
SeeBeyond Proprietary and Confidential

Generic e*Way Extension Kit
Developer’s Guide

Release 4.5.2

Monk Version

Generic e*Way Extension Kit Developer’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030219103548.

Contents

Generic e*Way Extension Kit Developer’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 7
Overview 7

Intended Audience 8

Generic e*Way Components 8
stcewgenericmonk.exe 8
stcewgenericmonk.def 8
Monk Template Scripts 9
e*Way APIs 9

Supported Operating Systems 9

System Requirements 9

e*Way Extensions and External Applications 10
Basics Steps to Extend a Generic e*Way 12

Chapter 2

External Interface 13
Header File - stcextif.h 13

Overview 13
Type Definitions List 14

ExtIFParamTypes_ 15
ExtIFResult_ 15
EXTIF_PARAM_ 16
EXTIF_CHARBLOB 16
EXTIF_WCHARBLOB 17
EXTIF_VECTOR 17
EXTIF_OBJECT 18

Init Function 18

Methods 19
List of Methods 19

invoke 19
freeargs 20
addref 20
removeref 21

Template Source Code 21

Contents

Generic e*Way Extension Kit Developer’s Guide 4 SeeBeyond Proprietary and Confidential

Sample Source Code Description 25

Loading the DLL 29

Chapter 3

Extending the .def File 31
Introduction 31

Layout 32

.def file Keywords: General Information 32
White Space 32
Integer Parameters 33
Floating-point Parameters 33
String and Character Parameters 33
Path Parameters 33
Comments 33
“Header” Information 34

Defining a New Section 34
Section Syntax 34
Parameter Syntax 35

Order of Keywords 36
Parameter Types 37
Parameters Requiring Single Values 37
Parameters Accepting a Single Value From a Set 38
Parameters Accepting Multiple Values From a Set 39

Specifying Ranges 40
Specifying Units 41
Displaying Options in ASCII, Octal, Hex, or Decimal 43

Factor 44
Encrypting Strings 45

Configuration Keyword Reference 45
Schedule Syntax 49

Defining Default Schedules 50

Configuration Parameters and the Configuration Files 51
Examples 51

Testing and Debugging the .def File 53
Common Error Messages 54

Sample .def File 55

Accessing Configuration Parameters Within the Monk Environment 57
Variable-name Format 57
Getting Variable Values 58

Chapter 4

Configuration 59
Required e*Way Configuration Parameters 59

Contents

Generic e*Way Extension Kit Developer’s Guide 5 SeeBeyond Proprietary and Confidential

General Settings 59
Journal File Name 59
Max Resends Per Message 60
Max Failed Messages 60
Forward External Errors 60

Communication Setup 61
Start Exchange Data Schedule 61
Stop Exchange Data Schedule 61
Exchange Data Interval 62
Down Timeout 62
Up Timeout 62
Resend Timeout 63
Zero Wait Between Successful Exchanges 63

Monk Configuration 63
Operational Details 64
How to Specify Function Names or File Names 70
Additional Path 70
Auxiliary Library Directories 71
Monk Environment Initialization File 71
Startup Function 72
Process Outgoing Message Function 72
Exchange Data with External Function 73
External Connection Establishment Function 74
External Connection Verification Function 74
External Connection Shutdown Function 75
Positive Acknowledgment Function 75
Negative Acknowledgment Function 76
Shutdown Command Notification Function 76

Template Scripts 77
Startup Function 77
Process Outgoing Event Function 77
Exchange Data with External Function 77
External Connection Establishment Function 78
External Connection Verification Function 78
External Connection Shutdown Function 78
Positive Acknowledgment Function 78
Negative Acknowledgment Function 79
Shutdown Command Notification Function 79

Chapter 5

Interface API Functionality 80
Core Functions 80

event-commit-to-egate 80
event-rollback-to-egate 81
event-send-to-egate 82
event-send-to-egate-ignore-shutdown 82
event-send-to-egate-no-commit 83
get-logical-name 83
insert-exchange-data-event 84
send-external-down 84
send-external-up 84
shutdown-request 85

Contents

Generic e*Way Extension Kit Developer’s Guide 6 SeeBeyond Proprietary and Confidential

start-schedule 85
stop-schedule 86
waiting-to-shutdown 86

Extension Functions 87
invoke 87
load-interface 88

Chapter 6

Configuring the e*Way with the Enterprise Manager 89
Implementing the Generic e*Way 89

Step 1: Commit files to the schema 89
Step 2: Create an e*Way Component 90
Step 3: Configure the e*Way 91
Editing a .def File Within a Schema 92

Index 93

Generic e*Way Extension Kit Developer’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

The Generic e*Way Extension Kit Developer’s Guide describes how to extend the Generic
e*Way for use with external applications using the Generic e*Way Extension Kit. The kit
includes instructions on how to

! Use the External Interface (EI) to create a dynamic or shared library that allows the
Generic e*Way access to external Application Programming Interfaces (APIs)
written in C or C++.

! Create a .def file for use with your extended Generic e*Way configuration GUI.

! Use dynamic or shared libraries with the Generic e*Way executable (shipped with
the base e*Gate product).

Note: This dynamic or shared library created with the EI can also be used by a Business
Object Broker (BOB). For more information on BOBs, see the e*Gate Enterprise
Manager’s online help.

1.1 Overview
The External Interface (EI) is the programming interface which allows a dynamic or
shared library that follows the EI protocol to have access to other libraries that follow
the same protocol. Because the Monk engine follows this protocol, Monk scripts can run
within a Generic e*Way to operate with applications and libraries written in other
languages such as C and C++. Programmers use the EI to write native methods to
handle those situations when an application cannot be written entirely in the Monk
programming language.

For example, you may want to use native methods and the EI in the following
situations:

! The standard Monk function library may not support the platform-dependent
features needed by your application.

! You have a library or application written in another programming language and
you want to make it accessible to Generic e*Way applications.

! You want to implement a small portion of time-critical code in a lower-level
programming language, such as C, and have the Generic e*Way application call
these functions.

Chapter 1 Section 1.2
Introduction Generic e*Way Components

Generic e*Way Extension Kit Developer’s Guide 8 SeeBeyond Proprietary and Confidential

Programming through the EI framework enables you to create a bridge between the
e*Gate system and native applications, using native methods to perform a wide range
of operations such as wrapping legacy applications or solving problems better handled
outside the Monk programming environment.

1.1.1 Intended Audience
The intended audience for this document is experienced programmers who want to
write e*Way interfaces using the Generic e*Way. We also recommend that the reader
have a thorough understanding of the following:

! C and C++ programming languages.

! Windows NT operating system (as well as the UNIX operating system for UNIX
applications).

! Basic knowledge of SeeBeyond’s Monk programming language.

! External application for which the extension is to be written.

1.2 Generic e*Way Components
The Generic e*Way connects the e*Gate system to an external system or database, using
the appropriate communication protocol and applicable libraries.

The Generic e*Way contains the following components:

! stcewgenericmonk.exe, an executable file

! stcewgenericmonk.def, an executable configuration definition file

! Monk template scripts

! e*Way Monk APIs

stcewgenericmonk.exe

This executable component, stcewgenericmonk.exe, is the core of the e*Way that
communicates and manipulates Events traveling between an external system and
e*Gate, using the Monk external function scripts. It implements the communication
between the external system and e*Gate and loads and interprets the configuration file
used by the e*Way to determine how to deal with data to and from the external system.

stcewgenericmonk.def

The configuration definition file, stcewgenericmonk.def, contains all the configuration
parameters used by the e*Way executable. Some of these parameters form the basic
characteristics for the e*Way itself, while others are Monk functions that allow the
e*Way to communicate with a specific external system. The remaining parameters
consist of a set of Monk variables used by the Monk environment. These configuration
parameters are set using the e*Way Editor.

Chapter 1 Section 1.3
Introduction Supported Operating Systems

Generic e*Way Extension Kit Developer’s Guide 9 SeeBeyond Proprietary and Confidential

Monk Template Scripts

e*Ways use Monk functions to perform such basic operations as startup, data exchange,
positive and negative acknowledgement, and establish and shut down the connection
to the external system. The Generic e*Way kit includes templates that illustrate the
required input and return values for each basic function. These functions must be
customized to meet the requirements of the e*Way you wish to design. For example, the
exchange data with external function that reads data from a file will be different from a
function written to obtain that data from a database.

e*Way APIs

The e*Way Monk APIs are described in the section “Monk Configuration” on page 63.
The Generic e*Way can also be configured to use application-specific API libraries.

1.3 Supported Operating Systems
The Generic e*Way Extension Kit is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i

! Red Hat Linux 6.2

! Windows 2000 (Japanese), Windows 2000 SP1 (Japanese), Windows 2000 SP2
(Japanese) and Windows 2000 SP3 (Japanese)

! Windows NT 4.0 SP6a (Japanese)

! Solaris 2.6, 7, and 8 (Japanese)

! HP-UX 11.0 (Japanese)

! HP-UX 11.0 (Korean)

! OS/390 V2R10

! z/OS V1.2, V1.3, and V1.4

1.4 System Requirements
To use the Generic e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later, except for the following
operating systems:

Chapter 1 Section 1.5
Introduction e*Way Extensions and External Applications

Generic e*Way Extension Kit Developer’s Guide 10 SeeBeyond Proprietary and Confidential

" The OS/390 V2 R10 operating system is supported by e*Gate versions 4.5.2 and
4.5.3.

" The z/OS 1.2, 1.3, and 1.4 operating systems are supported by e*Gate versions
4.5.2 and 4.5.3.

! A TCP/IP network connection.

! Java JDK version 1.3.1._02 or later.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes. The amount necessary varies based on the type and size of the data being
processed and any external applications performing the processing.

! Open and review the Readme.txt for the Generic e*Way regarding any additional
requirements prior to installation. The Readme.txt is located on the Installation
CD_ROM at setup\addons\ewmux.

1.5 e*Way Extensions and External Applications
The diagram below illustrates how the Generic e*Way accesses an external application.

Chapter 1 Section 1.5
Introduction e*Way Extensions and External Applications

Generic e*Way Extension Kit Developer’s Guide 11 SeeBeyond Proprietary and Confidential

Figure 1 Extending the Generic e*Way

1 A dynamic link library or dll (on NT) or shared library (on UNIX) is created from user-
created source code to extend the Generic e*Way.

2 The Generic e*Way is configured to use the user-created dll or shared library.

3 A user-written Monk script uses the EI protocol and the user-created library to
access the external application.

User Defined Extended Generic e*Way

ExtensionGeneric e*Way

External Application

EXT
APP
API

Monk Engine

Collaboration
Monk Script

(invoke . . .)

User Created Dynamic/
Shared lib

EXT
APP
API

EI
object

Extending the Generic e*Way to an External Application

3.
3.

2.

1.

Chapter 1 Section 1.5
Introduction e*Way Extensions and External Applications

Generic e*Way Extension Kit Developer’s Guide 12 SeeBeyond Proprietary and Confidential

1.5.1 Basics Steps to Extend a Generic e*Way
To extend the Generic e*Way for access to an external application, follow these basic
steps:

1 Create a dynamic link library or shared library for the Generic e*Way to use at run-
time to access the external application. To do this, create source code in C or C++
using the EI protocol to “wrap” the external application’s API calls; then, compile
and link the source code to create the dynamic or shared library.

2 Modify the stcewgenericmonk.def file template as needed to allow proper
configuring of the Generic e*Way with the Configuration GUI. If you do modify the
file template, you must import the changed template to the appropriate schema.

3 Write Monk code that invokes the EI object to enable use of the “wrapped” external
application API calls.

4 Configure the Generic e*Way to use the dynamic link library or shared library you
created to extend the Generic e*Way.

5 Run the extended Generic e*Way in your e*Gate environment.

Generic e*Way Extension Kit Developer’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2

External Interface

This chapter describes the components of the external interface and how to implement
them.

2.1 Header File - stcextif.h
The External Interface (EI) allows you to create a dll library (for NT) or shared library
(for UNIX) that contains an External Interface object. The EI object holds the types and
methods that can be passed between an external application and the Generic e*Way.
This chapter describes how the EI header file is used with the EI object. The overview
lists the entire header file; subsequent sections discuss each type definition in detail.

2.1.1 Overview
The external interface object defines a structure that contains a location where the user
can place data for the object as well as four functions that implement the interface. The
four functions are defined in the section “Methods” on page 19.

#define EXTIF_IN
#define EXTIF_OUT
#define EXTIF_OPTIONAL

#ifdef __cplusplus
extern “C”
{
#endif

typedef void *HEXTIFUSEROBJECT;

typedef enum
{
 EXTIF_NOOP_PARAM = 0,
 EXTIF_CHARBLOB_PARAM = 1,
 EXTIF_WCHARBLOB_PARAM = 2,
 EXTIF_BOOLEAN_PARAM = 3,
 EXTIF_CHAR_PARAM = 4,
 EXTIF_WCHAR_PARAM = 5,
 EXTIF_DOUBLE_PARAM = 6,
 EXTIF_LONG_PARAM = 7,
 EXTIF_OBJECT_PARAM = 8,
 EXTIF_VECTOR_PARAM = 9

} ExtIFParamTypes_;

Chapter 2 Section 2.1
External Interface Header File - stcextif.h

Generic e*Way Extension Kit Developer’s Guide 14 SeeBeyond Proprietary and Confidential

typedef enum
{
 EXTIF_OK_STATUS = 0,
 EXTIF_INVOKE_CALL_FAILED = 1,
 EXTIF_MEM_ALLOC_FAILED = 2,
 EXTIF_NO_FUNCTION = 3,
 EXTIF_BAD_FUNC_PARAM = 4,
 EXTIF_BAD_ARG_PARAM = 5

} ExtIFResult_;

typedef struct EXTIF_CHARBLOB_
{
 unsigned int cbBlob;
 unsigned char *pbBlob;

} EXTIF_CHARBLOB, *PEXTIF_CHARBLOB;

typedef struct EXTIF_WCHARBLOB_
{
 unsigned int cwcBlob;
 long *pwcBlob;

} EXTIF_WCHARBLOB, *PEXTIF_WCHARBLOB;

typedef struct EXTIF_VECTOR_
{
 unsigned int cElements;
 struct EXTIF_PARAM_ *rgElements;

} EXTIF_VECTOR, *PEXTIF_VECTOR;

typedef struct EXTIF_PARAM_
{
 ExtIFParamTypes_ eType;

 union
 {
 EXTIF_CHARBLOB CharBlobParam;
 EXTIF_WCHARBLOB WCharBlobParam;
 unsigned char fBooleanParam;
 unsigned char bCharParam;
 unsigned long lWCharParam;
 double dblDoubleParam;
 long int liLongParam;
 EXTIF_VECTOR VectorParam;
 struct EXTIF_OBJECT_ *pObjectParam;

 } u;

} EXTIF_PARAM, *PEXTIF_PARAM;

2.1.2 Type Definitions List
The following structures define the External interface:

! ExtIFParamTypes_

! ExtIFResult_

! EXTIF_PARAM_

! EXTIF_CHARBLOB

Chapter 2 Section 2.1
External Interface Header File - stcextif.h

Generic e*Way Extension Kit Developer’s Guide 15 SeeBeyond Proprietary and Confidential

! EXTIF_WCHARBLOB

! EXTIF_VECTOR

! EXTIF_OBJECT

ExtIFParamTypes_

Structure

typedef enum
{
 EXTIF_NOOP_PARAM = 0,
 EXTIF_CHARBLOB_PARAM = 1,
 EXTIF_WCHARBLOB_PARAM = 2,
 EXTIF_BOOLEAN_PARAM = 3,
 EXTIF_CHAR_PARAM = 4,
 EXTIF_WCHAR_PARAM = 5,
 EXTIF_DOUBLE_PARAM = 6,
 EXTIF_LONG_PARAM = 7,
 EXTIF_OBJECT_PARAM = 8,
 EXTIF_VECTOR_PARAM = 9

} ExtIFParamTypes_;

Description

These are the types of parameters that can be passed to and from an External Interface.

ExtIFResult_

Structure

typedef enum
{
 EXTIF_OK_STATUS = 0,
 EXTIF_INVOKE_CALL_FAILED = 1,
 EXTIF_MEM_ALLOC_FAILED = 2,
 EXTIF_NO_FUNCTION = 3,
 EXTIF_BAD_FUNC_PARAM = 4,
 EXTIF_BAD_ARG_PARAM = 5

} ExtIFResult_;

EXTIF_NOOP_PARAM A no-op parameter

EXTIF_CHARBLOB_PARAM A non-specific char data

EXTIF_WCHARBLOB_PARAM A non-specific wide char data

EXTIF_BOOLEAN_PARAM A boolean

EXTIF_CHAR_PARAM A character

EXTIF_WCHAR_PARAM A wide character

EXTIF_DOUBLE_PARAM A double floating point number

EXTIF_LONG_PARAM A long integer value

EXTIF_OBJECT_PARAM An object interface object that can be passed in or
out of the invoke call.

EXTIF_VECTOR_PARAM A vector (array) containing any type of parameter

Chapter 2 Section 2.1
External Interface Header File - stcextif.h

Generic e*Way Extension Kit Developer’s Guide 16 SeeBeyond Proprietary and Confidential

Description

These are the available return values from the invoke call.

EXTIF_PARAM_

Structure

typedef struct EXTIF_PARAM_
{
 ExtIFParamTypes_ eType;

 union
 {
 EXTIF_CHARBLOB CharBlobParam;
 EXTIF_WCHARBLOB WCharBlobParam;
 unsigned char fBooleanParam;
 unsigned char bCharParam;
 unsigned long lWCharParam;
 double dblDoubleParam;
 long int liLongParam;
 EXTIF_VECTOR VectorParam;
 struct EXTIF_OBJECT_ *pObjectParam;

 } u;
} EXTIF_PARAM, *PEXTIF_PARAM;

Description

etype specifies the type of the parameter. The etype will indicate which of the union
members contains the appropriate data.

EXTIF_CHARBLOB

Structure

typedef struct EXTIF_CHARBLOB_
{
 unsigned int cbBlob;
 unsigned char *pbBlob;

} EXTIF_CHARBLOB, *PEXTIF_CHARBLOB;

EXTIF_OK_STATUS Status ok.

EXTIF_INVOKE_CALL_FAILED Generic failure of the invoke call. Most
interfaces should perform a get last error
method.

EXTIF_MEM_ALLOC_FAILED Memory allocation error. Somewhere during
the call a malloc function call failed to
allocate memory.

EXTIF_NO_FUNCTION The function name that was passed to the
invoke call is not supported in this interface.

EXTIF_BAD_FUNC_PARAM The number of arguments passed to the
function was invalid.

EXTIF_BAD_ARG_PARAM One of the arguments to the function of the
invoke call was invalid.

Chapter 2 Section 2.1
External Interface Header File - stcextif.h

Generic e*Way Extension Kit Developer’s Guide 17 SeeBeyond Proprietary and Confidential

Description

This structure is used to handle blob data. CharBlobParam has two parameters.

Parameters

EXTIF_WCHARBLOB

Structure

typedef struct EXTIF_WCHARBLOB_
{
 unsigned int cwcBlob;
 long *pwcBlob;

} EXTIF_WCHARBLOB, *PEXTIF_WCHARBLOB;

Description

This structure is used to handle wide character blob data. WCharBlobParam has two
parameters:

EXTIF_VECTOR

Structure

typedef struct EXTIF_VECTOR_
{
 unsigned int cElements;
 struct EXTIF_PARAM_ *rgElements;

} EXTIF_VECT

Description

This structure is used to handle a vector of parameter elements. VectorParam contains
two parameters:

Parameter Name Description

cbBlob Count of char data passed

pbBlob An array of char data.

Parameter Name Description

cwcBlob The length of the data

pwcBlob A long character array

Parameter Name Description

cElements The count of vector elements

rgElements An array of parameter elements
(EXTIF_PARAM_)

Chapter 2 Section 2.2
External Interface Init Function

Generic e*Way Extension Kit Developer’s Guide 18 SeeBeyond Proprietary and Confidential

EXTIF_OBJECT

Structure

typedef struct EXTIF_OBJECT_
{
 unsigned int cbStruct; /* set to sizeof(EXTIF_OBJECT) */

 HEXTIFUSEROBJECT hUserObject;

 PFNEXTIFINVOKE pfnInvoke;
 PFNEXTIFFREEARGS pfnFreeArgs;
 PFNEXTIFADDREF pfnAddRef;
 PFNEXTIFREMOVEREF pfnRemoveRef;

 unsigned char bLast4v1;

} EXTIF_OBJECT, *PEXTIF_OBJECT;

Description

This is the External Interface object that the init function (see below) returns.

2.2 Init Function
The init function is defined in the loadable extension library. It is called directly after
loading the library. It initializes an External Interface object and returns it to the calling
function.

Syntax

typedef ExtIFResult_ (*PFNEXTIFINIT)
(IN struct EXTIF_OBJECT_ **pExtIf,
IN unsigned long ulFlags,
IN OUT OPTIONAL void *pvReserved);

Description

func ptr: PFNEXTIFINIT (perform next interface object initialization)

Parameters

Parameter Name Description

cbStruct Size of this struct; must be set to size of
(EXTIF_OBJECT)

hUserObject A pointer to user-defined object data for the
specified interface

Parameter Name Description

pExtlf (IN) A pointer to the External Interface Object

ulFlags (IN) Bit flags reserved for future use

pvReserved This parameter is reserved for future use and
must be set to NULL.

Chapter 2 Section 2.3
External Interface Methods

Generic e*Way Extension Kit Developer’s Guide 19 SeeBeyond Proprietary and Confidential

2.3 Methods
The External Interface object consists of these interface methods:

! invoke

! freeargs

! addref

! removeref

2.3.1 List of Methods

invoke

Syntax

typedef ExtIFResult_ (*PFNEXTIFINVOKE)
(EXTIF_IN struct EXTIF_OBJECT_ *pExtIf,

EXTIF_IN const char *pcszFunctionName,
EXTIF_IN const PEXTIF_VECTOR ppivInArgs,
EXTIF_OUT PEXTIF_VECTOR *ppivOutArgs,
EXTIF_IN unsigned long ulFlags,
EXTIF_IN EXTIF_OUT EXTIF_OPTIONAL void *pvReserved);

Description

func ptr: PFNEXTIFINVOKE

Purpose

The invoke function is attached to the External Interface object that will invoke methods
defined in that interface object.

Parameters

return EXTIF_OK_STATUS, others if not

Parameter Description

pExtIf (IN) A pointer to the External Interface Object

pcszFunctionName (IN) The name of the method that will be
invoked by the interface object. This is a null
terminated char string.

pcmivInArgs (IN) A vector of input arguments

ppivOutArgs (OUT) A vector of output arguments

uIFlags (IN) This parameter is reserved for future use
and must be set to NULL.

Parameter Name Description

Chapter 2 Section 2.3
External Interface Methods

Generic e*Way Extension Kit Developer’s Guide 20 SeeBeyond Proprietary and Confidential

freeargs

Syntax

typedef ExtIFResult_ (*PFNEXTIFFREEARGS)
(EXTIF_IN struct EXTIF_OBJECT_ *pExtIf,

EXTIF_IN PEXTIF_VECTOR *ppivArgs,
EXTIF_IN unsigned long ulFlags,
EXTIF_IN EXTIF_OUT EXTIF_OPTIONAL void *pvReserved);

Description

func ptr: PFNEXTIFFREEARGS

Purpose

The freeargs function is attached to the External Interface object that will be called after
an invoke function is called. It will free the return arguments that the invoke function
returned.

Parameters

addref

Syntax

typedef ExtIFResult_ (*PFNEXTIFADDREF)
(EXTIF_IN struct EXTIF_OBJECT_ *pExtIf,

EXTIF_IN unsigned long ulFlags,
EXTIF_IN EXTIF_OUT EXTIF_OPTIONAL void *pvReserved);

Description

func ptr: PFNEXTIFADDREF

Purpose

The addref function should be called whenever a new reference is to be kept for this
object.

pvReserved (IN) (OUT) This parameter is reserved for
future use and must be set to NULL.

return EXTIF_OK_STATUS, others if not

Parameter Description

pExtIf (IN) A pointer to the External Interface Object

pcivInArgs (IN) A vector of input arguments

ulFlags (IN) Bit flags reserved for future use. Must be
set to NULL.

pvReserved (IN OUT) This parameter is reserved for
future use and must be set to NULL.

return EXTIF_OK_STATUS, others if not

Parameter Description

Chapter 2 Section 2.4
External Interface Template Source Code

Generic e*Way Extension Kit Developer’s Guide 21 SeeBeyond Proprietary and Confidential

Parameters

removeref

Syntax

typedef ExtIFResult_ (*PFNEXTIFREMOVEREF)
(EXTIF_IN struct EXTIF_OBJECT_ **pExtIf,
EXTIF_IN unsigned long ulFlags,
EXTIF_IN EXTIF_OUT EXTIF_OPTIONAL void *pvReserved);

Description

func ptr: PFNEXTIFREMOVEREF

Purpose

The removeref function should be called whenever a reference is to be removed for this
object.

Parameters

2.4 Template Source Code
The following sample source code is a template that provides an example of how to use
the External Interface’s headers, types, methods, and functions to provide access to an
external application. This external application represents a database system.

A detailed description of the source code (sampleext.c) follows the sample which can be
located on the Installation CD in the root directory under samples\sdk\ewayext.

#include <malloc.h>
#include <stdlib.h>

Parameter Description

pExtIf (IN) A pointer to the External Interface Object

ulFlags (IN) Bit flags reserved for future use. Must be
set to NULL.

pvReserved (IN OUT) This parameter is reserved for
future use and must be set to NULL.

return EXTIF_OK_STATUS, others if not.

Parameter Description

pExtIf (IN) A pointer to the External Interface Object

ulFlags (IN) Bit flags reserved for future use. Must be
set to NULL.

pvReserved (IN OUT) This parameter is reserved for
future use and must be set to NULL.

return EXTIF_OK_STATUS, others if not.

Chapter 2 Section 2.4
External Interface Template Source Code

Generic e*Way Extension Kit Developer’s Guide 22 SeeBeyond Proprietary and Confidential

#include <stdio.h>
#include <string.h>

#include "stcextif.h"

struct object {
int refcount;

};

/* Example functions */
static void open_db(char *username, char *password)
{

/* Code to implement database open here */
}

static void close_db(void)
{

/* Code to implement database close here */
}

static char *get_db(char *key)
{

/* Code to implement database get here */
return "look up value";

}

static void put_db(char *key, char *value)
{

/* Code to implement database put here */
}

static ExtIFResult_ free_args_helper(PEXTIF_VECTOR pivArgs)
{

unsigned int i;

for (i = 0; i < pivArgs->cElements;i++)
{

switch(pivArgs->rgElements[i].eType)
{
case EXTIF_NOOP_PARAM:

break;
case EXTIF_CHARBLOB_PARAM:

if (pivArgs->rgElements[i].u.CharBlobParam.pbBlob)
free(pivArgs->rgElements[i].u.CharBlobParam.pbBlob);

break;
case EXTIF_WCHARBLOB_PARAM:

if (pivArgs->rgElements[i].u.WCharBlobParam.pwcBlob)
free(pivArgs-

>rgElements[i].u.WCharBlobParam.pwcBlob);
break;

case EXTIF_BOOLEAN_PARAM:
break;

case EXTIF_CHAR_PARAM:
break;

case EXTIF_WCHAR_PARAM:
break;

case EXTIF_DOUBLE_PARAM:
break;

case EXTIF_LONG_PARAM:
break;

case EXTIF_OBJECT_PARAM:
if (pivArgs->rgElements[i].u.pObjectParam)
{

pivArgs->rgElements[i].u.pObjectParam->pfnRemoveRef

Chapter 2 Section 2.4
External Interface Template Source Code

Generic e*Way Extension Kit Developer’s Guide 23 SeeBeyond Proprietary and Confidential

(pivArgs->rgElements[i].u.pObjectParam, 0, 0);
}
break;

case EXTIF_VECTOR_PARAM:
free_args_helper(&(pivArgs-

>rgElements[i].u.VectorParam));
break;

}
}
if (pivArgs->rgElements)

free(pivArgs->rgElements);
return EXTIF_OK_STATUS;

}

static ExtIFResult_ free_args(struct EXTIF_OBJECT_ *pExtIf,
 PEXTIF_VECTOR *ppivArgs,
 unsigned long ulFlags,
 void *pvReserved)

{
if (ppivArgs && *ppivArgs)
{

free_args_helper(*ppivArgs);
free(*ppivArgs);
*ppivArgs = 0;

}
return EXTIF_OK_STATUS;

}

static ExtIFResult_ remove_ref(struct EXTIF_OBJECT_ **pExtIf,
unsigned long ulFlags,
void *pvReserved)

{
if (--(((struct object *) ((*pExtIf)->hUserObject))->refcount) <=

0)
{

free((*pExitIf)->hUserObject);
free((*pExitIf));
*pExitIf = 0;

}
return EXTIF_OK_STATUS;

}

static ExtIFResult_ addref(struct EXTIF_OBJECT_ *pExtIf,
unsigned long ulFlags,
void *pvReserved)

{
((struct object *) (pExtIf->hUserObject))->refcount++;
return EXTIF_OK_STATUS;

}

static ExtIFResult_ invoke(struct EXTIF_OBJECT_ *pExtIf,
 const char *pcszFunctionName,
 const PEXTIF_VECTOR pcmivInArgs,
 PEXTIF_VECTOR *ppivOutArgs,
 unsigned long ulFlags,
 void *pvReserved)

{
if (pExtIf)
{

if (strcmp("open", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 2 && pcmivInArgs-
>rgElements[0].eType == EXTIF_CHARBLOB_PARAM

Chapter 2 Section 2.4
External Interface Template Source Code

Generic e*Way Extension Kit Developer’s Guide 24 SeeBeyond Proprietary and Confidential

&& pcmivInArgs->rgElements[1].eType ==
EXTIF_CHARBLOB_PARAM)

{
open_db(pcmivInArgs-

>rgElements[0].u.CharBlobParam.pbBlob,
pcmivInArgs-

>rgElements[1].u.CharBlobParam.pbBlob);
return EXTIF_OK_STATUS;

}
else

return EXTIF_BAD_ARG_PARAM;
}
else if (strcmp("close", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 0)
{

close_db();
return EXTIF_OK_STATUS;

}
else

return EXTIF_BAD_ARG_PARAM;
}
else if (strcmp("get", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 1 && pcmivInArgs-
>rgElements[0].eType == EXTIF_CHARBLOB_PARAM)

{
char *var;

var = get_db(pcmivInArgs-
>rgElements[0].u.CharBlobParam.pbBlob);

(*ppivOutArgs) = (PEXTIF_VECTOR)
malloc(sizeof(EXTIF_VECTOR));

(*ppivOutArgs)->cElements = 1;
(*ppivOutArgs)->rgElements = (PEXTIF_PARAM)

malloc(sizeof(EXTIF_PARAM));

(*ppivOutArgs)->rgElements[0].eType =
EXTIF_CHARBLOB_PARAM;

(*ppivOutArgs)->rgElements[0].u.CharBlobParam.cbBlob
= strlen(var);

(*ppivOutArgs)->rgElements[0].u.CharBlobParam.pbBlob
=

(unsigned char *) malloc((*ppivOutArgs)-
>rgElements[0].u.CharBlobParam.cbBlob);

strncpy((*ppivOutArgs)-
>rgElements[0].u.CharBlobParam.pbBlob, var,

(*ppivOutArgs)-
>rgElements[0].u.CharBlobParam.cbBlob);

return EXTIF_OK_STATUS;
}
else

return EXTIF_BAD_ARG_PARAM;
}
else if (strcmp("put", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 2 && pcmivInArgs-
>rgElements[0].eType == EXTIF_CHARBLOB_PARAM

&& pcmivInArgs->rgElements[1].eType ==
EXTIF_CHARBLOB_PARAM)

{
put_db(pcmivInArgs-

>rgElements[0].u.CharBlobParam.pbBlob,

Chapter 2 Section 2.5
External Interface Sample Source Code Description

Generic e*Way Extension Kit Developer’s Guide 25 SeeBeyond Proprietary and Confidential

pcmivInArgs-
>rgElements[1].u.CharBlobParam.pbBlob);

return EXTIF_OK_STATUS;
}
else

return EXTIF_BAD_ARG_PARAM;
}
else

return EXTIF_NO_FUNCTION;
}
else

return EXTIF_BAD_FUNC_PARAM;
}

#if defined(WIN32)
__declspec(dllexport)
#endif
ExtIFResult_ init_sampleext(struct EXTIF_OBJECT_ **pExitIf,

unsigned long ulFlags,
void *pvReserved)

{
(*pExitIf) = (struct EXTIF_OBJECT_ *) malloc(sizeof(struct

EXTIF_OBJECT_));
if (*pExitIf)
{

struct object *obj = (struct object *) malloc(sizeof(struct
object));

if (obj)
{

obj->refcount = 1;
(*pExitIf)->cbStruct = sizeof(struct EXTIF_OBJECT_);
(*pExitIf)->hUserObject = (void *) obj;
(*pExitIf)->pfnAddRef = addref;
(*pExitIf)->pfnFreeArgs = free_args;
(*pExitIf)->pfnInvoke = invoke;
(*pExitIf)->pfnRemoveRef = remove_ref;
return EXTIF_OK_STATUS;

}
else
{

free(*pExitIf);
*pExitIf = 0;
return EXTIF_MEM_ALLOC_FAILED;

}
}
else

return EXTIF_MEM_ALLOC_FAILED;
}

2.5 Sample Source Code Description
This section is a description of the Simple DB Source Code Sample that uses the
External Interface (EI) to create an application-specific dynamic link library (.dll) or
shared library (.so or .sl) for extending the Generic e*Way functionality.

These are the standard header files needed by this EI dynamic or shared library:

#include <malloc.h>
#include <stdlib.h>
#include <stdio.h>

Chapter 2 Section 2.5
External Interface Sample Source Code Description

Generic e*Way Extension Kit Developer’s Guide 26 SeeBeyond Proprietary and Confidential

#include <string.h>

This is the header file that defines the structures, parameters, methods and functions used by the EI:

#include "stcextif.h"

This is used to store the data members:

struct object {
int refcount;

};

Here are examples of function stubs that could be written to “wrap” an external application’s API
functions.

/* Example functions */
static void open_db(char *username, char *password)
{

/* Code to implement database open here */
}

static void close_db(void)
{

/* Code to implement database close here */
}

static char *get_db(char *key)
{

/* Code to implement database get here */
return “look up value”;

}

static void put_db(char *key, char *value)
{

/* Code to implement database put here */
}

This function “free_args_helper” will free up an array of characters.

static ExtIFResult_ free_args_helper(PEXTIF_VECTOR pivArgs)
{

unsigned int i;

for (i = 0; i < pivArgs->cElements;i++)
{

switch(pivArgs->rgElements[i].eType)
{
case EXTIF_NOOP_PARAM:

break;
case EXTIF_CHARBLOB_PARAM:

if (pivArgs->rgElements[i].u.CharBlobParam.pbBlob)
free(pivArgs->rgElements[i].u.CharBlobParam.pbBlob);

break;
case EXTIF_WCHARBLOB_PARAM:

if (pivArgs->rgElements[i].u.WCharBlobParam.pwcBlob)
free(pivArgs-

>rgElements[i].u.WCharBlobParam.pwcBlob);
break;

case EXTIF_BOOLEAN_PARAM:
break;

case EXTIF_CHAR_PARAM:
break;

case EXTIF_WCHAR_PARAM:
break;

case EXTIF_DOUBLE_PARAM:
break;

case EXTIF_LONG_PARAM:

Chapter 2 Section 2.5
External Interface Sample Source Code Description

Generic e*Way Extension Kit Developer’s Guide 27 SeeBeyond Proprietary and Confidential

break;
case EXTIF_OBJECT_PARAM:

if (pivArgs->rgElements[i].u.pObjectParam)
{

pivArgs->rgElements[i].u.pObjectParam->pfnRemoveRef(pivArgs-
>rgElements[i].u
.pObjectParam, 0, 0);

free(pivArgs->rgElements[i].u.pObjectParam);
}

The “free_args_helper” function is used here recursively to delete individual parameters

case EXTIF_VECTOR_PARAM:
free_args_helper(&(pivArgs-

>rgElements[i].u.VectorParam));
break;

}
}
if (pivArgs->rgElements)

free(pivArgs->rgElements);
return EXTIF_OK_STATUS;

}

The function “free_args” will delete the arguments returned from the previous “invoke” call.

static ExtIFResult_ free_args(struct EXTIF_OBJECT_ *pExtIf,
PEXTIF_VECTOR *ppivArgs,
unsigned long ulFlags,
void *pvReserved)

{
if (ppivArgs && *ppivArgs)
{

free_args_helper(*ppivArgs);
free(*ppivArgs);
*ppivArgs = 0;

}
return EXTIF_OK_STATUS;

}

Call the “remove_ref” function when an interface object is no longer needed. If “refcount” goes to zero,
this function frees the user object.

static ExtIFResult_ remove_ref(struct EXTIF_OBJECT_ *pExtIf,
unsigned long ulFlags,
void *pvReserved)

{
if (--(((struct object *) (pExtIf->hUserObject))->refcount) <= 0)

free(pExtIf->hUserObject);
return EXTIF_OK_STATUS;

}

Call the “addref” function when an interface object is used. Increment the “refcount”.

static ExtIFResult_ addref(struct EXTIF_OBJECT_ *pExtIf,
unsigned long ulFlags,
void *pvReserved)

{
((struct object *) (pExtIf->hUserObject))->refcount++;
return EXTIF_OK_STATUS;

}

The “invoke” function will call an external function via the “wrapped” function (see above for the
“wrapped” function stubs open_db, close_db, get_db and put_db).

static ExtIFResult_ invoke(struct EXTIF_OBJECT_ *pExtIf,
const char *pcszFunctionName,
const PEXTIF_VECTOR pcmivInArgs,
PEXTIF_VECTOR *ppivOutArgs,

Chapter 2 Section 2.5
External Interface Sample Source Code Description

Generic e*Way Extension Kit Developer’s Guide 28 SeeBeyond Proprietary and Confidential

unsigned long ulFlags,
void *pvReserved)

{
if (pExtIf)
{

if (strcmp("open", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 2 && pcmivInArgs-
>rgElements[0].eType ==
EXTIF_CHARBLOB_PARAM

&& pcmivInArgs->rgElements[1].eType ==
EXTIF_CHARBLOB_PARAM)

{
open_db(pcmivInArgs-

>rgElements[0].u.CharBlobParam.pbBlob,
pcmivInArgs-

>rgElements[1].u.CharBlobParam.pbBlob);
return EXTIF_OK_STATUS;

}
else

return EXTIF_BAD_ARG_PARAM;
}
else if (strcmp("close", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 0)
{

close_db();
return EXTIF_OK_STATUS;

}
else

return EXTIF_BAD_ARG_PARAM;
}
else if (strcmp("get", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 1 && pcmivInArgs-
>rgElements[0].eType ==
EXTIF_CHARBLOB_PARAM)

{
char *var;

var = get_db(pcmivInArgs-
>rgElements[0].u.CharBlobParam.pbBlob);

(*ppivOutArgs) = (PEXTIF_VECTOR)
malloc(sizeof(EXTIF_VECTOR));

(*ppivOutArgs)->cElements = 1;
(*ppivOutArgs)->rgElements = (PEXTIF_PARAM)

malloc(sizeof(EXTIF_PARAM));

(*ppivOutArgs)->rgElements[0].eType =
EXTIF_CHARBLOB_PARAM;

(*ppivOutArgs)->rgElements[0].u.CharBlobParam.cbBlob
= strlen(var);

(*ppivOutArgs)->rgElements[0].u.CharBlobParam.pbBlob
=

(unsigned char *)
malloc((*ppivOutArgs)->rgElements[0].u.CharBlobParam.cbBlob);

strncpy((*ppivOutArgs)-
>rgElements[0].u.CharBlobParam.pbBlob, var,

(*ppivOutArgs)-
>rgElements[0].u.CharBlobParam.cbBlob);

return EXTIF_OK_STATUS;
}
else

Chapter 2 Section 2.6
External Interface Loading the DLL

Generic e*Way Extension Kit Developer’s Guide 29 SeeBeyond Proprietary and Confidential

return EXTIF_BAD_ARG_PARAM;
}
else if (strcmp("put", pcszFunctionName) == 0)
{

if (pcmivInArgs->cElements == 2 && pcmivInArgs-
>rgElements[0].eType ==
EXTIF_CHARBLOB_PARAM

&& pcmivInArgs->rgElements[1].eType ==
EXTIF_CHARBLOB_PARAM)

{
put_db(pcmivInArgs-

>rgElements[0].u.CharBlobParam.pbBlob,
pcmivInArgs-

>rgElements[1].u.CharBlobParam.pbBlob);
return EXTIF_OK_STATUS;

}
else

return EXTIF_BAD_ARG_PARAM;
}
else

return EXTIF_NO_FUNCTION;
}
else

return EXTIF_BAD_FUNC_PARAM;
}

#if defined(WIN32)
__declspec(dllexport)
#endif

The “init_sampleext” function creates the individual interface object and puts the functions above defined
in that object and returns it to the caller.

ExtIFResult_ init_sampleext(struct EXTIF_OBJECT_ *pExtIf,
unsigned long ulFlags,
void *pvReserved)

{
struct object *obj = (struct object *) malloc(sizeof(struct

object));
if (obj)
{

obj->refcount = 1;
pExtIf->cbStruct = sizeof(struct EXTIF_OBJECT_);
pExtIf->hUserObject = (void *) obj;
pExtIf->pfnAddRef = addref;
pExtIf->pfnFreeArgs = free_args;
pExtIf->pfnInvoke = invoke;
pExtIf->pfnRemoveRef = remove_ref;
return EXTIF_OK_STATUS;

}
else

return EXTIF_MEM_ALLOC_FAILED;
)

2.6 Loading the DLL
Use this sample code to load the newly created DLL.

(define obj (load-interface "s:/tests/sampleext/debug/
sampleext.dll" "init_sampleext"))
(invoke obj "open_db")

Chapter 2 Section 2.6
External Interface Loading the DLL

Generic e*Way Extension Kit Developer’s Guide 30 SeeBeyond Proprietary and Confidential

(define ret-vec (invoke obj "get_db" "key"))

(define ret-string (vector-ref ret-vec 0))
(invoke obj "put_db" "key" ret-string)
(invoke obj "close_db")

; The following is short hand notation (the invoke is optional)
(obj "open_db")
(define ret-vec (obj "get_db" "key"))
(define ret-string (vector-ref ret-vec 0))
(obj "put_db" "key" ret-string)
(obj "close_db")

Generic e*Way Extension Kit Developer’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3

Extending the .def File

This chapter describes how to extend the .def file and discusses the .def file keywords
and their arguments. In addition, it also discusses how to test and debug the .def file
and lists some of the common error messages. It also provides information on
configuration parameters and the .cfg file.

3.1 Introduction
The Generic e*Way is configured using the e*Way Editor, a graphical user interface
(GUI) that enables you to change configuration parameters quickly and easily. A
definition file (.def) configures the e*Way Editor to gather those parameters by
specifying the name and type of each parameter, as well as other information (such as
the range of permissible options for a given parameter). The e*Way Editor stores the
values that you assign to those parameters within two configuration files. The
configuration files contain similar information but are formatted differently. The .cfg
file contains the parameter values in delimited records and is parsed by the e*Way at
run time. The .sc file contains the parameter values and additional information needed
by the GUI. The e*Way Editor loads the .sc file—not the .cfg file— when you edit the
configuration settings for an e*Way. Both configuration files are generated
automatically by the e*Way Editor whenever the configuration settings are saved.

The .def file for the Generic e*Way contains a set of parameters that are required and
may not be modified. You can extend the .def file if your modifications to the Generic
e*Way require the definition of user-settable parameters. This chapter discusses the
structure of the .def and the configuration files and the syntax of the keywords used to
configure the e*Way Editor to gather the desired configuration parameters. The e*Way
Editor itself is discussed elsewhere; for more information, see the e*Gate Integrator
User’s Guide or the e*Way Editor’s Help system.

Important

We strongly recommend that you make no changes whatsoever to the default
stcewgenericmonk.def file. However, you should use that file as a base from which
you create your extensions. Save a copy of the file under a unique name and make your
changes to the copy.

Chapter 3 Section 3.2
Extending the .def File .def file Keywords: General Information

Generic e*Way Extension Kit Developer’s Guide 32 SeeBeyond Proprietary and Confidential

3.1.1 Layout
The .def file has three major divisions:

! The header describes basic information about the file itself, such as version number,
modification history, and comments.

! The sub-header contains several read-only variables that are for internal use only
and must not be modified from their default values.

! The body contains configuration parameters grouped into sections. Three sections
(General Settings, Communications Parameters, and Monk Configuration) must be
included in all Generic e*Way .def files; additional sections can be added as needed
to support user-created functions.

3.2 .def file Keywords: General Information
All keywords and their arguments are enclosed in balanced parenthesis. Keyword
arguments can be a quoted string, a quoted character, an integer, a parenthesis-
bounded list, a keyword modifier, or additional keywords.

Examples:

(name “TCP Port Number“)

(set
(value (1 2 3))
(config-default (1 2 3))

)

(range
 (value (const 1 const 1024)
)

3.2.1 White Space
White space that is not contained within double-quotation marks, including tabs and
newlines, is ignored except as a separator between keywords.

For example, the following are equivalent:

! (user-comment (value "") (config-default ""))

! (user-comment
(value "")
(config-default "")

)

Whitespace within quotation marks is interpreted literally. For example, (name
“Extra Spaces”) will display as :

Extra Spaces

in the e*Way Editor’s list of names.

Chapter 3 Section 3.2
Extending the .def File .def file Keywords: General Information

Generic e*Way Extension Kit Developer’s Guide 33 SeeBeyond Proprietary and Confidential

3.2.2 Integer Parameters
The maximum value for integer parameters ranges from approximately -2 billion to 2
billion (specifically, -2,147,483,648 to 2,147,483,647). Most ranges will be smaller, such as
“1 to 10” or “1 to 1,000.”

3.2.3 Floating-point Parameters
Floating-point parameters and floating-point arithmetic are not supported.

3.2.4 String and Character Parameters
String and character parameters may contain all 255 ASCII characters. The “extended”
characters are entered using an escaped format:

! Characters such as tab, newline, and carriage return can be entered as \t, \n, and
\c, respectively.

! Characters may also be entered in octal or hexadecimal format using \o or \x,
respectively (for example, \x020 for ASCII character 32).

Strings are delimited by double quotes, characters by single quotes. Examples:

! Strings: "abc" "Administrator"

! Characters: '0' '\n'

Single quotation marks, double-quotation marks, and backslashes that are not used as
delimiters (for example, when used within the text of a description) must be escaped
with a backslash, as shown respectively below:

! \'

! \"

! \\

3.2.5 Path Parameters
Path parameters can contain the same characters as other string parameters; however,
the characters entered should be valid for pathnames within the operating system on
which the e*Way runs.

Backslashes in DOS pathnames must be escaped (as in c:\\home\\egate).

3.2.6 Comments
Comments within the .def file begin with a semi-colon (;). Any semi-colon that appears
in column 1, or that is preceded by at least one space character and that does not appear
within quotation marks, is interpreted as a comment character.

Examples

; this is a valid comment, because it begins in column 1

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 34 SeeBeyond Proprietary and Confidential

(name "Section name") ; this is also a valid comment, because it is
separated by a space

3.2.7 “Header” Information
“Header” information that developers may use to maintain a revision history for the
.def file is stored within the (general-info) section. All the information in this section is
maintained by the user; no e*Gate product modifies this information.

Table 1 describes the user-editable parameters in the (general-info) section. The use of
these fields is not required and they may be left blank, but all the fields must be present.
The format and contents of these fields is completely at the developer’s discretion, as
long as rules for escaped characters are observed (see “String and Character
Parameters” on page 33 for more information). Any (general-info) parameters that are
not shown in the table below are reserved and should not be modified except by
direction of SeeBeyond support personnel.

3.3 Defining a New Section
The (section) keyword defines a section within the .def file. The syntax of the new
section is described immediately below. Each section requires at least one parameter;
see “Parameter Syntax” on page 35 for more information on defining parameters.

Note: Section names and parameter names within a section must be unique.

3.3.1 Section Syntax
Sections within the .def file have the following syntax:

(section

Table 1 User-editable (general-info) parameters

Parameter name Describes

version The version number

revision The revision number

user The user who last edited the file

modified The modification date

creation The creation date

description A description for this .def file, displayed within the e*Way Editor from
the File menu’s Tips option. Quotation marks within the description
must be escaped (\").

user-comment Comments left by the user (rather than the developer), accessed within
the e*Way Editor from the File menu’s User notes option. Unless you
wish to provide a default set of “user notes,” we recommend you leave
this field blank.

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 35 SeeBeyond Proprietary and Confidential

 (name "section name")

... at least one parameter definition ...

(description "description text”)
(user-comment
 (value "")
 (config-default "")
) ; end of user comment
) ; end of section

The section name, description text, and user-comment “value” will appear in the e*Way
Editor, as shown in Figure 2.

Figure 2 e*Way Editor main controls

Notes

1 The user-comment feature enables users to make notes about a section or parameter
that will be stored along with the configuration settings and save those notes along
with the configuration settings. Under most circumstances, we recommend that
developers leave the (user-comment) fields blank, but you can enter information in
the (user-comment) field if you want to ensure that all user notes for a given section
begin with preset information.

2 The description is displayed when the user clicks the “Tips” button. Use this field to
create “online help” for a section or parameter. We recommend that you provide a
description for every section and every parameter that you create.

3.3.2 Parameter Syntax
Parameters within the .def file use the following basic structure:

(param-keyword
(name "Parameter name goes here")
(value val)
(config-default val)

...additional keywords (range, units, set) as required...

(description "description text”)
(user-comment

 (value "")
 (config-default "")

Section name

User comments (see
Note 1 below)

Description (see
Note 2 below)

Parameter name

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 36 SeeBeyond Proprietary and Confidential

)
) ; end of parameter definition

The keywords that are invariably required to define a parameter are

! A parameter keyword, discussed below

! The parameter’s name: (name)

! The initial default value: (value)

! The “configuration default”: (config-default), which the user can restore by clicking

. This value can be overridden by the config-default keyword specified within
a (set) command; see “Parameters Accepting a Single Value From a Set” on
page 38 and “Parameters Accepting Multiple Values From a Set” on page 39 for
more information.

Note: The (value) keyword is always followed immediately by the (config-default)
keyword.

! The “description” (see the Notes for “Section Syntax” on page 34 for additional
information)

! The “user comment” (see the Notes for “Section Syntax” on page 34 for additional
information), which has its own value and configuration default.

Additional keywords may be required, based upon the parameter keyword and user
requirements; these will be discussed in later sections.

Order of Keywords

Keywords must appear in this order:

1 parameter definition*

2 name*

3 value*

4 config-default*

5 set

6 range

7 units

8 show-as

9 factor

10 description*

11 user-comment*

Note: Keywords marked with * are mandatory for all parameters. The set keyword is
mandatory for -set and -set-multi parameters. The remaining keywords (items 6

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 37 SeeBeyond Proprietary and Confidential

through 9) are optional and depending on developer requirements may appear in any
combination, but they must appear in the above order.

Parameter Types

There are eight types of parameters. Table 2 lists the types of parameters that can be
defined, the keyword required to define them, and the values that the keyword can
accept for the (value) and (config-default) keywords.

Parameters Requiring Single Values

Parameters requiring single values are defined within the basic structure shown in
“Parameter Syntax” on page 35.

Figure 3 A parameter requiring a single value

The parameter is defined using a parameter keyword, as listed in Table 2 on page 37.

Example

To create a parameter that accepts a single integer as input, and to specify “3” as the
default and configuration-default value, enter the following:

(int
 (name "Parameter requiring a single integer")
 (value 3)
 (config-default 3)

Table 2 Basic parameter keywords

Type
Parameter
keyword

Accepts values Example

Integer int integer 7500

Character char single-quoted character 'a'
'!'
'\o123' (octal)

String string double-quoted string “Hello, world”

Date date comma-delimited date
in MMM,dd,yyyy format

AUG,13,2000

Time time colon-delimited time in
24-hour hh:mm:ss
format

15:30:00

Path path path; DOS pathnames
should use escaped
backslashes

/home/egate/client (UNIX)
c:\\home\\egate\\client (DOS)

Schedule schedule schedule See “Schedule Syntax” on page 49

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 38 SeeBeyond Proprietary and Confidential

 (description "

 This parameter requires a single integer as input.
")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of parameter definition

If you want to limit the values that the user may enter, you may include the optional
(range) keyword; see “Specifying Ranges” on page 40 for more information.

Parameters Accepting a Single Value From a Set

Adding the suffix -set to the basic parameter keyword (int-set, string-set, path-set, and
so on) defines a parameter that accepts one of a given list of values.

Figure 4 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Parameter Syntax”
on page 35):

! An additional required keyword, (set), defines the elements of the set.

! Within the (set) keyword, (value) and (config-default) require arguments within
parenthesis-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

! To prevent a user from to adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))

! To specify an empty set, enter the keyword none, as below:

(value none)
(config-default none)

“-set-multi” keywords use a different syntax to define an empty
set; see “Parameters Accepting Multiple Values From a Set” on page 39 for
more information.

Other important considerations:

! The value specified as the initial (value) for the parameter must match at least one
of the values specified for (config-default) within the (set) keyword.

! The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you simply
make the two lists identical.

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 39 SeeBeyond Proprietary and Confidential

Example

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 4 above), enter the following:

(int-set
 (name "Single-choice set (int-set)")
 (value 1)
 (config-default 1)
 (set
 (value const (1 2 3))
 (config-default (1 2 3))
)
 (description "Provides a single choice from a list of integers.”)
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int-set

Note: The values specified by the (set) keyword must be within any values specified by the
(range) keyword. See “Specifying Ranges” on page 40 for more information.

Parameters Accepting Multiple Values From a Set

Adding the suffix -set-multi to the basic parameter keyword (int-set-multi, string-set-
multi, path-set-multi, and so on) defines a parameter that accepts one or more options
from a given list of values.

Figure 5 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Parameter Syntax”
on page 35):

! An additional required keyword, (set), defines the elements of the set.

! Within the (set) keyword, (value) and (config-default) require arguments within
parenthesis-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

! To prevent a user from to adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 40 SeeBeyond Proprietary and Confidential

! To specify an empty set, enter an empty pair of parentheses “()”, as below:

(value ())
(config-default ())

“-set” keywords use a different syntax to define an empty set; see “Parameters
Accepting a Single Value From a Set” on page 38 for more information.

Other important considerations:

! The value specified as the initial (value) for the parameter must match at least one
of the values specified for (config-default) within the (set) keyword.

! The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you simply
make the two lists identical.

Example

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 5 above), enter the following:

(int-set-multi
 (name "Multiple-choice set (int-set-multi)")
 (value (1 3))
 (config-default (1 3))
 (set
 (value (1 2 3 4 5))
 (config-default (1 2 3 4 5))
)
 (description "Integer with a modifiable multiple-option set")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int-set-multi

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 36 for more information.

3.3.3 Specifying Ranges
The (range) keyword enables you to limit the range of options that the user may input
as a parameter value for int and char parameters. You may specify a fixed range, or
allow the user to modify the upper limit, the lower limit, or both limits. Range limits are
inclusive. The values you specify as limits indicate the lowest or highest acceptable
value.

The syntax of (range) is as follows:

(range
 (value ([const] lower-limit [const] upper-limit))
 (config-default (lower-limit upper-limit))
)

The optional const keyword specifies that the limit is fixed; if the keyword is omitted,
the limit can be modified by the user. The const keyword must precede each limit if
both limits are to be fixed.

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 41 SeeBeyond Proprietary and Confidential

Example

This example illustrates how to define a parameter that accepts an integer as input and
limits the range of legal values from zero to ten.

(int
 (name "Single integer with fixed range")
 (value 5)
 (config-default 5)
 (range
 (value (const 0 const 10))
 (config-default (0 10))
)
 (description "Accepts a single integer, limited to a fixed
range.")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int parameter

You may also use (range) to specify a character range; for example, a range of “A to Z”
would limit input to uppercase letters, and a range of “! to ~” limits input to the
standard printable ASCII character set (excluding space).

Note: You may also specify ranges for -set and -set-multi parameters (int-set, char-set,
and so on).

3.3.4 Specifying Units
The (units) keyword enables int parameters to accept input and display the list of
available options in different units, provided that each unit is an integer multiple of a
base unit.

Figure 6 A parameter that performs unit conversion

Acceptable groups of units include

! Seconds, minutes, hours, days

! Bytes, kilobytes, megabytes

Unit conversions that require floating-point arithmetic are not supported.

The syntax of the (units) keyword is

(units
 ("base-unit":1 "first-unit":a "second-unit":b ... "nth-unit":n)

 (value "default-unit")
 (config-default "default-unit")
)

Units selector

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 42 SeeBeyond Proprietary and Confidential

where a, b, and n are the numbers by which the base unit size should be multiplied to
perform the conversion to the respective units. The base unit should normally have a
value of 1, as shown above; while the e*Way Editor will permit other values, it is highly
unlikely that an application would require any other number. The units themselves
have no meaning to the e*Way Editor other than the relationships you define (in other
words, the Editor does not identify or process “seconds” or other common units as
such).

Example

To specify a set of time units (seconds, minutes, hours, and days), enter the following:

(units
 ("Seconds":1 "Minutes":60 "Hours":3600 "Days":86400)

 (value "Seconds")
 (config-default "Seconds")
)

Units, Default Values, and Ranges

Any time you use the (units) keyword within a parameter, you must make sure that the
default values can be expressed as integer values of each unit. Observing this principle
prevents end users from receiving error messages when changing e*Way Editor values
in a specific order. For example, if you specified the time units in the example above,
but assigned the parameter a default value of “65 seconds,” any user who selects the
minutes unit without changing the default value will receive an error message, because the
e*Way Editor cannot convert 65 seconds to an integral number of minutes. Ranges,
however, will be rounded to the nearest integer.

Note: No matter what default value you specify, a user will always see an error message if
an inconvertible value is entered and the unit selector is changed. We recommend
that you design your parameters so that error messages are not displayed when
default values are entered.

Example

To define a time parameter that displays values in seconds or minutes, with a default of
120 seconds and a fixed range of 60 to 3600 seconds (1 minute to 60 minutes), enter the
following:

(int
 (name "Single integer with fixed range")
 (value 120)
 (config-default 120)
 (range
 (value (const 60 const 3600))
 (config-default (60 3600))
)
 (units
 ("Seconds":1 "Minutes":60)
 (value "Seconds")
 (config-default "Seconds")
)
 (description "Accepts a value between 1 and 60 minutes, with

a default units value in seconds.")
 (user-comment
 (value "")
 (config-default "")
)

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 43 SeeBeyond Proprietary and Confidential

) ; end parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 36 for more information.

3.3.5 Displaying Options in ASCII, Octal, Hex, or Decimal
The (show-as) keyword enables you to create int or char parameters that a user can
display in ASCII, octal, hexadecimal, or decimal formats.

The syntax of the (show-as) keyword is

(show-as
 (format-keyword1 [format-keyword2 ... format-keywordn])
 (value format-keyword)
 (config-default format-keyword)
)

where format-keyword is one of the following:

! ascii

! octal

! hex

! decimal

Format keywords are case-insensitive, and may be used in any combination and in any
order.

Be sure that any default values you specify for a parameter that uses (show-as) can be
represented in each of the (show-as) formats. For example, if you are using (show-as) to
show an integer parameter in both decimal and hex formats, the default value must be
non-negative.

Example

To create a parameter that accepts a single character in the character-code range
between 32 and 127 and that can display the character value in ASCII, hex, or octal,
enter the following:

(char
 (name "A single ASCII character")
 (value '\o100')
 (config-default '\o100')
 (range
 (value (const '\o040' const '\o177'))
 (config-default ('\o040' '\o177'))
)
 (show-as
 (Ascii Octal Hex)
 (value Octal)
 (config-default Octal)
)
 (description "Accepts a single character between ASCII 32 and
ASCII 127.")
 (user-comment
 (value "")
 (config-default "")

Chapter 3 Section 3.3
Extending the .def File Defining a New Section

Generic e*Way Extension Kit Developer’s Guide 44 SeeBeyond Proprietary and Confidential

)
) ; end char parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 36 for more information.

Factor

The (factor) keyword enables users to enter an arithmetic operator (+, –, *, or /) as part
of an int parameter; for example, to indicate that a value should increase by five units,
the user would enter the integer “5” and the factor “+”.

Figure 7 A parameter using (factor)

The syntax of the (factor) keyword is

(factor
('operator1' ['operator2'... 'operatorN'])
(value 'operator'
(config-default 'operator')

)

where operator is one of the four arithmetic operators +, –, *, or / (forward slash).

Example

To define a parameter that accepts an integer between 1 and 5 with a factor of + or – (as
in Figure 7 above), enter the following:

(int
(name "Integer with factor")
(value 1)
(config-default 1)
(range

(value (const 1 const 5))
(config-default (1 5))

)
(factor

('+' '-')
(value '+')
(config-default '+')

)
(description "Enter an integer between 1 and 5 and a factor of +

or -.")
(user-comment

(value "")
(config-default "")

)
) ; end int parameter

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference

Generic e*Way Extension Kit Developer’s Guide 45 SeeBeyond Proprietary and Confidential

Note: The (factor) keyword must be the final keyword before the (description) keyword.
See “Order of Keywords” on page 36 for more information.

Encrypting Strings

Encrypted strings (such as for passwords) are stored in string parameters; to specify
encryption, use the encrypt keyword, as in the following:

(string encrypt
...additional keywords follow...

The e*Way Editor uses the parameter that immediately precedes the encrypted
parameter as its encryption key; therefore, be sure that the parameter that prompts for
the encrypted data is not the first parameter in a section. The easiest way to accomplish
this is to define a “username” parameter that immediately precedes the encrypted
“password” parameter. If you need to specify an encryption key other than the user
name, you must define a separate parameter for this purpose.

Text entered into an encrypted-string parameter is displayed as asterisks (“***”).

Example

To create a password parameter, enter the following immediately following the parameter
definition for the corresponding user name (not shown):

(string encrypt
 (name "Password")
 (value "")
 (config-default "")
 (description "The e*Way Editor will encrypt this value.")
 (user-comment
 (value "")
 (config-default "")
)
)

Note: The encrypt keyword can only follow the string keyword. The only parameter type
that can be encrypted is string; integer, character, path, time, date, or schedule
parameters cannot be encrypted.

3.4 Configuration Keyword Reference
Table 3 lists the keywords that may appear in the .def file.

Table 3 .def-file keywords

Keyword Purpose
For more information,

see this section

app-protocol Reserved; do not change from the default “<ANY>”.

cfg-icon Reserved; do not change from the default “” (null string).

char Declares a character parameter “Parameter Types” on
page 37

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference

Generic e*Way Extension Kit Developer’s Guide 46 SeeBeyond Proprietary and Confidential

char-set Declares a set of characters, one of
which must be selected (via radio
button)

“Parameters Accepting a
Single Value From a Set” on
page 38

char-set-multi Declares a set of characters, any of
which may be selected (via check
boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 39

config-default Specifies the values that will be restored
when the user clicks the e*Way Editor’s

 button

“Parameter Syntax” on
page 35

const Specifies that a value cannot be
changed by the user

“Specifying Ranges” on
page 40

creation Records creation date or other
information.

““Header” Information” on
page 34

date Declares a date parameter “Parameter Types” on
page 37

date-set Declares a set of dates, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 38

date-set-multi Declares a set of dates, one of which
must be selected (via radio button)

“Parameters Accepting
Multiple Values From a Set”
on page 39

delim1 Defines the line-separator delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim2 Defines the parameter-name delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim3 Defines the value-separating delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim4 Defines the list-item-separating
delimiter used within .cfg files. We
recommend that you do not modify this
value.

description A description for the entry (displayed

using the e*Way Editor’s button

“Notes” on page 35

direction Reserved; do not change from the default “<ANY>”.

encrypt Encrypts a string, such as for passwords.
Valid only after the string keyword.

“Encrypting Strings” on
page 45

Table 3 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference

Generic e*Way Extension Kit Developer’s Guide 47 SeeBeyond Proprietary and Confidential

factor Defines an arithmetic operator to be
associated with an integer parameter

“Factor” on page 44

general-info Defines the “general information”
division of the .def file

““Header” Information” on
page 34

generated-cfg-path Specifies the path in which the .cfg file
will be stored. We recommend that you
do not modify this field.

int Declares an integer parameter “Parameter Types” on
page 37

int-set Declares a set of integers, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 38

int-set-multi Declares a set of integers, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 39

modified Records modification date or other
information

““Header” Information” on
page 34

name Specifies the name of a parameter or a
section

“Parameter Syntax” on
page 35

network-protocol Reserved; do not change from the default “<ANY>”.

os-platform Reserved; do not change from the default “<ANY>”.

path Declares a path parameter “Parameter Types” on
page 37

path-set Declares a set of paths, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 38

path-set-multi Declares a set of paths, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 39

protocol-api-
version

Reserved; do not change from the default “<ANY>”.

range Specifies a range of values that
represent the upper and lower limits of
acceptable user input

“Specifying Ranges” on
page 40

revision Records revision numbering or other
information (entered manually by the
developer)

““Header” Information” on
page 34

schedule Declares a schedule parameter “Parameter Types” on
page 37 and “Schedule
Syntax” on page 49

Table 3 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference

Generic e*Way Extension Kit Developer’s Guide 48 SeeBeyond Proprietary and Confidential

schedule-set Declares a set of schedules, one of
which must be selected (via radio
button)

“Parameters Accepting a
Single Value From a Set” on
page 38 and “Schedule
Syntax” on page 49

schedule-set-multi Declares a set of schedules, any of
which may be selected (via check
boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 39 and “Schedule
Syntax” on page 49

section Defines a “section” of the .def file See “Section Syntax” on
page 34

set Defines the elements in a set “Parameters Accepting a
Single Value From a Set” on
page 38 and “Parameters
Accepting Multiple Values
From a Set” on page 39

show-as Selects the format in which character or
integer parameters will be displayed

“Displaying Options in
ASCII, Octal, Hex, or
Decimal” on page 43

string Declares a string parameter “Parameter Types” on
page 37

string-set Declares a set of strings, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 38

string-set-multi Declares a set of strings, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 39

super-client-type Reserved; do not change from the default “<ANY>”.

time Declares a time parameter “Parameter Types” on
page 37

time-set Declares a set of times, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 38

time-set-multi Declares a set of times, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 39

units Determines in which units a parameter
will be displayed

“Specifying Units” on
page 41

user Records the name of the user who last
edited the file (entered manually by the
developer)

““Header” Information” on
page 34

Table 3 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference

Generic e*Way Extension Kit Developer’s Guide 49 SeeBeyond Proprietary and Confidential

3.4.1 Schedule Syntax
Schedules can be time-based (as in “every ten minutes” or “every hour”), or calendar-
based (for a daily, weekly, monthly, or yearly schedule). The syntax for specifying
schedules as values and configuration defaults appears in the table below (all times are
specified in 24-hour format):

user-comment Records a general comment to be
applied to the file (accessible via the
e*Way editor)

“Notes” on page 35

value Defines the initial value for a parameter “Parameter Syntax” on
page 35

version Records the name of the user who last
edited the file (entered manually by the
developer)

““Header” Information” on
page 34

Table 4 Schedule syntax

For this schedule... ...use this syntax Example

Every s seconds s
(s=seconds)

1800
(every 1800 seconds, or every 30
minutes)

Number of seconds after
the minute

:::::s
(s=seconds)

:::::10
(every ten seconds after the
minute)

Number of minutes and
seconds past the hour

::::m:s
(m=minutes; s=seconds)

::::15:00
(every fifteen minutes and zero
seconds after the hour)

Daily at time :::hh:mm:ss :::12:00:00
(daily at noon)

Weekly at day-of-week at
time

::DD:hh:mm:ss
(DD=day of week)

::Su:12:00:00
(weekly, Sundays at noon)

Monthly, every nth day-of-
week at time

::DDn:hh:mm:ss
(DD=day of week; n=1, 2, 3, 4,
or 5)

::Su1:12:00:00
(monthly, the first Sunday, at
noon)

Monthly, every nth day at
time

::n:hh:mm:ss
(n=day of month)

::3:12:00:00
(monthly, the third day of the
month, at noon)

Yearly, at a given date at
time

:MM:dd:hh:mm:ss
(MM=month; dd=day)

:08:13:04:00:00
(every August 13th at 4:00 AM)

Yearly, every nth day of
month at time

:MM:DDn:hh:mm:ss
(MM=month; DD=day of
week; n=1, 2, 3, 4, or 5)

:05:We3:12:00:00
(yearly, every third Wednesday of
May, at noon)

Table 3 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference

Generic e*Way Extension Kit Developer’s Guide 50 SeeBeyond Proprietary and Confidential

Defining Default Schedules

It is significantly simpler to define schedules using the e*Way Editor than it is to create
schedule entries manually within the .def file, especially for complex schedules. The
only reason to define a schedule within a .def file is to establish a default schedule. If
you want to create a default schedule entry, and do not want to construct the entry
manually, use this procedure:

1 Define a schedule parameter with a blank (““) default.

2 Commit the .def file to a schema, and use the e*Gate Editor to define an entry for
the Start Exchange Data Schedule parameter. In this entry, create the schedule that
you eventually wish to use as a default. (Don’t be concerned if this is not the
parameter for which you want to define a default schedule; this is just a temporary
file.)

3 Save the configuration as temp (do not specify an extension) and exit the e*Way
Editor.

4 Pull down the Enterprise Manager’s File menu and select Edit File.

5 Use the file-selection controls to open the file /configs/stcewgenericmonk/temp.cfg.

6 The Notepad editor will launch. Scroll down until you find the “Communications
Setup” section; a sample appears below.

7 Use “copy and paste” to copy the schedule-definition string (in the figure above,
“:::12:00:00”).

8 Exit the editor; there is no need to save the file.

9 Pull down the Enterprise Manager’s File menu and select Edit File.

10 Use the file-selection controls to open the file /configs/stcewgenericmonk/
your_def_file (substituting the name of the .def file you want to modify).

11 Modify the (value) and (config-default) keywords within the desired schedule
parameter by pasting in the string that you copied in step 7 above.

12 Save the file and commit the modified file to the Registry (see “Editing a .def File
Within a Schema” on page 92 for more information).

--

Section:Communication Setup
--

#

Schedule definition

Chapter 3 Section 3.5
Extending the .def File Configuration Parameters and the Configuration Files

Generic e*Way Extension Kit Developer’s Guide 51 SeeBeyond Proprietary and Confidential

3.5 Configuration Parameters and the Configuration Files
Parameters defined within the .def file are stored within two “configuration” files (.cfg
and .sc), which are generated by the e*Way Editor’s “Save” command. The following
rules apply to both .cfg and .sc files:

! Keywords are not case sensitive, as they are converted to uppercase internally
before matching.

! Comments begin with the “#” character, which must appear in column one (see the
example in the section immediately below).

! Unlike the .def file, the .cfg and .sc files are sensitive to white space. White space
consists of single space characters, tabs, and newlines. Be careful not to insert extra
white space around delimiters or equal signs (for example “|value=3|” is legal, but
“|value = 3|” and “| value=3 |“ are illegal).

The following rule applies only to the .cfg file:

! Each line and each element in the .cfg file is separated using delimiters (see delim1,
delim2, delim3, and delim4 in Table 3 on page 45). We strongly recommend that
you do not modify any of the default delimiters.

Note: The e*Way Editor will create a .cfg and .sc file automatically when you save your
configuration changes in the e*Way Editor. You should not need to modify either file
manually unless directed to do so by SeeBeyond support personnel.

Although e*Ways are shipped with default .def files, no configuration files are
provided, because there is no “standard” configuration for any given e*Way. Users
must manually create a configuration profile using the e*Way Editor for every
e*Way component.

Examples

.cfg File

This example is excerpted from the “General Settings” section of a .cfg file that is
generated by the default stcewgenericmonk.def file.

Section: General Settings

#
General Settings|Journal File Name|value=|set=
General Settings|Max Resends Per Message|value=5|set=5|range=1,1024
General Settings|Max Failed Messages|value=3|set=3|range=1,1024
General Settings|Forward External Errors|value=NO|set=NO,YES

.sc File

This example is excerpted from the “General Settings” section of a .sc file that is
generated by the default stcewgenericmonk.def file. Notice the amount of additional
information as compared to the .cfg file example of the same section above.

Chapter 3 Section 3.5
Extending the .def File Configuration Parameters and the Configuration Files

Generic e*Way Extension Kit Developer’s Guide 52 SeeBeyond Proprietary and Confidential

; ---

; Section: "General Settings"
; ---

(section
 (name "General Settings")
 (string-set
 (name "Journal File Name")
 (value "")
 (config-default "")
 (set
 (value (""))
 (config-default (""))
)
 (description "
 Journal File is used for the following conditions:
 - Journal a message when it exceeds the number of retries.
 - Journal an external error when it's not configured to
 forward to Egate.

 If an absolute path is not specified, the system data
 directory is prepended to the path.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (int-set
 (name "Max Resends Per Message")
 (value 5)
 (config-default 5)
 (set
 (value (5))
 (config-default (5))
)
 (range
 (value (const 1 const 1024))
 (config-default (1 1024))
)
 (description "Max Resends Per Message:

 This parameter is the maximum number of times the e*Way
 will attempt to resend a message to the extenal after
 receiving an error. When this maximum is reached, the
 message is considered a failed message and is written to
 a journal file.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (int-set
 (name "Max Failed Messages")
 (value 3)
 (config-default 3)
 (set
 (value (3))
 (config-default (3))
)
 (range
 (value (const 1 const 1024))

Chapter 3 Section 3.6
Extending the .def File Testing and Debugging the .def File

Generic e*Way Extension Kit Developer’s Guide 53 SeeBeyond Proprietary and Confidential

 (config-default (1 1024))
)
 (description "Max Failed Messages:

 This parameter is the maximum number of failed messages
 the e*Way will allow. If this many messages fail
 and are journaled, the e*Way will shutdown and exit.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
 (name "Forward External Errors")
 (value "NO")
 (config-default "NO")
 (set
 (value const ("NO" "YES"))
 (config-default ("NO" "YES"))
)
 (description "Forward External Errors:

 If this parameter is set to YES then error messages that
 starts with DATAERR received from the external will be
 queued to the configured queue. If this parameter is set
 to NO then error messages will not be forward.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (description "General Settings:

 This section contains a set of top level parameters:

 o Journal File Name
 o Max Resends Per Message
 o Max Failed Messages
 o Forward External Errors
")
 (user-comment
 (value "")
 (config-default "")
)
)

3.6 Testing and Debugging the .def File
Testing the .def file is very straightforward; simply open the file with the e*Way Editor.
If the syntax of all parameters is correct, the e*Way Editor will launch, and you can
confirm that your sections, parameters, ranges, and options are as you intended.

There are two types of errors that you may encounter:

! Logical errors: The e*Way Editor will load the .def file and will display no error
message, but the parameters are not defined as desired (for example, default

Chapter 3 Section 3.6
Extending the .def File Testing and Debugging the .def File

Generic e*Way Extension Kit Developer’s Guide 54 SeeBeyond Proprietary and Confidential

options are omitted, or a range was not properly defined). These errors are
corrected simply by replacing the undesired values with the desired ones.

! Syntax errors: These “mechanical” errors involve missing parentheses, invalid
keywords and similar problems. These errors will cause the e*Way Editor to display
an error message and exit. This section deals primarily with errors of this type.

Note: You may also encounter syntax errors if you try to edit an existing configuration
profile that contains a corrupted .sc file. You should not attempt to modify .sc or .cfg
files outside of the e*Way Editor unless specifically instructed to do so by SeeBeyond
personnel.

The e*Way Editor component that interprets the .def file provides only elementary
error messages when it encounters an error in the .def file. This section discusses the
most common errors you may encounter, and the steps you should take to debug a .def
file under development.

By far, the most common errors are

! Missing parentheses. Proper indentation will help you catch most of these, and
some editors have features that find matching parentheses (such as the vi editor’s
SHIFT+5 function).

! Missing quotation marks. Be sure that characters are delimited by single quotes and
strings/paths by double quotes.

! Quotation marks that should be escaped but are not. This usually occurs in the
argument to the (description) keyword; double-check that all quotations within
descriptions use \"escaped\" quotation marks.

! Missing parameters. Refer to the examples in this chapter, or to the sample .def file
for the required parameters for each keyword.

! Keywords out of order. See “Order of Keywords” on page 36.

Note: Using the templates provided in the sample .def file will help prevent many errors
before they occur; see “Sample .def File” on page 55 for more information.

3.6.1 Common Error Messages
The following section contains common error messages and their most common causes.
Each error message will contain the string L<nnn>, which indicates a line number (for
example, L<124> signifies “line 124”).

SCparse : parse error, expecting `LP_keyword-name'
The keyword keyword-name was expected but not found. The keyword could be
missing or out of order, the keyword’s initial parenthesis could be missing, or the
previous keyword could have been terminated prematurely (for example, by an out-of-
place parenthesis or quote-parenthesis combination) or misspelled.

SCparse : parse error, expecting `RIGHT_PAREN'
The right parenthesis is missing, a close-quote is missing, as in (user-comment "), or
there is an extra (or unescaped) close-quote within a (description) keyword argument.

Chapter 3 Section 3.7
Extending the .def File Sample .def File

Generic e*Way Extension Kit Developer’s Guide 55 SeeBeyond Proprietary and Confidential

SCparse : parse error, expecting `LEFT_PAREN'
This error appears under a very wide range of conditions. A keyword could be
misspelled, there could be extraneous or unbalanced quotes or parentheses, a keyword
could be missing a left parenthesis, or extraneous material may have been found
between parameter declarations. Sometimes this error appears in conjunction with
expecting `LP_keyword-name'.

param-Type<keyword>: Value is not within the allowed range.
An argument to a keyword has exceeded the limits defined by its accompanying
(range) keyword. Change either the (value) argument or the (range) limit.

param-typeTypeSet<keyword> : "n" is not in this Set.
A default value for a parameter has been specified that does not appear within the
default value of the (set) keyword.

SCparse : parse error, expecting `arg-type'
One type of argument was expected, but another has been found (for example, an
integer where as string was expected). Errors expecting LITERAL_STRING are
commonly caused by missing quotation marks. Errors expecting TIME_VAL,
DATE_VAL, or SCHEDULE_VAL can also be due to invalid data (such as a time of
12:00:99), or missing/extra delimiters.

CharVal : "\sequence" is not legal character.
There is an error in an escape sequence.

SCparse : parse error
This “general” error can be caused by a number of problems, such as misspelled
arguments within keywords.

3.7 Sample .def File
A .def file containing commented samples of a wide range of parameter definitions is
available on the e*Gate installation CD-ROM:

/samples/geneway/sample.def

Note: The sample.def file does not contain configuration options for any specific e*Way,
and cannot be used for that purpose. It merely provides working templates from
which you can build your own .def file.

You can use the sample.def file as a template from which you can build your own
extensions to your own .def file. Simply open the file with a text editor, select the
desired parameter-definition template, and “copy and paste” the template into your
own .def file, where you can modify it as needed.

To open the sample.def file in the e*Way Editor:

1 Using the Enterprise Manager, commit the sample.def file to the directory
/configs/stcewgenericmonk/ within any desired schema. We recommend that you

Chapter 3 Section 3.7
Extending the .def File Sample .def File

Generic e*Way Extension Kit Developer’s Guide 56 SeeBeyond Proprietary and Confidential

do not commit the file to the default schema; rather, use a schema reserved for
testing and development.

2 Create or select an e*Way, and display its properties. Remember that this e*Way
cannot be used to manipulate data; it serves merely as a “placeholder” so you can
open the sample.def file with the e*Way Editor.

3 On the e*Way property sheet’s General tab, under Executable file, click Find.

4 Select stcewgenericmonk.exe and click OK.

5 Under Configuration file, click New.

6 From the list of e*Way templates, select sample.

When the e*Way Editor launches, you will see several sections of sample parameters
(for example, “Single integer with modifiable lower limit,” “Single integer with
modifiable upper limit,” and so on), as shown in Figure 8.

Figure 8 The sample.def file in the e*Way Editor

After identifying the parameter you wish to copy, open sample.def in a text editor and
search for the parameter name. Then, simply copy the parameter and change the
sample values to the values you wish to use (as shown in Figure 9 on the next page).

Chapter 3 Section 3.8
Extending the .def File Accessing Configuration Parameters Within the Monk Environment

Generic e*Way Extension Kit Developer’s Guide 57 SeeBeyond Proprietary and Confidential

Figure 9 The sample.def file in Wordpad

3.8 Accessing Configuration Parameters Within the Monk
Environment

The Generic e*Way automatically loads configuration parameters stored in the .cfg file
into variables within the Monk environment.

3.8.1 Variable-name Format
Variables are named using the format

SECTION-NAME_PARAM-NAME

where SECTION-NAME is the name of the section and PARAM-NAME is the name of
the parameter. The value of the parameter is stored as the value of the variable.

Variable names are in all upper case, and are case-sensitive. The section and parameter
names are separated by an underscore, and any spaces contained within section or
parameter names are also converted into underscores.

Examples

The value of the parameter named “Password” within the section “Authentication”
would be stored in the variable “AUTHENTICATION_PASSWORD” (all upper case).

Copy the code
between the
comments

Change
the values
as desired

Chapter 3 Section 3.8
Extending the .def File Accessing Configuration Parameters Within the Monk Environment

Generic e*Way Extension Kit Developer’s Guide 58 SeeBeyond Proprietary and Confidential

The value of the parameter named “Gateway ID” within the section “Connection
Parameters” would be stored in the variable
“CONNECTION_PARAMETERS_GATEWAY_ID”.

3.8.2 Getting Variable Values
To access variable values, use the above conventions, and returns a string containing
that value or a Monk exception, “Unresolved Variable” if the specified variable does
not exist.

Examples

(string=? CONNECTION_PARAMETERS_GATEWAY_ID “ABC”)

See the Monk Developer’s Reference for more information.

Generic e*Way Extension Kit Developer’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4

Configuration

This chapter describes how to set the required e*Way configuration parameters

4.1 Required e*Way Configuration Parameters
The e*Way configuration parameters discussed in this section are required by the
Generic e*Way. The configuration parameters themselves are set using the e*Way
Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

! General Settings

! Communication Setup

! Monk Configuration

4.1.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 60 SeeBeyond Proprietary and Confidential

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event will be journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below).

! When its receipt is due to an external error, but Forward External Errors is set to No.
(See “Forward External Errors” on page 60 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the message is
considered “Failed” and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received
from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 73 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

See “Schedule-driven Data Exchange Functions” on page 68 for information about
how the e*Way uses this function.

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 61 SeeBeyond Proprietary and Confidential

4.1.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable will run. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
will be exchanged. Be sure you set the "exchange data" schedule to fall within the
"run the executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

! Exchange Data With External Function

! Positive Acknowledgment Function

! Negative Acknowledgment Function

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether the connection to the external system is active. If no ACK/NAK
is pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function will
be called according to the Exchange Data Interval parameter until the Stop Exchange
Data Schedule time is reached.

See “Exchange Data with External Function” on page 73, “Exchange Data Interval”
on page 62, and “Stop Exchange Data Schedule” on page 61 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 62 SeeBeyond Proprietary and Confidential

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 62 and “Stop Exchange Data Schedule” on page 61 for
more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 74 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 74 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 63 SeeBeyond Proprietary and Confidential

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message (Event) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned data.
If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 73 for more information.

4.1.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in below) handles communication with the external system; the other half
manages the Collaborations that process data and subscribe or publish to other e*Gate
components.

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 64 SeeBeyond Proprietary and Confidential

Figure 10 e*Way internal architecture

The “communications half” of the e*Way uses Monk functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
“Events” and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The Monk Configuration options discussed in this
section control the Monk environment and define the Monk functions used to perform
these basic e*Way operations. You can create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad, or UNIX vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The “business logic” side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Operational Details

The Monk functions in the “communications half” of the e*Way fall into the following
groups:

Type of Operation Name

Initialization Startup Function on page 72
(also see Monk Environment
Initialization File on page 71)

Communication
with external
system

Business logic and
communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 65 SeeBeyond Proprietary and Confidential

A series of figures on the next several pages illustrate the interaction and operation of
these functions.

Initialization Functions

Figure 11 illustrates how the e*Way executes its initialization functions.

Connection External Connection Establishment
Function on page 74
External Connection Verification
Function on page 74
External Connection Shutdown
Function on page 75

Schedule-driven data
exchange

Exchange Data with External
Function on page 73
Positive Acknowledgment Function
on page 75
Negative Acknowledgment Function
on page 76

Shutdown Shutdown Command Notification
Function on page 76

Event-driven data
exchange

Process Outgoing Message Function
on page 72

Type of Operation Name

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 66 SeeBeyond Proprietary and Confidential

Figure 11 Initialization Functions

Connection Functions

Figure 12 illustrates how the e*Way executes the connection establishment and
verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as the

initialization file

Load "Startup" file

Execute any Monk function
having the same name as the

startup file

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 67 SeeBeyond Proprietary and Confidential

Figure 12 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 14 on page 68 and Figure 16
on page 70 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 84 and send-external-down on page 84 for more
information.

Figure 13 illustrates how the e*Way executes its “connection shutdown” function.

Figure 13 Connection shutdown function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 68 SeeBeyond Proprietary and Confidential

Schedule-driven Data Exchange Functions

Figure 14 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

! The “Start Data Exchange” time occurs

! Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or command.

Figure 14 Schedule-driven data exchange functions

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 69 SeeBeyond Proprietary and Confidential

Shutdown Functions

Figure 15 illustrates how the e*Way implements the shutdown request function.

Figure 15 Shutdown functions

Event-driven Data Exchange Functions

Figure 16 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 70 SeeBeyond Proprietary and Confidential

Figure 16 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

! .monk

! .tsc

! .dsc

Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files
and data (set internally within Monk). The directory specified in Additional Path will
be searched after the default load paths.

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No

Journal
enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 71 SeeBeyond Proprietary and Confidential

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A pathname, or a series of paths separated by semicolons.

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See “Additional Path” on page 70 for more information about the “load path.”

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 72 SeeBeyond Proprietary and Confidential

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 11 on page 66).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration is reloaded. This function should be used to
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 11 on page 66). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External Function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 73 SeeBeyond Proprietary and Confidential

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 16 on page 70 for more details):

! Null string: Indicates that the Event was published successfully to the external
system.

! “RESEND”: Indicates that the Event should be resent.

! “CONNERR”: Indicates that there is a problem communicating with the external
system.

! “DATAERR”: Indicates that there is a problem with the message (Event) data itself.

! If a string other than the following is returned, the e*Way will create an entry in the
log file indicating that an attempt has been made to access an unsupported
function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 82 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input and must return a string (see Figure 14 on page 68 for
more details):

! Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

! “CONNERR”: Indicates that a problem with the connection to the external system
has occurred.

! “DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 14 on page 68 for more details.

! Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function (start-schedule). After the function has returned true and the data

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 74 SeeBeyond Proprietary and Confidential

received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 85 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 75 SeeBeyond Proprietary and Confidential

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a “suspend” command
from a Control Broker. When the “suspend” command is received, the e*Way will
invoke this function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

! Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Chapter 4 Section 4.1
Configuration Required e*Way Configuration Parameters

Generic e*Way Extension Kit Developer’s Guide 76 SeeBeyond Proprietary and Confidential

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

! Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will call
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

The function accepts a string as input and must return a string:

! A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

! Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 85).

Note: If you postpone a shutdown using this function, be sure to use the (shutdown-
request) function to complete the process in a timely manner.

Chapter 4 Section 4.2
Configuration Template Scripts

Generic e*Way Extension Kit Developer’s Guide 77 SeeBeyond Proprietary and Confidential

4.2 Template Scripts
These template scripts illustrate the following:

1 They demonstrate the required arguments and return values for each “generic”
function.

2 They contain “display” messages that you can use to confirm that a given function
is launching the appropriate script.

4.2.1 Startup Function
Example:

(display "\n")
(display "start up file\n")
; in startup function
(define startup
 (lambda ()
 (display "Executing external startup function.")
 ; Initializing and load monk scripts if necessary
 "SUCCESS"
)
)

4.2.2 Process Outgoing Event Function
Example:

(define ProcessOutEventFunc
 (lambda (message-string)
 (display "INFO: Inside Processing Outgoing Message Function.\n")
 (display message-string)
 (newline)
 (display "INFO: Inside Processing Outoing Message Function.\n")
 ; to return data error
 ; "DATAERR-should not send this data"

 ; to forward external event
 ; "data to be forward in Egate queue"

 ; no data to return
 ""
)
)

4.2.3 Exchange Data with External Function
Example:

(define exchangeDataFunc
 (lambda ()
 (newline)
 (display "INFO: Inside Data Exchange Function.\n")
 (newline)

 ; to forward external event
 ; "data to be forward in Egate queue"

Chapter 4 Section 4.2
Configuration Template Scripts

Generic e*Way Extension Kit Developer’s Guide 78 SeeBeyond Proprietary and Confidential

 ; no data to return
 ""
)
)

4.2.4 External Connection Establishment Function
Example:

(define establishConnectionFunc
 (lambda ()
 (display "INFO: Inside connection establishment Function.\n")
 ; if established connection
 (send-external-up)
 "UP"
)
)

4.2.5 External Connection Verification Function
Example:

(define connectionVerificationFunc
 (lambda ()
 (display "INFO: Inside connection verification Function.\n")
 ; verify connection, if it's still connected
 "UP"
 ; else
 "DOWN"
)
)

4.2.6 External Connection Shutdown Function
Example:

(define shutdownFunc
 (lambda (message-string)
 (display "INFO: Inside connection shutdown Function.\n")
 (display message-string)
 (newline)
 "SUCCESS"
)
)

4.2.7 Positive Acknowledgment Function
Example:

; positive ack function
(define ackFunc
 (lambda (message-string)
 (display "INFO: Inside Positive Ack Function.\n")
 (display message-string)
 (newline)
 (display "INFO: Inside Positive Ack Function.\n")
 ""
)

Chapter 4 Section 4.2
Configuration Template Scripts

Generic e*Way Extension Kit Developer’s Guide 79 SeeBeyond Proprietary and Confidential

)

4.2.8 Negative Acknowledgment Function
Example:

(define nakFunc
 (lambda (message-string)
 (display "INFO: Inside Negative Ack Function.\n")
 (display message-string)
 (newline)
 (display "INFO: Inside Negative Ack Function.\n")
 ""
)
)

4.2.9 Shutdown Command Notification Function
Example:

(define shutdownNotificationFunc
 (lambda (message-string)
 (display "INFO: Inside Shutdown Command Notification Function.\n")
 "SUCCESS"
)
)

Generic e*Way Extension Kit Developer’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5

Interface API Functionality

This chapter describes the core and extension functions.

5.1 Core Functions
The following functions are available to all e*Ways based on the Extension Kit:

! event-commit-to-egate on page 80

! event-rollback-to-egate on page 81

! event-send-to-egate on page 82

! event-send-to-egate-ignore-shutdown on page 82

! event-send-to-egate-no-commit on page 83

! get-logical-name on page 83

! insert-exchange-data-event on page 84

! send-external-down on page 84

! send-external-up on page 84

! shutdown-request on page 85

! start-schedule on page 85

! stop-schedule on page 86

! waiting-to-shutdown on page 86

event-commit-to-egate

Syntax

(event-commit-to-egate string)

Description

event-commit-to-egate marks all messages as revealed for the internal work slice to
pickup.

Chapter 5 Section 5.1
Interface API Functionality Core Functions

Generic e*Way Extension Kit Developer’s Guide 81 SeeBeyond Proprietary and Confidential

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function is used after the messages sent using event-sent-to-egate-no-commit are
ready to be revealed.

event-rollback-to-egate

Syntax

(event-rollback-to-egate string)

Description

event-rollback-to-egate rolls back data that has been inserted but not revealed.

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function is used in conjunction with event-send-to-egate-no-commit. Once the
message has been revealed, it can not be rolled back.

Name Type Description

string string The data to be sent to the e*Gate
system

Name Type Description

string string The data to be sent to the e*Gate
system

Generic e*Way Extension Kit Developer’s Guide 82 SeeBeyond Proprietary and Confidential

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

event-send-to-egate-ignore-shutdown

Syntax

(event-send-to-egate-ignore-shutdown string)

Description

event-send-to-egate-ignore-shutdown behaves similar to event-send-to-egate, except
that if there is a shutdown issue, event-sent-to-egate-ignore-shutdown ignores it..

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Name Type Description

string string The data to be sent to the e*Gate
system

Name Type Description

string string The data to be sent to the e*Gate
system

Chapter 5 Section 5.1
Interface API Functionality Core Functions

Generic e*Way Extension Kit Developer’s Guide 83 SeeBeyond Proprietary and Confidential

Throws

None.

event-send-to-egate-no-commit

Syntax

(event-send-to-egate-no-commit message)

Description

event-send-to-egate-no-commit temporarily stores messages and does not allow the
internal work slice to access them. The internal work slice cannot access the messages
until they are marked as revealed. Access is only allowed once the external translation
calls event-commit-to-egate, which then reveals the messages to the internal work slice.

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent unrevealed successfully; otherwise, returns false
(#f).

Throws

None.

Additional information

This function can be called by any of the Generic e*Way functions when it is necessary
to send data to the e*Gate system without committing it.

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Name Type Description

message string The data to be sent to the e*Gate
system

Chapter 5 Section 5.1
Interface API Functionality Core Functions

Generic e*Way Extension Kit Developer’s Guide 84 SeeBeyond Proprietary and Confidential

Throws

None.

insert-exchange-data-event

Syntax

(insert-exchange-data-event)

Description

insert-exchange-data-event inserts an exchange data Event independent of the set
schedules, and triggers the exchange data function.

Parameters

None.

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Chapter 5 Section 5.1
Interface API Functionality Core Functions

Generic e*Way Extension Kit Developer’s Guide 85 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

None.

Throws

None.

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the Shutdown
Command Notification Function (see “Shutdown Command Notification Function”
on page 76). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the “Exchange Data with External”
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Chapter 5 Section 5.1
Interface API Functionality Core Functions

Generic e*Way Extension Kit Developer’s Guide 86 SeeBeyond Proprietary and Confidential

Throws

None.

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with
External” function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not affect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

waiting-to-shutdown

Syntax

(waiting-to-shutdown)

Description

waiting-to-shutdown informs the external workslice code whether or not someone has
issued a shut down command.

Parameters

None.

Return Values

Boolean
Returns true (#t) if successful; otherwise, returns false (#f).

Throws

None.

Chapter 5 Section 5.2
Interface API Functionality Extension Functions

Generic e*Way Extension Kit Developer’s Guide 87 SeeBeyond Proprietary and Confidential

5.2 Extension Functions
Two functions, invoke and load-interface, are particularly useful to developers
extending e*Gate. The are included in this manual for easy reference, and are also
discussed in the Monk Developer’s Reference Guide.

! invoke on page 87

! load-interface on page 88

invoke

Syntax

(invoke object string [params...])

Description

invoke calls the function contained in the interface handle, passing the function name
and parameter values as input.

Parameters

Return Values

Vector
A vector of the values returned by the call to the specified object.

Additional Information

The invoke function is a generic interface to a set of functions within a dll. The interface
dll must use the architecture and protocols defined in the stcextif.h file (see “Header
File - stcextif.h” on page 13 for more information), and must first be loaded via the
load-interface function (see load-interface on page 88).

An object that can be called by the invoke function can optionally be called using the
object’s name alone. For example, the following are equivalent:

(invoke my_object my_function)

(my_object my_function)

Name Type Description

object handle An interface handle returned by the load-
interface function.

string string The name of the function invoked.

params... varies, depending on the
function invoked

Optional. The parameter(s) specified is
dependent upon the argument list in the
function invoked.

Chapter 5 Section 5.2
Interface API Functionality Extension Functions

Generic e*Way Extension Kit Developer’s Guide 88 SeeBeyond Proprietary and Confidential

load-interface

Syntax

(load-interface dll_file [init_fn])

Description

load-interface loads a dll. The dll must adhere to the architecture and protocols defined
in the stcextif.h file (see “Header File - stcextif.h” on page 13 for more information).

Parameters

Return Values

Returns an interface handle.

Examples

(define obj (load-interface “sample_ext.dll”))

Name Type Description

dll_file string The path to the dll to be loaded.

init_fn string The name of the init function called. Optional.

Chapter 6 Section 6.1
Configuring the e*Way with the Enterprise Manager Implementing the Generic e*Way

Generic e*Way Extension Kit Developer’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 6

Configuring the e*Way with the Enterprise
Manager

The instructions in this chapter discuss how to implement the Generic e*Way using the
Enterprise Manager.

6.1 Implementing the Generic e*Way
After you have created the extension DLL, any required Monk functions, and the .def
file (if necessary) for the new e*Way, you must do the following:

1 Commit any files you have created to the appropriate directories within a schema.

2 Create an e*Way component within the schema.

3 Configure the e*Way as required.

6.1.1 Step 1: Commit files to the schema

Note: Do not commit files to the default schema unless you want those files to be
inherited by all new schemas. Even if this is the desired outcome, we recommend
that you always commit files to a non-default schema during testing and
development of new e*Way components.

1 Make sure that the files you wish to commit to the e*Gate schema are accessible
from the same system as the Enterprise Manager GUI, either from a local file system
or from a mapped network drive (you cannot commit files to the schema using a
UNC path).

2 Using the Enterprise Manager, login into the schema that will support the new
e*Way.

3 Pull down the File menu and select Commit to Sandbox.

4 The Select Local File to Commit dialog appears. Use the file-selection controls to
locate the file you want to commit and click Open.

5 The Select Directory for Committed File dialog appears. Use the directory-
selection controls to locate the directory to you want to commit the file and click
Select. Select the directory according to the table below:

Chapter 6 Section 6.1
Configuring the e*Way with the Enterprise Manager Implementing the Generic e*Way

Generic e*Way Extension Kit Developer’s Guide 90 SeeBeyond Proprietary and Confidential

Any ETD (.ssc) and Collaboration Rules (.tsc) files that you create for this e*Way should
be stored in the schema within the /monk_scripts/common directory, but you do not
need to commit any such files manually if you create them using the e*Gate ETD or
Collaboration Rules Editors. If you use another editor to create these files (such as
Notepad, Wordpad, or vi), you must commit the files manually.

Note: Remember that committing files to the Sandbox makes them available for testing.
Files must be promoted to the run-time schema before they can be used in the
working “production” environment. For more information, see the Team Registry
user’s guide or the Enterprise Manager’s Help system.

6.1.2 Step 2: Create an e*Way Component
After all the required files have been committed to the schema, you can create the
e*Way component.

1 In the Component editor, create a new e*Way.

2 Display the new e*Way’s properties.

3 On the General tab, under Executable File, click Find.

4 Select the file stcewgenericmonk.exe.

5 Under Configuration file, click New.

6 The e*Way Template Selection dialog box appears. From the list, select the .def file
that you created for this e*Way and click OK. The name will be listed without the
“.def” extension. For example, if you created the file my_eway.def, the file will be
listed as my_eway.

Table 5 Schema directories

For a file of this type... ...commit to this directory

.def /configs/stcewgenericmonk

.monk (e*Way functions) monk_scripts/eway_name
(We recommend that you create a separate
directory for your custom e*Way scripts.)

.dll /bin

Chapter 6 Section 6.1
Configuring the e*Way with the Enterprise Manager Implementing the Generic e*Way

Generic e*Way Extension Kit Developer’s Guide 91 SeeBeyond Proprietary and Confidential

Figure 17 e*Way Template Selection

7 The e*Way Editor will launch. You are ready to configure the e*Way; continue with
the next section.

6.1.3 Step 3: Configure the e*Way
Once you have selected your e*Way template, you are ready to use the e*Way Editor to
configure this e*Way component.

1 If you followed the instructions in the previous two sections, the e*Way Editor has
now launched (shown in the figure below).

Figure 18 Edit Settings

Use the e*Way Editor to make any configuration changes you require. For more
information about configuring e*Ways or how to use the e*Way Editor, see the
e*Gate Integrator User’s Guide.

Chapter 6 Section 6.1
Configuring the e*Way with the Enterprise Manager Implementing the Generic e*Way

Generic e*Way Extension Kit Developer’s Guide 92 SeeBeyond Proprietary and Confidential

2 When you have finished making configuration changes, pull down the File menu
and select Save.

3 Enter a name for the configuration file and click OK.

4 Exit the e*Way Editor. You will return to the e*Way’s property sheet. Click OK to
close the properties sheet, or continue to make other changes to the e*Way
component’s properties.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the Enterprise
Manager’s online Help system.

6.1.4 Editing a .def File Within a Schema
To edit a .def file that has already been committed to a schema:

1 Launch the Enterprise Manager and login to the schema containing the .def file that
you want to edit.

2 Pull down the File menu and select Edit File.

3 Use the file-selection controls to open the .def file. The Notepad editor will launch
and open the file you have selected.

4 Save any changes and exit the editor.

5 Commit the edited file back to the schema (the Enterprise Manager will
automatically prompt you to perform this procedure).

See the Enterprise Manager’s online help for more information.

Index

Generic e*Way Extension Kit Developer’s Guide 93 SeeBeyond Proprietary and Confidential

Index

A
accessing parameter values within Monk 57
Additional Path parameter 70
addref method 20
ASCII codes, displaying in different formats 43
Auxiliary Library Directories parameter 71

B
basic steps to extend a generic e*Way 12

C
.cfg file 51
(char) keyword 37
character parameter syntax 33
comments

within the .def file 33
within the configuration file 51

components 8
configuration 51, 59
configuration definition file 8
configuration files 51
configuration parameters

accessing within Monk environment 57
Additional Path 70
Auxiliary Library Directories 71
Down Timeout 62
Exchange Data Interval 62
Exchange Data With External Function 73
External Connection Establishment Function 74
External Connection Shutdown Function 75
External Connection Verification Function 74
Forward External Errors 60
Journal File Name 59
Max Failed Messages 60
Max Resends Per Message 60
Monk Environment Initialization File 71
Negative Acknowledgment Function 76
Positive Acknowledgement Function 75
Process Outgoing Message Function 72
Resend Timeout 63
Shutdown Command Notification Function 76
Start Exchange Data Schedule 62

Startup Function 72
Stop Exchange Data Schedule 61
Up Timeout 62
Zero Wait Between Successful Exchanges 63

const keyword 40

D
(date) keyword 37
debugging the .def file 53
delim keywords 46, 51
description keyword 35
displaying ASCII codes 43
Down Timeout parameter 62

E
encrypting string parameters 45
error messages in .def file parsing 54
escape character, using 33
event-commit-to-egate 80
event-rollback-to-egate 81
event-send-to-egate function 82
event-send-to-egate-ignore-shutdown 82
event-send-to-egate-no-commit 83
Exchange Data Interval parameter 62
exchange data with external function 77
Exchange Data with External Function parameter 73
External Connection Establishment Function
parameter 74
External Connection Establishment Function
template 78
External Connection Shutdown Function parameter
75
External Connection Shutdown Function template
78
External Connection Verification Function
parameter 74
External Connection Verification Function template
78
EXTIF_CHARBLOB 16
EXTIF_PARAM_ 16
EXTIF_VECTOR 17
extIFParamTypes_ 15
ExtIFResult_ 15

F
(factor) keyword 44
floating-point numbers 33
formats, displaying parameters in varying 43
Forward External Errors parameter 60
freeargs method 20

Index

Generic e*Way Extension Kit Developer’s Guide 94 SeeBeyond Proprietary and Confidential

functions
init (in library) 18
see also Monk functions

G
get-logical-name function 83

H
header file

stcextif.h 13

I
indentation 32
init function (in library) 18
insert-exchange-data-event 84
(int) keyword 37
integer parameter, range of valid 33
interface api functionality 80
invoke function (Monk) 87
invoke method (in library) 19

J
Journal File Name parameter 59

K
keywords in .def file

reference 45–49

L
limiting ranges 40
loading the dll 29
load-interface function 88

M
Max Failed Messages parameter 60
Max Resends Per Message parameter 60
methods 19

addref 20
freeargs 20
invoke 19
removeref 21

Monk Environment Initialization File parameter 71
Monk environment variables, storing configuration
parameters 57
Monk functions

event-send-to-egate 82

get-logical-name 83
invoke 87
load-interface 88
overview 9
send-external-down 84
send-external-up 84
shutdown-request 85
start-schedule 85
stop-schedule 86

N
Negative Acknowledgment Function parameter 76
Negative Acknowledgment Function template 79
newlines as whitespace 32

O
OS/390 10

P
parameter ranges 40
parameter sets 38, 39
parameter syntax, .def file

general 32
integer parameters 33
path parameters 33
string and character parameters 33

parameter types 37
parse errors 54
password parameters, defining 45
(path) keyword 37
path parameters 33
Positive Acknowledgment Function parameter 75
Positive Acknowledgment Function template 78
Process Outgoing Event Function template 77
Process Outgoing Message Function parameter 72

Q
quotation marks in .def files, escaping 33

R
(range) keyword 40
ranges

defining 40
fixing upper or lower limits 40
units and default values 42

removeref method 21
Resend Timeout parameter 63

Index

Generic e*Way Extension Kit Developer’s Guide 95 SeeBeyond Proprietary and Confidential

S
sample .def file 55
sample DLL source code 25
sample scripts

exchange data with external function 77
external connection establishment function 78
external connection shutdown function 78
external connection verification function 78
negative acknowledgment function 79
positive acknowledgment function 78
process outgoing event function 77
shutdown command notification function 79
startup function 77

.sc file 51
(schedule) keyword 37
schedule parameter syntax 49
SCparse error messages 54
section keyword 34
send-external-down function 84
send-external-up function 84
-set keyword suffix 38
(set) keyword, example 39, 40
-set-multi keyword suffix 39
(show-as) keyword 43
Shutdown Command Notification Function
parameter 76
Shutdown Command Notification Function
template 79
shutdown-request function 85
Start Exchange Data Schedule parameter 62
start-schedule function 85
Startup Function parameter 72
Startup Function template 77
stcewgenericmonk.exe 8
stcextif.h 13
Stop Exchange Data Schedule parameter 61
stop-schedule function 86
(string) keyword 37
string parameter syntax 33
string parameters, encrypting 45

T
tabs as whitespace 32
template scripts 77
template source code 21
(time) keyword 37
"Tips" button, text displayed 35
type definition list, external interface API 14

U
(units) keyword 41

Up Timeout parameter 62
user-comment keyword 34, 35

V
value ranges, specifying 40
variables within Monk environment, storing
configuration parameters 57

W
whitespace 32

Z
z/OS 10
Zero Wait Between Successful Exchanges parameter
63

	Generic e*Way Extension Kit Developer’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Audience

	1.2 Generic e*Way Components
	stcewgenericmonk.exe
	stcewgenericmonk.def
	Monk Template Scripts
	e*Way APIs

	1.3 Supported Operating Systems
	1.4 System Requirements
	1.5 e*Way Extensions and External Applications
	1.5.1 Basics Steps to Extend a Generic e*Way

	External Interface
	2.1 Header File - stcextif.h
	2.1.1 Overview
	2.1.2 Type Definitions List
	ExtIFParamTypes_
	ExtIFResult_
	EXTIF_PARAM_
	EXTIF_CHARBLOB
	EXTIF_WCHARBLOB
	EXTIF_VECTOR
	EXTIF_OBJECT

	2.2 Init Function
	2.3 Methods
	2.3.1 List of Methods
	invoke
	freeargs
	addref
	removeref

	2.4 Template Source Code
	2.5 Sample Source Code Description
	2.6 Loading the DLL

	Extending the .def File
	3.1 Introduction
	3.1.1 Layout

	3.2 .def file Keywords: General Information
	3.2.1 White Space
	3.2.2 Integer Parameters
	3.2.3 Floating-point Parameters
	3.2.4 String and Character Parameters
	3.2.5 Path Parameters
	3.2.6 Comments
	3.2.7 “Header” Information

	3.3 Defining a New Section
	3.3.1 Section Syntax
	3.3.2 Parameter Syntax
	Order of Keywords
	Parameter Types
	Parameters Requiring Single Values
	Parameters Accepting a Single Value From a Set
	Parameters Accepting Multiple Values From a Set

	3.3.3 Specifying Ranges
	3.3.4 Specifying Units
	3.3.5 Displaying Options in ASCII, Octal, Hex, or Decimal
	Factor
	Encrypting Strings

	3.4 Configuration Keyword Reference
	3.4.1 Schedule Syntax
	Defining Default Schedules

	3.5 Configuration Parameters and the Configuration Files
	Examples

	3.6 Testing and Debugging the .def File
	3.6.1 Common Error Messages

	3.7 Sample .def File
	3.8 Accessing Configuration Parameters Within the Monk Environment
	3.8.1 Variable-name Format
	3.8.2 Getting Variable Values

	Configuration
	4.1 Required e*Way Configuration Parameters
	4.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	4.1.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	4.1.3 Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	4.2 Template Scripts
	4.2.1 Startup Function
	4.2.2 Process Outgoing Event Function
	4.2.3 Exchange Data with External Function
	4.2.4 External Connection Establishment Function
	4.2.5 External Connection Verification Function
	4.2.6 External Connection Shutdown Function
	4.2.7 Positive Acknowledgment Function
	4.2.8 Negative Acknowledgment Function
	4.2.9 Shutdown Command Notification Function

	Interface API Functionality
	5.1 Core Functions
	event-commit-to-egate
	event-rollback-to-egate
	event-send-to-egate
	event-send-to-egate-ignore-shutdown
	event-send-to-egate-no-commit
	get-logical-name
	insert-exchange-data-event
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule
	waiting-to-shutdown

	5.2 Extension Functions
	invoke
	load-interface

	Configuring the e*Way with the Enterprise Manager
	6.1 Implementing the Generic e*Way
	6.1.1 Step 1: Commit files to the schema
	6.1.2 Step 2: Create an e*Way Component
	6.1.3 Step 3: Configure the e*Way
	6.1.4 Editing a .def File Within a Schema

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

