
Secure Messaging Extension 
User’s Guide

Release 4.5.2

Monk Version
SeeBeyond Proprietary and Confidential



The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable 
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation 
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished 
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing, 
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents 
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be 
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for 
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are 
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their 
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the 
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020308150853.
Secure Messaging Extension User’s Guide 2 SeeBeyond Proprietary and Confidential



Contents
Contents

Chapter 1

Introduction 5
Overview 5

Intended Reader 5
Components 5

Introducing S/MIME 6

Introducing Secure Messaging Extension 7

Supported Operating Systems 10

System Requirements 10
Environment Variable Settings 10

Chapter 2

Installation 11
Windows 11

Pre-installation 11
Installation Procedure 11

UNIX 12
Pre-installation 12
Installation Procedure 12

Files/Directories Created by the Installation 13

Chapter 3

Implementation 14
Sample Configuration 14

Sample Implementation 15

Sample Monk Scripts 15

Certificate Formats 15
Secure Messaging Extension User’s Guide 3 SeeBeyond Proprietary and Confidential



Contents
Chapter 4

Secure Messaging Extension Functions 19
Secure Messaging Extension Functions 19

begin-session 19
db-query 20
db-store 21
end-session 23
set-param 24
sign-encrypt 26
verify-decrypt 28
wipe-handle 30

Index 31
Secure Messaging Extension User’s Guide 4 SeeBeyond Proprietary and Confidential



Chapter 1

Introduction

This document describes how to install and configure the Secure Messaging Extension.

1.1 Overview
The Secure Messaging Extension enables e*Gate to process Events utilizing the 
S/MIME (Secure Multipurpose Internet Mail Extensions) message format. The Secure 
Messaging Extension supports encryption, decryption and authentication of messages 
and is interoperable with any other client applications that support the S/MIME 
standard.

This adds the following features to a transaction:

! privacy

! message (Event) authentication

! sender authentication

! nonrepudiation

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with 
responsibility for maintaining the e*Gate system; to have expert-level knowledge of 
Windows NT and/or UNIX operations and administration; and to be thoroughly 
familiar with Windows-style GUI operations. 

1.1.2 Components
The following components comprise Secure Messaging Extension:

! Secure Messaging Extension Monk function scripts

! Dynamically loaded libraries (DLLs)

! Monk collaborations that load and call their functions.

A complete list of the installed files appears in Table 1 on page 13.
Secure Messaging Extension User’s Guide 5 SeeBeyond Proprietary and Confidential



Chapter 1 Section 1.2
Introduction Introducing S/MIME
1.2 Introducing S/MIME
Secure Multipurpose Internet Mail Extension (S/MIME) is a type of MIME message 
format that supports digital signatures and encryption of messages. The new form is 
based on the public-key encryption technology created by RSA Data Security, Inc. The 
RSA algorithm is based on the fact that there is no efficient way to factor very large 
numbers, making nearly it impossible to derive the private key based solely on the 
public key. 

The public-key encryption system uses two keys: a public key known to everyone and a 
private key known only to the recipient of the message. For example, if JaneDoe wants 
to send a secure message to JohnDoe, JaneDoe uses JohnDoe’s public key to encrypt the 
message. JohnDoe then utilizes his own private key to decrypt it.

Only the public key can be used to encrypt messages, and only the corresponding 
private key can be used to decrypt them (and vice versa).

Similarly, the sender utilizes his/her private key to include a signature on the message, 
while the recipient uses the sender’s public key to verify the signature.

MIME offers a standardized way to represent and encode a wide variety of media types 
for transmission via the internet. Many e-Mail clients now support MIME, which 
enables sending and receiving of graphics, audio, and video files via the Internet. 
MIME also supports messages in character sets other than ASCII.

When using MIME, messages can contain the following data types:

! Text messages in US-ASCII

! Character sets other than US-ASCII

! Multi-media: Image, Audio, and Video messages

! Multiple objects in a single message

! Messages of unlimited length

! Binary files.

With the implementation of S/MIME, the protocol is available that adds digital 
signatures and encryption to these messages. These messages consist of two parts: the 
header and the body. The header forms a collection of field/value pairs structured to 
provide information necessary for the transmission of the message. MIME defines how 
the body of a message is structured. This format permits the inclusion of the above 
mentioned datatypes in a standardized manner. S/MIME defines the security services, 
adding digital signatures and encryption, thus preventing forgery and interception.

For more information regarding S/MIMIE, please see RSA Laboratories’ Frequently Asked 
Questions About Today’s Cryptography, available online at: 
http://www.rsasecurity.com/rsalabs/faq/. Also available is Internet Engineering Task 
Force S/MIME Message Specification (proposed standard) at: 
http://www.ietf.org/rfc/rfc2633.txt.
Secure Messaging Extension User’s Guide 6 SeeBeyond Proprietary and Confidential

http://www.rsasecurity.com/rsalabs/faq/
http://www.ietf.org/rfc/rfc2633.txt


Chapter 1 Section 1.3
Introduction Introducing Secure Messaging Extension
1.3 Introducing Secure Messaging Extension
The Secure Messaging Extension provides security features, allowing the secure 
transmission of exchanges over public domains such as the Internet. Secure Messaging 
Extension adds the ability to use Public Key Infrastructure (PKI) technology to ensure 
the confidentiality of exchanges by digitally signing and encrypting messages as they 
are sent, and decrypting and authenticating messages when they are received. 

The Secure Messaging Extension performs the encryption and decryption of messages 
using the S/MIME standard. The standard one-way hash algorithms ensure data 
integrity by verifying that no modifications are made to the message while in transit. 
The identity of the sender of a message is verified through the use of digital signatures, 
proving that the message actually originated from the entity who claims to have sent it.

The following flowcharts show the processing of the data from receipt to destination.
Secure Messaging Extension User’s Guide 7 SeeBeyond Proprietary and Confidential



Chapter 1 Section 1.3
Introduction Introducing Secure Messaging Extension
Figure 1   Inbound Signed/Encrypted Message

Receives an Inbound
Message

Retrieve Receiver's Private
Key from PKI Database

Signed Event?PKI Database

Forward Event body to
destination

Hash Event body

Decrypt digital signature
 using Public Key

Separate the digital signature and
originator's Public Key

from the body of the Event

Decrypted
digital signature = hashed

Event body.

Retrieve Public Key
from PKI Database

Raise
exception

Encrypted Event?

Encryption
required for this

Event?

Raise
exception

Yes

No

No

Yes

Separate Block encrypted Event
from PKI encrypted Session Key

Decrypt Session Key
using Private Key

Decrypt Event using Session Key

Yes

No

Encryption
required for this

Event?

Raise
exception

Yes

No

Yes

No
Secure Messaging Extension User’s Guide 8 SeeBeyond Proprietary and Confidential



Chapter 1 Section 1.3
Introduction Introducing Secure Messaging Extension
Figure 2   Outbound Signed/Encrypted Message

Receives Outbound
 Event/Message

Hash Event

Retrieve Private Key
from PKI Database

Sign Event?

Encrypt Event?

Retrieve Private Key
from PKI Database

Encrypt Session Key with
Partner's Public Key Certificate

Encrypt hashed Event
 using originator's Private Key

to create a digital signature

Add digital signature & originator's
Public Key

 to Outbound Event

Forward Outbound
Event to destination

Randomly generate Session Key

Use Session Key to
block encrypt the Event

Add PKI encrypted Session
Key to Block encrypted Event

No

No

Yes

Yes

PKI Database
Secure Messaging Extension User’s Guide 9 SeeBeyond Proprietary and Confidential



Chapter 1 Section 1.4
Introduction Supported Operating Systems
1.4 Supported Operating Systems
The Secure Messaging Extension (Java) is supported on the following operating 
systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i

1.5 System Requirements
To use the Secure Messaging Extension, you need the following:

! An e*Gate Participating Host, version 4.5.1 or higher. 

! 9 MB free disk space on both the Participating and the Registry Hosts.

Note: Additional disk space will be required to process and queue the data that the Secure 
Messaging Extension processes; the amount necessary will vary based on the type 
and size of the data being processed, and any external applications performing the 
processing.

! A TCP/IP network or other network connection.

! A fast CPU, if secure message volume is expected to be high. (The public-key 
operations associated with encryption and signing are computationally expensive. )

1.5.1 Environment Variable Settings
The user must set the MONK_LIBRARY_PATH environment variable.

If using bash:

export MONK_LIBRARY_PATH=/home/someuser/egate/client/bin

or if using csh or tcsh:

setenv MONK_LIBRARY_PATH /home/someuser/egate/client/bin
Secure Messaging Extension User’s Guide 10 SeeBeyond Proprietary and Confidential



Chapter 2

Installation

This chapter describes how to install the Secure Messaging Extension.

2.1 Windows

2.1.1 Pre-installation
! Exit all Windows programs before running the setup program, including any anti-

virus applications.

! You must have Administrator privileges to install this extension.

2.1.2 Installation Procedure
To install the Secure Messaging Extension on a Windows system:

1 Log in as an Administrator on the workstation on which you want to install the 
extension.

2 Insert the installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should 
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or 
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe 
on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to 
install the extension.

Note: Be sure to install the extension files in the suggested “client” installation directory. 
The installation utility detects and suggests the appropriate installation directory. 
Unless you are directed to do so by SeeBeyond support personnel, do not 
change the suggested “installation directory” setting.
Secure Messaging Extension User’s Guide 11 SeeBeyond Proprietary and Confidential



Chapter 2 Section 2.2
Installation UNIX
2.2 UNIX

2.2.1 Pre-installation
! You do not require root privileges to install this e*Way. Log in under the user name 

that you wish to own the e*Way files. Be sure that this user has sufficient privilege 
to create files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the Secure Messaging Extension on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM 
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type 

cd /cdrom

4 Start the installation script by typing:

./setup.sh

5 A menu of options will appear. Select the “install e*Way” option. Then, follow any 
additional on-screen directions.

Note: Be sure to install the extension files in the suggested “client” installation directory. 
The installation utility detects and suggests the appropriate installation directory. 
Unless you are directed to do so by SeeBeyond support personnel, do not 
change the suggested “installation directory” setting.
Secure Messaging Extension User’s Guide 12 SeeBeyond Proprietary and Confidential



Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
2.3 Files/Directories Created by the Installation
The Secure Messaging Extension installation process will install the following files 
within the e*Gate directory tree. Files will be installed within the “egate\client” tree on 
the Participating Host and committed to the “default” schema on the Registry Host. 

Table 1    Files created by the installation

e*Gate Directory File(s)

bin\ stc_monksmime.dll

bin\AIX\ libsmt.a
libldapssl30.so

bin\HP-UX\ libsmt.sl

bin\Solaris\ libsmt.so

bin\Win32\ smt32.dll
nsldap32vll.dll
Secure Messaging Extension User’s Guide 13 SeeBeyond Proprietary and Confidential



Chapter 3

Implementation

This chapter includes information pertinent to implementing the Secure Messaging 
Extension in a production environment.

3.1 Sample Configuration
The sample on the CD demonstrates a simple S/MIME execution:

! Load S/MIME extension

! Define test for error

! Display the encryption and/or signature algorithms returned by the sign-encrypt 
and verify-decrypt functions

! Read sample files into memory

! Set preliminary variables and begins the session

! Import keys and certificates into cache

! Authenticate the signature of an inbound message

! Attempt to authenticate the signature of a corrupt inbound message

! Encrypt an outbound message

! Sign an outbound message

! Decrypt an inbound message

! Decrypt an inbound message that has been corrupted

! Decrypt and authenticate an inbound message

! Fail to decrypt and authenticate a corrupt inbound message
Secure Messaging Extension User’s Guide 14 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.2
Implementation Sample Implementation
3.2 Sample Implementation
A sample Monk script for setting up Secure Messaging Extension is provided on 
the e*Gate installation CD-ROM in the directory

samples/ewsmime 

1 Copy all the files from the e*Gate installation CD-ROM samples directory samples/
ewsmime to a temporary working directory on the system on which the Secure 
Messaging Extension is installed.

3.3 Sample Monk Scripts
The samples on the CD can be run using the stctrans command-line utility once they 
are copied onto a working directory. They do not require a complete e*Gate schema 
configuration to function, and are designed to illustrate the principles involved in 
creating your own custom Monk scripts. The library (dll) files to be loaded and the 
script to be tested must be in the load path (or, for simplicity’s sake, may be placed in 
the connected directory). See the Monk Developer’s Reference for more information about 
the load path.

The syntax of the stctrans utility is 

stctrans monk_file.monk

Additional command-line flags are available; enter stctrans -h to display a list, or see 
the e*Gate Integrator System Administration and Operations Guide for more information.

3.4 Certificate Formats
The SMIME/C library accepts certificates in PKCS#7 format. DER encoded binary 
X.509 and Base64 encoded X.509 format certificates are also popular.

Windows 2000 and Internet Explorer provide a tool to transfer between formats. To 
change formats, perform the following:

1 On Windows 2000, double click the certificate file.
Secure Messaging Extension User’s Guide 15 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.4
Implementation Certificate Formats
Figure 3   Windows 2000 Certificate Files

2 Select the Detail tab.

Figure 4   Windows 2000 Detail Tab

3 Click on “copy to file” button.
Secure Messaging Extension User’s Guide 16 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.4
Implementation Certificate Formats
Figure 5   Windows 2000 Copy to File

4 Click Next. Choose the format.

Figure 6   Windows 2000 Copy to File

For Internet Explorer:

1 Select Tools-->Internet option.

2 Choose Content Tab, click on Certificates.
Secure Messaging Extension User’s Guide 17 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.4
Implementation Certificate Formats
Figure 7   Windows 2000 Copy to File

3 Click on Import, to import your certificate.

4 Click on “Intermediate Certification Authorities” Tab to choose the certificate to 
import, and click on the “export” button.

Figure 8   Windows 2000 Copy to File

5 Select the format, and save the file.
Secure Messaging Extension User’s Guide 18 SeeBeyond Proprietary and Confidential



Chapter 4

Secure Messaging Extension Functions

This chapter details the Secure Messaging Extension Functions. Prior to use it is 
neccessary to load the extension into any Monk environment:

(define SMIMEH (load-interface “stc_monksmime.dll” “init_smimeext”))

SMIMEH is then a handle used for all subsequent method calls.

4.1 Secure Messaging Extension Functions
The current suite of Secure Messaging Extension functions are:

begin-session on page 19

db-store on page 21

set-param on page 24

sign-encrypt on page 26

verify-decrypt on page 28

wipe-handle on page 30

begin-session

Syntax

(SMIMEH “begin-session”)

Description

begin-session prepares the SMIMEH handle to accept further instructions. It requires 
that “db-pathname” and “username” parameters be set prior to calling, and is itself 
required before calling any “db-store”, “sign-encrypt”, or “verify-decrypt” functions.

Parameters

None.

Return Values

vector
Returns a two element vector: 
Secure Messaging Extension User’s Guide 19 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Throws

None.

Location

stc_monksmime.dll

See Also

set-param on page 24 “db-pathname” and “username” must be set before calling 
“begin-session”.

end-session on page 23 must be called to release the resource for this session.

db-query

Syntax

(SMIMEH “db-query” key-cert-type key-cert-name)

Description

db-query tests whether it is necessary to use “db-store” to add a key or certificate.

Parameters

Element Contents Description

0 t# or #f  (true) if successful, otherwise (false).

1 string error message, if applicable.
SMT_E_INVALID_PARAMETER Either the username or db-pathname has 

not been set or both.

SMT_E_CALL_FAILED Internal call failed. username or db-
pathname has been set to illegal values, 
such as one that contains the following 
characters: *, ? “, <, >, and | on Windows, 
or ~, \ on UNIX.

SMT_E_NOT_ENOUGH_MEMORY Failed to allocate memory.

SMT_E_LOW_DISK_SPACE (Windows 
only)

Available disk space is below the 100K 
threshold.

key-cert-type Value Type Description

“signature-key” string The binary contents of the string signature-key 
in PKCS#12 format.

“decryption-key” string The binary contents of the string decryption-
key in PKCS#12 format.

“CA-cert” string The binary contents of the string CA-cert in 
PKCS#7 format.

“signature-cert” string The binary contents of the string signature-cert 
in PKCS#7 format.
Secure Messaging Extension User’s Guide 20 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Return Values

vector
Returns a two element vector: 

Additional Information

The function takes one of the parameters from the key-cert-type column.

(db-query key-cert-type key-cert-name)

See Also

begin-session on page 19 must be called before the query.

db-store

Syntax

(SMIMEH “db-store” key-or-cert-type key-or-cert-name key-or-cert-data 
trust-model)

Description

db-store loads X.509 certificates and keys into the cache for future use.

“encryption-cert” string The binary contents of the string encryption-
cert in PKCS#7 format.

Parameters Value Type Description

key-or-cert-name string The exact display name of the key or certificate 
being loaded.

Element Contents Description

0 #t or #f (true) if found, otherwise (false).

1 string error message, 
SMT_E_INVALID_PARAMETER begin-session has not been called or 

failed.

SMT_E_CALL_FAILED Internal error encountered, possibly 
due to missing or corrupt

SMT_E_FILENOTFOUND Entry does not exist in the data source.

SMT_E_NOT_ENOUGH_MEMORY Fail to allocate sufficient memory.

key-cert-type Value Type Description
Secure Messaging Extension User’s Guide 21 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Parameters

Return Value

vector
Returns a two element vector: 

key-or-cert-type Value Type key-or-cert-data

“signature-key” string The binary contents of the string signature-key 
in PKCS#12 format.

“decryption-key” string The binary contents of the string decryption-
key in PKCS#12 format.

“CA-cert” string The binary contents of the string CA-cert in 
PKCS#7 format.

“signature-cert” string The binary contents of the string signature-cert 
in PKCS#7 format.

“encryption-cert” string The binary contents of the string encryption-
cert in PKCS#7 format.

Parameter Name Value Type Description

key-or-cert-name string The exact display name of the key or certificate 
being loaded.

key-or-cert-data string The binary representation of the key or 
certificate to store. 

trust-model string Required when selecting signature-cert or 
encryption-cert. Valid options are CA-trust or 
direct-trust.

Element Contents

0 #t or #f (true) if successful, otherwise (false).
Secure Messaging Extension User’s Guide 22 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Throws

None.

Location

stc_monksmime.dll

Additional Information

The function takes one of the parameters from the key-cert-type column.

(db-store key-or-cert-type key-or-cert-name key-or-cert-data trust-model)

See Also

begin-session on page 19 must be called before using the db-store api.

end-session

Syntax

(SMIMEH “end-session”)

Description

end-session closes the SMIMEH handle created by begin-session. 

Parameters

None.

1 string error message, if applicable.
SMT_E_INVALID_PARAMETER begin-session has not been called, or 

failed.

SMT_E_CALL_FAILED Internal error encountered, possibly due 
to missing or corrupt data store files or a 
failed system call.

SMT_E_LOW_DISK_SPACE (Windows 
Only)

Disk space is getting low.

SMT_E_NOT_ENOUGH_MEMORY Fail to allocate memory.

SMT_E_NOT_FOUND Can not find the certificate

SMT_E_FILENOTFOUND Function could not find user information. 
The data store may be corrupt.

SMT_E_ERROR Either certificate was not found or data 
store files are missing or corrupt.

SMT_S_FALSE Could not import the root, because it was 
rejected by the callback function.

SMT_E_NO_ROOT_IN_CERTLIST Could not find a root in the certificate list 
in the file that could be imported as a root 
certificate.

Element Contents
Secure Messaging Extension User’s Guide 23 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Return Values

vector
Returns a two element vector: 

Throws

None.

Location

stc_monksmime.dll

See Also

begin-session on page 19 must be successfully activated. end-session must be called to 
release the resource for this session.

set-param

Syntax

(SMIMEH “set-param” param-name param-value)

Description

set-param sets the parameter names and values to be used by SMIME for sending and 
receiving data.

Parameters

Element Contents

0 #t or #f  (true) if successful, otherwise (false).

1 string error message, if applicable.
SMT_E_INVALID_PARAMETER begin-session has not been activated or 

failed.

SMT_E_CALL_FAILED Function unsuccessful. An I/O error 
occurred during the persistent saving of 
the user’s security preferences. Check 
disk space and file access permissions.

param-name Value Type param-value

“db-pathname” string The directory in which to store the 
S/MIME certificate and key cache. 
The value should not contain illegal 
characters like: *, ?, “, <, <, and | on 
Windows, and ~ or \ on UNIX.

“username” string The name of the certificate to be 
used for signing. The value should 
not contain illegal characters like: *, 
?, “, <, <, and | on Windows, and ~ or 
\ on UNIX.
Secure Messaging Extension User’s Guide 24 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
“key-passphrase” string The passphrase (password or PIN) 
used to protect S/MIME key cache. 
The password must be at least 8 
characters in length and no more 
than 64 characters.

“encryption-alg” string The algorithm-string used for 
encryption. The possible choices 
are: “DES_EDE3_CBC”, “RC2_128”, 
“DES_CBC”, or “RC2_40”.

“signature-alg” string The algorithm-string used to attach 
the signature. The possible choices 
are:
“RSA_MD5” or “RSA_SHA1”.

“signature-type” string Specifies the signature type. The 
possible choices are “detached” or 
“inline”.

“output-encoding” string Specifies the encoding type for the 
input/output. The possible choices 
are “base64” (default) or “binary”.

“recipient-list” string A vector of certificate names for 
one or more recipient identifiers, 
determines which certificates to use 
for encryption.

“sender” string Specifies the sender identifier, and 
determines which certificate to use 
for decryption.

“message-type” string Specifies the message format for 
input/output. The possible choices 
are “smime2” or “pkcs7” (default).

pkcs12-passphrase string The passphrase associated with a 
signature-key or decryption-key. 
Can be any length and must be 
ASCII characteers. Must be set 
when the passphrase is required for 
a particular signature-key or 
decryption-key (PKCS12). It should 
be set just before db-store

param-name Value Type param-value
Secure Messaging Extension User’s Guide 25 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Return Value

vector
Returns a two element vector: 

Throws

None.

Additional Information

The function takes one of the parameters from the param-name column.

(set-param param-name param-value)

Location

stc_monksmime.dll

See Also

Before calling begin-session on page 19, username and db-pathname must be set using 
set-param.

sign-encrypt

Syntax

(SMIMEH “sign-encrypt” outbound-message)

Description

sign-encrypt signs and/or encrypts outbound-messages. The result is the ciphertext (or 
signed only) message, stored in vector-ref 2.

Parameters

Element Contents Description

0 #t or #f (true) if successful, otherwise (false).

1 string error message, if applicable.
SMT_E_INVALID_PARAMETER Message object is corrupt.

SMT_E_NOT_ENOUGH_MEMORY Memory allocation failed.

SMT_E_NOT_FOUND Properties for message object can not be 
found.

Name Type Description

outbound message string The outgoing message.
Secure Messaging Extension User’s Guide 26 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Return Value

vector
Returns a four element vector:

Element Contents Description

0 #t or #f (true) if successful, otherwise (false).

1 string error message or output message if 
no error.
SMT_E_INVALID_PARAMETER begin-session has not been 

successfully activated or message 
object is corrupt.

SMT_E_NOT_FOUND Function did not find properties for 
this message object.

SMT_E_NOT_ENOUGH_MEMORY Fail to allocate memory.

SMT_E_CALL_FAILED Function could not create an internal 
object.

SMT_E_BUSY Other thread or process are using 
same resource.

SMT_E_INVALID_RECIPS One or more recipients has an 
untrusted encryption certificate.

SMT_E_NO_KEYS No private key for authenticating a 
signature or no certificate.

SMT_E_NOT_FOUND The recipients for the encrypte 
message are not specified or 
properties for the message object can 
not be found.

SMT_E_NOT_ENOUGH_MEMORY Memory allocation failed.

SMT_E_FILENOTFOUND No recipient exists for encryption.

SMT_E_CALL_FAILED Internal call failed or passphrase of 
signing operation is incorrect.

SMT_E_UNSUPPORTED_MIME_TYPE Invalid combinations of settings for 
MIME tagging. The valid combinations 
are:
1 message-type=”smime2”

signature-type=”detached”
2 message-type=”smime2”

signature-type=”inline”
3 message-type=”smime2”

signature-type=”detached”
4 message-type=”smime2”

signature-type=”detached”
encoding-type=”binary”

5 message-type=”pkcs7”
signature-type=”detached”

6 message-type=”pkcs7”
signature-type=”inline”
Secure Messaging Extension User’s Guide 27 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Throws

None.

Location

stc_monksmime.dll

Additional Information

The current version of the RSA Security libraries that the Secure Messaging Extension 
uses, requires that a private key be located in the cache before allowing any encryption 
to occur. The username for encryption must match with the private key’s value for 
username.

The db-path must be set to:

./tmp/smimecache  or monk/smime/tmp/smimecache

See Also

verify-decrypt on page 28, values for “ output-encoding”, “message-type” and 
“signature-type” must be matched with values used for sign-encrypt if they have been 
assigned.

verify-decrypt

Syntax

(SMIMEH “verify-decrypt” inbound-message)

Description

verify-decrypt decrypts and/or verifies signature authenticity of the inbound-message. 
The result is the plaintext message, (upon successful authentication), stored in vector-
ref 2.

Parameters

Return Value

vector
Returns a four element vector:

2 string indicating encryption algorithm 
used; #f (false) if error or no encryption 
used.

3 string indicating signature algorithm used; 
#f (false) if error or no signature used.

Name Type Description

inbound-message string The inbound message previously 
signed and/or encrypted.

Element Contents Description
Secure Messaging Extension User’s Guide 28 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
Throws

None.

Location

stc_monksmime.dll

See Also

See sign-encrypt on page 26 values for “output-encoding”, “message-type” and 
“signature_type” must be matched with values used for verify-decrypt if they have 
been assigned.

Element Contents Description

0 #t or #f (true) if successful, otherwise (false).

1 string error message or output message if 
no error.
SMT_E_INVALID_PARAMETER begin-session has not been successfully 

activated or message object is corrupt.

SMT_E_NOT_ENOUGH_MEMORY Fail to allocate memory.

SMT_E_CALL_FAILED Function could not create an internal 
object.

SMT_E_BUSY Other thread or process using the same 
resource.

SMT_S_FALSE Function successfully verified the 
message, but either the address book 
entry was not added or the certificate 
trust data store was not updated.

SMT_E_CORRUPT The message is corrupt. Ensure the 
values for “output-encoding” and 
“message-type” are the same as 
specified during encryption/signing.

SMT_E_ERROR Fail to verify signature because the 
message has been tampered with.

SMT_E_NO_KEYS No private key to decrypt the message.

SMT_E_FILENOTFOUND Function could not locate necessary 
information for the user, possibly as a 
result of the data store being corrupt.

2 string indicating encryption algorithm 
used; #f (false) if error or no encryption 
used.

3 string indicating signature algorithm used; 
#f (false) if error or no signature used.
Secure Messaging Extension User’s Guide 29 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
Secure Messaging Extension Functions Secure Messaging Extension Functions
wipe-handle

Syntax

(SMIMEH “wipe-handle”)

Description

wipe-handle deletes temporary variables stored in the object handle.

Parameters

None.

Return Value

vector
Returns a two element vector:

Throws

None.

Location

stc_monksmime.dll

Element Contents Description

0 #t or #f (true) if successful, otherwise (false).

1 string error message, if applicable.
SMT_E_INVALID_PARAMETER begin-session has not been successfully 

activated or message object is corrupt.
Secure Messaging Extension User’s Guide 30 SeeBeyond Proprietary and Confidential



Index

Secure Messaging Extension User’s Guide 31 SeeBeyond Proprietary and Confidential

Index

B
Base64 15
begin-session 19

C
Certificate Formats 15
components 5

D
db-query 20
db-store 21
DER 15

E
end-session 23

F
files/directories created by installation 13
functions

begin-session 19
db-query 20
db-store 21
end-session 23
set-param 24
sign-encrypt 26
verify-decrypt 28
wipe-handle 30

I
intended reader 5
introducing S/MIME 6

S
S/MIME 6
sample configuration 14
Secure Messaging Extension functions 19
set-param 24
sign-encrypt 26

SMIMEH 19
system requirements 10

U
UNIX 12

installation procedure 12
pre-installation 12

V
verify-decrypt 28

W
Windows NT 11

installation procedure 11
pre-installation 11

wipe-handle 30

X
X.509 15


	Secure Messaging Extension User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components

	1.2 Introducing S/MIME
	1.3 Introducing Secure Messaging Extension
	1.4 Supported Operating Systems
	1.5 System Requirements
	1.5.1 Environment Variable Settings


	Installation
	2.1 Windows
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Implementation
	3.1 Sample Configuration
	3.2 Sample Implementation
	3.3 Sample Monk Scripts
	3.4 Certificate Formats

	Secure Messaging Extension Functions
	4.1 Secure Messaging Extension Functions
	begin-session
	db-query
	db-store
	end-session
	set-param
	sign-encrypt
	verify-decrypt
	wipe-handle


	Index
	B
	C
	D
	E
	F
	I
	S
	U
	V
	W
	X


