
Secure Messaging Extension
User’s Guide

Release 4.5.2

Java Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020308114806.
Secure Messaging Extension User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 6
Overview 6

Intended Reader 6
Components 6

Introducing S/MIME 7

Introducing Secure Messaging Extension 8

Supported Operating Systems 11

System Requirements 11
Host System Requirements 11

GUI Host Requirements 11

Chapter 2

Installation 12
Windows NT or 2000 12

Pre-installation 12
Installation Procedure 12

UNIX 13
Pre-installation 13
Installation Procedure 13

Files/Directories Created by the Installation 14

Chapter 3

Multi-Mode e*Way Configuration 15
Multi-Mode e*Way 15

JVM Settings 15
JNI DLL Absolute Pathname 15
CLASSPATH Prepend 16
CLASSPATH Override 16
Initial Heap Size 17
Maximum Heap Size 17
Maximum Stack Size for Native Threads 17
Maximum Stack Size for JVM Threads 17
Secure Messaging Extension User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Class Garbage Collection 18
Garbage Collection Activity Reporting 18
Asynchronous Garbage Collection 18
Report JVM Info and all Class Loads 18
Disable JIT 18
Allow Remote Debugging of JVM 19

Chapter 4

e*Way Connection Configuration 20
Configuring e*Way Connections 20

Connector 21
Type 21
Class 21
Property.Tag 21

Encrypt 21
Certificate 22
Format 22
Algorithm 22
MessageFormat 22
EncodingFormat 22

Decrypt 23
MessageFormat 23
EncodingFormat 23
PKCS12 23
PassPhrase 23

Sign 23
Algorithm 24
Detached 24
MessageFormat 24
EncodingFormat 24
PKCS12 25
PassPhrase 25

Verify 25
This section contains a set of top level parameters: 25
MessageFormat 25
EncodingFormat 25
Certificate 26
Format 26
The appropriate certificate format. One of three provided: DER, PEM, or PK7. The default is
DER. 26

Certificate 26
Checking 26
TrustedCA 27
Format 27

CRL 27
Filename 27
CACRLCertificate 27
CACRLformat 28
CACertificate 28
Format 28
Secure Messaging Extension User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Chapter 5

Implementation 29
SME Sample Implementation Overview 29

Creating the New Schema 30
Event Types 30

Creating an Event Type from an Existing DTD 30
Creating an Event Type Without an Existing DTD 31
Creating an Event Type From an Existing .xsc 33

Creating and Configuring the e*Ways 33
Create the e*Way Connection 36
Intelligent Queues 37
Collaboration Rules 37

Creating Collaboration Rules files 38
Java (cor_java) 39
Creating the Collaboration Rules Class 40

Collaborations 42

Sample Schema 45
Execute the Schema 46

Certificate Formats 46

Chapter 6

Secure Messaging Extension Functions 50
SMEMessage Functions 50

base64Decode 50
base64Encode 51
encrypt 51
encrypt 52
decrypt 52
decrypt 53
getMD5Hash 53
getSHA1Hash 54
sign 54
sign 55
verify 55
verify 56

Index 57
Secure Messaging Extension User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes how to install and configure the Secure Messaging Extension.

1.1 Overview
The Secure Messaging Extension enables e*Gate to process Events utilizing the
S/MIME (Secure Multipurpose Internet Mail Extensions) message format. The Secure
Messaging Extension supports encryption, decryption and authentication of messages
and is interoperable with any other client applications that support the S/MIME
standard.

This adds the following features to a transaction:

! privacy

! message (Event) authentication

! sender authentication

! nonrepudiation

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows NT and/or UNIX operations and administration; and to be thoroughly
familiar with Windows-style GUI operations.

1.1.2 Components
The following components comprise Secure Messaging Extension:

! stcsme.jar

! smime.jar

! Java collaborations that load and run the Java class functions.

A complete list of the installed files appears in Table 1 on page 14.
Secure Messaging Extension User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Introducing S/MIME
1.2 Introducing S/MIME
Secure Multipurpose Internet Mail Extension (S/MIME) is a type of MIME message
format that supports digital signatures and encryption of messages. S/MIME uses
Public Key Cryptography Standards (PKCS) developed by Baltimore Technology,
based on the RSA algorithm which determined that there is no efficient way to factor
very large numbers, making it nearly impossible to derive the private (decryption) key
based solely on the public (encryption) key.

The public-key encryption system uses two keys: a public key available to everyone,
and a private key known only to the recipient of the message. A public key can be
published openly allowing the user to send secure messages that can only be decrypted
by owner of the private key.

Only the public key can be used to encrypt messages, and only the corresponding
private key can be used to decrypt them. In addition, a message encrypted with the
private key can only be properly decrypted by the public key. This process known as
digital signing guarantees to the receiver that the response genuinely came from the
stated source.

MIME offers a standardized way to represent and encode a wide variety of media types
for transmission via the internet. Many e-Mail clients now support MIME, which
enables sending and receiving of graphics, audio, and video files via the Internet.
MIME also supports messages in character sets other than ASCII.

When using MIME, messages can contain the following data types:

! Text messages in US-ASCII

! Messages of unlimited length

Due to limitations associated with the Baltimore SMIME library, to support the
following files Base64 format must be specified:

! Binary files.

! Character sets other than US-ASCII

! Multi-media: Image, Audio, and Video messages

! Multiple objects in a single message

With the implementation of S/MIME, the protocol is available that adds digital
signatures and encryption to these messages. These messages consist of two parts: the
header and the body. The header forms a collection of field/value pairs structured to
provide information necessary for the transmission of the message. MIME defines how
the body of a message is structured. This format permits the inclusion of the above
mentioned data types in a standardized manner. S/MIME defines the security services,
adding digital signatures and encryption, thus preventing forgery and interception.

For more information regarding S/MIME, please see Baltimore Technology, Developers
Zone, S/MIME Protocols and Standards, available online at: http://www.baltimore.com/
devzone/standards/smime.html. Also available is Internet Engineering Task Force S/
MIME Message Specification (proposed standard) at: http://www.ietf.org/rfc/rfc2633.txt.
Secure Messaging Extension User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Introducing Secure Messaging Extension
1.3 Introducing Secure Messaging Extension
The Secure Messaging Extension provides security features, allowing the protected
transmission of exchanges over public domains such as the Internet. Secure Messaging
Extension adds the ability to use Public Key Infrastructure (PKI) technology to ensure
the confidentiality of exchanges by digitally signing and encrypting messages as they
are sent, and decrypting and authenticating messages when they are received.

The Secure Messaging Extension performs the encryption and decryption of messages
using the S/MIME standard. The standard one-way hash algorithms ensure data
integrity by verifying that no modifications are made to the message while in transit.
The message sender’s identity is verified through the use of digital signatures, proving
that the message actually originated from the entity who claims to have sent it.

The following flowcharts show the processing of the data from receipt to destination.
Secure Messaging Extension User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Introducing Secure Messaging Extension
Figure 1 Inbound Signed/Encrypted Message

Receives and Inbound
Message

Retrieve Receiver's Private

Signed Event?

Forw ard Event body to
destination

Hash Event body

Decrypt digital signature
 using Public Key

Separate the digital signature and
originator's Public Key

f rom the body of the Event

Decrypted
digital signature = hashed

Event body.

Retrieve Public Key f rom the
certif icate provided by user

Raise
exception

Encrypted Event?

Encryption
required for this

Event?

Raise
exception

Yes

No

No

Yes

Separate Block encrypted Event
f rom PKI encrypted Session Key

Decrypt Session Key
using Private Key

Decrypt Event using Session Key

Yes

No

Raise
exception

Yes

No

Yes

No

Key from PKCS12 f ile
Provided by the user

PKCS12
f ile

Encryption
required for this

Event?

or attached to signed message
Secure Messaging Extension User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Introducing Secure Messaging Extension
Figure 2 Outbound Signed/Encrypted Message

Receives Outbound
 Event/Message

Hash Event

Retrieve Private Key f rom
PKCS12 f ile provided

Sign Event?

Encrypt Event?

Retrieve recipient's Public
Key f rom user

Encrypt Session Key w ith
Partner's Public Key Certif icate

Encrypt hashed Event
 using originator's Private Key

to create a digital s ignature

Add digital s ignature & originator's
Public Key

 to Outbound Event

Forw ard Outbound
Event to destination

Randomly generate Session Key

Use Session Key to
block encrypt the Event

Add PKI encrypted Session
Key to Block encrypted Event

No

No

Yes

Yes

PKCS12
f ile

by the user

provided certif icates
Secure Messaging Extension User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Supported Operating Systems
1.4 Supported Operating Systems
The Secure Messaging Extension (Java) is supported on the following operating
systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i

1.5 System Requirements
To use the Secure Messaging Extension, you will need the following:

1 An e*Gate Participating Host, version 4.5.1 or higher.

2 250 KB free disk space

Note: Additional disk space will be required to process and queue the data that the Secure
Messaging Extension processes; the amount necessary will vary based on the type
and size of the data being processed, and any external applications performing the
processing.

3 A TCP/IP network or other network connection.

4 A fast CPU, if secure message volume is expected to be high. (The public-key
operations associated with encryption and signing are computationally expensive.)

1.5.1 Host System Requirements
The external system requirements are different for a GUI host machine—specifically a
machine running the ETD Editor and the Java Collaboration Editor GUIs—versus a
participating host which is used solely to run the e*Gate schema.

GUI Host Requirements

To enable the GUI editors to communicate with the external system, the following items
must be installed on any host machines running the GUI editors:

! Java JDK 1.3. The JDK can be installed during the e*Gate GUI installation process if
it hasn’t been installed already.

! Microsoft Data Access Components (MDAC) RTM version 2.6 or greater. This
component is included in the Windows 2000 installation routine. Windows NT
users can obtain MDAC 2.6 RTM from the following location:

http://www.microsoft.com/data/download.htm
Secure Messaging Extension User’s Guide 11 SeeBeyond Proprietary and Confidential

http://www.microsoft.com/data/download.htm

Chapter 2

Installation

This chapter describes how to install the Secure Messaging Extension.

2.1 Windows NT or 2000

2.1.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this extension.

2.1.2 Installation Procedure
To install the Secure Messaging Extension on a Windows NT or 2000 system

1 Log in as an Administrator on the workstation on which you want to install the
extension.

2 Insert the installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows NT
Explorer or the Control Panel’s Add/Remove Applications feature to launch the file
setup.exe on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to
install the extension.

Note: Be sure to install the extension files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.
Secure Messaging Extension User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
2.2 UNIX

2.2.1 Pre-installation
1 Root privileges are not required to install this e*Way. Log in under the user name

that will own the e*Way files. Be sure that this user has sufficient privilege to create
files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the Secure Messaging Extension on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

./setup.sh

5 A menu of options will appear. Select the “install Agents” option. Then, follow any
additional on-screen directions.

Note: Be sure to install the extension files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.
Secure Messaging Extension User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
2.3 Files/Directories Created by the Installation
The Secure Messaging Extension installation process will install the following files
within the e*Gate directory tree. Files will be installed within the “egate\client” tree on
the Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files created by the installation

e*Gate Directory File(s)

client\classes stcsme.jar

client\ThirdParty\baltimore\c
lasses\

KeyToolsPro_All1.2.jar
smime.jar

etd\smeclient\ smeinputmsg.dtd
smemessage.xsc
Secure Messaging Extension User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

This chapter describes how to configure the Multi-Mode e*Way.

3.1 Multi-Mode e*Way
Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a New Multi-Mode e*Way:

1 Select the Navigator’s Components tab.

2 Open the host on which you want to create the e*Way.

3 On the Palette, click on the icon to create a new e*Way.

4 Enter the name of the new e*Way, then click OK.

5 Select the new component, then click to edit its properties.

6 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select an executable file. (stceway.exe is located in the
“bin\” directory.)

7 Under the Configuration File field, click on the New button. When the Settings page
opens, set the configuration parameters for this configuration file.

8 After selecting the desired parameters, save the configuration file. Close the .cfg file
and select OK to close the e*Way Properties Window.

The Multi-Mode e*Way configuration parameters are organized into the following
section:

! JVM Settings

3.1.1 JVM Settings
The JVM Settings control basic Java Virtual Machine settings.

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.2.2
or higher is located on the Participating Host. This parameter is mandatory.
Secure Messaging Extension User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

To ensure that the JNI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs (NT).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
Java VM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the Java VM. This parameter
is optional. If left unset, an appropriate CLASSPATH environment variable (consisting
of required e*Gate components concatenated with the system version of CLASSPATH)
will be set.

OS Java 2 JNI DLL Name

NT 4.0/ Windows 2000 jvm.dll

Solaris 2.6, 2.7, 2.8 libjvm.so

Linux 6 libjvm.so

HP-UX libjvm.sl

AIX 4.3 libjvm.a
Secure Messaging Extension User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Note: All necessary JAR and ZIP files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.
Secure Messaging Extension User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Class Garbage Collection

Description

Specifies whether the Class Garbage Collection will be done automatically by the Java
VM. The selection affects performance issues.

Required Values

YES or NO.

Garbage Collection Activity Reporting

Description

Specifies whether garbage collection activity will be reported for debugging purposes.

Required Values

YES or NO.

Asynchronous Garbage Collection

Description

Specifies whether asynchronous garbage collection activity will be reported for
debugging purposes.

Required Values

YES or NO.

Report JVM Info and all Class Loads

Description

Specifies whether the JVM information and all class loads will be reported for
debugging purposes.

Required Values

YES or NO.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.
Secure Messaging Extension User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Allow Remote Debugging of JVM

Description

Specifies whether to allow remote debugging of the JVM.

Required Values

YES or NO.
Secure Messaging Extension User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter describes how to configure the SME e*Way Connection Configuration.

4.1 Configuring e*Way Connections
e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections:

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click on the icon to create a new e*Way Connection.

3 The New e*Way Connection Component dialog box opens, enter a name for the
e*Way Connection. Click OK.

4 Double-click on the new e*Way Connection. For this example, the connection has
been defined as ecSME.

5 The e*Way Connection Properties dialog box opens.

6 From the e*Way Connection Type drop-down box, select SME.

7 Enter the Event Type “get” interval in the dialog box provided.

8 From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

The SME e*Way Connection configuration parameters are organized into the following
sections:

! connector

! encrypt

! decrypt

! sign

! verify

! Certificate

! CRL
Secure Messaging Extension User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
4.1.1 Connector
This section contains a set of top level parameters:

! type

! class

! Property.Tag

Type

Description

Specifies the type of connection.

Required Values

SME. The value defaults to SME.

Class

Description

Specifies the class name of the SME Client connector object.

Required Values

A valid package name. The default is com.stc.sme.eway.SMEClientConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

4.1.2 Encrypt
This section contains a set of top level parameters:

! Certificate

! format

! algorithm

! MessageFormat

! EncodingFormat
Secure Messaging Extension User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
Certificate

Description

Specifies the certificate of the partner to which encrypted messages will be sent.

Required Values

A valid certificate.

Format

Description

Specifies the certificate format.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. The
default is DER.

Algorithm

Description

Specifies the algorithm used for encryption.

Required Values

A string. The appropriate encryption algorithm. One of four provided:
DES_EDE3_CBC, RC2_CBC_40, RC2_CBC_64, RC2_CBC_128. The default is
DES_EDE3_CBC.

MessageFormat

Description

Specifies the format used for the encrypted message.

Required Values

The appropriate message format. One of two provided: PKCS7, or SMIME2. The
default is SMIME2.

EncodingFormat

Description

Specifies the format used to encode the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: BASE64, or BINARY. The
default is BASE64.
Secure Messaging Extension User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
4.1.3 Decrypt
This section contains a set of top level parameters:

! Message Format

! Encoding Format

! PKCS12

! PassPhrase

MessageFormat

Description

Specifies the format used for encrypting the message.

Required Values

The appropriate encryption format. One of two provided: PKCS7, or SMIME2. The
default is SMIME2.

EncodingFormat

Description

Specifies the encoding format for the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: BASE64, or BINARY. The
default is BASE64.

PKCS12

Description

Specifies the PKCS12 file. The PKCS12 file is where the private key is stored.

Required Values

The valid path and PKCS12 file.

PassPhrase

Description

Specifies the PassPhrase (password) used to protect/access the PKCS12 file.

Required Values

A valid PassPhrase.

4.1.4 Sign
This section contains a set of top level parameters:
Secure Messaging Extension User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
! algorithm

! detached

! MessageFormat

! EncodingFormat

! PKCS12

! PassPhrase

Algorithm

Description

Specifies the signing algorithm, the algorithm used to sign the message.

Required Values

The appropriate algorithm type. One of two provided: RSA_MD5, or RSA_SHA1. The
default is RSA_SHA1.

Detached

Description

Specifies whether the signature will be separated from the original message.

Required Values

Yes or No. Yes detaches the signature.

MessageFormat

Description

Specifies the format used for encrypting the message.

Required Values

The appropriate encryption format. One of two provided: PKCS7, or SMIME2. The
default is SMIME2.

EncodingFormat

Description

Specifies the encoding format for the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: BASE64, or BINARY. The
default is BASE64.
Secure Messaging Extension User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
PKCS12

Description

Specifies the PKCS12 file. The PKCS12 file is where the private key is stored.

Required Values

The valid path and PKCS12 file.

PassPhrase

Description

Specifies the PassPhrase (password) used to protect/access the PKCS12 file.

Required Values

A valid PassPhrase.

4.1.5 Verify

This section contains a set of top level parameters:

! MessageFormat

! EncdoingFormat

! Certificate

! format

MessageFormat

Description

Specifies the format used for encrypting the message.

Required Values

The appropriate encryption format. One of two provided: PKCS7, or SMIME2. The
default is SMIME2.

EncodingFormat

Description

Specifies the encoding format for the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: BASE64, or BINARY. The
default is BASE64.
Secure Messaging Extension User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
Certificate

Description

Specifies the certificate used to verify the signed message. If not set, the certificate
attached to the signed message will be used to verify the signed message.

Required Values

A valid certificate.

Format

Description

Specifies the certificate format.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. The default
is DER.

4.1.6 Certificate
This section contains a set of top level parameters:

! Checking

! TrustedCA

! format

Checking

Description

Specifies the method used to check the certificate. Three options are available for
checking:

! Direct: The certificate used in the program has been checked and should be trusted.

! CA: Only those certificates issued by the trusted CAs can be used in the program.

! CA_CRL: Certificates issued from the trusted CAs will be checked with CRLs. If
this one is selected, a CRL catalog, needs to be configured for the purpose of
locating the CRL.

Required Values

The appropriate checking method. One of three options provided: CA, CA_CRL, or
DIRECT. The default is CA
Secure Messaging Extension User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
TrustedCA

Description

Specifies the trusted CAs. Certificates of the designated CA are used to check the
certificates use within the program. Multiple CAs may be selected.

Required Values

One or more trusted CAs.

Format

Description

Specifies the format of the CA’s certificate. If PK7 is selected, the end entity will be
regarded as the CA’s Certificate.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. The
default is DER.

4.1.7 CRL
This section contains a set of top level parameters:

! filename

! CACRLCertifciate

! CACRLformat

! CACertifciate

! format

Filename

Description

Specifies the file name of the stored CRL, DER is the required format.

Required Values

The path and file name of the stored CRL.

CACRLCertificate

Description

Specifies the certificate of the CA that was used to sign the CRL.

Required Values

A valid certificate name.
Secure Messaging Extension User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
CACRLformat

Specifies the format of the CA’s certificate. If PK7 is selected, the end entity will be
regarded as the CA’s Certificate.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. The
default is DER.

CACertificate

Description

Specifies the certificate of the CA that was used to sign user's certificate. This certificate
will be regarded as the trusted CA certificate. If it is the same as the one used to sign the
CRL, leave this parameter blank.

Required Values

A valid certificate name.

Format

Description

Specifies the format of the CA’s certificate. If PK7 is selected, the end entity will be
regarded as the CA’s Certificate.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. The
default is DER.
Secure Messaging Extension User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter includes information pertinent to implementing the Java-enabled SME
e*Way in a production environment. Also included is a sample schema. The sample
schema can be located in the root directory of the Installation CD under:

samples/ewsme

The following assumptions are applicable to this implementation: 1) The SME e*Way
has been successfully installed. 2) The executable and the configuration files have been
appropriately assigned. 3) All necessary .jar files are accessible.

5.1 SME Sample Implementation Overview
During installation, the host and Control Broker are automatically created and
configured. The default name of each is the name of the host on which you are
installing the e*Gate Enterprise Manager GUI. To complete the implementation of the
Java-enabled SME e*Way, do the following:

! Make sure that the Control Broker is activated.

! In the e*Gate Enterprise Manager, define and configure the following as necessary:

" Inbound e*Way using stcewfile.exe

" Outbound e*Way using stcewfile.exe

" The Multi-Mode e*Way component.

" Event Type Definitions used to package the data to be exchanged with the
external system.

" Collaboration Rules to process Events.

" The e*Way Connection to be created as described in Chapter 4.

" Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

" The destination to which data will be published prior to being sent to the
external system.

The following sections describe how to define and associate each of the above
components. However, the section “Sample Schema” on page 45 provides the details
necessary to create the components of a specific schema consisting of three e*Ways,
Secure Messaging Extension User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
three Event Types, one Collaboration Rule, two Intelligent Queues and three
Collaborations.

5.1.1 Creating the New Schema
The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the SME e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

3 When prompted to select a schema, click New.

4 Enter a name for the new schema; In this case, enter SMESample, or any name as
desired.

The e*Gate Enterprise Manager opens under your new schema. You are now ready to
begin creating the necessary components for this sample schema.

5.1.2 Event Types
The SME e*Way installation includes the file “smemessage.xsc” which represents a
standard SME Event Type template.

Creating an Event Type from an Existing DTD

For the purpose of this example, the following procedure shows how to create an Event
Type Definition (ETD) from an existing Document Type Definition (DTD) using
(smeinputmsg.dtd located in the <eGate root directory>/client/etd/smeclient) as the
input file.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button to create a new Event
Type.

3 Enter the name of the Event, then click OK. (For the purpose of this sample, the first
Event Type is defined as “input”.)

4 Double-click the new Event Type to edit its properties.

5 When the Properties window opens, click the New button. The ETD Editor opens.

6 Select New from the File menu on Task Manager.
Secure Messaging Extension User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
7 The Event Type Definition Wizard opens.

Figure 3 Event Type Definition Wizard

8 Select the proper wizard. (For this Event Type, select DTDWizard.)

9 Enter a package name where the DTD builder can place all the generated Java
classes associated with the created ETD. (For this sample use SME.)

10 Select a DTD file to be used by the DTD builder to generate an ETD file. (Using the
browse button, navigate to an existing DTD. For this sample, the file
smeinputmsg.dtd was used.)

11 Click Next. and review the summary information.

12 Click Back to edit, otherwise, click Finish.

13 The ETD Editor opens displaying the newly converted .xsc file. An ETD is a
graphical representation of the layout of data in an Event.

14 Save the file as inputmsg.xsc, and Promote to Run Time.

Note: For more information on the creation and modification of Java-enabled ETDs, please
see the “Java-based ETD Editor” guide.

Creating an Event Type Without an Existing DTD

For the purpose of this example, the following procedure shows how to create an ETD
without using an existing DTD file as the input file.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button to create a new Event
Type.

3 Enter the name of the Event, then click OK. (For the purpose of this sample, the first
Event Type is defined as “outevent”)

4 Double-click the new Event Type to edit its properties.

5 When the Properties window opens, click the New button. The ETD Editor opens.
Secure Messaging Extension User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
6 Select New from the File menu on Task Manager.

7 The Event Type Definition Wizard opens.

Figure 4 Event Type Definition Wizard

8 Select the desired wizard. (For this Event Type, select StandardETD.)

9 Enter a package name where the DTD builder can place all the generated Java
classes associated with the created ETD. (For this sample, use SMESample as the
package name.)

10 The ETD Editor opens, select New from the File menu.

11 Select EventTypeDefintion1.

12 Right click, and select Add Field, as Child Node.

13 Select Field1 and change the structure type to fixed in the Properties window.

Figure 5

14 Triple-click on EventTypeDefinition1 in the Event Type Definition window, and
rename it outevent.

15 Triple-click on Field1, and rename it Data.
Secure Messaging Extension User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
Figure 6 SMEMessage.xsc

16 Save the file as smemessage.xsc, and Promote to Run Time.

Creating an Event Type From an Existing .xsc

For the purpose of this example, the following procedure shows how to create an Event
Type Definition (ETD) from an existing .xsc file using (smemessage.xsc) as the input
file.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button to create a new Event
Type.

3 Enter the name of the Event, then click OK. (For the purpose of this sample, the first
Event Type is defined as “smemessage”).

4 Double-click the new Event Type to edit its properties.

5 When the Properties window opens, click the Find button.

6 Select smemessage.xsc (provided as the default destination .xsc file).

7 Click OK to continue.

5.1.3 Creating and Configuring the e*Ways
The first components to be created are the following e*Ways:
Secure Messaging Extension User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
! Inbound_eWay

! Outbound_eWay

! Multi-Mode_eWay

The following sections provide instructions for creating each e*Way.

Inbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way, (in this case, inbound), then click OK.

6 Right-click inbound, and select Properties to edit its properties.

7 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select stcewfile.exe as the executable file.

8 Under the Configuration File field, click on the New button. When the Settings
page opens, set the following for this configuration file:

:

9 After selecting the desired parameters, save the configuration file (inbound.cfg) and
Promote to Run Time. Close the .cfg file.

10 Use the Startup, Advanced, and Security tabs to modify the default settings for each
e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling, and so forth.

Table 2 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming Yes

AllowOutgoing No

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:Indata (input file folder)

InputFileExtension *.fin (input file extension)

PollMilliseconds Default

Remove EOL Default

MultipleRecordsPerFile No

MaxBytesPerLine Default

BytesPerLineIsFixed Default

Performance Testing Default
Secure Messaging Extension User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

11 Select OK to close the e*Way Properties window.

Outbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way, (in this case, outbound), then click OK.

6 Select outbound, then right-click and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stcewfile.exe as the executable file.

8 Under the Configuration File field, click the New button. When the Settings page
opens, set the following for this configuration file:

:

9 Save the .cfg file (outbound.cfg), Promote to Run Time, close Settings. Click OK to
close e*Way Properties window.

Multi-Mode e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that will manage the new e*Way.

4 On the palette, click the Create a New e*Way button.

Table 3 Configuration Parameters for the Outbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming No

AllowOutgoing Yes

Outbound Settings

OutputDirectory C:\DATA

OutputFileName output%d.dat

MultipleRecordsPerFile No

MaxRecordsPerFile 10000

AddEOL Yes

Poller Inbound Settings Default

Performance Testing Default
Secure Messaging Extension User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
5 Enter the name of the new e*Way (in this case, ew_java), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file.

8 To edit the JVM Settings, select New under Configuration file.

See “Multi-Mode e*Way Configuration” on page 15 for details on the parameters
associated with the Multi-Mode e*Way.
:

9 Save the .cfg file, Promote to Run Time.

10 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

D Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

E Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

F Use Security to view or set privilege assignments.

11 Click OK to close e*Way Properties window.

5.1.4 Create the e*Way Connection
The e*Way Connection configuration file contains the connection information along
with the information needed to communicate using SME.

To create and configure a New e*Way Connection

1 Highlight the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection, then click OK. (For the purpose of this
sample, the e*Way Connection is defined as “con_sme”.)

4 Double-click the new e*Way Connection to edit its properties.

5 When the e*Way Connection Properties window opens, select SME from the
e*Way Connection Type drop-down menu.

Table 4 Configuration Parameters for the MultiMode e*Way

Parameter Value

JVM Settings (unless otherwise stated, leave settings as default)

JNI DLL absolute
pathname

C:\eGate\client\bin\Jre\jvm.dll (or absolute path to proper JNI DLL)

CLASSPATH
Prepend

C:\eGate\client\classes\stcsme.jar
C:\eGate\client\classes\ThirdParty\baltimore\classes\smime.jar
C:\eGate\client\classesThirdParty\baltimore\classes\KeyToolsPro_All_1.2.jar
(or absolute path to stcsme.jar, smime.jar, and KeyToolsPro_All1.2.jar)
Secure Messaging Extension User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
6 Under e*Way Connection Configuration File, click the New button.

7 The e*Way Connection editor opens, select the necessary parameters.

For more information on the SME e*Way Connection Type parameters, see “e*Way
Connection Configuration” on page 20.

8 Save the .cfg file and Promote to Run Time.

5.1.5 Intelligent Queues
The next step is to create and associate Intelligent Queues (IQs). IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another. IQs use IQ
Services to transport data. IQ Services provide the mechanism for moving Events
between IQs, handling the low-level implementation of data exchange (such as system
calls to initialize or reorganize a database).

To create and modify an Intelligent Queue for the SME e*Way:

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

4 Select an IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ (in this case, iq1), then click OK.

7 Double-click the new IQ to edit its properties.

8 On the General tab, specify the Service and the Event Type Get Interval.

The STC_Standard IQ Service provides sufficient functionality for most
applications. If specialized services are required, custom IQ Service DLLs may be
created.

The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

9 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

10 Click OK to close the IQ Properties window

11 For this schema, repeat steps 1 through 10 to create an additional IQ (iq2).

5.1.6 Collaboration Rules
The next step is to create the Collaboration Rules that will extract and process selected
information from the source Event Type defined above, according to its associated
Collaboration Service. The Default Editor can be set to either Monk or Java.

From the Enterprise Manager Task Bar, select Options and click Default Editor. The
default should be set to Java.
Secure Messaging Extension User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
The sample schema call for the creation of three collaboration Rules files

! Pass_in (Pass Through)

! Pass_out (Pass Through)

! cor_java (Java)

Creating Collaboration Rules files

Pass Through (inbound)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component, then click OK (for this
case, use Pass_in).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.

Figure 7 Collaboration Properties

6 The Service field defaults to Pass Through.

7 Go to the Subscriptions tab. Select input under Available Input Event Types, and
click the right arrow to move it to Selected Input Event Types. The box under
Triggering Event should be checked.

8 Go to the Publications tab. Select input under Available Output Event Types, and
click the right arrow to move it to Selected Output Event Types. The Radio button
under Default will be enabled.

9 Click OK to close the Collaboration Rules - passin Properties window.
Secure Messaging Extension User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
Pass Through (outbound)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component, then click OK (for this
case, use Pass_out).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.

6 The Service field defaults to Pass Through.

7 Go to the Subscriptions tab. Select outevent under Available Input Event Types,
and click the right arrow to move it to Selected Input Event Types. The box under
Triggering Event should be checked.

8 Go to the Publications tab. Select outevent under Available Output Event Types,
and click the right arrow to move it to Selected Output Event Types. The Radio
button under Default will be enabled.

9 Click OK to close the Collaboration Rules - passin Properties window.

10 Click OK to close the Collaboration Properties window.

Java (cor_java)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule, then click OK (for this case, use
cor_java).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

6 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

7 In the Initialization string box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

8 Select the Collaboration Mapping tab.

9 Using the Add Instance button, create instances to coincide with the Event Types.

For this sample, do the following:

10 In the Instance Name column, enter in1 for the instance name.

11 Click Find, navigate to etd\inputmsg.xsc, double-click to select.

inputmsg.xsc is added to the ETD column of the instance row.

12 In the Mode column, select In from the drop–down menu available.
Secure Messaging Extension User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
13 In the Trigger column, click the box to enable trigger mechanism.

14 Repeat steps 9–13 using the following values:

" Instance Name — out1

" ETD — outputmsg.xsc

" Mode — Out

" Trigger — do not select

15 Repeat steps 9–13 again using the following values:

" Instance Name — out

" ETD — smemessage.xsc

" Mode — Out

16 Trigger — do not select

Figure 8 Collaboration Rules - Collaboration Mapping Properties

Select the General tab, under the Collaboration Rule box, select New. The
Collaboration Rules Editor opens.

17 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

Creating the Collaboration Rules Class

1 Highlight retBoolean in the Business Rules pane.

All of the user–defined business rules are added as part of this method.
Secure Messaging Extension User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
2 Select InputFile from the Source Events pane. Drag–and–drop onto Input in the
Destination Events pane. A connecting line appears between the properties objects.

3 In the Business Rules pane, a rule expression appears, with the properties of that
rule displayed in the Rule Properties pane.

4 Select OutputFile from the Source Events pane. Drag–and–drop onto Output in the
Destination Events pane.

5 Select Signature from the Source Events pane. Drag–and–drop onto Signature in
the Destination Events pane.

Figure 9 Collaboration Rules — Collaboration Mapping Properties

6 Choose the appropriate function (encrypt/sign/verify/decrypt) from the method
SMEMessageAp by dragging it to the Rule panel.

For example, to add an encryption rule, from the Destination Event:

getout1().setData(new String(getout().encrypt()))
Secure Messaging Extension User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
7 Before compiling the code, select Tools, Options,.

8 Verify that all necessary .jar files are included. Add stcsme.jar.

Figure 10 Business Rules

9 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. The Save menu opens, provide a name for the .xpr
file. For the sample, use SMESample.xpr. Promote to Run time.

5.1.7 Collaborations
Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external. Collaborations consist of the
Subscriber, which “listens” for Events of a known type (sometimes from a given
source), and the Publisher, which distributes the transformed Event to a specified
recipient.

Create the SME_Multi_Mode collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the ew_java e*Way to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample,
“cl_java”.)

7 Double -click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “cor_java”.)
Secure Messaging Extension User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name list, select the Instance Name that you previously
defined in1.

B From the Event Type list, select the Event Type that you previously defined
(input).

C Select the Source from the Source list. In this case, it should be cr_inbound.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name that you previously
defined out1.

B From the Event Types list, select the Event Type that you previously defined
(outevent).

C Select the publication destination from the Destination list. In this case, it
should be iq2.

11 In the Publications area, click Add again to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name that you previously
defined out.

B From the Event Types list, select the Event Type that you previously defined
(smemessage).

C Select the publication destination from the Destination list. In this case, it
should be con_sme.

Figure 11 Collaboration Properties
Secure Messaging Extension User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation SME Sample Implementation Overview
12 Click OK to exit.

Create the Inbound_eWay collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the inbound e*Way to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample, “PassIn”.)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “PassIn”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
(input).

B Select the Source from the Source list. In this case, it should be <External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
(input).

B Select the publication destination from the Destination list. In this case, it
should be iq1.

Create the Outbound_eWay collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the Outbound_eWay to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample,
“PassOut”.)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “PassOut”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
(outevent).
Secure Messaging Extension User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation Sample Schema
B Select the Source from the Source list. In this case, it should be cl_java.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
(outevent).

B Select the publication destination from the Destination list. In this case, it
should be <External>.

5.2 Sample Schema
The previous sections provided the basics for implementing the SME e*Way. This
section describes how to use the SME e*Way within a sample Schema. It is assumed that
the SME e*Way has been installed properly, and that all of the necessary files and
scripts are located in the default location.

This implementation will consist of two file-based e*Ways, one Multi-Mode e*Way,
three Event Types, three Collaboration Rules, two Intelligent Queues and three
Collaboration, as follows:

! inbound - This e*Way will receive input from an external source, apply pass
through Collaboration Rules, and publish the information to an Intelligent Queue.

! ew_java - This Multi-Mode e*Way applies extended Java Collaboration Rules to an
inbound Event to perform the desired business logic, in this case encryption and
decryption.

! outbound - This e*Way will receive information from the Multi-Mode e*Way and
publish to the external system.

! smemessage - This Event Type contains the methods to be used to perform the
necessary transformation.

! input - This Event Type describes an Event that is input to the extended Java
Collaboration Service.

! outevent - This Event Type describes an Event that contains the transformed data.

! PassIn - This Collaboration Rule is associated with the inbound e*Way, and is used
for receiving the input Event.

! cor_java - The Collaboration Rule is associated with the ew_java Multi-Mode e*Way,
and is used to perform the transformation process.

! PassOut - This Collaboration Rule is associated with the outbound e*Way, and is
used for sending the Event to the External.

! iq1 - This Intelligent Queue is a STC_Standard IQ, and forwards data to the ew_java
Multi-Mode e*Way.

! iq2 - This Intelligent Queue is a STC_Standard IQ, and forwards data to the
outbound e*Way.
Secure Messaging Extension User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation Certificate Formats
5.2.1 Execute the Schema
To execute the SMESample schema, do the following:

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs SMESample -un username -up user password
-ln hostname_cb

Substitute hostname, username and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.

3 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

4 Select the SMESample schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then click on the right button of the mouse, and
select Start.

6 Highlight each of the e*Ways, right-click the mouse, and select Start.

7 To view the output, copy the output file (specified in the Outbound_eWay
configuration file). Save to a convenient location, open.

Note: While the schema is running, opening the destination file, will cause errors.

5.3 Certificate Formats
The SMIME/C library accepts certificates in PKCS#7 format. DER encoded binary
X.509 and Base64 encoded X.509 format certificates are also popular.

Windows 2000 and Internet Explorer provide a tool to transfer between formats. To
change formats, perform the following:

1 On Windows 2000, double click the certificate file.
Secure Messaging Extension User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation Certificate Formats
Figure 12 Windows 2000 Certificate Files

2 Select the Detail tab.

Figure 13 Windows 2000 Detail Tab

3 Click on “copy to file” button.
Secure Messaging Extension User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation Certificate Formats
Figure 14 Windows 2000 Copy to File

4 Click Next. Choose the format.

Figure 15 Windows 2000 Copy to File

For Internet Explorer:

1 Select Tools-->Internet option.

2 Choose Content Tab, click on Certificates.
Secure Messaging Extension User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation Certificate Formats
Figure 16 Windows 2000 Copy to File

3 Click on Import, to import your certificate.

4 Click on “Intermediate Certification Authorities” Tab to choose the certificate to
import, and click on the “export” button.

Figure 17 Windows 2000 Copy to File

5 Select the format, and save the file.
Secure Messaging Extension User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 6

Secure Messaging Extension Functions

This chapter details the Secure Messaging Extension Functions. The

6.1 SMEMessage Functions
The following static methods of the SMEMessage class are available to all Java e*Ways.
The SMEMessage class is found in the com.stc.sme package:

! encrypt on page 51

! encrypt on page 52

! decrypt on page 52

! sign on page 54

! verify on page 55

! verify on page 56

base64Decode

Syntax

public byte[] base64Decode(byte[] input)

Description

base64Decode is used obtain the base64 decoded result of the input message.

Parameters

Return Values

byte array
Returns the signed message if successful.

Parameter name Type Description

input byte array byte array of the message.
Secure Messaging Extension User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Secure Messaging Extension Functions SMEMessage Functions
Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

Location

stcsme.jar

base64Encode

Syntax

public byte[] base64Encode(byte[] input)

Description

base64Encode is used obtain the base64 encoded result of the input message.

Parameters

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

Location

stcsme.jar

encrypt

Syntax

public byte[] encrypt()

Description

encrypt is used to encrypt the message for the specified recipients. The input field of
SMEMessageAPP ETD needs to be set to the filename which contains the message.

Parameters

None.

Return Values

byte array
Returns an encrypted message, if successful.

Parameter name Type Description

input byte array byte array of the message.
Secure Messaging Extension User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Secure Messaging Extension Functions SMEMessage Functions
Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
encryption process.

Location

stcsme.jar

encrypt

Syntax

public byte[] encrypt(byte[] input)

Description

encrypt is used to encrypt the message for the specified recipients.

Parameters

Return Values

byte array
Returns an encrypted message, if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
encryption process.

Location

stcsme.jar

decrypt

Syntax

public byte[] decrypt()

Description

decrypt is used to decrypt the encrypted input message. The input field of
SMEMessageAPP ETD needs to be set to the filename which contains the message.

Parameters

None.

Return Values

byte array
Returns the original message if successful.

Parameter name Type Description

input byte array The original message for encryption.
Secure Messaging Extension User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Secure Messaging Extension Functions SMEMessage Functions
Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
decryption process.

Location

stcsme.jar

decrypt

Syntax

public byte[] decrypt(byte[] input)

Description

decrypt is used to decrypt the encrypted input message.

Parameters

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
decryption process.

Location

stcsme.jar

getMD5Hash

Syntax

public byte[] getMD5Hash(byte[] input)

Description

getMD5Hash is used obtain the hash code of the input message using MD5.

Parameters

Parameter name Type Description

input byte array The encrypted message.

Parameter name Type Description

input byte array byte array of the message.
Secure Messaging Extension User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Secure Messaging Extension Functions SMEMessage Functions
Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

Location

stcsme.jar

getSHA1Hash

Syntax

public byte[] getSHA1Hash(byte[] input)

Description

getMD5Hash is used obtain the hash code of the input message using SH1.

Parameters

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

Location

stcsme.jar

sign

Syntax

public byte[] sign()

Description

sign is used to sign a message with a detached or inline signature. The input field of
SMEMessageAPP ETD needs to be set to the filename which contains the message.

Parameters

None.

Parameter name Type Description

input byte array byte array of the message.
Secure Messaging Extension User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Secure Messaging Extension Functions SMEMessage Functions
Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

Location

stcsme.jar

sign

Syntax

public byte[] sign(byte[] input)

Description

sign is used to sign a message with a detached or inline signature.

Parameters

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

Location

stcsme.jar

verify

Syntax

public byte[] verify()

Description

verify is used to verify the signed message and return the original message , provided
the signed message is verified. The content of the specified input field is used as the

Parameter name Type Description

input byte array The message used for signing.

clearSign boolean If true, signature is a detached signature.
If false, signature is an inline signature.
Secure Messaging Extension User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Secure Messaging Extension Functions SMEMessage Functions
byte array message that needs to be authenticated, if the message is in SMIME2 format
or in PKCS7 format with inline signature. If the message to be verified is in PKCS7
format, and has a detached signature, the input field is used to indicate the file that
contains the original message, and the Signature field is used to indicate that the file
contains the detached signature.

Parameters

None.

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
verification process.

Location

stcsme.jar

verify

Syntax

public byte[] verify(byte[]input1 byte[] input2)

Description

verify is used for verification of the detached PKCS7 signature, in which case, the
signature portion and the original content is separated.

Parameters

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
verification process.

Location

stcsme.jar

Parameter name Type Description

input1 byte[] Byte array for the original message.

input2 byte[] byte array of the detached signature.
Secure Messaging Extension User’s Guide 56 SeeBeyond Proprietary and Confidential

Index
Index

B
Baltimore Technologies

Web sight 7
Base64 46
base64Encode 51

C
Certificate Formats 46
Classpath Override 16
Classpath Prepend 16
collaboration rules 37

creating collaboration rules files 38
collaborations 42

for the Multi-Mode e*Way 42
components 6
creating a new schema 30
CRL 27

D
decrypt 52, 53
DER 46
Disable JIT 18

E
e*Way Connection 36

parameters
SME 20

e*Ways
creating and configuring 33
Inbound e*Way 34
Multi-Mode e*Way 35
Outbound e*Way 35

encrypt 51, 52
event type

creating
from an existing DTD 30
without an existing DTD 31

creating from an existing .xsc 33
event types 30

F
files/directories created by installation 14

G
getMD5Hash 53
getSHA1Hash 54

H
host system requirements 11

I
implementation 29

overview 29
Initial Heap Size 17
installation

UNIX
pre-installation 13
procedure 13

Windows NT or 2000 12
pre-installation 12
procedure 12

intelligent queues 37
intended reader 6

J
Java JDK 1.3 11
Java requirements 11
JNI DLL Absolute Pathname 15
JVM settings 15

M
Maximum Heap Size 17
MDAC 2.6 RTM 11
Microsoft Data Access Components (MDAC) 11
Microsoft ODBC driver for Oracle 11
Multi-Mode e*Way 15

configuration 15
parameters 15

O
ODBC drivers 11
overview 6

P
parameters
Secure Messaging Extension User’s Guide 57 SeeBeyond Proprietary and Confidential

Index
Certificate 26
Checking 26
Format 27
TrustedCA 27

Connector 21
Class 21
Type 21

CRL 27
CACertificate 28
CACRLCertificate 27
CACRLformat 28
Filename 27
Format 28

Decrypt 23
EncodingFormat 23
MessageFormat 23
PassPhrase 23
PKCS12 23

Encrypt 21
Algorithm 22
Certificate 22
EncodingFormat 22
Format 22
MessageFormat 22

Multi-Mode e*Way
CLASSPATH Override 16
CLASSPATH prepend 16
Disable JIT 18
Initial Heap Size 17
JNI DLL absolute pathname 15
JVM settings 15
Maximum Heap Size 17

Sign 23
Algorithm 24
Detached 24
EncodingFormat 24
MessageFormat 24
PKCS12 25

Verify 25
Certificate 26
EncodingFormat 25
Format 26
MessageFormat 25

public-key encryption 7

R
requirements

host system 11
Java version 11

S
S/MIME 7

introduction 7
sample schema 45

executing the schema 46
Secure Messaging Extension

introduction 8
sign 54, 55
SME

introduction 8
system requirements 11

U
UNIX 13

installation procedure 13
pre-installation 13

V
verify 55, 56

X
X.509 46
Secure Messaging Extension User’s Guide 58 SeeBeyond Proprietary and Confidential

	Secure Messaging Extension User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components

	1.2 Introducing S/MIME
	1.3 Introducing Secure Messaging Extension
	1.4 Supported Operating Systems
	1.5 System Requirements
	1.5.1 Host System Requirements
	GUI Host Requirements

	Installation
	2.1 Windows NT or 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way
	3.1.1 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Class Garbage Collection
	Garbage Collection Activity Reporting
	Asynchronous Garbage Collection
	Report JVM Info and all Class Loads
	Disable JIT
	Allow Remote Debugging of JVM

	e*Way Connection Configuration
	4.1 Configuring e*Way Connections
	4.1.1 Connector
	Type
	Class
	Property.Tag

	4.1.2 Encrypt
	Certificate
	Format
	Algorithm
	MessageFormat
	EncodingFormat

	4.1.3 Decrypt
	MessageFormat
	EncodingFormat
	PKCS12
	PassPhrase

	4.1.4 Sign
	Algorithm
	Detached
	MessageFormat
	EncodingFormat
	PKCS12
	PassPhrase

	4.1.5 Verify
	This section contains a set of top level parameters:
	MessageFormat
	EncodingFormat
	Certificate
	Format
	The appropriate certificate format. One of three provided: DER, PEM, or PK7. The default is DER.

	4.1.6 Certificate
	Checking
	TrustedCA
	Format

	4.1.7 CRL
	Filename
	CACRLCertificate
	CACRLformat
	CACertificate
	Format

	Implementation
	5.1 SME Sample Implementation Overview
	5.1.1 Creating the New Schema
	5.1.2 Event Types
	Creating an Event Type from an Existing DTD
	Creating an Event Type Without an Existing DTD
	Creating an Event Type From an Existing .xsc

	5.1.3 Creating and Configuring the e*Ways
	5.1.4 Create the e*Way Connection
	5.1.5 Intelligent Queues
	5.1.6 Collaboration Rules
	Creating Collaboration Rules files
	Java (cor_java)
	Creating the Collaboration Rules Class

	5.1.7 Collaborations

	5.2 Sample Schema
	5.2.1 Execute the Schema

	5.3 Certificate Formats

	Secure Messaging Extension Functions
	6.1 SMEMessage Functions
	base64Decode
	base64Encode
	encrypt
	encrypt
	decrypt
	decrypt
	getMD5Hash
	getSHA1Hash
	sign
	sign
	verify
	verify

	Index
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	O
	P
	R
	S
	U
	V
	X

