
SeeBeyond Proprietary and Confidential

e*Gate Integrator
Collaboration Services
Reference Guide

Release 4.5.2

e*Gate Integrator Collaboration Services Reference Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020304125213.

Contents

e*Gate Integrator Collaboration Services Reference Guide 3 SeeBeyond Proprietary and Confidential

Contents

List of Tables 5

List of Figures 6

Chapter 1

Introduction 7
Purpose and Scope 7

Intended Audience 7

Organization of Information 8

Writing Conventions 8

Supporting Documents 10

SeeBeyond Web Site 10

Chapter 2

Requirements for Supported Services 11
Supported Collaboration Services 11

Requirements 11
System Requirements 11
Important Requirements for the Java 2 SDK on UNIX Systems 12

Chapter 3

Monk and Pass Through Collaboration Services 13
Overview: Monk and Pass Through Services 13

Monk Collaboration Service 13

Monk ID Collaboration Service 14

Route Table Collaboration Service 14

Pass Through Collaboration Service 14

Contents

e*Gate Integrator Collaboration Services Reference Guide 4 SeeBeyond Proprietary and Confidential

Chapter 4

Java Collaboration Service (JCS) 15
What is the Java Collaboration Service? 15

How to use the Java Collaboration Service 15
Creating Java Collaboration Rules Components 16
Implementing Java Collaboration Rule Components 20
Dealing With Long CLASSPATHs 21
Committing Java Classes and .jar Files to the Registry 22

Using the .ctl File to Download Entries from the Registry 22

Parameters for the JCS Initialization String 24

Chapter 5

C Collaboration Service 27
Header File: HTRANSCC.h 27

Developing the C Dynamic Link Library (.dll) File 34
Monk IQ Functions That Do Not Support JMS IQs 35

The C Collaboration APIs 36
ccollab_free() 37
ccollab_init() 38
ccollab_term() 39
ccollab_translate() 40

Using the C Collaboration Service 41

C Collaboration Rules and the Enterprise Manager 41

Implementing the C Collaboration Rule 42

Appendix A

The Java Collaboration Service Prior to 4.5 44
Developing the Java Business Logic Class 44

Sample Java Business Logic 44
Sample Java Class encode.java 46
Sample Java Class decode.java 47

Using the Java Collaboration Service 49

Java Collaboration Service Methods 49
initialize() 50
terminate() 50
translate() 50

Index 52

List of Tables

e*Gate Integrator Collaboration Services Reference Guide 5 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Java 2 SDK DLL Search Path Environment Variables 12

Table 2 JCS Initialization Parameters 24

List of Figures

e*Gate Integrator Collaboration Services Reference Guide 6 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 New Collaboration Rules Component 16

Figure 2 STCJavaPassThrough.class - Java Pass Through Collaboration Rule 16

Figure 3 Selecting the Java Collaboration Service 17

Figure 4 Collaboration Mapping 18

Figure 5 Java Collaboration Rules Editor 19

Figure 6 Collaboration Rules - Properties 19

Figure 7 Collaboration Rules Properties Sheet 20

Figure 8 Collaboration Rules Properties Sheet 42

e*Gate Integrator Collaboration Services Reference Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to this reference guide, its general purpose and scope, and
its organization. It also provides sources of related documentation and information.

1.1 Purpose and Scope
SeeBeyond Technology CorporationTM (SeeBeyondTM) provides Collaboration Services
as part of the SeeBeyond eBusiness IntegrationTM suite. This document describes each
Collaboration Service and discusses how to select and implement the service in a
production environment.

This guide explains the following:

! Monk and Pass Through Collaboration Services

! Java Collaboration Service

! C Collaboration Service

Important: Any operation explanations given here are generic, for reference purposes only, and
do not necessarily address the specifics of setting up individual Collaboration
Services.

This document does not contain information on software installation and system
administration procedures (see “Supporting Documents” on page 10).

1.2 Intended Audience
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system. This person must also have expert-
level knowledge of Windows NT/Windows 2000 and UNIX operations and
administration and to be thoroughly familiar with Windows-style GUI operations. Use
of a language-specific Collaboration Service (Monk, C, or Java) requires familiarity with
the appropriate language.

Chapter 1 Section 1.3
Introduction Organization of Information

e*Gate Integrator Collaboration Services Reference Guide 8 SeeBeyond Proprietary and Confidential

1.3 Organization of Information
This document is organized topically as follows:

! Chapter 1 “Introduction” on page 7 — Gives a general preview of this document,
its purpose, scope, and organization.

! Chapter 2 “Requirements for Supported Services” on page 11 — Provides an
overview of the system requirements for the Collaboration Services that the e*Gate
system supports.

! Chapter 3 “Monk and Pass Through Collaboration Services” on page 13 —
Describes the Monk and Pass Through Collaboration Services, including the Monk-
related services.

! Chapter 4 “Java Collaboration Service (JCS)” on page 15 — Describes the Java
Collaboration Service and provides in-depth information on how to use it

! Chapter 5 “C Collaboration Service” on page 27 — Explains how the
C Collaboration Service enables the developer to utilize the C and C++
programming languages to write a Dynamic Link Library (.dll) file.

In addition there is one appendix:

! Appendix A “The Java Collaboration Service Prior to 4.5” on page 44 — Describes
how to manually code Business Code Logic to use Java Collaboration Service and
how to manually promote the Collaboration.

1.4 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Parameter, Function, and
Command Names” on page 9.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -rs schema-name -un user-name
-up password -ef output-directory

Chapter 1 Section 1.4
Introduction Writing Conventions

e*Gate Integrator Collaboration Services Reference Guide 9 SeeBeyond Proprietary and Confidential

Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
Courier as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.

File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

You can use the stccb utility to start the Control Broker.

Chapter 1 Section 1.5
Introduction Supporting Documents

e*Gate Integrator Collaboration Services Reference Guide 10 SeeBeyond Proprietary and Confidential

1.5 Supporting Documents
The following SeeBeyond documents provide additional information about the e*Gate
Integrator system as explained in this guide:

See the SeeBeyond eBusiness Integration Suite Primer for a complete list of e*Gate-related
documentation. You can also refer to the appropriate Microsoft Windows or UNIX
documents, if necessary.

Note: For information on how to use a specific add-on product (for example, an e*Way
Intelligent Adapter), see the user’s guide for that product.

1.6 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.SeeBeyond.com/

! Creating an End-to-End Scenario with e*Gate Integrator

! e*Gate Integrator Alert Agent User’s Guide

! e*Gate Integrator Alert and Log File Reference Guide

! e*Gate Integrator Installation Guide

! e*Gate Integrator Intelligent Queue Services Reference Guide

! e*Gate Integrator SNMP Agent User’s Guide

! e*Gate Integrator System Administration and Operations Guide

! e*Gate Integrator User’s Guide

! SeeBeyond eBusiness Integration Suite Primer

! SeeBeyond eBusiness Integration Suite Deployment Guide

! Monk Developer’s Reference

! Standard e*Way Intelligent Adapter User’s Guide

! Working with Collaboration IDs

! XML Toolkit

http://www.seebeyond.com/

e*Gate Integrator Collaboration Services Reference Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2

Requirements for Supported Services

Collaboration Services are the libraries that provide the low-level facilities by which
Collaborations execute Collaboration Rules.

2.1 Supported Collaboration Services
The Collaboration Services currently supported are:

! C Collaboration Service

! Java Collaboration Service (JCS)

! Monk

! Monk ID

! Pass Through

! Route Table

! XSLT (available with the XML Toolkit add-on; for information on the XSLT
Collaboration Service, see the XML Toolkit).

The Collaboration Services are automatically installed when you install an e*Gate
Participating Host. For information about installing e*Gate, see the e*Gate Integrator
Installation Guide.

2.2 Requirements

2.2.1 System Requirements
Most of the Collaboration Services have no requirements above those required by a
standard e*Gate installation.

! All Collaboration Services require an e*Gate Participating Host version 4.5 or later.

! For information on downloading the Java 2 SDK from http://java.sun.com/j2se and
using it in conjunction with e*Gate, see the e*Gate Integrator Installation Guide.

Chapter 2 Section 2.2
Requirements for Supported Services Requirements

e*Gate Integrator Collaboration Services Reference Guide 12 SeeBeyond Proprietary and Confidential

2.2.2 Important Requirements for the Java 2 SDK on UNIX Systems
! Do not move Java 2 SDK to any other location. It must remain where it was

installed by the installation process. Upon installation, the location of the Java 2
SDK was entered into the operating system’s Online Database Management
(ODM). Changing the location prevents the proper execution of the Java JNI DLL
needed by the JCS.

! The user environment on the Participating Host must have the “dynamic load
library” search path environment variable (actual names vary according to the OS)
set appropriately to include all directories of the Java 2 SDK installation that contain
shared libraries (extensions vary according to OS). See the table below for more
information.

For AIX Participating Hosts only:

In the event that certain PTFs are not installed the LIBPATH environment variable must
be set to the following:

! The jre/bin directory first followed by the jre/bin/classic directory, followed by the
directories of other software as needed.

For example, if Java 2 SDK 1.3 was installed under /usr/java_dev2, then (for Bourne
Shell, Korn Shell):

LIBPATH=/usr/java_dev2/jre/bin:/usr/java_dev2/jre/bin/
classic:$LIBPATH

! Add this line into the egateclient.sh file, immediately prior to the export LIBPATH
statement.

For C-shell users:

setenv LIBPATH /usr/java_dev2/jre/bin:/usr/java_dev2/jre/bin/
classic:`printenv LIBPATH`

should be added after the current statements that set LIBPATH.

This intervention is necessary because the Java 1.2.2 JNI DLL will cause a core unless
the LIBPATH is set as such.

Table 1 Java 2 SDK DLL Search Path Environment Variables

OS
DLL Search Path

Environment Variable
Extension

Solaris 2.6, 7, or 8 LD_LIBRARY_PATH .so

HP-UX 11.0 or 11i SHLIB_PATH .sl

AIX 4.3.3 LIBPATH .a

Compaq Tru64 V4.0F or 5.0A LD_LIBRARY_PATH .so

Red Hat Linux 6.2 LD_LIBRARY_PATH .so

e*Gate Integrator Collaboration Services Reference Guide 13 SeeBeyond Proprietary and Confidential

Chapter 3

Monk and Pass Through Collaboration
Services

This chapter describes the Monk and Pass Through Collaboration Services, including
the Monk-related services.

Note: The Java Pass Through class, STCJavaPassThrough.class, uses the Java
Collaboration Service (JCS), not the Pass Through Collaboration Service.
See “Creating Java Collaboration Rules Components” on page 16.

3.1 Overview: Monk and Pass Through Services
The Monk-related Collaboration Services are:

! Monk

! Monk ID

! Route Table

In addition, e*Gate provides the Pass Through Collaboration Service. The rest of this
chapter explains these services.

3.2 Monk Collaboration Service
The Monk Collaboration Service enables the developer to apply business logic or
develop other e*Gate components using SeeBeyond’s Monk language.

Monk files can be written using any editor able to create text files (such as Notepad or
vi), or using the e*Gate Collaboration Rules Editor in the Enterprise Manager.

SeeBeyond recommends that most Monk files be given the .monk extension. Files
created by the Monk Collaboration Rules Editor that are used to transform data within
a Collaboration are by default assigned the .tsc extension; do not confuse this with the
standard extensions for Monk ETDs (.ssc) and Java-enabled ETDs (.xsc).

Chapter 3 Section 3.3
Monk and Pass Through Collaboration Services Monk ID Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 14 SeeBeyond Proprietary and Confidential

3.3 Monk ID Collaboration Service
The Monk ID Collaboration Service enables the developer to execute Collaboration-ID
Rules. In versions of e*Gate prior to release 4.0, these rules were most commonly used
to validate inbound Events. We recommend that all such validation be performed
within a standard Collaboration Rule, and that you only use Collaboration-ID rules
when backwards compatibility with prior versions of e*Gate is required.

Collaboration-ID rules are normally created with the e*Gate Collaboration-ID Editor,
although they can also be created or modified with text files. The default extension
is .isc.

3.4 Route Table Collaboration Service
The Route Table Collaboration Service is reserved for users who are upgrading from
versions of e*Gate version 3.x. See the e*Gate Integrator Upgrade Guide.

3.5 Pass Through Collaboration Service

Note: Do not use the Pass Through Collaboration Service to communicate with e*Way
Connections; use the Java Pass Through class, STCJavaPassThrough.class,
instead. See procedure on page 16.

The Pass Through Collaboration Service provides a means to copy input Events to
output Events, leaving the Event contents unchanged. The Service simply performs a
byte-for-byte copy for all data that it processes.

Note: No Collaboration Rules are required to execute the Pass Through Collaboration
Service.

e*Gate Integrator Collaboration Services Reference Guide 15 SeeBeyond Proprietary and Confidential

Chapter 4

Java Collaboration Service (JCS)

This chapter describes the e*Gate Java Collaboration Service and how to use it.

4.1 What is the Java Collaboration Service?
The Java Collaboration Service (JCS) provides an environment that allows you to use a
Java class to implement the business logic that transforms Events as they move through
e*Gate. When data passes through e*Gate using a Java Collaboration, a Java Virtual
Machine is instantiated and uses the associated Java Collaboration Rules class to
accomplish the data transformation.

Unlike the Monk Collaboration Service, which allows only one-to-one Collaboration
between Events, the Java Collaboration Service allows many-to-many Collaborations.

Note: See Chapter 1 for requirements specific to the Java 2 SDK.

Note: It is possible, but not recommended, to avoid the Java Collaboration Rules Editor
and manually create .class files that use the Java Collaboration Service. For
instructions on how to accomplish this, see Appendix A.

4.2 How to use the Java Collaboration Service
To use the Java Collaboration Service, you create a Collaboration Rule and select Java as
the service. Using Event Type instances of previously defined Event Type Definitions
(ETDs), you then use the Java Collaboration Rules Editor to add the rules and logic
between the Event Type instances. Compiling the Collaboration Rule creates a Java
Collaboration Rules class and all required supporting files. This Java class implements
the data transformation logic.

Important: Before creating a Java Collaboration, you must have created the Java-enabled ETDs
(.xsc files) used by the Collaboration. For information on creating a Java ETD, refer
to the material on the Java ETD Editor in the e*Gate Integrator User’s Guide, or
refer to the online help for the Java ETD Editor.

The following procedures recapitulate material in the e*Gate Integrator User’s Guide.

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 16 SeeBeyond Proprietary and Confidential

4.2.1 Creating Java Collaboration Rules Components
In the general case, when you create a new Collaboration Rule, you must specify
inbound and outbound Event Type instances and the rules for transforming the data
between them; see procedure on page 17.

However, a simple Java Collaboration Rule is presupplied: the Java Pass Through rule.
Like the Pass Through Collaboration Service, the Java Pass Through rule transports
data without transforming it. Unlike the Pass Through Collaboration Service, you can
use the Java Pass Through rule to communicate with e*Way Connections. You are not
required (or permitted) to specify instance names or initialization strings.

To create a Java Pass Through Collaboration Rule

1 Use e*Gate Enterprise Manager to create and name a new Collaboration Rules
component. See Figure 1.

Figure 1 New Collaboration Rules Component

2 Edit the properties of the new Collaboration Rule.

3 In the Properties dialog: In the General tab, Collaboration Rules area, click Find.

4 Navigate to the collaboration_rules\STCLibrary folder.

5 Click STCJavaPassThrough.class and click Select.

6 In the Properties dialog box, click OK to save your changes and close the dialog.
See Figure 2.

Figure 2 STCJavaPassThrough.class - Java Pass Through Collaboration Rule

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 17 SeeBeyond Proprietary and Confidential

To create a Java Collaboration Rules component

1 Use e*Gate Enterprise Manager to create and name a new Collaboration Rules
component. See Figure 1 on page 16.

2 Edit the properties of the new Collaboration Rule. If necessary, on the General tab,
select Java as the Collaboration Service. See Figure 3.

Figure 3 Selecting the Java Collaboration Service

3 Click the Collaboration Mapping tab.

4 Click Add Instance to add a new instance.

5 Enter an Instance Name for the instance.

The Instance Name will be used by the Collaboration Rules Editor to identify the
source and destination Events.

6 Click Find to display a list of ETD files (.xsc files), and then select the source ETD.

The name of the ETD is displayed in the ETD field.

7 In the Mode list, click In or In/Out.

8 Optionally, repeat steps 4 through 7 to create additional source Event instances.

9 As necessary, select the Trigger check box for one or more inbound Events.

10 Repeat steps 4 through 6 for each destination instance.

11 In the Mode list, click Out or In/Out for each destination instance.

12 You can select the Manual Publish check box for zero or more outbound Events.

13 Click Apply to save the changes. See Figure 4.

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 18 SeeBeyond Proprietary and Confidential

Figure 4 Collaboration Mapping

14 Click the General tab.

15 Optionally, you can enter an initialization string to override certain run-time
settings.

16 Click New to create a new Java Collaboration Rule.

The Java Collaboration Rule Editor starts.

17 Using the Editor, add the required business logic (Java code) for this rule to the
executeBusinessRules() method.

This process is made simpler and more robust by the GUI, which allows you to:

" Drag a node into areas of the Properties pane to generate get() methods.

" Drag a node onto another node to generate get()/set() methods.

" Right-click a node to view its properties.

" Right-click a pane to gain access to external Java packages and their methods.

A snapshot of a Collaboration Rule as seen through the Editor is shown in Figure 5.
For information on using the Editor, refer to the Chapter 7 in the e*Gate Integrator
User’s Guide, or refer to the online help for the Java Collaboration Rules Editor.

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 19 SeeBeyond Proprietary and Confidential

Figure 5 Java Collaboration Rules Editor

18 As you work on it, save and compile the Collaboration Rules class.

19 After it compiles cleanly, promote it and exit the Editor.

In the Properties dialog box for the Collaboration Rule, on the General tab, the
Collaboration Rules .class file is entered in the Collaboration Rules box and the
corresponding control file is entered in the Initialization file area.

The Collaboration Rule now uses the newly created Java class to perform the
required data transportation and transformation. See Figure 6.

Figure 6 Collaboration Rules - Properties

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 20 SeeBeyond Proprietary and Confidential

4.2.2 Implementing Java Collaboration Rule Components
To define a Collaboration Rule that uses the JCS

1 In the Enterprise Manager, define a Collaboration Rules component using the steps
in “Creating Java Collaboration Rules Components” on page 16.

2 Set the Collaboration Rules properties as shown in Figure 7 below.

Figure 7 Collaboration Rules Properties Sheet

3 Enter any required JCS initialization parameters in the Initialization string box.

For example:

-jnidll myjnidll -java1 com.mystc.myProgram

Table 2 on page 24 provides a list of the JCS initialization parameters.

For any parameter that contains embedded spaces, the entire parameter must be
contained within doublequotes ("parm name"). If it is not, the JCS will not be able
to locate the file specified and therefore will be unable to perform initialization.

For example:

-jnidll "C:\Program Files\JavaSoft\JRE\1.2\bin\classic\jvm.dll"

Certain initialization parameters cause the Collaboration Rules pane to become
available.

4 In the Collaboration Rules box, if required by the initialization parameter, enter the
appropriate path and filename.

Note: The class name may exist in a .jar or .zip file.

Specify optional
JCS initialization
parameters.
See step 3, and
see Table 2 on
page 24.

Specify any
additional .class
or .jar files
needed by the
Collaboration
Rule. See step 5.

Specify the
Collaboration
Rules .class file.
See note and
step 4 below.

To access JCS,
select the Java
Collaboration
Service.

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 21 SeeBeyond Proprietary and Confidential

5 If the Collaboration Rule requires an additional .class or .jar file, enter its name in
the Initialization file text box. If more than one file is required, reference the
necessary files in an e*Gate Registry control file, and specify the Registry control file
in the Initialization file text box. For more information, see “To commit the file
new.jar to the classes/path within the e*Gate repository:” on page 22.

When committing the Java class, if it is placed into a Java package, you must use the
correct path location. This consists of: The classes/ directory prepended to the
package name, then converting all periods (.) to forward slashes (/). For example:

classes.com.stc.common.collabService.myClassFile (The class name)
classes/com/stc/common/collabService/myClassFile (The path to
commit the class)

4.2.3 Dealing With Long CLASSPATHs
In some instances, the classpath may exceed 255 characters. There are several possible
ways to accommodate this.

! The JCS automatically uses the CLASSPATH environmental variable. The user can
refer to all .jar files and directories here, allowing for a hardcoded maximum of 4096
characters for the classpath supplied to Java.

! If using one global CLASSPATH environmental variable for all JCS is not desirable,
you can reference different environmental variables in the -classpath, -cp, or -
jnidll options by enclosing the name with percent (%) characters. For example:
%YOURCLASSPATH%.

! If it is also important that the JCS run on different Participating Hosts, then all .jar,
.zip, and .class files can be checked into the e*Gate Registry and referenced from a
Registry Control file. The Registry Control file can then be entered into the
Initialization File text box of the Collaboration Rules Properties sheet.
For example:

FILE1.jar,classes,FILETYPE_BINTEXT

FILE2.zip,classes,FILETYPE_BINTEXT

FILE3.class,classes,FILETYPE_BINTEXT

When the JCS processes this control file, it downloads the respective files and
constructs this string as part of the JVM classpath variable:

<EG SharedData>/classes/FILE1.jar;<EG SharedData>/classes/FILE2.zip

The <EG SharedData>/classes directory is a standard part of the JVM classpath.

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 22 SeeBeyond Proprietary and Confidential

4.2.4 Committing Java Classes and .jar Files to the Registry
After the Java Collaboration Rules have been compiled, the resultant .class files must be
committed to the e*Gate Registry under the classes/ directory. Additionally, any other
supporting Java classes must be compiled and stored in .jar files. These .jar files must
also be committed to the e*Gate Registry under the classes/ directory.

You normally commit files to the Registry using Enterprise Manager: On the File menu,
click Commit to Sandbox. However, you can also commit files using the stcregutil.exe
command-line utility.

The following example demonstrates that you can also commit files by running
stcregutil with the -fc (file commit) flag. The example is printed on more than one line
for clarity, but must be issued as a single command line.

To commit the file new.jar to the classes/path within the e*Gate repository:

1 Create a control (.ctl) file with a text editor giving it a name such as myjar.ctl. Each
line within myjar.ctl should have the following format:

new.jar,classes,FILETYPE_BINTEXT

Note: There must mot be any spaces before or after the commas (,).

2 Run the stcregutil utility by typing the following at the command line:

stcregutil -rh registry -rs schema -un user-name
 -up password -fc classes -ctl myjar.ctl

For more information about the stcregutil.exe command-line utility, see the
e*Gate Integrator System Administration and Operations Guide.

You can also commit one file at a time using other File menu options; for example, see
below.. Additional information is available in the online help for Enterprise Manager.

Using the .ctl File to Download Entries from the Registry

If you want to use the .ctl file as a vehicle for downloading entries from the registry, you
can use the special text editor provided within Enterprise Manager to make changes.
If you place your changes at the end of the file and then immediately re-commit the .ctl
file, your changes are preserved.

To make permanent edits to a .ctl file

1 In Enterprise Manager, on the File menu, click Edit File.

The Open File dialog box appears.

2 Set the Files of type to All files and then open the collaboration_rules folder.

3 Locate and open the .ctl file you want to edit.

4 Place your commands at the end of the file, after comment block beginning:

#USER DOWNLOADABLE ENTRIES
#

Chapter 4 Section 4.2
Java Collaboration Service (JCS) How to use the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 23 SeeBeyond Proprietary and Confidential

For example, after your edits, the file might look like this (emphasis added for
greater clarity):

[...]
#USER DOWNLOADABLE ENTRIES

Entries below this section will be preserved. Any entries
found above this section will be overwritten when the
collaboration rule is compiled.
#
/--Next two lines added by pc 2002-02-29 per TR 98765 ---\
MyFile.jar,C:\ThisPath\ThatPath\Folder,FILETYPE_BINTEXT
MyWord.txt,C:\MyPath,FILETYPE_ASCII
\--------------------------------------- End TR 98765 ---/
#

5 Exit the editor, saving your changes; when the system prompts you to Commit the
file, answer Yes.

6 In response to the system prompt, navigate to the location where the file should be
stored, and then save your changes.

Chapter 4 Section 4.3
Java Collaboration Service (JCS) Parameters for the JCS Initialization String

e*Gate Integrator Collaboration Services Reference Guide 24 SeeBeyond Proprietary and Confidential

4.3 Parameters for the JCS Initialization String
The following table lists all parameters and parameter values recognized by the Java
Collaboration Service. All parameters are optional.

Table 2 JCS Initialization Parameters

Parameter Value Purpose

-classpath An absolute
path, or an
environmental
variable

Specifies the CLASSPATH that the JVM will
use. If this parameter is not specified, the
JCS will create an appropriate default
CLASSPATH variable containing all .jar files,
class directories, and any additional files
declared as necessary.

This parameter can accept reference to an
environmental variable (for example: -
classpath %MYPATH%).

Caution: The -classpath parameter
completely overrides the default
CLASSPATH. Thus, if you specify -classpath
without supplying all the required paths, or
if some required paths are not available, the
JCS will not run. If, instead, you want to add
or suggest a classpath, use the -cp or
appendenvcp parameters instead; see
below.

-appendenvcp String Specifies any string or environment variable
to append the current CLASSPATH used by
JCS.

The -appendenvcp parameter is preferred
to -classpath because it will not override any
necessary paths.

-cp String Specifies any string or environment variable
to prepend the current CLASSPATH used by
JCS.

The -cp parameter is preferred to -classpath
because it will not override any necessary
paths.

Chapter 4 Section 4.3
Java Collaboration Service (JCS) Parameters for the JCS Initialization String

e*Gate Integrator Collaboration Services Reference Guide 25 SeeBeyond Proprietary and Confidential

-debug Integer Specifies a port number; a setting of -debug
8000 is the default if nothing is specified.
Allows you to run either JDB or e*Gate Java
Debugger for tracing and finding errors in
Collaboration Rules.

-def String Defines a Java property using the following
format:
-def propertyname = value.

-jnidll An absolute
path, or an
environmental
variable

Specifies the location of the (Java Native
Interface (JNI) dynamic-load library (DLL).

The absolute path name of where the
installed Java JNI DLL library is found. The
JNI DLL name varies on different OS
platforms:

Windows 2000
Windows NT
Solaris 2.6, 7, or 8
HP-UX 11.0 or 11i
AIX 4.3.3
Compaq Tru64
Linux

Java 2
jvm.dll
jvm.dll
libjvm.so
libjvm.sl
libjvm.a
libjvm.so
libjvm.so

Java 1
javai.dll
javai.dll
libjava.so
libjava.sl
libjava.a
libjava.so
libjava.so

The JNI DLL must be located on the
Participating Host in the same directory in
which the SDK or JRE installed it.

The value assigned can contain a reference
to an environment variable enclosed
between % symbols (such
as %JREJNIDLL%). Such variables can be
used when multiple Participating Hosts are
used on different platforms.

-java1 None Specifies that the version of the jnidll
location is for Java version 1.1.7b.

If unspecified, the jnidll specified is
assumed to be for Java 2.

Windows
Solaris, Linux,
Compaq
HP
AIX

javai.dll
libjava.so
libjava.so
libjava.sl
libjava.a

Table 2 JCS Initialization Parameters (Continued)

Parameter Value Purpose

Chapter 4 Section 4.3
Java Collaboration Service (JCS) Parameters for the JCS Initialization String

e*Gate Integrator Collaboration Services Reference Guide 26 SeeBeyond Proprietary and Confidential

-ldp An absolute
path, or an
environmental
variable

Overrides the default directory of the dll. A
suitable library load path is configured
automatically by the JCS. This parameter
prepends the specified paths to the library
load path used. For example you could use
this parameter when Java code contains
IDS-out-wrapper classes that need a
specified library file.

-ms Integer Specifies initial heap size of the Java Virtual
Machine (JVM) in bytes. The default size in
bytes is 32000000. If larger data is to be
processed, this parameter must be defined.

-mx Integer Specifies the maximum heap size for the
Java Virtual Machine in bytes to control the
maximum size limitation of the JVM.

-noclasgc Expects no input Disables class garbage collection. If this
parameter is in place, no memory
deallocation will take place for the JVM.

-nojit Expects no input Disables the just-in-time compiler.

-suspend Expects no input When -suspend is specified, the JVM waits
for an attach to occur before executing the
Collaboration Rule.

-verbose Expects no input Reports JVM information and all class loads.

-verbosegc Expects no input Enables garbage collection console activity.

Example:
! com.mystc.

myProgram

If you indicate a path location as the last
parameter in the Initialization string text
box, it is unnecessary to indicate a
Collaboration Rule in the Collaboration
Rules text box.

Table 2 JCS Initialization Parameters (Continued)

Parameter Value Purpose

e*Gate Integrator Collaboration Services Reference Guide 27 SeeBeyond Proprietary and Confidential

Chapter 5

C Collaboration Service

The C Collaboration Service enables the developer to utilize the C and C++
programming languages to write a Dynamic Link Library (.dll) file. Selected via the
GUI from the Collaboration Rules dialog box, e*Gate compiles and links the external
source code to create the dynamic or shared library.

For example:

! You may already have a library or application written in C or C++ and want to
make it accessible to your e*Gate applications.

! You want to implement a portion of time-critical code, written in C or C++ and have
the e*Way call these functions.

! You may have application-specific problems that are better handled outside of the
Monk programming environment.

5.1 Header File: HTRANSCC.h
This section contains the description of the header file HTRANSCC.h, which is used to
pass a string in and out of the interface object.

The object types passed between the application and external include character blobs,
wide character blob, long, booleans, characters, wide characters, double floating point
numbers, external interface objects and vectors of these types.

The external interface object is used to implement the external interfaces. A structure is
defined that contains a location where the user can place data for the object as well as
functions that implement the interface.

#ifndef STCCCOLLAB_H
#define STCCCOLLAB_H

#include "gendefs.h"
#include "stcapis.h"
#include "stctrans.h"

#ifdef __cplusplus
extern "C"
{
#endif

#define CEXT_VERSION "CEXTV1"

typedef void *HTRANSCC;

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h

e*Gate Integrator Collaboration Services Reference Guide 28 SeeBeyond Proprietary and Confidential

//--
// IQInitialTopic
// --
//
// Purpose:
//
// provides access to the name of the Event Type that initiated
// the current translation.
//
// This is a C Collaboration equivalent of the iq-initial-topic
// Monk function.
//
// (For use within ccollab_translate)
//
// --
//
// Parameters:
//
// pcszInitialTopic:
// returns a null-terminated string containing the
// Initial topic name. The string must be pre-allocated.
//
// pvData: passes the incoming pvData parameter through for all
// calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
BOOL
DLLEXP
APIDEF
IQInitialTopic (OUT char *pszInitialTopic,
 IN void *pvData);

//--
// IQGet
// --
//
// Purpose:
//
// retrieves and removes the next pending message from the
// default IQ for the current Collaboration.
//
// This is a C Collaboration equivalent of the iq-get Monk
// function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszInputTopic:
// the name of the Event Type to get.
//
// hIQ: currently not in use. Must be NULL.
//
// pbMsgData: the retrieved byte data. NULL if call failed.
//
// pbMsgDataLen: the length of pbMsgData.

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h

e*Gate Integrator Collaboration Services Reference Guide 29 SeeBeyond Proprietary and Confidential

//
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
DLLEXP
BOOL
APIDEF
IQGet (IN const char *pcszInputTopic,
 IN OUT HIQ hIQ,
 OUT char *pbMsgData,
 OUT DWORD *pbMsgDataLen,
 IN void *pvData);

//--
// IQInputTopics
// --
//
// Purpose:
//
// returns a comma-separated list of the names of all input
// Event Types for the current Collaboration.
//
// This is a C collaboration equivalent of the iq-input-topics
// Monk function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszCVSInputTopics:
// provides a list of comma-separated values of
// all Event Types for the current collaboration.
// This string must be pre-allocated.
//
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
BOOL
DLLEXP
APIDEF
IQInputTopics (OUT char *pszCSVInputTopics,
 IN void *pvData);

//--
// IQOutputTopics
// --
//
// Purpose:
//
// returns a comma-separated list of the names of all output
// Event Types for the current Collaboration.
//

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h

e*Gate Integrator Collaboration Services Reference Guide 30 SeeBeyond Proprietary and Confidential

// This is a C Collaboration equivalent of the iq-output-topics
// Monk function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszCVSInputTopics:
// provides a list of comma-separated values of
// all Event Types for the current Collaboration.
// This string must be pre-allocated.
//
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
DLLEXP
BOOL
APIDEF
IQOutputTopics (OUT char *pszCSVOutputTopics,
 IN void *pvData);

//---

// IQPut
// --
//
// Purpose:
//
// places an event on the output queue, but does not commit
// it to the queue until the transformation function returns
// successfully.
//
// This is a C Collaboration equivalent of the iq-output-topics
// Monk function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszOutputTopic:
// pass the name of the output topic to publish.
//
// pbMsgData:
// pass the data to publish.
//
// pcszCSVInputEventTypes:
// pass a comma-separated list of the input
// Event Types which were used to create this data.
//
// dwPriority:
// priority to assign to the output Event.
//
// dwMajorSeqNumber:
// major sequence number to assign.
//

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h

e*Gate Integrator Collaboration Services Reference Guide 31 SeeBeyond Proprietary and Confidential

// dwMinorSeqNumber:
// minor sequence number to assign.
//
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
BOOL
DLLEXP
APIDEF
IQPut (IN const char *pcszOutputTopic,
 IN const STC_BLOB *pbMsgData,
 IN const char *pcszCSVInputTopics,
 IN DWORD dwPriority,
 IN DWORD dwMajorSeqNumber,
 IN DWORD dwMinorSeqNumber,
 IN void *pvData);

//--
// ccollab_init
// --
//
// Purpose:
//
// Used to initialize the DLL
//
// The handle that is optionally returned is passed into all
// other functions.
//
// --
//
// Parameters:
//
// phCC: if successful, a STC Session handle that is needed
// for all STC APIs.
//
// pcszInitFile:
// if pcszInitFile[0] != 0x00, then this is
// the initialization file configured for the
// Collaboration.
//
// pcszInitialization:
// if pcszInitialization[0] != 0x00, then this
// is the initialization string configured for
// the Collaboration.
//
// dwFlags: bit flags. Reserved for future use.
//
// pvReserved: this param is reserved for future use and
// MUST be set to NULL.
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h

e*Gate Integrator Collaboration Services Reference Guide 32 SeeBeyond Proprietary and Confidential

APIDEF
ccollab_init(OUT HTRANSCC *phCC,
 IN const char *pcszInitFile,
 IN const char *pcszInitialization,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//--
// ccollab_translate
// --
//
// Purpose:
//
// translate pInMsg to pReturnMsg.
//
// --
//
// Parameters:
//
// hCC: The handle returned from ccollab_init.
//
// pInMsg: pointer to a blob that is the Event to translate.
//
// pReturnMsg: the address of an STC_BLOB that, upon success,
// the implementation should fill out the cbData and
// pbData members with the translated Event.
//
// dwFlags: bit flags. Reserved for future use.
//
// pvData: This variable is required as a parameter to all
// IQ Service calls.
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL
APIDEF
ccollab_translate(IN HTRANSCC hCC,
 IN STC_BLOB *pInMsg,
 IN OUT STC_BLOB *pReturnMsg,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvData);

//--
// ccollab_free
// --
//
// Purpose:
//
// free the memory allocated via the call to ccollab_translate
// for the pReturnMsg blob.
//
// --
//
// Parameters:
//
// hCC: The handle returned from ccollab_init

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h

e*Gate Integrator Collaboration Services Reference Guide 33 SeeBeyond Proprietary and Confidential

//
// pReturnMsg: the address of an STC_BLOB that the pbData needs
// to be de-allocated. This function should set the
// cbData = 0 and the pbData = NULL.
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL
APIDEF
ccollab_free(IN HTRANSCC hCC,
 IN STC_BLOB *pReturnedMsg);

//--
// ccollab_term
// --
//
// Purpose:
//
// notification of termination and oportunity to clean up hCC.
//
// --
//
// Parameters:
//
// hCC: The handle returned from ccollab_init
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL
APIDEF
ccollab_term(IN HTRANSCC hCC);

//--
// ccollab_version
// --
//
// Purpose:
//
// signals intent to use enhanced C collaboration features
// (such as IQ Service functions)
//
//--
//
// Parameters:
//
// pszVersion: store CEXT_VERSION to enable features
// (pszVersion is pre-allocated)
//
//--
extern

Chapter 5 Section 5.2
C Collaboration Service Developing the C Dynamic Link Library (.dll) File

e*Gate Integrator Collaboration Services Reference Guide 34 SeeBeyond Proprietary and Confidential

DLLEXP
void
APIDEF
ccollab_version(OUT char *pszVersion);

#ifdef __cplusplus
}
#endif

#endif // STCCCOLLAB_H

5.2 Developing the C Dynamic Link Library (.dll) File
The sample code in the newcollab.c (or .cpp) file shown below demonstrates the
business logic the C Collaboration Service uses. The .c (or .cpp) file must be compiled
externally into a .dll file.

#include "HTRANSCC.h"

BOOL

collab_init(OUT HTRANSCC *phCC,

IN const char *pcszInitFile,

IN const char *pcszInitString,

IN DWORD dwFlags,

IN OUT OPTIONAL void *pvReserved)

 return(TRUE);

BOOL

ccollab_translate(HTRANSCC hCC,

 STC_BLOB *sInBlob,

 STC_BLOB *sOutBlob,

 DWORD dwFlags, void *pvReserved)

sOutBlob->pbData = (BYTE *)malloc(sInBlob->cbData);
if (!(sOutBlob->pbData))
{

return(FALSE);
}
sOutBlob->cbData = sInBlob->cbData;
memcpy(sOutBlob->pbData, sInBlob->pbData, sInBlob->cbData);
return(TRUE);

}

BOOL

Chapter 5 Section 5.2
C Collaboration Service Developing the C Dynamic Link Library (.dll) File

e*Gate Integrator Collaboration Services Reference Guide 35 SeeBeyond Proprietary and Confidential

collab_free(IN HTRANSCC hCC,

 IN STC_BLOB *pReturnedMsg)

if (pReturnedMsg)
{

if (pReturnedMsg->pbData)
{

 free(pReturnedMsg->pbData);
}

pReturnedMsg->pbData = NULL;

 pReturnedMsg->cbData = 0;
}

 return(TRUE);

BOOL

collab_term (IN HTRANSCC hCC)

 return (TRUE);

Within the ccollab_translate function, you can implement any code you like to perform
the business logic required by this Collaboration.

5.2.1 Monk IQ Functions That Do Not Support JMS IQs
The following Monk functions do not support JMS IQs:

! iq-get-header

! iq-mark-unusable

! iq-peek

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs

e*Gate Integrator Collaboration Services Reference Guide 36 SeeBeyond Proprietary and Confidential

5.3 The C Collaboration APIs
The next several pages list the e*Gate APIs available within the C Collaboration Service.

ccollab_free() on page 37

ccollab_init() on page 38

ccollab_term() on page 39

ccollab_translate() on page 40

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs

e*Gate Integrator Collaboration Services Reference Guide 37 SeeBeyond Proprietary and Confidential

ccollab_free()

Syntax

ccollab_free(IN HTRANSCC hCC,
 IN STC_BLOB *pReturnedMsg);

Description

ccollab_free() deallocates the memory associated with the pReturnedMsg in the
ccollab_translate() call.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

hCC HTRANSC The handle
indicated by
ccollab_init().

pReturnedMsg A pointer A pointer to the
message or blob
associated with
ccollab_translate().

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs

e*Gate Integrator Collaboration Services Reference Guide 38 SeeBeyond Proprietary and Confidential

ccollab_init()

Syntax

ccollab_init(OUT HTRANSCC *phCC,
 IN const char *pcszInitFile,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

Description

ccollab_init() is defined in the loadable extension library. It is called directly after
loading the library. It initializes an interface object and returns it to the calling function.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

phCC Pointer A pointer to the handle.
Pass this function an
address of an empty
handle, and the function
will return the handle for
use by other functions

pcszInitFile Zero-delimited
string

A full path pointer to
initialization file.

dwFlags DWORD Reserved; must be set to
zero.

pvReserved Void Reserved; must be set to
null.

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs

e*Gate Integrator Collaboration Services Reference Guide 39 SeeBeyond Proprietary and Confidential

ccollab_term()

Syntax

ccollab_term(IN HTRANSCC hCC);

Description

ccollab_term deallocates any memory associated with the initial ccollab_init() call.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

hCC HTRANSCC The handle
indicated by
ccollab_init().

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs

e*Gate Integrator Collaboration Services Reference Guide 40 SeeBeyond Proprietary and Confidential

ccollab_translate()

Syntax

ccollab_translate(IN HTRANSCC hCC,
 IN STC_BLOB *pInMsg,
 OUT STC_BLOB *pReturnMsg,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

Description

ccollab_translate() provides a pointer (pInMsg) string to external, accepts the message
as a blob (pReturnMsg), and allocates memory as necessary.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

hCC HTRANSCC The handle
indicated by
ccollab_init().

pInMsg String A read only pointer
string.

pReturnMsg String A message, as a
blob.

dwFlags DWORD Reserved; must be
set to zero.

pvReserved Void Reserved; must be
set to null.

Chapter 5 Section 5.4
C Collaboration Service Using the C Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 41 SeeBeyond Proprietary and Confidential

5.4 Using the C Collaboration Service
Once the .c file has been compiled externally, the resultant .dll file must be committed
to the run-time environment e*Gate Registry under the bin/ directory.

You can commit files to the Registry either using the Enterprise Manager—on theFile
menu, click Commit to Sandbox—or by using the stcregutil.exe command-line utility.

The example in this section demonstrates committing/retrieving files by using
stcregutil, implementing the -fr and -fc commands. The example is printed on more
than one line for clarity, but must be issued as a single command line.

To commit (import) the new .dll file to the bin/ path within the e*Gate Repository

1 Create a control (.ctl) file with a text editor, such as mydll.ctl. Each line must have
the following format:

new.dll,path_location,FILETYPE_BINTEXT

Note: There must not be any spaces before or after the commas (“,”).

2 Run the stcregutil utility by typing the following at the command line:

stcregutil -rh registry -rs schema -un user-name -up password -fc
path_location -ctl mydll.ctl

" registry — The registry name to which to commit the file.

" schema — The schema name to which to commit the file.

" user-name — The user name.

" password — The password.

" path_location — The path location.

" mydll.ctl — The name of the .ctl file being committed.

For more information about the stcregutil.exe command-line utility, see the e*Gate
Integrator System Administration and Operations Guide. You can also retrieve/commit a
file using the Enterprise Manager’s File menu options. See the Enterprise Manager’s
online Help system for more information.

5.5 C Collaboration Rules and the Enterprise Manager
After you have committed your C .dll file to the Registry, an e*Gate Collaboration Rule
must be defined using the Collaboration Rules Editor.

To create a C Collaboration Service

1 Commit the .dll or .ctl file to the e*Gate Registry.

2 Define the Event Types to which the C Collaboration will subscribe and publish.

3 Create the Collaboration Rules that use the C Collaboration Service.

Chapter 5 Section 5.6
C Collaboration Service Implementing the C Collaboration Rule

e*Gate Integrator Collaboration Services Reference Guide 42 SeeBeyond Proprietary and Confidential

4 Configure a Collaboration to use the C Collaboration Rule, and configure a BOB or
e*Way to execute this Collaboration. See the next section for additional details.

Note: You cannot execute the C .dll file within a function called by the communications
component of an e*Way.

5 Configure any other e*Gate components as necessary to create a working schema.

6 Test the schema, making any correction as necessary to the e*Gate configuration or
to any Collaboration Rules.

7 After the C .dll has been successfully tested, promote it to Run time. Use either the
Enterprise Manager’s Promote to Runtime command (a File menu option), or the
stcregutil.exe command-line utility.

5.6 Implementing the C Collaboration Rule
To define a Collaboration Rule that uses the C Collaboration Service:

1 In the Enterprise Manager, define a Collaboration Rules component (see the
Enterprise Manager’s help system if you need assistance).

2 Set the Collaboration Rules properties as shown in Figure 8 below.

Figure 8 Collaboration Rules Properties Sheet

Select the
C Service.

Click Find to
locate and select
the .dll file
created for the
C Collaboration
Service.

Chapter 5 Section 5.6
C Collaboration Service Implementing the C Collaboration Rule

e*Gate Integrator Collaboration Services Reference Guide 43 SeeBeyond Proprietary and Confidential

3 Click Find to select the name of the .dll file created for use with this Collaboration.

4 Configure the Subscriptions and Publications tabs as you would for any other
Collaboration Rule.

5 Click OK to return to the Enterprise Manager.

e*Gate Integrator Collaboration Services Reference Guide 44 SeeBeyond Proprietary and Confidential

Appendix A

The Java Collaboration Service Prior to 4.5

The Java Collaboration Service in versions of e*Gate Integrator before e*Gate Integrator
Release 4.5 required you to manually code all Java code. This implementation continues
to be supported, but is not recommended.

This chapter describes the prior implementation, using an extended example.

A.1 Developing the Java Business Logic Class
In the sample code in this example, FileJCollab.java, is a Java class you have created.
The .class file must be imported into the schema in which the Java Collaboration Rule
runs.

A.1.1 Sample Java Business Logic
Java Business Logic Classes use the following basic format as illustrated by the
following sample. Each method created or defined for use with the Java Collaboration
Service (JCS) must implement the JCollaborator class.

package com.stc.common.collabService;

/**
 * A sample class to illustrate implementation of the JCollaborator
 * interface. A flat file is considered as the "external" system.
 *
 */

// Java specific package imports

import java.io.*;

// e*Gate specific package imports

import com.stc.common.collabService.*;

public class FileJCollab implements JCollaborator
{
 FileOutputStream fos = null;

 // --

 /**
 * Zero-argument constructor is needed (Java will provide one if not
 * defined, but it's better to be explicit).
 *
 */
 public FileJCollab()
 {
 super();
 }

 // --

 /**
 * Called by the Java Collaboration Service (JCS) to inform this e*Gate

Appendix A Section A.1
The Java Collaboration Service Prior to 4.5 Developing the Java Business Logic Class

e*Gate Integrator Collaboration Services Reference Guide 45 SeeBeyond Proprietary and Confidential

 * collaboration that it has been loaded into the e*Gate system. The
 * applet can perform connection to externals as necessary here.
 *
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 *
 */
 public void initialize() throws CollabConnException
 {
 try
 {
 fos = new FileOutputStream(new File(System.getProperty("user.home"),
 "FileJCollab.txt"));
 fos.write("initialize(): we're here!".getBytes());
 fos.write(System.getProperty("line.separator").getBytes());
 fos.flush();
 }
 catch (IOException e)
 {
 throw new CollabConnException(e.getMessage());
 }
 }

 // --

 /**
 * Called by the JCS to translate an e*Gate collaboration subscribed event
 * given as a byte blob.
 *
 * @param inputEvent input event data given as a byte array
 * @return output translated event as a byte array
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 * @exception com.stc.common.collabService.CollabDataException thrown if
 * problem encountered with data translation
 *
 */
 public byte[] translate(byte[] inputEvent)
 throws CollabConnException, CollabDataException
 {
 String inputString = new String(inputEvent);
 String outputString = inputString.toUpperCase();

 inputString = null;

 try
 {
 fos.write(inputEvent);
 fos.write(System.getProperty("line.separator").getBytes());
 fos.flush();
 }
 catch (IOException e)
 {
 throw new CollabConnException(e.getMessage());
 }

 return (outputString.getBytes());
 }

 // --

 /**
 * Called by the JCS to inform this e*Gate collaboration that it is
 * being reclaimed and that it should destroy any resources that it
 * has allocated.
 *
 */
 public void terminate()
 {
 try
 {
 fos.write("terminate(): we're done!".getBytes());
 fos.write(System.getProperty("line.separator").getBytes());
 fos.close();
 }
 catch (IOException e)
 {
 // Since we're leaving, we don't care about errors
 }
 }
}

Note: The above Java Business Logic Class transforms all data to upper case.

Appendix A Section A.1
The Java Collaboration Service Prior to 4.5 Developing the Java Business Logic Class

e*Gate Integrator Collaboration Services Reference Guide 46 SeeBeyond Proprietary and Confidential

Within the translate method, you can implement any code you like to perform the
business logic required by this Collaboration. Compile your Java Business Logic Class
using an IDE or Java’s javac compiler, it must implement the JCollaborator interface.

A.1.2 Sample Java Class encode.java
The following class file incorporates the required Java Business Logic to shift characters
one bit to the right.

// Java specific package imports
import java.io.*;

// e*Gate specific package imports
import com.stc.common.collabService.*;

//The encode class implements the JCollaborator interface (mandatory)

public class encode implements JCollaborator
{
 private String COPYRIGHT=
 "\nCopyright (c) 2001, SeeBeyond Technology Corporation, " +
 "All Rights Reserved\n";

 private String RCS_ID = COPYRIGHT + "$Id: $";
 public encode ()
 {
 }

 private String encodeStr(ByteArrayInputStream bais)
 {
 ByteArrayOutputStream baos = new ByteArrayOutputStream(10);
 try
 {
 int ascii = 1;
 while (ascii != 0)
 {
 ascii = (int)bais.read() + 1;
 if (256 == ascii)
 {
 baos.write(0);
 }
 else if (0 != ascii)
 {
 baos.write(ascii);
 }
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.err.println("Caught exception in encodeStr '" + e.getMessage() + "'");
 }
 return baos.toString();
 }

 public void initialize() throws CollabConnException
{

try
{

 System.err.println("Initialize function");
}
catch (Exception e)
{

 e.printStackTrace();
 System.err.println("Exception thrown in initialize:" + e.getMessage());

throw new CollabConnException(e.getMessage());
}

}

public byte[] translate(byte[] inputEvent) throws CollabConnException, CollabDataException
{

 String outputString = "";
 ByteArrayInputStream tempar = new ByteArrayInputStream(inputEvent);

try
{

 outputString = encodeStr(tempar);
}
catch (Exception e)
{

 e.printStackTrace();
 System.err.println("Exception thrown in translate:" + e.getMessage());

throw new CollabDataException(e.getMessage());
}
return (outputString.getBytes());

 }

Appendix A Section A.1
The Java Collaboration Service Prior to 4.5 Developing the Java Business Logic Class

e*Gate Integrator Collaboration Services Reference Guide 47 SeeBeyond Proprietary and Confidential

public void terminate()
{

try
{

 System.err.println("Terminate function");
}
catch (Exception e)
{

 e.printStackTrace();
 System.err.println("Exception thrown in terminate:" + e.getMessage());

}
}

public static void main(String[] args)
{

 encode totest = new encode();

 try
 {

 System.out.println(new String(totest.translate("beginning test
\n\n\"abc\"\nend.".getBytes())));

 }
 catch (Exception e)

 {

 }
}

 }

 /* STC_LOG

 ** $Log: $

 ** STC_LOG */

Note: Since the JCS does not support system.out.println, the above code uses
print.err.println. If the unsupported method is invoked, no print statement
will result.

A.1.3 Sample Java Class decode.java
The following class file encorporates the required Java Business Logic to shift
characters on bit to the left.

// Java specific package imports
import java.io.*;

// e*Gate specific package imports
import com.stc.common.collabService.*;

//The decode class implements the JCollaborator Interface (mandatory)
public class decode implements JCollaborator
{
 private String COPYRIGHT=
 "\nCopyright (c) 2001, SeeBeyond Technology Corporation, " +
 "All Rights Reserved\n";

 private String RCS_ID = COPYRIGHT + "$Id: $";
 public decode ()
 {
 }

 private String decodeStr(ByteArrayInputStream bais)
 {
 ByteArrayOutputStream baos = new ByteArrayOutputStream(10);
 try
 {
 int ascii = 1;
 while (ascii >= 0)
 {
 ascii = (int)bais.read();
 if (0 == ascii)
 {
 baos.write(255);
 }
 else if (-1 != ascii)
 {
 baos.write(--ascii);
 }
 }
 }

Appendix A Section A.1
The Java Collaboration Service Prior to 4.5 Developing the Java Business Logic Class

e*Gate Integrator Collaboration Services Reference Guide 48 SeeBeyond Proprietary and Confidential

 catch (Exception e)
 {
 e.printStackTrace();
 System.err.println("Caught exception in decodeStr '" + e.getMessage() + "'");
 }
 return baos.toString();
 }

 public void initialize() throws CollabConnException

{
try
{

 System.err.println("Initialize function");
}
catch (Exception e)
{

 e.printStackTrace();
throw new CollabConnException(e.getMessage());

}
}

public byte[] translate(byte[] inputEvent) throws CollabConnException, CollabDataException
{

 String outputString = "";
 ByteArrayInputStream tempstream = new ByteArrayInputStream(inputEvent);

try
{

 outputString = decodeStr(tempstream);
}
catch (Exception e)
{

 e.printStackTrace();
 System.err.println("Exception thrown in translate:" + e.getMessage());

throw new CollabDataException(e.getMessage());
}
return (outputString.getBytes());

 }

public void terminate()
{

try
{

 System.err.println("Terminate function");
}
catch (Exception e)
{

 e.printStackTrace();
}

}

public static void main(String[] args)
{

 decode totest = new decode();

 try
 {

 System.out.println(new String(totest.translate("cfhjoojoh!uftu!\013\013#bcd#\013foe/
".getBytes())));

 }
 catch (Exception e)

 {

 }
}

 }

 /* STC_LOG

 ** $Log: $

 ** STC_LOG */

Appendix A Section A.2
The Java Collaboration Service Prior to 4.5 Using the Java Collaboration Service

e*Gate Integrator Collaboration Services Reference Guide 49 SeeBeyond Proprietary and Confidential

A.2 Using the Java Collaboration Service
Once the Java class has been compiled by the external IDE, the resultant class files
must be committed to the e*Gate Registry under the classes/ directory. Additionally,
any other supporting Java classes must be compiled and stored in .jar files. These .jar
files must also be committed to the e*Gate Registry under the classes/ directory.

You normally commit files to the Registry using Enterprise Manager: On the File menu,
click Commit to Sandbox. However, you can also commit files using the stcregutil.exe
command-line utility.

The following example demonstrates that you can also commit files by running
stcregutil with the -fc (file commit) flag. The example is printed on more than one line
for clarity, but must be issued as a single command line.

To commit the file new.jar to the classes/path within the e*Gate repository:

1 Create a control (.ctl) file with a text editor giving it a name such as myjar.ctl. Each
line within myjar.ctl should have the following format:

new.jar,classes,FILETYPE_BINTEXT

Note: There must mot be any spaces before or after the commas (,).

2 Run the stcregutil utility by typing the following at the command line:

stcregutil -rh registry -rs schema -un user-name
 -up password -fc classes -ctl myjar.ctl

For more information about the stcregutil.exe command-line utility, see the
e*Gate Integrator System Administration and Operations Guide.

You can also retrieve or commit one file at a time using other File menu options. For
more information, see the online help for Enterprise Manager.

A.3 Java Collaboration Service Methods
In order for the JCS to utilize your Java class, which performs the requisite business
logic, the class must implement the SeeBeyond Java Interface:

com.stc.common.collabService.JCollaborator

The JCollaborator Interface prescribes implementation for the following methods:

initialize() on page 50

terminate() on page 50

translate() on page 50

Appendix A Section A.3
The Java Collaboration Service Prior to 4.5 Java Collaboration Service Methods

e*Gate Integrator Collaboration Services Reference Guide 50 SeeBeyond Proprietary and Confidential

initialize()

Syntax

void initialize()

Description

initialize() initializes the Java collaboration class and can perform functions such as
connecting to externals as necessary.

Parameters

None.

Return Value

None.

Throws

com.stc.common.collabService.CollabConnException: indicates a problem
encountered with a connection.

terminate()

Syntax

void terminate()

Description

terminate() notifies the Collaboration that it is no longer in use and that any connection
type resources allocated to that Collaboration should be destroyed.

Parameters

None.

Return Value

None.

translate()

Syntax

byte[] translate(byte[] inputEvent);

Description

translate() translates a subscribed e*Gate Collaboration Event which must be input as a
byte blob.

Parameters

Name Type Description

inputEvent byte array The Event to translate

Appendix A Section A.3
The Java Collaboration Service Prior to 4.5 Java Collaboration Service Methods

e*Gate Integrator Collaboration Services Reference Guide 51 SeeBeyond Proprietary and Confidential

Return Value

byte array

Throws

com.stc.common.collabService.CollabConnException: indicates a problem
encountered with a connection.

com.stc.common.collabService.CollabDataException: indicates a problem
encountered with data translation.

Additional Information

The byte array must be in the form of UTF-8 encoded characters (similar to the ASCII
seven-bit characters, where the character values are between 1 and 127 and are
represented as the same).

Index

e*Gate Integrator Collaboration Services Reference Guide 52 SeeBeyond Proprietary and Confidential

Index

Symbols
-appendenvcp 24
-classpath 24
-cp 24
-debug 25
-def 25
-java1 25
-jnidll 25
-ldp 26
-ms 26
-mx 26
-noclasgc 26
-nojit 26
-suspend 26
-verbose 26
-verbosegc 26

A
AIX Participating Hosts 12
appendenvcp (initialization parameter for JCS) 24

C
C Collaboration Service 27

business logic 34
ccollab_translate 35
classpath

exceeding 255 characters 21
classpath (initialization parameter for JCS) 24
Collaboration Rules

Pass Through (Java) 16
Collaboration Rules, Java

configuring 20
Pass Through 16

collaboration services
C Collaboration 11
Java Collaboration 11
Monk 11
Monk ID 11
Pass Through 11
Route Table 11

Collaboration Services supported by e*Gate 11
committing files to the registry 22, 49

conventions, writing in document 8
cp (initialization parameter for JCS) 24

D
debug (initialization parameter for JCS) 25
def (initialization parameter for JCS) 25
developing the Java Business Logic Class 44
Dynamic Link Library 27

F
FileJCollab.java

sample code 44
functions, Monk

that do not support JMS IQs 35

H
header file

HTRANSCC.h 27
HTRANSCC.h

header file 27

I
implementing the C Collaboration Rule 42
implementing the JCS Collaboration rule 20
importing files to the Registry. See committing files
initialization parameters

for JCS 24
initialize() method of JCollaborator interface 50
intended audience

of reference guide 7
interfaces

JCollaborator 49
IQ functions, Monk

that do not support JMS IQs 35

J
Java 49
Java 2 SDK on UNIX

requirements 12
search path environment variables 12

Java Business Logic Class 44
Java collaboration methods

initialize() 50
terminate() 50

Java Collaboration Rules
configuring 20

Java Collaboration Service 15, 15–26, 44
defined 15

Index

e*Gate Integrator Collaboration Services Reference Guide 53 SeeBeyond Proprietary and Confidential

initialization parameters for 24
prior to Release 4.5 44
using 15

Java Collaboration Service Methods 24, 49
Java Interface 49
Java Pass Through Collaboration Rule

creating 16
defined 16
illustrated 16

java1
initialization parameter for JCS 25

javac
Java compiler 46

JCollaborator interface
(used prior to 4.5) 46
methods 49

JCollaborator methods
initialize() 50
terminate() 50
translate() 50

JCS. See Java Collaboration Service
JMS IQs

unsupported by Monk functions (list) 35
jnidll (initialization parameter for JCS) 25

L
ldp (initialization parameter for JCS) 26

M
methods, JCollaborator interface 49

initialize() 50
terminate() 50
translate() 50

Monk Collaboration Service 13
Monk functions

that do not support JMS IQs 35
Monk ID Collaboration Service 14
ms (initialization parameter for JCS) 26
mx (initialization parameter for JCS) 26

N
noclasgc (initialization parameter for JCS) 26
nojit (initialization parameter for JCS) 26

O
organization of information

in reference guide 8

P
Pass Through

class (Java Collaboration Rule) 16
Collaboration Service 14

Pass Through Collaboration Service 14
PTFs

required for AIX Participating Hosts 12

R
reference guide

intended audience 7
organization of information 8
purpose and scope 7

Registry
committing files 22, 49

requirements 11
Java 2 SDK 12

Route Table Collaboration Service 14

S
sample code (FileJCollab.java) 44
Sample Java Business Logic 44
search path environment variables

Java 2 SDK 12
SeeBeyond Web site 10
STCJavaPassThrough.class 16
stcregutil 22, 49
supported collaboration service 11
supporting documents 10
suspend (initialization parameter for JCS) 26
system requirements 11

Java 2 SDK 12

T
terminate() method of JCollaborator interface 50
translate() method of JCollaborator interface 50

used in sample code 46

V
verbose

initialization parameter for JCS 26
verbosegc (initialization parameter for JCS) 26

	e*Gate Integrator Collaboration Services Reference Guide
	Contents
	List of Tables
	List of Figures
	Introduction
	1.1 Purpose and Scope
	1.2 Intended Audience
	1.3 Organization of Information
	1.4 Writing Conventions
	1.5 Supporting Documents
	1.6 SeeBeyond Web Site

	Requirements for Supported Services
	2.1 Supported Collaboration Services
	2.2 Requirements
	2.2.1 System Requirements
	2.2.2 Important Requirements for the Java 2 SDK on UNIX Systems

	Monk and Pass Through Collaboration Services
	3.1 Overview: Monk and Pass Through Services
	3.2 Monk Collaboration Service
	3.3 Monk ID Collaboration Service
	3.4 Route Table Collaboration Service
	3.5 Pass Through Collaboration Service

	Java Collaboration Service (JCS)
	4.1 What is the Java Collaboration Service?
	4.2 How to use the Java Collaboration Service
	4.2.1 Creating Java Collaboration Rules Components
	4.2.2 Implementing Java Collaboration Rule Components
	4.2.3 Dealing With Long CLASSPATHs
	4.2.4 Committing Java Classes and .jar Files to the Registry
	Using the .ctl File to Download Entries from the Registry

	4.3 Parameters for the JCS Initialization String

	C Collaboration Service
	5.1 Header File: HTRANSCC.h
	5.2 Developing the C�Dynamic Link Library (.dll) File
	5.2.1 Monk IQ Functions That Do Not Support JMS IQs

	5.3 The C�Collaboration APIs
	ccollab_free()
	ccollab_init()
	ccollab_term()
	ccollab_translate()

	5.4 Using the C�Collaboration Service
	5.5 C Collaboration Rules and the Enterprise Manager
	5.6 Implementing the C Collaboration Rule

	The Java Collaboration Service Prior to 4.5
	A.1 Developing the Java Business Logic Class
	A.1.1 Sample Java Business Logic
	A.1.2 Sample Java Class encode.java
	A.1.3 Sample Java Class decode.java

	A.2 Using the Java Collaboration Service
	A.3 Java Collaboration Service Methods
	initialize()
	terminate()
	translate()

	Index
	Symbols
	A
	C
	D
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V

