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Preface

The Modular Debugger (MDB) is a highly extensible, general purpose debugging tool for the
Oracle Solaris operating system. The Oracle Solaris Modular Debugger Guide describes how to
use MDB to debug complex software systems, with a particular emphasis on the facilities
available for debugging the Solaris kernel and associated device drivers and modules. This guide
also includes a complete reference for and discussion of the MDB language syntax, debugger
features, and MDB module programming API.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor
architectures. The supported systems appear in the Solaris OS: Hardware Compatibility Lists
(http://www.sun.com/bigadmin/hcl). This document cites any implementation differences
between the platform types.

In this document these x86 related terms mean the following:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” relates specifically to 64-bit x86 compatible CPUs.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book
If you were a detective and were investigating at the scene of a crime, you might interview the
witnesses and ask them to describe what happened and who they saw. However, if there were no
witnesses or these descriptions proved insufficient, you might consider collecting fingerprints
and forensic evidence that could be examined for DNA to help solve the case. Often, software
program failures divide into analogous categories: problems that can be solved with
source-level debugging tools, and problems that require low-level debugging facilities,
examination of core files, and knowledge of assembly language to diagnose and correct. MDB
facilitates analysis of this second class of problems.

MDB is most useful when you are programming a complex low-level software system such as an
operating system. The MDB debugging framework allows you to construct your own custom
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analysis tools to aid in the diagnosis of these low-level problems. MDB also provides a powerful
set of built-in commands that enable you to analyze the state of your program at the assembly
language level.

Before You Read This Book
If you are not familiar with assembly language programming and debugging, “Related Books
and Papers” on page 11 provides references to materials that you might find useful.

You should disassemble various functions of interest in the programs you will be debugging in
order to familiarize yourself with the relationship between your program's source code and the
corresponding assembly language code. If you are planning to use MDB for debugging Solaris
kernel software, read carefully Chapter 8, “Kernel Debugging Modules,” and Chapter 9,
“Debugging With the Kernel Memory Allocator.” These chapters provide more detailed
information on the MDB commands and facilities provided for debugging Solaris kernel
software.

How This Book Is Organized
Chapter 1, “Modular Debugger Overview,” provides an overview of the debugger.

Chapter 2, “Debugger Concepts,” describes the MDB architecture and explains the terminology
for the debugger concepts used throughout this book.

Chapter 3, “MDB Language Syntax,” describes the syntax, operators and evaluation rules for the
MDB language.

Chapter 4, “Using MDB Commands Interactively,” describes the MDB interactive
command-line editing facilities and output pager.

Chapter 5, “Built-In Commands,” describes the set of built-in debugger commands that are
always available.

Chapter 6, “Execution Control,” describes the MDB facilities for controlling the execution of
live running programs. This chapter is intended for application developers and device driver
developers. Execution control features might also be useful for system administrators.

Chapter 7, “Kernel Execution Control,” describes the MDB facilities for controlling the
execution of the live operating system kernel that are specific to kmdb. This chapter is intended
for operating system kernel developers and device driver developers.

Chapter 8, “Kernel Debugging Modules,” describes the set of loadable debugger commands that
are provided for debugging the Solaris kernel. This chapter is intended for users who intend to
examine Solaris kernel crash dumps and for kernel software developers.
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Chapter 9, “Debugging With the Kernel Memory Allocator,” describes the debugging features
of the Solaris kernel memory allocator and the MDB commands provided to take advantage of
these features. This chapter is intended for advanced programmers and kernel software
developers.

Chapter 10, “Module Programming API,” describes the facilities for writing loadable debugger
modules. This chapter is intended for advanced programmers and software developers who
intend to develop custom debugging support for MDB.

Appendix A, “MDB Options,” provides a reference for MDB command-line options.

Appendix B, “Notes,” provides warnings and notes about using the debugger.

Appendix C, “Transition From adb and kadb,” provides a reference for adb commands and their
MDB equivalents. The adb command is implemented by mdb.

Appendix D, “Transition From crash,” provides a reference for crash commands and their
MDB equivalents. The crash command is no longer present in the Solaris OS.

Related Books and Papers
The following books and papers are recommended and related to the tasks that you need to
perform:

■ Uresh Vahalia; UNIX Internals: The New Frontiers; Prentice Hall; 2010; ISBN
978-0130210340

■ Richard McDougall, Jim Mauro; Solaris Internals: Solaris 10 and OpenSolaris Kernel
Architecture; Prentice Hall; 2006; ISBN 978-0131482098

■ Richard McDougall, Jim Mauro, Brendan Gregg; Solaris Performance and Tools: DTrace and
MDB Techniques for Solaris 10 and OpenSolaris; Prentice Hall; 2006; ISBN 978-0131568198

■ David L. Weaver (editor); OpenSPARC Internals; Lulu.com; 2008; ISBN 978-0557019748
■ SPARC International; The SPARC Architecture Manual, Version 9; Prentice Hall; 1993;

ISBN 978-0130992277
■ AMD64 Architecture Programmer's Manual; Advanced Micro Devices; 2006; available at

http://developer.amd.com/

■ Intel Corporation; Pentium Pro Family Developer's Manual; McGraw-Hill Companies; 1996;
ISBN 978-1555122607

■ Jeff Bonwick, Jonathan Adams; Magazines and Vmem: Extending the Slab Allocator to Many
CPUs and Arbitrary Resourceso; Proceedings of the 2001 USENIX Annual Technical
Conference; 2001; available at http://www.usenix.org/
publications/library/proceedings/usenix01/full_papers/bonwick/bonwick_html/
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■ Jeff Bonwick; The Slab Allocator: An Object-Caching Kernel Memory Allocator; Proceedings
of the Summer 1994 Usenix Conference; 1994; available at http://www.usenix.org/
publications/library/proceedings/bos94/bonwick.html

■ SPARC Assembly Language Reference Manual
■ x86 Assembly Language Reference Manual
■ Writing Device Drivers
■ STREAMS Programming Guide
■ Solaris 64-bit Developer’s Guide
■ Linker and Libraries Guide

Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Documentation, Support, and Training
See the following web sites for additional resources:

■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Oracle Welcomes Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of its
documentation. If you find any errors or have any other suggestions for improvement, go to
http://docs.sun.com and click Feedback. Indicate the title and part number of the
documentation along with the chapter, section, and page number, if available. Please let us
know if you want a reply.
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Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:

■ Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technology/obe/start/index.html).

■ Download Sample Code (http://www.oracle.com/technology/sample_code/
index.html).

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.
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TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#
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Modular Debugger Overview

The Modular Debugger (MDB) is a general purpose debugging tool for the Solaris OS whose
primary feature is its extensibility. This book describes how to use MDB to debug complex
software systems, with a particular emphasis on the facilities available for debugging the Solaris
kernel and associated device drivers and modules. The book also includes a complete reference
for and discussion of the MDB language syntax, debugger features, and MDB Module
Programming API.

Introduction
Debugging is the process of analyzing the execution and state of a software program in order to
remove defects. Traditional debugging tools provide facilities for execution control so that
programmers can execute programs in a controlled environment and display the current state
of program data or evaluate expressions in the source language used to develop the program.
Unfortunately, these techniques are often inappropriate for debugging complex software
systems.

The following examples describe complex software systems that MDB is well suited to examine
and debug:

■ An operating system, where bugs might not be reproducible and program state is massive
and distributed

■ Programs that are highly optimized or have had their debug information removed
■ Programs that are themselves low-level debugging tools
■ Customer situations where the developer can only access post-mortem information

MDB provides a completely customizable environment for debugging these programs and
scenarios, including a dynamic module facility that you can use to implement your own
debugging commands to perform program-specific analysis. Each MDB module can be used to
examine the program in several different contexts, including live and post-mortem. The Solaris
OS includes a set of MDB modules that help you debug the Solaris kernel and related device
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drivers and kernel modules. Third-party developers might want to develop and deliver their
own debugging modules for supervisor or user software.

MDB Features
MDB provides an extensive collection of features for analyzing the Solaris kernel and other
target programs.

The following examples show some of the tasks you can do with MDB:
■ Perform post-mortem analysis of Solaris kernel crash dumps and user process core dumps.

MDB includes a collection of debugger modules that facilitate sophisticated analysis of
kernel and process state, in addition to standard data display and formatting capabilities.

These debugger modules enable you to formulate complex queries to investigate kernel and
process state in the following ways:
■ Locate all the memory allocated by a particular thread
■ Print a visual picture of a kernel STREAM
■ Determine what type of structure a particular address refers to
■ Locate leaked memory blocks in the kernel
■ Analyze memory to locate stack traces

■ Use a first-class programming API to implement your own debugger commands and
analysis tools without having to recompile or modify MDB. In MDB, debugging support is
implemented as a set of loadable modules (shared libraries that the debugger can open with
the dlopen(3C) function), each of which provides a set of commands that extends the
capabilities of MDB. MDB provides an API of core services, such as the ability to read and
write memory and access symbol table information. MDB provides a framework for you to
implement debugging support for your own drivers and modules. Your command and tools
can then be made available for everyone to use.

■ Learn to use MDB if you are already familiar with the legacy debugging tools adb and crash.
MDB provides backward compatibility with these existing debugging solutions. The MDB
language is a superset of the adb language. All existing adb macros and commands work
within MDB. Thus, developers who use adb can immediately use MDB without knowing
any MDB-specific commands. MDB also provides commands that surpass the functionality
available from the crash utility.

■ Benefit from enhanced usability features.

MDB provides many usability features, including the following:
■ Command-line editing
■ Command history
■ Built-in output pager
■ Syntax error checking and handling
■ Online help

MDB Features
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■ Interactive session logging

Using MDB
MDB is available on Solaris systems as two commands that share common features: mdb and
kmdb. You can use the mdb command interactively or in scripts to debug live user processes, user
process core files, kernel crash dumps, the live operating system, object files, and other files. You
can use the kmdb command to debug the live operating system kernel and device drivers when
you also need to control and halt the execution of the kernel. To start mdb, use the mdb command
as described in the mdb(1) man page. To start kmdb, boot the system as described in the kmdb(1)
man page, or execute the mdb command with the -K option.

Future Enhancements
MDB provides a stable foundation for developing advanced post-mortem analysis tools. Each
Solaris release includes additional MDB modules that provide even more sophisticated
functionality for debugging the kernel and other software programs. You can use MDB to
debug existing software programs, and you can develop your own modules to improve your
ability to debug your own Solaris drivers and applications.

Future Enhancements
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Debugger Concepts

This chapter discusses the significant features of MDB and the benefits derived from this
architecture.

Building Blocks
The target is the program being inspected by the debugger.

MDB provides support for the following types of targets:

■ User processes
■ User process core files
■ Live operating system without kernel execution control (through /dev/kmem and

/dev/ksyms)
■ Live operating system with kernel execution control (through the kmdb(1) command)
■ Operating system crash dumps
■ User process images recorded inside an operating system crash dump
■ ELF object files
■ Raw data files

Each target exports a standard set of properties, including one or more address spaces, one or
more symbol tables, a set of load objects, and a set of threads. Figure 2–1 shows an overview of
the MDB architecture, including two of the built-in targets and a pair of sample modules.

A debugger command, or dcmd (pronounced dee-command) in MDB terminology, is a routine
in the debugger that can access any of the properties of the current target. MDB parses
commands from standard input, then executes the corresponding dcmds. Each dcmd can also
accept a list of string or numerical arguments, as shown in “Syntax” on page 23. MDB contains
a set of built-in dcmds that are always available. These built-in dcmds are described in

2C H A P T E R 2
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Chapter 5, “Built-In Commands.” You can also extend the capabilities of MDB by writing
dcmds using a programming API provided with MDB.

A walker is a set of routines that describe how to walk, or iterate, through the elements of a
particular program data structure. A walker encapsulates the data structure's implementation
from dcmds and from MDB. You can use walkers interactively, or you can use walkers as
primitives to build other dcmds or walkers. As with dcmds, you can extend MDB by
implementing additional walkers as part of a debugger module.

A debugger module, or dmod (pronounced dee-mod), is a dynamically loaded library that
contains a set of dcmds and walkers. During initialization, MDB attempts to load dmods
corresponding to the load objects present in the target. You can subsequently load or unload
dmods at any time while running MDB. MDB provides a set of standard dmods for debugging
the Solaris kernel.

A macro file is a text file that contains a set of commands to execute. Macro files are typically
used to automate the process of displaying a simple data structure. MDB provides complete
backward compatibility for the execution of macro files written for adb. The set of macro files
provided with the Solaris installation can therefore be used with either tool.

FIGURE 2–1 MDB architecture

adb
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disassembler libkvm target /proc target

MDB Language

user unix
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Building Blocks
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Modularity
The benefit of MDB's modular architecture extends beyond the ability to load a module
containing additional debugger commands. The MDB architecture defines clear interface
boundaries between each of the layers shown in Figure 2–1. Macro files execute commands
written in the MDB or adb language. Dcmds and walkers in debugger modules are written using
the MDB Module API. The MDB Module API is the basis of an application binary interface that
allows the debugger and its modules to evolve independently.

The MDB name space of walkers and dcmds also defines a second set of layers between
debugging code. These layers maximize code sharing and limit the amount of code that must be
modified as the target program evolves. For example, one of the primary data structures in the
Solaris kernel is the list of proc_t structures that represent active processes in the system. The
::ps dcmd must iterate over this list in order to produce its output. However, the code to iterate
over the list is not in the ::ps dcmd. The code to iterate over the list of proc_t structures is
encapsulated in the genunix module's proc walker.

MDB provides both ::ps and ::ptree dcmds, but neither of these dcmds has any knowledge of
how proc_t structures are accessed in the kernel. Instead, these dcmds invoke the proc walker
programmatically and format the set of returned structures appropriately. If the data structure
used for proc_t structures ever changed, MDB could provide a new proc walker, and none of
the dependent dcmds would need to change. The proc walker can also be accessed interactively
using the ::walk dcmd in order to create novel commands as you work during a debugging
session.

In addition to facilitating layering and code sharing, the MDB Module API provides dcmds and
walkers with a single stable interface for accessing various properties of the underlying target.
The same API functions are used to access information from user process or kernel targets,
simplifying the task of developing new debugging facilities.

In addition, you can use a custom MDB module to perform debugging tasks in a variety of
contexts. For example, you might want to develop an MDB module for a user program you are
developing. Once you have done so, you can use this module when MDB examines a live
process executing your program, a core dump of your program, or even a kernel crash dump
taken on a system where your program was executing.

The Module API provides facilities for accessing the following target properties:

Address Spaces The module API provides facilities for reading and writing
data from the target's virtual address space. Functions for
reading and writing using physical addresses are also provided
for kernel debugging modules.

Symbol Tables The module API provides access to the static and dynamic
symbol tables of the target's primary executable file, its

Modularity
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runtime link-editor, and a set of load objects. Load objects are
shared libraries in a user process or loadable modules in the
Solaris kernel.

External Data The module API provides a facility for retrieving a collection
of named external data buffers associated with the target. For
example, MDB provides programmatic access to the proc(4)
structures associated with a user process or user core file
target.

In addition, you can use built-in MDB dcmds to access information about target memory
mappings, load objects, register values, and control the execution of user process targets.

Modularity

Oracle Solaris Modular Debugger Guide • September 201022

http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=proc-4


MDB Language Syntax

This chapter describes the MDB language syntax, operators, and rules for command and
symbol name resolution.
■ “Syntax” on page 23
■ “Commands” on page 25
■ “Comments” on page 26
■ “Arithmetic Expansion” on page 26
■ “Quoting” on page 28
■ “Shell Escapes” on page 28
■ “Variables” on page 28
■ “Symbol Name Resolution” on page 29
■ “Dcmd and Walker Name Resolution” on page 34
■ “Dcmd Pipelines” on page 34
■ “Formatting Dcmds” on page 35

Syntax
MDB processes commands from standard input. If standard input is a terminal, MDB provides
terminal editing capabilities. MDB can also process commands from macro files and from
dcmd pipelines.

The MDB language syntax defines the following behavior:

1. Compute the value of an expression. This value typically is a memory address in the target.
The current address location is referred to as dot. Use the dot or period character (.) to
reference the value of the current address.

2. Apply a dcmd to the computed address.

A metacharacter is a newline, space, or tab character, or one of the following characters:

[ ] | ! / \ ? = > $ : ;

3C H A P T E R 3
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A blank is a space or tab character.

A word is a sequence of characters separated by one or more non-quoted metacharacters.

An expression is a sequence of words that is evaluated to compute a 64-bit unsigned integer
value. The words are evaluated using the rules described in “Arithmetic Expansion” on
page 26.

An identifier is a sequence of letters, digits, underscores, periods, or back quotation marks. An
identifier begins with a letter, underscore, or period. Identifiers are used as the names of
symbols, variables, dcmds, and walkers. Commands are delimited by a newline or semicolon
(;).

A dcmd is denoted by one of the following words or metacharacters:

/ \ ? = > $character :character ::identifier

Dcmds named by metacharacters or prefixed by a single dollar sign ($) or colon character (:)
are provided as built-in operators. These dcmds implement complete compatibility with the
command set of the legacy adb(1) utility. After a dcmd has been parsed, the /, \, ?, =, >, $, and :

characters are no longer recognized as metacharacters until the termination of the argument
list.

A simple-command is a dcmd followed by a sequence of zero or more blank-separated words.
The words are passed as arguments to the invoked dcmd, except as specified under “Arithmetic
Expansion” on page 26 and “Quoting” on page 28.

Each dcmd returns an exit status value that indicates one of the following occurred:

■ The dcmd succeeded.
■ The dcmd failed.
■ The dcmd was invoked with invalid arguments.

A pipeline is a sequence of one or more simple-commands, each separated by the vertical bar or
pipe character (|). After the pipeline has been parsed, each dcmd is invoked in order from left to
right. The output of each dcmd is processed and stored as described in “Dcmd Pipelines” on
page 34. After the first dcmd in the pipeline is complete, its processed output is used as input
for the second dcmd in the pipeline. When the second dcmd is complete, its output is used as
input for the third dcmd in the pipeline, and so on. If any dcmd does not return a successful exit
status, the pipeline is aborted.

Syntax
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Commands
A command is one of the following:

pipeline [ ! word ... ] [ ; ]
A simple-command or pipeline can be optionally followed by the exclamation point or bang
character (!), indicating that the debugger should open a pipe(2). The standard output of
the last dcmd in the MDB pipeline is sent to an external process created by executing $SHELL
-c followed by the string formed by concatenating the words after the ! character. For more
details, refer to “Shell Escapes” on page 28.

expression pipeline [ ! word ... ] [ ; ]
A simple-command or pipeline can be prefixed with an expression. Before execution of the
pipeline, any occurrence of the dot or period character (.) in the pipeline is set to the value of
the expression.

expression1 , expression2 pipeline [ ! word ... ] [ ; ]
A simple-command or pipeline can be prefixed with two expressions. The value of the first
expression is the new value of dot. The value of the second expression is a repeat count for
the first dcmd in the pipeline. The first dcmd in the pipeline is executed expression2 times
before the next dcmd in the pipeline is executed. The repeat count applies only to the first
dcmd in the pipeline.

, expression pipeline [ ! word ... ] [ ; ]
If the first expression is omitted, dot is not modified. The value of the second expression (the
expression after the comma character) is used exactly the same way as expression2 above.

expression [ ! word ... ] [ ; ]
A command can consist of only an arithmetic expression. The value of the expression is the
new value of dot. The previous dcmd pipeline is re-executed using the new value of dot.

expression1 , expression2 [ ! word ... ] [ ; ]
A command can consist of only a dot expression and repeat count expression. The value of
expression1 is the new value of dot. The previous dcmd pipeline is re-executed expression2
times using the new value of dot.

, expression [ ! word ... ] [ ; ]
If the first expression is omitted, dot is not modified. The value of the second expression (the
expression after the comma character) is used exactly the same way as expression2 above.

! word ... [ ; ]
If the command begins with the ! character, no dcmds are executed. The debugger executes
$SHELL -c followed by the string formed by concatenating the words after the ! character.

Commands
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Comments
A word that begins with two forward slash characters (//) causes that word and all the
subsequent characters up to a newline to be ignored.

Arithmetic Expansion
Arithmetic expansion is performed to determine the value of an expression. MDB commands
can be preceded by expressions that represent a start address or a repeat count. Arithmetic
expansion can also be performed to compute a numeric argument for a dcmd. An expression
can appear in an argument list enclosed in square brackets preceded by a dollar sign ($[expr]).
In this case, the expression is replaced by its arithmetic value.

Expressions can contain any of the following special words:

integer The specified integer value. Integer values can be prefixed with 0i or 0I
to indicate binary values, 0o or 0O to indicate octal values, 0t or 0T to
indicate decimal values, and 0x or 0X to indicate hexadecimal values (the
default).

0[tT][0-9]+.[0-9]+ The specified decimal floating point value, converted to its IEEE
double-precision floating point representation.

'cccccccc' The integer value computed by converting each character to a byte equal
to its ASCII value. Up to eight characters can be specified in a character
constant. Characters are packed into the integer in reverse order
(right-to-left), beginning at the least significant byte.

<identifier The value of the variable named by identifier.

identifier The value of the symbol named by identifier.

(expression) The value of expression.

. The value of dot.

& The most recent value of dot used to execute a dcmd.

+ The value of dot incremented by the current increment.

^ The value of dot decremented by the current increment.

The increment is a global variable that stores the total bytes read by the last formatting dcmd.
For more information on the increment, refer to the discussion of “Formatting Dcmds” on
page 35.

Comments
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Unary Operators
Unary operators are right associative and have higher precedence than binary operators. The
unary operators are:

#expression Logical negation

~expression Bitwise complement

-expression Integer negation

%expression Value of a pointer-sized quantity at the object file location
corresponding to virtual address expression in the target's virtual
address space

%/[csil]/expression Value of a char-sized, short-sized, int-sized, or long-sized quantity at
the object file location corresponding to virtual address expression in the
target's virtual address space

%/[1248]/expression Value of a one-byte, two-byte, four-byte, or eight-byte quantity at the
object file location corresponding to virtual address expression in the
target's virtual address space

*expression Value of a pointer-sized quantity at virtual address expression in the
target's virtual address space

*/[csil]/expression Value of a char-sized, short-sized, int-sized, or long-sized quantity at
virtual address expression in the target's virtual address space

*/[1248]/expression Value of a one-byte, two-byte, four-byte, or eight-byte quantity at
virtual address expression in the target's virtual address space

Binary Operators
Binary operators are left associative and have lower precedence than unary operators. The
binary operators, in order of precedence from highest to lowest, are:

* Integer multiplication

% Integer division

# Left-hand side rounded up to next multiple of right-hand side

+ Integer addition

- Integer subtraction

<< Bitwise shift left

>> Bitwise shift right

Arithmetic Expansion
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== Logical equality

!= Logical inequality

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise inclusive OR

Quoting
Each metacharacter described in “Syntax” on page 23 terminates a word unless the
metacharacter is quoted. Characters can be quoted by enclosing them in a pair of single
quotation marks (’) or double quotation marks ("). Quoting characters forces MDB to interpret
each character as itself without any special significance. A single quotation mark cannot appear
inside single quotation marks. Inside double quotation marks, MDB recognizes the C
programming language character escape sequences.

Shell Escapes
The ! character can be used to create a pipeline between an MDB command and the user's shell.
Shell escapes are available only when using mdb and not when using kmdb. If the $SHELL
environment variable is set, MDB will fork and exec this $SHELL program for shell escapes. If
$SHELL is not set, /bin/sh is used. The shell is invoked with the -c option followed by a string
formed by concatenating the words after the ! character.

The ! character takes precedence over all other metacharacters, except semicolon (;) and
newline. After a shell escape is detected, the remaining characters up to the next semicolon or
newline are passed “as is” to the shell. The output of shell commands cannot be piped to MDB
dcmds. The output of commands executed by a shell escape is sent directly to the terminal, not
to MDB.

Variables
A variable is a variable name, a corresponding integer value, and a set of attributes. A variable
name is a sequence of letters, digits, underscores, or periods. Use the > dcmd or ::typeset
dcmd to assign a value to a variable. Use the ::typeset dcmd to manipulate the attributes of a
variable. Each variable's value is represented as a 64-bit unsigned integer. A variable can have
one or more of the following attributes: read-only (cannot be modified by the user), persistent
(cannot be unset by the user), and tagged (user-defined indicator).

Quoting
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The following variables are defined as persistent:

0 Most recent value printed using the /, \, ?, or = dcmd.

9 Most recent count used with the $< dcmd.

b Virtual address of the base of the data section.

cpuid The CPU identifier corresponding to the CPU on which kmdb is currently executing.

d Size of the data section in bytes.

e Virtual address of the entry point.

hits The count of the number of times the matched software event specifier has been
matched. See “Event Callbacks” on page 58.

m Initial bytes (magic number) of the target's primary object file, or zero if no object file
has been read yet.

t Size of the text section in bytes.

thread The thread identifier of the current representative thread. The value of the identifier
depends on the threading model used by the current target. See “Thread Support” on
page 58.

In addition, the MDB kernel and process targets export the current values of the representative
thread's register set as named variables. The names of these variables depend on the target's
platform and instruction set architecture.

Symbol Name Resolution
As explained in “Syntax” on page 23, a symbol identifier in an expression evaluates to the value
of that symbol. The value typically denotes the virtual address of the storage associated with the
symbol in the target's virtual address space.

Tip – In the case of a naming conflict between a symbol and a hexadecimal integer value, MDB
attempts to evaluate an ambiguous token as a symbol first, before evaluating it as an integer
value. For example, the token f can refer to the decimal integer value 15 specified in
hexadecimal (the default base), or f can refer to a global variable in the symbol table of the
target. To avoid ambiguity, use an explicit 0x or 0X prefix to specify an integer value.

Symbol Name Resolution
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Symbol Tables
A target can support multiple symbol tables. The following examples are some of the symbol
tables that a target can support:

■ Primary executable symbol table
■ Primary dynamic symbol table
■ Runtime link-editor symbol table
■ Standard and dynamic symbol tables for each of a number of load objects (such as shared

libraries in a user process, or kernel modules in the Solaris kernel)

The target typically searches the symbol tables of the primary executable first, then one or more
of the other symbol tables. Note that ELF symbol tables contain only entries for external, global,
and static symbols. Automatic symbols do not appear in the symbol tables processed by MDB.

Additionally, MDB provides a private user-defined symbol table that is searched prior to any of
the target symbol tables. The private symbol table is initially empty. Use the ::nmadd and
::nmdel dcmds to manipulate the private symbol table.

Use the ::nm -P dcmd to display the contents of the private symbol table. The private symbol
table enables you to create symbol definitions for program functions or data that were either
missing from the original program or stripped out. These definitions are then used whenever
MDB converts a symbolic name to an address, or converts an address to the nearest symbol.

Symbol Name Scoping
A target can support multiple symbol tables, and each symbol table can include symbols from
multiple object files. Therefore, different symbols with the same name can exist. When two
different symbols have the same name, use the symbol-name scoping operator to obtain the
value of the desired symbol. The symbol-name scoping operator is the back quotation mark (‘).

Use one of the following three forms to specify the scope used to resolve a symbol name:

object‘name
file‘name
object‘file‘name

The object identifier refers to the name of a load object. The file identifier refers to the base name
of a source file that has a symbol of type STT_FILE in the specified object's symbol table.
Interpretation of the object identifier depends on the target type. A target can be a process target
or a kernel target.

Symbol Name Resolution
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Scoping Within User-Level Applications and Shared
Libraries
The MDB process target expects object to specify the name of the executable or of a loaded
shared library.

Object Identifier
The object identifier can take any of the following four forms:

■ Exact match (that is, a full path name): /usr/lib/libc.so.1
■ Exact basename match: libc.so.1
■ Initial basename match up to a period or dot character (.) suffix: libc.so or libc
■ Literal string a.out, which is accepted as an alias for the executable

Link Map Identifier
The process target also accepts any of the four forms described above preceded by an optional
link-map id (lmid). The lmid prefix is specified by an initial LM followed by the link-map id in
hexadecimal followed by an additional back quotation mark (‘). For example, the following
symbol name evaluates to the value of the _init symbol in the libc.so.1 library that is loaded
on link-map 0 (LM_ID_BASE):

LM0‘libc.so.1‘_init

The link-map specifier might be necessary to resolve symbol naming conflicts if the same
library is loaded on more than one link map. For more information on link maps, refer to the
Linker and Libraries Guide and the dlopen(3C) man page. Link-map identifiers are displayed
when symbols are printed according to the setting of the showlmid option, as described in
“Summary of MDB Command-Line Options” on page 139.

Scoping Within the Kernel
The MDB kernel target expects object to specify the base name of a loaded kernel module. For
example, the following symbol name evaluates to the value of the _init symbol in the specfs
kernel module:

specfs‘_init

Symbol Name Resolution
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Kernel Debug Information
MDB uses CTF debug information to read and display structures correctly. CTF (Compact C
Type Format) is a reduced form of debug information similar to DWARF and stab. CTF
describes types (structures, unions, and typedefs, for example) and function prototypes. Solaris
kernel binaries embed CTF data as an ELF section (.SUNW_ctf).

As much as possible, CTF data is stored in one place to minimize duplication of common types.
Other occurrences of each type reference the one unique definition. When a kernel update is
released, existing CTF structure definitions must be preserved because some kernel modules
might not be updated and might still be using the old definitions. When a kernel update is
released but not all modules are updated, the CTF definitions are held in the module in which
they are defined. When you use MDB to examine a crash dump, you might see a message that
the structure you want to examine does not exist, or you might see an indication that the
structure has changed. If the structure definition has changed, the data might look corrupt, for
example. If you encounter either of these conditions, use the scoping operator to specify the
module where the structure is defined.

Using the Scoping Operator With a Kernel Module
The genunix module contains many common types. The ip module also contains types that are
used by many kernel modules but that are not found in genunix. Therefore, you might need to
use scoping with the ip module more often than with other kernel modules.

Notice the use of the scoping operator with the ip module in the second versions of the
following examples.

EXAMPLE 3–1 Failed To Find Member of Structure

> ::print -at conn_t conn_udp

mdb: failed to find member conn_udp of conn_t: no such member of structure or union

>

> ::print -at ip‘conn_t conn_udp

30 struct udp_s *conn_udp

>

EXAMPLE 3–2 Data Looks Wrong: The Structure Definition Might Have Changed

> 0x300b038cc38::print queue_t q_ptr | ::print -at conn_t

{

3021e581780 kmutex_t conn_lock = {

3021e581780 void *[1] _opaque = [ 0 ]

}

3021e581788 uint32_t conn_ref = 0x3

3021e58178c uint_t conn_state_flags = 0

3021e581790 ire_t *conn_ire_cache = 0x600b102f598

3021e581798 uint32_t conn_flags = 0x49000001

3021e58179c unsigned conn_on_sqp = 0

3021e58179c unsigned conn_dontroute = 0

3021e58179c unsigned conn_loopback = 0

Symbol Name Resolution
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EXAMPLE 3–2 Data Looks Wrong: The Structure Definition Might Have Changed (Continued)

3021e58179c unsigned conn_broadcast = 0

3021e58179c unsigned conn_reuseaddr = 1

3021e58179c unsigned conn_multicast_loop = 0

3021e58179c unsigned conn_multi_router = 0

3021e58179c unsigned conn_draining = 0

3021e58179d unsigned conn_did_putbq = 0

3021e58179d unsigned conn_unspec_src = 0

3021e58179d unsigned conn_policy_cached = 0

3021e58179d unsigned conn_in_enforce_policy = 0

3021e58179d unsigned conn_out_enforce_policy = 0

3021e58179d unsigned conn_af_isv6 = 0

3021e58179d unsigned conn_pkt_isv6 = 0

3021e58179d unsigned conn_ipv6_recvpktinfo = 0

3021e58179e unsigned conn_ipv6_recvhoplimit = 0

3021e58179e unsigned conn_ipv6_recvhopopts = 0

3021e58179e unsigned conn_ipv6_recvdstopts = 0

3021e58179e unsigned conn_ipv6_recvrthdr = 0

3021e58179e unsigned conn_ipv6_recvrtdstopts = 0

3021e58179e unsigned conn_ipv6_v6only = 0

3021e58179e unsigned conn_ipv6_recvtclass = 0

3021e58179e unsigned conn_ipv6_recvpathmtu = 0

3021e58179f unsigned conn_pathmtu_valid = 0

3021e58179f unsigned conn_ipv6_dontfrag = 0

3021e58179f unsigned conn_fully_bound = 1

3021e58179f unsigned conn_recvif = 0

3021e58179f unsigned conn_recvslla = 0

3021e58179f unsigned conn_mdt_ok = 0

3021e58179f unsigned pad_to_bit_31 = 0

3021e5817a0 tcp_t *conn_tcp = 0

3021e5817a8 squeue_t *conn_sqp = 0x3021e581980

3021e5817b0 edesc_rpf conn_recv = 0

3021e5817b8 void *conn_pad1 = 0x600b082ba40 // Should have 0’s in this field. Data looks

3021e5817c0 ill_t *conn_xmit_if_ill = tcp_input // wrong starting from the conn_pad1 field.

3021e5817c8 ill_t *conn_nofailover_ill = 0

3021e5817d0 ipsec_latch_t *conn_latch = 0

3021e5817d8 ill_t *conn_outgoing_ill = 0

3021e5817e0 edesc_spf conn_send = 0

3021e5817e8 queue_t *conn_rq = 0

3021e5817f0 queue_t *conn_wq = ip_output

3021e5817f8 dev_t conn_dev = 0

...

}

> 0x300b038cc38::print queue_t q_ptr | ::print -at ip‘conn_t

{

....

3021e5817c8 void *conn_pad1 = 0 // Now the data looks correct from here on.

3021e5817d0 ill_t *conn_xmit_if_ill = 0

3021e5817d8 ill_t *conn_nofailover_ill = 0

3021e5817e0 ipsec_latch_t *conn_latch = 0

3021e5817e8 ill_t *conn_outgoing_ill = 0

3021e5817f0 edesc_spf conn_send = ip_output

3021e5817f8 queue_t *conn_rq = 0

3021e581800 queue_t *conn_wq = 0
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EXAMPLE 3–2 Data Looks Wrong: The Structure Definition Might Have Changed (Continued)

3021e581808 dev_t conn_dev = 0x1d2b

...

}

Dcmd and Walker Name Resolution
As described earlier, each MDB dmod provides a set of dcmds and walkers. Dcmds and walkers
are tracked in two distinct, global namespaces. MDB also keeps track of a dcmd and walker
namespace associated with each dmod. Identically named dcmds or walkers within a given
dmod are not allowed. A dmod with this type of naming conflict will fail to load.

Name conflicts between dcmds or walkers from different dmods are allowed in the global
namespace. In the case of a conflict, the first dcmd or walker with that particular name to be
loaded is given precedence in the global namespace. Alternate definitions are kept in a list in
load order.

Use the backquote character (‘) in a dcmd or walker name as a scoping operator to select an
alternate definition. For example, if dmods m1 and m2 each provide a dcmd d, and m1 is loaded
prior to m2, then you can use the scoping operator as shown below to specify the dcmd you
want:

::d Executes m1's definition of d

::m1‘d Executes m1's definition of d

::m2‘d Executes m2's definition of d

If module m1 is unloaded, the next dcmd on the global definition list (m2‘d) is promoted to global
visibility. Use the ::which dcmd to determine the current definition of a dcmd or walker. Use
the ::which -v dcmd to display the global definition list.

Dcmd Pipelines
Use the vertical bar (|) operator to pipeline dcmds. The purpose of a pipeline is to pass values
from one dcmd or walker to another. The values passed usually are virtual addresses. Pipeline
stages might be used to map a pointer from one type of data structure to a pointer to a
corresponding data structure, to sort a list of addresses, or to select the addresses of structures
with certain properties.

MDB executes each dcmd in the pipeline in order from left to right. The left-most dcmd is
executed using the current value of dot, or using the value specified by an explicit expression at
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the start of the command. A pipe operator (|) causes MDB to create a shared buffer between the
output of the dcmd to its left and the MDB parser, and an empty list of values.

As the dcmd executes, its standard output is placed in the pipe and then consumed and
evaluated by the parser, as if MDB were reading this data from standard input. Each line must
consist of an arithmetic expression terminated by a newline or semicolon (;). The value of the
expression is appended to the list of values associated with the pipe. If a syntax error is detected,
the pipeline is aborted.

When the dcmd to the left of a | operator completes, the list of values associated with the pipe is
then used to invoke the dcmd to the right of the | operator. For each value in the list, dot is set to
this value, and the right-hand dcmd is executed. Only the output of the rightmost dcmd in the
pipeline is written to standard output. If any dcmd in the pipeline produces output to standard
error, these messages are written directly to standard error and are not processed as part of the
pipeline.

Formatting Dcmds
The /, \, ?, and = metacharacters are used to denote the special output formatting dcmds. Each
of these dcmds accepts an argument list consisting of one or more format characters, repeat
counts, or quoted strings. A format character is one of the ASCII characters described below.

Format characters are used to read and format data from the target. A repeat count is a positive
integer preceding the format character that is always interpreted in base 10 (decimal). A repeat
count can also be specified as an expression enclosed in square brackets preceded by a dollar
sign ($[expr]). A string argument must be enclosed in double quotation marks ("str"). No
blanks are necessary between format arguments.

The formatting dcmds are:

/ Display data from the target's virtual address space starting at the virtual address specified
by dot.

\ Display data from the target's physical address space starting at the physical address
specified by dot.

? Display data from the target's primary object file starting at the object file location
corresponding to the virtual address specified by dot.

= Display the value of dot in each of the specified data formats. The = dcmd is useful for
converting between bases and performing arithmetic.

In addition to dot, MDB keeps track of another global value called the increment. The
increment represents the distance between dot and the address following all the data read by the
last formatting dcmd.
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For example, let dot equal address addr, where addr displays as a 4-byte integer. After a
formatting dcmd is executed with dot equal to addr, the increment is set to 4. The plus (+)
operator, described in “Arithmetic Expansion” on page 26, would now evaluate to the value
A+4, and could be used to reset dot to the address of the next data object for a subsequent dcmd.

Most format characters increase the value of the increment by the number of bytes
corresponding to the size of the data format. The number of bytes in various data formats are
shown below. Use the ::formats dcmd to display the list of format characters from within
MDB.

The format characters are:

+ Increment dot by the count (variable size)

- Decrement dot by the count (variable size)

B Hexadecimal int (1 byte)

C Character using C character notation (1 byte)

D Decimal signed int (4 bytes)

E Decimal unsigned long long (8 bytes)

F Double (8 bytes)

G Octal unsigned long long (8 bytes)

H Swap bytes and shorts (4 bytes)

I Address and disassembled instruction (variable size)

J Hexadecimal long long (8 bytes)

K Hexadecimal uintptr_t (4 or 8 bytes)

N Newline

O Octal unsigned int (4 bytes)

P Symbol (4 or 8 bytes)

Q Octal signed int (4 bytes)

R Binary int (8 bytes)

S String using C string notation (variable size)

T Horizontal tab

U Decimal unsigned int (4 bytes)

V Decimal unsigned int (1 byte)

W Default radix unsigned int (4 bytes)
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X Hexadecimal int (4 bytes)

Y Decoded time32_t (4 bytes)

Z Hexadecimal long long (8 bytes)

^ Decrement dot by increment * count (variable size)

a Dot as symbol+offset

b Octal unsigned int (1 byte)

c Character (1 byte)

d Decimal signed short (2 bytes)

e Decimal signed long long (8 bytes)

f Float (4 bytes)

g Octal signed long long (8 bytes)

h Swap bytes (2 bytes)

i Disassembled instruction (variable size)

n Newline

o Octal unsigned short (2 bytes)

p Symbol (4 or 8 bytes)

q Octal signed short (2 bytes)

r Whitespace

s Raw string (variable size)

t Horizontal tab

u Decimal unsigned short (2 bytes)

v Decimal signed int (1 byte)

w Default radix unsigned short (2 bytes)

x Hexadecimal short (2 bytes)

y Decoded time64_t (8 bytes)

You can also use the /, \, and ? formatting dcmds to write to the target's virtual address space,
physical address space, or object file. First, specify one of the following modifiers as the first
format character, and then specify a list of words. The words in the list are either immediate
values or expressions enclosed in square brackets preceded by a dollar sign ($[expr]).

The write modifiers are:
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v Write the lowest byte of the value of each expression to the target beginning at the location
specified by dot

w Write the lowest 2 bytes of the value of each expression to the target beginning at the
location specified by dot

W Write the lowest 4 bytes of the value of each expression to the target beginning at the
location specified by dot

Z Write the complete 8 bytes of the value of each expression to the target beginning at the
location specified by dot

You can also use the /, \, and ? formatting dcmds to search for a particular integer value in the
target's virtual address space, physical address space, and object file, respectively. First specify
one of the following modifiers as the first format character, and then specify a value and
optional mask. The value and mask are each either immediate values or expressions enclosed in
square brackets preceded by a dollar sign.

If only a value is specified, MDB reads integers of the appropriate size and stops at the address
that contains the matching value. If a value V and mask M are specified, MDB reads integers of
the appropriate size and stops at the address that contains a value X where (X & M) == V. At the
completion of the dcmd, dot is updated to the address of the match. If no match is found, dot is
left at the last address that was read.

The search modifiers are:

l Search for the specified 2-byte value

L Search for the specified 4-byte value

M Search for the specified 8-byte value

For both user and kernel targets, an address space is typically composed of a set of
discontiguous segments. It is not legal to read from an address that does not have a
corresponding segment. If a search reaches a segment boundary without finding a match, the
search aborts when the read past the end of the segment boundary fails.
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Using MDB Commands Interactively

This chapter describes the MDB interactive command line editing and history functions, the
output pager, and debugger signal handling.

Command Reentry
The text of the last HISTSIZE (default 128) commands entered from a terminal device is saved in
memory. The inline editing facility provides key mappings for searching and fetching elements
from the history list.

Inline Editing
If standard input is a terminal device, MDB provides some simple emacs-style facilities for
editing the command line. The search, previous, and next commands in edit mode provide
access to the history list. Only strings, not patterns, are matched when searching. In the list
below, the notation for control characters is the caret character (^) followed by a character
shown in uppercase. The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced meta- eff) is entered by pressing the ESC keyboard key followed by
the f key, or by pressing the Meta key followed by the f key on keyboards that support a Meta
key. A command line is committed and executed using RETURN or NEWLINE. The edit commands
are:

^F Move cursor forward (right) one character.

M-f Move cursor forward one word.

^B Move cursor backward (left) one character.

M-b Move cursor backward one word.

^A Move cursor to start of line.

^E Move cursor to end of line.

4C H A P T E R 4

39



^D Delete current character, if the current line is not empty. If the current line is
empty, ^D denotes EOF and the debugger will exit.

M-^H (Meta-backspace) Delete previous word.

^K Delete from the cursor to the end of the line.

^L Reprint the current line.

^T Transpose the current character with the next character.

^N Fetch the next command from the history. Each time ^N is entered, the next
command forward in time is retrieved.

^P Fetch the previous command from the history. Each time ^P is entered, the next
command backward in time is retrieved.

^R[string] Search backward in the history for a previous command line containing string.
The string should be terminated by a RETURN or NEWLINE. If string is omitted, the
previous history element containing the most recent string is retrieved.

The editing mode also interprets the following user-defined sequences as editing commands.
User-defined sequences can be read or modified using the stty(1) command.

erase User-defined erase character (usually ^H or ^?). Delete previous character.

intr User-defined interrupt character (usually ^C). Abort the current command and
print a new prompt.

kill User-defined kill character (usually ^U). Kill the entire current command line.

quit User-defined quit character (usually ^\). Quit the debugger.

suspend User-defined suspend character (usually ^Z). Suspend the debugger.

werase User-defined word erase character (usually ^W). Erase the preceding word.

On keyboards that support an extended keypad with arrow keys, mdb interprets these keystrokes
as editing commands:

Up arrow Fetch the previous command from the history (same as ^P).

Down arrow Fetch the next command from the history (same as ^N).

Left arrow Move cursor backward one character (same as ^B).

Right arrow Move cursor forward one character (same as ^F).
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Keyboard Shortcuts
MDB provides a set of keyboard shortcuts that bind individual keystrokes to common MDB
commands when the keystroke listed in the table below is typed as the first character following
the MDB prompt. The keyboard shortcuts are:

[ Execute the command ::step over.

] Execute the command ::step.

Output Pager
MDB provides a built-in output pager. The output pager is enabled if the debugger's standard
output is a terminal device. Each time a command is executed, mdb pauses after each screenful of
output is written and displays a pager prompt:

>> More [<space>, <cr>, q, n, c, a] ?

The following key sequences are recognized by the pager:

SPACE Display the next screenful of output.

a, A Abort the current top-level command and return to the
prompt.

c, C Continue displaying output without pausing at each screenful,
until the current top-level command is complete.

n, N, NEWLINE, RETURN Display the next line of output.

q, Q, ^C, ^\ Quit (abort) the current dcmd only.

Signal Handling
MDB ignores the PIPE and QUIT signals. The INT signal aborts the command that is currently
executing. The debugger intercepts and provides special handling for the ILL, TRAP, EMT,
FPE, BUS, and SEGV signals. If any of these signals is generated asynchronously (delivered
from another process using the kill(2) call), MDB restores the signal to its default disposition
and dumps core. However, if any of these signals is generated synchronously by the debugger
process itself and a dcmd from an externally loaded dmod is currently executing, and standard
input is a terminal, MDB will provide a menu of choices allowing the user to force a core dump,
quit without producing a core dump, stop for attach by a debugger, or attempt to resume. The
resume option will abort all active commands and unload the dmod whose dcmd was active at
the time the fault occurred. It can then be subsequently re-loaded by the user. The resume
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option provides limited protection against buggy dcmds. Refer to “Warnings” on page 147, Use
of the Error Recovery Mechanism, for information about the risks associated with the resume
option.
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Built-In Commands

MDB provides a set of built-in dcmds that are always defined. Some of these dcmds are
applicable only to certain targets: if a dcmd is not applicable to the current target, it fails and
prints a message indicating “command is not supported by current target”.

In many cases, MDB provides a mnemonic equivalent (::identifier) for the legacy adb(1)
dcmd names. For example, ::quit is provided as the equivalent of $q. Programmers who are
experienced with adb(1) or who appreciate brevity or arcana might prefer the $ or : forms of the
built-ins. Programmers who are new to MDB might prefer the more verbose :: form. The
built-ins are shown in alphabetical order. If a $ or : form has a ::identifier equivalent, it is
shown under the ::identifier form.

Built-In Dcmds
> variable-name
> /modifier/ variable-name

Assign the value of dot to the specified named variable. Some variables are read-only and
cannot be modified. If the > is followed by a modifier character surrounded by //, then the
value is modified as part of the assignment. The modifier characters are:

c Unsigned char quantity (1-byte)

s Unsigned short quantity (2-byte)

i Unsigned int quantity (4-byte)

l Unsigned long quantity (4-byte in 32-bit, 8-byte in 64-bit)

Notice that these operators do not perform a cast; they instead fetch the specified number of
low-order bytes (on little-endian architectures) or high-order bytes (big-endian
architectures). These modifiers are provided for backward compatibility; the MDB
*/modifier/ and %/modifier/ syntax should be used instead.
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$< macro-name
Read and execute commands from the specified macro file. The file name can be given as an
absolute or relative path. If the file name is a simple name (that is, if it does not contain a '/'),
MDB searches for it in the macro file include path. If another macro file is currently being
processed, this file is closed and replaced with the new file.

$<< macro-name
Read and execute commands from the specified macro file (as with $<), but do not close the
current open macro file.

$?

Print the process-ID and current signal of the target if it is a user process or core file, and
then print the general register set of the representative thread.

[ address ] $C [ count ]
Print a C stack backtrace, including stack frame pointer information. If the dcmd is preceded
by an explicit address, a backtrace beginning at this virtual memory address is displayed.
Otherwise, the stack of the representative thread is displayed. If an optional count value is
given as an argument, no more than count arguments are displayed for each stack frame in
the output.

64-bit SPARC only – The biased frame pointer value (that is, the virtual address minus 0x7ff)
should be used as the address when requesting a stack trace.

[ base ] $d
Get or set the default output radix. If the dcmd is preceded by an explicit expression, the
default output radix is set to the given base; otherwise, the current radix is printed in base 10
(decimal). The default radix is base 16 (hexadecimal).

$e

Print a list of all known external (global) symbols of type object or function, the value of the
symbol, and the first 4 (32-bit mdb) or 8 (64-bit mdb) bytes stored at this location in the
target's virtual address space. The ::nm dcmd provides more flexible options for displaying
symbol tables.

$P prompt-string
Set the prompt to the specified prompt-string. The default prompt is ' > '. The prompt can also
be set using ::set -P or the -P command-line option.

$M

In kmdb only, list the macro files that are cached by kmdb for use with the $< dcmd.

distance $s
Get or set the symbol matching distance for address-to-symbol-name conversions. The
symbol matching distance modes are discussed along with the -s command-line option in
Appendix A, “MDB Options.” The symbol matching distance can also be modified using the
::set -s option. If no distance is specified, the current setting is displayed.
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$v

Print a list of the named variables that have non-zero values. The ::vars dcmd provides
other options for listing variables.

width $w

Set the output page width to the specified value. Typically, this command is not necessary, as
MDB queries the terminal for its width and handles resize events.

$W

Reopen the target for writing, as if MDB had been executed with the -w option on the
command line. Write mode can also be enabled with the ::set -w option.

::array type count
Print the address of each element of an array. The type of the array elements should be
specified as the first argument, type, and the number of elements to be computed should be
specified as the second argument, count. The output of ::array can be pipelined to the
::print dcmd to print the elements of an array data structure.

Note – This dcmd may only be used with objects that contain compressed symbolic
debugging information designed for use with mdb. This information is currently only
available for certain Solaris kernel modules. The SUNWzlib decompression software must
be installed in order to process the symbolic debugging information.

[ pid ] ::attach [ core | pid ]
[ pid ] :A [ core | pid ]

If the user process target is active, attach to and debug the specified process-ID or core file.
The core file path name should be specified as a string argument. The process-ID can be
specified as the string argument, or as the value of the expression preceding the dcmd. Recall
that the default base is hexadecimal, so decimal PIDs obtained using pgrep(1) or ps(1)
should be preceded with “0t” when specified as expressions.

::branches [ -v ]
Display the most recent branches taken by the current CPU. This dcmd is currently only
available when using kmdb on x86 systems where the appropriate processor-specific feature is
enabled. The number and type of branches that can be displayed is determined by the
processor architecture. If the -v option is present, the instructions prior to each branch are
displayed.

::cat filename ...
Concatenate and display files. Each file name can be specified as a relative or absolute path
name. The file contents will print to standard output, but will not pass through the output
pager. This dcmd is intended to be used with the | operator; the programmer can initiate a
pipeline using a list of addresses stored in an external file.

address ::context
address $p
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Context switch to the specified process. A context switch operation is valid only when using
the kernel target. The process context is specified using the address of its proc structure in
the kernel's virtual address space. The special context address 0 is used to denote the context
of the kernel itself. MDB can only perform a context switch when examining a crash dump if
the dump contains the physical memory pages of the specified user process (as opposed to
just kernel pages). The kernel crash dump facility can be configured to dump all pages or the
pages of the current user process using dumpadm(1M). The ::status dcmd can be used to
display the contents of the current crash dump.

When the user requests a context switch from the kernel target, MDB constructs a new target
representing the specified user process. After the switch occurs, the new target interposes its
dcmds at the global level: thus the / dcmd can now format and display data from the virtual
address space of the user process, the ::mappings dcmd can display the mappings in the
address space of the user process, and so on. The kernel target can be restored by executing
0::context.

::cpuregs [ -c cpuid ]
Display the current general-purpose register set for the current CPU or the specified cpuid.
This command is only available when using kmdb.

::cpustack [ -c cpuid ]
Display a C stack backtrace for the thread executing on the current CPU or the specified
cpuid. This command is only available when using kmdb.

::dcmds

List the available dcmds and print a brief description for each one.

[ address ]::dis [ -afw ] [ -n count ] [ address ]
Disassemble starting at or around the address specified by the final argument, or the current
value of dot. If the address matches the start of a known function, the entire function is
disassembled. Otherwise, a “window” of instructions before and after the specified address is
printed in order to provide context. By default, instructions are read from the target's virtual
address space; if the -f option is present, instructions are read from the target's object file
instead. The -f option is enabled by default if the debugger is not currently attached to a live
process, core file, or crash dump. The -w option can be used to force window-mode, even if
the address is the start of a known function. The size of the window defaults to ten
instructions; use the -n option to explicitly specify the number of instructions. If the -a
option is present, addresses are printed as numeric values rather than symbolically.

::disasms

List the available disassembler modes. When a target is initialized, MDB attempts to select
the appropriate disassembler mode. The user can change the mode to any of the modes listed
using the ::dismode dcmd.

::dismode [ mode ]
$V [ mode ]
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Get or set the disassembler mode. If no argument is specified, print the current disassembler
mode. If a mode argument is specified, switch the disassembler to the specified mode. The list
of available disassemblers can be displayed using the ::disasms dcmd.

::dmods [ -l ] [ module-name ]
List the loaded debugger modules. If the -l option is specified, the list of the dcmds and
walkers associated with each dmod is printed below its name. The output can be restricted to
a particular dmod by specifying its name as an additional argument.

[address] ::dump [-eqrstu] [-f|-p] [-g bytes] [-w paragraphs]
Print a hexadecimal and ASCII memory dump of the 16-byte aligned region of virtual
memory containing the address specified by dot. If a repeat count is specified for ::dump, this
is interpreted as a number of bytes to dump rather than a number of iterations. The ::dump
dcmd also recognizes the following options:

-e Adjust for endianness. The -e option assumes 4-byte words; the -g option
can be used to change the default word size.

-f Read data from the object file location corresponding to the given virtual
address instead of from the target's virtual address space. The -f option is
enabled by default if the debugger is not currently attached to a live
process, core file, or crash dump.

-g group Display bytes in groups of bytes. The default group size is 4 bytes. The
group size must be a power of two that divides the line width

-p Interpret address as a physical address location in the target's address
space instead of a virtual address.

-q Do not print an ASCII decoding of the data.

-r Number lines relative to the start address instead of with the explicit
address of each line. This option implies the -u option.

-s Elide repeated lines.

-t Only read from and display the contents of the specified addresses,
instead of reading and printing entire lines.

-u Unalign output instead of aligning the output at a paragraph boundary.

-w paragraphs Display paragraphs 16-byte paragraphs per line. The default number of
paragraphs is one. The maximum value accepted for -w is 16.

::echo [ string | value ... ]
Print the arguments separated by blanks and terminated by a NEWLINE to standard output.
Expressions enclosed in $[ ] will be evaluated to a value and printed in the default base.

::eval command
Evaluate and execute the specified string as a command. If the command contains
metacharacters or white space, it should be enclosed in double or single quotes.
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::files [object]
$f

Print a list of the known source files (symbols of type STT_FILE present in the various target
symbol tables). If an object name is specified, the output is restricted to file symbols present
in the corresponding object file.

[address] ::findsym [-g] [ address | symbol ...]
Search instruction text for instructions that refer to the specified symbols or addresses. The
search list should consist of one or more addresses or symbol names specified as an address
preceding the dcmd or one or more symbol names or expressions following the dcmd. If the
-g option is specified, the search is restricted to instruction text that is part of a globally
visible function in the target's symbol table.

Note – SPARC only. The ::findsym dcmd is only available when debugging a target that uses
the SPARC instruction set architecture.

::formats

List the available output format characters for use with the /, \, ?, and = formatting dcmds.
The formats and their use is described in “Formatting Dcmds” on page 35.

[ thread ] ::fpregs [-dqs]

[ thread ] $x, $X, $y, $Y

Print the floating-point register set of the representative thread. If a thread is specified, the
floating point registers of that thread are displayed. The thread expression should be one of
the thread identifiers described under “Thread Support” on page 58.

Note – SPARC only. The -d, -q, and -s options can be used to display the floating point
registers as a collection of double-precision (-d), quad-precision (-q), or single-precision
(-s) floating point values.

::grep command
Evaluate the specified command string, then print the old value of dot if the new value of dot
is non-zero. If the command contains white space or metacharacters, it must be quoted. The
::grep dcmd can be used in pipelines to filter a list of addresses.

::help [ dcmd-name ]
With no arguments, the ::help dcmd prints a brief overview of the help facilities available in
MDB. If a dcmd-name is specified, MDB prints a usage summary for that dcmd.

[ address [ , len ]] ::in [ -L len ]
Read and display len bytes from the I/O port specified by address. The value of the -L option,
if present, takes precedence over the repeat count specified on the left-hand side. The len
must be 1, 2, or 4 bytes and the port address must be aligned according to the length. This
command is only available when using kmdb on x86 systems.
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[ address ] ::list type member [ variable-name ]
Walk through the elements of a linked list data structure and print the address of each
element in the list. The address of the first element in the list can be specified using an
optional address; otherwise the list is assumed to start at the current value of dot. The type
parameter must name a C struct or union type and is used to describe the type of the list
elements so that MDB can read in objects of the appropriate size. The member parameter is
used to name the member of type that contains a pointer to the next list element. The ::list
dcmd will continue iterating until a NULL pointer is encountered, the first element is
reached again (a circular list), or an error occurs while reading an element. If the optional
variable-name is specified, the specified variable will be assigned the value returned at each
step of the walk when MDB invokes the next stage of a pipeline.

Note – This dcmd may only be used with objects that contain compressed symbolic
debugging information designed for use with mdb. This information is currently only
available for certain Solaris kernel modules. The SUNWzlib decompression software must
be installed in order to process the symbolic debugging information.

::load [ -s] module-name
Load the specified dmod. The module name can be given as an absolute or relative path. If
module-name is a simple name (that is, does not contain a '/'), MDB searches for it in the
module library path. Modules with conflicting names cannot be loaded; the existing module
must be unloaded first. If the -s option is present, MDB will remain silent and not issue any
error messages if the module is not found or could not be loaded.

::log [ -d | [ -e ] filename ]
$> [ filename ]

Enable or disable the output log. MDB provides an interactive logging facility where both the
input commands and standard output can be logged to a file while still interacting with the
user. The -e option enables logging to the specified file, or re-enables logging to the previous
log file if no file name is given. The -d option disables logging. If the $> dcmd is used, logging
is enabled if a file name argument is specified; otherwise, logging is disabled. If the specified
log file already exists, MDB appends any new log output to the file.

::map command
Map the value of dot to a corresponding value using the command specified as a string
argument, then print the new value of dot. If the command contains white space or
metacharacters, it must be quoted. The ::map dcmd can be used in pipelines to transform the
list of addresses into a new list of addresses.

[ address ] ::mappings [ name ]
[ address ] $m [ name ]

Print a list of each mapping in the target's virtual address space, including the address, size,
and description of each mapping. If the dcmd is preceded by an address, MDB shows only
the mapping that contains the given address. If a string name argument is given, MDB shows
only the mapping that matched the description.
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[address] ::nm [ -DPdghnopuvx ] [ -t types ] [ -f format ] [ object]
Print the symbol tables associated with the current target. If an optional address preceding
the dcmd is specified, only the symbol table entry for the symbol corresponding to address is
displayed. If an object name is specified, only the symbol table for this load object is
displayed. The ::nm dcmd also recognizes the following options:

-D Prints .dynsym (dynamic symbol table) instead of .symtab.

-P Prints the private symbol table instead of .symtab.

-d Prints value and size fields in decimal.

-f format [,format...] Print only the specified symbol information. The valid format
argument strings are:

ndx symbol table index

val symbol table

size size in bytes

type symbol type

bind binding

oth other

shndx section index

name symbol name

ctype C type for symbol (if known)

obj object which defines symbol

-g Prints only global symbols.

-h Suppresses the header line.

-n Sorts symbols by name.

-o Prints value and size fields in octal.

-p Prints symbols as a series of ::nmadd commands. This option can
be used with -P to produce a macro file that can be subsequently
read into the debugger with $<.

-t type [,type...] Prints only symbols of the specified types. The valid type argument
strings are:

noty STT_NOTYPE

objt STT_OBJECT

func STT_FUNC
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sect STT_SECTION

file STT_FILE

comm STT_COMMON

tls STT_TLS

regi STT_SPARC_REGISTER

-u Prints only undefined symbols.

-v Sorts symbols by value.

-x Prints value and size fields in hexadecimal.

value ::nmadd [ -fo ] [ -e end ] [ -s size ] name
Add the specified symbol name to the private symbol table. MDB provides a private,
configurable symbol table that can be used to interpose on the target's symbol table, as
described in “Symbol Name Resolution” on page 29. The ::nmadd dcmd also recognizes the
following options:

-e Set the size of the symbol to end - value.

-f Set the type of the symbol to STT_FUNC.

-o Set the type of the symbol to STT_OBJECT.

-s Set the size of the symbol to size.

::nmdel name
Delete the specified symbol name from the private symbol table.

::objects [ -v ]
Print a map of the target's virtual address space, showing only those mappings that
correspond to the primary mapping (usually the text section) of each of the known load
objects. If the -v option is present, the command displays the version of each object if version
information is know. If no version information is known, a version of Unknown will be
displayed in the output.

::offsetof type member
Print the offset of the specified member of the specified type. The type should be the name of
a C structure. The offset is printed in bytes, unless the member is a bit-field in which case the
offset may be printed in bits. The output is always suffixed with the appropriate units for
clarity. The type name may use the backquote (‘) scoping operator described in “Symbol
Name Resolution” on page 29.
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Note – This dcmd may only be used with objects that contain compressed symbolic
debugging information designed for use with mdb. This information is currently only
available for certain Solaris kernel modules. The SUNWzlib decompression software must
be installed in order to process the symbolic debugging information.

[ address [ , len ]] ::out [ -L len ]
Write the specified value to the I/O port specified by address. The value of the -L option, if
present, takes precedence over the repeat count specified on the left-hand side. The len must
be 1, 2, or 4 bytes and the port address must be aligned according to the length. This
command is only available when using kmdb on x86 systems.

[address] ::print [-aCdiLptx] [-c lim] [-l lim] [type [member|offset ... ]]

Print the data structure at the specified virtual address using the given type information. The
type parameter may name a C struct, union, enum, fundamental integer type, or a pointer to
any of these types. If the type name contains whitespace (for example, struct foo), it must
be enclosed in single quotation marks or double quotation marks. The type name can use the
backquote (‘) scoping operator described under “Symbol Name Resolution” on page 29. If
the type is a structured type, the ::print dcmd recursively prints each member of the struct
or union. If the type argument is not present and a static or global STT_OBJECT symbol
matches the address, ::print infers the appropriate type automatically.

The type argument can be followed by an optional list of member or offset expressions, in
which case only those members and submembers of the specified type are displayed.
Members can be specified using C syntax that includes the array index operator ([]), the
structure member operator (->), and the structure pointer operator (.). Offsets can be
specified using the MDB arithmetic expansion syntax ($[]).After displaying the data
structure, ::print increments dot by the size of type in bytes.

Note – The ::print dcmd may only be used with objects that contain compressed symbolic
debugging information designed for use with MDB. This information is only available at
present in certain Solaris kernel modules and user libraries. The SUNWzlib decompression
software must be installed in order to process the symbolic debugging information.

If the -a option is present, the address of each member is displayed. If the -i option is
present, the expression on the left-hand side is interpreted as an immediate value to be
displayed using the specified type. If the -p option is present, ::print interprets address as a
physical memory address instead of a virtual memory address. If the -t option is present, the
type of each member is displayed. If the -d or -x options are present, all integers are
displayed in decimal (-d) or hexadecimal (-x); by default a heuristic is used to determine if
the value should be displayed in decimal or hexadecimal. The number of characters in a
character array that will be read and displayed as a string can be limited with the -c option. If
the -C option is present, no limit is enforced. The number of elements in a standard array
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that will be read and displayed can be limited with the -l option. If the -L option is present,
no limit is enforced and all array elements are shown. The default values for -c and -l can be
modified using ::set or the -o command-line option as described in Appendix A, “MDB
Options.”

::quit [ -u ]
$q [ -u ]

Quit the debugger. When using kmdb only, the -u option causes the debugger to resume
execution of the operating system and unload the debugger. The -u option cannot be used if
kmdb was loaded at boot. If the -u option is not present, ::quit causes kmdb to exit to the
firmware (on SPARC systems) or causes the system to reboot (on x86 systems).

[ thread ] ::regs
[ thread ] $r

Print the general-purpose register set of the representative thread. If a thread is specified, the
general purpose register set of that thread is displayed. The thread expression should be one
of the thread identifiers described under “Thread Support” on page 58.

::release [ -a ]
:R [ -a ]

Release the previously attached process or core file. If the -a option is present, the process is
released and left stopped and abandoned. It can subsequently be continued by prun(1) or it
can be resumed by applying MDB or another debugger. By default, a released process is
forcibly terminated if it was created by MDB using ::run, or it is released and set running if
it was attached to by MDB using the -p option or using the ::attach or :A dcmds.

::set [ -wF ] [ +/-o option ] [ -s distance ] [ -I path ] [ -L path ] [ -P prompt ]
Get or set miscellaneous debugger properties. If no options are specified, the current set of
debugger properties is displayed. The ::set dcmd recognizes the following options:

-F Forcibly take over the next user process that ::attach is applied to, as if mdb had been
executed with the -F option on the command line.

-I Set the default path for locating macro files. The path argument can contain any of the
special tokens described for the -I command-line option in Appendix A, “MDB
Options.”

-L Set the default path for locating debugger modules. The path argument can contain
any of the special tokens described for the -I command-line option in Appendix A,
“MDB Options.”

-o Enable the specified debugger option. If the +o form is used, the option is disabled.
The option strings are described along with the -o command-line option in
Appendix A, “MDB Options.”

-P Set the command prompt to the specified prompt string.

-s Set the symbol matching distance to the specified distance. Refer to the description of
the -s command-line option in Appendix A, “MDB Options,” for more information.
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-w Re-open the target for writing, as if mdb had been executed with the -w option on the
command line.

::showrev [ -pv ]
Display revision information for the hardware and software corresponding the current
target. If no options are specified, general system information is displayed. If the -p option is
present, information for each load object that is part of a patch is displayed. If the -v option
is present, information for each load object is displayed. Load objects without version
information will be omitted from the output for the -p option. Load objects without version
information will report Unknown in the output of the -v option.

::sizeof type
Print the size of the specified type in bytes. The type parameter may name a C struct, union,
enum, fundamental integer type, or a pointer to any of these types. The type name may use
the backquote (‘) scoping operator described in “Symbol Name Resolution” on page 29.

Note – This dcmd may only be used with objects that contain compressed symbolic
debugging information designed for use with mdb. This information is currently only
available for certain Solaris kernel modules. The SUNWzlib decompression software must
be installed in order to process the symbolic debugging information.

[ address ] ::stack [ count ]
[ address ] $c [ count ]

Print a C stack back trace. If the dcmd is preceded by an explicit address, a back trace
beginning at this virtual memory address is displayed. Otherwise, the stack of the
representative thread is displayed. If an optional count value is given as an argument, no
more than count arguments are displayed for each stack frame in the output.

64-bit SPARC only – The biased frame pointer value (that is, the virtual address minus 0x7ff)
should be used as the address when requesting a stack trace.

::status

Print a summary of information related to the current target.

cpuid ::switch

cpuid :x

When using kmdb only, switch to the CPU indicated by the specified cpuid and use this CPU's
current register state as the representative for debugging.

::term

Print the name of the terminal type that MDB is using to perform any terminal-dependent
input and output operations, such as command-line editing.
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thread ::tls symbol
Print the address of the storage for the specified thread-local storage (TLS) symbol in the
context of the specified thread. The thread expression should be one of the thread identifiers
described under “Thread Support” on page 58. The symbol name may use any of the
scoping operators described under “Symbol Name Resolution” on page 29.

::typeset [+/-t] variable-name ...
Set attributes for named variables. If one or more variable names are specified, they are
defined and set to the value of dot. If the -t option is present, the user-defined tag associated
with each variable is set. If the +t option is present, the tag is cleared. If no variable names are
specified, the list of variables and their values is printed.

::unload module-name
Unload the specified dmod. The list of active dmods can be printed using the ::dmods dcmd.
Built-in modules cannot be unloaded. Modules that are busy (that is, provide dcmds that are
currently executing) cannot be unloaded.

::unset variable-name ...
Unset (remove) the specified variables from the list of defined variables. Some variables are
exported by MDB are marked as persistent, and cannot be unset by the user.

::vars [-npt]
Print a listing of named variables. If the -n option is present, the output is restricted to
variables that currently have non-zero values. If the -p option is present, the variables are
printed in a form suitable for re-processing by the debugger using the $< dcmd. This option
can be used to record the variables to a macro file, then restore these values later. If the -t
option is present, only the tagged variables are printed. Variables can be tagged using the -t
option of the ::typeset dcmd.

::version

Print the debugger version number.

address ::vtop [-a as]
Print the physical address mapping for the specified virtual address, if possible. The ::vtop
dcmd is only available when examining a kernel target, or when examining a user process
inside a kernel crash dump (after a ::context dcmd has been issued).

When examining a kernel target from the kernel context, the -a option can be used to specify
the address (as) of an alternate address space structure that should be used for the virtual to
physical translation. By default, the kernel's address space is used for translation. This option
is available for active address spaces even when the dump content only contains kernel
pages.

[ address ] ::walk walker-name [ variable-name ]
Walk through the elements of a data structure using the specified walker. The available
walkers can be listed using the ::walkers dcmd. Some walkers operate on a global data
structure and do not require a starting address. For example, walk the list of proc structures
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in the kernel. Other walkers operate on a specific data structure whose address must be
specified explicitly. For example, given a pointer to an address space, walk the list of
segments.

When used interactively, the ::walk dcmd will print the address of each element of the data
structure in the default base. The dcmd can also be used to provide a list of addresses for a
pipeline. The walker name can use the backquote “ ‘ “ scoping operator described in “Dcmd
and Walker Name Resolution” on page 34. If the optional variable-name is specified, the
specified variable will be assigned the value returned at each step of the walk when MDB
invokes the next stage of the pipeline.

::walkers

List the available walkers and print a brief description for each one.

::whence [-v] name ...
::which [-v] name ...

Print the dmod that exports the specified dcmds and walkers. These dcmds can be used to
determine which dmod is currently providing the global definition of the given dcmd or
walker. Refer to “Dcmd and Walker Name Resolution” on page 34 for more information on
global name resolution. The -v option causes the dcmd to print the alternate definitions of
each dcmd and walker in order of precedence.

::xdata

List the external data buffers exported by the current target. External data buffers represent
information associated with the target that cannot be accessed through standard target
facilities (that is, an address space, symbol table, or register set). These buffers can be
consumed by dcmds; for more information, refer to “mdb_get_xdata()” on page 138.
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Execution Control

MDB provides facilities for controlling and tracing the execution of live running programs,
including both user applications and the live operating system kernel and device drivers. You
can use the mdb command to control user processes that are already running, or create new
processes under the control of the debugger. You can boot or load kmdb to control the execution
of the operating system kernel itself, or debug a device driver. This chapter describes the built-in
dcmds that can be used to control target execution. These commands can be used in either mdb
or kmdb, except as noted in the descriptions. Additional topics relating only to execution control
in kmdb are discussed in Chapter 7, “Kernel Execution Control.”

Execution Control
MDB provides a simple model of execution control: a target process can be started from within
the debugger using ::run, or MDB can attach to an existing process using :A, ::attach, or the
-p command-line option (see Chapter 5, “Built-In Commands”). Alternately, the kernel can be
booted using kmdb or kmdb can be loaded afterward. In either case, a list of traced software events
can be specified by the user. Each time a traced event occurs in the target program, all threads in
the target stop, the thread that triggered the event is chosen as the representative thread, and
control returns to the debugger. Once the target program is set running, control can be
asynchronously returned to the debugger by typing the user-defined interrupt character
(typically Control-C).

A software event is a state transition in the target program that is observed by the debugger. For
example, the debugger may observe the transition of a program counter register to a value of
interest (a breakpoint) or the delivery of a particular signal.

A software event specifier is a description of a class of software events that is used by the
debugger to instrument the target program in order to observe these events. The ::events
dcmd is used to list the software event specifiers. A set of standard properties is associated with
each event specifier, as described under ::events in “Built-in Dcmds” on page 59.
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The debugger can observe a variety of different software events, including breakpoints,
watchpoints, signals, machine faults, and system calls. New specifiers can be created using ::bp,
::fltbp, :: sigbp, ::sysbp, or ::wp. Each specifier has an associated callback (an MDB
command string to execute as if it had been typed at the command prompt) and a set of
properties, as described under ::events in “Built-in Dcmds” on page 59. Any number of
specifiers for the same event may be created, each with different callbacks and properties. The
current list of traced events and the properties of the corresponding event specifiers can be
displayed using the ::events dcmd. The event specifier properties are defined as part of the
description of the ::events and ::evset dcmds, in “Built-in Dcmds” on page 59.

The execution control built-in dcmds, described in “Built-in Dcmds” on page 59, are always
available, but will issue an error message indicating they are not supported if applied to a target
that does not support execution control.

Event Callbacks
The ::evset dcmd and event tracing dcmds allow you to associate an event callback (using the
-c option) with each event specifier. The event callbacks are strings that represent MDB
commands to execute when the corresponding event occurs in the target. These commands are
executed as if they had been typed at the command prompt. Prior to executing each callback,
the dot variable is set to the value of the representative thread's program counter and the hits
variable is set to the number of times this specifier has been matched, including the current
match.

If the event callbacks themselves contain one or more commands to continue the target (for
example, ::cont or ::step), these commands do not immediately continue the target and wait
for it to stop again. Instead, inside of an event callback, the continue dcmds note that a continue
operation is now pending, and then return immediately. Therefore, if multiple dcmds are
included in an event callback, the step or continue dcmd should be the last command specified.
Following the execution of all event callbacks, the target will immediately resume execution if
all matching event callbacks requested a continue. If conflicting continue operations are
requested, the operation with the highest precedence determines what type of continue will
occur. The order of precedence from highest to lowest is: step, step-over (next), step-out,
continue.

Thread Support
MDB provides facilities to examine the stacks and registers of each thread associated with the
target. The persistent thread variable contains the current representative thread identifier. The
format of the thread identifier depends on the target. The ::regs and ::fpregs dcmds can be
used to examine the register set of the representative thread, or of another thread if its register
set is currently available. In addition, the register set of the representative thread is exported as a
set of named variables. The user can modify the value of one or more registers by applying the >
dcmd to the corresponding named variable.

Event Callbacks
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The MDB kernel target exports the virtual address of the corresponding internal thread
structure as the identifier for a given thread. This address corresponds to the kthread_t data
structure in the operating system source code. When using kmdb, the CPU identifier for the
CPU running kmdb is stored in the cpuid variable.

The MDB process target provides proper support for examination of multi-threaded user
processes that use the native lwp_* interfaces, /usr/lib/libthread.so, or
/usr/lib/libpthread.so. When debugging a live user process, MDB will detect if a single
threaded process dlopens or closes libthread and will automatically adjust its view of the
threading model on-the-fly. The process target thread identifiers will correspond to either the
lwpid_t, thread_t, or pthread_t of the representative, depending on the threading model
used by the application.

If MDB is debugging a user process target and the target makes use of compiler-supported
thread-local storage, MDB will automatically evaluate symbol names referring to thread-local
storage to the address of the storage corresponding to the current representative thread. The
::tls built-in dcmd can be used to display the value of the symbol for threads other than the
representative thread.

Built-in Dcmds
[ addr ] ::bp [+/-dDestT] [-c cmd] [-n count] sym ...
addr :b [cmd ... ]

Set a breakpoint at the specified locations. The ::bp dcmd sets a breakpoint at each address
or symbol specified, including an optional address specified by an explicit expression
preceding the dcmd, and each string or immediate value following the dcmd. The arguments
may either be symbol names or immediate values denoting a particular virtual address of
interest. If a symbol name is specified, it may refer to a symbol that cannot yet be evaluated in
the target process: that is, it may consist of an object name and function name in a load
object that has not yet been opened. In this case, the breakpoint is deferred and it will not be
active in the target until an object matching the given name is loaded. The breakpoint will be
automatically enabled when the load object is opened. Breakpoints on symbols defined in a
shared library should always be set using a symbol name and not using an address
expression, as the address may refer to the corresponding Procedure Linkage Table (PLT)
entry instead of the actual symbol definition. Breakpoints set on PLT entries may be
overwritten by the run-time link-editor when the PLT entry is subsequently resolved to the
actual symbol definition. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same
meaning as they do for the ::evset dcmd, as described later in this section. If the :b form of
the dcmd is used, a breakpoint is only set at the virtual address specified by the expression
preceding the dcmd. The arguments following the :b dcmd are concatenated together to
form the callback string. If this string contains meta-characters, it must be quoted.

function ::call [ arg ... ]

When using kmdb only, call the specified function defined in the operating system kernel. The
function expression must match the address of a defined function in a symbol table of one of
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the known kernel modules. If expression arguments are specified, these arguments as passed
by value. If string arguments are specified, these arguments are passed by reference.

Note – The ::call command should be used only with extreme caution and should never be
applied to a production system. The operating system kernel will not resume execution in
order to execute the specified function. Therefore, the function being called must not utilize
arbitrary kernel services and must not block for any reason. You must be fully aware of the
side-effects of any function you call using this command.

::cont [SIG]
:c [SIG]

Suspend the debugger, continue the target program, and wait for it to terminate or stop
following a software event of interest. If the target is already running because the debugger
was attached to a running program with the -o nostop option enabled, this dcmd simply
waits for the target to terminate or stop after an event of interest. If an optional signal name
or number is specified as an argument (see the signal(3HEAD) man page), the signal is
immediately delivered to the target as part of resuming its execution. If the SIGINT signal is
traced, control may be asynchronously returned to the debugger by typing the user-defined
interrupt character (usually ^C). This SIGINT signal will be automatically cleared and will
not be observed by the target the next time it is continued. If no target program is currently
running, ::cont will start a new program running as if by ::run.

addr ::delete [id | all]
addr :d [id | all]

Delete the event specifiers with the given id number. The id number argument is interpreted
in decimal by default. If an optional address is specified preceding the dcmd, all event
specifiers that are associated with the given virtual address are deleted (for example, all
breakpoints or watchpoints affecting that address). If the special argument all is given, all
event specifiers are deleted, except those that are marked sticky (T flag). The ::events dcmd
displays the current list of event specifiers.

::events [-av]
$b [-av]

Display the list of software event specifiers. Each event specifier is assigned a unique ID
number that can be used to delete or modify it at a later time. The debugger may also have its
own internal events enabled for tracing; these will only be displayed if the -a option is
present. If the -v option is present, a more verbose display including the reason for any
specifier inactivity will be shown. The following ::events dcmd shows example output:

> ::events

ID S TA HT LM Description Action

----- - -- -- -- ---------------------------------------- -------------

[ 1 ] - T 1 0 stop on SIGINT -

[ 2 ] - T 0 0 stop on SIGQUIT -

[ 3 ] - T 0 0 stop on SIGILL -

...
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[ 11] - T 0 0 stop on SIGXCPU -

[ 12] - T 0 0 stop on SIGXFSZ -

[ 13] - 2 0 stop at libc‘printf ::echo printf

>

The following discussion explains the meaning of each column. A summary of this
information is available using ::help events.

ID The event specifier identifier. The identifier will be shown in square brackets
[ ] if the specifier is enabled, in parentheses ( ) if the specifier is disabled, or
in angle brackets < > if the target program is currently stopped on an event
that matches the given specifier.

S The event specifier state. The state will be one of the following symbols:

- The event specifier is idle. When no target program is running, all
specifiers are idle. When the target program is running, a specifier may
be idle if it cannot be evaluated (such as a deferred breakpoint in a
shared object that is not yet loaded).

+ The event specifier is active. When the target is continued, events of
this type will be detected by the debugger.

* The event specifier is armed. This state means that the target is
currently running with instrumentation for this type of event. This
state is only visible if the debugger is attached to a running program
with the-o nostop option.

! The event specifier was not armed due to an operating system error.
The ::events -v option can be used to display more information
about the reason the instrumentation failed.

TA The Temporary, Sticky, and Automatic event specifier properties. One or
more of the following symbols may be shown:

t The event specifier is temporary, and will be deleted the next time the
target stops, regardless of whether it is matched.

T The event specifier is sticky, and will be not be deleted by ::delete
all or :z. The specifier can be deleted by explicitly specifying its id
number to::delete.

d The event specifier will be automatically disabled when the hit count is
equal to the hit limit.

D The event specifier will be automatically deleted when the hit count is
equal to the hit limit.

s The target will automatically stop when the hit count is equal to the hit
limit.
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HT The current hit count. This column displays the number of times the
corresponding software event has occurred in the target since the creation
of this event specifier.

LM The current hit limit. This column displays the limit on the hit count at
which the auto-disable, auto-delete, or auto-stop behavior will take effect.
These behaviors can be configured using the ::evset dcmd.

Description A description of the type of software event that is matched by the given
specifier.

Action The callback string to execute when the corresponding software event
occurs. This callback is executed as if it had been typed at the command
prompt.

id ::evset [+/-dDestT] [-c cmd] [-n count] id ...
Modify the properties of one or more software event specifiers. The properties are set for
each specifier identified by the optional expression preceding the dcmd and an optional list
of arguments following the dcmd. The argument list is interpreted as a list of decimal
integers, unless an explicit radix is specified. The ::evset dcmd recognizes the following
options:

-d Disable the event specifier when the hit count reaches the hit limit. If the +d form of
the option is given, this behavior is disabled. Once an event specifier is disabled, the
debugger will remove any corresponding instrumentation and will ignore the
corresponding software events until the specifier is subsequently re-enabled. If the -n
option is not present, the specifier is disabled immediately.

-D Delete the event specifier when the hit count reaches the hit limit. If the +D form of the
option is given, this behavior is disabled. The -D option takes precedence over the -d
option. The hit limit can be configured using the -n option.

-e Enable the event specifier. If the +e form of the option is given, the specifier is
disabled.

-s Stop the target program when the hit count reaches the hit limit. If the +s form of the
option is given, this behavior is disabled. The -s behavior tells the debugger to act as if
::cont were issued following each execution of the specifier's callback, except for the
Nth execution, where N is the current value of the specifier's hit limit. The -s option
takes precedence over both the -D option and the -d option.

-t Mark the event specifier as temporary. Temporary specifiers are automatically deleted
the next time the target stops, regardless of whether it stopped as the result of a
software event corresponding to the given specifier. If the +t form of the option is
given, the temporary marker is removed. The -t option takes precedence over the -T
option.

-T Mark the event specifier as sticky. Sticky specifiers will not be deleted by ::delete
all or :z. They can be deleted by specifying the corresponding specifier ID as an
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explicit argument to ::delete. If the +T form of the option is given, the sticky
property is removed. The default set of event specifiers are all initially marked sticky.

-c Execute the specified cmd string each time the corresponding software event occurs
in the target program. The current callback string can be displayed using ::events.

-n Set the current value of the hit limit to count. If no hit limit is currently set and the -n
option does not accompany -s or -D, the hit limit will be set to one.

A summary of this information is available using ::help evset.

flt ::fltbp [+/-dDestT] [-c cmd] [-n count] flt ...
Trace the specified machine faults. The faults are identified using an optional fault number
preceding the dcmd, or a list of fault names or numbers (see <sys/fault.h>) following the
dcmd. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same meaning as they do for the
::evset dcmd. The ::fltbp command applies to user process debugging only.

signal :i
If the target is a live user process, ignore the specified signal and allow it to be delivered
transparently to the target. All event specifiers that are tracing delivery of the specified signal
will be deleted from the list of traced events. By default, the set of ignored signals is initialized
to the complement of the set of signals that cause a process to dump core by default (see the
signal(3HEAD) man page), except for SIGINT, which is traced by default. The :i command
applies to user process debugging only.

$i

Display the list of signals that are ignored by the debugger and will be handled directly by the
target. More information on traced signals can be obtained using the ::events dcmd. The
$i command applies to user process debugging only.

::kill

:k

Forcibly terminate the target if it is a live user process. The target will also be forcibly
terminated when the debugger exits if it was created by the debugger using ::run. The
::kill command applies to user process debugging only.

$l

Print the LWPID of the representative thread, if the target is a user process.

$L

Print the LWPIDs of each LWP in the target, if the target is a user process.

::next [SIG]
:e [SIG]

Step the target program one instruction, but step over subroutine calls. If an optional signal
name or number (see signal(3HEAD) man page) is specified as an argument, the signal is
immediately delivered to the target as part of resuming its execution. If no target program is
currently running, ::next will start a new program running as if by ::run and stop at the
first instruction.
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::run [args ... ]
:r [args ... ]

Start a new target program running with the specified arguments and attach to it. The
arguments are not interpreted by the shell. If the debugger is already examining a live
running program, it will first detach from this program as if by ::release.

[signal] ::sigbp [+/-dDestT] [-c cmd] [-n count] SIG ...
[signal] :t [+/-dDestT] [-c cmd] [-n count] SIG ...

Trace delivery of the specified signals. The signals are identified using an optional signal
number preceding the dcmd, or a list of signal names or numbers (see signal(3HEAD))
following the dcmd. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same meaning as
they do for the ::evset dcmd. Initially, the set of signals that cause the process to dump core
by default (see signal(3HEAD)) and SIGINT are traced. The ::sigbp command applies to
user process debugging only.

::step [branch | over | out] [SIG]
:s SIG
:u SIG

Step the target program one instruction. If an optional signal name or number (see the
signal(3HEAD) man page) is specified as an argument and the target is a user process, the
signal is immediately delivered to the target as part of resuming its execution. If the optional
branch argument is specified, the target program will continue until the next instruction that
branches the control flow of the processor. The ::step branch feature is only available
when using kmdb on x86 systems with appropriate processor-specific features enabled. If the
optional over argument is specified, ::step will step over subroutine calls. The ::step over
argument is the same as the ::next dcmd. If the optional out argument is specified, the
target program will continue until the representative thread returns from the current
function. If no target program is currently running, ::step over will start a new program
running as if by ::run and stop at the first instruction. The :s dcmd is the same as ::step.
The :u dcmd is the same as ::step out.

[syscall] ::sysbp [+/-dDestT] [-io] [-c cmd] [-n count] syscall ...
Trace entry to or exit from the specified system calls. The system calls are identified using an
optional system call number preceding the dcmd, or a list of system call names or numbers
(see <sys/syscall.h>) following the dcmd. If the -i option is specified (the default), the
event specifiers trigger on entry into the kernel for each system call. If the -o option is
specified, the event specifiers trigger on exit out from the kernel. The -d, -D, -e, -s, -t, -T, -c,
and -n options have the same meaning as they do for the ::evset dcmd. The ::sysbp
command applies to user process debugging only.

addr [,len]::wp [+/-dDestT] [-rwx] [-ip] [-c cmd] [-n count]
addr [,len]:a [cmd... ]
addr [,len]:p [cmd... ]
addr [,len]:w [cmd... ]

Set a watchpoint at the specified address. The length in bytes of the watched region may be
set by specifying an optional repeat count preceding the dcmd. If no length is explicitly set,
the default is one byte. The ::wp dcmd allows the watchpoint to be configured to trigger on
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any combination of read (-r option), write (-w option), or execute (-x option) access. The
-d, -D, -e, -s, -t, -T, -c, and -n options have the same meaning as they do for the ::evset
dcmd. When using kmdb on x86 systems only, the -i option can be used to indicate that a
watchpoint should be set on the address of an I/O port. When using kmdb only, the -p option
can be used to indicate that the specified address should be interpreted as a physical address.
The :a dcmd sets a read access watchpoint at the specified address. The :p dcmd sets an
execute access watchpoint at the specified address. The :w dcmd sets a write access
watchpoint at the specified address. The arguments following the :a. :p, and :w dcmds are
concatenated together to form the callback string. If this string contains meta-characters, it
must be quoted.

:z

Delete all event specifiers from the list of traced software events. Event specifiers can also be
deleted using ::delete.

Interaction with exec

When a controlled user process performs a successful exec(2), the behavior of the debugger is
controlled by the ::set -o follow_exec_mode option, as described in “Summary of MDB
Command-Line Options” on page 139. If the debugger and victim process have the same data
model, then the stop and follow modes determine whether MDB automatically continues the
target or returns to the debugger prompt following the exec. If the debugger and victim process
have a different data model, then the follow behavior causes MDB to automatically re-exec the
MDB binary with the appropriate data model and reattach to the process, still stopped on return
from the exec. Not all debugger state is preserved across this re-exec.

If a 32-bit victim process execs a 64-bit program, then stop will return to the command
prompt, but the debugger will no longer be able to examine the process because it is now using
the 64-bit data model. To resume debugging, execute the ::release -a dcmd, quit MDB, and
then execute mdb -p pid to re-attach the 64-bit debugger to the process.

If a 64-bit victim process execs a 32-bit program, then stop will return to the command prompt,
but the debugger will only provide limited capabilities for examining the new process. All
built-in dcmds will work as advertised, but loadable dcmds will not since they do not perform
data model conversion of structures. The user should release and reattach the debugger to the
process as described above in order to restore full debugging capabilities.
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Interaction with Job Control
If the debugger is attached to a user process that is stopped by job control (that is, it stopped in
response to SIGTSTP, SIGTTIN, or SIGTTOU), the process may not be able to be set running
again when it is continued by a continue dcmd. If the victim process is a member of the same
session (that is, it shares the same controlling terminal as MDB), MDB will attempt to bring the
associated process group to the foreground and continue the process with SIGCONT to resume
it from job control stop. When MDB is detached from such a process, it will restore the process
group to the background before exiting. If the victim process is not a member of the same
session, MDB cannot safely bring the process group to the foreground, so it will continue the
process with respect to the debugger but the process will remain stopped by job control. MDB
will print a warning in this case, and the user must issue a fg command from the appropriate
shell in order to resume the process.

Process Attach and Release
When MDB attaches to a running user process, the process is stopped and remains stopped
until one of the continue dcmds is applied, or the debugger quits. If the -o nostop option is
enabled prior to attaching the debugger to a process with -p or prior to issuing an ::attach or
:A command, MDB will attach to the process but not stop it. While the process is still running, it
may be inspected as usual (albeit with inconsistent results) and breakpoints or other tracing
flags may be enabled. If the :c or ::cont dcmds are executed while the process is running, the
debugger will wait for the process to stop. If no traced software events occur, the user can send
an interrupt (^C) after :c or ::cont to force the process to stop and return control to the
debugger.

MDB releases the current running process (if any) when the :R, ::release, :r, ::run, $q, or
::quit dcmds are executed, or when the debugger terminates as the result of an EOF or signal.
If the process was originally created by the debugger using :r or ::run, it will be forcibly
terminated as if by SIGKILL when it is released. If the process was already running prior to
attaching MDB to it, it will be set running again when it is released. A process may be released
and left stopped and abandoned using the ::release -a option.
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Kernel Execution Control

This chapter describes the MDB features for execution control of the live operating system
kernel available when running kmdb. kmdb is a version of MDB specifically designed for kernel
execution control and live kernel debugging. Using kmdb, the kernel can be controlled and
observed in much the same way that a user process can be controlled and observed using mdb.
The kernel execution control functionality includes instruction-level control of kernel threads
executing on each CPU, enabling developers to single-step the kernel and inspect data
structures in real time.

Both mdb and kmdb share the same user interface. All of the execution control functionality
described in Chapter 6, “Execution Control,” is available in kmdb, and is identical to the set of
commands used to control user processes. The commands used to inspect kernel state,
described in Chapter 3, “MDB Language Syntax,” and Chapter 5, “Built-In Commands,” are also
available when using kmdb. Finally, the commands specific to the Solaris kernel implementation,
described in Chapter 8, “Kernel Debugging Modules,” are available unless otherwise noted. This
chapter describes the remaining features that are specific to kmdb.

Booting, Loading, and Unloading
To facilitate the debugging of kernel startup, kmdb can be loaded during the earliest stages of the
boot process, before control has passed from the kernel runtime linker (krtld) to the kernel.
kmdb may be loaded at boot using the -k boot flag, the kmdb boot file, or the kadb boot file (for
compatibility). If kmdb is loaded at boot, the debugger cannot be unloaded until the system
subsequently reboots. Some functionality will not be immediately available during the earliest
stages of boot. In particular, debugging modules will not be loaded until the kernel module
subsystem has initialized. Processor-specific functionality will not be enabled until the kernel
has completed the processor identification process.

If you boot your system using the -k option, kmdb will automatically load during the boot
process. You can use the -d boot option to request a debugger breakpoint prior to starting the
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kernel. This feature works with the default kernel as well as alternate kernels. For example, to
boot a SPARC system with kmdb and request immediate entry to the debugger, type any of the
following commands:

ok boot -kd

ok boot kmdb -d

ok boot kadb -d

To boot an x86 system in the same manner, type any of the following commands:

Select (b)oot or (i)nterpreter: b -kd

Select (b)oot or (i)nterpreter: b kmdb -d

Select (b)oot or (i)nterpreter: b kadb -d

To boot a SPARC system with kmdb and load an alternate 64–bit kernel, type the following
command:

ok boot kernel.test/sparcv9/unix -k

To boot an x86 system with kmdb and load an alternate 64–bit kernel, type the following
command:

Select (b)oot or (i)nterpreter: b kernel.test/amd64/unix -k

If the boot file is set to the string kmdb or kadb and you want to boot an alternate kernel, use the
-D option to specify the name of the kernel to boot. To boot a SPARC system in this manner,
type the following command:

ok boot kmdb -D kernel.test/sparcv9/unix

To boot a 32–bit x86 system in this manner, type the following command:

Select (b) or (i)nterpreter: b kmdb -D kernel.test/unix

To boot a 64–bit x86 system in this manner, type the following command:

Select (b) or (i)nterpreter: b kmdb -D kernel.test/amd64/unix

To debug a system that has already booted, use the mdb -K option to load kmdb and stop kernel
execution. When the debugger is loaded using this method, it can be subsequently unloaded.
You can unload kmdb when you are done debugging by specifying the -u option to the ::quit
dcmd. Alternatively, you can resume execution of the operating system using the command mdb

-U.
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Terminal Handling
kmdb always uses the system console for interaction.

kmdb determines the appropriate terminal type according to the following rules:

■ If the system being debugged uses an attached keyboard and monitor for its console and the
debugger is loaded at boot, the terminal type will be determined automatically based upon
the platform architecture and console terminal settings.

■ If the system begin debugged uses a serial console and the debugger is loaded at boot, a
default terminal type of vt100 will be assumed.

■ If the debugger is loaded by running mdb -K on the console, the value of the $TERM
environment variable will be used as the terminal type.

■ If the debugger is loaded by running mdb -K on a terminal that is not the console, the
debugger will use the terminal type that has been configured for use with the system console
login prompt.

You can use the ::term dcmd from within kmdb to display the terminal type.

Debugger Entry
The operating system kernel will implicitly stop executing and enter kmdb when a breakpoint is
reached or according to the other execution control settings described in Chapter 6, “Execution
Control.” You can use the mdb -K option or an appropriate keyboard break sequence to request
explicit entry to kmdb. On a SPARC system console, use the STOP-A key sequence to send a
break and enter kmdb. On an x86 system console, use the F1–A key sequence to send a break and
enter kmdb. You can use the kbd command to customize the escape sequence on your Solaris
system. To enter kmdb on a system with a serial console, use the appropriate serial console
command to send a break sequence.

Processor-Specific Features
Some kmdb functionality is specific to an individual processor architecture. For example,
various x86 processors support a hardware branch tracing capability that is not found on some
other processor architectures. Access to processor-specific features is provided through
processor-specific dcmds that are only present on systems that support them. The availability of
processor-specific support will be indicated in the output of the ::status dcmd. The debugger
relies upon the kernel to determine the processor type. Therefore, even though the debugger
may provide features for a given processor architecture, this support will not be exposed until
the kernel has progressed to the point where processor identification has completed.

Processor-Specific Features
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Kernel Debugging Modules

This chapter describes the debugger modules, dcmds, and walkers provided to debug the Solaris
kernel. Each kernel debugger module is named after the corresponding Solaris kernel module,
so that it will be loaded automatically by MDB. The facilities described here reflect the current
Solaris kernel implementation and are subject to change in the future; writing shell scripts that
depend on the output of these commands is not recommended. In general, the kernel
debugging facilities described in this chapter are meaningful only in the context of the
corresponding kernel subsystem implementation. See “Related Books and Papers” on page 11
for a list of references that provide more information about the Solaris kernel implementation.

Note – MDB exposes kernel implementation details that are subject to change at any time. This
guide reflects the Solaris kernel implementation as of the date of publication of this guide.
Information provided in this guide about modules, dcmds, walkers, and their output formats
and arguments might not be correct or applicable to past or future Solaris releases.

Generic Kernel Debugging Support (genunix)

Kernel Memory Allocator
This section discusses the dcmds and walkers used to debug problems identified by the Solaris
kernel memory allocator and to examine memory and memory usage. The dcmds and walkers
described here are discussed in more detail in Chapter 9, “Debugging With the Kernel Memory
Allocator.”

Kernel Memory Allocator Dcmds
thread ::allocdby

Given the address of a kernel thread, print a list of memory allocations it has performed in
reverse chronological order.
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bufctl ::bufctl [-a address] [-c caller] [-e earliest] [-l latest] [-t thread]
Print a summary of the bufctl information for the specified bufctl address. If one or more
options are present, the bufctl information is printed only if it matches the criteria defined by
the option arguments; in this way, the dcmd can be used as a filter for input from a pipeline.
The -a option indicates that the bufctl's corresponding buffer address must equal the
specified address. The -c option indicates that a program counter value from the specified
caller must be present in the bufctl's saved stack trace. The -e option indicates that the
bufctl's timestamp must be greater than or equal to the specified earliest timestamp. The -l
option indicates that the bufctl's timestamp must be less than or equal to the specified latest
timestamp. The -t option indicates that the bufctl's thread pointer must be equal to the
specified thread address.

[ address ] ::findleaks [-v]
The ::findleaks dcmd provides powerful and efficient detection of memory leaks in kernel
crash dumps where the full set of kmem debug features has been enabled. The first execution
of ::findleaks processes the dump for memory leaks (this can take a few minutes), then
coalesces the leaks by the allocation stack trace. The findleaks report shows a bufctl address
and the topmost stack frame for each memory leak that was identified.

If the -v option is specified, the dcmd prints more verbose messages as it executes. If an
explicit address is specified prior to the dcmd, the report is filtered and only leaks whose
allocation stack traces contain the specified function address are displayed.

thread ::freedby

Given the address of a kernel thread, print a list of memory frees it has performed, in reverse
chronological order.

value ::kgrep
Search the kernel address space for pointer-aligned addresses that contain the specified
pointer-sized value. The list of addresses that contain matching values is then printed.
Unlike MDB's built-in search operators, ::kgrep searches every segment of the kernel's
address space and searches across discontiguous segment boundaries. On large kernels,
::kgrep can take a considerable amount of time to execute.

::kmalog [ slab | fail ]
Display events in a kernel memory allocator transaction log. Events are displayed in
time-reverse order, with the most recent event displayed first. For each event, ::kmalog
displays the time relative to the most recent event in T-minus notation (for example,
T-0.000151879), the bufctl, the buffer address, the kmem cache name, and the stack trace at
the time of the event. Without arguments, ::kmalog displays the kmem transaction log,
which is present only if KMF_AUDIT is set in kmem_flags. ::kmalog fail displays the
allocation failure log, which is always present; this can be useful in debugging drivers that
don't cope with allocation failure correctly. ::kmalog slab displays the slab create log, which
is always present. ::kmalog slab can be useful when searching for memory leaks.
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::kmastat

Display the list of kernel memory allocator caches and virtual memory arenas, along with
corresponding statistics.

::kmausers [-ef] [cache ...]
Print information about the medium and large users of the kernel memory allocator that
have current memory allocations. The output consists of one entry for each unique stack
trace specifying the total amount of memory and number of allocations that was made with
that stack trace. This dcmd requires that the KMF_AUDIT flag is set in kmem_flags.

If one or more cache names (for example, kmem_alloc_256) are specified, the scan of
memory usage is restricted to those caches. By default all caches are included. If the -e option
is used, the small users of the allocator are included. The small users are allocations that total
less than 1024 bytes of memory or for which there are less than 10 allocations with the same
stack trace. If the -f option is used, the stack traces are printed for each individual allocation.

[ address ] ::kmem_cache
Format and display the kmem_cache structure stored at the specified address, or the complete
set of active kmem_cache structures.

::kmem_log

Display the complete set of kmem transaction logs, sorted in reverse chronological order.
This dcmd uses a more concise tabular output format than ::kmalog.

[ address ] ::kmem_verify
Verify the integrity of the kmem_cache structure stored at the specified address, or the
complete set of active kmem_cache structures. If an explicit cache address is specified, the
dcmd displays more verbose information regarding errors; otherwise, a summary report is
displayed. The ::kmem_verify dcmd is discussed in more detail in “Kernel Memory Caches”
on page 98.

[ address] ::vmem
Format and display the vmem structure stored at the specified address, or the complete set of
active vmem structures. This structure is defined in <sys/vmem_impl.h>.

address ::vmem_seg
Format and display the vmem_seg structure stored at the specified address. This structure is
defined in <sys/vmem_impl.h>.

address ::whatis [-abv]
Report information about the specified address. In particular, ::whatis will attempt to
determine if the address is a pointer to a kmem-managed buffer or another type of special
memory region, such as a thread stack, and report its findings. If the -a option is present, the
dcmd reports all matches instead of just the first match to its queries. If the -b option is
present, the dcmd also attempts to determine if the address is referred to by a known kmem
bufctl. If the -v option is present, the dcmd reports its progress as it searches various kernel
data structures.
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Kernel Memory Allocator Walkers
allocdby Given the address of a kthread_t structure as a starting point, iterate

over the set of bufctl structures corresponding to memory allocations
performed by this kernel thread.

bufctl Given the address of a kmem_cache_t structure as a starting point, iterate
over the set of allocated bufctls associated with this cache.

freectl Given the address of a kmem_cache_t structure as a starting point, iterate
over the set of free bufctls associated with this cache.

freedby Given the address of a kthread_t structure as a starting point, iterate
over the set of bufctl structures corresponding to memory
deallocations performed by this kernel thread.

freemem Given the address of a kmem_cache_t structure as a starting point, iterate
over the set of free buffers associated with this cache.

kmem Given the address of a kmem_cache_t structure as a starting point, iterate
over the set of allocated buffers associated with this cache.

kmem_cache Iterate over the active set of kmem_cache_t structures. This structure is
defined in <sys/kmem_impl.h>.

kmem_cpu_cache Given the address of a kmem_cache_t structure as a starting point, iterate
over the per-CPU kmem_cpu_cache_t structures associated with this
cache. This structure is defined in <sys/kmem_impl.h>.

kmem_slab Given the address of a kmem_cache_t structure as a starting point, iterate
over the set of associated kmem_slab_t structures. This structure is
defined in <sys/kmem_impl.h>.

kmem_log Iterate over the set of bufctls stored in the kmem allocator transaction
log.

leak Given the address of a bufctl structure, iterate over the set of bufctl
structures corresponding to leaked memory buffers with similar
allocation stack traces. The ::findleaks dcmd must be applied to locate
memory leaks before the leak walker can be used

leakbuf Given the address of a bufctl structure, iterate over the set of buffer
addresses corresponding to leaked memory buffers with similar
allocation stack traces. The ::findleaks dcmd must be applied to locate
memory leaks before the leakbuf walker can be used.
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File Systems
The MDB file systems debugging support includes a built-in facility to convert vnode pointers
to the corresponding file system path name. This conversion is performed using the Directory
Name Lookup Cache (DNLC); because the cache does not hold all active vnodes, some vnodes
might not be able to be converted to path names and “??” is displayed instead of a name.

File Systems Dcmds
::fsinfo Display a table of mounted file systems, including the vfs_t

address, ops vector, and mount point of each file system.

::lminfo Display a table of vnodes with active network locks registered
with the lock manager. The pathname corresponding to each
vnode is shown.

address ::vnode2path [-v] Display the pathname corresponding to the given vnode
address. If the -v option is specified, the dcmd prints a more
verbose display, including the vnode pointer of each
intermediate path component.

File Systems Walkers
buf Iterate over the set of active block I/O transfer structures (buf_t structures). The buf

structure is defined in <sys/buf.h> and is described in more detail in buf(9S).

Virtual Memory
This section describes the debugging support for the kernel virtual memory subsystem.

Virtual Memory Dcmds
address ::addr2smap [offset] Print the smap structure address that corresponds to the given

address in the kernel's segmap address space segment.

as ::as2proc Display the proc_t address for the process corresponding to
the as_t address as.

[ address ] ::memlist [-aiv] Display the specified memlist structure or one of the
well-known memlist structures. If no memlist address and
options are present or if the -i option is present, the memlist
representing physically installed memory is displayed. If the
-a option is present, the memlist representing available
physical memory is displayed. If the -v option is present, the
memlist representing available virtual memory is displayed.
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::memstat Display a system-wide memory usage summary. The amount
and percentage of system memory consumed by different
classes of pages (kernel, anonymous memory, executables and
libraries, page cache, and free lists) are displayed, along with
the total amount of system memory.

[ address ] ::page Display the properties of the specified page_t. If no page_t

address is specified, the dcmd displays the properties of all
system pages.

seg ::seg Format and display the specified address space segment
(seg_t address).

[ address ] ::swapinfo Display information on all active swapinfo structures or
about the specified struct swapinfo. The vnode, filename, and
statistics for each structure are displayed.

vnode ::vnode2smap [offset] Print the smap structure address that corresponds to the given
vnode_t address and offset.

Virtual Memory Walkers
anon Given the address of an anon_map structure as a starting point, iterate over the set

of related anon structures. The anon map implementation is defined in
<vm/anon.h>.

memlist Iterate over the spans of the specified memlist structure. This walker can be used
in conjunction with the ::memlist dcmd to display each span.

page Iterate over all system page structures. If an explicit address is specified for the
walk, this is taken to be the address of a vnode and the walker iterates over only
those pages associated with the vnode.

seg Given the address of an as_t structure as a starting point, iterate over the set of
address space segments (seg structures) associated with the specified address
space. The seg structure is defined in <vm/seg.h>.

swapinfo Iterate over the list of active swapinfo structures. This walker may be used in
conjunction with the ::swapinfo dcmd.

CPU Structures and the Kernel Dispatcher
This section describes the facilities for examining the state of the CPU structures and the kernel
dispatcher.
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CPU and Dispatcher Dcmds
::callout Display the callout table. The function, argument, and expiration

time for each callout is displayed.

::class Display the scheduling class table.

[ cpuid ] ::cpuinfo [-v] Display a table of the threads currently executing on each CPU. If
an optional CPU ID number or CPU structure address is specified
prior to the dcmd name, only the information for the specified
CPU is displayed. If the -v option is present, ::cpuinfo also
displays the runnable threads waiting to execute on each CPU as
well as the active interrupt threads.

CPU and Dispatcher Walkers
cpu Iterate over the set of kernel CPU structures. The cpu_t structure is defined in

<sys/cpuvar.h>.

Device Drivers and DDI Framework
This section describes dcmds and walkers that are useful for kernel developers as well as
third-party device driver developers.

Device Driver Dcmds
address ::binding_hash_entry

Given the address of a kernel name-to-major number binding hash table entry (struct bind),
display the node binding name, major number, and pointer to the next element.

::devbindings device-name
Display the list of all instances of the named driver. The output consists of an entry for each
instance, beginning with the pointer to the struct dev_info (viewable with $<devinfo or
::devinfo), the driver name, the instance number, and the driver and system properties
associated with that instance.

address ::devinfo [ -q ]
Print the system and driver properties associated with a devinfo node. If the -q option is
specified, only a quick summary of the device node is shown.

address ::devinfo2driver
Print the name of the driver (if any) associated with the devinfo node.

[ address ] ::devnames [ -v ]
Display the kernel's devnames table along with the dn_head pointer, which points at the
driver instance list. If the -v flag is specified, additional information stored at each entry in
the devnames table is displayed.
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[ devinfo ] ::prtconf [ -cpv ]
Display the kernel device tree starting at the device node specified by devinfo. If devinfo is not
provided, the root of the device tree is assumed by default. If the -c option is specified, only
children of the given device node are displayed. If the -p option is specified, only ancestors of
the given device node are displayed. If -v is specified, the properties associated with each
node are displayed.

[ major-num ] ::major2name [ major-num ]
Display the driver name corresponding to the specified major number. The major number
can be specified as an expression preceding the dcmd or as a command-line argument.

[ address ] ::modctl2devinfo
Print all of the device nodes that correspond to the specified modctl address.

::name2major driver-name
Given a device driver name, display its major number.

[ address ] ::softstate [ instance-number ]
Given a softstate state pointer (see ddi_soft_state_init(9F)) and a device instance
number, display the soft state for that instance.

Device Driver Walkers
binding_hash Given the address of an array of kernel binding hash table entries (struct

bind **), walk all entries in the hash table and return the address of each
struct bind.

devinfo First, iterate over the parents of the given devinfo and return them in
order of seniority from most to least senior. Second, return the given
devinfo itself. Third, iterate over the children of the given devinfo in order
of seniority from most to least senior. The dev_info struct is defined in
<sys/ddi_impldefs.h>.

devinfo_children First, return the given devinfo, then iterate over the children of the given
devinfo in order of seniority from most to least senior. The dev_info
struct is defined in <sys/ddi_impldefs.h>.

devinfo_parents Iterate over the parents of the given devinfo in order of seniority from
most to least senior, and then return the given devinfo. The dev_info
struct is defined in <sys/ddi_impldefs.h>.

devi_next Iterate over the siblings of the given devinfo. The dev_info struct is
defined in <sys/ddi_impldefs.h>.

devnames Iterate over the entries in the devnames array. This structure is defined in
<sys/autoconf.h>.

softstate Given a softstate pointer (see ddi_soft_state_init(9F)) display all
non-NULL pointers to driver state structures.
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softstate_all Given a softstate pointer (see ddi_soft_state_init(9F)) display all
pointers to driver state structures. Note that the pointers for unused
instances will be NULL.

STREAMS
This section describes dcmds and walkers that are useful for kernel developers as well as
developers of third-party STREAMS modules and drivers.

STREAMS Dcmds
address ::mblk2dblk

Given the address of an mblk_t, print the address of the corresponding dblk_t.

[address] ::mblk_verify
Verify the integrity of one or more message blocks. If an explicit message block address is
specified, the integrity of this message block is checked. If no address is specified, the
integrity of all active message blocks are checked. This dcmd produces output for any invalid
message block state that is detected.

address ::queue [-v] [-f flag] [-F flag] [-s syncq]
Filter and display the specified queue_t data structure. With no options, various properties
of the queue_t are shown. If the -v option is present, the queue flags are decoded in greater
detail. If the -f, -F, or -m options are present, the queue is displayed only if it matches the
criteria defined by the arguments to these options; in this way, the dcmd can be used as a
filter for input from a pipeline. The -f option indicates that the specified flag (one of the Q
flag names from <sys/stream.h>) must be present in the queue flags. The -F option
indicates that the specified flag must be absent from the queue flags. The -m option indicates
that the module name associated with the queue must match the specified modname. The -s
option indicates that the syncq_t associated with the queue must match the specified
syncq_t address.

address ::q2syncq
Given the address of a queue_t, print the address of the corresponding syncq_t data
structure.

address ::q2otherq
Given the address of a queue_t, print the address of the peer read or write queue structure.

address ::q2rdq
Given the address of a queue_t, print the address of the corresponding read queue.

address ::q2wrq
Given the address of a queue_t, print the address of the corresponding write queue.
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[ address ] ::stream
Display a visual picture of a kernel STREAM data structure, given the address of the
stdata_t structure representing the STREAM head. The read and write queue pointers, byte
count, and flags for each module are shown, and in some cases additional information for
the specific queue is shown in the margin.

address ::syncq [-v] [-f flag] [-F flag] [-t type] [-T type]
Filter and display the specified syncq_t data structure. With no options, various properties
of the syncq_t are shown. If the -v option is present, the syncq flags are decoded in greater
detail. If the -f, -F, -t, or -T options are present, the syncq is displayed only if it matches the
criteria defined by the arguments to these options; in this way, the dcmd can be used as a
filter for input from a pipeline. The -f option indicates that the specified flag (one of the SQ_
flag names from <sys/strsubr.h>) must be present in the syncq flags. The -F option
indicates that the specified flag must be absent from the syncq flags. The -t option indicates
that the specified type (one of the SQ_CI or SQ_CO type names from <sys/strsubr.h>) must
be present in the syncq type bits. The -T option indicates that the specified type must be
absent from the syncq type bits.

address ::syncq2q
Given the address of a syncq_t, print the address of the corresponding queue_t data
structure.

STREAMS Walkers
b_cont Given the address of an mblk_t, iterate over the set of associated message structures

by following the b_cont pointer. The b_cont pointer is used to link a given message
block to the next associated message block that is the continuation of the same
message. The message block is described in more detail in msgb(9S)

b_next Given the address of an mblk_t, iterate over the set of associated message structures
by following the b_next pointer. The b_next pointer is used to link a given message
block to the next associated message block on a given queue. The message block is
described in more detail in msgb(9S).

qlink Given the address of a queue_t structure, walk the list of related queues using the
q_link pointer. This structure is defined in <sys/stream.h>.

qnext Given the address of a queue_t structure, walk the list of related queues using the
q_next pointer. This structure is defined in <sys/stream.h>.

readq Given the address of an stdata_t structure, walk the list of read-side queue
structures.

writeq Given the address of an stdata_t structure, walk the list of write-side queue
structures.
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Networking
The following dcmds and walkers are provided to help debug the core kernel networking stack
protocols.

Networking Dcmds
address ::mi [-p] [-d | -m]

Given the address of a kernel MI_O, filter and display the MI_O or its payload. If the -p
option is specified, then the address of the corresponding payload of the MI_O is displayed,
otherwise the MI_O itself is displayed. Specifying filter -d or -m enables the dcmd to filter
device or module MI_O objects respectively.

::netstat [-av] [-f inet | inet6 | unix] [-P tcp | udp]
Show network statistics and active connections. If the -a option is present, the state of all
sockets is displayed. If the -v option is present, more verbose output is displayed. If the -f
option is present, only connections associated with the specified address family are
displayed. If the -P option is present, only connections associated with the specified
protocols are displayed.

[ address ] ::sonode [-f inet | inet6 | unix | id] [-t stream | dgram | raw | id] [-p id]
Filters and displays sonode objects. If no address is given, then the list of AF_UNIX sockets is
displayed, otherwise only the specified sonode is displayed. If the -f option is present, then
only sockets of the given family will be output. If the -t option is present, then only sonodes
of the given type will be output. If the -p option is present, then only sockets of the given
protocol will be displayed.

[ address ] ::tcpb [-av] [-P v4 | v6]
Filters and displays tcpb objects. If no address is specified, all connections are walked,
otherwise only the specified tcpb is filtered/displayed. Specifying -a filters for only active
connections and -P can be used to filter for TCP IPv4 or IPv6 connections. The tcpb dcmd is
intelligent about filtering TCP connections, and if a IPv6 TCP connection is in a state that
would still facilitate a IPv4 connection, the -P filter considers the connection as both IPv4
and IPv6 in much the same way that ::netstat does. If the dcmd is not being used as a filter
and the -v option is specified, then the output of the dcmd will be verbose.

Networking Walkers
ar Given the address of an ar, this walker walks all ar objects from the given ar to the

final ar. If no address is specified, all ar objects are walked.

icmp Given the address of an icmp, this walker walks all icmp objects from the given icmp
to the final icmp. If no address is specified, all icmp objects are walked.

ill Given the address of an interface link layer structure (ill), this walker walks all ill
objects from the given ill to the final. If no address is specified, all ill objects are
walked.
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ipc Given the address of an ipc, this walker walks all ipc objects from the given ipc to the
final ipc. If no address is specified, all ipc objects are walked.

mi Given the address of a MI_O, walk all the MI_O's in this MI.

sonode Given the address of a AF_UNIX sonode, walk the associated list of AF_UNIX
sonodes beginning with the given sonode. If no address is specified, this walker
walks the list of all AF_UNIX sockets.

tcpb Given the address of a tcpb, this walker walks all TCP connections from the given
tcpb to the final TCP connection. If no address is specified, all tcpb objects are
walked.

udp Given the address of a udp, this walker walks all udp objects from the given udp to
the final udp. If no address is specified, all udp objects are walked.

Files, Processes, and Threads
This section describes dcmds and walkers used to format and examine various fundamental file,
process, and thread structures in the Solaris kernel.

Files, Processes, and Threads Dcmds
process ::fd fd-num

Print the file_t address corresponding to the file descriptor fd-num associated with the
specified process. The process is specified using the virtual address of its proc_t structure.

thread ::findstack [ command ]
Print the stack trace associated with the given kernel thread, identified by the virtual address
of its kthread_t structure. The dcmd employs several different algorithms to locate the
appropriate stack backtrace. If an optional command string is specified, the dot variable is
reset to the frame pointer address of the topmost stack frame, and the specified command is
evaluated as if it had been typed at the command line. The default command string is
“<.$C0”; that is, print a stack trace including frame pointers but no arguments.

::pgrep [-x] [-n|-o] regexp
Display process information for processes whose name matches the regexp regular
expression pattern. The ::pgrep dcmd is similar to the pgrep(1) command. The ::pgrep
dcmd is used to pattern match against all processes. When the -n option is used, display only
the newest process that matches the pattern. When the -o option is used, display only the
oldest process that matches the pattern. When the -x option is used, display only those
processes whose names are exactly the same as the search pattern.

In kmdb(1), the regexp used with ::pgrep must be a plain alpha-numeric text string.
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pid ::pid2proc

Print the proc_t address corresponding to the specified PID. Recall that MDB's default base
is hexadecimal, so decimal PIDs obtained using pgrep(1) or ps(1) should be prefixed with
0t.

process ::pmap [-q]
Print the memory map of the process indicated by the given process address. The dcmd
displays output using a format similar to pmap(1). If the -q option is present, the dcmd
displays an abbreviated form of its output that requires less processing time.

[ address ] ::ps [-fltTP]
Print a summary of the information related to the specified process, or all active system
processes, similar to ps(1). If the -f option is specified, the full command name and initial
arguments are printed. If the -l option is specified, the LWPs associated with each process
are printed. If the -t option is specified, the kernel threads associated with each process LWP
are printed. If the -T option is specified, the task ID associated with each process is displayed.
If the -P option is specified, the project ID associated with each process is displayed.

::ptree

Print a process tree, with child processes indented from their respective parent processes.
The dcmd displays output using a format similar to ptree(1).

address ::task

Print a list of the active kernel task structures and their associated ID numbers and
attributes. The process task ID is described in more detail in settaskid(2).

[ address ] ::thread [-bdfimps]
Display properties of the specified kernel kthread_t structure. If no kthread_t address is
specified, the properties of all kernel threads are displayed. The dcmd options are used to
control which output columns are shown. If no options are present, the -i option is enabled
by default. If the -b option is present, information relating to the thread's turnstile and
blocking synchronization object is shown. If the -d option is present, the thread's dispatcher
priority, binding, and last dispatch time is shown. If the -f option is present, threads whose
state is TS_FREE are elided from the output. If the -i option is present (the default), thread
state, flags, priority, and interrupt information is shown. If the -m option is present, all of the
other output options are merged together on to a single output line. If the -p option is
present, the thread's process, LWP, and credential pointers are displayed. If the -s option is
present, the thread's signal queue and masks of pending and held signals are shown.

vnode ::whereopen
Given a vnode_t address, print the proc_t addresses of all processes that have this vnode
currently open in their file table.

Files, Processes, and Threads Walkers
file Given the address of a proc_t structure as a starting point, iterate over the set of

open files (file_t structures) associated with the specified process. The file_t
structure is defined in <sys/file.h>.
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proc Iterate over the active process (proc_t) structures. This structure is defined in
<sys/proc.h>.

task Given a task pointer, iterate over the list of proc_t structures for processes that are
members of the given task.

thread Iterate over a set of kernel thread (kthread_t) structures. If the global walk is
invoked, all kernel threads are returned by the walker. If a local walk is invoked using
a proc_t address as the starting point, the set of threads associated with the specified
process is returned. The kthread_t structure is defined in <sys/thread.h>.

Synchronization Primitives
This section describes dcmds and walkers used to examine particular kernel synchronization
primitives. The semantics of each primitive are discussed in the corresponding (9f) section of
the manual pages.

Synchronization Primitives Dcmds
rwlock ::rwlock Given the address of a readers-writers lock (see rwlock(9F)),

display the current state of the lock and the list of waiting
threads.

address ::sobj2ts Convert the address of a synchronization object to the address
of the corresponding turnstile and print the turnstile address.

[ address ] ::turnstile Display the properties of the specified turnstile_t. If no
turnstile_t address is specified, the dcmd displays the
properties of all turnstiles.

[ address ] ::wchaninfo [-v] Given the address of a condition variable (see condvar(9F)) or
semaphore (see semaphore(9F)), display the current number
of waiters on this object. If no explicit address is specified,
display all such objects that have waiting threads. If the -v
option is specified, display the list of threads that are blocked
on each object.

Synchronization Primitives Walkers
blocked Given the address of a synchronization object (such as a mutex(9F) or rwlock(9F)),

iterate over the list of blocked kernel threads.

wchan Given the address of a condition variable (see condvar(9F)) or semaphore (see
semaphore(9F)), iterate over the list of blocked kernel threads.
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Cyclics
The cyclic subsystem is a low-level kernel subsystem that provides high resolution, per-CPU
interval timer facilities to other kernel services and programming interfaces.

Cyclics Dcmds
::cycinfo [-vV] Display the cyclic subsystem per-CPU state for each CPU. If the -v

option is present, a more verbose display is shown. If the -V option is
present, an even more verbose display than -v is shown.

address ::cyclic Format and display the cyclic_t at the specified address.

::cyccover Display cyclic subsystem code coverage information. This information is
available only in a DEBUG kernel.

::cyctrace Display cyclic subsystem trace information. This information is available
only in a DEBUG kernel.

Cyclics Walkers
cyccpu Iterate over the per-CPU cyc_cpu_t structures. This structure is defined in

<sys/cyclic_impl.h>.

cyctrace Iterate over the cyclic trace buffer structures. This information is only available in a
DEBUG kernel.

Task Queues
The task queue subsystem provides general-purpose asynchronous task scheduling for a variety
of clients in the kernel.

Task Queues Dcmds
address ::taskq_entry Print the contents of the specified struct taskq_entry.

Task Queues Walkers
taskq_entry Given the addresss of a taskq structure, iterate over the list of taskq_entry

structures.
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Error Queues
The error queue subsystem provides general-purpose asynchronous error event processing for
platform-specific error handling code.

Error Queues Dcmds
[ address ] ::errorq Display a summary of information relating to the specified error

queue. If no address is given, display information relating to all system
error queues. The address, name, queue length, and data element size
for each queue are displayed, along with various queue statistics.

Error Queues Walkers
errorq Walk the list of system error queues and return the address of each individual

error queue.

errorq_data Given the address of an error queue, return the address of each pending error
event data buffer.

System Configuration
This section describes dcmds that can be used to examine system configuration data.

System Configuration Dcmds
::system Display the contents of the system(4) configuration file at the time the kernel

parsed the file during system initialization.

Interprocess Communication Debugging Support (ipc)
The ipc module provides debugging support for the implementation of the message queue,
semaphore, and shared memory interprocess communication primitives.

Interprocess Communication Dcmds
::ipcs [-l] Display a listing of system-wide IPC identifiers, corresponding

to known message queues, semaphores, and shared memory
segments. If the -l option is specified, a longer listing of
information is shown.
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address ::msg [-l] [-t type] Display the properties of the specified message queue element
(struct msg). If the -l option is present, the raw contents of the
message are displayed in hexadecimal and ASCII. If the -t
option is present, it can be used to filter the output and only
display messages of the specified type. This can be useful when
piping the output of the msgqueue walker to ::msg.

id ::msqid [-k] Convert the specified message queue IPC identifier to a pointer
to the corresponding kernel implementation structure and
print the address of this kernel structure. If the -k option is
present, the id is instead interpreted as a message queue key to
match (see msgget(2)).

[ address ] ::msqid_ds [-l] Print the specified msqid_ds structure or a table of the active
msqid_ds structures (message queue identifiers). If the -l
option is specified, a longer listing of information is displayed.

id ::semid [-k] Convert the specified semaphore IPC identifier to a pointer to
the corresponding kernel implementation structure and print
the address of this kernel structure. If the -k option is present,
the id is instead interpreted as a semaphore key to match (see
semget(2)).

[ address ] ::semid_ds [-l] Print the specified semid_ds structure or a table of the active
semid_ds structures (semaphore identifiers). If the -l option is
specified, a longer listing of information is displayed.

id ::shmid [-k] Convert the specified shared memory IPC identifier to a
pointer to the corresponding kernel implementation structure
and print the address of this kernel structure. If the -k option is
present, the id is instead interpreted as a shared memory key to
match (see shmget(2)).

[ address ] ::shmid_ds [-l] Print the specified shmid_ds structure or a table of the active
shmid_ds structures (shared memory segment identifiers). If
the -l option is specified, a longer listing of information is
displayed.

Interprocess Communication Walkers
msg Walk the active msqid_ds structures corresponding to message queue identifiers.

This structure is defined in <sys/msg.h>.

msgqueue Iterate over the message structures that are currently enqueued on the specified
message queue.
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sem Walk the active semid_ds structures corresponding to semaphore identifiers.
This structure is defined in <sys/sem.h>.

shm Walk the active shmid_ds structures corresponding to shared memory segment
identifiers. This structure is defined in <sys/shm.h>.

Loopback File System Debugging Support (lofs)
The lofs module provides debugging support for the lofs(7FS) file system.

Loopback File System Dcmds
[ address ] ::lnode Print the specified lnode_t, or a table of the active lnode_t

structures in the kernel.

address ::lnode2dev Print the dev_t (vfs_dev) for the underlying loopback mounted
filesystem corresponding to the given lnode_t address.

address ::lnode2rdev Print the dev_t (li_rdev) for the underlying loopback mounted file
system corresponding to the given lnode_t address.

Loopback File System Walkers
lnode Walk the active lnode_t structures in the kernel. This structure is defined in

<sys/fs/lofs_node.h>.

Internet Protocol Module Debugging Support (ip)
The ip module provides debugging support for the ip(7P) driver.

Internet Protocol Dcmds
[ address ] ::ire [-q] Print the specified ire_t, or a table of the active ire_t structures in

the kernel. If the -q flag is specified, the send and receive queue
pointers are printed instead of the source and destination addresses.
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Internet Protocol Walkers
ire Walk the active ire (Internet Route Entry) structures in the kernel. This structure is

defined in <inet/ip.h>.

Kernel Runtime Link Editor Debugging Support (krtld)
This section describes the debugging support for the kernel runtime link editor, which is
responsible for loading kernel modules and drivers.

Kernel Runtime Link Editor Dcmds
[ address ] ::modctl Print the specified modctl, or a table of the active modctl structures in

the kernel.

address ::modhdrs Given the address of a modctl structure, print the module's ELF
executable header and section headers.

::modinfo Print information about the active kernel modules, similar to the
output of the /usr/sbin/modinfo command.

Kernel Runtime Link Editor Walkers
modctl Walk the list of active modctl structures in the kernel. This structure is defined in

<sys/modctl.h>.

USB Framework Debugging Support (uhci)
The uchi module provides debugging support for the host controller interface portion of the
Universal Serial Bus (USB) framework.

USB Host Controller Dcmds
address ::uhci_qh [-bd] Given the address of a USB UHCI controller Queue Head (QH)

structure, print the contents of the structure. If the -b option is
present iterate over the link_ptr chain, printing all QHs found. If
the -d option is present, iterate over the element_ptr chain,
printing all TDs found.
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address ::uhci_td [-d] Given the address of a USB UHCI controller Transaction
Descriptor (TD) structure, print the contents of the structure.
Note this only works for Control and Interrupt TDs. If the -d
option is present, iterate over the element_ptr chain, printing all
TDs found.

USB Host Controller Walkers
uhci_qh Given the address of a USB UHCI controller Queue Head (QH) structure, iterate

over the list of such structures.

uhci_td Given the address of a USB UHCI controller Queue Head Descriptor (TD)
structure, iterate over the list of such structures.

USB Framework Debugging Support (usba)
The usba module provides debugging support for the platform-independent Universal Serial
Bus (USB) framework.

USB Framework Dcmds
::usba_debug_buf Print the USB debugging information buffer.

::usba_clear_debug_buf Empty the USB debugging information buffer.

[ address ] ::usba_device [-pv] Given the address of a usba_device structure, print
summary information. If no address is supplied, this dcmd
walks the global list of usba_device structures. If the -p
option is present, also list information for all open pipes on
this device. If the -v option is present, list verbose
information for each device.

address ::usb_pipe_handle Given the address of a USB pipe handle structure (struct
usba_ph_impl), print summary information for this
handle.

USB Framework Walkers
usba_list_entry Given the address of a usba_list_entry structure, iterate over the chain of

such structures.
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usba_device Walk the global list of usba_device_t structures.

usb_pipe_handle Given a usba_device_t address, walk USB pipe handles.

x86: x86 Platform Debugging Support (unix)
These dcmds and walkers are specific to x86 platforms.

x86 Platform Dcmds
[ cpuid | address ] ::ttrace [-x]

Display trap trace records in reverse chronological order. The trap trace facility is available
only in DEBUG kernels. If an explicit dot value is specified, this is interpreted as either a CPU
ID number or a trap trace record address, depending on the precise value. If a CPU ID is
specified, the output is restricted to the buffer from that CPU. If a record address is specified,
only that record is formatted. If the -x option is specified, the complete raw record is
displayed.

x86 Platform Walkers
ttrace Walk the list of trap trace record addresses in reverse chronological order. The trap

trace facility is available only in DEBUG kernels.

SPARC: sun4u Platform Debugging Support (unix)
These dcmds and walkers are specific to the SPARC sun4u platform.

sun4u Platform Dcmds
[ address ] ::softint Display the soft interrupt vector structure at the specified address,

or display all the active soft interrupt vectors. The pending count,
PIL, argument, and handler function for each structure is displayed.

::ttctl Display trap trace control records. The trap trace facility is available
only in DEBUG kernels.

[ cpuid ] ::ttrace [-x] Display trap trace records in reverse chronological order. The trap
trace facility is available only in DEBUG kernels. If an explicit dot
value is specified, this is interpreted as a CPU ID number, and the
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output is restricted to the buffer from that CPU. If the -x option is
specified, the complete raw record is displayed.

[ address ] ::xc_mbox Display the cross-call mailbox at the specified address, or format all
the cross-call mailboxes that have pending requests.

::xctrace Format and display cross-call trace records in reverse chronological
order that are related to CPU cross-call activity. The cross-call trace
facility is available only in DEBUG kernels.

sun4u Platform Walkers
softint Iterate over the soft interrupt vector table entries.

ttrace Iterate over the trap trace record addresses in reverse chronological order. The trap
trace facility is only available in DEBUG kernels.

xc_mbox Iterate over the mailboxes used for CPU handshake and cross-call (x-call) requests.

SPARC: sun4u Platform Debugging Support (unix)
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Debugging With the Kernel Memory Allocator

The Solaris kernel memory (kmem) allocator provides a powerful set of debugging features that
can facilitate analysis of a kernel crash dump. This chapter discusses these debugging features,
and the MDB dcmds and walkers designed specifically for the allocator. Bonwick (see “Related
Books and Papers” on page 11) provides an overview of the principles of the allocator itself.
Refer to the header file <sys/kmem_impl.h> for the definitions of allocator data structures. The
kmem debugging features can be enabled on a production system to enhance problem analysis,
or on development systems to aid in debugging kernel software and device drivers.

Note – MDB exposes kernel implementation details that are subject to change at any time. This
guide reflects the Solaris kernel implementation as of the date of publication of this guide.
Information provided in this guide about the kernel memory allocator might not be correct or
applicable to past or future Solaris releases.

Getting Started: Creating a Sample Crash Dump
This section shows you how to obtain a sample crash dump, and how to invoke MDB in order
to examine it.

Setting kmem_flags

The kernel memory allocator contains many advanced debugging features, but these are not
enabled by default because they can cause performance degradation. In order to follow the
examples in this guide, you should turn on these features. You should enable these features only
on a test system, as they can cause performance degradation or expose latent problems.

The allocator's debugging functionality is controlled by the kmem_flags tunable. To get started,
make sure kmem_flags is set properly:

9C H A P T E R 9
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# mdb -k

> kmem_flags/X

kmem_flags:

kmem_flags: f

If kmem_flags is not set to f, you should add the following line to the /etc/system file:

set kmem_flags=0xf

The reboot the system. When the system reboots, confirm that kmem_flags is set to f.
Remember to remove your /etc/system modifications before returning this system to
production use.

Forcing a Crash Dump
The next step is to make sure crash dumps are properly configured. First, confirm that dumpadm
is configured to save kernel crash dumps and that savecore is enabled. See dumpadm(1M) for
more information on crash dump parameters.

# dumpadm

Dump content: kernel pages

Dump device: /dev/dsk/c0t0d0s1 (swap)

Savecore directory: /var/crash/testsystem

Savecore enabled: yes

Save compressed: on

Next, reboot the system using the -d flag to reboot(1M), which forces the kernel to panic and
save a crash dump.

# reboot -d

Sep 28 17:51:18 testsystem reboot: rebooted by root

panic[cpu0]/thread=70aacde0: forced crash dump initiated at user request

401fbb10 genunix:uadmin+55c (1, 1, 0, 6d700000, 5, 0)

%l0-7: 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000

...

When the system reboots, savecore runs automatically to preserve the crash dump in a file.
When finished, a message is printed on the system console:

Sep 17 10:47:23 testsystem savecore: Decompress the crash dump with

Sep 17 10:47:23 testsystem ’savecore -vf /var/crash/testsystem/vmdump.0’

If the message does not appear right away, check to whether savecore(1M) is still running:

$ pgrep savecore

864

$ cd /var/crash/testsystem

$ ls

bounds vmdump.0
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The vmdump.n file is a compressed version of vmcore.n plus unix.n.

If your dump directory contains no dump files , then that partition might be out of space. You
can free up space and run savecore(1M) manually as root to subsequently save the dump.

If your dump directory contains multiple crash dumps, the one you just created is the unix.n
and vmcore.n pair or vmdump.n file with the most recent modification time.

Saving a Crash Dump
When the system panics, or when you enter reboot -d, the following kinds of messages appear
on the console:

Sep 17 10:47:23 testsystem savecore: Decompress the crash dump with

Sep 17 10:47:23 testsystem ’savecore -vf /var/crash/testsystem/vmdump.0’

Enter the following command:

root@testsystem # savecore -vf /var/crash/testsystem/vmdump.0

savecore: System dump time: Thu Sep 17 10:43:20 2009

savecore: saving system crash dump in /var/crash/testsystem/{unix,vmcore}.0

Constructing namelist /var/crash/testsystem/unix.0

Constructing corefile /var/crash/testsystem/vmcore.0

1:29 100% done: 825215 of 825215 pages saved

1:30 dump decompress is done

Now you can use mdb:

root@testsystem# mdb /var/crash/testsystem/{unix,vmcore}.0

Loading modules: [ unix genunix specfs dtrace zfs scsi_vhci sd mpt px mac ldc sockfs

ip hook neti sctp arp usba stmf qlc fctl nca lofs idm logindmux ptm ufs md cpc sppp

random smbsrv nfs crypto mdesc nsctl sdbc sv rdc fcp fcip ii nsmb ]

>

You can copy the vmdump.n file to another system for analysis. You can use savecore(1M)
either locally or remotely to uncompress the dump file.

Use the dumpadm(1M) command to control the particular paths of the dump device and the
savecore directory.

You can use the file(1) command to quickly examine files in the directory:

$ cd /var/crash/testsystem

$ file *

bounds: ascii text

unix.0: ELF 64-bit MSB executable SPARCV9 Version 1, UltraSPARC3 Extensions

Required, statically linked, not stripped, no debugging information available

vmcore.0: SunOS 5.11 Generic 64-bit SPARC crash dump from ’testsystem’

vmdump.0: SunOS 5.11 Generic 64-bit SPARC compressed crash dump from ’testsystem’

Getting Started: Creating a Sample Crash Dump
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Starting MDB
Now, run mdb on the crash dump you created, and check its status:

$ mdb unix.1 vmcore.1

Loading modules: [ unix krtld genunix ip nfs ipc ]

> ::status

debugging crash dump vmcore.1 (32-bit) from testsystem

operating system: 5.10 Generic (sun4u)

panic message: forced crash dump initiated at user request

In the examples presented in this guide, a crash dump from a 32-bit kernel is used. All of the
techniques presented here are applicable to a 64-bit kernel, and care has been taken to
distinguish pointers (sized differently on 32- and 64-bit systems) from fixed-sized quantities,
which are invariant with respect to the kernel data model.

An UltraSPARC workstation was used to generate the example presented. Your results can vary
depending on the architecture and model of system you use.

Allocator Basics
The kernel memory allocator's job is to parcel out regions of virtual memory to other kernel
subsystems (these are commonly called clients). This section explains the basics of the
allocator's operation and introduces some terms used later in this guide.

Buffer States
The functional domain of the kernel memory allocator is the set of buffers of virtual memory
that make up the kernel heap. These buffers are grouped together into sets of uniform size and
purpose, known as caches. Each cache contains a set of buffers. Some of these buffers are
currently free, which means that they have not yet been allocated to any client of the allocator.
The remaining buffers are allocated, which means that a pointer to that buffer has been
provided to a client of the allocator. If no client of the allocator holds a pointer to an allocated
buffer, this buffer is said to be leaked, because it cannot be freed. Leaked buffers indicate
incorrect code that is wasting kernel resources.

Transactions
A kmem transaction is a transition on a buffer between the allocated and free states. The
allocator can verify that the state of a buffer is valid as part of each transaction. Additionally, the
allocator has facilities for logging transactions for post-mortem examination.
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Sleeping and Non-Sleeping Allocations
Unlike the Standard C Library's malloc(3C) function, the kernel memory allocator can block
(or sleep), waiting until enough virtual memory is available to satisfy the client's request. This is
controlled by the flag parameter to kmem_alloc(9F). A call to kmem_alloc(9F) which has the
KM_SLEEP flag set can never fail; it will block forever waiting for resources to become available.

Kernel Memory Caches
The kernel memory allocator divides the memory it manages into a set of caches. All allocations
are supplied from these caches, which are represented by the kmem_cache_t data structure.
Each cache has a fixed buffer size, which represents the maximum allocation size satisfied by
that cache. Each cache has a string name indicating the type of data it manages.

Some kernel memory caches are special purpose and are initialized to allocate only a particular
kind of data structure. An example of this is the “thread_cache,” which allocates only structures
of type kthread_t. Memory from these caches is allocated to clients by the
kmem_cache_alloc() function and freed by the kmem_cache_free() function.

Note – kmem_cache_alloc() and kmem_cache_free() are not public DDI interfaces. Do NOT
write code that relies on them, because they are subject to change or removal in future releases
of Solaris.

Caches whose name begins with “kmem_alloc_” implement the kernel's general memory
allocation scheme. These caches provide memory to clients of kmem_alloc(9F) and
kmem_zalloc(9F). Each of these caches satisfies requests whose size is between the buffer size of
that cache and the buffer size of the next smallest cache. For example, the kernel has
kmem_alloc_8 and kmem_alloc_16 caches. In this case, the kmem_alloc_16 cache handles all
client requests for 9-16 bytes of memory. Remember that the size of each buffer in the
kmem_alloc_16 cache is 16 bytes, regardless of the size of the client request. In a 14 byte request,
two bytes of the resulting buffer are unused, since the request is satisfied from the
kmem_alloc_16 cache.

The last set of caches are those used internally by the kernel memory allocator for its own
bookkeeping. These include those caches whose names start with “kmem_magazine_” or
“kmem_va_”, the kmem_slab_cache, the kmem_bufctl_cache and others.
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Kernel Memory Caches
This section explains how to find and examine kernel memory caches. You can learn about the
various kmem caches on the system by issuing the ::kmastat command.

> ::kmastat

cache buf buf buf memory alloc alloc

name size in use total in use succeed fail

------------------------- ------ ------ ------ --------- --------- -----

kmem_magazine_1 8 24 1020 8192 24 0

kmem_magazine_3 16 141 510 8192 141 0

kmem_magazine_7 32 96 255 8192 96 0

...

kmem_alloc_8 8 3614 3751 90112 9834113 0

kmem_alloc_16 16 2781 3072 98304 8278603 0

kmem_alloc_24 24 517 612 24576 680537 0

kmem_alloc_32 32 398 510 24576 903214 0

kmem_alloc_40 40 482 584 32768 672089 0

...

thread_cache 368 107 126 49152 669881 0

lwp_cache 576 107 117 73728 182 0

turnstile_cache 36 149 292 16384 670506 0

cred_cache 96 6 73 8192 2677787 0

...

If you run ::kmastat you get a feel for what a “normal” system looks like. This will help you to
spot excessively large caches on systems that are leaking memory. The results of ::kmastat will
vary depending on the system you are running on, how many processes are running, and so
forth.

Another way to list the various kmem caches is with the ::kmem_cache command:

> ::kmem_cache

ADDR NAME FLAG CFLAG BUFSIZE BUFTOTL

70036028 kmem_magazine_1 0020 0e0000 8 1020

700362a8 kmem_magazine_3 0020 0e0000 16 510

70036528 kmem_magazine_7 0020 0e0000 32 255

...

70039428 kmem_alloc_8 020f 000000 8 3751

700396a8 kmem_alloc_16 020f 000000 16 3072

70039928 kmem_alloc_24 020f 000000 24 612

70039ba8 kmem_alloc_32 020f 000000 32 510

7003a028 kmem_alloc_40 020f 000000 40 584

...

This command is useful because it maps cache names to addresses, and provides the debugging
flags for each cache in the FLAG column. It is important to understand that the allocator's
selection of debugging features is derived on a per-cache basis from this set of flags. These are
set in conjunction with the global kmem_flags variable at cache creation time. Setting
kmem_flags while the system is running has no effect on the debugging behavior, except for
subsequently created caches (which is rare after boot-up).

Next, walk the list of kmem caches directly using MDB's kmem_cache walker:
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> ::walk kmem_cache

70036028

700362a8

70036528

700367a8

...

This produces a list of pointers that correspond to each kmem cache in the kernel. To find out
about a specific cache, apply the kmem_cache macro:

> 0x70039928$<kmem_cache

0x70039928: lock

0x70039928: owner/waiters

0

0x70039930: flags freelist offset

20f 707c86a0 24

0x7003993c: global_alloc global_free alloc_fail

523 0 0

0x70039948: hash_shift hash_mask hash_table

5 1ff 70444858

0x70039954: nullslab

0x70039954: cache base next

70039928 0 702d5de0

0x70039960: prev head tail

707c86a0 0 0

0x7003996c: refcnt chunks

-1 0

0x70039974: constructor destructor reclaim

0 0 0

0x70039980: private arena cflags

0 104444f8 0

0x70039994: bufsize align chunksize

24 8 40

0x700399a0: slabsize color maxcolor

8192 24 32

0x700399ac: slab_create slab_destroy buftotal

3 0 612

0x700399b8: bufmax rescale lookup_depth

612 1 0

0x700399c4: kstat next prev

702c8608 70039ba8 700396a8

0x700399d0: name kmem_alloc_24

0x700399f0: bufctl_cache magazine_cache magazine_size

70037ba8 700367a8 15

...

Important fields for debugging include 'bufsize', 'flags' and 'name'. The name of the kmem_cache
(in this case “kmem_alloc_24”) indicates its purpose in the system. Bufsize indicates the size of
each buffer in this cache; in this case, the cache is used for allocations of size 24 and smaller.
'flags' indicates what debugging features are turned on for this cache. You can find the
debugging flags listed in <sys/kmem_impl.h>. In this case 'flags' is 0x20f, which is KMF_AUDIT |
KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS | KMF_HASH. This document explains each of
the debugging features in subsequent sections.

When you are interested in looking at buffers in a particular cache, you can walk the allocated
and freed buffers in that cache directly:
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> 0x70039928::walk kmem

704ba010

702ba008

704ba038

702ba030

...

> 0x70039928::walk freemem

70a9ae50

70a9ae28

704bb730

704bb2f8

...

MDB provides a shortcut to supplying the cache address to the kmem walker: a specific walker
is provided for each kmem cache, and its name is the same as the name of the cache. For
example:

> ::walk kmem_alloc_24

704ba010

702ba008

704ba038

702ba030

...

> ::walk thread_cache

70b38080

70aac060

705c4020

70aac1e0

...

Now you know how to iterate over the kernel memory allocator's internal data structures and
examine the most important members of the kmem_cache data structure.

Detecting Memory Corruption
One of the primary debugging facilities of the allocator is that it includes algorithms to
recognize data corruption quickly. When corruption is detected, the allocator immediately
panics the system. This section describes how the allocator recognizes data corruption. You
must understand this to be able to debug these problems.

Memory abuse typically falls into one of the following categories:

■ Writing past the end of a buffer
■ Accessing uninitialized data
■ Continuing to use a freed buffer
■ Corrupting kernel memory

Keep these problems in mind as you read the next three sections. They will help you to
understand the allocator's design, and enable you to diagnose problems more efficiently.
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Freed Buffer Checking: 0xdeadbeef
When the KMF_DEADBEEF (0x2) bit is set in the flags field of a kmem_cache, the allocator tries to
make memory corruption easy to detect by writing a special pattern into all freed buffers. This
pattern is 0xdeadbeef. Since a typical region of memory contains both allocated and freed
memory, sections of each kind of block will be interspersed. The following example is from the
kmem_alloc_24 cache:

0x70a9add8: deadbeef deadbeef

0x70a9ade0: deadbeef deadbeef

0x70a9ade8: deadbeef deadbeef

0x70a9adf0: feedface feedface

0x70a9adf8: 70ae3260 8440c68e

0x70a9ae00: 5 4ef83

0x70a9ae08: 0 0

0x70a9ae10: 1 bbddcafe

0x70a9ae18: feedface 139d

0x70a9ae20: 70ae3200 d1befaed

0x70a9ae28: deadbeef deadbeef

0x70a9ae30: deadbeef deadbeef

0x70a9ae38: deadbeef deadbeef

0x70a9ae40: feedface feedface

0x70a9ae48: 70ae31a0 8440c54e

The buffers at 0x70a9add8 and 0x70a9ae28 are filled with 0xdeadbeefdeadbeef, which shows
that these buffers are free. The buffer redzones are filled with 0xfeedfacefeedface, which
indicates they are untouched (no buffer overrun has occurred). See the following section for an
explanation of redzones. At 0x70a9ae00 an allocated buffer is located between the two free
buffers.

Redzone: 0xfeedface
Note the pattern 0xfeedface in the buffer shown in the previous section. This pattern is known
as the redzone indicator. This pattern enables the allocator (and a programmer debugging a
problem) to determine whether the boundaries of a buffer have been violated. Following the
redzone is some additional information. The content of that data depends on other factors (see
“Memory Allocation Logging” on page 105). The redzone and its suffix are collectively called the
buftag region. Figure 9–1 summarizes this information.

FIGURE 9–1 The Redzone

buffer

cache_bufsize bytes 64 bits 2 pointers

user data REDZONE debugging data

buftag
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The buftag is appended to each buffer in a cache when any of the KMF_AUDIT, KMF_DEADBEEF, or
KMF_REDZONE flags is set in that buffer's cache. The content of the buftag depends on whether
KMF_AUDIT is set.

Decomposing the memory region presented above into distinct buffers is now simple:

0x70a9add8: deadbeef deadbeef \

0x70a9ade0: deadbeef deadbeef +- User Data (free)

0x70a9ade8: deadbeef deadbeef /

0x70a9adf0: feedface feedface -- REDZONE

0x70a9adf8: 70ae3260 8440c68e -- Debugging Data

0x70a9ae00: 5 4ef83 \

0x70a9ae08: 0 0 +- User Data (allocated)

0x70a9ae10: 1 bbddcafe /

0x70a9ae18: feedface 139d -- REDZONE

0x70a9ae20: 70ae3200 d1befaed -- Debugging Data

0x70a9ae28: deadbeef deadbeef \

0x70a9ae30: deadbeef deadbeef +- User Data (free)

0x70a9ae38: deadbeef deadbeef /

0x70a9ae40: feedface feedface -- REDZONE

0x70a9ae48: 70ae31a0 8440c54e -- Debugging Data

The buffers at 0x70a9add8 and 0x70a9ae28 are filled with 0xdeadbeefdeadbeef, which shows
that these buffers are free. The buffer redzones are filled with 0xfeedfacefeedface, which
indicates they are untouched (no buffer overrun has occurred).

0xbaddcafe Buffer is allocated but uninitialized (see “Uninitialized Data: 0xbaddcafe” on
page 104).

0xdeadbeef Buffer is free.

0xfeedface Buffer limits were respected (no overflow).

In the allocated buffer beginning at 0x70a9ae00, the situation is different. Recall from
“Allocator Basics” on page 96 that there are two allocation types:

1. The client requested memory using kmem_cache_alloc(9F), in which case the size of the
requested buffer is equal to the bufsize of the cache.

2. The client requested memory using kmem_alloc(9F), in which case the size of the requested
buffer is less than or equal to the bufsize of the cache. For example, a request for 20 bytes will
be fulfilled from the kmem_alloc_24 cache. The allocator enforces the buffer boundary by
placing a marker, the redzone byte, immediately following the client data:

0x70a9ae00: 5 4ef83 \

0x70a9ae08: 0 0 +- User Data (allocated)

0x70a9ae10: 1 bbddcafe /

0x70a9ae18: feedface 139d -- REDZONE

0x70a9ae20: 70ae3200 d1befaed -- Debugging Data
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The 0xfeedface value at 0x70a9ae18 is followed by a 32-bit word containing what seems to be
a random value. This number is actually an encoded representation of the size of the buffer. To
decode this number and find the size of the allocated buffer, use the formula:

size = redzone_value / 251

So, in this example,

size = 0x139d / 251 = 20 bytes.

This indicates that the buffer requested was of size 20 bytes. The allocator performs this
decoding operation and finds that the redzone byte should be at offset 20. The redzone byte is
the hex pattern 0xbb, which is present at 0x729084e4 (0x729084d0 + 0t20) as expected.

Figure 9–3 shows the general form of this memory layout.

If the allocation size is the same as the bufsize of the cache, the redzone byte overwrites the first
byte of the redzone itself, as shown in Figure 9–4.

FIGURE 9–2 Sample kmem_alloc(9F)Buffer

Redzone byte, 
uninitialized data

REDZONE

Debugging data

0x729084d0: 5 4ef83
0x729084d8: 0 0

0x729084e0: 1 bbddcafe

0x729084e8: feedface 139d

0x729084f0: 70ae3200 d1befaed

Valid User Data

FIGURE 9–3 Redzone Byte
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This overwriting results in the first 32-bit word of the redzone being 0xbbedface, or
0xfeedfabb depending on the endianness of the hardware on which the system is running.

Note – Why is the allocation size encoded this way? To encode the size, the allocator uses the
formula (251 * size + 1). When the size decode occurs, the integer division discards the
remainder of '+1'. However, the addition of 1 is valuable because the allocator can check
whether the size is valid by testing whether (size % 251 == 1). In this way, the allocator defends
against corruption of the redzone byte index.

Uninitialized Data: 0xbaddcafe
You might be wondering what the suspicious 0xbbddcafe at address 0x729084d4 was before the
redzone byte got placed over the first byte in the word. It was 0xbaddcafe. When the
KMF_DEADBEEF flag is set in the cache, allocated but uninitialized memory is filled with the
0xbaddcafe pattern. When the allocator performs an allocation, it loops across the words of the
buffer and verifies that each word contains 0xdeadbeef, then fills that word with 0xbaddcafe.

A system can panic with a message such as:

panic[cpu1]/thread=e1979420: BAD TRAP: type=e (Page Fault)

rp=ef641e88 addr=baddcafe occurred in module "unix" due to an

illegal access to a user address

In this case, the address that caused the fault was 0xbaddcafe: the panicking thread has accessed
some data that was never initialized.

Associating Panic Messages With Failures
The kernel memory allocator emits panic messages corresponding to the failure modes
described earlier. For example, a system can panic with a message such as:

kernel memory allocator: buffer modified after being freed

modification occurred at offset 0x30

FIGURE 9–4 Redzone Byte at the Beginning of the Redzone

user data RED
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The allocator was able to detect this case because it tried to validate that the buffer in question
was filled with 0xdeadbeef. At offset 0x30, this condition was not met. Since this condition
indicates memory corruption, the allocator panicked the system.

Another example failure message is:

kernel memory allocator: redzone violation: write past end of buffer

The allocator was able to detect this case because it tried to validate that the redzone byte (0xbb)
was in the location it determined from the redzone size encoding. It failed to find the signature
byte in the correct location. Since this indicates memory corruption, the allocator panicked the
system. Other allocator panic messages are discussed later.

Memory Allocation Logging
This section explains the logging features of the kernel memory allocator and how you can
employ them to debug system crashes.

Buftag Data Integrity
As explained earlier, the second half of each buftag contains extra information about the
corresponding buffer. Some of this data is debugging information, and some is data private to
the allocator. While this auxiliary data can take several different forms, it is collectively known
as “Buffer Control” or bufctl data.

However, the allocator needs to know whether a buffer's bufctl pointer is valid, since this
pointer might also have been corrupted by malfunctioning code. The allocator confirms the
integrity of its auxiliary pointer by storing the pointer and an encoded version of that pointer,
and then cross-checking the two versions.

As shown in Figure 9–5, these pointers are the bcp (buffer control pointer) and bxstat (buffer
control XOR status). The allocator arranges bcp and bxstat so that the expression bcp XOR

bxstat equals a well-known value.

FIGURE 9–5 Extra Debugging Data in the Buftag

REDZONE bcp pointer bxstat pointer

debugging data
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In the event that one or both of these pointers becomes corrupted, the allocator can easily detect
such corruption and panic the system. When a buffer is allocated, bcp XOR bxstat =
0xa110c8ed (“allocated”). When a buffer is free, bcp XOR bxstat = 0xf4eef4ee (“freefree”).

Note – You might find it helpful to re-examine the example provided in “Freed Buffer Checking:
0xdeadbeef” on page 101, in order to confirm that the buftag pointers shown there are
consistent.

In the event that the allocator finds a corrupt buftag, it panics the system and produces a
message similar to the following:

kernel memory allocator: boundary tag corrupted

bcp ^ bxstat = 0xffeef4ee, should be f4eef4ee

Remember, if bcp is corrupt, it is still possible to retrieve its value by taking the value of bxstat
XOR 0xf4eef4ee or bxstat XOR 0xa110c8ed, depending on whether the buffer is allocated or
free.

The bufctlPointer
The buffer control (bufctl) pointer contained in the buftag region can have different meanings,
depending on the cache's kmem_flags. The behavior toggled by the KMF_AUDIT flag is of
particular interest: when the KMF_AUDIT flag is not set, the kernel memory allocator allocates
a kmem_bufctl_t structure for each buffer. This structure contains some minimal accounting
information about each buffer. When the KMF_AUDIT flag is set, the allocator instead allocates a
kmem_bufctl_audit_t, an extended version of the kmem_bufctl_t.

This section presumes the KMF_AUDIT flag is set. For caches that do not have this bit set, the
amount of available debugging information is reduced.

The kmem_bufctl_audit_t (bufctl_audit for short) contains additional information about
the last transaction that occurred on this buffer. The following example shows how to apply the
bufctl_audit macro to examine an audit record. The buffer shown is the example buffer used
in “Detecting Memory Corruption” on page 100:

> 0x70a9ae00,5/KKn

0x70a9ae00: 5 4ef83

0 0

1 bbddcafe

feedface 139d

70ae3200 d1befaed
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Using the techniques presented above, it is easy to see that 0x70ae3200 points to the
bufctl_audit record: it is the first pointer following the redzone. To examine the
bufctl_audit record it points to, apply the bufctl_audit macro:

> 0x70ae3200$<bufctl_audit

0x70ae3200: next addr slab

70378000 70a9ae00 707c86a0

0x70ae320c: cache timestamp thread

70039928 e1bd0e26afe 70aac4e0

0x70ae321c: lastlog contents stackdepth

7011c7c0 7018a0b0 4

0x70ae3228:

kmem_zalloc+0x30

pid_assign+8

getproc+0x68

cfork+0x60

The 'addr' field is the address of the buffer corresponding to this bufctl_audit record. This is the
original address: 0x70a9ae00. The 'cache' field points at the kmem_cache that allocated this
buffer. You can use the ::kmem_cache dcmd to examine it as follows:

> 0x70039928::kmem_cache

ADDR NAME FLAG CFLAG BUFSIZE BUFTOTL

70039928 kmem_alloc_24 020f 000000 24 612

The 'timestamp' field represents the time this transaction occurred. This time is expressed in the
same manner as gethrtime(3C).

'thread' is a pointer to the thread that performed the last transaction on this buffer. The 'lastlog'
and 'contents' pointers point to locations in the allocator's transaction logs. These logs are
discussed in detail in “Allocator Logging Facility” on page 110.

Typically, the most useful piece of information provided by bufctl_audit is the stack trace
recorded at the point at which the transaction took place. In this case, the transaction was an
allocation called as part of executing fork(2).

Advanced Memory Analysis
This section describes facilities for performing advanced memory analysis, including locating
memory leaks and sources of data corruption.

Finding Memory Leaks
The ::findleaks dcmd provides powerful and efficient detection of memory leaks in kernel
crash dumps where the full set of kmem debug features has been enabled. The first execution of
::findleaks processes the dump for memory leaks (this can take a few minutes), and then
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coalesces the leaks by the allocation stack trace. The findleaks report shows a bufctl address and
the topmost stack frame for each memory leak that was identified:

> ::findleaks

CACHE LEAKED BUFCTL CALLER

70039ba8 1 703746c0 pm_autoconfig+0x708

70039ba8 1 703748a0 pm_autoconfig+0x708

7003a028 1 70d3b1a0 sigaddq+0x108

7003c7a8 1 70515200 pm_ioctl+0x187c

------------------------------------------------------

Total 4 buffers, 376 bytes

Using the bufctl pointers, you can obtain the complete stack backtrace of the allocation by
applying the bufctl_audit macro:

> 70d3b1a0$<bufctl_audit

0x70d3b1a0: next addr slab

70a049c0 70d03b28 70bb7480

0x70d3b1ac: cache timestamp thread

7003a028 13f7cf63b3 70b38380

0x70d3b1bc: lastlog contents stackdepth

700d6e60 0 5

0x70d3b1c8:

kmem_alloc+0x30

sigaddq+0x108

sigsendproc+0x210

sigqkill+0x90

kill+0x28

The programmer can usually use the bufctl_audit information and the allocation stack trace
to quickly track down the code path that leaks the given buffer.

Finding References to Data
When trying to diagnose a memory corruption problem, you should know what other kernel
entities hold a copy of a particular pointer. This is important because it can reveal which thread
accessed a data structure after it was freed. It can also make it easier to understand what kernel
entities are sharing knowledge of a particular (valid) data item. The ::whatis and ::kgrep

dcmds can be used to answer these questions. You can apply ::whatis to a value of interest:

> 0x705d8640::whatis

705d8640 is 705d8640+0, allocated from streams_mblk

In this case, 0x705d8640 is revealed to be a pointer to a STREAMS mblk structure. To see the
entire allocation tree, use ::whatis -a instead:

> 0x705d8640::whatis -a

705d8640 is 705d8640+0, allocated from streams_mblk

705d8640 is 705d8000+640, allocated from kmem_va_8192

705d8640 is 705d8000+640 from kmem_default vmem arena
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705d8640 is 705d2000+2640 from kmem_va vmem arena

705d8640 is 705d2000+2640 from heap vmem arena

This reveals that the allocation also appears in the kmem_va_8192 cache. The kmem_va_8192
cache is a kmem cache that is fronting the kmem_va vmem arena. It also shows the full stack of
vmem allocations.

The complete list of kmem caches and vmem arenas is displayed by the ::kmastat dcmd. You
can use ::kgrep to locate other kernel addresses that contain a pointer to this mblk. This
illustrates the hierarchical nature of memory allocations in the system; in general, you can
determine the type of object referred to by the given address from the name of the most specific
kmem cache.

> 0x705d8640::kgrep

400a3720

70580d24

7069d7f0

706a37ec

706add34

and investigate them by applying ::whatis again:

> 400a3720::whatis

400a3720 is in thread 7095b240’s stack

> 706add34::whatis

706add34 is 706add20+14, allocated from streams_dblk_120

Here one pointer is located on the stack of a known kernel thread, and another is the mblk
pointer inside of the corresponding STREAMS dblk structure.

Finding Corrupt Buffers With ::kmem_verify

MDB's ::kmem_verify dcmd implements most of the same checks that the kmem allocator
does at runtime. ::kmem_verify can be invoked in order to scan every kmem cache with
appropriate kmem_flags, or to examine a particular cache.

Here is an example of using ::kmem_verify to isolate a problem:

> ::kmem_verify

Cache Name Addr Cache Integrity

kmem_alloc_8 70039428 clean

kmem_alloc_16 700396a8 clean

kmem_alloc_24 70039928 1 corrupt buffer

kmem_alloc_32 70039ba8 clean

kmem_alloc_40 7003a028 clean

kmem_alloc_48 7003a2a8 clean

...
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It is easy to see here that the kmem_alloc_24 cache contains what ::kmem_verify believes to be
a problem. With an explicit cache argument, the ::kmem_verify dcmd provides more detailed
information about the problem:

> 70039928::kmem_verify

Summary for cache ’kmem_alloc_24’

buffer 702babc0 (free) seems corrupted, at 702babc0

The next step is to examine the buffer which ::kmem_verify believes to be corrupt:

> 0x702babc0,5/KKn

0x702babc0: 0 deadbeef

deadbeef deadbeef

deadbeef deadbeef

feedface feedface

703785a0 84d9714e

The reason that ::kmem_verify flagged this buffer is now clear: The first word in the buffer (at
0x702babc0) should probably be filled with the 0xdeadbeef pattern, not with a 0. At this point,
examining the bufctl_audit for this buffer might yield clues about what code recently wrote to
the buffer, indicating where and when it was freed.

Another useful technique in this situation is to use ::kgrep to search the address space for
references to address 0x702babc0, in order to discover what threads or data structures are still
holding references to this freed data.

Allocator Logging Facility
When KMF_AUDIT is set for a cache, the kernel memory allocator maintains a log that records the
recent history of its activity. This transaction log records bufctl_audit records. If the
KMF_AUDIT and the KMF_CONTENTS flags are both set, the allocator generates a contents log that
records portions of the actual contents of allocated and freed buffers. The structure and use of
the contents log is outside the scope of this document. The transaction log is discussed in this
section.

MDB provides several facilities for displaying the transaction log. The simplest is ::walk
kmem_log, which prints out the transaction in the log as a series of bufctl_audit_t pointers:

> ::walk kmem_log

70128340

701282e0

70128280

70128220

701281c0

...

> 70128340$<bufctl_audit

0x70128340: next addr slab

70ac1d40 70bc4ea8 70bb7c00
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0x7012834c: cache timestamp thread

70039428 e1bd7abe721 70aacde0

0x7012835c: lastlog contents stackdepth

701282e0 7018f340 4

0x70128368:

kmem_cache_free+0x24

nfs3_sync+0x3c

vfs_sync+0x84

syssync+4

A more elegant way to view the entire transaction log is by using the ::kmem_log command:

> ::kmem_log

CPU ADDR BUFADDR TIMESTAMP THREAD

0 70128340 70bc4ea8 e1bd7abe721 70aacde0

0 701282e0 70bc4ea8 e1bd7aa86fa 70aacde0

0 70128280 70bc4ea8 e1bd7aa27dd 70aacde0

0 70128220 70bc4ea8 e1bd7a98a6e 70aacde0

0 701281c0 70d03738 e1bd7a8e3e0 70aacde0

...

0 70127140 70cf78a0 e1bd78035ad 70aacde0

0 701270e0 709cf6c0 e1bd6d2573a 40033e60

0 70127080 70cedf20 e1bd6d1e984 40033e60

0 70127020 70b09578 e1bd5fc1791 40033e60

0 70126fc0 70cf78a0 e1bd5fb6b5a 40033e60

0 70126f60 705ed388 e1bd5fb080d 40033e60

0 70126f00 705ed388 e1bd551ff73 70aacde0

...

The output of ::kmem_log is sorted in descending order by timestamp. The ADDR column is the
bufctl_audit structure corresponding to that transaction; BUFADDR points to the actual buffer.

These figures represent transactions on buffers (both allocations and frees). When a particular
buffer is corrupted, it can be helpful to locate that buffer in the transaction log, then determine
in which other transactions the transacting thread was involved. This can help to assemble a
picture of the sequence of events that occurred prior to and after the allocation (or free) of a
buffer.

You can employ the ::bufctl command to filter the output of walking the transaction log. The
::bufctl -a command filters the buffers in the transaction log by buffer address. This example
filters on buffer 0x70b09578:

> ::walk kmem_log | ::bufctl -a 0x70b09578

ADDR BUFADDR TIMESTAMP THREAD CALLER

70127020 70b09578 e1bd5fc1791 40033e60 biodone+0x108

70126e40 70b09578 e1bd55062da 70aacde0 pageio_setup+0x268

70126de0 70b09578 e1bd52b2317 40033e60 biodone+0x108

70126c00 70b09578 e1bd497ee8e 70aacde0 pageio_setup+0x268

70120480 70b09578 e1bd21c5e2a 70aacde0 elfexec+0x9f0

70120060 70b09578 e1bd20f5ab5 70aacde0 getelfhead+0x100

7011ef20 70b09578 e1bd1e9a1dd 70aacde0 ufs_getpage_miss+0x354

7011d720 70b09578 e1bd1170dc4 70aacde0 pageio_setup+0x268

70117d80 70b09578 e1bcff6ff27 70bc2480 elfexec+0x9f0
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70117960 70b09578 e1bcfea4a9f 70bc2480 getelfhead+0x100

...

This example illustrates that a particular buffer can be used in numerous transactions.

Note – Remember that the kmem transaction log is an incomplete record of the transactions
made by the kernel memory allocator. Older entries in the log are evicted as needed in order to
keep the size of the log constant.

The ::allocdby and ::freedby dcmds provide a convenient way to summarize transactions
associated with a particular thread. Here is an example of listing the recent allocations
performed by thread 0x70aacde0:

> 0x70aacde0::allocdby

BUFCTL TIMESTAMP CALLER

70d4d8c0 e1edb14511a allocb+0x88

70d4e8a0 e1edb142472 dblk_constructor+0xc

70d4a240 e1edb13dd4f allocb+0x88

70d4e840 e1edb13aeec dblk_constructor+0xc

70d4d860 e1ed8344071 allocb+0x88

70d4e7e0 e1ed8342536 dblk_constructor+0xc

70d4a1e0 e1ed82b3a3c allocb+0x88

70a53f80 e1ed82b0b91 dblk_constructor+0xc

70d4d800 e1e9b663b92 allocb+0x88

By examining bufctl_audit records, you can understand the recent activities of a particular
thread.
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Module Programming API

This chapter describes the structures and functions contained in the MDB debugger module
API. The header file <sys/mdb_modapi.h> contains prototypes for these functions, and the
SUNWmdbdm package provides source code for an example module in the directory
/usr/demo/mdb.

Debugger Module Linkage

_mdb_init()

const mdb_modinfo_t *_mdb_init(void);

Each debugger module is required to provide, for linkage and identification purposes, a
function named _mdb_init(). This function returns a pointer to a persistent (that is, not
declared as an automatic variable) mdb_modinfo_t structure, as defined in
<sys/mdb_modapi.h>:

typedef struct mdb_modinfo {

ushort_t mi_dvers; /* Debugger API version number */

const mdb_dcmd_t *mi_dcmds; /* NULL-terminated list of dcmds */

const mdb_walker_t *mi_walkers; /* NULL-terminated list of walks */

} mdb_modinfo_t;

The mi_dvers member is used to identify the API version number, and should always be set to
MDB_API_VERSION. The current version number is therefore compiled into each debugger
module, allowing the debugger to identify and verify the application binary interface used by
the module. The debugger does not load modules that are compiled for an API version that is
more recent than the debugger itself.

The mi_dcmds and mi_walkers members, if not NULL, point to arrays of dcmd and walker
definition structures, respectively. Each array must be terminated by a NULL element. These
dcmds and walkers are installed and registered with the debugger as part of the module loading
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process. The debugger will refuse to load the module if one or more dcmds or walkers are
defined improperly or if they have conflicting or invalid names. Dcmd and walker names are
prohibited from containing characters that have special meaning to the debugger, such as
quotation marks and parentheses.

The module can also execute code in _mdb_init() using the module API to determine if it is
appropriate to load. For example, a module can only be appropriate for a particular target if
certain symbols are present. If these symbols are not found, the module can return NULL from
the _mdb_init() function. In this case, the debugger will refuse to load the module and an
appropriate error message is printed.

_mdb_fini()

void _mdb_fini(void);

If the module performs certain tasks prior to unloading, such as freeing persistent memory
previously allocated with mdb_alloc(), it can declare a function named _mdb_fini() for this
purpose. This function is not required by the debugger. If declared, it is called once prior to
unloading the module. Modules are unloaded when the user requests that the debugger
terminate or when the user explicitly unloads a module using the ::unload built-in dcmd.

Dcmd Definitions
int dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv);

A dcmd is implemented with a function similar to the dcmd() declaration. This function
receives four arguments and returns an integer status. The function arguments are:

addr Current address, also called dot. At the start of the dcmd, this address corresponds
to the value of the dot “.” variable in the debugger.

flags Integer containing the logical OR of one or more of the following flags:

DCMD_ADDRSPEC An explicit address was specified to the left of
::dcmd.

DCMD_LOOP The dcmd was invoked in a loop using the ,count
syntax, or the dcmd was invoked in a loop by a
pipeline.

DCMD_LOOPFIRST This invocation of the dcmd function corresponds
to the first loop or pipeline invocation.

DCMD_PIPE The dcmd was invoked with input from a pipeline.

DCMD_PIPE_OUT The dcmd was invoked with output set to a
pipeline.
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As a convenience, the DCMD_HDRSPEC() macro is provided to allow a dcmd to test its
flags to determine if it should print a header line (that is, it was not invoked as part
of a loop, or it was invoked as the first iteration of a loop or pipeline).

argc Number of arguments in the argv array.

argv Array of arguments specified to the right of ::dcmd on the command line. These
arguments can be either strings or integer values.

The dcmd function is expected to return one of the following integer values, defined in
<sys/mdb_modapi.h>.

DCMD_OK The dcmd completed successfully.

DCMD_ERR The dcmd failed for some reason.

DCMD_USAGE The dcmd failed because invalid arguments were specified. When this
value is returned, the dcmd usage message (described below) prints
automatically.

DCMD_NEXT The next dcmd definition (if one is present) is automatically invoked with
the same arguments.

DCMD_ABORT The dcmd failed, and the current loop or pipeline should be aborted. This
is like DCMD_ERR, but indicates that no further progress is possible in the
current loop or pipe.

Each dcmd consists of a function defined according to the example dcmd() prototype, and a
corresponding mdb_dcmd_t structure, as defined in <sys/mdb_modapi.h>. This structure
consists of the following fields:

const char *dc_name The string name of the dcmd, without the leading “::”. The name
cannot contain any of the MDB meta-characters, such as $ or ‘.

const char *dc_usage An optional usage string for the dcmd, to be printed when the
dcmd returns DCMD_USAGE. For example, if the dcmd accepts
options -a and -b, dc_usage might be specified as “[-ab]”. If the
dcmd accepts no arguments, dc_usage can be set to NULL. If the
usage string begins with “:”, this is shorthand for indicating that
the dcmd requires an explicit address (that is, it requires
DCMD_ADDRSPEC to be set in its flags parameter). If the usage string
begins with “?”, this indicates that the dcmd optionally accepts an
address. These hints modify the usage message accordingly.

const char *dc_descr A mandatory description string, briefly explaining the purpose of
the dcmd. This string should consist of only a single line of text.

mdb_dcmd_f *dc_funcp A pointer to the function that will be called to execute the dcmd.
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void (*dc_help)(void) An optional function pointer to a help function for the dcmd. If
this pointer is not NULL, this function will be called when the
user executes ::help dcmd. This function can use mdb_printf()
to display further information or examples.

Walker Definitions
int walk_init(mdb_walk_state_t *wsp);

int walk_step(mdb_walk_state_t *wsp);

void walk_fini(mdb_walk_state_t *wsp);

A walker is composed of three functions, init, step, and fini, which are defined according to
the example prototypes above. A walker is invoked by the debugger when one of the walk
functions (such as mdb_walk()) is called, or when the user executes the ::walk built-in dcmd.
When the walk begins, MDB calls the walker's init function, passing it the address of a new
mdb_walk_state_t structure, as defined in <sys/mdb_modapi.h>:

typedef struct mdb_walk_state {

mdb_walk_cb_t walk_callback; /* Callback to issue */

void *walk_cbdata; /* Callback private data */

uintptr_t walk_addr; /* Current address */

void *walk_data; /* Walk private data */

void *walk_arg; /* Walk private argument */

void *walk_layer; /* Data from underlying layer */

} mdb_walk_state_t;

A separate mdb_walk_state_t is created for each walk, so that multiple instances of the same
walker can be active simultaneously. The state structure contains the callback the walker should
invoke at each step (walk_callback), and the private data for the callback (walk_cbdata), as
specified to mdb_walk(), for example. The walk_cbdata pointer is opaque to the walker: it must
not modify or dereference this value, nor can it assume it is a pointer to valid memory.

The starting address for the walk is stored in walk_addr. This is either NULL if mdb_walk() was
called, or the address parameter specified to mdb_pwalk(). If the ::walk built-in was used,
walk_addr will be non-NULL if an explicit address was specified on the left-hand side of
::walk. A walk with a starting address of NULL is referred to as global. A walk with an explicit
non-NULL starting address is referred to as local.

The walk_data and walk_arg fields are provided for use as private storage for the walker.
Complex walkers might need to allocate an auxiliary state structure and set walk_data to point
to this structure. Each time a walk is initiated, walk_arg is initialized to the value of the
walk_init_arg member of the corresponding walker's mdb_walker_t structure.

In some cases, it is useful to have several walkers share the same init, step, and fini routines. For
example, the MDB genunix module provides walkers for each kernel memory cache. These
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share the same init, step, and fini functions, and use the walk_init_arg member of the
mdb_walker_t to specify the address of the appropriate cache as the walk_arg.

If the walker calls mdb_layered_walk() to instantiate an underlying layer, then the underlying
layer will reset walk_addr and walk_layer prior to each call to the walker's step function. The
underlying layer sets walk_addr to the target virtual address of the underlying object, and set
walk_layer to point to the walker's local copy of the underlying object. For more information on
layered walks, refer to the discussion of mdb_layered_walk() below.

The walker init and step functions are expected to return one of the following status values:

WALK_NEXT Proceed to the next step. When the walk init function returns WALK_NEXT,
MDB invokes the walk step function. When the walk step function returns
WALK_NEXT, this indicates that MDB should call the step function again.

WALK_DONE The walk has completed successfully. WALK_DONE can be returned by either
the step function to indicate that the walk is complete, or by the init
function to indicate that no steps are needed (for example, if the given data
structure is empty).

WALK_ERR The walk has terminated due to an error. If WALK_ERR is returned by the
init function, mdb_walk() (or any of its counterparts) returns –1 to
indicate that the walker failed to initialize. If WALK_ERR is returned by the
step function, the walk terminates but mdb_walk() returns success.

The walk_callback is also expected to return one of the values above. Therefore, the walk step
function's job is to determine the address of the next object, read in a local copy of this object,
call the walk_callback function, then return its status. The step function can also return
WALK_DONE or WALK_ERR without invoking the callback if the walk is complete or if an error
occurred.

The walker itself is defined using the mdb_walker_t structure, defined in :

typedef struct mdb_walker {

const char *walk_name; /* Walk type name */

const char *walk_descr; /* Walk description */

int (*walk_init)(mdb_walk_state_t *); /* Walk constructor */

int (*walk_step)(mdb_walk_state_t *); /* Walk iterator */

void (*walk_fini)(mdb_walk_state_t *); /* Walk destructor */

void *walk_init_arg; /* Constructor argument */

} mdb_walker_t;

The walk_name and walk_descr fields should be initialized to point to strings containing the
name and a brief description of the walker, respectively. A walker is required to have a
non-NULL name and description, and the name cannot contain any of the MDB
meta-characters. The description string is printed by the ::walkers and ::dmods built-in
dcmds.
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The walk_init, walk_step, and walk_fini members refer to the walk functions themselves, as
described earlier. The walk_init and walk_fini members can be set to NULL to indicate that
no special initialization or cleanup actions need to be taken. The walk_step member cannot be
set to NULL. The walk_init_arg member is used to initialize the walk_arg member of each
new mdb_walk_state_t created for the given walker, as described earlier. Figure 10–1 shows a
flowchart for the algorithm of a typical walker.

The walker is designed to iterate over the list of proc_t structures in the kernel. The head of the
list is stored in the global practive variable, and each element's p_next pointer points to the
next proc_t in the list. The list is terminated with a NULL pointer. In the walker's init routine,
the practive symbol is located using mdb_lookup_by_name() step (1), and its value is copied
into the mdb_walk_state_t pointed to by wsp.

FIGURE 10–1 Sample Walker
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In the walker's step function, the next proc_t structure in the list is copied into the debugger's
address space using mdb_vread() step (2), the callback function is invoked with a pointer to this
local copy, step (3), and then the mdb_walk_state_t is updated with the address of the proc_t
structure for the next iteration. This update corresponds to following the pointer, step (4), to
the next element in the list.

These steps demonstrate the structure of a typical walker: the init routine locates the global
information for a particular data structure, the step function reads in a local copy of the next
data item and passes it to the callback function, and the address of the next element is read.
Finally, when the walk terminates, the fini function frees any private storage.

API Functions

mdb_pwalk()

int mdb_pwalk(const char *name, mdb_walk_cb_t func, void *data,

uintptr_t addr);

Initiate a local walk starting at addr using the walker specified by name, and invoke the callback
function func at each step. If addr is NULL, a global walk is performed (that is, the mdb_pwalk()
invocation is equivalent to the identical call to mdb_walk() without the trailing addr
parameter). This function returns 0 for success, or -1 for error. The mdb_pwalk() function fails
if the walker itself returns a fatal error, or if the specified walker name is not known to the
debugger. The walker name may be scoped using the backquote (‘) operator if there are naming
conflicts. The data parameter is an opaque argument that has meaning only to the caller; it is
passed back to func at each step of the walk.

mdb_walk()

int mdb_walk(const char *name, mdb_walk_cb_t func, void *data);

Initiate a global walk using the walker specified by name, and invoke the callback function func
at each step. This function returns 0 for success, or -1 for error. The mdb_walk() function fails if
the walker itself returns a fatal error, or if the specified walker name is not known to the
debugger. The walker name can be scoped using the backquote (‘) operator if there are naming
conflicts. The data parameter is an opaque argument that has meaning only to the caller; it is
passed back to func at each step of the walk.
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mdb_pwalk_dcmd()

int mdb_pwalk_dcmd(const char *wname, const char *dcname, int argc,

const mdb_arg_t *argv, uintptr_t addr);

Initiate a local walk starting at addr using the walker specified by wname, and invoke the dcmd
specified by dcname with the specified argc and argv at each step. This function returns 0 for
success, or -1 for error. The function fails if the walker itself returns a fatal error, if the specified
walker name or dcmd name is not known to the debugger, or if the dcmd itself returns
DCMD_ABORT or DCMD_USAGE to the walker. The walker name and dcmd name can each be scoped
using the backquote (‘) operator if there are naming conflicts. When invoked from
mdb_pwalk_dcmd(), the dcmd will have the DCMD_LOOP and DCMD_ADDRSPEC bits set in its flags
parameter, and the first call will have DCMD_LOOPFIRST set.

mdb_walk_dcmd()

int mdb_walk_dcmd(const char *wname, const char *dcname, int argc,

const mdb_arg_t *argv);

Initiate a global walk using the walker specified by wname, and invoke the dcmd specified by
dcname with the specified argc and argv at each step. This function returns 0 for success, or -1
for error. The function fails if the walker itself returns a fatal error, if the specified walker name
or dcmd name is not known to the debugger, or if the dcmd itself returns DCMD_ABORT or
DCMD_USAGE to the walker. The walker name and dcmd name can each be scoped using the
backquote (‘) operator if there are naming conflicts. When invoked from mdb_walk_dcmd(), the
dcmd will have the DCMD_LOOP and DCMD_ADDRSPEC bits set in its flags parameter, and the first
call will have DCMD_LOOPFIRST set.

mdb_call_dcmd()

int mdb_call_dcmd(const char *name, uintptr_t addr, uint_t flags,

int argc, const mdb_arg_t *argv);

Invoke the specified dcmd name with the given parameters. The dot variable is reset to addr,
and addr, flags, argc, and argv are passed to the dcmd. The function returns 0 for success, or -1
for error. The function fails if the dcmd returns DCMD_ERR, DCMD_ABORT, or DCMD_USAGE, or if the
specified dcmd name is not known to the debugger. The dcmd name can be scoped using the
backquote (‘) operator if there are naming conflicts.

mdb_layered_walk()

int mdb_layered_walk(const char *name, mdb_walk_state_t *wsp);

API Functions

Oracle Solaris Modular Debugger Guide • September 2010120



Layer the walk denoted by wsp on top of a walk initiated using the specified walker name. The
name can be scoped using the backquote (‘) operator if there are naming conflicts. Layered
walks can be used, for example, to facilitate constructing walkers for data structures that are
embedded in other data structures.

For example, suppose that each CPU structure in the kernel contains a pointer to an embedded
structure. To write a walker for the embedded structure type, you could replicate the code to
iterate over CPU structures and dereference the appropriate member of each CPU structure, or
you could layer the embedded structure's walker on top of the existing CPU walker.

The mdb_layered_walk() function is used from within a walker's init routine to add a new
layer to the current walk. The underlying layer is initialized as part of the call to
mdb_layered_walk(). The calling walk routine passes in a pointer to its current walk state; this
state is used to construct the layered walk. Each layered walk is cleaned up after the caller's walk
fini function is called. If more than one layer is added to a walk, the caller's walk step function
will step through each element returned by the first layer, then the second layer, and so forth.

The mdb_layered_walk() function returns 0 for success, or -1 for error. The function fails if the
specified walker name is not known to the debugger, if the wsp pointer is not a valid, active walk
state pointer, if the layered walker itself fails to initialize, or if the caller attempts to layer the
walker on top of itself.

mdb_add_walker()

int mdb_add_walker(const mdb_walker_t *w);

Register a new walker with the debugger. The walker is added to the module's namespace, and
to the debugger's global namespace according to the name resolution rules described in “Dcmd
and Walker Name Resolution” on page 34. This function returns 0 for success, or -1 for error if
the given walker name is already registered by this module, or if the walker structure w is
improperly constructed. The information in the mdb_walker_t w is copied to internal debugger
structures, so the caller can reuse or free this structure after the call to mdb_add_walker().

mdb_remove_walker()

int mdb_remove_walker(const char *name);

Remove the walker with the specified name. This function returns 0 for success, or -1 for error.
The walker is removed from the current module's namespace. The function fails if the walker
name is unknown, or is registered only in another module's namespace. The
mdb_remove_walker() function can be used to remove walkers that were added dynamically
using mdb_add_walker(), or walkers that were added statically as part of the module's linkage
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structure. The scoping operator cannot be used in the walker name; it is not legal for the caller
of mdb_remove_walker() to attempt to remove a walker exported by a different module.

mdb_vread() and mdb_vwrite()

ssize_t mdb_vread(void *buf, size_t nbytes, uintptr_t addr);

ssize_t mdb_vwrite(const void *buf, size_t nbytes, uintptr_t addr);

These functions provide the ability to read and write data from a given target virtual address,
specified by the addr parameter. The mdb_vread() function returns nbytes for success, or -1 for
error; if a read is truncated because only a portion of the data can be read from the specified
address, -1 is returned. The mdb_vwrite() function returns the number of bytes actually
written upon success; -1 is returned upon error.

mdb_fread() and mdb_fwrite()

ssize_t mdb_fread(void *buf, size_t nbytes, uintptr_t addr);

ssize_t mdb_fwrite(const void *buf, size_t nbytes, uintptr_t addr);

These functions provide the ability to read and write data from the object file location
corresponding to the given target virtual address, specified by the addr parameter. The
mdb_fread() function returns nbytes for success, or -1 for error; if a read is truncated because
only a portion of the data can be read from the specified address, -1 is returned. The
mdb_fwrite() function returns the number of bytes actually written upon success; -1 is
returned upon error.

mdb_pread() and mdb_pwrite()

ssize_t mdb_pread(void *buf, size_t nbytes, uint64_t addr);

ssize_t mdb_pwrite(const void *buf, size_t nbytes, uint64_t addr);

These functions provide the ability to read and write data from a given target physical address,
specified by the addr parameter. The mdb_pread() function returns nbytes for success, or -1 for
error; if a read is truncated because only a portion of the data can be read from the specified
address, -1 is returned. The mdb_pwrite() function returns the number of bytes actually
written upon success; -1 is returned upon error.

mdb_readstr()

ssize_t mdb_readstr(char *s, size_t nbytes, uintptr_t addr);
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The mdb_readstr() function reads a null-terminated C string beginning at the target virtual
address addr into the buffer addressed by s. The size of the buffer is specified by nbytes. If the
string is longer than can fit in the buffer, the string is truncated to the buffer size and a null byte
is stored at s[nbytes - 1]. The length of the string stored in s (not including the terminating
null byte) is returned upon success; otherwise -1 is returned to indicate an error.

mdb_writestr()

ssize_t mdb_writestr(const char *s, uintptr_t addr);

The mdb_writestr() function writes a null-terminated C string from s (including the trailing
null byte) to the target's virtual address space at the address specified by addr. The number of
bytes written (not including the terminating null byte) is returned upon success; otherwise, -1 is
returned to indicate an error.

mdb_readsym()

ssize_t mdb_readsym(void *buf, size_t nbytes, const char *name);

mdb_readsym() is similar to mdb_vread(), except that the virtual address at which reading
begins is obtained from the value of the symbol specified by name. If no symbol by that name is
found or a read error occurs, -1 is returned; otherwise nbytes is returned for success.

The caller can first look up the symbol separately if it is necessary to distinguish between symbol
lookup failure and read failure. The primary executable's symbol table is used for the symbol
lookup; if the symbol resides in another symbol table, you must first apply
mdb_lookup_by_obj(), then mdb_vread().

mdb_writesym()

ssize_t mdb_writesym(const void *buf, size_t nbytes, const char *name);

mdb_writesym() is identical to mdb_vwrite(), except that the virtual address at which writing
begins is obtained from the value of the symbol specified by name. If no symbol by that name is
found, -1 is returned. Otherwise, the number of bytes successfully written is returned on
success, and -1 is returned on error. The primary executable's symbol table is used for the
symbol lookup; if the symbol resides in another symbol table, you must first apply
mdb_lookup_by_obj(), then mdb_vwrite().
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mdb_readvar() and mdb_writevar()

ssize_t mdb_readvar(void *buf, const char *name);

ssize_t mdb_writevar(const void *buf, const char *name);

mdb_readvar() is similar to mdb_vread(), except that the virtual address at which reading
begins and the number of bytes to read are obtained from the value and size of the symbol
specified by name. If no symbol by that name is found, -1 is returned. The symbol size (the
number of bytes read) is returned on success; -1 is returned on error. This is useful for reading
well-known variables whose sizes are fixed. For example:

int hz; /* system clock rate */

mdb_readvar(&hz, "hz");

The caller can first look up the symbol separately if it is necessary to distinguish between symbol
lookup failure and read failure. The caller must also carefully check the definition of the symbol
of interest in order to make sure that the local declaration is the exact same type as the target's
definition. For example, if the caller declares an int, and the symbol of interest is actually a
long, and the debugger is examining a 64-bit kernel target, mdb_readvar() copies back 8 bytes
to the caller's buffer, corrupting the 4 bytes following the storage for the int.

mdb_writevar() is identical to mdb_vwrite(), except that the virtual address at which writing
begins and the number of bytes to write are obtained from the value and size of the symbol
specified by name. If no symbol by that name is found, -1 is returned. Otherwise, the number of
bytes successfully written is returned on success, and -1 is returned on error.

For both functions, the primary executable's symbol table is used for the symbol lookup; if the
symbol resides in another symbol table, you must first apply mdb_lookup_by_obj(), then
mdb_vread() or mdb_vwrite().

mdb_lookup_by_name() and mdb_lookup_by_obj()

int mdb_lookup_by_name(const char *name, GElf_Sym *sym);

int mdb_lookup_by_obj(const char *object, const char *name, GElf_Sym *sym);

Look up the specified symbol name and copy the ELF symbol information into the GElf_Sym
pointed to by sym. If the symbol is found, the function returns 0; otherwise, -1 is returned. The
name parameter specifies the symbol name. The object parameter tells the debugger where to
look for the symbol. For the mdb_lookup_by_name() function, the object file defaults to
MDB_OBJ_EXEC. For mdb_lookup_by_obj(), the object name should be one of the following:

MDB_OBJ_EXEC Look in the executable's symbol table (.symtab section). For kernel crash
dumps, this corresponds to the symbol table from the unix.X file or from
/dev/ksyms.
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MDB_OBJ_RTLD Look in the runtime link-editor's symbol table. For kernel crash dumps,
this corresponds to the symbol table for the krtld module.

MDB_OBJ_EVERY Look in all known symbol tables. For kernel crash dumps, this includes the
.symtab and .dynsym sections from the unix.X file or /dev/ksyms, as well
as per-module symbol tables if these have been processed.

object If the name of a particular load object is explicitly specified, the search is
restricted to the symbol table of this object. The object can be named
according to the naming convention for load objects described in “Symbol
Name Resolution” on page 29.

mdb_lookup_by_addr()

int mdb_lookup_by_addr(uintptr_t addr, uint_t flag, char *buf,

size_t len, GElf_Sym *sym);

Locate the symbol corresponding to the specified address and copy the ELF symbol information
into the GElf_Sym pointed to by sym and the symbol name into the character array addressed by
buf. If a corresponding symbol is found, the function returns 0; otherwise -1 is returned.

The flag parameter specifies the lookup mode and should be one of the following:

MDB_SYM_FUZZY Allow fuzzy matching to take place, based on the current symbol distance
setting. The symbol distance can be controlled using the ::set -s built-in.
If an explicit symbol distance has been set (absolute mode), the address
can match a symbol if the distance from the symbol's value to the address
does not exceed the absolute symbol distance. If smart mode is enabled
(symbol distance = 0), then the address can match the symbol if it is in the
range [symbol value, symbol value + symbol size).

MDB_SYM_EXACT Disallow fuzzy matching. The symbol can match only the address if the
symbol value exactly equals the specified address.

If a symbol match occurs, the name of the symbol is copied into the buf supplied by the caller.
The len parameter specifies the length of this buffer in bytes. The caller's buf should be at least of
size MDB_SYM_NAMLEN bytes. The debugger copies the name to this buffer and appends a trailing
null byte. If the name length exceeds the length of the buffer, the name is truncated but always
includes a trailing null byte.

mdb_getopts()

int mdb_getopts(int argc, const mdb_arg_t *argv, ...);
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Parse and process options and option arguments from the specified argument array (argv). The
argc parameter denotes the length of the argument array. This function processes each
argument in order, and stops and returns the array index of the first argument that could not be
processed. If all arguments are processed successfully, argc is returned.

Following the argc and argv parameters, the mdb_getopts() function accepts a variable list of
arguments describing the options that are expected to appear in the argv array. Each option is
described by an option letter (char argument), an option type (uint_t argument), and one or
two additional arguments, as shown in the table below. The list of option arguments is
terminated with a NULL argument. The type should be one of one of the following:

MDB_OPT_SETBITS The option will OR the specified bits into a flag word. The
option is described by these parameters:

char c, uint_t type, uint_t bits, uint_t *p

If type is MDB_OPT_SETBITS and option c is detected in the argv
list, the debugger will OR bits into the integer referenced by
pointer p.

MDB_OPT_CLRBITS The option clears the specified bits from a flag word. The
option is described by these parameters:

char c, uint_t type, uint_t bits, uint_t *p

If type is MDB_OPT_CLRBITS and option c is detected in the argv
list, the debugger clears bits from the integer referenced by
pointer p.

MDB_OPT_STR The option accepts a string argument. The option is described
by these parameters:

char c, uint_t type, const char **p

If type is MDB_OPT_STR and option c is detected in the argv list,
the debugger stores a pointer to the string argument following
c in the pointer referenced by p.

MDB_OPT_UINTPTR The option accepts a uintptr_t argument. The option is
described by these parameters:

char c, uint_t type, uintptr_t *p

If type is MDB_OPT_UINTPTR and option c is detected in the argv
list, the debugger stores the integer argument following c in
the uintptr_t referenced by p.
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MDB_OPT_UINTPTR_SET The option accepts a uintptr_t argument. The option is
described by these parameters:

char c, uint_t type, boolean_t *flag, uintptr_t *p

If type is MDB_OPT_UINTPTR_SET and option c is detected in the
argv list, the debugger stores the value '1' (TRUE) into the
boolean_t referenced by flag, and the integer argument
following c in the uintptr_t referenced by p.

MDB_OPT_UINT64 The option accepts a uint64_t argument. The option is
described by these parameters:

char c, uint_t type, uint64_t *p

If type is MDB_OPT_UINT64 and option c is detected in the argv
list, the debugger stores the integer argument following c in
the uint64_t referenced by p.

For example, the following source code:

int

dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)

{

uint_t opt_v = FALSE;

const char *opt_s = NULL;

if (mdb_getopts(argc, argv,

’v’, MDB_OPT_SETBITS, TRUE, &opt_v,

’s’, MDB_OPT_STR, &opt_s, NULL) != argc)

return (DCMD_USAGE);

/* ... */

}

demonstrates how mdb_getopts() might be used in a dcmd to accept a boolean option “-v”
that sets the opt_v variable to TRUE, and an option “-s” that accepts a string argument that is
stored in the opt_s variable. The mdb_getopts() function also automatically issues warning
messages if it detects an invalid option letter or missing option argument before returning to
the caller. The storage for argument strings and the argv array is automatically
garbage-collected by the debugger upon completion of the dcmd.

mdb_strtoull()

u_longlong_t mdb_strtoull(const char *s);

Convert the specified string s to an unsigned long long representation. This function is
intended for use in processing and converting string arguments in situations where
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mdb_getopts() is not appropriate. If the string argument cannot be converted to a valid integer
representation, the function fails by printing an appropriate error message and aborting the
dcmd. Therefore, error checking code is not required. The string can be prefixed with any of the
valid base specifiers (0i, 0I, 0o, 0O, 0t, 0T, 0x, or 0X); otherwise, it is interpreted using the
default base. The function will fail and abort the dcmd if any of the characters in s are not
appropriate for the base, or if integer overflow occurs.

mdb_alloc(), mdb_zalloc() and mdb_free()

void *mdb_alloc(size_t size, uint_t flags);

void *mdb_zalloc(size_t size, uint_t flags);

void mdb_free(void *buf, size_t size);

mdb_alloc() allocates size bytes of debugger memory and returns a pointer to the allocated
memory. The allocated memory is at least double-word aligned, so it can hold any C data
structure. No greater alignment can be assumed. The flags parameter should be the bitwise OR of
one or more of the following values:

UM_NOSLEEP If sufficient memory to fulfill the request is not immediately available,
return NULL to indicate failure. The caller must check for NULL and
handle this case appropriately.

UM_SLEEP If sufficient memory to fulfill the request is not immediately available,
sleep until such time as the request can be fulfilled. As a result, UM_SLEEP
allocations are guaranteed to succeed. The caller need not check for a
NULL return value.

UM_GC Garbage-collect allocation automatically at the end of this debugger
command. The caller should not subsequently call mdb_free() on this
block, as the debugger will take care of deallocation automatically. All
memory allocation from within a dcmd must use UM_GC so that if the dcmd
is interrupted by the user, the debugger can garbage-collect the memory.

mdb_zalloc() is like mdb_alloc(), but the allocated memory is filled with zeroes before
returning it to the caller. No guarantees are made about the initial contents of memory returned
by mdb_alloc(). mdb_free() is used to free previously allocated memory (unless it was
allocated UM_GC). The buffer address and size must exactly match the original allocation. It is not
legal to free only a portion of an allocation with mdb_free(). It is not legal to free an allocation
more than once. An allocation of zero bytes always returns NULL; freeing a NULL pointer with
size zero always succeeds.

mdb_printf()

void mdb_printf(const char *format, ...);

API Functions

Oracle Solaris Modular Debugger Guide • September 2010128



Print formatted output using the specified format string and arguments. Module writers should
use mdb_printf() for all output, except for warning and error messages. This function
automatically triggers the built-in output pager when appropriate. The mdb_printf() function
is similar to printf(3C), with certain exceptions: the %C, %S, and %ws specifiers for wide
character strings are not supported, the %f floating-point format is not supported, the %e, %E, %g,
and %G specifiers for alternative double formats produce only a single style of output, and
precision specifications of the form %.n are not supported. The list of specifiers that are
supported follows:

Flag Specifiers
%# If the # sign is found in the format string, this selects the alternate form of the given

format. Not all formats have an alternate form; the alternate form is different
depending on the format. Refer to the format descriptions below for details on the
alternate format.

%+ When printing signed values, always display the sign (prefix with either '+' or '-').
Without %+, positive values have no sign prefix, and negative values have a '-' prefix
prepended to them.

%- Left-justify the output within the specified field width. If the width of the output is
less than the specified field width, the output will be padded with blanks on the
right-hand side. Without %-, values are right-justified by default.

%0 Zero-fill the output field if the output is right-justified and the width of the output is
less than the specified field width. Without %0, right-justified values are prepended
with blanks in order to fill the field.

Field Width Specifiers
%n Field width is set to the specified decimal value.

%? Field width is set to the maximum width of a hexadecimal pointer value. This is 8 in
an ILP32 environment, and 16 in an LP64 environment.

%* Field width is set to the value specified at the current position in the argument list.
This value is assumed to be an int. Note that in the 64-bit compilation
environment, it may be necessary to cast long values to int.

Integer Specifiers
%h Integer value to be printed is a short.

%l Integer value to be printed is a long.

%ll Integer value to be printed is a long long.
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Terminal Attribute Specifiers
If standard output for the debugger is a terminal, and terminal attributes can be obtained by the
terminfo database, the following terminal escape constructs can be used:

%<n> Enable the terminal attribute corresponding to n. Only a single attribute can be
enabled with each instance of %<>.

%</n> Disable the terminal attribute corresponding to n. Note that in the case of reverse
video, dim text, and bold text, the terminal codes to disable these attributes might
be identical. Therefore, it might not be possible to disable these attributes
independently of one another.

If no terminal information is available, each terminal attribute construct is ignored by
mdb_printf(). For more information on terminal attributes, see terminfo(4). The available
terminfo attributes are:

a Alternate character set

b Bold text

d Dim text

r Reverse video

s Best standout capability

u Underlining

Format Specifiers
%% The '%' symbol is printed.

%a Prints an address in symbolic form. The minimum size of the value associated with
%a is a uintptr_t; specifying %la is not necessary. If address-to-symbol conversion
is on, the debugger will attempt to convert the address to a symbol name followed
by an offset in the current output radix and print this string; otherwise, the value is
printed in the default output radix. If %#a is used, the alternate format adds a ':'
suffix to the output.

%A This format is identical to %a, except when an address cannot be converted to a
symbol name plus an offset, nothing is printed. If %#A is used, the alternate format
prints a '?' when address conversion fails.

%b Decode and print a bit field in symbolic form. This specifier expects two consecutive
arguments: the bit field value (int for %b, long for %lb, and so forth), and a pointer
to an array of mdb_bitmask_t structures:

typedef struct mdb_bitmask {

const char *bm_name; /* String name to print */

u_longlong_t bm_mask; /* Mask for bits */
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u_longlong_t bm_bits; /* Result for value & mask */

} mdb_bitmask_t;

The array should be terminated by a structure whose bm_name field is set to NULL.
When %b is used, the debugger reads the value argument, then iterates through each
mdb_bitmask structure checking to see if:

(value & bitmask->bm_mask) == bitmask->bm_bits

If this expression is true, the bm_name string is printed. Each string printed is
separated by a comma. The following example shows how %b can be used to decode
the t_flag field in a kthread_t:

const mdb_bitmask_t t_flag_bits[] = {

{ "T_INTR_THREAD", T_INTR_THREAD, T_INTR_THREAD },

{ "T_WAKEABLE", T_WAKEABLE, T_WAKEABLE },

{ "T_TOMASK", T_TOMASK, T_TOMASK },

{ "T_TALLOCSTK", T_TALLOCSTK, T_TALLOCSTK },

/* ... */

{ NULL, 0, 0 }

};

void

thr_dump(kthread_t *t)

{

mdb_printf("t_flag = <%hb>\n", t->t_flag, t_flag_bits);

/* ... */

}

If t_flag was set to 0x000a, the function would print:

t_flag = <T_WAKEABLE,T_TALLOCSTK>

If %#b is specified, the union of all bits that were not matched by an element in the
bitmask array is printed as a hexadecimal value following the decoded names.

%c Print the specified integer as an ASCII character.

%d Print the specified integer as a signed decimal value. Same as %i. If %#d is specified,
the alternate format prefixes the value with '0t'.

%e Print the specified double in the floating-point format [+/-]d.ddddddde[+/-]dd,
where there is one digit before the radix character, seven digits of precision, and at
least two digits following the exponent.

%E Print the specified double using the same rules as %e, except that the exponent
character will be 'E' instead of 'e'.

%g Print the specified double in the same floating-point format as %e, but with sixteen
digits of precision. If %llg is specified, the argument is expected to be of type long
double (quad-precision floating-point value).
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%G Print the specified double using the same rules as %g, except that the exponent
character will be 'E' instead of 'e'.

%i Print the specified integer as a signed decimal value. Same as %d. If %#i is specified,
the alternate format prefixes the value with '0t'.

%I Print the specified 32-bit unsigned integer as an Internet IPv4 address in
dotted-decimal format (for example, the hexadecimal value 0xffffffff would
print as 255.255.255.255).

%m Print a margin of whitespace. If no field is specified, the default output margin
width is used; otherwise, the field width determines the number of characters of
white space that are printed.

%o Print the specified integer as an unsigned octal value. If %#o is used, the alternate
format prefixes the output with '0'.

%p Print the specified pointer (void *) as a hexadecimal value.

%q Print the specified integer as a signed octal value. If %#o is used, the alternate format
prefixes the output with '0'.

%r Print the specified integer as an unsigned value in the current output radix. The user
can change the output radix using the $d dcmd. If %#r is specified, the alternate
format prefixes the value with the appropriate base prefix: '0i' for binary, '0o' for
octal, '0t' for decimal, or '0x' for hexadecimal.

%R Print the specified integer as a signed value in the current output radix. If %#R is
specified, the alternate format prefixes the value with the appropriate base prefix.

%s Print the specified string (char *). If the string pointer is NULL, the string '<NULL>'
is printed.

%t Advance one or more tab stops. If no width is specified, output advances to the next
tab stop; otherwise the field width determines how many tab stops are advanced.

%T Advance the output column to the next multiple of the field width. If no field width
is specified, no action is taken. If the current output column is not a multiple of the
field width, white space is added to advance the output column.

%u Print the specified integer as an unsigned decimal value. If %#u is specified, the
alternate format prefixes the value with '0t'.

%x Print the specified integer as a hexadecimal value. The characters a-f are used as the
digits for the values 10-15. If %#x is specified, the alternate format prefixes the value
with '0x'.

%X Print the specified integer as a hexadecimal value. The characters A-F are used as
the digits for the values 10-15. If %#X is specified, the alternate format prefixes the
value with '0X'.
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%Y The specified time_t is printed as the string 'year month day HH:MM:SS'.

mdb_snprintf()

size_t mdb_snprintf(char *buf, size_t len, const char *format, ...);

Construct a formatted string based on the specified format string and arguments, and store the
resulting string into the specified buf. The mdb_snprintf() function accepts the same format
specifiers and arguments as the mdb_printf() function. The len parameter specifies the size of
buf in bytes. No more than len - 1 formatted bytes are placed in buf; mdb_snprintf() always
terminates buf with a null byte. The function returns the number of bytes required for the
complete formatted string, not including the terminating null byte. If the buf parameter is
NULL and len is set to zero, the function will not store any characters to buf and returns the
number of bytes required for the complete formatted string; this technique can be used to
determine the appropriate size of a buffer for dynamic memory allocation.

mdb_warn()

void mdb_warn(const char *format, ...);

Print an error or warning message to standard error. The mdb_warn() function accepts a format
string and variable argument list that can contain any of the specifiers documented for
mdb_printf(). However, the output of mdb_warn() is sent to standard error, which is not
buffered and is not sent through the output pager or processed as part of a dcmd pipeline. All
error messages are automatically prefixed with the string “mdb:”.

In addition, if the format parameter does not contain a newline (\n) character, the format string
is implicitly suffixed with the string “: %s\n”, where %s is replaced by the error message string
corresponding to the last error recorded by a module API function. For example, the following
source code:

if (mdb_lookup_by_name("no_such_symbol", &sym) == -1)

mdb_warn("lookup_by_name failed");

produces this output:

mdb: lookup_by_name failed: unknown symbol name

mdb_flush()

void mdb_flush(void);
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Flush all currently buffered output. Normally, mdb's standard output is line-buffered; output
generated using mdb_printf() is not flushed to the terminal (or other standard output
destination) until a newline is encountered, or at the end of the current dcmd. However, in
some situations you might want to explicitly flush standard output prior to printing a newline;
mdb_flush() can be used for this purpose.

mdb_nhconvert()

void mdb_nhconvert(void *dst, const void *src, size_t nbytes);

Convert a sequence of nbytes bytes stored at the address specified by src from network byte
order to host byte order and store the result at the address specified by dst. The src and dst

parameters may be the same, in which case the object is converted in place. This function may
be used to convert from host order to network order or from network order to host order, since
the conversion is the same in either case.

mdb_dumpptr() and mdb_dump64()

int mdb_dumpptr(uintptr_t addr, size_t nbytes, uint_t flags,

mdb_dumpptr_cb_t func, void *data);

int mdb_dump64(uint64_t addr, uint64_t nbytes, uint_t flags,

mdb_dump64_cb_t func, void *data);

These functions can be used to generate formatted hexadecimal and ASCII data dumps that are
printed to standard output. Each function accepts an addr parameter specifying the starting
location, a nbytes parameter specifying the number of bytes to display, a set of flags described
below, a func callback function to use to read the data to display, and a data parameter that is
passed to each invocation of the callback func as its last argument. The functions are identical in
every regard except that mdb_dumpptr uses uintptr_t for its address parameters and
mdb_dump64 uses uint64_t. This distinction is useful when combining mdb_dump64 with
mdb_pread, for example. The built-in ::dump dcmd uses these functions to perform its data
display.

The flags parameter should be the bitwise OR of one or more of the following values:

MDB_DUMP_RELATIVE Number lines relative to the start address instead of with the
explicit address of each line.

MDB_DUMP_ALIGN Align the output at a paragraph boundary.

MDB_DUMP_PEDANT Display full-width addresses instead of truncating the address to
fit the output in 80 columns.

MDB_DUMP_ASCII Display ASCII values next to the hexadecimal data.

MDB_DUMP_HEADER Display a header line about the data.
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MDB_DUMP_TRIM Only read from and display the contents of the specified
addresses, instead of reading and printing entire lines.

MDB_DUMP_SQUISH Elide repeated lines by placing a “*” on a line that is a repeat of the
previous line.

MDB_DUMP_NEWDOT Update the value of dot to the address beyond the last address
read by the function.

MDB_DUMP_ENDIAN Adjust for endianness. This option assumes that the word size is
equal to the current group size, specified by MDB_DUMP_GROUP().
This option will always turn off alignment, headers, and ASCII
display to avoid confusing output. If MDB_DUMP_TRIM is set with
MDB_DUMP_ENDIAN, the number of bytes dumped will be rounded
down to the nearest word size bytes.

MDB_DUMP_WIDTH(width) Increase the number of 16-byte paragraphs per line that are
displayed. The default value of width is one, and the maximum
value is 16.

MDB_DUMP_GROUP(group) Set the byte group size to group. The default group size is four
bytes. The group size must be a power of two that divides the line
width.

mdb_one_bit()

const char *mdb_one_bit(int width, int bit, int on);

The mdb_one_bit() function can be used to print a graphical representation of a bit field in
which a single bit of interest is turned on or off. This function is useful for creating verbose
displays of bit fields similar to the output from snoop(1M) -v. For example, the following
source code:

#define FLAG_BUSY 0x1

uint_t flags;

/* ... */

mdb_printf("%s = BUSY\n", mdb_one_bit(8, 0, flags & FLAG_BUSY));

produces this output:

.... ...1 = BUSY

Each bit in the bit field is printed as a period (.), with each 4-bit sequence separated by a white
space. The bit of interest is printed as 1 or 0, depending on the setting of the on parameter. The
total width of the bit field in bits is specified by the width parameter, and the bit position of the
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bit of interest is specified by the bit parameter. Bits are numbered starting from zero. The
function returns a pointer to an appropriately sized, null-terminated string containing the
formatted bit representation. The string is automatically garbage-collected upon completion of
the current dcmd.

mdb_inval_bits()

const char *mdb_inval_bits(int width, int start, int stop);

The mdb_inval_bits() function is used, along with mdb_one_bit(), to print a graphical
representation of a bit field. This function marks a sequence of bits as invalid or reserved by
displaying an 'x' at the appropriate bit location. Each bit in the bit field is represented as a period
(.), except for those bits in the range of bit positions specified by the start and stop parameters.
Bits are numbered starting from zero. For example, the following source code:

mdb_printf("%s = reserved\n", mdb_inval_bits(8, 7, 7));

produces this output:

x... .... = reserved

The function returns a pointer to an appropriately sized, null-terminated string containing the
formatted bit representation. The string is automatically garbage-collected upon completion of
the current dcmd.

mdb_inc_indent() and mdb_dec_indent()

ulong_t mdb_inc_indent(ulong_t n);

ulong_t mdb_dec_indent(ulong_t n);

These functions increment and decrement the numbers of columns that MDB will auto-indent
with white space before printing a line of output. The size of the delta is specified by n, a number
of columns. Each function returns the previous absolute value of the indent. Attempts to
decrement the indent below zero have no effect. Following a call to either function, subsequent
calls to mdb_printf() are indented appropriately. If the dcmd completes or is forcibly
terminated by the user, the indent is restored automatically to its default setting by the
debugger.

mdb_eval()

int mdb_eval(const char *s);
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Evaluate and execute the specified command string s, as if it had been read from standard input
by the debugger. This function returns 0 for success, or -1 for error. mdb_eval() fails if the
command string contains a syntax error, or if the command string executed by mdb_eval() is
forcibly aborted by the user using the pager or by issuing an interrupt.

mdb_set_dot() and mdb_get_dot()

void mdb_set_dot(uintmax_t dot);

uintmax_t mdb_get_dot(void);

Set or get the current value of dot (the “.” variable). Module developers might want to
reposition dot so that, for example, it refers to the address following the last address read by the
dcmd.

mdb_get_pipe()

void mdb_get_pipe(mdb_pipe_t *p);

Retrieve the contents of the pipeline input buffer for the current dcmd. The mdb_get_pipe()
function is intended to be used by dcmds that want to consume the complete set of pipe input
and execute only once, instead of being invoked repeatedly by the debugger for each pipe input
element. Once mdb_get_pipe() is invoked, the dcmd will not be invoked again by the debugger
as part of the current command. This can be used, for example, to construct a dcmd that sorts a
set of input values.

The pipe contents are placed in an array that is garbage-collected upon termination of the
dcmd, and the array pointer is stored in p->pipe_data. The length of the array is placed in
p->pipe_len. If the dcmd was not executed on the right-hand side of a pipeline (that is, the
DCMD_PIPE flag was not set in its flags parameter), p->pipe_data is set to NULL and
p->pipe_len is set to zero.

mdb_set_pipe()

void mdb_set_pipe(const mdb_pipe_t *p);

Set the pipeline output buffer to the contents described by the pipe structure p. The pipe values
are placed in the array p->pipe_data, and the length of the array is stored in p->pipe_len. The
debugger makes its own copy of this information, so the caller must remember to free
p->pipe_data if necessary. If the pipeline output buffer was previously non-empty, its contents
are replaced by the new array. If the dcmd was not executed on the left side of a pipeline (that is,
the DCMD_PIPE_OUT flag was not set in its flags parameter), this function has no effect.

API Functions

Chapter 10 • Module Programming API 137



mdb_get_xdata()

ssize_t mdb_get_xdata(const char *name, void *buf, size_t nbytes);

Read the contents of the target external data buffer specified by name into the buffer specified by
buf. The size of buf is specified by the nbytes parameter; no more than nbytes will be copied to
the caller's buffer. The total number of bytes read will be returned upon success; -1 will be
returned upon error. If the caller wants to determine the size of a particular named buffer, buf
should be specified as NULL and nbytes should be specified as zero. In this case,
mdb_get_xdata() will return the total size of the buffer in bytes but no data will be read.
External data buffers provide module writers access to target data that is not otherwise
accessible through the module API. The set of named buffers exported by the current target can
be viewed using the ::xdata built-in dcmd.

Additional Functions
Additionally, module writers can use the following string(3C) and bstring(3C) functions.
They are guaranteed to have the same semantics as the functions described in the
corresponding Solaris man page.

strcat() strcpy() strncpy()

strchr() strrchr() strcmp()

strncmp() strcasecmp() strncasecmp()

strlen() bcmp() bcopy()

bzero() bsearch() qsort()
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MDB Options

This appendix provides a reference for MDB command-line options.

Summary of MDB Command-Line Options
mdb [ -fkmuwyAFMS ] [ +o option ] [ -p pid ] [ -s distance]

[ -I path ] [ -L path ] [ -P prompt ] [ -R root ]

[ -V dis-version ] [ object [ core ] | core | suffix ]

The following options are supported:

-A Disables automatic loading of mdb modules. By default, mdb attempts to
load debugger modules corresponding to the active shared libraries in a
user process or core file, or to the loaded kernel modules in the live
operating system or an operating system crash dump.

-F Forcibly takes over the specified user process, if necessary. By default, mdb
refuses to attach to a user process that is already under the control of
another debugging tool, such as truss(1). With the -F option, mdb attaches
to these processes anyway. This can produce unexpected interactions
between mdb and the other tools attempting to control the process.

-f Force raw file debugging mode. By default, mdb attempts to infer whether
the object and core file operands refer to a user executable and core dump
or to a pair of operating system crash dump files. If the file type cannot be
inferred, the debugger will default to examining the files as plain binary
data. The -foption forces mdb to interpret the arguments as a set of raw
files to examine

-I Sets default path for locating macro files. Macro files are read using the $<
or $<< dcmds. The path is a sequence of directory names delimited by
colon ( :) characters. The -I include path and -L library path (see
below) can also contain any of the following tokens:
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%i Expands to the current instruction set architecture (ISA)
name: sparc, sparcv9, i386, or amd64.

%o Expands to the old value of the path being modified. This is
useful for appending or prepending directories to an existing
path.

%p Expands to the current platform string (either uname -i or the
platform string stored in the process core file or crash dump).

%r Expands to the path name of the root directory. An alternate
root directory can be specified using the -R option. If no -R

option is present, the root directory is derived dynamically
from the path to the mdb executable itself. For example, if
/bin/mdb is executed, the root directory is /. If
/net/hostname/bin/mdb were executed, the root directory
would be derived as /net/hostname.

%t Expands to the name of the current target. This is either the
literal string 'proc' (a user process or user process core file), or
'kvm' (a kernel crash dump or the live operating system).

The default include path for 32-bit mdb
is:%r/usr/platform/%p/lib/adb:%r/usr/lib/adb

The default include path for 64-bit mdb
is:%r/usr/platform/%p/lib/adb/%i:%r/usr/lib/adb/%i

-k Forces kernel debugging mode. By default, mdb attempts to infer whether
the object and core file operands refer to a user executable and core dump,
or to a pair of operating system crash dump files. The -k option forces mdb
to assume these files are operating system crash dump files. If no object or
core operand is specified, but the -k option is specified, mdb defaults to an
object file of /dev/ksyms and a core file of /dev/kmem. Access to /dev/kmem

is restricted to group sys.

-K Load kmdb, stop the live running operating system kernel, and proceed to
the kmdb debugger prompt. This option should only be used on the system
console, as the subsequent kmdb prompt will appear on the system console.

-L Sets default path for locating debugger modules. Modules are loaded
automatically on startup or by using the ::load dcmd. The path is a
sequence of directory names delimited by colon (:) characters. The -L
library path can also contain any of the tokens shown for -I above.

-m Disables demand-loading of kernel module symbols. By default, mdb
processes the list of loaded kernel modules and performs demand loading
of per-module symbol tables. If the -m option is specified, mdb does not
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attempt to process the kernel module list or provide per-module symbol
tables. As a result, mdb modules corresponding to active kernel modules
are not loaded on startup.

-M Preloads all kernel module symbols. By default, mdb performs
demand-loading for kernel module symbols: the complete symbol table
for a module is read when an address is that module's text or data section is
referenced. With the -M option, mdb loads the complete symbol table of all
kernel modules during startup.

-o option Enables the specified debugger option. If the +o form of the option is used,
the specified option is disabled. Unless noted below, each option is off by
default. mdb recognizes the following option arguments:

adb
Enable stricter adb(1) compatibility. The prompt is set to the empty
string and many mdb features, such as the output pager, are disabled.

array_mem_limit=limit
Set the default limit on the number of array members that ::print will
display. If limit is the special token none, all array members will be
displayed by default.

array_str_limit=limit
Set the default limit on the number of characters that ::print will
attempt to display as an ASCII string when printing a char array. If
limit is the special token none, the entire char array will be displayed as
a string by default.

follow_exec_mode=mode
Set the debugger behavior for following an exec(2) system call. The
mode should be one of the following named constants:

ask If stdout is a terminal device, the debugger stops after the
exec() system call returns and then prompts the user to
decide whether to follow the exec or stop. If stdout is not a
terminal device, the ask mode defaults to stop.

follow The debugger follows the exec by automatically continuing
the target process and resetting all of its mappings and
symbol tables based on the new executable. The follow
behavior is discussed in more detail under “Interaction with
exec” on page 65.

stop The debugger stops after the exec() system call returns. The
stop behavior is discussed in more detail under “Interaction
with exec” on page 65.
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follow_fork_mode=mode
Set the debugger behavior for following a fork(2), fork1(2), or
vfork(2) system call. The mode should be one of the following named
constants:

ask If stdout is a terminal device, the debugger stops after the
fork() system call has returned and then prompts the user
to decide whether to follow the parent or child. If stdout is
not a terminal device, the ask mode defaults to parent.

parent The debugger follows the parent process, and detaches from
the child process and sets the child process running.

child The debugger follows the child process, and detaches from
the parent process and sets the parent process running.

ignoreeof
The debugger does not exit when an EOF sequence (^D) is entered at the
terminal. The ::quit dcmd must be used to quit.

nostop
Do not stop a user process when attaching to it when the -p option is
specified or when the ::attach or :A dcmds are applied. The nostop
behavior is described in more detail under “Process Attach and
Release” on page 66.

pager
The output pager is enabled (default).

repeatlast
If a NEWLINE is entered as the complete command at the terminal, mdb
repeats the previous command with the current value of dot. This
option is implied by -o adb.

showlmid
MDB provides support for symbol naming and identification in user
applications that make use of link maps other than LM_ID_BASE and
LM_ID_LDSO, as described in “Symbol Name Resolution” on page 29.
Symbols on link maps other than LM_ID_BASE or LM_ID_LDSO will
be shown as LMlmid‘library‘symbol, where lmid is the link-map ID in
the default output radix (16). The user may optionally configure MDB
to show the link-map ID scope of all symbols and objects, including
those associated with LM_ID_BASE and LM_ID_LDSO, by enabling
the showlmid option. Built-in dcmds that deal with object file names
will display link-map IDs according to the value of showlmid above,
including ::nm, ::mappings, $m, and ::objects.

-p pid Attaches to and stops the specified process id. mdb uses the
/proc/pid/object/a.out file as the executable file path name.
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-P Sets the command prompt. The default prompt is '> '.

-R Sets root directory for path name expansion. By default, the root directory
is derived from the path name of the mdb executable itself. The root
directory is substituted in place of the %r token during path name
expansion.

-s distance Sets the symbol matching distance for address-to-symbol-name
conversions to the specified distance. By default, mdb sets the distance to
zero, which enables a smart-matching mode. Each ELF symbol table entry
includes a value V and size S, representing the size of the function or data
object in bytes. In smart mode, mdb matches an address A with the given
symbol if A is in the range [ V, V + S ). If any non-zero distance is specified,
the same algorithm is used, but S in the given expression is always the
specified absolute distance and the symbol size is ignored.

-S Suppresses processing of the user's ~/.mdbrc file. By default, mdb reads and
processes the macro file .mdbrc if one is present in the user's home
directory, as defined by $HOME. If the -S option is present, this file is not
read.

-u Forces user debugging mode. By default, mdb attempts to infer whether the
object and core file operands refer to a user executable and core dump, or
to a pair of operating system crash dump files. The -u option forces mdb to
assume these files are not operating system crash dump files.

-U Unload kmdb if it is loaded. You should unload kmdb when it is not in use to
release the memory used by the kernel debugger back to the free memory
available to the operating system.

-V Sets disassembler version. By default, mdb attempts to infer the appropriate
disassembler version for the debug target. The disassembler can be set
explicitly using the -V option. The ::disasms dcmd lists the available
disassembler versions.

-w Opens the specified object and core files for writing.

-y Sends explicit terminal initialization sequences for tty mode. Some
terminals require explicit initialization sequences to switch into a tty
mode. Without this initialization sequence, terminal features such as
standout mode might not be available to mdb.
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Operands
The following operands are supported:

object Specifies an ELF format object file to examine. mdb provides the ability to examine
and edit ELF format executables (ET_EXEC), ELF dynamic library files (ET_DYN), ELF
relocatable object files (ET_REL), and operating system unix.X symbol table files.

core Specifies an ELF process core file (ET_CORE), or an operating system crash dump
vmcore.X file. If an ELF core file operand is provided without a corresponding object
file, mdb will attempt to infer the name of the executable file that produced the core
using several different algorithms. If no executable is found, mdb will still execute, but
some symbol information may be unavailable.

suffix Specifies the numeric suffix that represents a pair of operating system crash dump
files. For example, if the suffix is 3, then mdb should examine the files unix.3 and
vmcore.3. If these files do not exist, but vmdump.3 does exist, then a message displays
telling you to first run the following command to uncompress the dump file.

# savecore -f vmdump.3

The string of digits is not interpreted as a suffix if an actual file of the same name is
present in the current directory.

Exit Status
The following exit values are returned:

0 Debugger completed execution successfully.

1 A fatal error occurred.

2 Invalid command line options were specified.

Environment Variables
The following environment variables are supported:

HISTSIZE This variable is used to determine the maximum length of the command history
list. If this variable is not present, the default length is 128.

HOME This variable is used to determine the pathname of the user's home directory,
where a .mdbrc file may reside. If this variable is not present, no .mdbrc

processing will occur.
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SHELL This variable is used to determine the pathname of the shell used to process shell
escapes requested using the ! meta-character. If this variable is not present,
/bin/sh is used.

Environment Variables
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Notes

Warnings
The following warning information applies to the use of MDB.

Use of the Error Recovery Mechanism
The debugger and its dmods execute in the same address space, and thus it is quite possible that
a buggy dmod can cause MDB to dump core or otherwise misbehave. The MDB resume

capability, described in “Signal Handling” on page 41, provides a limited recovery mechanism
for these situations. However, it is not possible for MDB to know definitively whether the dmod
in question has corrupted only its own state, or the debugger's global state. Therefore a resume
operation cannot be guaranteed to be safe, or to prevent a subsequent crash of the debugger.
The safest course of action following a resume is to save any important debug information, and
then quit and restart the debugger.

Use of the Debugger to Modify the Live Operating
System
The use of the debugger to modify (that is, write to) the address space of live running operating
system is extremely dangerous, and may result in a system panic in the event the user damages a
kernel data structure.

Use of kmdb to Stop the Live Operating System
The use of kmdb to stop the live operating system using mdb -K or by setting a breakpoint in the
live operating system is intended for use by developers and not on production systems. When
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the operating system kernel is stopped by kmdb, operating system services and networking are
not executing, and other systems on the network that depend upon the target system will not be
able to contact the target system.

Notes

Limitations on Examining Process Core Files
MDB does not provide support for examining process core files that were generated by a release
of the Solaris operating system preceding Solaris 2.6. If a core file from one operating system
release is examined on a different operating system release, the run-time link-editor debugging
interface (librtld_db) may not be able to initialize. In this case, symbol information for shared
libraries will not be available. Furthermore, since shared mappings are not present in user core
files, the text section and read-only data of shared libraries may not match the data that was
present in the process at the time it dumped core. Core files from Solaris x86 systems may not be
examined on Solaris SPARC systems, and vice-versa.

Limitations on Examining Crash Dump Files
Crash dumps from Solaris 7 and earlier releases may only be examined with the aid of the
libkvm from the corresponding operating system release. If a crash dump from one operating
system release is examined using the dmods from a different operating system release, changes
in the kernel implementation may prevent some dcmds or walkers from working properly.
MDB will issue a warning message if it detects this condition. Crash dumps from Solaris x86
systems may not be examined on Solaris SPARC systems, and vice-versa.

Relationship Between 32-bit and 64-bit Debugger
MDB provides support for debugging both 32-bit and 64-bit programs. Once it has examined
the target and determined its data model, MDB will automatically re-execute the mdb binary
that has the same data model as the target, if necessary. This approach simplifies the task of
writing debugger modules, because the modules that are loaded will use the same data model as
the primary target. Only the 64-bit debugger may be used to debug 64-bit target programs. The
64-bit debugger can only be used on a system that is running the 64-bit operating environment.

Limitations on Memory Available to kmdb

The memory available to kmdb is allocated when the debugger is loaded, and cannot be
expanded after that point in time. If debugger commands attempt to allocate more memory
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than is available, they will not be able to execute. The debugger will attempt to gracefully
recover from low memory situations, but may be forced to terminate the system under dire
circumstances. System memory constraints are especially acute on x86 platforms that use the
32–bit operating system kernel.

Developer Information
The mdb(1) man page provides a detailed description of built-in mdb features for easy developer
reference. The header file <sys/mdb_modapi.h> contains prototypes for the functions in the
MDB Module API, and the SUNWmdbdm package provides source code for an example module in
the directory /usr/demo/mdb.

Notes
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Transition From adb and kadb

The transition from using the legacy adb(1) utility to using mdb(1) is relatively simple: MDB
provides evolutionary compatibility for the adb syntax, built-in commands, and command-line
options. MDB attempts to provide compatibility for all existing adb(1) features, but it is not
bug-for-bug compatible with adb(1). This appendix briefly discusses several features of adb(1)
that are not precisely emulated by mdb(1) in order to guide users to the new functionality

Command-Line Options
MDB provides a superset of the command-line options recognized by adb(1). All the adb(1)
options are supported and have the same meaning as before. The /usr/bin/adb pathname is
delivered as a link that invokes mdb(1), and automatically enables enhanced adb(1)
compatibility mode. Executing the /usr/bin/adb link is equivalent to executing mdb with the
-o adb option, or executing ::set -o adb once the debugger has started.

Syntax
The MDB language adheres to the same syntax as the adb(1) language, in order to provide
compatibility for legacy macros and script files. New MDB dcmds use the extended form
::name, in order to distinguish them from legacy commands that are prefixed with either : or $.
Expressions can also be evaluated on the right-hand side of a dcmd name by enclosing them in
square brackets preceded by a dollar sign ($[ ]). Similar to adb(1), an input line that begins
with an exclamation mark (!) indicates that the command line should be executed by the user's
shell. In MDB, a debugger command may also be suffixed with an exclamation mark to indicate
that its output should be piped to the shell command following the exclamation mark.

In adb(1), binary operators are left associative and have lower precedence than unary operators.
Binary operators are evaluated in strict left-to-right order on the input line. In MDB, binary
operators are left associative and have lower precedence than unary operators, but the binary
operators operate in order of precedence according to the table in “Binary Operators” on
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page 27. The operators conform to the order of precedence in ANSI C. Legacy adb(1) macro
files that do not explicitly parenthesize ambiguous expressions may need to be updated to work
with MDB. For example, in adb the following command evaluates to the integer value nine:

$ echo "4-1*3=X" | adb

9

In MDB, as in ANSI C, operator * has higher precedence than - and therefore the result is the
integer value one:

$ echo "4-1*3=X" | mdb

1

Watchpoint Length Specifier
The watchpoint length specifier syntax recognized by MDB is different from the syntax
described in adb(1). In particular, the adb watchpoint commands :w, :a, and :p allow an integer
length in bytes to be inserted between the colon and the command character. In MDB, the
count should be specified following the initial address as a repeat count. Stated simply, these
adb(1) commands:

123:456w

123:456a

123:456p

are specified in MDB as

123,456:w

123,456:a

123,456:p

The MDB ::wp dcmd provides more complete facilities for creating user process watchpoints.
Similarly, the legacy kadb length modifier command $l is not supported. Therefore, the
watchpoint size should be specified to each ::wp command used in kmdb.

Address Map Modifier
The adb(1) commands to modify segments of the virtual address map and object file map are
not present in MDB. Specifically, the /m, /*m, ?m, and ?*m format specifiers are not recognized or
supported by MDB. These specifiers were used to manually modify the valid addressable range
of the current object and core files. MDB properly recognizes the addressable range of such files
automatically, and updates the ranges when a live process is being debugged, so these
commands are no longer necessary.

Watchpoint Length Specifier
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Output
The precise text output form of some commands is different in MDB. Macro files are formatted
using the same basic rules, but shell scripts that depend on the precise character-by-character
output of certain commands may need to change. Users who have shell scripts that parse the
output of adb commands will need to revalidate and update such scripts as part of the transition
to MDB.

Deferred Breakpoints
The legacy kadb utility supported a syntax for deferred breakpoints that was incompatible with
the existing adb syntax. These deferred breakpoints were specified using the syntax
module#symbol:b in kadb. To set a deferred breakpoint in kmdb, use the MDB ::bp dcmd as
described in Chapter 6, “Execution Control.”

x86: I/O Port Access
The legacy kadb utility provided access to I/O ports on x86 systems using the :i and :o

commands. These commands are not supported in mdb or kmdb. Access to I/O ports on x86
systems is provided by the ::in and ::out commands.

x86: I/O Port Access
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Transition From crash

The transition from using the legacy crash utility to using mdb(1) is relatively simple: MDB
provides most of the “canned” crash commands. The additional extensibility and interactive
features of MDB allow the programmer to explore aspects of the system not examined by the
current set of commands. This appendix briefly discusses several features of crash and provides
pointers to equivalent MDB functionality.

Command-Line Options
The crash -d, -n, and -w command-line options are not supported by mdb. The crash dump file
and name list (symbol table file) are specified as arguments to mdb in the order of name list,
crash dump file. To examine the live kernel, the mdb -k option should be specified with no
additional arguments. Users who want to redirect the output of mdb to a file or other output
destination, should either employ the appropriate shell redirection operator following the mdb
invocation on the command line, or use the ::log built-in dcmd.

Input in MDB
In general, input in MDB is similar to crash, except that function names (in MDB, dcmd
names) are prefixed with ::. Some MDB dcmds accept a leading expression argument that
precedes the dcmd name. Like crash, string options can follow the dcmd name. If a ! character
follows a function invocation, MDB will also create a pipeline to the specified shell pipeline. All
immediate values specified in MDB are interpreted in hexadecimal by default. The radix
specifiers for immediate values are different in crash and MDB as shown in Table D–1.

TABLE D–1 Radix Specifiers

crash mdb Radix

0x 0x hexadecimal (base 16)
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TABLE D–1 Radix Specifiers (Continued)
crash mdb Radix

0d 0t decimal (base 10)

0b 0i binary (base 2)

Many crash commands accepted slot numbers or slot ranges as input arguments. The Solaris
operating system is no longer structured in terms of slots, so MDB dcmds do not provide
support for slot-number processing.

Crash Functions and MDB Dcmds

crash function mdb dcmd Comments

? ::dcmds List available functions.

!command !command Escape to the shell and execute command.

base = In mdb, the = format character can be used to convert the left-hand
expression value to any of the known formats. Formats for octal,
decimal, and hexadecimal are provided.

callout ::callout Print the callout table.

class ::class Print scheduling classes.

cpu ::cpuinfo Print information about the threads dispatched on the system
CPUs. If the contents of a particular CPU structure are needed, the
user should apply the $<cpu macro to the CPU address in mdb.

help ::help Print a description of the named dcmd, or general help information.

kfp ::regs The mdb ::regs dcmd displays the complete kernel register set,
including the current stack frame pointer. The $C dcmd can be used
to display a stack backtrace including frame pointers.

kmalog ::kmalog Display events in kernel memory allocator transaction log.

kmastat ::kmastat Print kernel memory allocator transaction log.

kmausers ::kmausers Print information about the medium and large users of the kernel
memory allocator that have current memory allocations.

mount ::fsinfo Print information about mounted file systems.

nm ::nm Print symbol type and value information.

od ::dump Print a formatted memory dump of a given region. In mdb, ::dump
displays a mixed ASCII and hexadecimal display of the region.

Crash Functions and MDB Dcmds
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crash function mdb dcmd Comments

proc ::ps Print a table of the active processes.

quit ::quit Quit the debugger.

rd ::dump Print a formatted memory dump of a given region. In mdb, ::dump
displays a mixed ASCII and hexadecimal display of the region.

redirect ::log In mdb, output for input and output can be globally redirected to a
log file using ::log.

search ::kgrep In mdb, the ::kgrep dcmd can be used to search the kernel's address
space for a particular value. The pattern match built-in dcmds can
also be used to search the physical, virtual, or object files address
spaces for patterns.

stack ::stack The current stack trace can be obtained using ::stack. The stack trace
of a particular kernel thread can be determined using the ::findstack
dcmd. A memory dump of the current stack can be obtained using
the / or ::dump dcmds and the current stack pointer. The
$<stackregs macro can be applied to a stack pointer to obtain the
per-frame saved register values.

status ::status Display status information about the system or dump being
examined by the debugger.

stream ::stream The mdb ::stream dcmd can be used to format and display the
structure of a particular kernel STREAM. If the list of active
STREAM structures is needed, the user should execute ::walk
stream_head_cache in mdb and pipe the resulting addresses to an
appropriate formatting dcmd or macro.

strstat ::kmastat The ::kmastat dcmd displays a superset of the information reported
by the strstat function.

trace ::stack The current stack trace can be obtained using ::stack. The stack trace
of a particular kernel thread can be determined using the ::findstack
dcmd. A memory dump of the current stack can be obtained using
the / or ::dump dcmds and the current stack pointer. The
$<stackregs macro can be applied to a stack pointer to obtain the
per-frame saved register values.

var $<v Print the tunable system parameters in the global var structure.

vfs ::fsinfo Print information about mounted file systems.

vtop ::vtop Print the physical address translation of the given virtual address.

Crash Functions and MDB Dcmds
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