Packaging, and Testing Drivers,” provides information
on compiling, linking, and installing a driver.

Chapter 22, “Debugging, Testing, and Tuning Device Drivers,” describes techniques for
debugging, testing, and tuning drivers.

Chapter 23, “Recommended Coding Practices,” describes the recommended coding
practices for writing drivers.

Appendix A, “Hardware Overview,” discusses multi-platform hardware issues for device
drivers.

Appendix B, “Summary of Solaris DDI/DKI Services,” provides tables of kernel functions for
device drivers. Deprecated functions are indicated as well.

Appendix C, “Making a Device Driver 64-Bit Ready,” provides guidelines for updating a
device driver to run in a 64-bit environment.

Appendix D, “Console Frame Buffer Drivers,” describes how to add the necessary interfaces
to a frame buffer driver to enable the driver to interact with the Solaris kernel terminal
emulator.

Related Books and Papers

For detailed reference information about the device driver interfaces, see the section 9 man
pages. Section 9E, Intro(9E), describes DDI/DKI (Device Driver Interface, Driver-Kernel
Interface) driver entry points. Section 9F, Intro(9F), describes DDI/DKI kernel functions.
Sections 9P and 9S, Intro(9S), describe DDI/DKI properties and data structures.

For information on hardware and other driver-related issues, see the following books from Sun
Microsystems:

Device Driver Tutorial

Oracle Solaris Modular Debugger Guide
Solaris Dynamic Tracing Guide

DTrace User Guide

Application Packaging Developer’s Guide
Multithreaded Programming Guide
Solaris 64-bit Developer’s Guide
STREAMS Programming Guide

31


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=intro-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=intro-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=intro-9s
http://www.oracle.com/pls/topic/lookup?ctx=817-5789&id=drivertut
http://www.oracle.com/pls/topic/lookup?ctx=816-5041&id=moddebug
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=dynmctrcggd
http://www.oracle.com/pls/topic/lookup?ctx=819-5488&id=dtrcug
http://www.oracle.com/pls/topic/lookup?ctx=817-0406&id=packinstall
http://www.oracle.com/pls/topic/lookup?ctx=816-5137&id=mtp
http://www.oracle.com/pls/topic/lookup?ctx=816-5138&id=sol64trans
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams

Preface

= Open Boot PROM Toolkit User's Guide

The following book might also be useful:

»  SPARC International; The SPARC Architecture Manual, Version 9; Prentice Hall; 1993;
ISBN 978-0130992277

Documentation, Support, and Training

See the following web sites for additional resources:

»  Documentation (http://docs.sun.com)
m  Support (http://www.oracle.com/us/support/systems/index.html)
= Training (http://education.oracle.com) - Click the Sun link in the left navigation bar.

Oracle Welcomes Your Comments

Oracle welcomes your comments and suggestions on the quality and usefulness of its
documentation. If you find any errors or have any other suggestions for improvement, go to
http://docs.sun.comand click Feedback. Indicate the title and part number of the
documentation along with the chapter, section, and page number, if available. Please let us
know if you want a reply.

Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offersa
range of resources related to Oracle software:

= Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

= Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technology/obe/start/index.html).

= Download Sample Code (http://www.oracle.com/technology/sample code/
index.html).

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,  Edit your . login file.

and onscreen computer output
P P Use 1s -a to list all files.

machine_name% you have mail.

32 Writing Device Drivers « September 2010


http://docs.sun.com
http://www.oracle.com/us/support/systems/index.html
http://education.oracle.com
http://docs.sun.com
http://www.oracle.com/technetwork/index.html
http://forums.oracle.com
http://forums.oracle.com
http://www.oracle.com/technology/obe/start/index.html
http://www.oracle.com/technology/obe/start/index.html
http://www.oracle.com/technology/sample_code/index.html
http://www.oracle.com/technology/sample_code/index.html

Preface

TABLEP-1 Typographic Conventions (Continued)
Typeface Meaning Example
AaBbCc123 What you type, contrasted with onscreen machine_names su
computer output
Password:
aabbcecl23 Placeholder: replace with a real name or value The command to remove a file is rm
filename.
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.
emphasized
P A cacheis a copy that is stored
locally.
Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLEP-2  Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $
Bash shell, Korn shell, and Bourne shell for superuser ~ #
C shell machine name%

C shell for superuser machine_name#

33



34



PART |

Designing Device Drivers for the Solaris
Platform

The first part of this manual provides general information for developing device drivers on
the Solaris platform. This part includes the following chapters:

Chapter 1, “Overview of Solaris Device Drivers,” provides an introduction to device
drivers and associated entry points on the Solaris platform. The entry points for each
device driver type are presented in tables.

Chapter 2, “Solaris Kernel and Device Tree,” provides an overview of the Solaris kernel
with an explanation of how devices are represented as nodes in a device tree.

Chapter 3, “Multithreading,” describes the aspects of the Solaris multithreaded kernel
that are relevant for device driver developers.

Chapter 4, “Properties,” describes the set of interfaces for using device properties.

Chapter 5, “Managing Events and Queueing Tasks,” describes how device drivers log
events and how to use task queues to perform a task at a later time.

Chapter 6, “Driver Autoconfiguration,” explains the support that a driver must provide
for autoconfiguration.

Chapter 7, “Device Access: Programmed I/O,” describes the interfaces and
methodologies for drivers to read or write to device memory.

Chapter 8, “Interrupt Handlers,” describes the mechanisms for handling interrupts.
These mechanisms include allocating, registering, servicing, and removing interrupts.

35



Designing Device Drivers for the Solaris Platform

36

Chapter 9, “Direct Memory Access (DMA),” describes direct memory access (DMA) and the
DMA interfaces.

Chapter 10, “Mapping Device and Kernel Memory,” describes interfaces for managing
device and kernel memory.

Chapter 11, “Device Context Management,” describes the set of interfaces that enable device
drivers to manage user access to devices.

Chapter 12, “Power Management,” explains the interfaces for the Power Management
feature, a framework for managing power consumption.

Chapter 13, “Hardening Solaris Drivers,” describes how to integrate fault management
capabilities into I/O device drivers, how to incorporate defensive programming practices,
and how to use the driver hardening test harness.

Chapter 14, “Layered Driver Interface (LDI),” describes the LDI, which enables kernel
modules to access other devices in the system.

Writing Device Drivers « September 2010



L K R 4 CHAPTER 1

Overview of Solaris Device Drivers

This chapter gives an overview of Solaris device drivers. The chapter provides information on
the following subjects:

= “Device Driver Basics” on page 37
= “Device Driver Entry Points” on page 39
= “Considerations in Device Driver Design” on page 47

Device Driver Basics

This section introduces you to device drivers and their entry points on the Solaris platform.

WhatIs a Device Driver?

A device driver is a kernel module that is responsible for managing the low-level I/O operations
of a hardware device. Device drivers are written with standard interfaces that the kernel can call
to interface with a device. Device drivers can also be software-only, emulating a device that
exists only in software, such as RAM disks, buses, and pseudo-terminals.

A device driver contains all the device-specific code necessary to communicate with a device.
This code includes a standard set of interfaces to the rest of the system. This interface shields the
kernel from device specifics just as the system call interface protects application programs from
platform specifics. Application programs and the rest of the kernel need little, if any,
device-specific code to address the device. In this way, device drivers make the system more
portable and easier to maintain.

When the Solaris operating system (Solaris OS) is initialized, devices identify themselves and
are organized into the device tree, a hierarchy of devices. In effect, the device tree is a hardware
model for the kernel. An individual device driver is represented as a node in the tree with no
children. This type of node is referred to as a leaf driver. A driver that provides services to other
drivers is called a bus nexus driver and is shown as a node with children. As part of the boot

37



Device Driver Basics

38

process, physical devices are mapped to drivers in the tree so that the drivers can be located
when needed. For more information on how the Solaris OS accommodates devices, see
Chapter 2, “Solaris Kernel and Device Tree.”

Device drivers are classified by how they handle I/O. Device drivers fall into three broad
categories:

= Block device drivers — For cases where handling I/O data as asynchronous chunks is
appropriate. Typically, block drivers are used to manage devices with physically addressable
storage media, such as disks.

= Character device drivers — For devices that perform I/O on a continuous flow of bytes.

Note — A driver can be both block and character at the same time if you set up two different
interfaces to the file system. See “Devices as Special Files” on page 55.

Included in the character category are drivers that use the STREAMS model (see below),
programmed I/O, direct memory access, SCSI buses, USB, and other network I/O.

= STREAMS device drivers — Subset of character drivers that uses the streamio(7I) set of
routines for character I/O within the kernel.

What Is a Device Driver Entry Point?

An entry point is a function within a device driver that can be called by an external entity to get
access to some driver functionality or to operate a device. Each device driver provides a
standard set of functions as entry points. For the complete list of entry points for all driver types,
see the Intro(9E) man page. The Solaris kernel uses entry points for these general task areas:

=  Loading and unloading the driver

= Autoconfiguring the device - Autoconfiguration is the process of loading a device driver's
code and static data into memory so that the driver is registered with the system.

= Providing I/O services for the driver

Drivers for different types of devices have different sets of entry points according to the kinds of
operations the devices perform. A driver for a memory-mapped character-oriented device, for
example, supports a devmap(9E) entry point, while a block driver does not support this entry.

Use a prefix based on the name of your driver to give driver functions unique names. Typically,
this prefix is the name of the driver, such as xx_open () for the open(9E) routine of driver xx. See
“Use a Unique Prefix to Avoid Kernel Symbol Collisions” on page 521 for more information. In
subsequent examples in this book, xx is used as the driver prefix.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=intro-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e

Device Driver Entry Points

Device Driver Entry Points

This section provides lists of entry points for the following categories:

“Entry Points Common to All Drivers” on page 39
“Entry Points for Block Device Drivers” on page 42
“Entry Points for Character Device Drivers” on page 43
“Entry Points for STREAMS Device Drivers” on page 44
“Entry Points for Memory Mapped Devices” on page 45
“Entry Points for Network Device Drivers” on page 45
“Entry Points for SCSI HBA Drivers” on page 46

“Entry Points for PC Card Drivers” on page 47

Entry Points Common to All Drivers

Some operations can be performed by any type of driver, such as the functions that are required
for module loading and for the required autoconfiguration entry points. This section discusses
types of entry points that are common to all drivers. The common entry points are listed in
“Summary of Common Entry Points” on page 40 with links to man pages and other relevant
discussions.

Device Access Entry Points

Drivers for character and block devices export the cb_ops(9S) structure, which defines the
driver entry points for block device access and character device access. Both types of drivers are
required to support the open(9E) and close(9E) entry points. Block drivers are required to
support strategy(9E), while character drivers can choose to implement whatever mix of
read(9E), write(9E), ioct1(9E), mmap(9E), or devmap(9E) entry points is appropriate for the
type of device. Character drivers can also support a polling interface through chpol1(9E).
Asynchronous I/O is supported through aread(9E) and awrite(9E) for block drivers and those
drivers that can use both block and character file systems.

Loadable Module Entry Points
All drivers are required to implement the loadable module entry points _init(9E), fini(9E),

and info(9E) toload, unload, and report information about the driver module.

Drivers should allocate and initialize any global resources in _init(9E). Drivers should release
their resourcesin _fini(9E).

Note - In the Solaris OS, only the loadable module routines must be visible outside the driver
object module. Other routines can have the storage class static.

Chapter 1 « Overview of Solaris Device Drivers 39


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=aread-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=awrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e

Device Driver Entry Points

Autoconfiguration Entry Points

Drivers are required to implement the attach(9E), detach(9E), and getinfo(9E) entry points
for device autoconfiguration. Drivers can also implement the optional entry point probe(9E) in
cases where devices do not identify themselves during boot-up, such as SCSI target devices. See
Chapter 6, “Driver Autoconfiguration,” for more information on these routines.

Kernel Statistics Entry Points

The Solaris platform provides a rich set of interfaces to maintain and export kernel-level
statistics, also known as kstats. Drivers are free to use these interfaces to export driver and
device statistics that can be used by user applications to observe the internal state of the driver.
Two entry points are provided for working with kernel statistics:

= ks_snapshot(9E) captures kstats at a specific time.
m ks update(9E) can be used to update kstat data at will. ks_update() is useful in situations
where a device is set up to track kernel data but extracting that data is time-consuming.

For further information, see the kstat_create(9F) and kstat(9S) man pages. See also “Kernel
Statistics” on page 513.

Power Management Entry Point

Drivers for hardware devices that provide Power Management functionality can support the
optional power(9E) entry point. See Chapter 12, “Power Management,” for details about this
entry point.

Summary of Common Entry Points
The following table lists entry points that can be used by all types of drivers.

TABLE 1-1  Entry Points for All Driver Types
Category / Entry Point Usage Description
cb_ops Entry Points
open(9E) Required Gets access to a device. Additional information:
= “open() Entry Point (Character Drivers)” on page 286
= “open() Entry Point (Block Drivers)” on page 313
close(9E) Required Gives up access to a device. The version of close () for STREAMS drivers hasa

different signature than character and block drivers. Additional information:
B “close() Entry Point (Character Drivers)” on page 288
B “close() Entry Point (Block Drivers)” on page 314

Loadable Module Entry Points

40

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ks-snapshot-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ks-update-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kstat-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=kstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e

Device Driver Entry Points

TABLE 1-1  Entry Points for All Driver Types (Continued)

Category / Entry Point Usage Description

_init(9E) Required Initializes a loadable module. Additional information: “Loadable Driver
Interfaces” on page 97

_fini(9E) Required Prepares a loadable module for unloading. Required for all driver types.
Additional information: “Loadable Driver Interfaces” on page 97

_info(9E) Required Returns information about a loadable module. Additional information:
“Loadable Driver Interfaces” on page 97

Autoconfiguration Entry Points

attach(9E) Required Adds a device to the system as part of initialization. Also used to resume a
system that has been suspended. Additional information: “attach () Entry
Point” on page 104

detach(9E) Required Detaches a device from the system. Also, used to suspend a device temporarily.
Additional information: “detach () Entry Point” on page 109

getinfo(9E) Required Gets device information that is specific to the driver, such as the mapping
between a device number and the corresponding instance. Additional
information:
® “getinfo() Entry Point” on page 110
® “getinfo() Entry Point (SCSI Target Drivers)” on page 342.

probe(9E) See Determines if a non-self-identifying device is present. Required for a device

Description  that cannot identify itself. Additional information:

® “probe() Entry Point” on page 101
® “probe() Entry Point (SCSI Target Drivers)” on page 337

Kernel Statistics Entry Points

ks _snapshot(9E) Optional Takes a snapshot of kstat(9S) data. Additional information: “Kernel Statistics”
on page 513

ks update(9E) Optional Updates kstat(9S) data dynamically. Additional information: “Kernel
Statistics” on page 513

Power Management Entry Point

power(9E) Required Sets the power level of a device. If not used, set to NULL. Additional
information: “power () Entry Point” on page 208

Miscellaneous Entry Points

prop_op(9E) See Reports driver property information. Required unless ddi_prop_op(9F) is

Description  substituted. Additional information:

® “Creating and Updating Properties” on page 76
® “prop_op() Entry Point” on page 78

Chapter 1 « Overview of Solaris Device Drivers 41


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ks-snapshot-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=kstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ks-update-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=kstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=prop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-op-9f

Device Driver Entry Points

TABLE 1-1  Entry Point

s for All Driver Types (Continued)

Category / Entry Point Usage Description
dump(9E) See Dumps memory to a device during system failure. Required for any device that
Description  is to be used as the dump device during a panic. Additional information:
= “dump() Entry Point (Block Drivers)” on page 325
= “Dump Handling” on page 350
identify(9E) Obsolete Do not use this entry point. Assign nulldev(9F) to this entry point in the

dev ops structure.

Entry Points for Block Device Drivers

Devices that support a file system are known as block devices. Drivers written for these devices
are known as block device drivers. Block device drivers take a file system request, in the form of
a buf(9S) structure, and issue the I/O operations to the disk to transfer the specified block. The
main interface to the file system is the strategy(9E) routine. See Chapter 16, “Drivers for Block
Devices,” for more information.

A block device driver can also provide a character driver interface to enable utility programs to
bypass the file system and to access the device directly. This device access is commonly referred
to as the raw interface to a block device.

The following table lists additional entry points that can be used by block device drivers. See
also “Entry Points Common to All Drivers” on page 39.

TABLE 1-2  Additional Entry Points for Block Drivers

Entry Point

Usage Description

aread(9E)

awrite(9E)

print(9E)

Optional Performs an asynchronous read. Drivers that do not support an aread() entry
point should use the nodev(9F) error return function. Additional information:
® “Differences Between Synchronous and Asynchronous I/O” on page 291
= “DMA Transfers (Asynchronous)” on page 294

Optional Performs an asynchronous write. Drivers that do not supportan awrite()
entry point should use the nodev(9F) error return function. Additional
information:
® “Differences Between Synchronous and Asynchronous I/O” on page 291

= “DMA Transfers (Asynchronous)” on page 294

Required Displays a driver message on the system console. Additional information:
“print() Entry Point (Block Drivers)” on page 325

42

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=aread-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=awrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=print-9e

Device Driver Entry Points

TABLE 1-2  Additional Entry Points for Block Drivers (Continued)

Entry Point

Usage Description

strategy(9E)

Required Perform block I/O. Additional information:
® “Canceling DMA Callbacks” on page 169
®  “DMA Transfers (Synchronous)” on page 293
® “strategy() Entry Point” on page 296
® “DMA Transfers (Asynchronous)” on page 294
®  “General Flow of Control” on page 331
® “x86 Target Driver Configuration Properties” on page 400

Entry Points for Character Device Drivers

Character device drivers normally perform I/O in a byte stream. Examples of devices that use
character drivers include tape drives and serial ports. Character device drivers can also provide
additional interfaces not present in block drivers, such as I/O control (ioctl) commands,
memory mapping, and device polling. See Chapter 15, “Drivers for Character Devices,” for
more information.

The main task of any device driver is to perform I/O, and many character device drivers do what
is called byte-stream or character 1/O. The driver transfers data to and from the device without
using a specific device address. This type of transfer is in contrast to block device drivers, where
part of the file system request identifies a specific location on the device.

The read(9E) and write(9E) entry points handle byte-stream I/O for standard character
drivers. See “I/O Request Handling” on page 288 for more information.

The following table lists additional entry points that can be used by character device drivers. For
other entry points, see “Entry Points Common to All Drivers” on page 39.

TABLE 1-3  Additional Entry Points for Character Drivers

Entry Point Usage Description

chpol1(9E) Optional Polls events for a non-STREAMS character driver. Additional information:
“Multiplexing I/O on File Descriptors” on page 298

ioctl(9E) Optional Performs a range of I/O commands for character drivers. ioct1() routines

must make sure that user data is copied into or out of the kernel address space
explicitly using copyin(9F), copyout(9F), ddi_copyin(9F), and
ddi_copyout(9F), as appropriate. Additional information:

® “joctl() Entry Point (Character Drivers)” on page 300

® “Well Known ioctl Interfaces” on page 583

Chapter 1 « Overview of Solaris Device Drivers 43


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyout-9f

Device Driver Entry Points

TABLE 1-3  Additional Entry Points for Character Drivers (Continued)

Entry Point Usage Description

read(9E) Required Reads data from a device. Additional information:
® “Vectored I/O” on page 289

®  “Differences Between Synchronous and Asynchronous I/O” on page 291
® “Programmed I/O Transfers” on page 291
® “DMA Transfers (Synchronous)” on page 293
® “General Flow of Control” on page 331
segmap(9E) Optional Maps device memory into user space. Additional information:

= “Exporting the Mapping” on page 177
® “Allocating Kernel Memory for User Access” on page 183
B “Associating User Mappings With Driver Notifications” on page 197

write(9E) Required Writes data to a device. Additional information:
“Device Access Functions” on page 118
“Vectored I/O” on page 289
“Differences Between Synchronous and Asynchronous I/O” on page 291

o

L}

]

® “Programmed I/O Transfers” on page 291

= “DMA Transfers (Synchronous)” on page 293
]

“General Flow of Control” on page 331

Entry Points for STREAMS Device Drivers

STREAMS is a separate programming model for writing a character driver. Devices that receive
data asynchronously, such as terminal and network devices, are suited to a STREAMS
implementation. STREAMS device drivers must provide the loading and autoconfiguration
support described in Chapter 6, “Driver Autoconfiguration.” See the STREAMS Programming
Guide for additional information on how to write STREAMS drivers.

The following table lists additional entry points that can be used by STREAMS device drivers.
For other entry points, see “Entry Points Common to All Drivers” on page 39 and “Entry Points
for Character Device Drivers” on page 43.

TABLE 1-4 Entry Points for STREAMS Drivers

Entry Point Usage Description

put(9E) See Coordinates the passing of messages from one queue to the next queue in a
Description  stream. Required, except for the side of the driver that reads data. Additional
information: STREAMS Programming Guide

srv(9E) Required Manipulate messages in a queue. Additional information: STREAMS
Programming Guide

44 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=put-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=srv-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams

Device Driver Entry Points

Entry Points for Memory Mapped Devices

For certain devices, such as frame buffers, providing application programs with direct access to
device memory is more efficient than byte-stream I/O. Applications can map device memory
into their address spaces using the mmap(2) system call. To support memory mapping, device
drivers implement segmap(9E) and devmap(9E) entry points. For information on devmap(9E),
see Chapter 10, “Mapping Device and Kernel Memory.” For information on segmap(9E), see
Chapter 15, “Drivers for Character Devices”

Drivers that define the devmap(9E) entry point usually do not define read(9E) and write(9E)
entry points, because application programs perform I/O directly to the devices after calling
mmap(2).

The following table lists additional entry points that can be used by character device drivers that
use the devmap framework to perform memory mapping. For other entry points, see “Entry
Points Common to All Drivers” on page 39 and “Entry Points for Character Device Drivers” on
page 43.

TABLE 1-5 Entry Points for Character Drivers That Use devmap for Memory Mapping

Entry Point Usage Description

devmap(9E) Required Validates and translates virtual mapping for a memory-mapped device.
Additional information: “Exporting the Mapping” on page 177

devmap_access(9E) Optional Notifies drivers when an access is made to a mapping with validation or
protection problems. Additional information: “devmap_access () Entry Point”
on page 191

devmap_contextmgt(9E) Required Performs device context switching on a mapping. Additional information:
“devmap_contextmgt () Entry Point” on page 193

devmap_dup(9E) Optional Duplicates a device mapping. Additional information: “devmap_dup () Entry
Point” on page 194

devmap _map(9E) Optional Creates a device mapping. Additional information: “devmap_map () Entry
Point” on page 190

devmap_unmap(9E) Optional Cancels a device mapping. Additional information: “devmap_unmap () Entry

Point” on page 195

Entry Points for Network Device Drivers

See Table 19-1 for a list of entry points for network device drivers that use the Generic LAN
Driver version 3 (GLDv3) framework. For more information, see “GLDv3 Network Device
Driver Framework” on page 403 and “GLDv3 MAC Registration Functions” on page 404 in
Chapter 19, “Drivers for Network Devices.”

Chapter 1 « Overview of Solaris Device Drivers 45


http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-map-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-unmap-9e

Device Driver Entry Points

Entry Points for SCSI HBA Drivers

The following table lists additional entry points that can be used by SCST HBA device drivers.
For information on the SCSI HBA transport structure, see scsi_hba_tran(9S). For other entry
points, see “Entry Points Common to All Drivers” on page 39 and “Entry Points for Character
Device Drivers” on page 43.

TABLE1-6  Additional Entry Points for SCST HBA Drivers

Entry Point Usage Description

tran_abort(9E) Required Aborts a specified SCSI command that has been transported to a SCSI Host Bus
Adapter (HBA) driver. Additional information: “tran_abort () Entry Point” on
page 395

tran bus reset(9E) Optional Resets a SCSI bus. Additional information: “tran_bus_reset () Entry Point” on
page 396

tran destroy pkt(9E) Required Frees resources that are allocated for a SCSI packet. Additional information:
“tran_destroy_pkt() Entry Point” on page 382

tran dmafree(9E) Required Frees DMA resources that have been allocated for a SCSI packet. Additional
information: “tran_dmafree() Entry Point” on page 383

tran_getcap(9E) Required Gets the current value of a specific capability that is provided by the HBA driver.
Additional information: “tran_getcap () Entry Point” on page 390

tran init pkt(9E) Required Allocate and initialize resources for a SCSI packet. Additional information:
“Resource Allocation” on page 375

tran_quiesce(9E) Optional Stop all activity on a SCSI bus, typically for dynamic reconfiguration.
Additional information: “Dynamic Reconfiguration” on page 397

tran reset(9E) Required Resets a SCSI bus or target device. Additional information: “tran_reset()
Entry Point” on page 395

tran reset notify(9E) Optional Requests notification of a SCSI target device for a bus reset. Additional
information: “tran_reset notify() Entry Point” on page 396

tran_setcap(9E) Required Sets the value of a specific capability that is provided by the SCSTHBA driver.
Additional information: “tran_setcap () Entry Point” on page 392

tran_start(9E) Required Requests the transport of a SCSI command. Additional information:
“tran_start() Entry Point” on page 384

tran sync pkt(9E) Required Synchronizes the view of data by an HBA driver or device. Additional
information: “tran_sync_pkt () Entry Point” on page 383

tran tgt free(9E) Optional Requests allocated SCSI HBA resources to be freed on behalf of a target device.

Additional information:
® “tran_tgt_free() Entry Point” on page 375
® “Transport Structure Cloning” on page 364

46 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-free-9e

Considerations in Device Driver Design

TABLE 1-6 Additional Entry Points for SCSI HBA Drivers (Continued)

Entry Point

Usage Description

tran tgt init(9E)

tran tgt probe(9E)

tran unquiesce(9E)

Optional Requests SCSI HBA resources to be initialized on behalf of a target device.
Additional information:
® “tran_tgt_init() Entry Point” on page 374
B “scsi_device Structure” on page 360

Optional Probes a specified target on a SCSI bus. Additional information:
“tran_tgt_probe() Entry Point” on page 374

Optional Resumes I/O activity on a SCSI bus after tran_quiesce(9E) has been called,
typically for dynamic reconfiguration. Additional information: “Dynamic
Reconfiguration” on page 397

Entry Points for PC Card Drivers

The following table lists additional entry points that can be used by PC Card device drivers. For
other entry points, see “Entry Points Common to All Drivers” on page 39 and “Entry Points for
Character Device Drivers” on page 43.

TABLE 1-7 Entry Points for PC Card Drivers Only

Entry Point

Usage Description

csx_event_handler(9E) Required Handles events for a PC Card driver. The driver must call the

csx_RegisterClient(9F) function explicitly to set the entry point instead of
using a structure field like cb_ops.

Considerations in Device Driver Design

A device driver must be compatible with the Solaris OS, both as a consumer and provider of
services. This section discusses the following issues, which should be considered in device
driver design:

“DDI/DKI Facilities” on page 47

“Driver Context” on page 50

“Returning Errors” on page 50

“Dynamic Memory Allocation” on page 51

“Hotplugging” on page 51

DDI/DKI Facilities

The Solaris DDI/DKI interfaces are provided for driver portability. With DDI/DKI, developers
can write driver code in a standard fashion without having to worry about hardware or platform
differences. This section describes aspects of the DDI/DKI interfaces.

Chapter 1 « Overview of Solaris Device Drivers 47


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-unquiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=csx-event-handler-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=csx-registerclient-9f

Considerations in Device Driver Design

48

Device IDs

The DDI interfaces enable drivers to provide a persistent, unique identifier for a device. The
device ID can be used to identify or locate a device. The ID is independent of the device's name
or number (dev_t). Applications can use the functions defined in 1ibdevid(3LIB) to read and
manipulate the device IDs registered by the drivers.

Device Properties

The attributes of a device or device driver are specified by properties. A property is a name-value
pair. The name is a string that identifies the property with an associated value. Properties can be
defined by the FCode of a self-identifying device, by a hardware configuration file (see the
driver.conf(4) man page), or by the driver itself using the ddi_prop_update(9F) family of
routines.

Interrupt Handling
The DDI/DKI addresses the following aspects of device interrupt handling:

= Registering device interrupts with the system
= Removing device interrupts
= Dispatching interrupts to interrupt handlers

Device interrupt sources are contained in a property called interrupt, which is either provided
by the PROM of a self-identifying device, in a hardware configuration file, or by the booting
system on the x86 platform.

Callback Functions

Certain DDI mechanisms provide a callback mechanism. DDI functions provide a mechanism
for scheduling a callback when a condition is met. Callback functions can be used for the
following typical conditions:

= A transfer has completed
= Aresource has become available
= Atime-out period has expired

Callback functions are somewhat similar to entry points, for example, interrupt handlers. DDI
functions that allow callbacks expect the callback function to perform certain tasks. In the case
of DMA routines, a callback function must return a value indicating whether the callback
function needs to be rescheduled in case of a failure.

Callback functions execute as a separate interrupt thread. Callbacks must handle all the usual
multithreading issues.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-9f

Considerations in Device Driver Design

Note - A driver must cancel all scheduled callback functions before detaching a device.

Software State Management

To assist device driver writers in allocating state structures, the DDI/DKI provides a set of
memory management routines called the software state management routines, also known as
the soft-state routines. These routines dynamically allocate, retrieve, and destroy memory items
of a specified size, and hide the details of list management. An instance number is used to
identify the desired memory item. This number is typically the instance number assigned by the
system.

Routines are provided for the following tasks:

Initialize a driver's soft-state list

Allocate space for an instance of a driver's soft state
Retrieve a pointer to an instance of a driver's soft state
Free the memory for an instance of a driver's soft state
Finish using a driver's soft-state list

See “Loadable Driver Interfaces” on page 97 for an example of how to use these routines.

Programmed 1/0 Device Access

Programmed I/O device access is the act of reading and writing of device registers or device
memory by the host CPU. The Solaris DDI provides interfaces for mapping a device's registers
or memory by the kernel as well as interfaces for reading and writing to device memory from
the driver. These interfaces enable drivers to be developed that are platform and bus
independent, by automatically managing any difference in device and host endianness as well as
by enforcing any memory-store sequence requirements imposed by the device.

Direct Memory Access (DMA)

The Solaris platform defines a high-level, architecture-independent model for supporting
DMA-capable devices. The Solaris DDI shields drivers from platform-specific details. This
concept enables a common driver to run on multiple platforms and architectures.

Layered Driver Interfaces

The DDI/DKI provides a group of interfaces referred to as layered device interfaces (LDI).
These interfaces enable a device to be accessed from within the Solaris kernel. This capability
enables developers to write applications that observe kernel device usage. For example, both the
prtconf(1M) and fuser(1M) commands use LDI to enable system administrators to track
aspects of device usage. The LDI is covered in more detail in Chapter 14, “Layered Driver
Interface (LDI)”

Chapter 1 « Overview of Solaris Device Drivers 49


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fuser-1m

Considerations in Device Driver Design

50

Driver Context

The driver context refers to the condition under which a driver is currently operating. The
context limits the operations that a driver can perform. The driver context depends on the
executing code that is invoked. Driver code executes in four contexts:

= User context. A driver entry point has user context when invoked by a user thread in a
synchronous fashion. That is, the user thread waits for the system to return from the entry
point that was invoked. For example, the read(9E) entry point of the driver has user context
when invoked by a read(2) system call. In this case, the driver has access to the user area for
copying data into and out of the user thread.

= Kernel context. A driver function has kernel context when invoked by some part of the
kernel. In a block device driver, the strategy(9E) entry point can be called by the pageout
daemon to write pages to the device. Because the page daemon has no relation to the current
user thread, strategy(9E) has kernel context in this case.

= Interrupt context.Interrupt context is a more restrictive form of kernel context. Interrupt
context is invoked as a result of the servicing of an interrupt. Driver interrupt routines
operate in interrupt context with an associated interrupt level. Callback routines also
operate in an interrupt context. See Chapter 8, “Interrupt Handlers,” for more information.

= High-level interrupt context.High-level interrupt context is a more restricted form of
interrupt context. If ddi_intr_hilevel(9F) indicates that an interrupt is high level, the
driver interrupt handler runs in high-level interrupt context. See Chapter 8, “Interrupt
Handlers,” for more information.

The manual pages in section 9F document the allowable contexts for each function. For
example, in kernel context the driver must not call copyin(9F).

Returning Errors

Device drivers do not usually print messages, except for unexpected errors such as data
corruption. Instead, the driver entry points should return error codes so that the application
can determine how to handle the error. Use the cmn_err(9F) function to write messages to a
system log that can then be displayed on the console.

The format string specifier interpreted by cmn_err(9F) is similar to the printf(3C) format
string specifier, with the addition of the format %b, which prints bit fields. The first character of
the format string can have a special meaning. Calls to cmn_err(9F) also specify the message
level, which indicates the severity label to be printed. See the cmn_err(9F) man page for more
details.

The level CE_PANIC has the side effect of crashing the system. This level should be used only if
the system is in such an unstable state that to continue would cause more problems. The level
can also be used to get a system core dump when debugging. CE_PANIC should not be used in
production device drivers.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-hilevel-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cmn-err-9f

Considerations in Device Driver Design

Dynamic Memory Allocation

Device drivers must be prepared to simultaneously handle all attached devices that the drivers
claim to drive. The number of devices that the driver handles should not be limited. All
per-device information must be dynamically allocated.

void *kmem alloc(size t size, int flag);

The standard kernel memory allocation routine is kmem_alloc(9F). kmem_alloc() is similar to
the Clibrary routine malloc(3C), with the addition of the flag argument. The flag argument
can be either KM_SLEEP or KM_NOSLEEP, indicating whether the caller is willing to block if the
requested size is not available. If KM_NOSLEEP is set and memory is not available,

kmem alloc(9F) returns NULL.

kmem zalloc(9F) is similar to kmem alloc(9F), but also clears the contents of the allocated
memory.

Note - Kernel memory is a limited resource, not pageable, and competes with user applications
and the rest of the kernel for physical memory. Drivers that allocate a large amount of kernel
memory can cause system performance to degrade.

void kmem free(void *cp, size t size);

Memory allocated by kmem_alloc(9F) or by kmem_zalloc(9F) is returned to the system with
kmem_free(9F). kmem_free() is similar to the Clibrary routine f ree(3C), with the addition of
the size argument. Drivers must keep track of the size of each allocated object in order to call
kmem_free(9F) later.

Hotplugging

This manual does not highlight hotplugging information. If you follow the rules and
suggestions for writing device drivers given in this book, your driver should be able to handle
hotplugging. In particular, make sure that both autoconfiguration (see Chapter 6, “Driver
Autoconfiguration”) and detach(9E) work correctly in your driver. In addition, if you are
designing a driver that uses power management, you should follow the information given in
Chapter 12, “Power Management.” SCSI HBA drivers might need to add a cb_ops structure to
their dev_ops structure (see Chapter 18, “SCSI Host Bus Adapter Drivers”) to take advantage of
hotplugging capabilities.

Previous versions of the Solaris OS required hotpluggable drivers to include a DT_HOTPLUG
property, but this property is no longer required. Driver writers are free, however, to include
and use the DT_HOTPLUG property as they see fit.

Chapter 1 « Overview of Solaris Device Drivers 51


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=free-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

52



L K R 4 CHAPTER 2

Solaris Kernel and Device Tree

A device driver needs to work transparently as an integral part of the operating system.
Understanding how the kernel works is a prerequisite for learning about device drivers. This
chapter provides an overview of the Solaris kernel and device tree. For an overview of how
device drivers work, see Chapter 1, “Overview of Solaris Device Drivers”

This chapter provides information on the following subjects:

“What Is the Kernel?” on page 53

“Multithreaded Execution Environment” on page 55
“Virtual Memory” on page 55

“Devices as Special Files” on page 55

“DDI/DKI Interfaces” on page 56

“Device Tree Components” on page 57

“Displaying the Device Tree” on page 58

“Binding a Driver to a Device” on page 60

What Is the Kernel?

The Solaris kernel is a program that manages system resources. The kernel insulates
applications from the system hardware and provides them with essential system services such as
input/output (I/O) management, virtual memory, and scheduling. The kernel consists of object
modules that are dynamically loaded into memory when needed.

The Solaris kernel can be divided logically into two parts: the first part, referred to as the kernel,
manages file systems, scheduling, and virtual memory. The second part, referred to as the I/O
subsystem, manages the physical components.

The kernel provides a set of interfaces for applications to use that are accessible through system
calls. System calls are documented in section 2 of the Reference Manual Collection (see
Intro(2)). Some system calls are used to invoke device drivers to perform I/O. Device drivers are
loadable kernel modules that manage data transfers while insulating the rest of the kernel from

53


http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=intro-2

What s the Kernel?

54

the device hardware. To be compatible with the operating system, device drivers need to be able
to accommodate such features as multithreading, virtual memory addressing, and both 32-bit

and 64-bit operation.

The following figure illustrates the kernel. The kernel modules handle system calls from

application programs. The I/O modules communicate with hardware.

FIGURE2-1 Solaris Kernel
Application programs
User
level
Kernel
v v v v v level
Process Memory File systems Device Networkin
management | | management Y control 9
. Network
File systems
dz:)a;:mo(jr; ) Virtual Character | | Subsystems
code memory Block drivers NIC
drivers drivers
A A A A T
1 1 Hardware
v v v v ¢ level
Serial ports,
GPU RAM Disks specia etorkc
oards

The kernel provides access to device drivers through the following features:

Writing Device Drivers « September 2010

Device-to-driver mapping. The kernel maintains the device tree. Each node in the tree
represents a virtual or a physical device. The kernel binds each node to a driver by matching
the device node name with the set of drivers installed in the system. The device is made

accessible to applications only if there is a driver binding.




What s the Kernel?

= DDI/DKI interfaces. DDI/DKI (Device Driver Interface/Driver-Kernel Interface)
interfaces standardize interactions between the driver and the kernel, the device hardware,
and the boot/configuration software. These interfaces keep the driver independent from the
kernel and improve the driver's portability across successive releases of the operating system
on a particular machine.

=  LDI. The LDI (Layered Driver Interface) is an extension of the DDI/DKI. The LDI enables a
kernel module to access other devices in the system. The LDI also enables you to determine
which devices are currently being used by the kernel. See Chapter 14, “Layered Driver
Interface (LDI)”

Multithreaded Execution Environment

The Solaris kernel is multithreaded. On a multiprocessor machine, multiple kernel threads can
be running kernel code, and can do so concurrently. Kernel threads can also be preempted by
other kernel threads at any time.

The multithreading of the kernel imposes some additional restrictions on device drivers. For
more information on multithreading considerations, see Chapter 3, “Multithreading.” Device
drivers must be coded to run as needed at the request of many different threads. For each
thread, a driver must handle contention problems from overlapping I/O requests.

Virtual Memory

A complete overview of the Solaris virtual memory system is beyond the scope of this book, but
two virtual memory terms of special importance are used when discussing device drivers:
virtual address and address space.

= Virtual address. A virtual address is an address that is mapped by the memory management
unit (MMU) to a physical hardware address. All addresses directly accessible by the driver
are kernel virtual addresses. Kernel virtual addresses refer to the kernel address space.

= Address space. An address space is a set of virtual address segments. Each segment is a
contiguous range of virtual addresses. Each user process has an address space called the user
address space. The kernel has its own address space, called the kernel address space.

Devices as Special Files

Devices are represented in the file system by special files. In the Solaris OS, these files reside in
the /devices directory hierarchy.

Special files can be of type block or character. The type indicates which kind of device driver
operates the device. Drivers can be implemented to operate on both types. For example, disk
drivers export a character interface for use by the fsck(1) and mkfs (1) utilities, and a block
interface for use by the file system.

Chapter2 - Solaris Kernel and Device Tree 55



What s the Kernel?

56

Associated with each special file is a device number (dev_t). A device number consists of a
major number and a minor number. The major number identifies the device driver associated
with the special file. The minor number is created and used by the device driver to further
identify the special file. Usually, the minor number is an encoding that is used to identify which
device instance the driver should access and which type of access should be performed. For
example, the minor number can identify a tape device used for backup and can specify that the
tape needs to be rewound when the backup operation is complete.

DDI/DKI Interfaces

In System V Release 4 (SVR4), the interface between device drivers and the rest of the UNIX
kernel was standardized as the DDI/DKI. The DDI/DKI is documented in section 9 of the
Reference Manual Collection. Section 9E documents driver entry points, section 9F documents
driver-callable functions, and section 9S documents kernel data structures used by device
drivers. See Intro(9E), Intro(9F), and Intro(9S).

The DDI/DKI is intended to standardize and document all interfaces between device drivers
and the rest of the kernel. In addition, the DDI/DKI enables source and binary compatibility for
drivers on any machine that runs the Solaris OS, regardless of the processor architecture,
whether SPARC or x86. Drivers that use only kernel facilities that are part of the DDI/DKI are
known as DDI/DKI-compliant device drivers.

The DDI/DKI enables you to write platform-independent device drivers for any machine that
runs the Solaris OS. These binary-compatible drivers enable you to more easily integrate
third-party hardware and software into any machine that runs the Solaris OS. The DDI/DKI is
architecture independent, which enables the same driver to work across a diverse set of machine
architectures.

Platform independence is accomplished by the design of DDI in the following areas:

= Dynamic loading and unloading of modules
= Power management
= Interrupt handling

= Accessing the device space from the kernel or a user process, that is, register mapping and
memory mapping

m  Accessing kernel or user process space from the device using DMA services

= Managing device properties

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=intro-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=intro-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=intro-9s

Overview of the Device Tree

Overview of the Device Tree

Devices in the Solaris OS are represented as a tree of interconnected device information nodes.
The device tree describes the configuration of loaded devices for a particular machine.

Device Tree Components

The system builds a tree structure that contains information about the devices connected to the
machine at boot time. The device tree can also be modified by dynamic reconfiguration
operations while the system is in normal operation. The tree begins at the root device node,
which represents the platform.

Below the root node are the branches of the device tree. A branch consists of one or more bus
nexus devices and a terminating leaf device.

A bus nexus device provides bus mapping and translation services to subordinate devices in the
device tree. PCI - PCI bridges, PCMCIA adapters, and SCSI HBAs are all examples of nexus
devices. The discussion of writing drivers for nexus devices is limited to the development of
SCSI HBA drivers (see Chapter 18, “SCSI Host Bus Adapter Drivers”).

Leaf devices are typically peripheral devices such as disks, tapes, network adapters, frame
buffers, and so forth. Leaf device drivers export the traditional character driver interfaces and
block driver interfaces. The interfaces enable user processes to read data from and write data to
either storage or communication devices.

The system goes through the following steps to build the tree:

1. The CPU isinitialized and searches for firmware.

2. The main firmware (OpenBoot, Basic Input/Output System (BIOS), or Bootconf) initializes
and creates the device tree with known or self-identifying hardware.

3. When the main firmware finds compatible firmware on a device, the main firmware
initializes the device and retrieves the device's properties.

4. The firmware locates and boots the operating system.

5. Thekernel starts at the root node of the tree, searches for a matching device driver, and
binds that driver to the device.

6. Ifthe device is a nexus, the kernel looks for child devices that have not been detected by the
firmware. The kernel adds any child devices to the tree below the nexus node.

7. The kernel repeats the process from Step 5 until no further device nodes need to be created.

Each driver exports a device operations structure dev_ops(9S) to define the operations that the
device driver can perform. The device operations structure contains function pointers for
generic operations such as attach(9E), detach(9E), and getinfo(9E). The structure also
contains a pointer to a set of operations specific to bus nexus drivers and a pointer to a set of
operations specific to leaf drivers.

Chapter2 - Solaris Kernel and Device Tree 57


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e

Overview of the Device Tree

58

The tree structure creates a parent-child relationship between nodes. This parent-child
relationship is the key to architectural independence. When a leaf or bus nexus driver requires a
service that is architecturally dependent in nature, that driver requests its parent to provide the
service. This approach enables drivers to function regardless of the architecture of the machine
or the processor. A typical device tree is shown in the following figure.

FIGURE2-2 Example Device Tree

root node
I |
pseudo PCI bus SUNW, ffb
nexus node nexus node leaf node
: I
I |
PCI bus PCI bus
nexus node nexus node
I |
ebus network ide
nexus node leaf node nexus node
I I
I | I |
fdthree o se dad sd
leaf node leaf node leaf node leaf node

The nexus nodes can have one or more children. The leaf nodes represent individual devices.

Displaying the Device Tree

The device tree can be displayed in three ways:

= The libdevinfo library provides interfaces to access the contents of the device tree
programmatically.

= The prtconf(1M) command displays the complete contents of the device tree.

= The /devices hierarchy is a representation of the device tree. Use the 1s(1) command to
view the hierarchy.

Note - /devices displays only devices that have drivers configured into the system. The
prtconf(1M) command shows all device nodes regardless of whether a driver for the device
exists on the system.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=ls-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m

Overview of the Device Tree

libdevinfo Library

The libdevinfo library provides interfaces for accessing all public device configuration data.
See the libdevinfo(3LIB) man page for a list of interfaces.

prtconf Command

The following excerpted prtconf(1M) command example displays all the devices in the system.

System Configuration: Sun Microsystems sundu
Memory size: 128 Megabytes
System Peripherals (Software Nodes):

SUNW,Ultra-5_10
packages (driver not attached)
terminal-emulator (driver not attached)
deblocker (driver not attached)
obp-tftp (driver not attached)
disk-label (driver not attached)
SUNW, builtin-drivers (driver not attached)
sun-keyboard (driver not attached)
ufs-file-system (driver not attached)
chosen (driver not attached)
openprom (driver not attached)
client-services (driver not attached)
options, instance #0
aliases (driver not attached)
memory (driver not attached)
virtual-memory (driver not attached)
pci, instance #0
pci, instance #0
ebus, instance #0
auxio (driver not attached)
power, instance #0
SUNW,pll (driver not attached)
se, instance #0
su, instance #0
su, instance #1
ecpp (driver not attached)
fdthree, instance #0
eeprom (driver not attached)
flashprom (driver not attached)
SUNW, CS4231 (driver not attached)
network, instance #0
SUNW,m64B (driver not attached)
ide, instance #0
disk (driver not attached)
cdrom (driver not attached)
dad, instance #0
sd, instance #15
pci, instance #1
pci, instance #0
pcil@8e,1000 (driver not attached)
SUNW, hme, instance #1
SUNW, isptwo, instance #0
sd (driver not attached)
st (driver not attached)

Chapter2 - Solaris Kernel and Device Tree 59


http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m

Overview of the Device Tree

sd, instance #0 (driver not attached)
sd, instance #1 (driver not attached)
sd, instance #2 (driver not attached)

SUNW, UltraSPARC-IIi (driver not attached)
SUNW, ffb, instance #0
pseudo, instance #0

/devices Directory

The /devices hierarchy provides a namespace that represents the device tree. Following is an
abbreviated listing of the /devices namespace. The sample output corresponds to the example
device tree and prtconf(1M) output shown previously.

/devices

/devices/pseudo

/devices/pci@lf,0:devctl

/devices/SUNW, ffb@le,0: ffb0o

/devices/pci@lf,0

/devices/pci@lf,0/pci@l,1

/devices/pci@lf,0/pci@l, 1/SUNW,m64B@2:m640
/devices/pci@lf,0/pci@l,1/ide@3:devctl
/devices/pci@lf,0/pci@l,1/ide@3:scsi
/devices/pci@lf,0/pci@l, 1/ebus@l
/devices/pci@lf,0/pci@l, 1/ebus@l/power@l4,724000:power button
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:a
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:b
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:0,hdlc
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:1,hdlc
/devices/pci@lf,0/pci@l,1/ebus@l/se@14,400000:a,cu
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:b,cu
/devices/pci@lf,0/pci@l, 1/ebus@l/ecpp@l4,3043bc:ecppd
/devices/pci@lf,0/pci@l, 1/ebus@l/fdthree@l4,3023f0:a
/devices/pci@lf,0/pci@l, 1/ebus@l/fdthree@l4,3023f0:a, raw
/devices/pci@lf,0/pci@l, 1/ebus@l/SUNW,CS4231@14,200000:sound,audio
/devices/pci@lf,0/pci@l, 1/ebus@l/SUNW,CS4231@14,200000:sound,audioctl
/devices/pci@lf,0/pci@l,1/ide@3
/devices/pci@lf,0/pci@l,1/ide@3/sd@2,0:a
/devices/pci@lf,0/pci@l,1/ide@3/sd@2,0:a, raw
/devices/pci@lf,0/pci@l,1/ide@3/dad@d,0:a
/devices/pci@lf,0/pci@l,1/ide@3/dad@d,0:a, raw
/devices/pci@lf,0/pciEl

/devices/pci@lf,0/pci@l/pci@2
/devices/pci@lf,0/pci@l/pci@2/SUNW, isptwo@4:devctl
/devices/pci@lf,0/pci@l/pci@2/SUNW, isptwo@4:scsi

Binding a Driver to a Device

In addition to constructing the device tree, the kernel determines the drivers that are used to
manage the devices.

60 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m

Overview of the Device Tree

Binding a driver to a device refers to the process by which the system selects a driver to manage
a particular device. The binding name is the name that links a driver to a unique device node in
the device information tree. For each device in the device tree, the system attempts to choose a

driver from a list of installed drivers.

Each device node has an associated name property. This property can be assigned either from
an external agent, such as the PROM, during system boot or from a driver. conf configuration
file. In any case, the name property represents the node name assigned to a device in the device
tree. The node name is the name visible in /devices and listed in the prtconf(1M) output.

FIGURE2-3 Device Node Names

device node names

SUNW, CS4231 glm hme
(name property)

st sd

A device node can have an associated compatible property as well. The compatible property
contains an ordered list of one or more possible driver names or driver aliases for the device.

The system uses both the compatible and the name properties to select a driver for the device.
The system first attempts to match the contents of the compatible property, if the compatible
property exists, to a driver on the system. Beginning with the first driver name on the
compatible property list, the system attempts to match the driver name to a known driver on the
system. Each entry on the list is processed until the system either finds a match or reaches the
end of the list.

If the contents of either the name property or the compatible property match a driver on the
system, then that driver is bound to the device node. If no match is found, no driver is bound to
the device node.

Chapter2 - Solaris Kernel and Device Tree 61


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m

Overview of the Device Tree

62

Generic Device Names

Some devices specify a generic device name as the value for the name property. Generic device
names describe the function of a device without actually identifying a specific driver for the
device. For example, a SCSI host bus adapter might have a generic device name of scsi. An
Ethernet device might have a generic device name of ethernet.

The compatible property enables the system to determine alternate driver names for devices
with a generic device name, for example, glm for scsi HBA device drivers or hme for ethernet
device drivers.

Devices with generic device names are required to supply a compatible property.

Note - For a complete description of generic device names, see the IEEE 1275 Open Firmware
Boot Standard.

The following figure shows a device node with a specific device name. The driver binding name
SUNW, ffb is the same name as the device node name.

FIGURE2-4 Specific Driver Node Binding

Device Node A

name = SUNW, £fb
binding name = SUNW, £fb

/devices/SUNW, ffb@le, 0:££b0

The following figure shows a device node with the generic device name display. The driver
binding name SUNW, ffb is the first name on the compatible property driver list that matches a
driver on the system driver list. In this case, display is a generic device name for frame buffers.

Writing Device Drivers « September 2010



Overview of the Device Tree

FIGURE2-5 Generic Driver Node Binding

Device Node B

name = display

compatible = fast_fb
SUNW, £fb
slow_fb

binding name = SUNW, £fb

/devices/display@le, 0:£fb0

Chapter2 - Solaris Kernel and Device Tree 63



64



L K R 4 CHAPTER 3

Multithreading

This chapter describes the locking primitives and thread synchronization mechanisms of the
Solaris multithreaded kernel. You should design device drivers to take advantage of
multithreading. This chapter provides information on the following subjects:

= “Locking Primitives” on page 65
= “Thread Synchronization” on page 68
= “Choosinga Locking Scheme” on page 72

Locking Primitives

In traditional UNIX systems, every section of kernel code terminates either through an explicit
call to sleep(1) to give up the processor or through a hardware interrupt. The Solaris OS
operates differently. A kernel thread can be preempted at any time to run another thread.
Because all kernel threads share kernel address space and often need to read and modify the
same data, the kernel provides a number of locking primitives to prevent threads from
corrupting shared data. These mechanisms include mutual exclusion locks, which are also
known as mutexes, readers/writer locks, and semaphores.

Storage Classes of Driver Data

The storage class of data is a guide to whether the driver might need to take explicit steps to
control access to the data. The three data storage classes are:

= Automatic (stack) data. Every thread has a private stack, so drivers never need to lock
automatic variables.

= Global static data. Global static data can be shared by any number of threads in the driver.
The driver might need to lock this type of data at times.

= Kernel heap data. Any number of threads in the driver can share kernel heap data, such as
data allocated by kmem_alloc(9F). The driver needs to protect shared data at all times.

65


http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=sleep-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-alloc-9f

Locking Primitives

Mutual-Exclusion Locks

A mutual-exclusion lock, or mutex, is usually associated with a set of data and regulates access
to that data. Mutexes provide a way to allow only one thread at a time access to that data. The
mutex functions are:

mutex_destroy(9F) Releases any associated storage.

mutex_ enter(9F) Acquires a mutex.

mutex exit(9F) Releases a mutex.

mutex_init(9F) Initializes a mutex.

mutex_owned(9F) Tests to determine whether the mutex is held by the current thread.

To be used in ASSERT(9F) only.

mutex_tryenter(9F) Acquires a mutex if available, but does not block.

Setting Up Mutexes

Device drivers usually allocate a mutex for each driver data structure. The mutex is typically a
field in the structure of type kmutex_t.mutex_init(9F) is called to prepare the mutex for use.
This call is usually made at attach(9E) time for per-device mutexes and _init(9E) time for
global driver mutexes.

For example,

struct xxstate *xsp;

/* .. */
mutex_init(&xsp->mu, NULL, MUTEX DRIVER, NULL);
/¥ .. */

For a more complete example of mutex initialization, see Chapter 6, “Driver
Autoconfiguration”

The driver must destroy the mutex with mutex_destroy(9F) before being unloaded. Destroying
the mutex is usually done at detach(9E) time for per-device mutexes and _fini(9E) time for
global driver mutexes.

Using Mutexes

Every section of the driver code that needs to read or write the shared data structure must do the
following tasks:

= Acquire the mutex
®m  Access the data
®  Release the mutex

66 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-owned-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=assert-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-tryenter-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e

Locking Primitives

The scope of a mutex, that is, the data the mutex protects, is entirely up to the programmer. A
mutex protects a data structure only if every code path that accesses the data structure does so
while holding the mutex.

Readers/Writer Locks

A readers/writer lock regulates access to a set of data. The readers/writer lock is so called because
many threads can hold the lock simultaneously for reading, but only one thread can hold the
lock for writing.

Most device drivers do not use readers/writer locks. These locks are slower than mutexes. The
locks provide a performance gain only when they protect commonly read data that is not
frequently written. In this case, contention for a mutex could become a bottleneck, so using a
readers/writer lock might be more efficient. The readers/writer functions are summarized in the
following table. See the rwlock(9F) man page for detailed information. The readers/writer lock
functions are:

rw_destroy(9F) Destroys a readers/writer lock

rw_downgrade(9F) Downgrades a readers/writer lock holder from writer to reader
rw_enter(9F) Acquires a readers/writer lock

rw_exit(9F) Releases a readers/writer lock

rw_init(9F) Initializes a readers/writer lock

rw_read locked(9F) Determines whether a readers/writer lock is held for read or write

rw_tryenter(9F) Attempts to acquire a readers/writer lock without waiting
rw_tryupgrade(9F) Attempts to upgrade readers/writer lock holder from reader to writer
Semaphores

Counting semaphores are available as an alternative primitive for managing threads within
device drivers. See the semaphore(9F) man page for more information. The semaphore
functions are:

sema_destroy(9F) Destroys a semaphore.

sema_init(9F) Initialize a semaphore.
sema_p(9F) Decrement semaphore and possibly block.
sema_p_sig(9F) Decrement semaphore but do not block if signal is pending. See

“Threads Unable to Receive Signals” on page 73.

Chapter3 - Multithreading 67


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rwlock-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-downgrade-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-read-locked-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-tryenter-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=rw-tryupgrade-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=semaphore-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=sema-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=sema-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=sema-p-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=sema-p-sig-9f

Thread Synchronization

sema_tryp(9F) Attempt to decrement semaphore, but do not block.

sema_v(9F) Increment semaphore and possibly unblock waiter.

Thread Synchronization

In addition to protecting shared data, drivers often need to synchronize execution among
multiple threads.

Condition Variables in Thread Synchronization

Condition variables are a standard form of thread synchronization. They are designed to be
used with mutexes. The associated mutex is used to ensure that a condition can be checked
atomically, and that the thread can block on the associated condition variable without missing
either a change to the condition or a signal that the condition has changed.

The condvar(9F) functions are:

cv_broadcast(9F) Signals all threads waiting on the condition variable.
cv_destroy(9F) Destroys a condition variable.

cv_init(9F) Initializes a condition variable.

cv_signal(9F) Signals one thread waiting on the condition variable.
cv_timedwait(9F) Waits for condition, time-out, or signal. See “Threads Unable to

Receive Signals” on page 73.
cv_timedwait sig(9F) Waits for condition or time-out.
cv_wait(9F) Waits for condition.

cv_wait sig(9F) Waits for condition or return zero on receipt of a signal. See
“Threads Unable to Receive Signals” on page 73.

Initializing Condition Variables

Declare a condition variable of type kcondvar_t for each condition. Usually, the condition
variables are declared in the driver's soft-state structure. Use cv_init(9F) to initialize each
condition variable. Similar to mutexes, condition variables are usually initialized at attach(9E)
time. A typical example of initializing a condition variable is:

cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);

68 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=sema-tryp-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=sema-v-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=condvar-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Thread Synchronization

For a more complete example of condition variable initialization, see Chapter 6, “Driver
Autoconfiguration”

Waiting for the Condition

To use condition variables, follow these steps in the code path waiting for the condition:

1. Acquire the mutex guarding the condition.
2. Test the condition.

3. Ifthe test results do not allow the thread to continue, use cv_wait(9F) to block the current
thread on the condition. The cv_wait(9F) function releases the mutex before blocking the
thread and reacquires the mutex before returning. On return from cv_wait(9F), repeat the
test.

4. After the test allows the thread to continue, set the condition to its new value. For example,
set a device flag to busy.

5. Release the mutex.

Signaling the Condition
Follow these steps in the code path to signal the condition:

1. Acquire the mutex guarding the condition.

2. Set the condition.

3. Signal the blocked thread with cv_broadcast(9F).
4. Release the mutex.

The following example uses a busy flag along with mutex and condition variables to force the
read(9E) routine to wait until the device is no longer busy before starting a transfer.

EXAMPLE 3-1 Using Mutexes and Condition Variables

static int
xxread(dev_t dev, struct uio *uiop, cred t *credp)
{

struct xxstate *xsp;

/* L. */

mutex enter(&xsp->mu);

while (xsp->busy)

cv_wait(&xsp->cv, &xsp->mu);

xsp->busy = 1;

mutex exit(&xsp->mu);

/* perform the data access */

}

static uint_t

xxintr(caddr t arg)

{
struct xxstate *xsp = (struct xxstate *)arg;
mutex enter(&xsp->mu);

Chapter3 - Multithreading 69


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e

Thread Synchronization

70

EXAMPLE 3-1  Using Mutexes and Condition Variables (Continued)

xsp->busy = 0;
cv_broadcast(&xsp->cv);
mutex exit(&xsp->mu);

cv_wait() and cv_timedwait () Functions

If a thread is blocked on a condition with cv_wait(9F) and that condition does not occur, the
thread would wait forever. To avoid that situation, use cv_timedwait(9F), which depends upon
another thread to perform a wakeup. cv_timedwait () takes an absolute wait time as an
argument. cv_timedwait () returns -1 if the time is reached and the event has not occurred.
cv_timedwait () returns a positive value if the condition is met.

cv_timedwait(9F) requires an absolute wait time expressed in clock ticks since the system was
last rebooted. The wait time can be determined by retrieving the current value with
ddi_get_lbolt(9F). The driver usually has a maximum number of seconds or microseconds to
wait, so this value is converted to clock ticks with drv_usectohz(9F) and added to the value
fromddi_get lbolt(9F).

The following example shows how to use cv_timedwait(9F) to wait up to five seconds to access
the device before returning EIO to the caller.

EXAMPLE3-2 Using cv_timedwait()

clock t cur_ticks, to;
mutex_enter(&xsp->mu);
while (xsp->busy) {
cur_ticks = ddi_get lbolt();
to = cur_ticks + drv_usectohz(5000000); /* 5 seconds from now */
if (cv_timedwait(&xsp->cv, &xsp->mu, to) == -1) {
/*
* The timeout time ’'to’ was reached without the
* condition being signaled.
*/
/* tidy up and exit */
mutex_exit(&xsp->mu);
return (EIO);
}
}
xsp->busy = 1;
mutex_exit(&xsp->mu);

Although device driver writers generally prefer to use cv_timedwait(9F) over cv_wait(9F),
sometimes cv_wait(9F) is a better choice. For example, cv_wait(9F) is better if a driver is
waiting on the following conditions:

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-lbolt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=drv-usectohz-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-lbolt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f

Thread Synchronization

= Internal driver state changes, where such a state change might require some command to be
executed, or a set amount of time to pass

= Something the driver needs to single-thread

= Some situation that is already managing a possible timeout, as when “A” depends on “B,” and
“B”is using cv_timedwait(9F)

cv_wait_sig() Function

A driver might be waiting for a condition that cannot occur or will not happen for a long time.
In such cases, the user can send a signal to abort the thread. Depending on the driver design, the
signal might not cause the driver to wake up.

cv_wait_sig(9F) allows a signal to unblock the thread. This capability enables the user to break
out of potentially long waits by sending a signal to the thread with kil1(1) or by typing the
interrupt character. cv_wait_sig(9F) returns zero if it is returning because of a signal, or
nonzero if the condition occurred. However, see “Threads Unable to Receive Signals” on

page 73 for cases in which signals might not be received.

The following example shows how to use cv_wait_sig(9F) to allow a signal to unblock the
thread.

EXAMPLE3-3 Usingcv_wait_sig()

mutex _enter(&xsp->mu);
while (xsp->busy) {
if (cv_wait sig(&xsp->cv, &xsp->mu) == 0) {
/* Signaled while waiting for the condition */
/* tidy up and exit */
mutex exit(&xsp->mu);
return (EINTR);
}
}
xsp->busy = 1;
mutex exit(&xsp->mu);

cv_timedwait_sig() Function

cv_timedwait_sig(9F)issimilarto cv_timedwait(9F)and cv_wait_sig(9F), except that
cv_timedwait_sig() returns -1 without the condition being signaled after a timeout has been
reached, or 0 if a signal (for example, kil1(2)) is sent to the thread.

Forboth cv_timedwait(9F)and cv_timedwait sig(9F), time is measured in absolute clock
ticks since the last system reboot.

Chapter3 - Multithreading 71


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=kill-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=kill-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-timedwait-sig-9f

Choosing a Locking Scheme

Choosing a Locking Scheme

72

The locking scheme for most device drivers should be kept straightforward. Using additional
locks allows more concurrency but increases overhead. Using fewer locks is less time
consuming but allows less concurrency. Generally, use one mutex per data structure, a
condition variable for each event or condition the driver must wait for, and a mutex for each
major set of data global to the driver. Avoid holding mutexes for long periods of time. Use the
following guidelines when choosing a locking scheme:

Use the multithreading semantics of the entry point to your advantage.

Make all entry points re-entrant. You can reduce the amount of shared data by changing a
static variable to automatic.

If your driver acquires multiple mutexes, acquire and release the mutexes in the same order
in all code paths.

Hold and release locks within the same functional space.

Avoid holding driver mutexes when calling DDI interfaces that can block, for example,
kmem alloc(9F) with KM SLEEP.

To look atlock usage, use lockstat(1M). Lockstat(1M) monitors all kernel lock events,
gathers frequency and timing data about the events, and displays the data.

See the Multithreaded Programming Guide for more details on multithreaded operations.

Potential Locking Pitfalls

Mutexes are not re-entrant by the same thread. If you already own the mutex, attempting to
claim this mutex a second time leads to the following panic:

panic: recursive mutex enter. mutex %x caller %x

Releasing a mutex that the current thread does not hold causes this panic:

panic: mutex adaptive exit: mutex not held by thread

The following panic occurs only on uniprocessors:

panic: lock set: lock held and only one CPU

The lock_set panic indicates that a spin mutex is held and will spin forever, because no other
CPU can release this mutex. This situation can happen if the driver forgets to release the mutex
on one code path or becomes blocked while holding the mutex.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=lockstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=lockstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5137&id=mtp

Choosing a Locking Scheme

A common cause of the lock_set panic occurs when a device with a high-level interrupt calls a
routine that blocks, such as cv_wait(9F). Another typical cause is a high-level handler grabbing
an adaptive mutex by calling mutex_enter(9F).

Threads Unable to Receive Signals

The sema_p sig(),cv _wait sig(),and cv_timedwait sig() functions can be awakened
when the thread receives a signal. A problem can arise because some threads are unable to
receive signals. For example, when close(9E) is called as a result of the application calling
close(2), signals can be received. However, when close(9E) is called from within the exit(2)
processing that closes all open file descriptors, the thread cannot receive signals. When the
thread cannot receive signals, sema_p_sig() behavesas sema_p(), cv_wait_sig() behavesas
cv_wait(),and cv_timedwait sig() behavesascv_ timedwait().

Use caution to avoid sleeping forever on events that might never occur. Events that never occur
create unkillable (defunct) threads and make the device unusable until the system is rebooted.
Signals cannot be received by defunct processes.

To detect whether the current thread is able to receive a signal, use the

ddi_can_receive sig(9F) function. Ifthe ddi_can receive sig()function returnsB_TRUE,
then the above functions can wake up on a received signal. If the

ddi can_receive sig()function returnsB_FALSE, then the above functions cannot wake up

onareceived signal. If the ddi_can_receive_sig()function returns B_FALSE, then the driver
should use an alternate means, such as the timeout(9F) function, to reawaken.

One important case where this problem occurs is with serial ports. If the remote system asserts
flow control and the close(9E) function blocks while attempting to drain the output data, a
port can be stuck until the flow control condition is resolved or the system is rebooted. Such
drivers should detect this case and set up a timer to abort the drain operation when the flow
control condition persists for an excessive period of time.

This issue also affects the qwait sig(9F) function, which is described in Chapter 7, “STREAMS
Framework - Kernel Level,” in STREAMS Programming Guide.

Chapter3 - Multithreading 73


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=close-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=exit-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-can-receive-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=qwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=frmkern7-17735
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=frmkern7-17735

74



L R 2 4 CHAPTER 4

Properties

Properties are user-defined, name-value pair structures that are managed using the DDI/DKI
interfaces. This chapter provides information on the following subjects:

= “Device Property Names” on page 76

= “Creating and Updating Properties” on page 76

= “Looking Up Properties” on page 76

= “prop_op() Entry Point” on page 78
Device Properties

Device attribute information can be represented by a name-value pair notation called a
property.

For example, device registers and onboard memory can be represented by the reg property. The
reg property is a software abstraction that describes device hardware registers. The value of the
reg property encodes the device register address location and size. Drivers use the reg property
to access device registers.

Another example is the interrupt property. An interrupt property represents the device
interrupt. The value of the interrupt property encodes the device-interrupt PIN.

Five types of values can be assigned to properties:

Byte array - Series of bytes of an arbitrary length
Integer property — An integer value

Integer array property — An array of integers

String property — A null-terminated string

String array property — A list of null-terminated strings

A property that has no value is considered to be a Boolean property. A Boolean property that
exists is true. A Boolean value that does not exist is false.

75



Device Properties

76

Device Property Names

Strictly speaking, DDI/DKI software property names have no restrictions. Certain uses are
recommended, however. The IEEE 1275-1994 Standard for Boot Firmware defines properties
as follows:

A property is a human readable text string consisting of from 1 to 31 printable characters.
Property names cannot contain upper case characters or the characters /7, “\”, “.”, “[, “]” and
“@”. Property names beginning with the character “+” are reserved for use by future revisions of
IEEE 1275-1994.

By convention, underscores are not used in property names. Use a hyphen (-) instead. By
convention, property names ending with the question mark character (?) contain values that
are strings, typically TRUE or FALSE, for example auto-boot?.

Predefined property names are listed in publications of the IEEE 1275 Working Group. See
http://playground.sun.com/1275/ for information about how to obtain these publications.
For a discussion of adding properties in driver configuration files, see the driver.conf(4) man
page. The pm(9P) and pm- components(9P) man pages show how properties are used in power
management. Read the sd(7D) man page as an example of how properties should be
documented in device driver man pages.

Creating and Updating Properties

To create a property for a driver, or to update an existing property, use an interface from the
DDI driver update interfaces such as ddi_prop_update_int(9F) or
ddi_prop_update_string(9F) with the appropriate property type. See Table 4-1 for a list of
available property interfaces. These interfaces are typically called from the driver's attach(9E)
entry point. In the following example, ddi_prop_update_string()creates a string property
called pm-hardware-state with a value of needs - suspend- resume.

/* The following code is to tell cpr that this device
* needs to be suspended and resumed.
*/
(void) ddi prop update string(device, dip,
"pm-hardware-state", "needs-suspend-resume")
In most cases, using addi_prop_update() routine is sufficient for updating a property.
Sometimes, however, the overhead of updating a property value that is subject to frequent
change can cause performance problems. See “prop_op () Entry Point” on page 78 for a
description of using a local instance of a property value to avoid using ddi_prop_update().

Looking Up Properties

A driver can request a property from its parent, which in turn can ask its parent. The driver can
control whether the request can go higher than its parent.

Writing Device Drivers « September 2010


http://playground.sun.com/1275/
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=sd-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Device Properties

For example, the esp driver in the following example maintains an integer property called
targetx-sync-speed for each target. The x in targetx-sync-speed represents the target
number. The prtconf(1M) command displays driver properties in verbose mode. The
following example shows a partial listing for the esp driver.

% prtconf -v

esp, instance #0

Driver software properties:

name <target2-sync-speed> length <4>

value <0x00000fa0>.

The following table provides a summary of the property interfaces.

TABLE4-1 Property Interface Uses

Family

Property Interfaces

Description

ddi prop lookup

ddi_prop_update

ddi prop remove

ddi prop exists(9F)

ddi prop get int(9F)
ddi prop_get int64(9F)
ddi prop lookup int array(9F)

ddi prop lookup int64 array(9F)

ddi prop lookup string(9F)

ddi prop lookup string array(9F)
ddi prop lookup byte array(9F)
ddi prop update int(9F)

ddi prop update int64(9F)

ddi prop update int array(9F)
ddi prop update string(9F)
ddi prop update string array(9F)

ddi prop update int64 array(9F)

ddi prop update byte array(9F)

ddi prop remove(9F)

Looks up a property and returns successfully if
the property exists. Fails if the property does
not exist

Looks up and returns an integer property
Looks up and returns a 64-bit integer property
Looks up and returns an integer array property

Looks up and returns a 64-bit integer array
property

Looks up and returns a string property
Looks up and returns a string array property
Looks up and returns a byte array property
Updates or creates an integer property

Updates or creates a single 64-bit integer
property

Updates or creates an integer array property
Updates or creates a string property
Updates or creates a string array property

Updates or creates a 64-bit integer array
property

Updates or creates a byte array property

Removes a property

Chapter4 - Properties

77


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-exists-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-get-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-lookup-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-lookup-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-lookup-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-lookup-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-remove-9f

Device Properties

TABLE4-1 Property Interface Uses (Continued)
Family Property Interfaces Description
ddi prop remove all(9F) Removes all properties that are associated with

adevice

78

Whenever possible, use 64-bit versions of int property interfaces such as
ddi prop update int64(9F) instead of 32-bit versions such as ddi prop update int(9F)).

prop_op() Entry Point

The prop_op(9E) entry point is generally required for reporting device properties or driver
properties to the system. If the driver does not need to create or manage its own properties, then
the ddi_prop_op(9F) function can be used for this entry point.

ddi_prop_op(9F) can be used as the prop_op(9E) entry point for a device driver when
ddi prop_op() is defined in the driver's cb_ops(9S) structure. ddi_prop_op() enables a leaf
device to search for and obtain property values from the device's property list.

If the driver has to maintain a property whose value changes frequently, you should define a
driver-specific prop_op () routine within the cb_ops structure instead of calling
ddi_prop_op(). This technique avoids the inefficiency of using ddi_prop_update()
repeatedly. The driver should then maintain a copy of the property value either within its
soft-state structure or in a driver variable.

The prop_op(9E) entry point reports the values of specific driver properties and device
properties to the system. In many cases, the ddi_prop_op(9F) routine can be used as the driver's
prop_op() entry pointin the cb_ops(9S) structure. ddi_prop_op() performs all of the required
processing. ddi_prop_op () is sufficient for drivers that do not require special processing when
handling device property requests.

However, sometimes the driver must provide a prop_op () entry point. For example, if a driver
maintains a property whose value changes frequently, updating the property with
ddi_prop_update(9F) for each change is not efficient. Instead, the driver should maintain a
shadow copy of the property in the instance's soft state. The driver would then update the
shadow copy when the value changes without using any of the ddi_prop_update() routines.
The prop_op() entry point must intercept requests for this property and use one of the
ddi_prop_update() routines to update the value of the property before passing the request to
ddi_prop_op() to process the property request.

In the following example, prop_op () intercepts requests for the temperature property. The
driver updates a variable in the state structure whenever the property changes. However, the
property is updated only when a request is made. The driver then uses ddi_prop_op() to
process the property request. If the property request is not specific to a device, the driver does
not intercept the request. This situation is indicated when the value of the dev parameter is
equal to DDI_DEV_T_ANY, the wildcard device number.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-remove-all-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=prop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=prop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=prop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-9f

Device Properties

EXAMPLE4-1 prop_op() Routine

static int
Xx_prop op(dev t dev, dev info t *dip, ddi prop op t prop op,
int flags, char *name, caddr t valuep, int *1lengthp)
{
minor_t instance;
struct xxstate *xsp;
if (dev != DDI _DEV_T ANY) {
return (ddi prop op(dev, dip, prop op, flags, name,
valuep, lengthp));
}

instance = getminor(dev);
xsp = ddi get soft state(statep, instance);
if (xsp == NULL)
return (DDI_PROP_NOTFOUND) ;
if (strcmp(name, "temperature") == 0) {
ddi prop update int(dev, dip, name, temperature);

}

/* other cases */

Chapter4 - Properties 79



80



L K R 4 CHAPTER 5

Managing Events and Queueing Tasks

Drivers use events to respond to state changes. This chapter provides the following information
on events:

= “Introduction to Events” on page 81
= “Usingddi_log_sysevent() to Log Events” on page 83
= “Defining Event Attributes” on page 84

Drivers use task queues to manage resource dependencies between tasks. This chapter provides
the following information about task queues:

“Introduction to Task Queues” on page 87
“Task Queue Interfaces” on page 88
“Using Task Queues” on page 88
“Observing Task Queues” on page 89

Managing Events

A system often needs to respond to a condition change such as a user action or system request.
For example, a device might issue a warning when a component begins to overheat, or might
start a movie player when a DVD is inserted into a drive. Device drivers can use a special
message called an event to inform the system that a change in state has taken place.

Introduction to Events

An event is a message that a device driver sends to interested entities to indicate that a change of
state has taken place. Events are implemented in the Solaris OS as user-defined, name-value pair
structures that are managed using the nvlist* functions. (See the nvlist_alloc(9F) man page.
Events are organized by vendor, class, and subclass. For example, you could define a class for
monitoring environmental conditions. An environmental class could have subclasses to
indicate changes in temperature, fan status, and power.

81


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-alloc-9f

Managing Events

When a change in state occurs, the device notifies the driver. The driver then uses the
ddi_log_sysevent(9F) function to log this event in a queue called sysevent. The sysevent
queue passes events to the user level for handling by either the syseventd daemon or
syseventconfd daemon. These daemons send notifications to any applications that have
subscribed for notification of the specified event.

Two methods for designers of user-level applications deal with events:

= Anapplication can use the routines in libsysevent(3LIB) to subscribe with the syseventd
daemon for notification when a specific event occurs.

= A developer can write a separate user-level application to respond to an event. This type of
application needs to be registered with syseventadm(1M). When syseventconfd
encounters the specified event, the application is run and deals with the event accordingly.

This process is illustrated in the following figure.

FIGURE5-1 Event Plumbing

syseventadm(1M)

Application
A
v
libsysevent sysevent. conf
7y Registry
v i
syseventd P syseventconfd
User level -~
Kernel level
Sysevent
Queue

A

ddi_ log sysevent(9F)

Driver

82 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libsysevent-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=syseventadm-1m

Managing Events

Usingddi_log_sysevent() to Log Events

Device drivers use the ddi_log_sysevent(9F) interface to generate and log events with the

system.

ddi_log_sysevent () Syntax

ddi_log_sysevent() uses the following syntax:

int ddi log sysevent(dev_info t "dip, char *vendor, char *class,
char *subclass, nvlist_t *attr-list, sysevent_id_t *eidp, int sleep-flag) ;

where:
dip

vendor

class

subclass

attr-list

A pointer to the dev_info node for this driver.

A pointer to a string that defines the driver's vendor. Third-party drivers should
use their company's stock symbol or a similarly enduring identifier. Sun-supplied
drivers use DDI_VENDOR SUNW.

A pointer to a string defining the event's class. class is a driver-specific value. An
example of a class might be a string that represents a set of environmental
conditions that affect a device. This value must be understood by the event
consumer.

A driver-specific string that represents a subset of the class argument. For
example, within a class that represents environmental conditions, an event
subclass might refer to the device's temperature. This value must be intelligible to
the event consumer.

A pointer to an nvlist_t structure that lists name-value attributes associated
with the event. Name-value attributes are driver-defined and can refer to a specific
attribute or condition of the device.

For example, consider a device that reads both CD-ROMs and DVDs. That device
could have an attribute with the name disc_type and the value equal to either
cd_romor dvd.

As with class and subclass, an event consumer must be able to interpret the
name-value pairs.

For more information on name-value pairs and the nvlist_t structure, see
“Defining Event Attributes” on page 84, as well as the nvlist_alloc(9F) man

page.

If the event has no attributes, then this argument should be set to NULL.

Chapter5 « Managing Events and Queueing Tasks 83


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-alloc-9f

Managing Events

84

eidp The address of a sysevent_id_t structure. The sysevent _id_t structure is used
to provide a unique identification for the event. ddi log sysevent(9F) returns
this structure with a system-provided event sequence number and time stamp.
See the ddi_log_sysevent(9F) man page for more information on the
sysevent id t structure.

sleep-flag A flag that indicates how the caller wants to handle the possibility of resources not
being available. If sleep-flag is set to DDI_SLEEP, the driver blocks until the
resources become available. With DDI_NOSLEEP, an allocation will not sleep and
cannot be guaranteed to succeed. If DDI_ENOMEM is returned, the driver would
need to retry the operation at a later time.

Even with DDI_SLEEP, other error returns are possible with this interface, such as
system busy, the syseventd daemon not responding, or trying to log an event in
interrupt context.

Sample Code for Logging Events

A device driver performs the following tasks to log events:

= Allocate memory for the attribute list using nvlist_alloc(9F)

= Add name-value pairs to the attribute list

= Usetheddi_log_sysevent(9F) function to log the event in the sysevent queue
= Callnvlist_free(9F) when the attribute list is no longer needed

The following example demonstrates how to use ddi_log_sysevent().

EXAMPLE5-1 Callingddi_log_sysevent()

char *vendor_name = "DDI VENDOR JGJG"
char *my class = "]JGJG event";

char *my subclass = "JGJG alert"
nvlist t *nvl;

/* .. %/
nvlist alloc(&nvl, nvflag, kmflag);
/* .. */

(void) nvlist add byte array(nvl, propname, (uchar t *)propval, proplen + 1);
/* .. */
if (ddi_log_sysevent(dip, vendor_name, my class,
my subclass, nvl, NULL, DDI SLEEP)!= DDI SUCCESS)
cmn_err(CE_WARN, "error logging system event")
nvlist free(nvl);

Defining Event Attributes

Event attributes are defined as a list of name-value pairs. The Solaris DDI provides routines and
structures for storing information in name-value pairs. Name-value pairs are retained in an
nvlist_t structure, which is opaque to the driver. The value for a name-value pair can be a

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-free-9f

Managing Events

Boolean, an int, a byte, a string, an nvlist, or an array of these data types. An int can be
defined as 16 bits, 32 bits, or 64 bits and can be signed or unsigned.

The steps in creating a list of name-value pairs are as follows.

1. Createannvlist t structure with nvlist alloc(9F).

Thenvlist_alloc() interface takes three arguments:
= nvlp - Pointer to a pointer to an nvlist_t structure

= nvflag - Flag to indicate the uniqueness of the names of the pairs. If this flag is set to
NV_UNIQUE_NAME_TYPE, any existing pair that matches the name and type of a new pair is
removed from the list. If the flag is set to NV_UNIQUE_NAME, then any existing pair with a
duplicate name is removed, regardless of its type. Specifying NV_UNIQUE_NAME_TYPE
allows a list to contain two or more pairs with the same name as long as their types are
different, whereas with Nv_UNIQUE_NAME only one instance of a pair name can be in the
list. If the flag is not set, then no uniqueness checking is done and the consumer of the list
is responsible for dealing with duplicates.

= kmflag - Flag to indicate the allocation policy for kernel memory. If this argument is set
to KM_SLEEP, then the driver blocks until the requested memory is available for
allocation. KM_SLEEP allocations might sleep but are guaranteed to succeed. KM_NOSLEEP
allocations are guaranteed not to sleep but might return NULL if no memory is currently
available.

Populate the nvlist with name-value pairs. For example, to add a string, use
nvlist_add_string(9F). Toadd an array of 32-bit integers, use
nvlist_add_int32_array(9F). Thenvlist_add_boolean(9F) man page containsa
complete list of interfaces for adding pairs.

To deallocate a list, use nvlist free(9F).

The following code sample illustrates the creation of a name-value list.

EXAMPLE5-2  Creating and Populating a Name-Value Pair List

nvlist t*
create nvlist()
{
int err;
char *str = "child"
int32_t ints[] = {0, 1, 2};
nvlist t *nvl;

err = nvlist alloc(&nvl, NV_UNIQUE NAME, 0); /* allocate list */
if (err)

return (NULL);
if ((nvlist add string(nvl, "name", str) != 0) ||

(nvlist add int32 array(nvl, "prop", ints, 3) !=0)) {
nvlist free(nvl);
return (NULL);

Chapter5 « Managing Events and Queueing Tasks

85


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-add-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-add-int32-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-add-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-free-9f

Managing Events

EXAMPLE5-2 Creating and Populating a Name-Value Pair List (Continued)
return (nvl);
Drivers can retrieve the elements of an nvlist by using a lookup function for that type, such as

nvlist_lookup_int32_array(9F), which takes as an argument the name of the pair to be
searched for.

Note - These interfaces work only if either NV_UNIQUE_NAME or NV_UNIQUE_NAME_TYPE is
specified when nvlist_alloc(9F) is called. Otherwise, ENOTSUP is returned, because the list
cannot contain multiple pairs with the same name.

A list of name-value list pairs can be placed in contiguous memory. This approach is useful for
passing the list to an entity that has subscribed for notification. The first step is to get the size of
the memory block that is needed for the list with nvlist_size(9F). The next step is to pack the
list into the buffer with nvlist_pack(9F). The consumer receiving the buffer's content can
unpack the buffer with nvlist_unpack(9E).

The functions for manipulating name-value pairs are available to both user-level and
kernel-level developers. You can find identical man pages for these functions in both man pages
section 3: Library Interfaces and Headers and in man pages section 9: DDI and DKI Kernel
Functions. For alist of functions that operate on name-value pairs, see the following table.

TABLE5-1 Functions for Using Name-Value Pairs

Man Page

Purpose / Functions

nvlist add_boolean(9F) Add name-value pairs to the list. Functions include:

nvlist alloc(9F)

nvlist add boolean(),nvlist add boolean value(),nvlist add byte(),
nvlist_add_int8(),nvlist_add_uint8(),nvlist_add_intl6(),
nvlist add uintl6(),nvlist _add_int32(),nvlist_add uint32(),
nvlist add int64(),nvlist add uint64(),nvlist add string(),
nvlist add nvlist(),nvlist add nvpair(),nvlist add boolean array(),

nvlist add_int8 array, nvlist add_uint8 array(), nvlist_add_nvlist_array(),
nvlist add byte array(),nvlist add intl6 array(),nvlist add uintl6 array(),
nvlist _add_int32 array(),nvlist_add uint32_array(),
nvlist add int64 array(),nvlist add uint64 array(),
nvlist add string array()

Manipulate the name-value list buffer. Functions include:

nvlist alloc(),nvlist free(),nvlist size(),nvlist pack(),nvlist _unpack(),
nvlist dup(),nvlist merge()

86

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-lookup-int32-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-pack-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-unpack-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=refman3f
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=refman3f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=refman9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=refman9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-add-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-alloc-9f

Queueing Tasks

TABLE5-1 Functions for Using Name-Value Pairs (Continued)

Man Page

Purpose / Functions

nvlist lookup boolean(9F)

nvlist next nvpair(9F)

nvlist remove(9F)

Search for name-value pairs. Functions include:

nvlist lookup boolean(),nvlist lookup boolean value(),nvlist lookup byte(),
nvlist lookup_int8(),nvlist lookup int16(),nvlist lookup int32(),
nvlist lookup_int64(),nvlist_lookup uint8(),nvlist lookup_uintl6(),
nvlist lookup uint32(),nvlist lookup uint64(),nvlist lookup string(),
nvlist lookup nvlist(),nvlist lookup boolean array,

nvlist lookup_byte array(),nvlist lookup_int8 array(),
nvlist_lookup_int16_array(),nvlist_lookup_int32_array(),

nvlist lookup_int64 array(),nvlist lookup uint8 array(),

nvlist lookup_uintl6_array(),nvlist lookup_uint32_array(),
nvlist_lookup_uint64 array(),nvlist_lookup_string_array(),

nvlist lookup nvlist array(),nvlist lookup pairs()

Get name-value pair data. Functions include:
nvlist next nvpair(),nvpair name(),nvpair type()
Remove name-value pairs. Functions include:

nv_remove(),nv_remove all()

Queueing Tasks

This section discusses how to use task queues to postpone processing of some tasks and delegate
their execution to another kernel thread.

Introduction to Task Queues

A common operation in kernel programming is to schedule a task to be performed at a later
time, by a different thread. The following examples give some reasons that you might want a
different thread to perform a task at a later time:

= Your current code path is time critical. The additional task you want to perform is not time

critical.

= The additional task might require grabbing a lock that another thread is currently holding.

= You cannot block in your current context. The additional task might need to block, for
example to wait for memory.

= A condition is preventing your code path from completing, but your current code path
cannot sleep or fail. You need to queue the current task to execute after the condition

disappears.

= Youneed to launch multiple tasks in parallel.

Chapter5 « Managing Events and Queueing Tasks 87


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-lookup-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-next-nvpair-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nvlist-remove-9f

Queueing Tasks

In each of these cases, a task is executed in a different context. A different context is usually a
different kernel thread with a different set of locks held and possibly a different priority. Task
queues provide a generic kernel API for scheduling asynchronous tasks.

A task queue is a list of tasks with one or more threads to service the list. If a task queue has a
single service thread, all tasks are guaranteed to execute in the order in which they are added to
the list. If a task queue has more than one service thread, the order in which the tasks will
execute is not known.

Note - If the task queue has more than one service thread, make sure that the execution of one
task does not depend on the execution of any other task. Dependencies between tasks can cause
a deadlock to occur.

Task Queue Interfaces

The following DDI interfaces manage task queues. These interfaces are defined in the
sys/sunddi.h header file. See the taskq(9F) man page for more information about these

interfaces.

ddi_taskq_t Opaque handle
TASKQ_DEFAULTPRI System default priority

DDI_SLEEP Can block for memory
DDI_NOSLEEP Cannot block for memory

ddi taskq create() Create a task queue
ddi_taskq_destroy() Destroy a task queue
ddi_taskq_dispatch() Add a task to a task queue
ddi_taskq_wait() Wait for pending tasks to complete
ddi taskq suspend() Suspend a task queue

ddi taskq suspended() Check whether a task queue is suspended
ddi_taskq_resume() Resume a suspended task queue
Using Task Queues

The typical usage in drivers is to create task queues at attach(9E). Most taskq_dispatch()
invocations are from interrupt context.

88 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=taskq-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Queueing Tasks

To study task queues used in Solaris drivers, go to http://hub.opensolaris.org/bin/view/
Main/.In the upper right corner, click Source Browser. In the Symbol field of the search area,
enter ddi_taskq_create. In the File Path field, enter amr. In the Project list, select onnv. Click
the Search button. In your search results you should see the SCSI HBA driver for Dell PERC
3DC/4SC/4DC/4Di RAID devices (amr. c).

Click the file name amr. c. The ddi taskq create() function is called in the amr_attach()
entry point. The ddi_taskq_destroy () function is called in the amr_detach () entry pointand
also in the error handling section of the amr_attach() entry point. The
ddi_taskq_dispatch() function is called in the amr_done () function, which is called in the
amr_intr() function. The amr_intr() function is an interrupt-handling function that is an
argument to the ddi_add_intr(9F) function in the amr_attach() entry point.

Observing Task Queues

This section describes two techniques that you can use to monitor the system resources that are
consumed by a task queue. Task queues export statistics on the use of system time by task queue

threads. Task queues also use DTrace SDT probes to determine when a task queue starts and

finishes execution of a task.

Task Queue Kernel Statistics Counters

Every task queue has an associated set of kstat counters. Examine the output of the following

kstat(1M) command:

$ kstat -c taskq
module: unix

instance: 0

name: ata nexus_enum tq class: taskq
crtime 53.877907833
executed 0
maxtasks 0
nactive 1
nalloc 0
priority 60
snaptime 258059.249256749
tasks 0
threads 1
totaltime 0

module: unix

instance: 0

name: callout_taskq class: taskq
crtime 0
executed 13956358
maxtasks 4
nactive 4
nalloc 0
priority 99
snaptime 258059.24981709
tasks 13956358
threads 2
totaltime 120247890619

Chapter5 « Managing Events and Queueing Tasks

89


http://hub.opensolaris.org/bin/view/Main/
http://hub.opensolaris.org/bin/view/Main/
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=kstat-1m

Queueing Tasks

90

The kstat output shown above includes the following information:

= The name of the task queue and its instance number
= The number of scheduled (tasks) and executed (executed) tasks

= The number of kernel threads processing the task queue (threads) and their priority
(priority)

= The total time (in nanoseconds) spent processing all the tasks (totaltime)

The following example shows how you can use the kstat command to observe how a counter
(number of scheduled tasks) increases over time:

$ kstat -p unix:0:callout_taskq:tasks 1 5

unix:0:callout taskq:tasks 13994642
unix:0:callout taskq:tasks 13994711
unix:0:callout taskq:tasks 13994784
unix:0:callout_taskq:tasks 13994855
unix:0:callout_taskq:tasks 13994926

Task Queue DTrace SDT Probes

Task queues provide several useful SDT probes. All the probes described in this section have the
following two arguments:

= The task queue pointer returned by ddi_taskq_create()

= The pointer to the taskq_ent_t structure. Use this pointer in your D script to extract the
function and the argument.

You can use these probes to collect precise timing information about individual task queues and
individual tasks being executed through them. For example, the following script prints the
functions that were scheduled through task queues for every 10 seconds:

# !/usr/sbin/dtrace -qs

sdt:genunix::taskq-enqueue
{
this->tq (taskg t *)arg0;
this->tge (taskg ent t *) argl;
@[this->tq->tq name,
this->tq->tq instance,

this->tqe->tgent func] = count();
}
tick-10s
{
printa ("ss(%d): %a called %@d times\n", @);
trunc(@);
}

Writing Device Drivers « September 2010



Queueing Tasks

On a particular machine, the above D script produced the following output:

callout taskq(l): genunix‘callout execute called 51 times

callout taskq(0): genunix‘callout_execute called 701 times

kmem taskq(0@): genunix‘kmem update timeout called 1 times

kmem taskq(@): genunix‘kmem hash rescale called 4 times

callout taskq(l): genunix‘calloutfexecute called 40 times

USB hid 81 pipehndl tq 1(14): usba‘hcdi cb thread called 256 times
callout taskq(0): genunix‘callout_execute called 702 times

kmem taskq(@): genunix‘kmem update timeout called 1 times

kmem taskq(@): genunix‘kmem hash rescale called 4 times

callout taskq(l): genunix‘calloutfexecute called 28 times

USB hid 81 pipehndl tq 1(14): usba‘hcdi cb thread called 228 times
callout taskq(0): genunix‘calloutfexecute called 706 times

callout taskq(1l): genunix‘callout execute called 24 times

USB hid 81 pipehndl tq 1(14): usba‘hcdi cb thread called 141 times
callout taskq(0): genunix‘calloutfexecute called 708 times

Chapter5 « Managing Events and Queueing Tasks

91



92



CHAPTER 6

Driver Autoconfiguration

Autoconfiguration means the driver loads code and static data into memory. This information
is then registered with the system. Autoconfiguration also involves attaching individual device
instances that are controlled by the driver.

This chapter provides information on the following subjects:

“Driver Loading and Unloading” on page 93
“Data Structures Required for Drivers” on page 94
“Loadable Driver Interfaces” on page 97

“Device Configuration Concepts” on page 100
“Using Device IDs” on page 112

Driver Loading and Unloading

The system loads driver binary modules from the drv subdirectory of the kernel module
directory for autoconfiguration. See “Copying the Driver to a Module Directory” on page 480.

After a module is read into memory with all symbols resolved, the system calls the _init(9E)
entry point for that module. The _init () function callsmod_install(9F), which actually loads
the module.

Note - During the call tomod_install(), other threads are able to call attach(9E) as soon as
mod_install() is called. From a programming standpoint, all _init () initialization must
occur beforemod_install() is called. If mod_install() fails (that is a nonzero value is
returned), then the initialization must be backed out.

Upon successful completion of _init (), the driver is properly registered with the system. At
this point, the driver is not actively managing any device. Device management happens as part
of device configuration.

93


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Data Structures Required for Drivers

The system unloads driver binary modules either to conserve system memory or at the explicit
request of a user. Before deleting the driver code and data from memory, the fini(9E) entry
point of the driver is invoked. The driver is unloaded, if and only if fini() returns success.

The following figure provides a structural overview of a device driver. The shaded area
highlights the driver data structures and entry points. The upper half of the shaded area
contains data structures and entry points that support driver loading and unloading. The lower
halfis concerned with driver configuration.

FIGURE6-1 Module Loading and Autoconfiguration Entry Points

| modlinkage (9S) | info ()

_fini ()
“init ()

| mod1ldrv (9S) |

| attach (9E)
detach (9E)
getinfo (9E)
probe (9E)
power (9E)

| cb_ops (9S) |

Data Structures Required for Drivers

94

To support autoconfiguration, drivers are required to statically initialize the following data
structures:

= modlinkage(9S)
= modldrv(9S)

= dev_ops(9S)

= cb ops(9S)

The data structures in Figure 5-1 are relied on by the driver. These structures must be provided
and be initialized correctly. Without these data structures, the driver might not load properly.
As aresult, the necessary routines might not be loaded. If an operation is not supported by the
driver, the address of the nodev(9F) routine can be used as a placeholder. In some instances, the
driver supports the entry point and only needs to return success or failure. In such cases, the
address of the routine nulldev(9F) can be used.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=modlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=modldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nulldev-9f

Data Structures Required for Drivers

Note - These structures should be initialized at compile-time. The driver should not access or
change the structures at any other time.

modlinkage Structure

static struct modlinkage xxmodlinkage = {
MODREV 1, /* ml_rev */
&xxmodldrv, /* ml linkage[] */
NULL /* NULL termination */

+;

The first field is the version number of the module that loads the subsystem. This field should be
MODREV_1. The second field points to driver's modldrv structure defined next. The last element
of the structure should always be NULL.

modldrv Structure

static struct modldrv xxmodldrv = {

&mod driverops, /* drv_modops */

"generic driver v1.1", /* drv_linkinfo */

&xx_dev_ops /* drv_dev_ops */
i
This structure describes the module in more detail. The first field provides information
regarding installation of the module. This field should be set to &mod_driverops for driver
modules. The second field is a string to be displayed by modinfo(1M). The second field should
contain sufficient information for identifying the version of source code that generated the
driver binary. The last field points to the driver's dev_ops structure defined in the following
section.

dev_ops Structure

static struct dev_ops xx dev ops = {

DEVO REV, /* devo _rev */

0, /* devo refcnt */

xxgetinfo, /* devo _getinfo: getinfo(9E) */
nulldev, /* devo identify: identify(9E) */
xxprobe, /* devo _probe: probe(9E) */
xxattach, /* devo attach: attach(9E) */
xxdetach, /* devo_detach: detach(9E) */
nodev, /* devo reset */

&xx_cb ops, /* devo cb ops */

NULL, /* devo_bus_ops */

&xxpower /* devo power: power(9E) */

+i

Chapter 6 « Driver Autoconfiguration 95


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=modinfo-1m

Data Structures Required for Drivers

The dev_ops(9S) structure enables the kernel to find the autoconfiguration entry points of the
device driver. The devo_rev field identifies the revision number of the structure. This field must
be set to DEVO_REV. The devo_refcnt field must be initialized to zero. The function address
fields should be filled in with the address of the appropriate driver entry point, except in the

following cases:

= Setthedevo_identify field to nulldev(9F). The identify () entry point is obsolete.
= Setthedevo probe field to nulldev(9F) if a probe(9E) routine is not needed.
= Setthedevo reset field to nodev(9F). The nodev () function returns ENXIO.

= Setthedevo power field to NULL if a power () routine is not needed. Drivers for devices that
provide Power Management functionality must have a power(9E) entry point. See
Chapter 12, “Power Management.”

The devo_cb_ops member should include the address of the cb_ops(9S) structure. The
devo bus_ops field must be set to NULL.

cb_ops Structure

static struct cb ops xx cb ops = {

xxopen,
xxclose,
xxstrategy,
xxprint,
xxdump,

xxread,
Xxwrite,
xxioctl,
xxdevmap,
nodev,
xxsegmap,
xxchpoll,
XXprop_op,
NULL,

D MP | D 64BIT,
CB_REV,
xxaread,
xxawrite

+;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

open(9E) */
close(9E) */
strategy(9E) */
print(9E) */
dump(9E) */
read(9E) */
write(9E) */
ioctl(9E) */
devmap(9E) */
mmap (9E) */
segmap (9E) */
chpoll(9E) */
prop_op(9E) */
streamtab(9S) */
cb flag */

cb rev */
aread(9E) */
awrite(9g) */

The cb_ops(9S) structure contains the entry points for the character operations and block
operations of the device driver. Any entry points that the driver does not support should be
initialized to nodev(9F). For example, character device drivers should set all the block-only
fields, such as cb_stategy, to nodev(9F). Note that the mmap(9E) entry point is maintained for
compatibility with previous releases. Drivers should use the devmap(9E) entry point for device
memory mapping. If devmap(9E) is supported, set mmap(9E) to nodev(9F).

The streamtab field indicates whether the driver is STREAMS-based. Only the network device
drivers that are discussed in Chapter 19, “Drivers for Network Devices,” are STREAMS-based.
All non-STREAMS-based drivers must set the st reamtab field to NULL.

96

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f

Loadable Driver Interfaces

The cb_flag member contains the following flags:

= TheD_MP flagindicates that the driver is safe for multithreading. The Solaris OS supports
only thread-safe drivers so D_MP must be set.

= TheD_64BIT flag causes the driver to use the uio_loffset field of the uio(9S) structure. The
driver should set the D_64BIT flag in the cb_flag field to handle 64-bit offsets properly.

= TheD_DEVMAP flag supports the devmap(9E) entry point. For information on devmap(9E), see
Chapter 10, “Mapping Device and Kernel Memory.”

cb_revisthe cb_ops structure revision number. This field must be set to CB_REV.

Loadable Driver Interfaces

Device drivers must be dynamically loadable. Drivers should also be unloadable to help
conserve memory resources. Drivers that can be unloaded are also easier to test, debug, and
patch.

Each device driver is required to implement _init(9E), fini(9E),and_info(9E) entry points
to support driver loading and unloading. The following example shows a typical
implementation of loadable driver interfaces.

EXAMPLE6-1 Loadable Interface Section

static void *statep; /* for soft state routines */
static struct cb ops xx cb ops; /* forward reference */
static struct dev ops xx ops = {

DEVO REV,

o,

xxgetinfo,

nulldev,

xxprobe,

xxattach,

xxdetach,

xxreset,

nodev,

&xx_cb ops,

NULL,

xxpower

+

static struct modldrv modldrv = {
&mod driverops,
“xx driver v1.0"

&xx_ops
}i
static struct modlinkage modlinkage = {
MODREV_ 1,
&modldrv,
NULL

+

Chapter 6 - Driver Autoconfiguration 97


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-info-9e

Loadable Driver Interfaces

EXAMPLE6-1 Loadable Interface Section (Continued)

int
_init(void)
{
int error;
ddi soft state init(&statep, sizeof (struct xxstate),
estimated_number_of_instances) ;
/* further per-module initialization if necessary */
error = mod install(&modlinkage);
if (error !'=0) {
/* undo any per-module initialization done earlier */
ddi soft state fini(&statep);

}
return (error);
}
int
_fini(void)
{
int error;
error = mod remove(&modlinkage);
if (error == 0) {
/* release per-module resources if any were allocated */
ddi soft state fini(&statep);
}
return (error);
}
int
_info(struct modinfo *modinfop)
{
return (mod info(&modlinkage, modinfop));
}

_init() Example

The following example shows a typical _init(9E) interface.

EXAMPLE6-2 _init () Function

static void *xxstatep;
int
_init(void)
{
int error;
const int max_instance = 20; /* estimated max device instances */

ddi_soft state init(&xxstatep, sizeof (struct xxstate), max_instance);
error = mod install(&xxmodlinkage);
if (error !'=0) {
/*
* Cleanup after a failure
*/

98 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e

Loadable Driver Interfaces

EXAMPLE6-2 _init () Function (Continued)

ddi soft state fini(&xxstatep);
}

return (error);

The driver should perform any one-time resource allocation or data initialization during driver
loading in _init (). For example, the driver should initialize any mutexes global to the driver in
this routine. The driver should not, however, use _init(9E) to allocate or initialize anything
that has to do with a particular instance of the device. Per-instance initialization must be done
in attach(9E). For example, if a driver for a printer can handle more than one printer at the
same time, that driver should allocate resources specific to each printer instance in attach ().

Note - Once _init(9E) has called mod_install(9F), the driver should not change any of the
data structures attached to the modlinkage (9S) structure because the system might make
copies or change the data structures.

_fini() Example
The following example demonstrates the _fini() routine.

int
_fini(void)
{
int error;
error = mod remove(&modlinkage);
if (error !=0) {
return (error);
}
/*
* Cleanup resources allocated in init()
*/
ddi soft state fini(&xxstatep);
return (0);

}

Similarly, in _fini(), the driver should release any resources that were allocated in _init().
The driver must remove itself from the system module list.

Note - _fini() mightbe called when the driver is attached to hardware instances. In this case,
mod_remove(9F) returns failure. Therefore, driver resources should not be released until
mod_remove () returns success.

Chapter 6 « Driver Autoconfiguration 99


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-remove-9f

Device Configuration Concepts

_info() Example

The following example demonstrates the _info(9E) routine.

int
_info(struct modinfo *modinfop)

{
}

return (mod info(&xxmodlinkage, modinfop));

The driver is called to return module information. The entry point should be implemented as
shown above.

Device Configuration Concepts

100

For each node in the kernel device tree, the system selects a driver for the node based on the
node name and the compatible property (see “Binding a Driver to a Device” on page 60). The
same driver might bind to multiple device nodes. The driver can differentiate different nodes by
instance numbers assigned by the system.

After a driver is selected for a device node, the driver's probe(9E) entry point is called to
determine the presence of the device on the system. If probe () is successful, the driver's
attach(9E) entry point is invoked to set up and manage the device. The device can be opened if
and only if attach () returns success (see “attach () Entry Point” on page 104).

A device might be unconfigured to conserve system memory resources or to enable the device
to be removed while the system is still running. To enable the device to be unconfigured, the
system first checks whether the device instance is referenced. This check involves calling the
driver's getinfo(9E) entry point to obtain information known only to the driver (see
“getinfo() Entry Point” on page 110). If the device instance is not referenced, the driver's
detach(9E) routine is invoked to unconfigure the device (see “detach() Entry Point” on
page 109).

To recap, each driver must define the following entry points that are used by the kernel for
device configuration:

= probe(9E)

®  attach(9E)
m  detach(9E)
= getinfo(9E)

Note thatattach(), detach(),and getinfo() are required. probe() is only required for
devices that cannot identify themselves. For self-identifying devices, an explicit probe () routine
can be provided, or nulldev(9F) can be specified in the dev_ops structure for the probe () entry
point.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nulldev-9f

Device Configuration Concepts

Device Instances and Instance Numbers

The system assigns an instance number to each device. The driver might not reliably predict the
value of the instance number assigned to a particular device. The driver should retrieve the
particular instance number that has been assigned by calling ddi_get_instance(9F).

Instance numbers represent the system's notion of devices. Each dev_info, thatis, each node in
the device tree, for a particular driver is assigned an instance number by the kernel.
Furthermore, instance numbers provide a convenient mechanism for indexing data specificto a
particular physical device. The most common use of instance numbers is

ddi_get soft_state(9F), which uses instance numbers to retrieve soft state data for specific
physical devices.

Caution - For pseudo devices, that is, the children of pseudo nexuses, the instance numbers are
defined in the driver.conf(4) file using the instance property. If the driver. conf file does
not contain the instance property, the behavior is undefined. For hardware device nodes, the
system assigns instance numbers when the device is first seen by the OS. The instance numbers
persist across system reboots and OS upgrades.

Minor Nodes and Minor Numbers

Drivers are responsible for managing their minor number namespace. For example, the sd
driver needs to export eight character minor nodes and eight block minor nodes to the file
system for each disk. Each minor node represents either a block interface or a character
interface to a portion of the disk. The getinfo(9E) entry point informs the system about the
mapping from minor number to device instance (see “getinfo() Entry Point” on page 110).

probe() Entry Point

For non-self-identifying devices, the probe(9E) entry point should determine whether the
hardware device is present on the system.

For probe () to determine whether the instance of the device is present, probe () needs to
perform many tasks that are also commonly done by attach(9E). In particular, probe () might
need to map the device registers.

Probing the device registers is device-specific. The driver often has to perform a series of tests of
the hardware to assure that the hardware is really present. The test criteria must be rigorous
enough to avoid misidentifying devices. For example, a device might appear to be present when
in fact that device is not available, because a different device seems to behave like the expected
device.

The test returns the following flags:

Chapter 6 - Driver Autoconfiguration 101


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Device Configuration Concepts

102

= DDI_PROBE_SUCCESS if the probe was successful

= DDI_PROBE_FAILURE if the probe failed

= DDI_PROBE_DONTCARE if the probe was unsuccessful yet attach(9E) still needs to be called
= DDI_PROBE_PARTIAL if the instance is not present now, but might be present in the future

For a given device instance, attach(9E) will not be called until probe(9E) has succeeded at least
once on that device.

probe(9E) must free all the resources that probe () has allocated, because probe () might be
called multiple times. However, attach(9E) is not necessarily called even if probe(9E) has
succeeded

ddi dev_is sid(9F) canbe used in a driver's probe(9E) routine to determine whether the
device is self-identifying. ddi_dev_is_sid() is useful in drivers written for self-identifying and
non-self-identifying versions of the same device.

The following example is a sample probe () routine.

EXAMPLE6-3 probe(9E) Routine

static int
xxprobe(dev _info t *dip)
{
ddi acc handle t dev hdl;
ddi device acc attr t dev attr;
Pio csr *csrp;
uint8 t csrval;

/*

* if the device is self identifying, no need to probe
*/

if (ddi dev is sid(dip) == DDI SUCCESS)

return (DDI PROBE DONTCARE);

/*

* Initalize the device access attributes and map in

* the devices CSR register (register 0)

*/
dev_attr.devacc attr version = DDI DEVICE ATTR VO;
dev_attr.devacc attr endian flags = DDI STRUCTURE LE ACC;
dev_attr.devacc attr dataorder = DDI STRICTORDER ACC;

if (ddi_regs map setup(dip, @, (caddr_t *)&csrp, 0, sizeof (Pio csr),
&dev _attr, &dev _hdl) != DDI SUCCESS)
return (DDI PROBE FAILURE);

/*
* Reset the device
* Once the reset completes the CSR should read back
* (PIO DEV READY | PIO IDLE INTR)
*/
ddi_put8(dev_hdl, csrp, PIO RESET);
csrval = ddi get8(dev_hdl, csrp);

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dev-is-sid-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e

Device Configuration Concepts

EXAMPLE6-3 probe(9E) Routine (Continued)
/*
* tear down the mappings and return probe success/failure
*/

ddi regs map free(&dev hdl);

if ((csrval & Oxff) == (PIO DEV READY | PIO IDLE INTR))
return (DDI PROBE_SUCCESS);

else

return (DDI_PROBE_FAILURE);

When the driver's probe(9E) routine is called, the driver does not know whether the device
being probed exists on the bus. Therefore, the driver might attempt to access device registers for
anonexistent device. A bus fault might be generated on some buses as a result.

The following example shows a probe(9E) routine that uses ddi_poke8(9F) to check for the
existence of the device. ddi_poke8() cautiously attempts to write a value to a specified virtual
address, using the parent nexus driver to assist in the process where necessary. If the address is
not valid or the value cannot be written without an error occurring, an error code is returned.
See also ddi_peek(9F).

In this example, ddi_regs_map_setup(9F) is used to map the device registers.

EXAMPLE6-4 probe(9E) Routine Using ddi_poke8(9F)

static int
xxprobe(dev_info t *dip)
{
ddi_acc_handle t dev_hdl;
ddi device acc attr t dev attr;
Pio csr *csrp;
uint8 t csrval;

/*

* if the device is self-identifying, no need to probe
*/

if (ddi dev is sid(dip) == DDI SUCCESS)

return (DDI PROBE DONTCARE) ;

/*

* Initialize the device access attrributes and map in

* the device’s CSR register (register 0)

*/
dev_attr.devacc_attr version - DDI DEVICE ATTR VO;
dev_attr.devacc_attr endian flags = DDI STRUCTURE LE ACC;
dev_attr.devacc_attr dataorder = DDI_STRICTORDER ACC;

if (ddi_regs map setup(dip, @, (caddr_t *)&csrp, 0, sizeof (Pio csr),
&dev_attr, &dev _hdl) != DDI SUCCESS)
return (DDI PROBE FAILURE);

/*

Chapter 6 - Driver Autoconfiguration 103


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-poke8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f

Device Configuration Concepts

104

EXAMPLE6-4 probe(9E) Routine Using ddi_poke8(9F) (Continued)

* The bus can generate a fault when probing for devices that
* do not exist. Use ddi poke8(9f) to handle any faults that
* might occur.
*
*
*

Reset the device. Once the reset completes the CSR should read
back (PIO DEV READY | PIO IDLE INTR)
*/
if (ddi_poke8(dip, csrp, PIO RESET) != DDI SUCCESS) {
ddi regs map free(&dev hdl);
return (DDI FAILURE);

csrval = ddi_get8(dev_hdl, csrp);

/*

* tear down the mappings and return probe success/failure
*/

ddi regs map free(&dev hdl);

if ((csrval & Oxff) == (PIO DEV_READY | PIO IDLE INTR))
return (DDI_PROBE_SUCCESS);

else

return (DDI PROBE FAILURE);

attach() Entry Point

The kernel calls a driver's attach(9E) entry point to attach an instance of a device or to resume
operation for an instance of a device that has been suspended or has been shut down by the
power management framework. This section discusses only the operation of attaching device
instances. Power management is discussed in Chapter 12, “Power Management.”

A driver's attach(9E) entry point is called to attach each instance of a device that is bound to
the driver. The entry point is called with the instance of the device node to attach, with
DDI_ATTACH specified as the cmd argument to attach(9E). The attach entry point typically
includes the following types of processing:

= Allocating a soft-state structure for the device instance

= Initializing per-instance mutexes

Initializing condition variables

Registering the device's interrupts

Mapping the registers and memory of the device instance
Creating minor device nodes for the device instance
Reporting that the device instance has attached

Driver Soft-State Management

To assist device driver writers in allocating state structures, the Solaris DDI/DKI provides a set
of memory management routines called software state management routines, which are also
known as the soft-state routines. These routines dynamically allocate, retrieve, and destroy

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Device Configuration Concepts

memory items of a specified size, and hide the details of list management. An instance number
identifies the desired memory item. This number is typically the instance number assigned by
the system.

Drivers typically allocate a soft-state structure for each device instance that attaches to the
driver by calling ddi_soft_state zalloc(9F), passing the instance number of the device.
Because no two device nodes can have the same instance number,

ddi_soft_state zalloc(9F) failsif an allocation already exists for a given instance number.

A driver's character or block entry point (cb_ops(9S)) references a particular soft state structure
by first decoding the device's instance number from the dev_t argument that is passed to the
entry point function. The driver then calls ddi_get_soft_state(9F), passing the per-driver
soft-state list and the instance number that was derived. A NULL return value indicates that
effectively the device does not exist and the appropriate code should be returned by the driver.

See “Creating Minor Device Nodes” on page 105 for additional information on how instance
numbers and device numbers, or dev_t's, are related.

Lock Variable and Conditional Variable Initialization

Drivers should initialize any per-instance locks and condition variables during attach. The
initialization of any locks that are acquired by the driver's interrupt handler must be initialized
prior to adding any interrupt handlers. See Chapter 3, “Multithreading,” for a description of
lock initialization and usage. See Chapter 8, “Interrupt Handlers,” for a discussion of interrupt
handler and lock issues.

Creating Minor Device Nodes

An important part of the attach process is the creation of minor nodes for the device instance. A
minor node contains the information exported by the device and the DDI framework. The
system uses this information to create a special file for the minor node under /devices.

Minor nodes are created when the driver calls ddi_create minor node(9F). The driver
supplies a minor number, a minor name, a minor node type, and whether the minor node
represents a block or character device.

Drivers can create any number of minor nodes for a device. The Solaris DDI/DKI expects
certain classes of devices to have minor nodes created in a particular format. For example, disk
drivers are expected to create 16 minor nodes for each physical disk instance attached. Eight
minor nodes are created, representing the a - h block device interfaces, with an additional
eight minor nodes for the a, raw - h, raw character device interfaces.

The minor number passed to ddi_create_minor_node(9F) is defined wholly by the driver. The
minor number is usually an encoding of the instance number of the device with a minor node
identifier. In the preceding example, the driver creates minor numbers for each of the minor
nodes by shifting the instance number of the device left by three bits and using the OR of that

Chapter 6 - Driver Autoconfiguration 105


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-create-minor-node-9f

Device Configuration Concepts

106

result with the minor node index. The values of the minor node index range from 0 to 7. Note
that minor nodes a and a, raw share the same minor number. These minor nodes are
distinguished by the spec_type argument passed to ddi_create_minor_node().

The minor node type passed to ddi_create_minor_node(9F) classifies the type of device, such
as disks, tapes, network interfaces, frame buffers, and so forth.

The following table lists the types of possible nodes that might be created.

TABLE6-1 Possible Node Types

Constant Description

DDI NT SERIAL Serial port

DDI NT SERIAL DO Dialout ports

DDI NT BLOCK Hard disks

DDI NT BLOCK CHAN Hard disks with channel or target numbers
DDI NT CD ROM drives (CD-ROM)

DDI NT CD CHAN ROM drives with channel or target numbers
DDI_NT FD Floppy disks

DDI NT TAPE Tape drives

DDI NT NET Network devices

DDI NT DISPLAY Display devices

DDI NT MOUSE Mouse

DDI NT KEYBOARD Keyboard

DDI NT AUDIO Audio Device

DDI_PSEUDO General pseudo devices

The node types DDI_NT BLOCK,DDI_NT BLOCK CHAN,DDI NT CD,andDDI NT CD CHAN cause
devfsadm(1M) to identify the device instance as a disk and to create names in the /dev/dsk or
/dev/rdsk directory.

The node type DDI_NT_TAPE causes devfsadm(1M) to identify the device instance as a tape and
to create names in the /dev/ rmt directory.

The node types DDI_NT_SERIAL and DDI_NT_SERIAL_DO cause devfsadm(1M) to perform these
actions:

= Identify the device instance as a serial port
= Create names in the /dev/termdirectory

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=devfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=devfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=devfsadm-1m

Device Configuration Concepts

= Add entries to the /etc/inittab file

Vendor-supplied strings should include an identifying value such as a name or stock symbol to
make the strings unique. The string can be used in conjunction with devfsadm(1M) and the
devlinks. tab file (see the devlinks(1M) man page) to create logical names in /dev.

Deferred Attach

open(9E) might be called on a minor device before attach(9E) has succeeded on the
corresponding instance. open () must then return ENXIO, which causes the system to attempt to
attach the device. If the attach () succeeds, the open () is retried automatically.

EXAMPLE6-5 Typicalattach () Entry Point

/*
* Attach an instance of the driver. We take all the knowledge we
* have about our board and check it against what has been filled in
* for us from our FCode or from our driver.conf(4) file.
*/
static int
xxattach(dev_info t *dip, ddi_attach _cmd t cmd)
{
int instance;
Pio *pio p;
ddi device acc attr t da attr;
static int pio validate device(dev info t *);

switch (cmd) {
case DDI ATTACH:

/*
* first validate the device conforms to a configuration this driver
* supports
*/
if (pio_validate device(dip) == 0)
return (DDI FAILURE);
/*

* Allocate a soft state structure for this device instance
* Store a pointer to the device node in our soft state structure
* and a reference to the soft state structure in the device

* node.
*/
instance = ddi_get instance(dip);
if (ddi soft state zalloc(pio softstate, instance) != 0)

return (DDI FAILURE);
pio p = ddi get soft state(pio softstate, instance);
ddi set driver private(dip, (caddr_t)pio p);
pio p->dip = dip;

/*

* Before adding the interrupt, get the interrupt block

* cookie associated with the interrupt specification to

* initialize the mutex used by the interrupt handler.

*/

if (ddi get iblock cookie(dip, @, &pio p->iblock cookie) !=

Chapter 6 - Driver Autoconfiguration 107


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=devfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=devlinks-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Device Configuration Concepts

EXAMPLE6-5 Typical attach() Entry Point (Continued)

DDI SUCCESS) {
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);
}

mutex_init(&pio_p->mutex, NULL, MUTEX DRIVER, pio p->iblock cookie);

/*
* Now that the mutex is initialized, add the interrupt itself.
*/
if (ddi_add intr(dip, @, NULL, NULL, pio_intr, (caddr_t)instance) !=
DDI SUCCESS) {
mutex destroy(&pio p>mutex);
ddi soft state free(pio softstate, instance);
return (DDI_FAILURE);
}

/*
* Initialize the device access attributes for the register mapping
*/
dev_acc_attr.devacc attr_version = DDI DEVICE ATTR VO;
dev_acc attr.devacc attr endian flags = DDI STRUCTURE LE ACC;
dev_acc attr.devacc attr dataorder = DDI STRICTORDER ACC;

/*
* Map in the csr register (register 0)
*/
if (ddi regs map setup(dip, @, (caddr t *)&(pio p->csr), 0
sizeof (Pio csr), &dev acc attr, &pio p->csr handle) !
DDI SUCCESS) {
ddi_remove intr(pio p->dip, @, pio_p->iblock cookie);
mutex destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);

’

}

/*
* Map in the data register (register 1)
*/
if (ddi_regs map setup(dip, 1, (caddr_t *)&(pio p->data), 0,
sizeof (uchar t), &dev acc attr, &pio p->data handle) !=
DDI SUCCESS) {
ddi_remove_intr(pio_p->dip, @, pio_p->iblock cookie);
ddi regs map free(&pio p->csr handle);
mutex_destroy(&pio_p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);
}

/*
* Create an entry in /devices for user processes to open(2)
* This driver will create a minor node entry in /devices
* of the form: /devices/..../pio@X,Y:pio
*/
if (ddi create minor node(dip, ddi get name(dip), S IFCHR,
instance, DDI PSEUDO, @) == DDI FAILURE) {

108 Writing Device Drivers « September 2010



Device Configuration Concepts

EXAMPLE6-5 Typical attach() Entry Point (Continued)

ddi remove intr(pio p->dip, @, pio p->iblock cookie);
ddi regs map free(&pio p->csr handle);
ddi regs map free(&pio p->data handle);
mutex destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);
}

/*
* reset device (including disabling interrupts)
*/
ddi put8(pio p->csr handle, pio p->csr, PIO RESET);

/*

* report the name of the device instance which has attached
*/

ddi report dev(dip);

return (DDI SUCCESS);

case DDI_RESUME:
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);
}

Note - The attach () routine must not make any assumptions about the order of invocations on
different device instances. The system might invoke attach() concurrently on different device
instances. The system might also invoke attach() and detach() concurrently on different
device instances.

detach () Entry Point

The kernel calls a driver's detach(9E) entry point to detach an instance of a device or to suspend
operation for an instance of a device by power management. This section discusses the
operation of detaching device instances. Refer to Chapter 12, “Power Management,” for a
discussion of power management issues.

A driver's detach () entry point is called to detach an instance of a device that is bound to the
driver. The entry point is called with the instance of the device node to be detached and with
DDI_DETACH, which is specified as the cmd argument to the entry point.

A driver is required to cancel or wait for any time outs or callbacks to complete, then release any
resources that are allocated to the device instance before returning. If for some reason a driver

Chapter 6 - Driver Autoconfiguration 109


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

Device Configuration Concepts

110

cannot cancel outstanding callbacks for free resources, the driver is required to return the
device to its original state and return DDI_FAILURE from the entry point, leaving the device
instance in the attached state.

There are two types of callback routines: those callbacks that can be canceled and those that
cannot be canceled. timeout(9F) and bufcall(9F) callbacks can be atomically cancelled by the
driver during detach(9E). Other types of callbacks such as scsi_init_pkt(9F) and
ddi_dma_buf bind_handle(9F) cannot be canceled. The driver must either block in detach ()
until the callback completes or else fail the request to detach.

EXAMPLE6-6 Typical detach () Entry Point

/*
* detach(9e)
* free the resources that were allocated in attach(9e)

*/
static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
Pio *pio p;
int instance;

switch (cmd) {
case DDI DETACH:

instance = ddi_get instance(dip);
pio p = ddi get soft state(pio softstate, instance);

/*

* turn off the device

* free any resources allocated in attach

*/
ddi put8(pio p->csr _handle, pio p->csr, PIO RESET);
ddi remove minor node(dip, NULL);
ddi_regs map_ free(&pio p->csr_handle);
ddi regs map free(&pio p->data handle);
ddi remove intr(pio p->dip, @, pio p->iblock cookie);
mutex _destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI_SUCCESS);

case DDI_SUSPEND:
default:

return (DDI_FAILURE);
}

getinfo() Entry Point

The system calls getinfo(9E) to obtain configuration information that only the driver knows.
The mapping of minor numbers to device instances is entirely under the control of the driver.
The system sometimes needs to ask the driver which device a particular dev_t represents.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bufcall-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e

Device Configuration Concepts

The getinfo() function can take either DDI_INFO DEVT2INSTANCE or DDI_INFO DEVT2DEVINFO
as its infocmd argument. The DDI_INFO_DEVT2INSTANCE command requests the instance
number of a device. The DDI INFO DEVT2DEVINFO command requests a pointer to the dev_info
structure of a device.

In the DDI_INFO_DEVT2INSTANCE case, argisadev_t,and getinfo() must translate the minor
number in dev_t to an instance number. In the following example, the minor number is the
instance number, so getinfo() simply passes back the minor number. In this case, the driver
must not assume that a state structure is available, since getinfo () might be called before
attach(). The mapping defined by the driver between the minor device number and the
instance number does not necessarily follow the mapping shown in the example. In all cases,
however, the mapping must be static.

Inthe DDI_INFO_DEVT2DEVINFO case, argis againa dev_t,so getinfo() first decodes the
instance number for the device. getinfo() then passes back the dev_info pointer saved in the
driver's soft state structure for the appropriate device, as shown in the following example.

EXAMPLE6-7 Typical getinfo() Entry Point

/*
* getinfo(9e)
* Return the instance number or device node given a dev_ t
*/
static int
xxgetinfo(dev_info t *dip, ddi_info cmd_t infocmd, void *arg, void **result)
{
int error;
Pio *pio p;
int instance = getminor((dev_t)arg);

switch (infocmd) {

/*
* return the device node if the driver has attached the
* device instance identified by the dev_t value which was passed
*/
case DDI INFO DEVT2DEVINFO:
pio p = ddi_get soft state(pio_softstate, instance);
if (pio_p == NULL) {
*result = NULL;
error = DDI FAILURE;
} else {
mutex_enter(&pio p->mutex);
*result = pio p->dip;
mutex exit(&pio p->mutex);
error = DDI SUCCESS;
}

break;

/*

* the driver can always return the instance number given a dev_t
* value, even if the instance is not attached.

*/

case DDI_INFO DEVT2INSTANCE:

Chapter 6 - Driver Autoconfiguration m



Using Device IDs

EXAMPLE6-7 Typical getinfo() Entry Point (Continued)

*result = (void *)instance;
error = DDI SUCCESS;

break;

default:

*result = NULL;

error = DDI_FAILURE;

}

return (error);

Note - The getinfo () routine must be kept in sync with the minor nodes that the driver creates.
If the minor nodes get out of sync, any hotplug operations might fail and cause a system panic.

Using Device IDs

112

The Solaris DDI interfaces enable drivers to provide the device ID, a persistent unique identifier
for a device. The device ID can be used to identify or locate a device. The device ID is
independent of the /devices name or device number (dev_t). Applications can use the
functions defined in 1ibdevid(3LIB) to read and manipulate the device IDs registered by the
drivers.

Before a driver can export a device ID, the driver needs to verify the device is capable of either
providing a unique ID or of storing a host-generated unique ID in a not normally accessible
area. WWN (world-wide number) is an example of a unique ID that is provided by the device.
Device NVRAM and reserved sectors are examples of non-accessible areas where
host-generated unique IDs can be safely stored.

Registering Device IDs

Drivers typically initialize and register device IDs in the driver's attach(9E) handler. As
mentioned above, the driver is responsible for registering a device ID that is persistent. As such,
the driver might be required to handle both devices that can provide a unique ID directly
(WWN) and devices where fabricated IDs are written to and read from stable storage.

Registering a Device-Supplied ID
If the device can supply the driver with an identifier that is unique, the driver can simply
initialize the device ID with this identifier and register the ID with the Solaris DDI.

/*
* The device provides a guaranteed unique identifier,
* in this case a SCSI3-WWN. The WWN for the device has been

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Using Device IDs

* stored in the device’s soft state.
*/
if (ddi_devid init(dip, DEVID SCSI3 WWN, un->un_wwn_len, un->un_wwn,
&un->un _devid) != DDI SUCCESS)
return (DDI_FAILURE);

(void) ddi devid register(dip, un->un_devid);

Registering a Fabricated ID

A driver might also register device IDs for devices that do not directly supply a unique ID.
Registering these IDs requires the device to be capable of storing and retrieving a small amount
of data in a reserved area. The driver can then create a fabricated device ID and write it to the
reserved area.

/*

* the device doesn’t supply a unique ID, attempt to read
* a fabricated ID from the device’s reserved data.

*/

if (xxx_read deviceid(un, &devid buf) == XXX OK) {
if (ddi devid valid(devid buf) == DDI SUCCESS) {
devid sz = ddi devi sizeof(devid buf);
un->un_devid = kmem alloc(devid sz, KM SLEEP);
bcopy(devid buf, un->un devid, devid sz);
ddi devid register(dip, un->un_devid);
return (XXX OK);

/*

*

we failed to read a valid device ID from the device
fabricate an ID, store it on the device, and register
it with the DDI

* Kk

*/

if (ddi devid init(dip, DEVID FAB, @, NULL, &un->un devid)
== DDI FAILURE) {
return (XXX_FAILURE);

}

if (xxx_write deviceid(un) != XXX OK) {
ddi devid free(un->un _devid);
un->un_devid = NULL;
return (XXX FAILURE);

}

ddi devid register(dip, un->un_devid);
return (XXX_OK);

Unregistering Device IDs

Drivers typically unregister and free any device IDs that are allocated as part of the detach(9E)
handling. The driver first calls ddi_devid_unregister(9F) to unregister the device ID for the

Chapter 6 - Driver Autoconfiguration 113


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devid-unregister-9f

Using Device IDs

device instance. The driver must then free the device ID handle itself by calling
ddi_devid_free(9F), and then passing the handle that had been returned by
ddi_devid_init(9F). The driver is responsible for managing any space allocated for WWN or
Serial Number data.

114 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devid-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devid-init-9f

L K R 4 CHAPTER 7

Device Access: Programmed /O

The Solaris OS provides driver developers with a comprehensive set of interfaces for accessing
device memory. These interfaces are designed to shield the driver from platform-specific
dependencies by handling mismatches between processor and device endianness as well as
enforcing any data order dependencies the device might have. By using these interfaces, you can
develop a single-source driver that runs on both the SPARC and x86 processor architectures as
well as the various platforms from each respective processor family.

This chapter provides information on the following subjects:

= “Managing Differences in Device and Host Endianness” on page 116
= “Managing Data Ordering Requirements” on page 116

= “ddi_device_acc_attr Structure” on page 116

= “Mapping Device Memory” on page 117

= “Mapping Setup Example” on page 117

= “Alternate Device Access Interfaces” on page 120

Device Memory

Devices that support programmed I/O are assigned one or more regions of bus address space
that map to addressable regions of the device. These mappings are described as pairs of values in
the reg property associated with the device. Each value pair describes a segment of a bus
address.

Drivers identify a particular bus address mapping by specifying the register number, or
regspec, which is an index into the devices' reg property. The reg property identifies the
busaddr and size for the device. Drivers pass the register number when making calls to DDI
functions such as ddi_regs_map_setup(9F). Drivers can determine how many mappable
regions have been assigned to the device by calling ddi_dev_nregs(9F).

115


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dev-nregs-9f

Device Memory

116

Managing Differences in Device and Host Endianness

The data format of the host can have different endian characteristics than the data format of the
device. In such a case, data transferred between the host and device would need to be
byte-swapped to conform to the data format requirements of the destination location. Devices
with the same endian characteristics of the host require no byte-swapping of the data.

Drivers specify the endian characteristics of the device by setting the appropriate flag in the
ddi device acc_attr(9S) structure thatis passed to ddi regs map setup(9F). The DDI
framework then performs any required byte-swapping when the driver callsa ddi_getX
routine like ddi_get8(9F) oraddi_putX routine like ddi_put16(9F) to read or write to device
memory.

Managing Data Ordering Requirements

Platforms can reorder loads and stores of data to optimize performance of the platform.
Because reordering might not be allowed by certain devices, the driver is required to specify the
device's ordering requirements when setting up mappings to the device.

ddi_device_acc_attr Structure

This structure describes the endian and data order requirements of the device. The driver is
required to initialize and pass this structure as an argument to ddi_regs_map_setup(9F).

typedef struct ddi_device acc_attr {
ushort_t devacc_attr_version;
uchar t devacc attr endian flags;
uchar_t devacc_attr_dataorder;

} ddi device acc attr t;

devacc_attr version Specifies DDI_DEVICE ATTR V0

devacc attr endian flags Describes the endian characteristics of the device. Specified as
a bit value whose possible values are:

= DDI_NEVERSWAP_ACC — Never swap data

®m  DDI STRUCTURE BE ACC - The device data format is
big-endian

= DDI STRUCTURE LE ACC - The device data format is
little-endian

devacc_attr dataorder Describes the order in which the CPU must reference data as
required by the device. Specified as an enumerated value,
where data access restrictions are ordered from most strict to
least strict.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put16-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f

Device Memory

®m  DDI_STRICTORDER ACC - The host mustissue the
references in order, as specified by the programmer. This
flag is the default behavior.

®  DDI UNORDERED OK ACC - The host is allowed to reorder
loads and stores to device memory.

= DDI_MERGING_OK_ACC - The hostis allowed to merge
individual stores to consecutive locations. This setting
also implies reordering.

®m  DDI LOADCACHING OK_ACC - The host is allowed to read
data from the device until a store occurs.

®  DDI STORECACHING OK_ACC — The host is allowed to cache
data written to the device. The host can then defer writing
the data to the device until a future time.

Note - The system can access data more strictly than the driver specifies in
devacc_attr_dataorder. The restriction to the host diminishes while moving from strict data
ordering to cache storing in terms of data accesses by the driver.

Mapping Device Memory

Drivers typically map all regions of a device during attach(9E). The driver maps a region of
device memory by calling ddi_regs_map_setup(9F), specifying the register number of the
region to map, the device access attributes for the region, an offset, and size. The DDI
framework sets up the mappings for the device region and returns an opaque handle to the
driver. This data access handle is passed as an argument to the ddi_get8(9F) or ddi_put8(9F)
family of routines when reading data from or writing data to that region of the device.

The driver verifies that the shape of the device mappings match what the driver is expecting by
checking the number of mappings exported by the device. The driver calls ddi_dev_nregs(9F)
and then verifies the size of each mapping by calling ddi_dev_regsize(9F).

Mapping Setup Example

The following simple example demonstrates the DDI data access interfaces. This driver is for a
fictional little endian device that accepts one character at a time and generates an interrupt
when ready for another character. This device implements two register sets: the first is an 8-bit
CSR register, and the second is an 8-bit data register.

Chapter7 - Device Access: Programmed 1/0 17


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dev-nregs-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dev-regsize-9f

Device Access Functions

EXAMPLE7-1 Mapping Setup

#define CSR REG 0
#define DATA REG 1
/*
* Initialize the device access attributes for the register
* mapping
*/
dev_acc_attr.devacc_attr_version = DDI_DEVICE ATTR VO;
dev_acc attr.devacc attr endian flags = DDI STRUCTURE LE ACC;
dev acc attr.devacc attr dataorder = DDI STRICTORDER ACC;
/*
* Map in the csr register (register 0)
*/
if (ddi_regs map setup(dip, CSR REG, (caddr t *)&(pio p->csr), O,
sizeof (Pio csr), &dev acc attr, &pio p->csr handle) != DDI SUCCESS) {
mutex destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI_FAILURE);
}
/*
* Map in the data register (register 1)
*/
if (ddi_regs map setup(dip, DATA REG, (caddr_ t *)&(pio p->data), 0,
sizeof (uchar t), &dev acc attr, &pio p->data handle) \
!= DDI_SUCCESS) {
mutex destroy(&pio p->mutex);
ddi regs map free(&pio p->csr handle);
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);

}

Device Access Functions

118

Drivers use the ddi_get8(9F) and ddi_put8(9F) family of routines in conjunction with the
handle returned by ddi_regs_map_setup(9F) to transfer data to and from a device. The DDI
framework automatically handles any byte-swapping that is required to meet the endian format
for the host or device, and enforces any store-ordering constraints the device might have.

The DDI provides interfaces for transferring data in 8-bit, 16-bit, 32-bit, and 64-bit quantities,
as well as interfaces for transferring multiple values repeatedly. See the man pages for the
ddi_get8(9F),ddi_ put8(9F),ddi rep get8(9F)andddi_ rep put8(9F) families of routines
for a complete listing and description of these interfaces.

The following example builds on Example 7-1 where the driver mapped the device's CSR and
data registers. Here, the driver's write(9E) entry point, when called, writes a buffer of data to
the device one byte at a time.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-rep-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-rep-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e

Device Access Functions

EXAMPLE7-2 Mapping Setup: Buffer

static int
pio write(dev t dev, struct uio *uiop, cred t *credp)
{
int retval;
int error = OK;
Pio *pio p = ddi get soft state(pio softstate, getminor(dev));
if (pio_p == NULL)
return (ENXIO);
mutex enter(&pio p->mutex);
/*
* enable interrupts from the device by setting the Interrupt
* Enable bit in the devices CSR register
*/
ddi put8(pio p->csr handle, pio p->csr,
(ddi_get8(pio p->csr_handle, pio p->csr) | PIO INTR ENABLE));
while (uiop->uio resid > 0) {

* This device issues an IDLE interrupt when it is ready

* to accept a character; the interrupt can be cleared

* by setting PIO INTR CLEAR. The interrupt is reasserted
* after the next character is written or the next time

* PIO INTR ENABLE is toggled on.
*
*

wait for interrupt (see pio_intr)

cv_wait(&pio p->cv, &pio p->mutex);
/*
* get a character from the user’s write request
* fail the write request if any errors are encountered
*/
if ((retval = uwritec(uiop)) == -1) {
error = retval;
break;
}
/*
* pass the character to the device by writing it to
* the device’s data register
*/
ddi put8(pio p->data handle, pio p->data, (uchar t)retval);
}
/*
* disable interrupts by clearing the Interrupt Enable bit
* in the CSR
*/
ddi put8(pio p->csr _handle, pio p->csr,
(ddi get8(pio p->csr_handle, pio p->csr) & ~PIO INTR ENABLE));
mutex exit(&pio p->mutex);
return (error);

Chapter7 - Device Access: Programmed 1/0 119



Device Access Functions

120

Alternate Device Access Interfaces

In addition to implementing all device accesses through the ddi_get8(9F) and ddi_put8(9F)
families of interfaces, the Solaris OS provides interfaces that are specific to particular bus
implementations. While these functions can be more efficient on some platforms, use of these
routines can limit the ability of the driver to remain portable across different bus versions of the
device.

Memory Space Access

With memory mapped access, device registers appear in memory address space. The ddi_getX
family of routines and the ddi_putX family are available for use by drivers as an alternative to
the standard device access interfaces.

1/0 Space Access

With I/O space access, the device registers appear in I/O space, where each addressable element
is called an I/O port. The ddi_io get8(9F)and ddi io put8(9F) routines are available for use
by drivers as an alternative to the standard device access interfaces.

PCl Configuration Space Access

To access PCI configuration space without using the normal device access interfaces, a driver is
required to map PCI configuration space by calling pci_config_setup(9F) in place of

ddi_regs _map_setup(9F). The driver can then call the pci_config_get8(9F) and
pci_config_put8(9F) families of interfaces to access PCI configuration space.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-io-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-io-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pci-config-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pci-config-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pci-config-put8-9f

L K R 4 CHAPTER 8

Interrupt Handlers

This chapter describes mechanisms for handling interrupts, such as allocating, registering,
servicing, and removing interrupts. This chapter provides information on the following
subjects:

= “Interrupt Handler Overview” on page 121

= “Device Interrupts” on page 122

= “Registering Interrupts” on page 128

= “Interrupt Resource Management” on page 134
= “Interrupt Handler Functionality” on page 145
“Handling High-Level Interrupts” on page 147

Interrupt Handler Overview

An interrupt is a hardware signal from a device to a CPU. An interrupt tells the CPU that the
device needs attention and that the CPU should stop any current activity and respond to the
device. If the CPU is not performing a task that has higher priority than the priority of the
interrupt, then the CPU suspends the current thread. The CPU then invokes the interrupt
handler for the device that sent the interrupt signal. The job of the interrupt handler is to service
the device and stop the device from interrupting. When the interrupt handler returns, the CPU
resumes the work it was doing before the interrupt occurred.

The Solaris DDI/DKI provides interfaces for performing the following tasks:

= Determining interrupt type and registration requirements
®  Registering interrupts

Servicing interrupts

Masking interrupts

Getting interrupt pending information

= Getting and setting priority information

121



Device Interrupts

Device Interrupts

122

I/O buses implement interrupts in two common ways: vectored and polled. Both methods
commonly supply a bus-interrupt priority level. Vectored devices also supply an interrupt
vector. Polled devices do not supply interrupt vectors.

To stay current with changing bus technologies, the Solaris OS has been enhanced to
accommodate both newer types of interrupts and more traditional interrupts that have been in
use for many years. Specifically, the operating system now recognizes three types of interrupts:

= Legacy interrupts — Legacy or fixed interrupts refer to interrupts that use older bus
technologies. With these technologies, interrupts are signaled by using one or more external
pins that are wired “out-of-band,” that is, separately from the main lines of the bus. Newer
bus technologies such as PCI Express maintain software compatibility by emulating legacy
interrupts through in-band mechanisms. These emulated interrupts are treated as legacy
interrupts by the host OS.

= Message-signaled interrupts — Instead of using pins, message-signaled interrupts (MSI) are
in-band messages and can target addresses in the host bridge. (See “PCI Local Bus” on
page 535 for more information on host bridges.) MSIs can send data along with the interrupt
message. Each MSI is unshared so that an MSI that is assigned to a device is guaranteed to be
unique within the system. A PCI function can request up to 32 MSI messages.

= Extended message-signaled interrupts — Extended message-signaled interrupts (MSI-X)
are an enhanced version of MSIs. MSI-X interrupts have the following added advantages:

= Support 2048 messages rather than 32 messages
= Support independent message address and message data for each message
= Support per-message masking

= Enable more flexibility when software allocates fewer vectors than hardware requests.
The software can reuse the same MSI-X address and data in multiple MSI-X slots.

Note - Some newer bus technologies such as PCI Express require MSIs but can accommodate
legacy interrupts by using INTx emulation. INTx emulation is used for compatibility purposes,
but is not considered to be good practice.

High-Level Interrupts

A bus prioritizes a device interrupt at a bus-interrupt level. The bus interrupt level is then
mapped to a processor-interrupt level. A bus interrupt level that maps to a CPU interrupt
priority above the scheduler priority level is called a high-level interrupt. High-level interrupt
handlers are restricted to calling the following DDI interfaces:

= mutex enter(9F)and mutex exit(9F)ona mutex thatis initialized with an interrupt
priority associated with the high-level interrupt

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-exit-9f

Device Interrupts

®  ddi intr trigger softint(9F)

= The following DDI get and put routines: ddi_get8(9F), ddi_put8(9F), ddi_get16(9F),
ddi_put16(9F),ddi get32(9F),ddi put32(9F),ddi get64(9F),and ddi_put64(9F).

A bus-interrupt level by itself does not determine whether a device interrupts at a high level. A
particular bus-interrupt level can map to a high-level interrupt on one platform, but map to an
ordinary interrupt on another platform.

A driver is not required to support devices that have high-level interrupts. However, the driver
is required to check the interrupt level. If the interrupt priority is greater than or equal to the
highest system priority, the interrupt handler runs in high-level interrupt context. In this case,
the driver can fail to attach, or the driver can use a two-level scheme to handle interrupts. For
more information, see “Handling High-Level Interrupts” on page 147.

Legacy Interrupts

The only information that the system has about a device interrupt is the priority level of the bus
interrupt and the interrupt request number. An example of the priority level for a bus interrupt
is the IPL on an SBus in a SPARC machine. An example of an interrupt request number is the
IRQ on an ISA bus in an x86 machine.

When an interrupt handler is registered, the system adds the handler to a list of potential
interrupt handlers for each IPL or IRQ. When the interrupt occurs, the system must determine
which device actually caused the interrupt, among all devices that are associated with a given
IPL or IRQ. The system calls all the interrupt handlers for the designated IPL or IRQ until one
handler claims the interrupt.

The following buses are capable of supporting polled interrupts:

= SBus
= [SA
= PCI

Standard and Extended Message-Signaled Interrupts

Both standard (MSI) and extended (MSI-X) message-signaled interrupts are implemented as
in-band messages. A message-signaled interrupt is posted as a write with an address and value
that are specified by the software.

MSI Interrupts

Conventional PCI specifications include optional support for Message Signaled Interrupts
(MSI). An MST is an in-band message that is implemented as a posted write. The address and
the data for the MSI are specified by software and are specific to the host bridge. Because the

Chapter8 -« Interrupt Handlers 123


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-trigger-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get16-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put16-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get32-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put32-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get64-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put64-9f

Device Interrupts

124

messages are in-band, the receipt of the message can be used to “push” data that is associated
with the interrupt. By definition, MSI interrupts are unshared. Each MSI message that is
assigned to a device is guaranteed to be a unique message in the system. PCI functions can
request 1,2, 4, 8, 16, or 32 MSI messages. Note that the system software can allocate fewer MSI
messages to a function than the function requested. The host bridge can be limited in the
number of unique MSI messages that are allocated for devices.

MSI-X Interrupts

MSI-X interrupts are enhanced versions of MSI interrupts that have the same features as MSI
interrupts with the following key differences:

= A maximum of 2048 MSI-X interrupt vectors are supported per device.
®  Address and data entries are unique per interrupt vector.
= MSI-X supports per function masking and per vector masking.

With MSI-X interrupts, an unallocated interrupt vector of a device can use a previously added
or initialized MSI-X interrupt vector to share the same vector address, vector data, interrupt
handler, and handler arguments. Use the ddi_intr_dup_handler(9F) function to alias the
resources provided by the Solaris OS to the unallocated interrupt vectors on an associated
device. For example, if 2 MSI-X interrupts are allocated to a driver and 32 interrupts are
supported on the device, then the driver can use ddi_intr_dup_handler() to alias the 2
interrupts it received to the 30 additional interrupts on the device.

Theddi intr dup handler() function can duplicate interrupts that were added with
ddi_intr_add_handler(9F) or initialized with ddi_intr_enable(9F).

A duplicated interrupt is disabled initially. Use ddi_intr_enable() to enable the duplicated
interrupt. You cannot remove the original MSI-X interrupt handler until all duplicated
interrupt handlers that are associated with this original interrupt handler are removed. To
remove a duplicated interrupt handler, first call ddi_intr_disable(9F), and then call
ddi_intr_free(9F). When all duplicated interrupt handlers that are associated with this
original interrupt handler are removed, then you can use ddi_intr_remove_handler(9F) to
remove the original MSI-X interrupt handler. See the ddi_intr_dup_handler(9F) man page
for examples.

Software Interrupts

The Solaris DDI/DKI supports software interrupts, also known as soft interrupts. Soft interrupts
are initiated by software rather than by a hardware device. Handlers for these interrupts must
also be added to and removed from the system. Soft interrupt handlers run in interrupt context
and therefore can be used to do many of the tasks that belong to an interrupt handler.

Hardware interrupt handlers must perform their tasks quickly, because the handlers might have
to suspend other system activity while doing these tasks. This requirement is particularly true
for high-level interrupt handlers, which operate at priority levels greater than the priority level

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-dup-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-remove-handler-9f

DDl Interrupt Functions

of the system scheduler. High-level interrupt handlers mask the operations of all lower-priority
interrupts, including the interrupt operations of the system clock. Consequently, the interrupt
handler must avoid involvement in activities that might cause it to sleep, such as acquiring a
mutex.

If the handler sleeps, then the system might hang because the clock is masked and incapable of
scheduling the sleeping thread. For this reason, high-level interrupt handlers normally perform
aminimum amount of work at high-priority levels and delegate other tasks to software
interrupts, which run below the priority level of the high-level interrupt handler. Because
software interrupt handlers run below the priority level of the system scheduler, software
interrupt handlers can do the work that the high-level interrupt handler was incapable of doing.

DDI Interrupt Functions

The Solaris OS provides a framework for registering and unregistering interrupts and provides
support for Message Signaled Interrupts (MSIs). Interrupt management interfaces enable you
to manipulate priorities, capabilities, and interrupt masking, and to obtain pending
information.

Interrupt Capability Functions

Use the following functions to obtain interrupt information:

ddi_intr get navail(9F) Returns the number of interrupts available for a
specified hardware device and interrupt type.

ddi intr get nintrs(9F) Returns the number of interrupts that the device
supports for the specified interrupt type.

ddi_intr_get supported_ types(9F) Returns the hardware interrupt types that are
supported by both the device and the host.

ddi_intr_get_cap(9F) Returns interrupt capability flags for the specified
interrupt.

Interrupt Initialization and Destruction Functions

Use the following functions to create and remove interrupts:

ddi intr alloc(9F) Allocates system resources and interrupt vectors for the
specified type of interrupt.

ddi_intr free(9F) Releases the system resources and interrupt vectors for a
specified interrupt handle.

Chapter8 -« Interrupt Handlers 125


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-navail-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-free-9f

DDl Interrupt Functions

126

ddi_intr_set cap(9F)

ddi_intr_add_handler(9F)

ddi_intr_dup_handler(9F)

ddi_intr_remove handler(9F)
ddi_intr_enable(9F)
ddi_intr_disable(9F)

ddi intr block enable(9F)

ddi_intr block disable(9F)

ddi_intr_set mask(9F)

ddi_intr_clr mask(9F)

ddi_intr_get pending(9F)

Sets the capability of the specified interrupt through the
use of the DDI_INTR_FLAG_LEVEL and
DDI_INTR_FLAG_EDGE flags.

Adds an interrupt handler.

Use with MSI-X only. Copies an address and data pair for
an allocated interrupt vector to an unused interrupt vector
on the same device.

Removes the specified interrupt handler.
Enables the specified interrupt.
Disables the specified interrupt.

Use with MSI only. Enables the specified range of
interrupts.

Use with MSI only. Disables the specified range of
interrupts.

Sets an interrupt mask if the specified interrupt is enabled.

Clears an interrupt mask if the specified interrupt is
enabled.

Reads the interrupt pending bit if such a bit is supported
by either the host bridge or the device.

Priority Management Functions

Use the following functions to obtain and set priority information:

ddi_intr_get pri(9F)

ddi_intr_set pri(9F)

ddi_intr _get hilevel pri(9F)

Returns the current software priority setting for the
specified interrupt.

Sets the interrupt priority level for the specified interrupt.

Returns the minimum priority level for a high-level
interrupt.

Soft Interrupt Functions

Use the following functions to manipulate soft interrupts and soft interrupt handlers:

ddi_intr_add softint(9F)

ddi_intr_trigger_softint(9F)

Writing Device Drivers « September 2010

Adds a soft interrupt handler.

Triggers the specified soft interrupt.


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-dup-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-remove-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-block-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-block-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-clr-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-pending-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-hilevel-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-add-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-trigger-softint-9f

DDl Interrupt Functions

ddi_intr remove softint(9F) Removes the specified soft interrupt handler.

ddi intr get softint pri(9F) Returns the soft interrupt priority for the specified
interrupt.

ddi intr set softint pri(9F) Changes the relative soft interrupt priority for the
specified soft interrupt.

Interrupt Function Examples

This section provides examples for performing the following tasks:

= Changing soft interrupt priority
= Checking for pending interrupts
= Setting interrupt masks

= (learing interrupt masks

EXAMPLE8-1 Changing Soft Interrupt Priority

Usetheddi_intr_set_softint_pri(9F) function to change the soft interrupt priority to 9.

if (ddi intr set softint pri(mydev->mydev softint hdl, 9) != DDI SUCCESS)
cmn_err (CE WARN, "ddi intr set softint pri failed");

EXAMPLE8-2 Checking for Pending Interrupts

Usetheddi_intr_get pending(9F) function to check whether an interrupt is pending.

if (ddi intr get pending(mydevp->htable[@], &pending) != DDI SUCCESS)
cmn_err(CE_WARN, "ddi_intr get pending() failed");

else if (pending)
cmn_err(CE_NOTE, "ddi_intr get pending(): Interrupt pending");

EXAMPLE8-3 Setting Interrupt Masks

Use theddi_intr_set_mask(9F) function to set interrupt masking to prevent the device from
receiving interrupts.

if ((ddi_intr set mask(mydevp->htable[@]) != DDI SUCCESS))
cmn_err(CE_WARN, "ddi_intr set mask() failed");
EXAMPLE8-4 Clearing Interrupt Masks

Usetheddi_intr_clr_mask(9F) function to clear interrupt masking. The
ddi_intr_clr_mask(9F) function fails if the specified interrupt is not enabled. If the
ddi_intr_clr_mask(9F) function succeeds, the device starts generating interrupts.

Chapter8 -« Interrupt Handlers 127


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-remove-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-pending-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-clr-mask-9f

Registering Interrupts

EXAMPLE8-4 Clearing Interrupt Masks (Continued)

if (ddi intr clr mask(mydevp->htable[@]) != DDI SUCCESS)
cmn_err(CE WARN, "ddi intr clr mask() failed");

Registering Interrupts

Before a device driver can receive and service interrupts, the driver must call
ddi_intr_add_handler(9F) to register an interrupt handler with the system. Registering
interrupt handlers provides the system with a way to associate an interrupt handler with an
interrupt specification. The interrupt handler is called when the device might have been
responsible for the interrupt. The handler has the responsibility of determining whether it
should handle the interrupt and, if so, of claiming that interrupt.

Tip - Use the : :interrupts command in the mdb or kmdb debugger to retrieve the registered
interrupt information of a device on supported SPARC and x86 systems.

Registering Legacy Interrupts

To register a driver's interrupt handler, the driver typically performs the following steps in its
attach(9E) entry point:

1. Useddi_intr_get_supported_types(9F) to determine which types of interrupts are
supported.

2. Useddi_intr_get_nintrs(9F) to determine the number of supported interrupt types.
Use kmem_zalloc(9F) to allocate memory for DDI interrupt handles.
4. For each interrupt type that you allocate, take the following steps:

Useddi_intr_get pri(9F) to get the priority for the interrupt.

If you need to set a new priority for the interrupt, use ddi_intr_set_pri(9F).
Usemutex_init(9F) to initialize the lock.

Useddi_intr_add_handler(9F) to register the handler for the interrupt.
Useddi intr enable(9F) to enable the interrupt.

o a0 o

5. Take the following steps to free each interrupt:
a. Disable each interrupt usingddi_intr_disable(9F).
b. Remove the interrupt handler using ddi_intr_remove_handler(9F).
c. Remove the lock using mutex_destroy(9F).

d. Freetheinterrupt usingddi_intr_free(9F) and kmem_free(9F) to free memory that
was allocated for DDI interrupt handles.

128 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-remove-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-free-9f

Registering Interrupts

EXAMPLE8-5 Registering a Legacy Interrupt

The following example shows how to install an interrupt handler for a device called mydev. This
example assumes that mydev supports one interrupt only.

/* Determine which types of interrupts supported */
ret = ddi intr get supported types(mydevp->mydev dip, &type);

if ((ret != DDI SUCCESS) || (!(type & DDI INTR TYPE FIXED))) {
cmn_err(CE_WARN, "Fixed type interrupt is not supported");
return (DDI_FAILURE);

}

/* Determine number of supported interrupts */
ret = ddi_intr_get nintrs(mydevp->mydev_dip, DDI_INTR TYPE_ FIXED,
&count);

/*
* Fixed interrupts can only have one interrupt. Check to make
* sure that number of supported interrupts and number of
* available interrupts are both equal to 1.
*/
if ((ret != DDI SUCCESS) || (count != 1)) {
cmn_err(CE_WARN, "No fixed interrupts");
return (DDI_FAILURE);
}

/* Allocate memory for DDI interrupt handles */

mydevp->mydev_htable = kmem zalloc(sizeof (ddi_intr handle t),
KM SLEEP);

ret = ddi _intr alloc(mydevp->mydev dip, mydevp->mydev htable,
DDI_INTR TYPE FIXED, @, count, &actual, 0);

if ((ret != DDI_SUCCESS) || (actual != 1)) {
cmn_err(CE WARN, "ddi intr alloc() failed 0x%x", ret);
kmem free(mydevp->mydev htable, sizeof (ddi intr handle t));

return (DDI FAILURE);
}

/* Sanity check that count and available are the same. */
ASSERT (count == actual);

/* Get the priority of the interrupt */
if (ddi_intr get pri(mydevp->mydev htable[0], &mydevp->mydev intr pri)) {
cmn_err(CE_WARN, "ddi_intr alloc() failed Ox%x", ret);

(void) ddi intr free(mydevp->mydev htable[0]);
kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle t));

return (DDI FAILURE);
}

cmn_err(CE _NOTE, "Supported Interrupt pri = 0x%x", mydevp->mydev_intr pri);

/* Test for high level mutex */
if (mydevp->mydev intr pri >= ddi intr get hilevel pri()) {

Chapter8 -« Interrupt Handlers 129



Registering Interrupts

EXAMPLE8-5 Registeringa Legacy Interrupt (Continued)

cmn_err(CE_WARN, "Hi level interrupt not supported")

(void) ddi intr free(mydevp->mydev htable[0]);
kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle t));

return (DDI FAILURE);
}

/* Initialize the mutex */
mutex init(&mydevp->mydev int mutex, NULL, MUTEX DRIVER,
DDI INTR PRI(mydevp->mydev intr pri));

/* Register the interrupt handler */

if (ddi_intr_add handler(mydevp->mydev_htable[@], mydev intr,
(caddr_t)mydevp, NULL) !=DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr_add_handler() failed")

mutex destroy(&mydevp->mydev_int mutex);
(void) ddi intr free(mydevp->mydev htable[0]);
kmem free(mydevp->mydev htable, sizeof (ddi intr handle t));

return (DDI FAILURE);
}

/* Enable the interrupt */
if (ddi_intr_enable(mydevp->mydev_htable[0]) !'= DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr _enable() failed");

(void) ddi intr remove handler(mydevp->mydev htable[0]);
mutex_destroy(&mydevp->mydev_int mutex);

(void) ddi _intr free(mydevp->mydev htable[0]);

kmem free(mydevp->mydev htable, sizeof (ddi intr handle t));

return (DDI FAILURE);

}
return (DDI_SUCCESS);

}

EXAMPLE8-6 Removinga Legacy Interrupt

The following example shows how legacy interrupts are removed.

/* disable interrupt */
(void) ddi_intr disable(mydevp->mydev_htable[0]);

/* Remove interrupt handler */
(void) ddi_intr remove handler(mydevp->mydev_htable[0]);

/* free interrupt handle */
(void) ddi intr free(mydevp->mydev htable[0]);

/* free memory */
kmem free(mydevp->mydev_htable, sizeof (ddi intr handle t));

130 Writing Device Drivers « September 2010



Registering Interrupts

Registering MSI Interrupts

To register a driver's interrupt handler, the driver typically performs the following steps in its
attach(9E) entry point:

1. Useddi_intr_get_supported_types(9F) to determine which types of interrupts are
supported.

2. Useddi_intr_get_nintrs(9F) to determine the number of supported MSI interrupt types.
Useddi_intr_alloc(9F) to allocate memory for the MSI interrupts.
4. For each interrupt type that you allocate, take the following steps:

Useddi_intr_get_pri(9F) to get the priority for the interrupt.

If you need to set a new priority for the interrupt, use ddi_intr_set_pri(9F).
Use mutex_init(9F) to initialize the lock.

Useddi_intr_add_handler(9F) to register the handler for the interrupt.

a0 o

5. Use one of the following functions to enable all the interrupts:

= Useddi_intr_block_enable(9F) to enable all the interrupts in a block.
m  Useddi_intr_enable(9F) in aloop to enable each interrupt individually.

EXAMPLE8-7 Registering a Set of MSI Interrupts

The following example illustrates how to register an MSI interrupt for a device called mydev.

/* Get supported interrupt types */

if (ddi intr get supported types(devinfo, &intr types) != DDI SUCCESS) {
cmn_err(CE_WARN, "ddi intr get supported types failed");
goto attach fail;

}

if (intr types & DDI INTR TYPE MSI)
mydev_add msi intrs(mydevp);

/* Check count, available and actual interrupts */

static int

mydev_add msi intrs(mydev_t *mydevp)

{
dev_info t *devinfo = mydevp->devinfo;
int count, avail, actual;
int X, y, rc, inum = 0;

/* Get number of interrupts */
rc = ddi intr get nintrs(devinfo, DDI INTR TYPE MSI, &count);
if ((rc != DDI SUCCESS) || (count == 0)) {
cmn_err(CE_WARN, "ddi intr get nintrs() failure, rc: %d, "
“count: %d", rc, count);

return (DDI_FAILURE);

/* Get number of available interrupts */
rc = ddi_intr _get navail(devinfo, DDI_INTR TYPE MSI, &avail);

Chapter8 -« Interrupt Handlers 131


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-block-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-enable-9f

Registering Interrupts

EXAMPLE8-7 Registering a Set of MSI Interrupts (Continued)

if ((rc != DDI_SUCCESS) || (avail == 0)) {
cmn_err(CE WARN, "ddi intr get navail() failure,
"rc: %d, avail: %d\n", rc, avail);
return (DDI_FAILURE);

if (avail < count) {
cmn_err(CE_NOTE, "nitrs() returned %d, navail returned %d",
count, avail);

/* Allocate memory for MSI interrupts */
mydevp->intr size = count * sizeof (ddi_intr handle t);
mydevp->htable = kmem_alloc(mydevp->intr size, KM SLEEP);

rc = ddi_intr alloc(devinfo, mydevp->htable, DDI INTR TYPE MSI, inum,
count, &actual, DDI INTR ALLOC NORMAL);

if ((rc !'= DDI SUCCESS) || (actual == 0)) {
cmn_err(CE_WARN, "ddi intr alloc() failed: %d", rc);

kmem free(mydevp->htable, mydevp->intr size);
return (DDI_FAILURE);
}

if (actual < count) {
cmn_err(CE_NOTE, "Requested: %d, Received: %d", count, actual);

}

mydevp->intr cnt = actual;

/*

* Get priority for first msi, assume remaining are all the same
*/

if (ddi intr get pri(mydevp->htable[0], &mydev->intr pri) !=
DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr get pri() failed");

/* Free already allocated intr */
for (y = 0; y < actual; y++) {

(void) ddi_intr free(mydevp->htable[y]);
}

kmem free(mydevp->htable, mydevp->intr size);
return (DDI FAILURE);

}
/* Call ddi intr add handler() */
for (x = 0; x < actual; x++) {
if (ddi intr add handler(mydevp->htable[x], mydev intr,
(caddr_t)mydevp, NULL) != DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr add handler() failed");

/* Free already allocated intr */
for (y = 0; y < actual; y++) {

(void) ddi intr free(mydevp->htable[y]);
}

kmem free(mydevp->htable, mydevp->intr size);

132 Writing Device Drivers « September 2010



Registering Interrupts

EXAMPLE8-7 Registeringa Set of MSI Interrupts (Continued)

return (DDI FAILURE);

}

(void) ddi intr get cap(mydevp->htable[0], &mydevp->intr cap);
if (mydev->m intr cap & DDI INTR FLAG BLOCK) {

/* Call ddi_intr block enable() for MSI */

(void) ddi_intr _block enable(mydev->m_htable, mydev->m intr_cnt);
} else {

/* Call ddi intr enable() for MSI non block enable */

for (x = 0; x < mydev->m_intr_cnt; x++) {

(void) ddi_intr _enable(mydev->m htable[x]);

}
}
return (DDI SUCCESS);

EXAMPLE8-8 Removing MSI Interrupts

The following example shows how to remove MSI interrupts.

static void
mydev_rem_intrs(mydev_t *mydev)
{

int X;

/* Disable all interrupts */
if (mydev->m intr cap & DDI INTR FLAG BLOCK) {

/* Call ddi intr block disable() */

(void) ddi intr block disable(mydev->m htable, mydev->m intr cnt);
} else {

for (x = 0; x < mydev->m_intr_cnt; x++) {

(void) ddi intr disable(mydev->m htable[x]);

}

}

/* Call ddi_intr_remove_handler() */

for (x = 0; x < mydev->m intr cnt; x++) {
(void) ddi_intr remove handler(mydev->m htable[x]);
(void) ddi intr free(mydev->m htable[x]);

}

kmem free(mydev->m htable, mydev->m intr size);

Chapter8 -« Interrupt Handlers 133



Interrupt Resource Management

Interrupt Resource Management

134

This section discusses how a driver for a device that can generate many different interruptible
conditions can utilize the Interrupt Resource Management feature to optimize its allocation of
interrupt vectors.

The Interrupt Resource Management Feature

The Interrupt Resource Management feature can enable a device driver to use more interrupt
resources by dynamically managing the driver's interrupt configuration. When the Interrupt
Resource Management feature is not used, configuration of interrupt handling usually only
occurs in a driver's attach(9E) routine. The Interrupt Resource Management feature monitors
the system for changes, recalculates the number of interrupt vectors to grant to each device in
response to those changes, and notifies each affected participating driver of the driver's new
allocation of interrupt vectors. A participating driver is a driver that has registered a callback
handler as described in “Callback Interfaces” on page 135. Changes that can cause interrupt
vector reallocation include adding or removing devices, or an explicit request as described in
“Modify Number of Interrupt Vectors Requested” on page 138.

The Interrupt Resource Management feature is not available on every Solaris platform. The
feature is only available to PCle devices that utilize MSI-X interrupts.

Note - A driver that utilizes the Interrupt Resource Management feature must be able to adapt
correctly when the feature is not available.

When the Interrupt Resource Management feature is available, it can enable a driver to gain
access to more interrupt vectors than the driver might otherwise be allocated. A driver might
process interrupt conditions more efficiently when utilizing a larger number of interrupt
vectors.

The Interrupt Resource Management feature dynamically adjusts the number of interrupt
vectors granted to each participating driver depending upon the following constraints:

= Total number available. A finite number of interrupt vectors exists in the system.

= Total number requested. A driver might be granted fewer, but never more than the number
of interrupt vectors it requested.

= Fairness to other drivers. The total number of interrupt vectors available is shared by many
drivers in a manner that is fair in relation to the total number requested by each driver.

Writing Device Drivers « September 2010



Interrupt Resource Management

The number of interrupt vectors made available to a device at any given time can vary:

= Asother devices are dynamically added to or removed from the system

= Asdrivers dynamically change the number of interrupt vectors they request in response to

load

A driver must provide the following support to use the Interrupt Resource Management
feature:

= Callback support. Drivers must register a callback handler so they can be notified when their

number of available interrupts has been changed by the system. Drivers must be able to
increase or decrease their interrupt usage.

= Interrupt requests. Drivers must specify how many interrupts they want to use.

= Interrupt usage. Drivers must request the correct number of interrupts at any given time,
based on:

= Whatinterruptible conditions their hardware can generate
= How many processors can be used to process those conditions in parallel

= Interrupt flexibility. Drivers must be flexible enough to assign one or more interruptible
conditions to each interrupt vector in a manner that best fits their current number of
available interrupts. Drivers might need to reconfigure these assignments when their
number of available interrupts increases or decreases at arbitrary times.

Callback Interfaces

A driver must use the following interfaces to register its callback support.

TABLE8-1 Callback Support Interfaces

Interface Data Structures Description
ddi cb register() ddi cb flags t, Register a callback handler function to
ddi cb handle t receive specific types of actions.
ddi cb unregister() ddi cb handle t Unregister a callback handler function.
(*ddi cb func t)() ddi cb action t Receive callback actions and specific
arguments relevant to each action to be
processed.

Register a Callback Handler Function

Usetheddi_cb_register(9F) function to register a callback handler function for a driver.

int
ddi cb register (dev_info t *dip, ddi cb flags t cbflags,

Chapter8 -« Interrupt Handlers

135


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-cb-register-9f

Interrupt Resource Management

136

ddi_cb_func_t cbfunc, void *argl, void *arg2,
ddi cb handle t *ret hdlp);

The driver can register only one callback function. This one callback function is used to handle
all individual callback actions. The chflags parameter determines which types of actions
should be received by the driver when they occur. The cbfunc () routine is called whenever a
relevant action should be processed by the driver. The driver specifies two private arguments
(argland arg2) to send to itself during each execution of its cbfunc () routine.

The cbflags () parameter is an enumerated type that specifies which actions the driver
supports.

typedef enum {
DDI_CB_FLAG_INTR
} ddi cb flags t;

To register support for Interrupt Resource Management actions, a driver must register a
handler and include the DDI_CB_FLAG_INTR flag. When the callback handler is successfully
registered, an opaque handle is returned through the ret_hd1lp parameter. When the driver is

finished with the callback handler, the driver can use the ret_hdlp parameter to unregister the
callback handler.

Register the callback handler in the driver's attach(9F) entry point. Save the opaque handle in
the driver's soft state. Unregister the callback handler in the driver's detach(9F) entry point.

Unregister a Callback Handler Function
Usetheddi_cb_unregister(9F) function to unregister a callback handler function for a driver.

int
ddi cb unregister (ddi cb_handle t hdl);

Make this call in the driver's detach(9F) entry point. After this call, the driver no longer receives
callback actions.

The driver also loses any additional support from the system that it gained from havinga
registered callback handling function. For example, some interrupt vectors previously made
available to the driver are immediately taken back when the driver unregisters its callback
handling function. Before returning successfully, the ddi_cb_unregister() function notifies
the driver of any final actions that result from losing support from the system.

Callback Handler Function

Use the registered callback handling function to receive callback actions and receive arguments
that are specific to each action to be processed.

typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t cbaction,
void *cbarg, void *argl, void *arg2);

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-cb-unregister-9f

Interrupt Resource Management

The cbaction parameter specifies what action the driver is receiving a callback to process.

typedef enum {
DDI_CB_INTR ADD,
DDI_CB_INTR REMOVE
} ddi_cb_action_t;

ADDI CB INTR ADD action means that the driver now has more interrupts available to use. A
DDI_CB_INTR REMOVE action means that the driver now has fewer interrupts available to use.
Cast the cbarg parameter to an int to determine the number of interrupts added or removed.
The cbarg value represents the change in the number of interrupts that are available.

For example, get the change in the number of interrupts available:

count = (int) (uintptr t)cbarg;

If the chactionisDDI_CB_INTR_ADD, add charg number of interrupt vectors. If the cbaction is
DDI_CB_INTR_REMOVE, free charg number of interrupt vectors.

Seeddi cb register(9F) for an explanation of argl and arg2.

The callback handling function must be able to perform correctly for the entire time that the
function is registered. The callback function cannot depend upon any data structures that
might be destroyed before the callback function is successfully unregistered.

The callback handling function must return one of the following values:

= DDI_SUCCESS ifit correctly handled the action
= DDI FAILURE ifitencountered an internal error
= DDI_ENOTSUP ifit received an unrecognized action

Interrupt Request Interfaces

A driver must use the following interfaces to request interrupt vectors from the system.

TABLES-2 Interrupt Vector Request Interfaces

Interface Data Structures Description
ddi_intr_alloc() ddi_intr_handle_t Allocate interrupts.
ddi intr set nreq() Change number of interrupt vectors
requested.
Allocate an Interrupt

Usetheddi_intr_alloc(9F) function to initially allocate interrupts.

Chapter8 -« Interrupt Handlers 137


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-alloc-9f

Interrupt Resource Management

138

int
ddi intr alloc (dev info t *dip, ddi intr handle t *h array, int type,
int inum, int count, int *actualp, int behavior);

Before calling this function, the driver must allocate an empty handle array large enough to
contain the number of interrupts requested. The ddi_intr_alloc() function attempts to
allocate count number of interrupt handles, and initialize the array with the assigned interrupt
vectors beginning at the offset specified by the inum parameter. The actualp parameter returns
the actual number of interrupt vectors that were allocated.

A driver can use the ddi_intr_alloc() function in two ways:

m  Thedriver can call theddi_intr_alloc() function multiple times to allocate interrupt
vectors to individual members of the interrupt handle array in separate steps.

= Thedriver can call the ddi_intr_alloc() function one time to allocate all of the interrupt
vectors for the device at once.

If you are using the Interrupt Resource Management feature, call ddi_intr_alloc() one time
to allocate all interrupt vectors at once. The count parameter is the total number of interrupt
vectors requested by the driver. If the value in actualp is less than the value of count, then the
system is not able to fulfill the request completely. The Interrupt Resource Management feature
saves this request (count becomes nreq - see below) and might be able to allocate more
interrupt vectors to this driver at a later time.

Note - When you use the Interrupt Resource Management feature, additional calls to
ddi_intr_alloc() donotchange the total number of interrupt vectors requested. Use the
ddi_intr_set_nreq(9F) function to change the number of interrupt vectors requested.

Modify Number of Interrupt Vectors Requested

Usetheddi_intr_set_nreq(9F) function to change the number of interrupt vectors requested.

int

ddi_intr_set nreq (dev_info t *dip, int nreq);

When the Interrupt Resource Management feature is available, a driver can use the
ddi_intr_set_nreq() function to dynamically adjust the total number of interrupt vectors

requested. The driver might do this in response to the actual load that exists once the driver is
attached.

A driver must first callddi_intr_alloc(9F) to request an initial number of interrupt vectors.
Any time after the ddi_intr_alloc()call, the driver can callddi_intr_set_nreq() to change
its request size. The specified nreq value is the driver's new total number of requested interrupt
vectors. The Interrupt Resource Management feature might rebalance the number of interrupts
allocated to each driver in the system in response to this new request. Whenever the Interrupt

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-set-nreq-9f

Interrupt Resource Management

Resource Management feature rebalances the number of interrupts allocated to drivers, each
affected driver receives a callback notification that more or fewer interrupt vectors are available
for the driver to use.

A driver might dynamically adjust its total number of requested interrupt vectors if, for
example, it uses interrupts in conjunction with specific transactions that it is processing. A
storage driver might associate a DMA engine with each ongoing transaction, thus requiring
interrupt vectors for that reason. A driver might make calls to ddi_intr_set_nreq() inits
open(9F) and close(9F) routines to scale its interrupt usage in response to actual use of the
driver.

Interrupt Usage and Flexibility

A driver for a device that supports many different interruptible conditions must be able to map
those conditions to an arbitrary number of interrupt vectors. The driver cannot assume that
interrupt vectors that are allocated will remain available. Some currently available interrupts
might later be taken back by the system to accommodate the needs of other drivers in the
system.

A driver must be able to:

= Determine how many interrupts its hardware supports.

= Determine how many interrupts are appropriate to use. For example, the total number of
processors in the system might affect this evaluation.

= Compare the number of interrupts needed with the number of interrupts available at any
given time.

In summary, the driver must be able to select a mixture of interrupt handling functions and
program its hardware to generate interrupts according to need and interrupt availability. In
some cases multiple interrupts might be targeted to the same vector, and the interrupt handler
for that interrupt vector must determine which interrupts occurred. The performance of the
device can be affected by how well the driver maps interrupts to interrupt vectors.

Example Implementation of Interrupt Resource
Management

One type of device driver that is an excellent candidate for interrupt resource management is a
network device driver. The network device hardware supports multiple transmit and receive
channels.

The network device generates a unique interrupt condition whenever the device receives a
packet on one of its receive channels or transmits a packet on one of its transmit channels. The
hardware can send a specific MSI-X interrupt for each event that can occur. A table in the
hardware determines which MSI-X interrupt to generate for each event.

Chapter8 -« Interrupt Handlers 139



Interrupt Resource Management

140

To optimize performance, the driver requests enough interrupts from the system to give each
separate interrupt its own interrupt vector. The driver makes this request when it first calls
ddi_intr_alloc(9F)inits attach(9F) routine.

The driver then evaluates the actual number of interrupts it received from ddi_intr_alloc()
in actualp. It might receive all the interrupts it requested, or it might receive fewer interrupts.

A separate function inside the driver uses the total number of available interrupts to calculate
which MSI-X interrupts to generate for each event. This function programs the table in the
hardware accordingly.

= Ifthe driver receives all of its requested interrupt vectors, each entry in the hardware table
has its own unique MSI-X interrupt. A one-to-one mapping exists between interrupt
conditions and interrupt vectors. The hardware generates a unique MSI-X interrupt for
each type of event.

= Ifthe driver has fewer interrupt vectors available, some MSI-X interrupt numbers must
appear multiple times in the hardware table. The hardware generates the same MSI-X
interrupt for more than one type of event.

The driver should have two different interrupt handler functions.

= One interrupt handler function performs a specific task in response to an interrupt. This
simple function handles interrupts that are generated by only one of the possible hardware
events.

= A second interrupt handler function is more complicated. This function handles the case
where multiple interrupts are mapped to the same MSI-X interrupt vector.

In the example driver in this section, the function xx_setup_interrupts() uses the number of
available interrupt vectors to program the hardware and calls the appropriate interrupt handler
for each of those interrupt vectors. The xx_setup_interrupts() function is called in two
places: after ddi_intr_alloc() is called in xx_attach(), and after interrupt vector allocations
are adjusted in the xx_cbfunc() callback handler function.

int
xx_setup_interrupts(xx state t *statep, int navail, xx_intrs_t *xx_ intrs p);

The xx_setup_interrupts() function is called with an array of xx_intrs_t data structures.

typedef struct {

ddi intr_handler t inthandler;
void *argl;
void *arg2;

} xx_intrs_t;

This xx_setup_interrupts() functionality must exist in the driver independent of whether
the Interrupt Resource Management feature is available. Drivers must be able to function with
fewer interrupt vectors than the number requested during attach. If the Interrupt Resource
Management feature is available, you can modify the driver to dynamically adjust to a new
number of available interrupt vectors.

Writing Device Drivers « September 2010



Interrupt Resource Management

Other functionality that the driver must provide independent of whether the Interrupt
Resource Management feature is available includes the ability to quiesce the hardware and
resume the hardware. Quiesce and resume are needed for certain events related to power
management and hotplugging. Quiesce and resume also are required to handle interrupt
callback actions.

The quiesce function is called in xx_detach().
int

XX_quiesce(xx state t *statep);

The resume function is called in xx_attach().
int

Xx_resume(xx state t *statep);

Make the following modifications to enhance this device driver to use the Interrupt Resource
Management feature:

= Register a callback handler. The driver must register for the actions that indicate when fewer
or more interrupts are available.

= Handle callbacks. The driver must quiesce its hardware, reprogram its interrupt handling,
and resume its hardware in response to each such callback action.

* attach(9F) routine.

* Creates soft state, registers callback handler, initializes
* hardware, and sets up interrupt handling for the driver.

*/
xx_attach(dev_info t *dip, ddi_attach cmd t cmd)
{
Xx_state t *statep = NULL;
Xx_intr t *intrs = NULL;
ddi_intr_handle t *hdls;
ddi cb _handle_t cb_hdl;
int instance;
int type;
int types;
int nintrs;
int nactual;
int inum;

/* Get device instance */
instance = ddi_get instance(dip);

switch (cmd) {
case DDI ATTACH:

/* Get soft state */

if (ddi soft state zalloc(state list, instance) != 0)
return (DDI FAILURE);

statep = ddi_get soft state(state list, instance);

Chapter8 -« Interrupt Handlers 141



Interrupt Resource Management

ddi_set driver private(dip, (caddr_t)statep);
statep->dip = dip;

/* Initialize hardware */
xx_initialize(statep);

/* Register callback handler */
if (ddi cb register(dip, DDI CB FLAG INTR, xx cbfunc,
statep, NULL, &cb hdl) !'= 0) {
ddi soft state free(state list, instance);
return (DDI FAILURE);
}
statep->cb hdl = cb hdl;

/* Select interrupt type */

ddi intr get supported types(dip, &types);

if (types & DDI INTR TYPE MSIX) {
type = DDI INTR TYPE MSIX;

} else if (types & DDI INTR TYPE MSI) {
type = DDI_INTR TYPE MSI;

} else {
type

DDI_INTR TYPE FIXED;

}
statep->type = type;

/* Get number of supported interrupts */
ddi intr get nintrs(dip, type, &nintrs);

/* Allocate interrupt handle array */
statep->hdls size = nintrs * sizeof (ddi intr handle t);
statep->hdls = kmem zalloc(statep->hdls size, KMEM SLEEP);

/* Allocate interrupt setup array */
statep->intrs size = nintrs * sizeof (xx_intr t);
statep->intrs = kmem zalloc(statep->intrs size, KMEM SLEEP);

/* Allocate interrupt vectors */
ddi intr alloc(dip, hdls, type, @, nintrs, &nactual, 0);
statep->nactual = nactual;

/* Configure interrupt handling */
Xx_setup interrupts(statep, statep->nactual, statep->intrs);

/* Install and enable interrupt handlers */
for (inum = @; inum < nactual; inum++) {

ddi intr add handler(&hdls[inum],
intrs[inum].inthandler,
intrs[inum].argl, intrs[inum].arg2);

ddi_intr_enable(hdls[inum]);

}

break;

case DDI_RESUME:

/* Get soft state */
statep = ddi get soft state(state list, instance);
if (statep == NULL)

return (DDI_FAILURE);

142 Writing Device Drivers « September 2010



Interrupt Resource Management

/* Resume hardware */
xx_resume(statep);

break;
}
return (DDI SUCESS);
}
/*
* detach(9F) routine.
*
* Stops the hardware, disables interrupt handling, unregisters
* a callback handler, and destroys the soft state for the driver.
*/
xx_detach(dev_info t *dip, ddi_detach_cmd_t cmd)
{
xx_state t *statep = NULL;
int instance;
int inum;

/* Get device instance */
instance = ddi get instance(dip);

switch (cmd) {
case DDI DETACH:

/* Get soft state */
statep = ddi get soft state(state list, instance);
if (statep == NULL)

return (DDI_FAILURE);

/* Stop device */
xx_uninitialize(statep);

/* Disable and free interrupts */

for (inum = @; inum < statep->nactual; inum++) {
ddi intr disable(statep->hdls[inum]);
ddi intr remove handler(statep->hdls[inum]);
ddi intr free(statep->hdls[inum]);

}

/* Unregister callback handler */
ddi cb unregister(statep->cb hdl);

/* Free interrupt handle array */
kmem free(statep->hdls, statep->hdls size);

/* Free interrupt setup array */
kmem free(statep->intrs, statep->intrs size);

/* Free soft state */
ddi soft state free(state list, instance);

break;

case DDI SUSPEND:

Chapter8 -« Interrupt Handlers 143



Interrupt Resource Management

/* Get soft state */
statep = ddi get soft state(state list, instance);
if (statep == NULL)

return (DDI FAILURE);

/* Suspend hardware */
xx_quiesce(statep);

break;

i

return (DDI SUCCESS);

* (*ddi cbfunc) () routine.

* Adapt interrupt usage when availability changes.
*/
int
xx_cbfunc(dev_info t *dip, ddi cb action t cbaction, void *cbarg,
void *argl, void *arg2)

{
xx_state t *statep = (xx _state t *)argl;
int count;
int inum;
int nactual;

switch (cbaction) {
case DDI CB INTR ADD:
case DDI CB INTR REMOVE:

/* Get change in availability */
count = (int) (uintptr_t)cbarg;

/* Suspend hardware */
XX_quiesce(statep);

/* Tear down previous interrupt handling */

for (inum = @; inum < statep->nactual; inum++) {
ddi intr disable(statep->hdls[inum]);
ddi intr remove handler(statep->hdls[inum]);

}

/* Adjust interrupt vector allocations */
if (cbaction == DDI CB INTR ADD) {

/* Allocate additional interrupt vectors */
ddi intr alloc(dip, statep->hdls, statep->type,
statep->nactual, count, &nactual, 0);

/* Update actual count of available interrupts */
statep->nactual += nactual;

} else {
/* Free removed interrupt vectors */

for (inum = statep->nactual - count;
inum < statep->nactual; inum++) {

144 Writing Device Drivers « September 2010



Interrupt Handler Functionality

ddi_intr_free(statep->hdls[inum]);

}

/* Update actual count of available interrupts */
statep->nactual -= count;

}

/* Configure interrupt handling */
xx_setup_interrupts(statep, statep->nactual, statep->intrs);

/* Install and enable interrupt handlers */
for (inum = @; inum < statep->nactual; inum++) {
ddi intr_add handler(&statep->hdls[inum],
statep->intrs[inum].inthandler,
statep->intrs[inum].argl,
statep->intrs[inum].arg2);
ddi_intr_enable(statep->hdls[inum]);
}

/* Resume hardware */
XX_resume(statep);

break;
default:

return (DDI ENOTSUP);
}

return (DDI SUCCESS);

Interrupt Handler Functionality

The driver framework and the device each place demands on the interrupt handler. All
interrupt handlers are required to do the following tasks:

Determine whether the device is interrupting and possibly reject the interrupt.

The interrupt handler first examines the device to determine whether this device issued the
interrupt. If this device did not issue the interrupt, the handler must return
DDI_INTR_UNCLAIMED. This step enables the implementation of device polling. Any device at
the given interrupt priority level might have issued the interrupt. Device polling tells the
system whether this device issued the interrupt.

Inform the device that the device is being serviced.

Informing a device about servicing is a device-specific operation that is required for the
majority of devices. For example, SBus devices are required to interrupt until the driver tells
the SBus devices to stop. This approach guarantees that all SBus devices that interrupt at the
same priority level are serviced.

Perform any I/O request-related processing.

Chapter8 -« Interrupt Handlers 145



Interrupt Handler Functionality

146

Devices interrupt for different reasons, such as transfer done or transfer error. This step can
involve using data access functions to read the device's data buffer, examine the device's
error register, and set the status field in a data structure accordingly. Interrupt dispatching
and processing are relatively time consuming.

Do any additional processing that could prevent another interrupt.
For example, read the next item of data from the device.

Return DDI_INTR CLAIMED.

MSI interrupts must always be claimed.

Claiming an interrupt is optional for MSI-X interrupts. In either case, the ownership of the
interrupt need not be checked, because MSI and MSI-X interrupts are not shared with other
devices.

Drivers that support hotplugging and multiple MSI or MSI-X interrupts should retain a
separate interrupt for hotplug events and register a separate ISR (interrupt service
routine) for that interrupt.

The following example shows an interrupt routine for a device called mydev.

EXAMPLE8-9 Interrupt Example

static uint_t
mydev_intr(caddr_t argl, caddr_t arg2)

{

struct mydevstate *xsp = (struct mydevstate *)argl;
uint8 t status;
volatile uint8 t temp;

/*
* Claim or reject the interrupt.This example assumes
* that the device’s CSR includes this information.
*/
mutex_enter(&xsp->high mu);
/* use data access routines to read status */
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->high _mu);
return (DDI_INTR UNCLAIMED); /* dev not interrupting */

Inform the device that it is being serviced, and re-enable
interrupts. The example assumes that writing to the

CSR accomplishes this. The driver must ensure that this data
access operation makes it to the device before the interrupt
service routine returns. For example, using the data access
functions to read the CSR, if it does not result in unwanted
effects, can ensure this.

* X X K X X ¥

*/
ddi put8(xsp->data access handle, &xsp->regp->csr,
CLEAR_INTERRUPT | ENABLE_INTERRUPTS);
/* flush store buffers */
temp = ddi_get8(xsp->data_access handle, &xsp->regp->csr);

Writing Device Drivers « September 2010



Handling High-Level Interrupts

EXAMPLE8-9 Interrupt Example (Continued)

mutex exit(&xsp->mu);
return (DDI INTR CLAIMED);

Most of the steps performed by the interrupt routine depend on the specifics of the device itself.
Consult the hardware manual for the device to determine the cause of the interrupt, detect error
conditions, and access the device data registers.

Handling High-Level Interrupts

High-level interrupts are those interrupts that interrupt at the level of the scheduler and above.
This level does not allow the scheduler to run. Therefore, high-level interrupt handlers cannot
be preempted by the scheduler. High-level interrupts cannot block because of the scheduler.
High-level interrupts can only use mutual exclusion locks for locking.

The driver must determine whether the device is using high-level interrupts. Do this test in the
driver's attach(9E) entry point when you register interrupts. See “High-Level Interrupt
Handling Example” on page 147.

= Ifthe interrupt priority returned from ddi_intr_get_pri(9F) is greater than or equal to the
priority returned from ddi_intr_get_hilevel pri(9F), the driver can fail to attach, or the
driver can implement a high-level interrupt handler. The high-level interrupt handler uses a
lower-priority software interrupt to handle the device. To allow more concurrency, use a
separate mutex to protect data from the high-level handler.

= Ifthe interrupt priority returned from ddi_intr_get_pri(9F) isless than the priority
returned from ddi_intr_get_hilevel pri(9F), the attach(9E) entry point falls through
to regular interrupt registration. In this case, a soft interrupt is not necessary.

High-Level Mutexes

A mutex initialized with an interrupt priority that represents a high-level interrupt is known as
a high-level mutex. While holding a high-level mutex, the driver is subject to the same
restrictions as a high-level interrupt handler.

High-Level Interrupt Handling Example

In the following example, the high-level mutex (xsp->high_mu) is used only to protect data
shared between the high-level interrupt handler and the soft interrupt handler. The protected
data includes a queue used by both the high-level interrupt handler and the low-level handler,
and a flag that indicates that the low-level handler is running. A separate low-level mutex
(xsp->low_mu) protects the rest of the driver from the soft interrupt handler.

Chapter8 -« Interrupt Handlers 147


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-intr-get-hilevel-pri-9f

Handling High-Level Interrupts

EXAMPLE8-10 Handling High-Level Interrupts With attach ()

static int
mydevattach(dev_info t *dip, ddi_attach _cmd _t cmd)
{

struct mydevstate *xsp;
/X */

ret = ddi_intr_get supported types(dip, &type);

if ((ret !'= DDI_SUCCESS) || (!(type & DDI_INTR_TYPE_FIXED))) {
cmn_err(CE_WARN, "ddi_intr_get supported types() failed")
return (DDI_FAILURE);

}

ret = ddi_intr_get nintrs(dip, DDI_INTR TYPE FIXED, &count);

/*
* Fixed interrupts can only have one interrupt. Check to make
* sure that number of supported interrupts and number of
* available interrupts are both equal to 1.
*/
if ((ret != DDI_SUCCESS) || (count != 1)) {
cmn_err(CE_WARN, "No fixed interrupts found")
return (DDI_FAILURE);
}

Xxsp->xs_htable = kmem zalloc(count * sizeof (ddi intr handle t),
KM SLEEP);

ret = ddi_intr _alloc(dip, xsp->xs_htable, DDI INTR TYPE FIXED, 0,
count, &actual, 0);

if ((ret != DDI_SUCCESS) || (actual != 1)) {

cmn_err(CE WARN, "ddi intr alloc failed 0x%x", ret");
kmem free(xsp->xs_htable, sizeof (ddi_intr_handle t));
return (DDI FAILURE);

}

ret = ddi_intr _get pri(xsp->xs_htable[0], &intr pri);

if (ret != DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr get pri failed 0x%x", ret");
(void) ddi_intr free(xsp->xs_htable[0]);
kmem_free(xsp->xs_htable, sizeof (ddi_intr_handle_ t));
return (DDI_FAILURE);

}

if (intr_pri >= ddi_intr _get hilevel pri()) {

mutex_init(&xsp->high mu, NULL, MUTEX DRIVER,
DDI INTR PRI(intr pri));

ret = ddi intr add handler(xsp->xs htable[0],
mydevhigh intr, (caddr_t)xsp, NULL);
if (ret !'= DDI SUCCESS) {
cmn_err(CE_WARN, "ddi intr add handler failed 0x%x", ret");
mutex_destroy(&xsp>xs_int mutex);
(void) ddi_intr free(xsp->xs_htable[0]);
kmem free(xsp->xs_htable, sizeof (ddi intr handle t));
return (DDI_FAILURE);

148 Writing Device Drivers « September 2010



Handling High-Level Interrupts

EXAMPLE 8-10 Handling High-Level Interrupts With attach() (Continued)

}

/* add soft interrupt */
if (ddi_intr_add_softint(xsp->xs_dip, &xsp->xs_softint hdl,
DDI INTR SOFTPRI MAX, xs soft intr, (caddr t)xsp) !=
DDI SUCCESS) {
cmn_err(CE_WARN, "add soft interrupt failed");
mutex_destroy(&xsp->high mu);
(void) ddi_intr_remove_handler(xsp->xs_htable[0]);
(void) ddi_intr free(xsp->xs_htable[0]);
kmem free(xsp->xs htable, sizeof (ddi intr handle t));
return (DDI_FAILURE);

xsp->low soft pri = DDI INTR SOFTPRI_ MAX;

mutex init(&xsp->low mu, NULL, MUTEX DRIVER,
DDI INTR PRI(xsp->low soft pri));

} else {

/*
* regular interrupt registration continues from here
* do not use a soft interrupt
*/

}

return (DDI SUCCESS);

The high-level interrupt routine services the device and queues the data. The high-level routine
triggers a software interrupt if the low-level routine is not running, as the following example
demonstrates.

EXAMPLE8-11  High-level Interrupt Routine

static uint t
mydevhigh intr(caddr t argl, caddr t arg2)

{
struct mydevstate *xsp = (struct mydevstate *)argl;
uint8 t status;
volatile uint8 t temp;
int need softint;

mutex_enter(&xsp->high mu);
/* read status */
status = ddi_get8(xsp->data access handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->high mu);

return (DDI_INTR UNCLAIMED); /* dev not interrupting */
}

ddi put8(xsp->data access handle,&xsp->regp->csr,
CLEAR INTERRUPT | ENABLE INTERRUPTS);

Chapter8 -« Interrupt Handlers 149



Handling High-Level Interrupts

EXAMPLE 8-11 High-level Interrupt Routine (Continued)

/* flush store buffers */
temp = ddi get8(xsp->data access handle, &xsp->regp->csr);

/* read data from device, queue data for low-level interrupt handler */

if (xsp->softint running)
need softint = 0;

else {
xsp->softint_count++;
need softint = 1;

mutex_exit(&xsp->high mu);

/* read-only access to xsp->id, no mutex needed */
if (need softint) {
ret = ddi_intr trigger softint(xsp->xs softint hdl, NULL);
if (ret == DDI_EPENDING) {
cmn_err(CE WARN, "ddi intr trigger softint() soft interrupt
"already pending for this handler")
} else if (ret != DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr trigger_ softint() failed")

}
}

return (DDI_INTR CLAIMED);

The low-level interrupt routine is started by the high-level interrupt routine, which triggers a
software interrupt. The low-level interrupt routine runs until there is nothing left to process, as
the following example shows.

EXAMPLE8-12 Low-Level Soft Interrupt Routine

static uint t
mydev_soft intr(caddr t argl, caddr t arg2)
{
struct mydevstate *mydevp = (struct mydevstate *)argl;
/X L %/
mutex _enter(&mydevp->low mu);
mutex _enter(&mydevp->high mu);
if (mydevp->softint count > 1) {
mydevp->softint count--;
mutex_exit(&mydevp->high mu);
mutex_exit(&mydevp->low mu);
return (DDI_INTR CLAIMED);
}

if ( /* queue empty */ ) {
mutex_exit(&mydevp->high mu);
mutex_exit(&mydevp->low mu);
return (DDI INTR UNCLAIMED);
}

mydevp->softint_running = 1;

150 Writing Device Drivers « September 2010



Handling High-Level Interrupts

EXAMPLE 8-12 Low-Level Soft Interrupt Routine (Continued)

while (EMBEDDED COMMENT:data on queue) {
ASSERT (mutex_owned (&mydevp->high mu);
/* Dequeue data from high-level queue. */
mutex_exit(&mydevp->high mu);
/* normal interrupt processing */
mutex_enter(&mydevp->high mu);

}

mydevp->softint running = 0;
mydevp->softint count = 0;
mutex_exit(&mydevp->high mu);
mutex_exit(&mydevp->low mu);
return (DDI INTR CLAIMED);

Chapter8 -« Interrupt Handlers 151



152



CHAPTER 9

Direct Memory Access (DMA)

Many devices can temporarily take control of the bus. These devices can perform data transfers
that involve main memory and other devices. Because the device is doing the work without the
help of the CPU, this type of data transfer is known as direct memory access (DMA). The
following types of DMA transfers can be performed:

= Between two devices
= Between a device and memory
= Between memory and memory

This chapter explains transfers between a device and memory only. The chapter provides
information on the following subjects:

“DMA Model” on page 153

“Types of Device DMA” on page 154

“Types of Host Platform DMA” on page 155

“DMA Software Components: Handles, Windows, and Cookies” on page 155
“DMA Operations” on page 156

“Managing DMA Resources” on page 161

“DMA Windows” on page 173

DMA Model

The Solaris Device Driver Interface/Driver-Kernel Interface (DDI/DKI) provides a high-level,
architecture-independent model for DMA. This model enables the framework, that is, the
DMA routines, to hide architecture-specific details such as the following:

= Setting up DMA mappings
= Building scatter-gather lists
= Ensuring that I/O and CPU caches are consistent

Several abstractions are used in the DDI/DKI to describe aspects of a DMA transaction:

= DMA object - Memory that is the source or destination of a DMA transfer.

153



Types of Device DMA

=  DMA handle - An opaque object returned from a successful ddi_dma_alloc_handle(9F)
call. The DMA handle can be used in subsequent DMA subroutine calls to refer to such
DMA objects.

= DMA cookie - A ddi_dma_cookie(9S) structure (ddi_dma_cookie t) describes a
contiguous portion of a DMA object that is entirely addressable by the device. The cookie
contains DMA addressing information that is required to program the DM A engine.

Rather than map an object directly into memory, device drivers allocate DMA resources for a
memory object. The DMA routines then perform any platform-specific operations that are
needed to set up the object for DMA access. The driver receives a DMA handle to identify the
DMA resources that are allocated for the object. This handle is opaque to the device driver. The
driver must save the handle and pass the handle in subsequent calls to DMA routines. The
driver should not interpret the handle in any way.

Operations that provide the following services are defined on a DMA handle:

= Manipulating DMA resources
= Synchronizing DMA objects
= Retrieving attributes of the allocated resources

Types of Device DMA

154

Devices perform one of the following three types of DMA:

= Bus-master DMA
= Third-party DMA
= First-party DMA

Bus-Master DMA

The driver should program the device's DMA registers directly in cases where the device acts
like a true bus master. For example, a device acts like a bus master when the DMA engine resides
on the device board. The transfer address and count are obtained from the DMA cookie to be
passed on to the device.

Third-Party DMA

Third-party DMA uses a system DMA engine resident on the main system board, which has
several DMA channels that are available for use by devices. The device relies on the system's
DMA engine to perform the data transfers between the device and memory. The driver uses
DMA engine routines (see the ddi_dmae(9F) function) to initialize and program the DMA
engine. For each DMA data transfer, the driver programs the DMA engine and then gives the
device a command to initiate the transfer in cooperation with that engine.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-cookie-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dmae-9f

DMA Software Components: Handles, Windows, and Cookies

First-Party DMA

Under first-party DMA, the device uses a channel from the system's DMA engine to drive that
device's DMA bus cycles. Use the ddi_dmae_1stparty(9F) function to configure this channel in
a cascade mode so that the DM A engine does not interfere with the transfer.

Types of Host Platform DMA

The platform on which the device operates provides either direct memory access (DMA) or
direct virtual memory access (DVMA).

On platforms that support DMA, the system provides the device with a physical address in
order to perform transfers. In this case, the transfer of a DMA object can actually consist of a
number of physically discontiguous transfers. An example is when an application transfers a
buffer that spans several contiguous virtual pages that map to physically discontiguous pages.
To deal with the discontiguous memory, devices for these platforms usually have some kind of
scatter-gather DMA capability. Typically, x86 systems provide physical addresses for direct
memory transfers.

On platforms that support DVMA, the system provides the device with a virtual address to
perform transfers. In this case, memory management units (MMU) provided by the underlying
platform translate device accesses to these virtual addresses into the proper physical addresses.
The device transfers to and from a contiguous virtual image that can be mapped to
discontiguous physical pages. Devices that operate in these platforms do not need
scatter-gather DMA capability. Typically, SPARC platforms provide virtual addresses for direct
memory transfers.

DMA Software Components: Handles, Windows, and Cookies

A DMA handle is an opaque pointer that represents an object, usually a memory buffer or
address. A DMA handle enables a device to perform DMA transfers. Several different calls to
DMA routines use the handle to identify the DMA resources that are allocated for the object.

An object represented by a DM A handle is completely covered by one or more DMA cookies. A
DMA cookie represents a contiguous piece of memory that is used in data transfers by the DMA
engine. The system divides objects into multiple cookies based on the following information:

= Theddi dma_attr(9S) attribute structure provided by the driver
= Memory location of the target object
= Alignment of the target object

If an object does not fit within the limitations of the DMA engine, that object must be broken
into multiple DMA windows. You can only activate and allocate resources for one window ata

Chapter9 - Direct Memory Access (DMA) 155


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dmae-1stparty-9f

DMA Operations

time. Use the ddi_dma_getwin(9F) function to position between windows within an object.
Each DMA window consists of one or more DMA cookies. For more information, see “DMA
Windows” on page 173.

Some DMA engines can accept more than one cookie. Such engines perform scatter-gather I/O
without the help of the system. If multiple cookies are returned from a bind, the driver should
callddi_dma_nextcookie(9F) repeatedly to retrieve each cookie. These cookies must then be
programmed into the engine. The device can then be programmed to transfer the total number
of bytes covered by the aggregate of these DM A cookies.

DMA Operations

156

The steps in a DMA transfer are similar among the types of DMA. The following sections
present methods for performing DMA transfers.

Note - You do not need to ensure that the DMA object is locked in memory in block drivers for
buffers that come from the file system. The file system has already locked the data in memory.

Performing Bus-Master DMA Transfers

The driver should perform the following steps for bus-master DMA.

1. Describe the DMA attributes. This step enables the routines to ensure that the device is able
to access the buffer.

2. Allocate a DMA handle.

hed

Ensure that the DMA object is locked in memory. See the physio(9F) or
ddi_umem_lock(9F) man page.

. Allocate DMA resources for the object.
. Program the DMA engine on the device.

. When the transfer is complete, continue the bus master operation.

4
5
6. Start the engine.
7
8. Perform any required object synchronizations.
9

. Release the DMA resources.
10. Free the DMA handle.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-nextcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-lock-9f

DMA Operations

Performing First-Party DMA Transfers

The driver should perform the following steps for first-party DMA.

1. Allocate a DMA channel.
2. Useddi_dmae_1lstparty(9F) to configure the channel.
3. Ensure that the DMA object is locked in memory. See the physio(9F) or
ddi_umem_lock(9F) man page.
. Allocate DMA resources for the object.
. Program the DMA engine on the device.

. When the transfer is complete, continue the bus-master operation.

4
5
6. Start the engine.
7
8. Perform any required object synchronizations.
9

. Release the DMA resources.
10. Deallocate the DMA channel.

Performing Third-Party DMA Transfers

The driver should perform these steps for third-party DMA.

Allocate a DMA channel.

Retrieve the system's DMA engine attributes with ddi_dmae_getattr(9F).

Lock the DMA object in memory. See the physio(9F) or ddi_umem_lock(9F) man page.
Allocate DMA resources for the object.

Useddi_dmae_prog(9F) to program the system DMA engine to perform the transfer.
Perform any required object synchronizations.

Use ddi_dmae_stop(9F) to stop the DMA engine.

Release the DMA resources.

Deallocate the DMA channel.

00N W=

Certain hardware platforms restrict DM A capabilities in a bus-specific way. Drivers should use
ddi slaveonly(9F) to determine whether the device is in a slot in which DMA is possible.

DMA Attributes

DMA attributes describe the attributes and limits of a DMA engine, which include:

m  Limits on addresses that the device can access
= Maximum transfer count
= Address alignment restrictions

Chapter9 - Direct Memory Access (DMA) 157


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dmae-1stparty-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dmae-getattr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dmae-prog-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dmae-stop-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-slaveonly-9f

DMA Operations

158

A device driver must inform the system about any DMA engine limitations through the
ddi_dma_attr(9S) structure. This action ensures that DMA resources that are allocated by the
system can be accessed by the device's DMA engine. The system can impose additional
restrictions on the device attributes, but the system never removes any of the driver-supplied

restrictions.

ddi_dma_attr Structure

The DMA attribute structure has the following members:

typedef struct ddi dma_attr {

uint_t dma_attr_version; /* version number */

uint64 t dma attr addr lo; /* low DMA address range */
uint64 t dma_attr_addr_hi; /* high DMA address range */
uint64 t dma_attr count max; /* DMA counter register */
uint64 t dma_attr align; /* DMA address alignment */
uint t dma_attr burstsizes; /* DMA burstsizes */
uint32_t dma_attr_minxfer; /* min effective DMA size */
uint64 t dma_attr_maxxfer; /* max DMA xfer size */
uint64 t dma_attr seg; /* segment boundary */

int dma attr sgllen; /* s/g length */

uint32 t dma_attr_granular; /* granularity of device */
uint t dma_attr flags; /* Bus specific DMA flags */

} ddi_dma_attr_t;
where:

dma_attr version

dma_attr addr lo
dma_attr_addr_hi

dma_attr count max

dma_attr align

dma attr burstsizes

Version number of the attribute structure. dma_attr version
should be set to DMA_ATTR_VO.

Lowest bus address that the DMA engine can access.
Highest bus address that the DMA engine can access.

Specifies the maximum transfer count that the DMA engine can
handle in one cookie. The limit is expressed as the maximum count
minus one. This count is used as a bit mask, so the count must also
be one less than a power of two.

Specifies alignment requirements when allocating memory from
ddi_dma_mem_alloc(9F). An example of an alignment requirement
is alignment on a page boundary. The dma_attr_align field is used
only when allocating memory. This field is ignored during bind
operations. For bind operations, the driver must ensure that the
buffer is aligned appropriately.

Specifies the burst sizes that the device supports. A burst size is the
amount of data the device can transfer before relinquishing the bus.
This member is a binary encoding of burst sizes, which are assumed
to be powers of two. For example, if the device is capable of doing

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-alloc-9f

DMA Operations

dma_attr_minxfer

dma attr maxxfer

dma_attr seg

dma_attr sgllen

dma_attr granular

dma attr flags

SBus Example

1-byte, 2-byte, 4-byte, and 16-byte bursts, this field should be set to
0x17. The system also uses this field to determine alignment
restrictions.

Minimum effective transfer size that the device can perform. This
size also influences restrictions on alignment and on padding.

Describes the maximum number of bytes that the DM A engine can
accommodate in one I/O command. This limitation is only
significant if dna_attr_maxxfer isless than (dma_attr_count_max
+ 1) * dma_attr sgllen.

Upper bound of the DMA engine's address register. dna_attr_seg
is often used where the upper 8 bits of an address register are a latch
that contains a segment number. The lower 24 bits are used to
address a segment. In this case, dma_attr_seg would be set to
O0xFFFFFE, which prevents the system from crossing a 24-bit
segment boundary when allocating resources for the object.

Specifies the maximum number of entries in the scatter-gather list.
dma_attr_sgllen is the number of cookies that the DMA engine
can consume in one I/O request to the device. If the DMA engine
has no scatter-gather list, this field should be set to 1.

This field gives the granularity in bytes of the DMA transfer ability
of the device. An example of how this value is used is to specify the
sector size of a mass storage device. When a bind operation requires
a partial mapping, this field is used to ensure that the sum of the
sizes of the cookies in a DMA window is a whole multiple of
granularity. However, if the device does not have a scatter-gather
capability, it is impossible for the DDI to ensure the granularity. For
this case, the value of the dma_attr _granular field should be 1.

This field can be set to DDI DMA FORCE PHYSICAL, which indicates
that the system should return physical rather than virtual I/O
addresses if the system supports both. If the system does not
support physical DMA, the return value from
ddi_dma_alloc_handle(9F) isDDI DMA BADATTR. In this case, the
driver has to clear DDI_DMA_FORCE_PHYSICAL and retry the
operation.

A DMA engine on an SBus in a SPARC machine has the following attributes:

= Access to addresses ranging from 0xFF000000 to OxFFFFFFFF only
= 32-bit DMA counter register

Chapter9 - Direct Memory Access (DMA) 159



DMA Operations

160

Ability to handle byte-aligned transfers

Support for 1-byte, 2-byte, and 4-byte burst sizes
Minimum effective transfer size of 1 byte

32-bit address register

No scatter-gather list

Operation on sectors only, for example, a disk

A DMA engine on an SBus in a SPARC machine has the following attribute structure:

static ddi dma attr t attributes = {

DMA_ATTR VO, /* Version number */

OxFF000000, /* low address */
OXFFFFFFFF, /* high address */
OxFFFFFFFF, /* counter register max */
1, /* byte alignment */
0x7, /* burst sizes: Ox1 | 0x2 | 0x4 */
ox1, /* minimum transfer size */
OxFFFFFFFF, /* max transfer size */
OXFFFFFFFF, /* address register max */
1, /* no scatter-gather */
512, /* device operates on sectors */
0, /* attr flag: set to 0 */

+

ISA Bus Example

A DMA engine on an ISA bus in an x86 machine has the following attributes:

Access to the first 16 megabytes of memory only

Inability to cross a 1-megabyte boundary in a single DMA transfer
16-bit counter register

Ability to handle byte-aligned transfers

Support for 1-byte, 2-byte, and 4-byte burst sizes

Minimum effective transfer size of 1 byte

Ability to hold up to 17 scatter-gather transfers

Operation on sectors only, for example, a disk

A DMA engine on an ISA bus in an x86 machine has the following attribute structure:

static ddi dma attr t attributes = {

DMA ATTR VO, /* Version number */

0x00000000, /* low address */

Ox00OFFFFFF, /* high address */

OXFFFF, /* counter register max */

1, /* byte alignment */

ox7, /* burst sizes */

0x1, /* minimum transfer size */
OxFFFFFFFF, /* max transfer size */
OX000FFFFF, /* address register max */

17, /* scatter-gather */

512, /* device operates on sectors */

Writing Device Drivers « September 2010



Managing DMA Resources

0, /* attr flag: set to 0 */

Managing DMA Resources

This section describes how to manage DMA resources.

Object Locking

Before allocating the DMA resources for a memory object, the object must be prevented from
moving. Otherwise, the system can remove the object from memory while the device is trying to
write to that object. A missing object would cause the data transfer to fail and possibly corrupt
the system. The process of preventing memory objects from moving during a DMA transfer is
known as locking down the object.

The following object types do not require explicit locking:

= Buffers coming from the file system through strategy(9E). These buffers are already locked
by the file system.

= Kernel memory allocated within the device driver, such as that allocated by
ddi_dma_mem_alloc(9F).

For other objects such as buffers from user space, physio(9F) or ddi_umem_lock(9F) must be
used to lock down the objects. Locking down objects with these functions is usually performed
in the read(9E) or write(9E) routines of a character device driver. See “Data Transfer Methods
on page 291 for an example.

»

Allocating a DMA Handle

A DMA handle is an opaque object that is used as a reference to subsequently allocated DMA
resources. The DMA handle is usually allocated in the driver's attach() entry point that uses
ddi_dma_alloc_handle(9F). The ddi_dma_alloc_handle() function takes the device
information that is referred to by dip and the device's DMA attributes described by a

ddi dma attr(9S) structure as parameters. The ddi_dma_alloc_handle() function has the
following syntax:

int ddi dma alloc handle(dev _info t *dip,
ddi dma attr t *attr, int (*callback)(caddr t),
caddr_t arg, ddi_dma_handle_t *handlep);
where:

dip Pointer to the device's dev_info structure.

Chapter9 - Direct Memory Access (DMA) 161


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-attr-9s

Managing DMA Resources

162

attr

callback
arg

handlep

Pointer toaddi_dma_attr(9S) structure, as described in “DMA Attributes” on
page 157.

Address of the callback function for handling resource allocation failures.
Argument to be passed to the callback function.

Pointer to a DMA handle to store the returned handle.

Allocating DMA Resources

Two interfaces allocate DMA resources:

®  ddi_dma_buf_bind handle(9F) - Used with buf (9S) structures

®  ddi_dma_addr_bind_handle(9F) - Used with virtual addresses

DMA resources are usually allocated in the driver's xxstart () routine, if an xxstart () routine
exists. See “Asynchronous Data Transfers (Block Drivers)” on page 321 for a discussion of
xxstart (). These two interfaces have the following syntax:

int ddi dma_addr bind handle(ddi dma handle t handle,
struct as *as, caddr t addr,
size t len, uint t flags, int (*callback)(caddr t),
caddr t arg, ddi dma cookie t *cookiep, uint t *ccountp);

int ddi dma buf bind handle(ddi dma handle t handle,
struct buf *bp, uint t flags,
int (*callback)(caddr t), caddr t arg,
ddi_dma_cookie t *cookiep, uint_t *ccountp);

The following arguments are common to both ddi_dma_addr_bind_handle(9F) and
ddi_dma_buf_bind_handle(9F):

handle
flags

callback

arg
cookiep

ccountp

DMA handle and the object for allocating resources.

Set of flags that indicate the transfer direction and other attributes. DDI_DMA_READ
indicates a data transfer from device to memory. DDI_DMA_WRITE indicates a data
transfer from memory to device. See the ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F) man page for a complete discussion of the
available flags.

Address of callback function for handling resource allocation failures. See the
ddi_dma_alloc_handle(9F) man page.

Argument to pass to the callback function.
Pointer to the first DM A cookie for this object.

Pointer to the number of DMA cookies for this object.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-alloc-handle-9f

Managing DMA Resources

For ddi_dma_addr_bind_handle(9F), the object is described by an address range with the
following parameters:

as Pointer to an address space structure. The value of as must be NULL.
addr  Base kernel address of the object.

len Length of the object in bytes.

For ddi_dma_buf_bind_handle(9F), the object is described by a buf(9S) structure pointed to by
bp.

Device Register Structure

DMA-capable devices require more registers than were used in the previous examples.

The following fields are used in the device register structure to support DMA-capable device
with no scatter-gather support:

uint32 t dma_addr; /* starting address for DMA */
uint32 t dma_size; /* amount of data to transfer */

The following fields are used in the device register structure to support DMA-capable devices
with scatter-gather support:

struct sglentry {
uint32_t dma_addr;
uint32 t dma_size;
} sglist[SGLLEN];

caddr t iopb addr; /* When written, informs the device of the next */
/* command’s parameter block address. */
/* When read after an interrupt, contains */
/* the address of the completed command. */

DMA Callback Example

In Example 9-1, xxstart () is used as the callback function. The per-device state structure is
used as the argument to xxstart (). The xxstart () function attempts to start the command. If
the command cannot be started because resources are not available, xxstart () is scheduled to
be called later when resources are available.

Because xxstart() is used as a DMA callback, xxstart () must adhere to the following rules,
which are imposed on DMA callbacks:

= Resources cannot be assumed to be available. The callback must try to allocate resources
again.

Chapter9 - Direct Memory Access (DMA) 163


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s

Managing DMA Resources

164

= The callback must indicate to the system whether allocation succeeded.
DDI_DMA CALLBACK RUNOUT should be returned if the callback fails to allocate resources, in
which case xxstart () needs to be called again later. DDI_DMA_CALLBACK_DONE indicates
success, so that no further callback is necessary.

EXAMPLE9-1 DMA Callback Example

static int
xxstart(caddr_t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
struct device reg *regp;
int flags;
mutex_enter(&xsp->mu);
if (xsp->busy) {
/* transfer in progress */
mutex exit(&xsp->mu);
return (DDI_DMA CALLBACK RUNOUT);
}
xsp->busy = 1;
regp = Xsp->regp;
if ( /* transfer is a read */ ) {
flags = DDI DMA READ;
} else {
flags = DDI DMA WRITE;

mutex_exit(&xsp->mu);

if (ddi_dma buf bind handle(xsp->handle,xsp->bp,flags, xxstart,
(caddr t)xsp, &cookie, &ccount) != DDI DMA MAPPED) {
/* really should check all return values in a switch */
mutex_enter(&xsp->mu);
xsp->busy=0;
mutex_exit(&xsp->mu);
return (DDI DMA CALLBACK RUNOUT);

}
/* Program the DMA engine. */
return (DDI DMA CALLBACK DONE);

Determining Maximum Burst Sizes

Drivers specify the DMA burst sizes that their device supports in the

dma_attr burstsizesfield of the ddi dma attr(9S) structure. This field is a bitmap of the
supported burst sizes. However, when DMA resources are allocated, the system might impose
further restrictions on the burst sizes that might be actually used by the device. The

ddi dma_burstsizes(9F) routine can be used to obtain the allowed burst sizes. This routine
returns the appropriate burst size bitmap for the device. When DMA resources are allocated, a
driver can ask the system for appropriate burst sizes to use for its DMA engine.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-burstsizes-9f

Managing DMA Resources

EXAMPLE9-2 Determining Burst Size

#define BEST BURST_SIZE 0x20 /* 32 bytes */

if (ddi_dma buf bind handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr t)xsp, &cookie, &ccount) != DDI DMA MAPPED) {
/* error handling */

}

burst = ddi_dma_burstsizes(xsp->handle);

/* check which bit is set and choose one burstsize to */

/* program the DMA engine */

if (burst & BEST BURST SIZE) {
/* program DMA engine to use this burst size */

} else {
/* other cases */

}

Allocating Private DMA Buffers

Some device drivers might need to allocate memory for DMA transfers in addition to
performing transfers requested by user threads and the kernel. Some examples of allocating
private DMA buffers are setting up shared memory for communication with the device and
allocating intermediate transfer buffers. Use ddi_dma_mem_alloc(9F) to allocate memory for
DMA transfers.

int ddi_dma_mem alloc(ddi _dma_handle_t handle, size t length,
ddi_device acc_attr_t *accattrp, uint_ t flags,
int (*waitfp)(caddr t), caddr t arg, caddr t *kaddrp,
size t *real length, ddi acc handle t *handlep);

where:

handle DMA handle

length Length in bytes of the desired allocation

accattrp Pointer to a device access attribute structure

flags Data transfer mode flags. Possible values are DDI_DMA_CONSISTENT and
DDI_DMA_STREAMING.

waitfp Address of callback function for handling resource allocation failures. See the
ddi_dma_alloc_handle(9F) man page.

arg Argument to pass to the callback function

kaddrp Pointer on a successful return that contains the address of the allocated storage

real_length  Length in bytes that was allocated

handlep Pointer to a data access handle

Chapter9 - Direct Memory Access (DMA) 165


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-alloc-handle-9f

Managing DMA Resources

166

The flags parameter should be set to DDI_DMA_CONSISTENT if the device accesses in a
nonsequential fashion. Synchronization steps that use ddi_dma_sync(9F) should be as
lightweight as possible due to frequent application to small objects. This type of access is
commonly known as consistent access. Consistent access is particularly useful for I/O
parameter blocks that are used for communication between a device and the driver.

On the x86 platform, allocation of DMA memory that is physically contiguous has these
requirements:

m  Thelength of the scatter-gather list dma_attr_sglleninthe ddi_dma_attr(9S) structure
must be set to 1.

= Do notspecify DDI_DMA_PARTIAL.DDI_DMA_PARTIAL allows partial resource allocation.

The following example shows how to allocate IOPB memory and the necessary DMA resources
to access this memory. DMA resources must still be allocated, and the DDI_DMA_CONSISTENT
flag must be passed to the allocation function.

EXAMPLE9-3 Usingddi_dma_mem_alloc(9F)

if (ddi_dma_mem alloc(xsp->iopb handle, size, &accattr,
DDI DMA CONSISTENT, DDI DMA SLEEP, NULL, &xsp->iopb array,
&real length, &xsp->acchandle) != DDI SUCCESS) {
/* error handling */
goto failure;

}

if (ddi_dma addr bind handle(xsp->iopb handle, NULL,
Xsp->iopb array, real length,
DDI DMA READ | DDI DMA CONSISTENT, DDI DMA SLEEP,
NULL, &cookie, &count) != DDI_DMA MAPPED) {
/* error handling */
ddi dma mem free(&xsp->acchandle);
goto failure;

The flags parameter should be set to DDI_DMA_STREAMING for memory transfers that are
sequential, unidirectional, block-sized, and block-aligned. This type of access is commonly
known as streaming access.

In some cases, an I/O transfer can be sped up by using an I/O cache. I/O cache transfers one
cache line at a minimum. The ddi_dma_mem_alloc(9F) routine rounds size to a multiple of the
cache line to avoid data corruption.

The ddi_dma_mem_alloc(9F) function returns the actual size of the allocated memory object.
Because of padding and alignment requirements, the actual size might be larger than the
requested size. The ddi_dma_addr_bind_handle(9F) function requires the actual length.

Use the ddi_dma_mem_free(9F) function to free the memory allocated by
ddi dma mem alloc(9F).

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-alloc-9f

Managing DMA Resources

Note - Drivers must ensure that buffers are aligned appropriately. Drivers for devices that have
alignment requirements on down bound DMA buffers might need to copy the data into a driver
intermediate buffer that meets the requirements, and then bind that intermediate buffer to the
DMA handle for DMA. Use ddi dma mem_alloc(9F) to allocate the driver intermediate buffer.
Always use ddi_dma_mem_alloc(9F) instead of kmem_alloc(9F) to allocate memory for the
device to access.

Handling Resource Allocation Failures

The resource-allocation routines provide the driver with several options when handling
allocation failures. The waitfp argument indicates whether the allocation routines block, return
immediately, or schedule a callback, as shown in the following table.

TABLE9-1 Resource Allocation Handling

waitfp value Indicated Action

DDI DMA DONTWAIT Driver does not want to wait for resources to become available

DDI_DMA_SLEEP Driver is willing to wait indefinitely for resources to become available

Other values The address of a function to be called when resources are likely to be
available

Programming the DMA Engine

When the resources have been successfully allocated, the device must be programmed.
Although programming a DMA engine is device specific, all DM A engines require a starting
address and a transfer count. Device drivers retrieve these two values from the DMA cookie
returned by a successful call from ddi_dma_addr_bind_handle(9F),

ddi_dma_buf bind_handle(9F), or ddi_dma_getwin(9F). These functions all return the first
DMA cookie and a cookie count indicating whether the DMA object consists of more than one
cookie. If the cookie count N is greater than 1, ddi_dma_nextcookie(9F) must be called N-1
times to retrieve all the remaining cookies.

A DMA cookie is of type ddi_dma_cookie(9S). This type of cookie has the following fields:

uint64 t ~dmac_11; /* 64-bit DMA address */
uint32 t ~dmac_la[2]; /* 2 x 32-bit address */
size t dmac_size; /* DMA cookie size */

uint t dmac_type; /* bus specific type bits */

The dmac_laddress specifies a 64-bit I/O address that is appropriate for programming the
device's DMA engine. If a device has a 64-bit DMA address register, a driver should use this
field to program the DMA engine. The dmac_address field specifies a 32-bit I/O address that

Chapter9 - Direct Memory Access (DMA) 167


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-nextcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-cookie-9s

Managing DMA Resources

168

should be used for devices that have a 32-bit DMA address register. The dmac_size field
contains the transfer count. Depending on the bus architecture, the dmac_type field in the
cookie might be required by the driver. The driver should not perform any manipulations, such
as logical or arithmetic, on the cookie.

EXAMPLE9-4 ddi_dma_cookie(9S) Example

ddi dma cookie t cookie;

if (ddi_dma buf bind handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr_t)xsp, &cookie, &xsp->ccount) != DDI DMA MAPPED) {
/* error handling */
}
sglp = regp->sglist;
for (cnt = 1; cnt <= SGLLEN; cnt++, sglp++) {
/* store the cookie parms into the S/G list */
ddi put32(xsp->access hdl, &sglp->dma size,
(uint32 t)cookie.dmac size);
ddi_put32(xsp->access_hdl, &sglp->dma_addr,
cookie.dmac address);
/* Check for end of cookie list */
if (cnt == xsp->ccount)
break;
/* Get next DMA cookie */
(void) ddi dma_nextcookie(xsp->handle, &cookie);
}
/* start DMA transfer */
ddi put8(xsp->access _hdl, &regp->csr,
ENABLE INTERRUPTS | START TRANSFER);

Freeing the DMA Resources

After a DMA transfer is completed, usually in the interrupt routine, the driver can release DMA
resources by calling ddi_dma_unbind_handle(9F).

As described in “Synchronizing Memory Objects” on page 171, ddi_dma_unbind_handle(9F)
callsddi_dma_sync(9F), eliminating the need for any explicit synchronization. After calling
ddi_dma_unbind handle(9F), the DMA resources become invalid, and further references to the
resources have undefined results. The following example shows how to use

ddi_dma_unbind handle(9F).

EXAMPLE9-5 Freeing DMA Resources

static uint t
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
uint8 t status;
volatile uint8 t temp;
mutex_enter(&xsp->mu);
/* read status */
status = ddi_get8(xsp->access _hdl, &xsp->regp->csr);

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-unbind-handle-9f

Managing DMA Resources

EXAMPLE9-5 Freeing DMA Resources (Continued)

if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->mu);
return (DDI INTR UNCLAIMED);
}
ddi put8(xsp->access hdl, &xsp->regp->csr, CLEAR INTERRUPT);
/* for store buffers */
temp = ddi get8(xsp->access hdl, &xsp->regp->csr);
ddi dma unbind handle(xsp->handle);
/* Check for errors. */
xsp->busy = 0;
mutex exit(&xsp->mu);
if ( /* pending transfers */ ) {
(void) xxstart((caddr t)xsp);

}
return (DDI_INTR CLAIMED);

The DMA resources should be released. The DMA resources should be reallocated if a different
object is to be used in the next transfer. However, if the same object is always used, the resources
can be allocated once. The resources can then be reused as long as intervening calls to
ddi_dma_sync(9F) remain.

Freeing the DMA Handle

When the driver is detached, the DMA handle must be freed. The ddi_dma_free handle(9F)
function destroys the DM A handle and destroys any residual resources that the system is
caching on the handle. Any further references of the DM A handle will have undefined results.

Canceling DMA Callbacks

DMA callbacks cannot be canceled. Cancelinga DMA callback requires some additional code
in the driver's detach(9E) entry point. The detach () routine must not return DDI_SUCCESS if
any outstanding callbacks exist. See Example 9-6. When DMA callbacks occur, the detach ()
routine must wait for the callback to run. When the callback has finished, detach () must
prevent the callback from rescheduling itself. Callbacks can be prevented from rescheduling
through additional fields in the state structure, as shown in the following example.

EXAMPLE9-6 Canceling DM A Callbacks

static int
xxdetach(dev_info t *dip, ddi detach cmd t cmd)
{

VA

mutex_enter(&xsp->callback mutex);
xsp->cancel callbacks = 1;
while (xsp->callback count > 0) {

Chapter9 - Direct Memory Access (DMA) 169


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-free-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

Managing DMA Resources

EXAMPLE9-6 Canceling DMA Callbacks (Continued)

cv_wait(&xsp->callback cv, &xsp->callback mutex);

}
mutex exit(&xsp->callback mutex);
VA

}

static int

xxstrategy(struct buf *bp)

/* .. %/
mutex_enter(&xsp->callback mutex);
Xsp->bp = bp;

error = ddi dma buf bind handle(xsp->handle, xsp->bp, flags,
xxdmacallback, (caddr t)xsp, &cookie, &ccount);
if (error == DDI DMA NORESOURCES)
xsp->callback count++;
mutex_exit(&xsp->callback mutex);
/* ... X/
}

static int
xxdmacallback(caddr t callbackarg)
{
struct xxstate *xsp = (struct xxstate *)callbackarg;
/* .. */
mutex enter(&xsp->callback mutex);
if (xsp->cancel callbacks) {
/* do not reschedule, in process of detaching */
xsp->callback count--;
if (xsp->callback count == 0)
cv_signal(&xsp->callback cv);
mutex exit(&xsp->callback mutex);
return (DDI DMA CALLBACK DONE); /* don’'t reschedule it */

* Presumably at this point the device is still active

* and will not be detached until the DMA has completed.

* A return of @ means try again later

*/

error = ddi dma buf bind handle(xsp->handle, xsp->bp, flags,
DDI DMA DONTWAIT, NULL, &cookie, &ccount);

if (error == DDI_DMA MAPPED) {
/* Program the DMA engine. */
xsp->callback count--;
mutex exit(&xsp->callback mutex);
return (DDI DMA CALLBACK DONE);

if (error !'= DDI DMA NORESOURCES) {
xsp->callback count--;
mutex_exit(&xsp->callback mutex);
return (DDI DMA CALLBACK DONE);

}

mutex exit(&xsp->callback mutex);

return (DDI_DMA CALLBACK RUNOUT);

170 Writing Device Drivers « September 2010



Managing DMA Resources

Synchronizing Memory Objects

In the process of accessing the memory object, the driver might need to synchronize the
memory object with respect to various caches. This section provides guidelines on when and
how to synchronize memory objects.

Cache

CPU cache is a very high-speed memory that sits between the CPU and the system's main
memory. I/O cache sits between the device and the system's main memory, as shown in the
following figure.

FIGURE9-1 CPU and System I/O Caches

Memory
I
I |
System
CPU cache /O cache
I I
Bus extender
cPU 1/0 cache
I
1/0 device

When an attempt is made to read data from main memory, the associated cache checks for the
requested data. If the data is available, the cache supplies the data quickly. If the cache does not
have the data, the cache retrieves the data from main memory. The cache then passes the data
on to the requester and saves the data in case of a subsequent request.

Similarly, on a write cycle, the data is stored in the cache quickly. The CPU or device is allowed
to continue executing, that is, transferring data. Storing data in a cache takes much less time
than waiting for the data to be written to memory.

With this model, after a device transfer is complete, the data can still be in the I/O cache with no
data in main memory. If the CPU accesses the memory, the CPU might read the wrong data
from the CPU cache. The driver must call a synchronization routine to flush the data from the
I/0O cache and update the CPU cache with the new data. This action ensures a consistent view of
the memory for the CPU. Similarly, a synchronization step is required if data modified by the
CPU is to be accessed by a device.

Chapter9 - Direct Memory Access (DMA) 171



Managing DMA Resources

172

You can create additional caches and buffers between the device and memory, such as bus
extenders and bridges. Use ddi_dma_sync(9F) to synchronize all applicable caches.

ddi_dma_sync() Function

A memory object might have multiple mappings, such as for the CPU and for a device, by
means of a DMA handle. A driver with multiple mappings needs to call ddi_dma_sync(9F) if
any mappings are used to modify the memory object. Calling ddi_dma_sync() ensures that the
modification of the memory object is complete before the object is accessed through a different
mapping. The ddi_dma_sync() function can also inform other mappings of the object if any
cached references to the object are now stale. Additionally, ddi_dma_sync() flushes or
invalidates stale cache references as necessary.

Generally, the driver must call ddi_dma_sync() when a DMA transfer completes. The
exception to this rule is if deallocating the DMA resources with ddi_dma_unbind_handle(9F)
does an implicitddi_dma_sync () on behalf of the driver. The syntax for ddi_dma_sync() is as
follows:

int ddi_dma_sync(ddi _dma handle t handle, off t off,
size t length, uint t type);

If the object is going to be read by the DMA engine of the device, the device's view of the object
must be synchronized by setting type to DDI_DMA_SYNC_FORDEV. If the DMA engine of the
device has written to the memory object and the object is going to be read by the CPU, the
CPU's view of the object must be synchronized by setting type to DDI_DMA_SYNC_FORCPU.

The following example demonstrates synchronizing a DMA object for the CPU:

if (ddi_dma_sync(xsp->handle, 0, length, DDI DMA SYNC FORCPU)
== DDI SUCCESS) {
/* the CPU can now access the transferred data */
/* .. */
} else {
/* error handling */

}

Use the flagDDI_DMA_SYNC_FORKERNEL if the only mapping is for the kernel, as in the case of
memory thatis allocated by ddi_dma_mem_alloc(9F). The system tries to synchronize the
kernel's view more quickly than the CPU's view. If the system cannot synchronize the kernel
view faster, the system acts as if the DDI_DMA_SYNC_FORCPU flag were set.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-mem-alloc-9f

DMAWindows

DMA Windows

If an object does not fit within the limitations of the DMA engine, the transfer must be broken
into a series of smaller transfers. The driver can break up the transfer itself. Alternatively, the
driver can allow the system to allocate resources for only part of the object, thereby creating a
series of DMA windows. Allowing the system to allocate resources is the preferred solution,
because the system can manage the resources more effectively than the driver can manage the
resources.

A DMA window has two attributes. The offset attribute is measured from the beginning of the
object. The length attribute is the number of bytes of memory to be allocated. After a partial
allocation, only a range of length bytes that starts at offset has allocated resources.

A DMA window is requested by specifying the DDI_DMA PARTIAL flag as a parameter to
ddi_dma_buf bind_handle(9F)orddi_dma_addr_bind handle(9F). Both functions return
DDI_DMA_PARTIAL_MAP if a window can be established. However, the system might allocate
resources for the entire object, in which case DDI_DMA_MAPPED is returned. The driver should
check the return value to determine whether DMA windows are in use. See the following
example.

EXAMPLE9-7 Setting Up DMA Windows

static int
xxstart (caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
struct device reg *regp = xsp->reg;
ddi dma cookie t cookie;
int status;
mutex_enter(&xsp->mu);
if (xsp->busy) {
/* transfer in progress */
mutex_exit(&xsp->mu);
return (DDI DMA CALLBACK RUNOUT);
}
xsp->busy = 1;
mutex exit(&xsp->mu);
if ( /* transfer is a read */) {
flags = DDI DMA READ;
} else {
flags = DDI DMA WRITE;
}
flags |= DDI DMA PARTIAL;
status = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp,
flags, xxstart, (caddr t)xsp, &cookie, &ccount);
if (status != DDI DMA MAPPED &&
status != DDI DMA PARTIAL MAP)
return (DDI DMA CALLBACK RUNOUT);
if (status == DDI DMA PARTIAL MAP) {
ddi dma numwin(xsp->handle, &xsp->nwin);
xsp->partial = 1;
xsp->windex = 0;
} else {

Chapter9 - Direct Memory Access (DMA) 173


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-addr-bind-handle-9f

DMAWindows

174

EXAMPLE9-7  Setting Up DMA Windows (Continued)

xsp->partial = 0;
}
/* Program the DMA engine. */
return (DDI_DMA_CALLBACK DONE);

Two functions operate with DMA windows. The first, ddi_dma_numwin(9F), returns the
number of DMA windows for a particular DMA object. The other function,
ddi_dma_getwin(9F), allows repositioning within the object, that is, reallocation of system
resources. The ddi_dma_getwin () function shifts the current window to a new window within
the object. Because ddi_dma_getwin () reallocates system resources to the new window, the
previous window becomes invalid.

Caution - Do not move the DMA windows with a call to ddi_dma_getwin () before transfers into
the current window are complete. Wait until the transfer to the current window is complete,
which is when the interrupt arrives. Then call ddi_dma_getwin () to avoid data corruption.

The ddi_dma_getwin () function is normally called from an interrupt routine, as shown in
Example 9-8. The first DMA transfer is initiated as a result of a call to the driver. Subsequent
transfers are started from the interrupt routine.

The interrupt routine examines the status of the device to determine whether the device
completes the transfer successfully. If not, normal error recovery occurs. If the transfer is
successful, the routine must determine whether the logical transfer is complete. A complete
transfer includes the entire object as specified by the buf(9S) structure. In a partial transfer, only
one DMA window is moved. In a partial transfer, the interrupt routine moves the window with
ddi_dma_getwin(9F), retrieves a new cookie, and starts another DMA transfer.

If the logical request has been completed, the interrupt routine checks for pending requests. If
necessary, the interrupt routine starts a transfer. Otherwise, the routine returns without
invoking another DMA transfer. The following example illustrates the usual flow control.

EXAMPLE9-8 Interrupt Handler Using DMA Windows

static uint_t
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;
volatile uint8 t temp;
mutex _enter(&xsp->mu);
/* read status */
status = ddi get8(xsp->access hdl, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->mu);

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-numwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-getwin-9f

DMAWindows

EXAMPLE9-8 Interrupt Handler Using DMA Windows (Continued)

}

ddi put8(xsp->access hdl,&xsp->regp->csr, CLEAR INTERRUPT);

return (DDI_INTR UNCLAIMED);

/* for store buffers */
temp = ddi get8(xsp->access hdl, &xsp->regp->csr);
if ( /* an error occurred during transfer */ ) {

bioerror(xsp->bp, EIO);
xsp->partial = 0;

} else {

}

xsp->bp->b resid -= /* amount transferred */ ;

if (xsp->partial && (++xsp->windex < xsp->nwin)) {

}

/* device still marked busy to protect state */

mutex exit(&xsp->mu);

(void) ddi dma_getwin(xsp->handle, xsp->windex,
&offset, &len, &cookie, &ccount);

/* Program the DMA engine with the new cookie(s). */

return (DDI INTR CLAIMED);

ddi_dma_unbind_handle(xsp->handle);
biodone(xsp->bp);

xsp->busy = 0;

xsp->partial = 0;

mutex exit(&xsp->mu);

if ( /* pending transfers */ ) {

(void) xxstart((caddr t)xsp);

}
return (DDI_INTR_CLAIMED);

Chapter9 « Direct Memory Access (DMA)

175



176



L K R 4 CHAPTER 10

Mapping Device and Kernel Memory

Some device drivers allow applications to access device or kernel memory through mmap(2).
Frame buffer drivers, for example, enable the frame buffer to be mapped into a user thread.
Another example would be a pseudo driver that uses a shared kernel memory pool to
communicate with an application. This chapter provides information on the following subjects:

“Memory Mapping Overview” on page 177

“Exporting the Mapping” on page 177

“Associating Device Memory With User Mappings” on page 181
“Associating Kernel Memory With User Mappings” on page 182

Memory Mapping Overview

The steps that a driver must take to export device or kernel memory are as follows:

1. SettheD_ DEVMAP flagin the cb_flag flag of the cb_ops(9S) structure.

2. Define a devmap(9E) driver entry point and optional segmap(9E) entry point to export the
mapping.

3. Usedevmap_devmem_setup(9F) to set up user mappings to a device. To set up user
mappings to kernel memory, use devmap_umem_setup(9F).

Exporting the Mapping

This section describes how to use the segmap(9E) and devmap(9E) entry points.

The segmap(9E) Entry Point

The segmap(9E) entry point is responsible for setting up a memory mapping requested by an
mmap(2) system call. Drivers for many memory-mapped devices use ddi_devmap_segmap(9F) as
the entry point rather than defining their own segmap(9E) routine. By providing a segmap ()

177


http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devmap-segmap-9f

Exporting the Mapping

178

entry point, a driver can take care of general tasks before or after creating the mapping. For
example, the driver can check mapping permissions and allocate private mapping resources.
The driver can also make adjustments to the mapping to accommodate non-page-aligned
device buffers. The segmap () entry point must call the ddi_devmap_segmap(9F) function before
returning. The ddi_devmap_segmap () function calls the driver's devmap(9E) entry point to
perform the actual mapping.

The segmap () function has the following syntax:

int segmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,
off t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp);

where:

dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

asp Pointer to the address space into which the device memory should be mapped.
Note that this argument can be either a struct as *, as shown in Example 10-1,
oraddi as_handle_t,asshown in Example 10-2. This is because ddidevmap . h
includes the following declaration:
typedef struct as *ddi as handle t

addrp Pointer to the address in the address space to which the device memory should be
mapped.

len Length (in bytes) of the memory being mapped.

prot A bit field that specifies the protections. Possible settings are PROT_READ,
PROT_WRITE, PROT_EXEC, PROT_USER, and PROT_ALL. See the man page
for details.

maxprot  Maximum protection flag possible for attempted mapping. The PROT_WRITE bit
can be masked out if the user opened the special file read-only.

flags Flags that indicate the type of mapping. Possible values include MAP_SHARED
and MAP_PRIVATE.

credp Pointer to the user credentials structure.

In the following example, the driver controls a frame buffer that allows write-only mappings.
The driver returns EINVAL if the application tries to gain read access and then calls
ddi_devmap_segmap(9F) to set up the user mapping.

EXAMPLE 10-1 segmap (9E) Routine

static int
xxsegmap(dev_t dev, off t off, struct as *asp, caddr t *addrp,

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devmap-segmap-9f

Exporting the Mapping

EXAMPLE 10-1 segmap (9E) Routine (Continued)

off t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred t *credp)

{
if (prot & PROT_READ)
return (EINVAL);
return (ddi devmap segmap(dev, off, as, addrp,
len, prot, maxprot, flags, cred));
}

The following example shows how to handle a device that has a buffer that is not page-aligned in
its register space. This example maps a buffer that starts at offset 0x800, so that mmap(2) returns
an address that corresponds to the start of the buffer. The devmap_devmem_setup(9F) function
maps entire pages, requires the mapping to be page aligned, and returns an address to the start
of a page. If this address is passed through segmap(9E), or if no segmap () entry point is defined,
mmap () returns the address that corresponds to the start of the page, not the address that
corresponds to the start of the buffer. In this example, the buffer offset is added to the
page-aligned address that was returned by devmap_devmem_setup so that the resulting address
returned is the desired start of the buffer.

EXAMPLE 10-2  Using the segmap () Function to Change the Address Returned by the mmap () Call

#define BUFFER OFFSET 0x800

int

xx_segmap(dev t dev, off t off, ddi as handle t as, caddr t *addrp, off t len,
uint t prot, uint t maxprot, uint t flags, cred t *credp)

{
int rval;
unsigned long pagemask = ptob(1lL) - 1L;
if ((rval = ddi devmap segmap(dev, off, as, addrp, len, prot, maxprot,
flags, credp)) == DDI SUCCESS) {
/*
* The address returned by ddi devmap segmap is the start of the page
* that contains the buffer. Add the offset of the buffer to get the
* final address.
*/
*addrp += BUFFER OFFSET & pagemask);
}
return (rval);
}

The devmap(9E) Entry Point

The devmap(9E) entry point is called from the ddi_devmap_segmap(9F) function inside the
segmap(9E) entry point.

Chapter 10 « Mapping Device and Kernel Memory 179


http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e

Exporting the Mapping

180

The devmap(9E) entry point is called as a result of the mmap(2) system call. The devmap(9E)
function is called to export device memory or kernel memory to user applications. The
devmap () function is used for the following operations:

= Validate the user mapping to the device or kernel memory

= Translate the logical offset within the application mapping to the corresponding offset
within the device or kernel memory

®  Pass the mapping information to the system for setting up the mapping

The devmap () function has the following syntax:

int devmap(dev_t dev, devmap_cookie t handle, offset_t off,
size_t len, size_t *maplen, uint_t model);

where:
dev Device whose memory is to be mapped.

handle ~ Device-mapping handle that the system creates and uses to describe a mapping to
contiguous memory in the device or kernel.

off Logical offset within the application mapping that has to be translated by the driver
to the corresponding offset within the device or kernel memory.

len Length (in bytes) of the memory being mapped.

maplen  Enables driver to associate different kernel memory regions or multiple physically
discontiguous memory regions with one contiguous user application mapping.

model Data model type of the current thread.

The system creates multiple mapping handles in one mmap(2) system call. For example, the
mapping might contain multiple physically discontiguous memory regions.

Initially, devmap(9E) is called with the parameters off and len. These parameters are passed by
the application to mmap(2). devmap(9E) sets *maplen to the length from off to the end of a
contiguous memory region. The *maplen value must be rounded up to a multiple of a page size.
The *maplen value can be set to less than the original mapping length len. If so, the system uses
a new mapping handle with adjusted off and len parameters to call devmap(9E) repeatedly until
the initial mapping length is satisfied.

If a driver supports multiple application data models, model must be passed to

ddi_model convert from(9F). The ddi model convert from() function determines whether
a data model mismatch exists between the current thread and the device driver. The device
driver might have to adjust the shape of data structures before exporting the structures to a user
thread that supports a different data model. See Appendix C, “Making a Device Driver 64-Bit
Ready,” page for more details.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-model-convert-from-9f

Associating Device Memory With User Mappings

The devmap(9E) entry point must return -1 if the logical offset, off, is out of the range of
memory exported by the driver.

Associating Device Memory With User Mappings

Call devmap_devmem_setup(9F) from the driver's devmap(9E) entry point to export device
memory to user applications.

The devmap_devmem_setup(9F) function has the following syntax:

int devmap_devmem_setup(devmap_cookie t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, uint_t rnumber,
offset_t roff, size_t len, uint_t maxprot, uint_t flags,
ddi_device acc_attr_t *accattrp);

where:
handle Opaque device-mapping handle that the system uses to identify the mapping.
dip Pointer to the device's dev_info structure.

callbackops Pointer to a devmap_callback_ct1(9S) structure that enables the driver to be
notified of user events on the mapping.

rnumber Index number to the register address space set.

roff Offset into the device memory.

len Length in bytes that is exported.

maxprot Allows the driver to specify different protections for different regions within the
exported device memory.

flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to addi device acc_attr(9S) structure.

The roffand len arguments describe a range within the device memory specified by the register
set rnumber. The register specifications that are referred to by rnumber are described by the reg
property. For devices with only one register set, pass zero for rnumber. The range is defined by
roffand len. The range is made accessible to the user's application mapping at the offset that is
passed in by the devmap(9E) entry point. Usually the driver passes the devmap(9E) offset directly
to devmap_devmem_setup(9F). The return address of mmap(2) then maps to the beginning
address of the register set.

The maxprot argument enables the driver to specify different protections for different regions
within the exported device memory. For example, to disallow write access for a region, set only
PROT_READ and PROT_USER for that region.

Chapter 10 « Mapping Device and Kernel Memory 181


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2

Associating Kernel Memory With User Mappings

The following example shows how to export device memory to an application. The driver first
determines whether the requested mapping falls within the device memory region. The size of
the device memory is determined using ddi_dev_regsize(9F). The length of the mapping is
rounded up to a multiple of a page size using ptob(9F) and btopr(9F). Then
devmap_devmem_setup(9F) is called to export the device memory to the application.

EXAMPLE 10-3  Using the devmap_devmem_setup () Routine

static int
xxdevmap(dev_t dev, devmap cookie t handle, offset t off, size t len,
size t *maplen, uint t model)
{
struct xxstate *xsp;
int error, rnumber;
off t regsize;

/* Set up data access attribute structure */
struct ddi device acc attr xx acc attr = {
DDI DEVICE ATTR VO,
DDI NEVERSWAP ACC,
DDI STRICTORDER ACC
+
xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (-1);
/* use register set 0 */
rnumber = 0;
/* get size of register set */
if (ddi_dev_regsize(xsp->dip, rnumber, &regsize) != DDI SUCCESS)
return (-1);
/* round up len to a multiple of a page size */
len = ptob(btopr(len));
if (off + len > regsize)
return (-1);
/* Set up the device mapping */
error = devmap_devmem_setup(handle, xsp->dip, NULL, rnumber,
off, len, PROT ALL, DEVMAP DEFAULTS, &xx_ acc attr);
/* acknowledge the entire range */
*maplen = len;
return (error);

Associating Kernel Memory With User Mappings

Some device drivers might need to allocate kernel memory that is made accessible to user
programs through mmap(2). One example is setting up shared memory for communication
between two applications. Another example is sharing memory between a driver and an
application.

When exporting kernel memory to user applications, follow these steps:

1. Useddi_umem_alloc(9F) to allocate kernel memory.

182 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dev-regsize-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ptob-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=btopr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f

Associating Kernel Memory With User Mappings

2. Use devmap_umem_setup(9F) to export the memory.
3. Useddi_umem_free(9F) to free the memory when the memory is no longer needed.

Allocating Kernel Memory for User Access

Useddi_umem_alloc(9F) to allocate kernel memory that is exported to applications.
ddi_umem_alloc() uses the following syntax:

void *ddi_umem_alloc(size t size, int flag, ddi_umem_cookie t

*cookiep) ;

where:

size Number of bytes to allocate.

flag Used to determine the sleep conditions and the memory type.

cookiep  Pointer to a kernel memory cookie.

ddi_umem_alloc(9F) allocates page-aligned kernel memory. ddi_umem_alloc() returnsa
pointer to the allocated memory. Initially, the memory is filled with zeroes. The number of bytes
that are allocated is a multiple of the system page size, which is rounded up from the size
parameter. The allocated memory can be used in the kernel. This memory can be exported to
applications as well. cookiep is a pointer to the kernel memory cookie that describes the kernel
memory being allocated. cookiep is used in devmap_umem_setup(9F) when the driver exports
the kernel memory to a user application.

The flag argument indicates whether ddi_umem_alloc(9F) blocks or returns immediately, and
whether the allocated kernel memory is pageable. The values for the flag argument as follows:

DDI UMEM NOSLEEP Driver does not need to wait for memory to become available. Return
NULL if memory is not available.

DDI UMEM SLEEP Driver can wait indefinitely for memory to become available.

DDI_UMEM_PAGEABLE  Driver allows memory to be paged out. If not set, the memory is
locked down.

The ddi_umem_lock() function can perform device-locked-memory checks. The function
checks against the limit value that is specified in project.max-locked-memory. If the current
project locked-memory usage is below the limit, the project's locked-memory byte count is
increased. After the limit check, the memory islocked. The ddi_umem_unlock() function
unlocks the memory, and the project's locked-memory byte count is decremented.

The accounting method that is used is an imprecise full price model. For example, two callers of
umem_lockmemory () within the same project with overlapping memory regions are charged
twice.

Chapter 10 « Mapping Device and Kernel Memory 183


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f

Associating Kernel Memory With User Mappings

For information about the project.max-locked-memory and zone.max-locked memory
resource controls on Solaris systems with zones installed, see Solaris Containers: Resource
Management and Solaris Zones Developer’s Guide and see resource_controls(5).

The following example shows how to allocate kernel memory for application access. The driver
exports one page of kernel memory, which is used by multiple applications as a shared memory
area. The memory is allocated in segmap(9E) when an application maps the shared page the first
time. An additional page is allocated if the driver has to support multiple application data
models. For example, a 64-bit driver might export memory both to 64-bit applications and to
32-bit applications. 64-bit applications share the first page, and 32-bit applications share the
second page.

EXAMPLE 10-4 Usingtheddi_umem_alloc() Routine

static int

xxsegmap(dev_t dev, off t off, struct as *asp, caddr_t *addrp, off_t len,
unsigned int prot, unsigned int maxprot, unsigned int flags,
cred t *credp)

int error;
minor t instance = getminor(dev);
struct xxstate *xsp = ddi_get soft state(statep, instance);

size t mem size;
/* 64-bit driver supports 64-bit and 32-bit applications */
switch (ddi mmap get model()) {
case DDI_MODEL_LP64:
mem_size = ptob(2);
break;
case DDI_MODEL ILP32:
mem_size = ptob(1);
break;

}

mutex_enter(&xsp->mu);
if (xsp->umem == NULL) {

/* allocate the shared area as kernel pageable memory */
xsp->umem = ddi umem alloc(mem size,
DDI UMEM SLEEP | DDI_ UMEM PAGEABLE, &xsp->ucookie);

mutex_exit (&xsp->mu);

/* Set up the user mapping */

error = devmap setup(dev, (offset t)off, asp, addrp, len,
prot, maxprot, flags, credp);

return (error);

184 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=817-1975&id=rscmgrdevgd
http://www.oracle.com/pls/topic/lookup?ctx=817-1975&id=rscmgrdevgd
http://www.oracle.com/pls/topic/lookup?ctx=816-5175&id=resource-controls-5
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e

Associating Kernel Memory With User Mappings

Exporting Kernel Memory to Applications

Use devmap_umem_setup(9F) to export kernel memory to user applications.
devmap_umem_setup () must be called from the driver's devmap(9E) entry point. The syntax for
devmap_umem_setup() is as follows:

int devmap_umem_setup(devmap_cookie t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, ddi_umem cookie t cookie,
offset_t koff, size t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accatirp);

where:
handle Opaque structure used to describe the mapping.
dip Pointer to the device's dev_info structure.

callbackops Pointer to a devmap_callback ct1(9S) structure.

cookie Kernel memory cookie returned by ddi_umem_alloc(9F).

koff Offset into the kernel memory specified by cookie.

len Length in bytes that is exported.

maxprot Specifies the maximum protection possible for the exported mapping.
flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to addi_device acc_attr(9S) structure.

handle is a device-mapping handle that the system uses to identify the mapping. handle is
passed in by the devmap(9E) entry point. dip is a pointer to the device's dev_info structure.
callbackops enables the driver to be notified of user events on the mapping. Most drivers set
callbackops to NULL when kernel memory is exported.

koffand len specify a range within the kernel memory allocated by ddi_umem_alloc(9F). This
range is made accessible to the user's application mapping at the offset that is passed in by the
devmap(9E) entry point. Usually, the driver passes the devmap(9E) offset directly to
devmap_umem_setup(9F). The return address of mmap(2) then maps to the kernel address
returned by ddi_umem_alloc(9F). koffand len must be page-aligned.

maxprot enables the driver to specify different protections for different regions within the
exported kernel memory. For example, one region might not allow write access by only setting
PROT READ and PROT USER.

The following example shows how to export kernel memory to an application. The driver first
checks whether the requested mapping falls within the allocated kernel memory region. Ifa
64-bit driver receives a mapping request from a 32-bit application, the request is redirected to

Chapter 10 « Mapping Device and Kernel Memory 185


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f

Associating Kernel Memory With User Mappings

186

the second page of the kernel memory area. This redirection ensures that only applications
compiled to the same data model share the same page.

EXAMPLE10-5 devmap umem_setup(9F) Routine

static int
xxdevmap(dev_t dev, devmap cookie t handle, offset t off, size t len,
size t *maplen, uint_t model)

{

struct xxstate *xsp;

int error;

/* round up len to a multiple of a page size */

len = ptob(btopr(len));

/* check if the requested range is ok */

if (off + len > ptob(1))
return (ENXIO);

xsp = ddi_get soft state(statep, getminor(dev));

if (xsp == NULL)
return (ENXIO);

if (ddi model convert from(model) == DDI MODEL ILP32)
/* request from 32-bit application. Skip first page */
off += ptob(1);

/* export the memory to the application */

error = devmap umem setup(handle, xsp->dip, NULL, xsp->ucookie,
off, len, PROT ALL, DEVMAP DEFAULTS, NULL);

*maplen = len;

return (error);

}

Freeing Kernel Memory Exported for User Access

When the driver is unloaded, the memory that was allocated by ddi_umem_alloc(9F) must be
freed by calling ddi_umem_free(9F).

void ddi umem free(ddi umem cookie t cookie);

cookie is the kernel memory cookie returned by ddi_umem_alloc(9F).

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f

L R 2 4 CHAPTER 11

Device Context Management

Some device drivers, such as drivers for graphics hardware, provide user processes with direct
access to the device. These devices often require that only one process at a time accesses the
device.

This chapter describes the set of interfaces that enable device drivers to manage access to such
devices. The chapter provides information on the following subjects:

= “Introduction to Device Context” on page 187
= “Context Management Model” on page 187
= “Context Management Operation” on page 189

Introduction to Device Context

This section introduces device context and the context management model.

Whatls a Device Context?

The context of a device is the current state of the device hardware. The device driver manages
the device context for a process on behalf of the process. The driver must maintain a separate
device context for each process that accesses the device. The device driver has the responsibility
to restore the correct device context when a process accesses the device.

Context Management Model

Frame buffers provide a good example of device context management. An accelerated frame
buffer enables user processes to directly manipulate the control registers of the device through
memory-mapped access. Because these processes do not use traditional system calls, a process
that accesses the device need not call the device driver. However, the device driver must be

187



Introduction to Device Context

188

notified when a process is about to access a device. The driver needs to restore the correct device
context and needs to provide any necessary synchronization.

To resolve this problem, the device context management interfaces enable a device driver to be
notified when a user process accesses memory-mapped regions of the device, and to control
accesses to the device's hardware. Synchronization and management of the various device
contexts are the responsibility of the device driver. When a user process accesses a mapping, the
device driver must restore the correct device context for that process.

A device driver is notified whenever a user process performs any of the following actions:

®  Accesses a mapping

= Duplicates a mapping
= Frees amapping

= Creates a mapping

The following figure shows multiple user processes that have memory-mapped a device. The
driver has granted process B access to the device, and process B no longer notifies the driver of
accesses. However, the driver is still notified if either process A or process C accesses the device.

FIGURE 11-1 Device Context Management

User processes Device memory
Process A | >«
N
N
N N N
N g
Current context | Process B < Device
7 s
7 s
7
7
Process C | ~

At some point in the future, process A accesses the device. The device driver is notified and
blocks future access to the device by process B. The driver then saves the device context for
process B. The driver restores the device context of process A. The driver then grants access to
process A, as illustrated in the following figure. At this point, the device driver is notified if
either process B or process C accesses the device.

Writing Device Drivers « September 2010



Context Management Operation

FIGURE 11-2 Device Context Switched to User Process A

User processes Device memory

Current context | Process A

Process B ) Device

ProcessC |

On a multiprocessor machine, multiple processes could attempt to access the device at the same
time. This situation can cause thrashing. Some devices require a longer time to restore a device
context. To prevent more CPU time from being used to restore a device context than to actually
use that device context, the minimum time that a process needs to have access to the device can
be set using devmap_set_ctx_timeout(9F).

The kernel guarantees that once a device driver has granted access to a process, no other process
is allowed to request access to the same device for the time interval specified by
devmap_set ctx_timeout(9F).

Context Management Operation

The general steps for performing device context management are as follows:

Defineadevmap callback ct1(9S) structure.

Allocate space to save device context if necessary.

Set up user mappings to the device and driver notifications with devmap_devmem_setup(9F).

Manage user access to the device with devmap_load(9F) and devmap_unload(9F).

ARl

Free the device context structure, if needed.

devmap_callback ctlStructure

The device driver must allocate and initialize a devmap callback ct1(9S) structure to inform
the system about the entry point routines for device context management.

This structure uses the following syntax:

struct devmap callback ctl {
int devmap rev;
int (*devmap map) (devmap cookie t dhp, dev t dev,
uint t flags, offset t off, size t len, void **pvtp);

Chapter 11 - Device Context Management 189


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-set-ctx-timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-set-ctx-timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=devmap-callback-ctl-9s

Context Management Operation

190

int (*devmap_access) (devmap_cookie t dhp, void *pvtp,
offset t off, size t len, uint t type, uint t rw);
int (*devmap dup) (devmap cookie t dhp, void *pvtp,
devmap_cookie t new dhp, void **new pvtp);

void (*devmap unmap) (devmap cookie t dhp, void *pvtp,
offset_t off, size t len, devmap_ cookie t new dhpl,
void **new pvtpl, devmap_cookie t new dhp2,

void **new pvtp2);

}i

devmap_rev The version number of the devmap _callback ctl structure. The version
number must be set to DEVMAP_OPS_REV.

devmap_map Must be set to the address of the driver's devmap_map(9E) entry point.

devmap_access Must be set to the address of the driver's devmap_access(9E) entry point.
devmap_dup Must be set to the address of the driver's devmap_dup(9E) entry point.

devmap_unmap Must be set to the address of the driver's devmap_unmap(9E) entry point.

Entry Points for Device Context Management

The following entry points are used to manage device context:

devmap(9E)
devmap_access(9E)
devmap_contextmgt(9E)
devmap_dup(9E)
devmap_unmap(9E)

devmap_map () Entry Point
The syntax for devmap(9E) is as follows:

int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,
offset_t offset, size t len, void **new-devprivate);

The devmap_map () entry point is called after the driver returns from its devmap () entry point
and the system has established the user mapping to the device memory. The devmap () entry
point enables a driver to perform additional processing or to allocate mapping specific private
data. For example, in order to support context switching, the driver has to allocate a context
structure. The driver must then associate the context structure with the mapping.

The system expects the driver to return a pointer to the allocated private data in
*new-devprivate. The driver must store offset and len, which define the range of the mapping, in
its private data. Later, when the system calls devmap_unmap(9E), the driver uses this information
to determine how much of the mapping is being unmapped.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-map-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-unmap-9e

Context Management Operation

flags indicates whether the driver should allocate a private context for the mapping. For
example, a driver can allocate a memory region to store the device context if flags is set to
MAP_PRIVATE. If MAP_SHARED is set, the driver returns a pointer to a shared region.

The following example shows a devmap () entry point. The driver allocates a new context
structure. The driver then saves relevant parameters passed in by the entry point. Next, the
mapping is assigned a new context either through allocation or by attaching the mapping to an
already existing shared context. The minimum time interval that the mapping should have
access to the device is set to one millisecond.

EXAMPLE 11-1  Using the devmap () Routine

static int
int xxdevmap map(devmap cookie t handle, dev t dev, uint t flags,
offset t offset, size t len, void **new devprivate)
{
struct xxstate *xsp = ddi get soft state(statep,
getminor(dev));
struct xxctx *newctx;

/* create a new context structure */

newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);

newctx->xsp = Xsp;

newctx->handle handle;

newctx->offset offset;

newctx->flags = flags;

newctx->len = len;

mutex_enter(&xsp->ctx_lock);

if (flags & MAP_PRIVATE) {
/* allocate a private context and initialize it */
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
xxctxinit (newctx);

} else {
/* set a pointer to the shared context */
newctx->context = xsp->ctx_shared;

}

mutex exit(&xsp->ctx lock);

/* give at least 1 ms access before context switching */
devmap set ctx timeout(handle, drv usectohz(1000));

/* return the context structure */

*new devprivate = newctx;

return(0);

devmap_access () Entry Point

The devmap_access(9E) entry point is called when an access is made to a mapping whose
translations are invalid. Mapping translations are invalidated when the mapping is created with
devmap_devmem_setup(9F) in response to mmap(2), duplicated by fork(2), or explicitly
invalidated by a call to devmap_unload(9F).

The syntax for devmap_access () is as follows:

Chapter 11 - Device Context Management 191


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-unload-9f

Context Management Operation

192

int xxdevmap_access(devmap_cookie_t handle, void *devprivate,
offset_t offset, size t len, uint_t type, uint_t rw);

where:
handle Mapping handle of the mapping that was accessed by a user process.

devprivate  Pointer to the driver private data associated with the mapping.

offset Offset within the mapping that was accessed.
len Length in bytes of the memory being accessed.
type Type of access operation.

rw Specifies the direction of access.

The system expects devmap_access(9E) to call either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) to load the memory address translations before

devmap_access () returns. For mappings that support context switching, the device driver
should call devmap_do_ctxmgt (). This routine is passed all parameters from
devmap_access(9E), as well as a pointer to the driver entry point devmap_contextmgt(9E),
which handles the context switching. For mappings that do not support context switching, the
driver should call devmap default access(9F). The purpose of devmap default access() is
to call devmap_load(9F) to load the user translation.

The following example shows a devmap_access(9E) entry point. The mapping is divided into
two regions. The region that starts at offset OFF_CTXMG with a length of CTXMGT_SIZE bytes
supports context management. The rest of the mapping supports default access.

EXAMPLE 11-2  Using the devmap_access () Routine

#define OFF CTXMG 0
#define CTXMGT_ SIZE 0x20000
static int

xxdevmap _access(devmap cookie t handle, void *devprivate,
offset t off, size t len, uint t type, uint t rw)

{
offset t diff;
int error;
if ((diff = off - OFF CTXMG) >= 0 && diff < CTXMGT SIZE) {
error = devmap _do_ctxmgt(handle, devprivate, off,
len, type, rw, xxdevmap contextmgt);
} else {
error = devmap default access(handle, devprivate,
off, len, type, rw);
}
return (error);
}

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e

Context Management Operation

devmap_contextmgt () Entry Point

The syntax for devmap_contextmgt(9E) is as follows:

int xxdevmap_contextmgt(devmap_cookie_ t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

devmap_contextmgt () should call devmap_unload(9F) with the handle of the mapping that
currently has access to the device. This approach invalidates the translations for that mapping.
The approach ensures that a call to devmap_access(9E) occurs for the current mapping the next
time the mapping is accessed. The mapping translations for the mapping that caused the access
event to occur need to be validated. Accordingly, the driver must restore the device context for
the process requesting access. Furthermore, the driver must call devmap_load(9F) on the handle
of the mapping that generated the call to this entry point.

Accesses to portions of mappings that have had their mapping translations validated by a call to
devmap_load () do not generate a call to devmap_access (). A subsequent call to
devmap_unload () invalidates the mapping translations. This call enables devmap_access () to
be called again.

If either devmap_load() or devmap_unload() returns an error, devmap_contextmgt () should
immediately return that error. If the device driver encounters a hardware failure while restoring
a device context, a - 1 should be returned. Otherwise, after successfully handling the access
request, devmap_contextmgt () should return zero. A return of other than zero from
devmap_contextmgt () causes a SIGBUS or SIGSEGV to be sent to the process.

The following example shows how to manage a one-page device context.

Note - xxctxsave() and xxctxrestore() are device-dependent context save and restore
functions. xxctxsave () reads data from the registers and saves the data in the soft state
structure. xxctxrestore () takes data that is saved in the soft state structure and writes the data
to device registers. Note that the read, write, and save are all performed with the DDI/DKI data
access routines.

EXAMPLE 11-3  Using the devmap_contextmgt () Routine

static int

xxdevmap_contextmgt(devmap cookie t handle, void *devprivate,
offset t off, size t len, uint t type, uint t rw)

{
int error;
struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
mutex_enter(&xsp->ctx lock);
/* unload mapping for current context */

if (xsp->current ctx != NULL) {
if ((error = devmap unload(xsp->current ctx->handle,
off, len)) !=0) {

Chapter 11 - Device Context Management 193


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-load-9f

Context Management Operation

194

EXAMPLE 11-3  Using the devmap_contextmgt () Routine (Continued)

xsp->current ctx = NULL;
mutex_exit(&xsp->ctx lock);
return (error);

}

/* Switch device context - device dependent */
if (xxctxsave(xsp->current ctx, off, len) < 0) {
xsp->current ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);
}
if (xxctxrestore(ctxp, off, len) < 0){
xsp->current ctx = NULL;
mutex_exit(&xsp->ctx lock);
return (-1);
}
xsp->current ctx = ctxp;
/* establish mapping for new context and return */
error = devmap_load(handle, off, len, type, rw);
if (error)
xsp->current_ctx = NULL;
mutex exit(&xsp->ctx lock);
return (error);

devmap_dup () Entry Point

The devmap_dup(9E) entry point is called when a device mapping is duplicated, for example, by
a user process that calls fork(2). The driver is expected to generate new driver private data for
the new mapping.

The syntax fordevmap_dup () is as follows:

int xxdevmap_dup(devmap_cookie t handle, void *devprivate,
devmap_cookie_t new-handle, void **new-devprivate) ;

where:

handle Mapping handle of the mapping being duplicated.

new-handle Mapping handle of the mapping that was duplicated.

devprivate Pointer to the driver private data associated with the mapping being

duplicated.

*new-devprivate  Should be set to point to the new driver private data for the new mapping.

Mappings that have been created with devmap_dup () by default have their mapping
translations invalidated. Invalid mapping translations force a call to the devmap_access(9E)
entry point the first time the mapping is accessed.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e

Context Management Operation

The following example shows a typical devmap_dup () routine.

EXAMPLE 11-4 Using the devmap_dup () Routine

static int
xxdevmap dup(devmap cookie t handle, void *devprivate,

{

devmap_cookie t new_handle, void **new_devprivate)

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
struct xxctx *newctx;
/* Create a new context for the duplicated mapping */
newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);
newctx->xsp = Xxsp;
newctx->handle = new handle;
newctx->offset = ctxp->offset;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len;
mutex_enter(&xsp->ctx_lock);
if (ctxp->flags & MAP PRIVATE) {
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX SIZE);
} else {
newctx->context = xsp->ctx_shared;

mutex exit(&xsp->ctx lock);
*new devprivate = newctx;
return(0);

devmap_unmap () Entry Point

The devmap_unmap(9E) entry point is called when a mapping is unmapped. Unmapping can be
caused by a user process exiting or by calling the munmap (2) system call.

The syntax for devmap_unmap () is as follows:

void xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,

offset_t off, size t len, devmap_cookie t new-handlel,
void **new-devprivatel, devmap_cookie t new-handle2,
void **new-devprivate2) ;

where:

handle Mapping handle of the mapping being freed.

devprivate Pointer to the driver private data associated with the mapping.

off Offset within the logical device memory at which the unmapping begins.
len Length in bytes of the memory being unmapped.

new-handlel

The value of new-handlel can be NULL.

Chapter 11 - Device Context Management

Handle that the system uses to describe the new region that ends at off - 1.

195


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-unmap-9e

Context Management Operation

196

new-devprivatel Pointer to be filled in by the driver with the private driver mapping data for
the new region that ends at off - 1. new-devprivatel is ignored if
new-handlel is NULL.

new-handle2 Handle that the system uses to describe the new region that begins at off +
len. The value of new-handle2 can be NULL.

new-devprivate2  Pointer to be filled in by the driver with the driver private mapping data for
the new region that begins at off + len. new-devprivate2 is ignored if
new-handle2 is NULL.

The devmap_unmap () routine is expected to free any driver private resources that were allocated
when this mapping was created, either by devmap_map(9E) or by devmap_dup(9E). If the
mapping is only partially unmapped, the driver must allocate new private data for the
remaining mapping before freeing the old private data. Calling devmap_unload(9F) on the
handle of the freed mapping is not necessary, even if this handle points to the mapping with the
valid translations. However, to prevent future devmap access(9E) problems, the device driver
should make sure the current mapping representation is set to “no current mapping”.

The following example shows a typical devmap_unmap () routine.

EXAMPLE 11-5 Using the devmap_unmap () Routine

static void

xxdevmap unmap(devmap cookie t handle, void *devprivate,
offset t off, size t len, devmap cookie t new handlel,
void **new devprivatel, devmap cookie t new handle2,
void **new devprivate2)

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
mutex_enter(&xsp->ctx lock);

/*
* If new handlel is not NULL, we are unmapping
* at the end of the mapping.
*/
if (new_handlel != NULL) {
/* Create a new context structure for the mapping */
newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);
newctx->xsp = xsp;
if (ctxp->flags & MAP_PRIVATE) {

/* allocate memory for the private context and copy it */
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX SIZE);

} else {
/* point to the shared context */
newctx->context = xsp->ctx_shared;
}
newctx->handle new handlel;
newctx->offset = ctxp->offset;
newctx->len = off - ctxp->offset;
*new devprivatel = newctx;

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-map-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e

Context Management Operation

EXAMPLE 11-5  Using the devmap_unmap () Routine (Continued)

}
/*
* If new handle2 is not NULL, we are unmapping
* at the beginning of the mapping.
*/
if (new handle2 != NULL) {
/* Create a new context for the mapping */
newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);
newctx->xsp = Xsp;
if (ctxp->flags & MAP PRIVATE) {
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX SIZE);
} else {
newctx->context = xsp->ctx_shared;
}

newctx->handle = new handle2;
newctx->offset = off + len;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len - (off + len - ctxp->off);
*new devprivate2 = newctx;
}
if (xsp->current ctx == ctxp)
xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx lock);
if (ctxp->flags & MAP PRIVATE)
kmem free(ctxp->context, XXCTX SIZE);
kmem free(ctxp, sizeof (struct xxctx));

Associating User Mappings With Driver Notifications

When a user process requests a mapping to a device with mmap(2), the driver‘s segmap(9E) entry
point is called. The driver must use ddi_devmap_segmap(9F) or devmap_setup(9F) when setting
up the memory mapping if the driver needs to manage device contexts. Both functions call the
driver's devmap(9E) entry point, which uses devmap_devmem_setup(9F) to associate the device
memory with the user mapping. See Chapter 10, “Mapping Device and Kernel Memory,” for
details on how to map device memory.

The driver must inform the system of the devmap_callback_ct1(9S) entry points to get
notifications of accesses to the user mapping. The driver informs the system by providing a
pointer to a devmap_callback_ct1(9S) structure to devmap_devmem_setup (9F). A
devmap_callback_ct1(9S) structure describes a set of entry points for context management.
These entry points are called by the system to notify a device driver to manage events on the
device mappings.

The system associates each mapping with a mapping handle. This handle is passed to each of
the entry points for context management. The mapping handle can be used to invalidate and
validate the mapping translations. If the driver invalidates the mapping translations, the driver

Chapter 11 - Device Context Management 197


http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=devmap-callback-ctl-9s

Context Management Operation

198

will be notified of any future access to the mapping. If the driver validates the mapping
translations, the driver will no longer be notified of accesses to the mapping. Mappings are
always created with the mapping translations invalidated so that the driver will be notified on
first access to the mapping.

The following example shows how to set up a mapping using the device context management
interfaces.

EXAMPLE11-6 devmap(9E) Entry Point With Context Management Support

static struct devmap callback ctl xx_callback ctl = {
DEVMAP_OPS REV, xxdevmap map, Xxxdevmap access,
xxdevmap_dup, xxdevmap_unmap

+s

static int
xxdevmap(dev_t dev, devmap cookie t handle, offset t off,
size t len, size t *maplen, uint t model)
{
struct xxstate *xsp;
uint t rnumber;
int error;

/* Setup data access attribute structure */
struct ddi_device acc_attr xx_acc_attr = {
DDI DEVICE ATTR V0,
DDI NEVERSWAP ACC,
DDI_STRICTORDER ACC
+
xsp = ddi_get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
len = ptob(btopr(len));
rnumber = 0;
/* Set up the device mapping */
error = devmap devmem setup(handle, xsp->dip, &xx callback ctl,
rnumber, off, len, PROT_ALL, 0, &xx_acc_attr);
*maplen = len;
return (error);

Managing Mapping Accesses

The device driver is notified when a user process accesses an address in the memory-mapped
region that does not have valid mapping translations. When the access event occurs, the
mapping translations of the process that currently has access to the device must be invalidated.
The device context of the process that requested access to the device must be restored.
Furthermore, the translations of the mapping of the process requesting access must be
validated.

Writing Device Drivers « September 2010



Context Management Operation

The functions devmap_load(9F) and devmap_unload(9F) are used to validate and invalidate
mapping translations.

devmap_load () Entry Point
The syntax for devmap_load(9F) is as follows:

int devmap_load(devmap_cookie_ t handle, offset_t offset,
size t len, uint_t fype, uint_t rw);

devmap_load () validates the mapping translations for the pages of the mapping specified by
handle,offset, and len. By validating the mapping translations for these pages, the driver is
telling the system not to intercept accesses to these pages of the mapping. Furthermore, the
system must not allow accesses to proceed without notifying the device driver.

devmap_load () must be called with the offset and the handle of the mapping that generated the
access event for the access to complete. If devmap_load(9F) is not called on this handle, the
mapping translations are not validated, and the process receives a SIGBUS.

devmap_unload() Entry Point

The syntax for devmap_unload(9F) is as follows:

int devmap_unload(devmap_cookie t handle, offset_t offset,
size t len);

devmap_unload () invalidates the mapping translations for the pages of the mapping specified
by handle, offset, and len. By invalidating the mapping translations for these pages, the device
driver is telling the system to intercept accesses to these pages of the mapping. Furthermore, the
system must notify the device driver the next time that these mapping pages are accessed by
calling the devmap_access(9E) entry point.

For both functions, requests affect the entire page that contains the offset and all pages up to and
including the entire page that contains the last byte, as indicated by offset + len. The device
driver must ensure that for each page of device memory being mapped, only one process has
valid translations at any one time.

Both functions return zero if successful. If, however, an error occurred in validating or
invalidating the mapping translations, that error is returned to the device driver. The device
driver must return this error to the system.

Chapter 11 - Device Context Management 199


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-access-9e

200



L R 2 4 CHAPTER 12

Power Management

Power management provides the ability to control and manage the electrical power usage of a
computer system or device. Power management enables systems to conserve energy by using
less power when idle and by shutting down completely when not in use. For example, desktop
computer systems can use a significant amount of power and often are left idle, particularly at
night. Power management software can detect that the system is not being used. Accordingly,
power management can power down the system or some of its components.

This chapter provides information on the following subjects:

= “Power Management Framework” on page 201

= “Device Power Management Model” on page 203

= “System Power Management Model” on page 211

= “Power Management Device Access Example” on page 216
= “Power Management Flow of Control” on page 217

Power Management Framework

The Solaris Power Management framework depends on device drivers to implement
device-specific power management functions. The framework is implemented in two parts:

= Device power management — Automatically turns off unused devices to reduce power
consumption

= System power management — Automatically turns off the computer when the entire system
isidle

201



Power Management Framework

202

Device Power Management

The framework enables devices to reduce their energy consumption after a specified idle time
interval. As part of power management, system software checks for idle devices. The Power
Management framework exports interfaces that enable communication between the system
software and the device driver.

The Solaris Power Management framework provides the following features for device power
management:

= A device-independent model for power-manageable devices.

= dtpower(1M), a tool for configuring workstation power management. Power management
can also be implemented through the power.conf(4) and /etc/default/power files.

= A setof DDIinterfaces for notifying the framework about power management compatibility
and idleness state.

System Power Management

System power management involves saving the state of the system prior to powering the system
down. Thus, the system can be returned to the same state immediately when the system is
turned back on.

To shut down an entire system with return to the state prior to the shutdown, take the following
steps:
= Stop kernel threads and user processes. Restart these threads and processes later.

= Save the hardware state of all devices on the system to disk. Restore the state later.

SPARC only - System power management is currently implemented only on some SPARC
systems supported by the Solaris OS. See the power. conf(4) man page for more information.

The System Power Management framework in the Solaris OS provides the following features
for system power management:

= A platform-independent model of system idleness.

= pmconfig(1M), a tool for configuring workstation power management. Power management
can also be implemented through the power.conf(4) and /etc/default/power files.

= Asetof interfaces for the device driver to override the method for determining which
drivers have hardware state.

® A set of interfaces to enable the framework to call into the driver to save and restore the
device state.

= A mechanism for notifying processes that a resume operation has occurred.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=pmconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4

Device Power Management Model

Device Power Management Model

The following sections describe the details of the device power management model. This model
includes the following elements:

Components

Idleness

Power levels

Dependency

Policy

Device power management interfaces
Power management entry points

Power Management Components

A device is power manageable if the power consumption of the device can be reduced when the
device is idle. Conceptually, a power-manageable device consists of a number of
power-manageable hardware units that are called components.

The device driver notifies the system about device components and their associated power
levels. Accordingly, the driver creates a pm- components(9P) property in the driver's attach(9E)
entry point as part of driver initialization.

Most devices that are power manageable implement only a single component. An example of a
single-component, power-manageable device is a disk whose spindle motor can be stopped to
save power when the disk is idle.

If a device has multiple power-manageable units that are separately controllable, the device
should implement multiple components.

An example of a two-component, power-manageable device is a frame buffer card with a
monitor. Frame buffer electronics is the first component [component 0]. The frame buffer's
power consumption can be reduced when not in use. The monitor is the second component
[component 1]. The monitor can also enter alower power mode when the monitor is not in use.
The frame buffer electronics and monitor are considered by the system as one device with two
components.

Multiple Power Management Components

To the power management framework, all components are considered equal and completely
independent of each other. If the component states are not completely compatible, the device
driver must ensure that undesirable state combinations do not occur. For example, a frame
buffer/monitor card has the following possible states: D@, D1, D2, and D3. The monitor attached
to the card has the following potential states: On, Standby, Suspend, and Of f. These states are
not necessarily compatible with each other. For example, if the monitor is On, then the frame

Chapter 12 - Power Management 203


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Device Power Management Model

204

buffer must be at Do, that is, full on. If the frame buffer driver gets a request to power up the
monitor to On while the frame buffer is at D3, the driver must call pm_raise_power(9F) to bring
the frame buffer up before setting the monitor On. System requests to lower the power of the
frame buffer while the monitor is On must be refused by the driver.

Power Management States

Each component of a device can be in one of two states: busy or idle. The device driver notifies
the framework of changes in the device state by calling pm_busy_component(9F) and
pm_idle_component(9F). When components are initially created, the components are
considered idle.

Power Levels

From the pm- components property exported by the device, the Device Power Management
framework knows what power levels the device supports. Power-level values must be positive
integers. The interpretation of power levels is determined by the device driver writer. Power
levels must be listed in monotonically increasing order in the pm- components property. A
power level of 0 is interpreted by the framework to mean off. When the framework must power
up a device due to a dependency, the framework sets each component at its highest power level.

The following example shows a pm- components entry from the . conf file of a driver that
implements a single power-managed component consisting of a disk spindle motor. The disk
spindle motor is component 0. The spindle motor supports two power levels. These levels
represent “stopped” and “spinning at full speed””

EXAMPLE 12-1 Sample pm- component Entry

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed"

The following example shows how Example 12-1 could be implemented in the attach ()
routine of the driver.

EXAMPLE 12-2 attach(9E) Routine With pm- components Property

static char *pmcomps[] = {
"NAME=Spindle Motor"
"0=Stopped",
"1=Full Speed"
+
/X L0 %/
xxattach(dev_info t *dip, ddi_attach cmd t cmd)
{

/* L. X/
if (ddi prop update string array(DDI DEV T NONE, dip,
"pm-components", &pmcomp[0],

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f

Device Power Management Model

EXAMPLE 12-2 attach(9E) Routine With pm- components Property (Continued)

sizeof (pmcomps) / sizeof (char *)) != DDI PROP_SUCCESS)
goto failed;
/* .0 ¥/

The following example shows a frame buffer that implements two components. Component 0 is
the frame buffer electronics that support four different power levels. Component 1 represents
the state of power management of the attached monitor.

EXAMPLE 12-3 Multiple Component pm- components Entry

pm-components="NAME=Frame Buffer", "0=0ff", "1=Suspend", \
"2=Standby", "3=0n",
"NAME=Monitor", "0=0ff", "1=Suspend", "2=Standby", "3=0n";

When a device driver is first attached, the framework does not know the power level of the
device. A power transition can occur when:

m  Thedriver callspm raise power(9F) or pm lower power(9F).

= The framework has lowered the power level of a component because a time threshold has
been exceeded.

= Another device has changed power and a dependency exists between the two devices. See
“Power Management Dependencies” on page 205.

After a power transition, the framework begins tracking the power level of each component of
the device. Tracking also occurs if the driver has informed the framework of the power level.
The driver informs the framework of a power level change by calling

pm_power has changed(9F).

The system calculates a default threshold for each potential power transition. These thresholds
are based on the system idleness threshold. The default thresholds can be overridden using
pmconfig or power.conf(4). Another default threshold based on the system idleness threshold
is used when the component power level is unknown.

Power Management Dependencies

Some devices should be powered down only when other devices are also powered down. For
example, if a CD-ROM drive is allowed to power down, necessary functions, such as the ability
to eject a CD, might be lost.

To prevent a device from powering down independently, you can make that device dependent
on another device that is likely to remain powered on. Typically, a device is made dependent
upon a frame buffer, because a monitor is generally on whenever a user is utilizing a system.

Chapter 12 - Power Management 205


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4

Device Power Management Model

The power. conf(4)file specifies the dependencies among devices. (A parent node in the device
tree implicitly depends upon its children. This dependency is handled automatically by the
power management framework.) You can specify a particular dependency with a

power . conf(4) entry of this form:

device-dependency dependent-phys-path phys-path

Where dependent-phys-path is the device that is kept powered up, such as the CD-ROM drive.
phys-path represents the device whose power state is to be depended on, such as the frame
buffer.

Adding an entry to power . conf for every new device that is plugged into the system would be
burdensome. The following syntax enables you to indicate dependency in a more general
fashion:

device-dependency-property property phys-path

Such an entry mandates that any device that exports the property property must be dependent
upon the device named by phys-path. Because this dependency applies especially to
removable-media devices, /etc/power. conf includes the following line by default:

device dependent-property removable-media /dev/fb

With this syntax, no device that exports the removable-media property can be powered down
unless the console frame buffer is also powered down.

For more information, see the power. conf(4) and removable-media(9P) man pages.

Automatic Power Management for Devices

If automatic power management is enabled by pmconfig or power.conf(4), then all devices
with a pm- components(9P) property automatically will use power management. After a
component has been idle for a default period, the component is automatically lowered to the
next lowest power level. The default period is calculated by the power management framework
to set the entire device to its lowest power state within the system idleness threshold.

Note - By default, automatic power management is enabled on all SPARC desktop systems first
shipped after July 1, 1999. This feature is disabled by default for all other systems. To determine
whether automatic power management is enabled on your machine, refer to the power. conf(4)
man page for instructions.

power . conf(4) can be used to override the defaults calculated by the framework.

206 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=removable-media-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4

Device Power Management Model

Device Power Management Interfaces

A device driver that supports a device with power-manageable components must create a
pm-components(9P) property. This property indicates to the system that the device has
power-manageable components. pm- components also tells the system which power levels are
available. The driver typically informs the system by calling
ddi_prop_update_string_array(9F) from the driver's attach(9E) entry point. An alternative
means of informing the system is froma driver.conf(4) file. See the pm- components(9P) man
page for details.

Busy-Idle State Transitions

The driver must keep the framework informed of device state transitions from idle to busy or
busy to idle. Where these transitions happen is entirely device-specific. The transitions between
the busy and idle states depend on the nature of the device and the abstraction represented by
the specific component. For example, SCSI disk target drivers typically export a single
component, which represents whether the SCSI target disk drive is spun up or not. The
component is marked busy whenever an outstanding request to the drive exists. The
component is marked idle when the last queued request finishes. Some components are created
and never marked busy. For example, components created by pm- components(9P) are created
in an idle state.

The pm_busy_component(9F) and pm_idle_component(9F) interfaces notify the power
management framework of busy-idle state transitions. The pm_busy_component(9F) call has the
following syntax:

int pm busy component(dev info t *dip, int component);

pm_busy_component(9F) marks component as busy. While the component is busy, that
component should not be powered off. If the component is already powered off, then marking
that component busy does not change the power level. The driver needs to call

pm_raise power(9F) for this purpose. Calls to pm busy component(9F) are cumulative and
require a corresponding number of calls to pm_idle_component(9F) to idle the component.

The pm_idle_component(9F) routine has the following syntax:

int pm idle component(dev info t *dip, int component);

pm_idle_component(9F) marks component as idle. An idle component is subject to being
powered off. pm_idle_component (9F) must be called once for each call to
pm_busy_component (9F) in order to idle the component.

Device Power State Transitions

A device driver can call pm_raise power(9F) to request that a component be set to at least a
given power level. Setting the power level in this manner is necessary before using a component
that has been powered oft. For example, the read(9E) routine of a SCSI disk target driver might

Chapter 12 - Power Management 207


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e

Device Power Management Model

208

need to spin up the disk, if the disk has been powered off. The pm_raise_power(9F) function
requests the power management framework to initiate a device power state transition to a
higher power level. Normally, reductions in component power levels are initiated by the
framework. However, a device driver should call pm_lower_power(9F) when detaching, in order
to reduce the power consumption of unused devices as much as possible.

Powering down can pose risks for some devices. For example, some tape drives damage tapes
when power is removed. Similarly, some disk drives have a limited tolerance for power cycles,
because each cycle results in a head landing. Use the no-involuntary-power-cycles(9P)
property to notify the system that the device driver should control all power cycles for the
device. This approach prevents power from being removed from a device while the device
driver is detached unless the device was powered off by a driver's call to pm_Tlower_power(9F)
from its detach(9E) entry point.

The pm_raise power(9F) function is called when the driver discovers that a component needed
for some operation is at an insufficient power level. This interface causes the driver to raise the
current power level of the component to the needed level. All the devices that depend on this
device are also brought back to full power by this call.

Call the pm_lower_power(9F) function when the device is detaching once access to the device is
no longer needed. Call pm_lower_power(9F) to set each component at the lowest power so that
the device uses as little power as possible while not in use. The pm_lower_power () function
must be called from the detach () entry point. The pm_lower_power () function has no effect if
itis called from any other part of the driver.

The pm_power_has_changed(9F) function is called to notify the framework about a power
transition. The transition might be due to the device changing its own power level. The
transition might also be due to an operation such as suspend-resume. The syntax for
pm_power_has_changed(9F) is the same as the syntax for pm_raise_power(9F).

power () Entry Point
The power management framework uses the power(9E) entry point.
power () uses the following syntax:

int power(dev_info_t *dip, int component, int level);

When a component's power level needs to be changed, the system calls the power(9E) entry
point. The action taken by this entry point is device driver-specific. In the example of the SCSI
target disk driver mentioned previously, setting the power level to 0 results in sending a SCSI
command to spin down the disk, while setting the power level to the full power level results in
sending a SCSI command to spin up the disk.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=no-involuntary-power-cycles-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e

Device Power Management Model

If a power transition can cause the device to lose state, the driver must save any necessary state
in memory for later restoration. If a power transition requires the saved state to be restored
before the device can be used again, then the driver must restore that state. The framework
makes no assumptions about what power transactions cause the loss of state or require the
restoration of state for automatically power-managed devices. The following example shows a
sample power () routine.

EXAMPLE 12-4  Using the power () Routine for a Single-Component Device

int
xxpower(dev_info t *dip, int component, int level)

struct xxstate *xsp;
int instance;

instance = ddi_get instance(dip);
xsp = ddi get soft state(statep, instance);
/*
* Make sure the request is valid
*/
if (!xx_valid_power_ level(component, level))
return (DDI FAILURE);
mutex_enter(&xsp->mu);
/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&
xsp->xx_power level[component] > level) {
mutex_exit (&xsp->mu);
return (DDI FAILURE);

}
if (xsp->xx_power level[component] != level) {
/*
* device- and component-specific setting of power level
* goes here
*/
xsp->xx_power_level[component] = level;
}

mutex exit(&xsp->mu);
return (DDI SUCCESS);

The following example is a power () routine for a device with two components, where
component 0 must be on when component 1 is on.

EXAMPLE 12-5 power(9E) Routine for Multiple-Component Device

int
xxpower(dev_info t *dip, int component, int level)

struct xxstate *xsp;
int instance;

instance = ddi get instance(dip);

Chapter 12 - Power Management 209



Device Power Management Model

EXAMPLE 12-5 power(9E) Routine for Multiple-Component Device (Continued)

xsp = ddi get soft state(statep, instance);
/*
* Make sure the request is valid
*/
if (!xx_valid power level(component, level))
return (DDI_FAILURE);
mutex_enter(&xsp->mu);
/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&
Xsp->xx_power level[component] > level) {
mutex exit(&xsp->mu);
return (DDI FAILURE);

This code implements inter-component dependencies:

If we are bringing up component 1 and component 0

is off, we must bring component @ up first, and if
we are asked to shut down component @ while component
1 is up we must refuse

* X X X X X

*/
if (component == 1 && level > 0 && xsp->xx_power level[0] == 0) {
XSp->xX_busy[0]++;
if (pm_busy component(dip, @) !'= DDI SUCCESS) {
/*
* This can only happen if the args to
* pm_busy component()
* are wrong, or pm-components property was not
* exported by the driver.
*/
Xsp->xxX_busy[0]--;
mutex exit(&xsp->mu);
cmn_err(CE_WARN, "xxpower pm busy component()
failed")
return (DDI FAILURE);
}
mutex exit(&xsp->mu);
if (pm_raise power(dip, @, XX _FULL POWER @) !'= DDI_ SUCCESS)
return (DDI_FAILURE);
mutex_enter(&xsp->mu);
}
if (component == 0 && level == 0 && xsp->xx_power_level[l] != 0)
mutex exit(&xsp->mu);
return (DDI_FAILURE);

}
if (xsp->xx_power level[component] != level) {
/*
* device- and component-specific setting of power level
* goes here
*/
xsp->xx_power level[component] = level;
}

mutex_exit(&xsp->mu);
return (DDI SUCCESS);

210 Writing Device Drivers « September 2010



System Power Management Model

System Power Management Model

This section describes the details of the System Power Management model. The model includes
the following components:

Autoshutdown threshold

Busy state

Hardware state

Policy

Power management entry points

Autoshutdown Threshold

The system can be shut down, that is, powered off, automatically after a configurable period of
idleness. This period is known as the autoshutdown threshold. This behavior is enabled by
default for SPARC desktop systems first shipped after October 1, 1995 and before July 1, 1999.
See the power . conf(4)man page for more information. Autoshutdown can be overridden using
dtpower(1M) or power.conf(4).

Busy State

The busy state of the system can be measured in several ways. The currently supported built-in
metric items are keyboard characters, mouse activity, tty characters, load average, disk reads,
and NFS requests. Any one of these items can make the system busy. In addition to the built-in
metrics, an interface is defined for running a user-specified process that can indicate that the
system is busy.

Hardware State

Devices that export a reg property are considered to have hardware state that must be saved
prior to shutting down the system. A device without the reg property is considered to be
stateless. However, this consideration can be overridden by the device driver.

A device with hardware state but no reg property, such as a SCSI driver, must be called to save
and restore the state if the driver exports a pm-hardware-state property with the value
needs-suspend- resume. Otherwise, the lack of a reg property is taken to mean that the device
has no hardware state. For information on device properties, see Chapter 4, “Properties”

A device with a reg property and no hardware state can export a pm-hardware-state property
with the value no-suspend- resume. Using no- suspend- resume with the pm-hardware-state
property keeps the framework from calling the driver to save and restore that state. For more
information on power management properties, see the pm- components(9P) man page.

Chapter 12 - Power Management 211


http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p

System Power Management Model

212

Automatic Power Management for Systems

The system is shut down if the following conditions apply:

= Autoshutdown is enabled by dtpower(1M) or power. conf(4).
= The system has been idle for autoshutdown threshold minutes.
= All of the metrics that are specified in power. conf have been satisfied.

Entry Points Used by System Power Management

System power management passes the command DDI_SUSPEND to the detach(9E) driver entry

point to request the driver to save the device hardware state. System power management passes
the command DDI_RESUME to the attach(9E) driver entry point to request the driver to restore
the device hardware state.

detach() Entry Point
The syntax for detach(9E) is as follows:

int detach(dev_info_t *dip, ddi detach_cmd_t cmd);

A device with a reg property or a pm-hardware-state property set to needs - suspend- resume
must be able to save the hardware state of the device. The framework calls into the driver's
detach(9E) entry point to enable the driver to save the state for restoration after the system
power returns. To process the DDI_SUSPEND command, detach(9E) must perform the following
tasks:

= Block further operations from being initiated until the device is resumed, except for
dump(9E) requests.

= Wait until outstanding operations have completed. If an outstanding operation can be
restarted, you can abort that operation.

= Cancel any timeouts and callbacks that are pending.
= Save any volatile hardware state to memory. The state includes the contents of device

registers, and can also include downloaded firmware.

If the driver is unable to suspend the device and save its state to memory, then the driver must
return DDI_FAILURE. The framework then aborts the system power management operation.

In some cases, powering down a device involves certain risks. For example, if a tape drive is
powered oft with a tape inside, the tape can be damaged. In such a case, attach(9E) should do
the following:

m  Callddi removing power(9F) to determine whether a DDI SUSPEND command can cause
power to be removed from the device.

= Determine whether power removal can cause problems.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=power.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-removing-power-9f

System Power Management Model

If both cases are true, the DDI_SUSPEND request should be rejected. Example 12-6 shows an
attach(9E) routine using ddi_removing_power(9F) to check whether the DDI_SUSPEND
command causes problems.

Dump requests must be honored. The framework uses the dump(9E) entry point to write out the
state file that contains the contents of memory. See the dump(9E) man page for the restrictions
that are imposed on the device driver when using this entry point.

Calling the detach(9E) entry point of a power-manageable component with the DDI_SUSPEND
command should save the state when the device is powered off. The driver should cancel
pending timeouts. The driver should also suppress any calls to pm_raise_power(9F) except for
dump(9E) requests. When the device is resumed by a call to attach(9E) with a command of
DDI_RESUME, timeouts and calls to pm_raise_power() can be resumed. The driver must keep
sufficient track of its state to be able to deal appropriately with this possibility. The following
example shows a detach(9E) routine with the DDI_SUSPEND command implemented.

EXAMPLE 12-6 detach(9E) Routine Implementing DDI_SUSPEND
int

xxdetach(dev_info t *dip, ddi_detach cmd t cmd)

{

struct xxstate *xsp;
int instance;

instance = ddi_get instance(dip);
xsp = ddi get soft state(statep, instance);

switch (cmd) {
case DDI_DETACH:

/X 0 */
case DDI_SUSPEND:
/*

* We do not allow DDI SUSPEND if power will be removed and
* we have a device that damages tape when power is removed
* We do support DDI SUSPEND for Device Reconfiguration.
*/
if (ddi_removing power(dip) && xxdamages tape(dip))
return (DDI FAILURE);
mutex_enter(&xsp->mu);
xsp->xx_suspended = 1; /* stop new operations */
/*
* Sleep waiting for all the commands to be completed

*
* If a callback is outstanding which cannot be cancelled

* then either wait for the callback to complete or fail the
* suspend request
*
*
*

This section is only needed if the driver maintains a
running timeout
*/
if (xsp->xx_timeout id) {
timeout id t temp timeout id = xsp->xx timeout id;

Xsp->xx_timeout id = 0;

Chapter 12 - Power Management 213


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-removing-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

System Power Management Model

214

EXAMPLE 12-6 detach(9E) Routine Implementing DDI_SUSPEND (Continued)

mutex exit(&xsp->mu);
untimeout (temp timeout id);
mutex_enter(&xsp->mu);

}
if (!xsp->xx_state saved) {
/*
* Save device register contents into
* xsp->xx_device state
*/
}

mutex exit(&xsp->mu);

return (DDI_SUCCESS);
default:

return (DDI FAILURE);

attach() Entry Point
The syntax for attach(9E) is as follows:

int attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

When power is restored to the system, each device with a reg property or with a
pm-hardware-state property of value needs - suspend- resume has its attach(9E) entry point
called with a command value of DDI_RESUME. If the system shutdown is aborted, each suspended
driver is called to resume even though the power has not been shut off. Consequently, the
resume code in attach(9E) must make no assumptions about whether the system actually lost
power.

The power management framework considers the power level of the components to be
unknown at DDI_RESUME time. Depending on the nature of the device, the driver writer has two
choices:

= Ifthe driver can determine the actual power level of the components of the device without
powering the components up, such as by reading a register, then the driver should notify the
framework of the power level of each component by calling pm_power_has_changed(9F).

= Ifthe driver cannot determine the power levels of the components, then the driver should
mark each component internally as unknown and call pm_raise_power(9F) before the first
access to each component.

The following example shows an attach(9E) routine with the DDI_RESUME command.

EXAMPLE 12-7 attach(9E) Routine Implementing DDI_RESUME
int

xxattach(devinfo t *dip, ddi attach cmd t cmd)

{

struct xxstate *xsp;
int instance;

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

System Power Management Model

EXAMPLE 12-7 attach(9E) Routine Implementing DDI_RESUME (Continued)

instance = ddi _get instance(dip);
xsp = ddi get soft state(statep, instance);

switch (cmd) {
case DDI_ATTACH:
/* L %/
case DDI_RESUME:
mutex_enter(&xsp->mu);
if (xsp->xx_pm state saved) {
/*
* Restore device register contents from
* xsp->xx_device state
*/
}
/*
* This section is optional and only needed if the
* driver maintains a running timeout

*/
Xsp->xx_timeout id = timeout( /* ... */ );
Xsp->xx_suspended = 0; /* allow new operations */

cv_broadcast (&xsp->xx_suspend cv);

/* If it is possible to determine in a device-specific
* way what the power levels of components are without
* powering the components up,

* then the following code is recommended
*/
for (i = @; 1 < num_components; i++) {
xsp->xx_power_level[i] = xx_get power level(dip, i);
if (xsp->xx_power level[i] != XX LEVEL UNKNOWN)
(void) pm power has changed(dip, i,
Xsp->xx_power_level[i]);

mutex exit(&xsp->mu);

return(DDI_SUCCESS);
default:

return(DDI_FAILURE);
}

Note - The detach(9E) and attach(9E) interfaces can also be used to resume a system that has
been quiesced.

Chapter 12 - Power Management 215


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Power Management Device Access Example

Power Management Device Access Example

216

If power management is supported, and detach(9E) and attach(9E) are used as in
Example 12-6 and Example 12-7, then access to the device can be made from user context, for
example, from read(2), write(2),and ioct1(2).

The following example demonstrates this approach. The example assumes that the operation
about to be performed requires a component component that is operating at power level level.

EXAMPLE 12-8 Device Access

mutex_enter(&xsp->mu);
/*
* Block command while device is suspended by DDI SUSPEND
*/
while (xsp->xx_suspended)
cv_wait(&xsp->xx_suspend cv, &xsp->mu);
/*
* Mark component busy so xx power() will reject attempt to lower power
*/
Xsp->xx_busy[component]++;
if (pm_busy component(dip, component) != DDI SUCCESS) {
Xsp->xX_busy[component]--;
/*
* Log error and abort
*/
}
if (xsp->xx_power level[component] < level) {
mutex_exit(&xsp->mu);
if (pm_raise power(dip, component, level) != DDI SUCCESS) {
/*
* Log error and abort
*/

mutex_enter(&xsp->mu);

The code fragment in the following example can be used when device operation completes, for
example, in the device's interrupt handler.

EXAMPLE 12-9 Device Operation Completion

/*
* For each command completion, decrement the busy count and unstack
* the pm busy component() call by calling pm idle component(). This
* will allow device power to be lowered when all commands complete
* (all pm busy component() counts are unstacked)
*/
XSsp->xX_busy[component]--;
if (pm_idle component(dip, component) != DDI SUCCESS) {
XSsp->xX_busy[component]++;
/*
* Log error and abort
*/

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=ioctl-2

Power Management Flow of Control

EXAMPLE 12-9 Device Operation Completion (Continued)

}

/*

* If no more outstanding commands, wake up anyone (like DDI SUSPEND)
* waiting for all commands to be completed

*/

Power Management Flow of Control

Figure 12-1 illustrates the flow of control in the power management framework.

When a component's activity is complete, a driver can call pm_idle_component(9F) to mark the
component as idle. When the component has been idle for its threshold time, the framework
can lower the power of the component to its next lower level. The framework calls the
power(9E) function to set the component's power to the next lower supported power level, if a
lower level exists. The driver's power(9E) function should reject any attempt to lower the power
level of a component when that component is busy. The power(9E) function should save any
state that could be lost in a transition to a lower level prior to making that transition.

When the component is needed at a higher level, the driver calls pm_busy_component(9F). This
call keeps the framework from lowering the power still further and then calls

pm_raise power(9F) on the component. The framework next calls power(9E) to raise the
power of the component before the call to pm_raise_ power(9F) returns. The driver's power(9E)
code must restore any state that was lost in the lower level but that is needed in the higher level.

When a driver is detaching, the driver should call pm_lower_power(9F) for each component to
lower its power to its lowest level. The framework can then call the driver's power(9E) routine to
lower the power of the component before the call to pm_lower_power(9F) returns.

Chapter 12 - Power Management 217


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-lower-power-9f

Changes to Power Management Interfaces

FIGURE 12-1 Power Management Conceptual State Diagram
A
pm_raise power(9F)

power(9E) @

Higher power level

pm_idle component(9F)

['Q
Busy ”| Idle
<
A pm_busy component(9F)
pm_raise power(9F) pm_lower power(9F)

power(9E) @ power(9E)

Lower power level

pm_idle component(9F) N v
Busy “| Idle

A

pm_busy component(9F)

pm_lower power(9F)

power(9E)

v

@ power(9E) can be called by the framework to raise the power level of a
component as a result of a dependency or can be called by the framework
as a result of the driver's call to pm_raise power(9F).

power(9E) can be called by the framework to lower the power level of a
component as a result of a device idleness, or can be called by the framework
as a result of the driver's call to pm_lower power(9F) when the driver is detaching.

Note:
9E routines are always called by the framework.
9F routines are always called by the driver.

Changes to Power Management Interfaces

218

Prior to the Solaris 8 release, power management of devices was not automatic. Developers had
toadd an entry to /etc/power. conf for each device that was to be power-managed. The
framework assumed that all devices supported only two power levels: 0 and standard power.

Power assumed an implied dependency of all other components on component 0. When
component 0 changed to level 0, a call was made into the driver's detach(9E) with the
DDI_PM_SUSPEND command to save the hardware state. When component 0 changed from level
0, a call was made to the attach(9E) routine with the command DDI PM RESUME to restore
hardware state.

Writing Device Drivers « September 2010



Changes to Power Management Interfaces

The following interfaces and commands are obsolete, although they are still supported for
binary purposes:

ddi_dev_is needed(9F)
pm_create_components(9F)
pm_destroy components(9F)
pm_get normal power(9F)
pm_set normal power(9F)
DDI_PM SUSPEND

DDI PM RESUME

Since the Solaris 8 release, devices that export the pm- components property automatically use
power management if autopm is enabled.

The framework now knows from the pm- components property which power levels are
supported by each device.

The framework makes no assumptions about dependencies among the different components of
a device. The device driver is responsible for saving and restoring hardware state as needed
when changing power levels.

These changes enable the power management framework to deal with emerging device
technology. Power management now results in greater power savings. The framework can
detect automatically which devices can save power. The framework can use intermediate power
states of the devices. A system can now meet energy consumption goals without powering down
the entire system and without any functions.

TABLE12-1 Power Management Interfaces

Removed Interfaces Equivalent Interfaces

pm create components(9F) pm-components(9P)

pm _set normal power(9F) pm-components(9P)
pm_destroy components(9F) None

pm_get normal power(9F) None

ddi dev is needed(9F) pm raise power(9F)

None pm lower power(9F)

None pm power has changed(9F)
DDI_PM_SUSPEND None

DDI_PM_RESUME None

Chapter 12 - Power Management 219


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-power-has-changed-9f

220



L K R 4 CHAPTER 13

Hardening Solaris Drivers

Fault Management Architecture (FMA) I/O Fault Services enable driver developers to integrate
fault management capabilities into I/O device drivers. The Solaris I/O fault services framework
defines a set of interfaces that enable all drivers to coordinate and perform basic error handling
tasks and activities. The Solaris FMA as a whole provides for error handling and fault diagnosis,
in addition to response and recovery. FMA is a component of Sun's Predictive Self-Healing
strategy.

A driver is considered hardened when it uses the defensive programming practices described in
this document in addition to the I/O fault services framework for error handling and diagnosis.
The driver hardening test harness tests that the I/O fault services and defensive programming
requirements have been correctly fulfilled.

This document contains the following sections:

= “Sun Fault Management Architecture I/O Fault Services” on page 221 provides a reference for
driver developers who want to integrate fault management capabilities into I/O device
drivers.

= “Defensive Programming Techniques for Solaris Device Drivers” on page 243 provides
general information about how to defensively write a Solaris device driver.

= “Driver Hardening Test Harness” on page 248 is a driver development tool that injects
simulated hardware faults when the driver under development accesses its hardware.

Sun Fault Management Architecture I/0 Fault Services

This section explains how to integrate fault management error reporting, error handling, and
diagnosis for I/O device drivers. This section provides an in-depth examination of the I/O fault
services framework and how to utilize the I/O fault service APIs within a device driver.

221



Sun Fault Management Architecture 1/0 Fault Services

222

This section discusses the following topics:

= “What Is Predictive Self-Healing?” on page 222 provides background and an overview of the
Sun Fault Management Architecture.

= “Solaris Fault Manager” on page 223 describes additional background with a focus on a
high-level overview of the Solaris Fault Manager, fmd(1M).

= “Error Handling” on page 226 is the primary section for driver developers. This section
highlights the best practice coding techniques for high-availability and the use of I/O fault
services in driver code to interact with the FMA.

= “Diagnosing Faults” on page 240 describes how faults are diagnosed from the errors detected
by drivers.

= “Event Registry” on page 241 provides information on Sun's Event Registry.

What Is Predictive Self-Healing?

Traditionally, systems have exported hardware and software error information directly to
human administrators and to management software in the form of syslog messages. Often,
error detection, diagnosis, reporting, and handling was embedded in the code of each driver.

A system like the Solaris OS predictive self-healing system is first and foremost self-diagnosing.
Self-diagnosing means the system provides technology to automatically diagnose problems
from observed symptoms, and the results of the diagnosis can then be used to trigger automated
response and recovery. A fault in hardware or a defect in software can be associated with a set of
possible observed symptoms called errors. The data generated by the system as the result of
observing an error is called an error report or ereport.

In a system capable of self-healing, ereports are captured by the system and are encoded as a set
of name-value pairs described by an extensible event protocol to form an ereport event. Ereport
events and other data are gathered to facilitate self-healing, and are dispatched to software
components called diagnosis engines designed to diagnose the underlying problems
corresponding to the error symptoms observed by the system. A diagnosis engine runs in the
background and silently consumes error telemetry until it can produce a diagnosis or predict a
fault.

After processing sufficient telemetry to reach a conclusion, a diagnosis engine produces another
event called a fault event. The fault event is then broadcast to all agents that are interested in the
specific fault event. An agent is a software component that initiates recovery and responds to
specific fault events. A software component known as the Solaris Fault Manager, fmd(1M),
manages the multiplexing of events between ereport generators, diagnosis engines, and agent
software.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmd-1m

Sun Fault Management Architecture 1/0 Fault Services

Solaris Fault Manager

The Solaris Fault Manager, fmd(1M), is responsible for dispatching in-bound error telemetry
events to the appropriate diagnosis engines. The diagnosis engine is responsible for identifying
the underlying hardware faults or software defects that are producing the error symptoms. The
fmd(1M) daemon is the Solaris OS implementation of a fault manager. It starts at boot time and
loads all of the diagnosis engines and agents available on the system. The Solaris Fault Manager
also provides interfaces for system administrators and service personnel to observe fault
management activity.

Diagnosis, Suspect Lists, and Fault Events

Once a diagnosis has been made, the diagnosis is output in the form of a list.suspect event. A
list.suspect event is an event comprised of one or more possible fault or defect events.
Sometimes the diagnosis cannot narrow the cause of errors to a single fault or defect. For
example, the underlying problem might be a broken wire connecting controllers to the main
system bus. The problem might be with a component on the bus or with the bus itself. In this
specific case, the list.suspect event will contain multiple fault events: one for each controller
attached to the bus, and one for the bus itself.

In addition to describing the fault that was diagnosed, a fault event also contains four payload
members for which the diagnosis is applicable.

= The resource is the component that was diagnosed as faulty. The fmdump(1M) command
shows this payload member as “Problem in”

= The Automated System Recovery Unit (ASRU) is the hardware or software component that
must be disabled to prevent further error symptoms from occurring. The fmdump(1M)
command shows this payload member as “Affects”

= The Field Replaceable Unit (FRU) is the component that must be replaced or repaired to fix
the underlying problem.

= The Label payload is a string that gives the location of the FRU in the same form as it is
printed on the chassis or motherboard, for example next to a DIMM slot or PCI card slot.
The fmdumpcommand shows this payload member as “Location.”

For example, after receiving a certain number of ECC correctable errors in a given amount of
time for a particular memory location, the CPU and memory diagnosis engine issues a
diagnosis (list.suspect event) for a faulty DIMM.

# fmdump -v -u 38bd6flb-adde-4c21-dbde-ccd26fa8573c

TIME UuID SUNW-MSG-ID
Oct 31 13:40:18.1864 38bd6flb-ad4de-4c21-dbde-ccd26fa8573c AMD-8000-8L
100% fault.cpu.amd.icachetag

Problem in: hc:///motherboard=0/chip=0/cpu=0
Affects: cpu:///cpuid=0

FRU: hc:///motherboard=0/chip=0

Location: SLOT 2

Chapter 13 « Hardening Solaris Drivers 223


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmd-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmdump-1m

Sun Fault Management Architecture 1/0 Fault Services

224

In this example, fmd(1M) has identified a problem in a resource, specifically a CPU
(hc:///motherboard=0/chip=0/cpu=0). To suppress further error symptoms and to prevent
an uncorrectable error from occurring, an ASRU, (cpu:///cpuid=0), is identified for
retirement. The component that needs to be replaced is the FRU
(hc:///motherboard=0/chip=0).

Response Agents

An agent is a software component that takes action in response to a diagnosis or repair. For
example, the CPU and memory retire agent is designed to act on list.suspects that contain a
fault.cpu.* event. The cpumem- retire agent will attempt to off-line a CPU or retire a physical
memory page from service. If the agent is successful, an entry in the fault manager's ASRU
cache is added for the page or CPU that was successfully retired. The fmadm(1M) utility, as
shown in the example below, shows an entry for a memory rank that has been diagnosed as
having a fault. ASRUs that the system does not have the ability to off-line, retire, or disable, will
also have an entry in the ASRU cache, but they will be seen as degraded. Degraded means the
resource associated with the ASRU is faulty, but the ASRU is unable to be removed from
service. Currently Solaris agent software cannot act upon I/O ASRUs (device instances). All
faulty I/O resource entries in the cache are in the degraded state.

# fmadm faulty
STATE RESOURCE / UUID

degraded mem:///motherboard=0/chip=1/memory-controller=0/dimm=3/rank=0
ccae89df-2217-4f5c-add4-d920f78b4faf

The primary purpose of a retire agent is to isolate (safely remove from service) the piece of
hardware or software that has been diagnosed as faulty.

Agents can also take other important actions such as the following actions:

= Send alerts via SNMP traps. This can translate a diagnosis into an alert for SNMP that plugs
into existing software mechanisms.

= Posta syslog message. Message specific diagnoses (for example, syslog message agent) can
take the result of a diagnosis and translate it into a syslog message that administrators can
use to take a specific action.

= Other agentactions such as update the FRUID. Response agents can be platform-specific.

Message IDs and Dictionary Files

The syslog message agent takes the output of the diagnosis (the list.suspect event) and writes
specific messages to the console or /var/adm/messages. Often console messages can be difficult
to understand. FMA remedies this problem by providing a defined fault message structure that
is generated every time a list.suspect event is delivered to a syslog message.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmd-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmadm-1m

Sun Fault Management Architecture 1/0 Fault Services

The syslog agent generates a message identifier (MSG ID). The event registry generates
dictionary files (. dict files) that map a list.suspect event to a structured message identifier that
should be used to identify and view the associated knowledge article. Message files, (. po files)
map the message ID to localized messages for every possible list of suspected faults that the
diagnosis engine can generate. The following is an example of a fault message emitted on a test
system.

SUNW-MSG-ID: AMD-8000-7U, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Fri Jul 28 04:26:51 PDT 2006

PLATFORM: Sun Fire V40z, CSN: XG051535088, HOSTNAME: parity

SOURCE: eft, REV: 1.16

EVENT-ID: add96f65-5473-69e6-dbel-8b3d00d5c47b

DESC: The number of errors associated with this CPU has exceeded
acceptable levels. Refer to http://sun.com/msg/AMD-8000-7U for

more information.

AUTO-RESPONSE: An attempt will be made to remove this CPU from service.
IMPACT: Performance of this system may be affected.

REC-ACTION: Schedule a repair procedure to replace the affected CPU.
Use fmdump -v -u <EVENT ID> to identify the module.

System Topology

To identify where a fault might have occurred, diagnosis engines need to have the topology for a
given software or hardware system represented. The fmd(1M) daemon provides diagnosis
engines with a handle to a topology snapshot that can be used during diagnosis. Topology
information is used to represent the resource, ASRU, and FRU found in each fault event. The
topology can also be used to store the platform label, FRUID, and serial number identification.

The resource payload member in the fault event is always represented by the physical path
location from the platform chassis outward. For example, a PCI controller function that is
bridged from the main system bus to a PCIlocal bus is represented by its hc scheme path name:

hc:///motherboard=0/hostbridge=1/pcibus=0/pcidev=13/pcifn=0

The ASRU payload member in the fault event is typically represented by the Solaris device tree
instance name that is bound to a hardware controller, device, or function. FMA uses the dev
scheme to represent the ASRU in its native format for actions that might be taken by a future
implementation of a retire agent specifically designed for I/O devices:

dev:////pci@le,600000/ide@d

The FRU payload representation in the fault event varies depending on the closest replaceable
component to the I/O resource that has been diagnosed as faulty. For example, a fault event for
abroken embedded PCI controller might name the motherboard of the system as the FRU that
needs to be replaced:

hc:///motherboard=0

The label payload is a string that gives the location of the FRU in the same form as it is printed
on the chassis or motherboard, for example next to a DIMM slot or PCI card slot:

Chapter 13 « Hardening Solaris Drivers 225


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmd-1m

Sun Fault Management Architecture 1/0 Fault Services

226

Label: SLOT 2

Error Handling

This section describes how to use I/O fault services APIs to handle errors within a driver. This
section discusses how drivers should indicate and initialize their fault management capabilities,
generate error reports, and register the driver's error handler routine.

Excerpts are provided from source code examples that demonstrate the use of the I/O fault
services API from the Broadcom 1Gb NIC driver, bge. Follow these examples as a model for
how to integrate fault management capability into your own drivers. Take the following steps to
study the complete bge driver code:

®  Goto ON (OS/Net) Sources (http://src.opensolaris.org/source/).
®  Enter bge in the File Path field.
®  Click the Search button.

Drivers that have been instrumented to provide FMA error report telemetry detect errors and
determine the impact of those errors on the services provided by the driver. Following the
detection of an error, the driver should determine when its services have been impacted and to
what degree.

AnT/O driver must respond immediately to detected errors. Appropriate responses include:

Attempt recovery

Retry an I/O transaction

Attempt fail-over techniques

Report the error to the calling application/stack

If the error cannot be constrained any other way, then panic

Errors detected by the driver are communicated to the fault management daemon as an ereport.
An ereport is a structured event defined by the FMA event protocol. The event protocol is a
specification for a set of common data fields that must be used to describe all possible error and
fault events, in addition to the list of suspected faults. Ereports are gathered into a flow of error
telemetry and dispatched to the diagnosis engine.

Declaring Fault Management Capabilities

A hardened device driver must declare its fault management capabilities to the I/O Fault
Management framework. Use the ddi_fm_init(9F) function to declare the fault management
capabilities of your driver.

void ddi_fm_init(dev_info_t *dip, int *fmcap, ddi_iblock cookie_t *ibcp)

Theddi fm init() function can be called from kernel context in a driver attach(9E) or
detach(9E) entry point. The ddi_fm_init() function usually is called from the attach() entry

Writing Device Drivers « September 2010


http://src.opensolaris.org/source/
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

Sun Fault Management Architecture 1/0 Fault Services

point. Theddi_fm_init() function allocates and initializes resources according to frmcap. The
fmcap parameter must be set to the bitwise-inclusive-OR of the following fault management
capabilities:

= DDI_FM_EREPORT_CAPABLE - Driver is responsible for and capable of generating FMA
protocol error events (ereports) upon detection of an error condition.

= DDI_FM_ACCCHK_CAPABLE - Driver is responsible for and capable of checking for errors upon
completion of one or more access I/O transactions.

= DDI_FM_DMACHK_CAPABLE - Driver is responsible for and capable of checking for errors upon
completion of one or more DMA I/O transactions.

= DDI FM ERRCB CAPABLE - Driver has an error callback function.

A hardened leaf driver generally sets all these capabilities. However, if its parent nexus is not
capable of supporting any one of the requested capabilities, the associated bit is cleared and
returned as such to the driver. Before returning from ddi_fm_init(9F), the I/O fault services
framework creates a set of fault management capability properties: fm-ereport-capable,
fm-accchk-capable, fm-dmachk-capable and fm-errcb-capable. The currently supported
fault management capability level is observable by using the prtconf(1M) command.

To make your driver support administrative selection of fault management capabilities, export
and set the fault management capability level properties to the values described above in the
driver.conf(4) file. The fm-capable properties must be set and read prior to calling
ddi_fm_init() with the desired capability list.

The following example from the bge driver shows the bge_fm_init () function, which calls the
ddi fm init(9F) function. The bge fm init() function is called in the bge attach()
function.

static void
bge fm init(bge t *bgep)
{
ddi iblock cookie t iblk;

/* Only register with IO Fault Services if we have some capability */
if (bgep->fm capabilities) {
bge reg accattr.devacc attr access = DDI FLAGERR ACC;
dma_attr.dma attr flags = DDI DMA FLAGERR;
/*
* Register capabilities with IO Fault Services
*/
ddi fm init(bgep->devinfo, &bgep->fm capabilities, &iblk);
/*
* Initialize pci ereport capabilities if ereport capable
*/
if (DDI_FM EREPORT CAP(bgep->fm capabilities) ||
DDI FM ERRCB CAP(bgep->fm capabilities))
pci ereport setup(bgep->devinfo);
/*
* Register error callback if error callback capable
*/

Chapter 13 « Hardening Solaris Drivers 227


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4

Sun Fault Management Architecture 1/0 Fault Services

228

if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
ddi fm handler register(bgep->devinfo,
bge fm error cb, (void*) bgep);
} else {
/*
* These fields have to be cleared of FMA if there are no
* FMA capabilities at runtime.
*/
bge reg accattr.devacc attr access = DDI DEFAULT ACC;
dma_attr.dma_attr flags = 0;

}

Cleaning Up Fault Management Resources

The ddi_fm_fini(9F) function cleans up resources allocated to support fault management for

dip.
void ddi_fm_fini(dev_info_t *dip)

Theddi fm fini() function can be called from kernel context in a driver attach(9E) or
detach(9E) entry point.

The following example from the bge driver shows the bge_fm_fini() function, which calls the
ddi_fm_fini(9F) function. The bge fm_fini() function is called in the bge_unattach()
function, which is called in both the bge_attach() and bge_detach() functions.

static void
bge fm fini(bge t *bgep)
{
/* Only unregister FMA capabilities if we registered some */
if (bgep->fm capabilities) {
/*

* Release any resources allocated by pci ereport setup()
*/
if (DDI_FM EREPORT_CAP(bgep->fm capabilities) ||
DDI _FM ERRCB_CAP(bgep->fm_capabilities))
pci ereport teardown(bgep->devinfo);
/*
* Un-register error callback if error callback capable
*/
if (DDI FM ERRCB CAP(bgep->fm capabilities))
ddi_fm_handler_unregister(bgep->devinfo);
/*
* Unregister from IO Fault Services
*/
ddi fm fini(bgep->devinfo);

}

Getting the Fault Management Capability Bit Mask
The ddi_fm_capable(9F) function returns the capability bit mask currently set for dip.

void ddi_fm_capable(dev_info_t *dip)

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-capable-9f

Sun Fault Management Architecture 1/0 Fault Services

Reporting Errors

This section provides information about the following topics:

= “Queueing an Error Event” on page 229 discusses how to queue error events.

= “Detecting and Reporting PCI-Related Errors” on page 230 describes how to report
PCI-related errors.

= “Reporting Standard I/O Controller Errors” on page 230 describes how to report standard
I/O controller errors.

= “Service Impact Function” on page 233 discusses how to report whether an error has
impacted the services provided by a device.

Queueing an Error Event

The ddi_fm_ereport_post(9F) function causes an ereport event to be queued for delivery to
the fault manager daemon, fmd(1M).

void ddi_fm_ereport_post(dev_info_t *dip,
const char *error_class,
uint64_t ena,
int sflag, ...)

The sflag parameter indicates whether the caller is willing to wait for system memory and event
channel resources to become available.

The ENA indicates the Error Numeric Association (ENA) for this error report. The ENA might
have been initialized and obtained from another error detecting software module such as a bus
nexus driver. If the ENA is set to 0, it will be initialized by ddi_fm_ereport_post().

The name-value pair (nvpair) variable argument list contains one or more name, type, value
pointer nvpair tuples for non-array data_type_t types or one or more name, type, number of
element, value pointer tuples for data_type_t array types. The nvpair tuples make up the
ereport event payload required for diagnosis. The end of the argument list is specified by NULL.

The ereport class names and payloads described in “Reporting Standard I/O Controller Errors”
on page 230 for I/O controllers are used as appropriate for error_class. Other ereport class
names and payloads can be defined, but they must be registered in the Sun event registry and
accompanied by driver specific diagnosis engine software, or the Eversholt fault tree (eft) rules.
For more information about the Sun event registry and about Eversholt fault tree rules, see the
Fault Management community (http://hub.opensolaris.org/bin/view/
Community+Group+fm/) on the OpenSolaris project (http://hub.opensolaris.org/bin/
view/Main/).

void
bge fm ereport(bge t *bgep, char *detail)

uint64 t ena;

Chapter 13 « Hardening Solaris Drivers 229


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-ereport-post-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmd-1m
http://hub.opensolaris.org/bin/view/Community+Group+fm/
http://hub.opensolaris.org/bin/view/Community+Group+fm/
http://hub.opensolaris.org/bin/view/Main/
http://hub.opensolaris.org/bin/view/Main/

Sun Fault Management Architecture 1/0 Fault Services

230

char buf[FM_MAX CLASS];
(void) snprintf(buf, FM MAX CLASS, "%s.%s", DDI FM DEVICE, detail);
ena = fm ena generate(@®, FM ENA FMT1);
if (DDI_FM_EREPORT_CAP(bgep->fm capabilities)) {
ddi fm ereport post(bgep->devinfo, buf, ena, DDI NOSLEEP,
FM VERSION, DATA TYPE UINT8, FM EREPORT VERS@, NULL);

}

Detecting and Reporting PCl-Related Errors

PClI-related errors, including PCI, PCI-X, and PCI-E, are automatically detected and reported
when you use pci_ereport_post(9F).

void pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uintl6_t *xx_status)

Drivers do not need to generate driver-specific ereports for errors that occur in the PCI Local
Bus configuration status registers. The pci_ereport_post() function can report data parity
errors, master aborts, target aborts, signaled system errors, and much more.

If pci_ereport_post() isto be used by a driver, then pci_ereport_setup(9F) must have been
previously called during the driver's attach(9E) routine, and pci_ereport_teardown(9F) must
subsequently be called during the driver's detach(9E) routine.

The bge code samples below show the bge driver invoking the pci_ereport_post() function
from the driver's error handler. See also “Registering an Error Handler” on page 237.

/*
* The I/0 fault service error handling callback function
*/
/*ARGSUSED*/
static int
bge fm error cb(dev_info t *dip, ddi fm error t *err, const void *impl data)
{
/*
* as the driver can always deal with an error
* in any dma or access handle, we can just return
* the fme status value.
*/
pci ereport post(dip, err, NULL);
return (err->fme_status);

}

Reporting Standard I/0 Controller Errors

A standard set of device ereports is defined for commonly seen errors for I/O controllers. These
ereports should be generated whenever one of the error symptoms described in this section is
detected.

The ereports described in this section are dispatched for diagnosis to the eft diagnosis engine,
which uses a common set of standard rules to diagnose them. Any other errors detected by
device drivers must be defined as ereport events in the Sun event registry and must be
accompanied by device specific diagnosis software or eft rules.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pci-ereport-post-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pci-ereport-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pci-ereport-teardown-9f

Sun Fault Management Architecture 1/0 Fault Services

DDI_FM_DEVICE_INVAL_STATE
The driver has detected that the device is in an invalid state.

A driver should post an error when it detects that the data it transmits or receives appear to
be invalid. For example, in the bge code, the bge_chip_reset() and bge receive ring()
routines generate the ereport.io.device.inval_state error when these routines detect
invalid data.
/*
* The SEND INDEX registers should be reset to zero by the
* global chip reset; if they’re not, there’ll be trouble
* later on.
*/
sx0 = bge reg get32(bgep, NIC DIAG SEND INDEX REG(0Q));
if (sx0 '=0) {
BGE_REPORT((bgep, "SEND INDEX - device didn’t RESET"));
bge_fm_ereport(bgep, DDI_FM _DEVICE INVAL_STATE);
return (DDI_FAILURE);
}
VARV
/*
* Sync (all) the receive ring descriptors
* before accepting the packets they describe
*/
DMA SYNC(rrp->desc, DDI DMA SYNC FORKERNEL);
if (*rrp->prod index p >= rrp->desc.nslots) {
bgep->bge chip state = BGE_CHIP_ERROR;
bge fm ereport(bgep, DDI FM DEVICE INVAL STATE);
return (NULL);
}
DDI_FM_DEVICE_INTERN_CORR
The device has reported a self-corrected internal error. For example, a correctable ECC error

has been detected by the hardware in an internal buffer within the device.

This error flag is not used in the bge driver. See the nxge_fm. c file on OpenSolaris for
examples that use this error. Take the following steps to study the nxge driver code:

= GotoOpenSolaris (http://hub.opensolaris.org/bin/view/Main/).

= Click Source Browser (http://src.opensolaris.org/source/) in the upper right
corner of the page.

= Enter nxge in the File Path field.

®  Click the Search button.

DDI_FM_DEVICE_INTERN_UNCORR
The device has reported an uncorrectable internal error. For example, an uncorrectable ECC
error has been detected by the hardware in an internal buffer within the device.

This error flag is not used in the bge driver. See the nxge_fm. c file on OpenSolaris for
examples that use this error.

DDI_FM_DEVICE_STALL
The driver has detected that data transfer has stalled unexpectedly.

Chapter 13 « Hardening Solaris Drivers 231


http://hub.opensolaris.org/bin/view/Main/
http://src.opensolaris.org/source/

Sun Fault Management Architecture 1/0 Fault Services

The bge_factotum_stall_check() routine provides an example of stall detection.

dogval = bge atomic shl32(&bgep->watchdog, 1);
if (dogval < bge watchdog count)
return (B_FALSE);

BGE_REPORT((bgep, "Tx stall detected,
watchdog code 0x%x", dogval));

bge fm ereport(bgep, DDI_FM DEVICE STALL);
return (B_TRUE);

DDI_FM_DEVICE_NO_RESPONSE

The device is not responding to a driver command.

bge chip poll engine(bge t *bgep, bge regno t regno,
uint32_t mask, uint32 t val)

{
uint32_t regval;
uint32 t n;
for (n = 200; n; --n) {
regval = bge reg get32(bgep, regno);
if ((regval & mask) == val)
return (B TRUE);
drv_usecwait(100);
}
bge fm ereport(bgep, DDI FM DEVICE NO RESPONSE);
return (B_FALSE);
}

DDI_FM_DEVICE_BADINT_LIMIT
The device has raised too many consecutive invalid interrupts.

The bge_intr() routine within the bge driver provides an example of stuck interrupt
detection. The bge fm_ereport() function is a wrapper for the ddi_fm_ereport_post(9F)
function. See the bge_fm_ereport () example in “Queueing an Error Event” on page 229.

if (bgep->missed dmas >= bge dma miss limit) {
/*

* If this happens multiple times in a row,
it means DMA is just not working. Maybe
the chip has failed, or maybe there’s a
problem on the PCI bus or in the host-PCI
bridge (Tomatillo).

At all events, we want to stop further
interrupts and let the recovery code take
over to see whether anything can be done
about it ...

* X X X X X X X X

*/
bge fm ereport(bgep,
DDI FM DEVICE BADINT LIMIT);
goto chip_stop;

232 Writing Device Drivers « September 2010



Sun Fault Management Architecture 1/0 Fault Services

Service Impact Function

A fault management capable driver must indicate whether or not an error has impacted the
services provided by a device. Following detection of an error and, if necessary, a shutdown of
services, the driver should invoke the ddi_fm service impact(9F) routine to reflect the
current service state of the device instance. The service state can be used by diagnosis and
recovery software to help identify or react to the problem.

Theddi fm service impact() routine should be called both when an error has been detected
by the driver itself, and when the framework has detected an error and marked an access or
DMA handle as faulty.

void ddi_fm service_impact(dev_info_t *dip, int svc_impact)
The following service impact values (svc_impact) are accepted by ddi_fm_service_impact():

DDI_SERVICE_LOST The service provided by the device is unavailable due to a
device fault or software defect.

DDI_SERVICE_DEGRADED The driver is unable to provide normal service, but the
driver can provide a partial or degraded level of service.
For example, the driver might have to make repeated
attempts to perform an operation before it succeeds, or it
might be running at less that its configured speed.

DDI_SERVICE_UNAFFECTED The driver has detected an error, but the services provided
by the device instance are unaffected.

DDI_SERVICE_RESTORED All of the device's services have been restored.

The calltoddi_fm_service_impact () generates the following ereports on behalf of the driver,
based on the service impact argument to the service impact routine:

ereport.io.service.lost
ereport.io.service.degraded
ereport.io.service.unaffected
ereport.io.service.restored

In the following bge code, the driver determines that it is unable to successfully restart
transmitting or receiving packets as the result of an error. The service state of the device
transitions to DDI_SERVICE_LOST.

/*

* ALl OK, reinitialize hardware and kick off GLD scheduling
*/

mutex enter(bgep->genlock);

if (bge restart(bgep, B_TRUE) != DDI SUCCESS) {

(void) bge check acc handle(bgep, bgep->cfg handle);
(void) bge check acc handle(bgep, bgep->io handle);
ddi_ fm_service impact(bgep->devinfo, DDI SERVICE LOST);

Chapter 13 - Hardening Solaris Drivers 233


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-service-impact-9f

Sun Fault Management Architecture 1/0 Fault Services

234

mutex_exit(bgep->genlock);
return (DDI FAILURE);

Note - The ddi_fm_service_impact() function should not be called from the registered
callback routine.

Access Attributes Structure

ADDI FM ACCCHK CAPABLE device driver must set its access attributes to indicate that it is
capable of handling programmed I/O (PIO) access errors that occur during a register read or
write. The devacc_attr_access fieldin the ddi_device acc_attr(9S) structure should be set
as an indicator to the system that the driver is capable of checking for and handling data path
errors. The ddi_device_acc_attr structure contains the following members:

ushort_t devacc attr_version;

uchar t devacc attr endian flags;

uchar_t devacc_attr_dataorder;

uchar t devacc attr access; /* access error protection */

Errors detected in the data path to or from a device can be processed by one or more of the
device driver's nexus parents.

The devacc_attr version field must be set to at least DDI_DEVICE_ATTR_V1. If the
devacc_attr_version field is not set to at least DDI_DEVICE_ATTR_V1, the
devacc_attr_access field isignored.

The devacc_attr_access field can be set to the following values:

DDI_DEFAULT_ACC This flag indicates the system will take the default action (panic if
appropriate) when an error occurs. This attribute cannot be used
by DDI_FM_ACCCHK_CAPABLE drivers.

DDI_FLAGERR_ACC This flag indicates that the system will attempt to handle and
recover from an error associated with the access handle. The
driver should use the techniques described in “Defensive
Programming Techniques for Solaris Device Drivers” on page 243
and should use ddi_fm_acc_err_get(9F) to regularly check for
errors before the driver allows data to be passed back to the calling
application.

The DDI_FLAGERR_ACC flag provides:

m  Error notification via the driver callback
®=  Anerror condition observable viaddi_fm acc_err get(9F)

DDI_CAUTIOUS_ACC The DDI_CAUTIOUS_ACC flag provides a high level of
protection for each Programmed I/O access made by the driver.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-acc-err-get-9f

Sun Fault Management Architecture 1/0 Fault Services

Note - Use of this flag will cause a significant impact on the
performance of the driver.

The DDI_CAUTIOUS_ACC flag signifies that an error is
anticipated by the accessing driver. The system attempts to handle
and recover from an error associated with this handle as gracefully
as possible. No error reports are generated as a result, but the
handle's fme_status flagis set to DDI_FM_NONFATAL. This
flag is functionally equivalent to ddi_peek(9F) and ddi_poke(9F).

The use of the DDI_CAUTIOUS_ACC provides:
®  Exclusive access to the bus

= On trap protection - (ddi_peek() and ddi_poke())

= Error notification through the driver callback registered with
ddi fm_handler register(9F)

= Anerror condition observable through
ddi_fm_acc_err_get(9F)

Generally, drivers should check for data path errors at appropriate junctures in the code path to
guarantee consistent data and to ensure that proper error status is presented in the I/O software
stack.

DDI_FM_ACCCHK_CAPABLE device drivers must set their devacc_attr access field to
DDI_FLAGERR_ACC or DDI_CAUTIOUS_ACC.

DMA Attributes Structure

As with access handle setup, a DDI_FM_DMACHK_CAPABLE device driver must set the
dma_attr_flagfield ofitsddi_dma_attr(9S) structure to the DDI_DMA_FLAGERR flag. The
system attempts to recover from an error associated with a handle that has
DDI_DMA_FLAGERR set. The ddi_dma_attr structure contains the following members:

uint_t dma_attr_version; /* version number */

uint64 t dma_attr_addr lo; /* low DMA address range */
uint64 t dma attr addr hi; /* high DMA address range */
uint64 t dma_attr_count_max; /* DMA counter register */
uint64 t dma_attr _align; /* DMA address alignment */
uint t dma_attr burstsizes; /* DMA burstsizes */

uint32 t dma_attr minxfer; /* min effective DMA size */
uint64 t dma_attr_maxxfer; /* max DMA xfer size */
uint64 t dma_attr seg; /* segment boundary */

int dma_attr sgllen; /* s/g length */

uint32 t dma_attr granular; /* granularity of device */
uint t dma_attr flags; /* Bus specific DMA flags */

Chapter 13 - Hardening Solaris Drivers 235


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-poke-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-handler-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-dma-attr-9s

Sun Fault Management Architecture 1/0 Fault Services

236

Drivers that set the DDI_DMA_FLAGERR flag should use the techniques described in
“Defensive Programming Techniques for Solaris Device Drivers” on page 243 and should use
ddi fm dma_err_get(9F) to check for data path errors whenever DMA transactions are
completed or at significant points within the code path. This ensures consistent data and proper
error status presented to the I/O software stack.

Use of DDI_DMA_FLAGERR provides:

= Error notification via the driver callback registered with ddi_fm_handler_register()

= Anerror condition observable by calling ddi_fm_dma_err_get()

Getting Error Status

If a fault has occurred that affects the resource mapped by the handle, the error status structure
is updated to reflect error information captured during error handling by a bus or other device
driver in the I/O data path.

void ddi_fm dma_err_get(ddi dma_handle_t handle, ddi_ fm error_ t *de, int version)
void ddi fm acc err get(ddi acc handle t handle, ddi fm error t *de, int version)

Theddi_fm_dma_err_get(9F)and ddi_fm_acc_err_get(9F)functions return the error status
for a DMA or access handle respectively. The version field should be set to
DDI_FME_VERSION.

An error for an access handle means that an error has been detected that has affected PIO
transactions to or from the device using that access handle. Any data received by the driver, for
example via a recent ddi_get8(9F) call, should be considered potentially corrupt. Any data sent
to the device, for example via a recent ddi_put32(9F) call might also have been corrupted or
might not have been received at all. The underlying fault might, however, be transient, and the
driver can therefore attempt to recover by calling ddi_fm_acc_err_clear(9F), resetting the
device to get it back into a known state, and retrying any potentially failed transactions.

Ifan error is indicated for a DMA handle, it implies that an error has been detected that has (or
will) affect DMA transactions between the device and the memory currently bound to the
handle (or most recently bound, if the handle is currently unbound). Possible causes include the
failure of a component in the DMA data path, or an attempt by the device to make an invalid
DMA access. The driver might be able to continue by retrying and reallocating memory. The
contents of the memory currently (or previously) bound to the handle should be regarded as
indeterminate and should be released back to the system. The fault indication associated with
the current transaction is lost once the handle is bound or re-bound, but because the fault might
persist, future DMA operations might not succeed.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-dma-err-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-acc-err-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-put32-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-acc-err-clear-9f

Sun Fault Management Architecture 1/0 Fault Services

Clearing Errors

Theddi fm acc err clear() andddi fm dma err clear(9F) routines should be called
when the driver wants to retry a request after an error was detected by the handle without
needing to free and reallocate the handle first.

void ddi fm acc err clear(ddi acc_handle_t handle, int version)

void ddi fm dma err clear(ddi dma handle t handle, int version)

Registering an Error Handler

Error handling activity might begin at the time that the error is detected by the operating system
via a trap or error interrupt. If the software responsible for handling the error (the error
handler) cannot immediately isolate the device that was involved in the failed I/O operation, it
must attempt to find a software module within the device tree that can perform the error
isolation. The Solaris device tree provides a structural means to propagate nexus driver error
handling activities to children who might have a more detailed understanding of the error and
can capture error state and isolate the problem device.

A driver can register an error handler callback with the I/O Fault Services Framework. The
error handler should be specific to the type of error and subsystem where error detection has
occurred. When the driver's error handler routine is invoked, the driver must check for any
outstanding errors associated with device transactions and generate ereport events. The driver
must also return error handler status in its ddi_fm_error(9S) structure. For example, if it has
been determined that the system's integrity has been compromised, the most appropriate action
might be for the error handler to panic the system.

The callback is invoked by a parent nexus driver when an error might be associated with a
particular device instance. Device drivers that register error handlers must be
DDI_FM_ERRCB_CAPABLE.

void ddi_fm_handler_register(dev_info t *dip, ddi_err_func_t handler, void *impl_data)

The ddi_fm_handler_register(9F) routine registers an error handler callback with the I/O
fault services framework. The ddi_fm_handler register() function should be called in the
driver's attach(9E) entry point for callback registration following driver fault management
initialization (ddi_fm_init()).

Chapter 13 « Hardening Solaris Drivers 237


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-dma-err-clear-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=ddi-fm-error-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-handler-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Sun Fault Management Architecture 1/0 Fault Services

238

The error handler callback function must do the following:

= Check for any outstanding hardware errors associated with device transactions, and
generate ereport events for diagnosis. For a PCI, PCI-x, or PCI express device this can
generally be done using pci_ereport_post () as described in “Detecting and Reporting
PCI-Related Errors” on page 230.

m  Return error handler status in its ddi_fm_error structure:

DDI_FM_OK
DDI_FM_FATAL
DDI_FM_NONFATAL
DDI_FM_UNKNOWN

Driver error handlers receive the following:

= A pointer to a device instance (dip) under the driver's control

= Adatastructure (ddi_fm_error) that contains common fault management data and status
for error handling

= A pointer to any implementation specific data (impl_data) specified at the time of the
handler's registration

Theddi fm handler register()andddi fm handler unregister(9F) routines mustbe
called from kernel context in a driver's attach(9E) or detach(9E) entry point. The registered
error handler callback can be called from kernel, interrupt, or high-level interrupt context.
Therefore the error handler:

= Must not hold locks
= Must not sleep waiting for resources

A device driver is responsible for:

= Isolating the device instance that might have caused errors
= Recovering transactions associated with errors

= Reporting the service impact of errors

= Scheduling device shutdown for errors considered fatal

These actions can be carried out within the error handler function. However, because of the
restrictions on locking and because the error handler function does not always know the
context of what the driver was doing at the point where the fault occurred, it is more usual for
these actions to be carried out following inline calls to ddi_fm_acc_err_get(9F) and
ddi_fm_dma_err_get(9F) within the normal paths of the driver as described previously.

/*
* The I/0 fault service error handling callback function
*/

/*ARGSUSED*/

static int

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-fm-handler-unregister-9f

Sun Fault Management Architecture 1/0 Fault Services

bge fm error_cb(dev_info t *dip, ddi fm error_t *err, const void *impl data)

{
/*

* as the driver can always deal with an error
* in any dma or access handle, we can just return

* the fme status value.
*/

pci ereport post(dip, err, NULL);

return (err->fme status);

Fault Management Data and Status Structure

Driver error handling callbacks are passed a pointer to a data structure that contains common
fault management data and status for error handling.

The data structure ddi_fm_error contains an FMA protocol ENA for the current error, the
status of the error handler callback, an error expectation flag, and any potential access or DMA
handles associated with an error detected by the parent nexus.

fme ena

fme_acc_handle, fme_dma_handle

fme flag

fme status

Chapter 13 - Hardening Solaris Drivers

This field is initialized by the calling parent nexus and
might have been incremented along the error handling
propagation chain before reaching the driver's
registered callback routine. If the driver detects a related
error of its own, it should increment this ENA prior to
calling ddi_fm_ereport_post().

These fields contain a valid access or DM A handle if the
parent was able to associate an error detected at its level
to a handle mapped or bound by the device driver.

The fme_flagis set to DDI_FM_ERR_EXPECTED if
the calling parent determines the error was the result of
aDDI_CAUTIOUS_ACC protected operation. In this
case, the fme_acc_handle is valid and the driver should
check for and report only errors not associated with the
DDI_CAUTIOUS_ACC protected operation.
Otherwise, fme_flag is set to
DDI_FM_ERR_UNEXPECTED and the driver must
perform the full range of error handling tasks.

Upon return from its error handler callback, the driver
must set fme_status to one of the following values:

= DDI_FM_OK - No errors were detected and the
operational state of this device instance remains the
same.

239



Sun Fault Management Architecture 1/0 Fault Services

s DDI_FM_FATAL - An error has occurred and the
driver considers it to be fatal to the system. For
example, a call to pci_ereport_post(9F) might
have detected a system fatal error. In this case, the
driver should report any additional error
information it might have in the context of the
driver.

= DDI_FM_NONFATAL - An error has been
detected by the driver but is not considered fatal to
the system. The driver has identified the error and
has either isolated the error or is committing that it
will isolate the error.

= DDI_FM_UNKNOWN - An error has been
detected, but the driver is unable to isolate the
device or determine the impact of the error on the
operational state of the system.

Diagnosing Faults

The fault management daemon, fmd(1M), provides a programming interface for the
development of diagnosis engine (DE) plug-in modules. A DE can be written to consume and
diagnose any error telemetry or specific error telemetries. The eft DE was designed to diagnose
any number of ereport classes based on diagnosis rules specified in the Eversholt language.

Standard Leaf Device Diagnosis

Most I/O subsystems use the eft DE and rules sets to diagnose device and device driver related
problems. A standard set of ereports, listed in “Reporting Standard I/O Controller Errors” on
page 230, has been specified for PCI leaf devices. Accompanying these ereports are eft diagnosis
rules that take the telemetry and identify the associated device fault. Drivers that generate these
ereports do not need to deliver any additional diagnosis software or eft rules.

The detection and generation of these ereports produces the following fault events:

fault.io.pci.bus-linkerr A hardware fault on the PCI bus
fault.io.pci.device-interr A hardware fault within the device
fault.io.pci.device-invreq A hardware fault in the device or a defect in the driver

that causes the device to send an invalid request

fault.io.pci.device-noresp A hardware fault in the device that causes the driver not
to respond to a valid request

fault.io.pciex.bus-linkerr A hardware fault on the link

240 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fmd-1m

Agent

Agent

fault.io.pciex.bus-noresp The link going down so that a device cannot respond to a
valid request

fault.io.pciex.device-interr A hardware fault within the device

fault.io.pciex.device-invreq A hardware fault in the device or a defect in the driver
that causes the device to send an invalid request

fault.io.pciex.device-noresp A hardware fault in the device causing it not to respond
to a valid request

Specialized Device Diagnosis

Driver developers who want to generate additional ereports or provide more specialized
diagnosis software or eft rules can do so by writing a C-based DE or an eft diagnosis rules set.
See the Fault Management community (http://hub.opensolaris.org/bin/view/
Community+Group+fm/) on the OpenSolaris project (http://hub.opensolaris.org/bin/
view/Main/) for information.

Event Registry

The Sun event registry is the central repository of all class names, ereports, faults, defects, upsets
and suspect lists (list.suspect) events. The event registry also contains the current definitions of
all event member payloads, as well as important non-payload information like internal
documentation, suspect lists, dictionaries, and knowledge articles. For example, ereport.io
and fault.io are two of the base class names that are of particular importance to I/O driver
developers.

The FMA event protocol defines a base set of payload members that is supplied with each of the
registered events. Developers can also define additional events that help diagnosis engines (or
eft rules) to narrow a suspect list down to a specific fault.

Glossary

This section uses the following terms:

A generic term used to describe fault manager modules that subscribe to fault.* or list.* events. Agents are
used to retire faulty resources, communicate diagnosis results to Administrators, and bridge to
higher-level management frameworks.

Chapter 13 « Hardening Solaris Drivers 241


http://hub.opensolaris.org/bin/view/Community+Group+fm/
http://hub.opensolaris.org/bin/view/Community+Group+fm/
http://hub.opensolaris.org/bin/view/Main/
http://hub.opensolaris.org/bin/view/Main/

ASRU (Automated System Reconfiguration Unit)

ASRU (Automated
System
Reconfiguration
Unit)

DE (Diagnosis
Engine)

ENA (Error
Numeric
Association)

Error

ereport (Error
Report)

ereport event
(Error Event)

Fault
Fault Boundary
Fault Event

Fault Manager

FMRI (Fault
Managed Resource
Identifier)

FRU (Field
Replaceable Unit)

242

The ASRU is a resource that can be disabled by software or hardware in order to isolate a problem in the
system and suppress further error reports.

A fault management module whose purpose is to diagnose problems by subscribing to one or more classes
of incoming error events and using these events to solve cases associated with each problem on the system.

An Error Numeric Association (ENA) is an encoded integer that uniquely identifies an error report within
a given fault region and time period. The ENA also indicates the relationship of the error to previous
errors as a secondary effect.

An unexpected condition, result, signal, or datum. An error is the symptom of a problem on the system.
Each problem typically produces many different kinds of errors.

The data captured with a particular error. Error report formats are defined in advance by creating a class
naming the error report and defining a schema using the Sun event registry.

The data structure that represents an instance of an error report. Error events are represented as
name-value pair lists.

Malfunctioning behavior of a hardware component.
Logical partition of hardware or software elements for which a specific set of faults can be enumerated.
An instance of a fault diagnosis encoded in the protocol.

Software component responsible for fault diagnosis via one or more diagnosis engines and state
management.

An FMRI is a URL-like identifier that acts as the canonical name for a particular resource in the fault
management system. Each FMRI includes a scheme that identifies the type of resource, and one or more
values that are specific to the scheme. An FMRI can be represented as URL-like string or as a name-value
pair list data structure.

The FRU is a resource that can be replaced in the field by a customer or service provider. FRUs can be
defined for hardware (for example system boards) or for software (for example software packages or
patches).

Resources

The following resources provide additional information:

= Fault Management OpenSolaris community (http://hub.opensolaris.org/bin/view/
Community+Group+fm/)
= FMA Messaging web site (http://www.sun.com/msg/)

Writing Device Drivers « September 2010


http://hub.opensolaris.org/bin/view/Community+Group+fm/
http://hub.opensolaris.org/bin/view/Community+Group+fm/
http://www.sun.com/msg/

Defensive Programming Techniques for Solaris Device Drivers

Defensive Programming Techniques for Solaris Device Drivers

This section offers techniques for device drivers to avoid system panics and hangs, wasting
system resources, and spreading data corruption. A driver is considered hardened when it uses
these defensive programming practices in addition to the I/O fault services framework for error
handling and diagnosis.

All Solaris drivers should follow these coding practices:

= Each piece of hardware should be controlled by a separate instance of the device driver. See
“Device Configuration Concepts” on page 100.

= Programmed I/O (PIO) must be performed only through the DDI access functions, using
the appropriate data access handle. See Chapter 7, “Device Access: Programmed /O

= The device driver must assume that data that is received from the device might be corrupted.
The driver must check the integrity of the data before the data is used.

= The driver must avoid releasing bad data to the rest of the system.
= Use only documented DDI functions and interfaces in your driver.

= The driver must ensure that the device writes only into pages of memory in the DMA buffers
(DDI_DMA_READ) that are controlled entirely by the driver. This technique prevents a DMA
fault from corrupting an arbitrary part of the system's main memory.

= The device driver must not be an unlimited drain on system resources if the device locks up.
The driver should time out if a device claims to be continuously busy. The driver should also
detect a pathological (stuck) interrupt request and take appropriate action.

= The device driver must support hotplugging in the Solaris OS.
= The device driver must use callbacks instead of waiting on resources.

= The driver must free up resources after a fault. For example, the system must be able to close
all minor devices and detach driver instances even after the hardware fails.

Using Separate Device Driver Instances

The Solaris kernel allows multiple instances of a driver. Each instance has its own data space but
shares the text and some global data with other instances. The device is managed on a
per-instance basis. Drivers should use a separate instance for each piece of hardware unless the
driver is designed to handle any failover internally. Multiple instances of a driver per slot can
occur, for example, with multifunction cards.

Exclusive Use of DDI Access Handles

All PIO access by a driver must use Solaris DDI access functions from the following families of
routines:

Chapter 13 « Hardening Solaris Drivers 243



Defensive Programming Techniques for Solaris Device Drivers

244

ddi getX
ddi_putX
ddi rep getX
ddi rep putX

The driver should not directly access the mapped registers by the address that is returned from
ddi_regs _map_setup(9F). Avoid the ddi_peek(9F) and ddi_poke(9F) routines because these
routines do not use access handles.

The DDI access mechanism is important because DDI access provides an opportunity to
control how data is read into the kernel.

Detecting Corrupted Data

The following sections describe where data corruption can occur and how to detect corruption.

Corruption of Device Management and Control Data

The driver should assume that any data obtained from the device, whether by PIO or DMA,
could have been corrupted. In particular, extreme care should be taken with pointers, memory
offsets, and array indexes that are based on data from the device. Such values can be malignant,
in that these values can cause a kernel panic if dereferenced. All such values should be checked
for range and alignment (if required) before use.

Even a pointer that is not malignant can still be misleading. For example, a pointer can point to
avalid but not correct instance of an object. Where possible, the driver should cross-check the
pointer with the object to which it is pointing, or otherwise validate the data obtained through
that pointer.

Other types of data can also be misleading, such as packet lengths, status words, or channel IDs.
These data types should be checked to the extent possible. A packet length can be
range-checked to ensure that the length is neither negative nor larger than the containing
buffer. A status word can be checked for “impossible” bits. A channel ID can be matched against
alist of valid IDs.

Where a value is used to identify a stream, the driver must ensure that the stream still exists. The
asynchronous nature of processing STREAMS means that a stream can be dismantled while
device interrupts are still outstanding.

The driver should not reread data from the device. The data should be read once, validated, and
stored in the driver's local state. This technique avoids the hazard of data that is correct when
initially read, but is incorrect when reread later.

The driver should also ensure that all loops are bounded. For example, a device that returns a
continuous BUSY status should not be able to lock up the entire system.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-poke-9f

Defensive Programming Techniques for Solaris Device Drivers

Corruption of Received Data

Device errors can result in corrupted data being placed in receive buffers. Such corruption is
indistinguishable from corruption that occurs beyond the domain of the device, for example,
within a network. Typically, existing software is already in place to handle such corruption. One
example is the integrity checks at the transport layer of a protocol stack. Another example is
integrity checks within the application that uses the device.

If the received data is not to be checked for integrity at a higher layer, the data can be
integrity-checked within the driver itself. Methods of detecting corruption in received data are
typically device-specific. Checksums and CRC are examples of the kinds of checks that can be
done.

DMA Isolation

A defective device might initiate an improper DMA transfer over the bus. This data transfer
could corrupt good data that was previously delivered. A device that fails might generate a
corrupt address that can contaminate memory that does not even belong to its own driver.

In systems with an IOMMU, a device can write only to pages mapped as writable for DMA.
Therefore, such pages should be owned solely by one driver instance. These pages should not be
shared with any other kernel structure. While the page in question is mapped as writable for
DMA, the driver should be suspicious of data in that page. The page must be unmapped from
the IOMMU before the page is passed beyond the driver, and before any validation of the data.

You can use ddi_umem_alloc(9F) to guarantee that a whole aligned page is allocated, or allocate
multiple pages and ignore the memory below the first page boundary. You can find the size of
an IOMMU page by using ddi_ptob(9F).

Alternatively, the driver can choose to copy the data into a safe part of memory before
processing it. If this is done, the data must first be synchronized using ddi_dma_sync(9F).

Callsto ddi_dma_sync () should specify SYNC_FOR_DEV before using DMA to transfer datatoa
device, and SYNC_FOR_CPU after using DMA to transfer data from the device to memory.

On some PCI-based systems with an IOMMU, devices can use PCI dual address cycles (64-bit
addresses) to bypass the IOMMU. This capability gives the device the potential to corrupt any
region of main memory. Device drivers must not attempt to use such a mode and should disable
it.

Handling Stuck Interrupts

The driver must identify stuck interrupts because a persistently asserted interrupt severely
affects system performance, almost certainly stalling a single-processor machine.

Chapter 13 « Hardening Solaris Drivers 245


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-ptob-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-sync-9f

Defensive Programming Techniques for Solaris Device Drivers

246

Sometimes the driver might have difficulty identifying a particular interrupt as invalid. For
network drivers, if a receive interrupt is indicated but no new buffers have been made available,
no work was needed. When this situation is an isolated occurrence, it is not a problem, since the
actual work might already have been completed by another routine such as a read service.

On the other hand, continuous interrupts with no work for the driver to process can indicate a
stuck interrupt line. For this reason, platforms allow a number of apparently invalid interrupts
to occur before taking defensive action.

While appearing to have work to do, a hung device might be failing to update its buffer
descriptors. The driver should defend against such repetitive requests.

In some cases, platform-specific bus drivers might be capable of identifying a persistently
unclaimed interrupt and can disable the offending device. However, this relies on the driver's
ability to identify the valid interrupts and return the appropriate value. The driver should
return a DDI_INTR_UNCLAIMED result unless the driver detects that the device legitimately
asserted an interrupt. The interrupt is legitimate only if the device actually requires the driver to
do some useful work.

The legitimacy of other, more incidental, interrupts is much harder to certify. An
interrupt-expected flag is a useful tool for evaluating whether an interrupt is valid. Consider an
interrupt such as descriptor free, which can be generated if all the device's descriptors had been
previously allocated. If the driver detects that it has taken the last descriptor from the card, it can
set an interrupt-expected flag. If this flag is not set when the associated interrupt is delivered, the
interrupt is suspicious.

Some informative interrupts might not be predictable, such as one that indicates that a medium
has become disconnected or frame sync has been lost. The easiest method of detecting whether
such an interrupt is stuck is to mask this particular source on first occurrence until the next
polling cycle.

If the interrupt occurs again while disabled, the interrupt should be considered false. Some
devices have interrupt status bits that can be read even if the mask register has disabled the
associated source and might not be causing the interrupt. You can devise a more appropriate
algorithm specific to your devices.

Avoid looping on interrupt status bits indefinitely. Break such loops if none of the status bits set
at the start of a pass requires any real work.

Additional Programming Considerations

In addition to the requirements discussed in the previous sections, consider the following
issues:

= Thread interaction
= Threats from top-down requests

Writing Device Drivers « September 2010



Defensive Programming Techniques for Solaris Device Drivers

= Adaptive strategies

Thread Interaction

Kernel panics in a device driver are often caused by unexpected interaction of kernel threads
after a device failure. When a device fails, threads can interact in ways that you did not
anticipate.

If processing routines terminate early, the condition variable waiters are blocked because an
expected signal is never given. Attempting to inform other modules of the failure or handling
unanticipated callbacks can result in undesirable thread interactions. Consider the sequence of
mutex acquisition and relinquishing that can occur during device failures.

Threads that originate in an upstream STREAMS module can become involved in unfortunate
paradoxes if those threads are used to return to that module unexpectedly. Consider using
alternative threads to handle exception messages. For instance, a procedure might use a
read-side service routine to communicate an M_ERROR, rather than handling the error directly
with a read-side putnext(9F).

A failing STREAMS device that cannot be quiesced during close because of a fault can generate
an interrupt after the stream has been dismantled. The interrupt handler must not attempt to
use a stale stream pointer to try to process the message.

Threats From Top-Down Requests

While protecting the system from defective hardware, you also need to protect against driver
misuse. Although the driver can assume that the kernel infrastructure is always correct (a
trusted core), user requests passed to it can be potentially destructive.

For example, a user can request an action to be performed upon a user-supplied data block
(M_IOCTL) thatis smaller than the block size that is indicated in the control part of the message.
The driver should never trust a user application.

Consider the construction of each type of ioct1 that your driver can receive and the potential
harm that the ioctl could cause. The driver should perform checks to ensure that it does not
process a malformed ioct1.

Adaptive Strategies

A driver can continue to provide service using faulty hardware. The driver can attempt to work
around the identified problem by using an alternative strategy for accessing the device. Given
that broken hardware is unpredictable and given the risk associated with additional design
complexity, adaptive strategies are not always wise. At most, these strategies should be limited
to periodic interrupt polling and retry attempts. Periodically retrying the device tells the driver
when a device has recovered. Periodic polling can control the interrupt mechanism after a
driver has been forced to disable interrupts.

Chapter 13 « Hardening Solaris Drivers 247


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=putnext-9f

Driver Hardening Test Harness

Ideally, a system always has an alternative device to provide a vital system service. Service
multiplexors in kernel or user space offer the best method of maintaining system services when
a device fails. Such practices are beyond the scope of this section.

Driver Hardening Test Harness

248

The driver hardening test harness tests that the I/O fault services and defensive programming
requirements have been correctly fulfilled. Hardened device drivers are resilient to potential
hardware faults. You must test the resilience of device drivers as part of the driver development
process. This type of testing requires that the driver handle a wide range of typical hardware
faults in a controlled and repeatable way. The driver hardening test harness enables you to
simulate such hardware faults in software.

The driver hardening test harness is a Solaris device driver development tool. The test harness
injects a wide range of simulated hardware faults when the driver under development accesses
its hardware. This section describes how to configure the test harness, create error-injection
specifications (referred to as errdefs), and execute the tests on your device driver.

The test harness intercepts calls from the driver to various DDI routines, then corrupts the
result of the calls as if the hardware had caused the corruption. In addition, the harness allows
for corruption of accesses to specific registers as well as definition of more random types of
corruption.

The test harness can generate test scripts automatically by tracing all register accesses as well as
direct memory access (DMA) and interrupt usage during the running of a specified workload. A
script is generated that reruns that workload while injecting a set of faults into each access.

The driver tester should remove duplicate test cases from the generated scripts.

The test harness is implemented as a device driver called bofi, which stands for bus_ops fault
injection, and two user-level utilities, th_define(1M) and th_manage(1M).

The test harness does the following tasks:

= Validates compliant use of Solaris DDI services

= Facilitates controlled corruption of programmed I/O (PIO) and DMA requests and
interference with interrupts, thus simulating faults that occur in the hardware managed by
the driver

= Facilitates simulation of failures in the data path between the CPU and the device, which are
reported from parent nexus drivers

= Monitors a driver's access during a specified workload and generates fault-injection scripts

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-define-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-manage-1m

Driver Hardening Test Harness

Fault Injection

The driver hardening test harness intercepts and, when requested, corrupts each access a driver
makes to its hardware. This section provides information you should understand to create
faults to test the resilience of your driver.

Solaris devices are managed inside a tree-like structure called the device tree (devinfo tree).
Each node of the devinfo tree stores information that relates to a particular instance of a device
in the system. Each leaf node corresponds to a device driver, while all other nodes are called
nexus nodes. Typically, a nexus represents a bus. A bus node isolates leaf drivers from bus
dependencies, which enables architecturally independent drivers to be produced.

Many of the DDI functions, particularly the data access functions, result in upcalls to the bus
nexus drivers. When a leaf driver accesses its hardware, it passes a handle to an access routine.
The bus nexus understands how to manipulate the handle and fulfill the request. A
DDI-compliant driver only accesses hardware through use of these DDI access routines. The
test harness intercepts these upcalls before they reach the specified bus nexus. If the data access
matches the criteria specified by the driver tester, the access is corrupted. If the data access does
not match the criteria, it is given to the bus nexus to handle in the usual way.

A driver obtains an access handle by using the ddi_regs_map_setup(9F) function:

ddi_regs_map_setup(dip, rset, ma, offset, size, handle)

The arguments specify which “oftboard” memory is to be mapped. The driver must use the
returned handle when it references the mapped I/O addresses, since handles are meant to
isolate drivers from the details of bus hierarchies. Therefore, do not directly use the returned
mapped address, ma. Direct use of the mapped address destroys the current and future uses of
the data access function mechanism.

For programmed I/O, the suite of data access functions is:
= J/OtoHost:

ddi_getX(handle, ma)
ddi_rep_getX(handle, buf, ma, repcnt, flag)

= Hostto I/O:

ddi putX(handle, ma, value)
ddi rep putX()

X and repcnt are the number of bytes to be transferred. X is the bus transfer size of 8, 16, 32, or
64 bytes.

DMA has a similar, yet richer, set of data access functions.

Chapter 13 « Hardening Solaris Drivers 249


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-regs-map-setup-9f

Driver Hardening Test Harness

250

Setting Up the Test Harness

The driver hardening test harness is part of the Solaris Developer Cluster. If you have not
installed this Solaris cluster, you must manually install the test harness packages appropriate for
your platform.

Installing the Test Harness

To install the test harness packages (SUNWftduu and SUNWftdur), use the pkgadd(1M)
command.

As superuser, go to the directory in which the packages are located and type:

# pkgadd -d . SUNWftduu SUNWftdur

Configuring the Test Harness

After the test harness is installed, set the properties in the /kernel/drv/bofi.conf file to
configure the harness to interact with your driver. When the harness configuration is complete,
reboot the system to load the harness driver.

The test harness behavior is controlled by boot-time properties that are set in the
/kernel/drv/bofi.conf configuration file.

When the harness is first installed, enable the harness to intercept the DDI accesses to your
driver by setting these properties:

bofi-nexus Bus nexus type, such as the PCI bus

bofi-to-test Name of the driver under test

For example, to test a PCI bus network driver called xyznetdrv, set the following property
values:

bofi-nexus="pci"
bofi-to-test="xyznetdrv"

Other properties relate to the use and harness checking of the Solaris DDI data access
mechanisms for reading and writing from peripherals that use PIO and transferring data to and
from peripherals that use DMA.

bofi-range-check  When this property is set, the test harness checks the consistency of the
arguments that are passed to PIO data access functions.

bofi-ddi-check When this property is set, the test harness verifies that the mapped
address that is returned by ddi_map_regs_setup(9F) is not used
outside of the context of the data access functions.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=pkgadd-1m

Driver Hardening Test Harness

bofi-sync-check When this property is set, the test harness verifies correct usage of DMA
functions and ensures that the driver makes compliant use of
ddi_dma_sync(9F).

Testing the Driver

This section describes how to create and inject faults by using the th_define(1M) and
th_manage(1M) commands.

Creating Faults

The th_define utility provides an interface to the bofi device driver for defining errdefs. An
errdef corresponds to a specification for how to corrupt a device driver's accesses to its
hardware. The th_define command-line arguments determine the precise nature of the fault
to be injected. If the supplied arguments define a consistent errdef, the th_define process stores
the errdef with the bofi driver. The process suspends itself until the criteria given by the errdef
becomes satisfied. In practice, the suspension ends when the access counts go to zero (0).

Injecting Faults

The test harness operates at the level of data accesses. A data access has the following
characteristics:

Type of hardware being accessed (driver name)

Instance of the hardware being accessed (driver instance)
Register set being tested

Subset of the register set that is targeted

Direction of the transfer (read or write)

Type of access (PIO or DMA)

The test harness intercepts data accesses and injects appropriate faults into the driver. An
errdef, specified by the th_define(1M) command, encodes the following information:

= The driver instance and register set being tested (-n name, - i instance, and - r reg_number).

= The subset of the register set eligible for corruption. This subset is indicated by providing an
offset into the register set and a length from that offset (- 1 offset [len]).

= Thekind of access to be intercepted: log, pio, dma, pio_r, pio_w,dma_r,dma_w, intr (-a
acc_types).
=  How many accesses should be faulted (- c count [failcount]).

= Thekind of corruption that should be applied to a qualifying access (- o operator
[operand]).

= Replace datum with a fixed value (EQUAL)

Chapter 13 « Hardening Solaris Drivers 251


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-define-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-manage-1m

Driver Hardening Test Harness

252

= Perform a bitwise operation on the datum (AND, OR, XOR)
= Ignore the transfer (for host to I/O accesses NO_TRANSFER)
= Lose, delay, or inject spurious interrupts (LOSE, DELAY, EXTRA)

Use the -a acc_chk option to simulate framework faults in an errdef.

Fault-Injection Process

The process of injecting a fault involves two phases:

1. Usetheth define(1M)command to create errdefs.

Create errdefs by passing test definitions to the bofi driver, which stores the definitions so
they can be accessed by using the th_manage(1M) command.

2. Create a workload, then use the th_manage command to activate and manage the errdef.

The th_manage command is a user interface to the various ioctls that are recognized by the
bofi harness driver. The th_manage command operates at the level of driver names and
instances and includes these commands: get_handles to list access handles, start to
activate errdefs, and stop to deactivate errdefs.

The activation of an errdef results in qualifying data accesses to be faulted. The th_manage
utility supports these commands: broadcast to provide the current state of the errdef and
clear errors to clear the errdef.

See the th_define(1M) and th_manage(1M) man pages for more information.

Test Harness Warnings

You can configure the test harness to handle warning messages in the following ways:

= Write warning messages to the console
= Write warning messages to the console and then panic the system

Use the second method to help pinpoint the root cause of a problem.

When the bofi-range-check property value is set to warn, the harness prints the following
messages (or panics if set to panic) when it detects a range violation of a DDI function by your
driver:

ddi getX() out of range addr %x not in %x
ddi putX() out of range addr %x not in %x
ddi rep getX() out of range addr %x not in %x
ddi rep putX() out of range addr %x not in %x

Xis 8,16, 32, or 64.

When the harness has been requested to insert over 1000 extra interrupts, the following
message is printed if the driver does not detect interrupt jabber:

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-define-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-manage-1m

Driver Hardening Test Harness

undetected interrupt jabber - %s %d

Using Scripts to Automate the Test Process

You can create fault-injection test scripts by using the logging access type of the th_define(1M)
utility:

# th_define -n name -i instance -a log [-e fixup_script]

The th_define command takes the instance offline and brings it back online. Then th_define
runs the workload that is described by the fixup_script and logs I/O accesses that are made by
the driver instance.

The fixup_script is called twice with the set of optional arguments. The script is called once just
before the instance is taken offline, and it is called again after the instance has been brought
online.

The following variables are passed into the environment of the called executable:
DRIVER_PATH Device path of the instance

DRIVER_INSTANCE Instance number of the driver
DRIVER_UNCONFIGURE Set to 1 when the instance is about to be taken offline
DRIVER_CONFIGURE Set to 1 when the instance has just been brought online

Typically, the fixup_script ensures that the device under test is in a suitable state to be taken
offline (unconfigured) or in a suitable state for error injection (for example, configured, error
free, and servicing a workload). The following script is a minimal script for a network driver:

#1/bin/ksh
driver=xyznetdrv
ifnum=$driver$DRIVER INSTANCE

if [[ $DRIVER CONFIGURE = 1 1]; then
ifconfig $ifnum plumb
ifconfig $ifnum ...
ifworkload start $ifnum

elif [[ $DRIVER UNCONFIGURE = 1 ]]; then
ifworkload stop $ifnum
ifconfig $ifnum down
ifconfig $ifnum unplumb

fi

exit $?

Chapter 13 - Hardening Solaris Drivers 253


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-define-1m

Driver Hardening Test Harness

254

Note - The ifworkload command should initiate the workload as a background task. The fault
injection occurs after the fixup_script configures the driver under test and brings it online
(DRIVER_CONFIGURE is set to 1).

If the -e fixup_script option is present, it must be the last option on the command line. If the -e
option is not present, a default script is used. The default script repeatedly attempts to bring the
device under test offline and online. Thus the workload consists of the driver's attach () and
detach() paths.

The resulting log is converted into a set of executable scripts that are suitable for running
unassisted fault-injection tests. These scripts are created in a subdirectory of the current
directory with the name driver.test.id. The scripts inject faults, one at a time, into the driver
while running the workload that is described by the fixup_script.

The driver tester has substantial control over the errdefs that are produced by the test
automation process. See the th_define(1M) man page.

If the tester chooses a suitable range of workloads for the test scripts, the harness gives good
coverage of the hardening aspects of the driver. However, to achieve full coverage, the tester
might need to create additional test cases manually. Add these cases to the test scripts. To
ensure that testing completes in a timely manner, you might need to manually delete duplicate
test cases.

Automated Test Process

The following process describes automated testing:

1. Identify the aspects of the driver to be tested.

Test all aspects of the driver that interact with the hardware:

Attach and detach

Plumb and unplumb under a stack
Normal data transfer
Documented debug modes

A separate workload script (fixup_script) must be generated for each mode of use.

2. For each mode of use, prepare an executable program (fixup_script) that configures and
unconfigures the device, and creates and terminates a workload.

Run the th_define(1M) command with the errdefs, together with an access type of -a log.
4. Wait for the logs to fill.

The logs contain a dump of the bofi driver's internal buffers. This data is included at the
front of the script.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=th-define-1m

Driver Hardening Test Harness

Because it can take from a few seconds to several minutes to create the logs, use the
th_manage broadcast command to check the progress.

5. Change to the created test directory and run the master test script.

The master script runs each generated test script in sequence. Separate test scripts are
generated per register set.

6. Store the results for analysis.

Successful test results, such as success (corruption reported) and success

(corruption undetected), show that the driver under test is behaving properly. The
results are reported as failure (no service impact reported) if the harness detects that
the driver has failed to report the service impact after reporting a fault, or if the driver fails to
detect that an access or DMA handle has been marked as faulted.

It is fine for a few test not triggered failures to appear in the output. However, several
such failures indicate that the test is not working properly. These failures can appear when
the driver does not access the same registers as when the test scripts were generated.

7. Run the test on multiple instances of the driver concurrently to test the multithreading of
error paths.

For example, each th_define command creates a separate directory that contains test
scripts and a master script:

# th_define -n xyznetdrv -i 0 -a log -e script
# th_define -n xyznetdrv -i 1 -a log -e script

Once created, run the master scripts in parallel.

Note - The generated scripts produce only simulated fault injections that are based on what
was logged during the time the logging errdef was active. When you define a workload,
ensure that the required results are logged. Also analyze the resulting logs and
fault-injection specifications. Verify that the hardware access coverage that the resulting test
scripts created is what is required.

Chapter 13 - Hardening Solaris Drivers 255



256



L K R 4 CHAPTER 14

Layered Driver Interface (LDI)

The LDl is a set of DDI/DKI that enables a kernel module to access other devices in the system.
The LDI also enables you to determine which devices are currently being used by kernel
modules.

This chapter covers the following topics:

“Kernel Interfaces” on page 258
“User Interfaces” on page 274

LDI Overview

The LDI includes two categories of interfaces:

Kernel interfaces. User applications use system calls to open, read, and write to devices that

are managed by a device driver within the kernel. Kernel modules can use the LDI kernel
interfaces to open, read, and write to devices that are managed by another device driver
within the kernel. For example, a user application might use read(2) and a kernel module
might use 1di_read(9F) to read the same device. See “Kernel Interfaces” on page 258.

User interfaces. The LDI user interfaces can provide information to user processes
regarding which devices are currently being used by other devices in the kernel. See “User
Interfaces” on page 274.

The following terms are commonly used in discussing the LDI:

Target Device. A target device is a device within the kernel that is managed by a device
driver and is being accessed by a device consumer.

Device Consumer. A device consumer is a user process or kernel module that opens and
accesses a target device. A device consumer normally performs operations such as open,
read,write, or ioctl on a target device.

257


http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-read-9f

Kernel Interfaces

= Kernel Device Consumer. A kernel device consumer is a particular kind of device
consumer. A kernel device consumer is a kernel module that accesses a target device. The
kernel device consumer usually is not the device driver that manages the target device that is
being accessed. Instead, the kernel device consumer accesses the target device indirectly
through the device driver that manages the target device.

= Layered Driver. A layered driver is a particular kind of kernel device consumer. A layered
driver is a kernel driver that does not directly manage any piece of hardware. Instead, a
layered driver accesses one of more target devices indirectly through the device drivers that
manage those target devices. Volume managers and STREAMS multiplexers are good
examples of layered drivers.

Kernel Interfaces

258

Some LDI kernel interfaces enable the LDI to track and report kernel device usage information.
See “Layered Identifiers - Kernel Device Consumers” on page 258.

Other LDI kernel interfaces enable kernel modules to perform access operations such as open,
read, and write a target device. These LDI kernel interfaces also enable a kernel device
consumer to query property and event information about target devices. See “Layered Driver
Handles - Target Devices” on page 259.

“LDI Kernel Interfaces Example” on page 263 shows an example driver that uses many of these
LDI interfaces.

Layered Identifiers — Kernel Device Consumers

Layered identifiers enable the LDI to track and report kernel device usage information. A
layered identifier (1di_ident_t) identifies a kernel device consumer. Kernel device consumers
must obtain a layered identifier prior to opening a target device using the LDI.

Layered drivers are the only supported types of kernel device consumers. Therefore, a layered
driver must obtain a layered identifier that is associated with the device number, the device
information node, or the stream of the layered driver. The layered identifier is associated with
the layered driver. The layered identifier is not associated with the target device.

You can retrieve the kernel device usage information that is collected by the LDI by using the
libdevinfo(3LIB) interfaces, the fuser(1M) command, or the prtconf(1M) command. For
example, the prtconf(1M) command can show which target devices a layered driver is
accessing or which layered drivers are accessing a particular target device. See “User Interfaces”
on page 274 to learn more about how to retrieve device usage information.

The following describes the LDI layered identifier interfaces:

1di_ident_t Layered identifier. An opaque type.

Writing Device Drivers « September 2010



Kernel Interfaces

1di_ident from dev(9F) Allocate and retrieve a layered identifier that is associated
with a dev_t device number.

1di ident from dip(9F) Allocate and retrieve a layered identifier that is associated
withadev info t device information node.

1di_ident from_ stream(9F) Allocate and retrieve a layered identifier that is associated
with a stream.

1di_ident release(9F) Release a layered identifier that was allocated with
1di_ident from dev(9F), ldi_ident from dip(9F), or
1di_ident from_stream(9F).

Layered Driver Handles - Target Devices

Kernel device consumers must use a layered driver handle (1di_handle_t) to access a target
device through LDl interfaces. The 1di_handle_t type is valid only with LDI interfaces. The
LDI allocates and returns this handle when the LDI successfully opens a device. A kernel device
consumer can then use this handle to access the target device through the LDI interfaces. The
LDI deallocates the handle when the LDI closes the device. See “LDI Kernel Interfaces Example”
on page 263 for an example.

This section discusses how kernel device consumers can access target devices and retrieve
different types of information. See “Opening and Closing Target Devices” on page 259 to learn
how kernel device consumers can open and close target devices. See “Accessing Target Devices”
on page 260 to learn how kernel device consumers can perform operations such as read, write,
strategy, and ioctl on target devices. “Retrieving Target Device Information” on page 261
describes interfaces that retrieve target device information such as device open type and device
minor name. “Retrieving Target Device Property Values” on page 261 describes interfaces that
retrieve values and address of target device properties. See “Receiving Asynchronous Device
Event Notification” on page 262 to learn how kernel device consumers can receive event
notification from target devices.

Opening and Closing Target Devices

This section describes the LDI kernel interfaces for opening and closing target devices. The
open interfaces take a pointer to a layered driver handle. The open interfaces attempt to open
the target device specified by the device number, device ID, or path name. If the open operation
is successful, the open interfaces allocate and return a layered driver handle that can be used to
access the target device. The close interface closes the target device associated with the specified
layered driver handle and then frees the layered driver handle.

1di_handle_t Layered driver handle for target device access. An opaque data
structure that is returned when a device is successfully opened.

Chapter 14 « Layered Driver Interface (LDI) 259


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-ident-from-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-ident-from-dip-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-ident-from-stream-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-ident-release-9f

Kernel Interfaces

260

1di_open_by dev(9F)

Open the device specified by the dev_t device number parameter.

1di_open_by devid(9F) Open the device specified by the ddi_devid_t device ID

parameter. You also must specify the minor node name to open.

1di_open_by name(9F) Open a device by path name. The path name is a null-terminated

1di close(9F)

string in the kernel address space. The path name must be an
absolute path, beginning with a forward slash character (/).

Close a device that was opened with 1di_open_by_dev(9F),
1di_open_ by devid(9F), or 1di_open_ by name(9F). After
1di_close(9F) returns, the layered driver handle of the device
that was closed is no longer valid.

Accessing Target Devices

This section describes the LDI kernel interfaces for accessing target devices. These interfaces
enable a kernel device consumer to perform operations on the target device specified by the
layered driver handle. Kernel device consumers can perform operations such as read, write,
strategy,and ioctl on the target device.

1di_handle_t

1di_read(9F)

1di_aread(9F)

1di_write(9F)

1di_awrite(9F)

1di_strategy(9F)

1di_dump(9F)

1di_poll(9F)

1di ioctl(9F)

Layered driver handle for target device access. An opaque data
structure.

Pass a read request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

Pass an asynchronous read request to the device entry point for the
target device. This operation is supported for block and character
devices.

Pass a write request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

Pass an asynchronous write request to the device entry point for the
target device. This operation is supported for block and character
devices.

Pass a strategy request to the device entry point for the target device.
This operation is supported for block and character devices.

Pass a dump request to the device entry point for the target device. This
operation is supported for block and character devices.

Pass a poll request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

Passan ioctl request to the device entry point for the target device.
This operation is supported for block, character, and STREAMS
devices. The LDI supports STREAMS linking and STREAMS ioctl

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-open-by-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-open-by-devid-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-open-by-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-read-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-aread-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-write-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-awrite-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-strategy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-dump-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-ioctl-9f

Kernel Interfaces

commands. See the “STREAM IOCTLS” section of the 1di_ioct1(9F)
man page. See also the ioct1l commands in the streamio(7I) man page.

1di_devmap(9F) Pass a devmap request to the device entry point for the target device. This
operation is supported for block and character devices.

1di_getmsg(9F) Get a message block from a stream.

1di putmsg(9F) Put a message block on a stream.

Retrieving Target Device Information

This section describes LDI interfaces that kernel device consumers can use to retrieve device
information about a specified target device. A target device is specified by a layered driver
handle. A kernel device consumer can receive information such as device number, device open
type, device ID, device minor name, and device size.

1di_get dev(9F) Get the dev_t device number for the target device specified by
the layered driver handle.

1di_get _otyp(9F) Get the open flag that was used to open the target device
specified by the layered driver handle. This flag tells you whether
the target device is a character device or a block device.

1di get devid(9F) Gettheddi_devid_t device ID for the target device specified by
the layered driver handle. Use ddi_devid_free(9F) to free the
ddi_devid_t when you are finished using the device ID.

1di_get minor_name(9F) Retrieve a buffer that contains the name of the minor node that
was opened for the target device. Use kmem_f ree(9F) to release
the buffer when you are finished using the minor node name.

1di_get_size(9F) Retrieve the partition size of the target device specified by the
layered driver handle.

Retrieving Target Device Property Values

This section describes LDI interfaces that kernel device consumers can use to retrieve property
information about a specified target device. A target device is specified by a layered driver
handle. A kernel device consumer can receive values and addresses of properties and determine
whether a property exists.

1di_prop_exists(9F) Return 1 if the property exists for the target device
specified by the layered driver handle. Return 0 if the
property does not exist for the specified target
device.

Chapter 14 - Layered Driver Interface (LDI) 261


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-devmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-getmsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-putmsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-get-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-get-otyp-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-get-devid-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devid-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-get-minor-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=kmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-get-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-exists-9f

Kernel Interfaces

262

ldi_prop_get_int(9F) Search for an int integer property that is associated
with the target device specified by the layered driver
handle. If the integer property is found, return the
property value.

1di_prop_get int64(9F) Search for an int64_t integer property that is
associated with the target device specified by the
layered driver handle. If the integer property is
found, return the property value.

ldi_prop_lookup_int_array(9F) Retrieve the address of an int integer array property
value for the target device specified by the layered
driver handle.

1di_prop_lookup_int64 array(9F) Retrieve the address of an int64_t integer array
property value for the target device specified by the
layered driver handle.

1di_prop_lookup string(9F) Retrieve the address of a null-terminated string
property value for the target device specified by the
layered driver handle.

1di_prop_lookup_string array(9F) Retrieve the address of an array of strings. The string
array is an array of pointers to null-terminated
strings of property values for the target device
specified by the layered driver handle.

1di_prop_lookup byte array(9F) Retrieve the address of an array of bytes. The byte
array is a property value of the target device specified
by the layered driver handle.

Receiving Asynchronous Device Event Notification

The LDI enables kernel device consumers to register for event notification and to receive event
notification from target devices. A kernel device consumer can register an event handler that
will be called when the event occurs. The kernel device consumer must open a device and
receive a layered driver handle before the kernel device consumer can register for event
notification with the LDI event notification interfaces.

The LDI event notification interfaces enable a kernel device consumer to specify an event name
and to retrieve an associated kernel event cookie. The kernel device consumer can then pass the
layered driver handle (1di_handle_t), the cookie (ddi_eventcookie_t), and the event handler
toldi_add_event_handler(9F) to register for event notification. When registration completes
successfully, the kernel device consumer receives a unique LDI event handler identifier
(ldi_callback_id_t). The LDI event handler identifier is an opaque type that can be used only
with the LDI event notification interfaces.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-get-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-lookup-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-lookup-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-lookup-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-prop-lookup-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-add-event-handler-9f

Kernel Interfaces

The LDI provides a framework to register for events generated by other devices. The LDI itself
does not define any event types or provide interfaces for generating events.

The following describes the LDI asynchronous event notification interfaces:
1di_callback_id_t Event handler identifier. An opaque type.

1di_get eventcookie(9F) Retrieve an event service cookie for the target device
specified by the layered driver handle.

1di add event handler(9F) Add the callback handler specified by the
1di_callback_id_t registration identifier. The callback
handler is invoked when the event specified by the
ddi_eventcookie t cookie occurs.

1di_remove event handler(9F) Remove the callback handler specified by the
1di_callback_id_t registration identifier.

LDI Kernel Interfaces Example

This section shows an example kernel device consumer that uses some of the LDI calls
discussed in the preceding sections in this chapter. This section discusses the following aspects
of this example module:

= “Device Configuration File” on page 263
= “Driver Source File” on page 264
= “Test the Layered Driver” on page 272

This example kernel device consumer is named lyr. The lyr module is a layered driver that
uses LDI calls to send data to a target device. In its open(9E) entry point, the lyr driver opens
the device that is specified by the lyr_targ property in the lyr. conf configuration file. In its
write(9E) entry point, the lyr driver writes all of its incoming data to the device specified by
the lyr_targ property.

Device Configuration File

In the configuration file shown below, the target device that the lyr driver is writing to is the
console.

EXAMPLE 14-1  Configuration File

#

# Copyright 2004 Sun Microsystems, Inc. All rights reserved.
# Use is subject to license terms.

#

#pragma ident "% Z29%%M% %1% %E% SMI"

name="lyr" parent="pseudo" instance=1;

Chapter 14 « Layered Driver Interface (LDI) 263


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-get-eventcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-add-event-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-remove-event-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e

Kernel Interfaces

264

EXAMPLE 14-1 Configuration File (Continued)

lyr targ="/dev/console";

Driver Source File

In the driver source file shown below, the lyr_state_t structure holds the soft state for the lyr
driver. The soft state includes the layered driver handle (1h) for the lyr_targ device and the
layered identifier (11) for the lyr device. For more information on soft state, see “Retrieving
Driver Soft State Information” on page 512.

In the lyr_open() entry point, ddi_prop_lookup_string(9F) retrieves from the lyr_targ
property the name of the target device for the lyr device to open. The
ldi_ident_from_dev(9F) function gets an LDI layered identifier for the lyr device. The
ldi_open_by_name(9F) function opens the lyr_targ device and gets a layered driver handle for
the lyr_targ device.

Note that if any failure occurs in lyr_open(), the 1di_close(9F), ldi_ident_release(9F), and
ddi_prop_free(9F) calls undo everything that was done. The 1di_close(9F) function closes
the lyr_targdevice. The 1di_ident_release(9F) function releases the lyr layered identifier.
The ddi_prop_free(9F) function frees resources allocated when the lyr_targ device name was
retrieved. If no failure occurs, the 1di_close(9F) and 1di_ident release(9F) functions are
called in the lyr_close() entry point.

In the last line of the driver module, the 1di_write(9F) function is called. The 1di_write(9F)
function takes the data written to the lyr device in the lyr_write() entry point and writes that
datato the lyr_targ device. The 1di_write(9F) function uses the layered driver handle for the
lyr_targ device to write the data to the lyr_targ device.

EXAMPLE 14-2 Driver Source File

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/cmn_err.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/stat.h>

#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunldi.h>

typedef struct lyr state {
1di handle t 1lh;

ldi_ident_t 1i;
dev_info t *dip;
minor_t minor;

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-ident-from-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-open-by-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-ident-release-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ldi-write-9f

Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)
int flags;
kmutex_ t lock;

} lyr state t;
#define LYR OPENED 0x1 /* 1h is valid */
#define LYR IDENTED 0x2 /* 1i is valid */

static int lyr_info(dev_info t *, ddi_info_cmd_t, void *, void **);
static int lyr attach(dev info t *, ddi attach cmd t);
static int lyr detach(dev info t *, ddi detach cmd t);

static int lyr open(dev t *, int, int, cred t *);
static int lyr close(dev_t, int, int, cred t *);
static int lyr write(dev t, struct uio *, cred t *);

static void *lyr statep;

static struct cb ops lyr cb ops = {

lyr open, /* open */
lyr close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
lyr write, /* write */
nodev, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi prop op, /* prop op */
NULL, /* streamtab */
D NEW | D _MP, /* cb flag */
CB REV, /* cb rev */
nodev, /* aread */
nodev /* awrite */

}

static struct dev ops lyr dev ops = {
DEVO REV, /* devo _rev, */
0, /* refcnt */
lyr _info, /* getinfo */
nulldev, /* identify */
nulldev, /* probe */
lyr attach, /* attach */
lyr detach, /* detach */
nodev, /* reset */
&lyr cb ops, /* cb_ops */
NULL, /* bus_ops */
NULL /* power */

b

static struct modldrv modldrv = {
&mod driverops,

Chapter 14 « Layered Driver Interface (LDI) 265



Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

"LDI example driver"
&lyr dev_ops

+
static struct modlinkage modlinkage = {
MODREV 1,
&modldrv,
NULL
+
int
_init(void)
{
int rv;
if ((rv = ddi soft state init(&lyr statep, sizeof (lyr state t),
0)) '=0) {
cmn_err(CE_WARN, "lyr init: soft state init failed\n")
return (rv);
}
if ((rv = mod install(&modlinkage)) !'= 0) {
cmn_err(CE_WARN, "lyr init: mod install failed\n")
goto FAIL;
}
return (rv);
/*NOTEREACHED*/
FAIL:
ddi soft state fini(&lyr statep);
return (rv);
}
int
_info(struct modinfo *modinfop)
{
return (mod info(&modlinkage, modinfop));
}
int
~fini(void)
{
int rv;
if ((rv = mod_remove(&modlinkage)) != 0) {
return(rv);
}
ddi soft state fini(&lyr statep);
return (rv);
}

266 Writing Device Drivers « September 2010



Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

/ *
* 1:1 mapping between minor number and instance
*/

static int

lyr_info(dev_info t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{

int inst;

minor_t minor;

lyr state t *statep;

char *myname = "lyr info"

minor = getminor((dev t)arg);
inst = minor;
switch (infocmd) {
case DDI_INFO DEVT2DEVINFO:
statep = ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN, "%s: get soft state
"failed on inst %d\n", myname, inst);
return (DDI_FAILURE);

}
*result = (void *)statep->dip;
break;

case DDI INFO DEVT2INSTANCE:
*result = (void *)inst;

break;
default:
break;
}
return (DDI SUCCESS);
}
static int
lyr attach(dev _info t *dip, ddi attach cmd t cmd)
{

int inst;
lyr state t *statep;
char *myname = "lyr attach"

switch (cmd) {
case DDI_ATTACH:
inst = ddi_get instance(dip);

if (ddi soft state zalloc(lyr statep, inst) != DDI SUCCESS) {
cmn_err(CE_WARN, "%s: ddi soft state zallac failed "
"on inst %d\n", myname, inst);
goto FAIL;
}

statep = (lyr state t *)ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN,

%s: ddi get soft state failed on

Chapter 14 - Layered Driver Interface (LDI)

267



Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

"inst %d\n", myname, inst);
goto FAIL;
}
statep->dip = dip;
statep->minor = inst;

if (ddi create minor node(dip, "node", S IFCHR, statep->minor,
DDI PSEUDO, @) '= DDI SUCCESS) {
cmn_err(CE WARN, "%s: ddi create minor node failed on
"inst %d\n", myname, inst);
goto FAIL;

}
mutex init(&statep->lock, NULL, MUTEX DRIVER, NULL);
return (DDI_SUCCESS);

case DDI_RESUME:
case DDI PM RESUME:
default:
break;
}
return (DDI_FAILURE);
/*NOTREACHED*/
FAIL:
ddi soft state free(lyr statep, inst);
ddi remove minor node(dip, NULL);
return (DDI_FAILURE);

static int
lyr detach(dev_info t *dip, ddi detach cmd t cmd)

int inst;
lyr state t *statep;
char *myname = "lyr detach"

inst = ddi get instance(dip);
statep = ddi_get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE WARN, "%s: get soft state failed on
"inst %d\n", myname, inst);
return (DDI_FAILURE);

}
if (statep->dip != dip) {
cmn_err(CE_WARN, "%s: soft state does not match devinfo
"on inst %d\n", myname, inst);
return (DDI FAILURE);

}

switch (cmd) {

case DDI_DETACH:
mutex destroy(&statep->lock);
ddi soft state free(lyr statep, inst);
ddi_remove_minor_node(dip, NULL);
return (DDI SUCCESS);

268 Writing Device Drivers « September 2010



Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

case DDI_SUSPEND:
case DDI_PM SUSPEND:
default:

break;

}
return (DDI FAILURE);

* on this driver’'s open, we open the target specified by a property and store
* the layered handle and ident in our soft state. a good target would be
* "/dev/console" or more interestingly, a pseudo terminal as specified by the
* tty command
*/
/*ARGSUSED*/
static int
lyr open(dev_t *devtp, int oflag, int otyp, cred t *credp)
{
int rv, inst = getminor(*devtp);
lyr_state t *statep;
char *myname = "lyr open"
dev _info t *dip;
char *lyr targ = NULL;

statep = (lyr state t *)ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN, "%s: ddi_get soft state failed on
"inst %d\n", myname, inst);
return (EIO);

}
dip = statep->dip;

/*
* our target device to open should be specified by the "lyr targ"
* string property, which should be set in this driver’s .conf file
*/
if (ddi_prop_lookup string(DDI DEV T ANY, dip, DDI_PROP_NOTPROM,
"lyr targ", &lyr targ) '= DDI PROP SUCCESS) {
cmn_err(CE_WARN, "%s: ddi prop lookup string failed on
"inst %d\n", myname, inst);
return (EIO);

}

/*
* since we only have one pair of lh’s and 1i’s available, we don’t
* allow multiple on the same instance
*/
mutex_enter(&statep->lock);
if (statep->flags & (LYR OPENED | LYR IDENTED)) {
cmn_err(CE_WARN, "%s: multiple layered opens or idents
"from inst %d not allowed\n", myname, inst);
mutex exit(&statep->lock);
ddi prop free(lyr targ);
return (EIO);

Chapter 14 « Layered Driver Interface (LDI) 269



Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

rv = 1di_ident from dev(*devtp, &statep->1i);
if (rv = 0) {
cmn_err(CE_WARN,
myname, inst);
goto FAIL;

%s: ldi_ident from_dev failed on inst %d\n",

}
statep->flags |= LYR _IDENTED;

rv = 1di open by name(lyr targ, FREAD | FWRITE, credp, &statep->lh,
statep->1i);

if (rv !'=0) {
cmn_err(CE_WARN, "ss: ldi open_ by name failed on inst %d\n",

myname, inst);

goto FAIL;

}

statep->flags |= LYR OPENED;

cmn_err(CE_CONT, "\n%s: opened target ’%s’ successfully on inst %d\n",
myname, lyr targ, inst);
rv = 0;

FAIL:
/* cleanup on error */
if (rv '=0) {
if (statep->flags & LYR OPENED)
(void)ldi close(statep->lh, FREAD | FWRITE, credp);
if (statep->flags & LYR IDENTED)
1di ident release(statep->1i);
statep->flags &= ~(LYR OPENED | LYR IDENTED);
}

mutex exit(&statep->lock);

if (lyr targ != NULL)
ddi prop free(lyr targ);
return (rv);

}
/*
* on this driver’s close, we close the target indicated by the lh member
* in our soft state and release the ident, 1i as well. in fact, we MUST do
* both of these at all times even if close yields an error because the
* device framework effectively closes the device, releasing all data
* associated with it and simply returning whatever value the target’s
* close(9E) returned. therefore, we must as well.
*/
/*ARGSUSED*/
static int
lyr close(dev t devt, int oflag, int otyp, cred t *credp)
{

int rv, inst = getminor(devt);
lyr state t *statep;
char *myname = "lyr close"

statep = (lyr _state t *)ddi get soft state(lyr statep, inst);

270 Writing Device Drivers « September 2010



Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

if (statep == NULL) {
cmn_err(CE WARN, "%s: ddi get soft state failed on
"inst %d\n", myname, inst);
return (EIO);

}
mutex _enter(&statep->lock);

rv = 1di_close(statep->1lh, FREAD | FWRITE, credp);
if (rv 1= 0) {
cmn_err(CE WARN, "%s: 1di close failed on inst %d, but will ",
"continue to release ident\n", myname, inst);
}
1di_ident release(statep->1i);
if (rv == 0) {
cmn_err(CE CONT, "\n%s: closed target successfully on
"inst %d\n", myname, inst);

}
statep->flags & ~(LYR OPENED | LYR IDENTED);

mutex_exit(&statep->lock);
return (rv);

}
/*
* echo the data we receive to the target
*/
/*ARGSUSED*/
static int
lyr write(dev_t devt, struct uio *uiop, cred t *credp)
{
int rv, inst = getminor(devt);
lyr state t *statep;
char *myname = "lyr write"
statep = (lyr _state t *)ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE WARN, "%s: ddi get soft state failed on "
"inst %d\n", myname, inst);
return (EIO);
}
return (1di write(statep->lh, uiop, credp));
}

How to Build and Load the Layered Driver

Compile the driver.
Use the -D_KERNEL option to indicate that this is a kernel module.

= Ifyouare compiling for a SPARC architecture, use the -xarch=v9 option:

°

% cc -c -D_KERNEL -xarch=v9 lyr.c

Chapter 14 - Layered Driver Interface (LDI) 271



Kernel Interfaces

272

= Ifyouare compiling for a 32-bit x86 architecture, use the following command:

%

s cc -c -D_KERNEL lyr.c

Link the driver.
% ld -r -o lyr lyr.o

Install the configuration file.
As user root, copy the configuration file to the kernel driver area of the machine:

# cp lyr.conf /usr/kernel/drv

Install the driver binary.

= Asuser root, copy the driver binary to the sparcv9 driver area on a SPARC architecture:
# cp lyr /usr/kernel/drv/sparcv9

= Asuser root, copy the driver binary to the drv driver area on a 32-bit x86 architecture:

# cp lyr /usr/kernel/drv

Load the driver.
As user root, use the add_drv(1M) command to load the driver.
# add_drv lyr

List the pseudo devices to confirm that the lyr device now exists:

# s /devices/pseudo | grep lyr
lyr@l
lyr@l:node

Test the Layered Driver

To test the lyr driver, write a message to the lyr device and verify that the message displays on
the lyr_targ device.

EXAMPLE 14-3  Write a Short Message to the Layered Device

In this example, the lyr_targ device is the console of the system where the lyr device is
installed.

If the display you are viewing is also the display for the console device of the system where the
lyr device is installed, note that writing to the console will corrupt your display. The console
messages will appear outside your window system. You will need to redraw or refresh your
display after testing the lyr driver.

If the display you are viewing is not the display for the console device of the system where the
lyr device is installed, log into or otherwise gain a view of the display of the target console
device.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m

Kernel Interfaces

EXAMPLE 14-3  Write a Short Message to the Layered Device (Continued)

The following command writes a very brief message to the lyr device:

# echo "\n\n\t===> Hello World!! <===\n" > /devices/pseudo/lyr@l:node

You should see the following messages displayed on the target console:

console login:
===> Hello World!! <===

lyr:

lyr open: opened target ’'/dev/console’ successfully on inst 1
lyr:

lyr close: closed target successfully on inst 1

The messages from lyr_open() and lyr_close() come from the cmn_err(9F) calls in the
lyr_open() and lyr_close() entry points.

EXAMPLE 14-4 Write a Longer Message to the Layered Device

The following command writes a longer message to the lyr device:

# cat lyr.conf > /devices/pseudo/lyr@l:node

You should see the following messages displayed on the target console:

lyr:
lyr open: opened target ’'/dev/console’ successfully on inst 1
#

# Copyright 2004 Sun Microsystems, Inc. All rights reserved.
# Use is subject to license terms.

#

#pragma ident

%Z%%M% %1% %E% SMI

name="lyr" parent="pseudo" instance=1;

lyr targ="/dev/console"

lyr:

lyr close: closed target successfully on inst 1

EXAMPLE 14-5 Change the Target Device

To change the target device, edit /usr/kernel/drv/1lyr.conf and change the value of the
lyr_targ property to be a path to a different target device. For example, the target device could
be the output of a tty command in alocal terminal. An example of such a device path is
/dev/pts/4.

Make sure the lyr device is not in use before you update the driver to use the new target device.

Chapter 14 - Layered Driver Interface (LDI) 273


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cmn-err-9f

User Interfaces

EXAMPLE 14-5 Change the Target Device (Continued)

# modinfo -c | grep lyr
174 3 lyr UNLOADED/UNINSTALLED

Use the update_drv(1M) command to reload the lyr. conf configuration file:

# update_drv lyr

Write a message to the lyr device again and verify that the message displays on the new
lyr_targ device.

User Interfaces

274

The LDI includes user-level library and command interfaces to report device layering and usage
information. “Device Information Library Interfaces” on page 274 discusses the
libdevinfo(3LIB) interfaces for reporting device layering information. “Print System
Configuration Command Interfaces” on page 276 discusses the prtconf(1M) interfaces for
reporting kernel device usage information. “Device User Command Interfaces” on page 279
discusses the fuser(1M) interfaces for reporting device consumer information.

Device Information Library Interfaces

The LDI includes libdevinfo(3LIB) interfaces that report a snapshot of device layering
information. Device layering occurs when one device in the system is a consumer of another
device in the system. Device layering information is reported only if both the consumer and the
target are bound to a device node that is contained within the snapshot.

Device layering information is reported by the libdevinfo(3LIB) interfaces as a directed graph.
An Inode is an abstraction that represents a vertex in the graph and is bound to a device node.
You can use libdevinfo(3LIB) interfaces to access properties of an Inode, such as the name and
device number of the node.

The edges in the graph are represented by a link. A link has a source Inode that represents the
device consumer. A link also has a target Inode that represents the target device.

The following describes the libdevinfo(3LIB) device layering information interfaces:

DINFOLYR Snapshot flag that enables you to capture device
layering information.
di link t A directed link between two endpoints. Each

endpointisadi_lnode_t. Anopaque structure.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=update-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fuser-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5173&id=libdevinfo-3lib

User Interfaces

di_lnode_t The endpoint of a link. An opaque structure. A
di lnode tisboundtoadi node t.

di_node_t Represents a device node. An opaque structure. A
di_node_t is not necessarily bound to a
di lnode t.

di_walk link(3DEVINFO) Walk all links in the snapshot.

di_walk lnode(3DEVINFO) Walk all Inodes in the snapshot.

di link next by node(3DEVINFO) Get a handle to the next link where the specified
di_node_t node is either the source or the target.

di link next by lnode(3DEVINFO) Get a handle to the next link where the specified
di_lnode_t Inode is either the source or the target.

di link to lnode(3DEVINFO) Get the Inode that corresponds to the specified
endpointofadi_link_t link.

di_link_spectype(3DEVINFO) Get the link spectype. The spectype indicates how
the target device is being accessed. The target
device is represented by the target Inode.

di lnode next(3DEVINFO) Get a handle to the next occurrence of the specified
di lnode_t Inode associated with the specified
di_node_t device node.

di lnode name(3DEVINFO) Get the name that is associated with the specified
Inode.

di_lnode devinfo(3DEVINFO) Get a handle to the device node that is associated
with the specified Inode.

di lnode devt(3DEVINFO) Get the device number of the device node that is

associated with the specified Inode.

The device layering information returned by the LDI can be quite complex. Therefore, the LDI
provides interfaces to help you traverse the device tree and the device usage graph. These
interfaces enable the consumer of a device tree snapshot to associate custom data pointers with
different structures within the snapshot. For example, as an application traverses Inodes, the
application can update the custom pointer associated with each Inode to mark which Inodes
already have been seen.

The following describes the libdevinfo(3LIB) node and link marking interfaces:

di lnode private set(3DEVINFO) Associate the specified data with the specified Inode.
This association enables you to traverse Inodes in the
snapshot.

Chapter 14 - Layered Driver Interface (LDI) 275


http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-walk-link-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-walk-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-link-next-by-node-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-link-next-by-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-link-to-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-link-spectype-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-lnode-next-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-lnode-name-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-lnode-devinfo-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-lnode-devt-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-lnode-private-set-3devinfo

User Interfaces

di lnode private get(3DEVINFO) Retrieve a pointer to data that was associated with an
Inode through a call to
di_lnode private set(3DEVINFO).

di link private set(3DEVINFO) Associate the specified data with the specified link.
This association enables you to traverse links in the
snapshot.

di_link private get(3DEVINFO) Retrieve a pointer to data that was associated with a
link through a call to
di_link private set(3DEVINFO).

Print System Configuration Command Interfaces

The prtconf(1M) command is enhanced to display kernel device usage information. The
default prtconf(1M) output is not changed. Device usage information is displayed when you
specify the verbose option (-v) with the prtconf(1M) command. Usage information about a
particular device is displayed when you specify a path to that device on the prtconf(1M)
command line.

prtconf -v Display device minor node and device usage information. Show kernel
consumers and the minor nodes each kernel consumer currently has
open.

prtconf path Display device usage information for the device specified by path.

prtconf -a path  Display device usage information for the device specified by path and all
device nodes that are ancestors of path.

prtconf -c path  Display device usage information for the device specified by path and all
device nodes that are children of path.

EXAMPLE 14-6 Device Usage Information

When you want usage information about a particular device, the value of the path parameter
can be any valid device path.

% prtconf /dev/cfg/c0O
SUNW, isptwo, instance #0

EXAMPLE 14-7 Ancestor Node Usage Information

To display usage information about a particular device and all device nodes that are ancestors of
that particular device, specify the -a flag with the prtconf(1M) command. Ancestors include all
nodes up to the root of the device tree. If you specify the -a flag with the prtconf(1M)
command, then you must also specify a device path name.

276 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-lnode-private-get-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-link-private-set-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5172&id=di-link-private-get-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prtconf-1m

User Interfaces

EXAMPLE 14-7 Ancestor Node Usage Information (Continued)

% prtconf -a /dev/cfg/c0O
SUNW, Sun-Fire
ssm, instance #0
pci, instance #0
pci, instance #0
SUNW, isptwo, instance #0

EXAMPLE 14-8 Child Node Usage Information

To display usage information about a particular device and all device nodes that are children of
that particular device, specify the - c flag with the prtconf(1M) command. If you specify the -c
flag with the prtconf(1M) command, then you must also specify a device path name.

% prtconf -c /dev/cfg/c0O

SUNW, isptwo, instance #0
sd (driver not attached)
st (driver not attached)
sd, instance #1
sd, instance #0
sd, instance #6
st, instance #1 (driver not attached)
st, instance #0 (driver not attached)
st, instance #2 (driver not attached)
st, instance #3 (driver not attached)
st, instance #4 (driver not attached)
st, instance #5 (driver not attached)
st, instance #6 (driver not attached)
ses, instance #0 (driver not attached)

EXAMPLE 14-9  Layering and Device Minor Node Information - Keyboard

To display device layering and device minor node information about a particular device, specify

the -v flag with the prtconf(1M) command.

% prtconf -v /dev/kbd
conskbd, instance #0
System properties:

Device Layered Over:
mod=kb8042 dev=(101,0)
dev_path=/isa/i8042@1,60/keyboard@0
Device Minor Nodes:
dev=(103,0)
dev_path=/pseudo/conskbd@®: kbd
spectype=chr type=minor
dev_link=/dev/kbd
dev=(103,1)
dev_path=/pseudo/conskbd@d: conskbd
spectype=chr type=internal
Device Minor Layered Under:

Chapter 14 - Layered Driver Interface (LDI)

277



User Interfaces

278

EXAMPLE 14-9  Layering and Device Minor Node Information — Keyboard (Continued)

mod=wc accesstype=chr
dev_path=/pseudo/wc@d

This example shows that the /dev/kbd device is layered on top of the hardware keyboard device
(/1sa/i8042@1,60/keyboard@d). This example also shows that the /dev/kbd device has two
device minor nodes. The first minor node has a /dev link that can be used to access the node.
The second minor node is an internal node that is not accessible through the file system. The
second minor node has been opened by the wc driver, which is the workstation console.
Compare the output from this example to the output from Example 14-12.

EXAMPLE 14-10 Layering and Device Minor Node Information — Network Device

This example shows which devices are using the currently plumbed network device.

% prtconf -v /dev/iprbo0
pcil@28,145, instance #0
Hardware properties:

Interrupt Specifications:

Device Minor Nodes:
dev=(27,1)
dev_path=/pci@0,0/pci8086,244e@le/pcil®28,145@c:iprb0
spectype=chr type=minor
alias=/dev/iprb0
dev=(27,4098)
dev path=<clone>
Device Minor Layered Under:
mod=udp6 accesstype=chr
dev_path=/pseudo/udp6@®
dev=(27,4097)
dev_path=<clone>
Device Minor Layered Under:
mod=udp accesstype=chr
dev_path=/pseudo/udp@d
dev=(27,4096)
dev_path=<clone>
Device Minor Layered Under:
mod=udp accesstype=chr
dev_path=/pseudo/udp@d

This example shows that the iprb@ device has been linked under udp and udp6. Notice that no
paths are shown to the minor nodes that udp and udp6 are using. No paths are shown in this case
because the minor nodes were created through clone opens of the iprb driver, and therefore
there are no file system paths by which these nodes can be accessed. Compare the output from
this example to the output from Example 14-11.

Writing Device Drivers « September 2010



User Interfaces

Device User Command Interfaces

The fuser(1M) command is enhanced to display device usage information. The fuser(1M)
command displays device usage information only if path represents a device minor node. The
-d flag is valid for the fuser(1M) command only if you specify a path that represents a device
minor node.

fuser path Display information about application device consumers and kernel device
consumers if path represents a device minor node.

fuser -d path ~ Display all users of the underlying device that is associated with the device
minor node represented by path.

Kernel device consumers are reported in one of the following four formats. Kernel device
consumers always are surrounded by square brackets ([1).

[kernel_module_name]
[kernel_module_name,dev_path=path]
[kernel_module_name, dev=(major, minor)]

[ kernel_module_name, dev=(major, minor) ,dev_path=path]

When the fuser(1M) command displays file or device users, the output consists of a process ID
on stdout followed by a character on stderr. The character on stderr describes how the file or
device is being used. All kernel consumer information is displayed to stderr. No kernel
consumer information is displayed to stdout.

If you do not use the -d flag, then the fuser(1M) command reports consumers of only the
device minor node that is specified by path. If you use the -d flag, then the fuser(1M) command
reports consumers of the device node that underlies the minor node specified by path. The
following example illustrates the difference in report output in these two cases.

EXAMPLE 14-11  Consumers of Underlying Device Nodes

Most network devices clone their minor node when the device is opened. If you request device
usage information for the clone minor node, the usage information might show that no process
is using the device. If instead you request device usage information for the underlying device
node, the usage information might show that a process is using the device. In this example, no
device consumers are reported when only a device path is passed to the fuser(1M) command.
When the -d flag is used, the output shows that the device is being accessed by udp and udpé.

% fuser /dev/iprb0

/dev/iprb0:

% fuser -d /dev/iprb0

/dev/iprb@: [udp,dev path=/pseudo/udp@®] [udp6,dev path=/pseudo/udp6@0]

Compare the output from this example to the output from Example 14-10.

Chapter 14 - Layered Driver Interface (LDI) 279


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=fuser-1m

User Interfaces

EXAMPLE 14-12  Consumer of the Keyboard Device

In this example, a kernel consumer is accessing /dev/kbd. The kernel consumer that is
accessing the /dev/kbd device is the workstation console driver.

% fuser -d /dev/kbd
/dev/kbd: [genunix] [wc,dev path=/pseudo/wc@0]

Compare the output from this example to the output from Example 14-9.

280 Writing Device Drivers « September 2010



PART 11

Designing Specific Kinds of Device Drivers

The second part of the book provides design information that is specific to the type of
driver:

Chapter 15, “Drivers for Character Devices,” describes drivers for character-oriented
devices.

Chapter 16, “Drivers for Block Devices,” describes drivers for a block-oriented devices.

Chapter 17, “SCSI Target Drivers,” outlines the Sun Common SCSI Architecture
(SCSA) and the requirements for SCSI target drivers.

Chapter 18, “SCSI Host Bus Adapter Drivers,” explains how to apply SCSA to SCSI Host
Bus Adapter (HBA) drivers.

Chapter 19, “Drivers for Network Devices,” describes the Generic LAN driver (GLD).
The GLDv3 framework is a function calls-based interface of MAC plugins and MAC
driver service routines and structures.

Chapter 20, “USB Drivers,” describes how to write a client USB device driver using the
USBA 2.0 framework.

281



282



L K R 4 CHAPTER 15

Drivers for Character Devices

A character device does not have physically addressable storage media, such as tape drives or
serial ports, where I/O is normally performed in a byte stream. This chapter describes the
structure of a character device driver, focusing in particular on entry points for character
drivers. In addition, this chapter describes the use of physio(9F) and aphysio(9F) in the
context of synchronous and asynchronous I/O transfers.

This chapter provides information on the following subjects:

= “Overview of the Character Driver Structure” on page 283
= “Character Device Autoconfiguration” on page 285

= “Device Access (Character Drivers)” on page 286

= “I/O Request Handling” on page 288

= “Mapping Device Memory” on page 297

= “Multiplexing I/O on File Descriptors” on page 298

= “Miscellaneous I/O Control” on page 300

= “32-bitand 64-bit Data Structure Macros” on page 305

Overview of the Character Driver Structure

Figure 15-1 shows data structures and routines that define the structure of a character device
driver. Device drivers typically include the following elements:

= Device-loadable driver section
= Device configuration section
= Character driver entry points

The shaded device access section in the following figure illustrates character driver entry points.

283


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f

Overview of the Character Driver Structure

FIGURE 15-1

| modlinkage(9S) |
|
| modldrv(9S) |

| cb_ops(9S) |

Character Driver Roadmap

Character Device

open(9E)
close(9E)
read(9E)
write(9E)
ioct1(9E)
chpoll(9E)
aread(9E)
awrite(9E)
mmap(9E)
devmap(9E)
segmap(9E)
prop_op(9E)

Associated with each device driver isa dev_ops(9S) structure, which in turn refers to a
cb_ops(9S) structure. These structures contain pointers to the driver entry points:

= open(9E)
m close(9E)
= read(9E)

" write(9E)

®m ioctl(9E)

= chpoll(9E)
= aread(9E)

= awrite(9E)
= mmap(9E)

= devmap(9E)
®m  segmap(9E)
= prop_op(9E)

Note - Some of these entry points can be replaced with nodev(9F) or nulldev(9F) as

appropriate.

284 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=aread-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=awrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=prop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nulldev-9f

Character Device Autoconfiguration

Character Device Autoconfiguration

The attach(9E) routine should perform the common initialization tasks that all devices
require, such as:

Allocating per-instance state structures

Registering device interrupts

Mapping the device's registers

Initializing mutex variables and condition variables
Creating power-manageable components

Creating minor nodes

See “attach() Entry Point” on page 104 for code examples of these tasks.

Character device drivers create minor nodes of type S_IFCHR. A minor node of S_IFCHR causes a
character special file that represents the node to eventually appear in the /devices hierarchy.

The following example shows a typical attach(9E) routine for character drivers. Properties that
are associated with the device are commonly declared in an attach () routine. This example
uses a predefined Size property. Size is the equivalent of the Nblocks property for getting the
size of partition in a block device. If, for example, you are doing character I/O on a disk device,
you might use Size to get the size of a partition. Since Size is a 64-bit property, you must use a
64-bit property interface. In this case, you use ddi_prop_update_int64(9F). See “Device
Properties” on page 75 for more information about properties.

EXAMPLE 15-1 Character Driver attach () Routine

static int
xxattach(dev_info t *dip, ddi attach cmd t cmd)
{
int instance = ddi get instance(dip);
switch (cmd) {
case DDI_ATTACH:
/*

*

Allocate a state structure and initialize it.

* Map the device's registers.

* Add the device driver’s interrupt handler(s).

* Initialize any mutexes and condition variables.
* Create power manageable components.
*
*
*

Create the device’s minor node. Note that the node type
argument is set to DDI NT TAPE.

if (ddi create minor node(dip, minor_name, S IFCHR,
instance, DDI NT TAPE, @) == DDI FAILURE) {
/* Free resources allocated so far. */
/* Remove any previously allocated minor nodes. */
ddi remove minor node(dip, NULL);
return (DDI FAILURE);

}

/*

* Create driver properties like "Size.

Use "Size"

Chapter 15 « Drivers for Character Devices 285


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int64-9f

Device Access (Character Drivers)

EXAMPLE 15-1 Character Driver attach () Routine (Continued)

* instead of "size" to ensure the property works
* for large bytecounts.
*/
xsp->Size = size_of_device_in_bytes;
maj number = ddi driver major(dip);
if (ddi prop update int64(makedevice(maj number, instance),
dip, "Size", xsp->Size) != DDI PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Size property\n"
ddi_get name(dip));
/* Free resources allocated so far. */
return (DDI FAILURE);
}
VA
return (DDI_SUCCESS);
case DDI_ RESUME:
/* See the "Power Management" chapter in this book. */
default:
return (DDI FAILURE);
}
}

Device Access (Character Drivers)

286

Access to a device by one or more application programs is controlled through the open(9E) and
close(9E) entry points. An open(2) system call to a special file that represents a character device
always causes a call to the open(9E) routine for the driver. For a particular minor device,
open(9E) can be called many times. The close(9E) routine is called only when the final
reference to a device is removed. If the device is accessed through file descriptors, the final call to
close(9E) can occur as a result of a close(2) or exit(2) system call. If the device is accessed
through memory mapping, the final call to close(9E) can occur as a result of a munmap(2)
system call.

open () Entry Point (Character Drivers)

The primary function of open () is to verify that the open request is allowed. The syntax for
open(9E) is as follows:

int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

where:

devp Pointer to a device number. The open () routine is passed a pointer so that the driver
can change the minor number. With this pointer, drivers can dynamically create
minor instances of the device. An example would be a pseudo terminal driver that
creates a new pseudo-terminal whenever the driver is opened. A driver that
dynamically chooses the minor number normally creates only one minor device node

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=close-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=exit-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e

Device Access (Character Drivers)

flag

otyp

credp

inattach(9E) with ddi_create_minor_node(9F), then changes the minor number
component of *devp using makedevice(9F) and getmajor(9F):

*devp = makedevice(getmajor(*devp), new_minor);

Youdo not have to callddi create minor node(9F) for the new minor. A driver
must not change the major number of *devp. The driver must keep track of available
minor numbers internally.

Flag with bits to indicate whether the device is opened for reading (FREAD), writing
(FWRITE), or both. User threads issuing the open(2) system call can also request
exclusive access to the device (FEXCL) or specify that the open should not block for
any reason (FNDELAY), but the driver must enforce both cases. A driver for a
write-only device such as a printer might consider an open(9E) for reading invalid.

Integer that indicates how open () was called. The driver must check that the value of
otyp is appropriate for the device. For character drivers, otyp should be OTYP_CHR (see
the open(9E) man page).

Pointer to a credential structure containing information about the caller, such as the
user ID and group IDs. Drivers should not examine the structure directly, but should
instead use drv_priv(9F) to check for the common case of root privileges. In this
example, only root or a user with the PRIV_SYS_DEVICES privilege is allowed to
open the device for writing.

The following example shows a character driver open(9E) routine.

EXAMPLE 15-2 Character Driver open(9E) Routine

static int
xxopen(dev_t *devp, int flag, int otyp, cred t *credp)
{
minor t instance;
if (getminor(*devp) /* if device pointer is invalid */
return (EINVAL);
instance = getminor(*devp); /* one-to-one example mapping */
/* Is the instance attached? */
if (ddi_get soft state(statep, instance) == NULL)
return (ENXIO);
/* verify that otyp is appropriate */
if (otyp != OTYP_CHR)
return (EINVAL);
if ((flag & FWRITE) && drv_priv(credp) == EPERM)
return (EPERM);
return (0);
}

Chapter 15 « Drivers for Character Devices 287


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=makedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=getmajor-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=drv-priv-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e

1/0 Request Handling

close() Entry Point (Character Drivers)

The syntax for close(9E) is as follows:

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

close() should perform any cleanup necessary to finish using the minor device, and prepare
the device (and driver) to be opened again. For example, the open routine might have been
invoked with the exclusive access (FEXCL) flag. A call to close(9E) would allow additional open
routines to continue. Other functions that close(9E) might perform are:

= Waiting for I/O to drain from output buffers before returning
= Rewindinga tape (tape device)
= Hanging up the phone line (modem device)

A driver that waits for I/O to drain could wait forever if draining stalls due to external
conditions such as flow control. See “Threads Unable to Receive Signals” on page 73 for
information about how to avoid this problem.

1/0 Request Handling

288

This section discusses I/O request processing in detail.

User Addresses

When a user thread issues a write(2) system call, the thread passes the address of a buffer in
user space:

char buffer[] = "python";
count = write(fd, buffer, strlen(buffer) + 1);

The system builds a uio(9S) structure to describe this transfer by allocating an iovec(9S)
structure and setting the iov_base field to the address passed to write(2), in this case, buffer.
The uio(9S) structure is passed to the driver write(9E) routine. See “Vectored I/O” on page 289
for more information about the uio(9S) structure.

The address in the iovec(9S) is in user space, not kernel space. Thus, the address is neither
guaranteed to be currently in memory nor to be a valid address. In either case, accessing a user
address directly from the device driver or from the kernel could crash the system. Thus, device
drivers should never access user addresses directly. Instead, a data transfer routine in the Solaris
DDI/DKI should be used to transfer data into or out of the kernel. These routines can handle
page faults. The DDI/DKI routines can bring in the proper user page to continue the copy
transparently. Alternatively, the routines can return an error on an invalid access.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=iovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=iovec-9s

I/0 Request Handling

copyout(9F) can be used to copy data from kernel space to user space. copyin(9F) can copy
data from user space to kernel space. ddi_copyout(9F) and ddi_copyin(9F) operate similarly
but are to be used in the ioct1(9E) routine. copyin(9F) and copyout(9F) can be used on the
buffer described by each iovec(9S) structure, or uiomove(9F) can perform the entire transfer to
or from a contiguous area of driver or device memory.

Vectored 1/0

In character drivers, transfers are described by a uio(9S) structure. The uio(9S) structure
contains information about the direction and size of the transfer, plus an array of bufters for one
end of the transfer. The other end is the device.

The uio(9S) structure contains the following members:

iovec_ t *uio_iov; /* base address of the iovec */
/* buffer description array */
int uio_iovcent; /* the number of iovec structures */
off t uio offset; /* 32-bit offset into file where */
/* data is transferred from or to */
offset t uio loffset; /* 64-bit offset into file where */
/* data is transferred from or to */
uio seg t uio segflg; /* identifies the type of I/0 transfer */

/* UIO_SYSSPACE: kernel <-> kernel */
/* UIO USERSPACE: kernel <-> user */

short uio fmode; /* file mode flags (not driver setTable) */
daddr_t uio limit; /* 32-bit ulimit for file (maximum */
/* block offset). not driver settable. */
diskaddr_ t uio 1limit; /* 64-bit ulimit for file (maximum block */
/* block offset). not driver settable. */
int uio resid; /* amount (in bytes) not */

/* transferred on completion */

A uio(9S) structure is passed to the driver read(9E) and write(9E) entry points. This structure
is generalized to support what is called gather-write and scatter-read. When writing to a device,
the data buffers to be written do not have to be contiguous in application memory. Similarly,
data that is transferred from a device into memory comes off in a contiguous stream but can go
into noncontiguous areas of application memory. See the readv(2), writev(2), pread(2), and
pwrite(2) man pages for more information on scatter-gather I/0.

Each buffer is described by an iovec(9S) structure. This structure contains a pointer to the data
area and the number of bytes to be transferred.

caddr t iov base; /* address of buffer */
int iov_len; /* amount to transfer */

The uio structure contains a pointer to an array of iovec(9S) structures. The base address of
this array is held in uio_iov, and the number of elements is stored in uio_iovent.

Chapter 15 « Drivers for Character Devices 289


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=iovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=uiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=readv-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=writev-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pread-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pwrite-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=iovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=iovec-9s

1/0 Request Handling

290

The uio_offset field contains the 32-bit offset into the device at which the application needs to
begin the transfer. uio_loffset is used for 64-bit file offsets. If the device does not support the
notion of an offset, these fields can be safely ignored. The driver should interpret either
uio_offset oruio_loffset, but not both. If the driver has set the D_64BIT flag in the
cb_ops(9S) structure, that driver should use uio_loffset.

The uio_resid field starts out as the number of bytes to be transferred, that is, the sum of all the
iov_lenfieldsin uio_iov. This field must be set by the driver to the number of bytes that were
not transferred before returning. The read(2) and write(2) system calls use the return value
from the read(9E) and write(9E) entry points to determine failed transfers. If a failure occurs,
these routines return -1. If the return value indicates success, the system calls return the number
of bytes requested minus uio_resid.Ifuio_resid is not changed by the driver, the read(2) and
write(2) calls return 0. A return value of 0 indicates end-of-file, even though all the data has
been transferred.

The support routines uiomove(9F), physio(9F), and aphysio(9F) update the uio(9S) structure
directly. These support routines update the device offset to account for the data transfer.
Neither the uio_offset oruio_loffset fields need to be adjusted when the driver is used with
a seekable device that uses the concept of position. I/O performed to a device in this manner is
constrained by the maximum possible value of uio_offset oruio_loffset. An example of
such a usage is raw I/O on a disk.

If the device has no concept of position, the driver can take the following steps:

1. Saveuio offsetoruio loffset.
2. Perform the I/O operation.
3. Restoreuio offsetoruio loffset to the field's initial value.

I/0O that is performed to a device in this manner is not constrained by the maximum possible
value of uio_offset oruio_loffset. An example of this type of usage is I/O on a serial line.

The following example shows one way to preserve uio_loffset in the read(9E) function.

static int
xxread(dev_t dev, struct uio *uio p, cred t *cred p)
{
offset t off;
/* .. */
off = uio_p->uio_loffset; /* save the offset */
/* do the transfer */
uio p->uio loffset = off; /* restore it */

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=uiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e

I/0 Request Handling

Differences Between Synchronous and Asynchronous
1/0

Data transfers can be synchronous or asynchronous. The determining factor is whether the entry
point that schedules the transfer returns immediately or waits until the I/O has been completed.

The read(9E) and write(9E) entry points are synchronous entry points. The transfer must not
return until the I/O is complete. Upon return from the routines, the process knows whether the
transfer has succeeded.

The aread(9E) and awrite(9E) entry points are asynchronous entry points. Asynchronous
entry points schedule the I/O and return immediately. Upon return, the process that issues the
request knows that the I/O is scheduled and that the status of the I/O must be determined later.
In the meantime, the process can perform other operations.

With an asynchronous I/O request to the kernel, the process is not required to wait while the
I/Ois in process. A process can perform multiple I/O requests and allow the kernel to handle
the data transfer details. Asynchronous I/O requests enable applications such as transaction
processing to use concurrent programming methods to increase performance or response time.
Any performance boost for applications that use asynchronous I/O, however, comes at the
expense of greater programming complexity.

Data Transfer Methods

Data can be transferred using either programmed I/O or DMA. These data transfer methods
can be used either by synchronous or by asynchronous entry points, depending on the
capabilities of the device.

Programmed I/0 Transfers

Programmed I/O devices rely on the CPU to perform the data transfer. Programmed I/O data
transfers are identical to other read and write operations for device registers. Various data
access routines are used to read or store values to device memory.

uiomove(9F) can be used to transfer data to some programmed I/O devices. uiomove(9F)
transfers data between the user space, as defined by the uio (9S) structure, and the kernel.
uiomove () can handle page faults, so the memory to which data is transferred need not be
locked down. uiomove () also updates the uio_resid field in the uio(9S) structure. The
following example shows one way to write a ramdisk read(9E) routine. It uses synchronous I/O
and relies on the presence of the following fields in the ramdisk state structure:

caddr t ram; /* base address of ramdisk */
int ramsize; /* size of the ramdisk */

Chapter 15 « Drivers for Character Devices 291


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=aread-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=awrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=uiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=uiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e

1/0 Request Handling

EXAMPLE 15-3 Ramdisk read(9E) Routine Using uiomove(9F)

static int
rd read(dev_t dev, struct uio *uiop, cred t *credp)
{

rd_devstate t *rsp;

rsp = ddi get soft state(rd statep, getminor(dev));
if (rsp == NULL)

return (ENXIO);
if (uiop->uio offset >= rsp->ramsize)

return (EINVAL);

* uiomove takes the offset into the kernel buffer,

* the data transfer count (minimum of the requested and

* the remaining data), the UIO READ flag, and a pointer

* to the uio structure.

*/

return (uiomove(rsp->ram + uiop->uio offset,
min(uiop->uio resid, rsp->ramsize - uiop->uio offset),
UIO READ, uiop));

Another example of programmed I/O would be a driver that writes data one byte at a time
directly to the device's memory. Each byte is retrieved from the uio(9S) structure by using
uwritec(9F). The byte is then sent to the device. read(9E) can use ureadc(9F) to transfer a byte
from the device to the area described by the uio(9S) structure.

EXAMPLE 15-4 Programmed I/O write(9E) Routine Using uwritec(9F)

static int
xxwrite(dev_t dev, struct uio *uiop, cred t *credp)
{

int value;

struct xxstate *Xsp;

xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
/* if the device implements a power manageable component, do this: */
pm_busy component(xsp->dip, 0);
if (xsp->pm_suspended)
pm_raise power(xsp->dip, normal power);

while (uiop->uio resid > 0) {
/*
* do the programmed I/0 access
*/
value = uwritec(uiop);
if (value == -1)
return (EFAULT);

ddi put8(xsp->data access handle, &xsp->regp->data,
(uint8 t)value);

ddi put8(xsp->data access handle, &xsp->regp->csr,
START_TRANSFER) ;

292 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=uwritec-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ureadc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=uio-9s

I/0 Request Handling

EXAMPLE 15-4 Programmed I/O write(9E) Routine Using uwritec(9F) (Continued)

/*
* this device requires a ten microsecond delay
* between writes
*/

drv_usecwait(10);

}
pm_idle component(xsp->dip, 0);
return (0);

DMA Transfers (Synchronous)

Character drivers generally use physio(9F) to do the setup work for DMA transfers in read(9E)
andwrite(9E), as is shown in Example 15-5.

int physio(int (*strat) (struct buf *), struct buf *bp,
dev_t dev, int rw, void (*mincnt)(struct buf *),
struct uio *uio);

physio(9F) requires the driver to provide the address of a strategy(9E) routine. physio(9F)
ensures that memory space is locked down, that is, memory cannot be paged out, for the
duration of the data transfer. This lock-down is necessary for DMA transfers because DMA
transfers cannot handle page faults. physio(9F) also provides an automated way of breaking a
larger transfer into a series of smaller, more manageable ones. See “minphys () Entry Point” on
page 295 for more information.

EXAMPLE 15-5 read(9E) and write(9E) Routines Using physio(9F)

static int
xxread(dev t dev, struct uio *uiop, cred t *credp)
{

struct xxstate *xsp;

int ret;

xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B READ, xxminphys, uiop);
return (ret);

}

static int
xxwrite(dev_t dev, struct uio *uiop, cred t *credp)
{

struct xxstate *xsp;

int ret;

xsp = ddi_get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B WRITE, xxminphys, uiop);

Chapter 15 « Drivers for Character Devices 293


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f

1/0 Request Handling

294

EXAMPLE 15-5 read(9E) and write(9E) Routines Using physio(9F) (Continued)

return (ret);

In the call to physio(9F), xxstrategy is a pointer to the driver strategy () routine. Passing
NULL as the buf(9S) structure pointer tells physio(9F) to allocate a buf(9S) structure. If the
driver must provide physio(9F) with a buf(9S) structure, get rbuf(9F) should be used to
allocate the structure. physio(9F) returns zero if the transfer completes successfully, or an error
number on failure. After calling strategy(9E), physio(9F) calls biowait(9F) to block until the
transfer either completes or fails. The return value of physio(9F) is determined by the error
field in the buf(9S) structure set by bioerror(9F).

DMA Transfers (Asynchronous)

Character drivers that support aread(9E) and awrite(9E) use aphysio(9F) instead of
physio(9F).

int aphysio(int (*strat)(struct buf *), int (*cancel) (struct buf *),
dev_t dev, int rw, void (*mincnt)(struct buf *),
struct aio_req *aio_reqp);

Note - The address of anocancel(9F) is the only value that can currently be passed as the second
argument to aphysio(9F).

aphysio(9F) requires the driver to pass the address of a strategy(9E) routine. aphysio(9F)
ensures that memory space is locked down, that is, cannot be paged out, for the duration of the
data transfer. This lock-down is necessary for DMA transfers because DMA transfers cannot
handle page faults. aphysio(9F) also provides an automated way of breaking a larger transfer
into a series of smaller, more manageable ones. See “minphys () Entry Point” on page 295 for
more information.

Example 15-5 and Example 15-6 demonstrate that the aread(9E) and awrite(9E) entry points
differ only slightly from the read(9E) and write(9E) entry points. The difference is primarily in
their use of aphysio(9F) instead of physio(9F).

EXAMPLE 15-6 aread(9E) and awrite(9E) Routines Using aphysio(9F)

static int
xxaread(dev_t dev, struct aio req *aiop, cred t *cred p)

{

struct xxstate *xsp;
xsp = ddi_get soft state(statep, getminor(dev));

if (xsp == NULL)
return (ENXIO);

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=getrbuf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biowait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=aread-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=awrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=anocancel-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=aread-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=awrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f

I/0 Request Handling

EXAMPLE 15-6 aread(9E) and awrite(9E) Routines Using aphysio(9F) (Continued)

return (aphysio(xxstrategy, anocancel, dev, B_READ,
xxminphys, aiop));

}
static int
xxawrite(dev_t dev, struct aio req *aiop, cred t *cred p)
{
struct xxstate *xsp;
xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
return (aphysio(xxstrategy, anocancel, dev, B WRITE,
xxminphys,aiop));
}

In the call to aphysio(9F), xxstrategy () is a pointer to the driver strategy routine. aiop is a
pointer to the aio_req(9S) structure. aiop is passed to aread(9E) and awrite(9E). aio_req(9S)
describes where the data is to be stored in user space. aphysio(9F) returns zero if the I/O
request is scheduled successfully or an error number on failure. After calling strategy(9E),
aphysio(9F) returns without waiting for the I/O to complete or fail.

minphys () Entry Point

The minphys () entry point is a pointer to a function to be called by physio(9F) or aphysio(9F).
The purpose of xxminphys is to ensure that the size of the requested transfer does not exceed a
driver-imposed limit. If the user requests a larger transfer, strategy(9E) is called repeatedly,
requesting no more than the imposed limit at a time. This approach is important because DMA
resources are limited. Drivers for slow devices, such as printers, should be careful not to tie up
resources for along time.

Usually, a driver passes the address of the kernel function minphys(9F), but the driver can
define its own xxminphys () routine instead. The job of xxminphys () is to keep the b_bcount
field of the buf(9S) structure under a driver's limit. The driver should adhere to other system
limits as well. For example, the driver's xxminphys () routine should call the system
minphys(9F) routine after setting the b_bcount field and before returning.

EXAMPLE 15-7 minphys(9F) Routine

#define XXMINVAL (512 << 10) /* 512 KB */
static void
xxminphys(struct buf *bp)

if (bp->b_bcount > XXMINVAL)

bp->b bcount = XXMINVAL
minphys(bp);

Chapter 15 « Drivers for Character Devices 295


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=aio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=aread-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=awrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=aio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=minphys-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=minphys-9f

1/0 Request Handling

296

strategy () Entry Point

The strategy(9E) routine originated in block drivers. The strategy function got its name from
implementing a strategy for efficient queuing of I/O requests to a block device. A driver fora
character-oriented device can also use a strategy (9E) routine. In the character I/O model
presented here, strategy(9E) does not maintain a queue of requests, but rather services one
request at a time.

In the following example, the strategy(9E) routine for a character-oriented DMA device
allocates DMA resources for synchronous data transfer. strategy () starts the command by
programming the device register. See Chapter 9, “Direct Memory Access (DMA),” for a detailed
description.

Note - strategy(9E) does not receive a device number (dev_t) as a parameter. Instead, the
device number is retrieved from the b_edev field of the buf(9S) structure passed to
strategy(9E).

EXAMPLE 15-8 strategy(9E) Routine

static int

xxstrategy(struct buf *bp)

{
minor_ t instance;
struct xxstate *Xsp;

ddi dma cookie t  cookie;

instance = getminor(bp->b edev);
xsp = ddi_get soft_state(statep, instance);
/X L X/
* If the device has power manageable components,
* mark the device busy with pm busy components(9F),
* and then ensure that the device is
* powered up by calling pm_raise power(9F).
*/
/* Set up DMA resources with ddi dma alloc_handle(9F) and
* ddi dma buf bind handle(9F).
*/
xsp->bp = bp; /* remember bp */
/* Program DMA engine and start command */
return (0);

Note - Although strategy () is declared to return an int, strategy () must always return zero.

On completion of the DMA transfer, the device generates an interrupt, causing the interrupt
routine to be called. In the following example, xxintr () receives a pointer to the state structure
for the device that might have generated the interrupt.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e

Mapping Device Memory

EXAMPLE 15-9 Interrupt Routine

static u_int
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
if ( /* device did not interrupt */ ) {
return (DDI INTR UNCLAIMED);
}

if ( /* error */ ) {
/* error handling */

}

/* Release any resources used in the transfer, such as DMA resources.
* ddi_dma_unbind_handle(9F) and ddi_dma_ free handle(9F)

* Notify threads that the transfer is complete.

*/

biodone(xsp->bp);

return (DDI INTR CLAIMED);

The driver indicates an error by calling bioerror(9F). The driver must call biodone(9F) when
the transfer is complete or after indicating an error with bioerror(9F).

Mapping Device Memory

Some devices, such as frame buffers, have memory that is directly accessible to user threads by
way of memory mapping. Drivers for these devices typically do not support the read(9E) and
write(9E) interfaces. Instead, these drivers support memory mapping with the devmap(9E)
entry point. For example, a frame buffer driver might implement the devmap(9E) entry point to
enable the frame buffer to be mapped in a user thread.

The devmap(9E) entry point is called to export device memory or kernel memory to user
applications. The devmap () function is called from devmap_setup(9F) inside segmap(9E) or on
behalf of ddi_devmap segmap(9F).

The segmap(9E) entry point is responsible for setting up a memory mapping requested by an
mmap(2) system call. Drivers for many memory-mapped devices use ddi_devmap_segmap(9F) as
the entry point rather than defining their own segmap(9E) routine.

See Chapter 10, “Mapping Device and Kernel Memory,” and Chapter 11, “Device Context
Management,” for details.

Chapter 15 « Drivers for Character Devices 297


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=segmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-devmap-segmap-9f

Multiplexing 1/0 on File Descriptors

Multiplexing 1/0 on File Descriptors

298

A thread sometimes needs to handle I/O on more than one file descriptor. One example is an
application program that needs to read the temperature from a temperature-sensing device and
then report the temperature to an interactive display. A program that makes a read request with
no data available should not block while waiting for the temperature before interacting with the
user again.

The pol1(2) system call provides users with a mechanism for multiplexing I/O over a set of file
descriptors that reference open files. po11(2) identifies those file descriptors on which a
program can send or receive data without blocking, or on which certain events have occurred.

To enable a program to poll a character driver, the driver must implement the chpol1(9E) entry
point. The system calls chpol1(9E) when a user process issues a pol1(2) system call on a file
descriptor associated with the device. The chpol1(9E) entry point routine is used by
non-STREAMS character device drivers that need to support polling.

The chpol1(9E) function uses the following syntax:

int xxchpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

In the chpol1(9E) entry point, the driver must follow these rules:
= Implement the following algorithm when the chpol1(9E) entry point is called:

if ( /* events are satisfied now */ ) {
*reventsp = mask_of_satisfied_events
} else {
*reventsp = 0;
if (lanyyet)
*phpp = &local_pollhead_structure;
}

return (0);

See the chpol1(9E) man page for a discussion of events to check. The chpol1(9E) entry
point should then return the mask of satisfied events by setting the return events in
*reventsp.

If no events have occurred, the return field for the events is cleared. If the anyyet field is not
set, the driver must return an instance of the pollhead structure. The pollhead structure is
usually allocated in a state structure. The pollhead structure should be treated as opaque by
the driver. None of the pollhead fields should be referenced.

= Call pollwakeup(9F) whenever a device condition of type events, listed in Example 15-10,
occurs. This function should be called only with one event at a time. You can call
pollwakeup(9F) in the interrupt routine when the condition has occurred.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=poll-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=poll-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=poll-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pollwakeup-9f

Multiplexing I/O on File Descriptors

Example 15-10 and Example 15-11 show how to implement the polling discipline and how to
use pollwakeup(9F).

The following example shows how to handle the POLLIN and POLLERR events. The driver first
reads the status register to determine the current state of the device. The parameter events
specifies which conditions the driver should check. If an appropriate condition has occurred,
the driver sets that bit in *reventsp. If none of the conditions has occurred and if anyyet is not
set, the address of the pollhead structure is returned in *phpp.

EXAMPLE15-10 chpoll1(9E) Routine

static int
xxchpoll(dev t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp)
{
uint8 t status;
short revent;
struct xxstate *xsp;

xsp = ddi _get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
revent = 0;
/*
* Valid events are:
* POLLIN | POLLOUT | POLLPRI | POLLHUP | POLLERR
* This example checks only for POLLIN and POLLERR.
*/
status = ddi_get8(xsp->data_access handle, &xsp->regp->csr);
if ((events & POLLIN) && data available to read) {
revent |= POLLIN;
}
if (status & DEVICE ERROR) {
revent |= POLLERR;
}
/* if nothing has occurred */
if (revent == 0) {
if (lanyyet) {
*phpp = &xsp->pollhead;

}
*reventsp = revent;
return (0);

The following example shows how to use the pollwakeup(9F) function. The pollwakeup(9F)
function usually is called in the interrupt routine when a supported condition has occurred. The
interrupt routine reads the status from the status register and checks for the conditions. The
routine then calls pollwakeup(9F) for each event to possibly notify polling threads that they
should check again. Note that pollwakeup(9F) should not be called with any locks held, since
deadlock could result if another routine tried to enter chpol1(9E) and grab the same lock.

Chapter 15 « Drivers for Character Devices 299


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pollwakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e

Miscellaneous I/0 Control

EXAMPLE 15-11  Interrupt Routine Supporting chpol1(9E)

static u_int
xxintr(caddr t arg)

{
struct xxstate *xsp = (struct xxstate *)arg;
uint8 t status;
/* normal interrupt processing */
/* L0 X/
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (status & DEVICE ERROR) {
pollwakeup (&xsp->pollhead, POLLERR);
}
if ( /* just completed a read */ ) {
pollwakeup (&xsp->pollhead, POLLIN);
}
/* L0 %/
return (DDI INTR CLAIMED);
}

Miscellaneous 1/0 Control

300

The 10ct1(9E) routine is called when a user thread issues an ioct1(2) system call on a file
descriptor associated with the device. The I/O control mechanism is a catchall for getting and
setting device-specific parameters. This mechanism is frequently used to set a device-specific
mode, either by setting internal driver software flags or by writing commands to the device. The
control mechanism can also be used to return information to the user about the current device
state. In short, the control mechanism can do whatever the application and driver need to have
done.

ioctl() Entry Point (Character Drivers)

int xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *credp, int *rvalp);

The cmd parameter indicates which command ioct1(9E) should perform. By convention, the
driver with which an I/O control command is associated is indicated in bits 8-15 of the
command. Typically, the ASCII code of a character represents the driver. The driver-specific
command in bits 0-7. The creation of some I/O commands is illustrated in the following
example:

#define XXIOC ('x" << 8) /* 'x'" is a character that represents device xx */
#define XX _GET_STATUS (XXIOC | 1) /* get status register */
#define XX SET CMD (XXIOC | 2) /* send command */

The interpretation of arg depends on the command. I/O control commands should be
documented in the driver documentation or a man page. The command should also be defined
in a public header file, so that applications can determine the name of the command, what the

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e

Miscellaneous 1/0 Control

command does, and what the command accepts or returns as arg. Any data transfer of arg into
or out of the driver must be performed by the driver.

Certain classes of devices such as frame buffers or disks must support standard sets of I/O
control requests. These standard I/O control interfaces are documented in the Solaris 8
Reference Manual Collection. For example, fbio(7I) documents the I/O controls that frame
buffers must support, and dkio(7I) documents standard disk I/O controls. See “Miscellaneous
1/0 Control” on page 300 for more information on I/O controls.

Drivers must use ddi_copyin(9F) to transfer arg data from the user-level application to the
kernel level. Drivers must use ddi_copyout(9F) to transfer data from the kernel to the user
level. Failure to use ddi copyin(9F) or ddi copyout(9F) can result in panics under two
conditions. A panic occurs if the architecture separates the kernel and user address spaces, or if
the user address has been swapped out.

ioctl(9E) is usually a switch statement with a case for each supported ioct1(9E) request.

EXAMPLE 15-12 ioct1(9E) Routine

static int
xxioctl(dev t dev, int cmd, intptr t arg, int mode,
cred t *credp, int *rvalp)
{
uint8 t csr;
struct xxstate *xXsp;

xsp = ddi_get soft _state(statep, getminor(dev));
if (xsp == NULL) {
return (ENXIO);

}
switch (cmd) {
case XX GET_STATUS:
csr = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (ddi_copyout(&csr, (void *)arg,
sizeof (uint8 t), mode) != 0) {
return (EFAULT);
}
break;
case XX_SET _CMD:
if (ddi copyin((void *)arg, &csr,
sizeof (uint8_t), mode) != 0) {
return (EFAULT);
}
ddi put8(xsp->data _access handle, &xsp->regp->csr, csr);
break;
default:
/* generic "ioctl unknown" error */
return (ENOTTY);

return (0);

Chapter 15 « Drivers for Character Devices 301


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=fbio-7i
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e

Miscellaneous I/0 Control

302

The cmd variable identifies a specific device control operation. A problem can occur if arg
contains a user virtual address. ioct1(9E) must call ddi_copyin(9F) or ddi_copyout(9F) to
transfer data between the data structure in the application program pointed to by arg and the
driver. In Example 15-12, for the case of an XX_GET_STATUS request, the contents of
xsp->regp->csrare copied to the address in arg. ioct1(9E) can store in *rvalp any integer value
as the return value to the ioct1(2) system call that makes a successful request. Negative return
values, such as -1, should be avoided. Many application programs assume that negative values
indicate failure.

The following example demonstrates an application that uses the I/O controls discussed in the
previous paragraph.

EXAMPLE15-13  Using ioct1(9E)

#include <sys/types.h>

#include "xxio.h" /* contains device’s ioctl cmds and args */
int
main(void)
{
uint8_ t status;
/* .. %/
/*
* read the device status
*/
if (ioctl(fd, XX GET STATUS, &status) == -1) {
/* error handling */
}
printf("device status %x\n", status);
exit(0);

1/0 Control Support for 64-Bit Capable Device Drivers

The Solaris kernel runs in 64-bit mode on suitable hardware, supporting both 32-bit
applications and 64-bit applications. A 64-bit device driver is required to support I/O control
commands from programs of both sizes. The difference between a 32-bit program and a 64-bit
program is the C language type model. A 32-bit program is ILP32, and a 64-bit program is
LP64. See Appendix C, “Making a Device Driver 64-Bit Ready,” for information on C data type
models.

If data that flows between programs and the kernel is not identical in format, the driver must be
able to handle the model mismatch. Handling a model mismatch requires making appropriate
adjustments to the data.

To determine whether a model mismatch exists, the ioct1(9E) mode parameter passes the data
model bits to the driver. As Example 15-14 shows, the mode parameter is then passed to
ddi_model_convert_from(9F) to determine whether any model conversion is necessary.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-model-convert-from-9f

Miscellaneous I/0 Control

A flag subfield of the mode argument is used to pass the data model to the ioct1(9E) routine.
The flag is set to one of the following:

= DATAMODEL ILP32
= DATAMODEL_LP64

FNATIVE is conditionally defined to match the data model of the kernel implementation. The
FMODELS mask should be used to extract the flag from the mode argument. The driver can then
examine the data model explicitly to determine how to copy the application data structure.

The DDI function ddi_model convert from(9F) is a convenience routine that can assist some
drivers with their ioct1() calls. The function takes the data type model of the user application
as an argument and returns one of the following values:

= DDI_MODEL_ILP32 - Convertfrom ILP32 application
= DDI MODEL NONE - No conversion needed

DDI_MODEL_NONE is returned if no data conversion is necessary, as occurs when the application
and driver have the same data model. DDI_MODEL_ILP32 isreturned to a driver that is compiled
to the LP64 model and that communicates with a 32-bit application.

In the following example, the driver copies a data structure that contains a user address. The
data structure changes size from ILP32 to LP64. Accordingly, the 64-bit driver uses a 32-bit
version of the structure when communicating with a 32-bit application.

EXAMPLE 15-14 ioct1(9E) Routine to Support 32-bit Applications and 64-bit Applications

struct args32 {

uint32 t addr; /* 32-bit address in LP64 */
int len;

}

struct args {
caddr_t addr; /* 64-bit address in LP64 */
int len;

}

static int

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred t *credp, int *rvalp)
{
struct xxstate *xsp;
struct args a;
xsp = ddi_get soft state(statep, getminor(dev));
if (xsp == NULL) {
return (ENXIO);

}

switch (cmd) {

case XX COPYIN DATA:
switch(ddi_model convert_from(mode)) {
case DDI MODEL ILP32:

{
struct args32 a32;

Chapter 15 « Drivers for Character Devices 303


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-model-convert-from-9f

Miscellaneous I/0 Control

EXAMPLE 15-14 ioct1(9E) Routine to Support 32-bit Applications and 64-bit Applications

(Continued)

/* copy 32-bit args data shape */

if (ddi_copyin((void *)arg, &a32,
sizeof (struct args32), mode) != 0) {
return (EFAULT);

}

/* convert 32-bit to 64-bit args data shape */

a.addr = a32.addr;

a.len = a32.len;

break;

}

case DDI_MODEL_NONE:
/* application and driver have same data model. */
if (ddi copyin((void *)arg, &a, sizeof (struct args),
mode) !'= 0) {
return (EFAULT);
}
}

/* continue using data shape in native driver data model. */
break;

case XX_COPYOUT_DATA:
/* copyout handling */
break;
default:
/* generic "ioctl unknown" error */
return (ENOTTY);
}

return (0);

Handling copyout () Overflow

Sometimes a driver needs to copy out a native quantity that no longer fits in the 32-bit sized
structure. In this case, the driver should return EOVERFLOW to the caller. EOVERFLOW serves as an
indication that the data type in the interface is too small to hold the value to be returned, as
shown in the following example.

EXAMPLE 15-15  Handling copyout(9F) Overflow
int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred t *cr, int *rval p)
{
struct resdata res;
/* body of driver */
switch (ddi _model convert from(mode & FMODELS)) {
case DDI MODEL ILP32: {
struct resdata32 res32;

304 Writing Device Drivers « September 2010



32-bit and 64-bit Data Structure Macros

EXAMPLE 15-15  Handling copyout(9F) Overflow (Continued)

if (res.size > UINT MAX)
return (EOVERFLOW) ;
res32.size = (size32 t)res.size;
res32.flag = res.flag;
if (ddi copyout(&res32,
(void *)arg, sizeof (res32), mode))
return (EFAULT);
}

break;

case DDI_MODEL_NONE:
if (ddi_copyout(&res, (void *)arg, sizeof (res), mode))
return (EFAULT);
break;

return (0);

32-bit and 64-bit Data Structure Macros

The method in Example 15-15 works well for many drivers. An alternate scheme is to use the
data structure macros that are provided in <sys/model . h>to move data between the application
and the kernel. These macros make the code less cluttered and behave identically, from a
functional perspective.

EXAMPLE 15-16  Using Data Structure Macros to Move Data
int
xxioctl(dev_t dev, int cmd, intptr t arg, int mode,
cred t *cr, int *rval p)

{
STRUCT _DECL (opdata, op);

if (cmd !'= OPONE)
return (ENOTTY);

STRUCT INIT(op, mode);

if (copyin((void *)arg,
STRUCT_BUF(op), STRUCT_SIZE(op)))
return (EFAULT);

if (STRUCT FGET(op, flag) != XXACTIVE ||
STRUCT_FGET (op, size) > XXSIZE)
return (EINVAL);
xxdowork (device state, STRUCT FGET(op, size));
return (0);

Chapter 15 « Drivers for Character Devices 305



32-bit and 64-bit Data Structure Macros

306

How Do the Structure Macros Work?

In a 64-bit device driver, structure macros enable the use of the same piece of kernel memory by
data structures of both sizes. The memory bufter holds the contents of the native form of the
data structure, that is, the LP64 form, and the ILP32 form. Each structure access is implemented
by a conditional expression. When compiled as a 32-bit driver, only one data model, the native
form, is supported. No conditional expression is used.

The 64-bit versions of the macros depend on the definition of a shadow version of the data
structure. The shadow version describes the 32-bit interface with fixed-width types. The name
of the shadow data structure is formed by appending “32” to the name of the native data
structure. For convenience, place the definition of the shadow structure in the same file as the
native structure to ease future maintenance costs.

The macros can take the following arguments:

structname The structure name of the native form of the data structure as entered after the
struct keyword.

umodel A flag word that contains the user data model, such as FILP32 or FLP64,
extracted from the mode parameter of ioct1(9E).

handle The name used to refer to a particular instance of a structure that is
manipulated by these macros.

fieldname The name of the field within the structure.

When to Use Structure Macros

Macros enable you to make in-place references only to the fields of a data item. Macros do not
provide a way to take separate code paths that are based on the data model. Macros should be
avoided if the number of fields in the data structure is large. Macros should also be avoided if the
frequency of references to these fields is high.

Macros hide many of the differences between data models in the implementation of the macros.
As aresult, code written with this interface is generally easier to read. When compiled as a
32-bit driver, the resulting code is compact without needing clumsy #ifdefs, but still preserves
type checking.

Declaring and Initializing Structure Handles

STRUCT_DECL(9F) and STRUCT INIT(9F) can be used to declare and initialize a handle and space
for decoding an ioctl on the stack. STRUCT_HANDLE(9F) and STRUCT_SET_HANDLE(9F) declare

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-set-handle-9f

32-bit and 64-bit Data Structure Macros

and initialize a handle without allocating space on the stack. The latter macros can be useful if
the structure is very large, or is contained in some other data structure.

Note - Because the STRUCT DECL(9F) and STRUCT HANDLE(9F) macros expand to data structure
declarations, these macros should be grouped with such declarations in C code.

The macros for declaring and initializing structures are as follows:

STRUCT DECL (structname, handle) Declares a structure handlethat is called
handle for a structname data structure.
STRUCT_DECL allocates space for its native
form on the stack. The native form is
assumed to be larger than or equal to the
ILP32 form of the structure.

STRUCT INIT (handle, umodel) Initializes the data model for handle to
umodel. This macro must be invoked before
any access is made to a structure handle
declared with STRUCT DECL(9F).

STRUCT HANDLE (structname, handle) Declares a structure handle that is called
handle. Contrast with STRUCT DECL(9F).

STRUCT SET HANDLE (handle, umodel, addr) Initializes the data model for handle to
umodel, and sets addr as the buffer used for
subsequent manipulation. Invoke this macro
before accessing a structure handle declared
with STRUCT DECL(9F).

Operations on Structure Handles

The macros for performing operations on structures are as follows:

size t STRUCT SIZE(handle)
Returns the size of the structure referred to by handle, according to its embedded data
model.

typeof fieldname STRUCT _FGET (handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a
non-pointer type.

typeof fieldname STRUCT_FGETP (handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a pointer

type.

Chapter 15 « Drivers for Character Devices 307


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=struct-decl-9f

32-bit and 64-bit Data Structure Macros

STRUCT_FSET (handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The type of val
should match the type of fieldname. The field is a non-pointer type.

STRUCT_FSETP (handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The field isa
pointer type.

typeof fieldname *STRUCT_FADDR (handle, fieldname)
Returns the address of the indicated field in the data structure referred to by handle.

struct structname *STRUCT BUF (handle)
Returns a pointer to the native structure described by handle.

Other Operations

Some miscellaneous structure macros follow:

size t SIZEOF STRUCT (struct_name, datamodel)
Returns the size of struct_name, which is based on the given data model.

size t SIZEOF PTR(datamodel)
Returns the size of a pointer based on the given data model.

308 Writing Device Drivers « September 2010



L K R 4 CHAPTER 16

Drivers for Block Devices

This chapter describes the structure of block device drivers. The kernel views a block device as a
set of randomly accessible logical blocks. The file system uses a list of buf(9S) structures to
buffer the data blocks between a block device and the user space. Only block devices can
support a file system.

This chapter provides information on the following subjects:

= “Block Driver Structure Overview” on page 309

= “FileI/O” on page 310

= “Block Device Autoconfiguration” on page 311

= “Controlling Device Access” on page 313

= “Synchronous Data Transfers (Block Drivers)” on page 317
= “Asynchronous Data Transfers (Block Drivers)” on page 321
= “dump() and print() Entry Points” on page 325

= “Disk Device Drivers” on page 326

Block Driver Structure Overview

Figure 16-1 shows data structures and routines that define the structure of a block device
driver. Device drivers typically include the following elements:

m  Device-loadable driver section
= Device configuration section
m Device access section

The shaded device access section in the following figure illustrates entry points for block
drivers.

309


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s

Filel/O

Filel/O

310

FIGURE 16-1 Block Driver Roadmap

| modlinkage(9S) |

|
| modldrv(9S) |

| b ops(9S) | Block Device

open(9E)
close(9E)
strategy(9E)
print(9E)

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to a
cb_ops(9S) structure. See Chapter 6, “Driver Autoconfiguration,” for details on driver data
structures.

Block device drivers provide these entry points:

= open(9E)

m  close(9E)

m  strategy(9E)
= print(9E)

Note - Some of the entry points can be replaced by nodev(9F) or nulldev(9F) as appropriate.

A file system is a tree-structured hierarchy of directories and files. Some file systems, such as the
UNIX File System (UFS), reside on block-oriented devices. File systems are created by
format(1M) and newfs(1M).

When an application issues a read(2) or write(2) system call to an ordinary file on the UFS file
system, the file system can call the device driver strategy(9E) entry point for the block device
on which the file system resides. The file system code can call strategy(9E) several times for a
single read(2) or write(2) system call.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=print-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=format-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=newfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2

Block Device Autoconfiguration

The file system code determines the logical device address, or logical block number, for each
ordinary file block. A block I/O request is then built in the form of a buf(9S) structure directed
at the block device. The driver strategy(9E) entry point then interprets the buf(9S) structure
and completes the request.

Block Device Autoconfiguration

attach(9E) should perform the common initialization tasks for each instance of a device:

Allocating per-instance state structures
Mapping the device's registers
Registering device interrupts

Initializing mutex and condition variables
Creating power manageable components
Creating minor nodes

Block device drivers create minor nodes of type S_IFBLK. As a result, a block special file that
represents the node appears in the /devices hierarchy.

Logical device names for block devices appear in the /dev/dsk directory, and consist of a
controller number, bus-address number, disk number, and slice number. These names are
created by the devfsadm(1M) program if the node type is set to DDI_NT_BLOCK or

DDI NT BLOCK CHAN.DDI NT BLOCK CHAN should be specified if the device communicates on a
channel, that is, a bus with an additional level of addressability. SCSI disks are a good example.
DDI_NT_BLOCK_CHAN causes a bus-address field (tN) to appear in the logical name.

DDI NT BLOCK should be used for most other devices.

A minor device refers to a partition on the disk. For each minor device, the driver must create
an nblocks or Nblocks property. This integer property gives the number of blocks supported
by the minor device expressed in units of DEV_BSIZE, that is, 512 bytes. The file system uses the
nblocks and Nblocks properties to determine device limits. Nblocks is the 64-bit version of
nblocks. Nblocks should be used with storage devices that can hold over 1 Tbyte of storage per
disk. See “Device Properties” on page 75 for more information.

Example 16-1 shows a typical attach(9E) entry point with emphasis on creating the device's
minor node and the Nblocks property. Note that because this example uses Nblocks and not
nblocks,ddi prop update int64(9F)is called instead of ddi_prop update int(9F).

As a side note, this example shows the use of makedevice(9F) to create a device number for
ddi_prop_update int64 (). The makedevice function makes use of ddi_driver major(9F),
which generates a major number from a pointer to a dev_info_t structure. Using
ddi_driver_major() issimilar to using getmajor(9F), which gets a dev_t structure pointer.

EXAMPLE 16-1 Block Driver attach() Routine

static int
xxattach(dev_info t *dip, ddi_attach cmd t cmd)

Chapter 16 « Drivers for Block Devices 3N


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=devfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=makedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-driver-major-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=getmajor-9f

Block Device Autoconfiguration

EXAMPLE 16-1 Block Driver attach () Routine (Continued)

int instance = ddi get instance(dip);
switch (cmd) {
case DDI_ATTACH:
/*
* allocate a state structure and initialize it
* map the devices registers
add the device driver’s interrupt handler(s)
initialize any mutexes and condition variables
read label information if the device is a disk
create power manageable components

I S S R G R

Create the device minor node. Note that the node type
argument is set to DDI NT BLOCK.

*/

if (ddi create minor node(dip, "minor_name", S IFBLK,
instance, DDI NT BLOCK, @) == DDI FAILURE) {

/* free resources allocated so far */

/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);

return (DDI_FAILURE);

Create driver properties like "Nblocks". If the device

is a disk, the Nblocks property is usually calculated from
information in the disk label. Use "Nblocks" instead of
"nblocks" to ensure the property works for large disks.

EE R

*/
xsp->Nblocks = size;
/* size is the size of the device in 512 byte blocks */
maj number = ddi driver major(dip);
if (ddi prop update int64(makedevice(maj number, instance), dip,
"Nblocks", xsp->Nblocks) != DDI PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Nblocks property\n"
ddi get name(dip));
/* free resources allocated so far */
return (DDI FAILURE);
}
Xsp->open = 0;
xsp->nlayered = 0;
VA 4
return (DDI_ SUCCESS);

case DDI_RESUME:

/* For information, see Chapter 12, "Power Management," in this book.

default:
return (DDI FAILURE);

312 Writing Device Drivers « September 2010

*/



Controlling Device Access

Controlling Device Access

This section describes the entry points for open() and close () functions in block device
drivers. See Chapter 15, “Drivers for Character Devices,” for more information on open(9E) and
close(9E).

open () Entry Point (Block Drivers)

The open(9E) entry point is used to gain access to a given device. The open(9E) routine of a
block driver is called when a user thread issues an open(2) or mount(2) system call on a block
special file associated with the minor device, or when a layered driver calls open(9E). See “File
I/O” on page 310 for more information.

The open () entry point should check for the following conditions:

= The device can be opened, that is, the device is online and ready.

= The device can be opened as requested. The device supports the operation. The device's
current state does not conflict with the request.

= The caller has permission to open the device.

The following example demonstrates a block driver open(9E) entry point.

EXAMPLE 16-2 Block Driver open(9E) Routine

static int
xxopen(dev_t *devp, int flags, int otyp, cred t *credp)
{

minor_t instance;

struct xxstate *Xsp;

instance = getminor(*devp);
xsp = ddi get soft state(statep, instance);
if (xsp == NULL)
return (ENXIO);
mutex_enter(&xsp->mu);
/*
* only honor FEXCL. If a regular open or a layered open
* is still outstanding on the device, the exclusive open
* must fail.
*/
if ((flags & FEXCL) && (xsp->open || xsp->nlayered)) {
mutex exit(&xsp->mu);
return (EAGAIN);
}
switch (otyp) {
case OTYP_LYR:
xsp->nlayered++;
break;
case OTYP_BLK:
Xsp->open = 1;

Chapter 16 « Drivers for Block Devices 313


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mount-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e

Controlling Device Access

EXAMPLE 16-2 Block Driver open(9E) Routine (Continued)

break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);

}

mutex exit(&xsp->mu);
return (0);

The otyp argument is used to specify the type of open on the device. 0TYP_BLK is the typical
open type for a block device. A device can be opened several times with otyp set to OTYP_BLK.
close(9E) is called only once when the final close of type OTYP_BLK has occurred for the device.
otyp is set to OTYP_LYR if the device is being used as a layered device. For every open of type
OTYP_LYR, the layering driver issues a corresponding close of type OTYP_LYR. The example keeps
track of each type of open so the driver can determine when the device is not being used in
close(9E).

close() Entry Point (Block Drivers)

The close(9E) entry point uses the same arguments as open(9E) with one exception. dev is the
device number rather than a pointer to the device number.

The close() routine should verify otyp in the same way as was described for the open(9E) entry
point. In the following example, close () must determine when the device can really be closed.
Closing is affected by the number of block opens and layered opens.

EXAMPLE 16-3 Block Device close(9E) Routine

static int
xxclose(dev t dev, int flag, int otyp, cred t *credp)
{

minor_t instance;

struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get soft state(statep, instance);

if (xsp == NULL)

return (ENXIO);

mutex_enter(&xsp->mu);
switch (otyp) {

case OTYP_LYR:

xsp->nlayered--;

break;

case OTYP_BLK:

xsp->open = 0;

break;
default:

mutex_exit(&xsp->mu);

314 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e

Controlling Device Access

EXAMPLE 16-3 Block Device close(9E) Routine (Continued)

return (EINVAL);
}

if (xsp->open || xsp->nlayered) {
/* not done yet */
mutex exit(&xsp->mu);
return (0);
}
/* cleanup (rewind tape, free memory, etc.) */
/* wait for I/0 to drain */
mutex exit(&xsp->mu);

return (0);

strategy () Entry Point

The strategy(9E) entry point is used to read and write data buffers to and from a block device.
The name strategy refers to the fact that this entry point might implement some optimal
strategy for ordering requests to the device.

strategy(9E) can be written to process one request at a time, that is, a synchronous transfer.
strategy() can also be written to queue multiple requests to the device, as in an asynchronous
transfer. When choosing a method, the abilities and limitations of the device should be taken
into account.

The strategy(9E) routine is passed a pointer to a buf(9S) structure. This structure describes
the transfer request, and contains status information on return. buf(9S) and strategy(9E) are
the focus of block device operations.

buf Structure

The following buf structure members are important to block drivers:

int b flags; /* Buffer status */
struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work list link */
size t b _bcount; /* # of bytes to transfer */
union {

caddr t b addr; /* Buffer’s virtual address */
} b un;
daddr_t b _blkno; /* Block number on device */
diskaddr_t b _1blkno; /* Expanded block number on device */
size t b resid; /* # of bytes not transferred after error */
int b _error; /* Expanded error field */
void *p private; /* "opaque" driver private area */
dev t b _edev; /* expanded dev field */

Chapter 16 « Drivers for Block Devices 315


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e

Controlling Device Access

316

where:

av_forwandav back

b bcount

b un.b addr

b _blkno
b_1blkno

b resid
b error

b flags

A\

b_private

b edev

Pointers that the driver can use to manage a list of buffers by the
driver. See “Asynchronous Data Transfers (Block Drivers)” on
page 321 for a discussion of the av_forwand av_back pointers.

Specifies the number of bytes to be transferred by the device.

The kernel virtual address of the data buffer. Only valid after
bp _mapin(9F) call.

The starting 32-bit logical block number on the device for the data
transfer, which is expressed in 512-byte DEV_BSIZE units. The driver
should use either b_blkno or b_1blkno but not both.

The starting 64-bit logical block number on the device for the data
transfer, which is expressed in 512-byte DEV_BSIZE units. The driver
should use either b_blkno or b_1blkno but not both.

Set by the driver to indicate the number of bytes that were not
transferred because of an error. See Example 16-7 for an example of
setting b_resid. The b_resid member is overloaded. b_resid is also
used by disksort(9F).

Set to an error number by the driver when a transfer error occurs.
b_error is set in conjunction with the b_flags B_ERROR bit. See the
Intro(9E) man page for details about error values. Drivers should
use bioerror(9F) rather than setting b_error directly.

Flags with status and transfer attributes of the buf structure. If
B_READ is set, the buf structure indicates a transfer from the device to
memory. Otherwise, this structure indicates a transfer from memory
to the device. If the driver encounters an error during data transfer,
the driver should set the B_ERROR field in the b flags member. In
addition, the driver should provide a more specific error value in
b_error. Drivers should use bioerror(9F) rather than setting
B_ERROR.

Caution - Drivers should never clear b_flags.

For exclusive use by the driver to store driver-private data.

Contains the device number of the device that was used in the
transfer.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=disksort-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=intro-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bioerror-9f

Synchronous Data Transfers (Block Drivers)

bp_mapin Structure

A buf structure pointer can be passed into the device driver's strategy(9E) routine. However,
the data buffer referred toby b_un.b_addr is not necessarily mapped in the kernel's address
space. Therefore, the driver cannot directly access the data. Most block-oriented devices have
DMA capability and therefore do not need to access the data buffer directly. Instead, these
devices use the DMA mapping routines to enable the device's DMA engine to do the data
transfer. For details about using DMA, see Chapter 9, “Direct Memory Access (DMA)”

If a driver needs to access the data buffer directly, that driver must first map the buffer into the
kernel's address space by using bp_mapin(9F). bp_mapout(9F) should be used when the driver
no longer needs to access the data directly.

A Caution — bp_mapout(9F) should only be called on buffers that have been allocated and are
owned by the device driver. bp_mapout () must not be called on buffers that are passed to the
driver through the strategy(9E) entry point, such as a file system. bp_mapin(9F) does not keep
areference count. bp_mapout(9F) removes any kernel mapping on which a layer over the device
driver might rely.

Synchronous Data Transfers (Block Drivers)

This section presents a simple method for performing synchronous I/O transfers. This method
assumes that the hardware is a simple disk device that can transfer only one data buffer at a time
by using DMA. Another assumption is that the disk can be spun up and spun down by software
command. The device driver's st rategy(9E) routine waits for the current request to be
completed before accepting a new request. The device interrupts when the transfer is complete.
The device also interrupts if an error occurs.

The steps for performing a synchronous data transfer for a block driver are as follows:

1. Check for invalid buf(9S) requests.

Check the buf(9S) structure that is passed to strategy(9E) for validity. All drivers should
check the following conditions:

= The request begins at a valid block. The driver converts the b_blkno field to the correct
device offset and then determines whether the offset is valid for the device.

= The request does not go beyond the last block on the device.

= Device-specific requirements are met.

If an error is encountered, the driver should indicate the appropriate error with
bioerror(9F). The driver should then complete the request by calling biodone(9F).

biodone() notifies the caller of strategy(9E) that the transfer is complete. In this case, the
transfer has stopped because of an error.

Chapter 16 « Drivers for Block Devices 317


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e

Synchronous Data Transfers (Block Drivers)

318

2. Check whether the device is busy.

Synchronous data transfers allow single-threaded access to the device. The device driver
enforces this access in two ways:

= The driver maintains a busy flag that is guarded by a mutex.

= The driver waits on a condition variable with cv_wait(9F), when the device is busy.

If the device is busy, the thread waits until the interrupt handler indicates that the device is
notlonger busy. The available status can be indicated by either the cv_broadcast(9F) or the
cv_signal(9F) function. See Chapter 3, “Multithreading;” for details on condition variables.

When the device is no longer busy, the strategy(9E) routine marks the device as available.
strategy () then prepares the buffer and the device for the transfer.

Set up the buffer for DMA.

Prepare the data buffer for a DMA transfer by using ddi_dma_alloc_handle(9F) to allocate
aDMA handle. Use ddi dma buf bind handle(9F) to bind the data buffer to the handle.
For information on setting up DMA resources and related data structures, see Chapter 9,
“Direct Memory Access (DMA).”

Begin the transfer.

At this point, a pointer to the buf(9S) structure is saved in the state structure of the device.
The interrupt routine can then complete the transfer by calling biodone(9F).

The device driver then accesses device registers to initiate a data transfer. In most cases, the
driver should protect the device registers from other threads by using mutexes. In this case,
because strategy(9E) is single-threaded, guarding the device registers is not necessary. See
Chapter 3, “Multithreading,” for details about data locks.

When the executing thread has started the device's DMA engine, the driver can return
execution control to the calling routine, as follows:

static int
xxstrategy(struct buf *bp)
{
struct xxstate *xsp;
struct device reg *regp;
minor_t instance;
ddi dma cookie t cookie;
instance = getminor(bp->b edev);
xsp = ddi_get soft state(statep, instance);
if (xsp == NULL) {
bioerror(bp, ENXIO);
biodone(bp);
return (0);
}
/* validate the transfer request */
if ((bp->b_blkno >= xsp->Nblocks) || (bp->b blkno < 0)) {
bioerror(bp, EINVAL);
biodone(bp);
return (0);

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e

Synchronous Data Transfers (Block Drivers)

}
/*

* Hold off all threads until the device is not busy.

*/
mutex _enter(&xsp->mu);
while (xsp->busy) {

cv_wait(&xsp->cv, &xsp->mu);
}
xsp->busy = 1;
mutex_exit(&xsp->mu);
/*

* If the device has power manageable components,
mark the device busy with pm_busy components(9F),
and then ensure that the device
is powered up by calling pm raise power(9F).

* K X X ¥

Set up DMA resources with ddi dma alloc handle(9F) and
* ddi_dma_buf bind handle(9F).

*/

xsp->bp = bp;

regp = Xsp->regp;

ddi put32(xsp->data access handle, &regp->dma addr,

cookie.dmac_address);
ddi put32(xsp->data access handle, &regp->dma size,
(uint32_t)cookie.dmac_size);
ddi put8(xsp->data access handle, &regp->csr,
ENABLE INTERRUPTS | START TRANSFER);
return (0);

}
5. Handle the interrupting device.

When the device finishes the data transfer, the device generates an interrupt, which
eventually results in the driver's interrupt routine being called. Most drivers specify the state
structure of the device as the argument to the interrupt routine when registering interrupts.
Seetheddi_add_intr(9F) man page and “Registering Interrupts” on page 128. The
interrupt routine can then access the buf(9S) structure being transferred, plus any other
information that is available from the state structure.

The interrupt handler should check the device's status register to determine whether the
transfer completed without error. If an error occurred, the handler should indicate the
appropriate error with bioerror(9F). The handler should also clear the pending interrupt
for the device and then complete the transfer by calling biodone(9F).

As the final task, the handler clears the busy flag. The handler then calls cv_signal(9F) or
cv_broadcast(9F) on the condition variable, signaling that the device is no longer busy.
This notification enables other threads waiting for the device in strategy(9E) to proceed
with the next data transfer.

The following example shows a synchronous interrupt routine.
EXAMPLE 16-4 Synchronous Interrupt Routine for Block Drivers

static u_int
xxintr(caddr_t arg)

Chapter 16 « Drivers for Block Devices 319


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e

Synchronous Data Transfers (Block Drivers)

EXAMPLE 16-4 Synchronous Interrupt Routine for Block Drivers (Continued)

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8_t status;
mutex_enter(&xsp->mu);
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex exit(&xsp->mu);
return (DDI_INTR UNCLAIMED);

}

/* Get the buf responsible for this interrupt */
bp = xsp->bp;

xsp->bp = NULL;

/*

* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the
* command/status register.
*/
if (status & DEVICE ERROR) {
/* failure */
bp->b _resid = bp->b_bcount;
bioerror(bp, EIO);
} else {
/* success */
bp->b resid = 0;
}
ddi put8(xsp->data access handle, &xsp->regp->csr,
CLEAR_INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);

* If the device has power manageable components that were
* marked busy in strategy(9F), mark them idle now with

* pm_idle component(9F)

* Release any resources used in the transfer, such as DMA
* resources ddi_dma_unbind handle(9F) and

* ddi_dma_free handle(9F).

*

*

Let the next I/O thread have access to the device.
xsp->busy = 0;
cv_signal(&xsp->cv);

mutex_exit(&xsp->mu);
return (DDI INTR CLAIMED);

320 Writing Device Drivers « September 2010



Asynchronous Data Transfers (Block Drivers)

Asynchronous Data Transfers (Block Drivers)

This section presents a method for performing asynchronous I/O transfers. The driver queues
the I/O requests and then returns control to the caller. Again, the assumption is that the
hardware is a simple disk device that allows one transfer at a time. The device interrupts when a
data transfer has completed. An interrupt also takes place if an error occurs. The basic steps for
performing asynchronous data transfers are:

1. Check for invalid buf(9S) requests.
2. Enqueue the request.

3. Startthe first transfer.

4. Handle the interrupting device.

Checking for Invalid buf Requests

Asin the synchronous case, the device driver should check the buf(9S) structure passed to
strategy(9E) for validity. See “Synchronous Data Transfers (Block Drivers)” on page 317 for
more details.

Enqueuing the Request

Unlike synchronous data transfers, a driver does not wait for an asynchronous request to
complete. Instead, the driver adds the request to a queue. The head of the queue can be the
current transfer. The head of the queue can also be a separate field in the state structure for
holding the active request, as in Example 16-5.

If the queue is initially empty, then the hardware is not busy and st rategy(9E) starts the
transfer before returning. Otherwise, if a transfer completes with a non-empty queue, the
interrupt routine begins a new transfer. Example 16-5 places the decision of whether to starta
new transfer into a separate routine for convenience.

The driver can use the av_forwand the av_back members of the buf(9S) structure to manage a
list of transfer requests. A single pointer can be used to manage a singly linked list, or both
pointers can be used together to build a doubly linked list. The device hardware specification
specifies which type of list management, such as insertion policies, is used to optimize the
performance of the device. The transfer list is a per-device list, so the head and tail of the list are
stored in the state structure.

The following example provides multiple threads with access to the driver shared data, such as
the transfer list. You must identify the shared data and must protect the data with a mutex. See
Chapter 3, “Multithreading,” for more details about mutex locks.

Chapter 16 « Drivers for Block Devices 321


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s

Asynchronous Data Transfers (Block Drivers)

EXAMPLE 16-5 Enqueuing Data Transfer Requests for Block Drivers

static int
xxstrategy(struct buf *bp)
{
struct xxstate *xsp;
minor_t instance;
instance = getminor(bp->b edev);
xsp = ddi_get soft_state(statep, instance);

VA 4

/* validate transfer request */
/X L0/

/*

* Add the request to the end of the queue. Depending on the device, a sorting
* algorithm, such as disksort(9F) can be used if it improves the
* performance of the device.
*/
mutex_enter(&xsp->mu);
bp->av_forw = NULL;
if (xsp->list head) {
/* Non-empty transfer list */
xsp->list tail->av_forw = bp;
xsp->list tail = bp;
} else {
/* Empty Transfer list */
xsp->list _head = bp;
xsp->list tail = bp;
}
mutex_exit(&xsp->mu);
/* Start the transfer if possible */
(void) xxstart((caddr_t)xsp);
return (0);

Starting the First Transfer

Device drivers that implement queuing usually have a start () routine. start() dequeues the
next request and starts the data transfer to or from the device. In this example, start ()
processes all requests regardless of the state of the device, whether busy or free.

Note - start () must be written to be called from any context. start() can be called by both the
strategy routine in kernel context and the interrupt routine in interrupt context.

start() is called by strategy(9E) every time strategy () queues a request so that an idle
device can be started. If the device is busy, start () returns immediately.

start() is also called by the interrupt handler before the handler returns from a claimed
interrupt so that a nonempty queue can be serviced. If the queue is empty, start () returns
immediately.

322 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e

Asynchronous Data Transfers (Block Drivers)

Because start() isa private driver routine, start () can take any arguments and can return
any type. The following code sample is written to be used as a DMA callback, although that
portion is not shown. Accordingly, the example must take a caddr_t asan argument and return
an int. See “Handling Resource Allocation Failures” on page 167 for more information about
DMA callback routines.

EXAMPLE 16-6  Starting the First Data Request for a Block Driver

static int

xxstart(caddr_t arg)

{
struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;

mutex_enter(&xsp->mu);
/*

* If there is nothing more to do, or the device is

* busy, return.

*/
if (xsp->list head == NULL || xsp->busy) {

mutex_exit(&xsp->mu);
return (0);
}
xsp->busy = 1;
/* Get the first buffer off the transfer list */
bp = xsp->list head;
/* Update the head and tail pointer */
xsp->list head = xsp->list head->av forw;
if (xsp->list head == NULL)
xsp->list tail = NULL;
bp->av_forw = NULL;
mutex exit(&xsp->mu);
/*

* If the device has power manageable components,
mark the device busy with pm busy components(9F),
and then ensure that the device
is powered up by calling pm raise power(9F).

*

*

*

*

* Set up DMA resources with ddi dma_alloc handle(9F) and

* ddi_dma_buf bind handle(9F).

*/

xsp->bp = bp;

ddi put32(xsp->data_access handle, &xsp->regp->dma_addr,
cookie.dmac address);

ddi put32(xsp->data access handle, &xsp->regp->dma size,

(uint32 t)cookie.dmac size);

ddi put8(xsp->data access handle, &xsp->regp->csr,
ENABLE_INTERRUPTS | START TRANSFER);

return (0);

Chapter 16 « Drivers for Block Devices 323



Asynchronous Data Transfers (Block Drivers)

Handling the Interrupting Device

The interrupt routine is similar to the asynchronous version, with the addition of the call to
start() and the removal of the call to cv_signal(9F).

EXAMPLE 16-7 Block Driver Routine for Asynchronous Interrupts

static u_int
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8 t status;
mutex_enter(&xsp->mu);
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex exit(&xsp->mu);
return (DDI_INTR UNCLAIMED);

/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;
/*
* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the
* command/status register.
*/
if (status & DEVICE ERROR) {
/* failure */
bp->b resid = bp->b bcount;
bioerror(bp, EIO);
} else {
/* success */
bp->b resid = 0;
}
ddi put8(xsp->data access handle, &xsp->regp->csr,
CLEAR _INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);
/*
* If the device has power manageable components that were
* marked busy in strategy(9F), mark them idle now with
pm _idle component(9F)
Release any resources used in the transfer, such as DMA
resources (ddi dma unbind handle(9F) and
ddi dma free handle(9F)).

R R S O

Let the next I/0 thread have access to the device.
*/

Xsp->busy = 0;

mutex_exit(&xsp->mu);

(void) xxstart((caddr t)xsp);

return (DDI INTR CLAIMED);

324 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cv-signal-9f

dump () and print () Entry Points

dump () and print() Entry Points

This section discusses the dump(9E) and print(9E) entry points.

dump () Entry Point (Block Drivers)

The dump(9E) entry point is used to copy a portion of virtual address space directly to the
specified device in the case of a system failure. dump () is also used to copy the state of the kernel
out to disk during a checkpoint operation. See the cpr(7) and dump(9E) man pages for more
information. The entry point must be capable of performing this operation without the use of
interrupts, because interrupts are disabled during the checkpoint operation.

int dump(dev t dev, caddr t addr, daddr t blkno, int nblk)

where:
dev Device number of the device to receive the dump.
addr Base kernel virtual address at which to start the dump.

blkno  Block at which the dump is to start.
nblk Number of blocks to dump.

The dump depends upon the existing driver working properly.

print() Entry Point (Block Drivers)

int print(dev_t dev, char *str)

The print(9E) entry point is called by the system to display a message about an exception that
has been detected. print(9E) should call cmn_err(9F) to post the message to the console on
behalf of the system. The following example demonstrates a typical print() entry point.

static int
xxprint(dev_t dev, char *str)

{
cmn_err(CE_CONT, “xx: %s\n”, str);
return (0);

Chapter 16 « Drivers for Block Devices 325


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=print-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=print-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=print-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cmn-err-9f

Disk Device Drivers

Disk Device Drivers

326

Disk devices represent an important class of block device drivers.

Disk ioctls

Solaris disk drivers need to support a minimum set of ioct1 commands specific to Solaris disk
drivers. These I/O controls are specified in the dkio(7I) manual page. Disk I/O controls transfer
disk information to or from the device driver. A Solaris disk device is supported by disk utility
commands such as format(1M) and newfs(1M). The mandatory Sun disk I/O controls are as
follows:

DKIOCINFO Returns information that describes the disk controller
DKIOCGAPART  Returnsa disk's partition map

DKIOCSAPART  Setsa disk's partition map

DKIOCGGEOM Returns a disk's geometry

DKIOCSGEOM Sets a disk's geometry

DKIOCGVTOC Returns a disk's Volume Table of Contents

DKIOCSVTOC Sets a disk's Volume Table of Contents

Disk Performance

The Solaris DDI/DKI provides facilities to optimize I/O transfers for improved file system
performance. A mechanism manages the list of I/O requests so as to optimize disk access for a
file system. See “Asynchronous Data Transfers (Block Drivers)” on page 321 for a description of
enqueuing an I/O request.

The diskhd structure is used to manage a linked list of I/O requests.

struct diskhd {

long b flags; /* not used, needed for consistency*/

struct buf *b forw, *b_back; /* queue of unit queues */
struct  buf *av forw, *av_back; /* queue of bufs for this unit */
long b bcount; /* active flag */

+s

The diskhd data structure has two buf pointers that the driver can manipulate. The av_forw
pointer points to the first active I/O request. The second pointer, av_back, points to the last
active request on the list.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=format-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=newfs-1m

Disk Device Drivers

A pointer to this structure is passed as an argument to disksort(9F), along with a pointer to the
current buf structure being processed. The disksort () routine sorts the buf requests to
optimize disk seek. The routine then inserts the buf pointer into the diskhd list. The
disksort() program uses the value thatisin b_resid of the buf structure as a sort key. The
driver is responsible for setting this value. Most Sun disk drivers use the cylinder group as the
sort key. This approach optimizes the file system read-ahead accesses.

When data has been added to the diskhd list, the device needs to transfer the data. If the device
is not busy processing a request, the xxstart () routine pulls the first buf structure off the
diskhd list and starts a transfer.

If the device is busy, the driver should return from the xxstrategy () entry point. When the
hardware is done with the data transfer, an interrupt is generated. The driver's interrupt routine
is then called to service the device. After servicing the interrupt, the driver can then call the
start() routine to process the next buf structure in the diskhd list.

Chapter 16 « Drivers for Block Devices 327


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=disksort-9f

328



L R 2 4 CHAPTER 17

SCSITarget Drivers

The Solaris DDI/DKI divides the software interface to SCSI devices into two major parts: target
drivers and host bus adapter (HBA) drivers. Target refers to a driver for a device on a SCSI bus,
such as a disk or a tape drive. Host bus adapter refers to the driver for the SCSI controller on the
host machine. SCSA defines the interface between these two components. This chapter
discusses target drivers only. See Chapter 18, “SCSI Host Bus Adapter Drivers,” for information
on host bus adapter drivers.

Note - The terms “host bus adapter” and “HBA” are equivalent to “host adapter,” which is
defined in SCSI specifications.

This chapter provides information on the following subjects:

“Introduction to Target Drivers” on page 329

“Sun Common SCSI Architecture Overview” on page 330
“Hardware Configuration File” on page 333
“Declarations and Data Structures” on page 333
“Autoconfiguration for SCSI Target Drivers” on page 337
“Resource Allocation” on page 342

“Building and Transporting a Command” on page 345
“SCSI Options” on page 351

Introduction to Target Drivers

Target drivers can be either character or block device drivers, depending on the device. Drivers
for tape drives are usually character device drivers, while disks are handled by block device
drivers. This chapter describes how to write a SCSI target driver. The chapter discusses the
additional requirements that SCSA places on block and character drivers for SCSI target
devices.

329



Sun Common SCSI Architecture Overview

The following reference documents provide supplemental information needed by the designers
of target drivers and host bus adapter drivers.

Small Computer System Interface 2 (SCSI-2), ANSI/NCITS X3.131-1994, Global Engineering
Documents, 1998. ISBN 1199002488.

The Basics of SCSI, Fourth Edition, ANCOT Corporation, 1998. ISBN 0963743988.

Refer also to the SCSI command specification for the target device, provided by the hardware
vendor.

Sun Common SCSI Architecture Overview

The Sun Common SCSI Architecture (SCSA) is the Solaris DDI/DKI programming interface
for the transmission of SCSI commands from a target driver to a host bus adapter driver. This
interface is independent of the type of host bus adapter hardware, the platform, the processor
architecture, and the SCSI command being transported across the interface.

Conforming to the SCSA enables the target driver to pass SCSI commands to target devices
without knowledge of the hardware implementation of the host bus adapter.

The SCSA conceptually separates building the SCSI command from transporting the command
with data across the SCSI bus. The architecture defines the software interface between
high-level and low-level software components. The higher level software component consists of
one or more SCSI target drivers, which translate I/O requests into SCSI commands appropriate
for the peripheral device. The following example illustrates the SCSI architecture.

330 Writing Device Drivers « September 2010



Sun Common SCSI Architecture Overview

FIGURE17-1 SCSA Block Diagram

Con Application Application
Applications program 1 program 2
— | |
I I
System calls
I
Target Target Target
driver 1 driver 2 driver 3
Kernel— |
Sun Common SCSI Architecture (SCSA)
I I
Host bus adapter Host bus adapter
driver 1 driver 2
= | |
Hardware — SCSI hardware SCSI hardware
— interface interface

The lower-level software component consists of a SCSA interface layer and one or more host
bus adapter drivers. The target driver is responsible for the generation of the proper SCSI
commands required to execute the desired function and for processing the results.

General Flow of Control

Assuming no transport errors occur, the following steps describe the general flow of control for
aread or write request.

1.

The target driver's read(9E) or write(9E) entry point is invoked. physio(9F) is used to lock
down memory, prepare a buf structure, and call the strategy routine.

The target driver's strategy(9E) routine checks the request. strategy () then allocates a
scsi_pkt(9S) byusing scsi_init_pkt(9F). The target driver initializes the packet and sets
the SCSI command descriptor block (CDB) using the scsi_setup_cdb(9F) function. The
target driver also specifies a timeout. Then, the driver provides a pointer to a callback
function. The callback function is called by the host bus adapter driver on completion of the
command. The buf(9S) pointer should be saved in the SCSI packet's target-private space.

The target driver submits the packet to the host bus adapter driver by using
scsi_transport(9F). The target driver is then free to accept other requests. The target
driver should not access the packet while the packet is in transport. If either the host bus
adapter driver or the target supports queueing, new requests can be submitted while the
packet is in transport.

As soon as the SCSI bus is free and the target not busy, the host bus adapter driver selects the
target and passes the CDB. The target driver executes the command. The target then
performs the requested data transfers.

Chapter 17 - SCSITarget Drivers 331


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f

Sun Common SCSI Architecture Overview

5. After the target sends completion status and the command completes, the host bus adapter
driver notifies the target driver. To perform the notification, the host calls the completion
function that was specified in the SCSI packet. At this time the host bus adapter driver is no
longer responsible for the packet, and the target driver has regained ownership of the
packet.

6. The SCSI packet's completion routine analyzes the returned information. The completion
routine then determines whether the SCSI operation was successful. If a failure has
occurred, the target driver retries the command by calling scsi_transport(9F) again. If the
host bus adapter driver does not support auto request sense, the target driver must submit a
request sense packet to retrieve the sense data in the event of a check condition.

7. After successful completion or if the command cannot be retried, the target driver calls
scsi_destroy pkt(9F).scsi_destroy_pkt() synchronizesthe data. scsi_destroy_pkt()
then frees the packet. If the target driver needs to access the data before freeing the packet,
scsi_sync_pkt(9F) is called.

8. Finally, the target driver notifies the requesting application that the read or write transaction
is complete. This notification is made by returning from the read(9E) entry point in the
driver for character devices. Otherwise, notification is made indirectly through
biodone(9F).

SCSA allows the execution of many of such operations, both overlapped and queued, at various
points in the process. The model places the management of system resources on the host bus
adapter driver. The software interface enables the execution of target driver functions on host
bus adapter drivers by using SCSI bus adapters of varying degrees of sophistication.

SCSA Functions

SCSA defines functions to manage the allocation and freeing of resources, the sensing and
setting of control states, and the transport of SCSI commands. These functions are listed in the
following table.

TABLE 17-1  Standard SCSA Functions

Function Name Category

scsi abort(9F) Error handling
scsi alloc consistent buf(9F)

scsi destroy pkt(9F)

scsi dmafree(9F)

scsi free consistent buf(9F)

scsi ifgetcap(9F) Transport information and control

332 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifgetcap-9f

Declarations and Data Structures

TABLE 17-1  Standard SCSA Functions (Continued)

Function Name

Category

scsi ifsetcap(9F)
scsi init pkt(9F)
scsi poll(9F)
scsi probe(9F)
scsi reset(9F)
scsi setup cdb(9F)
scsi sync pkt(9F)
scsi transport(9F)

scsi unprobe(9F)

Resource management
Polled I/O
Probe functions

CDB initialization function

Command transport

Note - If your driver needs to work with a SCSI-1 device, use the makecom(9F).

Hardware Configuration File

Because SCSI devices are not self-identifying, a hardware configuration file is required for a
target driver. See the driver.conf(4) and scsi_free_consistent_buf(9F) man pages for

details. The following is a typical configuration file:

name="xx" class="scsi" target=2 lun=0;

The system reads the file during autoconfiguration. The system uses the class property to
identify the driver's possible parent. Then, the system attempts to attach the driver to any parent
driver that is of class scsi. All host bus adapter drivers are of this class. Using the class property
rather than the parent property is preferred. This approach enables any host bus adapter driver
that finds the expected device at the specified target and [un IDs to attach to the target. The
target driver is responsible for verifying the class in its probe(9E) routine.

Declarations and Data Structures

Target drivers must include the header file <sys/scsi/scsi.h>.

SCSI target drivers must use the following command to generate a binary module:

1d -r xx xx.0 -N"misc/scsi"

Chapter 17 - SCSITarget Drivers

333


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=makecom-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e

Declarations and Data Structures

334

scsi_device Structure

The host bus adapter driver allocates and initializes a scsi_device(9S) structure for the target
driver before either the probe(9E) or attach(9E) routine is called. This structure stores
information about each SCSI logical unit, including pointers to information areas that contain
both generic and device-specific information. One scsi_device(9S) structure exists for each
logical unit that is attached to the system. The target driver can retrieve a pointer to this
structure by calling ddi_get_driver_private(9F).

Caution - Because the host bus adapter driver uses the private field in the target device's
dev_info structure, target drivers must not use ddi_set_driver_private(9F).

The scsi_device(9S) structure contains the following fields:

struct scsi_device {

struct scsi address sd_address; /* opaque address */
dev_info_t *sd_dev; /* device node */
kmutex_t sd_mutex;
void *sd reserved;
struct scsi inquiry *sd ing;
struct scsi extended sense *sd sense;
caddr_t sd private;
}i
where:

sd_address  Data structure that is passed to the routines for SCSI resource allocation.
sd_dev Pointer to the target's dev_info structure.

sd_mutex Mutex for use by the target driver. This mutex is initialized by the host bus
adapter driver and can be used by the target driver as a per-device mutex. Do
not hold this mutex across a call to scsi_transport(9F) or scsi_pol1(9F). See
Chapter 3, “Multithreading,” for more information on mutexes.

sd_inq Pointer for the target device's SCSI inquiry data. The scsi_probe(9F) routine
allocates a buffer, fills the buffer in with inquiry data, and attaches the buffer to
this field.

sd_sense Pointer to a buffer to contain SCSI request sense data from the device. The

target driver must allocate and manage this buffer. See “attach() Entry Point
(SCSI Target Drivers)” on page 339.

sd_private  Pointer field for use by the target driver. This field is commonly used to store a
pointer to a private target driver state structure.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f

Declarations and Data Structures

scsi_pkt Structure (Target Drivers)

The scsi_pkt structure contains the following fields:

struct scsi pkt {

opaque_t pkt _ha private; /* private data for host adapter */
struct scsi address pkt address; /* destination packet is for */
opaque t pkt private; /* private data for target driver */
void (*pkt_comp) (struct scsi pkt *); /* completion routine */
uint t  pkt_flags; /* flags */
int pkt time; /* time allotted to complete command */
uchar t *pkt scbp; /* pointer to status block */
uchar_t *pkt_cdbp; /* pointer to command block */
ssize t pkt resid; /* data bytes not transferred */
uint t  pkt_state; /* state of command */
uint t  pkt statistics; /* statistics */
uchar t pkt reason; /* reason completion called */

}

where:

pkt address Target device's address set by scsi_init_pkt(9F).

pkt_private  Place to store private data for the target driver. pkt_private is commonly used
to save the buf(9S) pointer for the command.

pkt_comp Address of the completion routine. The host bus adapter driver calls this
routine when the driver has transported the command. Transporting the
command does not mean that the command succeeded. The target might
have been busy. Another possibility is that the target might not have
responded before the time out period elapsed. See the description for
pkt_time field. The target driver must supply a valid value in this field. This
value can be NULL if the driver does not want to be notified.

Note - Two different SCSI callback routines are provided. The pkt_comp field identifies a
completion callback routine, which is called when the host bus adapter completes its processing.
A resource callback routine is also available, which is called when currently unavailable
resources are likely to be available. See the scsi_init_pkt(9F) man page.

pkt_ flags Provides additional control information, for example, to transport the
command without disconnect privileges (FLAG_NODISCON) or to disable
callbacks (FLAG_NOINTR). See the scsi_pkt(9S) man page for details.

pkt_time Time out value in seconds. If the command is not completed within this
time, the host bus adapter calls the completion routine with pkt_reason
set to CMD_TIMEOUT. The target driver should set this field to longer than

Chapter 17 - SCSITarget Drivers 335


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

Declarations and Data Structures

pkt scbp

pkt cdbp

pkt resid

pkt state

pkt_statistics

pkt reason

the maximum time the command might take. If the timeout is zero, no
timeout is requested. Timeout starts when the command is transmitted on
the SCSI bus.

Pointer to the block for SCSI status completion. This field is filled in by the
host bus adapter driver.

Pointer to the SCSI command descriptor block, the actual command to be
sent to the target device. The host bus adapter driver does not interpret
this field. The target driver must fill the field in with a command that the
target device can process.

Residual of the operation. The pkt_resid field has two different uses
depending on how pkt_resid is used. When pkt_resid is used to allocate
DMA resources foracommand scsi_init_pkt(9F), pkt_resid indicates
the number of unallocable bytes. DMA resources might not be allocated
due to DMA hardware scatter-gather or other device limitations. After
command transport, pkt_resid indicates the number of non-transferable
data bytes. The field is filled in by the host bus adapter driver before the
completion routine is called.

Indicates the state of the command. The host bus adapter driver fills in
this field as the command progresses. One bit is set in this field for each of
the five following command states:

STATE_GOT_BUS - Acquired the bus

STATE_GOT_TARGET - Selected the target
STATE_SENT_CMD - Sent the command
STATE_XFERRED_DATA - Transferred data, if appropriate
STATE GOT STATUS - Received status from the device

Contains transport-related statistics set by the host bus adapter driver.

Gives the reason the completion routine was called. The completion
routine decodes this field. The routine then takes the appropriate action.
If the command completes, that is, no transport errors occur, this field is
set to CMD_CMPLT. Other values in this field indicate an error. After a
command is completed, the target driver should examine the pkt_scbp
field for a check condition status. See the scsi_pkt(9S) man page for
more information.

336 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

Autoconfiguration for SCSI Target Drivers

Autoconfiguration for SCSI Target Drivers

SCSI target drivers must implement the standard autoconfiguration routines _init(9E),
_fini(9E),and _info(9E). See “Loadable Driver Interfaces” on page 97 for more information.

The following routines are also required, but these routines must perform specific SCSI and

SCSA processing:
= probe(9E)

®  attach(9E)

m  detach(9E)

m  getinfo(9E)

probe() Entry Point (SCSI Target Drivers)

SCSI target devices are not self-identifying, so target drivers must have a probe(9E) routine.
This routine must determine whether the expected type of device is present and responding.

The general structure and the return codes of the probe(9E) routine are the same as the
structure and return codes for other device drivers. SCSI target drivers must use the
scsi_probe(9F) routine in their probe(9E) entry point. scsi_probe(9F) sends a SCSI inquiry
command to the device and returns a code that indicates the result. If the SCSI inquiry
command is successful, scsi_probe(9F) allocatesa scsi_inquiry(9S) structure and fills the
structure in with the device's inquiry data. Upon return from scsi_probe(9F), the sd_ing field
ofthe scsi device(9S) structure points to this scsi inquiry(9S) structure.

Because probe(9E) must be stateless, the target driver must call scsi_unprobe(9F) before
probe(9E) returns, even if scsi_probe(9F) fails.

Example 17-1 shows a typical probe(9E) routine. The routine in the example retrieves the
scsi_device(9S) structure from the private field of its dev_info structure. The routine also
retrieves the device's SCSI target and logical unit numbers for printing in messages. The
probe(9E) routine then calls scsi_probe(9F) to verify that the expected device, a printer in this
case, is present.

If successful, scsi_probe(9F) attaches the device's SCSI inquiry dataina scsi_inquiry(9S)
structure to the sd_ingq field of the scsi_device(9S) structure. The driver can then determine
whether the device type is a printer, which is reported in the inq_dtype field. If the device is a
printer, the type is reported with scsi_10g(9F), using scsi_dname(9F) to convert the device
type into a string.

EXAMPLE 17-1  SCSI Target Driver probe(9E) Routine

static int
xxprobe(dev_info t *dip)

Chapter 17 - SCSITarget Drivers 337


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-log-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-dname-9f

Autoconfiguration for SCSI Target Drivers

EXAMPLE 17-1  SCSI Target Driver probe(9E) Routine (Continued)

struct scsi device *sdp;
int rval, target, lun;
/*
* Get a pointer to the scsi device(9S) structure
*/
sdp = (struct scsi device *)ddi get driver private(dip);

target = sdp->sd_address.a_target;
lun = sdp->sd address.a lun;
/*
* Call scsi probe(9F) to send the Inquiry command. It will
* fill in the sd_inq field of the scsi device structure.
*/
switch (scsi probe(sdp, NULL FUNC)) {
case SCSIPROBE FAILURE:
case SCSIPROBE NORESP:
case SCSIPROBE_NOMEM:
/*
* In these cases, device might be powered off,
* in which case we might be able to successfully
* probe it at some future time - referred to
* as ‘deferred attach’.
*/
rval = DDI PROBE PARTIAL;
break;
case SCSIPROBE NONCCS:
default:
/*
* Device isn’t of the type we can deal with,
* and/or it will never be usable.

*/
rval = DDI_PROBE_FAILURE;
break;
case SCSIPROBE EXISTS:
/*

* There is a device at the target/lun address. Check
* ing_dtype to make sure that it is the right device
* type. See scsi inquiry(9S)for possible device types.
*/
switch (sdp->sd ing->inq dtype) {
case DTYPE PRINTER:
scsi log(sdp, "xx", SCSI DEBUG,
"found %s device at target%d, lun%sd\n"
scsi_dname((int)sdp->sd_ing->inq_dtype),
target, lun);
rval = DDI PROBE_SUCCESS;
break;
case DTYPE NOTPRESENT:
default:
rval = DDI PROBE FAILURE;
break;
}
}

scsi unprobe(sdp);

338 Writing Device Drivers « September 2010



Autoconfiguration for SCSI Target Drivers

EXAMPLE 17-1  SCSI Target Driver probe(9E) Routine (Continued)

return (rval);

A more thorough probe(9E) routine could check scsi_inquiry(9S) to make sure that the
device is of the type expected by a particular driver.

attach() Entry Point (SCSI Target Drivers)

After the probe(9E) routine has verified that the expected device is present, attach(9E) is
called. attach() performs these tasks:

= Allocates and initializes any per-instance data.
= Creates minor device node information.

= Restores the hardware state of a device after a suspension of the device or the system. See
“attach() Entry Point” on page 104 for details.

A SCSI target driver needs to call scsi_probe(9F) again to retrieve the device's inquiry data.
The driver must also create a SCSI request sense packet. If the attach is successful, the attach ()
function should not call scsi_unprobe(9F).

Three routines are used to create the request sense packet: scsi_alloc_consistent buf(9F),
scsi init pkt(9F),and scsi setup cdb(9F).scsi alloc consistent buf(9F) allocates a
buffer that is suitable for consistent DMA. scsi_alloc_consistent buf() thenreturnsa
pointer to a buf(9S) structure. The advantage of a consistent buffer is that no explicit
synchronization of the data is required. In other words, the target driver can access the data
after the callback. The sd_sense element of the device's scsi_device(9S) structure must be
initialized with the address of the sense buffer. scsi_init_pkt(9F) creates and partially
initializes a scsi_pkt(9S) structure. scsi_setup_cdb(9F) creates a SCSI command descriptor
block, in this case by creating a SCSI request sense command.

Note that a SCSI device is not self-identifying and does not have a reg property. As a result, the
driver must set the pm-hardware-state property. Setting pm-hardware-state informs the
framework that this device needs to be suspended and then resumed.

The following example shows the SCSI target driver's attach () routine.

EXAMPLE 17-2  SCSI Target Driver attach(9E) Routine

static int
xxattach(dev_info t *dip, ddi attach cmd t cmd)
{

struct xxstate *xXsp;

struct scsi pkt *rgpkt = NULL;

Chapter 17 - SCSITarget Drivers 339


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-setup-cdb-9f

Autoconfiguration for SCSI Target Drivers

EXAMPLE 17-2  SCSI Target Driver attach(9E) Routine (Continued)

struct scsi device *sdp;
struct buf *bp = NULL;
int instance;

instance = ddi_get_instance(dip);
switch (cmd) {

case DDI_ATTACH:

break;

case DDI_RESUME:

/* For information, see the "Directory Memory Access (DMA)" */

/* chapter in this book. */
default:
return (DDI_FAILURE);
}
/*
* Allocate a state structure and initialize it.
*/

xsp = ddi get soft state(statep, instance);
sdp = (struct scsi device *)ddi get driver private(dip);
/*

* Cross-link the state and scsi device(9S) structures.
*/
sdp->sd private = (caddr t)xsp;
xsp->sdp = sdp;
/*
* Call scsi probe(9F) again to get and validate inquiry data.
* Allocate a request sense buffer. The buf(9S) structure
is set to NULL to tell the routine to allocate a new one.
The callback function is set to NULL FUNC to tell the
routine to return failure immediately if no
resources are available.

* X X X

*/
bp = scsi alloc consistent buf(&sdp->sd address, NULL,
SENSE_LENGTH, B_READ, NULL_FUNC, NULL);
if (bp == NULL)
goto failed;
/*
* Create a Request Sense scsi pkt(9S) structure.
*/
rgpkt = scsi init pkt(&sdp->sd address, NULL, bp,
CDB_GROUP@, 1, @, PKT_CONSISTENT, NULL FUNC, NULL);
if (rgpkt == NULL)
goto failed;
/*
* scsi alloc consistent buf(9F) returned a buf(9S) structure.
* The actual buffer address is in b _un.b_addr.
*/
sdp->sd sense = (struct scsi extended sense *)bp->b un.b addr;
/*
* Create a Group@ CDB for the Request Sense command
*/
if (scsi setup cdb((union scsi cdb *)rgpkt->pkt cdbp,
SCMD_REQUEST SENSE, @, SENSE__LENGTH, 0) == 0)
goto failed;;
/*
* Fill in the rest of the scsi pkt structure.

Writing Device Drivers « September 2010



Autoconfiguration for SCSI Target Drivers

EXAMPLE 17-2  SCSI Target Driver attach(9E) Routine (Continued)

* xxcallback() is the private command completion routine.
*/

rgpkt->pkt comp = xxcallback;

rgpkt->pkt_time = 30; /* 30 second command timeout */
rqpkt->pkt flags |= FLAG SENSING;

xsp->rqs = rqpkt;

xsp->rqsbuf = bp;

* Create minor nodes, report device, and do any other initialization. */
* Since the device does not have the ’'reg’ property,

* cpr will not call its DDI SUSPEND/DDI RESUME entries.

* The following code is to tell cpr that this device

* needs to be suspended and resumed.

*/

(void) ddi prop update string(device, dip,

"pm-hardware-state", "needs-suspend-resume")

Xsp->open = 0;

return (DDI SUCCESS);

failed:
if (bp)
scsi free consistent buf(bp);
if (rgpkt)

scsi destroy pkt(rgpkt);
sdp->sd _private = (caddr_ t)NULL;
sdp->sd sense = NULL;
scsi unprobe(sdp);
/* Free any other resources, such as the state structure. */
return (DDI_FAILURE);

detach() Entry Point (SCSI Target Drivers)

The detach(9E) entry point is the inverse of attach(9E). detach() must free all resources that
were allocated in attach (). If successful, the detach should call scsi_unprobe(9F). The
following example shows a target driver detach () routine.

EXAMPLE 17-3  SCSI Target Driver detach(9E) Routine

static int
xxdetach(dev_info t *dip, ddi detach cmd t cmd)
{
struct xxstate *xsp;
switch (cmd) {
case DDI DETACH:
/*
* Normal detach(9E) operations, such as getting a
* pointer to the state structure
*/
scsi free consistent buf(xsp->rqgsbuf);
scsi destroy pkt(xsp->rgs);
xsp->sdp->sd_private = (caddr_t)NULL;

Chapter 17 - SCSITarget Drivers 341


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-unprobe-9f

Resource Allocation

EXAMPLE 17-3  SCSI Target Driver detach(9E) Routine (Continued)

xsp->sdp->sd_sense = NULL;
scsi_unprobe(xsp->sdp);
/*
* Remove minor nodes.
* Free resources, such as the state structure and properties.
*/
return (DDI SUCCESS);
case DDI_SUSPEND:
/* For information, see the "Directory Memory Access (DMA)" */
/* chapter in this book. */
default:
return (DDI_FAILURE);
}

getinfo() Entry Point (SCSI Target Drivers)

The getinfo(9E) routine for SCSI target drivers is much the same as for other drivers (see
“getinfo() Entry Point” on page 110 for more information on DDI_INFO DEVT2INSTANCE
case). However, in the DDI_INFO_DEVT2DEVINFO case of the getinfo() routine, the target driver
must return a pointer to its dev_info node. This pointer can be saved in the driver state
structure or can be retrieved from the sd_dev field of the scsi device(9S) structure. The
following example shows an alternative SCSI target driver getinfo() code fragment.

EXAMPLE 17-4  Alternative SCSI Target Driver getinfo() Code Fragment

case DDI_INFO DEVT2DEVINFO:
dev = (dev t)arg;
instance = getminor(dev);
xsp = ddi_get soft state(statep, instance);
if (xsp == NULL)
return (DDI FAILURE);
*result = (void *)xsp->sdp->sd dev;
return (DDI SUCCESS);

Resource Allocation

To send a SCSI command to the device, the target driver must create and initialize a
scsi_pkt(9S) structure. This structure must then be passed to the host bus adapter driver.

scsi_init pkt() Function

The scsi_init pkt(9F) routine allocates and zeroes a scsi_pkt(9S) structure.
scsi_init_pkt() also sets pointers to pkt_private, *pkt_scbp, and *pkt_cdbp. Additionally,

342 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

Resource Allocation

scsi_init_pkt() provides a callback mechanism to handle the case where resources are not
available. This function has the following syntax:

struct scsi_pkt *scsi_init pkt(struct scsi_address *ap,
struct scsi_pkt *pktp, struct buf *bp, int cmdlen,
int statuslen, int privatelen, int flags,
int (*callback) (caddr_t), caddr_t arg)

where:

ap Pointer to a scsi_address structure. ap is the sd_address field of the device's
scsi device(9S) structure.

pktp Pointer to the scsi_pkt(9S) structure to be initialized. If this pointer is set to
NULL, a new packet is allocated.

bp Pointer to a buf(9S) structure. If this pointer is not null and has a valid byte
count, DMA resources are allocated.

cmdlen Length of the SCSI command descriptor block in bytes.

statuslen Required length of the SCSI status completion block in bytes.
privatelen Number of bytes to allocate for the pkt_private field.

flags Set of flags:
= PKT_CONSISTENT - This bit must be set if the DMA buffer was allocated using
scsi alloc_consistent buf(9F).In this case, the host bus adapter driver
guarantees that the data transfer is properly synchronized before performing
the target driver's command completion callback.

= PKT_DMA_PARTIAL - This bit can be set if the driver accepts a partial DMA
mapping. If set, scsi_init_pkt(9F) allocates DMA resources with the
DDI_DMA_PARTIAL flagset. The pkt_resid field of the scsi_pkt(9S) structure
can be returned with a nonzero residual. A nonzero value indicates the
number of bytes for which scsi_init_pkt(9F) was unable to allocate DMA
resources.

callback Specifies the action to take if resources are not available. If set to NULL_FUNC,
scsi_init_pkt(9F) returns the value NULL immediately. If set to SLEEP_FUNC,
scsi_init_pkt() does not return until resources are available. Any other valid
kernel address is interpreted as the address of a function to be called when
resources are likely to be available.

arg Parameter to pass to the callback function.

The scsi_init_pkt () routine synchronizes the data prior to transport. If the driver needs to
access the data after transport, the driver should call scsi_sync_pkt(9F) to flush any
intermediate caches. The scsi_sync_pkt () routine can be used to synchronize any cached
data.

Chapter 17 - SCSITarget Drivers 343


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f

Resource Allocation

344

scsi_sync_pkt() Function

If the target driver needs to resubmit the packet after changing the data, scsi_sync_pkt(9F)
must be called before calling scsi_transport(9F). However, if the target driver does not need
to access the data, scsi_sync_pkt () does not need to be called after the transport.

scsi_destroy pkt() Function

The scsi_destroy pkt(9F) routine synchronizes any remaining cached data that is associated
with the packet, if necessary. The routine then frees the packet and associated command, status,
and target driver-private data areas. This routine should be called in the command completion
routine.

scsi_alloc_consistent_buf() Function

For most I/O requests, the data buffer passed to the driver entry points is not accessed directly
by the driver. The buffer is just passed on to scsi_init_pkt(9F). If a driver sends SCSI
commands that operate on buffers that the driver itself examines, the buffers should be DMA
consistent. The SCSI request sense command is a good example. The

scsi alloc consistent buf(9F) routine allocates a buf(9S) structure and a data buffer that is
suitable for DM A-consistent operations. The HBA performs any necessary synchronization of
the buffer before performing the command completion callback.

Note-scsi_alloc_consistent_buf(9F) uses scarce system resources. Thus, you should use
scsi_alloc_consistent_buf() sparingly.

scsi_free consistent _buf() Function

scsi_free consistent buf(9F) releasesa buf(9S) structure and the associated data buffer
allocated with scsi_alloc_consistent_buf(9F). See “attach() Entry Point (SCSI Target
Drivers)” on page 339 and “detach () Entry Point (SCSI Target Drivers)” on page 341 for
examples.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-alloc-consistent-buf-9f

Building and Transporting a Command

Building and Transporting a Command

The host bus adapter driver is responsible for transmitting the command to the device.
Furthermore, the driver is responsible for handling the low-level SCSI protocol. The

scsi transport(9F) routine hands a packet to the host bus adapter driver for transmission.
The target driver has the responsibility to create a valid scsi_pkt(9S) structure.

Building a Command

Theroutine scsi_init pkt(9F) allocates space for a SCSI CDB, allocates DMA resources if
necessary, and sets the pkt_flags field, as shown in this example:

pkt = scsi init pkt(&sdp->sd_address, NULL, bp,
CDB_GROUPQ, 1, @, @, SLEEP_FUNC, NULL);

This example creates a new packet along with allocating DMA resources as specified in the
passed buf(9S) structure pointer. A SCSI CDB is allocated for a Group 0 (6-byte) command.
The pkt_flags field is set to zero, but no space is allocated for the pkt_private field. This call
toscsi_init_pkt(9F), because of the SLEEP_FUNC parameter, waits indefinitely for resources if
no resources are currently available.

The next step is to initialize the SCSI CDB, using the scsi_setup_cdb(9F) function:

if (scsi setup cdb((union scsi cdb *)pkt->pkt cdbp,

SCMD_READ, bp->b blkno, bp->b bcount >> DEV BSHIFT, 0) == 0)

goto failed;
This example builds a Group 0 command descriptor block. The example fills in the pkt_cdbp
field as follows:

= The command itself is in byte 0. The command is set from the parameter SCMD_READ.

= The address field is in bits 0-4 of byte 1 and bytes 2 and 3. The address is set from
bp->b_blkno.
= The count field is in byte 4. The count is set from the last parameter. In this case, count is set

tobp->b_bcount >>DEV_BSHIFT, where DEV_BSHIFT is the byte count of the transfer
converted to the number of blocks.

Note - scsi_setup_cdb(9F) does not support setting a target device's logical unit number
(LUN) in bits 5-7 of byte 1 of the SCSI command block. This requirement is defined by SCSI-1.
For SCSI-1 devices that require the LUN bits set in the command block, use makecom g@(9F) or
some equivalent rather than scsi_setup_cdb(9F).

Chapter 17 - SCSITarget Drivers 345


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=makecom-g0-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-setup-cdb-9f

Building and Transporting a Command

346

After initializing the SCSI CDB, initialize three other fields in the packet and store as a pointer
to the packet in the state structure.

pkt->pkt_private = (opaque_t)bp;
pkt->pkt_comp = xxcallback;
pkt->pkt time = 30;

xsp->pkt = pkt;

The buf(9S) pointer is saved in the pkt_private field for later use in the completion routine.

Setting Target Capabilities

The target drivers use scsi_ifsetcap(9F) to set the capabilities of the host adapter driver. A
cap is a name-value pair, consisting of a null-terminated character string and an integer value.
The current value of a capability can be retrieved using scsi_ifgetcap(9F).
scsi_ifsetcap(9F) allows capabilities to be set for all targets on the bus.

In general, however, setting capabilities of targets that are not owned by the target driver is not
recommended. This practice is not universally supported by HBA drivers. Some capabilities,
such as disconnect and synchronous, can be set by default by the HBA driver. Other capabilities
might need to be set explicitly by the target driver. Wide-xfer and tagged-queueing must be set
by the target drive, for example.

Transporting a Command

After the scsi_pkt(9S) structure is filled in, use scsi_transport(9F) to hand the structure to
the bus adapter driver:

if (scsi transport(pkt) != TRAN_ACCEPT) {
bp->b resid = bp->b bcount;

bioerror(bp, EIO);

biodone(bp);

}

The other return values from scsi_transport(9F) are as follows:

= TRAN_BUSY - A command for the specified target is already in progress.

= TRAN_BADPKT — The DMA count in the packet was too large, or the host adapter driver
rejected this packet for other reasons.

m  TRAN_FATAL_ ERROR - The host adapter driver is unable to accept this packet.

Note - The mutex sd_mutex inthe scsi_device(9S) structure must not be held across a call to
scsi_transport(9F).

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f

Building and Transporting a Command

If scsi_transport(9F) returns TRAN_ACCEPT, the packet becomes the responsibility of the host
bus adapter driver. The packet should not be accessed by the target driver until the command
completion routine is called.

Synchronous scsi_transport () Function

If FLAG_NOINTRIis set in the packet, then scsi_transport(9F) does not return until the
command is complete. No callback is performed.

Note - Do not use FLAG_NOINTR in interrupt context.

Command Completion

When the host bus adapter driver is through with the command, the driver invokes the packet's
completion callback routine. The driver then passes a pointer to the scsi pkt(9S) structure as a
parameter. After decoding the packet, the completion routine takes the appropriate action.

Example 17-5 presents a simple completion callback routine. This code checks for transport
failures. In case of failure, the routine gives up rather than retrying the command. If the target is
busy, extra code is required to resubmit the command at a later time.

If the command results in a check condition, the target driver needs to send a request sense
command unless auto request sense has been enabled.

Otherwise, the command succeeded. At the end of processing for the command, the command
destroys the packet and calls biodone(9F).

In the event of a transport error, such as a bus reset or parity problem, the target driver can
resubmit the packet by using scsi_transport(9F). No values in the packet need to be changed
prior to resubmitting.

The following example does not attempt to retry incomplete commands.

Note - Normally, the target driver's callback function is called in interrupt context.
Consequently, the callback function should never sleep.

EXAMPLE 17-5 Completion Routine for a SCSI Driver

static void
xxcallback(struct scsi pkt *pkt)

{
struct buf *bp;
struct xxstate *Xsp;
minor_t instance;

Chapter 17 - SCSITarget Drivers 347


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f

Building and Transporting a Command

EXAMPLE 17-5 Completion Routine for a SCSI Driver (Continued)

struct scsi status *ssp;
/*
* Get a pointer to the buf(9S) structure for the command
* and to the per-instance data structure.
*/
bp = (struct buf *)pkt->pkt private;
instance = getminor(bp->b edev);
xsp = ddi get soft state(statep, instance);
/*
* Figure out why this callback routine was called
*/
if (pkt->pkt_reason != CMP_CMPLT) {
bp->b resid = bp->b bcount;
bioerror(bp, EIO);

scsi destroy pkt(pkt); /* Release resources */

biodone(bp); /* Notify waiting threads */ ;
} else {

/*

* Command completed, check status.
* See scsi status(9S)
*/
ssp = (struct scsi status *)pkt->pkt scbp;
if (ssp->sts busy) {
/* error, target busy or reserved */
} else if (ssp->sts chk) {
/* Send a request sense command. */
} else {
bp->b resid = pkt->pkt resid; /* Packet completed OK */
scsi destroy pkt(pkt);
biodone(bp);
}

Reuse of Packets

A target driver can reuse packets in the following ways:

= Resubmit the packet unchanged.

= Usescsi_sync_pkt(9F) to synchronize the data. Then, process the data in the driver.
Finally, resubmit the packet.

= Free DMA resources, using scsi_dmafree(9F), and pass the pkt pointer to
scsi_init_pkt(9F) for binding to a new bp. The target driver is responsible for
reinitializing the packet. The CDB has to have the same length as the previous CDB.

= Ifonly partial DMA is allocated during the first call to scsi_init_pkt(9F), subsequent calls
toscsi_init pkt(9F) can be made for the same packet. Calls can be made to bp as well to
adjust the DMA resources to the next portion of the transfer.

348 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f

Building and Transporting a Command

Auto-Request Sense Mode

Auto-request sense mode is most desirable if queuing is used, whether the queuing is tagged or
untagged. A contingent allegiance condition is cleared by any subsequent command and,
consequently, the sense data is lost. Most HBA drivers start the next command before
performing the target driver callback. Other HBA drivers can use a separate, lower-priority
thread to perform the callbacks. This approach might increase the time needed to notify the
target driver that the packet completed with a check condition. In this case, the target driver
might not be able to submit a request sense command in time to retrieve the sense data.

To avoid this loss of sense data, the HBA driver, or controller, should issue a request sense
command if a check condition has been detected. This mode is known as auto-request sense
mode. Note that not all HBA drivers are capable of auto-request sense mode, and some drivers
can only operate with auto-request sense mode enabled.

A target driver enables auto-request-sense mode by using scsi_ifsetcap(9F). The following
example shows auto-request sense enabling.

EXAMPLE 17-6 Enabling Auto-Request Sense Mode

static int
xxattach(dev_info t *dip, ddi_attach cmd t cmd)
{
struct xxstate *xsp;
struct scsi device *sdp = (struct scsi device *)
ddi get driver private(dip);
/*

* Enable auto-request-sense. An auto-request-sense command might
* fail due to a BUSY condition or transport error. Therefore,
* it is recommended to allocate a separate request sense
* packet as well.
* Note that scsi ifsetcap(9F) can return -1, 0, or 1
*/
xsp->sdp_arq_enabled =
((scsi_ifsetcap(ROUTE, "auto-rgsense", 1, 1) ==1) ? 1 : 0);
/*
* If the HBA driver supports auto request sense then the
* status blocks should be sizeof (struct scsi arqg status).
* Else, one byte is sufficient.

*/

xsp->sdp_cmd_stat size = (xsp->sdp_arq enabled ?
sizeof (struct scsi arq status) : 1);

/* o0 x/

If a packetis allocated using scsi_init_pkt(9F) and auto-request sense is desired on this
packet, additional space is needed. The target driver must request this space for the status block
to hold the auto-request sense structure. The sense length used in the request sense command is
sizeof, from struct scsi_extended_sense. Auto-request sense can be disabled per individual
packet by allocating sizeof, from struct scsi_status, for the status block.

Chapter 17 - SCSITarget Drivers 349


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f

Building and Transporting a Command

350

The packet is submitted using scsi_transport(9F) as usual. When a check condition occurs
on this packet, the host adapter driver takes the following steps:

= Issues arequest sense command if the controller does not have auto-request sense capability
®  Obtains the sense data

»  Fillsinthescsi arq status information in the packet's status block
= Sets STATE_ARQ_DONE in the packet's pkt_state field

= Calls the packet's callback handler (pkt_comp())

The target driver's callback routine should verify that sense data is available by checking the
STATE_ARQ_DONE bitin pkt_state. STATE_ARQ_DONE implies that a check condition has
occurred and that a request sense has been performed. If auto-request sense has been
temporarily disabled in a packet, subsequent retrieval of the sense data cannot be guaranteed.

The target driver should then verify whether the auto-request sense command completed
successfully and decode the sense data.

Dump Handling

The dump(9E) entry point copies a portion of virtual address space directly to the specified
device in the case of system failure or checkpoint operation. See the cpr(7) and dump(9E) man
pages. The dump(9E) entry point must be capable of performing this operation without the use
of interrupts.

The arguments for dump () are as follows:

dev Device number of the dump device

addr Kernel virtual address at which to start the dump
blkno  First destination block on the device

nblk Number of blocks to dump

EXAMPLE17-7 dump(9E) Routine

static int
xxdump(dev_t dev, caddr t addr, daddr t blkno, int nblk)
{

struct xxstate *Xsp;

struct buf *bp;

struct scsi pkt *pkt;

int rval;

int instance;

instance = getminor(dev);
xsp = ddi_get soft state(statep, instance);

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=dump-9e

SCSI Options

EXAMPLE 17-7 dump(9E) Routine (Continued)

if (tgt->suspended) {
(void) pm raise power(DEVINFO(tgt), 0, 1);
}

bp = getrbuf (KM NOSLEEP);
if (bp == NULL) {

return (EIO);

}

/* Calculate block number relative to partition. */

bp->b un.b addr = addr;

SCSI Options

bp->b edev = dev;

bp->b_bcount = nblk * DEV BSIZE;
bp->b_flags = B WRITE | B BUSY;
bp->b_blkno = blkno;

pkt = scsi_init pkt(ROUTE(tgt), NULL, bp, CDB_GROUP1,
sizeof (struct scsi arq status),

sizeof (struct bst pkt private), @, NULL FUNC, NULL);
if (pkt == NULL) {

freerbuf(bp);

return (EIO);

}

(void) scsi setup cdb((union scsi cdb *)pkt->pkt cdbp,

SCMD_WRITE G1, blkno, nblk, 0);

/*

* While dumping in polled mode, other cmds might complete
* and these should not be resubmitted. we set the

* dumping flag here which prevents requeueing cmds.
*/

tgt->dumping = 1;

rval = scsi poll(pkt);

tgt->dumping = 0;

scsi destroy pkt(pkt);
freerbuf (bp);

if (rval != DDI SUCCESS) {
rval = EIO;
}

return (rval);

SCSA defines a global variable, scsi_options, for control and debugging. The defined bits in
scsi_options can be found in the file <sys/scsi/conf/autoconf . h>. The scsi_options uses the
bits as follows:

Chapter 17 - SCSITarget Drivers 351



SCSI Options

352

SCSI_OPTIONS_DR

SCSI OPTIONS FAST

SCSI_OPTIONS FAST20

SCSI_OPTIONS_FAST40

SCSI_OPTIONS FAST80

SCSI_OPTIONS FAST160

SCSI_OPTIONS FAST320

SCSI_OPTIONS LINK
SCSI_OPTIONS PARITY

SCSI_OPTIONS_QAS

SCSI_OPTIONS_SYNC
SCSI_OPTIONS_TAG

SCSI_OPTIONS_WIDE

Enables global disconnect or reconnect.

Enables global FAST SCSI support: 10 Mbytes/sec transfers. The
HBA should not operate in FAST SCSI mode unless the
SCSI_OPTIONS_FAST (0x100) bit is set.

Enables global FAST20 SCSI support: 20 Mbytes/sec transfers. The
HBA should not operate in FAST20 SCSI mode unless the
SCSI_OPTIONS_FAST20 (0x400) bit is set.

Enables global FAST40 SCSI support: 40 Mbytes/sec transfers. The
HBA should not operate in FAST40 SCSI mode unless the
SCSI_OPTIONS_FAST40 (0x800) bit is set.

Enables global FAST80 SCSI support: 80 Mbytes/sec transfers. The
HBA should not operate in FAST80 SCSI mode unless the
SCSI_OPTIONS_FASTS80 (0x1000) bit is set.

Enables global FAST160 SCSI support: 160 Mbytes/sec transfers.
The HBA should not operate in FAST160 SCSI mode unless the
SCSI_OPTIONS_FAST160 (0x2000) bit is set.

Enables global FAST320 SCSI support: 320 Mbytes/sec transfers.
The HBA should not operate in FAST320 SCSI mode unless the
SCSI_OPTIONS_FAST320 (0x4000) bit is set.

Enables global link support.
Enables global parity support.

Enables the Quick Arbitration Select feature. QAS is used to
decrease protocol overhead when devices arbitrate for and access
the bus. QAS is only supported on Ultra4 (FAST160) SCSI devices,
although not all such devices support QAS. The HBA should not
operate in QAS SCSI mode unless the SCSI_OPTIONS_QAS
(0x100000) bit is set. Consult the appropriate Sun hardware
documentation to determine whether your machine supports
QAS.

Enables global synchronous transfer capability.
Enables global tagged queuing support.
Enables global WIDE SCSI.

Note - The setting of scsi_options affects all host bus adapter drivers and all target drivers that are
present on the system. Refer to the scsi_hba_attach(9F) man page for information on
controlling these options for a particular host adapter.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-9f

L K R 4 CHAPTER 18

SCSI Host Bus Adapter Drivers

This chapter contains information on creating SCSI host bus adapter (HBA) drivers. The
chapter provides sample code illustrating the structure of a typical HBA driver. The sample
code shows the use of the HBA driver interfaces that are provided by the Sun Common SCSI
Architecture (SCSA). This chapter provides information on the following subjects:

“Introduction to Host Bus Adapter Drivers” on page 353
“SCSIInterface” on page 354

“SCSA HBA Interfaces” on page 356

“HBA Driver Dependency and Configuration Issues” on page 366
“Entry Points for SCSA HBA Drivers” on page 372

“SCSIHBA Driver Specific Issues” on page 398

“Support for Queuing” on page 401

Introduction to Host Bus Adapter Drivers

As described in Chapter 17, “SCSI Target Drivers,” the DDI/DKI divides the software interface
to SCSI devices into two major parts:

= Target devices and drivers
= Host bus adapter devices and drivers

Target device refers to a device on a SCSI bus, such as a disk or a tape drive. Target driver refers
to a software component installed as a device driver. Each target device on a SCSI bus is
controlled by one instance of the target driver.

Host bus adapter device refers to HBA hardware, such as an SBus or PCI SCSI adapter card. Host
bus adapter driver refers to a software component that is installed as a device driver. Some
examples are the esp driver on a SPARC machine, the ncrs driver on an x86 machine, and the
isp driver, which works on both architectures. An instance of the HBA driver controls each of
its host bus adapter devices that are configured in the system.

353



SCSlInterface

The Sun Common SCSI Architecture (SCSA) defines the interface between the target and HBA
components.

Note - Understanding SCSI target drivers is an essential prerequisite to writing effective SCSI
HBA drivers. For information on SCSI target drivers, see Chapter 17, “SCSI Target Drivers.”
Target driver developers can also benefit from reading this chapter.

The host bus adapter driver is responsible for performing the following tasks:

= Managing host bus adapter hardware

= Accepting SCSI commands from the SCSI target driver

= Transporting the commands to the specified SCSI target device
= Performing any data transfers that the command requires

= Collecting status

=  Handling auto-request sense (optional)

= Informing the target driver of command completion or failure

SCSl Interface

SCSA is the DDI/DKI programming interface for the transmission of SCSI commands from a
target driver to a host adapter driver. By conforming to the SCSA, the target driver can easily
pass any combination of SCSI commands and sequences to a target device. Knowledge of the
hardware implementation of the host adapter is not necessary. Conceptually, SCSA separates
the building of a SCSI command from the transporting of the command with data to the SCSI
bus. SCSA manages the connections between the target and HBA drivers through an HBA
transportlayer, as shown in the following figure.

354 Writing Device Drivers « September 2010



SCSlInterface

FIGURE 18-1 SCSA Interface

Target
Driver
I
SCSA
Interface
HBA
Driver
HBA transport layer —— [
HBA
Device
| SCSI Bus
Target devices Target devices

The HBA transport layer is a software and hardware layer that is responsible for transporting a
SCSI command to a SCSI target device. The HBA driver provides resource allocation, DMA
management, and transport services in response to requests made by SCSI target drivers
through SCSA. The host adapter driver also manages the host adapter hardware and the SCSI
protocols necessary to perform the commands. When a command has been completed, the
HBA driver calls the target driver's SCSI pkt command completion routine.

The following example illustrates this flow, with emphasis on the transfer of information from
target drivers to SCSA to HBA drivers. The figure also shows typical transport entry points and
function calls.

Chapter 18 « SCSIHost Bus Adapter Drivers 355



SCSA HBA Interfaces

FIGURE18-2 Transport Layer Flow

Target Driver

SCSA Interface HBA Driver

v

tran_init pkt(9E)

scsi_init pkt(9F)

scsi_transport(9F) > tran start(9E)

Command completion

scsi_destroy pkt(9F)—Pp|tran destroy pkt(9E)

SCSA HBA Interfaces

SCSA HBA interfaces include HBA entry points, HBA data structures, and an HBA framework.

SCSA HBA Entry Point Summary

SCSA defines a number of HBA driver entry points. These entry points are listed in the
following table. The entry points are called by the system when a target driver instance
connected to the HBA driver is configured. The entry points are also called when the target
driver makes a SCSA request. See “Entry Points for SCSA HBA Drivers” on page 372 for more
information.

TABLE 18-1 SCSA HBA Entry Point Summary

Function Name Called as a Result of

tran_abort(9E) Target driver calling scsi_abort(9F)

tran bus reset(9E) System resetting bus

tran_destroy pkt(9E) Target driver calling scsi_destroy_pkt(9F)

356 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-destroy-pkt-9f

SCSA HBA Interfaces

TABLE 18-1 SCSA HBA Entry Point Summary (Continued)

Function Name Called as a Result of

tran dmafree(9E) Target driver calling scsi_dmafree(9F)
tran getcap(9E) Target driver calling scsi_ifgetcap(9F)
tran init pkt(9E) Target driver calling scsi_init_pkt(9F)
tran_quiesce(9E) System quiescing bus

tran reset(9E) Target driver calling scsi_reset(9F)
tran reset notify(9E) Target driver calling scsi_reset_notify(9F)
tran setcap(9E) Target driver calling scsi_ifsetcap(9F)
tran start(9E) Target driver calling scsi_transport(9F)
tran sync pkt(9E) Target driver calling scsi_sync_pkt(9F)
tran_tgt_free(9E) System detaching target device instance
tran_tgt_init(9E) System attaching target device instance
tran tgt probe(9E) Target driver calling scsi_probe(9F)
tran_unquiesce(9E) System resuming activity on bus

SCSA HBA Data Structures

SCSA defines data structures to enable the exchange of information between the target and
HBA drivers. The following data structures are included:

®m  scsi_hba_tran(9S)
®m  scsi_address(9S)
m  scsi_device(9S)

= scsi_pkt(9S)

scsi_hba_tran() Structure

Each instance of an HBA driver mustallocatea scsi_hba_tran(9S) structure by using the
scsi_hba_tran_alloc(9F) function in the attach(9E) entry point. The
scsi_hba_tran_alloc() function initializes the scsi_hba_tran structure. The HBA driver
must initialize specific vectors in the transport structure to point to entry points within the HBA
driver. After the scsi_hba_tran structure is initialized, the HBA driver exports the transport
structure to SCSA by calling the scsi_hba_attach_setup(9F) function.

Chapter 18 « SCSIHost Bus Adapter Drivers 357


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-reset-notify-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-unquiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-tran-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f

SCSA HBA Interfaces

A Caution - Because SCSA keeps a pointer to the transport structure in the driver-private field on
the devinfo node, HBA drivers must not use ddi_set driver private(9F). HBA drivers can,
however, use ddi get driver private(9F) to retrieve the pointer to the transport structure.

The SCSA interfaces require the HBA driver to supply a number of entry points that are callable
through the scsi_hba_tran structure. See “Entry Points for SCSA HBA Drivers” on page 372
for more information.

The scsi_hba_tran structure contains the following fields:

struct scsi hba tran {

dev_info t *tran hba dip; /* HBAs dev_info pointer */
void *tran_hba private; /* HBA softstate */
void *tran_tgt private; /* HBA target private pointer */
struct scsi device *tran sd; /* scsi device */
int (*tran_tgt init)(); /* Transport target */

/* Initialization */
int (*tran_tgt_probe)(); /* Transport target probe */
void (*tran_tgt free)(); /* Transport target free */
int (*tran_start)(); /* Transport start */
int (*tran reset)(); /* Transport reset */
int (*tran_abort)(); /* Transport abort */
int (*tran_getcap)(); /* Capability retrieval */
int (*tran_setcap)(); /* Capability establishment */
struct scsi_pkt *(*tran_init pkt)(); /* Packet and DMA allocation */
void (*tran destroy pkt)(); /* Packet and DMA */

/* Deallocation */
void (*tran dmafree)(); /* DMA deallocation */
void (*tran_sync_pkt)(); /* Sync DMA */
void (*tran_reset_notify)(); /* Bus reset notification */
int (*tran_bus reset)(); /* Reset bus only */
int (*tran_quiesce)(); /* Quiesce a bus */
int (*tran _unquiesce)(); /* Unquiesce a bus */
int tran_interconnect_type; /* transport interconnect */

b
The following descriptions give more information about these scsi_hba_tran structure fields:

tran_hba_dip Pointer to the HBA device instance dev_info structure. The
function scsi_hba_attach_setup(9F) sets this field.

tran_hba_private Pointer to private data maintained by the HBA driver. Usually,
tran_hba_private contains a pointer to the state structure of
the HBA driver.

tran tgt private Pointer to private data maintained by the HBA driver when

using cloning. By specifying SCSI_HBA_TRAN_CLONE when
calling scsi_hba_attach_setup(9F), the scsi_hba_tran(9S)
structure is cloned once per target. This approach enables the
HBA to initialize this field to point to a per-target instance data
structure in the tran_tgt_init(9E) entry point. If

358 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-init-9e

SCSA HBA Interfaces

tran sd

tran_tgt init

tran tgt probe

tran_tgt free

tran start

tran reset

tran_abort

tran_getcap

tran_setcap

tran init pkt

tran_destroy pkt

SCSI_HBA_TRAN_CLONE is not specified, tran_tgt_privateis
NULL,and tran tgt private must not be referenced. See
“Transport Structure Cloning” on page 364 for more
information.

Pointer to a per-target instance scsi_device(9S) structure used
when cloning. If SCSI_HBA_TRAN_CLONE is passed to
scsi_hba_attach_setup(9F), tran_sd isinitialized to point to
the per-target scsi_device structure. This initialization takes
place before any HBA functions are called on behalf of that
target. If SCSI_HBA_TRAN_CLONE is not specified, tran_sd is
NULL, and tran_sd must not be referenced. See “Transport
Structure Cloning” on page 364 for more information.

Pointer to the HBA driver entry point that is called when
initializing a target device instance. If no per-target initialization
is required, the HBA can leave tran_tgt_init set to NULL.

Pointer to the HBA driver entry point that is called when a target
driver instance calls scsi_probe(9F). This routine is called to
probe for the existence of a target device. If no target probing
customization is required for this HBA, the HBA should set
tran_tgt probetoscsi_hba probe(9F).

Pointer to the HBA driver entry point that is called when a target
device instance is destroyed. If no per-target deallocation is
necessary, the HBA can leave tran_tgt_free set to NULL.

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_transport(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_reset(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_abort(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_ifgetcap(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_ifsetcap(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_init pkt(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_destroy pkt(9F).

Chapter 18 « SCSIHost Bus Adapter Drivers 359


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-destroy-pkt-9f

SCSA HBA Interfaces

360

tran_dmafree

tran_sync_pkt

tran reset notify

tran bus reset

tran_quiesce

tran_unquiesce

tran_interconnect type

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_dmafree(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls scsi_sync_pkt(9F).

Pointer to the HBA driver entry point that is called when a target
driver calls tran_reset notify(9E).

The function entry that resets the SCSI bus without resetting
targets.

The function entry that waits for all outstanding commands to
complete and blocks (or queues) any I/O requests issued.

The function entry that allows I/O activities to resume on the
SCSIbus.

Integer value denoting interconnect type of the transport as
defined in the services.h header file.

scsi_address Structure

The scsi_address(9S) structure provides transport and addressing information for each SCSI
command that is allocated and transported by a target driver instance.

The scsi_address structure contains the following fields:

struct scsi address {
struct scsi_hba_ tran
ushort_t
uchar_t
uchar_t

+

*a hba tran; /* Transport vectors */
a target; /* Target identifier */
a_lun; /* LUN on that target */
a_sublun; /* Sub LUN on that LUN */

/* Not used */

a_hba tran Pointer to the scsi_hba_tran(9S) structure, as allocated and initialized by the
HBA driver. If SCSI_HBA_TRAN_CLONE was specified as the flag to
scsi_hba_attach_setup(9F),a_hba_tran points to a copy of that structure.

a_target Identifies the SCSI target on the SCSI bus.

a_lun Identifies the SCSI logical unit on the SCSI target.

scsi_device Structure

The HBA framework allocates and initializes a scsi_device(9S) structure for each instance of a
target device. The allocation and initialization occur before the framework calls the HBA
driver's tran_tgt_init(9E) entry point. This structure stores information about each SCSI

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-init-9e

SCSA HBA Interfaces

logical unit, including pointers to information areas that contain both generic and
device-specific information. One scsi_device(9S) structure exists for each target device
instance that is attached to the system.

If the per-target initialization is successful, the HBA framework sets the target driver's
per-instance private data to point to the scsi_device(9S) structure, using

ddi set driver private(9F). Note thatan initialization is successful if tran tgt init()
returns success or if the vector is null.

The scsi_device(9S) structure contains the following fields:

struct scsi device {

struct scsi address sd_address; /* routing information */
dev_info_ t *sd_dev; /* device dev_info node */
kmutex t sd_mutex; /* mutex used by device */
void *sd reserved;
struct scsi inquiry *sd ing;
struct scsi extended sense *sd sense;
caddr t sd private; /* for driver’s use */

};

where:

sd_address Data structure that is passed to the routines for SCSI resource allocation.
sd_dev Pointer to the target's dev_info structure.

sd_mutex Mutex for use by the target driver. This mutex is initialized by the HBA
framework. The mutex can be used by the target driver as a per-device mutex.
This mutex should not be held across a call to scsi_transport(9F) or
scsi_poll(9F). See Chapter 3, “Multithreading;” for more information on
mutexes.

sd_inq Pointer for the target device's SCSI inquiry data. The scsi_probe(9F) routine
allocates a buffer, fills the buffer in, and attaches the buffer to this field.

sd_sense Pointer to a buffer to contain request sense data from the device. The target
driver must allocate and manage this buffer itself. See the target driver's
attach(9E) routine in “attach() Entry Point” on page 104 for more
information.

sd_private  Pointer field for use by the target driver. This field is commonly used to store a
pointer to a private target driver state structure.

scsi_pkt Structure (HBA)

To execute SCSI commands, a target driver must first allocate a scsi_pkt(9S) structure for the
command. The target driver must then specify its own private data area length, the command
status, and the command length. The HBA driver is responsible for implementing the packet

Chapter 18 « SCSIHost Bus Adapter Drivers 361


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

SCSA HBA Interfaces

362

allocation in the tran_init_pkt(9E) entry point. The HBA driver is also responsible for freeing
the packetinits tran_destroy_pkt(9E) entry point. See “scsi_pkt Structure (Target Drivers)”
on page 335 for more information.

The scsi_pkt(9S) structure contains these fields:

struct scsi pkt {

opaque_t pkt_ha private; /* private data for host adapter */
struct scsi address pkt address; /* destination address */
opaque_t pkt_private; /* private data for target driver */
void (*pkt comp)(struct scsi pkt *); /* completion routine */
uint t pkt flags; /* flags */
int pkt time; /* time allotted to complete command */
uchar t *pkt scbp; /* pointer to status block */
uchar_t *pkt cdbp; /* pointer to command block */
ssize t pkt resid; /* data bytes not transferred */
uint_t pkt_state; /* state of command */
uint t pkt statistics; /* statistics */
uchar_t pkt reason; /* reason completion called */

+

where:

pkt ha private

pkt address

pkt private

pkt comp

pkt flags
pkt time
pkt scbp
pkt cdbp

pkt resid

pkt state

pkt statistics

pkt_reason

Writing Device Drivers

Pointer to per-command HBA-driver private data.

Pointer to the scsi_address(9S) structure providing address information
for this command.

Pointer to per-packet target-driver private data.

Pointer to the target-driver completion routine called by the HBA driver
when the transport layer has completed this command.

Flags for the command.

Specifies the completion timeout in seconds for the command.
Pointer to the status completion block for the command.

Pointer to the command descriptor block (CDB) for the command.

Count of the data bytes that were not transferred when the command
completed. This field can also be used to specify the amount of data for
which resources have not been allocated. The HBA must modify this field
during transport.

State of the command. The HBA must modify this field during transport.

Provides a history of the events that the command experienced while in
the transport layer. The HBA must modify this field during transport.

Reason for command completion. The HBA must modify this field during
transport.

« September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-address-9s

SCSA HBA Interfaces

Per-Target Instance Data

An HBA driver must allocate a scsi_hba_tran(9S) structure during attach(9E). The HBA
driver must then initialize the vectors in this transport structure to point to the required entry
points for the HBA driver. This scsi_hba_tran structure is then passed into
scsi_hba_attach_setup(9F).

The scsi hba tran structure containsa tran hba private field, which can be used to refer to
the HBA driver's per-instance state.

Each scsi_address(9S) structure contains a pointer to the scsi_hba_tran structure. In
addition, the scsi_address structure provides the target, thatis, a_target, and logical unit
(a_1lun) addresses for the particular target device. Each entry point for the HBA driver is passed
a pointer to the scsi_address structure, either directly or indirectly through the
scsi_device(9S) structure. As a result, the HBA driver can reference its own state. The HBA
driver can also identify the target device that is addressed.

The following figure illustrates the HBA data structures for transport operations.

FIGURE 18-3 HBA Transport Structures

—]

HBA soft state
HBA private structure
| data pointer Per HBA
device instance
scsi_address > Transport
structure 5 vectors |
1
scsi_device scsi _hba tran HBA driver SCSI Bus
structure structure entry points
Per target Per HBA B
device instance device instance HBA driver module

— 1

One SCSI device structure per target device instance

—2
Target devices

Chapter 18 « SCSIHost Bus Adapter Drivers 363


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s

SCSA HBA Interfaces

364

Transport Structure Cloning

Cloning can be useful if an HBA driver needs to maintain per-target private data in the
scsi_hba_tran(9S) structure. Cloning can also be used to maintain a more complex address
than is provided in the scsi_address(9S) structure.

In the cloning process, the HBA driver must still allocatea scsi_hba_tran structure at
attach(9E) time. The HBA driver must also initialize the tran _hba private soft state pointer
and the entry point vectors for the HBA driver. The difference occurs when the framework
begins to connect an instance of a target driver to the HBA driver. Before calling the HBA
driver'stran_tgt_init(9E) entry point, the framework clones the scsi_hba_tran structure
that is associated with that instance of the HBA. Accordingly, each scsi_address structure that
is allocated and initialized for a particular target device instance points to a per-target instance
copy of the scsi_hba_tran structure. The scsi_address structures do not point to the
scsi_hba_tran structure that is allocated by the HBA driver atattach() time.

An HBA driver can use two important pointers when cloning is specified. These pointers are
contained in the scsi_hba_tran structure. The first pointer is the tran_tgt_private field,
which the driver can use to point to per-target HBA private data. The tran_tgt_private
pointer is useful, for example, if an HBA driver needs to maintain a more complex address than
a_target and a_lun provide. The second pointer is the tran_sd field, which is a pointer to the
scsi_device(9S) structure referring to the particular target device.

When specifying cloning, the HBA driver must allocate and initialize the per-target data. The
HBA driver must then initialize the tran_tgt_private field to point to this data during its
tran_tgt_init(9E) entry point. The HBA driver must free this per-target data during its
tran_tgt_free(9E) entry point.

When cloning, the framework initializes the tran_sd field to point to the scsi_device
structure before the HBA driver tran_tgt_init() entry pointis called. The driver requests
cloning by passing the SCSI_HBA_TRAN_CLONE flagto scsi_hba_attach_setup(9F). The
following figure illustrates the HBA data structures for cloning transport operations.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f

SCSA HBA Interfaces

FIGURE 18-4 Cloning Transport Operation

HBA Transport Structures

(cloning example)
> ]

4 HBA soft state
| | — structure
| One soft state
structure per HBA
original >
scsi address scsi _hba tran 4
structure 5 structure »|
1[a Allocated by o HBA
scsi device HBA driver 1 | per-target data
structures T T Av4
"\ Cloned scsil
scsi_hba tran HBA driver Bus
Back pointers to SCSI structures entry points
device structures 1and 2
HBA driver
module
— 1
One SCSI device structure per target device instance ——— 2

Target
devices

SCSA HBA Functions

SCSA also provides a number of functions. The functions are listed in the following table, for
use by HBA drivers.

TABLE 18-2 SCSA HBA Functions

Function Name Called by Driver Entry Point
scsi hba init(9F) _init(9E)

scsi hba fini(9F) ~fini(9E)

scsi hba attach setup(9F) attach(9E)

scsi hba detach(9F) detach(9E)

scsi hba tran alloc(9F) attach(9E)

Chapter 18 « SCSIHost Bus Adapter Drivers 365


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-detach-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-tran-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

HBA Driver Dependency and Configuration Issues

TABLE 18-2 SCSA HBA Functions (Continued)

Function Name Called by Driver Entry Point

scsi hba tran free(9F) detach(9E)

scsi hba probe(9F) tran tgt probe(9E)

scsi hba pkt alloc(9F) tran init pkt(9E)

scsi hba pkt free(9F) tran destroy pkt(9E)

scsi hba lookup capstr(9F) tran getcap(9E)and tran setcap(9E)

HBA Driver Dependency and Configuration Issues

366

In addition to incorporating SCSA HBA entry points, structures, and functions into a driver, a
developer must deal with driver dependency and configuration issues. These issues involve
configuration properties, dependency declarations, state structure and per-command structure,
entry points for module initialization, and autoconfiguration entry points.

Declarations and Structures

HBA drivers must include the following header files:

#include <sys/scsi/scsi.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

To inform the system that the module depends on SCSA routines, the driver binary must be
generated with the following command. See “SCSA HBA Interfaces” on page 356 for more
information on SCSA routines.

% 1d -r xx.0 -0 xx -N "misc/scsi"

The code samples are derived from a simplified isp driver for the QLogic Intelligent SCSI
Peripheral device. The isp driver supports WIDE SCSI, with up to 15 target devices and 8
logical units (LUNs) per target.

Per-Command Structure

An HBA driver usually needs to define a structure to maintain state for each command
submitted by a target driver. The layout of this per-command structure is entirely up to the
device driver writer. The layout needs to reflect the capabilities and features of the hardware and
the software algorithms that are used in the driver.

The following structure is an example of a per-command structure. The remaining code
fragments of this chapter use this structure to illustrate the HBA interfaces.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-tran-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-pkt-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-lookup-capstr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-setcap-9e

HBA Driver Dependency and Configuration Issues

struct isp_cmd {

struct isp request cmd_isp request;
struct isp response cmd _isp response;
struct scsi pkt *cmd_pkt;

struct isp cmd *cmd forw;

uint32 t cmd_dmacount;

ddi dma_handle t cmd_dmahandle;
uint_t cmd_cookie;

uint t cmd_ncookies;
uint_t cmd_cookiecnt;
uint t cmd_nwin;

uint t cmd curwin;

off_t cmd_dma_offset;
uint t cmd _dma len;

ddi dma cookie t cmd _dmacookies[ISP NDATASEGS];
u_int cmd_flags;

u short cmd slot;

u_int cmd_cdblen;

u int cmd_scblen;

b

Entry Points for Module Initialization
This section describes the entry points for operations that are performed by SCSI HBA drivers.

The following code for a SCSI HBA driver illustrates a representative dev_ops(9S) structure.
The driver must initialize the devo_bus_ops field in this structure to NULL. A SCSI HBA driver
can provide leaf driver interfaces for special purposes, in which case the devo_cb_ops field
might point to a cb_ops(9S) structure. In this example, no leaf driver interfaces are exported, so
the devo_cb_ops field is initialized to NULL.

_init() Entry Point (SCSI HBA Drivers)

The _init(9E) function initializes a loadable module. _init() is called before any other
routine in the loadable module.

Ina SCSIHBA, the init() function mustcall scsi hba init(9F) to inform the framework of
the existence of the HBA driver before callingmod_install(9F).If scsi_hba__init() returnsa
nonzero value, init() should return this value. Otherwise, init() mustreturn the value
returned by mod_install(9F).

The driver should initialize any required global state before calling mod_install(9F).

Ifmod_install() fails, the _init() function must free any global resources allocated. _init()
must call scsi_hba_fini(9F) before returning.

The following example uses a global mutex to show how to allocate data that is global to all
instances of a driver. The code declares global mutex and soft-state structure information. The
global mutex and soft state are initialized during _init().

Chapter 18 « SCSIHost Bus Adapter Drivers 367


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-fini-9f

HBA Driver Dependency and Configuration Issues

_fini() Entry Point (SCSI HBA Drivers)

The _fini(9E) function is called when the system is about to try to unload the SCSI HBA driver.
The fini() function must callmod remove(9F) to determine whether the driver can be
unloaded. If mod_remove () returns 0, the module can be unloaded. The HBA driver must
deallocate any global resources allocated in _init(9E). The HBA driver must also call

scsi_hba fini(9F).

_fini() must return the value returned by mod_remove().

Note - The HBA driver must not free any resources or call scsi_hba_fini(9F) unless
mod_remove(9F) returns 0.

Example 18-1 shows module initialization for SCSI HBA.

EXAMPLE 18-1 Module Initialization for SCSTHBA

static struct dev_ops isp dev_ops = {

DEVO_REV, /* devo_rev */
0, /* refcnt */
isp getinfo, /* getinfo */
nulldev, /* probe */
isp_attach, /* attach */
isp detach, /* detach */
nodev, /* reset */
NULL, /* driver operations */
NULL, /* bus operations */
isp_power, /* power management */
+i
/*
* Local static data
*/
static kmutex_ t isp global mutex;
static void *isp state;
int
_init(void)
{
int err;

if ((err = ddi soft state init(&isp state,
sizeof (struct isp), 0)) != 0) {
return (err);

if ((err = scsi hba init(&modlinkage)) == 0) {
mutex_init(&isp global mutex, "isp global mutex"
MUTEX DRIVER, NULL);
if ((err = mod install(&modlinkage)) != 0) {
mutex destroy(&isp global mutex);
scsi hba fini(&modlinkage);
ddi soft state fini(&isp state);

368 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-remove-9f

HBA Driver Dependency and Configuration Issues

EXAMPLE 18-1 Module Initialization for SCST HBA (Continued)

}
return (err);
}
int
_fini(void)
{
int err;
if ((err = mod remove(&modlinkage)) == 0) {
mutex destroy(&isp global mutex);
scsi hba fini(&modlinkage);
ddi soft state fini(&isp state);
}
return (err);
}

Autoconfiguration Entry Points

Associated with each device driver isa dev_ops(9S) structure, which enables the kernel to locate
the autoconfiguration entry points of the driver. A complete description of these
autoconfiguration routines is given in Chapter 6, “Driver Autoconfiguration.” This section
describes only those entry points associated with operations performed by SCSI HBA drivers.
These entry points include attach(9E) and detach(9E).

attach() Entry Point (SCSI HBA Drivers)

The attach(9E) entry point for a SCSI HBA driver performs several tasks when configuring and
attaching an instance of the driver for the device. For a typical driver of real devices, the
following operating system and hardware concerns must be addressed:

Soft-state structure

DMA

Transport structure

Attaching an HBA driver

Register mapping

Interrupt specification

Interrupt handling

Create power manageable components
Report attachment status

Soft-State Structure

When allocating the per-device-instance soft-state structure, a driver must clean up carefully if
an error occurs.

Chapter 18 « SCSIHost Bus Adapter Drivers 369


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

HBA Driver Dependency and Configuration Issues

DMA

The HBA driver must describe the attributes of its DMA engine by properly initializing the
ddi dma attr_ t structure.

static ddi_dma_attr t isp dma_attr = {

DMA ATTR VO, /* ddi_dma_attr version */
0, /* low address */
Oxffffffff, /* high address */
OxQ0ffffff, /* counter upper bound */
1, /* alignment requirements */
0x3f, /* burst sizes */
1, /* minimum DMA access */
Oxffffffff, /* maximum DMA access */
(1<<24)-1, /* segment boundary restrictions */
1, /* scatter-gather list length */
512, /* device granularity */
0 /* DMA flags */
+
The driver, if providing DMA, should also check that its hardware is installed in a DMA-capable
slot:

if (ddi slaveonly(dip) == DDI SUCCESS) {
return (DDI FAILURE);
}

Transport Structure

The driver should further allocate and initialize a transport structure for this instance. The
tran_hba_private field is set to point to this instance's soft-state structure. The
tran_tgt probe field can be set to NULL to achieve the default behavior, if no special probe

customization is needed.

tran
isp->isp tran
isp->isp dip

tran->tran hba private
tran->tran_tgt private
tran->tran_tgt init
tran->tran_tgt probe
tran->tran_tgt free

tran->tran_start
tran->tran_abort
tran->tran_reset
tran->tran_getcap
tran->tran_setcap
tran->tran init pkt
tran->tran destroy pkt
tran->tran_dmafree
tran->tran sync pkt

370

scsi hba tran alloc(dip,

SCSI_HBA_CANSLEEP);

tran;
dip;

isp;

NULL ;

isp tran tgt init;
scsi hba probe;
(void (*)())NULL;

isp scsi start;

isp scsi abort;

isp scsi reset;

isp scsi getcap;

isp scsi setcap;

isp scsi init pkt;
isp scsi destroy pkt;
isp scsi dmafree;

isp scsi sync pkt;

Writing Device Drivers « September 2010



HBA Driver Dependency and Configuration Issues

tran->tran_reset_notify
tran->tran bus quiesce
tran->tran bus unquiesce
tran->tran bus reset
tran->tran_interconnect_type

isp_scsi_reset notify;

isp tran bus quiesce

isp tran bus unquiesce

isp tran bus reset
isp_tran_interconnect_type

Attaching an HBA Driver

The driver should attach this instance of the device, and perform error cleanup if necessary.

i = scsi_hba_attach setup(dip, &isp dma_attr, tran, 0);
if (i != DDI_SUCCESS) {

/* do error recovery */

return (DDI FAILURE);

Register Mapping
The driver should map in its device's registers. The driver need to specify the following items:

= Register set index
= Data access characteristics of the device
= Size of the register to be mapped

ddi device acc attr t dev_attributes;

dev_attributes.devacc _attr version = DDI DEVICE ATTR VO;
dev_attributes.devacc _attr dataorder = DDI_STRICTORDER ACC;
dev_attributes.devacc attr endian flags = DDI STRUCTURE LE ACC;

if (ddi_regs map setup(dip, @, (caddr t *)&isp->isp reg,
0, sizeof (struct ispregs), &dev_attributes,
&isp->isp _acc_handle) !'= DDI SUCCESS) {
/* do error recovery */
return (DDI FAILURE);
}

Adding an Interrupt Handler

The driver must first obtain the iblock cookie to initialize any mutexes that are used in the driver
handler. Only after those mutexes have been initialized can the interrupt handler be added.

i = ddi get iblock cookie(dip, @, &isp->iblock cookie};
if (i != DDI_SUCCESS) {

/* do error recovery */

return (DDI_FAILURE);
}

mutex init(&isp->mutex, "isp mutex", MUTEX DRIVER,
(void *)isp->iblock cookie);

i = ddi add intr(dip, @, &isp->iblock cookie,

0, isp intr, (caddr t)isp);

if (i != DDI SUCCESS) {

Chapter 18 « SCSIHost Bus Adapter Drivers 371



Entry Points for SCSA HBA Drivers

/* do error recovery */
return (DDI FAILURE);
}

If a high-level handler is required, the driver should be coded to provide such a handler.
Otherwise, the driver must be able to fail the attach. See “Handling High-Level Interrupts” on
page 147 for a description of high-level interrupt handling.

Create Power Manageable Components

With power management, if the host bus adapter only needs to power down when all target
adapters are at power level 0, the HBA driver only needs to provide a power(9E) entry point.
Refer to Chapter 12, “Power Management.” The HBA driver also needs to create a
pm-components(9P) property that describes the components that the device implements.

Nothing more is necessary, since the components will default to idle, and the power
management framework's default dependency processing will ensure that the host bus adapter
will be powered up whenever an target adapter is powered up. Provided that automatic power
management is enabled automatically, the processing will also power down the host bus adapter
when all target adapters are powered down ().

Report Attachment Status

Finally, the driver should report that this instance of the device is attached and return success.

ddi report dev(dip);
return (DDI SUCCESS);

detach () Entry Point (SCSI HBA Drivers)

The driver should perform standard detach operations, including calling
scsi_hba detach(9F).

Entry Points for SCSA HBA Drivers

372

An HBA driver can work with target drivers through the SCSA interface. The SCSA interfaces
require the HBA driver to supply a number of entry points that are callable through the
scsi_hba_tran(9S) structure.

These entry points fall into five functional groups:

Target driver instance initialization
Resource allocation and deallocation
Command transport

Capability management

Abort and reset handling

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-detach-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s

Entry Points for SCSA HBA Drivers

= Dynamic reconfiguration

The following table lists the entry points for SCSA HBA by function groups.

TABLE 18-3 SCSA Entry Points

Function Groups

Entry Points Within Group

Description

Target Driver Instance
Initialization

Resource Allocation

Command Transport

Capability Management

Abort and Reset

Dynamic Reconfiguration

tran tgt init(9E)

tran tgt probe(9E)

tran tgt free(9E)

tran init pkt(9E)
tran destroy pkt(9E)

tran sync pkt(9E)

tran dmafree(9E)
tran start(9E)
tran getcap(9E)

tran setcap(9E)
tran abort(9E)
tran reset(9E)
tran bus reset(9E)

tran reset notify(9E)

tran quiesce(9E)

tran_unquiesce(9E)

Performs per-target initialization
(optional)

Probes SCSI bus for existence of a target
(optional)

Performs per-target deallocation
(optional)

Allocates SCSI packet and DMA resources
Frees SCSI packet and DMA resources

Synchronizes memory before and after
DMA

Frees DMA resources

Transports a SCSI command
Inquires about a capability's value
Sets a capability's value

Aborts outstanding SCSI commands
Resets a target device or the SCSI bus
Resets the SCSI bus

Request to notify target of bus reset
(optional)

Stops activity on the bus

Resumes activity on the bus

Target Driver Instance Initialization

The following sections describe target entry points.

Chapter 18 « SCSIHost Bus Adapter Drivers

373


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-unquiesce-9e

Entry Points for SCSA HBA Drivers

374

tran_tgt_init() Entry Point
The tran_tgt_init(9E) entry point enables the HBA to allocate and initialize any per-target
resources. tran_tgt_init() also enables the HBA to qualify the device's address as valid and

supportable for that particular HBA. By returning DDI_FAILURE, the instance of the target
driver for that device is not probed or attached.

tran_tgt_init() isnotrequired. If tran_tgt_init() is notsupplied, the framework attempts
to probe and attach all possible instances of the appropriate target drivers.

static int

isp_tran_tgt init(
dev_info t *hba dip,
dev_info t *tgt dip,
scsi_hba_tran_t *tran,
struct scsi device *sd)

{

return ((sd->sd address.a target < N ISP TARGETS WIDE &&
sd->sd_address.a lun < 8) ? DDI SUCCESS : DDI FAILURE);

tran_tgt_probe() Entry Point

The tran_tgt_probe(9E) entry point enables the HBA to customize the operation of
scsi_probe(9F), if necessary. This entry point is called only when the target driver calls
scsi probe().

The HBA driver can retain the normal operation of scsi_probe () by calling
scsi_hba_probe(9F) and returning its return value.

This entry point is not required, and if not needed, the HBA driver should set the
tran_tgt probe vectorinthe scsi hba tran(9S) structure to pointto scsi hba probe().

scsi_probe() allocatesa scsi_inquiry(9S) structure and sets the sd_inq field of the
scsi_device(9S) structure to point to the datain scsi_inquiry.scsi_hba_probe () handles
this task automatically. scsi_unprobe(9F) then frees the scsi_inquiry data.

Except for the allocation of scsi_inquiry data, tran_tgt_probe() must be stateless, because
the same SCSI device might call tran_tgt_probe () several times. Normally, allocation of
scsi_inquiry dataishandled by scsi_hba_probe().

Note - The allocation of the scsi_inquiry(9S) structure is handled automatically by
scsi_hba_probe (). This information is only of concern if you want custom scsi_probe()
handling.

static int
isp tran tgt probe(
struct scsi device *sd,

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-inquiry-9s

Entry Points for SCSA HBA Drivers

int (*callback)())
{
/*
* Perform any special probe customization needed.
* Normal probe handling.
*/
return (scsi hba probe(sd, callback));
}

tran_tgt_free() Entry Point

The tran_tgt_free(9E) entry point enables the HBA to perform any deallocation or clean-up
procedures for an instance of a target. This entry point is optional.

static void
isp_tran_tgt free(

dev_info t *hba dip,
dev_info t *tgt dip,
scsi hba tran t *hba_tran,
struct scsi_device *sd)
{
/*
* Undo any special per-target initialization done
* earlier in tran_tgt init(9F) and tran_tgt probe(9F)
*/
}
L]
Resource Allocation

The following sections discuss resource allocation.

tran_init_pkt () Entry Point

The tran_init_pkt(9E) entry point allocates and initializes a scsi_pkt(9S) structure and
DMA resources for a target driver request.

The tran_init_pkt(9E) entry point is called when the target driver calls the SCSA function
scsi_init pkt(9F).

Each call of the tran_init_ pkt(9E) entry point is a request to perform one or more of three
possible services:

m  Allocation and initialization of a scsi_pkt(9S) structure
= Allocation of DMA resources for data transfer
= Reallocation of DMA resources for the next portion of the data transfer

Allocation and Initialization of a scsi_pkt(9S) Structure

The tran_init_pkt(9E) entry point must allocate a scsi_pkt(9S) structure through
scsi_hba pkt_alloc(9F)if pkt is NULL.

scsi_hba_pkt_alloc(9F) allocates space for the following items:

Chapter 18 « SCSIHost Bus Adapter Drivers 375


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-pkt-alloc-9f

Entry Points for SCSA HBA Drivers

376

scsi_pkt(9S)

SCSI CDB oflength cmdlen

Completion area for SCSI status of length statuslen
Per-packet target driver private data area of length tgtlen
Per-packet HBA driver private data area of length hbalen

The scsi_pkt(9S) structure members, including pkt, must be initialized to zero except for the
following members:

®  pkt_scbp - Status completion

= pkt cdbp-CDB

®  pkt ha private - HBA driver private data

= pkt_private - Target driver private data

These members are pointers to memory space where the values of the fields are stored, as shown
in the following figure. For more information, refer to “scsi_pkt Structure (HBA)” on

page 361.

FIGURE18-5 scsi pkt(9S) Structure Pointers

scsi_address

CDB

pkt_cdbp —p Status

pkt_scbp

pkt private

pkt_ha private || TGT driver
per pkt data

: HBA driver

scsi_pkt structure per pkt data

The following example shows allocation and initialization of a scsi_pkt structure.

EXAMPLE 18-2 HBA Driver Initialization of a SCSI Packet Structure

static struct scsi pkt *
isp scsi init pkt(

struct scsi address *ap,

struct scsi pkt *pkt,

struct buf *bp,

int cmdlen,

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

Entry Points for SCSA HBA Drivers

EXAMPLE 18-2 HBA Driver Initialization of a SCSI Packet Structure (Continued)
int statuslen,
int tgtlen,
int flags,
int (*callback) (),
caddr t arg)
{
struct isp_cmd *sp;
struct isp *isp;
struct scsi pkt *new pkt;

ASSERT (callback == NULL FUNC || callback == SLEEP FUNC);

isp = (struct isp *)ap->a hba tran->tran hba private;
/*
* First step of isp scsi init pkt: pkt allocation
*/
if (pkt == NULL) {
pkt = scsi hba pkt alloc(isp->isp dip, ap, cmdlen,
statuslen, tgtlen, sizeof (struct isp cmd),
callback, arg);
if (pkt == NULL) {
return (NULL);

pkt->pkt comp
pkt->pkt_flags
pkt->pkt time
pkt->pkt resid
pkt->pkt statistics
pkt->pkt reason

(void (*)())NULL;

’

’

}

sp = (struct isp_cmd *)pkt->pkt ha private;
/*

* Initialize the new pkt

*/

sp->cmd_pkt = pkt;
sp->cmd_flags = 0;
sp->cmd_scblen = statuslen;
sp->cmd_cdblen = cmdlen;
sp->cmd _dmahandle = NULL;
sp->cmd_ncookies =0;
sp->cmd_cookie =0;
sp->cmd_cookiecnt =0;
sp->cmd_nwin =0;
pkt->pkt address = *ap;

[SESESESRS)

’
’
’

new pkt = pkt;
} else {
sp = (struct isp cmd *)pkt->pkt ha private;
new pkt = NULL;
}
/*
* Second step of isp scsi init pkt: dma allocation/move
*/
if (bp && bp->b bcount !'= 0) {
if (sp->cmd_dmahandle == NULL) {
if (isp i dma alloc(isp, pkt, bp,

Chapter 18 « SCSIHost Bus Adapter Drivers

377



Entry Points for SCSA HBA Drivers

378

EXAMPLE 18-2 HBA Driver Initialization of a SCSI Packet Structure (Continued)

flags, callback) == 0) {
if (new pkt) {
scsi hba pkt free(ap, new pkt);

}
return ((struct scsi pkt *)NULL);

}
} else {
ASSERT (new_pkt == NULL);
if (isp_i_dma_move(isp, pkt, bp) == 0) {
return ((struct scsi pkt *)NULL);
}
}

}
return (pkt);

Allocation of DMA Resources

The tran_init_pkt(9E) entry point must allocate DMA resources for a data transfer if the
following conditions are true:

= bpisnotnull
= bp->b bcountisnot zero.
= DMA resources have not yet been allocated for this scsi_pkt(9S).

The HBA driver needs to track how DMA resources are allocated for a particular command.
This allocation can take place with a flag bit or a DMA handle in the per-packet HBA driver
private data.

The PKT_DMA_PARTIAL flag in the pkt enables the target driver to break up a data transfer into
multiple SCSI commands to accommodate the complete request. This approach is useful when
the HBA hardware scatter-gather capabilities or system DMA resources cannot complete a
request in a single SCSI command.

The PKT_DMA_PARTIAL flag enables the HBA driver to set the DDI_DMA_PARTIAL flag. The
DDI_DMA_PARTIAL flagis useful when the DMA resources for this SCSI command are allocated.
For example the ddi_dma_buf_bind_handle(9F)) command can be used to allocate DMA
resources. The DMA attributes used when allocating the DMA resources should accurately
describe any constraints placed on the ability of the HBA hardware to perform DMA. If the
system can only allocate DMA resources for part of the request,
ddi_dma_buf bind handle(9F) returns DDI_DMA PARTIAL MAP.

The tran_init_pkt(9E) entry point must return the amount of DMA resources not allocated
for this transfer in the field pkt_resid.

A target driver can make one request to tran_init_pkt(9E) to simultaneously allocate both a
scsi pkt(9S) structure and DMA resources for that pkt. In this case, if the HBA driver is
unable to allocate DMA resources, that driver must free the allocated scsi_pkt(9S) before
returning. The scsi_pkt(9S) must be freed by calling scsi_hba_pkt_free(9F).

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-pkt-free-9f

Entry Points for SCSA HBA Drivers

The target driver might first allocate the scsi_pkt(9S) and allocate DM A resources for this pkt
at a later time. In this case, if the HBA driver is unable to allocate DMA resources, the driver
must not free pkt. The target driver in this case is responsible for freeing the pkt.

EXAMPLE 18-3 HBA Driver Allocation of DMA Resources

static int
isp i dma_alloc(
struct isp *isp,
struct scsi pkt *pkt,
struct buf *bp,
int flags,
int (*callback) ())
{
struct isp cmd *sp = (struct isp cmd *)pkt->pkt ha private;
int dma flags;
ddi dma_attr t tmp _dma attr;
int (*cb) (caddr_t);
int i;

ASSERT (callback == NULL FUNC || callback == SLEEP FUNC);

if (bp->b_flags & B _READ) {
sp->cmd_flags & ~CFLAG DMASEND;
dma flags = DDI DMA READ;

} else {
sp->cmd_flags |= CFLAG_DMASEND;
dma_flags = DDI_DMA WRITE;

}

if (flags & PKT CONSISTENT) {
sp->cmd_flags |= CFLAG CMDIOPB;
dma_flags |= DDI_DMA CONSISTENT;

}

if (flags & PKT DMA PARTIAL) {
dma_flags |= DDI_DMA PARTIAL;

}

tmp dma attr = isp dma attr;
tmp dma attr.dma attr burstsizes = isp->isp burst size;

cb = (callback == NULL FUNC) ? DDI_DMA DONTWAIT :
DDI DMA SLEEP;

if ((i = ddi dma alloc handle(isp->isp dip, &tmp dma attr,
cb, 0, &sp->cmd dmahandle)) != DDI SUCCESS) {

switch (i) {

case DDI DMA BADATTR:
bioerror(bp, EFAULT);
return (0);

case DDI DMA NORESOURCES:
bioerror(bp, 0);
return (0);

}

i = ddi dma buf bind handle(sp->cmd dmahandle, bp, dma flags,
cb, 0, &sp->cmd dmacookies[@], &sp->cmd ncookies);

Chapter 18 « SCSIHost Bus Adapter Drivers 379


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

Entry Points for SCSA HBA Drivers

EXAMPLE 18-3 HBA Driver Allocation of DMA Resources (Continued)

switch (i) {
case DDI DMA PARTIAL MAP:
if (ddi_dma numwin(sp->cmd dmahandle, &sp->cmd nwin) ==
DDI FAILURE) {
cmn_err(CE_PANIC, "ddi dma numwin() failed\n")
}

if (ddi dma getwin(sp->cmd dmahandle, sp->cmd curwin,
&sp->cmd _dma offset, &sp->cmd dma len,
&sp->cmd _dmacookies[@], &sp->cmd ncookies) ==
DDI FAILURE) {
cmn_err(CE_PANIC, "ddi dma_getwin() failed\n")

goto get dma cookies;
case DDI_DMA MAPPED:
sp->cmd_nwin = 1;
sp->cmd dma len = 0;
sp->cmd _dma offset = 0;

get dma_cookies:

i=20;
sp->cmd_dmacount = 0;
for (;;) {

sp->cmd_dmacount += sp->cmd_dmacookies[i++].dmac_size;

if (i == ISP_NDATASEGS || i == sp->cmd_ncookies)
break;
ddi_dma_nextcookie(sp->cmd_dmahandle,
&sp->cmd_dmacookies[i]);

}

sp->cmd_cookie = i;

sp->cmd cookiecnt = i;

sp->cmd_flags |= CFLAG DMAVALID;
pkt->pkt resid = bp->b bcount - sp->cmd dmacount;
return (1);

case DDI DMA NORESOURCES:
bioerror(bp, 0);
break;

case DDI DMA NOMAPPING:
bioerror(bp, EFAULT);
break;

case DDI_DMA TOOBIG:
bioerror(bp, EINVAL);
break;

case DDI DMA INUSE:
cmn_err(CE_PANIC, "ddi_dma buf bind handle:"
" DDI DMA INUSE impossible\n")

default:
cmn_err(CE_PANIC, "ddi dma_buf bind handle:"

380 Writing Device Drivers « September 2010



Entry Points for SCSA HBA Drivers

EXAMPLE 18-3 HBA Driver Allocation of DMA Resources (Continued)

" @x%x impossible\n", i);

}

ddi dma free handle(&sp->cmd dmahandle);
sp->cmd_dmahandle = NULL;

sp->cmd_flags &= ~CFLAG DMAVALID;

return (0);

Reallocation of DMA Resources for Data Transfer

For a previously allocated packet with data remaining to be transferred, the tran_init_pkt(9E)
entry point must reallocate DMA resources when the following conditions apply:

Partial DMA resources have already been allocated.

A non-zero pkt_resid was returned in the previous call to tran_init pkt(9E).
bp is not null.

bp->b_bcount is not zero.

When reallocating DMA resources to the next portion of the transfer, tran_init_pkt(9E) must
return the amount of DMA resources not allocated for this transfer in the field pkt_resid.

If an error occurs while attempting to move DMA resources, tran_init_pkt(9E) must not free
the scsi_pkt(9S). The target driver in this case is responsible for freeing the packet.

If the callback parameter is NULL_FUNC, the tran_init_pkt(9E) entry point must not sleep or
call any function that might sleep. If the callback parameter is SLEEP_FUNC and resources are not
immediately available, the tran_init_pkt(9E) entry point should sleep. Unless the request is
impossible to satisfy, tran_init_pkt () should sleep until resources become available.

EXAMPLE 18-4 DMA Resource Reallocation for HBA Drivers

static int
isp i dma_move(
struct isp *isp,
struct scsi_pkt *pkt,
struct buf *bp)
{
struct isp_cmd *sp = (struct isp _cmd *)pkt->pkt_ ha private;
int i;

ASSERT (sp->cmd_flags & CFLAG COMPLETED) ;

sp->cmd_flags &= ~CFLAG_COMPLETED;
/*

* If there are no more cookies remaining in this window,
* must move to the next window first.

*/
if (sp->cmd_cookie == sp->cmd_ncookies) {
/*
* For small pkts, leave things where they are
*/

Chapter 18 « SCSIHost Bus Adapter Drivers 381


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e

Entry Points for SCSA HBA Drivers

382

EXAMPLE 18-4 DMA Resource Reallocation for HBA Drivers (Continued)

if (sp->cmd_curwin == sp->cmd_nwin && sp->cmd_nwin == 1)
return (1);
/*
* At last window, cannot move
*/
if (++sp->cmd curwin >= sp->cmd nwin)
return (0);
if (ddi_dma_getwin(sp->cmd_dmahandle, sp->cmd curwin,
&sp->cmd_dma_offset, &sp->cmd_dma_len,
&sp->cmd _dmacookies[@], &sp->cmd ncookies) ==
DDI FAILURE)

return (0);
sp->cmd_cookie = 0;
} else {
/*
* Still more cookies in this window - get the next one
*/

ddi dma nextcookie(sp->cmd dmahandle,
&sp->cmd_dmacookies[0]);

}

/*

* Get remaining cookies in this window, up to our maximum
*/

i=0;

for (;;) {

sp->cmd_dmacount += sp->cmd dmacookies[i++].dmac size;
sp->cmd_cookie++;
if (i == ISP NDATASEGS ||

sp->cmd_cookie == sp->cmd_ncookies)

break;

ddi_dma_nextcookie(sp->cmd_dmahandle,

&sp->cmd _dmacookies[i]);
}

sp->cmd cookiecnt = 1i;
pkt->pkt resid = bp->b bcount - sp->cmd dmacount;
return (1);

tran_destroy_pkt() Entry Point

The tran_destroy_pkt(9E) entry point is the HBA driver function that deallocates
scsi_pkt(9S) structures. The tran_destroy_pkt() entry point is called when the target driver
callsscsi_destroy pkt(9F).

The tran_destroy_pkt() entry point must free any DMA resources that have been allocated
for the packet. An implicit DMA synchronization occurs if the DMA resources are freed and
any cached data remains after the completion of the transfer. The tran_destroy_pkt() entry
point frees the SCSI packet by calling scsi_hba_pkt_free(9F).

EXAMPLE 18-5 HBA Driver tran_destroy_pkt(9E) Entry Point

static void
isp scsi destroy pkt(
struct scsi address *ap,

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-pkt-free-9f

Entry Points for SCSA HBA Drivers

EXAMPLE 18-5 HBA Driver tran_destroy_pkt(9E) Entry Point (Continued)

struct scsi pkt *pkt)

struct isp cmd *sp = (struct isp cmd *)pkt->pkt ha private;
/*
* Free the DMA, if any
*/
if (sp->cmd flags & CFLAG DMAVALID) {
sp->cmd flags &= ~CFLAG DMAVALID;
(void) ddi_dma_unbind handle(sp->cmd_dmahandle);
ddi dma free handle(&sp->cmd dmahandle);
sp->cmd_dmahandle = NULL;
}
/*
* Free the pkt
*/
scsi_hba pkt free(ap, pkt);

tran_sync_pkt () Entry Point

The tran_sync_pkt(9E) entry point synchronizes the DMA object allocated for the
scsi_pkt(9S) structure before or after a DMA transfer. The tran_sync_pkt () entry pointis
called when the target driver calls scsi_sync_pkt(9F).

If the data transfer direction is a DMA read from device to memory, tran_sync_pkt () must
synchronize the CPU's view of the data. If the data transfer direction is a DMA write from
memory to device, tran_sync_pkt () must synchronize the device's view of the data.

EXAMPLE 18-6 HBA Driver tran_sync_pkt(9E) Entry Point

static void

isp_scsi_sync_pkt(
struct scsi address *ap,
struct scsi pkt *pkt)

struct isp cmd *sp = (struct isp cmd *)pkt->pkt ha private;

if (sp->cmd flags & CFLAG DMAVALID) {
(void)ddi dma_sync(sp->cmd_dmahandle, sp->cmd dma offset,
sp->cmd_dma_len,
(sp->cmd_flags & CFLAG_DMASEND) ?
DDI_DMA SYNC_FORDEV : DDI_DMA SYNC_FORCPU);

tran_dmafree() Entry Point

The tran_dmafree(9E) entry point deallocates DMA resources that have been allocated for a
scsi_pkt(9S) structure. The tran_dmafree() entry point is called when the target driver calls
scsi_dmafree(9F).

Chapter 18 « SCSIHost Bus Adapter Drivers 383


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-dmafree-9f

Entry Points for SCSA HBA Drivers

384

tran_dmafree() must free only DMA resources allocated for a scsi_pkt(9S) structure, not the
scsi_pkt(9S) itself. When DMA resources are freed, a DMA synchronization is implicitly
performed.

Note - The scsi_pkt(9S) is freed in a separate request to tran_destroy_pkt(9E). Because
tran_destroy_pkt() mustalso free DMA resources, the HBA driver must keep accurate note
of whether scsi_pkt () structures have DMA resources allocated.

EXAMPLE 18-7 HBA Driver tran_dmafree(9E) Entry Point

static void
isp_scsi_dmafree(

struct scsi address *ap,
struct scsi pkt *pkt)
{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha private;
if (sp->cmd_flags & CFLAG DMAVALID) {
sp->cmd flags &= ~CFLAG DMAVALID;
(void)ddi dma unbind handle(sp->cmd_dmahandle);
ddi dma free handle(&sp->cmd dmahandle);
sp->cmd_dmahandle = NULL;
}
}
Command Transport

An HBA driver goes through the following steps as part of command transport:

Accept acommand from the target driver.
Issue the command to the device hardware.
Service any interrupts that occur.

Manage time outs.

B =

tran_start() Entry Point

The tran_start(9E) entry point for a SCSI HBA driver is called to transport a SCSI command
to the addressed target. The SCSI command is described entirely within the scsi_pkt(9S)
structure, which the target driver allocated through the HBA driver's tran_init_pkt(9E) entry
point. If the command involves a data transfer, DM A resources must also have been allocated
for the scsi pkt(9S) structure.

The tran_start() entry point is called when a target driver calls scsi_transport(9F).

tran_start() should perform basic error checking along with any initialization that is
required by the command. The FLAG_NOINTR flag in the pkt_flags field of the scsi_pkt(9S)
structure can affect the behavior of tran_start().If FLAG_NOINTRis notset, tran start()
must queue the command for execution on the hardware and return immediately. Upon
completion of the command, the HBA driver should call the pkt completion routine.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

Entry Points for SCSA HBA Drivers

If the FLAG_NOINTR is set, then the HBA driver should not call the pkt completion routine.

The following example demonstrates how to handle the tran_start(9E) entry point. The ISP
hardware provides a queue per-target device. For devices that can manage only one active
outstanding command, the driver is typically required to manage a per-target queue. The driver
then starts up a new command upon completion of the current command in a round-robin
fashion.

EXAMPLE 18-8 HBA Driver tran_start(9E) Entry Point

static int

isp scsi start(
struct scsi address *ap,
struct scsi pkt *pkt)

{
struct isp cmd *sp;
struct isp *isp;
struct isp request *req;
u_long cur lbolt;
int xfercount;
int rval = TRAN ACCEPT;
int i;

sp = (struct isp_cmd *)pkt->pkt ha private;
isp = (struct isp *)ap->a hba tran->tran hba private;

sp->cmd_flags = (sp->cmd flags & ~CFLAG_TRANFLAG) |
CFLAG_IN TRANSPORT;

pkt->pkt_reason = CMD_CMPLT;
/*

* set up request in cmd isp request area so it is ready to
* go once we have the request mutex

*/

req = &sp->cmd _isp request;

req->req header.cq entry type = CQ TYPE REQUEST;
req->req header.cq entry count = 1;

req->req header.cq flags =0;

req->req header.cq seqno = 0;

req->req reserved = 0;

req->req token = (opaque t)sp;

req->req target = TGT(sp);

req->req lun_trn = LUN(sp);

req->req time = pkt->pkt time;

ISP SET PKT FLAGS(pkt->pkt flags, req->req flags);
/*

* Set up data segments for dma transfers.

*/

if (sp->cmd flags & CFLAG DMAVALID) {

if (sp->cmd flags & CFLAG CMDIOPB) {
(void) ddi dma_sync(sp->cmd dmahandle,
sp->cmd_dma_offset, sp->cmd dma len,
DDI DMA SYNC FORDEV);

}

ASSERT (sp->cmd_cookiecnt > 0 &&

Chapter 18 « SCSIHost Bus Adapter Drivers 385


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-start-9e

Entry Points for SCSA HBA Drivers

386

EXAMPLE 18-8 HBA Driver tran_start(9E) Entry Point (Continued)

sp->cmd_cookiecnt <= ISP NDATASEGS);

xfercount = 0;

req->req seg count = sp->cmd cookiecnt;

for (i = 0; i < sp->cmd_cookiecnt; i++) {
req->req dataseg[i].d count =
sp->cmd _dmacookies[i].dmac size;
req->req dataseg[i].d base =
sp->cmd_dmacookies[i].dmac address;
xfercount +=
sp->cmd_dmacookies[i].dmac_size;

for (; 1 < ISP_NDATASEGS; i++) {
req->req dataseg[i].d count = 0;
req->req_dataseg[i].d_base = 0;

}
pkt->pkt_resid = xfercount;

if (sp->cmd flags & CFLAG DMASEND) {
req->req_flags |= ISP_REQ FLAG DATA WRITE;
} else {
req->req flags |= ISP_REQ FLAG DATA READ;

}
} else {
req->req seg count = 0;
req->req dataseg[0].d count = 0;
}
/*
* Set up cdb in the request
*/
req->req cdblen = sp->cmd cdblen;
bcopy((caddr t)pkt->pkt cdbp, (caddr t)req->req cdb,
sp->cmd_cdblen);
/*
* Start the cmd. If NO_INTR, must poll for cmd completion.
*/
if ((pkt->pkt flags & FLAG NOINTR) == 0) {
mutex_enter(ISP_REQ MUTEX(isp));
rval = isp i start cmd(isp, sp);
mutex _exit (ISP _REQ MUTEX(isp));
} else {
rval = isp i polled cmd start(isp, sp);
}

return (rval);

Interrupt Handler and Command Completion

The interrupt handler must check the status of the device to be sure the device is generating the
interrupt in question. The interrupt handler must also check for any errors that have occurred
and service any interrupts generated by the device.

Writing Device Drivers « September 2010



Entry Points for SCSA HBA Drivers

If data is transferred, the hardware should be checked to determine how much data was actually
transferred. The pkt_resid field in the scsi_pkt(9S) structure should be set to the residual of
the transfer.

Commands that are marked with the PKT_CONSISTENT flag when DMA resources are allocated
through tran_init_pkt(9E) take special handling. The HBA driver must ensure that the data
transfer for the command is correctly synchronized before the target driver's command
completion callback is performed.

Once a command has completed, you need to act on two requirements:

= Ifanewcommand is queued up, start the command on the hardware as quickly as possible.

= Call the command completion callback. The callback has been set up in the scsi_pkt(9S)
structure by the target driver to notify the target driver when the command is complete.

Start a new command on the hardware, if possible, before calling the PKT_COMP command
completion callback. The command completion handling can take considerable time. Typically,
the target driver calls functions such as biodone(9F) and possibly scsi_transport(9F) to begin
anew command.

The interrupt handler must return DDI_INTR_CLAIMED if this interrupt is claimed by this driver.
Otherwise, the handler returns DDI_INTR UNCLAIMED.

The following example shows an interrupt handler for the SCSI HBA isp driver. The caddr_t
parameter is set up when the interrupt handler is added in attach(9E). This parameter is
typically a pointer to the state structure, which is allocated on a per instance basis.

EXAMPLE 18-9 HBA Driver Interrupt Handler

static u int
isp intr(caddr t arg)

{
struct isp cmd *sp;
struct isp cmd *head, *tail;
u short response in;
struct isp response *resp;
struct isp *isp = (struct isp *)arg;
struct isp slot *isp slot;
int n;
if (ISP _INT PENDING(isp) == 0) {
return (DDI_INTR UNCLAIMED);
}
do {
again:
/*
* head list collects completed packets for callback later
*/
head = tail = NULL;
/*

* Assume no mailbox events (e.g., mailbox cmds, asynch

Chapter 18 « SCSIHost Bus Adapter Drivers 387


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Entry Points for SCSA HBA Drivers

EXAMPLE 18-9 HBA Driver Interrupt Handler (Continued)

* events, and isp dma errors) as common case.
*/
if (ISP _CHECK SEMAPHORE LOCK(isp) == 0) {
mutex enter(ISP_RESP MUTEX(isp));
/*
* Loop through completion response queue and post
* completed pkts. Check response queue again
* afterwards in case there are more.
*/
isp->isp_response_in =
response_in = ISP_GET_ RESPONSE IN(isp);

/*
* Calculate the number of requests in the queue
*/
n = response _in - isp->isp_response_out;
if (n<0) {
n = ISP_MAX REQUESTS -
isp->isp response out + response in;
}

while (n-- > 0) {
ISP _GET_NEXT RESPONSE OUT(isp, resp);
sp = (struct isp cmd *)resp->resp token;
/*
* Copy over response packet in sp
*/
isp i get response(isp, resp, sp);

}
if (head) {

tail->cmd_forw = sp;

tail = sp;

tail->cmd forw = NULL;
} else {

tail = head = sp;
sp->cmd_forw = NULL;
}
ISP_SET RESPONSE OUT(isp);
ISP_CLEAR RISC_INT(isp);
mutex exit (ISP RESP_MUTEX(isp));

if (head) {
isp i call pkt comp(isp, head);
}
} else {
if (isp i handle mbox cmd(isp) !'= ISP _AEN SUCCESS)
return (DDI_INTR CLAIMED);
}
/*
* if there was a reset then check the response
* queue again
*/
goto again;

}
} while (ISP_INT PENDING(isp));

return (DDI_INTR_CLAIMED);

388 Writing Device Drivers « September 2010



Entry Points for SCSA HBA Drivers

EXAMPLE 18-9 HBA Driver Interrupt Handler (Continued)

}

static void
isp_i_call_pkt_comp(

struct isp *isp,
struct isp_cmd *head)
{
struct isp *isp;
struct isp_cmd *sp;
struct scsi pkt *pkt;
struct isp response *resp;
u_char status;
while (head) {
sp = head;
pkt = sp->cmd_pkt;
head = sp->cmd forw;
ASSERT (sp->cmd_flags & CFLAG _FINISHED);
resp = &sp->cmd_isp_response;
pkt->pkt scbp[@] = (u char)resp->resp scb;
pkt->pkt_state = ISP_GET PKT STATE(resp->resp state);
pkt->pkt statistics = (u_long)
ISP _GET PKT STATS(resp->resp status flags);
pkt->pkt resid = (long)resp->resp resid;
/*
* If data was xferred and this is a consistent pkt,
* do a dma sync
*/
if ((sp->cmd_flags & CFLAG_CMDIOPB) &&
(pkt->pkt _state & STATE XFERRED DATA)) {
(void) ddi dma sync(sp->cmd dmahandle,
sp->cmd _dma offset, sp->cmd dma len,
DDI DMA SYNC FORCPU);
}
sp->cmd_flags = (sp->cmd_flags & ~CFLAG_IN TRANSPORT) |
CFLAG_COMPLETED;
/*
* Call packet completion routine if FLAG NOINTR is not set.
*/
if (((pkt->pkt flags & FLAG NOINTR) == 0) &&
pkt->pkt_comp) {
(*pkt->pkt comp) (pkt);
}
}
}
Timeout Handler

The HBA driver is responsible for enforcing time outs. A command must be complete within a
specified time unless a zero time out has been specified in the scsi_pkt(9S) structure.

Chapter 18 « SCSIHost Bus Adapter Drivers 389


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s

Entry Points for SCSA HBA Drivers

390

When a command times out, the HBA driver should mark the scsi_pkt(9S) with pkt_reason
setto CMD_TIMEOUT and pkt_statistics OR'd with STAT TIMEOUT. The HBA driver should also
attempt to recover the target and bus. If this recovery can be performed successfully, the driver
should mark the scsi_pkt(9S) using pkt_statistics OR'd with either STAT_BUS_RESET or
STAT DEV_RESET.

After the recovery attempt has completed, the HBA driver should call the command completion
callback.

Note - If recovery was unsuccessful or not attempted, the target driver might attempt to recover
from the timeout by calling scsi_reset(9F).

The ISP hardware manages command timeout directly and returns timed-out commands with
the necessary status. The timeout handler for the isp sample driver checks active commands for
the time out state only once every 60 seconds.

The isp sample driver uses the timeout(9F) facility to arrange for the kernel to call the timeout
handler every 60 seconds. The caddr_t argument is the parameter set up when the timeout is
initialized at attach(9E) time. In this case, the caddr_t argument is a pointer to the state
structure allocated per driver instance.

If timed-out commands have not been returned as timed-out by the ISP hardware, a problem
has occurred. The hardware is not functioning correctly and needs to be reset.

Capability Management

The following sections discuss capability management.

tran_getcap() Entry Point

The tran_getcap(9E) entry point for a SCSI HBA driver is called by scsi_ifgetcap(9F). The
target driver calls scsi_ifgetcap() to determine the current value of one of a set of
SCSA-defined capabilities.

The target driver can request the current setting of the capability for a particular target by
setting the whom parameter to nonzero. A whom value of zero indicates a request for the current
setting of the general capability for the SCSI bus or for adapter hardware.

The tran_getcap() entry point should return -1 for undefined capabilities or the current value
of the requested capability.

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the capability
string against the canonical set of defined capabilities.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-lookup-capstr-9f

Entry Points for SCSA HBA Drivers

EXAMPLE 18-10 HBA Driver tran_getcap(9E) Entry Point

static int
isp scsi getcap(
struct scsi address *ap,
char *cap,
int whom)
{
struct isp *isp;
int rval = 0;
u_char tgt = ap->a_target;
/*
* We don’t allow getting capabilities for other targets
*/
if (cap == NULL || whom == 0) {

return (-1);
}
isp = (struct isp *)ap->a hba tran->tran hba private;
ISP MUTEX ENTER(isp);

switch (scsi hba lookup capstr(cap)) {
case SCSI CAP_DMA MAX:
rval = 1 << 24; /* Limit to 16MB max transfer */
break;
case SCSI CAP _MSG OUT:
rval = 1;
break;
case SCSI CAP DISCONNECT:
if ((isp->isp target scsi options[tgt] &
SCSI OPTIONS DR) == 0) {
break;
} else if (
(isp->isp cap[tgt] & ISP CAP DISCONNECT) == 0) {
break;
}
rval = 1;
break;
case SCSI CAP_ SYNCHRONOUS:
if ((isp->isp target scsi options[tgt] &
SCSI OPTIONS SYNC) == 0) {
break;
} else if (
(isp->isp cap[tgt] & ISP _CAP_SYNC) == 0) {
break;
}
rval = 1;
break;
case SCSI_CAP_WIDE_XFER:
if ((isp->isp target scsi options[tgt] &
SCSI OPTIONS WIDE) == 0) {
break;
} else if (
(isp->isp cap[tgt] & ISP _CAP WIDE) == 0) {
break;
}
rval = 1;
break;
case SCSI CAP TAGGED QING:
if ((isp->isp target scsi options[tgt] &

Chapter 18 « SCSIHost Bus Adapter Drivers 391



Entry Points for SCSA HBA Drivers

EXAMPLE 18-10 HBA Driver tran_getcap(9E) Entry Point (Continued)

SCSI OPTIONS DR) == 0 ||
(isp->isp target scsi options[tgt] &
SCSI OPTIONS TAG) == 0) {
break;
} else if (
(isp->isp cap[tgt] & ISP CAP TAG) == 0) {
break;
}
rval = 1;
break;
case SCSI CAP UNTAGGED QING:
rval = 1;
break;
case SCSI CAP PARITY:
if (isp->isp target scsi options[tgt] &
SCSI OPTIONS PARITY) {
rval = 1;
}
break;
case SCSI CAP INITIATOR ID:
rval = isp->isp_initiator_id;
break;
case SCSI CAP_ARQ:
if (isp->isp cap[tgt] & ISP_CAP_AUTOSENSE) {

rval = 1;
}
break;
case SCSI CAP_LINKED CMDS:
break;
case SCSI CAP RESET NOTIFICATION:
rval = 1;
break;

case SCSI CAP_GEOMETRY:
rval = (64 << 16) | 32;
break;

default:
rval = -1;
break;

}

ISP MUTEX EXIT(isp);
return (rval);

tran_setcap() Entry Point

The tran_setcap(9E) entry point for a SCSIHBA driver is called by scsi_ifsetcap(9F). A
target driver calls scsi_ifsetcap() to change the current one of a set of SCSA-defined
capabilities.

The target driver might request that the new value be set for a particular target by setting the
whom parameter to nonzero. A whom value of zero means the request is to set the new value for
the SCSI bus or for adapter hardware in general.

392 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f

Entry Points for SCSA HBA Drivers

tran_setcap() should return the following values as appropriate:

= -1 forundefined capabilities
= @ ifthe HBA driver cannot set the capability to the requested value
= 1ifthe HBA driver is able to set the capability to the requested value

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the capability
string against the canonical set of defined capabilities.

EXAMPLE 18-11 HBA Driver tran_setcap(9E) Entry Point

static int
isp scsi_setcap(
struct scsi_address *ap,
char *cap,
int value,
int whom)
{
struct isp *isp;
int rval = 0;
u_char tgt = ap->a_target;
int update isp = 0;
/*
* We don’t allow setting capabilities for other targets
*/

if (cap == NULL || whom == 0) {
return (-1);

}

isp = (struct isp *)ap->a hba tran->tran hba private;
ISP MUTEX ENTER(isp);

switch (scsi _hba lookup capstr(cap)) {
case SCSI CAP DMA MAX:
case SCSI_CAP_MSG_OUT:
case SCSI CAP_PARITY:
case SCSI CAP UNTAGGED QING:
case SCSI CAP_LINKED CMDS:
case SCSI CAP RESET NOTIFICATION:
/*
* None of these are settable through
* the capability interface.
*/
break;
case SCSI CAP DISCONNECT:
if ((isp->isp _target scsi options[tgt] &
SCSI OPTIONS DR) == 0) {
break;
} else {
if (value) {
isp->isp cap[tgt] |= ISP_CAP_DISCONNECT;
} else {
isp->isp cap[tgt] &= ~ISP_CAP DISCONNECT;
}
}
rval = 1;
break;

Chapter 18 « SCSIHost Bus Adapter Drivers 393


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-lookup-capstr-9f

Entry Points for SCSA HBA Drivers

EXAMPLE 18-11 HBA Driver tran_setcap(9E) Entry Point (Continued)

case SCSI_CAP_SYNCHRONOUS:
if ((isp->isp_target scsi options[tgt] &
SCSI_OPTIONS_SYNC) == 0) {
break;
} else {
if (value) {
isp->isp cap[tgt] |= ISP_CAP_SYNC;
} else {
isp->isp cap[tgt] &= ~ISP CAP SYNC;
}
}
rval = 1;
break;
case SCSI CAP TAGGED QING:
if ((isp->isp_target scsi options[tgt] &
SCSI OPTIONS DR) == 0 ||
(isp->isp target scsi options[tgt] &
SCSI OPTIONS TAG) == 0) {
break;
} else {
if (value) {
isp->isp cap[tgt] |= ISP _CAP TAG;
} else {
isp->isp_cap[tgt] &= ~ISP_CAP_TAG;
}

}

rval = 1;

break;

case SCSI CAP WIDE XFER:
if ((isp->isp target scsi options[tgt] &
SCSI OPTIONS WIDE) == 0) {

break;

} else {

if (value) {
isp->isp capl[tgt] |= ISP_CAP_WIDE;
} else {
isp->isp cap[tgt] &= ~ISP CAP WIDE;
}

}

rval = 1;

break;

case SCSI CAP_INITIATOR ID:
if (value < N ISP TARGETS WIDE) {
struct isp mbox cmd mbox cmd;
isp->isp_initiator_id = (u_short) value;
/*
* set Initiator SCSI ID
*/
isp i mbox_cmd init(isp, &mbox_cmd, 2, 2,
ISP _MBOX CMD SET SCSI 1ID,
isp->isp initiator id,

0, 0, 0, 0);

if (isp i mbox cmd start(isp, &mbox cmd) == 0) {
rval = 1;

}

394 Writing Device Drivers « September 2010



Entry Points for SCSA HBA Drivers

EXAMPLE 18-11 HBA Driver tran_setcap(9E) Entry Point (Continued)

break;
case SCSI CAP_ARQ:
if (value) {
isp->isp cap[tgt] |= ISP_CAP_AUTOSENSE;
} else {
isp->isp cap[tgt] &= ~ISP_CAP_AUTOSENSE;
}
rval = 1;
break;
default:
rval = -1;
break;

}
ISP_MUTEX EXIT(isp);
return (rval);

Abort and Reset Management

The following sections discuss the abort and reset entry points for SCSI HBA.

tran_abort () Entry Point

The tran_abort(9E) entry point for a SCSI HBA driver is called to abort any commands that
are currently in transport for a particular target. This entry point is called when a target driver
calls scsi_abort(9F).

The tran_abort () entry point should attempt to abort the command denoted by the pkt
parameter. If the pkt parameter is NULL, tran_abort () should attempt to abort all outstanding
commands in the transport layer for the particular target or logical unit.

Each command successfully aborted must be marked with pkt_reason CMD_ABORTED and
pkt statistics OR'd with STAT ABORTED.

tran_reset() Entry Point

The tran_reset(9E) entry point for a SCSI HBA driver is called to reset either the SCSI bus or a
particular SCSI target device. This entry point is called when a target driver calls
scsi_reset(9F).

The tran_reset () entry point must reset the SCSI bus if level is RESET_ALL. If level is
RESET_TARGET, just the particular target or logical unit must be reset.

Active commands affected by the reset must be marked with pkt_reason CMD_RESET. The type
of reset determines whether STAT BUS RESET or STAT DEV_RESET should be used to OR
pkt statistics.

Chapter 18 « SCSIHost Bus Adapter Drivers 395


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-reset-9f

Entry Points for SCSA HBA Drivers

396

Commands in the transport layer, but not yet active on the target, must be marked with
pkt reason CMD RESET,and pkt statistics OR'd with STAT ABORTED.

tran_bus_reset() Entry Point
tran_bus_reset(9E) must reset the SCSI bus without resetting targets.

#include <sys/scsi/scsi.h>

int tran_bus_reset(dev_info_t *hba-dip, int level);

where:

*hba-dip  Pointer associated with the SCST HBA

level Must be set to RESET_BUS so that only the SCSI bus is reset, not the targets

The tran_bus_reset() vector in the scsi_hba_tran(9S) structure should be initialized during

the HBA driver's attach(9E). The vector should point to an HBA entry point that is to be called
when a user initiates a bus reset.

Implementation is hardware specific. If the HBA driver cannot reset the SCSI bus without
affecting the targets, the driver should fail RESET_BUS or not initialize this vector.

tran_reset_notify() Entry Point

Use the tran_reset_notify(9E) entry point when a SCSI bus reset occurs. This function
requests the SCSTHBA driver to notify the target driver by callback.

EXAMPLE 18-12 HBA Driver tran_reset_notify(9E) Entry Point

isp scsi reset notify(

struct scsi address *ap,

int flag,

void (*callback) (caddr t),

caddr_t arg)

{

struct isp *isp;

struct isp reset notify entry *p, *beforep;

int rval = DDI FAILURE;
isp = (struct isp *)ap->a hba tran->tran hba private;
mutex_enter(ISP_REQ MUTEX(isp));
/*

* Try to find an existing entry for this target

*/

p = isp->isp reset notify listf;
beforep = NULL;

while (p) {
if (p->ap == ap)
break;
beforep = p;

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-reset-notify-9e

Entry Points for SCSA HBA Drivers

EXAMPLE 18-12  HBA Driver tran_reset_notify(9E) Entry Point (Continued)

p = p->next;

}

if ((flag & SCSI _RESET CANCEL) && (p !'= NULL)) {
if (beforep == NULL) {
isp->isp reset notify listf = p->next;
} else {
beforep->next = p->next;
}
kmem free((caddr t)p, sizeof (struct
isp reset notify entry));
rval = DDI SUCCESS;
} else if ((flag & SCSI RESET NOTIFY) && (p == NULL)) {
p = kmem_zalloc(sizeof (struct isp reset notify entry),
KM SLEEP);
p->ap = ap;
p->callback = callback;
p->arg = arg;
p->next = isp->isp reset notify listf;
isp->isp reset notify listf = p;
rval = DDI_SUCCESS;
}

mutex exit (ISP _REQ MUTEX(isp));
return (rval);

Dynamic Reconfiguration

To support the minimal set of hot-plugging operations, drivers might need to implement
support for bus quiesce, bus unquiesce, and bus reset. The scsi_hba_tran(9S) structure
supports these operations. If quiesce, unquiesce, or reset are not required by hardware, no
driver changes are needed.

The scsi_hba_tran structure includes the following fields:

int (*tran_quiesce)(dev_info_t *hba-dip);
int (*tran_unquiesce) (dev_info_t *hba-dip);
int (*tran_bus_reset) (dev_info_t *hba-dip, int level);

These interfaces quiesce and unquiesce a SCSI bus.

#include <sys/scsi/scsi.h>

int prefixtran_quiesce(dev_info_t *hba-dip);
int prefixtran_unquiesce(dev_info_t *hba-dip);

Chapter 18 « SCSIHost Bus Adapter Drivers 397


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s

SCSIHBA Driver Specific Issues

tran_quiesce(9E) and tran_unquiesce(9E) are used for SCSI devices that are not designed for
hot-plugging. These functions must be implemented by an HBA driver to support dynamic
reconfiguration (DR).

The tran_quiesce() and tran_unquiesce() vectorsinthe scsi_hba_ tran(9S) structure
should be initialized to point to HBA entry points during attach(9E). These functions are
called when a user initiates quiesce and unquiesce operations.

The tran_quiesce() entry point stops all activity on a SCSI bus prior to and during the
reconfiguration of devices that are attached to the SCSI bus. The tran_unquiesce() entry point
is called by the SCSA framework to resume activity on the SCSI bus after the reconfiguration
operation has been completed.

HBA drivers are required to handle tran_quiesce() by waiting for all outstanding commands
to complete before returning success. After the driver has quiesced the bus, any new I/O
requests must be queued until the SCSA framework calls the corresponding tran_unquiesce()
entry point.

HBA drivers handle calls to tran_unquiesce() by starting any target driver I/O requests in the
queue.

SCSI HBA Driver Specificlssues

398

The section covers issues specific to SCSI HBA drivers.

Installing HBA Drivers

A SCSI HBA driver is installed in similar fashion to a leaf driver. See Chapter 21, “Compiling,
Loading, Packaging, and Testing Drivers.” The difference is that the add_drv(1M) command
must specify the driver class as SCSI, such as:

# add_drv -m" * 0666 root root" -i’"pcil@77,1020"' -c scsi isp

HBA Configuration Properties

When attaching an instance of an HBA device, scsi_hba_attach_setup(9F) creates a number
of SCSI configuration properties for that HBA instance. A particular property is created only if
no existing property of the same name is already attached to the HBA instance. This restriction
avoids overriding any default property values in an HBA configuration file.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=tran-unquiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-hba-attach-setup-9f

SCSIHBA Driver Specific Issues

An HBA driver must use ddi_prop_get_int(9F) to retrieve each property. The HBA driver
then modifies or accepts the default value of the properties to configure its specific operation.

scsi-reset-delay Property

The scsi-reset-delay property is an integer specifying the recovery time in milliseconds for a
reset delay by either a SCSI bus or SCSI device.

scsi-options Property

The scsi-options property is an integer specifying a number of options through individually

defined bits:

= SCSI_OPTIONS_DR (0x008) - If not set, the HBA should not grant disconnect privileges to a
target device.

®m  SCSI OPTIONS LINK (0x010) - If not set, the HBA should not enable linked commands.

m  SCSI_OPTIONS_SYNC (0x020) - If not set, the HBA driver must not negotiate synchronous
data transfer. The driver should reject any attempt to negotiate synchronous data transfer
initiated by a target.

®  SCSI OPTIONS PARITY (0x040) - If not set, the HBA should run the SCSI bus without
parity.

= SCSI_OPTIONS_TAG (0x080) - Ifnot set, the HBA should not operate in Command Tagged
Queuing mode.

®  SCSI_OPTIONS_FAST (0x100) - If not set, the HBA should not operate the bus in FAST SCSI
mode.

m  SCSI_OPTIONS WIDE (0x200) - If not set, the HBA should not operate the bus in WIDE
SCSI mode.

Per-Target scsi-options

An HBA driver might support a per-target scsi-options feature in the following format:

target<n>-scsi-options=<hex value>

In this example, < n> is the target ID. If the per-target scsi-options property is defined, the
HBA driver uses that value rather than the per-HBA driver instance scsi-options property.
This approach can provide more precise control if, for example, synchronous data transfer
needs to be disabled for just one particular target device. The per-target scsi-options property
can be defined in the driver.conf(4) file.

The following example shows a per-target scsi-options property definition to disable
synchronous data transfer for target device 3:

Chapter 18 « SCSIHost Bus Adapter Drivers 399


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4

SCSIHBA Driver Specific Issues

400

target3-scsi-options=0x2d8

x86 Target Driver Configuration Properties

Some x86 SCSI target drivers, such as the driver for cmdk disk, use the following configuration
properties:

m disk

= queue
= flow_control

If you use the cmdk sample driver to write an HBA driver for an x86 platform, any appropriate
properties must be defined in the driver. conf(4) file.

Note - These property definitions should appear only in an HBA driver's driver. conf(4) file.
The HBA driver itself should not inspect or attempt to interpret these properties in any way.
These properties are advisory only and serve as an adjunct to the cmdk driver. The properties
should not be relied upon in any way. The property definitions might not be used in future
releases.

The disk property can be used to define the type of disk supported by cmdk. For a SCSTHBA,
the only possible value for the disk property is:

= disk="scdk" - Disk type is a SCSI disk

The queue property defines how the disk driver sorts the queue of incoming requests during
strategy(9E). Two values are possible:

m  queue="gsort" - One-way elevator queuing model, provided by disksort(9F)
= queue="qfifo" - FIFO, thatis, first in, first out queuing model

The flow_control property defines how commands are transported to the HBA driver. Three
values are possible:

= flow_control="dsngl" - Single command per HBA driver

= flow_control="dmult" - Multiple commands per HBA driver. When the HBA queue is full,
the driver returns TRAN BUSY.

= flow_control="duplx" - The HBA can support separate read and write queues, with
multiple commands per queue. FIFO ordering is used for the write queue. The queuing
model that is used for the read queue is described by the queue property. When an HBA
queue is full, the driver returns TRAN_BUSY

The following example isa driver.conf(4) file for use with an x86 HBA PCI device that has
been designed for use with the cmdk sample driver:

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=strategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=disksort-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4

Support for Queuing

#

# config file for ISP 1020 SCSI HBA driver

#
flow control="dsngl" queue="gsort" disk="scdk"
scsi-initiator-id=7;

Support for Queuing

For a definition of tagged queuing, refer to the SCSI-2 specification. To support tagged queuing,
first check the scsi_options flag SCSI_OPTIONS_TAG to see whether tagged queuing is enabled
globally. Next, check to see whether the target is a SCSI-2 device and whether the target has
tagged queuing enabled. If these conditions are all true, attempt to enable tagged queuing by
using scsi_ifsetcap(9F).

If tagged queuing fails, you can attempt to set untagged queuing. In this mode, you submit as
many commands as you think necessary or optimal to the host adapter driver. Then the host
adapter queues the commands to the target one command at a time, in contrast to tagged
queuing. In tagged queuing, the host adapter submits as many commands as possible until the
target indicates that the queue is full.

Chapter 18 « SCSIHost Bus Adapter Drivers 401


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-ifsetcap-9f

402



L K R 4 CHAPTER 19

Drivers for Network Devices

To write a network driver for the Solaris OS, use the Solaris Generic LAN Driver (GLD)
framework.

= For new Ethernet drivers, use the GLDv3 framework. See “GLDv3 Network Device Driver
Framework” on page 403. The GLDv3 framework is a function calls-based interface.

=  To maintain older Ethernet, Token Ring, or FDDI drivers, use the GLDv2 framework. See
“GLDv2 Network Device Driver Framework” on page 417. The GLDv2 is a kernel module
that provides common code for drivers to share.

GLDv3 Network Device Driver Framework

The GLDv3 framework is a function calls-based interface of MAC plugins and MAC driver
service routines and structures. The GLDv3 framework implements the necessary STREAMS
entry points on behalf of GLDv3 compliant drivers and handles DLPI compatibility.

This section discusses the following topics:

“GLDv3 MAC Registration” on page 403
“GLDv3 Capabilities” on page 408

“GLDv3 Data Paths” on page 410

“GLDv3 State Change Notifications” on page 412
“GLDv3 Network Statistics” on page 413
“GLDv3 Properties” on page 414

“Summary of GLDv3 Interfaces” on page 415

GLDv3 MACRegistration

GLDv3 defines a driver API for drivers that register with a plugin type of
MAC_PLUGIN_IDENT_ETHER.

403



GLDv3 Network Device Driver Framework

404

GLDv3 MAC Registration Process
A GLDv3 device driver must perform the following steps to register with the MAC layer:

= Include the following three MAC header files: sys/mac.h, sys/mac_ether.h, and
sys/mac_provider.h. Do notinclude any other MAC-related header file in your driver.

= Populate the mac_callbacks structure.
= Invokethemac_init_ops() functioninits_init() entry point.

= Invokethemac_alloc() functioninits attach() entry point to allocate amac_register
structure.

= Populate the mac_register structure and invoke the mac_register() function in its
attach() entry point.

= Invokethemac_unregister() functioninitsdetach() entry point.
= Invokethemac_fini_ops() functioninits fini() entry point.
= Link with a dependency onmisc/mac:

# 1d -N"misc/mac" xx.o0 -0 xx

GLDv3 MAC Registration Functions

The GLDv3 interface includes driver entry points that are advertised during registration with
the MAC layer and MAC entry points that are invoked by drivers.

The mac_init_ops() and mac_fini_ops() Functions
void mac_init_ops(struct dev_ops *ops, const char *name);

A GLDv3 device driver must invoke themac_init_ops(9F) functioninits_init(9E) entry
point before calling mod_install(9F).

void mac_fini_ops(struct dev_ops *ops);

A GLDv3 device driver must invoke themac_fini_ops(9F) functioninits_fini(9E) entry
point after calling mod_remove(9F).

EXAMPLE19-1 Themac_init ops() andmac fini ops() Functions

int
_init(void)
{
int rv;
mac_init ops(&xx_devops, "xx");
if ((rv = mod_install(&xx _modlinkage)) !'= DDI SUCCESS) {
mac_fini ops(&xx devops);
return (rv);
}

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-init-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-fini-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-remove-9f

GLDv3 Network Device Driver Framework

EXAMPLE 19-1 Themac_init_ops() andmac_fini_ops() Functions (Continued)
int
~fini(void)
{
int rv;
if ((rv = mod remove(&xx modlinkage)) == DDI SUCCESS) {

mac_fini ops(&xx_devops);

return (rv);

The mac_alloc() and mac_free() Functions
mac_register t *mac_alloc(uint_t version);

Themac_alloc(9F) function allocates a new mac_register structure and returns a pointer to it.
Initialize the structure members before you pass the new structure tomac_register().
MAC-private elements are initialized by the MAC layer before mac_alloc() returns. The value
of version must be MAC_VERSION V1.

void mac_free(mac_register_t *mregp);

The mac_free(9F) function frees amac_register structure that was previously allocated by
mac_alloc().

The mac_register() and mac_unregister() Functions
int mac_register(mac_register_ t *mregp, mac_handle_t *mhp);

To register a new instance with the MAC layer, a GLDv3 driver must invoke the
mac_register(9F) function in its attach(9E) entry point. The mregp argument is a pointer to a
mac_register registration information structure. On success, the mhp argument is a pointer to
a MAC handle for the new MAC instance. This handle is needed by other routines such as
mac_tx_update(),mac_link update(),andmac rx().

EXAMPLE 19-2 'Themacfalloc(),macfregister(),andmacffree()Funcﬁonsandmacfregister
Structure

int
xx_attach(dev_info t *dip, ddi attach cmd t cmd)
{
mac_register t *macp;
VAV
if ((macp = mac_alloc(MAC VERSION)) == NULL) {

xx_error(dip, "mac_alloc failed");
goto failed;
}

macp->m_type ident = MAC PLUGIN IDENT ETHER;

Chapter 19 « Drivers for Network Devices 405


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

GLDv3 Network Device Driver Framework

406

EXAMPLE 19-2 Themac_alloc(),mac_register(),andmac_free() Functionsandmac_register
Structure (Continued)

macp->m driver = xxp;

macp->m dip = dip;

macp->m_src_addr = xxp->xx_curraddr;
macp->m callbacks = &xx m callbacks;

macp->m min sdu = 0;
macp->m max_sdu = ETHERMTU;
macp->m _margin = VLAN TAGSZ;

if (mac _register(macp, &xxp->xx mh) == DDI SUCCESS) {
mac_free(macp);
return (DDI SUCCESS);

}

/* failed to register with MAC */
mac_free(macp);

failed:
/* L0 X/

}

int mac_unregister(mac_handle t mh) ;

Themac_unregister(9F) function unregisters a MAC instance that was previously registered
withmac_register(). The mh argument is the MAC handle that was allocated by
mac_register().Invokemac_unregister() from the detach(9E) entry point.

EXAMPLE19-3 Themac_unregister() Function

int
xx_detach(dev_info t *dip, ddi_detach cmd t cmd)
{
xx_t *xxp; /* driver soft state */
/* o0 */
switch (cmd) {
case DDI DETACH:
if (mac_unregister(xxp->xx_mh) != 0) {
return (DDI_FAILURE);
}
/* o0 x/
}

GLDv3 MAC Registration Data Structures

The structures described in this section are defined in the sys/mac_provider.h header file.
Include the following three MAC header files in your GLDv3 driver: sys/mac. h,

sys/mac_ether.h,and sys/mac_provider.h. Do notinclude any other MAC-related header
file.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-unregister-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

GLDv3 Network Device Driver Framework

Themac_register(9S) data structure is the MAC registration information structure that is
allocated by mac_alloc() and passed to mac_register (). Initialize the structure members
before you pass the new structure to mac_register(). MAC-private elements are initialized by
the MAC layer before mac_alloc() returns. Them_version structure member is the MAC
version. Do not modify the MAC version. Them_type_ident structure member is the MAC
type identifier. Set the MAC type identifier to MAC_PLUGIN_IDENT_ETHER. Them_callbacks
member of the mac_register structure is a pointer to an instance of the mac_callbacks
structure.

The mac_callbacks(9S) data structure is the structure that your device driver uses to expose its
entry points to the MAC layer. These entry points are used by the MAC layer to control the
driver. These entry points are used to do tasks such as start and stop the adapters, manage
multicast addresses, set promiscuous mode, query the capabilities of the adapter, and get and
set properties. See Table 19-1 for a complete list of required and optional GLDv3 entry points.
Provide a pointer to your mac_callbacks structure in them_callbacks field of the
mac_register structure.

Themc_callbacks member of the mac_callbacks structure is a bit mask that is a combination
of the following flags that specify which of the optional entry points are implemented by the
driver. Other members of the mac_callbacks structure are pointers to each of the entry points
of the driver.

MC_IOCTL Themc_ioctl() entry point is present.
MC_GETCAPAB The mc_getcapab() entry point is present.
MC_SETPROP Themc_setprop() entry point is present.
MC_GETPROP Themc_getprop() entry point is present.
MC_PROPINFO Themc_propinfo() entry point is present.

MC_PROPERTIES All properties entry points are present. Setting MC_PROPERTIES is
equivalent to setting all three flags: MC_SETPROP, MC_GETPROP, and
MC_PROPINFO.

EXAMPLE19-4 Themac_callbacks Structure

#define XX _M CALLBACK FLAGS \
(MC_TOCTL | MC GETCAPAB | MC PROPERTIES)

static mac_callbacks t xx_m callbacks = {
XX_M_CALLBACK FLAGS,

Xx_m_getstat, /* mc_getstat() */
Xx_m_start, /* mc_start() */
xx_m_stop, /* mc_stop() */
XX_m_promisc, /* mc_setpromisc() */
xx_m_multicst, /* mc_multicst() */
XX_m_unicst, /* mc_unicst() */

XX_m_tx, /* mc_tx() */

NULL, /* Reserved, do not use */
Xx_m_ioctl, /* mc_ioctl() */

Chapter 19 « Drivers for Network Devices 407


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mac-register-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mac-callbacks-9s

GLDv3 Network Device Driver Framework

408

EXAMPLE 19-4 Themac_callbacks Structure (Continued)
xx_m_getcapab, /* mc_getcapab() */
NULL, /* Reserved, do not use */
NULL, /* Reserved, do not use */
XX_m_setprop, /* mc_setprop() */
XX_m_getprop, /* mc_getprop() */
Xx_m_propinfo /* mc_propinfo() */

}i

GLDv3 Capabilities

GLDv3 implements a capability mechanism that allows the framework to query and enable
capabilities that are supported by the GLDv3 driver. Use the mc_getcapab(9E)entry point to
report capabilities. If a capability is supported by the driver, pass information about that
capability, such as capability-specific entry points or flags through mc_getcapab (). Passa
pointer to themc_getcapab() entry point in the mac_callback structure. See “GLDv3 MAC
Registration Data Structures” on page 406 for more information about the mac_callbacks
structure.

boolean_t mc_getcapab(void *driver_handle, mac_capab_t cap, void *cap_data);

The cap argument specifies the type of capability being queried. The value of cap can be either
MAC_CAPAB_HCKSUM (hardware checksum oftload) or MAC_CAPAB_LSO (large segment offload).
Use the cap_data argument to return the capability data to the framework.

If the driver supports the cap capability, the mc_getcapab() entry point must return B_TRUE. If
the driver does not support the cap capability, nc_getcapab () must return B_FALSE.

EXAMPLE 19-5 Themc_getcapab() Entry Point

static boolean t
Xx_m_getcapab(void *arg, mac _capab t cap, void *cap data)

{
switch (cap) {
case MAC CAPAB HCKSUM: {
uint32 t *txflags = cap data;
*txflags = HCKSUM INET FULL V4 | HCKSUM IPHDRCKSUM;
break;
}
case MAC CAPAB LSO: {
/* .. %/
break;
}
default:
return (B FALSE);
}
return (B _TRUE);
}

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-getcapab-9e

GLDv3 Network Device Driver Framework

The following sections describe the supported capabilities and the corresponding capability
data to return.

Hardware Checksum Offload

To get data about support for hardware checksum oftload, the framework sends
MAC_CAPAB_HCKSUM in the cap argument. See “Hardware Checksum Offload Capability
Information” on page 409.

To query checksum offload metadata and retrieve the per-packet hardware checksumming
metadata when hardware checksumming is enabled, use mac_hcksum_get(9F). See “The
mac_hcksum_get () Function Flags” on page 409.

To set checksum offload metadata, use mac_hcksum_set(9F). See “The mac_hcksum set()
Function Flags” on page 410.

See “Hardware Checksumming: Hardware” on page 412 and “Hardware Checksumming: MAC
Layer” on page 412 for more information.

Hardware Checksum Offload Capability Information

To pass information about the MAC_CAPAB_HCKSUM capability to the framework, the driver must
set a combination of the following flags in cap_data, which points to a uint32_t. These flags
indicate the level of hardware checksum offload that the driver is capable of performing for
outbound packets.

HCKSUM INET PARTIAL Partial 1's complement checksum ability
HCKSUM_INET FULL V4  Full 1's complement checksum ability for IPv4 packets
HCKSUM_INET_FULL_V6  Full 1's complement checksum ability for IPv6 packets

HCKSUM_IPHDRCKSUM IPv4 Header checksum offload capability

The mac_hcksum_get() Function Flags

The flags argument of mac_hcksum_get () is a combination of the following values:

HCK_FULLCKSUM Compute the full checksum for this packet.
HCK_FULLCKSUM OK The full checksum was verified in hardware and is correct.
HCK_PARTIALCKSUM Compute the partial 1's complement checksum based on other

parameters passed tomac_hcksum get ().HCK PARTIALCKSUMis
mutually exclusive with HCK_FULLCKSUM.

HCK IPV4 HDRCKSUM Compute the IP header checksum.

HCK IPV4 HDRCKSUM OK  TheIP header checksum was verified in hardware and is correct.

Chapter 19 « Drivers for Network Devices 409


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-hcksum-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-hcksum-set-9f

GLDv3 Network Device Driver Framework

410

The mac_hcksum_set() Function Flags

The flags argument of mac_hcksum_set () is a combination of the following values:

HCK_FULLCKSUM The full checksum was computed and passed through the value
argument.

HCK FULLCKSUM OK The full checksum was verified in hardware and is correct.

HCK_PARTIALCKSUM The partial checksum was computed and passed through the value

argument. HCK_PARTIALCKSUM is mutually exclusive with
HCK_FULLCKSUM.

HCK_IPV4_HDRCKSUM The IP header checksum was computed and passed through the
value argument.

HCK_IPV4 HDRCKSUM OK The IP header checksum was verified in hardware and is correct.

Large Segment (or Send) Offload

To query support for large segment (or send) offload, the framework sends MAC_CAPAB_LSO in
the cap argument and expects the information back in cap_data, which points to a
mac_capab_1s0(9S) structure. The framework allocates the mac_capab_1so structure and
passes a pointer to this structure in cap_data. The mac_capab_1so structure consists of an

lso basic_tcp ipv4(9S) structure and an lso_flags member. If the driver instance supports
LSO for TCP on IPv4, set the LSO_TX_BASIC_TCP_IPV4 flagin lso_flags and set the lso_max
member of the 1so_basic_tcp_ipv4 structure to the maximum payload size supported by the
driver instance.

Usemac_lso_get(9F) to obtain per-packet LSO metadata. If LSO is enabled for this packet, the
HW_LSO flagis set in themac_1so_get () flags argument. The maximum segment size (MSS) to
be used during segmentation of the large segment is returned through the location pointed to
by the mss argument. See “Large Segment Oftload” on page 412 for more information.

GLDv3 Data Paths

Data-path entry points are comprised of the following components:

= Callbacks exported by the driver and invoked by the GLDv3 framework for sending packets.

= GLDv3 framework entry points called by the driver for transmit flow control and for
receiving packets.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mac-capab-lso-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=lso-basic-tcp-ipv4-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-lso-get-9f

GLDv3 Network Device Driver Framework

Transmit Data Path

The GLDv3 framework uses the transmit entry point, mc_tx(9E), to pass a chain of message
blocks to the driver. Provide a pointer to the mc_tx() entry point in your mac_callbacks
structure. See “GLDv3 MAC Registration Data Structures” on page 406 for more information
about the mac_callbacks structure.

EXAMPLE19-6 Themc_tx() Entry Point

mblk t *
xx_m_tx(void *arg, mblk t *mp)
{

xx_t *xXxp = arg;

mblk t *nmp;
mutex_enter(&xxp->xx_xmtlock);

if (xxp->xx_flags & XX SUSPENDED) {
while ((nmp = mp) != NULL) {
XXp->XX_carrier _errors++;
mp = mp->b next;
freemsg(nmp) ;
}
mutex exit(&xxp->xx_xmtlock);
return (NULL);
}

while (mp != NULL) {
nmp = mp->b next;
mp->b_next = NULL;

if (!xx_send(xxp, mp)) {
mp->b_next = nmp;
break;
}
mp = nmp;
}

mutex exit (&xxp->xx_xmtlock);

return (mp);

The following sections discuss topics related to transmitting data to the hardware.

Flow Control

If the driver cannot send the packets because of insufficient hardware resources, the driver
returns the sub-chain of packets that could not be sent. When more descriptors become
available at a later time, the driver must invoke mac_tx_update(9F) to notify the framework.

Chapter 19 « Drivers for Network Devices 411


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-tx-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-tx-update-9f

GLDv3 Network Device Driver Framework

412

Hardware Checksumming: Hardware

If the driver specified hardware checksum support (see “Hardware Checksum Offload” on
page 409), then the driver must do the following tasks:

= Usemac_hcksum_get(9F) to check every packet for hardware checksum metadata.
= Program the hardware to perform the required checksum calculation.

Large Segment Offload

If the driver specified LSO capabilities (see “Large Segment (or Send) Oftload” on page 410),
then the driver must use mac_lso_get(9F) to query whether LSO must be performed on the
packet.

Virtual LAN: Hardware

When the administrator configures VLANSs, the MAC layer inserts the needed VLAN headers
on the outbound packets before they are passed to the driver through the mc_tx() entry point.

Receive Data Path

Call the mac_rx(9F) function in your driver's interrupt handler to pass a chain of one or more
packets up the stack to the MAC layer. Avoid holding mutex or other locks during the call to
mac_rx().In particular, do not hold locks that could be taken by a transmit thread during a call
tomac_rx().Seemc_unicst(9E) for information about the packets that must be sent up to the
MAC layer.

The following sections discuss topics related to sending data to the MAC layer.

Hardware Checksumming: MAC Layer

If the driver specified hardware checksum support (see “Hardware Checksum Offload” on
page 409), then the driver must use the mac_hcksum_set(9F) function to associate hardware
checksumming metadata with the packet.

Virtual LAN: MAC Layer

VLAN packets must be passed with their tags to the MAC layer. Do not strip the VLAN headers
from the packets.

GLDv3 State Change Notifications

A driver can call the following functions to notify the network stack that the driver's state has
changed.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-hcksum-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-lso-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-rx-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-unicst-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-hcksum-set-9f

GLDv3 Network Device Driver Framework

void mac_tx update(mac_handle t mh);

Themac tx update(9F) function notifies the framework that more TX descriptors are
available. If mc_tx () returns a non-empty chain of packets, then the driver must call
mac_tx_update() assoon as possible after resources are available to inform the MAC layer to
retry the packets that were returned as not sent. See “Transmit Data Path” on page 411 for more
information about the mc_tx() entry point.

void mac_link update(mac handle t mh, link state t new_state);

The mac_link_update(9F) function notifies the MAC layer that the state of the media link has
changed. The new_state argument must be one of the following values:

LINK STATE UP The media link is up.
LINK STATE DOWN The media link is down.

LINK STATE_UNKNOWN The media link is unknown.

GLDv3 Network Statistics

Device drivers maintain a set of statistics for the device instances they manage. The MAC layer
queries these statistics through the mc_getstat(9E) entry point of the driver.

int mc getstat(void *driver_handle, uint t stat, uint64 t *stat_value);

The GLDv3 framework uses stat to specify the statistic being queried. The driver uses stat_value
to return the value of the statistic specified by stat. If the value of the statistic is returned,
mc_getstat() mustreturn 0. If the stat statistic is not supported by the driver, mc_getstat()
must return ENOTSUP.

The GLDv3 statistics that are supported are the union of generic MAC statistics and
Ethernet-specific statistics. See the mc_getstat(9E) man page for a complete list of supported
statistics.

EXAMPLE19-7 Themc_getstat() Entry Point
int
xx_m_getstat(void *arg, uint t stat, uint64 t *val)

{

xx_t *Xxp = arg;

mutex enter(&xxp->xx_xmtlock);

if ((xxp->xx_flags & (XX RUNNING|XX SUSPENDED)) == XX RUNNING)
xx_reclaim(xxp);

mutex exit(&xxp->xx_xmtlock);

switch (stat) {
case MAC_STAT MULTIRCV:

Chapter 19 « Drivers for Network Devices 413


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-tx-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-link-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-getstat-9e

GLDv3 Network Device Driver Framework

EXAMPLE19-7 Themc_getstat() Entry Point (Continued)

*val = xxp->xx_multircv;
break;

/¥ .. */

case ETHER_STAT_MACRCV_ERRORS:
*val = Xxp->XX_macrcv_errors;

break;
/* .. %/
default:
return (ENOTSUP);
}
return (0);

GLDv3 Properties

Use themc_propinfo(9E) entry point to return immutable attributes of a property. This
information includes permissions, default values, and allowed value ranges. Use
mc_setprop(9E) to set the value of a property for this particular driver instance. Use
mc_getprop(9E) to return the current value of a property.

See the mc_propinfo(9E) man page for a complete list of properties and their types.

Themc_propinfo() entry point should invoke the mac_prop_info_set_perm(),
mac_prop_info_set default(),andmac_prop info set range() functions to associate
specific attributes of the property being queried, such as default values, permissions, or allowed
value ranges.

Themac_prop_info set default uint8(9F),mac_prop_info set default str(9F),and
mac_prop_info_set default link flowctrl(9F) functions associate a default value with a
specific property. Themac_prop_info_set_range_uint32(9F) function associates an allowed
range of values for a specific property.

Themac_prop_info_set_perm(9F) function specifies the permission of the property. The
permission can be one of the following values:

MAC_PROP_PERM_READ The property is read-only
MAC_PROP_PERM WRITE The property is write-only

MAC PROP _PERM RW The property can be read and written

Ifthemc_propinfo() entry point does not callmac_prop_info_set_perm() for a particular
property, the GLDv3 framework assumes that the property has read and write permissions,
corresponding to MAC_PROP_PERM_RW.

414 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-propinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-setprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-getprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-default-uint8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-default-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-default-link-flowctrl-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-range-uint32-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-perm-9f

GLDv3 Network Device Driver Framework

In addition to the properties listed in the mc_propinfo(9E) man page, drivers can also expose
driver-private properties. Use them_priv_props field of the mac_register structure to specify
driver-private properties supported by the driver. The framework passes the
MAC_PROP_PRIVATE property ID inmc_setprop(),mc_getprop(),ormc_propinfo(). See the
mc_propinfo(9E) man page for more information.

Summary of GLDv3 Interfaces

The following table lists entry points, other DDI functions, and data structures that are part of

the GLDv3 network device driver framework.

TABLE19-1 GLDv3 Interfaces

Interface Name

Description

Required Entry Points

mc_getstat(9E)

mc_start(9E)

mc_stop(9E)

mc_setpromisc(9E)

mc_multicst(9E)

mc_unicst(9E)

mc_tx(9E)

Optional Entry Points

mc_ioctl(9E)

mc_getcapab(9E)

Retrieve network statistics from the driver. See
“GLDv3 Network Statistics” on page 413.

Start a driver instance. The GLDv3 framework
invokes the start entry point before any operation is
attempted.

Stop a driver instance. The MAC layer invokes the
stop entry point before the device is detached.

Change the promiscuous mode of the device driver
instance.

Add or remove a multicast address.

Set the primary unicast address. The device must start
passing back through mac_rx () the packets with a
destination MAC address that matches the new
unicast address. See “Receive Data Path” on page 412
for information about mac_rx().

Send one or more packets. See “Transmit Data Path”
onpage4l11.

Optional ioctl driver interface. This facility is intended
to be used only for debugging purposes.

Retrieve capabilities. See “GLDv3 Capabilities” on
page 408.

Chapter 19 « Drivers for Network Devices

415


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-getstat-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-stop-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-setpromisc-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-multicst-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-unicst-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-tx-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-getcapab-9e

GLDv3 Network Device Driver Framework

TABLE19-1 GLDv3 Interfaces

(Continued)

Interface Name

Description

mc_setprop(9E)

mc_getprop(9E)

mc_propinfo(9E)

Data Structures

mac_register(9S)

mac_callbacks(9S)

mac_capab_1s0(9S)

1so basic tcp ipv4(9S)

MAC Registration Functions

mac_alloc(9F)

mac_free(9F)
mac_register(9F)
mac_unregister(9F)
mac_init ops(9F)
mac_fini ops(9F)

Data Transfer Functions

mac_rx(9F)

mac_tx_update(9F)

mac_link update(9F)

mac_hcksum get(9F)

Set a property value. See “GLDv3 Properties” on
page 414.

Get a property value. See “GLDv3 Properties” on
page 414.

Get information about a property. See “GLDv3
Properties” on page 414.

Registration information. See “GLDv3 MAC
Registration Data Structures” on page 406.

Driver callbacks. See “GLDv3 MAC Registration Data
Structures” on page 406.

LSO metadata. See “Large Segment (or Send) Offload”
on page 410.

LSO metadata for TCP/IPv4. See “Large Segment (or
Send) Offload” on page 410.

Allocate anewmac_register structure. See “GLDv3
MAC Registration” on page 403.

Freeamac_register structure.

Register with the MAC layer.

Unregister from the MAC layer.

Initialize the driver's dev_ops(9S) structure.

Release the driver's dev_ops structure.

Pass up received packets. See “Receive Data Path” on
page 412.

TX resources are available. See “GLDv3 State Change
Notifications” on page 412.

Link state has changed.

Retrieve hardware checksum information. See
“Hardware Checksum Offload” on page 409 and
“Transmit Data Path” on page 411.

416 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-setprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-getprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=mc-propinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mac-register-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mac-callbacks-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mac-capab-lso-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=lso-basic-tcp-ipv4-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-unregister-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-init-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-fini-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-rx-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-tx-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-link-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-hcksum-get-9f

GLDv2 Network Device Driver Framework

TABLE19-1 GLDv3 Interfaces (Continued)
Interface Name Description
mac_hcksum set(9F) Attach hardware checksum information. See
“Hardware Checksum Offload” on page 409 and
“Receive Data Path” on page 412.
mac_lso get(9F) Retrieve LSO information. See “Large Segment (or

Send) Offload” on page 410.
Properties Functions

mac_prop_info set perm(9F) Set the permission of a property. See “GLDv3
Properties” on page 414.

mac_prop _info set default uint8(9F), Set a property value.
mac_prop info set default str(9F),
mac_prop info set default link flowctrl(9F)

mac_prop_info set range uint32(9F) Set a property values range.

GLDv2 Network Device Driver Framework

GLDv2 is a multi-threaded, clonable, loadable kernel module that provides support to device
drivers for local area networks. Local area network (LAN) device drivers in the Solaris OS are
STREAMS-based drivers that use the Data Link Provider Interface (DLPI) to communicate
with network protocol stacks. These protocol stacks use the network drivers to send and receive
packets on a LAN. The GLDv2 implements much of the STREAMS and DLPI functionality for
a Solaris LAN driver. The GLDv2 provides common code that many network drivers can share.
Using the GLDv2 reduces duplicate code and simplifies your network driver.

For more information about GLDv2, see the gld(7D) man page.

STREAMS drivers are documented in Part II, “Kernel Interface,” in STREAMS Programming
Guide. Specifically, see Chapter 9, “STREAMS Drivers,” in the STREAMS guide. The STREAMS
framework is a message-based framework. Interfaces that are unique to STREAMS drivers
include STREAMS message queue processing entry points.

The DLPI specifies an interface to the Data Link Services (DLS) of the Data Link Layer of the
OSI Reference Model. The DLPI enables a DLS user to access and use any of a variety of
conforming DLS providers without special knowledge of the provider's protocol. The DLPI
specifies access to the DLS provider in the form of M_PROTO and M_PCPROTO type
STREAMS messages. A DLPI module uses STREAMS ioctl calls to link to the MAC sub-layer.
For more information about the DLPI protocol, including Solaris-specific DPLI extensions, see
the d1pi(7P) man page. For general information about DLPI, see the DLPI standard at
http://www.opengroup.org/pubs/catalog/c811l.htm.

Chapter 19 « Drivers for Network Devices 417


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-hcksum-set-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-lso-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-perm-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-default-uint8-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-default-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-default-link-flowctrl-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mac-prop-info-set-range-uint32-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=part2-1
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=part2-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=dlpi-7p
http://www.opengroup.org/pubs/catalog/c811.htm

GLDv2 Network Device Driver Framework

418

A Solaris network driver that is implemented using GLDv2 has two distinct parts:

= Generic component. Handles STREAMS and DLPI interfaces.
= Device-specific component. Handles the particular hardware device.

= Indicates the driver's dependence on the GLDv2 module by linking with a dependency
onmisc/gld. The GLDv2 module can be found at /kernel/misc/sparcv9/gld on
SPARC systems, /kernel/misc/amd64/gld on 64-bit x86 systems, and
/kernel/misc/gld on 32-bit x86 systems.

= Registers with GLDv2: In its attach(9E) entry point, the driver provides GLDv2 with
pointers to its other entry points. GLDV2 uses these pointers to call into the g1d(9E)
entry point.

= Calls gld(9F) functions to process data or to use some other GLDV2 service. The
gld_mac_info(9S) structure is the primary data interface between GLDv2 and the
device-specific driver.

GLDv2 drivers must process fully formed MAC-layer packets and must not perform logical link
control (LLC) handling.

This section discusses the following topics:

“GLDv2 Device Support” on page 418
“GLDv2 DLPI Providers” on page 420
“GLDv2 DLPI Primitives” on page 420
“GLDv2 I/O Control Functions” on page 422
“GLDv2 Driver Requirements” on page 422
“GLDv2 Network Statistics” on page 424
“GLDv2 Declarations and Data Structures” on page 427
“GLDv2 Function Arguments” on page 432
“GLDv2 Entry Points” on page 433

“GLDv2 Return Values” on page 436
“GLDv2 Service Routines” on page 437

GLDv2 Device Support

The GLDv2 framework supports the following types of devices:

= DL_ETHER:ISO 8802-3, IEEE 802.3 protocol
= DL TPR:IEEE 802.5, Token Passing Ring
m DL FDDI:ISO 9314-2, Fibre Distributed Data Interface

EthernetV2 and SO 8802-3 (IEEE 802.3)

For devices that are declared to be type DL_ETHER, GLDV2 provides support for both Ethernet
V2 and ISO 8802-3 (IEEE 802.3) packet processing. Ethernet V2 enables a user to access a

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=gld-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=gld-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=gld-mac-info-9s

GLDv2 Network Device Driver Framework

conforming provider of data link services without special knowledge of the provider's protocol.
A service access point (SAP) is the point through which the user communicates with the service
provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and denote that the
user wants to use 8802-3 mode. If the SAP value of the DL_BIND_REQ is within this range, GLDv2
computes the length of each subsequent DL_UNITDATA REQ message on that stream. The length
does not include the 14-byte media access control (MAC) header. GLDv2 then transmits
8802-3 frames that have those lengths in the MAC frame header type fields. Such lengths do not
exceed 1500.

Frames that have a type field in the range [0-1500] are assumed to be 8802-3 frames. These
frames are routed up all open streams in 8802-3 mode. Those streams with SAP values in the
[0-255] range are considered to be in 8802-3 mode. If more than one stream is in 8802-3 mode,
the incoming frame is duplicated and routed up these streams.

Those streams that are bound to SAP values that are greater than 1500 are assumed to be in
Ethernet V2 mode. These streams receive incoming packets whose Ethernet MAC header type
value exactly matches the value of the SAP to which the stream is bound.

TPRand FDDI: SNAP Processing

For media types DL_TPR and DL_FDDI, GLDv2 implements minimal SNAP (Sub-Net Access
Protocol) processing. This processing is for any stream that is bound to a SAP value that is
greater than 255. SAP values in the range [0-255] are LLC SAP values. Such values are carried
naturally by the media packet format. SAP values that are greater than 255 require a SNAP
header, subordinate to the LLC header, to carry the 16-bit Ethernet V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP @xAA. Outbound packets
with SAP values that are greater than 255 require an LLC+SNAP header take the following
form:

AA AA 03 00 00 00 XX XX

XX XX represents the 16-bit SAP, corresponding to the Ethernet V2 style type. This header is
unique in supporting non-zero organizational unique identifier fields. LLC control fields other
than 03 are considered to be LLC packets with SAP 0xAA. Clients that want to use SNAP formats
other than this format must use LLC and bind to SAP 0xAA.

Incoming packets are checked for conformance with the above format. Packets that conform
are matched to any streams that have been bound to the packet's 16-bit SNAP type. In addition,
these packets are considered to match the LLC SNAP SAP 0xAA.

Packets received for any LLC SAP are passed up all streams that are bound to an LLC SAP, as
described for media type DL_ETHER.

Chapter 19 « Drivers for Network Devices 419



GLDv2 Network Device Driver Framework

420

TPR: Source Routing

For type DL_TPR devices, GLDv2 implements minimal support for source routing.

Source routing support includes the following tasks:

= Specify routing information for a packet to be sent across a bridged medium. The routing
information is stored in the MAC header. This information is used to determine the route.

= Learnroutes.
= Solicit and respond to requests for information about possible multiple routes.

= Selectamong available routes.

Source routing adds routing information fields to the MAC headers of outgoing packets. In
addition, this support recognizes such fields in incoming packets.

GLDv2 source routing support does not implement the full route determination entity (RDE)
specified in Section 9 of ISO 8802-2 (IEEE 802.2). However, this support can interoperate with
any RDE implementations that might exist in the same or a bridged network.

GLDv2 DLPI Providers

GLDv2 implements both Style 1 and Style 2 DLPI providers. A physical point of attachment
(PPA) is the point at which a system attaches itself to a physical communication medium. All
communication on that physical medium funnels through the PPA. The Style 1 provider
attaches the streams to a particular PPA based on the major or minor device that has been
opened. The Style 2 provider requires the DLS user to explicitly identify the desired PPA using
DL_ATTACH_REQ. In this case, open(9E) creates a stream between the user and GLDv2, and
DL_ATTACH_REQ subsequently associates a particular PPA with that stream. Style 2 is denoted by
a minor number of zero. If a device node whose minor number is not zero is opened, Style 1 is
indicated and the associated PPA is the minor number minus 1. In both Style 1 and Style 2
opens, the device is cloned.

GLDv2 DLPI Primitives

GLDv2 implements several DLPI primitives. The DL_INFO_REQ primitive requests information
about the DLPI streams. The message consists of one M_PROTO message block. GLDV2 returns
device-dependent values in the DL_INFO_ACK response to this request. These values are based on
information that the GLDv2-based driver specified in the gld_mac_info(9S) structure that was
passed to the gld_register(9F) function.

GLDv2 returns the following values on behalf of all GLDv2-based drivers:

= VersionisDL VERSION 2.

= Service modeis DL_CLDLS. GLDv2 implements connectionless-mode service.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=gld-mac-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=gld-register-9f

GLDv2 Network Device Driver Framework

= Provider styleis DL_STYLE1 or DL_STYLE2, depending on how the stream was opened.
= No optional Quality of Service (QOS) support is present. The QOS fields are zero.

Note - Contrary to the DLPI specification, GLDV2 returns the correct address length and
broadcast address of the device in DL_INFO ACK even before the stream has been attached to a
PPA.

The DL_ATTACH_REQ primitive is used to associate a PPA with a stream. This request is needed
for Style 2 DLS providers to identify the physical medium over which the communication is
sent. Upon completion, the state changes from DL_UNATTACHED to DL_UNBOUND. The message
consists of one M_PROTO message block. This request is not allowed when Style 1 mode is used.
Streams that are opened using Style 1 are already attached to a PPA by the time the open
completes.

The DL_DETACH_REQ primitive requests to detach the PPA from the stream. This detachment is
allowed only if the stream was opened using Style 2.

TheDL_BIND_REQ and DL_UNBIND_REQ primitives bind and unbind a DLSAP (data link service
access point) to the stream. The PPA that is associated with a stream completes initialization
before the completion of the processing of the DL_BIND_REQ on that stream. You can bind
multiple streams to the same SAP. Each stream in this case receives a copy of any packets that
were received for that SAP.

TheDL_ENABMULTI_REQandDL_DISABMULTI_REQ primitives enable and disable reception of
individual multicast group addresses. Through iterative use of these primitives, an application
or other DLS user can create or modify a set of multicast addresses. The streams must be
attached to a PPA for these primitives to be accepted.

The DL_PROMISCON REQ and DL_PROMISCOFF_REQ primitives turn promiscuous mode on or off
on a per-stream basis. These controls operate at either at a physical level or at the SAP level. The
DL Provider routes all received messages on the media to the DLS user. Routing continues until
aDL_DETACH_REQisreceived, aDL_PROMISCOFF_REQ is received, or the stream is closed. You can
specify physical level promiscuous reception of all packets on the medium or of multicast
packets only.

Note - The streams must be attached to a PPA for these promiscuous mode primitives to be
accepted.

The DL_UNITDATA_REQ primitive is used to send data in a connectionless transfer. Because this
service is not acknowledged, delivery is not guaranteed. The message consists of oneM_PROTO
message block followed by one or more M_DATA blocks containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is to be passed on upstream. The packet is put
intoanM_PROTO message with the primitive set to DL_UNITDATA_IND.

Chapter 19 « Drivers for Network Devices 421



GLDv2 Network Device Driver Framework

422

The DL_PHYS_ADDR_REQ primitive requests the MAC address currently associated with the PPA
attached to the streams. The address is returned by the DL_PHYS_ADDR_ACK primitive. When
using Style 2, this primitive is only valid following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the MAC address currently associated with the
PPA attached to the streams. This primitive affects all other current and future streams attached
to this device. Once changed, all streams currently or subsequently opened and attached to this
device obtain this new physical address. The new physical address remains in effect until this
primitive changes the physical address again or the driver is reloaded.

Note - The superuser is allowed to change the physical address of a PPA while other streams are
bound to the same PPA.

TheDL GET_STATISTICS REQ primitive requestsaDL_GET_STATISTICS ACK response
containing statistics information associated with the PPA attached to the stream. Style 2
Streams must be attached to a particular PPA using DL_ATTACH_REQ before this primitive can
succeed.

GLDv2 1/0 Control Functions

GLDvV2 implements the ioct1 ioc_cmd function described below. If GLDv2 receives an
unrecognizable ioct1 command, GLDv2 passes the command to the device-specific driver's
gldm_ioctl() routine, as described in gld(9E).

The DLIOCRAW ioctl function is used by some DLPI applications, most notably the snoop(1M)
command. The DLIOCRAW command puts the stream into a raw mode. In raw mode, the driver
passes full MAC-level incoming packets upstream in M_DATA messages instead of transforming
the packets into the DL_UNITDATA_IND form. The DL_UNITDATA IND form is normally used for
reporting incoming packets. Packet SAP filtering is still performed on streams that are in raw
mode. If a stream user wants to receive all incoming packets, the user must also select the
appropriate promiscuous modes. After successfully selecting raw mode, the application is also
allowed to send fully formatted packets to the driver asM_DATA messages for transmission.
DLIOCRAW takes no arguments. Once enabled, the stream remains in this mode until closed.

GLDv2 Driver Requirements
GLDv2-based drivers must include the header file <sys/gld.h>.

GLDv2-based drivers must be linked with the -N“misc/gld” option:

%ld -r -N"misc/gld" xx.0 -0 xx

GLDv2 implements the following functions on behalf of the device-specific driver:

Writing Device Drivers « September 2010



GLDv2 Network Device Driver Framework

= open(9E)

= close(9E)

put(9E), required for STREAMS
srv(9E), required for STREAMS
getinfo(9E)

Themi_idname element of the module_info(9S) structure is a string that specifies the name of
the driver. This string must exactly match the name of the driver module as defined in the file
system.

The read-side qinit(9S) structure should specify the following elements:

gi putp NULL

gi_srvp gld rsrv

gi_qgopen gld open

gi qclose gld close

The write-side qinit(9S) structure should specify these elements:
qi putp gld wput

qi srvp gld wsrv

gqi qgopen NULL

gi qclose NULL

The devo_getinfo element of the dev_ops(9S) structure should specify gld_getinfo as the
getinfo(9E) routine.

The driver's attach(9E) function associates the hardware-specific device driver with the
GLDv?2 facility. attach () then prepares the device and driver for use.

The attach(9E) function allocates a gld_mac_info(9S) structure using gld_mac_alloc(). The
driver usually needs to save more information per device than is defined in the macinfo
structure. The driver should allocate the additional required data structure and save a pointer to
the structure in the gldm_private member of the gld _mac_info(9S) structure.

The attach(9E) routine must initialize the macinfo structure as described in the
gld_mac_info(9S) man page. The attach() routine should then call gld_register() tolink
the driver with the GLDv2 module. The driver should map registers if necessary and be fully
initialized and prepared to accept interrupts before calling gld_register(). The attach(9E)
function should add interrupts but should not enable the device to generate these interrupts.
The driver should reset the hardware before calling g1d_register() to ensure the hardware is
quiescent. A device must not be put into a state where the device might generate an interrupt
before gld register() is called. The device is started later when GLDv?2 calls the driver's

Chapter 19 « Drivers for Network Devices 423


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=put-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=srv-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=module-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=qinit-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=gld-mac-info-9s

GLDv2 Network Device Driver Framework

424

gldm_start() entry point, which is described in the g1d(9E) man page. After gld_register()
succeeds, the g1d(9E) entry points might be called by GLDv2 at any time.

The attach(9E) routine should return DDI_SUCCESS if gld register() succeeds. If

gld register() fails, DDI_FAILURE is returned. If a failure occurs, the attach(9E) routine
should deallocate any resources that were allocated before gld_register() was called. The
attach routine should then also return DDI_FAILURE. A failed macinfo structure should never be
reused. Such a structure should be deallocated using gld_mac_free().

The detach(9E)function should attempt to unregister the driver from GLDv2 by calling

gld unregister().For more information about gld_unregister(), see the gld(9F) man
page. The detach(9E) routine can get a pointer to the needed gld_mac_info(9S) structure from
the device's private data using ddi_get_driver_private(9F).gld_unregister() checks
certain conditions that could require that the driver not be detached. If the checks fail,

gld unregister() returns DDI FAILURE, in which case the driver's detach(9E) routine must
leave the device operational and return DDI_FAILURE.

If the checks succeed, gld_unregister() ensures that the device interrupts are stopped. The
driver's gldm_stop() routine is called if necessary. The driver is unlinked from the GLDv2
framework. g1d_unregister() then returns DDI_SUCCESS. In this case, the detach(9E) routine
should remove interrupts and use gld_mac_free() to deallocate any macinfo data structures
that were allocated in the attach(9E) routine. The detach () routine should then return
DDI_SUCCESS. The routine must remove the interrupt before calling gld_mac_free().

GLDv2 Network Statistics

Solaris network drivers must implement statistics variables. GLDv2 tallies some network
statistics, but other statistics must be counted by each GLDv2-based driver. GLDv2 provides
support for GLDv2-based drivers to report a standard set of network driver statistics. Statistics
are reported by GLDv2 using the kstat(7D) and kstat(9S) mechanisms. The

DL _GET STATISTICS REQ DLPIcommand can also be used to retrieve the current statistics
counters. All statistics are maintained as unsigned. The statistics are 32 bits unless otherwise
noted.

GLDv2 maintains and reports the following statistics.

rbytes64 Total bytes successfully received on the interface. Stores 64-bit statistics.

rbytes Total bytes successfully received on the interface

obytes64 Total bytes that have requested transmission on the interface. Stores 64-bit
statistics.

obytes Total bytes that have requested transmission on the interface.

ipackets64  Total packets successfully received on the interface. Stores 64-bit statistics.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=gld-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=kstat-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=kstat-9s

GLDv2 Network Device Driver Framework

ipackets

opackets64

opackets

multircv

multixmt

brdcstrcv
brdcstxmt
unknowns

noxmtbuf

blocked

xmtretry

promisc

Total packets successfully received on the interface.

Total packets that have requested transmission on the interface. Stores 64-bit
statistics.

Total packets that have requested transmission on the interface.

Multicast packets successfully received, including group and functional
addresses (long).

Multicast packets requested to be transmitted, including group and functional
addresses (long).

Broadcast packets successfully received (long).
Broadcast packets that have requested transmission (long).
Valid received packets not accepted by any stream (long).

Packets discarded on output because transmit buffer was busy, or no buffer
could be allocated for transmit (Long).

Number of times a received packet could not be put up a stream because the
queue was flow-controlled (long).

Times transmit was retried after having been delayed due to lack of resources
(long).

Current “promiscuous” state of the interface (string).

The device-dependent driver tracks the following statistics in a private per-instance structure.
To report statistics, GLDV2 calls the driver's gldm_get_stats() entry point.
gldm_get_stats() then updates device-specific statistics in the gld_stats(9S) structure. See
the gldm_get_stats(9E) man page for more information. GLDv2 then reports the updated
statistics using the named statistics variables that are shown below.

ifspeed

media

intr

norcvbuf

ierrors

oerrors

missed

Chapter 19 « Drivers for Network Devices

Current estimated bandwidth of the interface in bits per second. Stores 64-bit
statistics.

Current media type in use by the device (string).

Number of times that the interrupt handler was called, causing an interrupt
(long).

Number of times a valid incoming packet was known to have been discarded
because no buffer could be allocated for receive (Long).

Total number of packets that were received but could not be processed due to
errors (long).

Total packets that were not successfully transmitted because of errors (long).

Packets known to have been dropped by the hardware on receive (long).

425


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=gld-stats-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=gldm-get-stats-9e

GLDv2 Network Device Driver Framework

426

uflo Times FIFO underflowed on transmit (long).

oflo Times receiver overflowed during receive (long).

The following group of statistics applies to networks of type DL_ETHER. These statistics are
maintained by device-specific drivers of that type, as shown previously.

align _errors

fcs errors
duplex

carrier _errors

collisions

ex_collisions

tx_late collisions

defer xmts

first collisions
multi collisions
sge_errors

macxmt_errors

macrcv_errors

toolong errors

runt _errors

Packets that were received with framing errors, that is, the packets
did not contain an integral number of octets (Long).

Packets received with CRC errors (long).
Current duplex mode of the interface (string).

Number of times carrier was lost or never detected on a transmission
attempt (long).

Ethernet collisions during transmit (long).

Frames where excess collisions occurred on transmit, causing
transmit failure (Long).

Number of times a transmit collision occurred late, that is, after 512
bit times (long).

Packets without collisions where first transmit attempt was delayed
because the medium was busy (long).

Packets successfully transmitted with exactly one collision.
Packets successfully transmitted with multiple collisions.
Number of times that SQE test error was reported.

Packets encountering transmit MAC failures, except carrier and
collision failures.

Packets received with MAC errors, except align_errors,
fcs_errors,and toolong errors.

Packets received larger than the maximum allowed length.

Packets received smaller than the minimum allowed length (long).

The following group of statistics applies to networks of type DL_TPR. These statistics are
maintained by device-specific drivers of that type, as shown above.

line errors

burst errors

signal losses

Packets received with non-data bits or FCS errors.

Number of times an absence of transitions for five half-bit timers
was detected.

Number of times loss of signal condition on the ring was detected.

Writing Device Drivers « September 2010



GLDv2 Network Device Driver Framework

ace_errors Number of times that an AMP or SMP frame, in which A is equal to
Cisequalto 0, is followed by another SMP frame without an
intervening AMP frame.

internal_errors Number of times the station recognized an internal error.
lost_frame_errors Number of times the TRR timer expired during transmit.

frame copied errors Number of times a frame addressed to this station was received with
the FS field ‘A’ bit set to 1.

token_errors Number of times the station acting as the active monitor recognized
an error condition that needed a token transmitted.

freq_errors Number of times the frequency of the incoming signal differed from
the expected frequency.

The following group of statistics applies to networks of type DL_FDDI. These statistics are
maintained by device-specific drivers of that type, as shown above.

mac_errors Frames detected in error by this MAC that had not been detected in error
by another MAC.

mac_lost_errors  Frames received with format errors such that the frame was stripped.

mac_tokens Number of tokens that were received, that is, the total of non-restricted
and restricted tokens.

mac_tvx_expired Number of times that TVX has expired.

mac_late Number of TRT expirations since either this MAC was reset or a token
was received.

mac_ring_ops Number of times the ring has entered the “Ring Operational” state from
the “Ring Not Operational” state.

GLDv2 Declarations and Data Structures

This section describes the g1d_mac_info(9S) and gld_stats structures.

gld_mac_info Structure

The GLDv2 MAC information (gld_mac_info) structure is the main data interface that links
the device-specific driver with GLDv2. This structure contains data required by GLDv2 and a
pointer to an optional additional driver-specific information structure.

Allocate the gld_mac_info structure using gld_mac_alloc(). Deallocate the structure using
gld_mac_free(). Drivers must not make any assumptions about the length of this structure,

Chapter 19 « Drivers for Network Devices 427



GLDv2 Network Device Driver Framework

428

which might vary in different releases of the Solaris OS, GLDv2, or both. Structure members
private to GLDv2, not documented here, should neither be set nor be read by the device-specific
driver.

The gld_mac_info(9S) structure contains the following fields.

caddr_t gldm private; /* Driver private data */
int (*gldm_reset)(); /* Reset device */
int (*gldm_start)(); /* Start device */
int (*gldm_stop)(); /* Stop device */
int (*gldm set mac addr)(); /* Set device phys addr */
int (*gldm_set_multicast)(); /* Set/delete multicast addr */
int (*gldm_set promiscuous)(); /* Set/reset promiscuous mode */
int (*gldm send) (); /* Transmit routine */
uint t (*gldm intr)(); /* Interrupt handler */
int (*gldm get stats)(); /* Get device statistics */
int (*gldm ioctl)(); /* Driver-specific ioctls */
char *gldm ident; /* Driver identity string */
uint32 t gldm_type; /* Device type */
uint32 t gldm minpkt; /* Minimum packet size */

/* accepted by driver */
uint32 t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */
uint32 t gldm addrlen; /* Physical address length */
int32 t gldm_saplen; /* SAP length for DL _INFO ACK */
unsigned char *gldm_broadcast_addr; /* Physical broadcast addr */
unsigned char *gldm vendor addr; /* Factory MAC address */
t uscalar t gldm ppa; /* Physical Point of */

/* Attachment (PPA) number */
dev_info t *gldm devinfo; /* Pointer to device’'s */

/* dev_info node */
ddi iblock cookie t gldm cookie; /* Device’s interrupt */

/* block cookie */

The gldm_private structure member is visible to the device driver. gldm_private is also
private to the device-specific driver. gldm_private is not used or modified by GLDv2.
Conventionally, gldm_private is used as a pointer to private data, pointing to a per-instance
data structure that is both defined and allocated by the driver.

The following group of structure members must be set by the driver before calling
gld_register(), and should not thereafter be modified by the driver. Because
gld_register() might use or cache the values of structure members, changes made by the
driver after calling gld_register () might cause unpredictable results. For more information
on these structures, see the g1d(9E) man page.

gldm reset Pointer to driver entry point.
gldm_start Pointer to driver entry point.
gldm stop Pointer to driver entry point.
gldm set mac_addr Pointer to driver entry point.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=gld-9e

GLDv2 Network Device Driver Framework

gldm set multicast
gldm set promiscuous
gldm_send

gldm_intr
gldm get stats

gldm ioctl

gldm ident

gldm type

gldm minpkt

gldm maxpkt

gldm addrlen

gldm saplen

gldm broadcast addr

Pointer to driver entry point.
Pointer to driver entry point.
Pointer to driver entry point.
Pointer to driver entry point.
Pointer to driver entry point.
Pointer to driver entry point. This pointer is allowed to be null.

Pointer to a string that contains a short description of the device.
This pointer is used to identify the device in system messages.

Type of device the driver handles. GLDv2 currently supports the
following values:

® DL ETHER (ISO 8802-3 (IEEE 802.3) and Ethernet Bus)
= DL_TPR (IEEE 802.5 Token Passing Ring)
= DL FDDI (ISO 9314-2 Fibre Distributed Data Interface)

This structure member must be correctly set for GLDv2 to
function properly.

Minimum Service Data Unit size: the minimum packet size, not
including the MAC header, that the device can transmit. This size
is allowed to be zero if the device-specific driver handles any
required padding.

Maximum Service Data Unit size: the maximum size of packet, not
including the MAC header, that can be transmitted by the device.
For Ethernet, this number is 1500.

The length in bytes of physical addresses handled by the device.
For Ethernet, Token Ring, and FDDI, the value of this structure
member should be 6.

The length in bytes of the SAP address used by the driver. For
GLDv2-based drivers, the length should always be set to -2. A
length of -2 indicates that 2-byte SAP values are supported and
that the SAP appears after the physical address ina DLSAP
address. See Appendix A.2, “Message DL__INFO_ACK;” in the
DLPI specification for more details.

Pointer to an array of bytes of length gldm_addrlen containing the
broadcast address to be used for transmit. The driver must provide
space to hold the broadcast address, fill the space with the
appropriate value, and set gldm_broadcast_addr to point to the

Chapter 19 « Drivers for Network Devices 429



GLDv2 Network Device Driver Framework

430

address. For Ethernet, Token Ring, and FDDI, the broadcast
address is normally OxFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length gldm_addrlen that contains
the vendor-provided network physical address of the device. The
driver must provide space to hold the address, fill the space with
information from the device, and set gldm_vendor_addr to point
to the address.

gldm ppa PPA number for this instance of the device. The PPA number
should always be set to the instance number that is returned from
ddi_get_instance(9F).

gldm devinfo Pointer to the dev_info node for this device.
gldm_cookie Interrupt block cookie returned by one of the following routines:
= ddi get iblock cookie(9F)
= ddi add intr(9F)
= ddi_get soft iblock cookie(9F)
= ddi_add softintr(9F)

This cookie must correspond to the device's receive-interrupt,
from which gld_recv () is called.

gld_stats Structure

After calling gldm_get_stats(),a GLDv2-based driver uses the (gld_stats) structure to
communicate statistics and state information to GLDv2. See the g1d(9E) and g1d(7D) man
pages. The members of this structure, having been filled in by the GLDv2-based driver, are used
when GLDV2 reports the statistics. In the tables below, the name of the statistics variable
reported by GLDv2 is noted in the comments. See the g1d(7D) man page for a more detailed
description of the meaning of each statistic.

Drivers must not make any assumptions about the length of this structure. The structure length
might vary in different releases of the Solaris OS, GLDv2, or both. Structure members private to
GLDv2, which are not documented here, should not be set or be read by the device-specific
driver.

The following structure members are defined for all media types:

uint64 t glds speed; /* ifspeed */
uint32 t glds_media; /* media */
uint32 t glds intr; /* intr */
uint32 t glds norcvbuf; /* norcvbuf */
uint32 t glds errrcv; /* ierrors */
uint32 t glds errxmt; /* oerrors */
uint32 t glds missed; /* missed */
uint32 t glds underflow; /* uflo */

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-iblock-cookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-soft-iblock-cookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-add-softintr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=gld-7d

GLDv2 Network Device Driver Framework

uint32_t glds overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32 t glds frame; /* align errors */
uint32_t glds crc; /* fcs_errors */
uint32 t glds duplex; /* duplex */

uint32 t glds nocarrier; /* carrier _errors */
uint32 t glds _collisions; /* collisions */
uint32 t glds excoll; /* ex _collisions */
uint32 t glds xmtlatecoll; /* tx_late_collisions */
uint32 t glds defer; /* defer xmts */
uint32_ t glds dot3 first coll; /* first_collisions */
uint32 t glds dot3 multi coll; /* multi collisions */
uint32 t glds dot3 sqe error; /* sqe errors */
uint32 t glds dot3 mac_xmt error; /* macxmt_errors */
uint32 t glds dot3 mac rcv error; /* macrcv_errors */
uint32 t glds dot3 frame too long; /* toolong errors */
uint32 t glds short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

uint32 t glds dot5 line error /* line_errors */

uint32 t glds dot5 burst error /* burst errors */
uint32_t glds_dot5 signal loss /* signal losses */
uint32 t glds dot5 ace error /* ace errors */

uint32 t glds dot5 internal error /* internal errors */
uint32 t glds dot5 lost frame error /* lost_frame_errors */
uint32 t glds dot5 frame copied error /* frame copied errors */
uint32_t glds_dot5 token_error /* token_errors */

uint32 t glds dot5 freq error /* freq_ errors */

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi mac_error; /* mac_errors */
uint32 t glds fddi mac lost; /* mac_lost errors */
uint32 t glds fddi mac token; /* mac_tokens */
uint32 t glds fddi mac_tvx _expired; /* mac_tvx_expired */
uint32 t glds fddi mac late; /* mac_ late */

uint32 t glds fddi mac_ring op; /* mac_ring ops */

Most of the above statistics variables are counters that denote the number of times that the
particular event was observed. The following statistics do not represent the number of times:

glds_speed Estimate of the interface's current bandwidth in bits per second. This object
should contain the nominal bandwidth for those interfaces that do not vary in
bandwidth or where an accurate estimate cannot be made.

glds media Type of media (wiring) or connector used by the hardware. The following
media names are supported:

= GLDM AUI
= GLDM BNC
= GLDM TP

Chapter 19 « Drivers for Network Devices 431



GLDv2 Network Device Driver Framework

432

glds duplex

GLDM_10BT
GLDM 100BT
GLDM 100BTX
GLDM 100BT4
GLDM_RING4
GLDM_RING16
GLDM_FIBER
GLDM_PHYMII
GLDM_UNKNOWN

Current duplex state of the interface. Supported values are GLD_DUPLEX_HALF
and GLD_DUPLEX_FULL.GLD DUPLEX_UNKNOWN is also allowed.

GLDv2 Function Arguments

The following arguments are used by the GLDv2 routines.

macinfo

macaddr

multicastaddr

multiflag

promiscflag

mp

stats

dip

name

Pointer toa gld _mac_info(9S) structure.

Pointer to the beginning of a character array that contains a valid MAC
address. The array is of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info(9S) structure.

Pointer to the beginning of a character array that contains a multicast, group,
or functional address. The array is of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info(9S) structure.

Flag indicating whether to enable or disable reception of the multicast
address. This argument is specified as GLD_MULTI_ENABLE or
GLD_MULTI_DISABLE.

Flag indicating what type of promiscuous mode, if any, is to be enabled. This
argument is specified as GLD_MAC_PROMISC_PHYS, GLD_MAC_PROMISC_MULTI,
or GLD_MAC_PROMISC NONE.

gld_ioctl() uses mp asapointer to a STREAMS message block containing
the ioctl to be executed. gldm_send () uses mp as a pointer to a STREAMS
message block containing the packet to be transmitted. gld_recv () uses mp
as a pointer to a message block containing a received packet.

Pointer to a gld_stats(9S) structure to be filled in with the current values of
statistics counters.

Pointer to the queue(9S) structure to be used in the reply to the ioctl.
Pointer to the device's dev_info structure.

Device interface name.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=queue-9s

GLDv2 Network Device Driver Framework

GLDv2 Entry Points

Entry points must be implemented by a device-specific network driver that has been designed
to interface with GLDv2.

The gld mac_info(9S) structure is the main structure for communication between the
device-specific driver and the GLDv2 module. See the g1d(7D) man page. Some elements in
that structure are function pointers to the entry points that are described here. The
device-specific driver must, in its attach(9E) routine, initialize these function pointers before
calling gld_register().

gldm_reset () Entry Point

int prefix_reset(gld_mac_info_t *macinfo);

gldm reset () resets the hardware to its initial state.

gldm_start() Entry Point
int prefix_start(gld_mac_info_t *macinfo);

gldm_start() enables the device to generate interrupts. gldm_start() also prepares the driver
tocallgld_recv() to deliver received data packets to GLDv2.

gldm_stop() Entry Point

int prefix_stop(gld_mac_info_t *macinfo);

gldm_stop() disables the device from generating any interrupts and stops the driver from
calling gld_recv () for delivering data packets to GLDv2. GLDv2 depends on the gldm_stop()

routine to ensure that the device will no longer interrupt. gldm_stop() must do so without fail.
This function should always return GLD_SUCCESS.

gldm_set_mac_addr() Entry Point

int prefix_set_mac_addr(gld_mac_info_t *macinfo, unsigned char *macaddr);
gldm_set_mac_addr() sets the physical address that the hardware is to use for receiving data.
This function enables the device to be programmed through the passed MAC address macaddr.
If sufficient resources are currently not available to carry out the request, gldm_set_mac_add()

should return GLD_NORESOURCES. If the requested function is not supported,
gldm set mac_add() should return GLD NOTSUPPORTED.

gldm_set_multicast() Entry Point

int prefix_set_multicast(gld_mac_info_t *macinfo,
unsigned char *multicastaddr, int multiflag) ;

Chapter 19 « Drivers for Network Devices 433


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

GLDv2 Network Device Driver Framework

434

gldm_set_multicast() enablesand disables device-level reception of specific multicast
addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE, then

gldm_set multicast() setsthe interface to receive packets with the multicast address.
gldm_set_multicast() usesthe multicast address that is pointed to by the second argument. If
multiflag is set to GLD_MULTI_DISABLE, the driver is allowed to disable reception of the specified
multicast address.

This function is called whenever GLDv2 wants to enable or disable reception of a multicast,
group, or functional address. GLDv2 makes no assumptions about how the device does
multicast support and calls this function to enable or disable a specific multicast address. Some
devices might use a hash algorithm and a bitmask to enable collections of multicast addresses.
This procedure is allowed, and GLDv?2 filters out any superfluous packets. If disabling an
address could result in disabling more than one address at the device level, the device driver
should keep any necessary information. This approach avoids disabling an address that GLDv2
has enabled but not disabled.

gldm_set_multicast() is not called to enable a particular multicast address that is already
enabled. Similarly, gldm_set_multicast() is not called to disable an address that is not
currently enabled. GLDv2 keeps track of multiple requests for the same multicast address.
GLDv2 only calls the driver's entry point when the first request to enable, or the last request to
disable, a particular multicast address is made. If sufficient resources are currently not available
to carry out the request, the function should return GLD_NORESOURCES. The function should
return GLD_NOTSUPPORTED if the requested function is not supported.

gldm_set_promiscuous () Entry Point

int prefix_set_promiscuous(gld_mac_info_t *macinfo, int promiscflag);

gldm_set promiscuous () enables and disables promiscuous mode. This function is called
whenever GLDv2 wants to enable or disable the reception of all packets on the medium. The
function can also be limited to multicast packets on the medium. If the second argument
promiscflag is set to the value of GLD_MAC_PROMISC_PHYS, then the function enables
physical-level promiscuous mode. Physical-level promiscuous mode causes the reception of all
packets on the medium. If promiscflag is set to GLD_MAC_PROMISC_MULTI, then reception of all
multicast packets are enabled. If promiscflag is set to GLD_MAC_PROMISC_NONE, then
promiscuous mode is disabled.

In promiscuous multicast mode, drivers for devices without multicast-only promiscuous mode
must set the device to physical promiscuous mode. This approach ensures that all multicast
packets are received. In this case, the routine should return GLD_SUCCESS. The GLDv2 software
filters out any superfluous packets. If sufficient resources are currently not available to carry out
the request, the function should return GLD_NORESOURCES. The gld set promiscuous()
function should return GLD_NOTSUPPORTED if the requested function is not supported.

Writing Device Drivers « September 2010



GLDv2 Network Device Driver Framework

For forward compatibility, gldm_set_promiscuous () routines should treat any unrecognized
values for promiscflag as though these values were GLD_MAC_PROMISC_PHYS.

gldm_send() Entry Point

int prefix_send(gld_mac_info_t *macinfo, mblk_t *mp);

gldm_send() queues a packet to the device for transmission. This routine is passed a STREAMS
message containing the packet to be sent. The message might include multiple message blocks.
The send () routine must traverse all the message blocks in the message to access the entire
packet to be sent. The driver should be prepared to handle and skip over any zero-length
message continuation blocks in the chain. The driver should also check that the packet does not
exceed the maximum allowable packet size. The driver must pad the packet, if necessary, to the
minimum allowable packet size. If the send routine successfully transmits or queues the packet,
GLD SUCCESS should be returned.

The send routine should return GLD_NORESOURCES if the packet for transmission cannot be
immediately accepted. In this case, GLDV2 retries later. If gldm_send() ever returns

GLD NORESOURCES, the driver must call gld_sched() at a later time when resources have
become available. This call to gld_sched() informs GLDv2 to retry packets that the driver
previously failed to queue for transmission. (If the driver's gldm_stop () routine is called, the
driver is absolved from this obligation until the driver returns GLD_NORESOURCES from the
gldm_send() routine. However, extra calls to gld_sched () do not cause incorrect operation.)

If the driver's send routine returns GLD_SUCCESS, then the driver is responsible for freeing the
message when the message is no longer needed. If the hardware uses DMA to read the data
directly, the driver must not free the message until the hardware has completely read the data.
In this case, the driver can free the message in the interrupt routine. Alternatively, the driver can
reclaim the buffer at the start of a future send operation. If the send routine returns anything
other than GLD_SUCCESS, then the driver must not free the message. Return GLD_NOLINK if
gldm_send() is called when there is no physical connection to the network or link partner.

gldm_intr() Entry Point

int prefix_intr(gld_mac_info_t *macinfo);

gldm_intr() is called when the device might have interrupted. Because interrupts can be
shared with other devices, the driver must check the device status to determine whether that
device actually caused the interrupt. If the device that the driver controls did not cause the
interrupt, then this routine must return DDI_INTR_UNCLAIMED. Otherwise, the driver must
service the interrupt and return DDI_INTR_CLAIMED. If the interrupt was caused by successful
receipt of a packet, this routine should put the received packet into a STREAMS message of type
M_DATA and pass that message to gld_recv().

Chapter 19 « Drivers for Network Devices 435



GLDv2 Network Device Driver Framework

436

gld_recv () passes the inbound packet upstream to the appropriate next layer of the network
protocol stack. The routine must correctly set the b_rptrand b_wptr members of the
STREAMS message before calling gld_recv ().

The driver should avoid holding mutex or other locks during the call to gld_recv().In
particular, locks that could be taken by a transmit thread must not be held during a call to
gld_recv().In some cases, the interrupt thread that calls gld_recv () sends an outgoing
packet, which results in a call to the driver's gldm_send () routine. If gldm_send() tries to
acquire a mutex thatis held by gldm_intr() when gld_recv() is called, a panic occurs due to
recursive mutex entry. If other driver entry points attempt to acquire a mutex that the driver
holds acrossa call to gld_recv (), deadlock can result.

The interrupt code should increment statistics counters for any errors. Errors include the
failure to allocate a buffer that is needed for the received data and any hardware-specific errors,
such as CRC errors or framing errors.

gldm_get_stats() Entry Point

int prefix_get_stats(gld_mac_info_t *macinfo, struct gld_stats *stafs);

gldm_get_stats() gathers statistics from the hardware, driver private counters, or both, and
updates the gld_stats(9S) structure pointed to by stats. This routine is called by GLDv2 for
statistics requests. GLDv2 uses the gldm_get_stats() mechanism to acquire device-dependent
statistics from the driver before GLDv2 composes the reply to the statistics request. See the
gld_stats(9S), gld(7D), and qreply(9F) man pages for more information about defined
statistics counters.

gldm_ioctl() Entry Point

int prefix_ioctl(gld_mac_info_t *macinfo, queue_t *q, mblk_t *mp);

gldm_ioctl() implements any device-specific ioct1 commands. This element is allowed to be
null if the driver does not implement any ioct1l functions. The driver is responsible for
converting the message block into an ioct1 reply message and calling the qreply(9F) function
before returning GLD_SUCCESS. This function should always return GLD_SUCCESS. The driver
should report any errors as needed in a message to be passed to qreply(9F). If the gldm_ioctl
element is specified as NULL, GLDV2 returns a message of type M_IOCNAK with an error of
EINVAL.

GLDv2 ReturnValues

Some entry point functions in GLDv2 can return the following values, subject to the restrictions
above:

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=gld-stats-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=qreply-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=qreply-9f

GLDv2 Network Device Driver Framework

GLD_BADARG If the function detected an unsuitable argument, for example, a bad multicast
address, abad MAC address, or a bad packet

GLD FAILURE On hardware failure

GLD_SUCCESS On success

GLDv2 Service Routines

This section provides the syntax and description for the GLDv2 service routines.

gld_mac_alloc() Function

gld_mac_info_t *gld_mac_alloc(dev_info_t *dip);

gld_mac_alloc() allocates anew gld_mac_info(9S) structure and returns a pointer to the
structure. Some of the GLDv2-private elements of the structure might be initialized before
gld mac_alloc() returns. All other elements are initialized to zero. The device driver must

initialize some structure members, as described in the gld_mac_info(9S) man page, before
passing the pointer to the gld_mac_info structure to gld_register().

gld_mac_free() Function

void gld_mac_free(gld_mac_info_t *macinfo);

gld_mac_free() freesagld_mac_info(9S) structure previously allocated by gld_mac_alloc().

gld_register() Function

int gld_register(dev_info_t *dip, char *name, gld_mac_info_t *macinfo);

gld register() is called from the device driver's attach(9E) routine. gld_register() links
the GLDv2-based device driver with the GLDv2 framework. Before calling gld_register(),
the device driver's attach(9E) routine uses gld_mac_alloc() to allocatea gld mac_info(9S)

structure, and then initializes several structure elements. See gld_mac_info(9S) for more
information. A successful call to gld_register() performs the following actions:

= Links the device-specific driver with the GLDv2 system

= Sets the device-specific driver's private data pointer, using ddi_set_driver_private(9F) to
point to the macinfo structure

m  Creates the minor device node

= ReturnsDDI SUCCESS

The device interface name passed to gld_register() must exactly match the name of the
driver module as that name exists in the file system.

Chapter 19 « Drivers for Network Devices 437


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-set-driver-private-9f

GLDv2 Network Device Driver Framework

The driver's attach(9E) routine should return DDI_SUCCESS if gld_register() succeeds. If
gld_register() doesnotreturn DDI_SUCCESS, the attach(9E) routine should deallocate any
allocated resources before calling gld_register(), and then return DDI_FAILURE.

gld_unregister() Function

int gld_unregister(gld_mac_info_t *macinfo);

gld_unregister() is called by the device driver's detach(9E) function, and if successful,
performs the following tasks:

= Ensures that the device's interrupts are stopped, calling the driver's gldm_stop () routine if
necessary

= Removes the minor device node
= Unlinks the device-specific driver from the GLDv2 system
= ReturnsDDI SUCCESS

Ifgld_unregister() returns DDI_SUCCESS, the detach(9E) routine should deallocate any data
structures allocated in the attach(9E) routine, using gld_mac_free() to deallocate the
macinfo structure, and return DDI_SUCCESS. If gld unregister() does not return
DDI_SUCCESS, the driver's detach(9E) routine must leave the device operational and return
DDI FAILURE.

gld_recv() Function

void gld_recv(gld_mac_info_t *macinfo, mblk_t *mp);

gld_recv() is called by the driver's interrupt handler to pass a received packet upstream. The
driver must construct and pass a STREAMS M_DATA message containing the raw packet.
gld_recv() determines which STREAMS queues should receive a copy of the packet,
duplicating the packet if necessary. gld_recv() then formatsaDL_UNITDATA_IND message, if
required, and passes the data up all appropriate streams.

The driver should avoid holding mutex or other locks during the call to gld_recv().In
particular, locks that could be taken by a transmit thread must not be held during a call to
gld_recv(). The interrupt thread that calls gld_recv () in some cases carries out processing
that includes sending an outgoing packet. Transmission of the packet results in a call to the
driver's gldm_send() routine. If gldm_send () tries to acquire a mutex that is held by
gldm_intr() whengld_recv() is called, a panic occurs due to a recursive mutex entry. If other
driver entry points attempt to acquire a mutex that the driver holds across a call to gld_recv(),
deadlock can result.

gld_sched() Function

void gld_sched(gld_mac_info_t *macinfo);

438 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

GLDv2 Network Device Driver Framework

gld_sched() is called by the device driver to reschedule stalled outbound packets. Whenever
the driver's gldm_send () routine returns GLD_NORESOURCES, the driver must call gld_sched()
to inform the GLDv2 framework to retry previously unsendable packets. gld_sched() should
be called as soon as possible after resources become available so that GLDv2 resumes passing
outbound packets to the driver's gldm_send() routine. (If the driver's gldm_stop() routine is
called, the driver need not retry until GLD_NORESOURCES is returned from gldm_send ().
However, extra calls to gld_sched() do not cause incorrect operation.)

gld_intr() Function

uint t gld intr(caddr t);

gld_intr() is GLDv2's main interrupt handler. Normally, gld_intr() is specified as the
interrupt routine in the device driver's call to ddi_add_intr(9F). The argument to the interrupt
handler is specified as int_handler_argin the callto ddi_add_intr(9F). This argument must be
a pointer to the gld_mac_info(9S) structure. gld_intr(), when appropriate, calls the device
driver's gldm_intr() function, passing that pointer to the gld_mac_info(9S) structure.
However, to use a high-level interrupt, the driver must provide its own high-level interrupt
handler and trigger a soft interrupt from within the handler. In this case, gld_intr() would
normally be specified as the soft interrupt handler in the call to ddi_add_softintr().
gld_intr() returnsavalue that is appropriate for an interrupt handler.

Chapter 19 « Drivers for Network Devices 439


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-add-intr-9f

440



L K R 4 CHAPTER 20

USB Drivers

This chapter describes how to write a client USB device driver using the USBA 2.0 framework
for the Solaris environment. This chapter discusses the following topics:

“USB in the Solaris Environment” on page 441
“Binding Client Drivers” on page 444

“Basic Device Access” on page 447

“Device Communication” on page 451
“Device State Management” on page 461
“Utility Functions” on page 468

“Sample USB Device Driver” on page 471

USB in the Solaris Environment

The Solaris USB architecture includes the USBA 2.0 framework and USB client drivers.

USBA 2.0 Framework

The USBA 2.0 framework is a service layer that presents an abstract view of USB devices to
USBA-compliant client drivers. The framework enables USBA-compliant client drivers to
manage their USB devices. The USBA 2.0 framework supports the USB 2.0 specification except
for high speed isochronous pipes. For information on the USB 2.0 specification, see
http://www.usb.org/home.

The USBA 2.0 framework is platform-independent. The Solaris USB architecture is shown in
the following figure. The USBA 2.0 framework is the USBA layer in the figure. This layer
interfaces through a hardware-independent host controller driver interface to
hardware-specific host controller drivers. The host controller drivers access the USB physical
devices through the host controllers they manage.

441


http://www.usb.org/home

USB in the Solaris Environment

442

FIGURE 20-1 Solaris USB Architecture

Client Driver Hub Driver (HUBD)

—

USBAI HUBDI
USBA T
HCDI
|
Host Controller Driver
(HCD) — Transport Layer
|
Host Controller
| ]
Peripheral Peripheral Peripheral

USBAI: Solaris USB Architecture Interfaces,
Interfaces between USBA and client drivers

HUBDI: Hub Driver Interfaces
HCDI: Host Controller Driver Interfaces

USB Client Drivers

The USBA 2.0 framework is not a device driver itself. This chapter describes the client drivers
shown in Figure 20-1 and Figure 20-2. The client drivers interact with various kinds of USB
devices such as mass storage devices, printers, and human interface devices. The hub driverisa
client driver that is also a nexus driver. The hub driver enumerates devices on its ports and
creates devinfo nodes for those devices and then attaches the client drivers. This chapter does
not describe how to write a hub driver.

USB drivers have the same structure as any other Solaris driver. USB drivers can be block
drivers, character drivers, or STREAMS drivers. USB drivers follow the calling conventions and
use the data structures and routines described in the Solaris OS section 9 man pages. See
Intro(9E), Intro(9F), and Intro(9S).

The difference between USB drivers and other Solaris drivers is that USB drivers call USBA 2.0
framework functions to access the device instead of directly accessing the device. The USBA 2.0
framework supplements the standard Solaris DDI routines. See the following figure.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=intro-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=intro-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=intro-9s

USB in the Solaris Environment

FIGURE 20-2 Driver and Controller Interfaces

Client Driver Client Driver
L |
USBAI Standard Solaris
USBA functions such as DDI functions such as
usb_pipe open (9F) ddi get soft state (9F)
1 | I
USB 1.1 USB 2.0 USB 1.1
OHCI EHCI UHCI
OHCI EHCI UHCI
Host Controller Host Controller Host Controller
Hardware Hardware Hardware
| | |
USB Device USB Device USB Device

[] Solaris OS Kernel

Figure 20-2 shows interfaces in more detail than Figure 20-1 does. Figure 20-2 shows that the
USBA is a kernel subsystem into which a client driver can call, just as a client driver can call DDI
functions.

Not all systems have all of the host controller interfaces shown in Figure 20-2. OHCI (Open
Host Controller Interface) hardware is most prevalent on SPARC systems and third-party USB
PCI cards. UHCI (Universal Host Controller Interface) hardware is most prevalent on x86
systems. However, both OHCI and UHCI hardware can be used on any system. When EHCI
(Enhanced Host Controller Interface) hardware is present, the EHCI hardware is on the same
card and shares the same ports with either OHCI or UHCI.

The host controllers, host controller drivers, and HCDI make up a transport layer that is
commanded by the USBA. You cannot directly call into the OHCI, EHCI, or UHCI. You call
into them indirectly through the platform-independent USBA interface.

Chapter 20 - USB Drivers 443



Binding Client Drivers

Binding Client Drivers

444

This section discusses binding a driver to a device. It discusses compatible device names for
devices with single interfaces and devices with multiple interfaces.

How USB Devices Appear to the System

A USB device can support multiple configurations. Only one configuration is active at any given
time. The active configuration is called the current configuration.

A configuration can have more than one interface, possibly with intervening
interface-associations that group two or more interfaces for a function. All interfaces of a
configuration are active simultaneously. Different interfaces might be operated by different
device drivers.

An interface can represent itself to the host system in different ways by using alternate settings.
Only one alternate setting is active for any given interface.

Each alternate setting provides device access through endpoints. Each endpoint has a specific
purpose. The host system communicates with the device by establishing a communication
channel to an endpoint. This communication channel is called a pipe.

USB Devices and the Solaris Device Tree

If a USB device has one configuration, one interface, and device class zero, the device is
represented as a single device node. If a USB device has multiple interfaces, the device is
represented as a hierarchical device structure. In a hierarchical device structure, the device node
for each interface is a child of the top-level device node. An example of a device with multiple
interfaces is an audio device that presents simultaneously to the host computer both an audio
control interface and an audio streaming interface. The audio control interface and the audio
streaming interface each could be controlled by its own driver.

Compatible Device Names

The Solaris software builds an ordered list of compatible device names for USB binding based
on identification information kept within each device. This information includes device class,
subclass, vendor ID, product ID, revision, and protocol. See http://www.usb.org/home for a
list of USB classes and subclasses.

This name hierarchy enables binding to a general driver if a more device-specific driver is not
available. An example of a general driver is a class-specific driver. Device names that begin with
usbif designate single interface devices. See Example 20-1 for examples. The USBA 2.0
framework defines all compatible names for a device. Use the prtconf command to display
these device names, as shown in Example 20-2.

Writing Device Drivers « September 2010


http://www.usb.org/home

Binding Client Drivers

The following example shows an example of compatible device names for a USB mouse device.
This mouse device represents a combined node entirely operated by a single driver. The

USBA 2.0 framework gives this device node the names shown in the example, in the order
shown.

EXAMPLE20-1 USB Mouse Compatible Device Names

1. 'usb430,100.102’ Vendor 430, product 100, revision 102

2. 'usb430,100’ Vendor 430, product 100

3. 'usbif430,class3.1.2’ Vendor 430, class 3, subclass 1, protocol 2
4. 'usbif430,class3.1’ Vendor 430, class 3, subclass 1

5. 'usbif430,class3’ Vendor 430, class 3

6. 'usbif,class3.1.2’ Class 3, subclass 1, protocol 2

7. 'usbif,class3.1’ Class 3, subclass 1

8. 'usbif,class3’ Class 3

Note that the names in the above example progress from the most specific to the most general.
Entry 1 binds only to a particular revision of a specific product from a particular vendor. Entries
3,4, and 5 are for class 3 devices manufactured by vendor 430. Entries 6, 7, and 8 are for class 3
devices from any vendor. The binding process looks for a match on the name from the top
name down. To bind, drivers must be added to the system with an alias that matches one of
these names. To get a list of compatible device names to which to bind when you add your
driver, check the compatible property of the device in the output from the prtconf -vp
command.

The following example shows compatible property lists for a keyboard and a mouse. Use the
prtconf -D command to display the bound driver.

EXAMPLE 20-2 Compatible Device Names Shown by the Print Configuration Command

# prtconf -vD | grep compatible

compatible: 'usb430,5.200' + 'usb430,5’ + 'usbif430,class3.1.1’
+ 'usbif430,class3.1’ + 'usbif430,class3’ + ’'usbif,class3.1.1’ +
"usbif,class3.1’ + 'usbif,class3’

compatible: 'usb2222,2071.200' + 'usb2222,2071' +
"usbif2222,class3.1.2’ + 'usbif2222,class3.1’ + 'usbif2222,class3’ +
"usbif,class3.1.2’ + 'usbif,class3.1’ + 'usbif,class3’

Use the most specific name you can to more accurately identify a driver for a device or group of
devices. To bind drivers written for a specific revision of a specific product, use the most specific
name match possible. For example, if you have a USB mouse driver written by vendor 430 for
revision 102 of their product 100, use the following command to add that driver to the system:

’

add drv -n -i ""usb430,100.102"' specific mouse driver

To add a driver written for any USB mouse (class 3, subclass 1, protocol 2) from vendor 430, use
the following command:

’

add drv -n -i ""usbif430,class3.1.2"’ more generic mouse driver

Chapter 20 - USB Drivers 445



Binding Client Drivers

446

If you install both of these drivers and then connect a compatible device, the system binds the
correct driver to the connected device. For example, if you install both of these drivers and then
connect a vendor 430, model 100, revision 102 device, this device is bound to
specific_mouse_driver. If you connect a vendor 430, model 98 device, this device is bound to
more_generic_mouse_driver.If you connect a mouse from another vendor, this device also is
bound tomore generic mouse driver.If multiple drivers are available for a specific device,
the driver binding framework selects the driver with the first matching compatible name in the
compatible names list.

Devices With Multiple Interfaces

Composite devices are devices that support multiple interfaces. Composite devices have a list of
compatible names for each interface. This compatible names list ensures that the best available
driver is bound to the interface. The most general multiple interface entry is usb, device.

For a USB audio composite device, the compatible names are as follows:

1. 'usb471,101.100°’ Vendor 471, product 101, revision 100
2. 'usb471,101’ Vendor 471, product 101
3. 'usb,device’ Generic USB device

The name usb, device is a compatible name that represents any whole USB device. The
usb_mid(7D) driver (USB multiple-interface driver) binds to the usb, device device node if no
other driver has claimed the whole device. The usb_mid driver creates a child device node for
each interface of the physical device. The usb_mid driver also generates a set of compatible
names for each interface. Each of these generated compatible names begins with usbif. The
system then uses these generated compatible names to find the best driver for each interface. In
this way, different interfaces of one physical device can be bound to different drivers.

For example, the usb_mid driver binds to a multiple-interface audio device through the

usb, device node name of that audio device. The usb_mid driver then creates interface-specific
device nodes. Each of these interface-specific device nodes has its own compatible name list. For
an audio control interface node, the compatible name list might look like the list shown in the
following example.

EXAMPLE 20-3 USB Audio Compatible Device Names

1. 'usbif471,101.100.configl.@’ Vend 471, prod 101, rev 100, cnfg 1, iface 0
2. 'usbif471,101.configl.0’ Vend 471, product 101, config 1, interface 0
3. 'usbif471,classl.1.0’ Vend 471, class 1, subclass 1, protocol 0

4. 'usbif471,classl.1l’ Vend 471, class 1, subclass 1

5. '"usbif471,classl’ Vend 471, class 1

6. 'usbif,classl.1.0’ Class 1, subclass 1, protocol 0

7. 'usbif,classl.1l’ Class 1, subclass 1

8. 'usbif,classl’ Class 1

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=usb-mid-7d

Basic Device Access

Use the following command to bind a vendor-specific, device-specific client driver named
vendor_model_audio_usb to the vendor-specific, device-specific configuration 1, interface 0
interface compatible name shown in Example 20-3.

add drv -n -i ""usbif471,101.configl.0"’ vendor model audio usb

Use the following command to bind a class driver named audio_class_usb_if driver tothe
more general class 1, subclass 1 interface compatible name shown in Example 20-3:

’ ny

add drv -n -i ""usbif,classl.1"’ audio class usb if driver

Use the prtconf -D command to show a list of devices and their drivers. In the following
example, the prtconf -D command shows that the usb_mid driver manages the audio device.
The usb_mid driver is splitting the audio device into interfaces. Each interface is indented
under the audio device name. For each interface shown in the indented list, the prtconf -D
command shows which driver manages the interface.

audio, instance #0 (driver name: usb_mid)
sound-control, instance #2 (driver name: usb ac)
sound, instance #2 (driver name: usb as)
input, instance #8 (driver name: hid)

Checking Device Driver Bindings

The file /etc/driver_aliases contains entries for the bindings that already exist on a system.
Eachline of the /etc/driver_aliases file shows a driver name, followed by a space, followed
by a device name. Use this file to check existing device driver bindings.

Note - Do not edit the /etc/driver_aliases file manually. Use the add_drv(1M) command to
establish a binding. Use the update_drv(1M) command to change a binding.

Basic Device Access

This section describes how to access a USB device and how to register a client driver. This
section also discusses the descriptor tree.

Before the Client Driver Is Attached

The following events take place before the client driver is attached:

1. The PROM (OBP/BIOS) and USBA framework gain access to the device before any client
driver is attached.

2. The hub driver probes devices on each of its hub's ports for identity and configuration.

Chapter 20 - USB Drivers 447


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=update-drv-1m

Basic Device Access

448

3. The default control pipe to each device is opened, and each device is probed for its device
descriptor.

4. Compatible names properties are constructed for each device, using the device and interface
descriptors.

The compatible names properties define different parts of the device that can be individually
bound to client drivers. Client drivers can bind either to the entire device or to just one
interface. See “Binding Client Drivers” on page 444.

The Descriptor Tree

Parsing descriptors involves aligning structure members at natural boundaries and converting
the structure members to the endianness of the host CPU. Parsed standard USB configuration
descriptors, interface descriptors, and endpoint descriptors are available to the client driver in
the form of a hierarchical tree for each configuration. Any raw class-specific or vendor-specific
descriptor information also is available to the client driver in the same hierarchical tree.

Call theusb _get dev_data(9F) function to retrieve the hierarchical descriptor tree. The “SEE
ALSO” section of the usb_get_dev_data(9F) man page lists the man pages for each standard
USB descriptor. Use the usb_parse_data(9F) function to parse raw descriptor information.

A descriptor tree for a device with two configurations might look like the tree shown in the
following figure.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-parse-data-9f

Basic Device Access

FIGURE20-3 A Hierarchical USB Descriptor Tree

dev_cfg[0]
dev_cfg[1]
cfg_if[0] cfg_if[0]
cfg_if[1] cfg_if[1]
oo | [T oo | [T
. Itif_ep[0] .
— altif_ep[0] at . altif_ep|0]
altif_cvs[0] :‘l'ttif—fv‘;[[gl altif_ep{0] altif_cvs[0]
ep_cvs[0]

The dev_cfg array shown in the above figure contains nodes that correspond to configurations.
Each node contains the following information:

= A parsed configuration descriptor
= A pointer to an array of descriptors that correspond to the interfaces of that configuration

= A pointer to an array of class-specific or vendor-specific raw data, if any exists

The node that represents the second interface of the second indexed configuration is at
dev_cfg[1].cfg_if[1] inthe diagram. That node contains an array of nodes that represent the
alternate settings for that interface. The hierarchy of USB descriptors propagates through the
tree. ASCII strings from string descriptor data are attached where the USB specification says
these strings exist.

The array of configurations is non-sparse and is indexed by the configuration index. The first
valid configuration (configuration 1) is dev_cfg[0]. Interfaces and alternate settings have
indices that align with their numbers. Endpoints of each alternate setting are indexed
consecutively. The first endpoint of each alternate setting is at index 0.

This numbering scheme makes the tree easy to traverse. For example, the raw descriptor data of
endpoint index 0, alternate 0, interface 1, configuration index 1 is at the node defined by the
following path:

dev cfg[l].cfg if[1].if alt[@].altif ep[0@].ep descr

Chapter 20 - USB Drivers 449



Basic Device Access

450

An alternative to using the descriptor tree directly is using the usb_lookup_ep_data(9F)
function. The usb_lookup_ep_data(9F) function takes as arguments the interface, alternate,
which endpoint, endpoint type, and direction. You can use the usb_lookup_ep_data(9F)
function to traverse the descriptor tree to get a particular endpoint. See the
usb_get_dev_data(9F) man page for more information.

Registering Drivers to Gain Device Access

Two of the first calls into the USBA 2.0 framework by a client driver are calls to the
usb_client attach(9F) function and the usb get dev_data(9F) function. These two calls
come from the client driver's attach(9E) entry point. You must call the
usb_client_attach(9F) function before you call the usb_get_dev_data(9F) function.

The usb_client_attach(9F) function registers a client driver with the USBA 2.0 framework.
The usb_client_attach(9F) function enforces versioning. All client driver source files must
start with the following lines:

#define USBDRV_MAJOR VER 2
#define USBDRV_MINOR_VER minor-version
#include <sys/usb/usba.h>

The value of minor-version must be less than or equal to USBA_MINOR_VER. The symbol
USBA MINOR VERisdefined in the <sys/usb/usbai.h> header file. The <sys/usb/usbai.h>
header file is included by the <sys/usb/usba. h> header file.

USBDRV_VERSION is a macro that generates the version number from USBDRV_MAJOR_VERSION
and USBDRV_MINOR_VERSION. The second argument to usb_client_attach() mustbe
USBDRV_VERSION. The usb_client_attach() function fails if the second argument is not
USBDRV_VERSION or if USBDRV_VERSION reflects an invalid version. This restriction ensures
programming interface compatibility.

The usb_get_dev_data() function returns information that is required for proper USB device
management. For example, the usb_get_dev_data() function returns the following
information:

= The default control pipe

m  Theiblock_cookie to use in mutex initializations (see mutex_init(9F))
®  The parsed device descriptor

= D strings

= The tree hierarchy as described in “The Descriptor Tree” on page 448

The call to the usb_get_dev_data() function is mandatory. Calling usb_get_dev_data() is
the only way to retrieve the default control pipe and retrieve the iblock_cookie required for
mutex initialization.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-lookup-ep-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-client-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-init-9f

Device Communication

After calling usb_get_dev_data(), the client driver's attach(9E) routine typically copies the
desired descriptors and data from the descriptor tree to the driver's soft state. Endpoint
descriptors copied to the soft state are used later to open pipes to those endpoints. The
attach(9E) routine usually calls usb_free_descr_tree(9F) to free the descriptor tree after
copying descriptors. Alternatively, you might choose to keep the descriptor tree and not copy
the descriptors.

Specify one of the following three parse levels to the usb_get_dev_data(9F) function to request
the breadth of the descriptor tree you want returned. You need greater tree breadth if your
driver needs to bind to more of the device.

= USB_PARSE_LVL_IF.Ifyour client driver binds to a specific interface, the driver needs the
descriptors for only that interface. Specify USB_PARSE_LVL_IF for the parse level in the
usb_get_dev_data() call to retrieve only those descriptors.

®  USB_PARSE_LVL_CFG. If your client driver binds to the whole device, specify
USB_PARSE_LVL_CFG to retrieve all descriptors of the current configuration.

®  USB_PARSE_LVL_ALL. Specify USB_PARSE_LVL_ALL to retrieve all descriptors of all
configurations. For example, you need this greatest tree breadth to use
usb_print_descr_tree(9F) to print a descriptor dump of all configurations of a device.

The client driver's detach(9E) routine must call the usb_free dev_data(9F) function to
release all resources allocated by theusb_get_dev_data() function. The usb_free_dev_data()
function accepts handles where the descriptor tree has already been freed with the

usb_free descr_tree() function. The client driver's detach () routine also must call the
usb_client_detach(9F) function to release all resources allocated by the

usb_client attach(9F) function.

Device Communication

USB devices operate by passing requests through communication channels called pipes. Pipes
must be open before you can submit requests. Pipes also can be flushed, queried, and closed.
This section discusses pipes, data transfers and callbacks, and data requests.

USB Endpoints

The four kinds of pipes that communicate with the four kinds of USB endpoints are:

= Control. Control pipes are used primarily to send commands and retrieve status. Control
pipes are intended for non-periodic, host-initiated request and response communication of
small-sized structured data. Control pipes are bidirectional. The default pipe is a control
pipe. See “The Default Pipe” on page 452.

= Bulk. Bulk pipes are used primarily for data transfer. Bulk pipes offer reliable transportation
of large amounts of data. Bulk pipes do not necessarily deliver the data in a timely manner.
Bulk pipes are unidirectional.

Chapter 20 - USB Drivers 451


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-free-descr-tree-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-print-descr-tree-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-free-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-client-detach-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-client-attach-9f

Device Communication

452

= Interrupt. Interrupt pipes offer timely, reliable communication of small amounts of
unstructured data. Periodic polling often is started on interrupt-IN pipes. Interrupt-IN
pipes return data to the host when the data becomes present on the device. Some devices
have interrupt-OUT pipes. Interrupt-OUT pipes transfer data to the device with the same
timely, reliable “interrupt pipe” characteristics of interrupt-IN pipes. Interrupt pipes are
unidirectional.

= Isochronous. Isochronous pipes offer a channel for transferring constant-rate,
time-relevant data, such as for audio devices. Data is not retried on error. Isochronous pipes
are unidirectional.

See Chapter 5 of the USB 2.0 specification or see “Requests” on page 455 for more information
on the transfer types that correspond to these endpoints.

The Default Pipe

Each USB device has a special control endpoint called the default endpoint. Its communication
channel is called the default pipe. Most, if not all, device setup is done through this pipe. Many
USB devices have this pipe as their only control pipe.

Theusb get dev data(9F) function provides the default control pipe to the client driver. This
pipe is pre-opened to accommodate any special setup needed before opening other pipes. This
default control pipe is special in the following ways:

= This pipe is shared. Drivers that are operating other interfaces of the same device use the
same default control pipe. The USBA 2.0 framework arbitrates this pipe among the different
drivers.

= This pipe cannot be opened, closed, or reset by the client driver. This restriction exists
because the pipe is shared.

= The pipe is autocleared on an exception.

Other pipes, including other control pipes, must be opened explicitly and are exclusive-open
only.

Pipe States

Pipes are in one of the following states:

= USB PIPE STATE IDLE

= All control and bulk pipes, interrupt-OUT pipes, and isochronous-OUT pipes: No
request is in progress.

= Interrupt-IN and isochronous-IN pipes: No polling is in progress.

= USB PIPE STATE ACTIVE

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-dev-data-9f

Device Communication

= All control and bulk pipes, interrupt-OUT pipes, and isochronous-OUT pipes: The pipe
is transferring data or an I/O request is active.

= Interrupt-IN and isochronous-IN pipes: Polling is active.

®  USB PIPE STATE ERROR. An error occurred. If this pipe is not the default pipe and if
autoclearing is not enabled, then the client driver must call the usb_pipe_reset(9F)
function.

®  USB_PIPE_STATE_CLOSING. The pipe is being closed.
®  USB_PIPE STATE_CLOSED. The pipe is closed.

Callthe usb_pipe_get_state(9F) function to retrieve the state of a pipe.

Opening Pipes

To open a pipe, pass to the usb_pipe_open(9F) function the endpoint descriptor that
corresponds to the pipe you want to open. Use the usb_get_dev_data(9F) and

usb lookup ep data(9F) functions to retrieve the endpoint descriptor from the descriptor
tree. The usb_pipe open(9F) function returns a handle to the pipe.

You must specify a pipe policy when you open a pipe. The pipe policy contains an estimate of
the number of concurrent asynchronous operations that require separate threads that will be
needed for this pipe. An estimate of the number of threads is the number of parallel operations
that could occur during a callback. The value of this estimate must be at least 2. See the
usb_pipe_open(9F) man page for more information on pipe policy.

Closing Pipes

The driver must use the usb_pipe close(9F) function to close pipes other than the default
pipe. The usb_pipe_close(9F) function enables all remaining requests in the pipe to complete.
The function then allows one second for all callbacks of those requests to complete.

Data Transfer

For all pipe types, the programming model is as follows:

1. Allocate arequest.

2. Submit the request using one of the pipe transfer functions. See the
usb_pipe bulk xfer(9F),usb pipe ctrl xfer(9F),usb pipe intr xfer(9F),and
usb_pipe_isoc_xfer(9F) man pages.

3. Wait for completion notification.

4. Free the request.

Chapter 20 - USB Drivers 453


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-get-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-open-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-lookup-ep-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-bulk-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-ctrl-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-intr-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-isoc-xfer-9f

Device Communication

454

See “Requests” on page 455 for more information on requests. The following sections describe
the features of different request types.

Synchronous and Asynchronous Transfers and Callbacks

Transfers are either synchronous or asynchronous. Synchronous transfers block until they
complete. Asynchronous transfers callback into the client driver when they complete. Most
transfer functions called with the USB_FLAGS_SLEEP flag set in the flags argument are
synchronous.

Continuous transfers such as polling and isochronous transfers cannot be synchronous. Calls to
transfer functions for continuous transfers made with the USB_FLAGS_SLEEP flag set block only
to wait for resources before the transfer begins.

Synchronous transfers are the most simple transfers to set up because synchronous transfers do
not require any callback functions. Synchronous transfer functions return a transfer start status,
even though synchronous transfer functions block until the transfer is completed. Upon
completion, you can find additional information about the transfer status in the completion
reason field and callback flags field of the request. Completion reasons and callback flags fields
are discussed below.

If the USB_FLAGS_SLEEP flag is not specified in the flags argument, that transfer operation is
asynchronous. The exception to this rule are isochronous transfers. Asynchronous transfer
operations set up and start the transfer, and then return before the transfer is complete.
Asynchronous transfer operations return a transfer start status. The client driver receives
transfer completion status through callback handlers.

Callback handlers are functions that are called when asynchronous transfers complete. Do not
set up an asynchronous transfer without callbacks. The two types of callback handlers are
normal completion handlers and exception handlers. You can specify one handler to be called
in both of these cases.

= Normal completion. A normal completion callback handler is called to notify of a normally
completed transfer.

= Exception. An exception callback handler is called to notify of an abnormally completed
transfer and to process its errors.

Both completion handlers and exception handlers receive the transfer's request as an argument.
Exception handlers use the completion reason and callback status in the request to find out
what happened. The completion reason (usb_cr_t) indicates how the original transaction
completed. For example, a completion reason of USB_CR_TIMEOUT indicates that the transfer
timed out. As another example, if a USB device is removed while in use, client drivers might
receive USB_CR_DEV_NOT_RESP as the completion reason on their outstanding requests. The
callback status (usb_cb_flags_t) indicates what the USBA framework did to remedy the
situation. For example, a callback status of USB_CB_STALL_CLEARED indicates that the USBA

Writing Device Drivers « September 2010



Device Communication

framework cleared a functional stall condition. See the usb_completion_reason(9S) man page
for more information on completion reasons. See the usb_callback_flags(9S) man page for
more information on callback status flags.

The context of the callback and the policy of the pipe on which the requests are run limit what
you can do in the callback.

= Callback context. Most callbacks execute in kernel context and usually can block. Some
callbacks execute in interrupt context and cannot block. The USB_CB_INTR_CONTEXT flag is
setin the callback flags to denote interrupt context. See the usb_callback_flags(9S) man
page for more information on callback context and details on blocking.

= Pipe policy. The pipe policy's hint on concurrent asynchronous operations limits the
number of operations that can be run in parallel, including those executed from a callback
handler. Blocking on a synchronous operation counts as one operation. See the
usb_pipe_open(9F) man page for more information on pipe policy.

Requests

This section discusses request structures and allocating and deallocating different types of

requests.

Request Allocation and Deallocation

Requests are implemented as initialized request structures. Each different endpoint type takes a
different type of request. Each type of request has a different request structure type. The
following table shows the structure type for each type of request. This table also lists the

functions to use to allocate and free each type of structure.

TABLE20-1 Request Initialization

Pipe or EndpointType Request Structure

Request Structure Allocation Function

Request Structure Free Function

Control

Bulk

Interrupt

Isochronous

usb_ctrl req t (seethe
usb ctrl request(9S) man

page)

usb_bulk req t (seethe
usb _bulk request(9S) man
page)

usb_intr req t (seethe
usb_intr request(9S) man
page)

usb_isoc req t (seethe
usb_isoc request(9S) man
page)

usb_alloc ctrl req(9F)

usb alloc bulk req(9F)

usb_alloc_intr_req(9F)

usb alloc isoc req(9F)

usb free ctrl req(9F)

usb_free bulk req(9F)

usb_free intr req(9F)

usb_free isoc req(9F)

Chapter 20 - USB Drivers

455


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-completion-reason-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-callback-flags-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-callback-flags-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-open-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-ctrl-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-alloc-ctrl-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-free-ctrl-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-bulk-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-alloc-bulk-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-free-bulk-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-intr-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-alloc-intr-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-free-intr-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-isoc-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-alloc-isoc-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-free-isoc-req-9f

Device Communication

The following table lists the transfer functions that you can use for each type of request.

TABLE20-2 Request Transfer Setup

Pipe or Endpoint Type Transfer Functions

Control usb pipe ctrl xfer(9F),usb pipe ctrl xfer wait(9F)
Bulk usb pipe bulk xfer(9F)

Interrupt usb pipe intr xfer(9F),usb pipe stop intr polling(9F)
Isochronous usb pipe isoc xfer(9F),usb pipe stop isoc polling(9F)

Use the following procedure to allocate and deallocate a request:

1. Use the appropriate allocation function to allocate a request structure for the type of request
you need. The man pages for the request structure allocation functions are listed in
Table 20-1.

2. Initialize any fields you need in the structure. See “Request Features and Fields” on page 456
or the appropriate request structure man page for more information. The man pages for the
request structures are listed in Table 20-1.

3. When the data transfer is complete, use the appropriate free function to free the request
structure. The man pages for the request structure free functions are listed in Table 20-1.

Request Features and Fields

Data for all requests is passed in message blocks so that the data is handled uniformly whether
the driver isa STREAMS, character, or block driver. The message block type, mblk_t, is
described in the mb1k(9S) man page. The DDI offers several routines for manipulating message
blocks. Examples include allocb(9F) and f reemsg(9F). To learn about other routines for
manipulating message blocks, see the “SEE ALSO” sections of the allocb(9F) and freemsg(9F)
man pages. Also see the STREAMS Programming Guide.

The following request fields are included in all transfer types. In each field name, the possible
values for xxxx are: ctrl, bulk, intr, or isoc.

xxxx_client_private This field value is a pointer that is intended for internal data to be
passed around the client driver along with the request. This pointer is
not used to transfer data to the device.

xxxx_attributes This field value is a set of transfer attributes. While this field is
common to all request structures, the initialization of this field is
somewhat different for each transfer type. See the appropriate request
structure man page for more information. These man pages are listed
in Table 20-1. See also the usb_request_attributes(9S) man page.

456 Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-ctrl-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-ctrl-xfer-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-bulk-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-intr-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-stop-intr-polling-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-isoc-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-stop-isoc-polling-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mblk-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=allocb-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=freemsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-request-attributes-9s

Device Communication

xxxx_chb This field value is a callback function for normal transfer completion.
This function is called when an asynchronous transfer completes
without error.

xxxx_exc_cb This field value is a callback function for error handling. This function

is called only when asynchronous transfers complete with errors.

xxxx_completion_reason This field holds the completion status of the transfer itself. If an error
occurred, this field shows what went wrong. See the
usb_completion_reason(9S) man page for more information. This
field is updated by the USBA 2.0 framework.

xxxx_cb_flags This field lists the recovery actions that were taken by the USBA 2.0
framework before calling the callback handler. The
USB_CB_INTR_CONTEXT flag indicates whether a callback is running in
interrupt context. See the usb_callback_flags(9S) man page for
more information. This field is updated by the USBA 2.0 framework.

The following sections describe the request fields that are different for the four different transfer
types. These sections describe how to initialize these structure fields. These sections also
describe the restrictions on various combinations of attributes and parameters.

Control Requests

Use control requests to initiate message transfers down a control pipe. You can set up transfers
manually, as described below. You can also set up and send synchronous transfers using the
usb_pipe ctrl xfer wait(9F)wrapper function.

The client driver must initialize the ctrl_bmRequestType, ctrl_bRequest, ctrl_wValue,
ctrl_wlIndex, and ctrl_wLength fields as described in the USB 2.0 specification.

The ctrl_data field of the request must be initialized to point to a data buffer. The
usb_alloc_ctrl_req(9F) function initializes this field when you pass a positive value as the
buffer len. The buffer must, of course, be initialized for any outbound transfers. In all cases, the
client driver must free the request when the transfer is complete.

Multiple control requests can be queued. Queued requests can be a combination of
synchronous and asynchronous requests.

The ctrl_timeout field defines the maximum wait time for the request to be processed, excluding
wait time on the queue. This field applies to both synchronous and asynchronous requests. The
ctrl_timeout field is specified in seconds.

The ctrl_exc_cb field accepts the address of a function to call if an exception occurs. The
arguments of this exception handler are specified in the usb_ctrl_request(9S) man page. The
second argument of the exception handler is the usb_ctrl_req_t structure. Passing the request
structure as an argument allows the exception handler to check the ctrl_completion_reason and
ctrl_cb_flags fields of the request to determine the best recovery action.

Chapter 20 - USB Drivers 457


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-completion-reason-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-callback-flags-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-ctrl-xfer-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-alloc-ctrl-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-ctrl-request-9s

Device Communication

458

The USB_ATTRS_ONE_XFER and USB_ATTRS_ISOC_* flags are invalid attributes for all control
requests. The USB_ATTRS_SHORT_XFER_OK flag is valid only for host-bound requests.

Bulk Requests

Use bulk requests to send data that is not time-critical. Bulk requests can take several USB
frames to complete, depending on overall bus load.

All requests must receive an initialized message block. See the mb1k(9S) man page for a
description of the mblk_t message block type. This message block either supplies the data or
stores the data, depending on the transfer direction. Refer to the usb_bulk_request(9S) man
page for more details.

The USB_ATTRS_ONE_XFER and USB_ATTRS_ISOC_* flags are invalid attributes for all bulk
requests. The USB_ATTRS_SHORT_XFER_OK flag is valid only for host-bound requests.

The usb_pipe_get_max_bulk_transfer_size(9F) function specifies the maximum number of
bytes per request. The value retrieved can be the maximum value used in the client driver's
minphys(9F) routine.

Multiple bulk requests can be queued.

Interrupt Requests

Interrupt requests typically are for periodic inbound data. Interrupt requests periodically poll
the device for data. However, the USBA 2.0 framework supports one-time inbound interrupt
data requests, as well as outbound interrupt data requests. All interrupt requests can take
advantage of the USB interrupt transfer features of timeliness and retry.

The USB_ATTRS_ISOC_* flags are invalid attributes for all interrupt requests. The
USB_ATTRS_SHORT_XFER_OK and USB_ATTRS_ONE_XFER flags are valid only for host-bound
requests.

Only one-time polls can be done as synchronous interrupt transfers. Specifying the
USB_ATTRS ONE_XFER attribute in the request results in a one-time poll.

Periodic polling is started as an asynchronous interrupt transfer. An original interrupt request
is passed to usb_pipe_intr_xfer(9F). When polling finds new data to return, a new
usb_intr_req_t structure is cloned from the original and is populated with an initialized data
block. When allocating the request, specify zero for the len argument to the
usb_alloc_intr_req(9F) function. The len argument is zero because the USBA 2.0 framework
allocates and fills in a new request with each callback. After you allocate the request structure,
fill in the intr_len field to specify the number of bytes you want the framework to allocate with
each poll. Data beyond intr_len bytes is not returned.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mblk-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-bulk-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-get-max-bulk-transfer-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=minphys-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-intr-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-alloc-intr-req-9f

Device Communication

The client driver must free each request it receives. If the message block is sent upstream,
decouple the message block from the request before you send the message block upstream. To
decouple the message block from the request, set the data pointer of the request to NULL. Setting
the data pointer of the request to NULL prevents the message block from being freed when the
request is deallocated.

Call the usb_pipe_stop_intr_polling(9F) function to cancel periodic polling. When polling
is stopped or the pipe is closed, the original request structure is returned through an exception
callback. This returned request structure has its completion reason set to

USB_CR_STOPPED POLLING.

Do not start polling while polling is already in progress. Do not start polling while a call to
usb_pipe_stop_intr_polling(9F) isin progress.

Isochronous Requests

Isochronous requests are for streaming, constant-rate, time-relevant data. Retries are not made
on errors. Isochronous requests have the following request-specific fields:

isoc_frame_no Specify this field when the overall transfer must start from a specific frame
number. The value of this field must be greater than the current frame number.
Useusb get current frame number(9F) to find the current frame number.
Note that the current frame number is a moving target. For low-speed and
full-speed buses, the current frame is new each millisecond. For high-speed
buses, the current frame is new each 0.125 millisecond. Set the
USB_ATTR_ISOC_START_FRAME attribute so that the isoc_frame_no field is
recognized.

To ignore this frame number field and start as soon as possible, set the
USB_ATTR_ISOC_XFER_ASAP flag.

isoc_pkts_count This field is the number of packets in the request. This value is bounded by the
value returned by the usb_get_max_pkts_per_isoc_request(9F) function and
by the size of the isoc_pkt_descr array (see below). The number of bytes
transferable with this request is equal to the product of this isoc_pkts_count
value and the wMaxPacketSize value of the endpoint.

isoc_pkts_length This field is the sum of the lengths of all packets of the request. This value is set
by the initiator. This value should be set to zero so that the sum of
isoc_pkts_length in the isoc_pkt_descr list will be used automatically and no
check will be applied to this element.

isoc_error_count This field is the number of packets that completed with errors. This value is set
by the USBA 2.0 framework.

Chapter 20 - USB Drivers 459


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-stop-intr-polling-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-current-frame-number-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-max-pkts-per-isoc-request-9f

Device Communication

460

isoc_pkt_descr This field points to an array of packet descriptors that define how much data to
transfer per packet. For an outgoing request, this value defines a private queue of
sub-requests to process. For an incoming request, this value describes how the
data arrived in pieces. The client driver allocates these descriptors for outgoing
requests. The framework allocates and initializes these descriptors for incoming
requests. Descriptors in this array contain framework-initialized fields that hold
the number of bytes actually transferred and the status of the transfer. See the
usb_isoc_request(9S) man page for more details.

All requests must receive an initialized message block. This message block either supplies the
data or stores the data. See the mb1k(9S) man page for a description of the mblk_t message block

type.

The USB_ATTR_ONE_XFER flag is an illegal attribute because the system decides how to vary the
amounts of data through available packets. The USB_ATTR_SHORT_XFER_OK flag is valid only on
host-bound data.

The usb_pipe_isoc_xfer(9F) function makes all isochronous transfers asynchronous,
regardless of whether the USB_FLAGS_SLEEP flag s set. All isochronous input requests start
polling.

Call the usb_pipe_stop_isoc_polling(9F) function to cancel periodic polling. When polling
is stopped or the pipe is closed, the original request structure is returned through an exception
callback. This returned request structure has its completion reason set to
USB_CR_STOPPED_POLLING.

Polling continues until one of the following events occurs:

= Ausb pipe stop _isoc_polling(9F) call is received.
= A device disconnect is reported through an exception callback.
= Ausb pipe close(9F) call is received.

Flushing Pipes

You might need to clean up a pipe after errors, or you might want to wait for a pipe to clear. Use
one of the following methods to flush or clear pipes:

= Theusb _pipe_reset(9F) function resets the pipe and flushes all of its requests. Do this for
pipes that are in an error state if autoclearing is not enabled on those pipes. Use
usb pipe get state(9F) to determine the state of a pipe.

m  Theusb_pipe_drain_reqs(9F) function blocks waiting for all pending requests to
complete before continuing. This function can wait indefinitely, or it can time-out after a
specified period of time. The usb_pipe_drain_reqs(9F) function neither closes nor flushes
the pipe.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=usb-isoc-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=mblk-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-isoc-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-stop-isoc-polling-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-get-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-drain-reqs-9f

Device State Management

Device State Management

Managing a USB device includes accounting for hotplugging, system power management
(checkpoint and resume), and device power management. All client drivers should implement
the basic state machine shown in the following figure. For more information, see
/usr/include/sys/usb/usbai.h.

FIGURE 20-4 USB Device State Machine

PWRED_DWN ONLINE  |4{2)——1)P| DISCONNECTED
®

(5
(5)»| suspENDED |4(5)

@ Device unplugged.
@ Original device reconnected.

@ Device idles for time T and transitions to low power state.

@ Remote wakeup by the device or by an application sending
I/0 to the device.

@ Notification to save state via DDI_SUSPEND.
@ Notification to restore state via DDI_RESUME with correct device.

@ Notification to restore state via DDI_RESUME with device
disconnected or a wrong device.

This state machine and its four states can be augmented with driver-specific states. Device states
0x80 to Oxff can be defined and used only by client drivers.

Hotplugging USB Devices

USB devices support hotplugging. A USB device can be inserted or removed at any time. The
client driver must handle removal and reinsertion of an open device. Use hotplug callbacks to
handle open devices. Insertion and removal of closed devices is handled by the attach(9E) and
detach(9E) entry points.

Chapter 20 - USB Drivers 461


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e

Device State Management

462

Hotplug Callbacks

The USBA 2.0 framework supports the following event notifications:

The client driver receives a callback when the device is hot removed.

The client driver receives a callback when the device is returned after hot removal. This
event callback can occur when the user returns the device to its original port if the driver
instance of the device is not offlined. If the driver instance is held open, then the driver
instance cannot be offlined.

Client drivers must call usb_register hotplug cbs(9F) in their attach(9E) routine to
register for event callbacks. Drivers must call usb_unregister_hotplug_cbs(9F) in their
detach(9E) routine before dismantling.

Hot Insertion

The sequence of events for hot insertion of a USB device is as follows:

1.
2.
3.

The hub driver, hubd(7D), waits for a port connect status change.
The hubd driver detects a port connect.

The hubd driver enumerates the device, creates child device nodes, and attaches client
drivers. Refer to “Binding Client Drivers” on page 444 for compatible names definitions.

The client driver manages the device. The driver is in the ONLINE state.

Hot Removal

The sequence of events for hot removal of a USB device is as follows:

1.
2.
3.

6.

The hub driver, hubd(7D), waits for a port connect status change.
The hubd driver detects a port disconnect.

The hubd driver sends a disconnect event to the child client driver. If the child client driver is
the hubd driver or the usb_mid(7D) multi-interface driver, then the child client driver
propagates the event to its children.

The client driver receives the disconnect event notification in kernel thread context. Kernel
thread context enables the driver's disconnect handler to block.

The client driver moves to the DISCONNECTED state. Outstanding I/O transfers fail with the
completion reason of device not responding. All new I/O transfers and attempts to open
the device node also fail. The client driver is not required to close pipes. The driver is
required to save the device and driver context that needs to be restored if the device is
reconnected.

The hubd driver attempts to offline the OS device node and its children in bottom-up order.

The following events take place if the device node is not open when the hubd driver attempts to
offline the device node:

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-register-hotplug-cbs-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-unregister-hotplug-cbs-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=hubd-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=hubd-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=usb-mid-7d

Device State Management

The client driver's detach(9E) entry point is called.
The device node is destroyed.

The port becomes available for a new device.

Ll A

The hotplug sequence of events starts over. The hubd driver waits for a port connect status
change.

The following events take place if the device node is open when the hubd driver attempts to
offline the device node:

1. The hubd driver puts the offline request in the periodic offline retry queue.
2. The port remains unavailable for a new device.

If the device node was open when the hubd driver attempted to offline the device node and the
user later closes the device node, the hubd driver periodic offlining of that device node succeeds
and the following events take place:

1. The client driver's detach(9E) entry point is called.

2. The device node is destroyed.

3. The port becomes available for a new device.

4. The hotplug sequence of events starts over. The hubd driver waits for a port connect status

change.

If the user closes all applications that use the device, the port becomes available again. If the
application does not terminate or does not close the device, the port remains unavailable.

Hot Reinsertion

The following events take place if a previously-removed device is reinserted into the same port
while the device node of the device is still open:

The hub driver, hubd(7D), detects a port connect.

The hubd driver restores the bus address and the device configuration.
The hubd driver cancels the offline retry request.

The hubd driver sends a connect event to the client driver.

The client driver receives the connect event.

A o

The client driver determines whether the new device is the same as the device that was
previously connected. The client driver makes this determination first by comparing device
descriptors. The client driver might also compare serial numbers and configuration
descriptor clouds.

The following events might take place if the client driver determines that the current device is
not the same as the device that was previously connected:

1. The client driver might issue a warning message to the console.

Chapter 20 - USB Drivers 463


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=hubd-7d

Device State Management

464

2. The user might remove the device again. If the user removes the device again, the hot
remove sequence of events starts over. The hubd driver detects a port disconnect. If the user
does not remove the device again, the following events take place:

a. The client driver remains in the DISCONNECTED state, failing all requests and opens.

b. The port remains unavailable. The user must close and disconnect the device to free the
port.

c. The hotplug sequence of events starts over when the port is freed. The hubd driver waits
for a port connect status change.

The following events might take place if the client driver determines that the current device is
the same as the device that was previously connected:

1. The client driver might restore its state and continue normal operation. This policy is up to
the client driver. Audio speakers are a good example where the client driver should
continue.

2. Ifitis safe to continue using the reconnected device, the hotplug sequence of events starts
over. The hubd driver waits for a port connect status change. The device is in service once
again.

Power Management
This section discusses device power management and system power management.

Device power management manages individual USB devices depending on their I/O activity or
idleness.

System power management uses checkpoint and resume to checkpoint the state of the system
into a file and shut down the system completely. (Checkpoint is sometimes called “system
suspend.”) The system is resumed to its pre-suspend state when the system is powered up again.

Device Power Management

The following summary lists what your driver needs to do to power manage a USB device. A
more detailed description of power management follows this summary.

1. Create power management components during attach(9E). See the
usb_create_pm_components(9F) man page.

2. Implement the power(9E) entry point.
Call pm_busy_component(9F) and pm_raise_power(9F) before accessing the device.
4. Callpm_idle_component(9F) when finished accessing the device.
The USBA 2.0 framework supports four power levels as specified by the USB interface power

management specification. See /usr/include/sys/usb/usbai.h for information on mapping
USB power levels to operating system power levels.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-create-pm-components-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f

Device State Management

The hubd driver suspends the port when the device goes to the USB_DEV_0S_PWR_OFF state. The
hubd driver resumes the port when the device goes to the USB_DEV_0S_PWR_1 state and above.
Note that port suspend is different from system suspend. In port suspend, only the USB port is
shut off. System suspend is defined in “System Power Management” on page 467.

The client driver might choose to enable remote wakeup on the device. See the
usb_handle_remote_wakeup(9F) man page. When the hubd driver sees a remote wakeup on a

port, the hubd driver completes the wakeup operation and calls pm_raise power(9F) to notify
the child.

The following figure shows the relationship between the different pieces of power management.

FIGURE 20-5 USB Power Management

USB Power
Management
]
| ]
Remote No Remote
Wakeup Wakeup
] ]
| ] | ]
Bad Good Driver Driver
Device Device Policy Policy
| [ | |
No PM I No PM
Components PM Components
Components
]
| ]
Active Scheme Passive Scheme
The driver sets the PM state The driver sets the PM state
to busy and raises power when to busy and raises power
starting I/O activity. The driver in open(9E). The driver sets
sets the PM state to idle the PM state to idle in
when 1/0O completes. close(9E).
Examples: hid, hub, usb_mid, Examples: usb_audio,
scsa2usb usbprn (printer)

The driver can implement one of the two power management schemes described at the bottom
of Figure 20-5. The passive scheme is simpler than the active scheme because the passive
scheme does not do power management during device transfers.

Chapter 20 - USB Drivers 465


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-handle-remote-wakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f

Device State Management

466

Active Power Management

This section describes the functions you need to use to implement the active power
management scheme.

Do the following work in the attach(9E) entry point for your driver:

1.
2.

3
4
5.
6

Call usb_create_pm_components(9F).

Optionally call usb_handle_remote_wakeup(9F) with USB_REMOTE_WAKEUP_ENABLE as the
second argument to enable a remote wakeup on the device.

Call pm_busy_component(9F).
Call pm_raise power(9F) to take power to the USB_DEV_0S_FULL_PWR level.
Communicate with the device to initialize the device.

Callpm_idle component(9F).

Do the following work in the detach(9E) entry point for your driver:

1.
2.
3.

6.

Call pm_busy component(9F).
Call pm_raise_power(9F) to take power to the USB_DEV_0S_FULL_PWR level.

If you called the usb_handle_remote_wakeup(9F) function in your attach(9E) entry point,
callusb_handle remote wakeup(9F) here with USB_ REMOTE WAKEUP DISABLE as the second
argument.

Communicate with the device to cleanly shut down the device.
Call pm_lower_power(9F) to take power to the USB_DEV_0S_PWR_OFF level.
This is the only time a client driver calls pm_lower_power(9F).

Call pm_idle component(9F).

When a driver thread wants to start I/O to the device, that thread does the following tasks:

1.
2.
3.

Call pm_busy component(9F).
Call pm_raise_power(9F) to take power to the USB_DEV_0S_FULL_PWR level.
Begin the I/O transfer.

The driver calls pm_idle component(9F) when the driver receives notice that an I/O transfer
has completed.

In the power(9E) entry point for your driver, check whether the power level to which you are
transitioning is valid. You might also need to account for different threads calling into
power(9E) at the same time.

The power(9E) routine might be called to take the device to the USB_DEV_0S_PWR_OFF state if the
device has been idle for some time or the system is shutting down. This state corresponds to the
PWRED_DWN state shown in Figure 20-4. If the device is going to the USB_DEV_0S_PWR_OFF state,
do the following work in your power(9E) routine:

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-create-pm-components-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-handle-remote-wakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=power-9e

Device State Management

1. Putall open pipes into the idle state. For example, stop polling on the interrupt pipe.
2. Save any device or driver context that needs to be saved.

The port to which the device is connected is suspended after the call to power(9E)
completes.

The power(9E) routine might be called to power on the device when either a device-initiated
remote wakeup or a system-initiated wakeup is received. Wakeup notices occur after the device
has been powered down due to extended idle time or system suspend. If the device is going to
the USB_DEV_0S_PWR_1 state or above, do the following work in your power(9E) routine:

1. Restore any needed device and driver context.

2. Restartactivity on the pipe that is appropriate to the specified power level. For example, start
polling on the interrupt pipe.

If the port to which the device is connected was previously suspended, that port is resumed
before power(9E) is called.

Passive Power Management

The passive power management scheme is simpler than the active power management scheme
described above. In this passive scheme, no power management is done during transfers. To
implement this passive scheme, call pm_busy_component(9F) and pm_raise_power(9F) when
you open the device. Then call pm_idle_component(9F) when you close the device.

System Power Management

System power management consists of turning off the entire system after saving its state, and
restoring the state after the system is turned back on. This process is called CPR (checkpoint and
resume). USB client drivers operate the same way that other client drivers operate with respect
to CPR. To suspend a device, the driver's detach(9E) entry point is called with a cmd argument
of DDI_SUSPEND. To resume a device, the driver's attach(9E) entry point is called with a crnd
argument of DDI_RESUME. When you handle the DDI_SUSPEND command in your detach(9E)
routine, clean up device state and clean up driver state as much as necessary for a clean resume
later. (Note that this corresponds to the SUSPENDED state in Figure 20-4.) When you handle the
DDI_RESUME command in your attach(9E) routine, always take the device to full power to put
the system in sync with the device.

For USB devices, suspend and resume are handled similarly to a hotplug disconnect and
reconnect (see “Hotplugging USB Devices” on page 461). An important difference between
CPR and hotplugging is that with CPR the driver can fail the checkpoint process if the device is
not in a state from which it can be suspended. For example, the device cannot be suspended if
the device has an error recovery in progress. The device also cannot be suspended if the device is
busy and cannot be stopped safely.

Chapter 20 - USB Drivers 467


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e

Utility Functions

Serialization

In general, a driver should not call USBA functions while the driver is holding a mutex.
Therefore, race conditions in a client driver can be difficult to prevent.

Do not allow normal operational code to run simultaneously with the processing of
asynchronous events such as a disconnect or CPR. These types of asynchronous events
normally clean up and dismantle pipes and could disrupt the normal operational code.

One way to manage race conditions and protect normal operational code is to write a
serialization facility that can acquire and release an exclusive-access synchronization object.
You can write the serialization facility in such a way that the synchronization object is safe to
hold through calls to USBA functions. The usbskel sample driver demonstrates this technique.
See “Sample USB Device Driver” on page 471 for information on the usbskel driver.

Utility Functions

468

This section describes several functions that are of general use.

Device Configuration Facilities

This section describes functions related to device configuration.

Getting Interface Numbers

If you are using a multiple-interface device where the usb_mid(7D) driver is making only one of
its interfaces available to the calling driver, you might need to know the number of the interface
to which the calling driver is bound. Use the usb_get_if_number(9F) function to do any of the
following tasks:

= Return the number of the interface to which the calling driver is bound. The
usb_get_if_number(9F) function returns an interface number greater than zero in this
case.

= Discover that the calling driver manages an entire multi-interface device. The driver is

bound at the device level so that usb_mid has not split it. The usb_get_if_number(9F)
function returns USB_ DEVICE NODE in this case.

= Discover that the calling driver manages an entire device by managing the only interface
that device offers in its current configuration. The usb_get_if_number(9F) function returns
USB_COMBINED NODE in this case.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=usb-mid-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-if-number-9f

Utility Functions

Managing Entire Devices

If a driver manages an entire composite device, that driver can bind to the entire device by using
a compatible name that contains vendor ID, product ID, and revision ID. A driver that is bound
to an entire composite device must manage all the interfaces of that device as a nexus driver
would. In general, you should not bind your driver to an entire composite device. Instead, you
should use the generic multiple-interface driver usb_mid(7D).

Use the usb_owns_device(9F) function to determine whether a driver owns an entire device.
The device might be a composite device. The usb_owns_device(9F) function returns TRUE if the
driver owns the entire device.

Multiple-Configuration Devices

USB devices make only a single configuration available to the host at any particular time. Most
devices support only a single configuration. However, a few USB devices support multiple
configurations.

Any device that has multiple configurations is placed into the first configuration for which a
driver is available. When seeking a match, device configurations are considered in numeric
order. If no matching driver is found, the device is set to the first configuration. In this case, the
usb_mid driver takes over the device and splits the device into interface nodes. Use the
usb_get_cfg(9F) function to return the current configuration of a device.

You can use either of the following two methods to request a different configuration. Using
either of these two methods to modify the device configuration ensures that the USBA module
remains in sync with the device.

m  Usethe cfgadm usb(1M) command.

m  Calltheusb set cfg(9F) function from the driver.

Because changing device configuration affects an entire device, the client driver must meet
all of the following criteria to call the usb_set_cfg(9F) function successfully:

®m  The client driver must own the entire device.

®=  The device must have no child nodes, because other drivers could drive the device
through them.

= All pipes except the default pipe must be closed.

= The device must have multiple configurations.

A Caution - Do not change the device configuration by doinga SET_CONFIGURATION USB request
manually. Using a SET_CONFIGURATION request to change the configuration is not supported.

Chapter 20 - USB Drivers 469


http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=usb-mid-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-owns-device-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-cfg-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=cfgadm-usb-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-set-cfg-9f

Utility Functions

470

Modifying or Getting the Alternate Setting

A client driver can call the usb_set_alt_if(9F) function to change the selected alternate
setting of the currently selected interface. Be sure to close all pipes that were opened explicitly.
When switching alternate settings, the usb_set_alt_if(9F) function verifies that only the
default pipe is open. Be sure the device is settled before you call usb_set_alt_if(9F).

Changing the alternate setting can affect which endpoints and which class-specific and
vendor-specific descriptors are available to the driver. See “The Descriptor Tree” on page 448
for more information about endpoints and descriptors.

Callthe usb_get_alt_if(9F) function to retrieve the number of the current alternate setting.

Note - When you request a new alternate setting, a new configuration, or a new interface, all
pipes except the default pipe to the device must be closed. This is because changing an alternate
setting, a configuration, or an interface changes the mode of operation of the device. Also,
changing an alternate setting, a configuration, or an interface changes the device's presentation
to the system.

Other Utility Functions

This section describes other functions that are useful in USB device drivers.

Retrieving a String Descriptor

Callthe usb_get_string_descr(9F) function to retrieve a string descriptor given its index.
Some configuration, interface, or device descriptors have string IDs associated with them. Such
descriptors contain string index fields with nonzero values. Pass a string index field value to the
usb_get_string_descr(9F) to retrieve the corresponding string.

Pipe Private Data Facility

Each pipe has one pointer of space set aside for the client driver's private use. Use the
usb_pipe set private(9F) function to install a value. Use the usb _pipe get private(9F)
function to retrieve the value. This facility is useful in callbacks, when pipes might need to bring
their own client-defined state to the callback for specific processing.

Clearing a USB Condition
Use theusb_clr_feature(9F) function to do the following tasks:

= Jssuea USB CLEAR_FEATURE request to clear a halt condition on an endpoint.
= Clear a remote wakeup condition on a device.
= Clear a device-specific condition at a device, interface, or endpoint level.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-set-alt-if-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-alt-if-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-string-descr-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-set-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-pipe-get-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-clr-feature-9f

Sample USB Device Driver

Getting Device, Interface, or Endpoint Status

Use theusb get status(9F) function to issue a USB GET_STATUS request to retrieve the status
of a device, interface, or endpoint.

= Device status. Self-powered and remote-wakeup-enabled.
= Interface status. Returns zero, per USB 2.0 specification.

=  Endpoint status. Endpoint halted. This status indicates a functional stall. A halt must be
cleared before the device can operate again.

A protocol stall indicates that an unsupported control pipe request has been made. A
protocol stall is cleared automatically at the beginning of the next control transfer.

Getting the Bus Address of a Device

Use the usb_get_addr(9F) function to get the USB bus address of a device for debugging
purposes. This address maps to a particular USB port.

Sample USB Device Driver

This section describes a template USB device driver that uses the USBA 2.0 framework for the
Solaris environment. This driver demonstrates many of the features discussed in this chapter.
This template or skeleton driver is named usbskel.

The usbskel driver is a template that you can use to start your own USB device driver. The
usbskel driver demonstrates the following features:

= Reading the raw configuration data of a device. Every USB device needs to be able to report
device raw configuration data.

= Managing pipes. The usbskel driver opens an interrupt pipe to show how to manage pipes.
= Polling. Comments in the usbskel driver discuss how to do polling.

= USB version management and registration.

= USBlogging.

= Accommodations for USB hotplugging.

= Accommodations for Solaris suspend and resume.

= Accommodations for power management.

= USB serialization.

= Use of USB callbacks.

This usbskel driver is available on Sun's web site at http://www.sun.com/bigadmin/
software/usbskel/.

Chapter 20 - USB Drivers 471


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-status-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=usb-get-addr-9f
http://www.sun.com/bigadmin/software/usbskel/
http://www.sun.com/bigadmin/software/usbskel/

Sample USB Device Driver

For source for additional USB drivers, see the OpenSolaris web site. Go to
http://hub.opensolaris.org/bin/view/Main/, and click “Source Browser” in the menu on
the left side of the page.

472 Writing Device Drivers « September 2010


http://hub.opensolaris.org/bin/view/Main/

PART 111

Building a Device Driver

The third part of this book provides advice on building device drivers for the Solaris
Operating Solaris:

= Chapter 21, “Compiling, Loading, Packaging, and Testing Drivers,” provides
information on compiling, linking, and installing a driver.

= Chapter 22, “Debugging, Testing, and Tuning Device Drivers,” describes techniques for
debugging, testing, and tuning drivers.

= Chapter 23, “Recommended Coding Practices,” describes the recommended coding
practices for writing drivers.

473



474



L R 2 4 CHAPTER 21

Compiling, Loading, Packaging, and Testing
Drivers

This chapter describes the procedure for driver development, including code layout,
compilation, packaging, and testing.

This chapter provides information on the following subjects:

“Driver Code Layout” on page 476

“Preparing for Driver Installation” on page 478
“Installing, Updating, and Removing Drivers” on page 480
“Loading and Unloading Drivers” on page 483

“Driver Packaging” on page 483

“Criteria for Testing Drivers” on page 485

Driver Development Summary

This chapter and the following two chapters, Chapter 22, “Debugging, Testing, and Tuning
Device Drivers,” and Chapter 23, “Recommended Coding Practices,” provide detailed
information on developing a device driver.

Take the following steps to build a device driver:

1. Write, compile, and link the new code.

See “Driver Code Layout” on page 476 for the conventions on naming files. Use a C compiler
to compile the driver. Link the driver using 1d(1). See “Compiling and Linking the Driver”
on page 479 and “Module Dependencies” on page 480.

2. Create the necessary hardware configuration files.

Create a hardware configuration file unique to the device called xx. conf where xx is the
prefix for the device. This file is used to update the driver.conf(4) file. See “Writing a
Hardware Configuration File” on page 480. For a pseudo device driver, create a pseudo(4)
file.

3. Copy the driver to the appropriate module directory.

475


http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=ld-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=pseudo-4

Driver Code Layout

See “Copying the Driver to a Module Directory” on page 480.
4. Install the device driver using add_drv(1M).

Installing the driver with add_drv is usually done as part of a postinstall script. See
“Installing Drivers with add_drv” on page 482. Use the update_drv(1M) command to make
any changes to the driver. See “Updating Driver Information” on page 482.

5. Load the driver.

The driver can be loaded automatically by accessing the device. See “Loading and Unloading
Drivers” on page 483 and “Package Postinstall” on page 483. Drivers can also be loaded by
using the modload(1M) command. The modload command does not call any routines in the
module and therefore is useful for testing. See “Loading and Unloading Test Modules” on
page 495.

6. Testthe driver.
Drivers should be rigorously tested in the following areas:

“Configuration Testing” on page 485

“Functionality Testing” on page 486

“Error Handling” on page 486

“Testing Loading and Unloading” on page 487

“Stress, Performance, and Interoperability Testing” on page 487
“DDI/DKI Compliance Testing” on page 487

“Installation and Packaging Testing” on page 488

For additional driver-specific testing, see “Testing Specific Types of Drivers” on page 488.
7. Remove the driver if necessary.

Use the rem_drv(1M) command to remove a device driver. See “Removing the Driver” on
page 482 and “Package Preremove” on page 484.

Driver Code Layout

476

The code for a device driver is usually divided into the following files:

m  Header files (. h files)
m  Source files (. c files)
= Optional configuration file (driver.conf file)

HeaderFiles

Header files provide the following definitions:

= Data structures specific to the device, such as a structure representing the device registers

= Data structures defined by the driver for maintaining state information

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=update-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=modload-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=rem-drv-1m

Driver Code Layout

= Defined constants, such as those representing the bits of the device registers
= Macros, such as those defining the static mapping between the minor device number and
the instance number

Some of the header file definitions, such as the state structure, might be needed only by the
device driver. This information should go in private header files that are only included by the
device driver itself.

Any information that an application might require, such as the I/O control commands, should
be in public header files. These files are included by the driver and by any applications that need
information about the device.

While there is no standard for naming private and public files, one convention is to name the
private header file xximpl.h and the public header file xxio.h.

Source Files

A Csource file (a . c file) for a device driver has the following responsibilities:

= Contains the data declarations and the code for the entry points of the driver
= Contains the #include statements that are needed by the driver

= Declares extern references

= Declares local data

= Setsup the cb_opsand dev_ops structures

= Declares and initializes the module configuration section, that is, the modlinkage(9S) and
modldrv(9S) structures

= Makes any other necessary declarations

= Defines the driver entry points

Configuration Files

In general, the configuration file for a driver defines all of the properties that the driver needs.
Entries in the driver configuration file specify possible device instances that the driver can probe
for existence. Driver global properties can be set in the driver's configuration file. See the
driver.conf(4) man page for more information.

Driver configuration files are required for devices that are not self-identifying.

Driver configuration files are optional for self-identifying devices (SID). For self-identifying
devices, the configuration file can be used to add properties into SID nodes.

Chapter 21 - Compiling, Loading, Packaging, and Testing Drivers 477


http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=modlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=modldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4

Preparing for Driver Installation

The following properties are examples of properties that are not set in the driver configuration
file:

= Drivers that use the SBus peripheral bus generally get property information from the SBus
card. In cases where additional properties are needed, the driver configuration file can
contain properties that are defined by sbus(4).

m  The properties of a PCI bus can generally be derived from the PCI configuration space. In
cases where private driver properties are needed, the driver configuration file can contain
properties that are defined by pci(4).

= Drivers on the ISA bus can use additional properties that are defined by isa(4).

Preparing for Driver Installation

478

The following steps precede installation of a driver:

1. Compile the driver.
2. Create a configuration file if necessary.
3. Identify the driver module to the system through either of the following alternatives:

®  Match the driver's name to the name of the device node.
= Useeitheradd_drv(1M) or update_drv(1M) to inform the system of the module names.

The system maintains a one-to-one association between the name of the driver module and the
name of the dev_info node. For example, consider a dev_info node for a device that is named
mydevice. The device mydevice is handled by a driver module that is also named mydevice. The
mydevice module resides in a subdirectory that is called drv, which is in the module path. The
module is in drv/mydevice if you are using a 32-bit kernel. The module is in
drv/sparcv9/mydevice if you are using a 64-bit SPARC kernel. The module is in
drv/amd64/mydevice if you are using a 64-bit x86 kernel.

If the driver is a STREAMS network driver, then the driver name must meet the following
constraints:

= Onlyalphanumeric characters (a-z, A-Z, 0-9), plus the underscore ('_'), are allowed.
= Neither the first nor the last character of the name can be a digit.

= The name cannot exceed 16 characters in length. Names in the range of 3-8 characters in
length are preferable.

If the driver must manage dev_info nodes with different names, the add_drv(1M) utility can
create aliases. The - i flag specifies the names of other dev_info nodes that the driver handles.
The update_drv command can also modify aliases for an installed device driver.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=sbus-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=pci-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=isa-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=update-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m

Preparing for Driver Installation

Compiling and Linking the Driver

You need to compile each driver source file and link the resulting object files into a driver
module. The Solaris OS is compatible with both the Sun Studio C compiler and the GNU C
compiler from the Free Software Foundation, Inc. The examples in this section use the Sun
Studio C compiler unless otherwise noted. For information on the Sun Studio C compiler, see
the Sun Studio 12: C User’s Guide and the Sun Studio Documentation on the Sun Developer
Network web site. For more information on compile and link options, see the Sun Studio Man
Pages. The GNU C compiler is supplied in the /usr/sfw directory. For information on the
GNU C compiler, see http://gcc.gnu.org/ or check the man pages in /usr/sfw/man.

The example below shows a driver that is called xx with two C source files. A driver module that
is called xx is generated. The driver that is created in this example is for a 32-bit kernel. You
must use 1d - r even if your driver has only one object module.

o°
[a)

¢ -D_KERNEL -c xxl.c
c -D_KERNEL -c xx2.c
d -r -0 xx xx1.0 xx2.0

o°

o°
~ 0

The _KERNEL symbol must be defined to indicate that this code defines a kernel module. No
other symbols should be defined, except for driver private symbols. The DEBUG symbol can be
defined to enable any calls to ASSERT(9F).

If you are compiling for a 64-bit SPARC architecture using Sun Studio 9, Sun Studio 10, or Sun
Studio 11, use the -xarch=v9 option:

% cc -D_KERNEL -xarch=v9 -c xx.c

If you are compiling for a 64-bit SPARC architecture using Sun Studio 12, use the -mé4 option:

% cc -D_KERNEL -m64 -c xx.c

If you are compiling for a 64-bit x86 architecture using Sun Studio 10 or Sun Studio 11, use both
the -xarch=amd64 option and the -xmodel=kernel option:

% cc -D_KERNEL -xarch=amd64 -xmodel=kernel -c xx.c

If you are compiling for a 64-bit x86 architecture using Sun Studio 12, use the -m64 option, the
-xarch=sse2a option, and the -xmodel=kernel option:

% cc -D_KERNEL -m64 -xarch=sse2a -xmodel=kernel -c xx.c

Note - Sun Studio 9 does not support 64-bit x86 architectures. Use Sun Studio 10, Sun Studio 11,
or Sun Studio 12 to compile and debug drivers for 64-bit x86 architectures.

Chapter 21 - Compiling, Loading, Packaging, and Testing Drivers 479


http://www.oracle.com/pls/topic/lookup?ctx=819-5265&id=cug
http://www.oracle.com/technetwork/server-storage/sunstudio/documentation/index.html
http://www.oracle.com/pls/topic/lookup?ctx=820-4180&id=stdrefman
http://www.oracle.com/pls/topic/lookup?ctx=820-4180&id=stdrefman
http://gcc.gnu.org/
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=assert-9f

Installing, Updating, and Removing Drivers

After the driver is stable, you might want to add optimization flags to build a production quality
driver. See the cc(1) man page in Sun Studio Man Pages for specific information on
optimizations in the Sun Studio C compiler.

Global variables should be treated as volatile in device drivers. The volatile tagis discussed
in greater detail in “Declaring a Variable Volatile” on page 524. Use of the flag depends on the
platform. See the man pages.

Module Dependencies

If the driver module depends on symbols exported by another kernel module, the dependency
can be specified by the -dy and -N options of the loader, 1d(1). If the driver depends on a symbol
exported by misc/mySymbol, the example below should be used to create the driver binary.

% ld -dy -r -0 xx xx1.0 xx2.0 -N misc/mySymbol

Writing a Hardware Configuration File

If a device is non-self-identifying, the kernel requires a hardware configuration file for that
device. If the driver is called xx, the hardware configuration file for the driver should be called
xx.conf.Seethedriver.conf(4), pseudo(4), sbus(4), scsi_free consistent buf(9F),and
update_drv(1M) man pages for more information on hardware configuration files.

Arbitrary properties can be defined in hardware configuration files. Entries in the configuration
file are in the form property=value, where property is the property name and value is its initial
value. The configuration file approach enables devices to be configured by changing the
property values.

Installing, Updating, and Removing Drivers

480

Before a driver can be used, the system must be informed that the driver exists. The
add_drv(1M) utility must be used to correctly install the device driver. After a driver is installed,
that driver can be loaded and unloaded from memory without using the add_drv command.

Copying the Driver to a Module Directory

Three conditions determine a device driver module's path:

= The platform that the driver runs on
= The architecture for which the driver is compiled
= Whether the path is needed at boot time

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=820-4180&id=stdrefman
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=ld-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=pseudo-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=sbus-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=scsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=update-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m

Installing, Updating, and Removing Drivers

Device drivers reside in the following locations:

/platform/‘uname -i‘/kernel/drv
Contains 32-bit drivers that run only on a specific platform.

/platform/‘uname -i‘/kernel/drv/sparcv9
Contains 64-bit drivers that run only on a specific SPARC-based platform.

/platform/‘uname -i‘/kernel/drv/amd64
Contains 64-bit drivers that run only on a specific x86-based platform.

/platform/‘uname -m‘/kernel/drv
Contains 32-bit drivers that run only on a specific family of platforms.

/platform/‘uname -m‘/kernel/drv/sparcv9
Contains 64-bit drivers that run only on a specific family of SPARC-based platforms.

/platform/‘uname -m‘/kernel/drv/amd64
Contains 64-bit drivers that run only on a specific family of x86-based platforms.

/usr/kernel/drv
Contains 32-bit drivers that are independent of platforms.

/usr/kernel/drv/sparcv9
Contains 64-bit drivers on SPARC-based systems that are independent of platforms.

/usr/kernel/drv/amd64
Contains 64-bit drivers on x86-based systems that are independent of platforms.

To install a 32-bit driver, the driver and its configuration file must be copied to a drv directory
in the module path. For example, to copy a driver to /usr/kernel/drv, type:

$ su
# cp xx /usr/kernel/drv
# cp xx.conf /usr/kernel/drv

To install a SPARC driver, copy the driver to a drv/sparcv9 directory in the module path. Copy
the driver configuration file to the drv directory in the module path. For example, to copy a
driver to /usr/kernel/drv, you would type:

$ su
# cp xx /usr/kernel/drv/sparcv9
# cp xx.conf /usr/kernel/drv

To install a 64-bit x86 driver, copy the driver to a drv/amd64 directory in the module path. Copy
the driver configuration file to the drv directory in the module path. For example, to copy a
driver to /usr/kernel/drv, you would type:

$ su
# cp xx /usr/kernel/drv/amd64
# cp xx.conf /usr/kernel/drv

Chapter 21 - Compiling, Loading, Packaging, and Testing Drivers 481



Installing, Updating, and Removing Drivers

482

Note - All driver configuration files (. conf files) must go in the drv directory in the module
path. The . conf files cannot go into any subdirectory of the drv directory.

Installing Drivers with add_drv

Use the add_drv(1M) command to install the driver in the system. If the driver installs
successfully,add_drv runs devfsadm(1M) to create the logical names in the /dev directory.

# add_drv xx

In this case, the device identifies itself as xx. The device special files have default ownership and
permissions (0600 root sys). The add_drv command also allows additional names for the
device (aliases) to be specified. See the add_drv(1M) man page for information on adding
aliases and setting file permissions explicitly.

Note - Do not use the add_drv command to installa STREAMS module. See the STREAMS
Programming Guide for details.

If the driver creates minor nodes that do not represent terminal devices such as disks, tapes, or
ports, you can modify /etc/devlink. tab to cause devfsadm to create logical device names in
/dev. Alternatively, logical names can be created by a program that is run at driver installation
time.

Updating Driver Information

Use the update_drv(1M) command to notify the system of any changes to an installed device
driver. By default, the system re-reads the driver configuration file and reloads the driver binary
module.

Removing the Driver

To remove a driver from the system, use the rem_drv(1M) command, and then delete the driver
module and configuration file from the module path. A driver cannot be used again until that
driver is reinstalled with add drv(1M). The removal of a SCSIHBA driver requires a reboot to
take effect.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=devfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams
http://www.oracle.com/pls/topic/lookup?ctx=816-4855&id=streams
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=update-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=rem-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m

Driver Packaging

Loading and Unloading Drivers

Opening a special file (accessing the device) that is associated with a device driver causes that
driver to be loaded. You can use the modload(1M) command to load the driver into memory,
but modload does not call any routines in the module. The preferred method is to open the
device.

Normally, the system automatically unloads device drivers when the device is no longer in use.
During development, you might want to use modunload(1M) to unload the driver explicitly. In
order for modunload to be successful, the device driver must be inactive. No outstanding
references to the device should exist, such as through open(2) or mmap(2).

The modunload command takes a runtime-dependent module_id as an argument. To find the
module id, use grep to search the output of modinfo(1M) for the driver name in question.
Check in the first column.

# modunload -i module-id

To unload all currently unloadable modules, specify module ID zero:

# modunload -i 0

In addition to being inactive, the driver must have working detach(9E) and _fini(9E) routines
for modunload(1M) to succeed.

Driver Packaging

The normal delivery vehicle for software is to create a package that contains all of the software
components. A package provides a controlled mechanism for installation and removal of all the
components of a software product. In addition to the files for using the product, the package
includes control files for installing and uninstalling the application. The postinstall and
preremove installation scripts are two such control files.

Package Postinstall

After a package with a driver binary is installed onto a system, the add_drv(1M) command
must be run. The add_drv command completes the installation of the driver. Typically,
add_drv is run in a postinstall script, as in the following example.

#!/bin/sh
#
# @(#)postinstall 1.1

PATH="/usr/bin:/usr/sbin:${PATH}"

Chapter21 « Compiling, Loading, Packaging, and Testing Drivers 483


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=modload-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=modunload-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=open-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=modinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=modunload-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m

Driver Packaging

484

export PATH

#

# Driver info

#

DRV=<driver-name>
DRVALIAS="<company-name>,<driver-name>"
DRVPERM='"* 0666 root sys’

ADD_DRV=/usr/sbin/add_drv

#

# Select the correct add drv options to execute.
# add drv touches /reconfigure to cause the

# next boot to be a reconfigure boot.

#
if [ "${BASEDIR}" = "/" 1; then
#
# On a running system, modify the
# system files and attach the driver
#
ADD DRV_FLAGS=""
else
#
# On a client, modify the system files
# relative to BASEDIR
#
ADD DRV_FLAGS="-b ${BASEDIR}"
fi
#

# Make sure add drv has not been previously executed
# before attempting to add the driver.
#
grep "~${DRV} " $BASEDIR/etc/name to major > /dev/null 2>&1
if [ $? -ne 0 1; then
${ADD DRV} ${ADD DRV FLAGS} -m "${DRVPERM}" -i "${DRVALIAS}" ${DRV}
if [ $? -ne 0 ]; then
echo "postinstall: add drv $DRV failed\n" >&2
exit 1
fi
fi
exit 0

Package Preremove

When removing a package that includes a driver, the rem_drv(1M) command must be run prior
to removing the driver binary and other components. The following example demonstrates a
preremove script that uses the rem drv command for driver removal.

#!/bin/sh
#
# @(#)preremove 1.1

PATH="/usr/bin:/usr/sbin:${PATH}"

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=rem-drv-1m

Criteria for Testing Drivers

export PATH

#

# Driver info

#

DRV=<driver-name>

REM DRV=/usr/sbin/rem drv

#
# Select the correct rem drv options to execute.
# rem_drv touches /reconfigure to cause the
# next boot to be a reconfigure boot.
#
if [ "${BASEDIR}" = "/" 1; then
#

# On a running system, modify the
# system files and remove the driver
#
REM DRV FLAGS=""
else
#
# On a client, modify the system files
# relative to BASEDIR
#
REM DRV FLAGS="-b ${BASEDIR}"
fi

${REM DRV} ${REM DRV_FLAGS} ${DRV}

exit 0

Criteria for Testing Drivers

Once a device driver is functional, that driver should be thoroughly tested prior to distribution.
Besides testing the features in traditional UNIX device drivers, Solaris drivers require testing
power management features, such as dynamic loading and unloading of drivers.

Configuration Testing

A driver's ability to handle multiple device configurations is an important part of the test
process. Once the driver is working on a simple, or default, configuration, additional
configurations should be tested. Depending on the device, configuration testing can be
accomplished by changing jumpers or DIP switches. If the number of possible configurations is
small, all configurations should be tried. If the number is large, various classes of possible
configurations should be defined, and a sampling of configurations from each class should be
tested. Defining these classes depends on the potential interactions among the different
configuration parameters. These interactions are a function of the type of the device and the
way in which the driver was written.

For each device configuration, the basic functions must be tested, which include loading,
opening, reading, writing, closing, and unloading the driver. Any function that depends upon

Chapter21 « Compiling, Loading, Packaging, and Testing Drivers 485



Criteria for Testing Drivers

486

the configuration deserves special attention. For example, changing the base memory address of
device registers is not likely to affect the behavior of most driver functions. If a driver works well
with one address, that driver is likely to work as well with a different address. On the other hand,
a special I/O control call might have different effects depending on the particular device
configuration.

Loading the driver with varying configurations ensures that the probe(9E) and attach(9E)
entry points can find the device at different addresses. For basic functional testing, using regular
UNIX commands such as cat(1) or dd(1M) is usually sufficient for character devices. Mounting
or booting might be required for block devices.

Functionality Testing

After a driver has been completely tested for configuration, all of the driver's functionality
should be thoroughly tested. These tests require exercising the operation of all of the driver's
entry points.

Many drivers require custom applications to test functionality. However, basic drivers for
devices such as disks, tapes, or asynchronous boards can be tested using standard system
utilities. All entry points should be tested in this process, including devmap(9E), chpol1(9E),
and ioct1(9E), if applicable. The ioct1() tests might be quite different for each driver. For
nonstandard devices, a custom testing application is generally required.

Error Handling

A driver might perform correctly in an ideal environment but fail in cases of errors, such as
erroneous operations or bad data. Therefore, an important part of driver testing is the testing of
the driver's error handling.

All possible error conditions of a driver should be exercised, including error conditions for
actual hardware malfunctions. Some hardware error conditions might be difficult to induce, but
an effort should be made to force or to simulate such errors if possible. All of these conditions
could be encountered in the field. Cables should be removed or be loosened, boards should be
removed, and erroneous user application code should be written to test those error paths. See
also Chapter 13, “Hardening Solaris Drivers.”

Caution - Be sure to take proper electrical precautions when testing.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=cat-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=dd-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=devmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=chpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=ioctl-9e

Criteria for Testing Drivers

Testing Loading and Unloading

Because a driver that does not load or unload can force unscheduled downtime, loading and
unloading must be thoroughly tested.

A script like the following example should suffice:

#!/bin/sh

cd <location of driver>
while [ 1 ]

do

modunload -i 'modinfo | grep " <driver name> " | cut -cl-3’ &

modload <driver name> &
done

Stress, Performance, and Interoperability Testing

To help ensure that a driver performs well, that driver should be subjected to vigorous stress
testing. For example, running single threads through a driver does not test locking logic or
conditional variables that have to wait. Device operations should be performed by multiple
processes at once to cause several threads to execute the same code simultaneously.

Techniques for performing simultaneous tests depend upon the driver. Some drivers require
special testing applications, while starting several UNIX commands in the background is
suitable for others. Appropriate testing depends upon where the particular driver uses locks and
condition variables. Testing a driver on a multiprocessor machine is more likely to expose
problems than testing on a single-processor machine.

Interoperability between drivers must also be tested, particularly because different devices can
share interrupt levels. If possible, configure another device at the same interrupt level as the one
being tested. A stress test can determine whether the driver correctly claims its own interrupts
and operates according to expectations. Stress tests should be run on both devices at once. Even
if the devices do not share an interrupt level, this test can still be valuable. For example, consider
a case in which serial communication devices experience errors when a network driver is tested.
The same problem might be causing the rest of the system to encounter interrupt latency
problems as well.

Driver performance under these stress tests should be measured using UNIX
performance-measuring tools. This type of testing can be as simple as using the time(1)
command along with commands to be used in the stress tests.

DDI/DKI Compliance Testing

To ensure compatibility with later releases and reliable support for the current release, every
driver should be DDI/DKI compliant. Check that only kernel routines in man pages section 9:

Chapter 21 - Compiling, Loading, Packaging, and Testing Drivers 487


http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=time-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=refman9f

Criteria for Testing Drivers

488

DDI and DKI Kernel Functions and man pages section 9: DDI and DKI Driver Entry Points and
data structures in man pages section 9: DDI and DKI Properties and Data Structures are used.

Installation and Packaging Testing

Drivers are delivered to customers in packages. A package can be added or be removed from the
system using a standard mechanism (see the Application Packaging Developer’s Guide).

The ability of a user to add or remove the package from a system should be tested. In testing, the
package should be both installed and removed from every type of media to be used for the
release. This testing should include several system configurations. Packages must not make
unwarranted assumptions about the directory environment of the target system. Certain valid
assumptions, however, can be made about where standard kernel files are kept. Also test adding
and removing of packages on newly installed machines that have not been modified for a
development environment. A common packaging error is for a package to rely on a tool or file
that is used in development only. For example, no tools from the Source Compatibility package,
SUNWscpu, should be used in driver installation programs.

The driver installation must be tested on a minimal Solaris system without any optional
packages.

Testing Specific Types of Drivers

This section provides some suggestions about how to test certain types of standard devices.

Tape Drivers

Tape drivers should be tested by performing several archive and restore operations. The
cpio(l)and tar(1) commands can be used for this purpose. Use the dd(1M) command to write
an entire disk partition to tape. Next, read back the data, and write the data to another partition
of the same size. Then compare the two copies. The mt(1) command can exercise most of the
I/O controls that are specific to tape drivers. See the mtio(7I) man page. Try to use all the
options. These three techniques can test the error-handling capabilities of tape drivers:

= Remove the tape and try various operations
= Write-protect the tape and try a write
= Turn off power in the middle of different operations

Tape drivers typically implement exclusive-access open(9E) calls. These open () calls can be
tested by opening a device and then having a second process try to open the same device.

Disk Drivers

Disk drivers should be tested in both the raw and block device modes. For block device tests,
create a new file system on the device. Then try to mount the new file system. Then try to
perform multiple file operations.

Writing Device Drivers « September 2010


http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=refman9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=refman9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=refman9s
http://www.oracle.com/pls/topic/lookup?ctx=817-0406&id=packinstall
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=cpio-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=tar-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=dd-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=mt-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=mtio-7i
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e

Criteria for Testing Drivers

Note - The file system uses a page cache, so reading the same file over and over again does not
really exercise the driver. The page cache can be forced to retrieve data from the device by
memory-mapping the file with mmap(2). Then use msync(3C) to invalidate the in-memory
copies.

Copy another (unmounted) partition of the same size to the raw device. Then use a command
such as fsck(1M) to verify the correctness of the copy. The new partition can also be mounted
and then later compared to the old partition on a file-by-file basis.

Asynchronous Communication Drivers

Asynchronous drivers can be tested at the basic level by setting up a Login line to the serial
ports. A good test is to see whether a user can log in on this line. To sufficiently test an
asynchronous driver, however, all the I/O control functions must be tested, with many
interrupts at high speed. A test involving a loopback serial cable and high data transfer rates can
help determine the reliability of the driver. You can run uucp(1C) over the line to provide some
exercise. However, because uucp performs its own error handling, verify that the dr